These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Analyzing Land Use Change In Urban Environments  

NSDL National Science Digital Library

This four-page fact sheet provides a brief summary of the analysis of land use in urban environments. Topics include the rapid growth in urban populations, some of the methods used to analyze land use change (mapping, databases, time series documents), and some of the concerns and possible consequences created by the rapid shift of human populations to urban centers.

2010-11-16

2

Urban Land-Use and Respiratory Symptoms in Infants  

PubMed Central

Background Children’s respiratory health has been linked to many factors, including air pollution. The impacts of urban land-use on health are not fully understood, although these relationships are of key importance given the growing populations living in urban environments. Objectives We investigated whether the degree of urban land-use near a family’s residence is associated with severity of respiratory symptoms like wheeze among infants. Methods Wheeze occurrence was recorded for the first year of life for 680 infants in Connecticut for 1996–1998 from a cohort at risk for asthma development. Land-use categories were obtained from the National Land Cover Database. The fraction of urban land-use near each subject’s home was related to severity of wheeze symptoms using ordered logistic regression, adjusting for individual-level data including smoking in the household, race, gender, and socio-economic status. Nitrogen dioxide (NO2) exposure was estimated using integrated traffic exposure modeling. Different levels of urban land-use intensity were included in separate models to explore intensity-response relationships. A buffer distance was selected based on the log-likelihood value of models with buffers of 100–2,000m by 10m increments. Results A 10% increase in urban land-use within the selected 1,540m buffer of each infant’s residence was associated with 1.09-fold increased risk of wheeze severity (95% confidence interval, 1.02–1.16). Results were robust to alternate buffer sizes. When NO2, representing traffic pollution, was added to the model, results for urban land-use were no longer statistically significant, but had similar central estimates. Higher urban intensity showed higher risk of prevalence and severity of wheeze symptoms. Conclusions Urban land-use was associated with severity of wheeze symptoms in infants. Findings indicate that health effect estimates for urbanicity incorporate some effects of traffic-related emissions, but also involve other factors. These may include differences in housing characteristics or baseline healthcare status. PMID:21530957

Ebisu, Keita; Holford, Theodore R.; Belanger, Kathleen D.; Leaderer, Brian P.; Bell, Michelle L.

2011-01-01

3

Urban Dynamics: Analyzing Land Use Change in Urban Environments  

NASA Technical Reports Server (NTRS)

In FY99, the Earth Resource Observation System (EROS) staff at Ames continued managing the U.S. Geological Survey's (USGS) Urban Dynamics Research program, which has mapping and analysis activities at five USGS mapping centers. Historic land use reconstruction work continued while activities in geographic analysis and modeling were expanded. Retrospective geographic information system (GIS) development - the spatial reconstruction of a region's urban land-use history - focused on the Detroit River Corridor, California's Central Valley, and the city of Sioux Falls, South Dakota.

Acevedo, William; Richards, Lora R.; Buchanan, Janis T.; Wegener, Whitney R.

2000-01-01

4

Challenges and opportunities in mapping land use intensity globally?  

PubMed Central

Future increases in land-based production will need to focus more on sustainably intensifying existing production systems. Unfortunately, our understanding of the global patterns of land use intensity is weak, partly because land use intensity is a complex, multidimensional term, and partly because we lack appropriate datasets to assess land use intensity across broad geographic extents. Here, we review the state of the art regarding approaches for mapping land use intensity and provide a comprehensive overview of available global-scale datasets on land use intensity. We also outline major challenges and opportunities for mapping land use intensity for cropland, grazing, and forestry systems, and identify key issues for future research. PMID:24143157

Kuemmerle, Tobias; Erb, Karlheinz; Meyfroidt, Patrick; Müller, Daniel; Verburg, Peter H; Estel, Stephan; Haberl, Helmut; Hostert, Patrick; Jepsen, Martin R.; Kastner, Thomas; Levers, Christian; Lindner, Marcus; Plutzar, Christoph; Verkerk, Pieter Johannes; van der Zanden, Emma H; Reenberg, Anette

2013-01-01

5

Cities and Urban Land Use in Advanced Placement Human Geography.  

ERIC Educational Resources Information Center

Discusses the cities and urban land use section of the Advanced Placement (AP) human geography course, focusing on the: (1) definitions of urbanism; (2) origin and evolution of cities; (3) functional character of contemporary cities; (4) built environment and social space; and (5) responses to urban growth. (CMK)

Ford, Larry R.

2000-01-01

6

Quantifying Land Use and Land Cover Effects on Urban Runoff Water Quality  

Microsoft Academic Search

The impact of non-point source pollution on urban storm runoff is of major concern in the Southwest where water resources are scarce, episodic rainfall is intense and runoff recharge is a water management strategy. The objectives of this study are to 1) determine the extent to which specific types of urban land use impact the quality of monsoonal rainfall-runoff, and

E. L. Gallo; M. A. Snyder; N. R. Dejwakh; K. Lohse; P. D. Brooks; J. E. McLain; J. McIntosh; T. Meixner

2007-01-01

7

Impact of urbanization and land-use change on climate  

Microsoft Academic Search

The most important anthropogenic influences on climate are the emission of greenhouse gases and changes in land use, such as urbanization and agriculture. But it has been difficult to separate these two influences because both tend to increase the daily mean surface temperature. The impact of urbanization has been estimated by comparing observations in cities with those in surrounding rural

Eugenia Kalnay; Ming Cai

2003-01-01

8

Urban Transportation, Land Use, and the Environment  

NSDL National Science Digital Library

Part of MIT's innovative OpenCourseWare Project, that provides materials from MIT classes to the public on the web, the site contains materials from a seminar studying the interactions of urban systems and the environment. Along with general topics, the seminar provides in-depth case studies of three Central and South American urban areas: Mexico City, Curitiba, and Santiago. The site provides a syllabus, calendar, references for readings, assignments, project ideas, in-depth lecture presentations, and class assignments.

Zegras, P. Christopher

9

International Symposium on Urban Land Policies and Land Use Systems Center for Urban Studies  

E-print Network

1 International Symposium on Urban Land Policies and Land Use Systems Center for Urban Studies original land-use tools, such as the Legal Density Ceiling, a kind of land tax that the Brazilian. Furthermore, the strong land-use control policy enforced after the second World War in France has enabled

Paris-Sud XI, Université de

10

Impact of urbanization and land-use change on climate.  

PubMed

The most important anthropogenic influences on climate are the emission of greenhouse gases and changes in land use, such as urbanization and agriculture. But it has been difficult to separate these two influences because both tend to increase the daily mean surface temperature. The impact of urbanization has been estimated by comparing observations in cities with those in surrounding rural areas, but the results differ significantly depending on whether population data or satellite measurements of night light are used to classify urban and rural areas. Here we use the difference between trends in observed surface temperatures in the continental United States and the corresponding trends in a reconstruction of surface temperatures determined from a reanalysis of global weather over the past 50 years, which is insensitive to surface observations, to estimate the impact of land-use changes on surface warming. Our results suggest that half of the observed decrease in diurnal temperature range is due to urban and other land-use changes. Moreover, our estimate of 0.27 degrees C mean surface warming per century due to land-use changes is at least twice as high as previous estimates based on urbanization alone. PMID:12774119

Kalnay, Eugenia; Cai, Ming

2003-05-29

11

Airborne lidar intensity calibration and application for land use classification  

NASA Astrophysics Data System (ADS)

Airborne Light Detection and Ranging (LiDAR) is an active remote sensing technology which can acquire the topographic information efficiently. It can record the accurate 3D coordinates of the targets and also the signal intensity (the amplitude of backscattered echoes) which represents reflectance characteristics of targets. The intensity data has been used in land use classification, vegetation fractional cover and leaf area index (LAI) estimation. Apart from the reflectance characteristics of the targets, the intensity data can also be influenced by many other factors, such as flying height, incident angle, atmospheric attenuation, laser pulse power and laser beam width. It is therefore necessary to calibrate intensity values before further applications. In this study, we analyze the factors affecting LiDAR intensity based on radar range equation firstly, and then applying the intensity calibration method, which includes the sensor-to-target distance and incident angle, to the laser intensity data over the study area. Finally the raw LiDAR intensity and normalized intensity data are used for land use classification along with LiDAR elevation data respectively. The results show that the classification accuracy from the normalized intensity data is higher than that from raw LiDAR intensity data and also indicate that the calibration of LiDAR intensity data is necessary in the application of land use classification.

Li, Dong; Wang, Cheng; Luo, She-Zhou; Zuo, Zheng-Li

2014-11-01

12

Land-use suitability analysis for urban development in Beijing.  

PubMed

Land-use suitability analyses are of considerable use in the planning of mega-cities. An Urban Development Land-use Suitability Mapping (UDLSM) approach has been constructed, based on opportunity and constraint criteria. Two Multi-criteria Evaluation (MCE) methods, the Ideal Point Method (IPM) and Ordered Weighted Averaging (OWA), were used to generate the opportunity map. The protection map was obtained by means of constraint criteria, utilizing the Boolean union operator. A suitability map was then generated by overlaying the opportunity and protection maps. By applying the UDLSM approach to Beijing, its urban development land-use suitability was mapped, and a sensitivity analysis undertaken to examine the robustness of the proposed approach. Indirect validation was achieved by mutual comparisons of suitability maps resulting from the two MCE methods, where the overall agreement of 91% and kappa coefficient of 0.78 indicated that both methods provide very similar spatial land-use suitability distributions. The suitability level decreases from central Beijing to its periphery, and the area classed as suitable amounts to 28% of the total area. Leading attributes of each opportunity factor for suitability were revealed, with 2256 km(2), i.e. 70%, of existing development land being overlaid by suitable areas in Beijing. Conflicting parcels of land were identified by overlaying the resultant map with two previous development blueprints for Beijing. The paper includes several recommendations aimed at improving the long-term urban development plans for Beijing. PMID:25036557

Liu, Renzhi; Zhang, Ke; Zhang, Zhijiao; Borthwick, Alistair G L

2014-12-01

13

Interannual variation in land-use intensity enhances grassland multidiversity.  

PubMed

Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18% of the maximum diversity across all grasslands when LUI was static over time but increased to 31% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation. PMID:24368852

Allan, Eric; Bossdorf, Oliver; Dormann, Carsten F; Prati, Daniel; Gossner, Martin M; Tscharntke, Teja; Blüthgen, Nico; Bellach, Michaela; Birkhofer, Klaus; Boch, Steffen; Böhm, Stefan; Börschig, Carmen; Chatzinotas, Antonis; Christ, Sabina; Daniel, Rolf; Diekötter, Tim; Fischer, Christiane; Friedl, Thomas; Glaser, Karin; Hallmann, Christine; Hodac, Ladislav; Hölzel, Norbert; Jung, Kirsten; Klein, Alexandra Maria; Klaus, Valentin H; Kleinebecker, Till; Krauss, Jochen; Lange, Markus; Morris, E Kathryn; Müller, Jörg; Nacke, Heiko; Pasalic, Esther; Rillig, Matthias C; Rothenwöhrer, Christoph; Schall, Peter; Scherber, Christoph; Schulze, Waltraud; Socher, Stephanie A; Steckel, Juliane; Steffan-Dewenter, Ingolf; Türke, Manfred; Weiner, Christiane N; Werner, Michael; Westphal, Catrin; Wolters, Volkmar; Wubet, Tesfaye; Gockel, Sonja; Gorke, Martin; Hemp, Andreas; Renner, Swen C; Schöning, Ingo; Pfeiffer, Simone; König-Ries, Birgitta; Buscot, François; Linsenmair, Karl Eduard; Schulze, Ernst-Detlef; Weisser, Wolfgang W; Fischer, Markus

2014-01-01

14

Urban land use predicts West Nile virus exposure in songbirds.  

PubMed

Urbanization is a widespread phenomenon that is likely to influence the prevalence and impact of wildlife pathogens, with implications for wildlife management and public health policies toward zoonotic pathogens. In this study, wild songbird populations were sampled at 14 sites along an urban rural gradient in the greater metropolitan Atlanta (Georgia, USA) area and tested for antibodies to West Nile virus (WNV). The level of urbanization among sites was quantitatively assessed using a principal component analysis of key land use characteristics. In total, 499 individual birds were tested during the spring and summer over three years (2004-2006). Antibody prevalence of WNV increased from rural to urban sites, and this trend was stronger among adult birds relative to juveniles. Furthermore, antibody prevalence among Northern Cardinals (Cardinalis cardinalis) was significantly higher than in other songbird species along the urban gradient. Findings reported here indicate that ecological factors associated with urbanization can influence infection patterns of this vector-borne viral disease, with likely mechanisms including changes in host species diversity and the tolerance or recovery of infected animals. PMID:18686573

Bradley, Catherine A; Gibbs, Samantha E J; Altizer, Sonia

2008-07-01

15

RESEARCH ARTICLE A novel index of land use intensity for organic  

E-print Network

RESEARCH ARTICLE A novel index of land use intensity for organic and conventional farming is closely related to land use. Intensive land use is considered to be a major cause of biodiversity loss. Most studies addressing the effect of land use intensity on biodiversity have compared organic

Paris-Sud XI, Université de

16

Analysis and prediction of household location choice in Grand Lyon with urban land use simulation tool UrbanSim  

E-print Network

Analysis and prediction of household location choice in Grand Lyon with urban land use simulation by adding other UrbanSim models to the application. Keywords: household location choice, land use modelling population, employment, land use and transportation is a necessary precondition of efficient urban planning

Paris-Sud XI, Université de

17

Monitoring farmland loss and projecting the future land use of an urbanized watershed in Yogyakarta, Indonesia  

Microsoft Academic Search

This study analyzes land use changes in Yogyakarta, Indonesia, specifically farmland loss, which has occurred as a result of rapid urbanization by employing remote sensing, GIS, and land use modeling techniques. Landsat images from 1992 and 2004 and ASTER Terralook images from 2009 were classified using a supervised classification to generate land use maps. Land use change was detected using

Partoyo; Rajendra Prasad Shrestha

2011-01-01

18

Are agricultural land-use models able to predict changes in land-use intensity?  

Microsoft Academic Search

Land-use and land-cover change research needs to pay more attention to processes of land-cover modification, and especially to agricultural land intensification. The objective of this paper is to review the different modelling approaches that have been used in land-use\\/land-cover change research from the perspective of their utility for the study and prediction of changes in land-use intensification. After clarifying the

E. F. Lambin; M. D. A Rounsevell; H. J Geist

2000-01-01

19

The ERTS-1 investigation (ER-600). Volume 5: ERTS-1 urban land use analysis  

NASA Technical Reports Server (NTRS)

The Urban Land Use Team conducted a year's investigation of ERTS-1 MSS data to determine the number of Land Use categories in the Houston, Texas, area. They discovered unusually low classification accuracies occurred when a spectrally complex urban scene was classified with extensive rural areas containing spectrally homogeneous features. Separate computer processing of only data in the urbanized area increased classification accuracies of certain urban land use categories. Even so, accuracies of urban landscape were in the 40-70 percent range compared to 70-90 percent for the land use categories containing more homogeneous features (agriculture, forest, water, etc.) in the nonurban areas.

Erb, R. B.

1974-01-01

20

Urban Land Use Decouples Plant-Herbivore-Parasitoid Interactions at Multiple Spatial Scales  

PubMed Central

Intense urban and agricultural development alters habitats, increases fragmentation, and may decouple trophic interactions if plants or animals cannot disperse to needed resources. Specialist insects represent a substantial proportion of global biodiversity and their fidelity to discrete microhabitats provides a powerful framework for investigating organismal responses to human land use. We sampled site occupancy and densities for two plant-herbivore-parasitoid systems from 250 sites across a 360 km2 urban/agricultural landscape to ask whether and how human development decouples interactions between trophic levels. We compared patterns of site occupancy, host plant density, herbivory and parasitism rates of insects at two trophic levels with respect to landcover at multiple spatial scales. Geospatial analyses were used to identify landcover characters predictive of insect distributions. We found that herbivorous insect densities were decoupled from host tree densities in urban landcover types at several spatial scales. This effect was amplified for the third trophic level in one of the two insect systems: despite being abundant regionally, a parasitoid species was absent from all urban/suburban landcover even where its herbivore host was common. Our results indicate that human land use patterns limit distributions of specialist insects. Dispersal constraints associated with urban built development are specifically implicated as a limiting factor. PMID:25019962

Nelson, Amanda E.; Forbes, Andrew A.

2014-01-01

21

Rates, trends, causes, and consequences of urban land-use change in the United States  

USGS Publications Warehouse

Over the past 200 years, changes to the Nation's urban areas have been dramatic. Changes that have occurred relate both to the location of urban centers, as well as to the spatial extent of land dedicated to urban uses. Urban areas at the beginning of the 19th century were located primarily along major rivers or bodies of water, as waterways provided the most efficient means for transporting goods and people. As railroads became prominent, urban areas were able to expand or develop away from the water's edge. Geographic features such as steep slopes, wetlands, and lack of freshwater impeded settlement. In 1902, the National Reclamation Act was passed and with it came funding for the construction of water storage and transportation systems. This encouraged urban expansion in the arid west. After World War II, the Nation's urban areas continued to expand outward away from the city center as populations migrated to the margins of urban areas, where land was less expensive and the environment was less polluted. In 1956, the Federal Highway Act and the building of Interstate highways further facilitated urban expansion across the Unite States. Rural towns, small industrial centers, and farmland were engulfed by expanding urban centers. Over the past 200 years, numerous social, cultural, economic, and political incentives have encouraged urban expansion. In the 1800s, the industrial revolution influenced where people lived and worked. Many people shifted from agricultural production in rural areas to factory work in urban centers. Advances in transportation systems, such as rail transport in the 19th and early 20th centuries, followed by the mass production of the automobile and convenient air travel, facilitated a mobile society and a national economy. Economic growth and a population boom after World War II spurred increased suburbanization-the shifting of residential areas to the outlying section of a city or to a separate municipality-on the fringe of urban areas. Other economic and political incentives that shaped the urban environment included Federally backed home loans, credit and tax mechanisms that encouraged new development, and less restrictive municipal ordinances regarding building codes, environmental laws, and zoning regulations. Throughout the past two centuries land use changes associated with increasing urbanization have had impacts that resonate at local, regional, and even national scales. Landscape changes resulting from urbanization can be mapped and studied over time. Understanding these changes requires a study of the causes of change as related to social, economic, and political influences. Understanding these changes also requires analysis of how urbanization physically spreads across the landscape. The knowledge gained from studying urban land-use change can be helpful when it flows into local, regional, and national decisionmaking that relates to land-use decisions that impact the people, the economy, and the environment. Deriving a correlation between physical change and the explanations of the causes of change can help anticipate and mitigate the impacts of future change. Throughout the past two centuries changes to the Nation's urban areas are inextricably linked to population changes. The Nation's population started growing slowly along the eastern seaboard during the 17th and 18th centuries, accelerated in the second half of the 19th century, and then continued steadily spreading westward throughout the next hundred years. Currently, nearly 80 percent of the U.S. population resides in urban areas. Land area dedicated to urban use continues to expand, although differently than it has in the past. Most newly urbanized areas are much less densely populated and less intensively developed than they were 50 to 100 years ago.

Acevedo, William; Taylor, Janis L.; Hester, Dave J.; Mladinich, Carol S.; Glavac, Sonya

2006-01-01

22

Gravel resources, urbanization, and future land use, Front Range Urban Corridor, Colorado  

USGS Publications Warehouse

An assessment of gravel needs in Front Range Urban Corridor markets to 2000 A.D., based on forecast population increases and urbanization, indicates that adequate resources to meet anticipated needs are potentially available, if future land use does not preclude their extraction. Because of urban encroachment onto gravel-bearing lands, this basic construction material is in short supply nationally and in the Front Range Urban Corridor. Longer hauls, increased prices, and use of alternatives, especially crushed rock aggregate, have resulted. An analysis of possible sequential land uses following gravel mining indicates that a desirable use is for 'real estate' ponds and small lakes. A method for computing gravel reserves, based on planimeter measurement of area of resource-bearing lands and statistical analysis of reliability of thickness and size distribution data, was developed to compute reserves in individual markets. A discussion of the qualitative 'usability' of these reserves is then made for the individual markets.

Soule, James M.; Fitch, Harold R.

1974-01-01

23

Urban Studies, Vol. 41, No. 2, 000000, February 2004 Local Land-use Controls and Demographic  

E-print Network

Urban Studies, Vol. 41, No. 2, 000­000, February 2004 Local Land-use Controls and Demographic] Summary. The article analyses the link between autarchic land-use policies adopted by local governments accounts for the potential endogeneity of contemporaneous land-use policies by relying upon exogenous

Sekhon, Jasjeet S.

24

Variation of urban momentum roughness length with land use in the upwind source area, as observed in two UK cities.  

E-print Network

in the urban boundary layer and maps of land use obtained from satellite mapping, with a source-area model to the findings from the first study. Keywords urban meteorology, land use, source-area model c 2003 British Crown land use in the urban environment, using source-area modelling and satellite-derived land use data

Reading, University of

25

Land use patterns and urbanization in the holy city of Varanasi, India: a scenario.  

PubMed

Rapid urbanization and increasing land use changes due to population and economic growth in selected landscapes is being witnessed of late in India and other developing countries. The cities are expanding in all directions resulting in large-scale urban sprawl and changes in urban land use. The spatial pattern of such changes is clearly noticed on the urban fringes or city peripheral rural areas than in the city center. In fact, this is reflected in changing urban land use patterns. There is an urgent need to accurately describe land use changes for planning and sustainable management. In the recent times, remote sensing is gaining importance as vital tool in the analysis and integration of spatial data. This study intends to estimate land use pattern in a planned and unplanned urban setup and also to analyze the impact of change in land use pattern in the Varanasi urban environment. The results indicate that the planned urban setup had a higher tree cover to that of unplanned area in the Varanasi City, although a considerable disparity existed within the planned urban setups. The results emphasize the need to critically review concepts of urban planning and give more consideration to the preservation and management of urban tree cover/greenspace. PMID:19562495

Kumar, Manoj; Mukherjee, Nivedita; Sharma, Gyan Prakash; Raghubanshi, A S

2010-08-01

26

Simulating future trends in urban stormwater quality for changing climate, urban land use and environmental controls.  

PubMed

The effects of climatic changes, progressing urbanization and improved environmental controls on the simulated urban stormwater quality in a northern Sweden community were studied. Future scenarios accounting for those changes were developed and their effects simulated with the Storm Water Management Model (SWMM). It was observed that the simulated stormwater quality was highly sensitive to the scenarios, mimicking progressing urbanization with varying catchment imperviousness and area. Thus, land use change was identified as one of the most influential factors and in some scenarios, urban growth caused changes in runoff quantity and quality exceeding those caused by a changing climate. Adaptation measures, including the reduction of directly connected impervious surfaces (DCIS) through the integration of more green spaces into the urban landscape, or disconnection of DCIS were effective in reducing runoff volume and pollutant loads. Furthermore, pollutant source control measures, including material substitution, were effective in reducing pollutant loads and significantly improving stormwater quality. PMID:24225112

Borris, Matthias; Viklander, Maria; Gustafsson, Anna-Maria; Marsalek, Jiri

2013-01-01

27

A Tale of Two Watersheds: Land Use, Topography, and the Potential for Urban Land use patterns are often highly correlated with geographic variables such as slope and  

E-print Network

A Tale of Two Watersheds: Land Use, Topography, and the Potential for Urban Expansion Land use and slope data to compare two watersheds and discover ways in which the watersheds are similar and ways in which they are different. Both watersheds are experiencing a high amount of urban and exurban (small

28

Green Infrastructure & Sustainable Urban Land Use Decision Analysis Workshop  

EPA Science Inventory

Introduce green infrastructure, concepts and land use alternatives, to City of Cleveland operations staff. Discuss potential of green alternatives to impact daily operations and routine maintenance activities. Tie in sustainability concepts to long-term City planning and discu...

29

UrbanSim: Modeling Urban Development for Land Use, Transportation and Environmental Planning  

Microsoft Academic Search

Metropolitan areas have come under intense pressure to respond to federal mandates to link planningof land use, transportation, and environmental quality; and from citizen concerns about managing theside effects of growth such as sprawl, congestion, housing affordability, and loss of open space. Theplanning models used by Metropolitan Planning Organizations (MPOs) were generally not designedto address these questions, creating a gap

Paul Waddell

2002-01-01

30

A conceptual framework for analysing and measuring land-use intensity?  

PubMed Central

Large knowledge gaps currently exist that limit our ability to understand and characterise dynamics and patterns of land-use intensity: in particular, a comprehensive conceptual framework and a system of measurement are lacking. This situation hampers the development of a sound understanding of the mechanisms, determinants, and constraints underlying changes in land-use intensity. On the basis of a review of approaches for studying land-use intensity, we propose a conceptual framework to quantify and analyse land-use intensity. This framework integrates three dimensions: (a) input intensity, (b) output intensity, and (c) the associated system-level impacts of land-based production (e.g. changes in carbon storage or biodiversity). The systematic development of indicators across these dimensions would provide opportunities for the systematic analyses of the trade-offs, synergies and opportunity costs of land-use intensification strategies. PMID:24143156

Erb, Karl-Heinz; Haberl, Helmut; Jepsen, Martin Rudbeck; Kuemmerle, Tobias; Lindner, Marcus; Müller, Daniel; Verburg, Peter H; Reenberg, Anette

2013-01-01

31

Assessment of economic drivers of land use change in urban ecosystems of Delhi, India.  

PubMed

This paper describes the process of urbanization and land use change in the urban ecosystems of the National Capital Region (NCR) of Delhi, India. Two types of land use change are considered-from natural to urban and from agricultural to urban. Both types are explained in terms of economic variables known to be drivers of change. A panel data method was used, and economic variables were combined with GIS-based information on land use change during 1986-2004 for 11 administrative units of the NCR. The results suggest that investment in the construction sector plays a major role in converting the land from natural to urban areas, while differences in land productivity seems to be the major driver for change from agricultural to urban uses. PMID:19260345

Kumar, Pushpam

2009-02-01

32

EFFECTS OF LAND USE AND SEASON ON MICROORGANISM CONCENTRATIONS IN URBAN STORMWATER RUNOFF  

EPA Science Inventory

This study investigated differences in pathogen and indicator organism concentrations in stormwater runoff between different urban land uses and seasons. Stormwater samples collected from storm sewers draining small municipal separate storm sewer systems shown to be free of cros...

33

Analytical solutions to trade-offs between size of protected areas and land-use intensity.  

