These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Analyzing Land Use Change In Urban Environments  

NSDL National Science Digital Library

This four-page fact sheet provides a brief summary of the analysis of land use in urban environments. Topics include the rapid growth in urban populations, some of the methods used to analyze land use change (mapping, databases, time series documents), and some of the concerns and possible consequences created by the rapid shift of human populations to urban centers.

2

A spatial panel ordered-response model with application to the analysis of urban land-use development intensity patterns  

NASA Astrophysics Data System (ADS)

This paper proposes and estimates a spatial panel ordered-response probit model with temporal autoregressive error terms to analyze changes in urban land development intensity levels over time. Such a model structure maintains a close linkage between the land owner's decision (unobserved to the analyst) and the land development intensity level (observed by the analyst) and accommodates spatial interactions between land owners that lead to spatial spillover effects. In addition, the model structure incorporates spatial heterogeneity as well as spatial heteroscedasticity. The resulting model is estimated using a composite marginal likelihood (CML) approach that does not require any simulation machinery and that can be applied to data sets of any size. A simulation exercise indicates that the CML approach recovers the model parameters very well, even in the presence of high spatial and temporal dependence. In addition, the simulation results demonstrate that ignoring spatial dependency and spatial heterogeneity when both are actually present will lead to bias in parameter estimation. A demonstration exercise applies the proposed model to examine urban land development intensity levels using parcel-level data from Austin, Texas.

Ferdous, Nazneen; Bhat, Chandra R.

2013-01-01

3

Urban Dynamics: Analyzing Land Use Change in Urban Environments  

NASA Technical Reports Server (NTRS)

In FY99, the Earth Resource Observation System (EROS) staff at Ames continued managing the U.S. Geological Survey's (USGS) Urban Dynamics Research program, which has mapping and analysis activities at five USGS mapping centers. Historic land use reconstruction work continued while activities in geographic analysis and modeling were expanded. Retrospective geographic information system (GIS) development - the spatial reconstruction of a region's urban land-use history - focused on the Detroit River Corridor, California's Central Valley, and the city of Sioux Falls, South Dakota.

Acevedo, William; Richards, Lora R.; Buchanan, Janis T.; Wegener, Whitney R.

2000-01-01

4

Water Quality in Agricultural, Urban, and Mixed Land Use Watersheds  

Microsoft Academic Search

Water quality and nonpoint source (NPS) pollution are important issues in many areas of the world, including the Inner Bluegrass Region of Kentucky where urban development is changing formerly rural watersheds into urban and mixed use watersheds. In watersheds where land use is mixed, the relative contributions of NPS pollution from rural and urban land uses can be difficult to

Chris B. Coulter; Randy K. Kolka; James A. Thompson

2004-01-01

5

Improving urban land use and land cover classification from  

E-print Network

Improving urban land use and land cover classification from high-spatial-resolution hyperspectral Library on 02 Sep 2010 to 130.18.64.144. Terms of Use: http://spiedl.org/terms #12;Improving urban land) classification for urban land use and land cover (LULC) mapping from airborne hyperspectral imagery with high

Du, Jenny (Qian)

6

Sustainable Urban Land Use Allocation With Spatial Optimization  

Microsoft Academic Search

Sustainable urban form has been recognized as one of the major concerns of the planning practice. Current land use pattern trends with low-density, single-use, and leapfroging urban growth on city outskirts call for more efficient land use development strategies balancing economy, environmental protection, and social equity. In this paper, we present a new multiobjective spatial optimization model, which minimizes the

Arika Ligmann-Zielinska; Richard Church; Piotr Jankowski

7

Challenges and opportunities in mapping land use intensity globally?  

PubMed Central

Future increases in land-based production will need to focus more on sustainably intensifying existing production systems. Unfortunately, our understanding of the global patterns of land use intensity is weak, partly because land use intensity is a complex, multidimensional term, and partly because we lack appropriate datasets to assess land use intensity across broad geographic extents. Here, we review the state of the art regarding approaches for mapping land use intensity and provide a comprehensive overview of available global-scale datasets on land use intensity. We also outline major challenges and opportunities for mapping land use intensity for cropland, grazing, and forestry systems, and identify key issues for future research. PMID:24143157

Kuemmerle, Tobias; Erb, Karlheinz; Meyfroidt, Patrick; Müller, Daniel; Verburg, Peter H; Estel, Stephan; Haberl, Helmut; Hostert, Patrick; Jepsen, Martin R.; Kastner, Thomas; Levers, Christian; Lindner, Marcus; Plutzar, Christoph; Verkerk, Pieter Johannes; van der Zanden, Emma H; Reenberg, Anette

2013-01-01

8

Procedural Modeling of Urban Land Use Tom Lechner1  

E-print Network

Felsen3 , Andy Moddrell3 School of Architecture Illinois Inst. Technology Pin Ren1 , Craig Brozefsky1 -- Architecture. Keywords: cities, urban planning, urban design, urban development, urban geography, procedural not model land use, meaning artists must arrange the buildings in the cities they create manually. We

Wilensky, Uri

9

Using land use change trajectories to quantify the effects of urbanization on urban heat island  

NASA Astrophysics Data System (ADS)

This paper proposed a quantitative method of land use change trajectory, which means the succession among different land use types across time, to examine the effects of urbanization on an urban heat island (UHI). To accomplish this, multi-temporal images from Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) of Xiamen City in China from 1987 to 2007 were selected. First, the land use change trajectories were extracted based on the classified images from different years. Then the land surface temperatures (LST) were retrieved and the magnitudes of the UHI were evaluated using the UHI intensity (UHII) indicator. Finally, the indices of the contribution to UHI intensity (CUHII) were constructed and calculated to quantify the effects of each land use change trajectory on the UHI during urbanization. The results demonstrated that the land use change trajectories and CUHII are effective and useful in quantifying the effects of urbanization on UHI. In Xiamen City, a total of 2218 land use change trajectories were identified and 530 of them were the existing urban or urbanization trajectories. The UHII presents a trend of continuous increase from 0.83 °C in 1987 to 2.14 °C in 2007. With respect to the effects of urban growth on UHI, the contribution of existing urban area to UHI decreased during urbanization. Prior to 2007, the existing urban area of trajectory NO. 44444 had the most significant effect on UHI with the greatest CUHII, while the value has decreased from 55.00% in 1987 to 13.03% in 2007 because of the addition of new urbanized area. In 2007, the greatest CUHII was replaced by a trajectory from farmland to built-up area (NO. 22224) with the CUHII of 21.98%, followed by the existing urban area of trajectory NO. 44444 with the CUHII of 13.03%. These results provide not only a new methodology to assess the environmental effects of urbanization, but also decision-supports for the planning and management of cities.

Feng, Huihui; Zhao, Xiaofeng; Chen, Feng; Wu, Lichun

2014-02-01

10

Dynamism of Transportation and Land Use Interaction in Urban Context  

NASA Astrophysics Data System (ADS)

Transportation in urban areas is highly complex and the urban transport system is intricately linked with urban form and spatial structure. Urban transit is an important dimension of mobility, notably in high density areas. The spatial separation of human activities which creates the need for travel and goods transport is the underlying principle of transport analysis and forecasting. To understand the complex relationships between transportation and land use and to help the urban planning process, several models have been developed. Many theories, models are developed by different authors on land use and transportation interaction, which clearly indicate that change in land use transformation have a greater impact on transportation. Similarly, introducing new transportation facility or strengthening of existing transport facility makes an impact on the abutting land. In cities like Delhi, Navi Mumbai, Ahmedabad, introducing of new mass transport system or strengthening of existing transportation system had given greater impact on surrounding development. In this Paper the major theoretical approaches to explain the two-way interaction of land use and transport in metropolitan areas are summarized. The paper also reviews research on the two-way interaction between urban land use and transport, i.e. the location and mobility responses of private actors (households and firms, travelers) to changes in the urban land use and transport system at the urban regional level.

Pandya, Rajesh J.; Katti, B. K.

2012-10-01

11

Evaluating Urban Sustainability Using Land-Use Transport Interaction Models  

Microsoft Academic Search

Land Use and Transport for Increasing Urban Sustainability) was to assess urban strategies and to demonstrate their long-term effects in European cities. To reach this goal, a comprehensive framework of methodologies including integrated land-use, transport and environmental models as well as indicator, evaluation and presentation systems was developed. Sustainable development is viewed as comprising the environmental, socio-cultural and economic dimension.

Klaus Spiekermann; Michael Wegener

12

Urban Transportation, Land Use, and the Environment  

NSDL National Science Digital Library

Part of MIT's innovative OpenCourseWare Project, that provides materials from MIT classes to the public on the web, the site contains materials from a seminar studying the interactions of urban systems and the environment. Along with general topics, the seminar provides in-depth case studies of three Central and South American urban areas: Mexico City, Curitiba, and Santiago. The site provides a syllabus, calendar, references for readings, assignments, project ideas, in-depth lecture presentations, and class assignments.

Zegras, P. Christopher

13

Impacts of land use on riparian forest along an urban – rural gradient in southern Manitoba  

Microsoft Academic Search

Extensive landscape modification by humans has led to the fragmentation of riparian forests across North America. We compared\\u000a the vegetation of extant riparian forest along an urban-rural disturbance gradient. In 1999, twenty-five sites along Assiniboine\\u000a River in Manitoba, Canada were categorized according to land use: urban, suburban, high intensity rural, low intensity rural,\\u000a and relatively high quality reference forest. Differences

S. F. Moffatt; S. M. McLachlan; N. C. Kenkel

2004-01-01

14

Airborne lidar intensity calibration and application for land use classification  

NASA Astrophysics Data System (ADS)

Airborne Light Detection and Ranging (LiDAR) is an active remote sensing technology which can acquire the topographic information efficiently. It can record the accurate 3D coordinates of the targets and also the signal intensity (the amplitude of backscattered echoes) which represents reflectance characteristics of targets. The intensity data has been used in land use classification, vegetation fractional cover and leaf area index (LAI) estimation. Apart from the reflectance characteristics of the targets, the intensity data can also be influenced by many other factors, such as flying height, incident angle, atmospheric attenuation, laser pulse power and laser beam width. It is therefore necessary to calibrate intensity values before further applications. In this study, we analyze the factors affecting LiDAR intensity based on radar range equation firstly, and then applying the intensity calibration method, which includes the sensor-to-target distance and incident angle, to the laser intensity data over the study area. Finally the raw LiDAR intensity and normalized intensity data are used for land use classification along with LiDAR elevation data respectively. The results show that the classification accuracy from the normalized intensity data is higher than that from raw LiDAR intensity data and also indicate that the calibration of LiDAR intensity data is necessary in the application of land use classification.

Li, Dong; Wang, Cheng; Luo, She-Zhou; Zuo, Zheng-Li

2014-11-01

15

Mapping urban environmental noise: a land use regression method.  

PubMed

Forecasting and preventing urban noise pollution are major challenges in urban environmental management. Most existing efforts, including experiment-based models, statistical models, and noise mapping, however, have limited capacity to explain the association between urban growth and corresponding noise change. Therefore, these conventional methods can hardly forecast urban noise at a given outlook of development layout. This paper, for the first time, introduces a land use regression method, which has been applied for simulating urban air quality for a decade, to construct an urban noise model (LUNOS) in Dalian Municipality, Northwest China. The LUNOS model describes noise as a dependent variable of surrounding various land areas via a regressive function. The results suggest that a linear model performs better in fitting monitoring data, and there is no significant difference of the LUNOS's outputs when applied to different spatial scales. As the LUNOS facilitates a better understanding of the association between land use and urban environmental noise in comparison to conventional methods, it can be regarded as a promising tool for noise prediction for planning purposes and aid smart decision-making. PMID:21770380

Xie, Dan; Liu, Yi; Chen, Jining

2011-09-01

16

Stochastic cellular automata modeling of urban land use dynamics: empirical development  

E-print Network

of urban land use change. This indicates the relevance of the approach for generating forecasts of growth'; Cellular automata; Urban growth; Urban planning 1. Introduction: cell-space models of land use changeStochastic cellular automata modeling of urban land use dynamics: empirical development

Camara, Gilberto

17

Landscape and Urban Planning xxx (2005) xxxxxx A Relational Indicatorset Model for urban land-use  

E-print Network

and Urban Planning xxx (2005) xxx­xxx 1. Introduction Indicators are being used more and more frequentlyLandscape and Urban Planning xxx (2005) xxx­xxx A Relational Indicatorset Model for urban land form 12 February 2005; accepted 12 February 2005 Abstract Urban land-use planning and management

18

Minimizing land use and nitrogen intensity of bioenergy.  

PubMed

The environmental impacts of bioenergy products have received a great deal of attention. Life cycle analysis (LCA) is a widely accepted method to quantify the environmental impacts of products. Conducting comprehensive LCAs for every possible bioenergy alternative is difficult because of the sheer magnitude of potential biomass sources and energy end products. The scopes of LCAs are often simplified to compare multiple products on the basis of greenhouse gas emissions and net energy balances, and may neglect equally important considerations such as nitrogen and land use. This study determines the most desirable energy crops on the basis of nitrogen and land use. The theoretical minimum nitrogen and land use requirements of fourteen bioenergy feedstocks are evaluated. These results can help prioritize certain feedstock crops for more in-depth life cycle analyses and can be used to inform policies on dedicated energy crops. The results of the study indicate that sugar cane has the best nitrogen and land use profile of the analyzed feedstocks. Sugar cane is the largest contributor to bioenergy production worldwide and is an effective policy choice from a nutrient and land use perspective. Conversely, soybeans and rapeseed are the least effective biomass sources with respect to land use and nitrogen requirements, yet these crops are also used to meet biofuel production targets worldwide. These results indicate current energy policies either do not consider or undervalue nitrogen and land use impacts, which could lead to unsustainable recommendations. Interestingly, when both nitrogen and land intensity are taken into account, reasonably small differences are seen between the remainder of the analyzed feedstocks, indicating an inherent trade-off between energy yield and nitrogen impacts. PMID:20420363

Miller, Shelie A

2010-05-15

19

Urban land use predicts West Nile virus exposure in songbirds.  

PubMed

Urbanization is a widespread phenomenon that is likely to influence the prevalence and impact of wildlife pathogens, with implications for wildlife management and public health policies toward zoonotic pathogens. In this study, wild songbird populations were sampled at 14 sites along an urban rural gradient in the greater metropolitan Atlanta (Georgia, USA) area and tested for antibodies to West Nile virus (WNV). The level of urbanization among sites was quantitatively assessed using a principal component analysis of key land use characteristics. In total, 499 individual birds were tested during the spring and summer over three years (2004-2006). Antibody prevalence of WNV increased from rural to urban sites, and this trend was stronger among adult birds relative to juveniles. Furthermore, antibody prevalence among Northern Cardinals (Cardinalis cardinalis) was significantly higher than in other songbird species along the urban gradient. Findings reported here indicate that ecological factors associated with urbanization can influence infection patterns of this vector-borne viral disease, with likely mechanisms including changes in host species diversity and the tolerance or recovery of infected animals. PMID:18686573

Bradley, Catherine A; Gibbs, Samantha E J; Altizer, Sonia

2008-07-01

20

Are agricultural land-use models able to predict changes in land-use intensity?  

Microsoft Academic Search

Land-use and land-cover change research needs to pay more attention to processes of land-cover modification, and especially to agricultural land intensification. The objective of this paper is to review the different modelling approaches that have been used in land-use\\/land-cover change research from the perspective of their utility for the study and prediction of changes in land-use intensification. After clarifying the

E. F. Lambin; M. D. A Rounsevell; H. J Geist

2000-01-01

21

The ERTS-1 investigation (ER-600). Volume 5: ERTS-1 urban land use analysis  

NASA Technical Reports Server (NTRS)

The Urban Land Use Team conducted a year's investigation of ERTS-1 MSS data to determine the number of Land Use categories in the Houston, Texas, area. They discovered unusually low classification accuracies occurred when a spectrally complex urban scene was classified with extensive rural areas containing spectrally homogeneous features. Separate computer processing of only data in the urbanized area increased classification accuracies of certain urban land use categories. Even so, accuracies of urban landscape were in the 40-70 percent range compared to 70-90 percent for the land use categories containing more homogeneous features (agriculture, forest, water, etc.) in the nonurban areas.

Erb, R. B.

1974-01-01

22

Urban land use limits regional bumble bee gene flow.  

PubMed

Potential declines in native pollinator communities and increased reliance on pollinator-dependent crops have raised concerns about native pollinator conservation and dispersal across human-altered landscapes. Bumble bees are one of the most effective native pollinators and are often the first to be extirpated in human-altered habitats, yet little is known about how bumble bees move across fine spatial scales and what landscapes promote or limit their gene flow. In this study, we examine regional genetic differentiation and fine-scale relatedness patterns of the yellow-faced bumble bee, Bombus vosnesenskii, to investigate how current and historic habitat composition impact gene flow. We conducted our study across a landscape mosaic of natural, agricultural and urban/suburban habitats, and we show that B. vosnesenskii exhibits low but significant levels of differentiation across the study system (F(ST) = 0.019, D(est) = 0.049). Most importantly, we reveal significant relationships between pairwise F(ST) and resistance models created from contemporary land use maps. Specifically, B. vosnesenskii gene flow is most limited by commercial, industrial and transportation-related impervious cover. Finally, our fine-scale analysis reveals significant but declining relatedness between individuals at the 1-9 km spatial scale, most likely due to local queen dispersal. Overall, our results indicate that B. vosnesenskii exhibits considerable local dispersal and that regional gene flow is significantly limited by impervious cover associated with urbanization. PMID:23495763

Jha, Shalene; Kremen, C

2013-05-01

23

Urban Land Use Decouples Plant-Herbivore-Parasitoid Interactions at Multiple Spatial Scales  

PubMed Central

Intense urban and agricultural development alters habitats, increases fragmentation, and may decouple trophic interactions if plants or animals cannot disperse to needed resources. Specialist insects represent a substantial proportion of global biodiversity and their fidelity to discrete microhabitats provides a powerful framework for investigating organismal responses to human land use. We sampled site occupancy and densities for two plant-herbivore-parasitoid systems from 250 sites across a 360 km2 urban/agricultural landscape to ask whether and how human development decouples interactions between trophic levels. We compared patterns of site occupancy, host plant density, herbivory and parasitism rates of insects at two trophic levels with respect to landcover at multiple spatial scales. Geospatial analyses were used to identify landcover characters predictive of insect distributions. We found that herbivorous insect densities were decoupled from host tree densities in urban landcover types at several spatial scales. This effect was amplified for the third trophic level in one of the two insect systems: despite being abundant regionally, a parasitoid species was absent from all urban/suburban landcover even where its herbivore host was common. Our results indicate that human land use patterns limit distributions of specialist insects. Dispersal constraints associated with urban built development are specifically implicated as a limiting factor. PMID:25019962

Nelson, Amanda E.; Forbes, Andrew A.

2014-01-01

24

Rates, trends, causes, and consequences of urban land-use change in the United States  

USGS Publications Warehouse

Over the past 200 years, changes to the Nation's urban areas have been dramatic. Changes that have occurred relate both to the location of urban centers, as well as to the spatial extent of land dedicated to urban uses. Urban areas at the beginning of the 19th century were located primarily along major rivers or bodies of water, as waterways provided the most efficient means for transporting goods and people. As railroads became prominent, urban areas were able to expand or develop away from the water's edge. Geographic features such as steep slopes, wetlands, and lack of freshwater impeded settlement. In 1902, the National Reclamation Act was passed and with it came funding for the construction of water storage and transportation systems. This encouraged urban expansion in the arid west. After World War II, the Nation's urban areas continued to expand outward away from the city center as populations migrated to the margins of urban areas, where land was less expensive and the environment was less polluted. In 1956, the Federal Highway Act and the building of Interstate highways further facilitated urban expansion across the Unite States. Rural towns, small industrial centers, and farmland were engulfed by expanding urban centers. Over the past 200 years, numerous social, cultural, economic, and political incentives have encouraged urban expansion. In the 1800s, the industrial revolution influenced where people lived and worked. Many people shifted from agricultural production in rural areas to factory work in urban centers. Advances in transportation systems, such as rail transport in the 19th and early 20th centuries, followed by the mass production of the automobile and convenient air travel, facilitated a mobile society and a national economy. Economic growth and a population boom after World War II spurred increased suburbanization-the shifting of residential areas to the outlying section of a city or to a separate municipality-on the fringe of urban areas. Other economic and political incentives that shaped the urban environment included Federally backed home loans, credit and tax mechanisms that encouraged new development, and less restrictive municipal ordinances regarding building codes, environmental laws, and zoning regulations. Throughout the past two centuries land use changes associated with increasing urbanization have had impacts that resonate at local, regional, and even national scales. Landscape changes resulting from urbanization can be mapped and studied over time. Understanding these changes requires a study of the causes of change as related to social, economic, and political influences. Understanding these changes also requires analysis of how urbanization physically spreads across the landscape. The knowledge gained from studying urban land-use change can be helpful when it flows into local, regional, and national decisionmaking that relates to land-use decisions that impact the people, the economy, and the environment. Deriving a correlation between physical change and the explanations of the causes of change can help anticipate and mitigate the impacts of future change. Throughout the past two centuries changes to the Nation's urban areas are inextricably linked to population changes. The Nation's population started growing slowly along the eastern seaboard during the 17th and 18th centuries, accelerated in the second half of the 19th century, and then continued steadily spreading westward throughout the next hundred years. Currently, nearly 80 percent of the U.S. population resides in urban areas. Land area dedicated to urban use continues to expand, although differently than it has in the past. Most newly urbanized areas are much less densely populated and less intensively developed than they were 50 to 100 years ago.

Acevedo, William; Taylor, Janis L.; Hester, Dave J.; Mladinich, Carol S.; Glavac, Sonya

2006-01-01

25

Gravel resources, urbanization, and future land use, Front Range Urban Corridor, Colorado  

USGS Publications Warehouse

An assessment of gravel needs in Front Range Urban Corridor markets to 2000 A.D., based on forecast population increases and urbanization, indicates that adequate resources to meet anticipated needs are potentially available, if future land use does not preclude their extraction. Because of urban encroachment onto gravel-bearing lands, this basic construction material is in short supply nationally and in the Front Range Urban Corridor. Longer hauls, increased prices, and use of alternatives, especially crushed rock aggregate, have resulted. An analysis of possible sequential land uses following gravel mining indicates that a desirable use is for 'real estate' ponds and small lakes. A method for computing gravel reserves, based on planimeter measurement of area of resource-bearing lands and statistical analysis of reliability of thickness and size distribution data, was developed to compute reserves in individual markets. A discussion of the qualitative 'usability' of these reserves is then made for the individual markets.

Soule, James M.; Fitch, Harold R.

1974-01-01

26

describe composition and turnover of arthropod communities in 4 types of urban land use in the  

E-print Network

of spatial heterogeneity within the Phoenix metro area boosts the overall arthropod diversity of the region· describe composition and turnover of arthropod communities in 4 types of urban land use of urban land use · explore how variation in physical habitat structure may explain variation in arthropod

Hall, Sharon J.

27

Visioning Vs. Modeling: Analyzing the Land Use-Transportation Futures of Urban Regions  

E-print Network

, including biogenic emissions. Thanks to increasing computational power and GIS-capabilities, land use and their precursors). Land use models allow one to forecast the location and intensity of non-mobile sources

Kockelman, Kara M.

28

RESEARCH ARTICLE A novel index of land use intensity for organic  

E-print Network

RESEARCH ARTICLE A novel index of land use intensity for organic and conventional farming that it is an over- simplification to always equate organic farming with low intensity management. Here, we also of land use intensity on farmland biodiversity have used a comparison of organic and conventional farms

Paris-Sud XI, Université de

29

GIS-based geo-environmental evaluation for urban land-use planning: a case study  

Microsoft Academic Search

A geo-environmental evaluation for urban land-use planning often requires a large amount of spatial information. Geographic information systems (GIS) are capable of managing large amounts of spatially related information, providing the ability to integrate multiple layers of information and to derive additional information. A GIS-aid to the geo-environmental evaluation for urban land-use planning is illustrated for the urban area of

F. C Dai; C. F Lee; X. H Zhang

2001-01-01

30

Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island  

NASA Astrophysics Data System (ADS)

The urban thermal environment varies not only from its rural surroundings but also within the urban area due to intra-urban differences in land-use and surface characteristics. Understanding the causes of this intra-urban variability is a first step in improving urban planning and development. Toward this end, a method for quantifying causes of spatial variability in the urban heat island has been developed. This paper presents the method as applied to a specific test case of Portland, Oregon. Vehicle temperature traverses were used to determine spatial differences in summertime ~2 m air temperature across the metropolitan area in the afternoon. A tree-structured regression model was used to quantify the land-use and surface characteristics that have the greatest influence on daytime UHI intensity. The most important urban characteristic separating warmer from cooler regions of the Portland metropolitan area was canopy cover. Roadway area density was also an important determinant of local UHI magnitudes. Specifically, the air above major arterial roads was found to be warmer on weekdays than weekends, possibly due to increased anthropogenic activity from the vehicle sector on weekdays. In general, warmer regions of the city were associated with industrial and commercial land-use. The downtown core, whilst warmer than the rural surroundings, was not the warmest part of the Portland metropolitan area. This is thought to be due in large part to local shading effects in the urban canyons.

Hart, Melissa A.; Sailor, David J.

2009-03-01

31

Green Infrastructure & Sustainable Urban Land Use Decision Analysis Workshop  

EPA Science Inventory

Introduce green infrastructure, concepts and land use alternatives, to City of Cleveland operations staff. Discuss potential of green alternatives to impact daily operations and routine maintenance activities. Tie in sustainability concepts to long-term City planning and discu...

32

Modelling long-term impacts of the transport supply system on land use and travel demand in urban areas  

Microsoft Academic Search

It is commonly accepted that there is a two-way relationship between land use and transport in urban areas. Land use affects transport, conditioning travel demand. Conversely, transport affects land use, conditioning spatial distribution of activities and land market. The problem of simulating mutual interactions between land use and transport has been tackled by so-called Land Use Transport Interaction (LUTI) models.

Giuseppe Musolino

2008-01-01

33

City-wide relationships between green spaces, urban land use and topography  

Microsoft Academic Search

The growing proportion of human populations living in urban areas, and consequent trends of increasing urban expansion and\\u000a densification fuel a need to understand how urban form and land use affect environmental quality, including the availability\\u000a of urban green spaces. Here we use Sheffield as a case study of city-wide relationships between urban green space extent,\\u000a quality (vegetation cover and

Richard G. Davies; Olga Barbosa; Richard A. Fuller; Jamie Tratalos; Nicholas Burke; Daniel Lewis; Philip H. Warren; Kevin J. Gaston

2008-01-01

34

Multifunctional Urban Agriculture for Sustainable Land Use Planning in the United States  

Microsoft Academic Search

Urban agriculture offers an alternative land use for integrating multiple functions in densely populated areas. While urban agriculture has historically been an important element of cities in many developing countries, recent concerns about economic and food security have resulted in a growing movement to produce food in cities of developed countries including the United States. In these regions, urban agriculture

Sarah Taylor Lovell

2010-01-01

35

Evolutionary dynamics of urban land use planning and environmental sustainability in Nigeria  

Microsoft Academic Search

One of the major issues in the urban development process in the developing world, not least in Nigeria, is the implication of land use developments and planning for environmental sustainability. Land use planning has an impact on the efficiency of economic and social activities and also on the physical development of a city. However, in several developing countries, such as

Vincent I. Ogu

1999-01-01

36

EFFECTS OF LAND USE AND SEASON ON MICROORGANISM CONCENTRATIONS IN URBAN STORMWATER RUNOFF  

EPA Science Inventory

This study investigated differences in pathogen and indicator organism concentrations in stormwater runoff between different urban land uses and seasons. Stormwater samples collected from storm sewers draining small municipal separate storm sewer systems shown to be free of cros...

37

Relationships between human disturbance and wildlife land use in urban habitat fragments.  

PubMed

Habitat remnants in urbanized areas typically conserve biodiversity and serve the recreation and urban open-space needs of human populations. Nevertheless, these goals can be in conflict if human activity negatively affects wildlife. Hence, when considering habitat remnants as conservation refuges it is crucial to understand how human activities and land uses affect wildlife use of those and adjacent areas. We used tracking data (animal tracks and den or bed sites) on 10 animal species and information on human activity and environmental factors associated with anthropogenic disturbance in 12 habitat fragments across San Diego County, California, to examine the relationships among habitat fragment characteristics, human activity, and wildlife presence. There were no significant correlations of species presence and abundance with percent plant cover for all species or with different land-use intensities for all species, except the opossum (Didelphis virginiana), which preferred areas with intensive development. Woodrats (Neotoma spp.) and cougars (Puma concolor) were associated significantly and positively and significantly and negatively, respectively, with the presence and prominence of utilities. Woodrats were also negatively associated with the presence of horses. Raccoons (Procyon lotor) and coyotes (Canis latrans) were associated significantly and negatively and significantly and positively, respectively, with plant bulk and permanence. Cougars and gray foxes (Urocyon cinereoargenteus) were negatively associated with the presence of roads. Roadrunners (Geococcyx californianus) were positively associated with litter. The only species that had no significant correlations with any of the environmental variables were black-tailed jackrabbits (Lepus californicus) and mule deer (Odocoileus hemionus). Bobcat tracks were observed more often than gray foxes in the study area and bobcats correlated significantly only with water availability, contrasting with results from other studies. Our results appear to indicate that maintenance of habitat fragments in urban areas is of conservation benefit to some animal species, despite human activity and disturbance, as long as the fragments are large. PMID:18254856

Markovchick-Nicholls, Lisa; Regan, Helen M; Deutschman, Douglas H; Widyanata, Astrid; Martin, Barry; Noreke, Lani; Hunt, Timothy Ann

2008-02-01

38

Spatial stochastic regression modelling of urban land use  

NASA Astrophysics Data System (ADS)

Urbanization is very closely linked to industrialization, commercialization or overall economic growth and development. This results in innumerable benefits of the quantity and quality of the urban environment and lifestyle but on the other hand contributes to unbounded development, urban sprawl, overcrowding and decreasing standard of living. Regulation and observation of urban development activities is crucial. The understanding of urban systems that promotes urban growth are also essential for the purpose of policy making, formulating development strategies as well as development plan preparation. This study aims to compare two different stochastic regression modeling techniques for spatial structure models of urban growth in the same specific study area. Both techniques will utilize the same datasets and their results will be analyzed. The work starts by producing an urban growth model by using stochastic regression modeling techniques namely the Ordinary Least Square (OLS) and Geographically Weighted Regression (GWR). The two techniques are compared to and it is found that, GWR seems to be a more significant stochastic regression model compared to OLS, it gives a smaller AICc (Akaike's Information Corrected Criterion) value and its output is more spatially explainable.

Arshad, S. H. M.; Jaafar, J.; Abiden, M. Z. Z.; Latif, Z. A.; Rasam, A. R. A.

2014-02-01

39

Urban land use, air toxics and public health: Assessing hazardous exposures at the neighborhood scale  

SciTech Connect

Land use data are increasingly understood as important indicators of potential environmental health risk in urban areas where micro-scale or neighborhood level hazard exposure data are not routinely collected. This paper aims to offer a method for estimating the distribution of air toxics in urban neighborhoods using land use information because actual air monitoring data rarely exist at this scale. Using Geographic Information System spatial modeling tools, we estimate air toxics concentrations across neighborhoods in New York City and statistically compare our model with the US Environmental Protection Agency's National Air Toxic Assessment and air monitoring data across three NYC neighborhoods. We conclude that land use data can act as a good proxy for estimating neighborhood scale air toxics, particularly in the absence of monitoring data. In addition, the paper suggests that land use data can expand the reach of environmental impact assessments that routinely exclude analyses of potential exposures to urban air toxics at the neighborhood scale.

Corburn, Jason [Columbia University, Graduate School of Architecture, Planning and Preservation and School of International and Public Affairs, 400 Avery Hall, 1172 Amsterdam Ave. New York, NY 10027 (United States)]. E-mail: jtc2105@columbia.edu

2007-03-15

40

Impact of Low-Carbon Urban Rapid Rail Transit to Land Use: A Case Study of Wuhan City  

Microsoft Academic Search

Chinese cities are now at a stage of rapid development and the problems of transportation, environment and land use are increasingly serious. Urban rapid rail transit is wholly a convenient, fast, effective, low-carbon, environment-friendly urban infrastructure system, which providing an effective way for the sustainable development of urban transit and land use. In this paper, the effect mechanism of urban

Jie Dong; Chunpeng Wu; Wei Zhao

2010-01-01

41

Butterfly diversity and human land use: Species assemblages along an urban grandient  

Microsoft Academic Search

We examined the distribution and abundance of butterfly species across an urban gradient and concomitant changes in community structure by censusing the butterfly and skipper populations at 48 points within six sites near Palo Alto, California, USA (all former oak woodlands). These sites represent a gradient of urban land use running from relatively undisturbed to highly developed and include a

Robert B. Blair; Alan E. Launer

1997-01-01

42

LAND USE CHANGE DUE TO URBANIZATION FOR THE NEUSE RIVER BASIN  

EPA Science Inventory

The Urban Growth Model (UGM) was applied to analysis of land use change in the Neuse River Basin as part of a larger project for estimating the regional and broader impact of urbanization. UGM is based on cellular automation (CA) simulation techniques developed at the University...

43

Modeling the Effects of Land Use Change on the Water Temperature in Unregulated Urban Streams  

Microsoft Academic Search

Streams, in their natural state, are typically diverse and biologically productive environments. Streams subject to urbanization often experience degradation brought about by the cumulative effects of flow alteration, unsanitary discharge and channelization. One of the water quality parameters affected by urbanization is stream temperature. This study offers a model for predicting the impact of land use change on the temperature

Robert T. LeBlanc; Robert D. Brown; John E. FitzGibbon

1997-01-01

44

SPECIAL FEATURE: ORIGINAL ARTICLE Land use and ecosystems Dynamics and sustainability of urban agriculture  

E-print Network

for Sustainability Science, United Nations University, and Springer 2009 Abstract Urban agriculture can have manySPECIAL FEATURE: ORIGINAL ARTICLE Land use and ecosystems Dynamics and sustainability of urban agriculture: examples from sub-Saharan Africa Pay Drechsel · Stefan Dongus Received: 24 September 2008

Richner, Heinz

45

Effects of Urban Land-Use Type on Ground-Arthropod Communities  

E-print Network

arthropods? because they are so abundant and diverse they provide a snapshot of overall biodiversity because on arthropod richness and abundance in the Phoenix metropolitan area to compare arthropod diversity in different urban land-use types to predict patterns of arthropod diversity in future locations of urban

Hall, Sharon J.

46

Study on temporal and spatial variations of urban land use based on land change data  

NASA Astrophysics Data System (ADS)

With the rapid development of urbanization, demands of urban land increase in succession, hence, to analyze temporal and spatial variations of urban land use becomes more and more important. In this paper, the principle of trend surface analysis and formula of urban land sprawl index ( ULSI) are expatiated at first, and then based on land change data of Jiayu county, the author fits quadratic trend surface by choosing urban land area as dependent variable and urbanization and GDP as independent variables from 1996 to 2006, draws isoline of trend surface and residual values; and then urban land sprawl indexes of towns are calculated on the basis of urban land area of 1996 and 2006 and distribution map of ULSI is plotted. After analyzing those results, we can conclude that there is consanguineous relationship between urban land area and urbanization, economic level etc.

Jiang, Ping; Liu, Yanfang; Fan, Min; Zhang, Yang

2009-10-01

47

Urban Growth Modeling with Road Network Expansion and Land Use Development  

Microsoft Academic Search

\\u000a Land use and transportation systems are considered as two most important subsystems determining urban form and structure,\\u000a and are assumed to mutually influence each other overtime. To better understand the relationship between them, we build a\\u000a simple dynamic model to simulate longterm urban growth instead of a static one. Our urban simulation combines vector road\\u000a network growth with grid land

Yikang Rui; Yifang Ban

48

Monitoring the effects of land use/landcover changes on urban heat island  

NASA Astrophysics Data System (ADS)

Urban heat island effects are well known nowadays and observed in cities throughout the World. The main reason behind the effects of urban heat island (UHI) is the transformation of land use/ land cover, and this transformation is associated with UHI through different actions: i) removal of vegetated areas, ii) land reclamation from sea/river, iii) construction of new building as well as other concrete structures, and iv) industrial and domestic activity. In rapidly developing cities, urban heat island effects increases very hastily with the transformation of vegetated/ other types of areas into urban surface because of the increasing population as well as for economical activities. In this research the effect of land use/ land cover on urban heat island was investigated in two growing cities in Asia i.e. Singapore and Johor Bahru, (Malaysia) using 10 years data (from 1997 to 2010) from Landsat TM/ETM+. Multispectral visible band along with indices such as Normalized Difference Vegetation Index (NDVI), Normalized Difference Build Index (NDBI), and Normalized Difference Bareness Index (NDBaI) were used for the classification of major land use/land cover types using Maximum Likelihood Classifiers. On the other hand, land surface temperature (LST) was estimated from thermal image using Land Surface Temperature algorithm. Emissivity correction was applied to the LST map using the emissivity values from the major land use/ land cover types, and validation of the UHI map was carried out using in situ data. Results of this research indicate that there is a strong relationship between the land use/land cover changes and UHI. Over this 10 years period, significant percentage of non-urban surface was decreased but urban heat surface was increased because of the rapid urbanization. With the increase of UHI effect it is expected that local urban climate has been modified and some heat related health problem has been exposed, so appropriate measure should be taken in order to reduce UHI effects as soon as possible.

Gee, Ong K.; Sarker, Md Latifur Rahman

2013-10-01

49

Urban-field land use in southern New England: A first look  

NASA Technical Reports Server (NTRS)

There are no author-identified significant results in this report. First look evaluation of ERTS-1 multiband imagery for urban-field land use applications revealed a great deal of potentially valuable information. The amount of land use detail which can be extracted confidently from ERTS imagery is encouraging, and the objectives of the proposed project are considered feasible providing timely cloud-free coverage is available.

Simpson, R. B. (principal investigator)

1972-01-01

50

Conversion of prime agricultural land to urban land uses in Kansas City  

NASA Technical Reports Server (NTRS)

In an expanding urban environment, agriculture and urban land uses are the two primary competitors for regional land resources. As a result of an increasing awareness of the effects which urban expansion has upon the regional environment, the conversion of prime agricultural land to urban land uses has become a point of concern to urban planners. A study was undertaken for the Kansas City Metropolitan Region, to determine the rate at which prime agricultural land has been converted to urban land uses over a five year period from 1969 to 1974. Using NASA high altitude color infrared imagery acquired over the city in October, 1969 and in May, 1974 to monitor the extent and location of urban expansion in the interim period, it was revealed that 42% of that expansion had occurred upon land classified as having prime agricultural potential. This involved a total of 10,727 acres of prime agricultural land and indicated a 7% increase over the 1969 which showed that 35% of the urban area had been developed on prime agricultural land.

Shaklee, R. V.

1976-01-01

51

Evaluating sources of PAHs in urban streams based on land use and biomonitors.  

PubMed

Toxic polycyclic aromatic hydrocarbons (PAHs) can be found in wastewaters and sewages released from industries and/or urban areas. When discharged untreated to stream waters, they can be a problem to human health. This work represents the first attempt to use PAH and metal concentrations in aquatic moss transplants together with land-use information to identify water pollution sources in urban areas. To do this, the moss Fontinalis antipyretica was collected from a natural stream and transplanted to four different streams in a densely populated area of Lisbon, Portugal. After three months of exposure, mosses were collected and analyzed for metals and for the 16 priority PAHs recommended by the U.S. EPA. Urban streams seem to have a scattered contamination of 6-ring PAHs. Correlations among land-use, metal concentrations, and PAH concentrations indicated that areas occupied by activities of tertiary and industrial sectors had higher PAH concentrations in transplanted mosses, mainly for the sum of the 16 EPA-PAHs and for the 2-, 3- and 5-ringed PAHs, than areas occupied by urban and wooded areas. These PAHs were associated with enhanced Zn and Cu and land use activities that linked the sites to high traffic density. Industrial land use influences PAH concentration in water up to 1000 m of distance from the stream, whereas tertiary sector land use influences it up to 500 m. PMID:21410193

Augusto, Sofia; Gonzalez, Carla; Vieira, Rute; Máguas, Cristina; Branquinho, Cristina

2011-04-15

52

Downscaling climate change scenarios in an urban land use change model.  

PubMed

The objective of this paper is to describe the process through which climate change scenarios were downscaled in an urban land use model and the results of this experimentation. The land use models (Urban Growth Model [UGM] and the Land Cover Deltatron Model [LCDM]) utilized in the project are part of the SLEUTH program which uses a probabilistic cellular automata protocol. The land use change scenario experiments were developed for the 31-county New York Metropolitan Region (NYMR) of the US Mid-Atlantic Region. The Intergovernmental Panel on Climate Change (IPCC), regional greenhouse gas (GHG) emissions scenarios (Special Report on Emissions Scenarios (SRES) A2 and B2 scenarios) were used to define the narrative scenario conditions of future land use change. The specific research objectives of the land use modeling work involving the SLEUTH program were threefold: (1) Define the projected conversion probabilities and the amount of rural-to-urban land use change for the NYMR as derived by the UGM and LCDM for the years 2020 and 2050, as defined by the pattern of growth for the years 1960-1990; (2) Down-scale the IPCC SRES A2 and B2 scenarios as a narrative that could be translated into alternative growth projections; and, (3) Create two alternative future growth scenarios: A2 scenario which will be associated with more rapid land conversion than found in initial projections, and a B2 scenario which will be associated with a slower level of land conversion. The results of the modeling experiments successfully illustrate the spectrum of possible land use/land cover change scenarios for the years 2020 and 2050. The application of these results into the broader scale climate and health impact study is discussed, as is the general role of land use/land cover change models in climate change studies and associated environmental management strategies. PMID:15246577

Solecki, William D; Oliveri, Charles

2004-08-01

53

[Simulation and prediction of urban and rural settlement growth and land use change in Yingkou City].  

PubMed

Based on the 1988, 1992, 1997, 2000, and 2004 Landsat TM remote sensing data of Yingkou City, Liaoning Province, the urban and rural settlement growth and land use change in the city from 2005 to 2030 were simulated and predicted by using the SLEUTH urban growth and land use change model with six scenarios (current trend scenario, no protection scenario, moderate protection scenario, managed growth scenario, ecologically sustainable growth scenario, and regional and urban comprehensive planning scenario). The results showed that in the city, the increased area of urban and rural settlement growth from 1988 to 2004 was 14.93 km2, and the areas of water area, orchard, mine, and agricultural land changed greatly from 1997 to 2004. From 2005 to 2030, based on ecologically sustainable growth scenario, the urban and rural settlement growth would have a slow increase, and agricultural land and forestland would be better protected; under no protection scenario, the urban and rural settlement growth would have a rapid increase, and large area of agricultural land would be lost; under current trend scenario, the agricultural land loss would be similar to that under no protective scenario, but the loss pattern could be different; under moderate protection scenario and managed growth scenario, the agricultural land would have a smaller loss; while under regional and urban comprehensive planning scenario, the urban and rural settlement growth would be mainly distributed in urban development area and urban fringe. The SLEUTH model with different scenarios could simulate how the different land management policies affect urban and rural settlement growth and land use change, which would be instructive to the coordination of Chinese urban and rural settlement development and the socialist new rural reconstruction. PMID:18839915

Xi, Feng-Ming; He, Hong-Shi; Hu, Yuan-Man; Wu, Xiao-Qing; Bao, Li; Tian, Ying; Wang, Jin-Nian; Ma, Wen-Jun

2008-07-01

54

Land Use/Cover Change Detection and Urban Sprawl Analysis in Bandar Abbas City, Iran  

PubMed Central

The process of land use change and urban sprawl has been considered as a prominent characteristic of urban development. This study aims to investigate urban growth process in Bandar Abbas city, Iran, focusing on urban sprawl and land use change during 1956–2012. To calculate urban sprawl and land use changes, aerial photos and satellite images are utilized in different time spans. The results demonstrate that urban region area has changed from 403.77 to 4959.59 hectares between 1956 and 2012. Moreover, the population has increased more than 30 times in last six decades. The major part of population growth is related to migration from other parts the country to Bandar Abbas city. Considering the speed of urban sprawl growth rate, the scale and the role of the city have changed from medium and regional to large scale and transregional. Due to natural and structural limitations, more than 80% of barren lands, stone cliffs, beach zone, and agricultural lands are occupied by built-up areas. Our results revealed that the irregular expansion of Bandar Abbas city must be controlled so that sustainable development could be achieved. PMID:25276858

Mohd Shafri, Helmi Zulhaidi; Ahmad, Noordin; Pradhan, Biswajeet; Safarpour, Sahabeh

2014-01-01

55

Preliminary Analysis of the efficacy of Artificial neural Network (ANN) and Cellular Automaton (CA) based Land Use Models in Urban Land-Use Planning  

NASA Astrophysics Data System (ADS)

This research provides an opportunity of collaboration between urban planners and modellers by providing a clear theoretical foundations on the two most widely used urban land use models, and assessing the effectiveness of applying the models in urban planning context. Understanding urban land cover change is an essential element for sustainable urban development as it affects ecological functioning in urban ecosystem. Rapid urbanization due to growing inclination of people to settle in urban areas has increased the complexities in predicting that at what shape and size cities will grow. The dynamic changes in the spatial pattern of urban landscapes has exposed the policy makers and environmental scientists to great challenge. But geographic science has grown in symmetry to the advancements in computer science. Models and tools are developed to support urban planning by analyzing the causes and consequences of land use changes and project the future. Of all the different types of land use models available in recent days, it has been found by researchers that the most frequently used models are Cellular Automaton (CA) and Artificial Neural Networks (ANN) models. But studies have demonstrated that the existing land use models have not been able to meet the needs of planners and policy makers. There are two primary causes identified behind this prologue. First, there is inadequate understanding of the fundamental theories and application of the models in urban planning context i.e., there is a gap in communication between modellers and urban planners. Second, the existing models exclude many key drivers in the process of simplification of the complex urban system that guide urban spatial pattern. Thus the models end up being effective in assessing the impacts of certain land use policies, but cannot contribute in new policy formulation. This paper is an attempt to increase the knowledge base of planners on the most frequently used land use model and also assess the relative effectiveness of the two models, ANN and CA, in urban planning. The questions that are addressed in this research are: a) What makes ANN models different from CA models?; b) Which model has higher accuracy in predicting future urban land use change?; and c) Are the models effective enough in guiding urban land use policies and strategies? The models that are used for this research are Multilayer Perceptron (MLP) and CA model, available in IDRISI Taiga. Since, the objective is to perform a comparative analysis and draw general inferences irrespective of specific urban policies, the availability of data was given more emphasis over the selection of particular location. Urban area in Massachusetts was chosen to conduct the study due to data availability. Extensive literature review was performed to understand the functionality of the two models. The models were applied to predict future changes and the accuracy assessment was performed using standard matrix. Inferences were drawn about the applicability of the models in urban planning context along with recommendations. This research will not only develop understanding of land use models among urban planners, but also will create an environment of coupled research between planners and modellers.

Harun, R.

2013-05-01

56

A zone-based approach to identifying urban land uses using nationally-available data  

NASA Astrophysics Data System (ADS)

Accurate identification of urban land use is essential for many applications in environmental study, ecological assessment, and urban planning, among other fields. However, because physical surfaces of land cover types are not necessarily related to their use and economic function, differentiating among thematically-detailed urban land uses (single-family residential, multi-family residential, commercial, industrial, etc.) using remotely-sensed imagery is a challenging task, particularly over large areas. Because the process requires an interpretation of tone/color, size, shape, pattern, and neighborhood association elements within a scene, it has traditionally been accomplished via manual interpretation of aerial photography or high-resolution satellite imagery. Although success has been achieved for localized areas using various automated techniques based on high-spatial or high-spectral resolution data, few detailed (Anderson Level II equivalent or greater) urban land use mapping products have successfully been created via automated means for broad (multi-county or larger) areas, and no such product exists today for the United States. In this study I argue that by employing a zone-based approach it is feasible to map thematically-detailed urban land use classes over large areas using appropriate combinations of non-image based predictor data which are nationally and publicly available. The approach presented here uses U.S. Census block groups as the basic unit of geography, and predicts the percent of each of ten land use types---nine of them urban---for each block group based on a number of data sources, to include census data, nationally-available point locations of features from the USGS Geographic Names Information System, historical land cover, and metrics which characterize spatial pattern, context (e.g. distance to city centers or other features), and measures of spatial autocorrelation. The method was demonstrated over a four-county area surrounding the city of Boston. A generalized version of the method (six land use classes) was also developed and cross-validated among additional geographic settings: Atlanta, Los Angeles, and Providence. The results suggest that even with the thematically-detailed ten-class structure, it is feasible to map most urban land uses with reasonable accuracy at the block group scale, and results improve with class aggregation. When classified by predicted majority land use, 79% of block groups correctly matched the actual majority land use with the ten-class models. Six-class models typically performed well for the geographic area they were developed from, however models had mixed performance when transported to other geographic settings. Contextual variables, which characterized a block group's spatial relationship to city centers, transportation routes, and other amenities, were consistently strong predictors of most land uses, a result which corresponds to classic urban land use theory. The method and metrics derived here provide a prototype for mapping urban land uses from readily-available data over broader geographic areas than is generally practiced today using current image-based solutions.

Falcone, James A.

57

Urban Air Pollution Patterns, Land Use, and Thermal Landscape: An Examination of the Linkage Using GIS  

Microsoft Academic Search

This article investigates the relationship of local air pollution pattern with urban land use and with urban thermal landscape\\u000a using a GIS approach. Ambient air quality measurements for sulfur dioxide, nitrogen oxide, carbon monoxide, total suspended\\u000a particles, and dust level were obtained for Guangzhou City in South China between 1981 and 2000. Landsat TM images and aerial\\u000a photo derived maps

Qihao Weng; Shihong Yang

2006-01-01

58

Agricultural land use intensity and its determinants: A case study in Taibus Banner, Inner Mongolia, China  

NASA Astrophysics Data System (ADS)

Based on rural household survey data from Taibus Banner, in the Inner Mongolia Autonomous Region, China, this study separately categorizes agricultural land use intensity into labor intensity, capital intensity, the intensity of labor-saving inputs, and the intensity of yield-increasing inputs, and then analyzes their determinants at the household level. The findings reveal that within the study area: (1) labor intensity is higher and capital intensity is lower than in the major grain-producing and economically developed areas of eastern and central China; (2) the most widely planted crops are those with the lowest labor intensity (oats) and capital intensity (benne); (3) there are marked differences in agricultural land use intensity among households; a major factor affecting land use decision-making is the reduced need for labor intensity for those households with high opportunity costs, such as those with income earned from non-farming activities which alleviates financial constraints and allows for increased capital intensity. As a result, these households invest more in labor-saving inputs; (4) households with a larger number of workers will allocate adequate time to manage their land and thus they will not necessarily invest more in labor-saving inputs. Those households with more land to manage tend to adopt an extensive cultivation strategy. Total income has a positive impact on capital intensity and a negative impact on labor intensity. Households that derive a higher proportion of their total income through farming are more reliant upon agriculture, which necessitates significant labor and yield-increasing inputs. Finally, the authors contend that policy makers should clearly recognize the impacts of non-farming employment on agricultural land use intensity. In order to ensure long-term food security and sustainable agricultural development in China, income streams from both farming and non-farming employment should be balanced.

Hao, Haiguang; Li, Xiubin; Tan, Minghong; Zhang, Jiping; Zhang, Huiyuan

2014-11-01

59

Urban land use of the Sao Paulo metropolitan area by automatic analysis of LANDSAT data  

NASA Technical Reports Server (NTRS)

The separability of urban land use classes in the metropolitan area of Sao Paulo was studied by means of automatic analysis of MSS/LANDSAT digital data. The data were analyzed using the media K and MAXVER classification algorithms. The land use classes obtained were: CBD/vertical growth area, residential area, mixed area, industrial area, embankment area type 1, embankment area type 2, dense vegetation area and sparse vegetation area. The spectral analysis of representative samples of urban land use classes was done using the "Single Cell" analysis option. The classes CBD/vertical growth area, residential area and embankment area type 2 showed better spectral separability when compared to the other classes.

Parada, N. D. J. (principal investigator); Niero, M.; Foresti, C.

1983-01-01

60

The Major Environmentally-Based Land Use Issues on the Urban Fringe.  

ERIC Educational Resources Information Center

Types of land-use issues which form current problems in urban areas are discussed in this paper. The majority of these environmentally based issues revolve around the management of water. The five most often encountered water-oriented issues are denoted in rank order of importance. First, an ample water supply which is free from contamination must…

Hordon, Robert M.

61

Modeling urban land use changes in Lanzhou based on artificial neural network and cellular automata  

NASA Astrophysics Data System (ADS)

This paper presented a model to simulate urban land use changes based on artificial neural network (ANN) and cellular automata (CA). The model was scaled down at the intra-urban level with subtle land use categorization, developed with Matlab 7.2 and loosely coupled with GIS. Urban land use system is a very complicated non-linear social system influenced by many factors. In this paper, four aspects of a totality 17 factors, including physical, social-economic, neighborhoods and policy, were considered synthetically. ANN was proposed as a solution of CA model calibration through its training to acquire the multitudinous parameters as a substitute for the complex transition rules. A stochastic perturbation parameter v was added into the model, and five different scenarios with different values of v and the threshold were designed for simulations and predictions to explore their effects on urban land use changes. Simulations of 2005 and predictions of 2015 under the five different scenarios were made and evaluated. Finally, the advantages and disadvantages of the model were discussed.

Xu, Xibao; Zhang, Jianming; Zhou, Xiaojian

2008-10-01

62

Land use analysis of US urban areas using high-resolution imagery from Skylab  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. The S-190B imagery from Skylab 3 permitted the detection of higher levels of land use detail than any satellite imagery previously evaluated using manual interpretation techniques. Resolution approaches that of 1:100,000 scale infrared aircraft photography, especially regarding urban areas. Nonurban areas are less distinct.

Gallagher, D. B. (principal investigator)

1975-01-01

63

Water, energy, land use, transportation and socioeconomic nexus: A blue print for more sustainable urban systems  

Microsoft Academic Search

Preparation for global movement to urban regions requires a holistic study of infrastructure interactions. The impact of water and energy on one another has been studied to show how they are dependent upon one another. Other infrastructure interactions also are vital to designing more sustainable cities. The primary infrastructures are: water, energy, land use, and transportation. Creating more sustainable cities

Elizabeth A. Minne; John C. Crittenden; Arka Pandit; Hyunju Jeong; Jean-Ann James; Zhongming Lu; Ming Xu; Steve French; Muthukumar Subrahmanyam; Douglas Noonan; Lin-Han Chiang Hsieh; Marilyn Brown; Joy Wang; Reginald Desroches; Bert Bras; Jeff Yen; Miroslav Begovic; Insu Kim; Ke Li; Preethi Rao

2011-01-01

64

Current operational urban land?use–transport modelling frameworks: A review  

Microsoft Academic Search

Various alternative frameworks are available for modelling urban land?use–transport interaction. This paper provides a detailed review of six of these frameworks that have been or are currently being used to develop operational models. The intention is to indicate what is the general nature of the current state of practice and what is now available for practical modelling work in the

J. D. HUNT; D. S. KRIGER; E. J. MILLER

2005-01-01

65

LAND USE AND SEASONAL EFFECTS ON URBAN STORMWATER RUNOFF MICROORGANISM CONCENTRATIONS  

EPA Science Inventory

Stormwater samples collected from storm sewers draining small municipal separate storm sewer systems shown to be free of cross connections within an urban watershed dominated by a single land use were analyzed for pathogens (Pseudomonas aeruginosa and Staphylococcus aureus) and i...

66

Applications of Geographic Information Systems in Urban Land Use Planning in Malaysia  

Microsoft Academic Search

Over the past forty years Geographic Infonnation Systems (GIS) have been used in many planning applications ranging from daily administrative operations to strategic planning functions such as evaluating socio-economic data in land use allocation tasks. This technology has various analytical functions that can be used in dealing with spatial problems such as urban planning and management issues. It is useful

Narimah Samat

2006-01-01

67

Interactive Effects of Urban Land Use and Climate Change on Biogeochemical Cycles (Invited)  

NASA Astrophysics Data System (ADS)

Urban land-use change can affect biogeochemical cycles through altered disturbance regimes, landscape management practices (e.g., irrigation and fertilization), built structures, and altered environments (heat island effect, pollution, introduction of non-native species, loss of native species). As a result, the conversion of native to urban ecological systems has been shown to significantly affect carbon, nitrogen, and water cycles at local, regional, and global scales. These changes have created novel habitats and ecosystems, which have no analogue in the history of life. Nonetheless, some of the environmental changes occurring in urban areas are analogous to the changes expected in climate by the end of the century, e.g. atmospheric increase in CO2 and an increase in air temperatures, which can be utilized as a “natural experiment” to investigate global change effects on large scale ecosystem processes. Moreover, as analogues of expected future environments, urban ecological systems may act as reservoirs of plant and animal species for adjoining landscapes that are expected to undergo relatively rapid climate changes in the next 100 years. Urban land-use change by itself may contribute to changes in regional weather patterns and long-term changes in global climate, which will depend on the net effect of converting native systems to urban systems and the comparison of per capita “footprints” between urban, suburban, and rural inhabitants. My objectives are to 1) assess the impact of changes in urban land-use on climate change and in turn how climate change may affect urban biogeochemical cycles and 2) discuss the potential for urban ecosystems to mitigate green house gas emissions.

Pouyat, R. V.

2009-12-01

68

a Study of Urban Intensive Land Evaluating System  

NASA Astrophysics Data System (ADS)

The contradiction of land supply and demand is becoming increasingly prominent in China. The increasing efficiency of land use is an important means to resolve the conflict. We propose a scientific approach for promoting the urban intensive land use. In this paper, an evaluation system of urban intensive land use is programmed. It is designed to change the manual way of collecting index data and building index system to a dynamical way. The system improves the efficiency and accuracy of the evaluation of urban intensive land use. It achieves intensive evaluation on three scales: macro-level, medium-level and micro-level. We build two data extraction methods. One is XML-based meta-data exchange method that obtains index data from the cadastral database. Another is data monitoring method that writes the index data to the evaluation database at real time. Database technologies are used to calculate index values and build index systems dynamically. GIS technologies are use to achieve three scales evaluation of urban intensive land use.

Jiang, L.; Gu, J.; Chen, X.; You, Y.; Tang, Q.

2012-07-01

69

Increasing land-use intensity decreases floral colour diversity of plant communities in temperate grasslands.  

PubMed

To preserve biodiversity and ecosystem functions in a globally changing world it is crucial to understand the effect of land use on ecosystem processes such as pollination. Floral colouration is known to be central in plant-pollinator interactions. To date, it is still unknown whether land use affects the colouration of flowering plant communities. To assess the effect of land use on the diversity and composition of flower colours in temperate grasslands, we collected data on the number of flowering plant species, blossom cover and flower reflectance spectra from 69 plant communities in two German regions, Schwäbische Alb (SA) and Hainich-Dün (HD). We analysed reflectance data of flower colours as they are perceived by honeybees and studied floral colour diversity based upon spectral loci of each flowering plant species in the Maxwell triangle. Before the first mowing, flower colour diversity decreased with increasing land-use intensity in SA, accompanied by a shift of mean flower colours of communities towards an increasing proportion of white blossom cover in both regions. By changing colour characteristics of grasslands, we suggest that increasing land-use intensity can affect the flower visitor fauna in terms of visitor behaviour and diversity. These changes may in turn influence plant reproduction in grassland plant communities. Our results indicate that land use is likely to affect communication processes between plants and flower visitors by altering flower colour traits. PMID:23568710

Binkenstein, Julia; Renoult, Julien P; Schaefer, H Martin

2013-10-01

70

Ecological traits affect the response of tropical forest bird species to land-use intensity.  

PubMed

Land-use change is one of the main drivers of current and likely future biodiversity loss. Therefore, understanding how species are affected by it is crucial to guide conservation decisions. Species respond differently to land-use change, possibly related to their traits. Using pan-tropical data on bird occurrence and abundance across a human land-use intensity gradient, we tested the effects of seven traits on observed responses. A likelihood-based approach allowed us to quantify uncertainty in modelled responses, essential for applying the model to project future change. Compared with undisturbed habitats, the average probability of occurrence of bird species was 7.8 per cent and 31.4 per cent lower, and abundance declined by 3.7 per cent and 19.2 per cent in habitats with low and high human land-use intensity, respectively. Five of the seven traits tested affected the observed responses significantly: long-lived, large, non-migratory, primarily frugivorous or insectivorous forest specialists were both less likely to occur and less abundant in more intensively used habitats than short-lived, small, migratory, non-frugivorous/insectivorous habitat generalists. The finding that species responses to land use depend on their traits is important for understanding ecosystem functioning, because species' traits determine their contribution to ecosystem processes. Furthermore, the loss of species with particular traits might have implications for the delivery of ecosystem services. PMID:23173205

Newbold, Tim; Scharlemann, Jörn P W; Butchart, Stuart H M; Sekercio?lu, Ca?an H; Alkemade, Rob; Booth, Hollie; Purves, Drew W

2013-01-01

71

The Emergence of Urban Land Use Patterns Driven by Dispersion and Aggregation Mechanisms  

PubMed Central

We employ a cellular-automata to reconstruct the land use patterns of cities that we characterize by two measures of spatial heterogeneity: (a) a variant of spatial entropy, which measures the spread of residential, business, and industrial activity sectors, and (b) an index of dissimilarity, which quantifies the degree of spatial mixing of these land use activity parcels. A minimalist and bottom-up approach is adopted that utilizes a limited set of three parameters which represent the forces which determine the extent to which each of these sectors spatially aggregate into clusters. The dispersion degrees of the land uses are governed by a fixed pre-specified power-law distribution based on empirical observations in other cities. Our method is then used to reconstruct land use patterns for the city state of Singapore and a selection of North American cities. We demonstrate the emergence of land use patterns that exhibit comparable visual features to the actual city maps defining our case studies whilst sharing similar spatial characteristics. Our work provides a complementary approach to other measures of urban spatial structure that differentiate cities by their land use patterns resulting from bottom-up dispersion and aggregation processes. PMID:24386078

Decraene, James; Monterola, Christopher; Lee, Gary Kee Khoon; Hung, Terence Gih Guang; Batty, Michael

2013-01-01

72

Landscaping practices, land use patterns and stormwater quantity and quality in urban watersheds  

NASA Astrophysics Data System (ADS)

Increasing quantity and decreasing quality of urban stormwater threatens biodiversity in local streams and reservoirs, jeopardizes water supplies, and ultimately contributes to estuarine eutrophication. To estimate the effects that present and alternative landscaping practices and land use patterns may have on urban stormwater quantity and quality, simulations of existing land use/land cover using the Regional Hydro-Ecologic Simulation System (RHESSys), a process-based surface hydrology and biogeochemistry model, were developed for watersheds in Baltimore, MD (as part of the Baltimore Ecosystem Study (BES) NSF Long-Term Ecological Research (LTER) site) and Durham, NC (as part of the NSF Urban Long-Term Research Area (ULTRA) program). The influence of land use patterns and landscaping practices on nutrient export in urban watersheds has been explored as part of the BES; this work has focused on improving our understanding of how residential landscaping practices (i.e. lawn fertilization rates) vary across land use and socioeconomic gradients. Elsewhere, others have explored the political ecology of residential landscaping practices - seeking to understand the economic, political, and cultural influences on the practice of high-input residential turf-grass management. Going forward, my research will synthesize and extend this prior work. Rather than pre-supposing predominant residential land use patterns and landscaping practices (i.e. lower-density periphery development incorporating high-input turf landscapes) alternate land use and landscaping scenarios (e.g. higher-density/transit-oriented development, rain gardens, vegetable gardens, native plant/xeriscaping) will be developed through interviews/focus groups with stakeholders (citizens, public officials, developers, non-profits). These scenarios will then be applied to the RHESSys models already developed for catchments in Baltimore and Durham. The modeled scenario results will be used to identify alternate land use patterns and landscaping practices that would: (1) help to reduce non-point sources of nutrient pollution in urban watersheds; and (2) be likely to gain public support. This research will inform sustainable development policy while furthering interdisciplinary research in the fields of planning and water resource management.

Miles, B.; Band, L. E.

2011-12-01

73

Improvement of urban land use and land cover classification approach in arid areas  

NASA Astrophysics Data System (ADS)

Extraction of urban land-use information is base step of urban change detection. However, challenges remain in automatic delineation of urban areas and differentiation of finer inner-city land cover types. The extraction accuracy of built-up area is still unsatisfactory. This is mainly due to the heterogeneity nature of urban areas, where continuous and discrete elements occur side by side. Another reason is the mixed pixel problem, which is particularly serious in an urban environment. The built-up areas in arid areas may confuse with nearby bare soil and stony desert, which present very similar spectral characteristics as construction materials such as concrete, while they are often surrounded by farmland. This study focuses on improving urban land use and land cover classification approach in typical city of China's west arid areas using multi-sensor data. Pixel-based classification of the NDBI and Maximum Likelihood Classification (MLC) and object-oriented image classification were used in the study and the classification dataset including Landsat ETM (1999), CBERS (2005), and Beijing-1 (2006). The accuracy is assessed using high-resolution images, aerial photograph and field investigation data. The traditional pixel-based classification approach typically yield large uncertainty in the classification results. Object-oriented processing techniques are becoming more popular compared to traditional pixel-based image analysis.

Qian, Jing; Zhou, Qiming; Chen, Xi

2010-10-01

74

ICCLP: An Inexact Chance-Constrained Linear Programming Model for Land-Use Management of Lake Areas in Urban Fringes  

NASA Astrophysics Data System (ADS)

Lake areas in urban fringes are under increasing urbanization pressure. Consequently, the conflict between rapid urban development and the maintenance of water bodies in such areas urgently needs to be addressed. An inexact chance-constrained linear programming (ICCLP) model for optimal land-use management of lake areas in urban fringes was developed. The ICCLP model was based on land-use suitability assessment and land evaluation. The maximum net economic benefit (NEB) was selected as the objective of land-use allocation. The total environmental capacity (TEC) of water systems and the public financial investment (PFI) at different probability levels were considered key constraints. Other constraints included in the model were land-use suitability, governmental requirements on the ratios of various land-use types, and technical constraints. A case study implementing the system was performed for the lake area of Hanyang at the urban fringe of Wuhan, central China, based on our previous study on land-use suitability assessment. The Hanyang lake area is under significant urbanization pressure. A 15-year optimal model for land-use allocation is proposed during 2006 to 2020 to better protect the water system and to gain the maximum benefits of development. Sixteen constraints were set for the optimal model. The model results indicated that NEB was between 1.48 × 109 and 8.76 × 109 or between 3.98 × 109 and 16.7 × 109, depending on the different urban-expansion patterns and land demands. The changes in total developed area and the land-use structure were analyzed under different probabilities ( q i ) of TEC. Changes in q i resulted in different urban expansion patterns and demands on land, which were the direct result of the constraints imposed by TEC and PFI. The ICCLP model might help local authorities better understand and address complex land-use systems and develop optimal land-use management strategies that better balance urban expansion and grassland conservation.

Liu, Yong; Qin, Xiaosheng; Guo, Huaicheng; Zhou, Feng; Wang, Jinfeng; Lv, Xiaojian; Mao, Guozhu

2007-12-01

75

Modeling Coupled Climate And Urban Land Use Change In The United States  

NASA Astrophysics Data System (ADS)

Over the coming decades, population growth and changes in consumption are expected to substantially alter regional land use. These changes in land use are expected to interact with projected changes in climate, resulting in significant impacts on ecosystems. In this study we use the Terrestrial Observation and Prediction System (TOPS), an ecosystem modeling framework, to evaluate the effects of coupled land use and climate change on hydrologic dynamics (runoff) and vegetation carbon uptake (gross productivity) on a number of watersheds projected to undergo significant urban expansion across the United States. TOPS simulations at 1 km spatial resolution are based on land cover predictions from the Spatially Explicit Regional Growth Model (SERGoM) through the year 2100 and an ensemble of climate projections (Bias Corrected and Downscaled WCRP CMIP3). We also present results from an evaluation of simulated scenarios to characterize the mitigation potential of various best management practices for land use planning, such as urban afforestation and replacement of asphalt with permeable surfaces.

Milesi, C.; Goetz, S. J.; Wang, W.; Melton, F. S.; Theobald, D.; Nemani, R. R.

2011-12-01

76

Exploiting Volunteered Geographic Information to Ease Land Use Mapping of AN Urban Landscape  

NASA Astrophysics Data System (ADS)

Remote sensing techniques have eased land use/cover mapping substantially by observing the earth remotely through diminishing field surveying and in-site data collection. However, field measurement is still required to identify training sites for defining the existing land use classes, which requires visiting the study area. This paper is intended to utilize volunteered geographic information (VGI) contributions to the OpenStreetMap (OSM) project as an alternative data source instead of gathering training sites through insite visits and to evaluate how accurate land use patterns can be mapped. High resolution imagery of RapidEye with 5 meter spatial resolution is selected to derive land use patterns of Koblenz, Germany through a maximum likelihood classification technique. The achieved land use map is compared with the Global Monitoring for Environment and Security Urban Atlas (GMESUA) and a Kappa Index of 89% is achieved. The outcomes prove that VGI can be integrated within remote sensing processes to facilitate the process of earth observation and monitoring.

Jokar Arsanjani, J.; Helbich, M.; Bakillah, M.

2013-05-01

77

Fish Assemblage Responses to Urban Intensity Gradients in Contrasting Metropolitan Areas: Birmingham, Alabama and Boston, Massachusetts  

Microsoft Academic Search

We examined fish assemblage responses to urban intensity gradients in two contrasting metropolitan areas: Birmingham, Alabama (BIR) and Boston, Massachusetts (BOS). Urbanization was quantified by using an urban intensity index (UII) that included multiple stream buffers and basin land uses, human population density, and road density variables. We evaluated fish assemblage responses by using species richness metrics and detrended correspondence

MICHAEL R. MEADOR; HUMBERT ZAPPIA

78

Variations of soil lead in different land uses along the urbanization gradient in the Beijing metropolitan area.  

PubMed

Understanding the spatial pattern of soil lead (Pb) levels is essential to protecting human health. Most previous studies have examined soil Pb distributions by either urbanization gradient or land-use type. Few studies, however, have examined both factors together. It remains unclear whether the impacts of land use on soil Pb levels are consistent along the urbanization gradient. To fill this gap, we investigated variations in soil Pb level under different land-use types along the urbanization gradient in Beijing, China. We classified the degree of urbanization as the urban core, transitional zone, or suburban area and the land-use type as industrial area, roadside, residential area, institutional area, road greenbelt, park, or forest. Our results showed that the range of soil Pb levels in Beijing is <1 mg/kg-292 mg/kg, with a mean of 22 mg/kg. Along the urbanization gradient, the mean soil Pb level increased from the suburban area to the urban core. Land-use types have an impact on soil Pb levels, however, when the degree of urbanization is considered, the impact from land use on soil Pb level was only significant in the transitional zone. Parks and road greenbelts were found to have lower soil Pb, primarily due to soil restoration. Roadside and residential areas were found to have higher soil Pb because of traffic emissions, leaded paint, and previous industrial contamination. In the urban core and suburban area, the soil Pb level showed no significant differences among various land-use types. Given the results of soil Pb in various land-use types, we suggest that future studies consider the urbanization gradient in which different land-use samples are located. PMID:24646863

Mao, Qizheng; Huang, Ganlin; Ma, Keming; Sun, Zexiang

2014-03-01

79

Graph-Based Urban Land Use Mapping from High Resolution Satellite Images  

NASA Astrophysics Data System (ADS)

Due to the dynamic character of urban land use (e.g. urban sprawl) there is a demand for frequent updates for monitoring, modeling, and controlling purposes. Urban land use is an added value that can be indirectly derived with the help of various properties of land cover classes that describe a certain area and create a distinguishable structure. The goal of this project is to extract land use (LU) classes out of a structure of land cover (LC) classes from high resolution Quickbird data and additional LiDAR building height models. The study area is Rostock, a German city with more than 200.000 inhabitants. To model the properties of urban land use a graph based approach is adapted from other disciplines (industrial image processing, medicine, informatics). A graph consists of nodes and edges while nodes describe the land cover and edges define the relationship of neighboring objects. To calculate the adjacency that describes which nodes are combined with an edge several distance ranges and building height properties are tested. Furthermore the information value of planar versus non-planar graph types is analyzed. After creating the graphs specific indices are computed that evaluate how compact or connected the graphs are. In this work several graph indices are explained and applied to training areas. Results show that the distance of buildings and building height are reliable indicators for LU-categories. The separability of LU-classes improves when properties of land cover classes and graph indices are combined to a LU-signature.

Walde, I.; Hese, S.; Berger, C.; Schmullius, C.

2012-07-01

80

Estimating Land Use Impacts on Regional Scale Urban Water Balance and Groundwater Recharge  

Microsoft Academic Search

Anthropogenic activities have exerted increasingly large-scale influences on terrestrial ecological systems from the past\\u000a century, primarily through agriculture; however, the impact of such changes on the hydrologic cycle is poorly understood.\\u000a As one of the important land use (LU) in the coastal Dogo Plain of the Seto Inland Sea, Japan, paddy fields have been decreasing\\u000a with the increase in urbanization

Bin He; Yi Wang; Keiji Takase; Goro Mouri; Bam H. N. Razafindrabe

2009-01-01

81

Smarter Urban Planning: Match Land Use with Citizen Needs and Financial Constraints  

Microsoft Academic Search

\\u000a Urban Planning defines land distribution and regulates land use in cities, with the objective to foster economic development\\u000a and ensure quality of life. Current planning practices often fail to consider citizen needs. They lack the objectivity that\\u000a is needed to balance public and private interests. And public facilities’ planning tends to work in isolation from public\\u000a services programming, leading to

Maria-Lluïsa Marsal-Llacuna; Ying Leung; Guang-Jie Ren

82

Impact of Land-Use Intensity and Productivity on Bryophyte Diversity in Agricultural Grasslands  

PubMed Central

While bryophytes greatly contribute to plant diversity of semi-natural grasslands, little is known about the relationships between land-use intensity, productivity, and bryophyte diversity in these habitats. We recorded vascular plant and bryophyte vegetation in 85 agricultural used grasslands in two regions in northern and central Germany and gathered information on land-use intensity. To assess grassland productivity, we harvested aboveground vascular plant biomass and analyzed nutrient concentrations of N, P, K, Ca and Mg. Further we calculated mean Ellenberg indicator values of vascular plant vegetation. We tested for effects of land-use intensity and productivity on total bryophyte species richness and on the species richness of acrocarpous (small & erect) and pleurocarpous (creeping, including liverworts) growth forms separately. Bryophyte species were found in almost all studied grasslands, but species richness differed considerably between study regions in northern Germany (2.8 species per 16 m2) and central Germany (6.4 species per 16 m2) due environmental differences as well as land-use history. Increased fertilizer application, coinciding with high mowing frequency, reduced bryophyte species richness significantly. Accordingly, productivity estimates such as plant biomass and nitrogen concentration were strongly negatively related to bryophyte species richness, although productivity decreased only pleurocarpous species. Ellenberg indicator values for nutrients proved to be useful indicators of species richness and productivity. In conclusion, bryophyte composition was strongly dependent on productivity, with smaller bryophytes that were likely negatively affected by greater competition for light. Intensive land-use, however, can also indirectly decrease bryophyte species richness by promoting grassland productivity. Thus, increasing productivity is likely to cause a loss of bryophyte species and a decrease in species diversity. PMID:23251563

Müller, Jörg; Klaus, Valentin H.; Kleinebecker, Till; Prati, Daniel; Hölzel, Norbert; Fischer, Markus

2012-01-01

83

Monitoring and Predicting Land-use Changes and the Hydrology of the Urbanized Paochiao Watershed in Taiwan Using Remote Sensing Data, Urban Growth Models and a Hydrological Model  

PubMed Central

Monitoring and simulating urban sprawl and its effects on land-use patterns and hydrological processes in urbanized watersheds are essential in land-use and water-resource planning and management. This study applies a novel framework to the urban growth model Slope, Land use, Excluded land, Urban extent, Transportation, and Hillshading (SLEUTH) and land-use change with the Conversion of Land use and its Effects (CLUE-s) model using historical SPOT images to predict urban sprawl in the Paochiao watershed in Taipei County, Taiwan. The historical and predicted land-use data was input into Patch Analyst to obtain landscape metrics. This data was also input to the Generalized Watershed Loading Function (GWLF) model to analyze the effects of future urban sprawl on the land-use patterns and watershed hydrology. The landscape metrics of the historical SPOT images show that land-use patterns changed between 1990–2000. The SLEUTH model accurately simulated historical land-use patterns and urban sprawl in the Paochiao watershed, and simulated future clustered land-use patterns (2001–2025). The CLUE-s model also simulated land-use patterns for the same period and yielded historical trends in the metrics of land-use patterns. The land-use patterns predicted by the SLEUTH and CLUE-s models show the significant impact urban sprawl will have on land-use patterns in the Paochiao watershed. The historical and predicted land-use patterns in the watershed tended to fragment, had regular shapes and interspersion patterns, but were relatively less isolated in 2001–2025 and less interspersed from 2005–2025 compared with land-use pattern in 1990. During the study, the variability and magnitude of hydrological components based on the historical and predicted land-use patterns were cumulatively affected by urban sprawl in the watershed; specifically, surface runoff increased significantly by 22.0% and baseflow decreased by 18.0% during 1990–2025. The proposed approach is an effective means of enhancing land-use monitoring and management of urbanized watersheds.

Lin, Yu-Pin; Lin, Yun-Bin; Wang, Yen-Tan; Hong, Nien-Ming

2008-01-01

84

Changes in Urban Climate due to Future Land-Use Changes based on Population Changes in the Nagoya Region  

NASA Astrophysics Data System (ADS)

Severe hot weather in summer season becomes a big social problem in metropolitan areas, including the Nagoya region in Japan. Surface air temperature warming is projected in the future. Therefore, the reduction of surface air temperature is an urgent issue in the urban area. Although there are several studies dealing with the effects of global climate change and urbanization to the local climate in the future, these studies tend to ignore the future population changes. This study estimates future land-use scenarios associated with the multi-projections of future population and investigates the impacts of these scenarios on the surface temperature change. The Weather Research and Forecast model ver. 3.3.1 (hereafter, WRF) was used in this study. The horizontal resolutions were 20km, 4km, and 2km, for outer, middle, and inner domains, respectively. The results from the inner domain, covering the Nagoya region, were used for the analysis. The Noah land surface model and the single-layer urban canopy model were applied to calculate the land surface processes and urban surface processes, respectively. The initial and boundary conditions were given from the NCEP/NCAR reanalysis data in August 2010. The urban area ratio used in the WRF model was calculated from the future land-use data provided by the S8 project. The land-use data was created as follows. (1) Three scenarios of population, namely, with high-fertility assumption and low-mortality assumption (POP-high), with medium-fertility assumption and medium-mortality assumption (POP-med), and with low-fertility assumption and high-mortality assumption (POP-low), are estimated using the method proposed by Ariga and Matsuhashi (2012). These scenarios are based on the future projections provided by the National Institute of Population and Social Security Research. (2) The future changes in urban area ratio were assumed to be proportional to the population change (Hanasaki et al., 2012). The averaged urban area ratio in the Nagoya region was 0.37 in 2010. The area ratios were projected to reach a peak in 2010 to 2020, and then to decrease in the future in all of scenarios. The urban heat island intensity in the Nagoya region is about 1.5°C in 2010. In contrast, the differences of surface temperature is -0.17°C, -0.21°C, and -0.30°C in POP-high, POP-med, and POP-low, from the current situation in 2010. These impacts correspond to the 10% to 20% of current urban heat island intensity. However, the changes in the efficiency of energy consumption were not considered. Considering that the future surface temperature change is projected to be about 1.2°C to 4°C in 2070, it is required to quantitatively evaluate future urban scenarios including the mitigation strategies for urban heat island such as the improvement of energy consumption, greening, and so on. Acknowledgments. This study was supported by the Research Program on Climate Change Adaptation (RECCA) Fund by Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan and the Global Environment Research Fund (S-8) of the Ministry of the Environment of Japan.

Adachi, S. A.; Hara, M.; Takahashi, H. G.; Ma, X.; Yoshikane, T.; Kimura, F.

2013-12-01

85

SPATIALLY EXPLICIT MICRO-LEVEL MODELLING OF LAND USE CHANGE AT THE RURAL-URBAN INTERFACE. (R828012)  

EPA Science Inventory

This paper describes micro-economic models of land use change applicable to the rural–urban interface in the US. Use of a spatially explicit micro-level modelling approach permits the analysis of regional patterns of land use as the aggregate outcomes of many, disparate...

86

Living in the big city: Effects of urban land-use on bird community structure, diversity, and composition  

Microsoft Academic Search

Cities represent an important threat to biodiversity at different scales. Nevertheless, little is known on the processes underlying such effects. In this paper we describe bird diversity, structure, and composition patterns in different urban land-use categories. For this, we surveyed resident bird communities in four representative land-use categories of southwestern Mexico City. Our results show that bird communities vary greatly

Rubén Ortega-Álvarez; Ian MacGregor-Fors

2009-01-01

87

Tempo-Spatial Patterns of Land Use Changes and Urban Development in Globalizing China: A Study of Beijing  

PubMed Central

This study examines the temporal and spatial changes in land use as a consequence of rapid urban development in the city of Beijing. Using a combination of techniques of remote sensing and GIS, the study identifies a substantial loss of plain dryland and a phenomenal expansion of urban construction land over the recent decade. Geographically, there is a clear shifting of urban construction land from the inner city to the outskirts as a consequence of suburbanization. The outward expansion of the ring-road system is found to be one of the most important driving forces explaining the temporal and spatial pattern of land use change. The uneven distribution of population stands as another factor with significant correlation with land use change. The application of the techniques of remote sensing and GIS can enhance the precision and comparability of research on land use change and urban transformation in China.

Xie, Yichun; Fang, Chuanglin; Lin, George C.S.; Gong, Hongmian; Qiao, Biao

2007-01-01

88

Multifunctional Land Use: An Accessibility Interpretation  

Microsoft Academic Search

The need for an efficient urban land use has generated much interest in new forms of urban architecture. In The Netherlands, at present an intensive discussion is taking place on so-called multifunctional land use. This concept aims to concentrate and combine several socio-economic functions in the same area, so as to save scarce space and to exploit economies of synergy.

Caroline Rodenburg

2003-01-01

89

Evaluation of land use/land cover datasets for urban watershed modeling  

SciTech Connect

Land use/land cover (LULC) data are a vital component for nonpoint source pollution modeling. Most watershed hydrology and pollutant loading models use, in some capacity, LULC information to generate runoff and pollutant loading estimates. Simple equation methods predict runoff and pollutant loads using runoff coefficients or pollutant export coefficients that are often correlated to LULC type. Complex models use input variables and parameters to represent watershed characteristics and pollutant buildup and washoff rates as a function of LULC type. Whether using simple or complex models an accurate LULC dataset with an appropriate spatial resolution and level of detail is paramount for reliable predictions. The study presented in this paper compared and evaluated several LULC dataset sources for application in urban environmental modeling. The commonly used USGS LULC datasets have coarser spatial resolution and lower levels of classification than other LULC datasets. In addition, the USGS datasets do not accurately represent the land use in areas that have undergone significant land use change during the past two decades. We performed a watershed modeling analysis of three urban catchments in Los Angeles, California, USA to investigate the relative difference in average annual runoff volumes and total suspended solids (TSS) loads when using the USGS LULC dataset versus using a more detailed and current LULC dataset. When the two LULC datasets were aggregated to the same land use categories, the relative differences in predicted average annual runoff volumes and TSS loads from the three catchments were 8 to 14% and 13 to 40%, respectively. The relative differences did not have a predictable relationship with catchment size.

Burian, S. J. (Steven J.); Brown, M. J. (Michael J.); McPherson, T. N. (Timothy N.)

2001-01-01

90

Quantifying Spatiotemporal Patterns of Urban Land-use Change in Four Cities of China with Time Series Landscape Metrics  

Microsoft Academic Search

This paper provides a dynamic inter- and intra-city analysis of spatial and temporal patterns of urban land-use change. It is the first comparative analysis of a system of rapidly developing cities with landscape pattern metrics. Using ten classified Landsat Thematic Mapper images acquired from 1988 to 1999, we quantify the annual rate of urban land-use change for four cities in

Karen C. Seto; Michail Fragkias

2005-01-01

91

Density of insect-pollinated grassland plants decreases with increasing surrounding land-use intensity.  

PubMed

Pollinator declines have raised concerns about the persistence of plant species that depend on insect pollination, in particular by bees, for their reproduction. The impact of pollinator declines remains unknown for species-rich plant communities found in temperate seminatural grasslands. We investigated effects of land-use intensity in the surrounding landscape on the distribution of plant traits related to insect pollination in 239 European seminatural grasslands. Increasing arable land use in the surrounding landscape consistently reduced the density of plants depending on bee and insect pollination. Similarly, the relative abundance of bee-pollination-dependent plants increased with higher proportions of non-arable agricultural land (e.g. permanent grassland). This was paralleled by an overall increase in bee abundance and diversity. By isolating the impact of the surrounding landscape from effects of local habitat quality, we show for the first time that grassland plants dependent on insect pollination are particularly susceptible to increasing land-use intensity in the landscape. PMID:25040328

Clough, Yann; Ekroos, Johan; Báldi, András; Batáry, Péter; Bommarco, Riccardo; Gross, Nicolas; Holzschuh, Andrea; Hopfenmüller, Sebastian; Knop, Eva; Kuussaari, Mikko; Lindborg, Regina; Marini, Lorenzo; Öckinger, Erik; Potts, Simon G; Pöyry, Juha; Roberts, Stuart Pm; Steffan-Dewenter, Ingolf; Smith, Henrik G

2014-09-01

92

Variation in Stormwater Characteristics Depending on Urban Land Uses Using Remote- Sensing and GIS in Conjunction to Hydro-Chemical Monitoring  

NASA Astrophysics Data System (ADS)

Urban Hydrology has attracted growing attention in the last decades due to the environmental implications resulting from the expansion of built-up areas. Understanding stormwater characteristics and potential can be beneficial in contributing to sustainable urban water resources management. Studying stormwater in relation to the various urban land uses (residential ,industrial, roods, parking areas ,etc) using remote sensing and GIS coupled with hydrological and chemical monitoring is an advanced practice which is used in this study. The study area covers the growing cities of Herzlia and Ra'anana which site along the Israeli Coastal Plain. High resolution GIS data, Air Photo images combine with LIDAR, and hyper-spectral remote sensing data were used to study land-use distribution within the highly developed urban setting (45%-87% paved areas). Temporal variations in the runoff coefficient and chemical compositions of urban stormwater under different land uses, and their dependence on physical parameters such as precipitation intensity, stormwater discharge, cumulative stormwater volumes and the size of paved areas were analyzed. Results indicate that runoff coefficient is directly correlated to the percentage of paved areas. Fluxes of major ions and trace elements were highest in industrial areas. The concentrations and variety of semi- volatile organic compounds were significantly higher in stormwater generated in the industrial areas than in that draining from residential areas. Concentrations of fecal coliform bacteria from all land-uses exceeded the drinking water standards and displayed a random pattern. The results of this work suggest that while stormwater can contribute to urban water resources it must be treated accordingly with regard to its land uses origin within the city.

Asaf, L.; Goldshlger, N.; Ben Dor, E.; Filin, S.; Shoshany, M.

2008-12-01

93

Relationship Study on Land Use Spatial Distribution Structure and Energy-Related Carbon Emission Intensity in Different Land Use Types of Guangdong, China, 1996–2008  

PubMed Central

This study attempts to discuss the relationship between land use spatial distribution structure and energy-related carbon emission intensity in Guangdong during 1996–2008. We quantized the spatial distribution structure of five land use types including agricultural land, industrial land, residential and commercial land, traffic land, and other land through applying spatial Lorenz curve and Gini coefficient. Then the corresponding energy-related carbon emissions in each type of land were calculated in the study period. Through building the reasonable regression models, we found that the concentration degree of industrial land is negatively correlated with carbon emission intensity in the long term, whereas the concentration degree is positively correlated with carbon emission intensity in agricultural land, residential and commercial land, traffic land, and other land. The results also indicate that land use spatial distribution structure affects carbon emission intensity more intensively than energy efficiency and production efficiency do. These conclusions provide valuable reference to develop comprehensive policies for energy conservation and carbon emission reduction in a new perspective. PMID:23476128

Huang, Yi; Yang, Lei

2013-01-01

94

Contrasting Effects of Land Use Intensity and Exotic Host Plants on the Specialization of Interactions in Plant-Herbivore Networks  

PubMed Central

Human land use tends to decrease the diversity of native plant species and facilitate the invasion and establishment of exotic ones. Such changes in land use and plant community composition usually have negative impacts on the assemblages of native herbivorous insects. Highly specialized herbivores are expected to be especially sensitive to land use intensification and the presence of exotic plant species because they are neither capable of consuming alternative plant species of the native flora nor exotic plant species. Therefore, higher levels of land use intensity might reduce the proportion of highly specialized herbivores, which ultimately would lead to changes in the specialization of interactions in plant-herbivore networks. This study investigates the community-wide effects of land use intensity on the degree of specialization of 72 plant-herbivore networks, including effects mediated by the increase in the proportion of exotic plant species. Contrary to our expectation, the net effect of land use intensity on network specialization was positive. However, this positive effect of land use intensity was partially canceled by an opposite effect of the proportion of exotic plant species on network specialization. When we analyzed networks composed exclusively of endophagous herbivores separately from those composed exclusively of exophagous herbivores, we found that only endophages showed a consistent change in network specialization at higher land use levels. Altogether, these results indicate that land use intensity is an important ecological driver of network specialization, by way of reducing the local host range of herbivore guilds with highly specialized feeding habits. However, because the effect of land use intensity is offset by an opposite effect owing to the proportion of exotic host species, the net effect of land use in a given herbivore assemblage will likely depend on the extent of the replacement of native host species with exotic ones. PMID:25565141

de Araújo, Walter Santos; Vieira, Marcos Costa; Lewinsohn, Thomas M.; Almeida-Neto, Mário

2015-01-01

95

Contrasting effects of land use intensity and exotic host plants on the specialization of interactions in plant-herbivore networks.  

PubMed

Human land use tends to decrease the diversity of native plant species and facilitate the invasion and establishment of exotic ones. Such changes in land use and plant community composition usually have negative impacts on the assemblages of native herbivorous insects. Highly specialized herbivores are expected to be especially sensitive to land use intensification and the presence of exotic plant species because they are neither capable of consuming alternative plant species of the native flora nor exotic plant species. Therefore, higher levels of land use intensity might reduce the proportion of highly specialized herbivores, which ultimately would lead to changes in the specialization of interactions in plant-herbivore networks. This study investigates the community-wide effects of land use intensity on the degree of specialization of 72 plant-herbivore networks, including effects mediated by the increase in the proportion of exotic plant species. Contrary to our expectation, the net effect of land use intensity on network specialization was positive. However, this positive effect of land use intensity was partially canceled by an opposite effect of the proportion of exotic plant species on network specialization. When we analyzed networks composed exclusively of endophagous herbivores separately from those composed exclusively of exophagous herbivores, we found that only endophages showed a consistent change in network specialization at higher land use levels. Altogether, these results indicate that land use intensity is an important ecological driver of network specialization, by way of reducing the local host range of herbivore guilds with highly specialized feeding habits. However, because the effect of land use intensity is offset by an opposite effect owing to the proportion of exotic host species, the net effect of land use in a given herbivore assemblage will likely depend on the extent of the replacement of native host species with exotic ones. PMID:25565141

de Araújo, Walter Santos; Vieira, Marcos Costa; Lewinsohn, Thomas M; Almeida-Neto, Mário

2015-01-01

96

Mapping of the CO2 and anthropogenic heat emission under spatially explicit urban land use scenarios  

NASA Astrophysics Data System (ADS)

The serious further efforts on CO2 and other green house gases emission reduction by global climate change mitigation remain as an urgent global issue to be solved. From the viewpoint of urban land use measures, the realization of low-carbon city is the key to change people’s behavior to reduce CO2 emission. In this respect, a lot of studies aimed at realizing low-carbon city are progressing on a number of fronts, including city planning and transportation planning. With respect to the low-carbon city, compact city is expected to reduce CO2 emission from transportation sector. Hence many studies have been conducted with scenario analysis considering modal share change, for instance, increase of public transportation use and reduction of trip length by car. On the other hand, it is important that CO2 emission from not only transportation sector but also residential sector can be reduced by a move from a detached house to a condominium, the change of family composition types and so on. In regard to residential sector, it has been founded that CO2 emission units differ among family composition types, for example, the single-person household emit more CO2 in general. From the viewpoint of an urban climate prediction, the possible range of future land use change should be recognized as the input parameters for the climate models. In addition to CO2 emission, the anthropogenic heat emission is also important as an input data of climate models in order to evaluate the social and economic impacts of urban land use change. The objective of this study is to demonstrate a compact city scenario and a dispersion scenario in Tokyo metropolitan area, which is the largest metropolitan area in the world, and to examine future climate change mitigation policies including land use for realization of low-carbon city. We have created two scenarios of population distribution by using an urban economic model. In these scenarios we have assumed extreme cases in order to show the possible range of future land use change. The first one is a compact city scenario and the second one is a dispersion scenario. In the compact city scenario, we assumed that commuting to work by cars would be prohibited. In the dispersion scenario, we assumed that all workers would work in their own houses and the time of commuting to work would be zero. The spatially explicit emissions are mapped by using Geographical Information System (GIS). As for the CO2 emission, this study focuses on the analysis of the tendency from the viewpoint of both direct and indirect emission. As a result, people would live in suburbs in the second scenario, and the emissions would increase. It is concluded that the results shows the importance of low-carbon city as compact city. Moreover, the anthropogenic heat emission estimated in this study can used as the input parameters for the climate models. The developed system can be used for analyzing the implications of urban planning and carbon management scenarios.

Nakamichi, K.; Yamagata, Y.; Seya, H.

2010-12-01

97

Direct and indirect effects of land use on floral resources and flower-visiting insects across an urban landscape  

USGS Publications Warehouse

Although urban areas are often considered to have uniformly negative effects on biodiversity, cities are most accurately characterized as heterogeneous mosaics of buildings, streets, parks, and gardens that include both ‘good’ and ‘bad’ areas for wildlife. However, to date, few studies have evaluated how human impacts vary in direction and magnitude across a heterogeneous urban landscape. In this study, we assessed the distribution of floral resources and flower-visiting insects across a variety of land uses in New York City. We visited both green spaces (e.g. parks, cemeteries) and heavily developed neighborhood blocks (e.g. with high or low density residential zoning) and used structural equation modeling (SEM) to evaluate the direct and indirect effects of median income, vegetation, and development intensity on floral resources and insects in both settings. Abundance and taxonomic richness of flower-visiting insects was significantly greater in green spaces than neighborhood blocks. The SEM results indicated that heavily-developed neighborhoods generally had fewer flower-visiting insects consistent with reductions in floral resources. However, some low-density residential neighborhoods maintained high levels of floral resources and flower-visiting insects. We found that the effects of surrounding vegetation on floral resources, and thus indirect effects on insects, varied considerably between green spaces and neighborhood blocks. Along neighborhood blocks, vegetation consisted of a mosaic of open gardens and sparsely distributed trees and had a positive indirect effect on flower-visiting insects. In contrast, vegetation in urban green spaces was associated with increased canopy cover and thus had a negative indirect effect on flower-visiting insects through reductions in floral resources. In both neighborhood blocks and green spaces, vegetation had a positive direct effect on flower-visiting insects independent of the influence of vegetation on floral resources. Our results demonstrate how inter-related components of an urban ecosystem can vary with respect to one another across a heterogeneous urban landscape, suggesting that it is inappropriate to generalize about urban systems as a whole without first addressing differences among component land use types.

Matteson, K.C.; Grace, James B.; Minor, E.S.

2013-01-01

98

Land Use Dynamics of the Fast-Growing Shanghai Metropolis, China (1979–2008) and its Implications for Land Use and Urban Planning Policy  

PubMed Central

Through the integrated approach of remote sensing and geographic information system (GIS) techniques, four Landsat TM/ETM+ imagery acquired during 1979 and 2008 were used to quantitatively characterize the patterns of land use and land cover change (LULC) and urban sprawl in the fast-growing Shanghai Metropolis, China. Results showed that, the urban/built-up area grew on average by 4,242.06 ha yr?1. Bare land grew by 1,594.66 ha yr?1 on average. In contrast, cropland decreased by 3,286.26 ha yr?1 on average, followed by forest and shrub, water, and tidal land, which decreased by 1,331.33 ha yr?1, 903.43 ha yr?1, and 315.72 ha yr?1 on average, respectively. As a result, during 1979 and 2008 approximately 83.83% of the newly urban/built-up land was converted from cropland (67.35%), forest and shrub (9.12%), water (4.80%), and tidal land (2.19%). Another significant change was the continuous increase in regular residents, which played a very important role in contributing to local population growth and increase in urban/built-up land. This can be explained with this city’s huge demand for investment and qualified labor since the latest industrial transformation. Moreover, with a decrease in cropland, the proportion of population engaged in farming decreased 13.84%. Therefore, significant socio-economic transformation occurred, and this would lead to new demand for land resources. However, due to very scarce land resources and overload of population in Shanghai, the drive to achieve economic goals at the loss of cropland, water, and the other lands is not sustainable. Future urban planning policy aiming at ensuring a win-win balance between sustainable land use and economic growth is urgently needed. PMID:22319382

Zhang, Hao; Zhou, Li-Guo; Chen, Ming-Nan; Ma, Wei-Chun

2011-01-01

99

Land use dynamics of the fast-growing Shanghai Metropolis, China (1979-2008) and its implications for land use and urban planning policy.  

PubMed

Through the integrated approach of remote sensing and geographic information system (GIS) techniques, four Landsat TM/ETM+ imagery acquired during 1979 and 2008 were used to quantitatively characterize the patterns of land use and land cover change (LULC) and urban sprawl in the fast-growing Shanghai Metropolis, China. Results showed that, the urban/built-up area grew on average by 4,242.06 ha yr(-1). Bare land grew by 1,594.66 ha yr(-1) on average. In contrast, cropland decreased by 3,286.26 ha yr(-1) on average, followed by forest and shrub, water, and tidal land, which decreased by 1,331.33 ha yr(-1), 903.43 ha yr(-1), and 315.72 ha yr(-1) on average, respectively. As a result, during 1979 and 2008 approximately 83.83% of the newly urban/built-up land was converted from cropland (67.35%), forest and shrub (9.12%), water (4.80%), and tidal land (2.19%). Another significant change was the continuous increase in regular residents, which played a very important role in contributing to local population growth and increase in urban/built-up land. This can be explained with this city's huge demand for investment and qualified labor since the latest industrial transformation. Moreover, with a decrease in cropland, the proportion of population engaged in farming decreased 13.84%. Therefore, significant socio-economic transformation occurred, and this would lead to new demand for land resources. However, due to very scarce land resources and overload of population in Shanghai, the drive to achieve economic goals at the loss of cropland, water, and the other lands is not sustainable. Future urban planning policy aiming at ensuring a win-win balance between sustainable land use and economic growth is urgently needed. PMID:22319382

Zhang, Hao; Zhou, Li-Guo; Chen, Ming-Nan; Ma, Wei-Chun

2011-01-01

100

Geo-information Based Spatio-temporal Modeling of Urban Land Use and Land Cover Change in Butwal Municipality, Nepal  

NASA Astrophysics Data System (ADS)

Unscientific utilization of land use and land cover due to rapid growth of urban population deteriorates urban condition. Urban growth, land use change and future urban land demand are key concerns of urban planners. This paper is aimed to model urban land use change essential for sustainable urban development. GI science technology was employed to study the urban change dynamics using Markov Chain and CA-Markov and predicted the magnitude and spatial pattern. It was performed using the probability transition matrix from the Markov chain process, the suitability map of each land use/cover types and the contiguity filter. Suitability maps were generated from the MCE process where weight was derived from the pair wise comparison in the AHP process considering slope, land capability, distance to road, and settlement and water bodies as criterion of factor maps. Thematic land use land cover types of 1999, 2006, and 2013 of Landsat sensors were classified using MLC algorithm. The spatial extent increase from 1999 to 2013 in built up , bush and forest was observed to be 48.30 percent,79.48 percent and 7.79 percent, respectively, while decrease in agriculture and water bodies were 30.26 percent and 28.22 percent. The predicted urban LULC for 2020 and 2027 would provide useful inputs to the decision makers. Built up and bush expansion are explored as the main driving force for loss of agriculture and river areas and has the potential to continue in future also. The abandoned area of river bed has been converted to built- up areas.

Mandal, U. K.

2014-11-01

101

Proliferation of nonconforming land uses in agricultural envelope of urban Hong Kong  

NASA Astrophysics Data System (ADS)

Until the late 1960s rural Hong Kong had an attractive rustic landscape and a small but active farming population. The recent widespread agricultural decline provided opportunities for urban-oriented activities to invade, mainly as open storage and workshops unsuitable in city areas. Rapid container-port expansion and cross-border China trade generate demands for cheap and accessible land for non-conforming uses (NCU). Rural development control and land-use planning are inherently weak, and formal provision for such uses is lacking. An unfavorable landmark court judgement allows landowners to degrade the countryside. The activities have caused acute environmental problems, telescoped into a small territory, including visual blight, pollution, drainage blockage, loss of wetland habitats, and increased flooding hazard. The distinction between urban and rural has been blurred in the destruction of the valuable countryside heritage. An interim legislative amendment fails to stop unauthorized conversion of farmland. In the long term, an integrated and comprehensive rural planning strategy to conserve inherent elements, as well as accommodating selected urban spillover in properly located and serviced sites, is needed.

Jim, C. Y.

1996-07-01

102

Potential ecological risk of hazardous elements in different land-use urban soils of Bangladesh.  

PubMed

Soil pollution, influenced by both the natural and anthropogenic factors, significantly reduces environmental quality. In this study, six hazardous elements (Cr, Ni, Cu, As, Cd and Pb) in 12 different land-use urban soils from Bangladesh were assessed. The ranges of Cr, Ni, Cu, As, Cd and Pb in studied soils were 2.4-1258, 8.3-1044, 9.7-823, 8.7-277, 1.8-80 and 13-842mg/kg, respectively. More than 70% of soil samples exceeded the Dutch target value for Ni, Cu, As, Cd and Pb concentration in soil, indicating a potential risk to the environment. Certain indices, including the enrichment factor (EF), pollution load index (PLI) and contamination factor (Cf(i)), were used to assess the ecological risk posed by hazardous elements in soils. The mean range of PLI was 1.5-10, indicating progressive deterioration of soil due to metal contamination. However, the Cf(i) values of Cd ranged from 3.7 to 35 revealed that the examined soils were strongly impacted by Cd. Considering the severity of potential ecological risk for single metal (Er(i)), the descending order of contaminants was Cd>As>Cu>Pb>Ni>Cr. In view of the potential ecological risk (PER), soils from all land uses showed considerable to very high potential ecological risk. PMID:25613773

Islam, Saiful; Ahmed, Kawser; Habibullah-Al-Mamun; Masunaga, Shigeki

2015-04-15

103

The impact of land use, season, age, and sex on the prevalence and intensity of Baylisascaris procyonis infections in raccoons (Procyon lotor) from Ontario, Canada.  