PubMed

Land-use change is affecting Earth's capacity to support both wild species and a growing human population. The question is how best to manage landscapes for both species conservation and economic output. If large areas are protected to conserve species richness, then the unprotected areas must be used more intensively. Likewise, low-intensity use leaves less area protected but may allow wild species to persist in areas that are used for market purposes. This dilemma is present in policy debates on agriculture, housing, and forestry. Our goal was to develop a theoretical model to evaluate which land-use strategy maximizes economic output while maintaining species richness. Our theoretical model extends previous analytical models by allowing land-use intensity on unprotected land to influence species richness in protected areas. We devised general models in which species richness (with modified species-area curves) and economic output (a Cobb-Douglas production function) are a function of land-use intensity and the proportion of land protected. Economic output increased as land-use intensity and extent increased, and species richness responded to increased intensity either negatively or following the intermediate disturbance hypothesis. We solved the model analytically to identify the combination of land-use intensity and protected area that provided the maximum amount of economic output, given a target level of species richness. The land-use strategy that maximized economic output while maintaining species richness depended jointly on the response of species richness to land-use intensity and protection and the effect of land use outside protected areas on species richness within protected areas. Regardless of the land-use strategy, species richness tended to respond to changing land-use intensity and extent in a highly nonlinear fashion. PMID:22809426

Butsic, Van; Radeloff, Volker C; Kuemmerle, Tobias; Pidgeon, Anna M

2012-10-01

34

Relationships between human disturbance and wildlife land use in urban habitat fragments.  

PubMed

Habitat remnants in urbanized areas typically conserve biodiversity and serve the recreation and urban open-space needs of human populations. Nevertheless, these goals can be in conflict if human activity negatively affects wildlife. Hence, when considering habitat remnants as conservation refuges it is crucial to understand how human activities and land uses affect wildlife use of those and adjacent areas. We used tracking data (animal tracks and den or bed sites) on 10 animal species and information on human activity and environmental factors associated with anthropogenic disturbance in 12 habitat fragments across San Diego County, California, to examine the relationships among habitat fragment characteristics, human activity, and wildlife presence. There were no significant correlations of species presence and abundance with percent plant cover for all species or with different land-use intensities for all species, except the opossum (Didelphis virginiana), which preferred areas with intensive development. Woodrats (Neotoma spp.) and cougars (Puma concolor) were associated significantly and positively and significantly and negatively, respectively, with the presence and prominence of utilities. Woodrats were also negatively associated with the presence of horses. Raccoons (Procyon lotor) and coyotes (Canis latrans) were associated significantly and negatively and significantly and positively, respectively, with plant bulk and permanence. Cougars and gray foxes (Urocyon cinereoargenteus) were negatively associated with the presence of roads. Roadrunners (Geococcyx californianus) were positively associated with litter. The only species that had no significant correlations with any of the environmental variables were black-tailed jackrabbits (Lepus californicus) and mule deer (Odocoileus hemionus). Bobcat tracks were observed more often than gray foxes in the study area and bobcats correlated significantly only with water availability, contrasting with results from other studies. Our results appear to indicate that maintenance of habitat fragments in urban areas is of conservation benefit to some animal species, despite human activity and disturbance, as long as the fragments are large. PMID:18254856

Markovchick-Nicholls, Lisa; Regan, Helen M; Deutschman, Douglas H; Widyanata, Astrid; Martin, Barry; Noreke, Lani; Hunt, Timothy Ann

2008-02-01

35

Quantifying Land Use and Land Cover Effects on Urban Runoff Water Quality.  

NASA Astrophysics Data System (ADS)

The impact of non-point source pollution on urban storm runoff is of major concern in the Southwest where water resources are scarce, episodic rainfall is intense and runoff recharge is a water management strategy. The objectives of this study are to 1) determine the extent to which specific types of urban land use impact the quality of monsoonal rainfall-runoff, and 2) identify pollutant source and modification during transport within urban washes of different types. We installed autosamplers at the outlet of four watersheds in the Tucson, AZ basin, with land uses representative of growing urban centers in the southwest U.S.: 1) commercial; 2) medium and high density residential; 3) low density residential; and 4) mixed use. At each outlet, storm runoff samples were collected at 20 minute intervals during several monsoonal storms. To characterize how pollutants were modified during transport, we installed autosamplers at upstream and downstream locations of a wash. Samples were analyzed for nutrients, organic pollutants, metals, anions, cations and fecal indicator bacteria (E. coli). Preliminary data show that nitrate concentrations were highest in the commercial and low density watersheds (median = 2.53 mg/L and 2.81 mg/L NO3-N, respectively) and lowest in the medium density watershed (median = 1.68 mg/L). Ammonium concentrations were also highest in the commercial and low density watersheds (median = 1.84 mg/L and 1.75 mg/L NH4-N, respectively) and lowest in the medium density watershed (1.28 mg/L). E. coli counts were highest in the commercial (median = 4500 CFU/ml) and lowest in the medium density watershed (median = 61.26 CFU/ml). Over the season, E. coli concentrations decreased in all except the mixed density watershed where they increased as the monsoon progressed. We observed distinct pollutant concentration response patterns to storm events among watersheds. Pollutant concentrations in runoff from commercial and low density watersheds peaked within the first 40 minutes of a storm event and subsequently tapered, whereas concentrations in the middle density watershed increased throughout a storm event. Our study demonstrates that land use type directly and distinctly impacts storm runoff chemical composition, which has significant implications for basin wide pollutant fate and transport. Our data also suggests that the type of runoff drainage system may play an important role in contaminant degradation and subsequent transport.

Gallo, E. L.; Snyder, M. A.; Dejwakh, N. R.; Lohse, K.; Brooks, P. D.; McLain, J. E.; McIntosh, J.; Meixner, T.

2007-12-01

36

LAND USE CHANGE DUE TO URBANIZATION FOR THE NEUSE RIVER BASIN  

EPA Science Inventory

The Urban Growth Model (UGM) was applied to analysis of land use change in the Neuse River Basin as part of a larger project for estimating the regional and broader impact of urbanization. UGM is based on cellular automation (CA) simulation techniques developed at the University...

37

Butterfly diversity and human land use: Species assemblages along an urban grandient  

Microsoft Academic Search

We examined the distribution and abundance of butterfly species across an urban gradient and concomitant changes in community structure by censusing the butterfly and skipper populations at 48 points within six sites near Palo Alto, California, USA (all former oak woodlands). These sites represent a gradient of urban land use running from relatively undisturbed to highly developed and include a

Robert B. Blair; Alan E. Launer

1997-01-01

38

Regional soil erosion in response to land use and increased typhoon frequency and intensity, Taiwan  

E-print Network

Regional soil erosion in response to land use and increased typhoon frequency and intensity, Taiwan: Received 27 April 2013 Available online 15 November 2013 Keywords: Erosion Sedimentation Land use Typhoon Reservoir sedimentation data and sediment yields from Taiwanese rivers show increased soil erosion

Montgomery, David R.

39

Urban land use: Remote sensing of ground-basin permeability  

NASA Technical Reports Server (NTRS)

A remote sensing analysis of the amount and type of permeable and impermeable surfaces overlying an urban recharge basin is discussed. An effective methodology for accurately generating this data as input to a safe yield study is detailed and compared to more conventional alternative approaches. The amount of area inventoried, approximately 10 sq. miles, should provide a reliable base against which automatic pattern recognition algorithms, currently under investigation for this task, can be evaluated. If successful, such approaches can significantly reduce the time and effort involved in obtaining permeability data, an important aspect of urban hydrology dynamics.

Tinney, L. R.; Jensen, J. R.; Estes, J. E.

1975-01-01

40

Improving urban land use and land cover classification from  

E-print Network

. As remote sensing providing a synoptic overview for large regions, it becomes a very useful tool in urban information. Under this Journal of Applied Remote Sensing, Vol. 4, 041890 (31 August 2010) © 2010 Society 2010; published 31 Aug 2010 [CCC: 19313195/2010/$25.00] Journal of Applied Remote Sensing, Vol. 4

Du, Jenny (Qian)

41

Urban-field land use in southern New England: A first look  

NASA Technical Reports Server (NTRS)

There are no author-identified significant results in this report. First look evaluation of ERTS-1 multiband imagery for urban-field land use applications revealed a great deal of potentially valuable information. The amount of land use detail which can be extracted confidently from ERTS imagery is encouraging, and the objectives of the proposed project are considered feasible providing timely cloud-free coverage is available.

Simpson, R. B. (principal investigator)

1972-01-01

42

Effects of land-use intensity on arthropod species abundance distributions in grasslands.  

PubMed

As a rule, communities consist of few abundant and many rare species, which is reflected in the characteristic shape of species abundance distributions (SADs). The processes that shape these SADs have been a longstanding problem for ecological research. Although many studies found strong negative effects of increasing land-use intensity on diversity, few reports consider land-use effects on SADs. Arthropods (insects and spiders) were sampled on 142 grassland plots in three regions in Germany, which were managed with different modes (mowing, fertilization and/or grazing) and intensities of land use. We analysed the effect of land use on three parameters characterizing the shape of SADs: abundance decay rate (the steepness of the rank abundance curve, represented by the niche-preemption model parameter), dominance (Berger-Parker dominance) and rarity (Fisher's alpha). Furthermore, we tested the core-satellite hypothesis by comparing the species' rank within the SAD to their distribution over the land-use gradient. When data on Araneae, Cicadina, Coleoptera, Heteroptera and Orthoptera were combined, abundance decay rate increased with combined land-use intensity (including all modes). Among the single land-use modes, increasing fertilization and grazing intensity increased the decay rate of all taxa, while increasing mowing frequency significantly affected the decay rate only in interaction with fertilization. Results of single taxa differed in their details, but all significant interaction effects included fertilization intensity. Dominance generally increased with increasing fertilization and rarity decreased with increasing grazing or mowing intensity, despite small differences among taxa and regions. The majority of species found on <10% of the plots per region were generally rare (<10 individuals), which is in accordance with the core-satellite hypothesis. We found significant differences in the rarity and dominance of species between plots of low and high intensity for all three land-use modes and for the combined land-use intensity. We conclude that effects of land-use intensity on SADs lead to a stronger dominance of the most abundant species. Furthermore, species which have restricted distributions are more likely to also be rare species in the local SAD and therefore are at high risk of being lost under intensive land use. PMID:25074822

Simons, Nadja K; Gossner, Martin M; Lewinsohn, Thomas M; Lange, Markus; Türke, Manfred; Weisser, Wolfgang W

2014-07-29

43

Relationship between land use/cover and surface temperatures in the urban agglomeration of Cuiabá-Várzea Grande, Central Brazil  

NASA Astrophysics Data System (ADS)

We focus on the surface urban heat island (SUHI) and the spatiotemporal relationship between land use and surface temperatures (Ts) in Cuiabá-Várzea Grande, Mato Grosso, one of the major urban agglomerations of central-western Brazil, which has suffered intense urbanization processes since the 1960s. Supervised maximum likelihood classifications of optical bands of Landsat Thematic Mapper (Landsat TM) imagery from 1986 and 2007 are applied to generate land use/cover maps. Surface emissivity is determined using the logarithmic transformation of the normalized difference vegetation index. The Ts is retrieved from the thermal bands utilizing a radiative transfer equation. In both cities, urban expansion followed two main development axes, which are reflected in the spatial patterns of Ts. The highest values of Ts were found in bare soil and urbanized areas. Between 1986 and 2007, Ts increased 0.96°C on average and a maximum of 5.49°C in the urban agglomeration. The SUHI in Várzea Grande suffered intensification with an increase of 1.34°C in the downtown area. This tendency was stronger in the center of Cuiabá, where Ts increased 3.12°C. Slowing this rapid rate of temperature increase would demand decisive intervention by municipal authorities, such as restricting annual occupation taxes, reducing the occupation coefficient in new districts, preserving native vegetation, and designating new green areas.

Callejas, Ivan Júlio Apolônio; de Oliveira, Angela Santana; de Moura Santos, Flávia Maria; Durante, Luciane Cleonice; de Jesus Albuquerque Nogueira, Marta Cristina; Zeilhofer, Peter

2011-01-01

44

Conversion of prime agricultural land to urban land uses in Kansas City  

NASA Technical Reports Server (NTRS)

In an expanding urban environment, agriculture and urban land uses are the two primary competitors for regional land resources. As a result of an increasing awareness of the effects which urban expansion has upon the regional environment, the conversion of prime agricultural land to urban land uses has become a point of concern to urban planners. A study was undertaken for the Kansas City Metropolitan Region, to determine the rate at which prime agricultural land has been converted to urban land uses over a five year period from 1969 to 1974. Using NASA high altitude color infrared imagery acquired over the city in October, 1969 and in May, 1974 to monitor the extent and location of urban expansion in the interim period, it was revealed that 42% of that expansion had occurred upon land classified as having prime agricultural potential. This involved a total of 10,727 acres of prime agricultural land and indicated a 7% increase over the 1969 which showed that 35% of the urban area had been developed on prime agricultural land.

Shaklee, R. V.

1976-01-01

45

Impact of land-use on water pollution in a rapidly urbanizing catchment in China  

NASA Astrophysics Data System (ADS)

Many catchments in developing countries are undergoing fast urbanization which is usually characterized by population increase, economic growth as well as drastic changes of land-use from natural/rural to urban area. During the urbanization process, some catchments experience water quality deterioration due to rapid increase of pollution loads. Nonpoint source pollution resulting from storm water runoff has been recognized as one of the major causes of pollutants in many cities in developing countries. The composition of land-use for a rapidly urbanizing catchment is usually heterogeneous, and this may result in significant spatial variations of storm runoff pollution and increase the difficulties of water quality management in the catchment. The Shiyan Reservoir catchment, a typical rapidly urbanizing area in China, is chosen as the study area, and temporary monitoring sites were set at the outlets of its 6 sub-catchments to synchronously measured rainfall, runoff and water quality during 4 storm events. Three indicators, event pollutant loads per unit area (EPL), event mean concentration (EMC) and pollutant loads transported by the first 50% of runoff volume (FF50), were used to describe the runoff pollution for different pollutants (such as COD, BOD, NH3-N, TN, TP and SS) in each sub-catchment during the storm events; and the correlations between runoff pollution spatial variations and land-use patterns were tested by Spearman's rank correlation analysis. The results indicated that similar spatial variation trends were found for different pollutants (EPL or EMC) in light storm events, which strongly correlate with the proportion of residential land-use; however, they have different trends in heavy storm events, which correlate with the different proportional combination of residential, industrial, agricultural and bare land-use. It is also shown that it is necessary to consider some pervious land-use types in runoff pollution monitoring or management for a rapidly urbanizing area, particularly in heavy storm.

Khu, Soon-Thiam; Qin, Huapeng

2010-05-01

46

Perfluoroalkyl acids in urban stormwater runoff: influence of land use.  

PubMed

Perfluoroalkyl acids (PFAAs) are persistent organic pollutants in the environment and have been reported to have nonpoint sources. In this study, six PFAAs with different chain lengths were monitored in stormwater runoff from seven storm events (2009-2011) at various outfall locations corresponding to different watershed land uses. We found PFAA(s) in 100% of stormwater runoff samples. Monitoring results and statistical analysis show that PFAAs in stormwater runoff from residential areas mainly came from rainfall. On the other hand, non-atmospheric sources at both industrial and commercial areas contributed PFAAs in stormwater runoff. The mass flux of PFAAs from stormwater runoff in the Twin Cities (Minneapolis and St. Paul, MN) metropolitan area is estimated to be about 7.86 kg/year. In addition, for the first time, we monitored PFAAs on the particles/debris in stormwater runoff and found high-level PFOS on the particulate matter in runoff collected from both industrial and commercial areas; the levels were so high that the finding could not be explained by the solid-water partitioning or adsorption. PFOS on the particulate matter is suspected to have originated from industrial/commercial products, entering the waste stream as PFOS containing particles. PMID:22154107

Xiao, Feng; Simcik, Matt F; Gulliver, John S

2012-12-15

47

Uncertainty in Urban Flooding Assessment under Climate and Land Use Change  

NASA Astrophysics Data System (ADS)

According to IPCC AR4 projections, the frequency of heavy precipitation events is likely to increase over the Pacific Northwestern (PNW) of USA during the 21st century. Consequently, flood risk is expected to increase in this region. Additionally, the land use change, such as urban development exacerbates the flood risk. We investigate potential changes in urban flood frequency and their uncertainty caused by future climate change and urban development in two urbanizing watersheds, the Fanno and Johnson, located in the PNW. The Fanno creek watershed is highly developed with a 84% urban land use, and the Johnson creek watershed is moderately developed with a 40% urban land use. The urban development of these watersheds will increase in the future with a higher rate of urban development in the Johnson watershed. This study employs three possible land use change scenarios, Conservation, Development, and Plan Trend, developed by the Pacific Northwest Ecosystem Research Consorthium (PNW-ERC). The Precipitation Runoff Modeling System (PRMS) hydrological model developed by U.S. Geological Survey is employed to simulate runoff changes and resulting changes in flood frequency. To consider model parameter uncertainty, Latin Hypercube Sampling is employed to sample the PRMS model parameter space and estimate the acceptable parameter ranges according to the Nash-Sutcliffe efficiency criterion. The U.S. Geological Survey PeakFQ program is also applied to estimate flood frequency with different recurrence intervals. To estimate uncertainties of climate change projection, we use eight GCMs and two emission scenarios (A1B and B1). The results show that change in flood frequency in the Johnson watershed is more significant than in the Fanno watershed because of the higher rate of urban development. The flood frequency changes are most sensitive to uncertainty in the GCM structure and downscaling method but are less affected by uncertainties due to hydrological model parameters and emission scenarios. Key words Flood, Uncertainty, Climate change, Urbanization, Oregon

Jung, Il Won; Chang, Heejun; Moradkhani, Hamid

2010-05-01

48

Urban and regional land use analysis: CARETS and Census Cities experiment package  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. Areas of post 1970 and 1972 land use changes were identified solely from the Skylab imagery from comparisons with 1970 land use maps. Most land use changes identified involved transition from agriculture to single family residential land use. The second most prominent changes identified from the Skylab imagery were areas presently under construction. Post 1970 changes from Skylab were compared with the 1972 changes noted from the high altitude photographs. A good correlation existed between the change polygons mapped from Skylab and those mapped from the 1972 high altitude aerial photos. In addition, there were a number of instances where additional built-up land use not noted in the 1972 aerial photo as being developed were identified on the Skylab imagery. While these cases have not been documented by field observation, by correlating these areas with the appearance of similar land use areas whose identity has been determined, we can safely say that we have been able to map further occurrences of land use change beyond existing high altitude photo coverage from the Skylab imagery. It was concluded that Skylab data can be used to detect areas of land use change within an urban setting.

Alexander, R. H. (principal investigator); Milazzo, V. A.

1973-01-01

49

Spatial patterns of female Ailanthus altissima across an urban-to-rural land use gradient  

Microsoft Academic Search

Ailanthus altissima is an invasive, dioecious deciduous tree common at the interface between urban and rural areas in the mid-Atlantic region,\\u000a U.S.A. To examine spatial patterns of abundance and associations with land use type, we mapped all mature female trees in\\u000a nine 89.5 ha plots (805.5 ha total area) across a typical urban-to-rural land use gradient using aerial images obtained via\\u000a remote

Rick E. Landenberger; Timothy A. Warner; James B. McGraw

2009-01-01

50

LAND USE SCANNER: An integrated GIS based model for long term projections of land use in urban and rural areas  

Microsoft Academic Search

.   This paper describes the structure of the LAND USE SCANNER model, a GIS based model developed to generate spatial forecasts\\u000a for various types of land use for a large number of grids. The model basically allocates land according to bid prices for\\u000a various types of land use. The possibility of government intervention in land use is taken into account

Maarten Hilferink; Piet Rietveld

1999-01-01

51

Preliminary Analysis of the efficacy of Artificial neural Network (ANN) and Cellular Automaton (CA) based Land Use Models in Urban Land-Use Planning  

NASA Astrophysics Data System (ADS)

This research provides an opportunity of collaboration between urban planners and modellers by providing a clear theoretical foundations on the two most widely used urban land use models, and assessing the effectiveness of applying the models in urban planning context. Understanding urban land cover change is an essential element for sustainable urban development as it affects ecological functioning in urban ecosystem. Rapid urbanization due to growing inclination of people to settle in urban areas has increased the complexities in predicting that at what shape and size cities will grow. The dynamic changes in the spatial pattern of urban landscapes has exposed the policy makers and environmental scientists to great challenge. But geographic science has grown in symmetry to the advancements in computer science. Models and tools are developed to support urban planning by analyzing the causes and consequences of land use changes and project the future. Of all the different types of land use models available in recent days, it has been found by researchers that the most frequently used models are Cellular Automaton (CA) and Artificial Neural Networks (ANN) models. But studies have demonstrated that the existing land use models have not been able to meet the needs of planners and policy makers. There are two primary causes identified behind this prologue. First, there is inadequate understanding of the fundamental theories and application of the models in urban planning context i.e., there is a gap in communication between modellers and urban planners. Second, the existing models exclude many key drivers in the process of simplification of the complex urban system that guide urban spatial pattern. Thus the models end up being effective in assessing the impacts of certain land use policies, but cannot contribute in new policy formulation. This paper is an attempt to increase the knowledge base of planners on the most frequently used land use model and also assess the relative effectiveness of the two models, ANN and CA, in urban planning. The questions that are addressed in this research are: a) What makes ANN models different from CA models?; b) Which model has higher accuracy in predicting future urban land use change?; and c) Are the models effective enough in guiding urban land use policies and strategies? The models that are used for this research are Multilayer Perceptron (MLP) and CA model, available in IDRISI Taiga. Since, the objective is to perform a comparative analysis and draw general inferences irrespective of specific urban policies, the availability of data was given more emphasis over the selection of particular location. Urban area in Massachusetts was chosen to conduct the study due to data availability. Extensive literature review was performed to understand the functionality of the two models. The models were applied to predict future changes and the accuracy assessment was performed using standard matrix. Inferences were drawn about the applicability of the models in urban planning context along with recommendations. This research will not only develop understanding of land use models among urban planners, but also will create an environment of coupled research between planners and modellers.

Harun, R.

2013-05-01

52

Urban land use of the Sao Paulo metropolitan area by automatic analysis of LANDSAT data  

NASA Technical Reports Server (NTRS)

The separability of urban land use classes in the metropolitan area of Sao Paulo was studied by means of automatic analysis of MSS/LANDSAT digital data. The data were analyzed using the media K and MAXVER classification algorithms. The land use classes obtained were: CBD/vertical growth area, residential area, mixed area, industrial area, embankment area type 1, embankment area type 2, dense vegetation area and sparse vegetation area. The spectral analysis of representative samples of urban land use classes was done using the "Single Cell" analysis option. The classes CBD/vertical growth area, residential area and embankment area type 2 showed better spectral separability when compared to the other classes.

Parada, N. D. J. (principal investigator); Niero, M.; Foresti, C.

1983-01-01

53

LAND USE AND SEASONAL EFFECTS ON URBAN STORMWATER RUNOFF MICROORGANISM CONCENTRATIONS  

EPA Science Inventory

Stormwater samples collected from storm sewers draining small municipal separate storm sewer systems shown to be free of cross connections within an urban watershed dominated by a single land use were analyzed for pathogens (Pseudomonas aeruginosa and Staphylococcus aureus) and i...

54

Land use analysis of US urban areas using high-resolution imagery from Skylab  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. The S-190B imagery from Skylab 3 permitted the detection of higher levels of land use detail than any satellite imagery previously evaluated using manual interpretation techniques. Resolution approaches that of 1:100,000 scale infrared aircraft photography, especially regarding urban areas. Nonurban areas are less distinct.

Gallagher, D. B. (principal investigator)

1975-01-01

55

Urban travel CO 2 emissions and land use: A case study for Quebec City  

Microsoft Academic Search

The paper examines the determinants of urban travel greenhouse gas emissions. Specifically, we examine the impact of individual and household socio-economic characteristics as well as the effect of land use and transit supply characteristics around the residence and work place. The analysis uses an activity-based longitudinal panel survey in the Quebec City region of Canada. We find that emissions vary

Philippe Barla; Luis F. Miranda-Moreno; Martin Lee-Gosselin

2011-01-01

56

The Major Environmentally-Based Land Use Issues on the Urban Fringe.  

ERIC Educational Resources Information Center

Types of land-use issues which form current problems in urban areas are discussed in this paper. The majority of these environmentally based issues revolve around the management of water. The five most often encountered water-oriented issues are denoted in rank order of importance. First, an ample water supply which is free from contamination must…

Hordon, Robert M.

57

Expert system classification of urban land use\\/cover for Delhi, India  

Microsoft Academic Search

This study presents the results of classifying land use\\/land cover for Delhi, India using an expert system approach. For this study Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data of 22 September 2003 were used. The research goals of this project are two?fold. In one respect, the research goal is to report on the extent covered by urbanization using

Elizabeth A. Wentz; David Nelson; Atiqur Rahman; William L. Stefanov; Shoursaseni Sen Roy

2008-01-01

58

City-wide relationships between green spaces, urban land use and topography  

E-print Network

& Olga Barbosa & Richard A. Fuller & Jamie Tratalos & Nicholas Burke & Daniel Lewis & Philip H. Warren, Norwich NR4 7TJ, UK e-mail: Richard.G.Davies@uea.ac.uk O. Barbosa Instituto de Ecología y BiodiversidadCity-wide relationships between green spaces, urban land use and topography Richard G. Davies

Queensland, University of

59

Health Impact Assessment for Urban and Land-use Planning and Policy Development: Lessons from Practice  

Microsoft Academic Search

There is increased interest in, and awareness of, the health impacts of urban and land-use planning. At the same time, health impact assessment (HIA) has emerged internationally as an approach to strengthening the possible positive impacts of a proposed development or plan and mitigating the possible negative health impacts. This article first provides an overview of HIA, focusing on the

Patrick Harris; Ben Harris-Roxas; Marilyn Wise; Liz Harris

2010-01-01

60

Reification of emergent urban areas in a land-use simulation model in Reunion Island  

E-print Network

Reification of emergent urban areas in a land-use simulation model in Reunion Island Daniel David1 for users and developers of simulation models. But the potential reification of these phenomena raises many that such a reification can be considered as an effective way to refine simulation models in which direct modifications

Boyer, Edmond

61

Current operational urban land?use–transport modelling frameworks: A review  

Microsoft Academic Search

Various alternative frameworks are available for modelling urban land?use–transport interaction. This paper provides a detailed review of six of these frameworks that have been or are currently being used to develop operational models. The intention is to indicate what is the general nature of the current state of practice and what is now available for practical modelling work in the

J. D. HUNT; D. S. KRIGER; E. J. MILLER

2005-01-01

62

Structural change of agricultural land use intensity and its regional disparity in China  

Microsoft Academic Search

Based on the data from the Cost-benefit Data of Farm Produce and the China Agricultural Yearbook, this paper divided the intensity\\u000a of cultivated land use into labor intensity and capital intensity, and then analyzed their temporal and spatial change at\\u000a both national and provincial levels between 1980 and 2006. The results showed that: (1) At the national level, labor intensity

Yuqi Chen; Xiubin Li; Yujun Tian; Minghong Tan

2009-01-01

63

Interactive Effects of Urban Land Use and Climate Change on Biogeochemical Cycles (Invited)  

NASA Astrophysics Data System (ADS)

Urban land-use change can affect biogeochemical cycles through altered disturbance regimes, landscape management practices (e.g., irrigation and fertilization), built structures, and altered environments (heat island effect, pollution, introduction of non-native species, loss of native species). As a result, the conversion of native to urban ecological systems has been shown to significantly affect carbon, nitrogen, and water cycles at local, regional, and global scales. These changes have created novel habitats and ecosystems, which have no analogue in the history of life. Nonetheless, some of the environmental changes occurring in urban areas are analogous to the changes expected in climate by the end of the century, e.g. atmospheric increase in CO2 and an increase in air temperatures, which can be utilized as a “natural experiment” to investigate global change effects on large scale ecosystem processes. Moreover, as analogues of expected future environments, urban ecological systems may act as reservoirs of plant and animal species for adjoining landscapes that are expected to undergo relatively rapid climate changes in the next 100 years. Urban land-use change by itself may contribute to changes in regional weather patterns and long-term changes in global climate, which will depend on the net effect of converting native systems to urban systems and the comparison of per capita “footprints” between urban, suburban, and rural inhabitants. My objectives are to 1) assess the impact of changes in urban land-use on climate change and in turn how climate change may affect urban biogeochemical cycles and 2) discuss the potential for urban ecosystems to mitigate green house gas emissions.

Pouyat, R. V.

2009-12-01

64

The use of constrained cellular automata for high-resolution modelling of urban land-use dynamics  

Microsoft Academic Search

A cellular automaton is specified to give a spatially detailed represenation of the evolution of urban land-use patterns. Cell states represent land uses, and transition rules express the likelihood of a change from one state to another as a function both of existing land use in the 113-cell neighbourhood of the cell and of the inherent suitability of the cell

R White; G Engelen; I Uljee

1997-01-01

65

a Study of Urban Intensive Land Evaluating System  

NASA Astrophysics Data System (ADS)

The contradiction of land supply and demand is becoming increasingly prominent in China. The increasing efficiency of land use is an important means to resolve the conflict. We propose a scientific approach for promoting the urban intensive land use. In this paper, an evaluation system of urban intensive land use is programmed. It is designed to change the manual way of collecting index data and building index system to a dynamical way. The system improves the efficiency and accuracy of the evaluation of urban intensive land use. It achieves intensive evaluation on three scales: macro-level, medium-level and micro-level. We build two data extraction methods. One is XML-based meta-data exchange method that obtains index data from the cadastral database. Another is data monitoring method that writes the index data to the evaluation database at real time. Database technologies are used to calculate index values and build index systems dynamically. GIS technologies are use to achieve three scales evaluation of urban intensive land use.

Jiang, L.; Gu, J.; Chen, X.; You, Y.; Tang, Q.

2012-07-01

66

Spatial variations of storm runoff pollution and their correlation with land-use in a rapidly urbanizing catchment in China.  

PubMed

The composition of land use for a rapidly urbanizing catchment is usually heterogeneous, and this may result in significant spatial variations of storm runoff pollution and increase the difficulties of water quality management. The Shiyan Reservoir catchment, a typical rapidly urbanizing area in China, is chosen as a study area, and temporary monitoring sites were set at the downstream of its 6 sub-catchments to synchronously measure rainfall, runoff and water quality during 4 storm events in 2007 and 2009. Due to relatively low frequency monitoring, the IHACRES and exponential pollutant wash-off simulation models are used to interpolate the measured data to compensate for data insufficiency. Three indicators, event pollutant loads per unit area (EPL), event mean concentration (EMC) and pollutant loads transported by the first 50% of runoff volume (FF50), were used to describe the runoff pollution for different pollutants in each sub-catchment during the storm events, and the correlations between runoff pollution spatial variations and land-use patterns were tested by Spearman's rank correlation analysis. The results indicated that similar spatial variation trends were found for different pollutants (EPL or EMC) in light storm events, which strongly correlate with the proportion of residential land use; however, they have different trends in heavy storm events, which correlate with not only the residential land use, but also agricultural and bare land use. And some pairs of pollutants (such as COD/BOD, NH(3)-N/TN) might have the similar source because they have strong or moderate positive spatial correlation. Moreover, the first flush intensity (FF50) varies with impervious land areas and different interception ratio of initial storm runoff volume should be adopted in different sub-catchments. PMID:20667581

Qin, Hua-Peng; Khu, Soon-Thiam; Yu, Xiang-Ying

2010-09-15

67

Ecological traits affect the response of tropical forest bird species to land-use intensity  

PubMed Central

Land-use change is one of the main drivers of current and likely future biodiversity loss. Therefore, understanding how species are affected by it is crucial to guide conservation decisions. Species respond differently to land-use change, possibly related to their traits. Using pan-tropical data on bird occurrence and abundance across a human land-use intensity gradient, we tested the effects of seven traits on observed responses. A likelihood-based approach allowed us to quantify uncertainty in modelled responses, essential for applying the model to project future change. Compared with undisturbed habitats, the average probability of occurrence of bird species was 7.8 per cent and 31.4 per cent lower, and abundance declined by 3.7 per cent and 19.2 per cent in habitats with low and high human land-use intensity, respectively. Five of the seven traits tested affected the observed responses significantly: long-lived, large, non-migratory, primarily frugivorous or insectivorous forest specialists were both less likely to occur and less abundant in more intensively used habitats than short-lived, small, migratory, non-frugivorous/insectivorous habitat generalists. The finding that species responses to land use depend on their traits is important for understanding ecosystem functioning, because species' traits determine their contribution to ecosystem processes. Furthermore, the loss of species with particular traits might have implications for the delivery of ecosystem services. PMID:23173205

Newbold, Tim; Scharlemann, Jörn P. W.; Butchart, Stuart H. M.; ?ekercio?lu, Ça?an H.; Alkemade, Rob; Booth, Hollie; Purves, Drew W.

2013-01-01

68

Landscaping practices, land use patterns and stormwater quantity and quality in urban watersheds  

NASA Astrophysics Data System (ADS)

Increasing quantity and decreasing quality of urban stormwater threatens biodiversity in local streams and reservoirs, jeopardizes water supplies, and ultimately contributes to estuarine eutrophication. To estimate the effects that present and alternative landscaping practices and land use patterns may have on urban stormwater quantity and quality, simulations of existing land use/land cover using the Regional Hydro-Ecologic Simulation System (RHESSys), a process-based surface hydrology and biogeochemistry model, were developed for watersheds in Baltimore, MD (as part of the Baltimore Ecosystem Study (BES) NSF Long-Term Ecological Research (LTER) site) and Durham, NC (as part of the NSF Urban Long-Term Research Area (ULTRA) program). The influence of land use patterns and landscaping practices on nutrient export in urban watersheds has been explored as part of the BES; this work has focused on improving our understanding of how residential landscaping practices (i.e. lawn fertilization rates) vary across land use and socioeconomic gradients. Elsewhere, others have explored the political ecology of residential landscaping practices - seeking to understand the economic, political, and cultural influences on the practice of high-input residential turf-grass management. Going forward, my research will synthesize and extend this prior work. Rather than pre-supposing predominant residential land use patterns and landscaping practices (i.e. lower-density periphery development incorporating high-input turf landscapes) alternate land use and landscaping scenarios (e.g. higher-density/transit-oriented development, rain gardens, vegetable gardens, native plant/xeriscaping) will be developed through interviews/focus groups with stakeholders (citizens, public officials, developers, non-profits). These scenarios will then be applied to the RHESSys models already developed for catchments in Baltimore and Durham. The modeled scenario results will be used to identify alternate land use patterns and landscaping practices that would: (1) help to reduce non-point sources of nutrient pollution in urban watersheds; and (2) be likely to gain public support. This research will inform sustainable development policy while furthering interdisciplinary research in the fields of planning and water resource management.

Miles, B.; Band, L. E.

2011-12-01

69

Anthropogenic land uses elevate metal levels in stream water in an urbanizing watershed.  

PubMed

Land use/cover change is a dominant factor affecting surface water quality in rapidly developing areas of Asia. In this study we examined relationships between land use and instream metal loadings in a rapidly developing mixed land use watershed in southeastern China. Five developing subwatersheds and one forested reference site (head water) were instrumented with timing- and rainfall-triggered autosampler and instream loadings of anthropogenic metals (Cu, Zn, Pb, Cr, Cd, and Mn) were monitored from March 2012 to December 2013. Farm land and urban land were positively, and forest and green land were negatively associated with metal loadings (except Cr) in stream water. All developing sites had higher loadings than the reference head water site. Assessed by Chinese surface water quality standard (GB3830-2002), instream loadings of Cu and Zn occasionally exceeded the Class I thresholds at monitoring points within farmland dominated subwatersheds while Mn loadings were greater than the limit for drinking water sources at all monitoring points. Farm land use highly and positively contributed to statistical models of instream loadings of Cu, Zn, Cd, and Mn while urban land use was the dominant contributor to models of Pb and Cd loadings. Rainfall played a crucial role in metal loadings in stream water as a direct source (there were significant levels of Cu and Zn in rain water) and as a driver of watershed processes (loadings were higher in wet years and seasons). Urbanization effects on metal loadings in this watershed are likely to change rapidly with development in future years. Further monitoring to characterize these changes is clearly warranted and should help to develop plans to avoid conflicts between economic development and water quality degradation in this watershed and in watersheds throughout rapidly developing areas of Asia. PMID:24815555

Yu, Shen; Wu, Qian; Li, Qingliang; Gao, Jinbo; Lin, Qiaoying; Ma, Jun; Xu, Qiufang; Wu, Shengchun

2014-08-01

70

Fish Assemblage Responses to Urban Intensity Gradients in Contrasting Metropolitan Areas: Birmingham, Alabama and Boston, Massachusetts  

Microsoft Academic Search

We examined fish assemblage responses to urban intensity gradients in two contrasting metropolitan areas: Birmingham, Alabama (BIR) and Boston, Massachusetts (BOS). Urbanization was quantified by using an urban intensity index (UII) that included multiple stream buffers and basin land uses, human population density, and road density variables. We evaluated fish assemblage responses by using species richness metrics and detrended correspondence

MICHAEL R. MEADOR; HUMBERT ZAPPIA

71

Variations of Soil Lead in Different Land Uses Along the Urbanization Gradient in the Beijing Metropolitan Area  

PubMed Central

Understanding the spatial pattern of soil lead (Pb) levels is essential to protecting human health. Most previous studies have examined soil Pb distributions by either urbanization gradient or land-use type. Few studies, however, have examined both factors together. It remains unclear whether the impacts of land use on soil Pb levels are consistent along the urbanization gradient. To fill this gap, we investigated variations in soil Pb level under different land-use types along the urbanization gradient in Beijing, China. We classified the degree of urbanization as the urban core, transitional zone, or suburban area and the land-use type as industrial area, roadside, residential area, institutional area, road greenbelt, park, or forest. Our results showed that the range of soil Pb levels in Beijing is <1 mg/kg–292 mg/kg, with a mean of 22 mg/kg. Along the urbanization gradient, the mean soil Pb level increased from the suburban area to the urban core. Land-use types have an impact on soil Pb levels, however, when the degree of urbanization is considered, the impact from land use on soil Pb level was only significant in the transitional zone. Parks and road greenbelts were found to have lower soil Pb, primarily due to soil restoration. Roadside and residential areas were found to have higher soil Pb because of traffic emissions, leaded paint, and previous industrial contamination. In the urban core and suburban area, the soil Pb level showed no significant differences among various land-use types. Given the results of soil Pb in various land-use types, we suggest that future studies consider the urbanization gradient in which different land-use samples are located. PMID:24646863

Mao, Qizheng; Huang, Ganlin; Ma, Keming; Sun, Zexiang

2014-01-01

72

Land use change scenarios and associated groundwater impacts in a protected peri-urban area  

Microsoft Academic Search

Land use changes in peri-urban areas are usually associated with significant impacts on groundwater resources due to alteration\\u000a of the recharge regime as well as through the establishment of pollution sources. Quantifying the aforementioned impacts and\\u000a assessing the vulnerability of the groundwater resources is an important step for the better management and protection of\\u000a the aquifers. In the present study,

Elias Dimitriou; Elias Moussoulis

73

Regional disparity in the changes of agricultural land use intensity in China during 1980–2002  

Microsoft Academic Search

Based on the cost-benefit data (1980–2002) of farm products and China Agriculture Yearbooks, this paper studies the regional\\u000a disparity in the changes of the agricultural land use in China during the period 1980–2002 from three aspects such as the\\u000a degree of intensity, the sown area and the abandoned farmland. The results show that: (1) The degree of intensity of land

Chengwu Liu; Xiubin Li

2006-01-01

74

Monitoring and Predicting Land-use Changes and the Hydrology of the Urbanized Paochiao Watershed in Taiwan Using Remote Sensing Data, Urban Growth Models and a Hydrological Model  

PubMed Central

Monitoring and simulating urban sprawl and its effects on land-use patterns and hydrological processes in urbanized watersheds are essential in land-use and water-resource planning and management. This study applies a novel framework to the urban growth model Slope, Land use, Excluded land, Urban extent, Transportation, and Hillshading (SLEUTH) and land-use change with the Conversion of Land use and its Effects (CLUE-s) model using historical SPOT images to predict urban sprawl in the Paochiao watershed in Taipei County, Taiwan. The historical and predicted land-use data was input into Patch Analyst to obtain landscape metrics. This data was also input to the Generalized Watershed Loading Function (GWLF) model to analyze the effects of future urban sprawl on the land-use patterns and watershed hydrology. The landscape metrics of the historical SPOT images show that land-use patterns changed between 1990–2000. The SLEUTH model accurately simulated historical land-use patterns and urban sprawl in the Paochiao watershed, and simulated future clustered land-use patterns (2001–2025). The CLUE-s model also simulated land-use patterns for the same period and yielded historical trends in the metrics of land-use patterns. The land-use patterns predicted by the SLEUTH and CLUE-s models show the significant impact urban sprawl will have on land-use patterns in the Paochiao watershed. The historical and predicted land-use patterns in the watershed tended to fragment, had regular shapes and interspersion patterns, but were relatively less isolated in 2001–2025 and less interspersed from 2005–2025 compared with land-use pattern in 1990. During the study, the variability and magnitude of hydrological components based on the historical and predicted land-use patterns were cumulatively affected by urban sprawl in the watershed; specifically, surface runoff increased significantly by 22.0% and baseflow decreased by 18.0% during 1990–2025. The proposed approach is an effective means of enhancing land-use monitoring and management of urbanized watersheds.

Lin, Yu-Pin; Lin, Yun-Bin; Wang, Yen-Tan; Hong, Nien-Ming

2008-01-01

75

Analyzing the relationship between urban heat island and land use/cover changes in Beijing using remote sensing images  

NASA Astrophysics Data System (ADS)

In this study, three scenes of Landsat TM/ETM+ images covering Beijing area were used to examine the relationship between the UHI and land use and land cover (LULC) changes, as well as between the UHI and vegetation greenness. The brightness temperatures, LULC, and NDVI were retrieved from the calibrated images. The results showed that the urban or built-up area in Beijing has increased by 4.07% from 1988 to 2005, with nearly 5.7% of vegetated land lost during the same period. The barren area was also increased in this period as large number of land was taken over for urban construction. Seasonal pattern of UHI was obvious with highest UHI intensity observed in summer and lowest in winter. Moreover, with the rapid urbanization, the extent of UHI expanded with newly hot spots emerged surrounding the central urban area. In addition, higher NDVI or vegetation coverage leads to higher land surface temperature (LST) in winter and lower LST in summer. This was due to the different thermal characteristic between vegetated area and non-vegetated area. Therefore, increasing vegetation coverage can be beneficial to the mitigation of UHI effect in urban area in hot season while to keep the land warmer in cold season.

Zhao, Xiaoyan; Yang, Shenbin; Shen, Shuanghe; Hai, Yulong; Fang, Yongxia

2009-08-01

76

Geographically explicit urban land use change scenarios for Mega cities: a case study in Tokyo  

NASA Astrophysics Data System (ADS)

In preparation for the IPCC 5th assessment report, the international modeling community is developing four Representative Concentration Paths employing the scenarios developed by four different Integrated Assessment Models. These RCPs will be employed as an input to climate models, such as Earth System Models. In these days, the importance of assessment of not only global but also local (city/zone level) impacts of global change has gradually been recognized, thereby downscaling climate models are one of the urgent problems to be solved. Needless to say, reliable downscaling requires spatially high resolution land use change scenarios. So far, there has been proposed a lot of methods for constructing land use change scenarios with considering economic behavior of human, such as agent-based model (e.g., Parker et al., 2001), and land use transport (LUT) model (e.g., Anas and Liu, 2007). The latter approach in particular has widely been applied to actual urban/transport policy; hence modeling the interaction between them is very important for creating reliable land use change scenarios. However, the LUT models are usually built based on the zones of cities/municipalities whose spatial resolutions are too low to derive sensible parameters of the climate models. Moreover, almost all of the works which attempt to build spatially high resolution LUT model employs very small regions as the study area. The objective of this research is deriving various input parameters to climate models such as population density, fractional green vegetation cover, and anthropogenic heat emission with spatially high resolution land use change scenarios constructed with LUT model. The study area of this research is Tokyo metropolitan area, which is the largest urban area in the world (United Nations., 2010). Firstly, this study employs very high ground resolution zones composed of micro districts around 1km2. Secondly, the research attempt to combine remote sensing techniques and LUT models to derive future distribution of fractional green vegetation cover. The study has created two extreme land-use scenarios: urban concentration (compact city) and dispersion scenarios in order to show possible range of future land use change, and derives the input parameters for the climate models. The authors are planning to open the scenarios and derived parameters to relate researches. Anas, A. and Y. Liu. (2007). A Regional Economy, Land Use, and Transportation Model (REULU-TRAN): Formulation, Algorithm Design, and Testing. Journal of Regional Science, 47, 415-455. Parker, D.C., T. Berger, S.M. Manson, Editors (2001). Agent-Based Models of Land-Use and Land-Cover Change. LUCC Report Series No. 6, (Accessed: 27 AUG. 2009; http://www.globallandproject.org/Documents/LUCC_No_6.pdf) United Nations. (2010). World urbanization prospects: City population.

Yamagata, Y.; Bagan, H.; Seya, H.; Nakamichi, K.

2010-12-01

77

Calibration of cellular automata model with adaptive genetic algorithm for the simulation of urban land-use  

Microsoft Academic Search

This paper presents a new method to simulate urban land-use changes by integrating adaptive genetic algorithms (AGA), cellular automata (CA) and GIS. Recently, cellular automata have been increasingly used to simulate land-use changes. The most important and difficult issue in the modeling process is to define and derive transition rules. Traditional logistic method has limitations for deriving the transition rules

Fangyi Zhang; Lijie Pu; Lei Ding; Yuanzhi Xing; Buzhuo Peng

2010-01-01

78

Living in the big city: Effects of urban land-use on bird community structure, diversity, and composition  

Microsoft Academic Search

Cities represent an important threat to biodiversity at different scales. Nevertheless, little is known on the processes underlying such effects. In this paper we describe bird diversity, structure, and composition patterns in different urban land-use categories. For this, we surveyed resident bird communities in four representative land-use categories of southwestern Mexico City. Our results show that bird communities vary greatly

Rubén Ortega-Álvarez; Ian MacGregor-Fors

2009-01-01

79

SPATIALLY EXPLICIT MICRO-LEVEL MODELLING OF LAND USE CHANGE AT THE RURAL-URBAN INTERFACE. (R828012)  

EPA Science Inventory

This paper describes micro-economic models of land use change applicable to the rural–urban interface in the US. Use of a spatially explicit micro-level modelling approach permits the analysis of regional patterns of land use as the aggregate outcomes of many, disparate...

80

Tempo-Spatial Patterns of Land Use Changes and Urban Development in Globalizing China: A Study of Beijing  

PubMed Central

This study examines the temporal and spatial changes in land use as a consequence of rapid urban development in the city of Beijing. Using a combination of techniques of remote sensing and GIS, the study identifies a substantial loss of plain dryland and a phenomenal expansion of urban construction land over the recent decade. Geographically, there is a clear shifting of urban construction land from the inner city to the outskirts as a consequence of suburbanization. The outward expansion of the ring-road system is found to be one of the most important driving forces explaining the temporal and spatial pattern of land use change. The uneven distribution of population stands as another factor with significant correlation with land use change. The application of the techniques of remote sensing and GIS can enhance the precision and comparability of research on land use change and urban transformation in China.

Xie, Yichun; Fang, Chuanglin; Lin, George C.S.; Gong, Hongmian; Qiao, Biao

2007-01-01

81

Evaluation of land use/land cover datasets for urban watershed modeling  

SciTech Connect

Land use/land cover (LULC) data are a vital component for nonpoint source pollution modeling. Most watershed hydrology and pollutant loading models use, in some capacity, LULC information to generate runoff and pollutant loading estimates. Simple equation methods predict runoff and pollutant loads using runoff coefficients or pollutant export coefficients that are often correlated to LULC type. Complex models use input variables and parameters to represent watershed characteristics and pollutant buildup and washoff rates as a function of LULC type. Whether using simple or complex models an accurate LULC dataset with an appropriate spatial resolution and level of detail is paramount for reliable predictions. The study presented in this paper compared and evaluated several LULC dataset sources for application in urban environmental modeling. The commonly used USGS LULC datasets have coarser spatial resolution and lower levels of classification than other LULC datasets. In addition, the USGS datasets do not accurately represent the land use in areas that have undergone significant land use change during the past two decades. We performed a watershed modeling analysis of three urban catchments in Los Angeles, California, USA to investigate the relative difference in average annual runoff volumes and total suspended solids (TSS) loads when using the USGS LULC dataset versus using a more detailed and current LULC dataset. When the two LULC datasets were aggregated to the same land use categories, the relative differences in predicted average annual runoff volumes and TSS loads from the three catchments were 8 to 14% and 13 to 40%, respectively. The relative differences did not have a predictable relationship with catchment size.

Burian, S. J. (Steven J.); Brown, M. J. (Michael J.); McPherson, T. N. (Timothy N.)

2001-01-01

82

Density of insect-pollinated grassland plants decreases with increasing surrounding land-use intensity.  

PubMed

Pollinator declines have raised concerns about the persistence of plant species that depend on insect pollination, in particular by bees, for their reproduction. The impact of pollinator declines remains unknown for species-rich plant communities found in temperate seminatural grasslands. We investigated effects of land-use intensity in the surrounding landscape on the distribution of plant traits related to insect pollination in 239 European seminatural grasslands. Increasing arable land use in the surrounding landscape consistently reduced the density of plants depending on bee and insect pollination. Similarly, the relative abundance of bee-pollination-dependent plants increased with higher proportions of non-arable agricultural land (e.g. permanent grassland). This was paralleled by an overall increase in bee abundance and diversity. By isolating the impact of the surrounding landscape from effects of local habitat quality, we show for the first time that grassland plants dependent on insect pollination are particularly susceptible to increasing land-use intensity in the landscape. PMID:25040328

Clough, Yann; Ekroos, Johan; Báldi, András; Batáry, Péter; Bommarco, Riccardo; Gross, Nicolas; Holzschuh, Andrea; Hopfenmüller, Sebastian; Knop, Eva; Kuussaari, Mikko; Lindborg, Regina; Marini, Lorenzo; Öckinger, Erik; Potts, Simon G; Pöyry, Juha; Roberts, Stuart Pm; Steffan-Dewenter, Ingolf; Smith, Henrik G

2014-09-01

83

Relationship Study on Land Use Spatial Distribution Structure and Energy-Related Carbon Emission Intensity in Different Land Use Types of Guangdong, China, 1996–2008  

PubMed Central

This study attempts to discuss the relationship between land use spatial distribution structure and energy-related carbon emission intensity in Guangdong during 1996–2008. We quantized the spatial distribution structure of five land use types including agricultural land, industrial land, residential and commercial land, traffic land, and other land through applying spatial Lorenz curve and Gini coefficient. Then the corresponding energy-related carbon emissions in each type of land were calculated in the study period. Through building the reasonable regression models, we found that the concentration degree of industrial land is negatively correlated with carbon emission intensity in the long term, whereas the concentration degree is positively correlated with carbon emission intensity in agricultural land, residential and commercial land, traffic land, and other land. The results also indicate that land use spatial distribution structure affects carbon emission intensity more intensively than energy efficiency and production efficiency do. These conclusions provide valuable reference to develop comprehensive policies for energy conservation and carbon emission reduction in a new perspective. PMID:23476128

Huang, Yi; Yang, Lei

2013-01-01

84

Relationship study on land use spatial distribution structure and energy-related carbon emission intensity in different land use types of Guangdong, China, 1996-2008.  

PubMed

This study attempts to discuss the relationship between land use spatial distribution structure and energy-related carbon emission intensity in Guangdong during 1996-2008. We quantized the spatial distribution structure of five land use types including agricultural land, industrial land, residential and commercial land, traffic land, and other land through applying spatial Lorenz curve and Gini coefficient. Then the corresponding energy-related carbon emissions in each type of land were calculated in the study period. Through building the reasonable regression models, we found that the concentration degree of industrial land is negatively correlated with carbon emission intensity in the long term, whereas the concentration degree is positively correlated with carbon emission intensity in agricultural land, residential and commercial land, traffic land, and other land. The results also indicate that land use spatial distribution structure affects carbon emission intensity more intensively than energy efficiency and production efficiency do. These conclusions provide valuable reference to develop comprehensive policies for energy conservation and carbon emission reduction in a new perspective. PMID:23476128

Huang, Yi; Xia, Bin; Yang, Lei

2013-01-01

85

The impact of urban planning on land use and land cover in Pudong of Shanghai, China.  