PubMed

We assessed the impact of land use, demographic factors, and season on the prevalence and intensity of Baylisascaris procyonis infections in raccoons (Procyon lotor) in Ontario, Canada. From March to October 2012, we recorded the number of B. procyonis in the intestinal tracts of raccoons submitted to the Canadian Cooperative Wildlife Health Centre for necropsy. Logistic regression models were used to examine associations between the presence of B. procyonis and age (adult, juvenile), sex, land use (suburban/urban, rural), and season (March-June and July-October); negative binomial regression models were used to examine associations between the number of worms and the same variables. We detected B. procyonis in 38% (95% confidence interval 30-47%) of raccoons examined (n=128). In univariable models, the presence of B. procyonis was significantly associated with age, land use, and season (P<0.05). Age was not retained in the multivariable model, and the impact of sex on the presence of B. procyonis varied with land use and season. For example, from March to June, suburban/urban male raccoons were significantly more likely to be infected with B. procyonis than suburban/urban female raccoons. However, later in the summer (July-October), the opposite was true. The median number of worms in the intestinal tracts of infected raccoons was 3 (range 1-116). Worm number was significantly associated with age and season in univariable models; in the multivariable model, juvenile raccoons had significantly more worms than adults, and the impact of season on the number of worms varied with land use and sex. A better understanding of the epidemiology of B. procyonis in raccoons is important for developing appropriate strategies to reduce the risk of human exposure to B. procyonis from the environment. PMID:25098302

Jardine, Claire M; Pearl, David L; Puskas, Kirstie; Campbell, Doug G; Shirose, Lenny; Peregrine, Andrew S

2014-10-01

104

Microzonation in Urban Areas, Basic Element for Land-Use Planning, Risk Management and Sustainable Development  

NASA Astrophysics Data System (ADS)

This paper presents the results of microzonification of the natural hazards for different metropolitan areas and highlights the importance of integrating these results in urban planning. The cities that have been covered for the definition of danger in the state of Veracruz are: Orizaba, Veracruz and Xalapa, as part of the production of a Geological and Hydrometeorology Hazards Atlas for the state of Veracruz, financed by the Funds for the Prevention of Natural Disasters FOPREDEN and CONACYT. The general data of each metropolitan area was integrated in a geographic information system (GIS), obtaining different theme maps, and maps of dynamic characteristics of soils in each metropolitan area. For the planning of an urban area to aspire to promote sustainable development, it is essential to have a great deal of the details on the pertinent information and the most important is that that has to do with the degree of exposure to natural phenomena. In general, microzonation investigations consider all natural phenomena that could potentially affect an area of interest and hazard maps for each of potential hazards are prepared. With all the data collected and generated and fed into a SIG, models were generated which define the areas most threatened by earthquake, flood and landslide slopes. These results were compared with maps of the main features in the urban zones and a qualitative classification of areas of high to low hazard was established. It will have the basic elements of information for urban planning and land use. This information will be made available to the authorities and the general public through an Internet portal where people can download and view maps using free software available online.;

Torres Morales, G. F.; Dávalos Sotelo, R.; Castillo Aguilar, S.; Mora González, I.; Lermo Samaniego, J. F.; Rodriguez, M.; García Martínez, J.; Suárez, M. Leonardo; Hernández Juan, F.

2013-05-01

105

Land Use and Watersheds: Human Influence on Hydrology and Geomorphology in Urban and Forest Areas. Water Science and Application Series  

SciTech Connect

What is the effect of urbanization and forest use on hydrologic and geomorphic processes? How can we develop land use policies that minimize adverse impacts on ecosystems while sustaining biodiversity? Land Use and Watersheds: Human Influence on Hydrology and Geomorphology in Urban and Forest Areas addresses these issues and more. By featuring watersheds principally in the American Pacific Northwest, and the effects of timber harvesting and road construction on stream flow, sediment yield and landslide occurrence, scientists can advance their understanding of what constitutes appropriate management of environments with similar hydro-climatic-geomorphic settings worldwide.

Wigmosta, Mark S.; Burges, S J.

2001-10-01

106

Urban Growth in a Fragmented Landscape: Estimating the Relationship between Landscape Pattern and Urban Land Use Change in Germany, 2000-2006  

NASA Astrophysics Data System (ADS)

One of the highest priorities in the conservation and management of biodiversity, natural resources and other vital ecosystem services is the assessment of the mechanisms that drive urban land use change. Using key landscape indicators, this study addresses why urban land increased 6 percent overall in Germany from 2000-2006. Building on regional science and economic geography research, I develop a model of landscape change that integrates remotely sensed and other geospatial data, and socioeconomic data in a spatial autoregressive model to explain the variance in urban land use change observed in German kreise (counties) over the past decade. The results reveal three key landscape mechanisms that drive urban land use change across Germany, aligning with those observed in US studies: (1) the level of fragmentation, (2) the share of designated protected areas, and (3) the share of prime soil. First, as fragmentation of once continuous habitats in the landscape increases, extensive urban growth follows. Second, designated protected areas have the perverse effect of hastening urbanization in surrounding areas. Third, greater shares of prime, productive soil experienced less urban land take over the 6 year period, an effect that is stronger in the former East Germany, where the agricultural sector remains large. The results suggest that policy makers concentrate their conservation efforts on preexisting fragmented land with high shares of protected areas in Germany to effectively stem urban land take. Given that comparative studies of land use change are vital for the scientific community to grasp the wider global process of urbanization and coincident ecological impacts, the methodology employed here is easily exportable to land cover and land use research programs in other fields and geographic areas. Key words: Urban land use change, Ecosystem services, Landscape fragmentation, Remote sensing, Spatial regression models, GermanyOLS and Spatial Autoregressive Model Results N = 439; Standard error in ( ) . *p < .1, **p < .01, ***p < .001

Keller, R.

2013-12-01

107

Regional soil erosion in response to land use and increased typhoon frequency and intensity, Taiwan  

E-print Network

century changes in land use. Analyses of rainfall records and typhoon frequency for the period 1900 to investigate directly the potential interactions between land use, climate change, and soil erosion because the effects of land use and climate change in tropical drainage basins is central to evaluating potential

Montgomery, David R.

108

Quantifying Outdoor Water Consumption of Urban Land Use/Land Cover: Sensitivity to Drought  

NASA Astrophysics Data System (ADS)

Outdoor water use is a key component in arid city water systems for achieving sustainable water use and ensuring water security. Using evapotranspiration (ET) calculations as a proxy for outdoor water consumption, the objectives of this research are to quantify outdoor water consumption of different land use and land cover types, and compare the spatio-temporal variation in water consumption between drought and wet years. An energy balance model was applied to Landsat 5 TM time series images to estimate daily and seasonal ET for the Central Arizona Phoenix Long-Term Ecological Research region (CAP-LTER). Modeled ET estimations were correlated with water use data in 49 parks within CAP-LTER and showed good agreement ( r 2 = 0.77), indicating model effectiveness to capture the variations across park water consumption. Seasonally, active agriculture shows high ET (>500 mm) for both wet and dry conditions, while the desert and urban land cover types experienced lower ET during drought (<300 mm). Within urban locales of CAP-LTER, xeric neighborhoods show significant differences from year to year, while mesic neighborhoods retain their ET values (400-500 mm) during drought, implying considerable use of irrigation to sustain their greenness. Considering the potentially limiting water availability of this region in the future due to large population increases and the threat of a warming and drying climate, maintaining large water-consuming, irrigated landscapes challenges sustainable practices of water conservation and the need to provide amenities of this desert area for enhancing quality of life.

Kaplan, Shai; Myint, Soe W.; Fan, Chao; Brazel, Anthony J.

2014-04-01

109

Disentangling the Relative Importance of Changes in Climate and Land-Use Intensity in Driving Recent Bird Population Trends  

PubMed Central

Threats to biodiversity resulting from habitat destruction and deterioration have been documented for many species, whilst climate change is regarded as increasingly impacting upon species' distribution and abundance. However, few studies have disentangled the relative importance of these two drivers in causing recent population declines. We quantify the relative importance of both processes by modelling annual variation in population growth of 18 farmland bird species in the UK as a function of measures of land-use intensity and weather. Modelled together, both had similar explanatory power in accounting for annual fluctuations in population growth. When these models were used to retrodict population trends for each species as a function of annual variation in land-use intensity and weather combined, and separately, retrodictions incorporating land-use intensity were more closely linked to observed population trends than retrodictions based only on weather, and closely matched the UK farmland bird index from 1970 onwards. Despite more stable land-use intensity in recent years, climate change (inferred from weather trends) has not overtaken land-use intensity as the dominant driver of bird populations. PMID:22479304

Eglington, Sarah M.; Pearce-Higgins, James W.

2012-01-01

110

Understory plant species composition in remnant stands along an urban-to-rural land-use gradient  

USGS Publications Warehouse

We examined the understory species composition of 24 remnant forest stands along an urban-to-rural gradient in the metropolitan Milwaukee, Wisconsin region to determine the relationships between plant community composition, human disturbance, and contrasting types of land use along a gradient of urbanization. A significant difference was found in shrub species community composition among three contrasting land-use categories but no significant difference was found in herbaceous community composition. Significant differences in human activity existed among rural, urban, and urbanizing land-use categories, but this index of disturbance was not significantly correlated to gradients in species composition. All stands in this study had been subjected to various types of human activity and environmental disturbances in the past. Our data suggest that differences in the relative importance of understory species exist among stands but these differences may not be caused by the impacts of urbanization alone. Changes in the natural disturbance regime of this landscape, along with the impacts associated with urbanization, have led to an individualistic response in the compositional dynamics of forest stands.

Guntenspergen, G.R.; Levenson, J.B.

1997-01-01

111

Quantifying and Analysing Neighbourhood Characteristics Supporting Urban Land-Use Modelling  

Microsoft Academic Search

Land-use modelling and spatial scenarios have gained increased attention as a means to meet the challenge of reducing uncertainty\\u000a in the spatial planning and decision-making. Several organisations have developed software for land-use modelling. Many of\\u000a the recent modelling efforts incorporate cellular automata (CA) to accomplish spatially explicit land-use change modelling.\\u000a Spatial interaction between neighbour land-uses is an important component in

Henning Sten Hansen

2008-01-01

112

Urban land use mapping by machine processing of ERTS-1 multispectral data: A San Francisco Bay area example  

NASA Technical Reports Server (NTRS)

The study is reported to develop computer produced urban land use maps using multispectral scanner data from a satellite is reported. Data processing is discussed along with the results of the San Francisco Bay area, which was chosen as the test area.

Ellefsen, R.; Swain, P. H.; Wray, J. R.

1973-01-01

113

Improving urban land use and land cover classification from high-spatial-resolution hyperspectral imagery using contextual information  

Technology Transfer Automated Retrieval System (TEKTRAN)

In this paper, we propose approaches to improve the pixel-based support vector machine (SVM) classification for urban land use and land cover (LULC) mapping from airborne hyperspectral imagery with high spatial resolution. Class spatial neighborhood relationship is used to correct the misclassified ...

114

Land development, land use, and urban sprawl in Puerto Rico integrating remote sensing and population census data  

Microsoft Academic Search

The island of Puerto Rico has both a high population density and a long history of ineffective land use planning. This study integrates geospatial technology and population census data to understand how people use and develop the lands. We define three new regions for Puerto Rico: Urban (16%), Densely Populated Rural (36%), and Sparsely Populated Rural (48%). Eleven percent of

Sebastián Martinuzzi; William A. Gould; Olga M. Ramos González

2007-01-01

115

A Relational Indicatorset Model for urban land-use planning and management: Methodological approach and application in two case studies  

Microsoft Academic Search

Urban land-use planning and management are in constant mutation throughout the world. With sustainability as the goal, the use of indicators for land auditing and monitoring is becoming more and more in demand.Classical approaches elaborate core sets of indicators by picking the most relevant elements in exhaustive lists. More recently, a few structured research approaches consider the set of indicators

Alexandre Repetti; Gilles Desthieux

2006-01-01

116

Quantifying outdoor water consumption of urban land use/land cover: sensitivity to drought.  

PubMed

Outdoor water use is a key component in arid city water systems for achieving sustainable water use and ensuring water security. Using evapotranspiration (ET) calculations as a proxy for outdoor water consumption, the objectives of this research are to quantify outdoor water consumption of different land use and land cover types, and compare the spatio-temporal variation in water consumption between drought and wet years. An energy balance model was applied to Landsat 5 TM time series images to estimate daily and seasonal ET for the Central Arizona Phoenix Long-Term Ecological Research region (CAP-LTER). Modeled ET estimations were correlated with water use data in 49 parks within CAP-LTER and showed good agreement (r² = 0.77), indicating model effectiveness to capture the variations across park water consumption. Seasonally, active agriculture shows high ET (>500 mm) for both wet and dry conditions, while the desert and urban land cover types experienced lower ET during drought (<300 mm). Within urban locales of CAP-LTER, xeric neighborhoods show significant differences from year to year, while mesic neighborhoods retain their ET values (400-500 mm) during drought, implying considerable use of irrigation to sustain their greenness. Considering the potentially limiting water availability of this region in the future due to large population increases and the threat of a warming and drying climate, maintaining large water-consuming, irrigated landscapes challenges sustainable practices of water conservation and the need to provide amenities of this desert area for enhancing quality of life. PMID:24499870

Kaplan, Shai; Myint, Soe W; Fan, Chao; Brazel, Anthony J

2014-04-01

117

Effects of land use on the spatial distribution of trace metals and volatile organic compounds in urban groundwater, Seoul, Korea  

NASA Astrophysics Data System (ADS)

To investigate the urban groundwater contamination by eight trace metals and 69 volatile organic compounds (VOCs) in relation to land use in Seoul, a total of 57 groundwater samples collected from wells were examined using a non-parametric statistical analysis. Land use was classified into five categories: less-developed, residential, agricultural, traffic, and industrial. A comparison of analyzed data with US EPA and Korean standards for drinking water showed that some metals and VOCs exceeded the standards in a few localities, such as Fe ( N=5), Mn ( N=6), Cu ( N=1), TCE ( N=6), PCE ( N=8), 1,2-DCA ( N=1), and 1,2-dichloropropane ( N=1). Among the 69 investigated VOCs, 19 compounds such as some gasoline-related compounds (e.g., toluene) and chlorinated compounds (e.g., chloroform, PCE, TCE) were detected in groundwater. Non-parametric statistical analysis showed that the concentrations of most trace metals (Fe, Mn, As, Cr, Pb, Cd) and some VOCs (especially, TCE, PCE, chloroform; toluene, carbon tetrachloride, bromodichloromethane, CFC113) are significantly higher in the industrial, residential, and traffic areas ( P<0.05), indicating that anthropogenic contamination of urban groundwater by those chemicals is growing. Those chemicals can be used as effective indicators of anthropogenic contamination of groundwater in urban areas and therefore a special attention is warranted for a safe water supply in those areas. The results of this study suggest that urban groundwater quality in urban areas is closely related with land use.

Park, Seong-Sook; Kim, Soon-Oh; Yun, Seong-Taek; Chae, Gi-Tak; Yu, Soon-Young; Kim, Seungki; Kim, Young

2005-10-01

118

Different Land Use Intensities in Grassland Ecosystems Drive Ecology of Microbial Communities Involved in Nitrogen Turnover in Soil  

PubMed Central

Understanding factors driving the ecology of N cycling microbial communities is of central importance for sustainable land use. In this study we report changes of abundance of denitrifiers, nitrifiers and nitrogen-fixing microorganisms (based on qPCR data for selected functional genes) in response to different land use intensity levels and the consequences for potential turnover rates. We investigated selected grassland sites being comparable with respect to soil type and climatic conditions, which have been continuously treated for many years as intensely used meadows (IM), intensely used mown pastures (IP) and extensively used pastures (EP), respectively. The obtained data were linked to above ground biodiversity pattern as well as water extractable fractions of nitrogen and carbon in soil. Shifts in land use intensity changed plant community composition from systems dominated by s-strategists in extensive managed grasslands to c-strategist dominated communities in intensive managed grasslands. Along the different types of land use intensity, the availability of inorganic nitrogen regulated the abundance of bacterial and archaeal ammonia oxidizers. In contrast, the amount of dissolved organic nitrogen determined the abundance of denitrifiers (nirS and nirK). The high abundance of nifH carrying bacteria at intensive managed sites gave evidence that the amounts of substrates as energy source outcompete the high availability of inorganic nitrogen in these sites. Overall, we revealed that abundance and function of microorganisms involved in key processes of inorganic N cycling (nitrification, denitrification and N fixation) might be independently regulated by different abiotic and biotic factors in response to land use intensity. PMID:24039974

Meyer, Annabel; Focks, Andreas; Radl, Viviane; Keil, Daniel; Welzl, Gerhard; Schöning, Ingo; Boch, Steffen; Marhan, Sven; Kandeler, Ellen; Schloter, Michael

2013-01-01

119

Per-field urban land use classification based on tax parcel boundaries S. WU*, J. SILVA N-CA RDENAS and L. WANG  

E-print Network

, such as single family, multi-family, industrial and commercial. In per-field classification, field boundariesPer-field urban land use classification based on tax parcel boundaries S. WU*, J. SILVA´ N-field approach for classifying detailed urban land use, such as single-family, multi-family, industrial

Wang, Le

120

Land Use and Land Cover Change, Urban Heat Island Phenomenon, and Health Implications: A Remote Sensing Approach  

NASA Technical Reports Server (NTRS)

Land use and land cover maps of Atlanta Metropolitan Area in Georgia were produced from Landsat MSS and TM images for 1973,1979,1983,1987,1992, and 1997, spanning a period of 25 years. Dramatic changes in land use and land cover have occurred with loss of forest and cropland to urban use. In particular, low-density urban use, which includes largely residential use, has increased by over 119% between 1973 and 1997. These land use and land cover changes have drastically altered the land surface characteristics. An analysis of Landsat images revealed an increase in surface temperature and a decline in NDVI from 1973 to 1997. These changes have forced the development of a significant urban heat island effect and an increase in ground level ozone production to such an extent, that Atlanta has violated EPA's ozone level standard in recent years. The urban heat island initiated precipitation events that were identified between 1996 and 2000 tended to occur near high-density urban areas but outside the I-285 loop that traverses around the Central Business District, i.e. not in the inner city area, but some in close proximity to the highways. The health implications were investigated by comparing the spatial patterns of volatile organic compounds (VOC) and nitrogen oxides (NOx) emissions, the two ingredients that form ozone by reacting with sunlight, with those of rates of cardiovascular and chronic lower respiratory diseases. A clear core-periphery pattern was revealed for both VOC and NOx emissions, but the spatial pattern was more random in the cases of rates of cardiovascular and chronic lower respiratory diseases. Clearly, factors other than ozone pollution were involved in explaining the rates of these diseases. Further research is therefore needed to understand the health geography and its relationship to land use and land cover change as well as urban heat island effect. This paper illustrates the usefulness of a remote sensing approach for this purpose.

Lo, C. P.; Quattrochi, Dale A.

2003-01-01

121

Associations between land use and Perkinsus marinus infection of eastern oysters in a high salinity, partially urbanized estuary.  

PubMed

Infection levels of eastern oysters by the unicellular pathogen Perkinsus marinus have been associated with anthropogenic influences in laboratory studies. However, these relationships have been difficult to investigate in the field because anthropogenic inputs are often associated with natural influences such as freshwater inflow, which can also affect infection levels. We addressed P. marinus-land use associations using field-collected data from Murrells Inlet, South Carolina, USA, a developed, coastal estuary with relatively minor freshwater inputs. Ten oysters from each of 30 reefs were sampled quarterly in each of 2 years. Distances to nearest urbanized land class and to nearest stormwater outfall were measured via both tidal creeks and an elaboration of Euclidean distance. As the forms of any associations between oyster infection and distance to urbanization were unknown a priori, we used data from the first and second years of the study as exploratory and confirmatory datasets, respectively. With one exception, quarterly land use associations identified using the exploratory dataset were not confirmed using the confirmatory dataset. The exception was an association between the prevalence of moderate to high infection levels in winter and decreasing distance to nearest urban land use. Given that the study design appeared adequate to detect effects inferred from the exploratory dataset, these results suggest that effects of land use gradients were largely insubstantial or were ephemeral with duration less than 3 months. PMID:19015979

Gray, Brian R; Bushek, David; Wanzer Drane, J; Porter, Dwayne

2009-02-01

122

Associations between land use and Perkinsus marinus infection of eastern oysters in a high salinity, partially urbanized estuary  

USGS Publications Warehouse

Infection levels of eastern oysters by the unicellular pathogen Perkinsus marinus have been associated with anthropogenic influences in laboratory studies. However, these relationships have been difficult to investigate in the field because anthropogenic inputs are often associated with natural influences such as freshwater inflow, which can also affect infection levels. We addressed P. marinus-land use associations using field-collected data from Murrells Inlet, South Carolina, USA, a developed, coastal estuary with relatively minor freshwater inputs. Ten oysters from each of 30 reefs were sampled quarterly in each of 2 years. Distances to nearest urbanized land class and to nearest stormwater outfall were measured via both tidal creeks and an elaboration of Euclidean distance. As the forms of any associations between oyster infection and distance to urbanization were unknown a priori, we used data from the first and second years of the study as exploratory and confirmatory datasets, respectively. With one exception, quarterly land use associations identified using the exploratory dataset were not confirmed using the confirmatory dataset. The exception was an association between the prevalence of moderate to high infection levels in winter and decreasing distance to nearest urban land use. Given that the study design appeared adequate to detect effects inferred from the exploratory dataset, these results suggest that effects of land use gradients were largely insubstantial or were ephemeral with duration less than 3 months.

Gray, Brian R.; Bushek, David; Drane, J. Wanzer; Porter, Dwayne

2009-01-01

123

Virtual water flows related to land use in an intensive agriculture in the Fergana Valley, Uzbekistan  

NASA Astrophysics Data System (ADS)

Due to low annual precipitation, agricultural production in Uzbekistan is depending on irrigation from the Syrdarya and Amudarya rivers to a great deal. One of the most important cash crops of the country is cotton. Current irrigation management leads to elevated groundwater levels, salinization of soils and to a degradation of soil and water resources. Through export of cotton and other crops, the problems related to water consumption and water management are transported beyond the producing country. The amount of water transported through production and export is referred to as virtual water. To distinguish between productive and unproductive partitioning of water flows, the terms green and blue water have been introduced. Information on virtual water flows due to crop production usually only exist on country level. To reduce uncertainties related to generalization, the effect of land management and environmental factors on the partitioning of water flows needs to be studied on smaller scales. The presented study analyzes water fluxes in an intensively used agricultural area in the Fergana Valley, Uzbekistan. The study aims to a) quantify crop specific water consumption in agricultural production under current management and b) analyze water use efficiency as subject to land use and irrigation management. Based on crop production, irrigation management and environmental conditions in the study area, virtual water flows will be calculated on the level of agricultural collectives (Water Users Associations). In a further step, the partitioning of green and blue water fluxes will be quantified. Alternative scenarios for improved water management will be analyzed in a model study.

Klipstein, A.; Schneider, K.; Breuer, L.; Frede, H. G.

2009-04-01

124

Soil erosion evaluation in a rapidly urbanizing city (Shenzhen, China) and implementation of spatial land-use optimization.  

PubMed

Soil erosion has become a pressing environmental concern worldwide. In addition to such natural factors as slope, rainfall, vegetation cover, and soil characteristics, land-use changes-a direct reflection of human activities-also exert a huge influence on soil erosion. In recent years, such dramatic changes, in conjunction with the increasing trend toward urbanization worldwide, have led to severe soil erosion. Against this backdrop, geographic information system-assisted research on the effects of land-use changes on soil erosion has become increasingly common, producing a number of meaningful results. In most of these studies, however, even when the spatial and temporal effects of land-use changes are evaluated, knowledge of how the resulting data can be used to formulate sound land-use plans is generally lacking. At the same time, land-use decisions are driven by social, environmental, and economic factors and thus cannot be made solely with the goal of controlling soil erosion. To address these issues, a genetic algorithm (GA)-based multi-objective optimization (MOO) approach has been proposed to find a balance among various land-use objectives, including soil erosion control, to achieve sound land-use plans. GA-based MOO offers decision-makers and land-use planners a set of Pareto-optimal solutions from which to choose. Shenzhen, a fast-developing Chinese city that has long suffered from severe soil erosion, is selected as a case study area to validate the efficacy of the GA-based MOO approach for controlling soil erosion. Based on the MOO results, three multiple land-use objectives are proposed for Shenzhen: (1) to minimize soil erosion, (2) to minimize the incompatibility of neighboring land-use types, and (3) to minimize the cost of changes to the status quo. In addition to these land-use objectives, several constraints are also defined: (1) the provision of sufficient built-up land to accommodate a growing population, (2) restrictions on the development of land with a steep slope, and (3) the protection of agricultural land. Three Pareto-optimal solutions are presented and analyzed for comparison. GA-based MOO is found able to solve the multi-objective land-use problem in Shenzhen by making a tradeoff among competing objectives. The outcome is alternative choices for decision-makers and planners. PMID:25315927

Zhang, Wenting; Huang, Bo

2015-03-01

125

The regional impacts of urban land use change and anthropogenic heat release on climate change over China  

NASA Astrophysics Data System (ADS)

Along with the economic development and the accelerated urbanization, urban population in China has been increasing rapidly, while anthropogenic heat release produced by the large-scale energy consumption in cities will be a vital factor to the climate change. The facts are found in the results of two years simulations of WRF coupled with UCM without nested domain in former paper including that after considering the combined function of the urban land use change and the anthropogenic heat release, the surface temperature increased in most areas of China, especially in Yangtze River delta; The precipitation increased in some areas especially in the Beijing-Tianjin-Hebei area, while which decreased in the other areas, the notable place was the Yangtze River delta; The latent heat flux has opposite changes while there was an increased sensible heat flux. In this paper, NCAR Advanced Research WRF (ARW) model coupled with Urban Canopy Model (UCM) is used as a nested regional climate model to simulate the regional impacts of urban land use change and the anthropogenic heat release on climate change, and three types of experiments with the land use classifications of USGS-24 without urban type and USGS-33 with three urban are adopted from December 2006 to December 2008, the horizontal resolution in the outer domain is 30km with 179×161 grid points, and The 3:1 grid ratio between the outer and nest domains is typical for WRF. So the horizontal resolution of innermost nest domain is 3.3km with 151×157 grid points over Beijing-Tianjin-Hebei area and the other domain is over the Yangtze River delta with 145×151 grid points. The summer surface temperature increased in all of China, but the added magnitude is less than the results without nested domain. That maybe the nesting have an unknown impact on the simulations. The other results are coming up in the few days.

Yongli, W.; Jinming, F.

2011-12-01

126

How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes  

Microsoft Academic Search

Summary 1. Agricultural intensification poses a serious threat to biodiversity as a consequence of increased land-use intensity, decreased landscape heterogeneity and reduced habitat diversity. Although there is interest in the preservation of total species richness of an agricultural landscape ( ? diversity), the effects of intensification have been assessed primarily by species richness at a local scale ( ? diversity).

FREDERIK HENDRICKX; JEAN-PIERRE MAELFAIT; LTER VAN WINGERDEN; OLIVER SCHWEIGER; MARJAN SPEELMANS; STÉPHANIE AVIRON; ISABEL AUGENSTEIN; REGULA BILLETER; DEBRA BAILEY; ROMAN BUKACEK; FRANÇOISE BUREL; TIM DIEKÖTTER; JOLANDA DIRKSEN; FELIX HERZOG; JAAN LIIRA; MARTINA ROUBALOVA; VIKI VANDOMME; ROB BUGTER

2007-01-01

127

Developing Sustainable Urban Land Use - Transport Strategies: A Possible Role for Benchmarking  

Microsoft Academic Search

This paper outlines briefly a major European research programme on Land Use and Transport Research which aims to help European cities develop sustainable land use - transport strategies. It describes in more detail the work of one project, PROSPECTS, which is developing guidelines to assist cities, and sets out the structure of the Decision- makers' Guidebook. It then uses this

Tony May

128

Spatial distribution of ultrafine particles in urban settings: A land use regression model  

NASA Astrophysics Data System (ADS)

BackgroundThe toxic effects of ultrafine particles (UFP) are a public health concern. However, epidemiological studies on the long term effects of UFP are limited due to lacking exposure models. Given the high spatial variation of UFP, the assignment of exposure levels in epidemiological studies requires a fine spatial scale. The aim of this study was to assess the performance of a short-term measurement protocol used at a large number of locations to derive a land use regression (LUR) model of the spatial variation of UFP in Girona, Spain. MethodsWe measured UFP for 15 min on the sidewalk of 644 participants' homes in 12 towns of Girona province (Spain). The measurements were done during non-rush traffic hours 9:15-12:45 and 15:15-16:45 during 32 days between June 15 and July 31, 2009. In parallel, we counted the number of vehicles driving in both directions. Measurements were repeated on a different day for a subset of 25 sites in Girona city. Potential predictor variables such as building density, distance to bus lines and land cover were derived using geographic information systems. We adjusted for temporal variation using daily mean NOx concentrations at a central monitor. Land use regression models for the entire area (Core model) and for individual towns were derived using a supervised forward selection algorithm. ResultsThe best predictors of UFP were traffic intensity, distance to nearest major crossroad, area of high density residential land and household density. The LUR Core model explained 36% of UFP total variation. Adding sampling date and hour of the day to the Core model increased the R2 to 51% without changing the regression slopes. Local models included predictor variables similar to those in the Core model, but performed better with an R2 of 50% in Girona city. Independent LUR models for the first and second measurements at the subset of sites with repetitions had R2's of about 47%. When the mean of the two measurements was used R2 improved to 72%. ConclusionsLUR models for UFP were developed, based on a highly cost-effective short-term monitoring campaign at a large number of sites, with fair performance. Complementing the approach with further strategies to address sources of temporal variation of UFP is likely to result in improved models as indicated by the good performance of the model based on the subset of sites with one repeated measurement. Our approach is promising for UFP and possibly for other PM components requiring active sampling.

Rivera, Marcela; Basagaña, Xavier; Aguilera, Inmaculada; Agis, David; Bouso, Laura; Foraster, Maria; Medina-Ramón, Mercedes; Pey, Jorge; Künzli, Nino; Hoek, Gerard

2012-07-01

129

Urban land-use effects on groundwater phosphate distribution in a shallow aquifer, Nanfei River basin, China  

NASA Astrophysics Data System (ADS)

Groundwater, surface water, soil and river sediment samples, and information on land use in the Nanfei River basin (NRB) of China have been analyzed to study the geochemistry, distribution, and mobilization of phosphorus. The distribution of phosphate (PO{4/3-}) and the relationships between PO{4/3-} and several constituents in groundwater were studied. Partial correlation analysis relating PO{4/3-} to types of land use was conducted using the data analyzing tool SPSS 15.0. The processes controlling the transport of PO{4/3-} are discussed. The conclusions from this study are: (1) urban land use has obvious impact on PO{4/3-} in groundwater, the average concentration of PO{4/3-} being 4.37 mg/L, greater than that resulting from farmland and mixed land use, which have average PO{4/3-} concentrations of 0.10 and 0.18 mg/L, respectively; (2) the partial correlation between PO{4/3-} and types of land use is significant with a coefficient of 0.760; (3) the PO{4/3-} concentrations in surface water are generally higher than those in groundwater, and the total phosphorus (TP) concentrations in river sediments are generally higher than those in soil samples; (4) groundwater is a carrier of PO{4/3-} and is likely responsible for the redistribution of PO{4/3-} in different regions of NRB.

Qian, Jiazhong; Wang, Lulu; Zhan, Hongbin; Chen, Zhou

2011-11-01

130

VARIATIONS OF MICROORGANISM CONCENTRATIONS IN URBAN STORMWATER RUNOFF WITH LAND USE AND SEASONS  

EPA Science Inventory

Stormwater runoff samples were collected from outfalls draining small municipal separate storm sewer systems. The samples were collected from three different land use areas based on local designation (high-density residential, low-density residential, and landscaped commercial)....

131

Simulating effects of land use policies on extent of the wildland urban interface and wildfire risk in Flathead County, Montana.  

PubMed

This study used a wildfire loss simulation model to evaluate how different land use policies are likely to influence wildfire risk in the wildland urban interface (WUI) for Flathead County, Montana. The model accounts for the complex socio-ecological interactions among climate change, economic growth, land use change and policy, homeowner mitigations, and forest treatments in Flathead County's WUI over the five 10-year subperiods comprising the future evaluation period (i.e., 2010-2059). Wildfire risk, defined as expected residential losses from wildfire [E(RLW)], depends on the number of residential properties on parcels, the probability that parcels burn, the probability of wildfire losses to residential structures on properties given the parcels on which those properties are located burn, the average percentage of wildfire-related losses in aesthetic values of residential properties, and the total value (structures plus land) of residential properties. E(RLW) for the five subperiods is simulated for 2010 (referred to as the current), moderately restrictive, and highly restrictive land use policy scenarios, a moderate economic growth scenario and the A2 greenhouse gas emissions scenario. Results demonstrate that increasingly restrictive land use policy for Flathead County significantly reduces the amount and footprint of future residential development in the WUI. In addition, shifting from the current to a moderately restrictive land use policy for Flathead County significantly reduces wildfire risk for the WUI, but shifting from the current to a highly restrictive land use policy does not significantly reduce wildfire risk in the WUI. Both the methods and results of the study can help land and wildfire managers to better manage future wildfire risk and identify residential areas having potentially high wildfire risk. PMID:24056233

Paveglio, Travis B; Prato, Tony; Hardy, Michael

2013-11-30

132

Assessment of the influence of land use data on the water balance components of a peri-urban catchment using a distributed modelling approach  

NASA Astrophysics Data System (ADS)

We compared long term modelling outputs for 5 land use maps on a peri-urban catchment.Total discharge is not very sensitive to the map used for large or rural zones.Flow components (surface runoff, interflow, baseflow) are the most sensitive.Precision of land use information is important for small urbanised sub-catchments.

Branger, F.; Kermadi, S.; Jacqueminet, C.; Michel, K.; Labbas, M.; Krause, P.; Kralisch, S.; Braud, I.

2013-11-01

133

Spatial analysis and land use regression of VOCs and NO(2) from school-based urban air monitoring in Detroit/Dearborn, USA.  

PubMed

Passive ambient air sampling for nitrogen dioxide (NO(2)) and volatile organic compounds (VOCs) was conducted at 25 school and two compliance sites in Detroit and Dearborn, Michigan, USA during the summer of 2005. Geographic Information System (GIS) data were calculated at each of 116 schools. The 25 selected schools were monitored to assess and model intra-urban gradients of air pollutants to evaluate impact of traffic and urban emissions on pollutant levels. Schools were chosen to be statistically representative of urban land use variables such as distance to major roadways, traffic intensity around the schools, distance to nearest point sources, population density, and distance to nearest border crossing. Two approaches were used to investigate spatial variability. First, Kruskal-Wallis analyses and pairwise comparisons on data from the schools examined coarse spatial differences based on city section and distance from heavily trafficked roads. Secondly, spatial variation on a finer scale and as a response to multiple factors was evaluated through land use regression (LUR) models via multiple linear regression. For weeklong exposures, VOCs did not exhibit spatial variability by city section or distance from major roads; NO(2) was significantly elevated in a section dominated by traffic and industrial influence versus a residential section. Somewhat in contrast to coarse spatial analyses, LUR results revealed spatial gradients in NO(2) and selected VOCs across the area. The process used to select spatially representative sites for air sampling and the results of coarse and fine spatial variability of air pollutants provide insights that may guide future air quality studies in assessing intra-urban gradients. PMID:19467697

Mukerjee, Shaibal; Smith, Luther A; Johnson, Mary M; Neas, Lucas M; Stallings, Casson A

2009-08-01

134

A technical review of urban land use - transportation models as tools for evaluating vehicle travel reduction strategies  

SciTech Connect

The continued growth of highway traffic in the United States has led to unwanted urban traffic congestion as well as to noticeable urban air quality problems. These problems include emissions covered by the 1990 Clean Air Act Amendments (CAAA) and 1991 Intermodal Surface Transportation Efficiency Act (ISTEA), as well as carbon dioxide and related {open_quotes}greenhouse gas{close_quotes} emissions. Urban travel also creates a major demand for imported oil. Therefore, for economic as well as environmental reasons, transportation planning agencies at both the state and metropolitan area level are focussing a good deal of attention on urban travel reduction policies. Much discussed policy instruments include those that encourage fewer trip starts, shorter trip distances, shifts to higher-occupancy vehicles or to nonvehicular modes, and shifts in the timing of trips from the more to the less congested periods of the day or week. Some analysts have concluded that in order to bring about sustainable reductions in urban traffic volumes, significant changes will be necessary in the way our households and businesses engage in daily travel. Such changes are likely to involve changes in the ways we organize and use traffic-generating and-attracting land within our urban areas. The purpose of this review is to evaluate the ability of current analytic methods and models to support both the evaluation and possibly the design of such vehicle travel reduction strategies, including those strategies involving the reorganization and use of urban land. The review is organized into three sections. Section 1 describes the nature of the problem we are trying to model, Section 2 reviews the state of the art in operational urban land use-transportation simulation models, and Section 3 provides a critical assessment of such models as useful urban transportation planning tools. A number of areas are identified where further model development or testing is required.

Southworth, F.

1995-07-01

135

Integrating Geospatial Technologies to Examine Urban Land Use Change: A Design Partnership  

ERIC Educational Resources Information Center

This article describes a design partnership that investigated how to integrate Google Earth, remotely sensed satellite and aerial imagery, with other instructional resources to investigate ground cover and land use in diverse middle school classrooms. Data analysis from the implementation study revealed that students acquired skills for…

Bodzin, Alec M.; Cirucci, Lori

2009-01-01

136

The impacts of urbanization on air quality over the Pearl River Delta in winter: roles of urban land use and emission distribution  

NASA Astrophysics Data System (ADS)

In this study, ideal but realistic numerical experiments are performed to explore the relative effects of changes in land use and emission distribution on air quality in the Pearl River Delta (PRD) region in winter. The experiments are accomplished using the Lagrangian particle transport and dispersion model FLEXPART coupled with the Weather Research and Forecasting model under different scenarios. Experiment results show that the maximum changes in daily mean air pollution concentration (as represented by SO2 concentration) caused by land use change alone reaches up to 2 × 10-6 g m-3, whereas changes in concentrations due to the anthropogenic emission distribution are characterized by a maximum value of 6 × 10-6 g m-3. Such results reflect that, although the impacts of land use change on air quality are non-negligible, the emission distribution exerts a more significant influence on air quality than land use change. This provides clear implications for policy makers to control urban air pollution over the PRD region, especially for the urban planning in spatial arrangements for reasonable emissions.

Chen, Bin; Yang, Shuai; Xu, Xiang-De; Zhang, Wei

2014-07-01

137

Assessment of soil sealing management responses, strategies, and targets toward ecologically sustainable urban land use management.  

PubMed

Soil sealing has negative impacts on ecosystem services since urban green and soil get lost. Although there is political commitment to stop further sealing, no reversal of this trend can be observed in Europe. This paper raises the questions (1) which strategies can be regarded as being efficient toward ecologically sustainable management of urban soil sealing and (2) who has competences and should take responsibility to steer soil sealing? The analyses are conducted in Germany. The assessment of strategies is carried out using indicators as part of a content analysis. Legal-planning, informal-planning, economic-fiscal, co-operative, and informational strategies are analyzed. Results show that there is a sufficient basis of strategies to secure urban ecosystem services by protecting urban green and reducing urban gray where microclimate regulation is a main target. However, soil sealing management lacks a spatial strategically overview as well as the consideration of services provided by fertile soils. PMID:24740623

Artmann, Martina

2014-05-01

138

Detecting agricultural to urban land use change from multi-temporal MSS digital data. [Salt Lake County, Utah  

NASA Technical Reports Server (NTRS)

Conversion of agricultural land to a variety of urban uses is a major problem along the Wasatch Front, Utah. Although LANDSAT MSS data is a relatively coarse tool for discriminating categories of change in urban-size plots, its availability prompts a thorough test of its power to detect change. The procedures being applied to a test area in Salt Lake County, Utah, where the land conversion problem is acute are presented. The identity of land uses before and after conversion was determined and digital procedures for doing so were compared. Several algorithms were compared, utilizing both raw data and preprocessed data. Verification of results involved high quality color infrared photography and field observation. Two data sets were digitally registered, specific change categories internally identified in the software, results tabulated by computer, and change maps printed at 1:24,000 scale.

Ridd, M. K.; Merola, J. A.; Jaynes, R. A.

1983-01-01

139

SEDIMENT SOURCES IN AN URBANIZING, MIXED LAND-USE WATERSHED. (R825284)  

EPA Science Inventory

Abstract The Issaquah Creek watershed is a rapidly urbanizing watershed of 144 km2 in western Washington, where sediment aggradation of the main channel and delivery of fine sediment into a large downstream lake have raised increasingly frequent concern...

140

Effects of Land-Use Intensity in Tropical Agroforestry Systems on Coffee Flower-Visiting and Trap-Nesting Bees and Wasps  

Microsoft Academic Search

Tropical landscapes are dominated by agroecosystems, and most species that survive in forest rem- nants interact with these agroecosystems. The potential value of agroecosystems for aiding species survival is often ignored. Essential ecosystem services may suffer when functional groups such as pollinators and preda- tors are affected by land use. We used agroforestry systems differing in land-use intensity to examine

Alexandra-Maria Klein; Ingolf Steffan-Dewenter; Damayanti Buchori; Teja Tscharntke

2002-01-01

141

The Implementation of a Geospatial Information Technology (GIT)-Supported Land Use Change Curriculum with Urban Middle School Learners to Promote Spatial Thinking  

ERIC Educational Resources Information Center

This study investigated whether a geospatial information technology (GIT)-supported science curriculum helped students in an urban middle school understand land use change (LUC) concepts and enhanced their spatial thinking. Five 8th grade earth and space science classes in an urban middle school consisting of three different ability level tracks…

Bodzin, Alec M.

2011-01-01

142

Remote sensing applications for urban planning - The LUMIS project. [Land Use Management Information System  

NASA Technical Reports Server (NTRS)

The Santa Monica mountains of Los Angeles consist primarily of complexly folded sedimentary marine strata with igneous and metamorphic rocks at the eastern end of the mountains. With the increased development of the Santa Monicas, a study was conducted to determine the critical land use data items in the mountains. Two information systems developed in parallel are described. One capitalizes on the City's present computer line printer system, and the second utilizes map overlay techniques on an interactive computer terminal. Results concerning population, housing, and land improvement illustrate the successful linking of ordinal and nominal data files in the interactive system.-

Paul, C. K.; Landini, A. J.; Diegert, C.

1975-01-01

143

Geomorphic effects of rural-to-urban land use conversion on three streams in the Central Redbed Plains of Oklahoma  

NASA Astrophysics Data System (ADS)

This research evaluates the impact of rural-to-urban land use conversion on channel morphology and riparian vegetation for three streams in the Central Redbed Plains geomorphic province (central Great Plains ecoregion) of Oklahoma. The Deep Fork Creek watershed is largely urbanized; the Skeleton Creek watershed is largely rural; and the Stillwater Creek watershed is experiencing a rapid transition from rural to urban land cover. Each channel was divided into reaches based on tributary junctions, sinuosity, and slope. Field surveys were conducted at transects in a total of 90 reaches, including measurements of channel units, channel cross-section at bankfull stage, and riparian vegetation. Historical aerial photographs were available for only Stillwater Creek watershed, which were used to document land cover in this watershed, especially changes in the extent of urban areas (impervious cover). The three streams have very low gradients (< 0.001), width-to-depth ratios < 10, and cohesive channel banks, but have incised into red Permian shales and sandstone. The riparian vegetation is dominated by cottonwoods, ash, and elm trees that provide a dense root mat on stream banks where the riparian vegetation is intact. Channels increased in width and depth in the downstream direction as is normally expected, but the substrate materials and channel units remained unchanged. Statistical analyses demonstrated that urbanization did not explain spatial patterns of changes in any variables. These three channels in the central Redbed Plains are responding as flumes during peak flows, funneling runoff and the wash-load sediment downstream in major runoff events without any effect on channel dimensions. Therefore, local geological conditions (similar bedrock, cohesive substrates and similar riparian vegetation) are mitigating the effects of urbanization.

Kang, Ranbir S.; Marston, Richard A.

2006-09-01

144

Spatiotemporal urban land use changes in the Changzhutan Region of Hunan Province in China  

Technology Transfer Automated Retrieval System (TEKTRAN)

The Changzhutan region in the north-central part of Hunan Province in China has experienced a rapid urbanization in the past few decades that has led to substantial changes in its environment. In 2007, the National Development and Reform Commission of China designated the metropolitan district of Ch...

145

Earthworm abundance and nitrogen mineralization rates along an urban-rural land use gradient  

Microsoft Academic Search

Preliminary observations of glaciated regions in North America suggest that forest stands associated with urban areas may support high populations of non-native species of earthworms relative to forests in rural areas. Moreover, the presence of these non-native species of worms may be moderating the effects of pollutant deposition on litter quality, or the decomposability of litter, and subsequently nutrient cycling

David A. Steinberg; Richard V. Pouyat; Robert W. Parmelee; Peter M. Groffman

1997-01-01

146

The need for a Communicative Approach to improve Environmental Policy integration in urban Land Use Planning  

Microsoft Academic Search

The debate on sustainable development emphasizes the importance of integrating environmental policy into all policy sectors. It is increasingly recognized that this integration is needed at both the national and the local levels of governance. The Environmental Policy Integration (EPI) principle agreed upon in a number of international and EU commitments is receiving the attention of more urban planning scholars.

Vanya Simeonova; Valk van der A. J. J

2009-01-01

147

Analysis of Land Use Change and Urbanization in the Kucukcekmece Water Basin (Istanbul, Turkey) with Temporal Satellite Data using Remote Sensing and GIS  

PubMed Central

Accurate and timely information about land use and land cover (LULC) and its changes in urban areas are crucial for urban land management decision-making, ecosystem monitoring and urban planning. Also, monitoring and representation of urban sprawl and its effects on the LULC patterns and hydrological processes of an urbanized watershed is an essential part of water resource planning and management. This paper presents an image analysis study using multi temporal digital satellite imagery of LULC and changes in the Kucukcekmece Watershed (Metropolitan Istanbul, Turkey) from 1992 to 2006. The Kucukcekmece Basin includes portions of the Kucukcekmece District within the municipality of Istanbul so it faces a dramatic urbanization. An urban monitoring analysis approach was first used to implement a land cover classification. A change detection method controlled with ground truth information was then used to determine changes in land cover. During the study period, the variability and magnitude of hydrological components based on land-use patterns were cumulatively influenced by urban sprawl in the watershed. The proposed approach, which uses a combination of Remote Sensing (RS) and Geographical Information System (GIS) techniques, is an effective tool that enhances land-use monitoring, planning, and management of urbanized watersheds.

Coskun, H. Gonca; Alganci, Ugur; Usta, Gokce

2008-01-01

148

Project ATLANTA (Atlanta Land use Analysis: Temperature and Air Quality): Use of Remote Sensing and Modeling to Analyze How Urban Land Use Change Affects Meteorology and Air Quality Through Time  

NASA Technical Reports Server (NTRS)

This paper presents an overview of Project ATLANTA (ATlanta Land use ANalysis: Temperature and Air-quality) which is an investigation that seeks to observe, measure, model, and analyze how the rapid growth of the Atlanta, Georgia metropolitan area since the early 1970's has impacted the region's climate and air quality. The primary objectives for this research effort are: (1) To investigate and model the relationships between land cover change in the Atlanta metropolitan, and the development of the urban heat island phenomenon through time; (2) To investigate and model the temporal relationships between Atlanta urban growth and land cover change on air quality; and (3) To model the overall effects of urban development on surface energy budget characteristics across the Atlanta urban landscape through time. Our key goal is to derive a better scientific understanding of how land cover changes associated with urbanization in the Atlanta area, principally in transforming forest lands to urban land covers through time, has, and will, effect local and regional climate, surface energy flux, and air quality characteristics. Allied with this goal is the prospect that the results from this research can be applied by urban planners, environmental managers and other decision-makers, for determining how urbanization has impacted the climate and overall environment of the Atlanta area. Multiscaled remote sensing data, particularly high resolution thermal infrared data, are integral to this study for the analysis of thermal energy fluxes across the Atlanta urban landscape.

Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.

1999-01-01

149

A Tale of Two Watersheds: Land Use, Topography, and the Potential for Urban Land use patterns are often highly correlated with geographic variables such as slope and  

E-print Network

as agricultural and forest cover) to urban. (Note: for the purposes of this project we will consider all non-agricultural about the two watersheds and then conduct a spatial analysis using GIS to determine areas where further in this watershed are Urban/Residential, Agriculture and Forest. For more information on the Big Thompson, please

150

Impact of changes in land cover and land use on thermal environment in Jingjintang urban area  

NASA Astrophysics Data System (ADS)

In order to analyze the changes of underlay features in the urbanization process and their impact on characteristics of spatial distribution of LST in Beijing-Tianjin-Tangshan (Jingjintang) metropolitan region, MODIS LST Product and SPOT VGT NDVI Product are collected and their statistical features are calculated, then LST, Land cover/use (LULC) and their relationship are studied in detail. The main conclusions drawn from this research are as following: (1) there is different LST in different land surface with different land cover type. LST in urban and built-up region is maximum, LST in water region is minimum. And there is a negative correlation between NDVI and LST. The higher NDVI value is, the lower LST value is. (2) In Jingjintang region, there is higher NDVI and lower LST in 2006 than 2002, about 38.56% and 18.10% in turn. About in the single city, there are different change values. The change value of LST presents Beijing > Tangshan > Tianjin, (3) Comparison 2006 to 2002, the surface of Jingjintang region is dominated by class with both NDVI and LST increase and the percentage is 41.79%. The percentage of the class with NDVI increase and LST decrease is about 29.23%, 29.9.% and 39.40% in Jingjintang region, Beijing and Tianjin. And that with NDVI decrease and LST increase is about 20.57%, 14.75% and 12.12% in Jingjintang region, Beijing and Tianjin. Tangshan urban region is dominated by the class with NDVI decrease and LST increase, up to 35.54%. On the other hand, the percentage of NDVI increase and LST increase is about 26.36%. The different NDVI and LST change trend shown in different regions may result in their different urbanization level.

Cao, Guang-zhen; Hou, Peng; Zheng, Zhao-jun; Mao, Xian-qiang

2009-10-01

151

Census Cities experiment in urban change detection. [mapping of land use changes in San Francisco, Washington D.C., Phoenix, Tucson, Boston, New Haven, Cedar Rapids, and Pontiac  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. Mapping of 1970 and 1972 land use from high-flight photography has been completed for all test sites: San Francisco, Washington, Phoenix, Tucson, Boston, New Haven, Cedar Rapids, and Pontiac. Area analysis of 1970 and 1972 land use has been completed for each of the mandatory urban areas. All 44 sections of the 1970 land use maps of the San Francisco test site have been officially released through USGS Open File at 1:62,500. Five thousand copies of the Washington one-sheet color 1970 land use map, census tract map, and point line identification map are being printed by USGS Publication Division. ERTS-1 imagery for each of the eight test sites is being received and analyzed. Color infrared photo enlargements at 1:100,000 of ERTS-1 MSS images of Phoenix taken on October 16, 1972 and May 2, 1973 are being analyzed to determine to what level land use and land use changes can be identified and to what extent the ERTS-1 imagery can be used in updating the 1970 aircraft photo-derived land use data base. Work is proceeding on the analysis of ERTS-1 imagery by computer manipulation of ERTS-1 MSS data in digital format. ERTS-1 CCT maps at 1:24,000 are being analyzed for two dates over Washington and Phoenix. Anniversary tape sets have been received at Purdue LARS for some additional urban test sites.

Wray, J. R. (principal investigator); Milazzo, V. A.

1974-01-01

152

Labor efficiency and intensity of land use in rice production: An example from Kalimantan  

Microsoft Academic Search

The Boserup hypothesis contends that land-intensive systems of agriculture will be adopted only when high population density precludes the use of land-extensive methods. In the Kerayan District of East Kalimantan (Indonesia) the Lun Dayeh practice permanent-field rice cultivation despite very low human densities. An examination of the relative labor efficiencies of shifting and permanent-field agriculture in the Kerayan, as well

Christine Padoch

1985-01-01

153

Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis  

PubMed Central

The benefits of organic farming to biodiversity in agricultural landscapes continue to be hotly debated, emphasizing the importance of precisely quantifying the effect of organic vs. conventional farming. We conducted an updated hierarchical meta-analysis of studies that compared biodiversity under organic and conventional farming methods, measured as species richness. We calculated effect sizes for 184 observations garnered from 94 studies, and for each study, we obtained three standardized measures reflecting land-use intensity. We investigated the stability of effect sizes through time, publication bias due to the ‘file drawer’ problem, and consider whether the current literature is representative of global organic farming patterns. On average, organic farming increased species richness by about 30%. This result has been robust over the last 30 years of published studies and shows no sign of diminishing. Organic farming had a greater effect on biodiversity as the percentage of the landscape consisting of arable fields increased, that is, it is higher in intensively farmed regions. The average effect size and the response to agricultural intensification depend on taxonomic group, functional group and crop type. There is some evidence for publication bias in the literature; however, our results are robust to its impact. Current studies are heavily biased towards northern and western Europe and North America, while other regions with large areas of organic farming remain poorly investigated. Synthesis and applications. Our analysis affirms that organic farming has large positive effects on biodiversity compared with conventional farming, but that the effect size varies with the organism group and crop studied, and is greater in landscapes with higher land-use intensity. Decisions about where to site organic farms to maximize biodiversity will, however, depend on the costs as well as the potential benefits. Current studies have been heavily biased towards agricultural systems in the developed world. We recommend that future studies pay greater attention to other regions, in particular, areas with tropical, subtropical and Mediterranean climates, in which very few studies have been conducted. PMID:25653457

Tuck, Sean L; Winqvist, Camilla; Mota, Flávia; Ahnström, Johan; Turnbull, Lindsay A; Bengtsson, Janne

2014-01-01

154

Analysis of Urban-Rural Land-Use Change during 1995-2006 and Its Policy Dimensional Driving Forces in Chongqing, China  

PubMed Central

This paper analyzes the urban-rural land-use change of Chongqing and its policy dimensional driving forces from 1995 to 2006, using high-resolution Landsat TM (Thematic Mapper) data of 1995, 2000 and 2006, and socio-economic data from both research institutes and government departments. The outcomes indicated that urban-rural land-use change in Chongqing can be characterized by two major trends: First, the non-agricultural land increased substantially from 1995 to 2006, thus causing agricultural land especially farmland to decrease continuously. Second, the aggregation index of urban settlements and rural settlements shows that local urban-rural development experienced a process of changing from aggregation (1995-2000) to decentralization (2000-2006). Chongqing is a special area getting immersed in many important policies, which include the establishment of the municipality directly under the Central Government, the building of Three Gorges Dam Project, the Western China Development Program and the Grain-for-Green Programme, and bring about tremendous influences on its land-use change. By analyzing Chongqing's land-use change and its policy driving forces, some implications for its new policy of ‘Urban-rural Integrated Reform’ are obtained. That is more attentions need to be paid to curbing excessive and idle rural housing and consolidating rural construction land, and to laying out a scientific land-use plan for its rural areas taking such rural land-use issues as farmland occupation and rural housing land management into accounts, so as to coordinate and balance the urban-rural development.