PubMed

Functional zones in cities constitute the most conspicuous components of newly developed urban area, and have been a hot spot for domestic and foreign investors in China, which not only show the expanse of urban space accompanied by the shifts both in landscape (from rural to urban) and land use (from less extensive to extensive), but also display the transformation of regional ecological functions. By using the theories and methods of landscape ecology, the structure of landscape and landscape ecological planning can be analyzed and evaluated for studying the urban functional zones' layout. In 1990, the Central Government of China declared to develop and open up Pudong New Area so as to promote economic development in Shanghai. Benefited from the advantages of Shanghai's location and economy, the government of Pudong New Area has successively built up 7 different functional zones over the past decade according to their functions and strategic goals. Based on the multi-spectral satellite imageries taken in 1990, 1997 and 2000, a landscape ecology analysis was carried out for Pudong New Area of Shanghai, supported by GIS technology. Green space (including croplands) and built-up area are the major factors considered in developing urban landscape. This paper was mainly concerned with the different spatial patterns and dynamic of green space, built-up areas and new buildings in different functional zones, influenced by different functional layouts and development strategies. The rapid urbanization in Pudong New Area resulted in a more homogeneous landscape. Agricultural landscape and suburban landscape were gradually replaced by urban landscape as the degree of urbanization increased. As consequence of urbanization in Pudong, not only built-up patches, but also newly-built patches and green patches merged into one large patch, which should be attributed to the construction policy of extensive green space as the urban development process in Pudong New Area. The shape of green area of 7 functional zones became more and more regular because of the horticultural needs in Shanghai urban planning. Some suggestions were finally made for the study of future urban planning and layout. PMID:12765263

Zhao, Bin; Nakagoshi, Nobukazu; Chen, Jia-kuan; Kong, Ling-yi

2003-03-01

86

Contrasting effects of land use intensity and exotic host plants on the specialization of interactions in plant-herbivore networks.  

PubMed

Human land use tends to decrease the diversity of native plant species and facilitate the invasion and establishment of exotic ones. Such changes in land use and plant community composition usually have negative impacts on the assemblages of native herbivorous insects. Highly specialized herbivores are expected to be especially sensitive to land use intensification and the presence of exotic plant species because they are neither capable of consuming alternative plant species of the native flora nor exotic plant species. Therefore, higher levels of land use intensity might reduce the proportion of highly specialized herbivores, which ultimately would lead to changes in the specialization of interactions in plant-herbivore networks. This study investigates the community-wide effects of land use intensity on the degree of specialization of 72 plant-herbivore networks, including effects mediated by the increase in the proportion of exotic plant species. Contrary to our expectation, the net effect of land use intensity on network specialization was positive. However, this positive effect of land use intensity was partially canceled by an opposite effect of the proportion of exotic plant species on network specialization. When we analyzed networks composed exclusively of endophagous herbivores separately from those composed exclusively of exophagous herbivores, we found that only endophages showed a consistent change in network specialization at higher land use levels. Altogether, these results indicate that land use intensity is an important ecological driver of network specialization, by way of reducing the local host range of herbivore guilds with highly specialized feeding habits. However, because the effect of land use intensity is offset by an opposite effect owing to the proportion of exotic host species, the net effect of land use in a given herbivore assemblage will likely depend on the extent of the replacement of native host species with exotic ones. PMID:25565141

de Araújo, Walter Santos; Vieira, Marcos Costa; Lewinsohn, Thomas M; Almeida-Neto, Mário

2015-01-01

87

Contrasting Effects of Land Use Intensity and Exotic Host Plants on the Specialization of Interactions in Plant-Herbivore Networks  

PubMed Central

Human land use tends to decrease the diversity of native plant species and facilitate the invasion and establishment of exotic ones. Such changes in land use and plant community composition usually have negative impacts on the assemblages of native herbivorous insects. Highly specialized herbivores are expected to be especially sensitive to land use intensification and the presence of exotic plant species because they are neither capable of consuming alternative plant species of the native flora nor exotic plant species. Therefore, higher levels of land use intensity might reduce the proportion of highly specialized herbivores, which ultimately would lead to changes in the specialization of interactions in plant-herbivore networks. This study investigates the community-wide effects of land use intensity on the degree of specialization of 72 plant-herbivore networks, including effects mediated by the increase in the proportion of exotic plant species. Contrary to our expectation, the net effect of land use intensity on network specialization was positive. However, this positive effect of land use intensity was partially canceled by an opposite effect of the proportion of exotic plant species on network specialization. When we analyzed networks composed exclusively of endophagous herbivores separately from those composed exclusively of exophagous herbivores, we found that only endophages showed a consistent change in network specialization at higher land use levels. Altogether, these results indicate that land use intensity is an important ecological driver of network specialization, by way of reducing the local host range of herbivore guilds with highly specialized feeding habits. However, because the effect of land use intensity is offset by an opposite effect owing to the proportion of exotic host species, the net effect of land use in a given herbivore assemblage will likely depend on the extent of the replacement of native host species with exotic ones. PMID:25565141

de Araújo, Walter Santos; Vieira, Marcos Costa; Lewinsohn, Thomas M.; Almeida-Neto, Mário

2015-01-01

88

Direct and indirect effects of land use on floral resources and flower-visiting insects across an urban landscape  

USGS Publications Warehouse

Although urban areas are often considered to have uniformly negative effects on biodiversity, cities are most accurately characterized as heterogeneous mosaics of buildings, streets, parks, and gardens that include both ‘good’ and ‘bad’ areas for wildlife. However, to date, few studies have evaluated how human impacts vary in direction and magnitude across a heterogeneous urban landscape. In this study, we assessed the distribution of floral resources and flower-visiting insects across a variety of land uses in New York City. We visited both green spaces (e.g. parks, cemeteries) and heavily developed neighborhood blocks (e.g. with high or low density residential zoning) and used structural equation modeling (SEM) to evaluate the direct and indirect effects of median income, vegetation, and development intensity on floral resources and insects in both settings. Abundance and taxonomic richness of flower-visiting insects was significantly greater in green spaces than neighborhood blocks. The SEM results indicated that heavily-developed neighborhoods generally had fewer flower-visiting insects consistent with reductions in floral resources. However, some low-density residential neighborhoods maintained high levels of floral resources and flower-visiting insects. We found that the effects of surrounding vegetation on floral resources, and thus indirect effects on insects, varied considerably between green spaces and neighborhood blocks. Along neighborhood blocks, vegetation consisted of a mosaic of open gardens and sparsely distributed trees and had a positive indirect effect on flower-visiting insects. In contrast, vegetation in urban green spaces was associated with increased canopy cover and thus had a negative indirect effect on flower-visiting insects through reductions in floral resources. In both neighborhood blocks and green spaces, vegetation had a positive direct effect on flower-visiting insects independent of the influence of vegetation on floral resources. Our results demonstrate how inter-related components of an urban ecosystem can vary with respect to one another across a heterogeneous urban landscape, suggesting that it is inappropriate to generalize about urban systems as a whole without first addressing differences among component land use types.

Matteson, K.C.; Grace, James B.; Minor, E.S.

2013-01-01

89

Land Use Dynamics of the Fast-Growing Shanghai Metropolis, China (1979–2008) and its Implications for Land Use and Urban Planning Policy  

PubMed Central

Through the integrated approach of remote sensing and geographic information system (GIS) techniques, four Landsat TM/ETM+ imagery acquired during 1979 and 2008 were used to quantitatively characterize the patterns of land use and land cover change (LULC) and urban sprawl in the fast-growing Shanghai Metropolis, China. Results showed that, the urban/built-up area grew on average by 4,242.06 ha yr?1. Bare land grew by 1,594.66 ha yr?1 on average. In contrast, cropland decreased by 3,286.26 ha yr?1 on average, followed by forest and shrub, water, and tidal land, which decreased by 1,331.33 ha yr?1, 903.43 ha yr?1, and 315.72 ha yr?1 on average, respectively. As a result, during 1979 and 2008 approximately 83.83% of the newly urban/built-up land was converted from cropland (67.35%), forest and shrub (9.12%), water (4.80%), and tidal land (2.19%). Another significant change was the continuous increase in regular residents, which played a very important role in contributing to local population growth and increase in urban/built-up land. This can be explained with this city’s huge demand for investment and qualified labor since the latest industrial transformation. Moreover, with a decrease in cropland, the proportion of population engaged in farming decreased 13.84%. Therefore, significant socio-economic transformation occurred, and this would lead to new demand for land resources. However, due to very scarce land resources and overload of population in Shanghai, the drive to achieve economic goals at the loss of cropland, water, and the other lands is not sustainable. Future urban planning policy aiming at ensuring a win-win balance between sustainable land use and economic growth is urgently needed. PMID:22319382

Zhang, Hao; Zhou, Li-Guo; Chen, Ming-Nan; Ma, Wei-Chun

2011-01-01

90

Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea  

NASA Astrophysics Data System (ADS)

Taejon Metropolitan City located in the central part of South Korea has grown and urbanized rapidly. The city depends heavily on groundwater as a water resource. Because of ubiquitous pollution sources, the quality and contamination have become important issues for the urban groundwater supply. This study has investigated the chemical characteristics and the contamination of groundwater in relation to land use. An attempt was made to distinguish anthrophogenic inputs from the influence of natural chemical weathering on the chemical composition of groundwater at Taejon. Groundwater samples collected at 170 locations in the Taejon area show very variable chemical composition of groundwater, e.g. electrical conductance ranges from 65 to 1,290 ?S/cm. Most groundwater is weakly acidic and the groundwater chemistry is more influenced by land use and urbanization than by aquifer rock type. Most groundwater from green areas and new town residential districts has low electrical conductance, and is of Ca-HCO 3 type, whereas the chemical composition of groundwater from the old downtown and industrial district is shifted towards a Ca-Cl (NO 3+SO 4) type with high electrical conductance. A number of groundwater samples in the urbanized area are contaminated by high nitrate and chlorine, and exhibit high hardness. The EpCO 2, that is the CO 2 content of a water sample relative to pure water, was computed to obtain more insight into the origin of CO 2 and bicarbonate in the groundwater. The CO 2 concentration of groundwater in the urbanized area shows a rough positive relationship with the concentration of major inorganic components. The sources of nitrate, chlorine and excess CO 2 in the groundwater are likely to be municipal wastes of unlined landfill sites, leaky latrines and sewage lines. Chemical data of commercial mineral water from other Jurassic granite areas were compared to the chemical composition of the groundwater in the Taejon area. Factor analysis of the chemical data shows that the HCO 3- and NO 3- concentrations have the highest factor loadings on factor 1 and factor 2, respectively. Factors 1 and 2 represent major contributions from natural processes and human activities, respectively. The results of the factor analysis indicate that the levels of Ca 2+, Mg 2+, Na +, Cl - and SO 42- derive from both pollution sources and natural weathering reactions.

Jeong, Chan Ho

2001-11-01

91

Effects of land use on the spatial distribution of trace metals and volatile organic compounds in urban groundwater, Seoul, Korea  

Microsoft Academic Search

To investigate the urban groundwater contamination by eight trace metals and 69 volatile organic compounds (VOCs) in relation\\u000a to land use in Seoul, a total of 57 groundwater samples collected from wells were examined using a non-parametric statistical\\u000a analysis. Land use was classified into five categories: less-developed, residential, agricultural, traffic, and industrial.\\u000a A comparison of analyzed data with US EPA

Seong-Sook Park; Soon-Oh Kim; Seong-Taek Yun; Gi-Tak Chae; Soon-Young Yu; Seungki Kim; Young Kim

2005-01-01

92

Effects of land-use type on urban groundwater quality, Seoul metropolitan city, Korea  

NASA Astrophysics Data System (ADS)

The progressive degradation of urban groundwater becomes an important environmental problem encountered in South Korea. This study aims to examine the relationships between land-use type and groundwater quality in Seoul metropolitan city, based on the results of hydrogeochemical monitoring. For this purpose, land-use type was divided into five categories (green zone, housing, agricultural, traffic, and industrialized). The mean concentrations of TDS (total dissolved solids) effectively reflect the degree of anthropogenic contamination and increase in the following order: green zone (152.5 mg/l), then agricultural (380.7 mg/l) and housing (384.2 mg/l), then traffic (457.0 mg/l), and finally industrialized area (554.5 mg/l). Among major dissolved solutes, the concentrations of Na, Ca, Mg, HCO3, and Cl increase with increasing TDS. In case of Na and Ca, de-icing salts and sewage are considered as major contamination sources. The corrosion of cements may also increase Ca. Nitrate concentration is characteristically very high in housing and agricultural areas, reflecting the severe contamination from domestic sewage and fertilizer. Sulfate and magnesium are enriched in industrialized area, possibly due to their derivation from industrial facilities. Chlorine ion is considered to be derived from de-chlorination of hydrocarbons as well as de-icing salts. Bicarbonate also increases with increasing TDS, for which cement dissolution and oxidation of organics are considered as source materials. However, enhanced water-rock(or construction materials) interaction also may increase the bicarbonate, because acidic wastewater in urban area is very corrosive. Trace metals and organic compounds generally does not show any distinct pattern of regional variation. However, Fe, Mn, Ni, Se, Zn, TCE, and PCE tend to increase locally in industrialized area, whereas high concentrations of Br, Ni, and Cu are found in traffic area. The groundwaters with very high concentrations of Fe, Zn, and Mn are presumed to be affected from decrepit pipelines under inproper management. The correlation matrix between hydrochemical data and local land-use data was examined, based on the areal calculation of land use (road, building for housing and official work, industrial building, forest, and agricultural land) within a circular (radius = 500 m) around a well. The results show that the areal percentage of road correlates positively with the concentrations of TDS, Na, Ca, HCO3, Br, Mn, and Ni, whereas the areal percentage of industrial building correlates well with Mg, SO4, Fe, TCE, and PCE. The present study suggests that urban groundwaters in Seoul are strongly affected by anthropogenic sources and show a strong effect by local land-use characteristics. As an useful guideline for evaluating the groundwater quality, we have obtained background water quality criteria as follows: Na (10.8 mg/l), K (1.2 mg/l), Ca (19.9 mg/l), Mg (1.6 mg/l), NO3 (8.3 mg/l), Cl (9.0 mg/l), SO4 (12.9 mg/l), and HCO3 (54.8 mg/l).

Yu, S.; Yun, S.; Chae, G.; So, C.; Kweon, S.; Lee, P.

2001-12-01

93

Bayesian networks and agent-based modeling approach for urban land-use and population density change: a BNAS model  

NASA Astrophysics Data System (ADS)

Land-use change models grounded in complexity theory such as agent-based models (ABMs) are increasingly being used to examine evolving urban systems. The objective of this study is to develop a spatial model that simulates land-use change under the influence of human land-use choice behavior. This is achieved by integrating the key physical and social drivers of land-use change using Bayesian networks (BNs) coupled with agent-based modeling. The BNAS model, integrated Bayesian network-based agent system, presented in this study uses geographic information systems, ABMs, BNs, and influence diagram principles to model population change on an irregular spatial structure. The model is parameterized with historical data and then used to simulate 20 years of future population and land-use change for the City of Surrey, British Columbia, Canada. The simulation results identify feasible new urban areas for development around the main transportation corridors. The obtained new development areas and the projected population trajectories with the“what-if” scenario capabilities can provide insights into urban planners for better and more informed land-use policy or decision-making processes.

Kocabas, Verda; Dragicevic, Suzana

2013-10-01

94

The impact of land use, season, age, and sex on the prevalence and intensity of Baylisascaris procyonis infections in raccoons (Procyon lotor) from Ontario, Canada.  

PubMed

We assessed the impact of land use, demographic factors, and season on the prevalence and intensity of Baylisascaris procyonis infections in raccoons (Procyon lotor) in Ontario, Canada. From March to October 2012, we recorded the number of B. procyonis in the intestinal tracts of raccoons submitted to the Canadian Cooperative Wildlife Health Centre for necropsy. Logistic regression models were used to examine associations between the presence of B. procyonis and age (adult, juvenile), sex, land use (suburban/urban, rural), and season (March-June and July-October); negative binomial regression models were used to examine associations between the number of worms and the same variables. We detected B. procyonis in 38% (95% confidence interval 30-47%) of raccoons examined (n=128). In univariable models, the presence of B. procyonis was significantly associated with age, land use, and season (P<0.05). Age was not retained in the multivariable model, and the impact of sex on the presence of B. procyonis varied with land use and season. For example, from March to June, suburban/urban male raccoons were significantly more likely to be infected with B. procyonis than suburban/urban female raccoons. However, later in the summer (July-October), the opposite was true. The median number of worms in the intestinal tracts of infected raccoons was 3 (range 1-116). Worm number was significantly associated with age and season in univariable models; in the multivariable model, juvenile raccoons had significantly more worms than adults, and the impact of season on the number of worms varied with land use and sex. A better understanding of the epidemiology of B. procyonis in raccoons is important for developing appropriate strategies to reduce the risk of human exposure to B. procyonis from the environment. PMID:25098302

Jardine, Claire M; Pearl, David L; Puskas, Kirstie; Campbell, Doug G; Shirose, Lenny; Peregrine, Andrew S

2014-10-01

95

Microzonation in Urban Areas, Basic Element for Land-Use Planning, Risk Management and Sustainable Development  

NASA Astrophysics Data System (ADS)

This paper presents the results of microzonification of the natural hazards for different metropolitan areas and highlights the importance of integrating these results in urban planning. The cities that have been covered for the definition of danger in the state of Veracruz are: Orizaba, Veracruz and Xalapa, as part of the production of a Geological and Hydrometeorology Hazards Atlas for the state of Veracruz, financed by the Funds for the Prevention of Natural Disasters FOPREDEN and CONACYT. The general data of each metropolitan area was integrated in a geographic information system (GIS), obtaining different theme maps, and maps of dynamic characteristics of soils in each metropolitan area. For the planning of an urban area to aspire to promote sustainable development, it is essential to have a great deal of the details on the pertinent information and the most important is that that has to do with the degree of exposure to natural phenomena. In general, microzonation investigations consider all natural phenomena that could potentially affect an area of interest and hazard maps for each of potential hazards are prepared. With all the data collected and generated and fed into a SIG, models were generated which define the areas most threatened by earthquake, flood and landslide slopes. These results were compared with maps of the main features in the urban zones and a qualitative classification of areas of high to low hazard was established. It will have the basic elements of information for urban planning and land use. This information will be made available to the authorities and the general public through an Internet portal where people can download and view maps using free software available online.;

Torres Morales, G. F.; Dávalos Sotelo, R.; Castillo Aguilar, S.; Mora González, I.; Lermo Samaniego, J. F.; Rodriguez, M.; García Martínez, J.; Suárez, M. Leonardo; Hernández Juan, F.

2013-05-01

96

Land Use and Watersheds: Human Influence on Hydrology and Geomorphology in Urban and Forest Areas. Water Science and Application Series  

SciTech Connect

What is the effect of urbanization and forest use on hydrologic and geomorphic processes? How can we develop land use policies that minimize adverse impacts on ecosystems while sustaining biodiversity? Land Use and Watersheds: Human Influence on Hydrology and Geomorphology in Urban and Forest Areas addresses these issues and more. By featuring watersheds principally in the American Pacific Northwest, and the effects of timber harvesting and road construction on stream flow, sediment yield and landslide occurrence, scientists can advance their understanding of what constitutes appropriate management of environments with similar hydro-climatic-geomorphic settings worldwide.

Wigmosta, Mark S.; Burges, S J.

2001-10-01

97

Urban Growth in a Fragmented Landscape: Estimating the Relationship between Landscape Pattern and Urban Land Use Change in Germany, 2000-2006  

NASA Astrophysics Data System (ADS)

One of the highest priorities in the conservation and management of biodiversity, natural resources and other vital ecosystem services is the assessment of the mechanisms that drive urban land use change. Using key landscape indicators, this study addresses why urban land increased 6 percent overall in Germany from 2000-2006. Building on regional science and economic geography research, I develop a model of landscape change that integrates remotely sensed and other geospatial data, and socioeconomic data in a spatial autoregressive model to explain the variance in urban land use change observed in German kreise (counties) over the past decade. The results reveal three key landscape mechanisms that drive urban land use change across Germany, aligning with those observed in US studies: (1) the level of fragmentation, (2) the share of designated protected areas, and (3) the share of prime soil. First, as fragmentation of once continuous habitats in the landscape increases, extensive urban growth follows. Second, designated protected areas have the perverse effect of hastening urbanization in surrounding areas. Third, greater shares of prime, productive soil experienced less urban land take over the 6 year period, an effect that is stronger in the former East Germany, where the agricultural sector remains large. The results suggest that policy makers concentrate their conservation efforts on preexisting fragmented land with high shares of protected areas in Germany to effectively stem urban land take. Given that comparative studies of land use change are vital for the scientific community to grasp the wider global process of urbanization and coincident ecological impacts, the methodology employed here is easily exportable to land cover and land use research programs in other fields and geographic areas. Key words: Urban land use change, Ecosystem services, Landscape fragmentation, Remote sensing, Spatial regression models, GermanyOLS and Spatial Autoregressive Model Results N = 439; Standard error in ( ) . *p < .1, **p < .01, ***p < .001

Keller, R.

2013-12-01

98

Quantifying Outdoor Water Consumption of Urban Land Use/Land Cover: Sensitivity to Drought  

NASA Astrophysics Data System (ADS)

Outdoor water use is a key component in arid city water systems for achieving sustainable water use and ensuring water security. Using evapotranspiration (ET) calculations as a proxy for outdoor water consumption, the objectives of this research are to quantify outdoor water consumption of different land use and land cover types, and compare the spatio-temporal variation in water consumption between drought and wet years. An energy balance model was applied to Landsat 5 TM time series images to estimate daily and seasonal ET for the Central Arizona Phoenix Long-Term Ecological Research region (CAP-LTER). Modeled ET estimations were correlated with water use data in 49 parks within CAP-LTER and showed good agreement ( r 2 = 0.77), indicating model effectiveness to capture the variations across park water consumption. Seasonally, active agriculture shows high ET (>500 mm) for both wet and dry conditions, while the desert and urban land cover types experienced lower ET during drought (<300 mm). Within urban locales of CAP-LTER, xeric neighborhoods show significant differences from year to year, while mesic neighborhoods retain their ET values (400-500 mm) during drought, implying considerable use of irrigation to sustain their greenness. Considering the potentially limiting water availability of this region in the future due to large population increases and the threat of a warming and drying climate, maintaining large water-consuming, irrigated landscapes challenges sustainable practices of water conservation and the need to provide amenities of this desert area for enhancing quality of life.

Kaplan, Shai; Myint, Soe W.; Fan, Chao; Brazel, Anthony J.

2014-04-01

99

An object-based multisensoral approach for the derivation of urban land use structures in the city of Rostock, Germany  

NASA Astrophysics Data System (ADS)

The present work is part of the Enviland-2 research project, which investigates the synergism between radar- and optical satellite data for ENVIronment and LAND use applications. The urban work package of Enviland aims at the combined analysis of RapidEye and TerraSAR-X data for the parameterization of different urban land use structures. This study focuses on the development of a transferable, object-based rule set for the derivation of urban land use structures at block level. The data base consists of RapidEye and TerraSAR-X imagery, as well as height information of a LiDAR nDSM (normalized Digital Surface Model) and object boundaries of ATKIS (Official Topographic Cartographic Information System) vector data for a study area in the city of Rostock, Germany. The classification of various land cover units forms the basis of the analysis. Therefore, an object-based land cover classification is implemented that uses feature level fusion to combine the information of all available input data. Besides spectral values also shape and context features are employed to characterize and extract specific land cover objects as indicators for the prevalent land use. The different land use structures are then determined by typical combinations and constellations of the extracted land use indicators and land cover proportions. Accuracy assessment is done by utilizing the available ATKIS information. From this analysis the land use structure classes residential, industrial/commercial, other built-up, allotments, sports facility, forest, grassland, other green spaces, squares/parking areas and water are distinguished with an overall accuracy of 63.2 %.

Lindner, Martin; Hese, Sören; Berger, Christian; Schmullius, Christiane

2011-11-01

100

Understory plant species composition in remnant stands along an urban-to-rural land-use gradient  

USGS Publications Warehouse

We examined the understory species composition of 24 remnant forest stands along an urban-to-rural gradient in the metropolitan Milwaukee, Wisconsin region to determine the relationships between plant community composition, human disturbance, and contrasting types of land use along a gradient of urbanization. A significant difference was found in shrub species community composition among three contrasting land-use categories but no significant difference was found in herbaceous community composition. Significant differences in human activity existed among rural, urban, and urbanizing land-use categories, but this index of disturbance was not significantly correlated to gradients in species composition. All stands in this study had been subjected to various types of human activity and environmental disturbances in the past. Our data suggest that differences in the relative importance of understory species exist among stands but these differences may not be caused by the impacts of urbanization alone. Changes in the natural disturbance regime of this landscape, along with the impacts associated with urbanization, have led to an individualistic response in the compositional dynamics of forest stands.

Guntenspergen, G.R.; Levenson, J.B.

1997-01-01

101

Note to Teachers : A Tale of Two Watersheds: Land Use, Topography, and the Potential for Urban Expansion  

E-print Network

Note to Teachers : A Tale of Two Watersheds: Land Use, Topography, and the Potential for Urban School in Loveland, CO. The goals of this project are to conduct a comparative analysis of two watersheds of GIS in a spatial analysis of watersheds. Particular objectives of the project are as follows

102

Quantifying and Analysing Neighbourhood Characteristics Supporting Urban Land-Use Modelling  

Microsoft Academic Search

Land-use modelling and spatial scenarios have gained increased attention as a means to meet the challenge of reducing uncertainty\\u000a in the spatial planning and decision-making. Several organisations have developed software for land-use modelling. Many of\\u000a the recent modelling efforts incorporate cellular automata (CA) to accomplish spatially explicit land-use change modelling.\\u000a Spatial interaction between neighbour land-uses is an important component in

Henning Sten Hansen

2008-01-01

103

Modelling biodiversity and land use: urban growth, agriculture and nature in a wetland area  

Microsoft Academic Search

Wherever human land use is located near sensitive natural areas, such as wetlands, it has significant impacts on biodiversity in those areas. Both species richness and species composition are affected. As biodiversity is lost, conservation efforts increase and act as a constraint on land use options. Given these links, land use is a central factor in an ecological–economic analysis of

Florian V. Eppink; Piet Rietveld

2004-01-01

104

Quantifying outdoor water consumption of urban land use/land cover: sensitivity to drought.  

PubMed

Outdoor water use is a key component in arid city water systems for achieving sustainable water use and ensuring water security. Using evapotranspiration (ET) calculations as a proxy for outdoor water consumption, the objectives of this research are to quantify outdoor water consumption of different land use and land cover types, and compare the spatio-temporal variation in water consumption between drought and wet years. An energy balance model was applied to Landsat 5 TM time series images to estimate daily and seasonal ET for the Central Arizona Phoenix Long-Term Ecological Research region (CAP-LTER). Modeled ET estimations were correlated with water use data in 49 parks within CAP-LTER and showed good agreement (r² = 0.77), indicating model effectiveness to capture the variations across park water consumption. Seasonally, active agriculture shows high ET (>500 mm) for both wet and dry conditions, while the desert and urban land cover types experienced lower ET during drought (<300 mm). Within urban locales of CAP-LTER, xeric neighborhoods show significant differences from year to year, while mesic neighborhoods retain their ET values (400-500 mm) during drought, implying considerable use of irrigation to sustain their greenness. Considering the potentially limiting water availability of this region in the future due to large population increases and the threat of a warming and drying climate, maintaining large water-consuming, irrigated landscapes challenges sustainable practices of water conservation and the need to provide amenities of this desert area for enhancing quality of life. PMID:24499870

Kaplan, Shai; Myint, Soe W; Fan, Chao; Brazel, Anthony J

2014-04-01

105

Effects of land use on the spatial distribution of trace metals and volatile organic compounds in urban groundwater, Seoul, Korea  

NASA Astrophysics Data System (ADS)

To investigate the urban groundwater contamination by eight trace metals and 69 volatile organic compounds (VOCs) in relation to land use in Seoul, a total of 57 groundwater samples collected from wells were examined using a non-parametric statistical analysis. Land use was classified into five categories: less-developed, residential, agricultural, traffic, and industrial. A comparison of analyzed data with US EPA and Korean standards for drinking water showed that some metals and VOCs exceeded the standards in a few localities, such as Fe ( N=5), Mn ( N=6), Cu ( N=1), TCE ( N=6), PCE ( N=8), 1,2-DCA ( N=1), and 1,2-dichloropropane ( N=1). Among the 69 investigated VOCs, 19 compounds such as some gasoline-related compounds (e.g., toluene) and chlorinated compounds (e.g., chloroform, PCE, TCE) were detected in groundwater. Non-parametric statistical analysis showed that the concentrations of most trace metals (Fe, Mn, As, Cr, Pb, Cd) and some VOCs (especially, TCE, PCE, chloroform; toluene, carbon tetrachloride, bromodichloromethane, CFC113) are significantly higher in the industrial, residential, and traffic areas ( P<0.05), indicating that anthropogenic contamination of urban groundwater by those chemicals is growing. Those chemicals can be used as effective indicators of anthropogenic contamination of groundwater in urban areas and therefore a special attention is warranted for a safe water supply in those areas. The results of this study suggest that urban groundwater quality in urban areas is closely related with land use.

Park, Seong-Sook; Kim, Soon-Oh; Yun, Seong-Taek; Chae, Gi-Tak; Yu, Soon-Young; Kim, Seungki; Kim, Young

2005-10-01

106

The second generation of the California urban futures model. Part 2: Specification and calibration results of the land-use change submodel  

Microsoft Academic Search

In this paper, part 2 of a three-part series, we present the formal specification and calibration results of the land-use change component of the second-generation California urban futures model. The land-use change component consists of a series of nonordinal multinomial logit models of site-specific land-use changes. These models incorporate spatial measures (for example, mix of adjacent land uses, and proximity

J Landis; M Zhang

1998-01-01

107

Land Use and Land Cover Change, Urban Heat Island Phenomenon, and Health Implications: A Remote Sensing Approach  

NASA Technical Reports Server (NTRS)

Land use and land cover maps of Atlanta Metropolitan Area in Georgia were produced from Landsat MSS and TM images for 1973,1979,1983,1987,1992, and 1997, spanning a period of 25 years. Dramatic changes in land use and land cover have occurred with loss of forest and cropland to urban use. In particular, low-density urban use, which includes largely residential use, has increased by over 119% between 1973 and 1997. These land use and land cover changes have drastically altered the land surface characteristics. An analysis of Landsat images revealed an increase in surface temperature and a decline in NDVI from 1973 to 1997. These changes have forced the development of a significant urban heat island effect and an increase in ground level ozone production to such an extent, that Atlanta has violated EPA's ozone level standard in recent years. The urban heat island initiated precipitation events that were identified between 1996 and 2000 tended to occur near high-density urban areas but outside the I-285 loop that traverses around the Central Business District, i.e. not in the inner city area, but some in close proximity to the highways. The health implications were investigated by comparing the spatial patterns of volatile organic compounds (VOC) and nitrogen oxides (NOx) emissions, the two ingredients that form ozone by reacting with sunlight, with those of rates of cardiovascular and chronic lower respiratory diseases. A clear core-periphery pattern was revealed for both VOC and NOx emissions, but the spatial pattern was more random in the cases of rates of cardiovascular and chronic lower respiratory diseases. Clearly, factors other than ozone pollution were involved in explaining the rates of these diseases. Further research is therefore needed to understand the health geography and its relationship to land use and land cover change as well as urban heat island effect. This paper illustrates the usefulness of a remote sensing approach for this purpose.

Lo, C. P.; Quattrochi, Dale A.

2003-01-01

108

Associations between land use and Perkinsus marinus infection of eastern oysters in a high salinity, partially urbanized estuary  

USGS Publications Warehouse

Infection levels of eastern oysters by the unicellular pathogen Perkinsus marinus have been associated with anthropogenic influences in laboratory studies. However, these relationships have been difficult to investigate in the field because anthropogenic inputs are often associated with natural influences such as freshwater inflow, which can also affect infection levels. We addressed P. marinus-land use associations using field-collected data from Murrells Inlet, South Carolina, USA, a developed, coastal estuary with relatively minor freshwater inputs. Ten oysters from each of 30 reefs were sampled quarterly in each of 2 years. Distances to nearest urbanized land class and to nearest stormwater outfall were measured via both tidal creeks and an elaboration of Euclidean distance. As the forms of any associations between oyster infection and distance to urbanization were unknown a priori, we used data from the first and second years of the study as exploratory and confirmatory datasets, respectively. With one exception, quarterly land use associations identified using the exploratory dataset were not confirmed using the confirmatory dataset. The exception was an association between the prevalence of moderate to high infection levels in winter and decreasing distance to nearest urban land use. Given that the study design appeared adequate to detect effects inferred from the exploratory dataset, these results suggest that effects of land use gradients were largely insubstantial or were ephemeral with duration less than 3 months.

Gray, Brian R.; Bushek, David; Drane, J. Wanzer; Porter, Dwayne

2009-01-01

109

Soil erosion evaluation in a rapidly urbanizing city (Shenzhen, China) and implementation of spatial land-use optimization.  

PubMed

Soil erosion has become a pressing environmental concern worldwide. In addition to such natural factors as slope, rainfall, vegetation cover, and soil characteristics, land-use changes-a direct reflection of human activities-also exert a huge influence on soil erosion. In recent years, such dramatic changes, in conjunction with the increasing trend toward urbanization worldwide, have led to severe soil erosion. Against this backdrop, geographic information system-assisted research on the effects of land-use changes on soil erosion has become increasingly common, producing a number of meaningful results. In most of these studies, however, even when the spatial and temporal effects of land-use changes are evaluated, knowledge of how the resulting data can be used to formulate sound land-use plans is generally lacking. At the same time, land-use decisions are driven by social, environmental, and economic factors and thus cannot be made solely with the goal of controlling soil erosion. To address these issues, a genetic algorithm (GA)-based multi-objective optimization (MOO) approach has been proposed to find a balance among various land-use objectives, including soil erosion control, to achieve sound land-use plans. GA-based MOO offers decision-makers and land-use planners a set of Pareto-optimal solutions from which to choose. Shenzhen, a fast-developing Chinese city that has long suffered from severe soil erosion, is selected as a case study area to validate the efficacy of the GA-based MOO approach for controlling soil erosion. Based on the MOO results, three multiple land-use objectives are proposed for Shenzhen: (1) to minimize soil erosion, (2) to minimize the incompatibility of neighboring land-use types, and (3) to minimize the cost of changes to the status quo. In addition to these land-use objectives, several constraints are also defined: (1) the provision of sufficient built-up land to accommodate a growing population, (2) restrictions on the development of land with a steep slope, and (3) the protection of agricultural land. Three Pareto-optimal solutions are presented and analyzed for comparison. GA-based MOO is found able to solve the multi-objective land-use problem in Shenzhen by making a tradeoff among competing objectives. The outcome is alternative choices for decision-makers and planners. PMID:25315927

Zhang, Wenting; Huang, Bo

2014-10-15

110

Different Land Use Intensities in Grassland Ecosystems Drive Ecology of Microbial Communities Involved in Nitrogen Turnover in Soil  

PubMed Central

Understanding factors driving the ecology of N cycling microbial communities is of central importance for sustainable land use. In this study we report changes of abundance of denitrifiers, nitrifiers and nitrogen-fixing microorganisms (based on qPCR data for selected functional genes) in response to different land use intensity levels and the consequences for potential turnover rates. We investigated selected grassland sites being comparable with respect to soil type and climatic conditions, which have been continuously treated for many years as intensely used meadows (IM), intensely used mown pastures (IP) and extensively used pastures (EP), respectively. The obtained data were linked to above ground biodiversity pattern as well as water extractable fractions of nitrogen and carbon in soil. Shifts in land use intensity changed plant community composition from systems dominated by s-strategists in extensive managed grasslands to c-strategist dominated communities in intensive managed grasslands. Along the different types of land use intensity, the availability of inorganic nitrogen regulated the abundance of bacterial and archaeal ammonia oxidizers. In contrast, the amount of dissolved organic nitrogen determined the abundance of denitrifiers (nirS and nirK). The high abundance of nifH carrying bacteria at intensive managed sites gave evidence that the amounts of substrates as energy source outcompete the high availability of inorganic nitrogen in these sites. Overall, we revealed that abundance and function of microorganisms involved in key processes of inorganic N cycling (nitrification, denitrification and N fixation) might be independently regulated by different abiotic and biotic factors in response to land use intensity. PMID:24039974

Meyer, Annabel; Focks, Andreas; Radl, Viviane; Keil, Daniel; Welzl, Gerhard; Schöning, Ingo; Boch, Steffen; Marhan, Sven; Kandeler, Ellen; Schloter, Michael

2013-01-01

111

Postdoctoral Researcher in Water Sustainability and Climate: Water, land use and climate change in an urbanizing  

E-print Network

Postdoctoral Researcher in Water Sustainability and Climate: Water, land use and climate change to a groundwater flow model (MODFLOW) to investigate the impacts of changing land use, land cover and climate Sustainability and Climate (WSC) research group at the University of Wisconsin-Madison as part of a five

Wisconsin at Madison, University of

112

The effect of local land use regulations on urban development in the Western United States  

Microsoft Academic Search

This paper estimates the effect of local land use regulations on land development in five western states of the United States (California, Idaho, Nevada, Oregon, and Washington). Results suggest that local land use regulations reduced the total supply of developed land by 10% in the five western states between 1982 and 1997, with the largest percent reduction in Washington (13.0%),

JunJie Wu; Seong-Hoon Cho

2007-01-01

113

A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification  

Microsoft Academic Search

A detailed comparison of the backpropagation neural network and maximum-likelihood classifiers for urban land use classification is presented. Landsat Thematic Mapper images of Tucson, Arizona, and Oakland, California, were used for this comparison. For the Tucson image, the percentage of matching pixels in the two classification maps was only 64.5%, while for the Oakland image it was 83.3%. Although the

Justin D. Paola; Robert A. Schowengerdt

1995-01-01

114

Long-term effects of land use/land cover change on surface runoff in urban areas of Beijing, China  

NASA Astrophysics Data System (ADS)

The objective of this paper is to present a case study to derive land use/land cover (LULC) maps and investigate the long-term effects of LULC change on surface runoff in the fast urbanizing Beijing city. The LULC maps were derived from Landsat TM/ETM+ imagery (acquired in 1992, 1999, 2006, and 2009) using support vector machine method. A long-term hydrologic impact assessment model was applied to assess the impact of LULC change on surface runoff. Results indicated that the selected study area experienced rapid urbanization from 1992 to 2009. Because of urbanization, from 1992 to 2009, modeled runoff increased 30% for the whole area and 35% for the urban portion. Our results also indicated that the runoff increase was highly correlated with urban expansion. A strong relationship (R2=0.849) was observed between the impervious surface percent and the modeled runoff depth in the study area. In addition, a strong positive relationship was observed between runoff increase and percentage of urban areas (R=0.997 for the whole area and R=0.930 for the urban portion). This research can provide a simple method for policy makers to assess potential hydrological impacts of future urban planning and development activities.

Sun, Zhongchang; Li, Xinwu; Fu, Wenxue; Li, Yingkui; Tang, Dongsheng

2014-01-01

115

VARIATIONS OF MICROORGANISM CONCENTRATIONS IN URBAN STORMWATER RUNOFF WITH LAND USE AND SEASONS  

EPA Science Inventory

Stormwater runoff samples were collected from outfalls draining small municipal separate storm sewer systems. The samples were collected from three different land use areas based on local designation (high-density residential, low-density residential, and landscaped commercial)....

116

Urban and regional land use analysis: CARETS and census cities experiment package  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. The most significant finding has been the ability of the S-190B data to produce land use maps not far removed from the quality of high altitude aircraft photography generated maps.

Alexander, R. (principal investigator); Lins, H. F., Jr.

1974-01-01

117

Urban land use monitoring from computer-implemented processing of airborne multispectral data  

NASA Technical Reports Server (NTRS)

Machine processing techniques were applied to multispectral data obtained from airborne scanners at an elevation of 600 meters over central Indianapolis in August, 1972. Computer analysis of these spectral data indicate that roads (two types), roof tops (three types), dense grass (two types), sparse grass (two types), trees, bare soil, and water (two types) can be accurately identified. Using computers, it is possible to determine land uses from analysis of type, size, shape, and spatial associations of earth surface images identified from multispectral data. Land use data developed through machine processing techniques can be programmed to monitor land use changes, simulate land use conditions, and provide impact statistics that are required to analyze stresses placed on spatial systems.

Todd, W. J.; Mausel, P. W.; Baumgardner, M. F.

1976-01-01

118

Land-use intensity and host plant identity interactively shape communities of arbuscular mycorrhizal fungi in roots of grassland plants.  

PubMed

We studied the effect of host plant identity and land-use intensity (LUI) on arbuscular mycorrhizal fungi (AMF, Glomeromycota) communities in roots of grassland plants. These are relevant factors for intraradical AMF communities in temperate grasslands, which are habitats where AMF are present in high abundance and diversity. In order to focus on fungi that directly interact with the plant at the time, we investigated root-colonizing communities. Our study sites represent an LUI gradient with different combinations of grazing, mowing, and fertilization. We used massively parallel multitag pyrosequencing to investigate AMF communities in a large number of root samples, while being able to track the identity of the host. We showed that host plants significantly differed in AMF community composition, while land use modified this effect in a plant species-specific manner. Communities in medium and low land-use sites were subsets of high land-use communities, suggesting a differential effect of land use on the dispersal of AMF species with different abundances and competitive abilities. We demonstrate that in these grasslands, there is a small group of highly abundant, generalist fungi which represent the dominating species in the AMF community. PMID:25545193

Vályi, Kriszta; Rillig, Matthias C; Hempel, Stefan

2015-03-01

119

Simulating effects of land use policies on extent of the wildland urban interface and wildfire risk in Flathead County, Montana.  

PubMed

This study used a wildfire loss simulation model to evaluate how different land use policies are likely to influence wildfire risk in the wildland urban interface (WUI) for Flathead County, Montana. The model accounts for the complex socio-ecological interactions among climate change, economic growth, land use change and policy, homeowner mitigations, and forest treatments in Flathead County's WUI over the five 10-year subperiods comprising the future evaluation period (i.e., 2010-2059). Wildfire risk, defined as expected residential losses from wildfire [E(RLW)], depends on the number of residential properties on parcels, the probability that parcels burn, the probability of wildfire losses to residential structures on properties given the parcels on which those properties are located burn, the average percentage of wildfire-related losses in aesthetic values of residential properties, and the total value (structures plus land) of residential properties. E(RLW) for the five subperiods is simulated for 2010 (referred to as the current), moderately restrictive, and highly restrictive land use policy scenarios, a moderate economic growth scenario and the A2 greenhouse gas emissions scenario. Results demonstrate that increasingly restrictive land use policy for Flathead County significantly reduces the amount and footprint of future residential development in the WUI. In addition, shifting from the current to a moderately restrictive land use policy for Flathead County significantly reduces wildfire risk for the WUI, but shifting from the current to a highly restrictive land use policy does not significantly reduce wildfire risk in the WUI. Both the methods and results of the study can help land and wildfire managers to better manage future wildfire risk and identify residential areas having potentially high wildfire risk. PMID:24056233

Paveglio, Travis B; Prato, Tony; Hardy, Michael

2013-11-30

120

Polycyclic aromatic hydrocarbons in urban soils of different land uses in Beijing, China: distribution, sources and their correlation with the city's urbanization history.  

PubMed

A total of 127 surface soil samples (0-20 cm) were collected from Beijing's urban district and determined for 16 polycyclic aromatic hydrocarbons (PAHs). The mean concentration of summation SigmaPAHs was 1802.6 ng g(-1) with a standard deviation of 1824.2 ng g(-1). Average summation SigmaPAHs concentration and the percentage of high-molecular weight PAHs (4-6-rings) decreased from inner city to exterior areas. This correlated with the urbanization history of Beijing's urban district and inferred an increasing trend of soil PAHs with accumulation time and age of the urban area. summation SigmaPAHs in different land uses decreased in an order as: culture and education area (CEA)>classical garden (CG), business area (BA)>residential area (RA), roadside area (RSA)>public green space (PGS). PAHs in CEA mainly came from coal combustion, while soils of RSA exhibited clear traffic emission characteristics. PAHs in other land uses came from mixed sources. Principle component analysis followed by multivariate linear regression indicated that coal combustion and vehicle emission contributed about 46.0% and 54.0% to PAHs in Beijing's urban soils, respectively. Risk assessment based on the Canadian soil criterion indicated a low contamination level of PAHs. However, higher contents in some sensitive land uses such as CEA and CG should draw enough attention. PMID:20097001

Liu, Shaoda; Xia, Xinghui; Yang, Lingyan; Shen, Mohai; Liu, Ruimin

2010-05-15

121

Identification of Urban Expansion onto Agricultural Lands Using Satellite Remote Sensing: Two Case Studies in Egypt  

Microsoft Academic Search

A critical desertification problem facing the Egyptian government is the expansion of urban centers onto productive agricultural lands. Timely and accurate information is needed by national planners to identify the rate of urban growth. In this study, the rate of urban expansion and corresponding loss of agricultural lands is evaluated for two cities in the Nile Delta. The extent of

M. M. Fahim; K. I. Khalil; F. Hawela; H. K. Zaki; M. N. El-Mowelhi; M. Pax-Lenney

1999-01-01

122

Analysis of Urban-Rural Land-Use Change during 1995-2006 and Its Policy Dimensional Driving Forces in Chongqing, China  

Microsoft Academic Search

This paper analyzes the urban-rural land-use change of Chongqing and its policy dimensional driving forces from 1995 to 2006, using high-resolution Landsat TM (Thematic Mapper) data of 1995, 2000 and 2006, and socio-economic data from both research institutes and government departments. The outcomes indicated that urban-rural land-use change in Chongqing can be characterized by two major trends: First, the non-agricultural

Hualou Long; Xiuqin Wu; Wenjie Wang; Guihua Dong

2008-01-01

123

[Urban land use change detection based on high accuracy classification of multispectral remote sensing imagery].  

PubMed

In the present paper, the urban land change in Jiading district of Shanghai was studied on the basis of high accuracy classification for 4 epochs of multispectral remotely sensed imageries. A further improved genetic-algorithm optimized back propagation neural network approach was first employed in our study to obtain sorts of land cover types from the remotely sensed imageries. The urban land and non-urban land types were thus extracted based on the classification result. According to the 16 corresponding relationships between the pixel values in the four urban land imageries and the ones in the generated urban land change imagery, the amount of each type pixel in the generated imagery was calculated according to the four plates, and the situation of urban land change was analyzed and investigated for the study area in three year intervals. The urban development in the study area was also preliminarily revealed. PMID:19839324

Tong, Xiao-Hua; Zhang, Xue; Liu, Miao-Long

2009-08-01

124

A technical review of urban land use - transportation models as tools for evaluating vehicle travel reduction strategies  

SciTech Connect

The continued growth of highway traffic in the United States has led to unwanted urban traffic congestion as well as to noticeable urban air quality problems. These problems include emissions covered by the 1990 Clean Air Act Amendments (CAAA) and 1991 Intermodal Surface Transportation Efficiency Act (ISTEA), as well as carbon dioxide and related {open_quotes}greenhouse gas{close_quotes} emissions. Urban travel also creates a major demand for imported oil. Therefore, for economic as well as environmental reasons, transportation planning agencies at both the state and metropolitan area level are focussing a good deal of attention on urban travel reduction policies. Much discussed policy instruments include those that encourage fewer trip starts, shorter trip distances, shifts to higher-occupancy vehicles or to nonvehicular modes, and shifts in the timing of trips from the more to the less congested periods of the day or week. Some analysts have concluded that in order to bring about sustainable reductions in urban traffic volumes, significant changes will be necessary in the way our households and businesses engage in daily travel. Such changes are likely to involve changes in the ways we organize and use traffic-generating and-attracting land within our urban areas. The purpose of this review is to evaluate the ability of current analytic methods and models to support both the evaluation and possibly the design of such vehicle travel reduction strategies, including those strategies involving the reorganization and use of urban land. The review is organized into three sections. Section 1 describes the nature of the problem we are trying to model, Section 2 reviews the state of the art in operational urban land use-transportation simulation models, and Section 3 provides a critical assessment of such models as useful urban transportation planning tools. A number of areas are identified where further model development or testing is required.

Southworth, F.

1995-07-01

125

Empiricism and Stochastics in Cellular Automaton Modeling of Urban Land Use Dynamics  

E-print Network

for Brazilian cities particularly and for world-wide cities in general. Keywords Land Use Change, Transition Coordination for Remote Sensing of the Brazilian National Institute for Space Research (PG-SER/INPE), the São Paulo State Foundation for Research Support (FAPESP) and the Brazilian National Foundation

Camara, Gilberto

126

Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea  

Microsoft Academic Search

Taejon Metropolitan City located in the central part of South Korea has grown and urbanized rapidly. The city depends heavily on groundwater as a water resource. Because of ubiquitous pollution sources, the quality and contamination have become important issues for the urban groundwater supply. This study has investigated the chemical characteristics and the contamination of groundwater in relation to land

Chan Ho Jeong

2001-01-01

127

Actual evapotranspiration estimation for different land use and land cover in urban regions using Landsat 5 data  

NASA Astrophysics Data System (ADS)

Evapotranspiration (ET) is deemed critical for water resources management. Even in the same climatic and meteorological conditions, actual ET (ETa) may exhibit remarkable spatial variability across different vegetation covers, agricultural land use practices, and differing types of urban land development. The main objectives of this study are (1) to evaluate the possible closure of the heat balance equation using Oklahoma's unique environmental monitoring network; and (2) to estimate ETa and determine the variation with regards to varying types of land use and land cover in urban settings. In this study, a Surface-Energy-Balance ET algorithm was implemented to estimate ETa at a higher spatial resolution using Landsat 5 satellite images while the Oklahoma Mesonet observations can be used as our ground truth data. Accuracy of the estimated ETa was assessed using latent heat flux measurements provided by AmeriFlux towers. The associated bias ratios of daily mean ETa with respect to both burn and control sites are -0.92%, and -8.86% with a correlation of 0.83 and 0.81, respectively. Additionally, estimated ETa from a water balance budget analysis and the remotely sensed ETa are cross-validated with a low bias ratio of 5.2%, and a correlation coefficient of 0.7 at the catchment scale. The lowest ETa was observed for developed urban areas and highest for open water bodies. The ETa difference is also demonstrated from two contrasting counties. The results show Garfield County (agricultural) has higher ETa values than Oklahoma County (urban) for all land cover types except open water bodies.

Liu, Wenjuan; Hong, Yang; Khan, Sadiq Ibrahim; Huang, Mingbin; Vieux, Baxter; Caliskan, Semiha; Grout, Trevor

2010-11-01

128

Future Land Use and Concerns About the Idaho National Engineering and Environmental Laboratory: A Survey of Urban Dwellers.  

PubMed

/ We examined environmental concerns and future land-use preferences of 487 people attending the Boise River Festival in Boise, Idaho, USA, about the Idaho National Engineering and Environmental Laboratory (INEEL), owned by the US Department of Energy (DOE). We were particularly interested in the perceptions of urban dwellers living at some distance from the facility, since attitudes and perceptions are usually examined for people living near such facilities. More than 50% of the people were most worried about contamination and about waste storage and transport, another 23% were concerned about human health and accidents and spills, and the rest listed other concerns such as jobs and the economy or education. When given a list of possible concerns, accidents and spills, storage of current nuclear materials, and storage of additional nuclear materials were rated the highest. Thus both open-ended and structured questions identified nuclear storage and accidents and spills as the most important concerns, even for people living far from a DOE site. The highest rated future land uses were: National Environmental Research Park, recreation (including hiking, camping, fishing and hunting), and returning the land to the Shoshone-Bannock tribes; the lowest rated future land uses were homes and increased nuclear waste storage. These relative rankings are similar to those obtained for other Idahoans living closer to the site and for people living near the Savannah River Site, another DOE facility in South Carolina. The concern expressed about accidents and spills and waste storage translated into a desire not to see additional waste brought to INEEL and a low rating for using INEEL for building homes.KEY WORDS: Future land use; Perceptions; Recreation; Hazardous waste; Department of Energy; Idaho National Engineering and Environmental Laboratory.http://link.springer-ny.com/link/service/journals/00267/bibs/24n4p532.html

Burger; Roush; Wartenberg; Gochfeld

1999-11-01

129

The Implementation of a Geospatial Information Technology (GIT)-Supported Land Use Change Curriculum with Urban Middle School Learners to Promote Spatial Thinking  

ERIC Educational Resources Information Center

This study investigated whether a geospatial information technology (GIT)-supported science curriculum helped students in an urban middle school understand land use change (LUC) concepts and enhanced their spatial thinking. Five 8th grade earth and space science classes in an urban middle school consisting of three different ability level tracks…

Bodzin, Alec M.

2011-01-01

130

SEDIMENT SOURCES IN AN URBANIZING, MIXED LAND-USE WATERSHED. (R825284)  

EPA Science Inventory

Abstract The Issaquah Creek watershed is a rapidly urbanizing watershed of 144 km2 in western Washington, where sediment aggradation of the main channel and delivery of fine sediment into a large downstream lake have raised increasingly frequent concern...