Long, Hualou; Wu, Xiuqin; Wang, Wenjie; Dong, Guihua

2008-01-01

155

Monitoring Land Use/Land Cover Changes in a River Basin due to Urbanization using Remote Sensing and GIS Approach  

NASA Astrophysics Data System (ADS)

Faster pace of urbanization, industrialization, unplanned infrastructure developments and extensive agriculture result in the rapid changes in the Land Use/Land Cover (LU/LC) of the sub-tropical river basins. Study of LU/LC transformations in a river basin is crucial for vulnerability assessment and proper management of the natural resources of a river basin. Remote sensing technology is very promising in mapping the LU/LC distribution of a large region on different spatio-temporal scales. The present study is intended to understand the LU/LC changes in the Upper Bhima river basin due to urbanization using modern geospatial techniques such as remote sensing and GIS. In this study, the Upper Bhima river basin is divided into three adjacent sub-basins: Mula-Mutha sub-basin (ubanized), Bhima sub-basin (semi-urbanized) and Ghod sub-basin (unurbanized). Time series LU/LC maps were prepared for the study area for a period of 1980, 2002 and 2009 using satellite datasets viz. Landsat MSS (October, 1980), Landsat ETM+ (October, 2002) and IRS LISS III (October 2008 and November 2009). All the satellite images were classified into five LU/LC classes viz. built-up lands, agricultural lands, waterbodies, forests and wastelands using supervised classification approach. Post classification change detection method was used to understand the LU/LC changes in the study area. Results reveal that built up lands, waterbodies and agricultural lands are increasing in all the three sub-basins of the study area at the cost of decreasing forests and wastelands. But the change is more drastic in urbanized Mula-Mutha sub-basin compared to the other two sub-basins.

Shukla, S.; Khire, M. V.; Gedam, S. S.

2014-11-01

156

Urgency for sustainable development in coastal urban areas with reference to weather pattern, land use, and water quality.  

PubMed

Water pollution is one of the most critical problems affecting mankind. Weather pattern and land use of catchment area have significant role in quality of water bodies. Due to climate change, there is frequent variation in weather pattern all over the world. There is also rapid change in land use due to increase in population and urbanization. The study was carried out to analyze the effect of change in weather pattern during the monsoon periods of 2008 and 2012 on water quality of a tropical coastal lake system. The nature and extent of variation in different water quality parameters namely electrical conductivity (EC), magnesium (Mg), sodium (Na), chloride (Cl), sulphate (SO4), turbidity, Secchi disk depth, biochemical oxygen demand (BOD), phosphate (PO4), calcium (Ca), and water temperature as well as the effect of various land use activities in the lake basin on water quality have also been studied. There is significant reduction in precipitation, EC, Mg, Na, Cl, SO4, turbidity, and Secchi disk depths whereas a significant rise in the BOD, PO4, Ca, and water temperature were observed in 2012. This significant reduction in electrical conductivity during 2012 revealed that because of less precipitation, the lake was separated from the sea by the sandbar during most of the monsoon period and thereby interrupted the natural flushing process. This caused the accumulation of organic matter including phosphate and thereby resulting reduction in clarity and chlorophyll-a (algae) in the lake. The unsustainable development activities of Thiruvanathapuram city are mainly responsible for the degradation of water bodies. The lack of maintenance and augmentation activities namely replacement of old pipes and periodical cleaning of pipe lines of the old sewer system in the city results in the bypass of sewage into water bodies. Because of the existence of the old sewerage system, no effort has been taken by the individual establishment/house of the city to provide their own treatment system for sewage and sullage and the untreated wastes are discharged into these old sewer pipes and ultimately the wastes reach the water bodies. In this context, decentralized treatment of sewage, sullage, and garbage by individual houses/establishments/hotels/hospitals is a better option for the developing countries. With the rapid developmental activities, and due to the variation of precipitation due to climate change, it is highly essential to provide proper waste treatment/augmentation facilities in urban lake system because a slight variation in the weather pattern can result in serious implications in the already polluted water bodies. PMID:24415134

Sheela, A M; Letha, J; Swarnalatha, K; Baiju, K V; Sankar, Divya

2014-05-01

157

The effect of radar azimuth angle on cultural data. [urban scene analysis and land use studies  

NASA Technical Reports Server (NTRS)

Emphasis is placed on the role that the orientation of observed features has on the grey tone of the resulting positive image. As an example it is shown that in the Los Angeles urbanized region, large areas have significantly lower grey tones than adjacent areas having similar land cover. It is determined that this effect is the result of the angle difference between the radar azimuth and the street pattern and especially the orientation of the walls of the structures imaged. Therefore, knowledge of this information is essential in order to ensure accurate interpretation of radar imagery. It is concluded that for radar systems operated from platforms which have fixed azimuth angles (e.g., satellite systems such as Seasat-A), an interpretation methodology, which considers street patterns, is considered especially critical for proper and accurate SAR imagery.

Bryan, M. L.

1979-01-01

158

Analysis of land use/land cover changes using remote sensing data and GIS at an urban area, Tirupati, India.  

PubMed

Land use/land cover (LU/LC) changes were determined in an urban area, Tirupati, from 1976 to 2003 by using Geographical Information Systems (GISs) and remote sensing technology. These studies were employed by using the Survey of India topographic map 57 O/6 and the remote sensing data of LISS III and PAN of IRS ID of 2003. The study area was classified into eight categories on the basis of field study, geographical conditions, and remote sensing data. The comparison of LU/LC in 1976 and 2003 derived from toposheet and satellite imagery interpretation indicates that there is a significant increase in built-up area, open forest, plantation, and other lands. It is also noted that substantial amount of agriculture land, water spread area, and dense forest area vanished during the period of study which may be due to rapid urbanization of the study area. No mining activities were found in the study area in 1976, but a small addition of mining land was found in 2003. PMID:23781152

Mallupattu, Praveen Kumar; Sreenivasula Reddy, Jayarama Reddy

2013-01-01

159

Dynamic modelling of future land use change under urbanization and climate change pressures: application to a case study in central Belgium  

NASA Astrophysics Data System (ADS)

Projecting the future of the evolution of socio-ecological systems to analyse their sustainability under climate or other environmental changes is not straightforward. Current projections usually use process-oriented models describing the complex interactions within the physical/biological systems (ecosystems), while the socio-economic constraints are represented with the help of scenarios. However, the actual evolution can be expected to be much more complex, because of the mutual interactions between ecological and socio-economic systems. To represent these interactions, models must integrate the complex process of human decision at individual or society levels. Moreover, models must be spatially explicit, defining elementary spatial units on which can act both the physical factors and the human decision process. These spatial units (e.g., farm fields) must be described not only in terms of energy, water, carbon and nutrient flows, but also in terms of the flow of ecosystem goods and services (EGS) they provide to the society together with the management costs required to sustain them. The provision of EGS may be altered in the future in response to changes in the climate system and the environment, but also through various human pressures on the landscape such as urbanization, as well as through the reaction of human societies to these changes in EGS provision. In the VOTES ("Valuation Of Terrestrial Ecosystem Services in a multifunctional peri-urban space") project, we attempt to model this coupled socio-ecological system by combining a dynamic vegetation model (DVM) with an agent-based model (ABM). The DVM (CARAIB; Dury et al., iForest - Biogeosciences and Forestry, 4:82-99, 2011) model describes the evolution of physical and biological processes in the ecosystems, i.e. the impact of climate change and land management on the energy, water and carbon budgets, as well as the productivity of each simulated plant species present on each land unit. The original version of the model developed for natural vegetation has been upgraded to include crop systems and pastures. The ABM (Murray-Rust, Journal of Land Use Science, 6(2-3):83-99, 2011) describes the management choices (e.g., crop rotation, intensive agriculture or organic farming, etc) for each land plot, as well as the possible change in their affectation (e.g., conversion of farm fields to residential areas in response to urbanization), under different socio-economic contexts described in the storyline of three scenarios depicting general societal orientations (business-as-usual; market oriented; sustainability oriented). As a result, the ABM produces a dynamic evolution of land use and management options to be passed on to the DVM for further analysis. The outputs from the DVM allow evaluating quantitatively the provision of EGS by each land plot. This DVM-ABM modelling tool is thus able to describe the future evolution of land use and land cover, as well as of EGS production, in the context of socio-economic scenarios. The model is applied to a case study area covering four municipalities located in central Belgium close to Brussels and Leuven. The area is mostly composed of agricultural fields (crops and meadows), residential areas and a large protected forest (Meerdaalbos) and is subject to intense urbanization pressure due to the proximity to Brussels.

Jacquemin, I.; Fontaine, C. M.; Dendoncker, N.; François, L.; De Vreese, R.; Marek, A.; Mortelmans, D.; Van Herzele, A.; Devillet, G.

2012-04-01

160

The Planned Unit Development Approach in the New Land Use Plan of Manila: Facilitating Community-Based Governance in Sustainable Urban Regeneration  

Microsoft Academic Search

In the continuing effort to develop knowledge for empowering communities, particularly regarding the sustainable urban regeneration\\u000a of the inner core of Manila, this paper discusses a community-based theoretical framework and its correlation to the urban\\u000a development strategy of the recently approved Comprehensive Development Plan of Manila and the resulting Land Use Plan and\\u000a Zoning Ordinance. This paper highlights the Planned

Joel R. Oaña

161

Estimating windblown PM-10 emissions from vacant urban land using GIS.  

PubMed

This paper presents a Geographic Information Systems (GIS)-based methodology to estimate annual area-wide airborne particulate matter with an aerodynamic diameter of less than 10 microm (PM-10) emissions, and identify zones with high emissions in order to efficiently implement mitigation strategies. Application of the methodology is demonstrated using the land disposal boundary within Clark County, NV as the study area, which is currently classified as a non-attainment area by United States Environmental Protection Agency (US EPA). The estimated PM-10 emissions depend on the extent of disturbed vacant land area, undisturbed vacant land area, emission factors by soil group, and wind speeds. Portable wind tunnel field test data were used to estimate emission factors at 78 sites in the study area. Portable wind tunnel results were categorized by the wind speed range and the corresponding site soil group in order to estimate emission factors by soil group and the wind speed range. Wind speed data were obtained from the Clark County Health District's air quality monitoring stations. The proximal area over which the wind speeds are same is obtained by constructing "Thiessen" polygons around each wind speed monitoring station. PM-10 emissions were estimated as a function of the extent of disturbed vacant lands, the measured or estimated erodibility of the soil surfaces, and the intensity, duration and frequency of erosive wind events. PMID:16423454

Pulugurtha, Srinivas S; James, David

2006-04-30

162

Effects of urban land-use change on streamflow and water quality in Oakland County, Michigan, 1970-2003, as inferred from urban gradient and temporal analysis  

USGS Publications Warehouse

Various adverse hydrologic effects on streams have been attributed to urban development and expanded impervious surface area, including increased high flows, decreased low flows, increased variability (commonly referred to as flashiness), nutrient enrichment, and increased dissolved solids concentrations. These effects are often observed through the use of urban-gradient studies, which compare hydrologic characteristics among watersheds with different levels of development. This technique is frequently applied when comparable prior data are not available for the watersheds of interest. During 1966 - 1970, and again during 2001 - 2003, the U.S. Geological Survey collected a series of low-flow water-chemistry samples. Streamflow-gaging stations were operated throughout the period from 1966-2003 as part of ongoing monitoring operations. This study compares these two water-quality data sets; tests the streamflow data for trends in high flows, low flows, and flashiness; and correlates 2000 land use with water-quality and streamflow data collected during the 2001 - 2003 study. Despite substantial change in land use during 1980 - 2000, with urban land covers replacing open space, forest, and agriculture, little evidence is found in the time-series data of alteration of the daily streamflow characteristics or nutrient enrichment in the study watersheds. However, a distinct shift is observable in chloride concentrations. Strong positive correlations exist across the urban gradient between development and increased peak flows as well as between development and increased flashiness. Correlations of water-quality data to development metrics show strong positive correlations with increased dissolved solids and salt content, as well as increased concentrations of fecal indicator bacteria (Eschericia coli). This apparent contradiction may be caused by the differences in the changes measured in each analysis. The change-through-time approach describes change from a fixed starting point of approximately 1970; the gradient approach describes the cumulative effect of all change up to approximately 2000. These findings indicate that although urbanization in Oakland County results in most of the effects observed in the literature, as evidenced in the gradient approach, relatively few of the anticipated effects have been observed during the past three decades. This relative stability despite rapid land-cover change may be related to efforts to mitigate the effects of development and a general decrease in the density of new residential development. It may also be related to external factors such as climate variability and reduced atmospheric deposition of specific chemicals.

Aichele, Stephen S.

2005-01-01

163

[Research on the influence of urban land use structure and pattern on nitrogen, phosphorus of wetland water environment in Xianlin New Town of Nanjing].  

PubMed

The 10 typical wetlands in Xianlin New Townof Nanjing were classified into three categories, including rural wetland, suburban wetland, and urban wetland according to the influence of urbanization as well as the characteristics of wetland and LUCC of catchment regions. RDA was used to analyse the relationships between nitrogen and phosphorus in urban wetland and various types and patterns of land use. It was found that the water quality of the urban wetlands presented to be worse than that from rural wetlands, followed by sub urban wetlands. Secondly, according to all investigated wetlands, TP and TN turned out to be higher during the wet seasons than dry seasons. In addition, significant differences of TP were observed between wet and dry seasons for rural and suburban wetlands, and it was not so obvious for urban wetlands. However, the differences of TN was opposite to that of TP. Thirdly, factors affecting the water quality of wetlands were comprised of types and patterns of land use, and thus significant positive relationships were found between the concentrations of TN and TP and the impervious land, while negative correlations for meadows, woodlands and wetlands. What's more, higher remarkable differences were found in wetlands than those from meadows and woodlands. Regarding to patterns of land use, TP, TN concentrations were negatively correlated with the average patch shape in the dry and wet seasons, whereas positively relationships were observed for patch density and diversity index; furthermore, with refer to the impact of adjacent landscape, significant relationships were found between the content of TN and the patterns of land use and thus, a negative correlation in the wet season and a positive correlation in the dry season were observed, respectively. PMID:25338361

Cai, Chun-Xiao; Liu, Hong-Yu; Li, Yu-Feng; Wang, Cong; Hou, Ming-Hang

2014-08-01

164

Remote Sensing of Urban Land Cover/Land Use Change, Surface Thermal Responses, and Potential Meteorological and Climate Change Impacts  

NASA Technical Reports Server (NTRS)

City growth influences the development of the urban heat island (UHI), but the effect that local meteorology has on the UHI is less well known. This paper presents some preliminary findings from a study that uses multitemporal Landsat TM and ASTER data to evaluate land cover/land use change (LULCC) over the NASA Marshall Space Flight Center (MFSC) and its Huntsville, AL metropolitan area. Landsat NLCD data for 1992 and 2001 have been used to evaluate LULCC for MSFC and the surrounding urban area. Land surface temperature (LST) and emissivity derived from NLCD data have also been analyzed to assess changes in these parameters in relation to LULCC. Additionally, LULCC, LST, and emissivity have been identified from ASTER data from 2001 and 2011 to provide a comparison with the 2001 NLCD and as a measure of current conditions within the study area. As anticipated, the multi-temporal NLCD and ASTER data show that significant changes have occurred in land covers, LST, and emissivity within and around MSFC. The patterns and arrangement of these changes, however, is significant because the juxtaposition of urban land covers within and outside of MSFC provides insight on what impacts at a local to regional scale, the inter-linkage of these changes potentially have on meteorology. To further analyze these interactions between LULCC, LST, and emissivity with the lower atmosphere, a network of eleven weather stations has been established across the MSFC property. These weather stations provide data at a 10 minute interval, and these data are uplinked for use by MSFC facilities operations and the National Weather Service. The weather data are also integrated within a larger network of meteorological stations across north Alabama. Given that the MSFC weather stations will operate for an extended period of time, they can be used to evaluate how the building of new structures, and changes in roadways, and green spaces as identified in the MSFC master plan for the future, will potentially affect land cover LSTs across the Center. Moreover, the weather stations will also provide baseline data for developing a better understanding of how localized weather factors, such as extreme rainfall and heat events, affect micrometeorology. These data can also be used to model the interrelationships between LSTs and meteorology on a longer term basis to help evaluate how changes in these parameters can be quantified from satellite data collected in the future. In turn, the overall integration of multi-temporal meteorological information with LULCC, and LST data for MSFC proper and the surrounding Huntsville urbanized area can provide a perspective on how urban land surface types affect the meteorology in the boundary layer and ultimately, the UHI. Additionally, data such as this can be used as a foundation for modeling how climate change will potentially impact local and regional meteorology and conversely, how urban LULCC can or will influence changes on climate over the north Alabama area.

Quattrochi, Dale A.; Jedlovec, Gary; Meyer, Paul

2011-01-01

165

Simulation of Urban Heat Island Mitigation Strategies in Atlanta, GA Using High-Resolution Land Use/Land Cover Data Set to Enhance Meteorological Modeling  

NASA Technical Reports Server (NTRS)

The specification of land use/land cover (LULC) and associated land surface parameters in meteorological models at all scales has a major influence on modeled surface energy fluxes and boundary layer states. In urban areas, accurate representation of the land surface may be even more important than in undeveloped regions due to the large heterogeneity within the urban area. Deficiencies in the characterization of the land surface related to the spatial or temporal resolution of the data, the number of LULC classes defined, the accuracy with which they are defined, or the degree of heterogeneity of the land surface properties within each class may degrade the performance of the models. In this study, an experiment was conducted to test a new high-resolution LULC data set for meteorological simulations for the Atlanta, Georgia metropolitan area using a mesoscale meteorological model and to evaluate the effects of urban heat island (UHI) mitigation strategies on modeled meteorology for 2030. Simulation results showed that use of the new LULC data set reduced a major deficiency of the land use data used previously, specifically the poor representation of urban and suburban land use. Performance of the meteorological model improved substantially, with the overall daytime cold bias reduced by over 30%. UHI mitigation strategies were projected to offset much of a predicted urban warming between 2000 and 2030. In fact, for the urban core, the cooling due to UHI mitigation strategies was slightly greater than the warming associated with urbanization over this period. For the larger metropolitan area, cooling only partially offset the projected warming trend.

Crosson, William L.; Dembek, Scott; Estes, Maurice G., Jr.; Limaye, Ashutosh S.; Lapenta, William; Quattrochi, Dale A.; Johnson, Hoyt; Khan, Maudood

2006-01-01

166

Urban stream syndrome in a small, lightly developed watershed: a statistical analysis of water chemistry parameters, land use patterns, and natural sources.  

PubMed

The relationships among land use patterns, geology, soil, and major solute concentrations in stream water for eight tributaries of the Kayaderosseras Creek watershed in Saratoga County, NY, were investigated using Pearson correlation coefficients and multivariate regression analysis. Sub-watersheds corresponding to each sampling site were delineated, and land use patterns were determined for each of the eight sub-watersheds using GIS. Four land use categories (urban development, agriculture, forests, and wetlands) constituted more than 99 % of the land in the sub-watersheds. Eleven water chemistry parameters were highly and positively correlated with each other and urban development. Multivariate regression models indicated urban development was the most powerful predictor for the same eleven parameters (conductivity, TN, TP, NO[Formula: see text], Cl(-), HCO(-)3, SO9(2-)4, Na(+), K(+), Ca(2+), and Mg(2+)). Adjusted R(2) values, ranging from 19 to 91 %, indicated that these models explained an average of 64 % of the variance in these 11 parameters across the samples and 70 % when Mg(2+) was omitted. The more common R (2), ranging from 29 to 92 %, averaged 68 % for these 11 parameters and 72 % when Mg(2+) was omitted. Water quality improved most with forest coverage in stream watersheds. The strong associations between water quality variables and urban development indicated an urban source for these 11 water quality parameters at all eight sampling sites was likely, suggesting that urban stream syndrome can be detected even on a relatively small scale in a lightly developed area. Possible urban sources of Ca(2+) and HCO(-)3 are suggested. PMID:24554019

Halstead, Judith A; Kliman, Sabrina; Berheide, Catherine White; Chaucer, Alexander; Cock-Esteb, Alicea

2014-06-01

167

Impact of land use on urban mobility patterns, emissions and air quality in a Portuguese medium-sized city.  

PubMed

The main objective of this work was to evaluate the impact of urban development trends in mobility patterns of a medium sized Portuguese city and air quality consequences, using a sequential modeling process, comprising i) land use and transportation, TRANUS model; ii) road traffic air pollutants emissions, TREM model and; iii) air quality, TAPM model. This integrated methodology was applied to a medium sized Portuguese city. In order to evaluate the implementation of the methodology, a preliminary study was performed, which consisted on the comparison of modeled mobility patterns and CO and PM(10) concentrations with measured data used in the definition of the current scenario. The comparison between modeled and monitored mobility patterns at the morning peak hour for a weekday showed an RMSE of 31%. Regarding CO concentrations, an underestimation of the modeled results was observed. Nevertheless, the modeled PM(10) concentrations were consistent with the monitored data. Overall, the results showed a reasonable consistency of the modeled data, which allowed the use of the integrated modeling system for the study scenarios. The future scenarios consisted on the definition of different mobility patterns and vehicle technology characteristics, according to two main developing trends: (1) "car pooling" scenario, which imposes a mean occupancy rate of 3 passengers by vehicle and (2) the "Euro 6" scenario, which establishes that all vehicles accomplish at least the Euro 6 standard technology. Reductions of 54% and 83% for CO, 44% and 95% for PM(10), 44% and 87% for VOC and 44% and 79% for NO(x) emissions were observed in scenarios 1 and 2, respectively. Concerning air quality, a reduction of about 100 ?g m(-3) of CO annual average concentration was observed in both scenarios. The results of PM(10) annual concentrations showed a reduction of 1.35 ?g m(-3) and 2.7 ?g m(-3) for scenarios 1 and 2 respectively. PMID:21216441

Bandeira, Jorge M; Coelho, Margarida C; Sá, Maria Elisa; Tavares, Richard; Borrego, Carlos

2011-02-15

168

Modeling concentration patterns of agricultural and urban micropollutants in surface waters in catchment of mixed land use  

NASA Astrophysics Data System (ADS)

Organic micropollutants detected in surface waters can originate from agricultural and urban sources. Depending on the use of the compounds, the temporal loss patterns vary substantially. Therefore models that simulate water quality in watersheds of mixed land use have to account for all relevant sources. We present here simulation results of a transport model that describes the dynamic of several biocidal compounds as well as the behaviour of human pharmaceuticals. The model consists of the sub-model Rexpo simulating the transfer of the compounds from the point of application to the stream in semi-lumped manner. The river sub-model, which is programmed in the Aquasim software, describes the fate of the compounds in the stream. Both sub-models are process-based. The Rexpo sub-model was calibrated at the scale of a small catchment of 25 km2, which is inhabited by about 12'000 people. Based on the resulting model parameters the loss dynamics of two herbicides (atrazine, isoproturon) and a compound of mixed urban and agricultural use (diuron) were predicted for two nested catchment of 212 and 1696 km2, respectively. The model output was compared to observed time-series of concentrations and loads obtained for the entire year 2009. Additionally, the fate of two pharmaceuticals with constant input (carbamazepine, diclofenac) was simulated for improving the understanding of possible degradation processes. The simulated loads and concentrations of the biocidal compounds differed by a factor of 2 to 3 from the observations. In general, the seasonal patterns were well captured by the model. However, a detailed analysis of the seasonality revealed substantial input uncertainty for the application of the compounds. The model results also demonstrated that for the dynamics of rain-driven losses of biocidal compounds the semi-lumped approach of the Rexpo sub-model was sufficient. Only for simulating the photolytic degradation of diclofenac in the stream the detailed representation of the routing in the stream was essential. Overall, the study demonstrated that the simulation of micropollutants at the watershed scale can be strongly hampered by input uncertainty regarding the use of the chemicals. Under such conditions the level of process-representation in the Rexpo sub-models is superfluous. For practical applications, one should address the question how to simply the approach while still maintaining the essential parts.

Stamm, C.; Scheidegger, R.; Bader, H. P.

2012-04-01

169

A study of the utilization of ERTS-1 data from the Wabash River Basin. [crop identification, water resources, urban land use, soil mapping, and atmospheric modeling  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. The most significant results were obtained in the water resources research, urban land use mapping, and soil association mapping projects. ERTS-1 data was used to classify water bodies to determine acreages and high agreement was obtained with USGS figures. Quantitative evaluation was achieved of urban land use classifications from ERTS-1 data and an overall test accuracy of 90.3% was observed. ERTS-1 data classifications of soil test sites were compared with soil association maps scaled to match the computer produced map and good agreement was observed. In some cases the ERTS-1 results proved to be more accurate than the soil association map.

Landgrebe, D. A. (principal investigator)

1974-01-01

170

Project ATLANTA (ATlanta Land-use ANalysis: Temperature and Air quality): A Study of how the Urban Landscape Affects Meteorology and Air Quality Through Time  

NASA Technical Reports Server (NTRS)

It is our intent through this investigation to help facilitate measures that can be Project ATLANTA (ATlanta Land-use ANalysis: applied to mitigate climatological or air quality Temperature and Air-quality) is a NASA Earth degradation, or to design alternate measures to sustain Observing System (EOS) Interdisciplinary Science or improve the overall urban environment in the future. investigation that seeks to observe, measure, model, and analyze how the rapid growth of the Atlanta. The primary objectives for this research effort are: 1) To In the last half of the 20th century, Atlanta, investigate and model the relationship between Atlanta Georgia has risen as the premier commercial, urban growth, land cover change, and the development industrial, and transportation urban area of the of the urban heat island phenomenon through time at southeastern United States. The rapid growth of the nested spatial scales from local to regional; 2) To Atlanta area, particularly within the last 25 years, has investigate and model the relationship between Atlanta made Atlanta one of the fastest growing metropolitan urban growth and land cover change on air quality areas in the United States. The population of the through time at nested spatial scales from local to Atlanta metropolitan area increased 27% between 1970 regional; and 3) To model the overall effects of urban and 1980, and 33% between 1980-1990 (Research development on surface energy budget characteristics Atlanta, Inc., 1993). Concomitant with this high rate of across the Atlanta urban landscape through time at population growth, has been an explosive growth in nested spatial scales from local to regional. Our key retail, industrial, commercial, and transportation goal is to derive a better scientific understanding of how services within the Atlanta region. This has resulted in land cover changes associated with urbanization in the tremendous land cover change dynamics within the Atlanta area, principally in transforming forest lands to metropolitan region, wherein urbanization has urban land covers through time, has, and will, effect consumed vast acreas of land adjacent to the city local and regional climate, surface energy flux, and air proper and has pushed the rural/urban fringe farther quality characteristics. Allied with this goal is the and farther away from the original Atlanta urban core. prospect that the results from this research can be An enormous transition of land from forest and applied by urban planners, environmental managers agriculture to urban land uses has occurred in the and other decision-makers, for determining how Atlanta area in the last 25 years, along with subsequent urbanization has impacted the climate and overall

Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G.; Lo, C. P.; Kidder, Stanley Q.; Hafner, Jan; Taha, Haider; Bornstein, Robert D.; Gillies, Robert R.; Gallo, Kevin P.

1998-01-01

171

Land use/land cover change and urban expansion during 1983-2008 in the coastal area of Dakshina Kannada district, South India  

NASA Astrophysics Data System (ADS)

Urban settlements in developing countries are, at present, growing five times as fast as those in developed countries. This paper presents the urban expansion and land use/land cover changes in the fast urbanizing coastal area of the Dakshina Kannada district in Karnataka state, South India, during the years 1983-2008 as a case study. Six Indian Remote Sensing (IRS) satellite images were used in the present work. Supervised classification was carried out using maximum likelihood algorithm. The overall accuracy of the classification varied from 79% to 86.6%, and the kappa statistics varied from 0.761 to 0.850. The results indicate that the urban/built-up area in the study area has almost tripled during the study period. During the same time, the population has increased by 215%. The major driving forces for the urbanization were the enhanced economic activity due to the port and industrialization in the area. The urban/built-up area is projected to increase to 381 km2 and the population in the study area is expected to reach 2.68 million by the year 2028. Urban growth prediction helps urban planners and policymakers provide better infrastructure services to a huge number of new urban residents.

Bhagyanagar, Rajagopal; Kawal, Babita M.; Dwarakish, Gowdagere S.; Surathkal, Shrihari

2012-01-01

172

Application of satellite and GIS technologies for land-cover and land-use mapping at the rural-urban fringe - A case study  

Microsoft Academic Search

SPOT HRV multispectral and panchromatic data were recorded and coregistered for a portion of the rural-urban fringe of Toronto, Canada. A two-stage digital analysis algorithm incorporating a spectral-class frequency-based contextual classification of eight land-cover and land-use classes resulted in an overall Kappa coefficient of 82.2 percent for training-area data and a Kappa coefficient of 70.3 percent for test-area data. A

P. M. Treitz; P. J. Howarth; Peng Gong

1992-01-01

173

Determination of impact of urbanization on agricultural land and wetland land use in Balçovas' delta by remote sensing and GIS technique.  

PubMed

Because of their intense vegetation and the fact that they include areas of coastline, deltas situated in the vicinity of big cities are areas of greet attraction for people who wish to get away from in a crowded city. However, deltas, with their fertile soil and unique flora and fauna, need to be protected. In order for the use of such areas to be planned in a sustainable way by local authorities, there is a need for detailed data about these regions. In this study, the changes in land use of the Balçova Delta, which is to the immediate west of Turkey's third largest city Izmir, from 1957 up to the present day, were investigated. In the study, using aerial photographs taken in 1957, 1976 and 1995 and an IKONOS satellite image from the year 2005, the natural and cultural characteristics of the region and changes in the coastline were determined spatially. Through this study, which aimed to reveal the characteristics of the areas of land already lost as well as the types of land use in the Balçova delta and to determine geographically the remaining areas in need of protection, local authorities were provided with the required data support. Balçova consists of flat and fertile wetland with mainly citrus-fruit orchards and flower-producing green houses. The marsh and lagoon system situated in the coastal areas of the delta provides a habitat for wild life, in particular birds. In the Balçova Delta, which provides feeding and resting for migratory birds, freshwater sources are of vital importance for fauna and flora. The settlement area, which in 1957 was 182 ha, increased 11-fold up to the year 2005 when it reached 2,141 ha. On the other hand, great losses were determined in farming land, olive groves, forest and in the marsh and lagoon system. This unsystematic and rapid urbanization occurring in the study region is not only causing the loss of important agricultural land and wetland, but also lasting water and soil pollution. PMID:17180418

Bolca, Mustafa; Turkyilmaz, Bahar; Kurucu, Yusuf; Altinbas, Unal; Esetlili, M Tolga; Gulgun, Bahriye

2007-08-01

174

Regional land use studies  

NASA Technical Reports Server (NTRS)

Remote sensing technology and data from instrumented satellites and high altitude aircraft are proposed for mapping land use on a current national basis, for monitoring changes and trends, and for creating statistical models which can be manipulated to demonstrate the probable effects of proposed land use and of environmental changes over large areas. Both Apollo spacecraft and aircraft photography were used; the spacecraft pictures delineated the cropland and urban boundaries more clearly. A computer model is also proposed for statistical analysis and for printing out updated maps automatically; this model will include a data bank which can be updated rapidly with changes detected by the computer.

Place, J. L.

1970-01-01

175

Monitoring land use/land cover transformations from 1945 to 2007 in two peri-urban mountainous areas of Athens metropolitan area, Greece.  

PubMed

The aims of this study were to map and analyze land use/land cover transitions and landscape changes in the Parnitha and Penteli mountains, which surround the Athens metropolitan area of Attica, Greece over a period of 62 years. In order to quantify the changes between land categories through time, we computed the transition matrices for three distinct periods (1945-1960, 1960-1996, and 1996-2007), on the basis of available aerial photographs used to create multi-temporal maps. We identified systematic and stationary transitions with multi-level intensity analysis. Forest areas in Parnitha remained the dominant class of land cover throughout the 62 years studied, while transitional woodlands and shrublands were the main classes involved in LULC transitions. Conversely, in Penteli, transitional woodlands, along with shrublands, dominated the study site. The annual rate of change was faster in the first and third time intervals, compared to the second (1960-1996) time interval, in both study areas. The category level analysis results indicated that in both sites annual crops avoided to gain while discontinuous urban fabric avoided to lose areas. At the transition level of analysis, similarities as well as distinct differences existed between the two areas. In both sites the gaining pattern of permanent crops with respect to annual crops and the gain of forest with respect to transitional woodland/shrublands were stationary across the three time intervals. Overall, we identified more systematic transitions and stationary processes in Penteli. We discussed these LULC changes and associated them with human interference (activity) and other major socio-economic developments that were simultaneously occurring in the area. The different patterns of change of the areas, despite their geographical proximity, throughout the period of analysis imply that site-specific studies are needed in order to comprehensively assess the driving forces and develop models of landscape transformation in Mediterranean areas. PMID:24858224

Mallinis, Giorgos; Koutsias, Nikos; Arianoutsou, Margarita

2014-08-15

176

The legacy of land-use is revealed in the biogeochemistry of urban streams - 3-4-2014  

EPA Science Inventory

Urban streams are among the most profoundly impacted aquatic ecosystems, characterized by altered hydrology or burial, increased sediment input, and myriad pollutants. We present results from a series of urban stream studies that revealed unique geochemical and biochemical patte...

177

Analysis of impacts of urban land use and land cover on air quality in the Las Vegas region using remote sensing information and ground observations  

USGS Publications Warehouse

Urban development in the Las Vegas Valley of Nevada (USA) has expanded rapidly over the past 50 years. The air quality in the valley has suffered owing to increases from anthropogenic emissions of carbon monoxide, ozone and criteria pollutants of particular matter. Air quality observations show that pollutant concentrations have apparent heterogeneous characteristics in the urban area. Quantified urban land use and land cover information derived from satellite remote sensing data indicate an apparent local influence of urban development density on air pollutant distributions. Multi-year observational data collected by a network of local air monitoring stations specify that ozone maximums develop in the May and June timeframe, whereas minimum concentrations generally occur from November to February. The fine particulate matter maximum occurs in July. Ozone concentrations are highest on the west and northwest sides of the valley. Night-time ozone reduction contributes to the heterogeneous features of the spatial distribution for average ozone levels in the Las Vegas metropolitan area. Decreased ozone levels associated with increased urban development density suggest that the highest ozone and lowest nitrogen oxides concentrations are associated with medium to low density urban development in Las Vegas.

Xian, G.

2007-01-01

178

Urban land-use effects on groundwater phosphate distribution in a shallow aquifer, Nanfei River basin, China  

E-print Network

3­ and types of land use is significant with a coefficient of 0.760; (3) the PO4 3­ concentrations of P from agricultural land to surface water via surface runoff and sub-surface discharge (Sawhney 1978

Zhan, Hongbin

179

The Application of Satellite-Derived, High-Resolution Land Use/Land Cover Data to Improve Urban Air Quality Model Forecasts  

NASA Technical Reports Server (NTRS)

Local and state agencies are responsible for developing state implementation plans to meet National Ambient Air Quality Standards. Numerical models used for this purpose simulate the transport and transformation of criteria pollutants and their precursors. The specification of land use/land cover (LULC) plays an important role in controlling modeled surface meteorology and emissions. NASA researchers have worked with partners and Atlanta stakeholders to incorporate an improved high-resolution LULC dataset for the Atlanta area within their modeling system and to assess meteorological and air quality impacts of Urban Heat Island (UHI) mitigation strategies. The new LULC dataset provides a more accurate representation of land use, has the potential to improve model accuracy, and facilitates prediction of LULC changes. Use of the new LULC dataset for two summertime episodes improved meteorological forecasts, with an existing daytime cold bias of approx. equal to 3 C reduced by 30%. Model performance for ozone prediction did not show improvement. In addition, LULC changes due to Atlanta area urbanization were predicted through 2030, for which model simulations predict higher urban air temperatures. The incorporation of UHI mitigation strategies partially offset this warming trend. The data and modeling methods used are generally applicable to other U.S. cities.

Quattrochi, D. A.; Lapenta, W. M.; Crosson, W. L.; Estes, M. G., Jr.; Limaye, A.; Kahn, M.

2006-01-01

180

Evaluating the effect of land use land cover change in a rapidly urbanizing semi-arid watershed on estuarine freshwater inflows  

NASA Astrophysics Data System (ADS)

Estuarine freshwater inflows along with their associated nutrient and metal delivery are influenced by the land use/land cover (LULC) and water management practices in the contributing watershed. This study evaluates the effect of rapid urbanization in the San Antonio River Watershed on the amount of freshwater inflow reaching the San Antonio-Guadalupe estuary on the Gulf Coast of Texas. Remotely sensed data from satellite imagery provided a source of reliable data for land use classification and land cover change analysis; while long time series of the geophysical signals of stream flow and precipitation provided the data needed to assess change in flow in the watershed. LULC was determined using LANDSAT (5 TM and 7 ETM) satellite images over 20 years (1985-2003). The LANDSAT images were classified using an ENVI. ISODATA classification scheme. Changes were quantified in terms of the urban expansion that had occurred in past 20 years using an urban index. Streamflow was analyzed using 20 years (1985-2004) of average daily discharge obtained from the USGS gauging station (08188500) closest to the headwaters of the estuary. Baseflow and storm flow were partitioned from total flow using a universally used baseflow separation technique. Precipitation data was obtained from an NCDC station in the watershed. Preliminary results indicate that the most significant change in land use over the 20 year period was an increase in the total amount of impervious area in the watershed. This increase in impervious area was accompanied by an increase in both total streamflow and in baseflow over the same period. The investigation did not show a significant change in total annual precipitation from 1990 to 2004. This suggests that the increase in streamflow was more influenced by LULC than climate change. One explanation for the increase in baseflow may be an increase in return flows resulting from an increase in the total number of wastewater treatment plants in the watershed.

Sahoo, D.; Smith, P.; Popescu, S.

2006-12-01

181

Evaluating integrated land use and transport strategies in the urban regeneration projects toward sustainable urban structure: case studies of Hafen City in Germany and Shinagawa Station in Tokyo  

Microsoft Academic Search

Due to the emergence of urban regeneration, there have been many case studies on urban regeneration projects. However, there has been little research on a successful project that may be helpful for the execution of a sustainable urban structure policy. This study analyses the strategies and characteristics of two successful representative urban regeneration projects that aimed toward a sustainable urban

Yoon Jeung Jang; Joo Yeon Go; Seungil Lee

2011-01-01

182

Trends in urbanization and patterns of land use in the Asian mega cities Jakarta, Bangkok, and Metro Manila  

Microsoft Academic Search

Asian mega cities have experienced rapid population growth and continue to grow. Urbanization in those areas is proceeding differently from the patterns of city growth experienced in Western countries. Understanding the characteristics of Asian urbanization will be indispensable for the establishment of a local landscape planning system. In this study, we used the Clark linear exponential model and the Newling

Akinobu Murakami; Alinda Medrial Zain; Kazuhiko Takeuchi; Atsushi Tsunekawa; Shigehiro Yokota

2005-01-01

183

Relation of urban land-use and dry-weather storm and snowmelt flow characteristics to stream-water quality, Shunganunga Creek basin, Topeka, Kansas  

USGS Publications Warehouse

Water-quality characteristics of streams draining Topeka, Kansas , and the Shunganunga Creek basin were investigated from October , 1979, through November 1981, to determine the effects of runoff from urban areas. Characteristics were determined at six sites and summarized statistically for three streamflow conditions-dry weather, storm, and snowmelt. Median concentrations of trace metals and nutrients were greater in storm streamflow than in dry-weather streamflow. Regression equations were developed to estimate median concentrations of total lead and zinc in storm streamflow from the percentage of drainage area in residential plus commercial land-use areas and from street density. Median concentrations of dissolved sodium, chloride, and solids were considerably greater in snowmelt streamflow than in dry-weather streamflow. Regression equations were also developed to estimate median concentrations of dissolved sodium, chloride, and solids from the summation of percentages of the drainage area in residential, commercial, and industrial land-use areas and from street density. Multiple-regression analysis relating storm-runoff volumes and average constituent concentrations to land-use and storm charactersitcs produced significant relations for storm-runoff volume, total lead, total zinc, and suspended sediment. (USGS)

Pope, L.M.; Bevans, H.E.

1984-01-01

184

BusRapidTransitandLandUse Bus Transit and Land Use  

E-print Network

BusRapidTransitandLandUse 21 Bus Transit and Land Use: Illuminating the Interaction Andy Johnson transit in urban areas has proven to be a difficult task indeed. Recent research on the transportation­land use connection has suggested that transit use can be increased through transit-friendly land use

Levinson, David M.

185

The Land Use and Land Cover Dichotomy: A Comparison of Two Land Classification Systems in Support of Urban Earth Science Applications  

NASA Technical Reports Server (NTRS)

One is likely to read the terms 'land use' and 'land cover' in the same sentence, yet these concepts have different origins and different applications. Land cover is typically analyzed by earth scientists working with remotely sensed images. Land use is typically studied by urban planners who must prescribe solutions that could prevent future problems. This apparent dichotomy has led to different classification systems for land-based data. The works of earth scientists and urban planning practitioners are beginning to come together in the field of spatial analysis and in their common use of new spatial analysis technology. In this context, the technology can stimulate a common 'language' that allows a broader sharing of ideas. The increasing amount of land use and land cover change challenges the various efforts to classify in ways that are efficient, effective, and agreeable to all groups of users. If land cover and land uses can be identified by remote methods using aerial photography and satellites, then these ways are more efficient than field surveys of the same area. New technology, such as high-resolution satellite sensors, and new methods, such as more refined algorithms for image interpretation, are providing refined data to better identify the actual cover and apparent use of land, thus effectiveness is improved. However, the closer together and the more vertical the land uses are, the more difficult the task of identification is, and the greater is the need to supplement remotely sensed data with field study (in situ). Thus, a number of land classification methods were developed in order to organize the greatly expanding volume of data on land characteristics in ways useful to different groups. This paper distinguishes two land based classification systems, one developed primarily for remotely sensed data, and the other, a more comprehensive system requiring in situ collection methods. The intent is to look at how the two systems developed and how they can work together so that land based information can be shared among different users and compared over time.

McAllister, William K.

2003-01-01

186

Water- and sediment-quality effects on Pimephales promelas spawning vary along an agriculture-to-urban land-use gradient  

USGS Publications Warehouse

Many streams in the U.S. are "impaired" due to anthropogenic influence. For watershed managers to achieve practical understanding of these impairments, a multitude of factors must be considered, including point and nonpoint-source influence on water quality. A spawning assay was developed in this study to evaluate water- and sediment-quality effects that influenced Pimephales promelas (fathead minnow) egg production over a gradient of urban and agricultural land use in 27 small watersheds in Eastern Wisconsin. Six pairs of reproducing fathead minnows were contained in separate mesh cartridges within one larger flow-through chamber. Water- and sediment quality were sampled for an array of parameters. Egg production was monitored for each pair providing an assessment of spawning success throughout the 21-day test periods. Incidences of low dissolved oxygen (DO) in many of these streams negatively impacted spawning success. Nine of 27 streams experienced DO less than 3.1. mg/L and 15 streams experienced DO less than 4.8. mg/L. Low DO was observed in urban and agricultural watersheds, but the upper threshold of minimum DO decreased with increasing urban development. An increase in specific conductance was related to a decrease in spawning success. In previous studies for streams in this region, specific conductance had a linear relation with chloride, suggesting the possibility that chloride could be a factor in egg production. Egg production was lower at sites with substantial urban development, but sites with low egg production were not limited to urban sites. Degradation of water- and sediment-quality parameters with increasing urban development is indicated for multiple parameters while patterns were not detected for others. Results from this study indicate that DO must be a high priority watershed management consideration for this region, specific conductance should be investigated further to determine the mechanism of the relation with egg production, and water- and sediment-quality degrade in relation to urban influence. ?? 2011.

Corsi, S.R.; Klaper, R.D.; Weber, D.N.; Bannerman, R.T.

2011-01-01

187

Modeling urban growth and land use/land cover change in the Houston Metropolitan Area from 2002 - 2030  

E-print Network

spatially explicit cellular automata model, to simulate future (2002-2030) urban growth in the Houston metropolitan area, one of the fastest growing metropolises in the United States during the past decades. The model is calibrated with historical data...

Oguz, Hakan

2005-08-29

188

SMART GROWTH LAND USE PLANNING FOR A COMMUNITY AT THE RURAL URBAN INTERFACE UTILIZING STRUCTURED PUBLIC INVOLVEMENT  

EPA Science Inventory

A. Simpson County, KY is facing suburban growth pressure like many communities across the country at the rural urban interface. This presents opportunities and challenges to maintain community identity, build economic diversity, protect environmental resources, and imp...

189

Resurrection of the Bombay trans-harbour link project by using Wheaton's monocentric models of urban land use  

E-print Network

BOMBAY TRANS-HARBOUR LINK PROJECT: A possible solution to Bombay's seemingly unsurmountable social problems. The primary idea behind this thesis is to present a new technique for the appraisal of large scale urban ...

Bhave, Shubhada

1987-01-01

190

Using the Urban–Rural Gradient Approach to Determine the Effects of Land Use on Forest Remnants  

Microsoft Academic Search

Urban growth provides many benefits to people by bringing economic and cultural vitality to a region. However, the landscape\\u000a modification and pollution that follow urbanization profoundly alter the organisms and ecological functions occurring on land\\u000a and in water bodies, like streams, that drain the land. As stress on our natural environment increases, we lose the ecosystem\\u000a services they once provided

Margaret M. Carreiro

191

Land Use Planning  

NASA Technical Reports Server (NTRS)

Computer technology, aerial photography and space imagery are being combined in a NASA community services program designed to help solve land use and natural resource planning problems. As urban areas grow, so grows the need for comprehensive, up-to-date information on which to base intelligent decisions regarding land use. State and local planners need information such as the nature of urban change, where the changes are occurring, how they affect public safety, transportation, the economy, tax assessment, sewer systems, water quality, flood hazard, noise impact and a great variety of other considerations. Most importantly they need continually updated maps. Preparing timely maps, gathering the essential data and maintaining it in orderly fashion are becoming matters of increasing difficulty. The NASA project, which has nationwide potential for improving efficiency in the planning process, is a pilot program focused on Tacoma, Washington and surrounding Pierce County. Its key element, developed by Jet Propulsion Laboratory (JPL), is a computerized Land Use Management Information System (LUMIS).

1978-01-01

192

Estimating material and energy intensities of urban areas  

E-print Network

The objective of this thesis is to develop methods to estimate, analyze and visualize the resource intensity of urban areas. Understanding the resource consumption of the built environment is particularly relevant in cities ...

Quinn, David James, Ph. D. Massachusetts Institute of Technology

2012-01-01

193

A two-sector model of land use and deforestation: Funding urban development with a tax on urban and rural employment  

SciTech Connect

We model a small country with an urban manufacturing sector and a rural agricultural sector. Government taxes rural and urban employment to finance urban infrastructure which contributes to urban production. The manufacturing wage is fixed, leading to urban unemployment. Expansion of cultivated area involves deforestation at frontiers. An increment to urban infrastructure may draw resources into the city but a large enough addition to infrastructure may cause the tax rate to rise by more than urban labor productivity, which would exacerbate frontier deforestation. Improvement of rural transportation raises rural wages, reduces the urban unemployment rate, and extends the area under cultivation, causing deforestation; it also reduces the employment tax rate, which permits expansion of fixed-wage urban manufacturing. Such a wide, sectoral distribution of benefits may help explain the popularity of such policies despite their damage to frontier forest resources.

Jones, D.W.; O'Neill, R.V.

1992-07-17

194

Knowledge and prevention of tick-borne diseases vary across an urban-to-rural human land-use gradient.  

PubMed

We sought to determine the behavioral risk of exposure to tick-borne diseases across a human land-use gradient in a region endemic for diseases transmitted by the lone star tick. We measured the knowledge, attitudes, and preventive behaviors of visitors to 14 suburban, exurban, and rural recreational parks. A structured interview was conducted to determine respondents' (n=238) knowledge of tick-borne disease risk, perceived susceptibility to tick-borne disease, and tick bite prevention behaviors. We found significant differences across park types for most personal protective behaviors. Individuals in exurban parks were more likely to perform frequent tick checks and use chemical insect repellents compared to other park types (p<0.001), while suburban park visitors were more likely to avoid tick habitats (p<0.05). Disparities exist in the level of knowledge, perceived personal risk, and use of preventive measures across the human land-use gradient, suggesting that targeted public health intervention programs could reduce behavioral exposure risk by addressing specific gaps in knowledge and prevention. PMID:23538110

Bayles, Brett R; Evans, Gregory; Allan, Brian F

2013-06-01

195

Spatial distribution of pH and organic matter in urban soils and its implications on site-specific land uses in Xuzhou, China.  

PubMed

The spatial variation of soil pH and soil organic matter (SOM) in the urban area of Xuzhou, China, was investigated in this study. Conventional statistics, geostatistics, and a geographical information system (GIS) were used to produce spatial distribution maps and to provide information about land use types. A total of 172 soil samples were collected based on grid method in the study area. Soil pH ranged from 6.47 to 8.48, with an average of 7.62. SOM content was very variable, ranging from 3.51 g/kg to 17.12 g/kg, with an average of 8.26 g/kg. Soil pH followed a normal distribution, while SOM followed a log-normal distribution. The results of semi-variograms indicated that soil pH and SOM had strong (21%) and moderate (44%) spatial dependence, respectively. The variogram model was spherical for soil pH and exponential for SOM. The spatial distribution maps were achieved using kriging interpolation. The high pH and high SOM tended to occur in the mixed forest land cover areas such as those in the southwestern part of the urban area, while the low values were found in the eastern and the northern parts, probably due to the effect of industrial and human activities. In the central urban area, the soil pH was low, but the SOM content was high, which is mainly attributed to the disturbance of regional resident activities and urban transportation. Furthermore, anthropogenic organic particles are possible sources of organic matter after entering the soil ecosystem in urban areas. These maps provide useful information for urban planning and environmental management. PMID:24841960

Mao, Yingming; Sang, Shuxun; Liu, Shiqi; Jia, Jinlong

2014-05-01

196

On the statistics of urban heat island intensity  

NASA Astrophysics Data System (ADS)

We perform a systematic study of all cities in Europe to assess the Urban Heat Island (UHI) intensity by means of remotely sensed land surface temperature data. Defining cities as spatial clusters of urban land cover, we investigate the relationships of the UHI intensity, with the cluster size and the temperature of the surroundings. Our results show that in Europe, the UHI intensity in summer has a strong correlation with the cluster size, which can be well fitted by an empirical sigmoid model. Furthermore, we find a novel seasonality of the UHI intensity for individual clusters in the form of hysteresis-like curves. We characterize the shape and identify apparent regional patterns.

Zhou, B.; Rybski, D.; Kropp, J. P.