131

Analysis of Land Use Change and Urbanization in the Kucukcekmece Water Basin (Istanbul, Turkey) with Temporal Satellite Data using Remote Sensing and GIS  

PubMed Central

Accurate and timely information about land use and land cover (LULC) and its changes in urban areas are crucial for urban land management decision-making, ecosystem monitoring and urban planning. Also, monitoring and representation of urban sprawl and its effects on the LULC patterns and hydrological processes of an urbanized watershed is an essential part of water resource planning and management. This paper presents an image analysis study using multi temporal digital satellite imagery of LULC and changes in the Kucukcekmece Watershed (Metropolitan Istanbul, Turkey) from 1992 to 2006. The Kucukcekmece Basin includes portions of the Kucukcekmece District within the municipality of Istanbul so it faces a dramatic urbanization. An urban monitoring analysis approach was first used to implement a land cover classification. A change detection method controlled with ground truth information was then used to determine changes in land cover. During the study period, the variability and magnitude of hydrological components based on land-use patterns were cumulatively influenced by urban sprawl in the watershed. The proposed approach, which uses a combination of Remote Sensing (RS) and Geographical Information System (GIS) techniques, is an effective tool that enhances land-use monitoring, planning, and management of urbanized watersheds.

Coskun, H. Gonca; Alganci, Ugur; Usta, Gokce

2008-01-01

132

Significance of urban and agricultural land use for biocide and pesticide dynamics in surface waters  

Microsoft Academic Search

Biocides and pesticides are designed to control the occurrence of unwanted organisms. From their point of application, these substances can be mobilized and transported to surface waters posing a threat to the aquatic environment. Historically, agricultural pesticides have received substantially more attention than biocidal compounds from urban use, despite being used in similar quantities.This study aims at improving our understanding

I. K. Wittmer; H.-P. Bader; R. Scheidegger; H. Singer; A. Lück; I. Hanke; C. Carlsson; C. Stamm

2010-01-01

133

Earthworm abundance and nitrogen mineralization rates along an urban-rural land use gradient  

Microsoft Academic Search

Preliminary observations of glaciated regions in North America suggest that forest stands associated with urban areas may support high populations of non-native species of earthworms relative to forests in rural areas. Moreover, the presence of these non-native species of worms may be moderating the effects of pollutant deposition on litter quality, or the decomposability of litter, and subsequently nutrient cycling

David A. Steinberg; Richard V. Pouyat; Robert W. Parmelee; Peter M. Groffman

1997-01-01

134

Project ATLANTA (Atlanta Land use Analysis: Temperature and Air Quality): Use of Remote Sensing and Modeling to Analyze How Urban Land Use Change Affects Meteorology and Air Quality Through Time  

NASA Technical Reports Server (NTRS)

This paper presents an overview of Project ATLANTA (ATlanta Land use ANalysis: Temperature and Air-quality) which is an investigation that seeks to observe, measure, model, and analyze how the rapid growth of the Atlanta, Georgia metropolitan area since the early 1970's has impacted the region's climate and air quality. The primary objectives for this research effort are: (1) To investigate and model the relationships between land cover change in the Atlanta metropolitan, and the development of the urban heat island phenomenon through time; (2) To investigate and model the temporal relationships between Atlanta urban growth and land cover change on air quality; and (3) To model the overall effects of urban development on surface energy budget characteristics across the Atlanta urban landscape through time. Our key goal is to derive a better scientific understanding of how land cover changes associated with urbanization in the Atlanta area, principally in transforming forest lands to urban land covers through time, has, and will, effect local and regional climate, surface energy flux, and air quality characteristics. Allied with this goal is the prospect that the results from this research can be applied by urban planners, environmental managers and other decision-makers, for determining how urbanization has impacted the climate and overall environment of the Atlanta area. Multiscaled remote sensing data, particularly high resolution thermal infrared data, are integral to this study for the analysis of thermal energy fluxes across the Atlanta urban landscape.

Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.

1999-01-01

135

Forest Restoration in Urbanizing Landscapes: Interactions Between Land Uses and Exotic Shrubs  

Microsoft Academic Search

Abstract Preventing,and,controlling,exotic,plants,remains,a key challenge in any ecological restoration, and most efforts are currently,aimed,at local scales. We,combined,local- and,landscape-scale,approaches,to identify,factors,that were,most,closely,associated,with,invasion,of riparian forests by,exotic,shrubs,(Amur,honeysuckle,[Lonicera maackii] and Tatarian honeysuckle [L. tatarica]) in Ohio, U.S.A. Twenty,sites were,selected,in mature,riparian,for- ests along,a rural–urban,gradient,(<1–47% urban,land cover). Within each site, we measured percent cover of Lonicera spp. and native trees and shrubs, percent canopy cover, and facing edge

Kathi L. Borgmann; Amanda D. Rodewald

2005-01-01

136

The influence of urban land use on seed dispersal and wetland invasibility  

Microsoft Academic Search

Urban habitats are generally considered highly invaded by exotic species due to the frequency and extent of disturbance caused\\u000a by human activities and development. Our previous study had demonstrated that forested wetlands within residential areas are\\u000a more extensively invaded than wetlands within industrial–commercial areas. In this study, we investigate whether the structure\\u000a of the forest edge and seed dispersal can

Heather Bowman Cutway; Joan G. Ehrenfeld

2010-01-01

137

Impact of Land Use Intensity on the Species Diversity of Arbuscular Mycorrhizal Fungi in Agroecosystems of Central Europe  

PubMed Central

The impact of land use intensity on the diversity of arbuscular mycorrhizal fungi (AMF) was investigated at eight sites in the “three-country corner” of France, Germany, and Switzerland. Three sites were low-input, species-rich grasslands. Two sites represented low- to moderate-input farming with a 7-year crop rotation, and three sites represented high-input continuous maize monocropping. Representative soil samples were taken, and the AMF spores present were morphologically identified and counted. The same soil samples also served as inocula for “AMF trap cultures” with Plantago lanceolata, Trifolium pratense, and Lolium perenne. These trap cultures were established in pots in a greenhouse, and AMF root colonization and spore formation were monitored over 8 months. For the field samples, the numbers of AMF spores and species were highest in the grasslands, lower in the low- and moderate-input arable lands, and lowest in the lands with intensive continuous maize monocropping. Some AMF species occurred at all sites (“generalists”); most of them were prevalent in the intensively managed arable lands. Many other species, particularly those forming sporocarps, appeared to be specialists for grasslands. Only a few species were specialized on the arable lands with crop rotation, and only one species was restricted to the high-input maize sites. In the trap culture experiment, the rate of root colonization by AMF was highest with inocula from the permanent grasslands and lowest with those from the high-input monocropping sites. In contrast, AMF spore formation was slowest with the former inocula and fastest with the latter inocula. In conclusion, the increased land use intensity was correlated with a decrease in AMF species richness and with a preferential selection of species that colonized roots slowly but formed spores rapidly. PMID:12732553

Oehl, Fritz; Sieverding, Ewald; Ineichen, Kurt; Mäder, Paul; Boller, Thomas; Wiemken, Andres

2003-01-01

138

Urgency for sustainable development in coastal urban areas with reference to weather pattern, land use, and water quality.  

PubMed

Water pollution is one of the most critical problems affecting mankind. Weather pattern and land use of catchment area have significant role in quality of water bodies. Due to climate change, there is frequent variation in weather pattern all over the world. There is also rapid change in land use due to increase in population and urbanization. The study was carried out to analyze the effect of change in weather pattern during the monsoon periods of 2008 and 2012 on water quality of a tropical coastal lake system. The nature and extent of variation in different water quality parameters namely electrical conductivity (EC), magnesium (Mg), sodium (Na), chloride (Cl), sulphate (SO4), turbidity, Secchi disk depth, biochemical oxygen demand (BOD), phosphate (PO4), calcium (Ca), and water temperature as well as the effect of various land use activities in the lake basin on water quality have also been studied. There is significant reduction in precipitation, EC, Mg, Na, Cl, SO4, turbidity, and Secchi disk depths whereas a significant rise in the BOD, PO4, Ca, and water temperature were observed in 2012. This significant reduction in electrical conductivity during 2012 revealed that because of less precipitation, the lake was separated from the sea by the sandbar during most of the monsoon period and thereby interrupted the natural flushing process. This caused the accumulation of organic matter including phosphate and thereby resulting reduction in clarity and chlorophyll-a (algae) in the lake. The unsustainable development activities of Thiruvanathapuram city are mainly responsible for the degradation of water bodies. The lack of maintenance and augmentation activities namely replacement of old pipes and periodical cleaning of pipe lines of the old sewer system in the city results in the bypass of sewage into water bodies. Because of the existence of the old sewerage system, no effort has been taken by the individual establishment/house of the city to provide their own treatment system for sewage and sullage and the untreated wastes are discharged into these old sewer pipes and ultimately the wastes reach the water bodies. In this context, decentralized treatment of sewage, sullage, and garbage by individual houses/establishments/hotels/hospitals is a better option for the developing countries. With the rapid developmental activities, and due to the variation of precipitation due to climate change, it is highly essential to provide proper waste treatment/augmentation facilities in urban lake system because a slight variation in the weather pattern can result in serious implications in the already polluted water bodies. PMID:24415134

Sheela, A M; Letha, J; Swarnalatha, K; Baiju, K V; Sankar, Divya

2014-05-01

139

Monitoring Arid Land Surfaces With Earth Observation Techniques: Examples Of Intense And Extensive Land Uses  

Microsoft Academic Search

In using drylands ecosystems, human societies have adopted various strategies ranging from extensive nomadic pastures to intensive\\u000a irrigated cash crop production. Monitoring the condition and performance of the various systems is essential to ensure their\\u000a sustainability and to suggest and test adaptations to changing conditions (whether climatic or socio-economic). Earth observation\\u000a techniques are providing unique datasets for monitoring the spatial

Richard Escadafal; A. Ghani Chehbouni

140

Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis  

PubMed Central

The benefits of organic farming to biodiversity in agricultural landscapes continue to be hotly debated, emphasizing the importance of precisely quantifying the effect of organic vs. conventional farming. We conducted an updated hierarchical meta-analysis of studies that compared biodiversity under organic and conventional farming methods, measured as species richness. We calculated effect sizes for 184 observations garnered from 94 studies, and for each study, we obtained three standardized measures reflecting land-use intensity. We investigated the stability of effect sizes through time, publication bias due to the ‘file drawer’ problem, and consider whether the current literature is representative of global organic farming patterns. On average, organic farming increased species richness by about 30%. This result has been robust over the last 30 years of published studies and shows no sign of diminishing. Organic farming had a greater effect on biodiversity as the percentage of the landscape consisting of arable fields increased, that is, it is higher in intensively farmed regions. The average effect size and the response to agricultural intensification depend on taxonomic group, functional group and crop type. There is some evidence for publication bias in the literature; however, our results are robust to its impact. Current studies are heavily biased towards northern and western Europe and North America, while other regions with large areas of organic farming remain poorly investigated. Synthesis and applications. Our analysis affirms that organic farming has large positive effects on biodiversity compared with conventional farming, but that the effect size varies with the organism group and crop studied, and is greater in landscapes with higher land-use intensity. Decisions about where to site organic farms to maximize biodiversity will, however, depend on the costs as well as the potential benefits. Current studies have been heavily biased towards agricultural systems in the developed world. We recommend that future studies pay greater attention to other regions, in particular, areas with tropical, subtropical and Mediterranean climates, in which very few studies have been conducted. PMID:25653457

Tuck, Sean L; Winqvist, Camilla; Mota, Flávia; Ahnström, Johan; Turnbull, Lindsay A; Bengtsson, Janne

2014-01-01

141

Analysis of Land Use/Land Cover Changes Using Remote Sensing Data and GIS at an Urban Area, Tirupati, India  

PubMed Central

Land use/land cover (LU/LC) changes were determined in an urban area, Tirupati, from 1976 to 2003 by using Geographical Information Systems (GISs) and remote sensing technology. These studies were employed by using the Survey of India topographic map 57 O/6 and the remote sensing data of LISS III and PAN of IRS ID of 2003. The study area was classified into eight categories on the basis of field study, geographical conditions, and remote sensing data. The comparison of LU/LC in 1976 and 2003 derived from toposheet and satellite imagery interpretation indicates that there is a significant increase in built-up area, open forest, plantation, and other lands. It is also noted that substantial amount of agriculture land, water spread area, and dense forest area vanished during the period of study which may be due to rapid urbanization of the study area. No mining activities were found in the study area in 1976, but a small addition of mining land was found in 2003. PMID:23781152

Mallupattu, Praveen Kumar; Sreenivasula Reddy, Jayarama Reddy

2013-01-01

142

Labor efficiency and intensity of land use in rice production: an example from Kalimantan  

SciTech Connect

The ''Boserup hypothesis'' contends that land-intensive systems of agriculture will be adopted only when high population density precludes the use of land-extensive methods. In the Kerayan District of East Kalimantan (Indonesia) the Lun Dayeh practice permanent-field rice cultivation despite very low human densities. An examination of the relative labor efficiencies of shifting and permanent-field agriculture in the Kerayan, as well as of local environmental and historical variables, explains why this ''anomalous'' situation exists. It is argued that since relative success in production of rice by shifting- and permanent-field irrigated methods depends on many natural and social conditions other than levels of population density, the ''environment-free'' Boserup hypothesis cannot adequately explain or predict the occurrence of particular forms of rice agriculture.

Padoch, C.

1986-09-01

143

Monitoring urban expansion and land use/land cover changes of Shanghai metropolitan area during the transitional economy (1979-2009) in China.  

PubMed

This study explored the spatio-temporal dynamics and evolution of land use/cover changes and urban expansion in Shanghai metropolitan area, China, during the transitional economy period (1979-2009) using multi-temporal satellite images and geographic information systems (GIS). A maximum likelihood supervised classification algorithm was employed to extract information from four landsat images, with the post-classification change detection technique and GIS-based spatial analysis methods used to detect land-use and land-cover (LULC) changes. The overall Kappa indices of land use/cover change maps ranged from 0.79 to 0.89. Results indicated that urbanization has accelerated at an unprecedented scale and rate during the study period, leading to a considerable reduction in the area of farmland and green land. Findings further revealed that water bodies and bare land increased, obviously due to large-scale coastal development after 2000. The direction of urban expansion was along a north-south axis from 1979 to 2000, but after 2000 this growth changed to spread from both the existing urban area and along transport routes in all directions. Urban expansion and subsequent LULC changes in Shanghai have largely been driven by policy reform, population growth, and economic development. Rapid urban expansion through clearing of vegetation has led to a wide range of eco-environmental degradation. PMID:20824336

Yin, Jie; Yin, Zhane; Zhong, Haidong; Xu, Shiyuan; Hu, Xiaomeng; Wang, Jun; Wu, Jianping

2011-06-01

144

Changes in Land Use and Soils  

NASA Astrophysics Data System (ADS)

Land use change is one of the main drivers of many processes of environmental change, as it influences basic resources of the landscape including the soil. Poor land management can rapidly deteriorate vast amounts of land, which frequently becomes a major threat to rural subsistence in many developing countries. Conversely, impact of land use changes on soil also can occur so unnoticed that land managers hardly contemplate initiating ameliorative measures. Subsequently, changes in land use affect soil properties and processes at a variety of scales. For example, forest conversion to cropland and reduction of tillage intensity can prevail as main changes of land use in some regions, whereas abandon of agricultural fields can be a major concern in other regions. In non-agricultural context, changes of land use of major interest are driven by urbanization, landscaping, engineering, mining, contamination, etc. Disturbed soils are not necessarily lost to agriculture, forestry, amenity or other alternative uses. Knowledge and understanding of soil properties and processes ensures remediation or reclamation of disturbed or damaged soils. Therefore, we focus mainly on how soil properties and processes can be managed and controlled to mitigate the impact of changes in land use. Moreover, land use changes occur at different spatial and temporal scales. Currently, the most promising approaches to evaluate the complex interaction between land use and soil heterogeneity at various scales apply advanced statistical and mathematical methods.

Paz-González, A.; Tarquis, A.; de Abreu, C. A.; Olechko, K.; Sáa, A.; Gobin, A.; Gómez, J. A.; Kutilek, M.

2012-04-01

145

Effects of urban land-use change on streamflow and water quality in Oakland County, Michigan, 1970-2003, as inferred from urban gradient and temporal analysis  

USGS Publications Warehouse

Various adverse hydrologic effects on streams have been attributed to urban development and expanded impervious surface area, including increased high flows, decreased low flows, increased variability (commonly referred to as flashiness), nutrient enrichment, and increased dissolved solids concentrations. These effects are often observed through the use of urban-gradient studies, which compare hydrologic characteristics among watersheds with different levels of development. This technique is frequently applied when comparable prior data are not available for the watersheds of interest. During 1966 - 1970, and again during 2001 - 2003, the U.S. Geological Survey collected a series of low-flow water-chemistry samples. Streamflow-gaging stations were operated throughout the period from 1966-2003 as part of ongoing monitoring operations. This study compares these two water-quality data sets; tests the streamflow data for trends in high flows, low flows, and flashiness; and correlates 2000 land use with water-quality and streamflow data collected during the 2001 - 2003 study. Despite substantial change in land use during 1980 - 2000, with urban land covers replacing open space, forest, and agriculture, little evidence is found in the time-series data of alteration of the daily streamflow characteristics or nutrient enrichment in the study watersheds. However, a distinct shift is observable in chloride concentrations. Strong positive correlations exist across the urban gradient between development and increased peak flows as well as between development and increased flashiness. Correlations of water-quality data to development metrics show strong positive correlations with increased dissolved solids and salt content, as well as increased concentrations of fecal indicator bacteria (Eschericia coli). This apparent contradiction may be caused by the differences in the changes measured in each analysis. The change-through-time approach describes change from a fixed starting point of approximately 1970; the gradient approach describes the cumulative effect of all change up to approximately 2000. These findings indicate that although urbanization in Oakland County results in most of the effects observed in the literature, as evidenced in the gradient approach, relatively few of the anticipated effects have been observed during the past three decades. This relative stability despite rapid land-cover change may be related to efforts to mitigate the effects of development and a general decrease in the density of new residential development. It may also be related to external factors such as climate variability and reduced atmospheric deposition of specific chemicals.

Aichele, Stephen S.

2005-01-01

146

Impact of urbanization and land-use/land-cover change on diurnal temperature range: A case study of tropical urban airshed of India using remote sensing data.  

PubMed

Diurnal temperature range (DTR) is an important climate change index. Its knowledge is important to a range of issues and themes in earth sciences central to urban climatology and human-environment interactions. The present study investigates the effect of urbanization on the land surface temperature (LST) based DTR. This study presents spatial and temporal variations of satellite based estimates of annually averaged DTR over megacity Delhi, the capital of India, which are shown for a period of 11years during 2001-2011 and analyzes this with regard to its land-use/land-cover (LU/LC) changes and population growth. Delhi which witnessed massive urbanization in terms of population growth (decadal growth rate of Delhi during 2001-2011 was 20.96%) and major transformations in the LU/LC (built-up area crossed more than 53%) are experiencing severity in its micro and macroclimate. There was a consistent increase in the areas experiencing DTR below 11°C which typically resembled the 'urban class' viz. from 26.4% in the year 2001 to 65.3% in the year 2011 and subsequently the DTR of entire Delhi which was 12.48°C in the year 2001 gradually reduced to 10.34°C in the year 2011, exhibiting a significant decreasing trend. Rapidly urbanizing areas like Rohini, Dwarka, Vasant Kunj, Kaushambi, Khanjhawala Village, IIT, Safdarjung Airport, etc. registered a significant decreasing trend in the DTR. In the background of the converging DTR, which was primarily due to the increase in the minimum temperatures, a grim situation in terms of potentially net increase in the heat-related mortality rate especially for the young children below 15years of age is envisaged for Delhi. Considering the earlier findings that the level of risk of death remained the highest and longest for Delhi, in comparison to megacities like Sao Paulo and London, the study calls for strong and urgent heat island mitigation measures. PMID:25437763

Mohan, Manju; Kandya, Anurag

2015-02-15

147

Remote Sensing of Urban Land Cover/Land Use Change, Surface Thermal Responses, and Potential Meteorological and Climate Change Impacts  

NASA Astrophysics Data System (ADS)

City growth influences the development of the urban heat island (UHI), but the effect that local meteorology has on the UHI is less well known. This paper presents some preliminary findings from a study that uses multitemporal Landsat TM and ASTER data to evaluate land cover/land use change (LULCC) over the NASA Marshall Space Flight Center (MFSC) and its Huntsville, AL metropolitan area. Landsat NLCD data for 1992 and 2001 have been used to evaluate LULCC for MSFC and the surrounding urban area. Land surface temperature (LST) and emissivity derived from NLCD data have also been analyzed to assess changes in these parameters in relation to LULCC. Additionally, LULCC, LST, and emissivity have been identified from ASTER data from 2001 and 2011 to provide a comparison with the 2001 NLCD and as a measure of current conditions within the study area. As anticipated, the multi-temporal NLCD and ASTER data show that significant changes have occurred in land covers, LST, and emissivity within and around MSFC. The patterns and arrangement of these changes, however, is significant because the juxtaposition of urban land covers within and outside of MSFC provides insight on what impacts at a local to regional scale, the inter-linkage of these changes potentially have on meteorology. To further analyze these interactions between LULCC, LST, and emissivity with the lower atmosphere, a network of eleven weather stations has been established across the MSFC property. These weather stations provide data at a 10 minute interval, and these data are uplinked for use by MSFC facilities operations and the National Weather Service. The weather data are also integrated within a larger network of meteorological stations across north Alabama. Given that the MSFC weather stations will operate for an extended period of time, they can be used to evaluate how the building of new structures, and changes in roadways, and green spaces as identified in the MSFC master plan for the future, will potentially affect land cover LSTs across the Center. Moreover, the weather stations will also provide baseline data for developing a better understanding of how localized weather factors, such as extreme rainfall and heat events, affect micrometeorology. These data can also be used to model the interrelationships between LSTs and meteorology on a longer term basis to help evaluate how changes in these parameters can be quantified from satellite data collected in the future. In turn, the overall integration of multi-temporal meteorological information with LULCC, and LST data for MSFC proper and the surrounding Huntsville urbanized area can provide a perspective on how urban land surface types affect the meteorology in the boundary layer and ultimately, the UHI. Additionally, data such as this can be used as a foundation for modeling how climate change will potentially impact local and regional meteorology and conversely, how urban LULCC can or will influence changes on climate over the north Alabama area.

Quattrochi, D. A.; Jedlovec, G.; Meyer, P. J.

2011-12-01

148

Simulation of Urban Heat Island Mitigation Strategies in Atlanta, GA Using High-Resolution Land Use/Land Cover Data Set to Enhance Meteorological Modeling  

NASA Technical Reports Server (NTRS)

The specification of land use/land cover (LULC) and associated land surface parameters in meteorological models at all scales has a major influence on modeled surface energy fluxes and boundary layer states. In urban areas, accurate representation of the land surface may be even more important than in undeveloped regions due to the large heterogeneity within the urban area. Deficiencies in the characterization of the land surface related to the spatial or temporal resolution of the data, the number of LULC classes defined, the accuracy with which they are defined, or the degree of heterogeneity of the land surface properties within each class may degrade the performance of the models. In this study, an experiment was conducted to test a new high-resolution LULC data set for meteorological simulations for the Atlanta, Georgia metropolitan area using a mesoscale meteorological model and to evaluate the effects of urban heat island (UHI) mitigation strategies on modeled meteorology for 2030. Simulation results showed that use of the new LULC data set reduced a major deficiency of the land use data used previously, specifically the poor representation of urban and suburban land use. Performance of the meteorological model improved substantially, with the overall daytime cold bias reduced by over 30%. UHI mitigation strategies were projected to offset much of a predicted urban warming between 2000 and 2030. In fact, for the urban core, the cooling due to UHI mitigation strategies was slightly greater than the warming associated with urbanization over this period. For the larger metropolitan area, cooling only partially offset the projected warming trend.

Crosson, William L.; Dembek, Scott; Estes, Maurice G., Jr.; Limaye, Ashutosh S.; Lapenta, William; Quattrochi, Dale A.; Johnson, Hoyt; Khan, Maudood

2006-01-01

149

Classification and extraction of the urban land-use information from high-resolution image based on the multi-features of the objects  

NASA Astrophysics Data System (ADS)

The land in an urban is the basic space for urban dwellers. It provides places for various economic activities and is the economic radiation source that affects the development of the surrounding areas. With the fast development of industrialization and urbanization, the contradiction in land-use becomes tenser, which makes the urban administrators and decision-makers seek modern methods and technology to provide information support for the urban development. Recently, with the fast development of the high-resolution sensor technology, people can obtain lots of data, which can create the advantage for people to study sustainable development of urban land-use and provide a large amount of first-hand data. However, these data are not information. They are only information sources and are mixture of various "information" and "noise". Only through further process, analysis and information extraction of the data, can the remote sensing data and image obtained through remote sensing technology be converted into useful information from which valuable knowledge can be extracted to afford guideline for scientific decision-making. Therefore, this paper extracts the urban land-use information of high-resolution image by using the multi-features information of high-resolution image objects, as well as adopts Object-Oriented image analysis approaches and multi-scale image segmentation technology, and sets up the classifying and extracting model based on the multi-features of the image objects, in order to contribute to information for reasonable plan and effective management. It is obvious that this new image analysis approach offers a satisfying solution to extract information quickly and efficiently.

Kong, Chunfang; Xu, Kai; Wu, Chonglong; Liu, Gang

2005-10-01

150

Physical, Chemical, and Biological Methods and Data from the Urban Land-Use-Gradient Study, Des Plaines and Fox River Basins, Illinois, 1999-2001  

USGS Publications Warehouse

Physical, chemical, and biological data were collected at 46 sites in the Fox and Des Plaines River Basins as part of the upper Illinois River Basin study of the U.S. Geological Survey?s National Water-Quality Assessment Program. The data, collected from 1999 to 2001, will be used to determine the effects of urbanization on streams in the Chicago, Illinois, metropolitan area. To examine the possible effects of urbanization on stream-water quality, the sampling sites were selected to represent a gradient of land use changing from agriculture into urban. Urban land use for the selected sites ranged from less than 1 percent urban to 92 percent urban. Data-collection methods are presented in the text portion of this report. Physical characteristics of the stream that were collected include descriptive and qualitative habitat and geomorphic measures. Water samples were analyzed for nutrients (nitrogen and phosphorus), 11 major ions, 46 wastewater indicators, pH, and specific conductance. Aquatic communities were sampled to identify and quantify populations of selected algae, benthic macroinvertebrates, and fish. There were 72 unique fish species collected at all of the sites. The number of benthic macroinvertebrate taxa collected at all the sites ranged from 15 to 48. The data and the associated data documentation are presented on a CD-ROM included with this report.

Adolphson, Debbie L.; Arnold, Terri L.; Fitzpatrick, Faith A.; Harris, Mitchell A.; Richards, Kevin D.; Scudder, Barbara C.; Stewart, Jana S.

2001-01-01

151

Direct and indirect effects of land use on floral resources and flower-visiting insects across an urban landscape  

E-print Network

EV-1 Direct and indirect effects of land use on floral resources and flower-visiting insects across the distribution of floral resources and flower-visiting insects across a variety of land uses in New York City. We and insects in both settings. Abundance and taxonomic richness of flower-visiting insects was significantly

Illinois at Chicago, University of

152

Exploring the effects of urban and agricultural land use on surface water chemistry, across a regional watershed, using multivariate statistics  

Microsoft Academic Search

In this paper, the influence of anthropogenic activity on surface water chemistry is investigated. Base flow samples from dominant land use streams in the Muskegon River Watershed, Michigan, USA, were analyzed for nutrients, major ions, and trace elements. Principal component and hierarchical cluster analysis were used to investigate the processes controlling the effects of land use on the biogeochemistry of

M. L. Fitzpatrick; D. T. Long; B. C. Pijanowski

2007-01-01

153

Modeling concentration patterns of agricultural and urban micropollutants in surface waters in catchment of mixed land use  

NASA Astrophysics Data System (ADS)

Organic micropollutants detected in surface waters can originate from agricultural and urban sources. Depending on the use of the compounds, the temporal loss patterns vary substantially. Therefore models that simulate water quality in watersheds of mixed land use have to account for all relevant sources. We present here simulation results of a transport model that describes the dynamic of several biocidal compounds as well as the behaviour of human pharmaceuticals. The model consists of the sub-model Rexpo simulating the transfer of the compounds from the point of application to the stream in semi-lumped manner. The river sub-model, which is programmed in the Aquasim software, describes the fate of the compounds in the stream. Both sub-models are process-based. The Rexpo sub-model was calibrated at the scale of a small catchment of 25 km2, which is inhabited by about 12'000 people. Based on the resulting model parameters the loss dynamics of two herbicides (atrazine, isoproturon) and a compound of mixed urban and agricultural use (diuron) were predicted for two nested catchment of 212 and 1696 km2, respectively. The model output was compared to observed time-series of concentrations and loads obtained for the entire year 2009. Additionally, the fate of two pharmaceuticals with constant input (carbamazepine, diclofenac) was simulated for improving the understanding of possible degradation processes. The simulated loads and concentrations of the biocidal compounds differed by a factor of 2 to 3 from the observations. In general, the seasonal patterns were well captured by the model. However, a detailed analysis of the seasonality revealed substantial input uncertainty for the application of the compounds. The model results also demonstrated that for the dynamics of rain-driven losses of biocidal compounds the semi-lumped approach of the Rexpo sub-model was sufficient. Only for simulating the photolytic degradation of diclofenac in the stream the detailed representation of the routing in the stream was essential. Overall, the study demonstrated that the simulation of micropollutants at the watershed scale can be strongly hampered by input uncertainty regarding the use of the chemicals. Under such conditions the level of process-representation in the Rexpo sub-models is superfluous. For practical applications, one should address the question how to simply the approach while still maintaining the essential parts.

Stamm, C.; Scheidegger, R.; Bader, H. P.

2012-04-01

154

A study of the utilization of ERTS-1 data from the Wabash River Basin. [crop identification, water resources, urban land use, soil mapping, and atmospheric modeling  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. The most significant results were obtained in the water resources research, urban land use mapping, and soil association mapping projects. ERTS-1 data was used to classify water bodies to determine acreages and high agreement was obtained with USGS figures. Quantitative evaluation was achieved of urban land use classifications from ERTS-1 data and an overall test accuracy of 90.3% was observed. ERTS-1 data classifications of soil test sites were compared with soil association maps scaled to match the computer produced map and good agreement was observed. In some cases the ERTS-1 results proved to be more accurate than the soil association map.

Landgrebe, D. A. (principal investigator)

1974-01-01

155

Project ATLANTA (ATlanta Land-use ANalysis: Temperature and Air quality): A Study of how the Urban Landscape Affects Meteorology and Air Quality Through Time  

NASA Technical Reports Server (NTRS)

It is our intent through this investigation to help facilitate measures that can be Project ATLANTA (ATlanta Land-use ANalysis: applied to mitigate climatological or air quality Temperature and Air-quality) is a NASA Earth degradation, or to design alternate measures to sustain Observing System (EOS) Interdisciplinary Science or improve the overall urban environment in the future. investigation that seeks to observe, measure, model, and analyze how the rapid growth of the Atlanta. The primary objectives for this research effort are: 1) To In the last half of the 20th century, Atlanta, investigate and model the relationship between Atlanta Georgia has risen as the premier commercial, urban growth, land cover change, and the development industrial, and transportation urban area of the of the urban heat island phenomenon through time at southeastern United States. The rapid growth of the nested spatial scales from local to regional; 2) To Atlanta area, particularly within the last 25 years, has investigate and model the relationship between Atlanta made Atlanta one of the fastest growing metropolitan urban growth and land cover change on air quality areas in the United States. The population of the through time at nested spatial scales from local to Atlanta metropolitan area increased 27% between 1970 regional; and 3) To model the overall effects of urban and 1980, and 33% between 1980-1990 (Research development on surface energy budget characteristics Atlanta, Inc., 1993). Concomitant with this high rate of across the Atlanta urban landscape through time at population growth, has been an explosive growth in nested spatial scales from local to regional. Our key retail, industrial, commercial, and transportation goal is to derive a better scientific understanding of how services within the Atlanta region. This has resulted in land cover changes associated with urbanization in the tremendous land cover change dynamics within the Atlanta area, principally in transforming forest lands to metropolitan region, wherein urbanization has urban land covers through time, has, and will, effect consumed vast acreas of land adjacent to the city local and regional climate, surface energy flux, and air proper and has pushed the rural/urban fringe farther quality characteristics. Allied with this goal is the and farther away from the original Atlanta urban core. prospect that the results from this research can be An enormous transition of land from forest and applied by urban planners, environmental managers agriculture to urban land uses has occurred in the and other decision-makers, for determining how Atlanta area in the last 25 years, along with subsequent urbanization has impacted the climate and overall

Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G.; Lo, C. P.; Kidder, Stanley Q.; Hafner, Jan; Taha, Haider; Bornstein, Robert D.; Gillies, Robert R.; Gallo, Kevin P.

1998-01-01

156

GIS and remote sensing as tools for the simulation of urban land-use CLA UDIA MARIA DE ALMEIDA*{, ANTONIO MIGUEL VIEIRA  

E-print Network

@ltid.inpe.br International Journal of Remote Sensing Vol. 26, No. 4, 20 February 2005, 759­774 International Journal of Remote Sensing ISSN 0143-1161 print/ISSN 1366-5901 online # 2005 Taylor & Francis Ltd http://www.tandf.co.uk/journalsGIS and remote sensing as tools for the simulation of urban land-use change CLA´ UDIA MARIA DE

Camara, Gilberto

157

Change in Urban Land Use and Associated Attributes in the Upper San Francisco Estuary, 1990-2006  

E-print Network

upper San Francisco Estuary. Ecological Applications 20(5):estuaries, and river basins where knowledge of the relationships between land use and ecologi-Estuary, California, USA” Working Group supported by the National Center for Ecological

Stoms, David M.

2010-01-01

158

Remote Observation of Phenological Variables across Aridity and Land Use Intensity Gradients in the Kalahari: Implications for Future Productivity and Dust Emission  

NASA Astrophysics Data System (ADS)

Aired lands globally are sensitive to land use and climate change. One of the premier locations to observe the effects of these is the Kalahari Transect, with its precipitation gradient on consistent sandy soils in Southern Africa. Climate projections for the region suggest changing aridity and therefore the Kalahari is an excellent proxy for studying the effects of climate change and land use in this and other savanna systems. In this region, in situ data is scarce and remote sensing is an effective tool for understanding the response of vegetation to climate and land use. Here, we use the enhanced vegetation index (EVI) to investigate changes in phenological variables across aridity and land use gradients throughout the Kalahari during the MODIS era. We show that the timing and amount of greening is clearly sensitive to both rainfall and grazing intensity. The implication of these differences under various land use and climate change scenarios will be discussed, both in terms of ecological productivity and function. In particular, we investigate the impact of these changes on dust production and export from the sandy soils of the region.

McNerney, L.; Okin, G. S.; D'Odorico, P.

2013-12-01

159

Regional land use studies  

NASA Technical Reports Server (NTRS)

Remote sensing technology and data from instrumented satellites and high altitude aircraft are proposed for mapping land use on a current national basis, for monitoring changes and trends, and for creating statistical models which can be manipulated to demonstrate the probable effects of proposed land use and of environmental changes over large areas. Both Apollo spacecraft and aircraft photography were used; the spacecraft pictures delineated the cropland and urban boundaries more clearly. A computer model is also proposed for statistical analysis and for printing out updated maps automatically; this model will include a data bank which can be updated rapidly with changes detected by the computer.

Place, J. L.

1970-01-01

160

Monitoring land use/land cover transformations from 1945 to 2007 in two peri-urban mountainous areas of Athens metropolitan area, Greece.  

PubMed

The aims of this study were to map and analyze land use/land cover transitions and landscape changes in the Parnitha and Penteli mountains, which surround the Athens metropolitan area of Attica, Greece over a period of 62 years. In order to quantify the changes between land categories through time, we computed the transition matrices for three distinct periods (1945-1960, 1960-1996, and 1996-2007), on the basis of available aerial photographs used to create multi-temporal maps. We identified systematic and stationary transitions with multi-level intensity analysis. Forest areas in Parnitha remained the dominant class of land cover throughout the 62 years studied, while transitional woodlands and shrublands were the main classes involved in LULC transitions. Conversely, in Penteli, transitional woodlands, along with shrublands, dominated the study site. The annual rate of change was faster in the first and third time intervals, compared to the second (1960-1996) time interval, in both study areas. The category level analysis results indicated that in both sites annual crops avoided to gain while discontinuous urban fabric avoided to lose areas. At the transition level of analysis, similarities as well as distinct differences existed between the two areas. In both sites the gaining pattern of permanent crops with respect to annual crops and the gain of forest with respect to transitional woodland/shrublands were stationary across the three time intervals. Overall, we identified more systematic transitions and stationary processes in Penteli. We discussed these LULC changes and associated them with human interference (activity) and other major socio-economic developments that were simultaneously occurring in the area. The different patterns of change of the areas, despite their geographical proximity, throughout the period of analysis imply that site-specific studies are needed in order to comprehensively assess the driving forces and develop models of landscape transformation in Mediterranean areas. PMID:24858224

Mallinis, Giorgos; Koutsias, Nikos; Arianoutsou, Margarita

2014-08-15

161

Analysis of impacts of urban land use and land cover on air quality in the Las Vegas region using remote sensing information and ground observations  

USGS Publications Warehouse

Urban development in the Las Vegas Valley of Nevada (USA) has expanded rapidly over the past 50 years. The air quality in the valley has suffered owing to increases from anthropogenic emissions of carbon monoxide, ozone and criteria pollutants of particular matter. Air quality observations show that pollutant concentrations have apparent heterogeneous characteristics in the urban area. Quantified urban land use and land cover information derived from satellite remote sensing data indicate an apparent local influence of urban development density on air pollutant distributions. Multi-year observational data collected by a network of local air monitoring stations specify that ozone maximums develop in the May and June timeframe, whereas minimum concentrations generally occur from November to February. The fine particulate matter maximum occurs in July. Ozone concentrations are highest on the west and northwest sides of the valley. Night-time ozone reduction contributes to the heterogeneous features of the spatial distribution for average ozone levels in the Las Vegas metropolitan area. Decreased ozone levels associated with increased urban development density suggest that the highest ozone and lowest nitrogen oxides concentrations are associated with medium to low density urban development in Las Vegas.

Xian, G.

2007-01-01

162

Assessing the effects of land use spatial structure on urban heat islands using HJ-1B remote sensing imagery in Wuhan, China  

NASA Astrophysics Data System (ADS)

Urban heat islands (UHIs) have attracted attention around the world because they profoundly affect biological diversity and human life. Assessing the effects of the spatial structure of land use on UHIs is essential to better understanding and improving the ecological consequences of urbanization. This paper presents the radius fractal dimension to quantify the spatial variation of different land use types around the hot centers. By integrating remote sensing images from the newly launched HJ-1B satellite system, vegetation indexes, landscape metrics and fractal dimension, the effects of land use patterns on the urban thermal environment in Wuhan were comprehensively explored. The vegetation indexes and landscape metrics of the HJ-1B and other remote sensing satellites were compared and analyzed to validate the performance of the HJ-1B. The results have showed that land surface temperature (LST) is negatively related to only positive normalized difference vegetation index (NDVI) but to Fv across the entire range of values, which indicates that fractional vegetation (Fv) is an appropriate predictor of LST more than NDVI in forest areas. Furthermore, the mean LST is highly correlated with four class-based metrics and three landscape-based metrics, which suggests that the landscape composition and the spatial configuration both influence UHIs. All of them demonstrate that the HJ-1B satellite has a comparable capacity for UHI studies as other commonly used remote sensing satellites. The results of the fractal analysis show that the density of built-up areas sharply decreases from the hot centers to the edges of these areas, while the densities of water, forest and cropland increase. These relationships reveal that water, like forest and cropland, has a significant effect in mitigating UHIs in Wuhan due to its large spatial extent and homogeneous spatial distribution. These findings not only confirm the applicability and effectiveness of the HJ-1B satellite system for studying UHIs but also reveal the impacts of the spatial structure of land use on UHIs, which is helpful for improving the planning and management of the urban environment.

Wu, Hao; Ye, Lu-Ping; Shi, Wen-Zhong; Clarke, Keith C.

2014-10-01

163

Trends in urbanization and patterns of land use in the Asian mega cities Jakarta, Bangkok, and Metro Manila  

Microsoft Academic Search

Asian mega cities have experienced rapid population growth and continue to grow. Urbanization in those areas is proceeding differently from the patterns of city growth experienced in Western countries. Understanding the characteristics of Asian urbanization will be indispensable for the establishment of a local landscape planning system. In this study, we used the Clark linear exponential model and the Newling

Akinobu Murakami; Alinda Medrial Zain; Kazuhiko Takeuchi; Atsushi Tsunekawa; Shigehiro Yokota

2005-01-01

164

The impact of land use — land cover changes due to urbanization on surface microclimate and hydrology: a satellite perspective  

Microsoft Academic Search

Vegetation cover, surface moisture availability (wetness) and radiant surface temperature constitute microclimatic variables derivable from multi-spectral satellite imagery. In addition, fraction impervious surface cover and urban-induced surface runoff (RO) are obtainable from such imagery when it is combined with a conventional image classification. Using AVHRR and Landsat TM data, we illustrate how these parameters respond to urbanization with a case

Toby N. Carlson; S. Traci Arthur

2000-01-01

165

BusRapidTransitandLandUse Bus Transit and Land Use  

E-print Network

BusRapidTransitandLandUse 21 Bus Transit and Land Use: Illuminating the Interaction Andy Johnson transit in urban areas has proven to be a difficult task indeed. Recent research on the transportation­land use connection has suggested that transit use can be increased through transit-friendly land use

Levinson, David M.

166

The Land Use and Land Cover Dichotomy: A Comparison of Two Land Classification Systems in Support of Urban Earth Science Applications  

NASA Technical Reports Server (NTRS)

One is likely to read the terms 'land use' and 'land cover' in the same sentence, yet these concepts have different origins and different applications. Land cover is typically analyzed by earth scientists working with remotely sensed images. Land use is typically studied by urban planners who must prescribe solutions that could prevent future problems. This apparent dichotomy has led to different classification systems for land-based data. The works of earth scientists and urban planning practitioners are beginning to come together in the field of spatial analysis and in their common use of new spatial analysis technology. In this context, the technology can stimulate a common 'language' that allows a broader sharing of ideas. The increasing amount of land use and land cover change challenges the various efforts to classify in ways that are efficient, effective, and agreeable to all groups of users. If land cover and land uses can be identified by remote methods using aerial photography and satellites, then these ways are more efficient than field surveys of the same area. New technology, such as high-resolution satellite sensors, and new methods, such as more refined algorithms for image interpretation, are providing refined data to better identify the actual cover and apparent use of land, thus effectiveness is improved. However, the closer together and the more vertical the land uses are, the more difficult the task of identification is, and the greater is the need to supplement remotely sensed data with field study (in situ). Thus, a number of land classification methods were developed in order to organize the greatly expanding volume of data on land characteristics in ways useful to different groups. This paper distinguishes two land based classification systems, one developed primarily for remotely sensed data, and the other, a more comprehensive system requiring in situ collection methods. The intent is to look at how the two systems developed and how they can work together so that land based information can be shared among different users and compared over time.

McAllister, William K.

2003-01-01

167

Identification of the relationship between economic and land use characteristics and urban mobility at the macroscopic level in Texas urban areas  

E-print Network

. Some authors postulate that the link between transportation and land use is weak. The proposition that travel is a derived demand underlies most policies intended to reduce vehicle travel and traffic congestion (Mokhtarian & Solomon, 1999). The jobs...

Schrank, David Lynn

2004-11-15

168

Resurrection of the Bombay trans-harbour link project by using Wheaton's monocentric models of urban land use  

E-print Network

BOMBAY TRANS-HARBOUR LINK PROJECT: A possible solution to Bombay's seemingly unsurmountable social problems. The primary idea behind this thesis is to present a new technique for the appraisal of large scale urban ...

Bhave, Shubhada

1987-01-01

169

SMART GROWTH LAND USE PLANNING FOR A COMMUNITY AT THE RURAL URBAN INTERFACE UTILIZING STRUCTURED PUBLIC INVOLVEMENT  

EPA Science Inventory

A. Simpson County, KY is facing suburban growth pressure like many communities across the country at the rural urban interface. This presents opportunities and challenges to maintain community identity, build economic diversity, protect environmental resources, and imp...

170

Modeling urban growth and land use/land cover change in the Houston Metropolitan Area from 2002 - 2030  

E-print Network

spatially explicit cellular automata model, to simulate future (2002-2030) urban growth in the Houston metropolitan area, one of the fastest growing metropolises in the United States during the past decades. The model is calibrated with historical data...

Oguz, Hakan

2005-08-29

171

A two-sector model of land use and deforestation: Funding urban development with a tax on urban and rural employment  

SciTech Connect

We model a small country with an urban manufacturing sector and a rural agricultural sector. Government taxes rural and urban employment to finance urban infrastructure which contributes to urban production. The manufacturing wage is fixed, leading to urban unemployment. Expansion of cultivated area involves deforestation at frontiers. An increment to urban infrastructure may draw resources into the city but a large enough addition to infrastructure may cause the tax rate to rise by more than urban labor productivity, which would exacerbate frontier deforestation. Improvement of rural transportation raises rural wages, reduces the urban unemployment rate, and extends the area under cultivation, causing deforestation; it also reduces the employment tax rate, which permits expansion of fixed-wage urban manufacturing. Such a wide, sectoral distribution of benefits may help explain the popularity of such policies despite their damage to frontier forest resources.

Jones, D.W.; O'Neill, R.V.

1992-07-17

172

Land Use Planning  

NASA Technical Reports Server (NTRS)

Computer technology, aerial photography and space imagery are being combined in a NASA community services program designed to help solve land use and natural resource planning problems. As urban areas grow, so grows the need for comprehensive, up-to-date information on which to base intelligent decisions regarding land use. State and local planners need information such as the nature of urban change, where the changes are occurring, how they affect public safety, transportation, the economy, tax assessment, sewer systems, water quality, flood hazard, noise impact and a great variety of other considerations. Most importantly they need continually updated maps. Preparing timely maps, gathering the essential data and maintaining it in orderly fashion are becoming matters of increasing difficulty. The NASA project, which has nationwide potential for improving efficiency in the planning process, is a pilot program focused on Tacoma, Washington and surrounding Pierce County. Its key element, developed by Jet Propulsion Laboratory (JPL), is a computerized Land Use Management Information System (LUMIS).

1978-01-01

173

Estimating material and energy intensities of urban areas  

E-print Network

The objective of this thesis is to develop methods to estimate, analyze and visualize the resource intensity of urban areas. Understanding the resource consumption of the built environment is particularly relevant in cities ...

Quinn, David James, Ph. D. Massachusetts Institute of Technology

2012-01-01

174

36 CFR 910.16 - Land use.  

Code of Federal Regulations, 2010 CFR

...UNIFORM STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA AVENUE DEVELOPMENT AREA Urban Planning and Design Concerns § 910.16 Land use. ...promoting an active street life throughout the day, evening, and weekend. (d)...

2010-07-01

175

On the statistics of urban heat island intensity  

NASA Astrophysics Data System (ADS)

We perform a systematic study of all cities in Europe to assess the Urban Heat Island (UHI) intensity by means of remotely sensed land surface temperature data. Defining cities as spatial clusters of urban land cover, we investigate the relationships of the UHI intensity, with the cluster size and the temperature of the surroundings. Our results show that in Europe, the UHI intensity in summer has a strong correlation with the cluster size, which can be well fitted by an empirical sigmoid model. Furthermore, we find a novel seasonality of the UHI intensity for individual clusters in the form of hysteresis-like curves. We characterize the shape and identify apparent regional patterns.

Zhou, B.; Rybski, D.; Kropp, J. P.

2013-10-01

176

Land use regression modeling of intra-urban residential variability in multiple traffic-related air pollutants  

Microsoft Academic Search

BACKGROUND: There is a growing body of literature linking GIS-based measures of traffic density to asthma and other respiratory outcomes. However, no consensus exists on which traffic indicators best capture variability in different pollutants or within different settings. As part of a study on childhood asthma etiology, we examined variability in outdoor concentrations of multiple traffic-related air pollutants within urban

Jane E Clougherty; Rosalind J Wright; Lisa K Baxter; Jonathan I Levy

2008-01-01

177

Effects of Land Use, Topography and Socio-Economic Factors on River Water Quality in a Mountainous Watershed with Intensive Agricultural Production in East China  

PubMed Central

Understanding the primary effects of anthropogenic activities and natural factors on river water quality is important in the study and efficient management of water resources. In this study, analysis of Variance (ANOVA), Principal component analysis (PCA), Pearson correlations, Multiple regression analysis (MRA) and Redundancy analysis (RDA) were applied as an integrated approach in a GIS environment to explore the temporal and spatial variations in river water quality and to estimate the influence of watershed land use, topography and socio-economic factors on river water quality based on 3 years of water quality monitoring data for the Cao-E River system. The statistical analysis revealed that TN, pH and temperature were generally higher in the rainy season, whereas BOD5, DO and turbidity were higher in the dry season. Spatial variations in river water quality were related to numerous anthropogenic and natural factors. Urban land use was found to be the most important explanatory variable for BOD5, CODMn, TN, DN, NH4+-N, NO3?-N, DO, pH and TP. The animal husbandry output per capita was an important predictor of TP and turbidity, and the gross domestic product per capita largely determined spatial variations in EC. The remaining unexplained variance was related to other factors, such as topography. Our results suggested that pollution control of animal waste discharge in rural settlements, agricultural runoff in cropland, industrial production pollution and domestic pollution in urban and industrial areas were important within the Cao-E River basin. Moreover, the percentage of the total overall river water quality variance explained by an individual variable and/or all environmental variables (according to RDA) can assist in quantitatively identifying the primary factors that control pollution at the watershed scale. PMID:25090375

Chen, Jiabo; Lu, Jun

2014-01-01

178

A comparison between developed and developing countries in terms of urban land use change effects on nitrogen cycle: Paris and São Paulo metropolitan areas  

NASA Astrophysics Data System (ADS)

Urbanization is considered one of the most powerful and characteristic anthropogenic forces on Earth in the 21st century. Although, currently, cities occupy only about 2 percent of the Earth's land surface, they are home to over 50 percent of the world's population. While in cities of some developed countries, urban population might stabilize or even slightly decrease, its rate of growth in developing countries is faster than in the industrialized nations. Such increase is accompanied by growing energy production, increased food demand, expanding transportation and industrialization. Although agricultural production is by far the largest cause of the doubling in the amount of reactive nitrogen entering the biospheric cycle compared to pre-industrial conditions, nowadays more than half of the crops produced in rural areas are consumed in urban zones. Having in mind that there is a clear global trend towards urbanization and growing urban areas, the objective of this study was to compare major nitrogen fluxes between a mega city situated in a developing country (São Paulo Metropolitan Area - SPMA) in Brazil with one of the largest city of highly industrialized Europe (Paris Metropolitan Area - PMA). We make the first step in producing a detailed N mass balance for the SPMA and PMA in order to estimate the magnitude of major fluxes across the urban landscape and see how N cycling vary among urban system components. This effort may help to highlight differences between developing and developed areas and subsidize the formulation of public policies towards reduction of N related pollution of recipient systems. The N mass balance showed the SPMA as a net source of nitrogen, emitting in total about 93.5 Gg of N per year, or about 4750 g of N per capita. Most N inputs to the SPMA are directly related to food consumption, N in wastewater and landfills. These fluxes are quite amendable to management efforts to reduce N input to the receiver component of the urban ecosystem (rivers and soil). For example treated sewage effluent could be used as a source of N for some crops, especially vegetables. PMA is also a source of reactive nitrogen, emitting in total about 32 Gg of N per year, or about 3000 g of N per capita, being the major part attributed to the atmospheric emissions from transportation and energy. An important outcome of this study has been the identification of several key uncertainties regarding the N budget that require further research for either developed and developing regions studied. The following uncertainties of N cycling in an urban system need better understanding: the mechanisms of dry-deposition processes in urban systems with patchy vegetation; high NOx emissions and the increase in travel distance of smaller particles coming from modern engines; and complex patterns of air flow in the dense build-up areas. Urban soil N dynamics is very uncertain, while soil represents a major sink of N in natural ecosystems. Ultimately, the challenge is to integrate human choices and ecosystem dynamics into a multidisciplinary model of biogeochemical cycling in urban ecosystems, focusing as a first step on the quantitatively evaluating the mutual relationship between urban land-use changes and natural ecosystem from the standpoint of global N balance. To develop those schemes will require the construction of detailed ecosystem-level N balances, an in-depth understanding of the interplay of inputs, geographical and climatic factors, nonspecific management practices, and deliberate N management practices that control the fate of N in urban landscapes.