2013-10-01

197

Developing a framework to assess the water quality and quantity impacts of climate change, shifting land use, and urbanization in a Midwestern agricultural landscape  

NASA Astrophysics Data System (ADS)

Dynamic hydrological processes play a critical role in the structure and functioning of agricultural watersheds undergoing urbanization. Developing a predictive understanding of the complex interaction between agricultural productivity, ecosystem health, water quality, urban development, and public policy requires an interdisciplinary effort that investigates the important biophysical and social processes of the system. Our research group has initiated such a framework that includes a coordinated program of integrated scenarios, model experiments to assess the effects of changing drivers on a broad set of ecosystem services, evaluations of governance and leverage points, outreach and public engagement, and information management. Our geographic focus is the Yahara River watershed in south-central Wisconsin, which is an exemplar of water-related issues in the Upper Midwest. This research addresses three specific questions. 1) How do different patterns of land use, land cover, land management, and water resources engineering practices affect the resilience and sensitivity of ecosystem services under a changing climate? 2) How can regional governance systems for water and land use be made more resilient and adaptive to meet diverse human needs? 3) In what ways are regional human-environment systems resilient and in what ways are they vulnerable to potential changes in climate and water resources? A comprehensive program of model experiments and biophysical measurements will be utilized to evaluate changes in five freshwater ecosystem services (flood regulation, groundwater recharge, surface water quality, groundwater quality, and lake recreation) and five related ecosystem services (food crop yields, bioenergy crop yields, carbon storage in soil, albedo, and terrestrial recreation). Novel additions to existing biophysical models will allow us to simulate all components of the hydrological cycle as well as agricultural productivity, nitrogen and phosphorus transport, and lake water quality. The integrated model will be validated using a comprehensive observational database that includes soil moisture, evapotranspiration, stomatal conductance, streamflow, stream and lake water quality, and crop yields and productivity. Integrated scenarios will be developed to synthesize decision-maker perspectives, alternative approaches to resource governance, plausible trends in demographic and economic drivers, and model projections under alternate climate and land use regimes to understand future conditions of the watershed and its ecosystem services. The quantitative data and integrated scenarios will then be linked to evaluate governance of water and land use.

Loheide, S. P.; Booth, E. G.; Kucharik, C. J.; Carpenter, S. R.; Gries, C.; Katt-Reinders, E.; Rissman, A. R.; Turner, M. G.

2011-12-01

198

Effects of Land Use, Topography and Socio-Economic Factors on River Water Quality in a Mountainous Watershed with Intensive Agricultural Production in East China  

PubMed Central

Understanding the primary effects of anthropogenic activities and natural factors on river water quality is important in the study and efficient management of water resources. In this study, analysis of Variance (ANOVA), Principal component analysis (PCA), Pearson correlations, Multiple regression analysis (MRA) and Redundancy analysis (RDA) were applied as an integrated approach in a GIS environment to explore the temporal and spatial variations in river water quality and to estimate the influence of watershed land use, topography and socio-economic factors on river water quality based on 3 years of water quality monitoring data for the Cao-E River system. The statistical analysis revealed that TN, pH and temperature were generally higher in the rainy season, whereas BOD5, DO and turbidity were higher in the dry season. Spatial variations in river water quality were related to numerous anthropogenic and natural factors. Urban land use was found to be the most important explanatory variable for BOD5, CODMn, TN, DN, NH4+-N, NO3?-N, DO, pH and TP. The animal husbandry output per capita was an important predictor of TP and turbidity, and the gross domestic product per capita largely determined spatial variations in EC. The remaining unexplained variance was related to other factors, such as topography. Our results suggested that pollution control of animal waste discharge in rural settlements, agricultural runoff in cropland, industrial production pollution and domestic pollution in urban and industrial areas were important within the Cao-E River basin. Moreover, the percentage of the total overall river water quality variance explained by an individual variable and/or all environmental variables (according to RDA) can assist in quantitatively identifying the primary factors that control pollution at the watershed scale. PMID:25090375

Chen, Jiabo; Lu, Jun

2014-01-01

199

Characterization of potential larval habitats for Anopheles mosquitoes in relation to urban land-use in Malindi, Kenya  

Microsoft Academic Search

BACKGROUND: This study characterized Anopheles mosquito larval habitats in relation to ecological attributes about the habitat and community-level drainage potential, and investigated whether agricultural activities within or around urban households increased the probability of water body occurrence. Malindi, a city on the coast of Kenya, was mapped using global positioning system (GPS) technology, and a geographic information system (GIS) was

Joseph Keating; Kate Macintyre; Charles M Mbogo; John I Githure; John C Beier

2004-01-01

200

Facing the Urban Challenge: Reimagining Land Use in America's Distressed Older Cities--The Federal Policy Role  

ERIC Educational Resources Information Center

The end of World War II heralded an era of urban disinvestment in the United States. While some cities began to rebound in the 1990s with population and economic growth, others--including large cities like Detroit, Cleveland, and St. Louis as well as many smaller cities and towns--did not, and have continued to decline. As these communities…

Mallach, Alan

2010-01-01

201

Variation of urban momentum roughness length with land use in the upwind source area, as observed in two UK cities.  

E-print Network

. Printed in the United Kingdom. new_z0_report.tex; 9/09/2003; 16:34; p.1 #12;List of Tables I anemometer roughness lengths against cover fraction of different cover types, Salford 22 c 2003 British Crown. Printed in building wakes to its blended final state at some height above the urban canopy, for a real city, tests

Reading, University of

202

Land use regression modeling of intra-urban residential variability in multiple traffic-related air pollutants  

Microsoft Academic Search

BACKGROUND: There is a growing body of literature linking GIS-based measures of traffic density to asthma and other respiratory outcomes. However, no consensus exists on which traffic indicators best capture variability in different pollutants or within different settings. As part of a study on childhood asthma etiology, we examined variability in outdoor concentrations of multiple traffic-related air pollutants within urban

Jane E Clougherty; Rosalind J Wright; Lisa K Baxter; Jonathan I Levy

2008-01-01

203

Remote Detection of Urban Intensity for Climate Change Impact Assessments  

NASA Astrophysics Data System (ADS)

Integration of human and earth system models for climate change impact assessments requires consistent projections of urban extent and accurate representation of urban intensity. In this study, a map of urban extent created for the Community Land Model (CLM) from LandScan 2004 population densities is compared to a map of percent impervious surface area (IMPSA) and satellite-derived normalized difference built-up index (NDBI), land surface temperature (LST), and impervious surface area derived from the fractional vegetation cover (Fr). São Paulo, Brazil and surrounding areas are selected for initial evaluation of four categories of urban intensity, including Tall Building District, High Density, Medium Density, and Low Density. Indices derived from MODIS may provide a more rapid and reliable way to map urban and periurban areas for global climate modeling.

Cochran, F. V.; Brunsell, N. A.

2013-12-01

204

Catchment export of carbon, nitrogen, and phosphorus across an agro-urban land use gradient, Swan-Canning River system, southwestern Australia  

NASA Astrophysics Data System (ADS)

Coastal regions in many regions of the world are under increasing pressure from the expansion of agriculture and urbanization associated with elevated N and P loading and eutrophication of coastal estuaries. I compared how mixed land use catchments deliver dissolved and particulate forms of C, N, and P in streamflow to the Swan-Canning estuary that bisects Perth, Western Australia. Dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) composed the majority of the total C and N load, particulate C and N fluxes were minor, and P fluxes were evenly split between soluble reactive phosphorus and particulate/organic P. In contrast to current biogeochemical theory, DON export was dominant in urban and agricultural catchments in the low-gradient environment of the Swan Coastal Plain, whereas NO3 export was a greater factor in higher-gradient, forested catchments on the urban fringe. This trend suggests that hydrologic conditions that supported coastal wetlands prior to human development may still promote DON mobilization as well as dissolved inorganic nitrogen loss along hydrologic flow paths. Substantial variability in export of C, N, and P across catchments highlights the unique hydrologic properties of Australian catchments. Areal C, N, and P export was significantly related to catchment runoff which was lowest in a catchment with inland drainage, but greatest in urban catchments with impervious surfaces and shallow groundwater. The effective delivery of DOC and DON to aquatic ecosystems in urbanizing coastal catchments underscores the importance of restoration efforts that address hydrologic retention as well as the source and bioavailability of dissolved organic matter.

Petrone, Kevin C.

2010-03-01

205

A comparison between developed and developing countries in terms of urban land use change effects on nitrogen cycle: Paris and São Paulo metropolitan areas  

NASA Astrophysics Data System (ADS)

Urbanization is considered one of the most powerful and characteristic anthropogenic forces on Earth in the 21st century. Although, currently, cities occupy only about 2 percent of the Earth's land surface, they are home to over 50 percent of the world's population. While in cities of some developed countries, urban population might stabilize or even slightly decrease, its rate of growth in developing countries is faster than in the industrialized nations. Such increase is accompanied by growing energy production, increased food demand, expanding transportation and industrialization. Although agricultural production is by far the largest cause of the doubling in the amount of reactive nitrogen entering the biospheric cycle compared to pre-industrial conditions, nowadays more than half of the crops produced in rural areas are consumed in urban zones. Having in mind that there is a clear global trend towards urbanization and growing urban areas, the objective of this study was to compare major nitrogen fluxes between a mega city situated in a developing country (São Paulo Metropolitan Area - SPMA) in Brazil with one of the largest city of highly industrialized Europe (Paris Metropolitan Area - PMA). We make the first step in producing a detailed N mass balance for the SPMA and PMA in order to estimate the magnitude of major fluxes across the urban landscape and see how N cycling vary among urban system components. This effort may help to highlight differences between developing and developed areas and subsidize the formulation of public policies towards reduction of N related pollution of recipient systems. The N mass balance showed the SPMA as a net source of nitrogen, emitting in total about 93.5 Gg of N per year, or about 4750 g of N per capita. Most N inputs to the SPMA are directly related to food consumption, N in wastewater and landfills. These fluxes are quite amendable to management efforts to reduce N input to the receiver component of the urban ecosystem (rivers and soil). For example treated sewage effluent could be used as a source of N for some crops, especially vegetables. PMA is also a source of reactive nitrogen, emitting in total about 32 Gg of N per year, or about 3000 g of N per capita, being the major part attributed to the atmospheric emissions from transportation and energy. An important outcome of this study has been the identification of several key uncertainties regarding the N budget that require further research for either developed and developing regions studied. The following uncertainties of N cycling in an urban system need better understanding: the mechanisms of dry-deposition processes in urban systems with patchy vegetation; high NOx emissions and the increase in travel distance of smaller particles coming from modern engines; and complex patterns of air flow in the dense build-up areas. Urban soil N dynamics is very uncertain, while soil represents a major sink of N in natural ecosystems. Ultimately, the challenge is to integrate human choices and ecosystem dynamics into a multidisciplinary model of biogeochemical cycling in urban ecosystems, focusing as a first step on the quantitatively evaluating the mutual relationship between urban land-use changes and natural ecosystem from the standpoint of global N balance. To develop those schemes will require the construction of detailed ecosystem-level N balances, an in-depth understanding of the interplay of inputs, geographical and climatic factors, nonspecific management practices, and deliberate N management practices that control the fate of N in urban landscapes.

Nardoto, Gabriela; Svirejeva-Hopkin, Anastasia; Martinelli, Luiz Antonio

2010-05-01

206

Mapping carbon storage in urban trees with multi-source remote sensing data: relationships between biomass, land use, and demographics in Boston neighborhoods.  

PubMed

High resolution maps of urban vegetation and biomass are powerful tools for policy-makers and community groups seeking to reduce rates of urban runoff, moderate urban heat island effects, and mitigate the effects of greenhouse gas emissions. We developed a very high resolution map of urban tree biomass, assessed the scale sensitivities in biomass estimation, compared our results with lower resolution estimates, and explored the demographic relationships in biomass distribution across the City of Boston. We integrated remote sensing data (including LiDAR-based tree height estimates) and field-based observations to map canopy cover and aboveground tree carbon storage at ~1m spatial scale. Mean tree canopy cover was estimated to be 25.5±1.5% and carbon storage was 355Gg (28.8MgCha(-1)) for the City of Boston. Tree biomass was highest in forest patches (110.7MgCha(-1)), but residential (32.8MgCha(-1)) and developed open (23.5MgCha(-1)) land uses also contained relatively high carbon stocks. In contrast with previous studies, we did not find significant correlations between tree biomass and the demographic characteristics of Boston neighborhoods, including income, education, race, or population density. The proportion of households that rent was negatively correlated with urban tree biomass (R(2)=0.26, p=0.04) and correlated with Priority Planting Index values (R(2)=0.55, p=0.001), potentially reflecting differences in land management among rented and owner-occupied residential properties. We compared our very high resolution biomass map to lower resolution biomass products from other sources and found that those products consistently underestimated biomass within urban areas. This underestimation became more severe as spatial resolution decreased. This research demonstrates that 1) urban areas contain considerable tree carbon stocks; 2) canopy cover and biomass may not be related to the demographic characteristics of Boston neighborhoods; and 3) that recent advances in high resolution remote sensing have the potential to improve the characterization and management of urban vegetation. PMID:25217746

Raciti, Steve M; Hutyra, Lucy R; Newell, Jared D

2014-12-01

207

Impact of Artificial Reservoir Size, Land Use/Land Cover Patterns and Increasing Urbanization on Probable Maximum Precipitation and Flood: The Case of American River Watershed  

NASA Astrophysics Data System (ADS)

Design of dams considers available historical data for flood frequency analysis. The limitation in this approach is future meteorological and hydrological variability due to land-use and land-cover (LULC) change are not considered. Future flood extremes may change, among other factors, due to strong local atmospheric feedbacks from the reservoir, surrounding LULC change, and urbanization. Probable maximum flood (PMF), which is the key design parameter for a dam, is estimated from probable maximum precipitation (PMP). Given the nonlinearity of the rainfall-runoff process, the key questions that need to be answered are How do reservoir size and/or LULC modify extreme flood patterns, specifically probable maximum flood via climatic modification of PMP? and What is the contribution of urbanization in altering reservoir inflow and PMF? Selecting the American River watershed (ARW) and Folsom Dam as a case study; PMP from the regional atmospheric modeling system (RAMS) and the distributed variable infiltration capacity (VIC) model are used to simulate PMF. The PMP values are simulated from atmospheric feedbacks for various LULC scenarios (pre-dam, current scenario, non-irrigation, reservoir-double, and different urbanization percentage). Comparison of PMF results for pre-dam and current scenario conditions showed that PMF peak flow can decrease by about 105m3/s, while comparison of current scenario with non-irrigation PMF results showed that irrigation development has increased the PMF by 125m3/s. Comparison of different urbanization percentage shows that a 100% impervious watershed has the potential of generating a flood that is close to design PMF. The design PMP produces an additional 1500m3/s peak flood compared to the actual PMF when the watershed is considered 100% impervious. On the other hand, the reservoir size had virtually no detectable impact on PMP and consequently on PMF results. Where downstream levee capacity is already under designed to handle a dam's spillway capacity, such as for this case study, such increases indicate a likely impact on downstream flood risk to which any flood management protocol must adapt. The premise that modern dam design and operations should consider an integrated atmospheric-hydrologic modeling approach for estimating proactively potential extreme precipitation variation due to dam-driven LULC change and increase in urbanization is well-supported by this case study.

Yigzaw, W. Y.; Hossain, F.

2013-12-01

208

Monitoring Changes in Land Use  

Microsoft Academic Search

SUMMARY Besides big cities strongly effected by industrialization and urbanization, many areas in the suburbs are not exceptional cases. Apart from advantages brought by the development process such as economic growth and social life improvement, they are deeply under pressure between two trends: development and conservation; economic interests and environmental protection and cultural values. Agricultural land uses for different purpose

THU Trinh; Thi Hoai

209

Global Consequences of Land Use  

Microsoft Academic Search

Land use has generally been considered a local environmental issue, but it is becoming a force of global importance. Worldwide changes to forests, farmlands, waterways, and air are being driven by the need to provide food, fiber, water, and shelter to more than six billion people. Global croplands, pastures, plantations, and urban areas have expanded in recent decades, accompanied by

Jonathan A. Foley; Ruth DeFries; Gregory P. Asner; Carol Barford; Gordon Bonan; Stephen R. Carpenter; F. Stuart Chapin; Michael T. Coe; Gretchen C. Daily; Holly K. Gibbs; Joseph H. Helkowski; Tracey Holloway; Erica A. Howard; Christopher J. Kucharik; Chad Monfreda; Jonathan A. Patz; I. Colin Prentice; Navin Ramankutty; Peter K. Snyder

2005-01-01

210

Influence of fipronil compounds and rice-cultivation land-use intensity on macroinvertebrate communities in streams of southwestern Louisiana, USA  

USGS Publications Warehouse

Laboratory tests of fipronil and its degradation products have revealed acute lethal toxicity at very low concentrations (LC50) of <0.5 ??g/L to selected aquatic macroinvertebrates. In streams draining basins with intensive rice cultivation in southwestern Louisiana, USA, concentrations of fipronil compounds were an order of magnitude larger than the LC50. The abundance (?? = -0.64; p = 0.015) and taxa richness (r2 = 0.515, p < 0.005) of macroinvertebrate communities declined significantly with increases in concentrations of fipronil compounds and rice-cultivation land-use intensity. Macroinvertebrate community tolerance scores increased linearly (r2 = 0.442, p < 0.005) with increases in the percentage of rice cultivation in the basins, indicating increasingly degraded stream conditions. Similarly, macroinvertebrate community-tolerance scores increased rapidly as fipronil concentrations approached about 1 ??g/L. Pesticide toxicity index determinations indicated that aquatic macroinvertebrates respond to a gradient of fipronil compounds in water although stream size and habitat cannot be ruled out as contributing influences.

Mize, S.V.; Porter, S.D.; Demcheck, D.K.

2008-01-01

211

Analysis of the effect of evergreen and deciduous trees on urban nitrogen dioxide levels in the U.S. using land-use regression  

NASA Astrophysics Data System (ADS)

Nitrogen dioxide (NO2), an atmospheric pollutant generated primarily by anthropogenic combustion processes, is typically found at higher concentrations in urban areas compared to non-urbanized environments. Elevated NO2 levels have multiple ecosystem effects at different spatial scales. At the local scale, elevated levels affect human health directly and through the formation of secondary pollutants such as ozone and aerosols; at the regional scale secondary pollutants such as nitric acid and organic nitrates have deleterious effects on non-urbanized areas; and, at the global scale, nitrogen oxide emissions significantly alter the natural biogeochemical nitrogen cycle. As cities globally become larger and larger sources of nitrogen oxide emissions, it is important to assess possible mitigation strategies to reduce the impact of emissions locally, regionally and globally. In this study, we build a national land-use regression (LUR) model to compare the impacts of deciduous and evergreen trees on urban NO2 levels in the United States. We use the EPA monitoring network values of NO2 levels for 2006, the 2006 NLCD tree canopy data for deciduous and evergreen canopies, and the US Census Bureau's TIGER shapefiles for roads, railroads, impervious area & population density as proxies for NO2 sources on-road traffic, railroad traffic, off-road and area sources respectively. Our preliminary LUR model corroborates previous LUR studies showing that the presence of trees is associated with reduced urban NO2 levels. Additionally, our model indicates that deciduous and evergreen trees reduce NO2 to different extents, and that the amount of NO2 reduced varies seasonally. The model indicates that every square kilometer of deciduous canopy within a 2km buffer is associated with a reduction in ambient NO2 levels of 0.64 ppb in summer and 0.46ppb in winter. Similarly, every square kilometer of evergreen tree canopy within a 2 km buffer is associated with a reduction in ambient NO2 by 0.53 ppb in summer and 0.84 ppb in winter. Thus, the model indicates that deciduous trees are associated with a 30% smaller reduction in NO2 in winter as compared to summer, while evergreens are associated with a 60% increase in the reduction of NO2 in winter, for every square kilometer of deciduous or evergreen canopy within a 2 km buffer. Leaf- and local canopy-level studies have shown that trees are a sink for urban NO2 through deposition as well as stomatal and cuticular uptake. The winter time versus summer time effects suggest that leaf-level deposition may not be the only uptake mechanism and points to the need for a more holistic analysis of tree and canopy-level deposition for urban air pollution models. Since deposition velocities for NO2 vary by tree species, the reduction may also vary by species. These findings have implications for designing cities to reduce the impact of air pollution.

Rao, M.; George, L. A.

2012-12-01

212

Regional land use schemes generated by TOPAZ  

Microsoft Academic Search

Dickey J. W. and Najafi F. T. (1973) Regional land use schemes generated by TOPAZ, Reg. Studies7, 373–386. TOPAZ, which is the Technique for the Optimal Placement of Activities in Zones, was developed to provide the urban planner with a series of alternative solutions from which he could determine the land use pattern with the least amount of cost involved.

J. W. Dickey; F. T. Najafi

1973-01-01

213

Land Use - Concern-Challenge-Commitment.  

ERIC Educational Resources Information Center

This booklet designed for junior and senior high school teachers identifies a developmental sequence of indoor and outdoor experiences related to land use in an urban setting. Lists of cognitive and affective objectives are followed by nine lesson strategies developing the land use concept. Included is a list of activities used in an…

Jackson, John Y.

214

Study of the impact of land use and hydrogeological settings on the shallow groundwater quality in a peri-urban area of Kampala, Uganda.  

PubMed

A study to assess the impacts of land use and hydrogeological characteristics on the shallow groundwater in one of Kampala's peri-urban areas (Bwaise III Parish) was undertaken for a period of 19 months. Water quality monitoring was carried out for 16 installed wells and one operational protected spring to ascertain the seasonal variation. The aspects of hydrogeological setting investigated in the study were the subsurface unconsolidated material characteristics (stratigraphy, lithology, hydraulic conductivity, porosity and chemical content), seasonal groundwater depths and spring discharge, topography and rainfall of the area. Both laboratory and field measurements were carried out to determine the soil and water characteristics. Field surveys were also undertaken to identify and locate the various land use activities that may potentially pollute. The results demonstrate that the water table in the area responds rapidly to short rains (48 h) due to the pervious (10(-5)-10(-3) ms(-1)) and shallow (<1 mbgl) vadose zone, which consists of foreign material (due to reclamation). This anthropogenically influenced vadose zone has a limited contaminant attenuation capacity resulting in water quality deterioration following the rains. There is widespread contamination of the groundwater with high organic (up to 370 mgTKN/l and 779 mgNO-3/l), thermotolerant coliforms (TTCs) and faecal streptococci (FS) (median values as high as 126E3 cfu/100 ml and 154E3 cfu/100 ml respectively) and total phosphorus (up to 13 mg/l) levels originating from multiple sources of contamination. These include animal rearing, solid waste dumping, pit latrine construction and greywater/stormwater disposal in unlined channels leading to increased localised microbial (faecal) and organic (TKN/NO-3) contamination during the rains. The spring discharge (range 1.22-1.48 m3/h) with high nitrate levels (median values of 117 and 129 mg/l in the wet and dry seasons) did not vary significantly with season (p=0.087) suggesting that this source is fed by regional base flow. However, the microbial quality deterioration observed in the spring discharge after a rain event (median values of 815TTCs cfu /100 ml and 433 FS cfu/100 ml) was attributed to the poor maintenance of the protection structure. Identification and selection of appropriate management solutions for the protection of shallow groundwater in informal settlements should not only be based on water quality problems and the causal physical characteristics as demonstrated by this study, but also institutional and socio-economic factors. PMID:17512037

Kulabako, N R; Nalubega, M; Thunvik, R

2007-08-01

215

Norfolk and environs: A land use perspective  

USGS Publications Warehouse

The Norfolk-Portsmouth Standard Metropolitan Statistical Area (SMSA) in southeastern Virginia was the site of intensive testing of a number of land resources assessment methods, built around the availability of remotely sensed data from the Earth Resources Technology Satellite (ERTS-I), later renamed LANDSAT I. The Norfolk tests were part of a larger experiment known as the Central Atlantic Regional Ecological Test Site (CARETS), designed to test the extent to which LANDSAT and associated high-altitude aircraft data could be used as cost-effective inputs to a regional land use information system. The Norfolk SMSA contains a variety of land uses typical of the urbanized eastern seaboard, along with typical associated problems: rapid urbanization; heavy recreational, commercial, and residential demands on fragile beaches and coastal marsh environments; industrial, transportation, and governmental land and water uses impacting on residential and agricultural areas; drainage and land stability difficulties affecting construction and other uses; and increasing difficulties in maintaining satisfactory air and water quality.

Alexander, Robert H.; Buzzanell, Peter J.; Fitzpatrick, Katherine A.; Lins, Harry F.; McGinty, Herbert K., III

1975-01-01

216

Environmental Issues: Land Use Change  

NSDL National Science Digital Library

This interdisciplinary technology-embedded middle school science unit focuses on how human activities influence environmental changes related to land use. Students use geospatial information technology (GIT) tools including Google Earth and remotely sensed images to investigate modern day land use issues and land use change over time. It was designed using the Understanding by Design framework and is aligned to national science and geography standards. The unit has modified materials from the NASA-sponsored Mission Geography curricular module, Human footprints on Earth as seen by NASA scientists to take advantage of available, user-friendly geospatial technologies. The materials have been pilot-tested and field-tested in 8th grade classrooms at Broughal Middle School, a technology-rich urban school.

Alec Bodzin

2009-01-01

217

Land-use history and management intensity as drivers of spatial variability in soil greenhouse gas fluxes in a poplar bioenergy plantation  

NASA Astrophysics Data System (ADS)

Bioenergy crops are considered to be carbon-neutral because biomass combustion releases only carbon which has previously been extracted from the atmosphere by the plants. However, during crop growth, a significant amount of the greenhouse gases (GHG) CO2, CH4 and N2O can be produced by soil microorganisms and released to the atmosphere. Depending on crop type and management intensity, soil GHG fluxes might be so substantial that bioenergy crops could overall emit more GHG than the same amount of fossil fuels. The present knowledge about soil GHG fluxes from bioenergy crops is not sufficient to accurately quantify them. This is especially true for short rotation woody crops (SRWC) which might become more important in the future because they have a relatively high GHG mitigation potential. However, before pursuing the use of SRWC plantations for carbon sequestration and fossil fuel replacement, it is necessary to accurately assess their uptake and release of all major GHG to prevent the unconscious widespread deployment of unsustainable cultivation practices. The aim of this project is to identify drivers of spatial variability in soil GHG fluxes in a poplar SRWC plantation with special emphasis on the legacy effect of former land-use. The plantation has been established partly on former pasture and partly on former cropland, offering the unique opportunity to study soil GHG flux dynamics with respect to their dependency on former land-use type under identical climate and management conditions. The plantation is currently in its fifth vegetation season and in the first year of its third rotation. Simultaneous monitoring of soil CO2, CH4 and N2O fluxes will take place with a custom-made automated chamber system throughout the entire third rotation (three years) accompanied by soil gas concentration profile measurements. In parallel, community composition of functional groups of soil microorganisms (denitrifiers, ammonia oxidizers, methanogens) and total soil microbial biomass will be quantified at different developmental stages of the poplar plantation as well as in adjacent long-established and newly converted agricultural fields. The microbial community data will give a quantitative overview of the spatial variability of these functional groups in a highly patterned agricultural landscape and new insights into the effect of different types of disturbance events (e.g. land-use change, harvest) on the composition of functional groups of soil microorganisms and the time duration of possible acclimation effects. In combination with the soil GHG flux dataset, this research will result in new significant insights into the importance of environmental controls versus microbial community composition for soil GHG flux dynamics in bioenergy crops. The interpretation of the data will be aided by a vast database containing information on ecosystem GHG fluxes, soil CO2 fluxes, above-ground and below-ground biomass development, as well as groundwater chemistry, which has been collected since the establishment of the plantation in 2010 in the POPFULL project (http://webh01.ua.ac.be/popfull/). Funding from ERC Advanced Grant agreement (# 233366) POPFULL under the EC 7th Framework Programme (FP7/2007-2013), from the Flemish Hercules Foundation as Infrastructure contract # ZW09-06, and from the Methusalem Programme of the Flemish Government.

Görres, Carolyn-Monika; Ceulemans, Reinhart

2014-05-01

218

Effects of Endogenous Factors on Regional Land-Use Carbon Emissions Based on the Grossman Decomposition Model: A Case Study of Zhejiang Province, China  

NASA Astrophysics Data System (ADS)

The impact of land-use change on greenhouse gas emissions has become a core issue in current studies on global change and carbon cycle. However, a comprehensive evaluation of the effects of land-use changes on carbon emissions is very necessary. This paper attempted to apply the Grossman decomposition model to estimate the scale, structural, and management effects of land-use carbon emissions based on final energy consumption by establishing the relationship between the types of land use and carbon emissions in energy consumption. It was shown that land-use carbon emissions increase from 169.5624 million tons in 2000 to 637.0984 million tons in 2010, with an annual average growth rate of 14.15 %. Meanwhile, land-use carbon intensity increased from 17.59 t/ha in 2000 to 64.42 t/ha in 2010, with an average annual growth rate of 13.86 %. The results indicated that rapid industrialization and urbanization in Zhejiang Province promptly increased urban land and industrial land, which consequently affected land-use extensive emissions. The structural and management effects did not mitigate land-use carbon emissions. By contrast, both factors evidently affected the growth of carbon emissions because of the rigid demands of energy-intensive land-use types and the absence of land management. Results called for the policy implications of optimizing land-use structures and strengthening land-use management.

Wu, Cifang; Li, Guan; Yue, Wenze; Lu, Rucheng; Lu, Zhangwei; You, Heyuan

2015-02-01

219

Effects of endogenous factors on regional land-use carbon emissions based on the grossman decomposition model: a case study of zhejiang province, china.  

PubMed

The impact of land-use change on greenhouse gas emissions has become a core issue in current studies on global change and carbon cycle. However, a comprehensive evaluation of the effects of land-use changes on carbon emissions is very necessary. This paper attempted to apply the Grossman decomposition model to estimate the scale, structural, and management effects of land-use carbon emissions based on final energy consumption by establishing the relationship between the types of land use and carbon emissions in energy consumption. It was shown that land-use carbon emissions increase from 169.5624 million tons in 2000 to 637.0984 million tons in 2010, with an annual average growth rate of 14.15 %. Meanwhile, land-use carbon intensity increased from 17.59 t/ha in 2000 to 64.42 t/ha in 2010, with an average annual growth rate of 13.86 %. The results indicated that rapid industrialization and urbanization in Zhejiang Province promptly increased urban land and industrial land, which consequently affected land-use extensive emissions. The structural and management effects did not mitigate land-use carbon emissions. By contrast, both factors evidently affected the growth of carbon emissions because of the rigid demands of energy-intensive land-use types and the absence of land management. Results called for the policy implications of optimizing land-use structures and strengthening land-use management. PMID:25421995

Wu, Cifang; Li, Guan; Yue, Wenze; Lu, Rucheng; Lu, Zhangwei; You, Heyuan

2015-02-01

220

Land use of northern megalopolis  

NASA Technical Reports Server (NTRS)

The major objective is to map and digitize the land use of northern megalopolis, the states of Massachusetts, Connecticut, and Rhode Island, and to evaluate ERTS as a planning tool for megalopolitan areas. The southern New England region provides a good test ERTS's capabilities because of its complex landscape. Not only are there great differences in the degree of urban development, but in relief and vegetative cover as well.

Simpson, R. B.; Lindgren, D. T.

1973-01-01

221

Land use and climate variability amplify carbon, nutrient, and contaminant pulses: a review with management implications  

EPA Science Inventory

Nonpoint source pollution from agriculture and urbanization is increasing globally at the same time that climate extremes have increased in frequency and intensity. We review over 160 studies and show how the interaction between land use and climate variability alters the magnit...

222

Arbuscular mycorrhizal fungal communities in sub-Saharan savannas of Benin, West Africa, as affected by agricultural land use intensity and ecological zone.  

PubMed

The rapid decline of soil fertility of cultivated lands in the sub-Saharan savannas of West Africa is considered to be the main cause of the increasingly severe constraints of food production. The soils in this tropical area are highly fragile, and crop yields are limited by characteristically low levels of available phosphorus. Under such preconditions, the multiple benefits of the arbuscular mycorrhizal (AM) symbiosis are likely to play a pivotal role for maintaining natural soil fertility by enhancing plant nutrient use efficiency, plant health, and stabilization of a favorable soil structure. Thus, it is important to explore the impact of the commonly applied farming practices on the native AM fungal community. In the present study, we determined the AM fungal species composition in three ecological zones differing by an increasingly prolonged dry season from South to North, from the Southern Guinea Savanna (SG), to the Northern Guinea Savanna (NG), to the Sudan Savanna (SU). In each zone, four "natural" and four "cultivated" sites were selected. "Natural" sites were three natural forest savannas (at least 25-30 years old) and a long-term fallow (6-7 years old). "Cultivated" sites comprised a field with yam (Dioscorea spp.) established during the first year after forest clearance, a field under mixed cropping with maize (Zea mays) and peanut (Arachis hypogaea), a field under peanut, and a field under cotton (Gossypium hirsutum) which was the most intensively managed crop. Soil samples were collected towards the end of the wet season in each zone. AM fungal spores were extracted and morphologically identified. Soil subsamples were used to inoculate AM fungal trap cultures using Stylosanthes guianensis and Brachiaria humidicola as host plants to monitor AM root colonization and spore formation over 10 and 24 months, respectively. A total of 60 AM fungal species were detected, with only seven species sporulating in the trap cultures. Spore density and species richness were generally higher in the natural savannas and under yam than at the other cultivated sites and lowest under the intensively managed cotton. In the fallows, species richness was intermediate, indicating that the high richness of the natural savannas was not restored. Surprisingly, higher species richness was observed in the SU than in the SG and NG, mainly due to a high proportion of species in the Gigasporaceae, Acaulosporaceae, and Glomeraceae. We conclude that the West African savannas contain a high natural AM fungal species richness, but that this natural richness is significantly affected by the common agricultural land use practices and appears not to be quickly restored by fallow. PMID:18386078

Tchabi, Atti; Coyne, Danny; Hountondji, Fabien; Lawouin, Louis; Wiemken, Andres; Oehl, Fritz

2008-04-01

223

Remote Sensing Application to Land Use Classification in a Rapidly Changing Agricultural/Urban Area: City of Virginia Beach, Virginia. Ph.D. Thesis  

NASA Technical Reports Server (NTRS)

Remote sensing data on computer-compatible tapes of LANDSAT 1 multispectral scanner imager were analyzed to generate a land use map of the City of Virginia Beach. All four bands were used in both the supervised and unsupervised approaches with the LAYSYS software system. Color IR imagery of a U-2 flight of the same area was also digitized and two sample areas were analyzed via the unsupervised approach. The relationships between the mapped land use and the soils of the area were investigated. A land use land cover map at a scale of 1:24,000 was obtained from the supervised analysis of LANDSAT 1 data. It was concluded that machine analysis of remote sensing data to produce land use maps was feasible; that the LAYSYS software system was usable for this purpose; and that the machine analysis was capable of extracting detailed information from the relatively small scale LANDSAT data in a much shorter time without compromising accuracy.

Odenyo, V. A. O.

1975-01-01

224

Land use planning  

NASA Technical Reports Server (NTRS)

The organization, objectives, and accomplishments of the panel on Land Use Planning are reported. Technology developments, and projected developments are discussed along with anticipated information requirements. The issues for users, recommended remote sensing programs, and space systems are presented. It was found that remote sensing systems are useful in future land use planning. It is recommended that a change detection system for monitoring land use and critical environmental areas be developed by 1979.

1975-01-01

225

An integrated multi-criteria scenario evaluation web tool for participatory land-use planning in urbanized areas: The Ecosystem Portfolio Model  

USGS Publications Warehouse

Land-use land-cover change is one of the most important and direct drivers of changes in ecosystem functions and services. Given the complexity of the decision-making, there is a need for Internet-based decision support systems with scenario evaluation capabilities to help planners, resource managers and communities visualize, compare and consider trade-offs among the many values at stake in land use planning. This article presents details on an Ecosystem Portfolio Model (EPM) prototype that integrates ecological, socio-economic information and associated values of relevance to decision-makers and stakeholders. The EPM uses a multi-criteria scenario evaluation framework, Geographic Information Systems (GIS) analysis and spatially-explicit land-use/land-cover change-sensitive models to characterize changes in important land-cover related ecosystem values related to ecosystem services and functions, land parcel prices, and community quality-of-life (QoL) metrics. Parameters in the underlying models can be modified through the interface, allowing users in a facilitated group setting to explore simultaneously issues of scientific uncertainty and divergence in the preferences of stakeholders. One application of the South Florida EPM prototype reported in this article shows the modeled changes (which are significant) in aggregate ecological value, landscape patterns and fragmentation, biodiversity potential and ecological restoration potential for current land uses compared to the 2050 land-use scenario. Ongoing refinements to EPM, and future work especially in regard to modifiable sea level rise scenarios are also discussed.

Labiosa, Bill; Forney, William M.; Hearn, Paul P.; Hogan, Dianna M.; Strong, David R.; Swain, Eric D.; Esnard, Ann-Margaret; Mitsova-Boneva, D.; Bernknopf, R.; Pearlstine, Leonard; Gladwin, Hugh

2013-01-01

226

Using GIS to integrate the analysis of land-use, transportation, and the environment for managing urban growth based on transit oriented development in the metropolitan of Jabodetabek, Indonesia  

NASA Astrophysics Data System (ADS)

There is an interaction between land use, transportation, and environment in improving and managing urban quality. One of the concpets to integrate those three aspects is Transit Oriented Development (TOD). It is a concept for managing urban growth in transit corridors which have characteristics of mixed land use, compact, walkability, and development focused around public transit area. This research aims at utilizing GIS to organize, sort, and analyze spatial data including aspects of land use, transportation, and environment. Jabodetabek is a strategic metropolitan area in Indonesia, and consists of DKI Jakarta and the neighboring Bodetabek cities, with more than 27 million population in 2010. Approximately 1,105,000 people are entering Jakarta every workday from the negihboring Bodetabek region. The surge in the number of passenger cars and motorcycles is astonishing. In contrast, the usage of public transport has declined deeply. Public transport infrastructure development without the integration of TOD may not attain the objective of reducing car dependency. This paper discusses the study which was carried out to identify the applicability of TOD principles in Jabodetabek using GIS as a tool to analysis and create model.

Hasibuan, H. S.; Moersidik, S.; Koestoer, R.; Soemardi, T. P.

2014-02-01

227

Land use management in Minnesota  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. Preliminary analysis of bulk imagery suggests that the forty-acre data cell used in the Minnesota Land Management Information Systems (MLMIS) can be utilized in interpretation of ERTS-1 data. High quality bulk images of the Twin Cities metropolitan area suggest that detail in urban land use patterns is much greater than originally anticipated. This implies a greater work effort in this area than was planned. Furthermore, the forest classes of land use can also be usefully divided into subcategories. Preliminary analysis of one rather low quality image also indicates that subclasses of wetlands can be identified. Prospects are bright for improving the potential detail that ERTS-1 can contribute to MLMIS.

Sizer, J. E. (principal investigator)

1972-01-01

228

Global Consequences of Land Use  

NASA Astrophysics Data System (ADS)

Land use has generally been considered a local environmental issue, but it is becoming a force of global importance. Worldwide changes to forests, farmlands, waterways, and air are being driven by the need to provide food, fiber, water, and shelter to more than six billion people. Global croplands, pastures, plantations, and urban areas have expanded in recent decades, accompanied by large increases in energy, water, and fertilizer consumption, along with considerable losses of biodiversity. Such changes in land use have enabled humans to appropriate an increasing share of the planet's resources, but they also potentially undermine the capacity of ecosystems to sustain food production, maintain freshwater and forest resources, regulate climate and air quality, and ameliorate infectious diseases. We face the challenge of managing trade-offs between immediate human needs and maintaining the capacity of the biosphere to provide goods and services in the long term.

Foley, Jonathan A.; DeFries, Ruth; Asner, Gregory P.; Barford, Carol; Bonan, Gordon; Carpenter, Stephen R.; Chapin, F. Stuart; Coe, Michael T.; Daily, Gretchen C.; Gibbs, Holly K.; Helkowski, Joseph H.; Holloway, Tracey; Howard, Erica A.; Kucharik, Christopher J.; Monfreda, Chad; Patz, Jonathan A.; Prentice, I. Colin; Ramankutty, Navin; Snyder, Peter K.

2005-07-01

229

Mapping carbon storage in urban trees with multi-source remote sensing data: Relationships between biomass, land use, and demographics in  

E-print Network

online xxxx Editor: Simon Pollard Keywords: Urban tree canopy Vegetation biomass Carbon cycle demonstrates that 1) urban areas contain con- siderable tree carbon stocks; 2) canopy cover and biomass mayMapping carbon storage in urban trees with multi-source remote sensing data: Relationships between

Hutyra, Lucy R.

230

Relation of urban land-use and land-surface characteristics to quantity and quality of storm runoff in two basins in California  

USGS Publications Warehouse

Two basins (Castro Valley Creek, in Alameda County, and Strong Ranch Slough, in Sacramento County) in the San Francisco Bay and Sacramento-San Joaquin Delta region (Bay-Delta region) were sampled intensively (3-15 minute intervals) during three storms between October 1974 and April 1975. Both basins are primarily residential, but the Strong Ranch Slough basin is almost entirely urbanized and nearly flat, while the Castro Valley Creek basin possesses some rural areas and slopes greater than 70 percent in the headwaters. Water discharge and concentrations of suspended solids, chemical oxygen demand, 5-day biochemical oxygen demand, nitrite and nitrate, total Kjeldahl nitrogen, total orthophosphorus, and settleable matter were usually greater at the Castro Valley Creek basin than at the Strong Ranch Slough basin. Concentrations of these constituents and water discharge changed more rapidly at the Castro Valley Creek basin than at the Strong Ranch Slough basin. Of the four subbasins sampled (two in each basin), constituent concentrations in runoff from a residential subbasin were usually greatest. Quantity and quality of runoff were related to environmental characteristics such as slope, perviousness, residential development and maintenance, and channel conditions. Greater water discharge and concentrations of constituents in the Castro Valley Creek basin seem to be partly due to steeper slopes, less perviousness, and smaller residential lot sizes than are in the Strong Ranch Slough basin. Erosion of steep slopes disturbed by grazing and residential development, poorly maintained dwellings and lots, and a mostly earthen drainage channel in the Castro Valley Creek basin are probably responsible for the greater concentrations of suspended solids and settleable matter in runoff from this basin. In both basins, the highest observed concentrations of suspended solids, chemical oxygen demand, 5-day biochemical oxygen demand, settleable matter, total Kjeldahl nitrogen, and total orthophosphorus were observed at or near peak water discharges. Flow-weighted and arithmetic-mean concentrations of suspended solids in Castro Valley Creek exceed the arithmetic-mean concentration of suspended solids in medium-strength untreated sewage. These results indicate that control of urban storm runoff in the Bay-Delta region may be desirable to protect receiving water.

Sylvester, Marc A.; Brown, William M.

1978-01-01

231

1 Mapping carbon storage in urban trees with multi-source remote sensing 2 data: Relationships between biomass, land use, and demographics in  

E-print Network

online xxxx 23 24 Editor: Simon Pollard 25Q4 Keywords: 26 Urban tree canopy 27 Vegetation biomass 28U N C O R R E C T E D P R O O F 1 Mapping carbon storage in urban trees with multi-source remote · Used imagery and LiDAR to develop a high resolution urban biomass map for Boston, MA 11 · Tree carbon

Hutyra, Lucy R.

232

Quantitative analysis of urban sprawl in Tripoli using Pearson's Chi-Square statistics and urban expansion intensity index  

NASA Astrophysics Data System (ADS)

Urban expansion is a spatial phenomenon that reflects the increased level of importance of metropolises. The remotely sensed data and GIS have been widely used to study and analyze the process of urban expansions and their patterns. The capital of Libya (Tripoli) was selected to perform this study and to examine its urban growth patterns. Four satellite imageries of the study area in different dates (1984, 1996, 2002 and 2010) were used to conduct this research. The main goal of this work is identification and analyzes the urban sprawl of Tripoli metropolitan area. Urban expansion intensity index (UEII) and degree of freedom test were used to analyze and assess urban expansions in the area of study. The results show that Tripoli has sprawled urban expansion patterns; high urban expansion intensity index; and its urban development had high degree of freedom according to its urban expansion history during the time period (1984-2010). However, the novel proposed hypothesis used for zones division resulted in very good insight understanding of urban expansion direction and the effect of the distance from central business of district (CBD).

Al-sharif, Abubakr A. A.; Pradhan, Biswajeet; Zulhaidi Mohd Shafri, Helmi; Mansor, Shattri

2014-06-01

233

A Comparison of Natural and Urban Characteristics and the Development of Urban Intensity Indices Across Six Geographic Settings  

USGS Publications Warehouse

As part of the U.S. Geological Survey National Water-Quality Assessment Program, the effects of urbanization on stream ecosystems have been intensively investigated in six metropolitan areas in the United States. Approximately 30 watersheds in each area, ranging in size from 4 to 560 square kilometers (median is 50 square kilometers), and spanning a development gradient from very low to very high urbanization, were examined near Atlanta, Georgia; Raleigh, North Carolina; Denver, Colorado; Dallas-Fort Worth, Texas; Portland, Oregon; and Milwaukee-Green Bay, Wisconsin. These six studies are a continuation of three previous studies in Boston, Massachusetts; Birmingham, Alabama; and Salt Lake City, Utah. In each study, geographic information system data for approximately 300 variables were assembled to (a) characterize the environmental settings of the areas and (b) establish a consistent multimetric urban intensity index based on locally important land-cover, infrastructure, and socioeconomic variables. This paper describes the key features of urbanization and the urban intensity index for the study watersheds within each area, how they differ across study areas, and the relation between the environmental setting and the characteristics of urbanization. A number of features of urbanization were identified that correlated very strongly to population density in every study area. Of these, road density had the least variability across diverse geographic settings and most closely matched the multimetric nature of the urban intensity index. A common urban intensity index was derived that ranks watersheds across all six study areas. Differences in local natural settings and urban geography were challenging in (a) identifying consistent urban gradients in individual study areas and (b) creating a common urban intensity index that matched the site scores of the local urban intensity index in all areas. It is intended that the descriptions of the similarities and differences in urbanization and environmental settings across these study areas will provide a foundation for understanding and interpreting the effects of urbanization on stream ecosystems in the studies being conducted as part of the National Water-Quality Assessment Program.

Falcone, James; Stewart, Jana; Sobieszczyk, Steven; Dupree, Jean; McMahon, Gerard; Buell, Gary

2007-01-01

234

A comparison between developed and developing countries in terms of urban land use change effects on nitrogen cycle: Paris and São Paulo metropolitan areas  

Microsoft Academic Search

Urbanization is considered one of the most powerful and characteristic anthropogenic forces on Earth in the 21st century. Although, currently, cities occupy only about 2 percent of the Earth's land surface, they are home to over 50 percent of the world's population. While in cities of some developed countries, urban population might stabilize or even slightly decrease, its rate of

Gabriela Nardoto; Anastasia Svirejeva-Hopkin; Luiz Antonio Martinelli

2010-01-01

235

Use of an Urban Intensity Index to Assess Urban Effects on Streams in Three Contrasting Environmental Settings  

Microsoft Academic Search

To assess the effects of urbanization on assemblages (fish, invertebrate, and algal), physi- cal habitat, and water chemistry, we investigated the relations among varying intensities of basin urbanization and stream ecology in three metropolitan areas: the humid northeastern United States around Boston, Massachusetts; the humid southeastern United States around Birmingham, Ala- bama; and the semiarid western United States around Salt

CATHY M. TATE; THOMAS F. C UFFNEY; GERARD MCMAHON; ELISE M. P. GIDDINGS; HUMBERT ZAPPIA

236

Future land use plan  

SciTech Connect

The US Department of Energy`s (DOE) changing mission, coupled with the need to apply appropriate cleanup standards for current and future environmental restoration, prompted the need for a process to determine preferred Future Land Uses for DOE-owned sites. DOE began the ``Future Land Use`` initiative in 1994 to ensure that its cleanup efforts reflect the surrounding communities` interests in future land use. This plan presents the results of a study of stakeholder-preferred future land uses for the Brookhaven National Laboratory (BNL), located in central Long Island, New York. The plan gives the Laboratory`s view of its future development over the next 20 years, as well as land uses preferred by the community were BNL ever to cease operations as a national laboratory (the post-BNL scenario). The plan provides an overview of the physical features of the site including its history, topography, geology/hydrogeology, biological inventory, floodplains, wetlands, climate, and atmosphere. Utility systems and current environmental operations are described including waste management, waste water treatment, hazardous waste management, refuse disposal and ground water management. To complement the physical descriptions of the site, demographics are discussed, including overviews of the surrounding areas, laboratory population, and economic and non-economic impacts.

NONE

1995-08-31

237

Land-use Leakage  

SciTech Connect

Leakage occurs whenever actions to mitigate greenhouse gas emissions in one part of the world unleash countervailing forces elsewhere in the world so that reductions in global emissions are less than emissions mitigation in the mitigating region. While many researchers have examined the concept of industrial leakage, land-use policies can also result in leakage. We show that land-use leakage is potentially as large as or larger than industrial leakage. We identify two potential land-use leakage drivers, land-use policies and bioenergy. We distinguish between these two pathways and run numerical experiments for each. We also show that the land-use policy environment exerts a powerful influence on leakage and that under some policy designs leakage can be negative. International “offsets” are a potential mechanism to communicate emissions mitigation beyond the borders of emissions mitigating regions, but in a stabilization regime designed to limit radiative forcing to 3.7 2/m2, this also implies greater emissions mitigation commitments on the part of mitigating regions.

Calvin, Katherine V.; Edmonds, James A.; Clarke, Leon E.; Bond-Lamberty, Benjamin; Kim, Son H.; Wise, Marshall A.; Thomson, Allison M.; Kyle, G. Page

2009-12-01

238

An analysis of Milwaukee county land use  

NASA Technical Reports Server (NTRS)

The identification and classification of urban and suburban phenomena through analysis of remotely-acquired sensor data can provide information of great potential value to many regional analysts. Such classifications, particularly those using spectral data obtained from satellites such as the first Earth Resources Technology Satellite (ERTS-1) orbited by NASA, allow rapid frequent and accurate general land use inventories that are of value in many types of spatial analyses. In this study, Milwaukee County, Wisconsin was classified into several broad land use categories on the basis of computer analysis of four bands of ERTS spectral data (ERTS Frame Number E1017-16093). Categories identified were: (1) road-central business district, (2) grass (green vegetation), (3) suburban, (4) wooded suburb, (5) heavy industry, (6) inner city, and (7) water. Overall, 90 percent accuracy was attained in classification of these urban land use categories.

Todd, W. J.; Mausel, P. E.

1973-01-01

239

Land Use. Ag Ed Environmental Education Series.  

ERIC Educational Resources Information Center

Land use is the subject of the student resource unit to be used with high school vocational agriculture students. Uses of the land in an urban environment, suburban environment, rural environment (as cropland, forest, and others), recreation and parks, and other environments are described. The supply of and demand for land is discussed.…

Tulloch, Rodney W.

240

Energy and land use  

SciTech Connect

It is the purpose of this book - through its 27 essays - to build a foundation for the clear explication of the relationships between energy considerations and land-use planning. Toward this end, energy and land use may be defined as: land planning requirements to enhance energy supply and reduce energy demand. These requirements recognize both: (1) the influence and pervasiveness of past development trends; and (2) the necessity, in some instances, to redirect past trends. Further, energy-sensitive land planning will most enduringly be influenced through comprehensive state and local land-use controls that include energy considerations as a key element of their basic fabric. A separate abstract was prepared for the editor's introduction and each of the 27 essays. All of the abstracts will appear in Energy Abstracts for Policy Analysis (EAPA); five will appear in Energy Abstracts (ERA).

Burchell, R.W.; Listokin, D. (eds.)

1982-01-01

241

RESEARCH FOR MANAGING URBAN WATERSHED MICROBIAL CONTAMINATION (PROJECT 1: MANAGING URBAN WATERSHED PATHOGEN CONTAMINATION: 2. EFFECT OF LAND USE AND SEASON ON MICROORGANISM CONCENTRATION ON URBAN STORMWATER RUNOFF; 3. MICROORGANISM DIE-OFF RATES UNDER VARIOUS CONDITIONS.  

EPA Science Inventory

The Water Supply and Water Resources Division (WSWRD) developed a document entitled Managing Urban Watershed Pathogen Contamination (EPA 600/R-03/111). This document provides information to support specific steps of the total maximum daily load (TMDL) process for meeting water q...

242

Global Land Use History: A New Synthesis  

NASA Astrophysics Data System (ADS)

Human use of land has transformed the terrestrial biosphere, causing global changes in ecosystems, landscapes, biogeochemistry, climate, and biodiversity. This global transformation is commonly described as recent in human-environment history. Interdisciplinary paleo and historical data reconstructions and global land use and land cover modeling challenge this view, indicating that human use of land has been extensive and sustained for millennia, and may represent more of a recovery than an acceleration of land use in this century and beyond. Here we present a new global synthesis of recent scientific work on the emergence, history, and future of land use as a global force transforming the Earth system. Central to this synthesis is early human use of fire to engineer ecosystems and other systemic changes in land use dynamics, which together explain how relatively small human populations may have caused widespread and profound ecological changes early in the Holocene, while the largest human populations in history are associated with forests recovery across large regions. While quantitative global models of Holocene and even contemporary land use are still at early stage of development, improved land use histories and models that incorporate land change processes offer a more spatially detailed and accurate view of our planet's history, with a biosphere and perhaps even climate long ago affected by humans. The implicit view from the Anthropocene that humans have reached a historical moment in which "wild nature" is threatened is thus challenged by a view that humans are ancestral shapers and permanent stewards of Earth's terrestrial surface. Land use intensification processes have long sustained human interactions with the terrestrial biosphere, and they continue to evolve as populations grow and urbanize. While these processes are rapidly shifting from their historic patterns in both scale and type, integrative land use and land cover models that incorporate dynamics in human-environment relations help advance our understanding of both past and future land use changes and their global effects.

Ellis, E. C.

2011-12-01

243

Land Use and Nitrogen  

NSDL National Science Digital Library

In this lesson students explore the impacts of concentrated development and sprawl on water quality and land use. The concept of a watershed is introduced, along with information on basins and tributaries and the impacts of growth and nitrogen loading. The students are able to develop a plan to reduce nitrogen runoff to a targeted level. Several handouts and maps are included.

244

Industrial land-use efficiency and planning in Shunyi, Beijing  

Microsoft Academic Search

With significant socioeconomic development and a growing population, promoting land-use efficiency is, and will remain, the crucial land-use planning issue in China. This study analyzed the characteristics of land-use intensity and programmed industrial land-use planning. The data used in this study were collected from interviews with enterprises, the land registry, administrative committees of the development zones, the first distribution record

Yuan Meng; Feng-Rong Zhang; Ping-Li An; Ma-Li Dong; Zhao-Yu Wang; Tingting Zhao

2008-01-01

245

Influence of watershed-climate interactions on stream temperature, sediment yield, and metabolism along a land use intensity gradient in Indonesian Borneo  

NASA Astrophysics Data System (ADS)

Oil palm plantation expansion into tropical forests may alter physical and biogeochemical inputs to streams, thereby changing hydrological function. In West Kalimantan, Indonesia, we assessed streams draining watersheds characterized by five land uses: intact forest, logged forest, mixed agroforest, and young (<3 years) and mature (>10 years) oil palm plantation. We quantified suspended sediments, stream temperature, and metabolism using high-frequency submersible sonde measurements during month-long intervals between 2009 and 2012. Streams draining oil palm plantations had markedly higher sediment concentrations and yields, and stream temperatures, compared to other streams. Mean sediment concentrations were fourfold to 550-fold greater in young oil palm than in all other streams and remained elevated even under base flow conditions. After controlling for precipitation, the mature oil palm stream exhibited significantly greater sediment yield than other streams. Young and mature oil palm streams were 3.9°C and 3.0°C warmer than the intact forest stream (25°C). Across all streams, base flow periods were significantly warmer than times of stormflow, and these differences were especially large in oil palm catchments. Ecosystem respiration rates were also influenced by low precipitation. During an El Niño-Southern Oscillation-associated drought, the mature oil palm stream consumed a maximum 21 g O2 m-2 d-1 in ecosystem respiration, in contrast with 2.8 ± 3.1 g O2 m-2 d-1 during nondrought sampling. Given that 23% of Kalimantan's land area is occupied by watersheds similar to those studied here, our findings inform potential hydrologic outcomes of regional periodic drought coupled with continued oil palm plantation expansion.

Carlson, Kimberly M.; Curran, Lisa M.; Ponette-González, Alexandra G.; Ratnasari, Dessy; Ruspita; Lisnawati, Neli; Purwanto, Yadi; Brauman, Kate A.; Raymond, Peter A.

2014-06-01

246

Urban and regional land use analysis: CARETS and Census Cities experiment package. [Pennsylvania, New Jersey, Delaware, Maryland, Virginia, District of Columbia, Washington, California  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. A number of likely applications and follow-on analyses are suggested by the census cities evaluation of ERTS-1 and Skylab data. Some of these applications are: (1) estimate water use requirements; (2) define urban expansion; (3) document the pattern of residential development and assess quality of residential environment: (4) project future population densities, and estimate changes in population distribution between censuses; (5) assess environmental impact resulting from gradual as well as catastrophic changes.

Alexander, R. (principal investigator); Lins, H. F., Jr.; Wray, J. R.

1974-01-01

247

Modeling historical changes in nutrient delivery and water quality of the Zenne River (1790s-2010): The role of land use, waterscape and urban wastewater management  

NASA Astrophysics Data System (ADS)

The Seneque/Riverstrahler model has been used to explore the effect of human-induced changes in drainage network morphology and land use on organic and nutrient pollutions, for the last 20 years and back to the 1890s and 1790s. With the development of human civilization, past environmental constraints differed compared to today. Research has sought to reconstruct (i) point sources (domestic and industrial), using statistics and archives from these periods, and (ii) diffuse sources via landscape and riverscape analysis based both on maps and agricultural statistics from the periods concerned.This study shows that a maximum of pollution occurred in the 1890s at the height of the industrial period, due more to the industrial load than to the domestic load. This substantial organic and nutrient pollution might have lasted up to very recently, when the Brussels Northern wastewater treatment plant began operation in 2007, significantly reducing the organic and nutrient load of the Zenne River, returning to a background pollution level assessed herein for the 1790s before industrialization expanded.

Garnier, Josette; Brion, Natacha; Callens, Julie; Passy, Paul; Deligne, Chloé; Billen, Gilles; Servais, Pierre; Billen, Claire

2013-12-01

248

Land use and energy  

SciTech Connect

This report provides estimates of the amount of land required by past and future energy development in the United States and examines major federal legislation that regulates the impact of energy facilities on land use. An example of one land use issue associated with energy development - the potential conflict between surface mining and agriculture - is illustrated by describing the actual and projected changes in land use caused by coal mining in western Indiana. Energy activities addressed in the report include extraction of coal, oil, natural gas, uranium, oil shale, and geothermal steam; uranium processing; preparation of synfuels from coal; oil refineries; fossil-fuel, nuclear, and hydro-electric power plants; biomass energy farms; and disposal of solid wastes generated during combustion of fossil fuels. Approximately 1.1 to 3.3 x 10/sup 6/ acres were devoted to these activities in the United States in 1975. As much as 1.8 to 2.0 x 10/sup 6/ additional acres could be required by 1990 for new, nonbiomass energy development. The production of grain for fuel ethanol could require an additional 16.9 to 55.7 x 10/sup 6/ acres by 1990. Federal laws that directly or indirectly regulate the land-use impacts of energy facilities include the National Environmental Protection Act, Clean Air Act, Federal Water Pollution Control Act, Surface Mining Control and Reclamation Act, and Coastal Zone Management Act. The major provisions of these acts, other relevant federal regulations, and similar state and local regulatons are described in this report. Federal legislation relating to air quality, water quality, and the management of public lands has the greatest potential to influence the location and timing of future energy development in the United States.

Robeck, K.E.; Ballou, S.W.; South, D.W.; Davis, M.J.; Chiu, S.Y.; Baker, J.E.; Dauzvardis, P.A.; Garvey, D.B.; Torpy, M.F.

1980-07-01

249

USING THE EARTHQUAKE ENGINEERING INTENSITY SCALE TO IMPROVE URBAN AREA EARTHQUAKE EMERGENCY RESPONSE  

E-print Network

USING THE EARTHQUAKE ENGINEERING INTENSITY SCALE TO IMPROVE URBAN AREA EARTHQUAKE EMERGENCY distribution estimation of earthquake damage in building stocks is presented. The purpose is to start a strong urban area earthquake. We used a pair of ground motion and building-tag color databases

Irfanoglu, Ayhan

250

Energy and land use  

SciTech Connect

This report addresses the land use impacts of past and future energy development and summarizes the major federal and state legislation which influences the potential land use impacts of energy facilities and can thus influence the locations and timing of energy development. In addition, this report describes and presents the data which are used to measure, and in some cases, predict the potential conflicts between energy development and alternative uses of the nation's land resources. The topics section of this report is divided into three parts. The first part describes the myriad of federal, state and local legislation which have a direct or indirect impact upon the use of land for energy development. The second part addresses the potential land use impacts associated with the extraction, conversion and combustion of energy resources, as well as the disposal of wastes generated by these processes. The third part discusses the conflicts that might arise between agriculture and energy development as projected under a number of DOE mid-term (1990) energy supply and demand scenarios.

Not Available

1981-12-01

251

Development and Applications of a Comprehensive Land Use Classification and Map for the US  

PubMed Central

Land cover maps reasonably depict areas that are strongly converted by human activities, but typically are unable to resolve low-density but widespread development patterns. Data products specifically designed to resolve land uses complement land cover datasets and likely improve our ability to understand the extent and complexity of human modification. Methods for developing a comprehensive land use classification system are described, and a map of land use for the conterminous United States is presented to reveal what we are doing on the land. The comprehensive, detailed and high-resolution dataset was developed through spatial analysis of nearly two-dozen publicly-available, national spatial datasets – predominately based on census housing, employment, and infrastructure, as well as land cover from satellite imagery. This effort resulted in 79 land use classes that fit within five main land use groups: built-up, production, recreation, conservation, and water. Key findings from this study are that built-up areas occupy 13.6% of mainland US, but that the majority of this occurs as low-density exurban/rural residential (9.1% of the US), while more intensive built-up land uses occupy 4.5%. For every acre of urban and suburban residential land, there are 0.13 commercial, 0.07 industrial, 0.48 institutional, and 0.29 acres of interstates/highways. This database can be used to address a variety of natural resource applications, and I provide three examples here: an entropy index of the diversity of land uses for smart-growth planning, a power-law scaling of metropolitan area population to developed footprint, and identifying potential conflict areas by delineating the urban interface. PMID:24728210

Theobald, David M.

2014-01-01

252

Land Use Change in Phoenix, Arizona-- Remote Sensing Lesson  

NSDL National Science Digital Library

This lesson examines land use in Phoenix, Arizona; specifically, the lesson gives students the opportunity to look at land use change in an urban environment. South Phoenix has experienced rapid urbanization in the last 15 years. ArcGIS 9.3, ENVI 4.5 and the internet (to access Landsat Data) are utilized in this exercise. A learning unit summary, instructor and student guides and supporting documents are included. A quick, free login is required to view or download the materials.

253

IDAHO LAND USE  

EPA Science Inventory

Use groupings are: Surface gravity irrigation, Sprinkler irrigation, Dryland agriculture, Rangeland, Forest, Exposed rock, Riparian, Urban, Water. Easily incorporated into maps at the region to watershed level. Too coarse for site-scale applications. Scale: 1:500,000. Major ...

254

Incorporating Land-Use Mapping Uncertainty in Remote Sensing Based Calibration of Land-Use Change Models  

NASA Astrophysics Data System (ADS)

Building urban growth models typically involves a process of historic calibration based on historic time series of land-use maps, usually obtained from satellite imagery. Both the remote sensing data analysis to infer land use and the subsequent modelling of land-use change are subject to uncertainties, which may have an impact on the accuracy of future land-use predictions. Our research aims to quantify and reduce these uncertainties by means of a particle filter data assimilation approach that incorporates uncertainty in land-use mapping and land-use model parameter assessment into the calibration process. This paper focuses on part of this work, more in particular the modelling of uncertainties associated with the impervious surface cover estimation and urban land-use classification adopted in the land-use mapping approach. Both stages are submitted to a Monte Carlo simulation to assess their relative contribution to and their combined impact on the uncertainty in the derived land-use maps. The approach was applied on the central part of the Flanders region (Belgium), using a time-series of Landsat/SPOT-HRV data covering the years 1987, 1996, 2005 and 2012. Although the most likely land-use map obtained from the simulation is very similar to the original classification, it is shown that the errors related to the impervious surface sub-pixel fraction estimation have a strong impact on the land-use map's uncertainty. Hence, incorporating uncertainty in the land-use change model calibration through particle filter data assimilation is proposed to address the uncertainty observed in the derived land-use maps and to reduce uncertainty in future land-use predictions.

Cockx, K.; Van de Voorde, T.; Canters, F.; Poelmans, L.; Uljee, I.; Engelen, G.; de Jong, K.; Karssenberg, D.; van der Kwast, J.

2013-05-01

255

Modeling enzootic raccoon rabies from land use patterns - Georgia (USA) 2006-2010  

PubMed Central

We analyzed how land-use patterns and changes in urbanization influence reported rabid raccoons in Georgia from 2006 - 2010.  Using Geographical Information Systems and rabies surveillance data, multivariate analysis was conducted on 15 land-use variables that included natural topography, agricultural development, and urbanization to model positive raccoon rabies cases while controlling for potential raccoon submission bias associated with higher human population densities.  Low intensity residential development was positively associated with reported rabid raccoons while a negative association was found with evergreen forest.  Evergreen forests may offer a barrier effect where resources are low and raccoon populations are not supported.  Areas with pure stands of upland evergreen forest might be utilized in baiting strategies for oral rabies vaccination programs where fewer or no baits may be needed.  Their use as a barrier should be considered carefully in a cost-effective strategy for oral rabies vaccination (ORV) programs to contain the western spread of this important zoonotic disease. PMID:24715971

Duke, John E.

2014-01-01

256

Modeling enzootic raccoon rabies from land use patterns - Georgia (USA) 2006-2010.  

PubMed

We analyzed how land-use patterns and changes in urbanization influence reported rabid raccoons in Georgia from 2006 - 2010.  Using Geographical Information Systems and rabies surveillance data, multivariate analysis was conducted on 15 land-use variables that included natural topography, agricultural development, and urbanization to model positive raccoon rabies cases while controlling for potential raccoon submission bias associated with higher human population densities.  Low intensity residential development was positively associated with reported rabid raccoons while a negative association was found with evergreen forest.  Evergreen forests may offer a barrier effect where resources are low and raccoon populations are not supported.  Areas with pure stands of upland evergreen forest might be utilized in baiting strategies for oral rabies vaccination programs where fewer or no baits may be needed.  Their use as a barrier should be considered carefully in a cost-effective strategy for oral rabies vaccination (ORV) programs to contain the western spread of this important zoonotic disease. PMID:24715971

Duke, John E; Blanton, Jesse D; Ivey, Melissa; Rupprecht, Charles

2013-01-01

257

Monitoring land use change using remote sensing and GIS  

NASA Astrophysics Data System (ADS)

Rapid land use change has take place in Wuhan, the largest mega-city in central China during the last decade. Remotely sensed imagery together with geographical information system have long been utilized to monitor spatial and temporal land use change. The aim of this paper is to find out the land use change and the trend of urban growth in Wuhan, China using satellite images. The Landsat TM image acquired in 1991 and the Landsat ETM image acquired in 2002 were used to monitor land use change in Wuhan. The images were geo-referenced according to Gauss-Kruger projection with Krasovsky spheroid, by using 1:50, 000 topographical maps. The image processing is implemented by using Erdas Imagine package. The RMS error has been controlled under the limit of 1 pixel. The geo-referenced images were classified as seven land use types: cultivated land, forest land, grassland, urban and villages, transportation, water bodies and barren land. Two land use maps were produced for each date. The geo-referenced, classified images were compared pixel by pixel to locate and quantify land use changes that took place from 1991 to 2002 period. The further change detection analysis in a later stage is performed in ArcGIS. The transition matrix was produced and the quantitative information on the size of land use change from one type to another was compiles. The results of study indicate that the conversion of land use from cultivated land to urban was prominent, the rapid urban sprawl has occupied lots of cultivated land and water bodies, the urban area significantly increased 30%, most of which are converted from cultivated land. these valuable cultivated land need careful protection by providing land use plans to guide urban growth going toward the right directions. The results obtained from this application also indicate that the use of satellite imageries is very useful for mapping land use changes, and the monitoring land use change is essential for land use planning and urban sustainable development.

Xie, Yunlin; Peng, Mingjun

2008-12-01

258

Microclimates in a desert city were related to land use and vegetation index  

Microsoft Academic Search

A heterogeneous patchwork mosaic of soil, vegetation, and built surfaces that result from a variety of urban land uses cause urban microclimates within cities. We studied the seasonal relationships of land use, urban plant cover and microclimate in Phoenix, Arizona, USA, metropolitan. Early morning (0500 HR) and afternoon (1500 HR) near-surface temperatures and humidities were measured along multiple transects in

Linda B. Stabler; Chris A. Martin; Anthony J. Brazel

2005-01-01

259

Scaling the land use system  

Microsoft Academic Search

IntroductionThere is a growing demand for quantitative information on actual land use\\/land cover and their future changes in space and time. Particularly during the last decade, land use and land cover change have become important issues. Besides local and direct effects like loss of biodiversity through deforestation or soil degradation through unsustainable land use, increasing importance is given to the

K. Kok

2001-01-01

260

LAND USE AND NATURAL RESOURCES  

E-print Network

1 LAND USE AND NATURAL RESOURCES CONTINUING AND PROFESSIONAL EDUCATION SUMMER 2013 Including in a white Cadillac. It was worth the trip. We in the Land Use and Natural Resources and Sustainability Lave Johnston Director, Land Use and Natural Resources Department UC Davis Extension #12;3 CONTENTS

Ferrara, Katherine W.

261

Analysis of urban land use in the megacity of Dhaka, Bangladesh: Roof-top detection in the context of assessing solar photovoltaic potential  

NASA Astrophysics Data System (ADS)

The megacity of Dhaka, Bangladesh is considered to be one of the world’s fastest growing urban centers. With nearly 14 million people Dhaka currently faces tremendous power crisis. The available power supply of Dhaka Megacity is currently 1000-1200 MW against the maximum demand of nearly 2000 MW. The objective of this study is to classify land cover of Dhaka to locate roof-top areas which are adequate for solar photovoltaic applications. Usually this task is performed with additional building-heights data. With lack of that, we present an object-based classification approach which is based on high resolution Quickbird data only. Extensive formal buildings in Dhaka mostly have flat roof-tops made from concrete which are well suited for PV applications. The classification is focused to detect these ‘Bright Roof-Tops’ to assess a lower limit for potential PV areas. With that conservative approach bright roof-top areas of 10.554 km2 out of the city’s 134.282 km2 could be found. The overall classification accuracy is 0.918, the producer’s accuracy of ‘Bright Roof-Tops’ is 0.833. Preliminary result of the PhD work of Humayun Kabir indicates that the application of only 75 Wp stand-alone solar modules on these available bright roof-tops can generate nearly 1,000 MW of electricity. The application of solar modules with high capacity (i.e., >200 Wp) preferably through grid-connected PV systems can substantially meet-up the city’s power demand, although several techno-economic and socio-political factors are certainly involved.

Jaegermeyr, J.; Kabir, H.; Endlicher, W.

2009-12-01

262

Modelling the impacts of coastal hazards on land-use development  

NASA Astrophysics Data System (ADS)

Approximately 10% of the world's population live in close proximity to the coast and are potentially susceptible to tropical or extra-tropical storm-surge events. These events will be exacerbated by projected sea-level rise (SLR) in the 21st century. Accelerated SLR is one of the more certain impacts of global warming and can have major effects on humans and ecosystems. Of particular vulnerability are densely populated coastal urban centres containing globally important commercial resources, with assets in the billions USD. Moreover, the rates of growth of coastal populations, which are reported to be growing faster than the global means, are leading to increased human exposure to coastal hazards. Consequently, potential impacts of coastal hazards can be significant in the future and will depend on various factors but actual impacts can be considerably reduced by appropriate human decisions on coastal land-use management. At the regional scale, it is therefore necessary to identify which coastal areas are vulnerable to these events and explore potential long-term responses reflected in land usage. Land-use change modelling is a technique which has been extensively used in recent years for studying the processes and mechanisms that govern the evolution of land use and which can potentially provide valuable information related to the future coastal development of regions that are vulnerable to physical forcings. Although studies have utilized land-use classification maps to determine the impact of sea-level rise, few use land-use projections to make these assessments, and none have considered adaptive behaviour of coastal dwellers exposed to hazards. In this study a land-use change model, which is based on artificial neural networks (ANN), was employed for predicting coastal urban and agricultural development. The model uses as inputs a series of spatial layers, which include information on population distribution, transportation networks, existing urban centres, and which are assumed as proxies for the natural, environmental and socio-economic parameters that drive the development of land use. Furthermore, using projected sea-level rise estimates, tropical storm surge maps, and tropical storm records rule sets are constructed, whereby frequently flooded urban residents may employ adaptive spatial behaviour leading to the abandonment of exposed land and migration to more suitable areas. In this context, different responses of residents to frequent flooding are explored and the impact of these responses to future land-use development is assessed. The model has been applied to the region of south Florida, USA, which is heavily impacted by tropical storm-surge events and is particularly vulnerable to sea-level rise. A large number of simulations were performed exploring the evolution of land use in the next 100 years under different scenarios of possible increases in hurricane intensity, and local relative sea-level rise. Furthermore, various rule sets were employed reflecting urban residents' willingness to migrate based on the intensity and frequency of flooding and the availability of economic resources to rebuild. The results of this application are expected to give insights into the response, in terms of land-use development, of the natural and socio-economic system to these hazards and thus to provide useful information for land-use planning at regional scale.

Ramirez, J.; Vafeidis, A. T.

2009-04-01

263

The dynamics of land use change and tenure systems in Sub-Saharan Africa cities; learning from Himo community protest, conflict and interest in urban planning practice in Tanzania  

Microsoft Academic Search

This paper analyses local communities' involvement in land use planning to regulate land use change and customary land tenure challenges in a rapidly expanding city in Tanzania. It takes Himo settlement in Kilimanjaro in Sub-Saharan Africa as a case study. It analyses, on the one hand, how those excluded from the land use planning process articulated their interests in the

W. Magigi; A. W. Drescher

2010-01-01

264

Land use of northern megalopolis from ERTS-1 imagery  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. The preliminary map of land use of Rhode Island is believed to be the first urban-type land use map ever made from satellite imagery, and its preparation a significant scientific result for ERTS-1. Eight categories of land use were differentiated at a scale of 1:250,000 including 3 categories of residential area: single family and multiple/mixed urban types, plus a residential and open space rural one. This compares favorably with RB-57 mapping experience in which, mapping at 1:120,000 from photography taken from 60,000 feet, 11 basic categories of land use were discriminated. From ERTS, the urban cores of cities down to 7,000 population, and commercial and industrial sites down to 800 feet square, were consistently discriminated.

Simpson, R. B. (principal investigator)

1972-01-01

265

Change in agricultural land use constrains adaptation of national wildlife refuges to climate change  

USGS Publications Warehouse

Land-use change around protected areas limits their ability to conserve biodiversity by altering ecological processes such as natural hydrologic and disturbance regimes, facilitating species invasions, and interfering with dispersal of organisms. This paper informs USA National Wildlife Refuge System conservation planning by predicting future land-use change on lands within 25 km distance of 461 refuges in the USA using an econometric model. The model contained two differing policy scenarios, namely a ‘business-as-usual’ scenario and a ‘pro-agriculture’ scenario. Regardless of scenario, by 2051, forest cover and urban land use were predicted to increase around refuges, while the extent of range and pasture was predicted to decrease; cropland use decreased under the business-as-usual scenario, but increased under the pro-agriculture scenario. Increasing agricultural land value under the pro-agriculture scenario slowed an expected increase in forest around refuges, and doubled the rate of range and pasture loss. Intensity of land-use change on lands surrounding refuges differed by regions. Regional differences among scenarios revealed that an understanding of regional and local land-use dynamics and management options was an essential requirement to effectively manage these conserved lands. Such knowledge is particularly important given the predicted need to adapt to a changing global climate.

Hamilton, Christopher M.; Thogmartin, Wayne E.; Radeloff, Volker C.; Plantinga, Andrew J.; Heglund, Patricia J.; Martinuzzi, Sebastian; Pidgeon, Anna M.

2015-01-01

266

Land use impacts on trace metal concentrations of suburban stream sediments in the Helsinki region, Finland.  

PubMed

The purpose of this study was to statistically analyze the effect of different suburban land use types on trace metal contamination of suburban streams. Acid extractable metal concentrations (Cu, Zn, Pb, Cd) of stream bed sediments (<63 ?m) and high-flow suspended sediments were determined for 61 suburban and six baseline catchments in the Helsinki metropolitan region, Finland. Our results showed that the average suburban metal concentrations were 3-5-fold compared to baseline values for stream bed sediments and 2-9-fold for suspended sediments. Correlation analyses revealed moderate relationships between the land use parameters of the contributing catchment and the metal concentrations. Metals, particularly Zn and Cu, were most strongly correlated with proportions of dense suburban land use and imperviousness. In addition, industrial land use appeared to be particularly important for describing the variations of suspended sediment metal concentrations. Our findings present statistical evidence that the intensity of urbanization and industrial land use provides an indication of metal contamination even within the suburban environment. PMID:23602975

Kuusisto-Hjort, Paula; Hjort, Jan

2013-07-01

267

Land Use Intensity Controls Actinobacterial Community Structure  

Microsoft Academic Search

Actinobacteria are major producers of secondary metabolites; however, it is unclear how they are distributed in the environment.\\u000a DNA was extracted from forest, pasture and cultivated soils, street sediments (dust and material in place), and sediments\\u000a affected by animal activity (e.g. guano, vermicompost) and characterised with two actinobacterial and a bacterial-specific\\u000a 16S rDNA primer set. Amplicons (140\\/156) generated with the

Patrick Hill; Václav Krišt?fek; Lubbert Dijkhuizen; Christopher Boddy; David Kroetsch; Jan Dirk van Elsas

2011-01-01

268

[Spatiotemporal characteristics of urban land expansion in central area of Shanghai, China].  

PubMed

Using the high spatial resolution (2.5 m) color-infrared aerial photos acquired in 1989, 1994, 2000 and 2005, this paper analyzed the spatiotemporal characteristics of rapid urban expansion in central Shanghai with urban expansion intensity index and gradient analysis. Results showed that urban land use in Shanghai increased rapidly in a "pancake" style during the study period, and the anisotropic urban expansion moved the urban center 2.62 km toward southwest. The urban land use expansion intensity doubled and showed a rural-urban gradient. The most intensive urban expansion zone fell in the rural-urban transition zone, indicating the dominance of peripheral expansion as the primary urban expansion mode in Shanghai. However, the urban land use intensity decreased with time at the urban center. The primary driving forces of urban expansion included support from government policies and decision-making, enhanced economic activities, societal fixed assets investment, urban infrastructure investment, extension of transportation routes, as well as increase in urban population. PMID:24697062

Hu, Han-Wen; Wei, Ben-Sheng; Shen, Xing-Hua; Li, Jun-Xiang

2013-12-01

269

The influence of land use change on landslide susceptibility zonation: the Briga catchment test site (Messina, Italy)  

NASA Astrophysics Data System (ADS)

Landslides spatial distribution and frequency are the consequence of different meteorological conditions, the land use and environmental settings including topographical, morphological, hydrological, lithology. Lithology and structure change over periods of millions of years, morphology varies rapidly or over a period of centuries if mass wasting processes are consistent, climate, and land use change seasonally or over a period of decades. In this work we have attempted to evaluate the influence of land use change in a period of about 60 years on landslide spatial distribution occurrence (susceptibility) for the Briga catchment test site. The Briga basin is located along the Ionian coast of Sicily (SW of Messina, Italy). On 1 October 2009, the area was hit by a high intensity rainfall event that triggered abundant slope failures, and resulted in widespread erosion and deposition of debris along ephemeral drainage channels. After the storm, an accurate event landslide inventory map was made for the catchment and a pre-event landslide map was prepared using aerial photographs. For the test area two different land use maps were realized. The first was obtained through a semi-automatic classification of a digitized aerial photographs acquired during the year 1954, the second through the combination of supervised classifications of two QuickBird images acquired in 2006 and 2009. Exploiting the two different land use maps, different susceptibility zonations were prepared through a multivariate statistical analysis of a set of morphological and land use information. Differences in the susceptibility models were analyzed to identify: i) land use change effects on the landslide susceptibility; ii) the influence of human action on the land use change and iii) the consequences of land use change on landslide vulnerability and risk. Preliminary results show an overall increase of the susceptibility, probably due to the increase of bare soil to the detriment of forested areas, mainly in correspondence of pre-existing and new urban areas.

Reichenbach, Paola; Busca, Claudia; Mondini, Alessandro; Rossi, Mauro

2013-04-01

270

How Will America Grow? A Citizen Guide to Land-Use Planning.  

ERIC Educational Resources Information Center

Citizens are encouraged to learn about and become involved in land use and growth issues in their communities. Intended as a follow-up of an earlier report by the Committee's Task Force on Land Use and Urban Growth which outlined philosophical, legal, and policy aspects of land-use planning, the document suggests planning guidelines for citizen…

Citizens Advisory Committee on Environmental Quality.

271

Forecasting the Effects of Land-Use Change on Forest Rodents in Indiana  

Microsoft Academic Search

Forest cover in the upper Wabash River basin in Indiana was fragmented due to agricultural conversion beginning more than 175 years ago. Currently, urban expansion is an important driver of land-use change in the basin. A land transformation model was applied to the basin to forecast land use from 2000 to 2020. We assessed the effect of this projected land-use

Carol E. Rizkalla; Robert K. Swihart

2009-01-01

272

Identifying Stormwater Pollution Sources from Land Use Deconstruction Using Digital Image Processing  

E-print Network

Identifying Stormwater Pollution Sources from Land Use Deconstruction Using Digital Image affecting stormwater pollution concentrations in order to identify major pollution sources of the land uses. The results will identify the actual sources of stormwater pollution from urban land uses and provide

Mountziaris, T. J.

273

Land Use and Land Cover Change in Guangzhou, China, from 1998 to 2003, Based on Landsat TM /ETM+ Imagery  

PubMed Central

Land use and land cover change is a major issue in global environment change, and is especially significant in rapidly developing regions in the world. With its economic development, population growth, and urbanization, Guangzhou, a major metropolitan in South China, have experienced a dramatic land use and land cover (LULC) change over the past 30 years. Fast LULC change have resulted in degradation of its ecosystems and affected adversely the environment. It is urgently needed to monitor its LULC changes and to analyses the consequences of these changes in order to provide information for policymakers to support sustainable development. This study employed two Landsat TM/ETM+ images in the dry season to detect LULC patterns in 1998 and 2003, and to examine LULC changes during the period from 1998 to 2003. The type, rate, and pattern of the changes among five counties of Guangzhou Municipality were analyzed in details by post-classification method. LULC conversion matrix was produced for each county in order to explore and explain the urban expansion and cropland loss, the most significant types of LULC change. Land use conversion matrixes of five counties were discussed respectively in order to explore and explain the inherence of land use change. The results showed that urban expansion in these five counties kept an even rate of increase, while substantial amount of cropland vanished during the period. It is also noted that the conversion between cropland and orchard land was intensive. Forest land became the main source of new croplands.

Fan, Fenglei; Weng, Qihao; Wang, Yunpeng

2007-01-01

274

High resolution scenarios of land-use and land-cover change for the conterminous United States  

NASA Astrophysics Data System (ADS)

We describe a series of high resolution maps of past and projected changes in land use and land cover (LULC) for the conterminous United States for the period 1992 to 2100. Four scenarios from the Intergovernmental Panel on Climate Change's (IPCC) Special Report on Emission Scenarios (SRES) were used to create annual maps showing spatially explicit change in 15 LULC classes at a spatial resolution of 250 meters. A modular land-use modeling approach was utilized with distinct demand and spatial allocation components. To quantify demand for future LULC change (i.e. the quantity of changes in land use and land cover classes), a scenario downscaling model was developed to extend global scenarios from the IPCC to hierarchically nested ecoregions of the U.S. The Forecasting Scenarios (FORE-SCE) land use model was then employed to allocate scenario demand on the landscape. Both models were parameterized at the ecoregion scale and relied extensively on land use histories and expert knowledge. Results reveal large differences across IPCC-SRES scenarios. Scenarios prioritizing economic development over environmental protection result in the highest rates of LULC change, particularly in regions with extensive forest management, large urban areas, and/or large investments in agricultural land. Scenarios where environmental protection is emphasized result in slower rates of change and less intensity in regional land use patterns.

Sleeter, B. M.; Sohl, T. L.; Bouchard, M. A.; Reker, R. R.; Sayler, K.; Sleeter, R.; Soulard, C. E.; Wilson, T. S.

2012-12-01

275

Land use of northern megalopolis from ERTS-1 imagery  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. A color-coded urban-type land use map of the three northern megalopolitan states of Massachusetts, Connecticut, and Rhode Island has been completed from ERTS-1 images. A computer data bank containing 11 categories of land use for the entire area by 1/4-square-kilometer cells is 80% completed. When completed, the data bank will permit the investigation to proceed to brief analytical studies for completion of the study.

Simpson, R. B. (principal investigator)

1973-01-01

276

Synthesis of China's land use in the past 300 years  

NASA Astrophysics Data System (ADS)

China's land use has undergone many changes over the past 300 years due to the significant transformations caused by natural and human factors and their impact on regional climate and the environment. This comprehensive review of recent state-of-the-art studies of China's land-use changes during that period concentrates on cropland, forest, grassland and urban areas. While most small-scale studies have reconstructed information from historical archive data and focused on a specific time period, large-scale studies have tended to rely on inverse modeling techniques to interpret land-use change dynamics based on remote-sensing data for example, the global land-use products of the History Database of the Global Environment (HYDE) and Center for Sustainability and the Global Environment (SAGE) datasets. All studies have shown that the cropland areas in China increased between 1700 and 1950, although they indicate different magnitudes and rates. A decrease in forest coverage was also reported in all studies. Little information was available on urban and grassland areas over the same period. Rapid urbanization in China has been particularly evident in the past 50 years. Meanwhile, spatially explicit reconstructions of historical land-use change in China since 1700 remain highly uncertain due to the lack of reliable data. Extensive work on primary data collection is required, including land-use records and drivers for future change.

Miao, Lijuan; Zhu, Feng; He, Bin; Ferrat, Marion; Liu, Qiang; Cao, Xue; Cui, Xuefeng

2013-01-01

277

Land-use Effect on Stream Organic Matter Composition in Two Metropolitan Areas in USA  

NASA Astrophysics Data System (ADS)

Urbanization is a form of land-use change that is increasing in coastal watersheds and may affect the quantity and quality of organic carbon delivered to streams and coastal ocean. Here, we examine the changes in optical and isotopic characteristics of organic matter in streams (Gwynns Fall and Buffalo Bayou) draining Baltimore and Houston Metropolitan Areas (USA), relative to nearby less affected forested watersheds. A summer longitudinal sampling in Gwynns Fall along a rural-urban gradient showed increases in dissolved organic carbon (DOC) and fluorescent protein to humic ratio but a decrease in specific UV absorption (SUVA). Parallel Factor modeling shows dominance of terrestrial component of DOC, and the ratio of an unknown component to the component of humic substance was high in urban watersheds and it was positively correlated impervious surface cover (an index of urbanization). Incubation experiments with leaves and stream algae suggest origin of decayed leaf leachate of this component. Conversely, DOM in Buffalo Bayou showed higher intensity of protein-like fluorescence, and the intensity increased longitudinal along a rural-urban gradient but decreased from low-flows to a flooding event. The difference in fluorescent organic matter composition between the two streams probably reflected different management of wastewater in watersheds. Surface sediment collected at sites of sub-watersheds of Gwynns Fall showed changes in particle size, elemental and isotopic composition with land use. Sediment incubations showed that higher temperature (due to urban heat island effect) enhanced loss of labile organic matter and release of refractory organic matter into stream water. Release of reactive soluble phosphorus, loss of nitrogen and reduction of sulfate also occurred at high incubating temperatures, along with mineralization of sediment organic matter. Bed sediment collected along Buffalo Bayou displayed a longitudinal decrease in N-15, probably reflecting the displacement of waste water treatment plant in upper watershed. Organic matter compositions of suspended sediment, however, were more related to abundance of phytoplankton biomass.

Duan, S.; Kaushal, S.; Amon, R. M.; Brinkmeyer, R.

2011-12-01

278

Response of small New England ponds to historic land use  

Microsoft Academic Search

This palaeolimnological study addresses whether the timing, magnitude and nature of lake-ecosystem changes closely track changes in land-use intensity and forest cover in the watershed, and the extent to which lakes retuni to pre-disturbance states following the substantial long-term declinie in human activity that is typical for much of the rural eastern United States. Land-use intensity in the watersheds increased

Donna R. Francis; David R. Foster

2001-01-01

279

Distribution patterns and sources of metals and PAHs in an intensely urbanized area: The Acerra-Pomigliano-Marigliano conurbation (Italy)  

NASA Astrophysics Data System (ADS)

The main objective of the URGE (URban GEochemistry) project is to define, map and interpretate the geochemical baseline patterns of potentially harmful elements and compounds in the soils of 12 european urban areas using shared procedures for both sampling and analytical techniques. In Italy, in the framework of the URGE project, the north-eastern sector of the Napoli metropolitan area, namely the Acerra-Pomigliano-Marigliano conurbation, has undergone a geochemical characterization based on 145 soil samples collected over an area of 90 sq km. This area has been selected on the basis of the results obtained from previous regional studies [1, 2, 3] and because of the presence on its territory of an historical industrial settlement (formerly devoted to plastic materials and synthetic fibres production) which was partly dismantled and party converted to a power plant fuelled by palm oil. Furthermore, in March 2009 also an incinerator came into operation in the northern sector of the study area. The main objective of the study carried out for the Acerra-Pomigliano-Marigliano conurbation was to define the local geochemical baselines for both 53 elements (among which the toxic ones) and some organic compounds, including PAHs and OCPs. The study also aimed at supporting epidemiological researches at local scale and at establishing a record of the actual environmental conditions to evaluate the future impact of the incinerator on both the territory and the public health. Results obtained showed that Pb, Zn and V exceed the trigger limits established by the Italian Environmental law (D.Lgs. 152/2006) especially in correspondence with the most densely populated areas of the conurbation and where the traffic load is higher (Road junctions and fast lanes). Furthermore, most of the soils collected in the surroundings of the urbanized areas resulted to be generally enriched in Cu, Co, Cd, Be, Ni and P suggesting the presence of a relevant influence on their chemistry of an agricultural intensive land use. PAHs distribution pattern showed anomalous values across the whole study area. Especially, Benzo[a]pyrene values exceeds the trigger limits established by the Italian Environmental law (D.Lgs. 152/2006) in most of the analyzed soils and the diagnostic ratios calculated among several PAHs compounds suggested that the biomass burning in the rural sector of the study area could be a relevant source of pollution. The palm oil fuelled power plant in the northern sector of Acerra could not be excluded as a source of PAHs in the environment. [1] Albanese et al (2007) JGE 93, 21-34. [2] Cicchella et al (2008) GEEA 8 (1), 19-29. [3] De Vivo et al (2006) Aracne Editrice, Roma. 324 pp.

Albanese, Stefano; Lima, Annamaria; Rezza, Carmela; Ferullo, Giampiero; De Vivo, Benedetto; Chen, Wei; Qi, Shihua

2014-05-01

280

Land use mapping and modelling for the Phoenix Quadrangle  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. The mapping of generalized land use (level 1) from ERTS 1 images was shown to be feasible with better than 95% accuracy in the Phoenix quadrangle. The accuracy of level 2 mapping in urban areas is still a problem. Updating existing maps also proved to be feasible, especially in water categories and agricultural uses; however, expanding urban growth has presented with accuracy. ERTS 1 film images indicated where areas of change were occurring, thus aiding focusing-in for more detailed investigation. ERTS color composite transparencies provided a cost effective source of information for land use mapping of very large regions at small map scales.

Place, J. L. (principal investigator)

1974-01-01

281

Land Use and Public Health  

NSDL National Science Digital Library

This site provides an overview of how public and private land use and development affect environmental and human health. Special topics include hazardous waste sites such as Superfund sites and "brownfields," sprawl and transportation issues, development of antibiotic resistance in humans due to antibiotic use on farm animals, and how land use can contaminate surface waters. The site also features links to current news and related resources and organizations.

Physicians for Social Responsibility

282

Microzonation for Urban Planning  

Microsoft Academic Search

Microzonation is identification of areas having different earthquake hazard potentials and will primarily serve for urban\\u000a planning and land use management. The two principal factors controlling earthquake loss are site response and structural features.\\u000a The seismic microzonation maps would indicate the distribution of site response with respect to ground shaking intensity,\\u000a liquefaction and landslide susceptibility; thus providing an input for

Atilla Ansal; Gökçe Tönük; Asli Kurtulucs

283

Leaf breakdown in streams differing in catchment land use  

USGS Publications Warehouse

1. The impact of changes in land use on stream ecosystem function is poorly understood. We studied leaf breakdown, a fundamental process of stream ecosystems, in streams that represent a range of catchment land use in the Piedmont physiographic province of the south-eastern United States. 2. We placed bags of chalk maple (Acer barbatum) leaves in similar-sized streams in 12 catchments of differing dominant land use: four forested, three agricultural, two suburban and three urban catchments. We measured leaf mass, invertebrate abundance and fungal biomass in leaf bags over time. 3. Leaves decayed significantly faster in agricultural (0.0465 day-1) and urban (0.0474 day-1) streams than in suburban (0.0173 day-1) and forested (0.0100 day-1) streams. Additionally, breakdown rates in the agricultural and urban streams were among the fastest reported for deciduous leaves in any stream. Nutrient concentrations in agricultural streams were significantly higher than in any other land-use type. Fungal biomass associated with leaves was significantly lower in urban streams; while shredder abundance in leaf bags was significantly higher in forested and agricultural streams than in suburban and urban streams. Storm runoff was significantly higher in urban and suburban catchments that had higher impervious surface cover than forested or agricultural catchments. 4. We propose that processes accelerating leaf breakdown in agricultural and urban streams were not the same: faster breakdown in agricultural streams was due to increased biological activity as a result of nutrient enrichment, whereas faster breakdown in urban streams was a result of physical fragmentation resulting from higher storm runoff. ?? 2006 The Authors.

Paul, M.J.; Meyer, J.L.; Couch, C.A.

2006-01-01

284

Influence of land use on hyporheos in catchment of the Jarama River (central Spain)  

NASA Astrophysics Data System (ADS)

The Water Framework Directive (2000) requires integrated assessment of water bodies based on water resources but also the evaluation of land-use catchment effect on chemical and ecological conditions of aquatic ecosystems. The hyporheic zone (HZ) supporting obligate subterranean species are particularly vulnerable in river ecosystems when environmental stress occurs at surface and require management strategies to protect both the stream catchment and the aquifer that feed the stream channel. The influence of catchment land-use in the Jarama basin (central Spain) on river geomorphology and hyporheic zone granulometry, chemical and biological variables inferred from crustacean community biodiversity (species richness, taxonomic distinctness) and ecology was assessed. The study was conducted in four streams from the Madrid metropolitan area under distinct local land-use and water resource protection: i) a preserved forested natural sites where critical river ecosystem processes were unaltered or less altered by human activities, and ii) different degree of anthropogenic impact sites from agriculture, urban industrial and mining activities. The river bed permeability reduction and the increase of low sediment size input associated with changes in geomorphology of the stream channels are greatly affected by land-use changes in the Jarama watershed. Water chemical parameters linked to land-use increase from the natural stream to the urban industrial and agricultural dominated catchment. Principal coordinate analysis (PCO) and multidimensional scaling (MDS) clearly discriminate the pristine sites from forested areas by those under anthropogenic stressors. In streams draining forested areas, groundwater discharge and regular exchange between groundwater and surface water occur due to relatively high permeability of the sediments. Consequently, forested land-use produce sites of high water quality and crustacean richness (both groundwater dwellers and surface-benthos species), as indicate the expected diversity pattern after the simulation procedure for taxonomic distinctness. Crustacean diversity (Shannon index) was greatest in less extensive agricultural land-use sites where riparian zone is slightly developed, while intensive agricultural activities cause a decline of water quality and therefore of crustacean richness. Intensively urban industrial land-use yield highly contaminated hyporheic water with heavy metals and VOC (i.e. toluene, benzene). Complementarily, the streams geomorphology and low rates of water flow favour the deposition of fine sediments that clog the interstices, generate a reverse dynamic of river channel and induce a reduction of groundwater discharge. In results, the hyporheic is unsuitable for hyporheos that are missing or harbour reduced populations of exclusively surface-water taxa. There are sites of intermediate biodiversity including hypogeans, located in natural regional parks thriving well-established riparian zone and relatively good water quality. The differences among sites in the Jarama basin indicate the impact that changes in land-use have upon the hyporheic ecology as shown the pattern of crustacean community distribution, diversity and ecological structure. We suggest that in rehabilitation processes of streams sectors require the understanding and recognition of the potential roles of the hyporheic zone and its biota in the whole stream ecosystem.

Iepure, S.; Martínez-Hernández, V.; Herrera, S.; de Bustamante, I.; Rasines, R.

2012-04-01

285

Biodiversity across a Rural Land-Use Gradient  

Microsoft Academic Search

Private lands in the American West are undergoing a land-use conversion from agriculture to ex- urban development, although little is known about the ecological consequences of this change. Some nongov- ernmental organizations are working with ranchers to keep their lands out of development and in ranching, ostensibly because they believe biodiversity is better protected on ranches than on exurban developments.

Jeremy D. Maestas; Richard L. Knight; Wendell C. Gilgert

2003-01-01

286

Experiments in Globalisation, Food Security and Land Use Decision Making  

PubMed Central

The globalisation of trade affects land use, food production and environments around the world. In principle, globalisation can maximise productivity and efficiency if competition prompts specialisation on the basis of productive capacity. In reality, however, such specialisation is often constrained by practical or political barriers, including those intended to ensure national or regional food security. These are likely to produce globally sub-optimal distributions of land uses. Both outcomes are subject to the responses of individual land managers to economic and environmental stimuli, and these responses are known to be variable and often (economically) irrational. We investigate the consequences of stylised food security policies and globalisation of agricultural markets on land use patterns under a variety of modelled forms of land manager behaviour, including variation in production levels, tenacity, land use intensity and multi-functionality. We find that a system entirely dedicated to regional food security is inferior to an entirely globalised system in terms of overall production levels, but that several forms of behaviour limit the difference between the two, and that variations in land use intensity and functionality can substantially increase the provision of food and other ecosystem services in both cases. We also find emergent behaviour that results in the abandonment of productive land, the slowing of rates of land use change and the fragmentation or, conversely, concentration of land uses following changes in demand levels. PMID:25437010

Brown, Calum; Murray-Rust, Dave; van Vliet, Jasper; Alam, Shah Jamal; Verburg, Peter H.; Rounsevell, Mark D.

2014-01-01

287

Experiments in globalisation, food security and land use decision making.  

PubMed

The globalisation of trade affects land use, food production and environments around the world. In principle, globalisation can maximise productivity and efficiency if competition prompts specialisation on the basis of productive capacity. In reality, however, such specialisation is often constrained by practical or political barriers, including those intended to ensure national or regional food security. These are likely to produce globally sub-optimal distributions of land uses. Both outcomes are subject to the responses of individual land managers to economic and environmental stimuli, and these responses are known to be variable and often (economically) irrational. We investigate the consequences of stylised food security policies and globalisation of agricultural markets on land use patterns under a variety of modelled forms of land manager behaviour, including variation in production levels, tenacity, land use intensity and multi-functionality. We find that a system entirely dedicated to regional food security is inferior to an entirely globalised system in terms of overall production levels, but that several forms of behaviour limit the difference between the two, and that variations in land use intensity and functionality can substantially increase the provision of food and other ecosystem services in both cases. We also find emergent behaviour that results in the abandonment of productive land, the slowing of rates of land use change and the fragmentation or, conversely, concentration of land uses following changes in demand levels. PMID:25437010

Brown, Calum; Murray-Rust, Dave; van Vliet, Jasper; Alam, Shah Jamal; Verburg, Peter H; Rounsevell, Mark D

2014-01-01

288

The Biogeohydroclimatology of Land Use  

NASA Astrophysics Data System (ADS)

When John Donne wrote his Meditation XVII, which includes the famous"No man is an island" passage, he was thinking about connections between people; no human being is isolated from another. Donne might just as well have been writing about the science of land use, however. What happens on one plot of land clearly affects what happens on another, whether downhill, downstream, or downwind. I will explore the consequences of land use for mass and energy fluxes, focusing on pasture, crop, and forest transitions in the Americas. I'll discuss my own work, some work of collaborators, and a few examples from the literature. No man is an island.

Jackson, R. B.

2008-05-01

289

Variability of atmospheric pesticide concentrations between urban and rural areas during intensive pesticide application  

NASA Astrophysics Data System (ADS)

Intensive pesticide use leads to the contamination of water, soil and atmosphere. Atmospheric transport is responsible for pesticide dispersal over long distances. In this study, we evaluate the local dispersal of pesticides from agricultural to urban areas. For this purpose, three high-volume samplers, each equipped with a glass fiber filter and XAD-2 resin for the sampling of particulate and gas phase have been placed in a south-west transect (predominant wind direction) characteristic of rural and urban areas. The urban site (Strasbourg centre) is situated in the middle of two rural sites. Samples were taken simultaneously at three sites during pesticide treatments in autumn and spring 2002-2003. Sampling took place for 24 h at a flow rate of 10-15 m 3 h -1. The pesticides studied were those commonly used in the Alsace region for all crops (maize, cereal, vines …). Many of the pesticides analysed in atmospheric samples were not detected or observed very episodically at very low concentrations. For metolachlor, alachlor, trifluralin, atrazine and diflufenican, higher concentrations were observed, essentially during the application of these compounds. Moreover, some "spraying peaks" were observed for alachlor in the south rural site (near crops) at a level of 31 ng m -3 on 16-17 May 2003. These results show site and time dependence of atmospheric contamination by pesticides. A limited dispersal was also observed especially in the urban area during the application periods of pesticides.

Scheyer, Anne; Morville, Stéphane; Mirabel, Philippe; Millet, Maurice

290

Impact of land use changes on surface warming in China  

NASA Astrophysics Data System (ADS)

Land use changes such as urbanization, agriculture, pasturing, deforestation, desertification and irrigation can change the land surface heat flux directly, and also change the atmospheric circulation indirectly, and therefore affect the local temperature. But it is difficult to separate their effects from climate trends such as greenhouse-gas effects. Comparing the decadal trends of the observation station data with those of the NCEP/NCAR Reanalysis (NNR) data provides a good method to separate the effects because the NNR is insensitive to land surface changes. The effects of urbanization and other land use changes over China are estimated by using the difference between the station and the NNR surface temperature trends. Our results show that urbanization and other land use changes may contribute to the observed 0.12°C (10yr)-1 increase for daily mean surface temperature, and the 0.20°C (10yr)-1 and 0.03°C (10 yr)-1 increases for the daily minimum and maximum surface temperatures, respectively. The urban heat island effect and the effects of other land-use changes may also play an important role in the diurnal temperature range change. The spatial pattern of the differences in trends shows a marked heterogeneity. The land surface degradation such as deforestation and desertification due to human activities over northern China, and rapidly-developed urbanization over southern China, may have mostly contributed to the increases at stations north of about 38°N and in Southeast China, respectively. Furthermore, the vegetation cover increase due to irrigation and fertilization may have contributed to the decreasing trend of surface temperature over the lower Yellow River Basin. The study illustrates the possible impacts of land use changes on surface temperature over China.

Zhang, Jingyong; Dong, Wenjie; Wu, Lingyun; Wei, Jiangfeng; Chen, Peiyan; Lee, Dong-Kyou

2005-06-01

291

Ground-Water Quality and its Relation to Land Use on Oahu, Hawaii, 2000-01  

USGS Publications Warehouse

Water quality in the main drinking-water source aquifers of Oahu was assessed by a one-time sampling of untreated ground water from 30 public-supply wells and 15 monitoring wells. The 384 square-mile study area, which includes urban Honolulu and large tracts of forested, agricultural, and suburban residential lands in central Oahu, accounts for 93 percent of the island's ground-water withdrawals. Organic compounds were detected in 73 percent of public-supply wells, but mostly at low concentrations below minimum reporting levels. Concentrations exceeded drinking-water standards in just a few cases: the solvent trichloroethene and the radionuclide radon-222 exceeded Federal standards in one public-supply well each, and the fumigants 1,2-dibromo-3-chloropropane (DBCP) and 1,2,3-trichloropropane (TCP) exceeded State standards in three public-supply wells each. Solvents, fumigants, trihalomethanes, and herbicides were prevalent (detected in more than 30 percent of samples) but gasoline components and insecticides were detected in few wells. Most water samples contained complex mixtures of organic compounds: multiple solvents, fumigants, or herbicides, and in some cases compounds from two or all three of these classes. Characteristic suites of chemicals were associated with particular land uses and geographic locales. Solvents were associated with central Oahu urban-military lands whereas fumigants, herbicides, and fertilizer nutrients were associated with central Oahu agricultural lands. Somewhat unexpectedly, little contamination was detected in Honolulu where urban density is highest, most likely as a consequence of sound land-use planning, favorable aquifer structure, and less intensive application of chemicals (or of less mobile chemicals) over recharge zones in comparison to agricultural areas. For the most part, organic and nutrient contamination appear to reflect decades-old releases and former land use. Most ground-water ages were decades old, with recharge dates ranging from pre-1940 to the present, and with most dates falling within the 1950s to 1980s time span. Several widely detected compounds were discontinued as long ago as the 1970s but have yet to be flushed from the ground-water system. Although large tracts of land in central Oahu have been converted from agriculture to residential urban use since the 1950s, water quality in the converted areas still more closely reflects the former agricultural land. It appears to be too early to detect a distinct water-quality signature characteristic of the newer urban use, although several urban turfgrass herbicides in use for just 10 years or so were detected in monitoring wells and may represent early arrivals of urban contaminants at the water table.

Hunt, Charles D., Jr.

2003-01-01

292

Remote sensing. [land use mapping  

NASA Technical Reports Server (NTRS)

Various imaging techniques are outlined for use in mapping, land use, and land management in Mexico. Among the techniques discussed are pattern recognition and photographic processing. The utilization of information from remote sensing devices on satellites are studied. Multispectral band scanners are examined and software, hardware, and other program requirements are surveyed.

Jinich, A.

1979-01-01

293

Study of USGS/NASA land use classification system. [compatibility of land use classification system with computer processing techniques employed for land use mapping from ERTS data  

NASA Technical Reports Server (NTRS)

It is known from several previous investigations that many categories of land-use can be mapped via computer processing of Earth Resources Technology Satellite data. The results are presented of one such experiment using the USGS/NASA land-use classification system. Douglas County, Georgia, was chosen as the test site for this project. It was chosen primarily because of its recent rapid growth and future growth potential. Results of the investigation indicate an overall land-use mapping accuracy of 67% with higher accuracies in rural areas and lower accuracies in urban areas. It is estimated, however, that 95% of the State of Georgia could be mapped by these techniques with an accuracy of 80% to 90%.

Spann, G. W.; Faust, N. L.

1974-01-01

294

Planning and developing a prehospital mobile intensive care system in an urban setting.  

PubMed Central

A suggested model for the development of an urban based prehospital emergency care system is described. Factors considered in the planning and development include: 1) demand for services, projected and actual; 2) analysis of costs; 3) design and maintenance of the delivery system; and 4) establishment of the evaluation mechanisms. Over one year's experience and 1,144 mobile intensive care unit (MICU) calls in a densely populated urban setting with over 500,000 persons are reported. During the peak 8-hour period, predetermined dispatch categories were employed to activate one MICU operating in conjunction with three conventional ambulances. This partial conversion imparted MICU capability to the entire system at an 11 per cent increase in the ambulance budget. MICU calls averaged 4.5 per 8-hour peak shift and took 45 minutes each. PMID:645986

Pascarelli, E F; Katz, I B

1978-01-01

295

Some findings on the applications of ERTS and Skylab imagery for metropolitan land use analysis  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. Work undertaken on a three-sensor land use data evaluation for a portion of the Phoenix area is reported. Analyses between land use data generated from 1970 high altitude photography and that detectable from ERTS and Skylab, especially in terms of changes in land use indicate that ERTS and Skylab imagery can be used effectively to detect and identify areas of post-1970 land use change, especially those documenting urban expansion at the rural-urban fringe. Significant preliminary findings on the utility of ERTS and Skylab data for metropolitan land use analysis, substantiated by evaluation with 1970 and 1972 ground control land use data are reported.

Alexander, R. H. (principal investigator); Milazzo, V. A.

1974-01-01

296

Modeling environmental impacts of urban expansion: a systematic method for dealing with uncertainties.  

PubMed

In a rapidly transitioning China, urban land use has changed dramatically, both spatially and in terms of magnitude; these changes have significantly affected the natural environment. This paper reports the development of an Integrated Environmental Assessment of Urban Land Use Change (IEA-ULUC) model, which combines cellular automata, scenario analysis, and stochastic spatial sampling with the goal of exploring urban land-use change, related environmental impacts, and various uncertainties. By applying the IEA-ULUC model to a new urban development area in Dalian in northeastern China, the evolution of spatial patterns from 1986 to 2005 was examined to identify key driving forces affecting the changing trajectories of local land use. Using these results, future urban land use in the period 2005-2020 was projected for four scenarios of economic development and land-use planning regulation. A stochastic sampling process was implemented to generate industrial land distributions for each land expansion scenario. Finally, domestic and industrial water pollution loads to the ocean were estimated, and the environmental impacts of each scenario are discussed. The results showed that the four urban expansion scenarios could lead to considerable differences in environmental responses. In principle, urban expansion scenarios along the intercity transportation rail/roadways could have higher negative environmental impacts than cluster-developing scenarios, while faster economic growth could more intensely aggravate the environment than in the moderate growth scenarios. PMID:22775401

Liu, Yi; Yang, Sheng; Chen, Jining

2012-08-01

297

DYNAMICS OF LAND-USE AND LAND-COVER CHANGE IN TROPICAL REGIONS  

Microsoft Academic Search

We highlight the complexity of land-use\\/cover change and propose a framework for a more general understanding of the issue, with emphasis on tropical regions. The review summarizes recent estimates on changes in cropland, agricultural intensification, tropical deforestation, pasture expansion, and urbanization and identifies the still unmeasured land-cover changes. Climate-driven land-cover modifications interact with land-use changes. Land-use change is driven by

Eric F. Lambin; Helmut J. Geist; Erika Lepers

2003-01-01

298

Forecasting the Effects of Land-Use Change on Forest Rodents in Indiana  

Microsoft Academic Search

Forest cover in the upper Wabash River basin in Indiana was fragmented due to agricultural conversion beginning more than\\u000a 175 years ago. Currently, urban expansion is an important driver of land-use change in the basin. A land transformation model\\u000a was applied to the basin to forecast land use from 2000 to 2020. We assessed the effect of this projected land-use change

Carol E. Rizkalla; Robert K. Swihart

2009-01-01

299

Biological consequences of land use.  

PubMed

The primary goals of land-use planning are enunciated. A plea is made for consideration of the total biosphere and not just its separate components. The environmental impact statement process is reviewed and some suggestions made for its strengthening. Moves for international adoption of this process are noted, as well as the concept of eco-development currently under examination by UN agencies. PMID:1157793

Munn, R E

1975-04-01

300

Analysis of land use and land cover change in a coastal area of Rio de Janeiro using high-resolution remotely sensed data  

NASA Astrophysics Data System (ADS)

Coastal areas offer great recreational and economic opportunities, but require intensive resource management and environmental protection. Land use and land cover information provides a rapid and cost-effective means for monitoring and planning coastal area development. This study quantitatively describes spatiotemporal changes of land use and land cover over the last four decades in a coastal area of the state of Rio de Janeiro, Brazil. Historical aerial photographs from 1976 and satellite images from 1990 and 2012 were classified and analyzed. We used supervised classification and machine learning techniques to classify the images. An accuracy assessment of results was performed. Land use change statistics for the period indicate that urban areas have increased to the detriment of dense vegetation, salines, and bare soil. The analysis provides a basis for better control of anthropogenic impacts and geoconservation activities in this coastal area of Rio de Janeiro.

Avelar, Silvania; Tokarczyk, Piotr

2014-01-01

301

Integrating global socio-economic influences into a regional land use change model for China  

NASA Astrophysics Data System (ADS)

With rapid economic development and urbanization, land use in China has experienced huge changes in recent years; and this will probably continue in the future. Land use problems in China are urgent and need further study. Rapid land-use change and economic development make China an ideal region for integrated land use change studies, particularly the examination of multiple factors and global-regional interactions in the context of global economic integration. This paper presents an integrated modeling approach to examine the impact of global socio-economic processes on land use changes at a regional scale. We develop an integrated model system by coupling a simple global socio-economic model (GLOBFOOD) and regional spatial allocation model (CLUE). The model system is illustrated with an application to land use in China. For a given climate change, population growth, and various socio-economic situations, a global socio-economic model simulates the impact of global market and economy on land use, and quantifies changes of different land use types. The land use spatial distribution model decides the type of land use most appropriate in each spatial grid by employing a weighted suitability index, derived from expert knowledge about the ecosystem state and site conditions. A series of model simulations will be conducted and analyzed to demonstrate the ability of the integrated model to link global socioeconomic factors with regional land use changes in China. The results allow an exploration of the future dynamics of land use and landscapes in China.

Xu, Xia; Gao, Qiong; Peng, Changhui; Cui, Xuefeng; Liu, Yinghui; Jiang, Li

2014-03-01

302

Impact of past and possible future land use changes on the hydrological behaviour of the Northern German lowland `Hunte' river  

NASA Astrophysics Data System (ADS)

Changing hydrological behaviour of catchments can be driven by several different influencing factors: e.g., climate change, water management and land use change. While changes in climate and water management directly affect the water cycle be changes in regional forcing (e.g., precipitation, radiation) and local management of surface and subsurface waters, the impact of land use changes on catchment hydrology is much more complex to assess as it results from regionally distributed local changes. Therefore, spatially distributed and process based hydrological catchment models are required for assessing the impacts of spatially distributed land use changes. The Hunte catchment in Lower Saxony is part of an intensively agriculturally used landscape in Northwest Germany. Pasture and cropland are dominating land uses, while surface sealing increases due to urban sprawl. As the catchment is dominated by agricultural landuse mostly, it can be expected that European and national policy as well as the agroeconomic development can strongly effect the land use distribution in future. Therefore, in this study, the effect of historical and projected land use changes on the catchment hydrological behaviour is assessed the process based catchment model WASIM-ETH (Schulla). WASIM-ETH has been applied to observed land use data sets (CORINE data) and projected land use scenarios (based on Ewert et al., 2005; Rounsevell et al., 2005) for the mesoscale catchment of the Hunte river in order to quantify the sensitivity with respect to land use change. The results of the study show that historical land use changes have almost no impact on the catchment hydrological processes in Northwest Germany. Simulated water balances and runoff hydrographs are almost identical, driving the model with different input data sets based on the CORINE data set. Differences are small compared to trends identified in the discharge data of the Hunte and Weser rivers. However, in relation to the ability of WASIM-ETH to reproduce the present water flows in the Hunte catchment (model uncertainty), the sensitivity of WASIM-ETH with respect to simulated water flows for the land use scenarios is significant. Therefore, this presentation on the one hand analyses the difficulties of process based hydrological models to reproduce the water flows of intensively used and regulated lowland catchments, but on the other hand also demonstrates the significance of effects of potential future land use changes on regional catchment water balances. Ewert, F., Rounsevell, M.D.A., Reginster, I., Metzger, M., Leemans, R.,2005. Future scenarios of European agricultural land use. I. Estimating changes in crop productivity. Agric. Ecosyst. Environ. 107, 101-116. Rounsevell,M.D.A., Ewert, F., Reginster, I., Leemans, R., Carter, T.R., 2005. Future scenarios of European agricultural land use. II. Projecting changes in cropland and grassland. Agric. Ecosyst. Environ. 107, 117-135.

Bormann, H.; Elfert, S.

2009-04-01

303

Land Use Policy 27 (2010) 255261 Contents lists available at ScienceDirect  

E-print Network

Land Use Policy 27 (2010) 255­261 Contents lists available at ScienceDirect Land Use Policy journal spaces to potential demand. We also estimate the loss of ecosystem services represented by the area we lament the poor use of land in urban regions of the United States, and encourage planners to think

Illinois at Chicago, University of

2010-01-01

304

Risk Assessment and Decision Making Related to Land-Use Planning in France  

E-print Network

. It is necessary to organise the settlement of industrial and urban areas with an appropriate land-use planningRisk Assessment and Decision Making Related to Land-Use Planning in France O. Salvi, N. Rodrigues The Third Assessment [1] from the European Environment Agency (2003) indicated that Major technological

Boyer, Edmond

305

Aerosol accumulation intensity and composition variations under different weather conditions in urban environment  

NASA Astrophysics Data System (ADS)

During the last decade aerosol (PM10, PM2.5) mass and composition measurements were done in different urban environments - parallel street canyons, industrial sites and at the background level in Riga, Latvia. Effect of meteorological parameters on the accumulation and ventilation intensity was investigated in order to understand microclimatological parameters affecting aerosol pollution level and chemical composition changes. In comparison to industrial sites (shipping activities, bulk cargo, oil and naphtha processing), urban street canyon aerosol mass concentration was significantly higher, for PM10 number of daily limit exceedances are higher by factor 3.4 - 3.9 in street canyons. Exceedances of PM2.5 annual limits were identified only in street canyons as well. Precipitation intensity, wind speed, days with mist highly correlates with aerosol concentration; in average during the year about 1 - 2 % presence of calm wind days, 20 - 30 days with mist facilitate accumulation of aerosols and mitigating growing of secondary aerosols. It has been assessed that about 25 % of daily exceedances in street canyons are connected with sea salt/street sanding factor. Strong dependency of wind speed and direction were identified in winter time - low winds (0.4 - 1.7 m/s) blowing from south, south-east (cross section of the street) contributing to PM10 concentrations over 100 - 150 ug/m3. Seasonal differences in aerosol concentrations were identified as a result of recombination of direct source impact, specific meteorological and synoptical conditions during the period from January until April when usually dominates extremely high aerosol concentrations. While aerosol mass concentration levels in monitoring sites significantly differs, concentrations of heavy metals (Pb, Ni, Cd, and As) are almost at the same level, even more - concentration of Cd for some years was higher in industrial area where main pollution is caused by oil processing and storage, heavy traffic activities and transportation by rail. The type of prevailing secondary aerosol formation was estimated by linear regression analysis which shows NOx prevalence in street canyons and urban background and SO2 associated reactions in industrial sites. Linear regression of traffic intensity in connection with aerosol pollution level shows domination of exhaust emissions during traffic jams and resuspension intensity during middle of the week.

Steinberga, Iveta; Bikshe, Janis; Eindorfa, Aiva

2014-05-01

306

Applications of Skylab data to land use and climatological analysis  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. Skylab study in Central Atlantic Regional Ecological Test Site encompassed two separate but related tasks: (1) evaluation of photographic sensors S190A and B as sources of land use data for planning and managing land resources in major metropolitan regions, and (2) evaluation of the multispectral scanner S192 used in conjunction with associated data and analytical techniques as a data source on urban climates and the surface energy balance. Photographs from the Skylab S190B earth terrain camera were of greatest interest in the land use analysis task; they were of sufficiently high resolution to identify and map many level 2 and 3 land use categories. After being corrected to allow for atmosphere effects, output from thermal and visible bands of the S192 was employed in constructing computer map plots of albedo and surface temperature.

Alexander, R. H. (principal investigator); Lewis, J. E., Jr.; Lins, H. F., Jr.; Jenner, C. B.; Outcalt, S. I.; Pease, R. W.

1976-01-01

307

Estimating Demand for Industrial and Commercial Land Use Given Economic Forecasts  

PubMed Central

Current developments in the field of land use modelling point towards greater level of spatial and thematic resolution and the possibility to model large geographical extents. Improvements are taking place as computational capabilities increase and socioeconomic and environmental data are produced with sufficient detail. Integrated approaches to land use modelling rely on the development of interfaces with specialized models from fields like economy, hydrology, and agriculture. Impact assessment of scenarios/policies at various geographical scales can particularly benefit from these advances. A comprehensive land use modelling framework includes necessarily both the estimation of the quantity and the spatial allocation of land uses within a given timeframe. In this paper, we seek to establish straightforward methods to estimate demand for industrial and commercial land uses that can be used in the context of land use modelling, in particular for applications at continental scale, where the unavailability of data is often a major constraint. We propose a set of approaches based on ‘land use intensity’ measures indicating the amount of economic output per existing areal unit of land use. A base model was designed to estimate land demand based on regional-specific land use intensities; in addition, variants accounting for sectoral differences in land use intensity were introduced. A validation was carried out for a set of European countries by estimating land use for 2006 and comparing it to observations. The models’ results were compared with estimations generated using the ‘null model’ (no land use change) and simple trend extrapolations. Results indicate that the proposed approaches clearly outperformed the ‘null model’, but did not consistently outperform the linear extrapolation. An uncertainty analysis further revealed that the models’ performances are particularly sensitive to the quality of the input land use data. In addition, unknown future trends of regional land use intensity widen considerably the uncertainty bands of the predictions. PMID:24647587

Batista e Silva, Filipe; Koomen, Eric; Diogo, Vasco; Lavalle, Carlo

2014-01-01

308

Segmentation, object-oriented applications for remote sensing land cover and land use classification  

NASA Astrophysics Data System (ADS)

Multiscale segmentation, object-oriented methods in remote sensing have predominantly focused on urban applications using very fine resolution imagery. This dissertation explores three distinct but methodologically related remote sensing applications of multiscale segmentation, object-oriented classification using 30 m Landsat data. The first article reveals that object-oriented methods can achieve high classification accuracy for spectrally indistinct classes, even when forced to utilize non-ideal datasets such as hazy Landsat imagery and the "research grade" ASTER DEM. By incorporating spatial metrics, and exploiting elevational characteristics, seasonal wetlands can be differentiated from spectrally inseparable anthropogenically modified land use and from the upland, mixed tropical forest with high regional and local accuracies. The second article proposes and tests an object-oriented, target-constrained method for mangrove-specific change detection. By integrating pixel-based matched filter probability outputs with fuzzy object classification the proposed hybrid method bypass the need for exhaustive classification reducing classification time immensely. This method, then, has provided a means to globally assess mangrove stocks with the accuracy of object-based methods, but with the rapidity and repeatability found normally in less intensive methods. The third article demonstrates how both textural operators can be used at the object level for residential density classification with 30 m Landsat data. It was concluded that both mean GLCM and local Moran's I spatial statistics should be considered for the classification of residential density with the caveat that their utility is class-dependent. Object level usage of Moran's I was found to be able to be better differentiate high density land use classes while mean GLCM texture was indicated to be superior for separating low density land use and land cover. These applications demonstrate the utility of multiscale segmentation, object-oriented methods for a diverse array of environmental applications concerning land cover and land use classification.

Magee, Kevin S.

2011-12-01

309

Investigation of land use of northern megalopolis using ERTS-1 imagery  

NASA Technical Reports Server (NTRS)

Primary objective was to produce a color-coded land use map and digital data base for the northern third of Megalopolis. Secondary objective was to investigate possible applications of ERTS products to land use planning. Many of the materials in this report already have received national, dissemination as a result of unexpected interest in land use surveys from ERTS. Of special historical interest is the first comprehensive urban-type land use map from space imagery, which covered the entire state of Rhode Island and was made from a single image taken on 28 July 1972.

Simpson, R. B.; Lindgren, D. T.; Ruml, D. J.; Goldstein, W.

1974-01-01

310

Land use mapping and modelling for the Phoenix Quadrangle  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. Comparison of 9 x 9 MSS band images and color composites made from bands 4, 5, and 6 showing vegetated areas near Phoenix during the summer and fall seasons aided in definitely establishing that certain land areas were being used as agricultural land and not as rangeland. Agricultural land, which appeared to be fallow, idle, or not irrigated, often became more readily identifiable as agricultural land when comparing different images of identical land areas which have been affected by seasonal vegetation changes. Experimentation with color density slicing portions of 9 x 9 MSS band 7 transparency showing the central urban core of phoenix enabled dense commercial and industrial areas to be separated from less dense urbanized land uses; however, loss of resolution produced results of limited usefulness. The best results in agricultural areas near Sun City were obtained using MSS band 5 imagery. Discrimination of different land uses in both urban and agricultural areas which were color density sliced was not possible to the degree of accuracy necessary to make mapping feasible. Examination of MSS transparencies and color composites allowed updating of a map of land use change in the Phoenix Quadrangle.

Place, J. L. (principal investigator)

1973-01-01

311

LULUs: locally unwanted land uses  

SciTech Connect

A LULU is a locally unwanted land use. It may be an old-age home or a nuclear-waste-disposal site. People need it but do not want to live next to it. Some characteristics LULUs have in common are: opposition (more or less organized), costs to the neighborhood (real or perceived), support from conservatives for LULUs of the right, support from liberals for LULUs of the left, and some local support. Today's LULU may be tomorrow's prize; witness the 1982 competition for a state prison by 21 towns in depressed Illinois. Regional and national LULUs, while offering (or appearing to offer) a regional or national benefit, put financial and environmental costs and social stresses on a locality. Governmental and legal questions confront the decision-makers who must untangle these conflicts.

Popper, F.J.

1983-06-01

312

Agricultural land-use mapping using very high resolution satellite images in Canary Islands  

NASA Astrophysics Data System (ADS)

Crop maps are a basic tool for rural planning and a way to asses the impact of politics and infrastructures in the rural environment. Thus, they must be accurate and updated. Because of the small size of the land fields in Canary Islands, until now the crop maps have been made by means of an intense and expensive field work. The tiny crop terraces do not allow the use of traditional medium-size resolution satellite images. The launch of several satellites with sub-meter spatial resolutions in the last years provides an opportunity to update land use maps in these fragmented areas. SATELMAC is a project financed by the PCT-MAC 2007-2013 (FEDER funds). One of the main objectives of this project is to develop a methodology that allows the use of very high resolution satellite images to automate as much as possible the updating of agricultural land use maps. The study was carried out in 3 different areas of the two main islands of the Canarian Archipelago, Tenerife and Gran Canaria. The total area is about 550 km2 , which includes both urban and rural areas. Multitemporal images from Geo-Eye 1 were acquired during a whole agricultural season to extract information about annual and perennial crops. The work includes a detailed geographic correction of the images and dealing with many adverse factors like cloud shadows, variability of atmospheric conditions and the heterogeneity of the land uses within the study area. Different classification methods, including traditional pixel-based methods and object-oriented approach, were compared in order to obtain the best accuracy. An intensive field work was carried out to obtain the ground truth, which is the base for the classification procedures and the validation of the results. The final results will be integrated into a cadastral vector layer.

Labrador Garcia, Mauricio; Arbelo, Manuel; Evora Brondo, Juan Antonio; Hernandez-Leal, Pedro A.; Alonso-Benito, Alfonso

313

Ecological influence and pathways of land use in sagebrush  

USGS Publications Warehouse

Land use in sagebrush (Artemisia spp.) landscapes influences all sage-grouse (Centrocer-cus spp.) populations in western North America. Croplands and the network of irrigation canals cover 230,000 km2 and indirectly influence up to 77% of the Sage-Grouse Conservation Area and 73% of sagebrush land cover by subsidizing synanthropic predators on sage-grouse. Urbanization and the demands of human population growth have created an extensive network of con-necting infrastructure that is expanding its influence on sagebrush landscapes. Over 2,500 km2 are now covered by interstate highways and paved roads; when secondary roads are included, 15% of the Sage-Grouse Conservation Area and 5% of existing sagebrush habitats are 2.5 km from roads. Density of secondary roads often exceeds 5 km/km2, resulting in widespread motorized access for recreation, creating extensive travel corridors for management actions and resource development, subsidizing predators adapted to human presence, and facilitating spread of exotic or invasive plants. Sagebrush lands also are being used for their wilderness and recreation values, including off highway vehicle use. Approximately 12,000,000 animal use months (AUM amount of forage to support one livestock unit per month) are permitted for grazing livestock on public lands in the western states. Direct effects of grazing on sage-grouse populations or sagebrush landscapes are not possible to assess from current data. However, management of lands grazed by livestock has influenced sagebrush ecosystems by vegetation treatments to increase forage and reduce sagebrush and other plant species unpalatable to livestock. Fences (2 km/km2 in some regions), roads, and water developments to manage livestock movements further modify the landscape. Oil and gas development influences 8% of the sagebrush habitats with the highest intensities occurring in the eastern range of sage-grouse; 20% of the sagebrush distribution is indirectly influenced in the Great Plains, Wyoming Basin, and Colorado Plateau SMZs. Energy development physically removes habitat to construct well pads, roads, power lines, and pipelines; indirect effects include habitat fragmentation, soil disturbance, and facilitation of exotic plant and animal spread. More recent development of alternative energy, such as wind and geothermal, creates infrastructure in new regions of the sage-grouse distribution. Land use will continue to be a dominant stressor on sage-brush systems; its individual and cumulative effects will challenge long-term conservation of sage-grouse populations.

Knick, Steven T.; Hanser, Steven E.; Miller, Richard F.; Pyke, David A.; Wisdom, Michael J.; Finn, Sean P.; Rinkes, E. Thomas; Henny, Charles J.

2011-01-01

314

Urbanization and watershed sustainability: Collaborative simulation modeling of future development states  

NASA Astrophysics Data System (ADS)

Urbanization has a significant impact on water resources and requires a watershed-based approach to evaluate impacts of land use and urban development on watershed processes. This study uses a simulation with urban policy scenarios to model and strategize transferable recommendations for municipalities and cities to guide urban decisions using watershed ecohydrologic principles. The watershed simulation model is used to evaluation intensive (policy in existing built regions) and extensive (policy outside existing build regions) urban development scenarios with and without implementation of Best Management practices (BMPs). Water quantity and quality changes are simulated to assess effectiveness of five urban development scenarios. It is observed that optimal combination of intensive and extensive strategies can be used to sustain urban ecosystems. BMPs are found critical to reduce storm water and water quality impacts on urban development. Conservation zoning and incentives for voluntary adoption of BMPs can be used in sustaining urbanizing watersheds.

Randhir, Timothy O.; Raposa, Sarah

2014-11-01

315

Landsat sattelite multi-spectral image classification of land cover and land use changes for GIS-based urbanization analysis in irrigation districts of lower Rio Grande Valley of Texas  

Technology Transfer Automated Retrieval System (TEKTRAN)

The Lower Rio Grande Valley in the south of Texas is experiencing rapid increase of population to bring up urban growth that continues influencing on the irrigation districts in the region. This study evaluated the Landsat satellite multi-spectral imagery to provide information for GIS-based urbaniz...

316

Air quality impacts as a result of changes in energy and land use in China`s Jiangsu Province  

SciTech Connect

The southern Jiangsu Province in the People`s Republic of China, is a nationally important agricultural and industrial center. After the Cultural Revolution, this region experienced unprecedented industrial and economic growth, resulting in significant problems in resource depletion, air and water quality deterioration, and land-use management. It is also projected that the growing energy demands attendant with industrial and economic growth will require substantial increases in the use of indigenous coal, a major culprit in air and water pollution. High levels of agricultural and industrial production and rapid population growth are placing intolerable burdens on the natural carrying capacity. Unless coherent land-use planning and practices are in place, rapid growth in the region can possibly result in not only intense land-use conflicts, but also significant impacts on overall environmental quality in the foreseeable future. In this paper, an attempt is made to predict potential air quality impacts of increases in SO{sub 2} emissions resulting from industrial growth, and a discussion of past impacts and current conditions is presented. The Lagrangian trajectory model, UR-BAT (Urban-Branching Atmospheric Trajectory) was used to estimate long-term SO{sub 2} concentrations, based on available emission data originating from area and major point sources. In order to characterize the urban environment and to realize concentration peaks near the megacities, emission data with the 1 resolution was used to construct the modeling emission fields with a 0.1 resolution, based on the remote-sensing Landsat satellite imagery and population distribution data. For 1980 to 2010, changes in SO{sub 2} emissions and land-use patterns were correlated with the Landsat data, when available. Modeling results are compared with available monitoring data and potential impacts in the foreseeable future are estimated based on various projected scenarios of industrial growth.

Chang, Young-Soo; Su, Haiping; Streets, D.G. [Argonne National Lab., IL (United States); Carmichael, G.R. [Univ. of Iowa, Iowa City, IA (Canada)

1996-12-31

317

Long-term effects of changing land use practices on surface water quality in a coastal river and lagoonal estuary.  

PubMed

The watershed of the Neuse River, a major tributary of the largest lagoonal estuary on the U.S. mainland, has sustained rapid growth of human and swine populations. This study integrated a decade of available land cover and water quality data to examine relationships between land use changes and surface water quality. Geographic Information Systems (GIS) analysis was used to characterize 26 subbasins throughout the watershed for changes in land use during 1992-2001, considering urban, agricultural (cropland, animal as pasture, and densities of confined animal feed operations [CAFOs]), forested, grassland, and wetland categories and numbers of wastewater treatment plants (WWTPs). GIS was also used together with longitudinal regression analysis to identify specific land use characteristics that influenced surface water quality. Total phosphorus concentrations were significantly higher during summer in subbasins with high densities of WWTPs and CAFOs. Nitrate was significantly higher during winter in subbasins with high numbers of WWTPs, and organic nitrogen was higher in subbasins with higher agricultural coverage, especially with high coverage of pastures fertilized with animal manure. Ammonium concentrations were elevated after high precipitation. Overall, wastewater discharges in the upper, increasingly urbanized Neuse basin and intensive swine agriculture in the lower basin have been the highest contributors of nitrogen and phosphorus to receiving surface waters. Although nonpoint sources have been emphasized in the eutrophication of rivers and estuaries such as the Neuse, point sources continue to be major nutrient contributors in watersheds sustaining increasing human population growth. The described correlation and regression analyses represent a rapid, reliable method to relate land use patterns to water quality, and they can be adapted to watersheds in any region. PMID:19597872

Rothenberger, Meghan B; Burkholder, JoAnn M; Brownie, Cavell

2009-09-01

318

COMMUNITY AND ECOSYSTEM ECOLOGY Irrigation and Land Use Drive Ground Arthropod Community  

E-print Network

for studying arthropods in urban areasÑthey are diverse and abundant, re- produce rapidly, sometimes respondCOMMUNITY AND ECOSYSTEM ECOLOGY Irrigation and Land Use Drive Ground Arthropod Community Patterns Urbanization has been observed to affect arthropod communities through mechanisms such as removal of habitat

Cook, William M.

319

Integrated climate/land use/hydrological change scenarios for assessing threats to ecosystem services on California rangelands  

NASA Astrophysics Data System (ADS)

In California there are over 18 million acres of rangelands in the Central Valley and the interior Coast Range, most of which are privately owned and managed for livestock production. Ranches provide extensive wildlife habitat and generate multiple ecosystem services that carry considerable market and non-market values. These rangelands are under pressure from urbanization and conversion to intensive agriculture, as well as from climate change that can alter the flow of these services. To understand the coupled and isolated impacts of land use and climate change on rangeland ecosystem services, we developed six spatially explicit (250 m) coupled climate/land use/hydrological change scenarios for the Central Valley and oak woodland regions of California consistent with three IPCC emission scenarios - A2, A1B and B1. Three land use land cover (LULC) change scenarios were each integrated with two downscaled global climate models (GCMs) (a warm, wet future and a hot, dry future) and related hydrologic data. We used these scenarios to quantify wildlife habitat, water supply (recharge potential and streamflow) and carbon sequestration on rangelands and to conduct an economic analysis associated with changes in these benefits. The USGS FOREcasting SCEnarios of land-use change model (FORE-SCE), which runs dynamically with downscaled GCM outputs, was used to generate maps of yearly LULC change for each scenario from 2006 to 2100. We used the USGS Basin Characterization Model (BCM), a regional water balance model, to generate change in runoff, recharge, and stream discharge based on land use change and climate change. Metrics derived from model outputs were generated at the landscape scale and for six case-study watersheds. At the landscape scale, over a quarter of the million acres set aside for conservation in the B1 scenario would otherwise be converted to agriculture in the A2 scenario, where temperatures increase by up to 4.5 °C compared to 1.3 °C in the B1 scenario. A comparison of two watersheds - Alameda Creek, an urbanized watershed, and Upper Stony Creek, impacted by intensified agriculture, demonstrates the relative contribution of urbanization and climate change to water supply. In Upper Stony Creek, where 24% of grassland is converted to agriculture in the A1B scenario, a hotter, dryer 4-year time period could lead to a 40% reduction in streamflow compared to present day. In Alameda Creek, for the same scenario, 47% of grassland is converted to urbanized lands and streamflow may increase by 11%, resulting in a recharge:runoff ratio of 0.26; though if urbanization does not take place, streamflow could decrease by 64% and the recharge:runoff ratio would be 1.2. Model outputs quantify the impact of urbanization on water supply and show the importance of soil storage capacity. Scenarios have applications for climate-smart conservation and land use planning by identifying outcomes associated with coupled future land use scenarios and more variable and extreme potential future climates.

Byrd, K. B.; Flint, L. E.; Casey, C. F.; Alvarez, P.; Sleeter, B. M.; Sohl, T.

2013-12-01

320

An analysis of urban thermal characteristics and associated land cover in Tampa Bay and Las Vegas using Landsat satellite data  

USGS Publications Warehouse

Remote sensing data from both Landsat 5 and Landsat 7 systems were utilized to assess urban area thermal characteristics in Tampa Bay watershed of west-central Florida, and the Las Vegas valley of southern Nevada. To quantitatively determine urban land use extents and development densities, sub-pixel impervious surface areas were mapped for both areas. The urban-rural boundaries and urban development densities were defined by selecting certain imperviousness threshold values and Landsat thermal bands were used to investigate urban surface thermal patterns. Analysis results suggest that urban surface thermal characteristics and patterns can be identified through qualitatively based urban land use and development density data. Results show the urban area of the Tampa Bay watershed has a daytime heating effect (heat-source), whereas the urban surface in Las Vegas has a daytime cooling effect (heat-sink). These thermal effects strongly correlated with urban development densities where higher percent imperviousness is usually associated with higher surface temperature. Using vegetation canopy coverage information, the spatial and temporal distributions of urban impervious surface and associated thermal characteristics are demonstrated to be very useful sources in quantifying urban land use, development intensity, and urban thermal patterns. ?? 2006 Elsevier Inc. All rights reserved.

Xian, G.; Crane, M.

2006-01-01

321

B.25) Urban Science & Engineering (US) [Centre for Urban Science & Engineering (CUSE)  

E-print Network

to deliver urban services related to housing, infrastructure, energy, health and cultural enlightenment Transportation and Land use, Urban water, Waste Management, Smart Energy Buildings · Informatics Citizen Science

Narayanan, H.

322

Current and Future Land Use around a Nationwide Protected Area Network  

PubMed Central

Land-use change around protected areas can reduce their effective size and limit their ability to conserve biodiversity because land-use change alters ecological processes and the ability of organisms to move freely among protected areas. The goal of our analysis was to inform conservation planning efforts for a nationwide network of protected lands by predicting future land use change. We evaluated the relative effect of three economic policy scenarios on land use surrounding the U.S. Fish and Wildlife Service's National Wildlife Refuges. We predicted changes for three land-use classes (forest/range, crop/pasture, and urban) by 2051. Our results showed an increase in forest/range lands (by 1.9% to 4.7% depending on the scenario), a decrease in crop/pasture between 15.2% and 23.1%, and a substantial increase in urban land use between 28.5% and 57.0%. The magnitude of land-use change differed strongly among different USFWS administrative regions, with the most change in the Upper Midwestern US (approximately 30%), and the Southeastern and Northeastern US (25%), and the rest of the U.S. between 15 and 20%. Among our scenarios, changes in land use were similar, with the exception of our “restricted-urban-growth” scenario, which resulted in noticeably different rates of change. This demonstrates that it will likely be difficult to influence land-use change patterns with national policies and that understanding regional land-use dynamics is critical for effective management and planning of protected lands throughout the U.S. PMID:23383275

Hamilton, Christopher M.; Martinuzzi, Sebastian; Plantinga, Andrew J.; Radeloff, Volker C.; Lewis, David J.; Thogmartin, Wayne E.; Heglund, Patricia J.; Pidgeon, Anna M.

2013-01-01

323

Current and future land use around a nationwide protected area network  

USGS Publications Warehouse

Land-use change around protected areas can reduce their effective size and limit their ability to conserve biodiversity because land-use change alters ecological processes and the ability of organisms to move freely among protected areas. The goal of our analysis was to inform conservation planning efforts for a nationwide network of protected lands by predicting future land use change. We evaluated the relative effect of three economic policy scenarios on land use surrounding the U.S. Fish and Wildlife Service's National Wildlife Refuges. We predicted changes for three land-use classes (forest/range, crop/pasture, and urban) by 2051. Our results showed an increase in forest/range lands (by 1.9% to 4.7% depending on the scenario), a decrease in crop/pasture between 15.2% and 23.1%, and a substantial increase in urban land use between 28.5% and 57.0%. The magnitude of land-use change differed strongly among different USFWS administrative regions, with the most change in the Upper Midwestern US (approximately 30%), and the Southeastern and Northeastern US (25%), and the rest of the U.S. between 15 and 20%. Among our scenarios, changes in land use were similar, with the exception of our “restricted-urban-growth” scenario, which resulted in noticeably different rates of change. This demonstrates that it will likely be difficult to influence land-use change patterns with national policies and that understanding regional land-use dynamics is critical for effective management and planning of protected lands throughout the U.S.

Hamilton, Christopher M.; Martinuzzi, Sebastian; Plantinga, Andrew J.; Radeloff, Volker C.; Lewis, David J.; Thogmartin, Wayne E.; Heglund, Patricia J.; Pidgeon, Anna M.

2013-01-01

324

Current and future land use around a nationwide protected area network.  

PubMed

Land-use change around protected areas can reduce their effective size and limit their ability to conserve biodiversity because land-use change alters ecological processes and the ability of organisms to move freely among protected areas. The goal of our analysis was to inform conservation planning efforts for a nationwide network of protected lands by predicting future land use change. We evaluated the relative effect of three economic policy scenarios on land use surrounding the U.S. Fish and Wildlife Service's National Wildlife Refuges. We predicted changes for three land-use classes (forest/range, crop/pasture, and urban) by 2051. Our results showed an increase in forest/range lands (by 1.9% to 4.7% depending on the scenario), a decrease in crop/pasture between 15.2% and 23.1%, and a substantial increase in urban land use between 28.5% and 57.0%. The magnitude of land-use change differed strongly among different USFWS administrative regions, with the most change in the Upper Midwestern US (approximately 30%), and the Southeastern and Northeastern US (25%), and the rest of the U.S. between 15 and 20%. Among our scenarios, changes in land use were similar, with the exception of our "restricted-urban-growth" scenario, which resulted in noticeably different rates of change. This demonstrates that it will likely be difficult to influence land-use change patterns with national policies and that understanding regional land-use dynamics is critical for effective management and planning of protected lands throughout the U.S. PMID:23383275

Hamilton, Christopher M; Martinuzzi, Sebastian; Plantinga, Andrew J; Radeloff, Volker C; Lewis, David J; Thogmartin, Wayne E; Heglund, Patricia J; Pidgeon, Anna M

2013-01-01

325

Modeling Land Use Change in the Chesapeake Bay Watershed  

NASA Astrophysics Data System (ADS)

Low density, decentralized residential and commercial development is increasingly the dominant pattern of exurban land use in many developed countries, particularly the United States. The term "sprawl" is now commonly used to describe this form of development, the environmental and quality-of-life impacts of which are becoming central to debates over land use in urban and suburban areas. Continued poor health of the Chesapeake Bay, located in the Mid-Atlantic region of the United States, is due in part to disruptions in the hydrological system caused by urban and suburban development throughout the 167,000 square kilometer watershed. We present results of a spatial predictive model of land use change based on cellular automata (SLEUTH), which was calibrated using high resolution (30m cell size) maps of the built environment derived from Landsat ETM+ imagery for the period 1986-2000. The model was applied to a 23,740 square kilometer area centered on Washington DC - Baltimore MD, and predictions were made out to 2030 assuming three different policy scenarios (current trends, managed growth, and "sustainable"). Accuracy of the model was assessed at three scales (pixel, watershed and county) and overall strengths and weaknesses of the model are presented, particularly in comparison to other econometric modeling approaches.

Claire, J. A.; Goetz, S. J.; Bockstael, N.

2003-12-01

326

Modelling Urban Sustainabilty  

Microsoft Academic Search

The objective of the EU research project PROPOLIS (Planning and Research of Policies for Land Use and Transport for Increasing Urban Sustainability) is to assess urban strategies and to demonstrate their long-term effect in European cities. To reach this goal, a comprehensive framework of methodologies including integrated land use, transport and environmental models as well as indicator, evaluation and presentation

Klaus Spiekermann; Michael Wegener

2003-01-01

327

Climate change and land use drivers of fecal bacteria in tropical hawaiian rivers.  

PubMed

Potential shifts in rainfall driven by climate change are anticipated to affect watershed processes (e.g., soil moisture, runoff, stream flow), yet few model systems exist in the tropics to test hypotheses about how these processes may respond to these shifts. We used a sequence of nine watersheds on Hawaii Island spanning 3000 mm (7500-4500 mm) of mean annual rainfall (MAR) to investigate the effects of short-term (24-h) and long-term (MAR) rainfall on three fecal indicator bacteria (FIB) (enterococci, total coliforms, and ). All sample sites were in native Ohia dominated forest above 600 m in elevation. Additional samples were collected just above sea level where the predominant land cover is pasture and agriculture, permitting the additional study of interactions between land use across the MAR gradient. We found that declines in MAR significantly amplified concentrations of all three FIB and that FIB yield increased more rapidly with 24-h rainfall in low-MAR watersheds than in high-MAR watersheds. Because storm frequency decreases with declining MAR, the rate of change in water potential affects microbial growth, whereas increased rainfall intensity dislodges more soil and bacteria as runoff compared with water-logged soils of high-MAR watersheds. As expected, declines in % forest cover and increased urbanization increased FIB. Taken together, shifts in rainfall may alter bacterial inputs to tropical streams, with land use change also affecting water quality in streams and near-shore environments. PMID:25603095

Strauch, Ayron M; Mackenzie, Richard A; Bruland, Gregory L; Tingley, Ralph; Giardina, Christian P

2014-07-01

328

Sustainable reduction in the flux of microbial compliance parameters from urban and arable land use to coastal bathing waters by a wetland ecosystem produced by a marine flood defence structure.  

PubMed

'Natural' treatment systems such as wetlands and reed beds have been proposed as sustainable means of reducing fluxes of faecal indicator organisms (FIOs) to recreational and shellfish harvesting waters. This is because FIO fluxes to coastal waters from both point (effluent) and diffuse (catchment) sources can cause non-compliance with microbiological standards for bathing and shellfish harvesting waters. The Water Framework Directive requires competent authorities in the member states to manage both point and diffuse sources of FIOs in an integrated manner to achieve compliance with 'good' water quality as defined in a series of daughter Directives. This study was undertaken to investigate the relative sources of FIOs to the popular bathing waters around Clacton, UK. In this predominantly arable (mainly cereal cropping) farming area, the principal land use predictor, explaining 76% of the variance in geometric mean presumptive Escherichia coli concentration at sub-catchment outlets during the bathing season, was the proportion of built-up (i.e. urbanised) land in each sub-catchment. This new finding contrasts with earlier studies in livestock farming regions where the proportion of improved grassland has proven to be the strongest predictor of microbial concentration. Also novel in this investigation, a flood defence wall has been built creating a wetland area which discharges every tidal cycle. The wetland produces over 97% reduction in the flux and concentrations of FIOs to the marine recreational waters. Also, FIO concentrations in water draining through the wetland to the sea were similar to concentrations measured in six UK sewage treatment plant effluents subject to secondary (biological) treatment followed by UV disinfection. PMID:16009396

Kay, David; Wyer, Mark D; Crowther, John; Wilkinson, Jeremy; Stapleton, Carl; Glass, Paul

2005-09-01

329

Reconstruction assessment of historical land use: A case study in the Kamo River basin, Kyoto, Japan  

NASA Astrophysics Data System (ADS)

Reconstruction assessment of historical land use can be useful for understanding historical conditions and the impact of long-term land-use change. This study establishes a new method to estimate historical land use based on a set of basic rules generated from the comparison of present land-use and historical documents. This method has been formalized in the paleo-land-use reconstruction (PLUR) program, allowing users to quickly reconstruct historical land use using historical information. The 1843, 1902 and 1927 historical land use conditions were generated using the PLUR model for the Kamo River basin (KRB). Our results show that between 1902 and 1976, three golf courses (Ohara Public course, Kamigamo course and Funayama course) replaced forest land in the KRB. As a result of agricultural development, the area occupied by paddy fields in 1843 was 2.48 km2 less than that in 1902. Urban areas increased from 1843 to 1976, mainly reflecting declining coverage of paddy fields after 1902. The approach presented in this study can be used to support land-use change analyses and reconstruction of paleo-hydrology. This study also provides a discussion of the major drivers of land use change.

Luo, Pingping; Takara, Kaoru; Apip; He, Bin; Nover, Daniel

2014-02-01

330

Land use and the structure of western US stream invertebrate assemblages: Predictive models and ecological traits  

USGS Publications Warehouse

Inferences drawn from regional bioassessments could be strengthened by integrating data from different monitoring programs. We combined data from the US Geological Survey National Water-Quality Assessment (NAWQA) program and the US Environmental Protection Agency Wadeable Streams Assessment (WSA) to expand the scope of an existing River InVertebrate Prediction and Classification System (RIVPACS)-type predictive model and to assess the biological condition of streams across the western US in a variety of landuse classes. We used model-derived estimates of taxon-specific probabilities of capture and observed taxon occurrences to identify taxa that were absent from sites where they were predicted to occur (decreasers) and taxa that were present at sites where they were not predicted to occur (increasers). Integration of 87 NAWQA reference sites increased the scope of the existing WSA predictive model to include larger streams and later season sampling. Biological condition at 336 NAWQA test sites was significantly (p < 0.001) associated with basin land use and tended to be lower in basins with intensive landuse modification (e.g., mixed, urban, and agricultural basins) than in basins with relatively undisturbed land use (e.g., forested basins). Of the 437 taxa observed among reference and test sites, 180 (41%) were increasers or decreasers. In general, decreasers had a different set of ecological traits (functional traits or tolerance values) than did increasers. We could predict whether a taxon was a decreaser or an increaser based on just a few traits, e.g., desiccation resistance, timing of larval development, habit, and thermal preference, but we were unable to predict the type of basin land use from trait states present in invertebrate assemblages. Refined characterization of traits might be required before bioassessment data can be used routinely to aid in the diagnoses of the causes of biological impairment. ?? 2008 by The North American Benthological Society.

Carlisle, D.M.; Hawkins, C.P.

2008-01-01

331

Remote sensing of effects of land use practices on water quality  

NASA Technical Reports Server (NTRS)

An intensive study was conducted to determine the utility of manual densitometry and color additive viewing of aircraft and LANDSAT transparencies for monitoring land use and land use change. The relationship between land use and selected water quality parameters was also evaluated. Six watersheds located in the Cumberland Plateau region of eastern Kentucky comprised the study area for the project. Land uses present within the study area were reclaimed surface mining and forestry. Fertilization of one of the forested watersheds also occurred during the study period.

Graves, D. H.; Colthrap, G. B.

1977-01-01

332

Artificial neural network modeling of the water quality index using land use areas as predictors.  

PubMed

This paper describes the design of an artificial neural network (ANN) model to predict the water quality index (WQI) using land use areas as predictors. Ten-year records of land use statistics and water quality data for Kinta River (Malaysia) were employed in the modeling process. The most accurate WQI predictions were obtained with the network architecture 7-23-1; the back propagation training algorithm; and a learning rate of 0.02. The WQI forecasts of this model had significant (p < 0.01), positive, very high correlation (?s = 0.882) with the measured WQI values. Sensitivity analysis revealed that the relative importance of the land use classes to WQI predictions followed the order: mining > rubber > forest > logging > urban areas > agriculture > oil palm. These findings show that the ANNs are highly reliable means of relating water quality to land use, thus integrating land use development with river water quality management. PMID:25790513

Gazzaz, Nabeel M; Yusoff, Mohd Kamil; Ramli, Mohammad Firuz; Juahir, Hafizan; Aris, Ahmad Zaharin

2015-02-01

333

Biofuels and indirect land use change  

E-print Network

Biofuels and indirect land use change The case for mitigation October 2011 #12;About this study), Malaysian Palm Oil Board, National Farmers Union, Novozymes, Northeast Biofuels Collaborative, Patagonia Bio contributed views on a confidential basis. #12;1Biofuels and indirect land use change The case for mitigation

334

LAND USE AND OWNERSHIP, POWDER RIVER BASIN  

E-print Network

Chapter PM LAND USE AND OWNERSHIP, POWDER RIVER BASIN By T.T. Taber and S.A. Kinney In U........................................PM-1 Map Information for the Powder River Basin Land Use and Land Cover map...........................................................PM-2 Map Information for the Powder River Basin Subsurface Ownership map

335

Sustainable land use and agricultural soil  

Technology Transfer Automated Retrieval System (TEKTRAN)

Sustainable land use is the management of the natural environment and the built environment to conserve the resources that help to sustain the current human population of the area and that of future generations. This concept of sustainable land use requires an analysis of the existing resources, the...

336

Land Use and Land Cover Baseline Report  

E-print Network

high-priority development and conservation zones. Land management tools that center sustainable land management on areas with slopes greater than 15%. #12Land Use and Land Cover Baseline Report September 2012 Data and analysis of land use and land cover

Columbia University

337

Agricultural land use change in the Northeast  

Technology Transfer Automated Retrieval System (TEKTRAN)

The USDA Census of Agriculture (http://www.agcensus.usda.gov/) provides county-level estimates of farm numbers, land use area and livestock and crop production every five years. In 2007, only eight of the 299 counties that make up the twelve Northeastern states had no agricultural land use. About 20...

338

Effects of land use changes on the nutrient balance in mesoscale catchments  

NASA Astrophysics Data System (ADS)

Regional land use changes influence a great number of landscape functions. Simulation models can be used to evaluate the effects on water and nutrient balance. In this study the hydrological model SWAT-G was applied to quantify these effects. After a modification a calibration and validation was carried out. Based on the reasonably good reproduction of the measured values by the simulation, the model was applied to different scenarios with a sequence of land use change and thus, due to compensating effects in a complex structure of a real catchment, the effects of the land use change on the sediment yield were rather small. No trend could be depicted that it was altered by land use change, as neither forest nor grassland lead to higher erosion rates. Both forms of land use differ very little in this aspect. In contrast, a clear trend could be depicted for nitrate. With increasing deforestation and land use intensity the nitrate output increases, too.

Lenhart, T.; Fohrer, N.; Frede, H.-G.

339

Land use scenarios: a communication tool with local communities  

Microsoft Academic Search

The municipality of La Huacana in the Mexican state of Michoacàn, is currently undergoing a process of intense land use change,\\u000a which has severe environmental repercussions. This dry tropical region has a high rate of population emigration leading to\\u000a the abandonment of crop land, largely due to the low agricultural yields. At the same time small-estate holders are converting\\u000a the

G Cuevas; J-F Mas

340

Understanding the global land-use marketplace  

NASA Astrophysics Data System (ADS)

Over 7 billion humans inhabit Earth and our population increases by more than a hundred per minute. Satisfying the resource demands of seven-plus billion people whilst sustaining the Earth System is a delicate balancing act. We need to balance resource use with regenerative capacity and this balance must avoid tipping points beyond which return and recovery are impossible. Tipping points in the physical, biogeochemical and ecological components of the Earth System have all been proposed - adding the global land-use marketplace to such a list may not be obvious but it undeniably deserves attention. The land is where most humans live most of the time. It meets most food, fuel, freshwater and fibre requirements and shapes Earth's climate. As land is essentially a finite resource this leads to intense competition. Monetizing land resources is nothing new. Choice of agricultural practice has long been governed in part by economics. But in recent years monetization has extended to include new dimensions such as carbon trading and biodiversity offsetting. Our land-use marketplace now has to optimise food, fibre and fuel production whilst maintaining and enhancing land's role as a carbon sink, a hydrologic reservoir and a support for biological diversity. International (and national) environmental policies aim to find a balance between such competing uses. These policies call for accurate, accountable and timely evidence concerning how, when and where land resources are changing. In 2013 the European Space Agency will launch the first of the Copernicus programme's Earth Observing Sentinel satellites. These technologically advanced systems are matched to data acquisition and processing strategies that should provide scientific evidence concerning the land on an unprecedented scale. This paper provides one vision of how Earth science will benefit from the Sentinels and their associated services and how this science will subsequently inform and shape policies, especially those linked to Multilateral Environmental Agreements. Examples will show how the science can promote transparency and good governance, help build knowledge-bases, capacity and markets and illustrates how Copernicus services and the Sentinels are an important component of EU international co-operation.

Belward, Alan

2013-04-01

341

Evaluation of land use regression models (LURs) for nitrogen dioxide and benzene in four U.S. Cities.  

EPA Science Inventory

Spatial analysis studies have included application of land use regression models (LURs) for health and air quality assessments. Recent LUR studies have collected nitrogen dioxide (NO2) and volatile organic compounds (VOCs) using passive samplers at urban air monitoring networks ...

342

The “sowing of concrete”: Peri-urban smallholder perceptions of rural–urban land change in the Central Peruvian Andes?  

PubMed Central

Policy makers concerned with the peri-urban interface find their greatest challenges in the rapid urban growth of developing mountain regions, since limitations caused by relief and altitude often lead to an increased competition between rural and urban land use at the valley floors. In this context, little attention has been paid to the affected agriculturalists’ perceptions of peri-urban growth—important information required for the realization of sustainable land use planning. How is the process of rural–urban land change perceived and assessed by peri-urban smallholder communities? Which are the major difficulties to be overcome? By what means are the affected people reacting and how are these adaptation strategies linked with the ongoing landscape transformations of the hinterland? By using the example of Huancayo Metropolitano, an emerging Peruvian mountain city, it is shown that rural–urban land change is intensively discussed within peri-urban smallholder groups. Although urbanization also leads to infrastructure investments by public institutions—an advantage perceived throughout the study area—the negative impacts of rural–urban land use change prevail. The perceptions’ analysis reveals that the decrease of fertile and irrigated agricultural land at the quechua valley floor is especially considered to threaten subsistence, food and income security. In order to compensate the loss of production capacities, many smallholders try to expand or intensify their land use at the suni altitudinal belt: an agro-ecological zone characterized by steep and nonirrigated slopes that can actually not be used for the year-round production of crops previously cultivated at the quechua zone.

Haller, Andreas

2014-01-01

343

Automatic photointerpretation for land use management in Minnesota  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. The Minnesota Iron Range area was selected as one of the land use areas to be evaluated. Six classes were selected: (1) hardwood; (2) conifer; (3) water (including in mines); (4) mines, tailings and wet areas; (5) open area; and (6) urban. Initial classification results show a correct classification of 70.1 to 95.4% for the six classes. This is extremely good. It can be further improved since there were some incorrect classifications in the ground truth.

Swanlund, G. D. (principal investigator); Pile, D. R.

1973-01-01

344

Land-use intensification reduces functional redundancy and response diversity in plant  

E-print Network

, Turrialba 30501, Costa Rica 4 CSIRO Sustainable Ecosystems, Atherton, Queensland 4883, Australia 5 Griffith communities, using data from 18 land-use intensity gradients that represent five biomes and > 2800 species. We

Fraterrigo, Jennifer

345

CARETS: A prototype regional environmental information system. Volume 2, parts A and B: Norfolk and environs; a land use perspective  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. The Norfolk-Portsmouth metropolitan statistical area in southeastern Virginia was the site of intensive testing of a number of land resources assessment methods. Land use and land cover data at three levels of detail were derived by manual image interpretation from both aircraft and satellite sources and used to characterize the 1,766 sq km (682 sq mi) area from the perspective of its various resource-related activities and problems. Measurements at level 1 from 1:100, 000 scale maps revealed 42 percent of the test area (excluding bays and estuaries) to be forest, 28 percent agriculture, 23 percent urban and built-up, 4 percent nonforested wetlands, and 2 percent water. At the same scale and level of detail, 10 percent of the area underwent change from one land use category to another in the period 1959-70, 62 percent of which involved the relatively irreversible change from forest or agriculture to urban uses.

Alexander, R. H. (principal investigator); Buzzanell, P. J.; Fitzpatrick, K. A.; Lins, H. F., Jr.; Mcginty, H. K., III

1975-01-01

346

Relative impacts of climate and land use changes on future flood damage along River Meuse in Wallonia  

NASA Astrophysics Data System (ADS)

Climate change is expected to increase flood hazard across most of Europe, both in terms of peak discharge intensity and frequency. Consequently, managing flood risk will remain an issue of primary importance for decades to come. Flood risk depends on territories' flood hazard and vulnerability. Beside climate change, land use evolution is thus a key influencing factor on flood risk. The aim of this research is to quantify the relative influence of climate and land use changes on flood damage evolution during the 21st century. The study focuses on River Meuse in Wallonia for a 100-year flood. A scenario-based approach was used to model land use evolution. Nine urbanization scenarios for 2100 were developed: three of them assume a "current tend" land use evolution, characterized by urban sprawl, while six others assume a sustainable spatial planning, leading to an increase in density of residential areas as well as an increase in urban functions diversity. A study commissioned by the EU has estimated a 30 % increase in the 100-year discharge for River Meuse by the year 2100. Inundation modeling was conducted for the present day 100-year flood (HQ100) and for a discharge HQ100 + 30%, using the model Wolf 2D and a 5m grid resolution Digital Elevation Model (Ernst et al. 2009). Based on five different damage curves related to land use categories, the relative damage was deduced from the computed inundation maps. Finally, specific prices were associated to each land use category and allowed assessing absolute damages, which were subsequently aggregated to obtain a damage value for each of the 19 municipalities crossed by River Meuse. Results show that flood damage is estimated to increase by 540 to 630 % between 2009 and 2100, reaching 2.1 to 2.4 billion Euros in 2100. These increases mainly involve municipalities downstream of a point where the floodplain width becomes significantly larger. The city of Liège, which is protected against a 100-year flood in the present situation, would undergo about 450 million Euros damage for a 100-year flood in the 2100, i.e. in-between 21% and 25 % of the whole damage increase. The influence of climate is three to eight times higher than the effect of land use change according to the land use evolution scenarios considered. Nevertheless, these two factors have a comparable influence on seven municipalities. Consequently, although a careful spatial planning would not considerably reduce the overall flood damage at the level of the Walloon part of the Meuse Valley, more sustainable spatial planning could efficiently reduce future flood damage at the level of several most critical municipalities. Reference Ernst, J, Dewals, B, Detrembleur, S, Archambeau, P, Erpicum, S, & Pirotton, M. (2010). Micro-scale flood risk analysis based on detailed 2D hydraulic modelling and high resolution geographic data. Natural Hazards, 55(2), 181-209.

Beckers, A.; Detrembleur, S.; Dewals, B. J.; Gouverneur, L.; Dujardin, S.; Archambeau, P.; Erpicum, S.; Pirotton, M.

2012-04-01

347

Modeling biofuel expansion effects on land use change dynamics  

NASA Astrophysics Data System (ADS)

Increasing demand for crop-based biofuels, in addition to other human drivers of land use, induces direct and indirect land use changes (LUC). Our system dynamics tool is intended to complement existing LUC modeling approaches and to improve the understanding of global LUC drivers and dynamics by allowing examination of global LUC under diverse scenarios and varying model assumptions. We report on a small subset of such analyses. This model provides insights into the drivers and dynamic interactions of LUC (e.g., dietary choices and biofuel policy) and is not intended to assert improvement in numerical results relative to other works. Demand for food commodities are mostly met in high food and high crop-based biofuel demand scenarios, but cropland must expand substantially. Meeting roughly 25% of global transportation fuel demand by 2050 with biofuels requires >2 times the land used to meet food demands under a presumed 40% increase in per capita food demand. In comparison, the high food demand scenario requires greater pastureland for meat production, leading to larger overall expansion into forest and grassland. Our results indicate that, in all scenarios, there is a potential for supply shortfalls, and associated upward pressure on prices, of food commodities requiring higher land use intensity (e.g., beef) which biofuels could exacerbate.

Warner, Ethan; Inman, Daniel; Kunstman, Benjamin; Bush, Brian; Vimmerstedt, Laura; Peterson, Steve; Macknick, Jordan; Zhang, Yimin

2013-03-01

348

Economic-based projections of future land use in the conterminous United States under alternative policy scenarios.  

PubMed

Land-use change significantly contributes to biodiversity loss, invasive species spread, changes in biogeochemical cycles, and the loss of ecosystem services. Planning for a sustainable future requires a thorough understanding of expected land use at the fine spatial scales relevant for modeling many ecological processes and at dimensions appropriate for regional or national-level policy making. Our goal was to construct and parameterize an econometric model of land-use change to project future land use to the year 2051 at a fine spatial scale across the conterminous United States under several alternative land-use policy scenarios. We parameterized the econometric model of land-use change with the National Resource Inventory (NRI) 1992 and 1997 land-use data for 844 000 sample points. Land-use transitions were estimated for five land-use classes (cropland, pasture, range, forest, and urban). We predicted land-use change under four scenarios: business-as-usual, afforestation, removal of agricultural subsidies, and increased urban rents. Our results for the business-as-usual scenario showed widespread changes in land use, affecting 36% of the land area of the conterminous United States, with large increases in urban land (79%) and forest (7%), and declines in cropland (-16%) and pasture (-13%). Areas with particularly high rates of land-use change included the larger Chicago area, parts of the Pacific Northwest, and the Central Valley of California. However, while land-use change was substantial, differences in results among the four scenarios were relatively minor. The only scenario that was markedly different was the afforestation scenario, which resulted in an increase of forest area that was twice as high as the business-as-usual scenario. Land-use policies can affect trends, but only so much. The basic economic and demographic factors shaping land-use changes in the United States are powerful, and even fairly dramatic policy changes, showed only moderate deviations from the business-as-usual scenario. Given the magnitude of predicted land-use change, any attempts to identify a sustainable future or to predict the effects of climate change will have to take likely land-use changes into account. Econometric models that can simulate land-use change for broad areas with fine resolution are necessary to predict trends in ecosystem service provision and biodiversity persistence. PMID:22645830

Radeloff, V C; Nelson, E; Plantinga, A J; Lewis, D J; Helmers, D; Lawler, J J; Withey, J C; Beaudry, F; Martinuzzi, S; Butsic, V; Lonsdorf, E; White, D; Polasky, S

2012-04-01

349

Seven American TODs: Good Practices for Urban Design in Transit-Oriented Development Projects  

Microsoft Academic Search

In the past few decades, Transit-Oriented Development (TOD) has emerged as a popular and influential planning concept in the United States. Physical design is an important aspect of making TOD projects work as it is a crucial means of coordinating relatively intensive land uses and multiple transportation modes. This paper analyzes seven American TOD projects in terms of urban design

Justin Jacobson; Ann Forsyth

2008-01-01

350

Land use classification utilizing remote multispectral scanner data and computer analysis techniques  

NASA Technical Reports Server (NTRS)

An airborne multispectral scanner was used to collect the visible and reflective infrared data. A small subdivision near Lafayette, Indiana was selected as the test site for the urban land use study. Multispectral scanner data were collected over the subdivision on May 1, 1970 from an altitude of 915 meters. The data were collected in twelve wavelength bands from 0.40 to 1.00 micrometers by the scanner. The results indicated that computer analysis of multispectral data can be very accurate in classifying and estimating the natural and man-made materials that characterize land uses in an urban scene.

Leblanc, P. N.; Johannsen, C. J.; Yanner, J. E.

1973-01-01

351

Mapping Global Urban Extent and Intensity for Environmental Monitoring and Modeling  

NASA Astrophysics Data System (ADS)

The human dimensions of global environmental change have received increased attention in policy, decision- making, research, and even the media. However, the influence of urban areas in global change processes is still often assumed to be negligible. Although local environmental conditions such as the urban heat island effect are well-documented, little or no work has focused on cross-scale interactions, or the ways in which local urban processes cumulatively impact global changes. Given the rapid rates of rural-urban migration, economic development and urban spatial expansion, it is becoming increasingly clear that the `ecological footprint' of cities may play a critical role in environmental changes at regional and global scales. Our understanding of the cumulative impacts of urban areas on natural systems has been limited foremost by a lack of reliable, accurate data on current urban form and extent at the global scale. The data sets that have emerged to fill this gap (LandScan, GRUMP, nighttime lights) suffer from a number of limitations that prevent widespread use. Building on our early efforts with MODIS data, our current work focuses on: (1) completing a new, validated map of global urban extent; and (2) developing methods to estimate the subpixel fraction of impervious surface, vegetation, and other land cover types within urbanized areas using coarse resolution satellite imagery. For the first task, a technique called boosting is used to improve classification accuracy and provides a means to integrate 500 m resolution MODIS data with ancillary data sources. For the second task, we present an approach for estimating percent cover that relies on continuous training data for a full range of city types. These exemplars are used as inputs to fuzzy neural network and regression tree algorithms to predict fractional amounts of land cover types with increased accuracy. Preliminary results for a global sample of 100 cities (which vary in population size, level of economic development, and spatial extent) show good agreement with the expected morphology in each region.

Schneider, A.; Friedl, M. A.

2007-05-01

352

Random Forests-Based Feature Selection for Land-Use Classification Using LIDAR Data and Orthoimagery  

NASA Astrophysics Data System (ADS)

The development of lidar system, especially incorporated with high-resolution camera components, has shown great potential for urban classification. However, how to automatically select the best features for land-use classification is challenging. Random Forests, a newly developed machine learning algorithm, is receiving considerable attention in the field of image classification and pattern recognition. Especially, it can provide the measure of variable importance. Thus, in this study the performance of the Random Forests-based feature selection for urban areas was explored. First, we extract features from lidar data, including height-based, intensity-based GLCM measures; other spectral features can be obtained from imagery, such as Red, Blue and Green three bands, and GLCM-based measures. Finally, Random Forests is used to automatically select the optimal and uncorrelated features for landuse classification. 0.5-meter resolution lidar data and aerial imagery are used to assess the feature selection performance of Random Forests in the study area located in Mannheim, Germany. The results clearly demonstrate that the use of Random Forests-based feature selection can improve the classification performance by the selected features.

Guan, H.; Yu, J.; Li, J.; Luo, L.

2012-07-01

353

Integrating life-cycle environmental and economic assessment with transportation and land use planning.  

PubMed

The environmental outcomes of urban form changes should couple life-cycle and behavioral assessment methods to better understand urban sustainability policy outcomes. Using Phoenix, Arizona light rail as a case study, an integrated transportation and land use life-cycle assessment (ITLU-LCA) framework is developed to assess the changes to energy consumption and air emissions from transit-oriented neighborhood designs. Residential travel, commercial travel, and building energy use are included and the framework integrates household behavior change assessment to explore the environmental and economic outcomes of policies that affect infrastructure. The results show that upfront environmental and economic investments are needed (through more energy-intense building materials for high-density structures) to produce long run benefits in reduced building energy use and automobile travel. The annualized life-cycle benefits of transit-oriented developments in Phoenix can range from 1.7 to 230 Gg CO2e depending on the aggressiveness of residential density. Midpoint impact stressors for respiratory effects and photochemical smog formation are also assessed and can be reduced by 1.2-170 Mg PM10e and 41-5200 Mg O3e annually. These benefits will come at an additional construction cost of up to $410 million resulting in a cost of avoided CO2e at $16-29 and household cost savings. PMID:24053574

Chester, Mikhail V; Nahlik, Matthew J; Fraser, Andrew M; Kimball, Mindy A; Garikapati, Venu M

2013-11-01

354

Threats and opportunities for freshwater conservation under future land use change scenarios in the United States.  

PubMed

Freshwater ecosystems provide vital resources for humans and support high levels of biodiversity, yet are severely threatened throughout the world. The expansion of human land uses, such as urban and crop cover, typically degrades water quality and reduces freshwater biodiversity, thereby jeopardizing both biodiversity and ecosystem services. Identifying and mitigating future threats to freshwater ecosystems requires forecasting where land use changes are most likely. Our goal was to evaluate the potential consequences of future land use on freshwater ecosystems in the coterminous United States by comparing alternative scenarios of land use change (2001-2051) with current patterns of freshwater biodiversity and water quality risk. Using an econometric model, each of our land use scenarios projected greater changes in watersheds of the eastern half of the country, where freshwater ecosystems already experience higher stress from human activities. Future urban expansion emerged as a major threat in regions with high freshwater biodiversity (e.g., the Southeast) or severe water quality problems (e.g., the Midwest). Our scenarios reflecting environmentally oriented policies had some positive effects. Subsidizing afforestation for carbon sequestration reduced crop cover and increased natural vegetation in areas that are currently stressed by low water quality, while discouraging urban sprawl diminished urban expansion in areas of high biodiversity. On the other hand, we found that increases in crop commodity prices could lead to increased agricultural threats in areas of high freshwater biodiversity. Our analyses illustrate the potential for policy changes and market factors to influence future land use trends in certain regions of the country, with important consequences for freshwater ecosystems. Successful conservation of aquatic biodiversity and ecosystem services in the United States into the future will require attending to the potential threats and opportunities arising from policies and market changes affecting land use. PMID:24022881

Martinuzzi, Sebastián; Januchowski-Hartley, Stephanie R; Pracheil, Brenda M; McIntyre, Peter B; Plantinga, Andrew J; Lewis, David J; Radeloff, Volker C

2014-01-01

355

[Land use pattern and its dynamic changes in Amur tiger distribution region].  

PubMed

Land use and land cover change has been the primary cause for the habitat loss and fragmentation in the distribution region of Amur tiger (Panthera tigris altaica). Based on the spatiotemporal changes of land use and land cover in the distribution region, as well as their effects on the population dynamics of Amur tiger, this paper analyzed the development process and its characteristics of the main land use types (agricultural land, forest land, and construction land) in this region, with the land use change history being divided chronically into three distinctive periods, i.e., ancient times (prior to 1860), modern times (1860-1949), and contemporary times (after 1949). The results showed that the sporadic land use in ancient times had no significant effects on the survival of Amur tiger, while the extensive and intensive land use after the 1860s was mainly responsible for the decrease of Amur tiger population and its living space. Since 1949, the Amur tiger distribution region has been divided into two parts, i.e., Northeast China and Russia Far East. The differences in land use pattern, policy, and intensity between these two parts led to different survival status of Amur tiger. The key driving forces for the land use change in Amur tiger distribution region were human population increase, policy change, and increased productivity. PMID:19637615

Li, Zhong-wen; Wu, Jian-guo; Kou, Xiao-jun; Tian, Yu; Wang, Tian-ming; Mu, Pu; Ge, Jian-ping

2009-03-01

356

Generalized probabilistic seimsic hazard estimates in terms of macroseismic intensity as a tool for risk assessment in urban areas  

NASA Astrophysics Data System (ADS)

The use of macroseismic intensity to parameterize earthquakes effects allows a direct link of hazard assessment with risk estimates in urban areas. This is particularly true in most of European countries where long lasting documentary history is available about the effects of past earthquakes. This is why the use of the computational code SASHA (Site Approach to Seismic Hazard Assessment), on purpose developed for a coherent probabilistic analysis of intensity data locally available (site seismic histories) to provided hazard estimates in terms of intensity by taking into account the specific nature of intensity (ordinal, discrete, finite in range, site-dependent) and relevant uncertainty (completeness, ill-definition of the oldest earthquakes, etc.), resulted of specific interest in the frame of the EU research project UPStratMAFA "Urban Disaster Prevention Strategies Using MAcroseismic Fields and FAult Sources" (Grant Agreement n. 230301/2011/613486/SUB/A5). In order to extend the application of this approach to sites and countries where local seismic histories are relatively poor, a new implementation of the code was provided, allowing to include in the hazard assessment information coming from different branches (historical studies, seismological instrumental information and numerical simulations). In particular, macroseismic information related to the seismic history locally documented, that represents the bulk of the considered information, can be integrated with "virtual" intensities deduced from epicentral data (via earthquake-specific probabilistic attenuation relationships) and "simulated" intensities deduced via physical/stochastic simulations from data concerning seismogenic faults activated during past earthquakes. This allows a more complete reconstruction of local seismic history and also reducing uncertainty affecting macroseismic data relative to older earthquakes. Results of some applications of the new release of the SASHA code will be described.

Albarello, Dario; D'Amico, Vera; Rotondi, Renata; Varini, Elsa; Zonno, Gaetano

2013-04-01

357

Agriculture, land use, and commercial biomass energy  

SciTech Connect

In this paper we have considered commercial biomass energy in the context of overall agriculture and land-use change. We have described a model of energy, agriculture, and land-use and employed that model to examine the implications of commercial biomass energy or both energy sector and land-use change carbon emissions. In general we find that the introduction of biomass energy has a negative effect on the extent of unmanaged ecosystems. Commercial biomass introduces a major new land use which raises land rental rates, and provides an incentive to bring more land into production, increasing the rate of incursion into unmanaged ecosystems. But while the emergence of a commercial biomass industry may increase land-use change emissions, the overall effect is strongly to reduce total anthropogenic carbon emissions. Further, the higher the rate of commercial biomass energy productivity, the lower net emissions. Higher commercial biomass energy productivity, while leading to higher land-use change emissions, has a far stronger effect on fossil fuel carbon emissions. Highly productive and inexpensive commercial biomass energy technologies appear to have a substantial depressing effect on total anthropogenic carbon emissions, though their introduction raises the rental rate on land, providing incentives for greater rates of deforestation than in the reference case.

Edmonds, J.A.; Wise, M.A.; Sands, R.D.; Brown, R.A.; Kheshgi, H.

1996-06-01

358

Effects of land use on water quality of the Fountain Creek alluvial aquifer, east-central Colorado  

USGS Publications Warehouse

Water-quality data were collected from the Fountain Creek alluvial aquifer in 1988 and 1989 as part of the Toxic-Waste Ground-Water Contamination Program. These data indicate that dissolved solids, most major ions, fluoride, ammonium, boron, lithium, selenium, and strontium were more concentrated in the agricultural land-use area than in the upgradient urban land-use area. Nitrate and phosphate had significantly larger concentrations, and volatile organic compounds had significantly greater detection frequencies in the urban land-use area.

Chafin, Daniel T.

1996-01-01

359

Pervasive transition of the Brazilian land-use system  

NASA Astrophysics Data System (ADS)

Agriculture, deforestation, greenhouse gas emissions and local/regional climate change have been closely intertwined in Brazil. Recent studies show that this relationship has been changing since the mid 2000s, with the burgeoning intensification and commoditization of Brazilian agriculture. On one hand, this accrues considerable environmental dividends including a pronounced reduction in deforestation (which is becoming decoupled from agricultural production), resulting in a decrease of ~40% in nationwide greenhouse gas emissions since 2005, and a potential cooling of the climate at the local scale. On the other hand, these changes in the land-use system further reinforce the long-established inequality in land ownership, contributing to rural-urban migration that ultimately fuels haphazard expansion of urban areas. We argue that strong enforcement of sector-oriented policies and solving long-standing land tenure problems, rather than simply waiting for market self-regulation, are key steps to buffer the detrimental effects of agricultural intensification at the forefront of a sustainable pathway for land use in Brazil.

Lapola, David M.; Martinelli, Luiz A.; Peres, Carlos A.; Ometto, Jean P. H. B.; Ferreira, Manuel E.; Nobre, Carlos A.; Aguiar, Ana Paula D.; Bustamante, Mercedes M. C.; Cardoso, Manoel F.; Costa, Marcos H.; Joly, Carlos A.; Leite, Christiane C.; Moutinho, Paulo; Sampaio, Gilvan; Strassburg, Bernardo B. N.; Vieira, Ima C. G.

2014-01-01

360

Diversity of benthic biofilms along a land use gradient in tropical headwater streams, Puerto Rico.  

PubMed

The properties of freshwater ecosystems can be altered, directly or indirectly, by different land uses (e.g., urbanization and agriculture). Streams heavily influenced by high nutrient concentrations associated with agriculture or urbanization may present conditions that can be intolerable for many aquatic species such as macroinvertebrates and fishes. However, information with respect to how benthic microbial communities may respond to changes in stream ecosystem properties in relation to agricultural or urban land uses is limited, in particular for tropical ecosystems. In this study, diversity of benthic biofilms was evaluated in 16 streams along a gradient of land use at the Turabo watershed in Puerto Rico using terminal restriction fragment length polymorphism. Diversity indices and community structure descriptors (species richness, Shannon diversity, dominance and evenness) were calculated for both bacteria and eukaryotes for each stream. Diversity of both groups, bacteria and eukaryotes, did not show a consistent pattern with land use, since it could be high or low at streams dominated by different land uses. This suggests that diversity of biofilms may be more related to site-specific conditions rather than watershed scale factors. To assess this contention, the relationship between biofilm diversity and reach-scale parameters (i.e., nutrient concentrations, canopy cover, conductivity, and dissolved oxygen) was determined using the Akaike Information Criterion (AIC(c)) for small sample size. Results indicated that nitrate was the variable that best explained variations in biofilm diversity. Since nitrate concentrations tend to increase with urban land use, our results suggest that urbanization may indeed increase microbial diversity indirectly by increasing nutrients in stream water. PMID:24643714

Burgos-Caraballo, Sofía; Cantrell, Sharon A; Ramírez, Alonso

2014-07-01

361

Effects of intensive urbanization on the intrusion of shallow groundwater into deep groundwater: examples from Bangkok and Jakarta.  

PubMed

Asian megacities have severe pollution problems in both coastal and urban areas. In addition, the groundwater potential has decreased and land subsidence has occurred because of intensive groundwater pumping in urban areas. To prevent the adverse effects of urbanization on groundwater quality, it is necessary to confirm the changes in groundwater flow and contaminant transport caused by urbanization. We examined the effects of urbanization on contaminant transport in groundwater. The research areas were located around Bangkok, Thailand, and Jakarta, Indonesia, cities with populations of approximately 8 and 12 million, respectively. Each metropolitan city is located on a river delta and is adjacent to a bay. We measured the water level and collected water samples at boreholes at multiple depths (100 to 200 m) in 2004 and 2006 in Bangkok and Jakarta, respectively. The current hydraulic potential is below sea level in both cities because of prior excess abstraction of groundwater. As a result, the direction of groundwater flow is now downward in the coastal area. The Cl(-) concentration and delta(18)O distributions in groundwater suggest that the decline in hydraulic potential has caused the intrusion of seawater and shallow groundwater into deep groundwater. Concentrations of Mn and NO3(-)-N in groundwater suggest the intrusion of these contaminants from shallow to deep aquifers with downward groundwater flow and implies an accumulation of contaminants in deep aquifers. Therefore, it is important to recognize the possibility of future contaminant transport with the discharge of deep groundwater into the sea after the recovery of groundwater potential in the coastal areas. PMID:18804843

Onodera, Shin-ichi; Saito, Mitsuyo; Sawano, Misa; Hosono, Takahiro; Taniguchi, Makoto; Shimada, Jun; Umezawa, Yu; Lubis, Rachmat Fajar; Buapeng, Somkid; Delinom, Robert

2008-10-15

362

Erratum to "Effects of intensive urbanization on the intrusion of shallow groundwater into deep groundwater: examples from Bangkok and Jakarta".  

PubMed

Asian megacities have severe pollution problems in both coastal and urban areas. In addition, the groundwater potential has decreased and land subsidence has occurred because of intensive groundwater pumping in urban areas. To prevent the adverse effects of urbanization on groundwater quality, it is necessary to confirm the changes in groundwater flow and contaminant transport caused by urbanization. We examined the effects of urbanization on contaminant transport in groundwater. The research areas were located around Bangkok, Thailand, and Jakarta, Indonesia, cities with populations of approximately 8 and 12 million, respectively. Each metropolitan city is located on a river delta and is adjacent to a bay. We measured the water level and collected water samples at boreholes at multiple depths (100 to 200 m) in 2004 and 2006 in Bangkok and Jakarta, respectively. The current hydraulic potential is below sea level in both cities because of prior excess abstraction of groundwater. As a result, the direction of groundwater flow is now downward in the coastal area. The Cl- concentration and delta18O distributions in groundwater suggest that the decline in hydraulic potential has caused the intrusion of seawater and shallow groundwater into deep groundwater. Concentrations of Mn and NO3--N in groundwater suggest the intrusion of these contaminants from shallow to deep aquifers with downward groundwater flow and implies an accumulation of contaminants in deep aquifers. Therefore, it is important to recognize the possibility of future contaminant transport with the discharge of deep groundwater into the sea after the recovery of groundwater potential in the coastal areas. PMID:19437605

Onodera, Shin-ichi; Saito, Mitsuyo; Sawano, Misa; Hosono, Takahiro; Taniguchi, Makoto; Shimada, Jun; Umezawa, Yu; Lubis, Rachmat Fajar; Buapeng, Somkid; Delinom, Robert

2009-04-15

363

Spatial autocorrelation in multi-scale land use models  

Microsoft Academic Search

In several land use models statistical methods are being used to analyse spatial data. Land use drivers that best describe land use patterns quantitatively are often selected through (logistic) regression analysis. A problem using conventional statistical methods, like (logistic) regression, in spatial land use analysis is that these methods assume the data to be statistically independent. But, spatial land use

K. P. Overmars; G. H. J. de Koning; A. Veldkamp

2003-01-01

364

An assessment of a collaborative mapping approach for exploring land use patterns for several European metropolises  

NASA Astrophysics Data System (ADS)

Until recently, land surveys and digital interpretation of remotely sensed imagery have been used to generate land use inventories. These techniques however, are often cumbersome and costly, allocating large amounts of technical and temporal costs. The technological advances of web 2.0 have brought a wide array of technological achievements, stimulating the participatory role in collaborative and crowd sourced mapping products. This has been fostered by GPS-enabled devices, and accessible tools that enable visual interpretation of high resolution satellite images/air photos provided in collaborative mapping projects. Such technologies offer an integrative approach to geography by means of promoting public participation and allowing accurate assessment and classification of land use as well as geographical features. OpenStreetMap (OSM) has supported the evolution of such techniques, contributing to the existence of a large inventory of spatial land use information. This paper explores the introduction of this novel participatory phenomenon for land use classification in Europe's metropolitan regions. We adopt a positivistic approach to assess comparatively the accuracy of these contributions of OSM for land use classifications in seven large European metropolitan regions. Thematic accuracy and degree of completeness of OSM data was compared to available Global Monitoring for Environment and Security Urban Atlas (GMESUA) datasets for the chosen metropolises. We further extend our findings of land use within a novel framework for geography, justifying that volunteered geographic information (VGI) sources are of great benefit for land use mapping depending on location and degree of VGI dynamism and offer a great alternative to traditional mapping techniques for metropolitan regions throughout Europe. Evaluation of several land use types at the local level suggests that a number of OSM classes (such as anthropogenic land use, agricultural and some natural environment classes) are viable alternatives for land use classification. These classes are highly accurate and can be integrated into planning decisions for stakeholders and policymakers.

Jokar Arsanjani, Jamal; Vaz, Eric

2015-03-01

365

The land Gini coefficient and its application for land use structure analysis in China.  

PubMed

We introduce the Gini coefficient to assess the rationality of land use structure. The rapid transformation of land use in China provides a typical case for land use structure analysis. In this study, a land Gini coefficient (LGC) analysis tool was developed. The land use structure rationality was analyzed and evaluated based on statistical data for China between 1996 and 2008. The results show: (1)The LGC of three major land use types-farmland, built-up land and unused land-was smaller when the four economic districts were considered as assessment units instead of the provinces. Therefore, the LGC is spatially dependent; if the calculation unit expands, then the LGC decreases, and this relationship does not change with time. Additionally, land use activities in different provinces of a single district differed greatly. (2) At the national level, the LGC of the three main land use types indicated that during the 13 years analyzed, the farmland and unused land were evenly distributed across China. However, the built-up land distribution was relatively or absolutely unequal and highlights the rapid urbanization in China. (3) Trends in the distribution of the three major land use types are very different. At the national level, when using a district as the calculation unit, the LGC of the three main land use types increased, and their distribution became increasingly concentrated. However, when a province was used as the calculation unit, the LGC of the farmland increased, while the LGC of the built-up and unused land decreased. These findings indicate that the distribution of the farmland became increasingly concentrated, while the built-up land and unused land became increasingly uniform. (4) The LGC analysis method of land use structure based on geographic information systems (GIS) is flexible and convenient. PMID:24130764

Zheng, Xinqi; Xia, Tian; Yang, Xin; Yuan, Tao; Hu, Yecui

2013-01-01

366

The Land Gini Coefficient and Its Application for Land Use Structure Analysis in China  

PubMed Central

We introduce the Gini coefficient to assess the rationality of land use structure. The rapid transformation of land use in China provides a typical case for land use structure analysis. In this study, a land Gini coefficient (LGC) analysis tool was developed. The land use structure rationality was analyzed and evaluated based on statistical data for China between 1996 and 2008. The results show: (1)The LGC of three major land use types–farmland, built-up land and unused land–was smaller when the four economic districts were considered as assessment units instead of the provinces. Therefore, the LGC is spatially dependent; if the calculation unit expands, then the LGC decreases, and this relationship does not change with time. Additionally, land use activities in different provinces of a single district differed greatly. (2) At the national level, the LGC of the three main land use types indicated that during the 13 years analyzed, the farmland and unused land were evenly distributed across China. However, the built-up land distribution was relatively or absolutely unequal and highlights the rapid urbanization in China. (3) Trends in the distribution of the three major land use types are very different. At the national level, when using a district as the calculation unit, the LGC of the three main land use types increased, and their distribution became increasingly concentrated. However, when a province was used as the calculation unit, the LGC of the farmland increased, while the LGC of the built-up and unused land decreased. These findings indicate that the distribution of the farmland became increasingly concentrated, while the built-up land and unused land became increasingly uniform. (4) The LGC analysis method of land use structure based on geographic information systems (GIS) is flexible and convenient. PMID:24130764

Zheng, Xinqi; Xia, Tian; Yang, Xin; Yuan, Tao; Hu, Yecui

2013-01-01

367

Combined Impact of Spatial Scale, Land Use, and Climate on Streamflow and Water Quality  

NASA Astrophysics Data System (ADS)

Human activities such as urban development and intensification of agriculture change landscape profoundly and pervasively. Recognition of the strong association between land use and water quality, and between human health and clean water, has increasingly focused attention on the relationships between catchment characteristics and water quality. While most previous studies that relate water quality to land use are based on small-scale experiments, further studies are required at a wider range of spatial scale to further our understanding. In addition, very little work has addressed the dynamics of nutrient fluxes at both different spatial and temporal scales. Consequently the issue of scale in understanding nutrient behavior has been poorly addressed, particularly so for spatial scale. Therefore, this study addresses the impact of spatial scale along with land use and climate impact on water quality for 50 different catchments around the world. These catchments have a wide range of spatial scales (21 - 1.8 x 1012 m2), land uses (i.e. urban, agricultural, forest, etc.), and climates (i.e. arid, semi-arid, temperate, tropical, etc.). Specific research questions addressed are: (1) How does spatial scale affect water quality (specifically nitrogen yield)? (2) How do land use and climate affect nitrogen yield? and (3) How do land use and climate interact with spatial scale to affect nitrogen yield? First, investigating the positive co-linearity between nitrogen yield and corresponding discharge for each catchment, results demonstrate that smaller catchments have larger slopes (nitrogen yield versus discharge, herein N yield rate) and this rate decreases as catchment area increases. Second, examining the land use effect on N yield rate indicate that highly perturbed catchments (urban and agricultural) often have higher N yield rate compared to less perturbed catchments (forest and pasture) while climate tends to affect nitrogen yield rather than N yield rate. Third, a complicated interaction among scale, land use, and climate seems to affect N yield and that combined effect could go in the same direction causing an increase in N yield or in opposite directions resulting in a decrease in N yield, for instance, a small (scale) urban or agricultural (land use) catchment in a temperate (climate) region has notably higher N yield compared to a big minimally perturbed catchment in an arid region. Finally and importantly, our results indicate that degree of perturbation and -to some extent- land use of a region could be acceptably predicted on the bases of only a few measurements of discharge and corresponding N concentration measurements at a certain point (e.g. outlet of a catchment).

Al-lafta, H. S.; Gallo, E.; Meixner, T.

2011-12-01

368

Characterization of salinity and selenium loading and land-use change in Montrose Arroyo, western Colorado, from 1992 to 2010  

USGS Publications Warehouse

Salinity and selenium are naturally occurring and perva-sive in the lower Gunnison River Basin of Colorado, includ-ing the watershed of Montrose Arroyo. Although some of the salinity and selenium loading in the Montrose Arroyo study area is from natural sources, additional loading has resulted from the introduction of intensive irrigation in the water-shed. With increasing land-use change and the conversion from irrigated agricultural to urban land, land managers and stakeholders need information about the long-term effects of land-use change on salinity and selenium loading. In response to the need to advance salinity and selenium science, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, Colorado River Basin Salinity Control Forum, and Colorado River Water Conservation District, developed a study to characterize salinity and selenium loading and how salinity and selenium sources may relate to land-use change in Montrose Arroyo. This report characterizes changes in salinity and selenium loading to Montrose Arroyo from March 1992 to February 2010 and the magnitude of land-use change between unirrigated desert, irrigated agricultural, and urban land-use/land-cover types, and discusses how the respective loads may relate to land-use change. Montrose Arroyo is an approximately 8-square-mile watershed in Montrose County in western Colorado. Salinity and selenium were studied in Montrose Arroyo in a 2001 study as part of a salinity- and selenium-control lateral project. The robust nature of the historical dataset indicated that Montrose Arroyo was a prime watershed for a follow-up study. Two sites from the 2001 study were used to monitor salinity and selenium loads in Montrose Arroyo in the follow-up study. Over the period of 2 water years and respective irrigation seasons (2008-2010), 27 water-quality samples were collected and streamflow measurements were made at the historical sites MA2 and MA4. Salinity and selenium concen-trations, loads, and streamflow were compared between the pre-lateral-project and post-growth periods and between the post-lateral-project and post-growth periods. No significant differences in streamflow, salinity (concen-tration and load), or selenium (concentration and load) were found at MA4 between the pre-lateral project and post-growth periods or between the post-lateral-project and post-growth periods. The statistical analysis indicated no significant dif-ferences in streamflow or salinity (both concentration and load) between the pre-lateral-project and post-growth periods or between the post-lateral-project and post-growth periods at MA2; however, selenium concentrations and loads were significantly greater between the pre-lateral-project and post-growth periods and between the post-lateral-project and post-growth periods at MA2. Land-use change between MA4 and MA2 may have contributed to the determined differences in selenium values, but the specific mechanisms causing the increases between periods are unknown. The size of the urbanized area in Montrose Arroyo was quantified for 1993, 2002, and 2009 by using a geographic information system (GIS) with imagery from the specified years. The greatest change in land use from 1993 to 2009 was the increase of urban land due to conversion from irrigated agricultural land. The conversion of previously unirrigated desert to urban land or irrigated agriculture could become more common if urbanization and development expands into the eastern part of the watershed because a majority of the un-urbanized land in eastern Montrose Arroyo is unirrigated desert. By applying GIS to the City of Montrose 2008 com-prehensive growth plan, it was estimated that approximately 786 acres of previously irrigated agricultural land will be converted to urban land and 689 acres of unirrigated desert will be converted to urban land under the plan scenario. New development on previously unirrigated land in shale areas would likely increase the potential for mobilization of sele-nium and salinity from new sources to Montrose Arroyo and the Lower Gunnis

Moore, Jennifer L.

2011-01-01

369

Land use in the Paraiba Valley through remotely sensed data. [Brazil  

NASA Technical Reports Server (NTRS)

A methodology for land use survey was developed and land use modification rates were determined using LANDSAT imagery of the Paraiba Valley (state of Sao Paulo). Both visual and automatic interpretation methods were employed to analyze seven land use classes: urban area, industrial area, bare soil, cultivated area, pastureland, reforestation and natural vegetation. By means of visual interpretation, little spectral differences are observed among those classes. The automatic classification of LANDSAT MSS data using maximum likelihood algorithm shows a 39% average error of omission and a 3.4% error of inclusion for the seven classes. The complexity of land uses in the study area, the large spectral variations of analyzed classes, and the low resolution of LANDSAT data influenced the classification results.

Dejesusparada, N. (principal investigator); Lombardo, M. A.; Novo, E. M. L. D.; Niero, M.; Foresti, C.

1980-01-01

370

Forests and competing land uses in Kenya  

NASA Astrophysics Data System (ADS)

Indigenous forests in Kenya, as in other developing countries, are under heavy pressure from competing agricultural land uses and from unsustainable cutting. The problem in Kenya is compounded by high population growth rates and an agriculturally based economy, which, even with efforts to control birth rates and industrialize, will persist into the next century. Both ecological and economic consequences of these pressures need to be considered in land-use decision making for land and forest management to be effective. This paper presents one way to combine ecological and economic considerations. The status of principal forest areas in Kenya is summarized and competing land uses compared on the basis of ecological functions and economic analysis. Replacement uses do not match the ecological functions of forest, although established stands of tree crops (forest plantations, fuel wood, tea) can have roughly comparable effects on soil and water resources. Indigenous forests have high, although difficult to estimate, economic benefits from tourism and protection of downstream agricultural productivity. Economic returns from competing land uses range widely, with tea having the highest and fuel wood plantations having returns comparable to some annual crops and dairying. Consideration of ecological and economic factors together suggests some trade-offs for improving land allocation decisions and several management opportunities for increasing benefits or reducing costs from particular land uses. The evaluation also suggests a general strategy for forest land management in Kenya.

Allaway, James; Cox, Pamela M. J.

1989-03-01

371

Projected land-use change impacts on ecosystem services in the United States  

PubMed Central

Providing food, timber, energy, housing, and other goods and services, while maintaining ecosystem functions and biodiversity that underpin their sustainable supply, is one of the great challenges of our time. Understanding the drivers of land-use change and how policies can alter land-use change will be critical to meeting this challenge. Here we project land-use change in the contiguous United States to 2051 under two plausible baseline trajectories of economic conditions to illustrate how differences in underlying market forces can have large impacts on land-use with cascading effects on ecosystem services and wildlife habitat. We project a large increase in croplands (28.2 million ha) under a scenario with high crop demand mirroring conditions starting in 2007, compared with a loss of cropland (11.2 million ha) mirroring conditions in the 1990s. Projected land-use changes result in increases in carbon storage, timber production, food production from increased yields, and >10% decreases in habitat for 25% of modeled species. We also analyze policy alternatives designed to encourage forest cover and natural landscapes and reduce urban expansion. Although these policy scenarios modify baseline land-use patterns, they do not reverse powerful underlying trends. Policy interventions need to be aggressive to significantly alter underlying land-use change trends and shift the trajectory of ecosystem service provision. PMID:24799685

Lawler, Joshua J.; Lewis, David J.; Nelson, Erik; Plantinga, Andrew J.; Polasky, Stephen; Withey, John C.; Helmers, David P.; Martinuzzi, Sebastián; Pennington, Derric; Radeloff, Volker C.

2014-01-01

372

Land use/land cover change in Yellow River Delta, China during fast development period  

NASA Astrophysics Data System (ADS)

Terrestrial eco-system in coastal zones is unstable and land-use and Land-cover of its land resource are crucial for its sustainability. Therefore it is necessary to understand distribution of land use/cover changes in those tender areas. This paper was to analyze changes of land use/cover in Yellow River Delta in China during recent ten years, which was its fast development period, by remote sensing monitoring. Two Landsat TM images in October of 1995 and 2004 were processed using ERDAS software and supervised classification method in study for the land use and land cover of those two years. The two land use/cover maps were overlaid to discover the changes. It was showed that lots of land use/cover changes in the Yellow River Delta had taken place in past ten years. Because abundant sand that carried by river water filled up at estuary of the Yellow River, new land increased fleetly. The rates that foreshore were turned into fishery land was high for aquaculture with salt water had been developed quickly. Another important effect of human activity was that part of waste land and grassland had been cultivated for crops. With industry and economy development, land for urbanization had been outspreaded. Although fast exploitation had been carried out in Yellow River Delta going though those years, some human activities on land use were inharmonious for sustainable development of land resource in this area. This must be pay attention to by local government and people.

Zhou, Wenzuo; Tian, Yongzhong; Zhu, Lifen

2007-09-01

373

Projected land-use change impacts on ecosystem services in the United States.  

PubMed

Providing food, timber, energy, housing, and other goods and services, while maintaining ecosystem functions and biodiversity that underpin their sustainable supply, is one of the great challenges of our time. Understanding the drivers of land-use change and how policies can alter land-use change will be critical to meeting this challenge. Here we project land-use change in the contiguous United States to 2051 under two plausible baseline trajectories of economic conditions to illustrate how differences in underlying market forces can have large impacts on land-use with cascading effects on ecosystem services and wildlife habitat. We project a large increase in croplands (28.2 million ha) under a scenario with high crop demand mirroring conditions starting in 2007, compared with a loss of cropland (11.2 million ha) mirroring conditions in the 1990s. Projected land-use changes result in increases in carbon storage, timber production, food production from increased yields, and >10% decreases in habitat for 25% of modeled species. We also analyze policy alternatives designed to encourage forest cover and natural landscapes and reduce urban expansion. Although these policy scenarios modify baseline land-use patterns, they do not reverse powerful underlying trends. Policy interventions need to be aggressive to significantly alter underlying land-use change trends and shift the trajectory of ecosystem service provision. PMID:24799685

Lawler, Joshua J; Lewis, David J; Nelson, Erik; Plantinga, Andrew J; Polasky, Stephen; Withey, John C; Helmers, David P; Martinuzzi, Sebastián; Pennington, Derric; Radeloff, Volker C

2014-05-20

374

Land use change prediction of Wuhan City: a Markov-Monte Carlo approach  

NASA Astrophysics Data System (ADS)

Markov model is found to be beneficial in describing and analyzing land cover change process. The probability of transition between each pair of states is recorded as an element of a transition probability matrix, which is the key factor to obtain a higher precision of prediction in Markov model. In this study, a combined use of RS, GIS, Markov stochastic modeling and Monte Carlo simulating techniques are employed in analyzing and prediction land use/cover changes in Wuhan city. The results indicate that the transition probability matrix derived from Monte Carlo experiment is more accurate for land use prediction, and the prediction results of land use change show that there urban growth is has notable, area of forest land continued decreasing, and that the land use/cover change process would be stable in the future. The study demonstrates remote sensing image is an effective data source and statistical information of land use is a valid supplement for land use/land cover research. Integration of these two kinds of data in Markov - Monte Carlo method can adjust the basis of the same observation time when images are not available every year or at a constant time interval in LUCC modeling. Land use/land cover change information from the prediction results will be beneficial in describing, analyzing the change process of land structure in Wuhan city in next 20 years.

Xia, Huiqiong; Zheng, Chunyan; Liu, Hai

2013-10-01

375

Future fire emissions associated with projected land use change in Sumatra.  

PubMed

Indonesia has experienced rapid land use change over the last few decades as forests and peatswamps have been cleared for more intensively managed land uses, including oil palm and timber plantations. Fires are the predominant method of clearing and managing land for more intensive uses, and the related emissions affect public health by contributing to regional particulate matter and ozone concentrations and adding to global atmospheric carbon dioxide concentrations. Here, we examine emissions from fires associated with land use clearing and land management on the Indonesian island of Sumatra and the sensitivity of this fire activity to interannual meteorological variability. We find ~80% of 2005-2009 Sumatra emissions are associated with degradation or land use maintenance instead of immediate land use conversion, especially in dry years. We estimate Sumatra fire emissions from land use change and maintenance for the next two decades with five scenarios of land use change, the Global Fire Emissions Database Version 3, detailed 1-km2 land use change maps, and MODIS fire radiative power observations. Despite comprising only 16% of the original study area, we predict that 37-48% of future Sumatra emissions from land use change will occur in fuel-rich peatswamps unless this land cover type is protected effectively. This result means that the impact of fires on future air quality and climate in Equatorial Asia will be decided in part by the conservation status given to the remaining peatswamps on Sumatra. Results from this article will be implemented in an atmospheric transport model to quantify the public health impacts from the transport of fire emissions associated with future land use scenarios in Sumatra. PMID:25044917

Marlier, Miriam E; DeFries, Ruth; Pennington, Derric; Nelson, Erik; Ordway, Elsa M; Lewis, Jeremy; Koplitz, Shannon N; Mickley, Loretta J

2015-01-01

376

Land use inventory of Salt Lake County, Utah from color infrared aerial photography 1982  

NASA Technical Reports Server (NTRS)

The preparation of land use maps of Salt Lake County, Utah from high altitude color infrared photography is described. The primary purpose of the maps is to aid in the assessment of the effects of urban development on the agricultural land base and water resources. The first stage of map production was to determine the categories of land use/land cover and the mapping unit detail. The highest level of interpretive detail was given to the land use categories found in the agricultural or urbanized portions of the county; these areas are of primary interest with regard to the consumptive use of water from surface streams and wells. A slightly lower level of mapping detail was given to wetland environments; areas to which water is not purposely diverted by man but which have a high consumptive rate of water use. Photos were interpreted on the basis of color, tone, texture, and pattern, together with features of the topographic, hydrologic, and ecological context.

Price, K. P.; Willie, R. D.; Wheeler, D. J.; Ridd, M. K.

1983-01-01

377

Projecting Global Land-Use Change and Its Effect on Ecosystem Service Provision and Biodiversity with Simple Models  

PubMed Central

Background As the global human population grows and its consumption patterns change, additional land will be needed for living space and agricultural production. A critical question facing global society is how to meet growing human demands for living space, food, fuel, and other materials while sustaining ecosystem services and biodiversity [1]. Methodology/Principal Findings We spatially allocate two scenarios of 2000 to 2015 global areal change in urban land and cropland at the grid cell-level and measure the impact of this change on the provision of ecosystem services and biodiversity. The models and techniques used to spatially allocate land-use/land-cover (LULC) change and evaluate its impact on ecosystems are relatively simple and transparent [2]. The difference in the magnitude and pattern of cropland expansion across the two scenarios engenders different tradeoffs among crop production, provision of species habitat, and other important ecosystem services such as biomass carbon storage. For example, in one scenario, 5.2 grams of carbon stored in biomass is released for every additional calorie of crop produced across the globe; under the other scenario this tradeoff rate is 13.7. By comparing scenarios and their impacts we can begin to identify the global pattern of cropland and irrigation development that is significant enough to meet future food needs but has less of an impact on ecosystem service and habitat provision. Conclusions/Significance Urban area and croplands will expand in the future to meet human needs for living space, livelihoods, and food. In order to jointly provide desired levels of urban land, food production, and ecosystem service and species habitat provision the global society will have to become much more strategic in its allocation of intensively managed land uses. Here we illustrate a method for quickly and transparently evaluating the performance of potential global futures. PMID:21179509

Nelson, Erik; Sander, Heather; Hawthorne, Peter; Conte, Marc; Ennaanay, Driss; Wolny, Stacie; Manson, Steven; Polasky, Stephen

2010-01-01

378

Regional decline of an iconic amphibian associated with elevation, land-use change, and invasive species.  

PubMed

Ecological theory predicts that species with restricted geographic ranges will have the highest probability of extinction, but species with extensive distributions and high population densities can also exhibit widespread population losses. In the western United States populations of northern leopard frogs (Lithobates pipiens)-historically one of the most widespread frogs in North America-have declined dramatically in abundance and geographic distribution. To assess the status of leopard frogs in Colorado and evaluate causes of decline, we coupled statewide surveys of 196 historically occupied sites with intensive sampling of 274 wetlands stratified by land use. We used an information-theoretic approach to evaluate the contributions of factors at multiple spatial extents in explaining the contemporary distribution of leopard frogs. Our results indicate leopard frogs have declined in Colorado, but this decline was regionally variable. The lowest proportion of occupied wetlands occurred in eastern Colorado (2-28%), coincident with urban development and colonization by non-native bullfrogs (Lithobates catesbeianus). Variables at several spatial extents explained observed leopard frog distributional patterns. In low-elevation wetlands introduced fishes, bullfrogs, and urbanization or suburbanization associated negatively with leopard frog occurrence, whereas wetland area was positively associated with occurrence. Leopard frogs were more abundant and widespread west of the Continental Divide, where urban development and bullfrog abundance were low. Although the pathogenic chytrid Batrachochytrium dendrobatidis (Bd) was not selected in our best-supported models, the nearly complete extirpation of leopard frogs from montane wetlands could reflect the individual or interactive effects of Bd and climate patterns. Our results highlight the importance of considering multiple, competing hypotheses to explain species declines, particularly when implicated factors operate at different spatial extents. PMID:21342266

Johnson, Pieter T J; McKenzie, Valerie J; Peterson, Anna C; Kerby, Jacob L; Brown, Jennifer; Blaustein, Andrew R; Jackson, Tina

2011-06-01

379

36 CFR 910.16 - Land use.  

Code of Federal Regulations, 2011 CFR

...Section 910.16 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT CORPORATION GENERAL GUIDELINES AND...STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA AVENUE DEVELOPMENT AREA Urban Planning and Design...

2011-07-01