Nardoto, Gabriela; Svirejeva-Hopkin, Anastasia; Martinelli, Luiz Antonio

2010-05-01

179

Mapping carbon storage in urban trees with multi-source remote sensing data: relationships between biomass, land use, and demographics in Boston neighborhoods.  

PubMed

High resolution maps of urban vegetation and biomass are powerful tools for policy-makers and community groups seeking to reduce rates of urban runoff, moderate urban heat island effects, and mitigate the effects of greenhouse gas emissions. We developed a very high resolution map of urban tree biomass, assessed the scale sensitivities in biomass estimation, compared our results with lower resolution estimates, and explored the demographic relationships in biomass distribution across the City of Boston. We integrated remote sensing data (including LiDAR-based tree height estimates) and field-based observations to map canopy cover and aboveground tree carbon storage at ~1m spatial scale. Mean tree canopy cover was estimated to be 25.5±1.5% and carbon storage was 355Gg (28.8MgCha(-1)) for the City of Boston. Tree biomass was highest in forest patches (110.7MgCha(-1)), but residential (32.8MgCha(-1)) and developed open (23.5MgCha(-1)) land uses also contained relatively high carbon stocks. In contrast with previous studies, we did not find significant correlations between tree biomass and the demographic characteristics of Boston neighborhoods, including income, education, race, or population density. The proportion of households that rent was negatively correlated with urban tree biomass (R(2)=0.26, p=0.04) and correlated with Priority Planting Index values (R(2)=0.55, p=0.001), potentially reflecting differences in land management among rented and owner-occupied residential properties. We compared our very high resolution biomass map to lower resolution biomass products from other sources and found that those products consistently underestimated biomass within urban areas. This underestimation became more severe as spatial resolution decreased. This research demonstrates that 1) urban areas contain considerable tree carbon stocks; 2) canopy cover and biomass may not be related to the demographic characteristics of Boston neighborhoods; and 3) that recent advances in high resolution remote sensing have the potential to improve the characterization and management of urban vegetation. PMID:25217746

Raciti, Steve M; Hutyra, Lucy R; Newell, Jared D

2014-12-01

180

Characterization of potential larval habitats for Anopheles mosquitoes in relation to urban land-use in Malindi, Kenya  

PubMed Central

Background This study characterized Anopheles mosquito larval habitats in relation to ecological attributes about the habitat and community-level drainage potential, and investigated whether agricultural activities within or around urban households increased the probability of water body occurrence. Malindi, a city on the coast of Kenya, was mapped using global positioning system (GPS) technology, and a geographic information system (GIS) was used to overlay a measured grid, which served as a sampling frame. Grid cells were stratified according to the level of drainage in the area, and 50 cells were randomly selected for the study. Cross-sectional household and entomological surveys were conducted during November and December 2002 within the 50 grid cells. Chi-square analysis was used to test whether water bodies differed fundamentally between well and poorly drained areas, and multi-level logistic regression was used to test whether household-level agricultural activity increased the probability of water body occurrence in the grid cell. Results Interviews were conducted with one adult in 629 households. A total of 29 water bodies were identified within the sampled areas. This study found that characteristics of water bodies were fundamentally the same in well and poorly drained areas. This study also demonstrated that household-level urban agriculture was not associated with the occurrence of water bodies in the grid cell, after controlling for potential confounders associated with distance to the city center, drainage, access to resources, and population density. Conclusions Household-level urban agricultural activity may be less important than the other types of human perturbation in terms of mosquito larval habitat creation. The fact that many larvae were coming from few sites, and few sites in general were found under relatively dry conditions suggests that mosquito habitat reduction is a reasonable and attainable goal in Malindi. PMID:15125778

Keating, Joseph; Macintyre, Kate; Mbogo, Charles M; Githure, John I; Beier, John C

2004-01-01

181

How do land use intensity, experimentally increased temperature and water level affect methane and nitrous oxide emissions from a drained fen peatland?  

NASA Astrophysics Data System (ADS)

Rewetting and extensification of peatlands is widely discussed and practiced to reduce losses of CO2 and N2O from drained peat soils. But rewetting is known to carry the risk of increased CH4 emissions. Up to now it is not completely clear how the predicted temperature increase in the face of climate change will alter the N2O and CH4 exchange of grasslands on drained peatland soils in the temperate zone. Therefore we investigated the effects of land use intensity, increased groundwater level, increased temperature and the combination of warming and increased groundwater level on CH4 and N2O exchange of two grassland sites (intensive and extensive grassland) in a drained fen peatland in southern Germany. We set up a factorial design on both land use types, on each three treatments, warming, increased water table level and the combination of warming and increased water table level as well as a control site were established. Temperature was manipulated with open-top chambers (OTCs) and water level manipulation was performed using a pumping system and sheet pile walls. The intensive grassland was cut three times in the year, the extensive grassland once in autumn 2011. Cattle slurry and mineral fertilizer (CAN) were deployed on the intensive grassland. Fluxes of CH4 and N2O were measured biweekly from December 2010 to January 2012 using opaque static closed chambers. The annual mean groundwater level (GWL) of the sites without water level manipulation was -41.5 cm b. g. and -30 cm b. g. at the water level manipulated sites on the intensive grassland. On the extensive grassland the GWL of the sites without water level manipulation was -32 cm b. g. and -21.5 cm b. g. at the water level manipulated sites. Air temperature in 0.2 m was increased in 2011 by 0.7 ° C at the treatments with OTCs on the intensive grassland and by 1.0 ° C at the treatments with OTCs on the extensive grassland respectively. The annual cumulative CH4 exchange ranged from 8.1 ± 3.8 kg C ha-1 yr-1 to 36.3 ± 8.6 kg C ha-1 yr-1on the extensive grassland and from -0.1 ± 0.3 kg C ha-1 yr-1 to 15.0 ± 1.9 kg C ha-1 yr-1 on the intensive grassland. The CH4 emissions of the treatments with increased water level on the intensive grassland were significantly higher compared to the control and warming sites. No significant differences could be observed between CH4 emissions of the treatments on the extensive grassland. However, we found a general significant relationship between CH4 fluxes, groundwater level and temperature. All sites on the intensive grassland show higher annual emissions of N2O compared to the sites on the extensive grassland. The annual cumulative N2O exchange ranged from 3.1 ± 0.5 kg N ha-1 yr-1 to 6.1 ± 0.4 kg N ha-1 yr-1on the intensive grassland and from 0.7 ± 0.1 kg N ha-1 yr-1 to 1.3 ± 0.2 kg N ha-1 yr-1 on the extensive grassland. Significant treatment effects could not be observed for N2O exchange on both land use types.

Heinichen, Jan; Eickenscheidt, Tim; Drösler, Matthias

2014-05-01

182

Impact of Artificial Reservoir Size, Land Use/Land Cover Patterns and Increasing Urbanization on Probable Maximum Precipitation and Flood: The Case of American River Watershed  

NASA Astrophysics Data System (ADS)

Design of dams considers available historical data for flood frequency analysis. The limitation in this approach is future meteorological and hydrological variability due to land-use and land-cover (LULC) change are not considered. Future flood extremes may change, among other factors, due to strong local atmospheric feedbacks from the reservoir, surrounding LULC change, and urbanization. Probable maximum flood (PMF), which is the key design parameter for a dam, is estimated from probable maximum precipitation (PMP). Given the nonlinearity of the rainfall-runoff process, the key questions that need to be answered are How do reservoir size and/or LULC modify extreme flood patterns, specifically probable maximum flood via climatic modification of PMP? and What is the contribution of urbanization in altering reservoir inflow and PMF? Selecting the American River watershed (ARW) and Folsom Dam as a case study; PMP from the regional atmospheric modeling system (RAMS) and the distributed variable infiltration capacity (VIC) model are used to simulate PMF. The PMP values are simulated from atmospheric feedbacks for various LULC scenarios (pre-dam, current scenario, non-irrigation, reservoir-double, and different urbanization percentage). Comparison of PMF results for pre-dam and current scenario conditions showed that PMF peak flow can decrease by about 105m3/s, while comparison of current scenario with non-irrigation PMF results showed that irrigation development has increased the PMF by 125m3/s. Comparison of different urbanization percentage shows that a 100% impervious watershed has the potential of generating a flood that is close to design PMF. The design PMP produces an additional 1500m3/s peak flood compared to the actual PMF when the watershed is considered 100% impervious. On the other hand, the reservoir size had virtually no detectable impact on PMP and consequently on PMF results. Where downstream levee capacity is already under designed to handle a dam's spillway capacity, such as for this case study, such increases indicate a likely impact on downstream flood risk to which any flood management protocol must adapt. The premise that modern dam design and operations should consider an integrated atmospheric-hydrologic modeling approach for estimating proactively potential extreme precipitation variation due to dam-driven LULC change and increase in urbanization is well-supported by this case study.

Yigzaw, W. Y.; Hossain, F.

2013-12-01

183

Global Consequences of Land Use  

Microsoft Academic Search

Land use has generally been considered a local environmental issue, but it is becoming a force of global importance. Worldwide changes to forests, farmlands, waterways, and air are being driven by the need to provide food, fiber, water, and shelter to more than six billion people. Global croplands, pastures, plantations, and urban areas have expanded in recent decades, accompanied by

Jonathan A. Foley; Ruth DeFries; Gregory P. Asner; Carol Barford; Gordon Bonan; Stephen R. Carpenter; F. Stuart Chapin; Michael T. Coe; Gretchen C. Daily; Holly K. Gibbs; Joseph H. Helkowski; Tracey Holloway; Erica A. Howard; Christopher J. Kucharik; Chad Monfreda; Jonathan A. Patz; I. Colin Prentice; Navin Ramankutty; Peter K. Snyder

2005-01-01

184

Analysis of the effect of evergreen and deciduous trees on urban nitrogen dioxide levels in the U.S. using land-use regression  

NASA Astrophysics Data System (ADS)

Nitrogen dioxide (NO2), an atmospheric pollutant generated primarily by anthropogenic combustion processes, is typically found at higher concentrations in urban areas compared to non-urbanized environments. Elevated NO2 levels have multiple ecosystem effects at different spatial scales. At the local scale, elevated levels affect human health directly and through the formation of secondary pollutants such as ozone and aerosols; at the regional scale secondary pollutants such as nitric acid and organic nitrates have deleterious effects on non-urbanized areas; and, at the global scale, nitrogen oxide emissions significantly alter the natural biogeochemical nitrogen cycle. As cities globally become larger and larger sources of nitrogen oxide emissions, it is important to assess possible mitigation strategies to reduce the impact of emissions locally, regionally and globally. In this study, we build a national land-use regression (LUR) model to compare the impacts of deciduous and evergreen trees on urban NO2 levels in the United States. We use the EPA monitoring network values of NO2 levels for 2006, the 2006 NLCD tree canopy data for deciduous and evergreen canopies, and the US Census Bureau's TIGER shapefiles for roads, railroads, impervious area & population density as proxies for NO2 sources on-road traffic, railroad traffic, off-road and area sources respectively. Our preliminary LUR model corroborates previous LUR studies showing that the presence of trees is associated with reduced urban NO2 levels. Additionally, our model indicates that deciduous and evergreen trees reduce NO2 to different extents, and that the amount of NO2 reduced varies seasonally. The model indicates that every square kilometer of deciduous canopy within a 2km buffer is associated with a reduction in ambient NO2 levels of 0.64 ppb in summer and 0.46ppb in winter. Similarly, every square kilometer of evergreen tree canopy within a 2 km buffer is associated with a reduction in ambient NO2 by 0.53 ppb in summer and 0.84 ppb in winter. Thus, the model indicates that deciduous trees are associated with a 30% smaller reduction in NO2 in winter as compared to summer, while evergreens are associated with a 60% increase in the reduction of NO2 in winter, for every square kilometer of deciduous or evergreen canopy within a 2 km buffer. Leaf- and local canopy-level studies have shown that trees are a sink for urban NO2 through deposition as well as stomatal and cuticular uptake. The winter time versus summer time effects suggest that leaf-level deposition may not be the only uptake mechanism and points to the need for a more holistic analysis of tree and canopy-level deposition for urban air pollution models. Since deposition velocities for NO2 vary by tree species, the reduction may also vary by species. These findings have implications for designing cities to reduce the impact of air pollution.

Rao, M.; George, L. A.

2012-12-01

185

Aligning lAnd Use And TrAnsporTATion  

E-print Network

1 ULTRANS Aligning lAnd Use And TrAnsporTATion policy And prAcTice #12;oVerVieW The Urban Land Use research and outreach enhance land use and transportation policies and decisions by enabling full are considering a wide range of land use and transportation policies, from parking pricing to infill development

California at Davis, University of

186

Hydrological impacts of land use change in three diverse South African catchments  

NASA Astrophysics Data System (ADS)

SummaryIn order to meet society's needs for water, food, fuel and fibre, the earth's natural land cover and land use have been significantly changed. These changes have impacted on the hydrological responses and thus available water resources, as the hydrological responses of a catchment are dependent upon, and sensitive to, changes in the land use. The degree of anthropogenic modification of the land cover, the intensity of the land use changes and location of land uses within a catchment determines the extent to which land uses influences hydrological response of a catchment. The objective of the study was to improve understanding of the complex interactions between hydrological response and land use to aid in water resources planning. To achieve this, a hydrological model, viz. the ACRU agrohydrological model, which adequately represents hydrological processes and is sensitive to land use changes, was used to generate hydrological responses from three diverse, complex and operational South African catchments under both current land use and a baseline land cover. The selected catchments vary with respect to both land use and climate. The semi-arid sub-tropical Luvuvhu catchment has a large proportion of subsistence agriculture and informal residential areas, whereas in the winter rainfall Upper Breede catchment the primary land uses are commercial orchards and vineyards. The sub-humid Mgeni catchment is dominated by commercial plantation forestry in the upper reaches, commercial sugarcane and urban areas in the middle reaches, with the lower reaches dominated by urban areas. The hydrological responses of the selected catchments to land use change were complex. Results showed that the contributions of different land uses to the streamflow generated from a catchment is not proportional to the relative area of that land use, and the relative contribution of the land use to the catchment streamflow varies with the mean annual rainfall of the catchment. Furthermore, it was shown that the location of specific land uses within a catchment has a role in the response of the streamflow of the catchment to that land use change. From the Mgeni catchment, the significant role of the water engineered system on catchment streamflow was evident. Hydrological models have drawbacks associated with them due to inherent uncertainties. However, in this study the ACRU model proved to be a useful tool to assess the impacts of land use change on the hydrological response as impacts from the local scale to catchment scale could be assessed as well as the progression of impacts of land use changes as the streamflow cascades downstream through the catchment.

Warburton, Michele L.; Schulze, Roland E.; Jewitt, Graham P. W.

2012-01-01

187

Regional land use schemes generated by TOPAZ  

Microsoft Academic Search

Dickey J. W. and Najafi F. T. (1973) Regional land use schemes generated by TOPAZ, Reg. Studies7, 373–386. TOPAZ, which is the Technique for the Optimal Placement of Activities in Zones, was developed to provide the urban planner with a series of alternative solutions from which he could determine the land use pattern with the least amount of cost involved.

J. W. Dickey; F. T. Najafi

1973-01-01

188

An evaluation on land intensive use in urbanized region a case of Chengdu Xindu  

Microsoft Academic Search

Urbanization is the key to solve the problem of urban-rural dual structure. In the process of current urbanization acceleration development, it has great practical significance to evaluate the saving and intensive utilization level of land resource in urbanization area and discuss on the improvement measures of its land intensive use level. This paper, selecting typical regional -Xindu area of Chengdu

Song Liu; You Zhou; Wenkuan Chen; Xuanzi Wei

2011-01-01

189

Study of the impact of land use and hydrogeological settings on the shallow groundwater quality in a peri-urban area of Kampala, Uganda.  

PubMed

A study to assess the impacts of land use and hydrogeological characteristics on the shallow groundwater in one of Kampala's peri-urban areas (Bwaise III Parish) was undertaken for a period of 19 months. Water quality monitoring was carried out for 16 installed wells and one operational protected spring to ascertain the seasonal variation. The aspects of hydrogeological setting investigated in the study were the subsurface unconsolidated material characteristics (stratigraphy, lithology, hydraulic conductivity, porosity and chemical content), seasonal groundwater depths and spring discharge, topography and rainfall of the area. Both laboratory and field measurements were carried out to determine the soil and water characteristics. Field surveys were also undertaken to identify and locate the various land use activities that may potentially pollute. The results demonstrate that the water table in the area responds rapidly to short rains (48 h) due to the pervious (10(-5)-10(-3) ms(-1)) and shallow (<1 mbgl) vadose zone, which consists of foreign material (due to reclamation). This anthropogenically influenced vadose zone has a limited contaminant attenuation capacity resulting in water quality deterioration following the rains. There is widespread contamination of the groundwater with high organic (up to 370 mgTKN/l and 779 mgNO-3/l), thermotolerant coliforms (TTCs) and faecal streptococci (FS) (median values as high as 126E3 cfu/100 ml and 154E3 cfu/100 ml respectively) and total phosphorus (up to 13 mg/l) levels originating from multiple sources of contamination. These include animal rearing, solid waste dumping, pit latrine construction and greywater/stormwater disposal in unlined channels leading to increased localised microbial (faecal) and organic (TKN/NO-3) contamination during the rains. The spring discharge (range 1.22-1.48 m3/h) with high nitrate levels (median values of 117 and 129 mg/l in the wet and dry seasons) did not vary significantly with season (p=0.087) suggesting that this source is fed by regional base flow. However, the microbial quality deterioration observed in the spring discharge after a rain event (median values of 815TTCs cfu /100 ml and 433 FS cfu/100 ml) was attributed to the poor maintenance of the protection structure. Identification and selection of appropriate management solutions for the protection of shallow groundwater in informal settlements should not only be based on water quality problems and the causal physical characteristics as demonstrated by this study, but also institutional and socio-economic factors. PMID:17512037

Kulabako, N R; Nalubega, M; Thunvik, R

2007-08-01

190

Norfolk and environs: A land use perspective  

USGS Publications Warehouse

The Norfolk-Portsmouth Standard Metropolitan Statistical Area (SMSA) in southeastern Virginia was the site of intensive testing of a number of land resources assessment methods, built around the availability of remotely sensed data from the Earth Resources Technology Satellite (ERTS-I), later renamed LANDSAT I. The Norfolk tests were part of a larger experiment known as the Central Atlantic Regional Ecological Test Site (CARETS), designed to test the extent to which LANDSAT and associated high-altitude aircraft data could be used as cost-effective inputs to a regional land use information system. The Norfolk SMSA contains a variety of land uses typical of the urbanized eastern seaboard, along with typical associated problems: rapid urbanization; heavy recreational, commercial, and residential demands on fragile beaches and coastal marsh environments; industrial, transportation, and governmental land and water uses impacting on residential and agricultural areas; drainage and land stability difficulties affecting construction and other uses; and increasing difficulties in maintaining satisfactory air and water quality.

Alexander, Robert H.; Buzzanell, Peter J.; Fitzpatrick, Katherine A.; Lins, Harry F.; McGinty, Herbert K., III

1975-01-01

191

Environmental Issues: Land Use Change  

NSDL National Science Digital Library

This interdisciplinary technology-embedded middle school science unit focuses on how human activities influence environmental changes related to land use. Students use geospatial information technology (GIT) tools including Google Earth and remotely sensed images to investigate modern day land use issues and land use change over time. It was designed using the Understanding by Design framework and is aligned to national science and geography standards. The unit has modified materials from the NASA-sponsored Mission Geography curricular module, Human footprints on Earth as seen by NASA scientists to take advantage of available, user-friendly geospatial technologies. The materials have been pilot-tested and field-tested in 8th grade classrooms at Broughal Middle School, a technology-rich urban school.

Alec Bodzin

2009-01-01

192

Effects of Endogenous Factors on Regional Land-Use Carbon Emissions Based on the Grossman Decomposition Model: A Case Study of Zhejiang Province, China.  

PubMed

The impact of land-use change on greenhouse gas emissions has become a core issue in current studies on global change and carbon cycle. However, a comprehensive evaluation of the effects of land-use changes on carbon emissions is very necessary. This paper attempted to apply the Grossman decomposition model to estimate the scale, structural, and management effects of land-use carbon emissions based on final energy consumption by establishing the relationship between the types of land use and carbon emissions in energy consumption. It was shown that land-use carbon emissions increase from 169.5624 million tons in 2000 to 637.0984 million tons in 2010, with an annual average growth rate of 14.15 %. Meanwhile, land-use carbon intensity increased from 17.59 t/ha in 2000 to 64.42 t/ha in 2010, with an average annual growth rate of 13.86 %. The results indicated that rapid industrialization and urbanization in Zhejiang Province promptly increased urban land and industrial land, which consequently affected land-use extensive emissions. The structural and management effects did not mitigate land-use carbon emissions. By contrast, both factors evidently affected the growth of carbon emissions because of the rigid demands of energy-intensive land-use types and the absence of land management. Results called for the policy implications of optimizing land-use structures and strengthening land-use management. PMID:25421995

Wu, Cifang; Li, Guan; Yue, Wenze; Lu, Rucheng; Lu, Zhangwei; You, Heyuan

2014-11-25

193

An intensive field study on CO2, CH4, and N2O emissions from soils at four land-use types in Sumatra, Indonesia  

Microsoft Academic Search

We measured gas fluxes of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) from the soil surface to the atmosphere under various land uses in Sumatra, Indonesia, from September 1997. Four land-use types, i.e., old-growth forest, logged-over forest, burned site after logging, and rubber plantation site, were selected. One logged-over forest was clear-cut and burned in the middle of

Shigehiro Ishizuka; Haruo Tsuruta; Daniel Murdiyarso

2002-01-01

194

Using GIS to integrate the analysis of land-use, transportation, and the environment for managing urban growth based on transit oriented development in the metropolitan of Jabodetabek, Indonesia  

NASA Astrophysics Data System (ADS)

There is an interaction between land use, transportation, and environment in improving and managing urban quality. One of the concpets to integrate those three aspects is Transit Oriented Development (TOD). It is a concept for managing urban growth in transit corridors which have characteristics of mixed land use, compact, walkability, and development focused around public transit area. This research aims at utilizing GIS to organize, sort, and analyze spatial data including aspects of land use, transportation, and environment. Jabodetabek is a strategic metropolitan area in Indonesia, and consists of DKI Jakarta and the neighboring Bodetabek cities, with more than 27 million population in 2010. Approximately 1,105,000 people are entering Jakarta every workday from the negihboring Bodetabek region. The surge in the number of passenger cars and motorcycles is astonishing. In contrast, the usage of public transport has declined deeply. Public transport infrastructure development without the integration of TOD may not attain the objective of reducing car dependency. This paper discusses the study which was carried out to identify the applicability of TOD principles in Jabodetabek using GIS as a tool to analysis and create model.

Hasibuan, H. S.; Moersidik, S.; Koestoer, R.; Soemardi, T. P.

2014-02-01

195

An integrated multi-criteria scenario evaluation web tool for participatory land-use planning in urbanized areas: The Ecosystem Portfolio Model  

USGS Publications Warehouse

Land-use land-cover change is one of the most important and direct drivers of changes in ecosystem functions and services. Given the complexity of the decision-making, there is a need for Internet-based decision support systems with scenario evaluation capabilities to help planners, resource managers and communities visualize, compare and consider trade-offs among the many values at stake in land use planning. This article presents details on an Ecosystem Portfolio Model (EPM) prototype that integrates ecological, socio-economic information and associated values of relevance to decision-makers and stakeholders. The EPM uses a multi-criteria scenario evaluation framework, Geographic Information Systems (GIS) analysis and spatially-explicit land-use/land-cover change-sensitive models to characterize changes in important land-cover related ecosystem values related to ecosystem services and functions, land parcel prices, and community quality-of-life (QoL) metrics. Parameters in the underlying models can be modified through the interface, allowing users in a facilitated group setting to explore simultaneously issues of scientific uncertainty and divergence in the preferences of stakeholders. One application of the South Florida EPM prototype reported in this article shows the modeled changes (which are significant) in aggregate ecological value, landscape patterns and fragmentation, biodiversity potential and ecological restoration potential for current land uses compared to the 2050 land-use scenario. Ongoing refinements to EPM, and future work especially in regard to modifiable sea level rise scenarios are also discussed.

Labiosa, Bill; Forney, William M.; Hearn, Paul P.; Hogan, Dianna M.; Strong, David R.; Swain, Eric D.; Esnard, Ann-Margaret; Mitsova-Boneva, D.; Bernknopf, R.; Pearlstine, Leonard; Gladwin, Hugh

2013-01-01

196

Land use planning  

NASA Technical Reports Server (NTRS)

The organization, objectives, and accomplishments of the panel on Land Use Planning are reported. Technology developments, and projected developments are discussed along with anticipated information requirements. The issues for users, recommended remote sensing programs, and space systems are presented. It was found that remote sensing systems are useful in future land use planning. It is recommended that a change detection system for monitoring land use and critical environmental areas be developed by 1979.

1975-01-01

197

THE CO-EVOLUTION OF LAND USE AND ROAD NETWORKS  

E-print Network

1 THE CO-EVOLUTION OF LAND USE AND ROAD NETWORKS David Levinson, Feng Xie, and Shanjiang Zhu, University of Minnesota, Minneapolis, USA INTRODUCTION Transportation and land use are interdependent shapers of urban form. First, changes in land use alter travel demand patterns, which determine traffic flows

Levinson, David M.

198

Changes in Community Rhetoric and Imagery of Rural Land Uses at the Urban Fringe: Douglas County from Strong to Slow Growth  

E-print Network

Growth and change at the rural-urban fringe of any urbanizing area creates heated debate. The way in which people talk about change is oftentimes through stories, using rhetoric and imagery to paint a picture of what is ...

Cowan, Kristen Michele

2011-08-30

199

Global Consequences of Land Use  

NASA Astrophysics Data System (ADS)

Land use has generally been considered a local environmental issue, but it is becoming a force of global importance. Worldwide changes to forests, farmlands, waterways, and air are being driven by the need to provide food, fiber, water, and shelter to more than six billion people. Global croplands, pastures, plantations, and urban areas have expanded in recent decades, accompanied by large increases in energy, water, and fertilizer consumption, along with considerable losses of biodiversity. Such changes in land use have enabled humans to appropriate an increasing share of the planet's resources, but they also potentially undermine the capacity of ecosystems to sustain food production, maintain freshwater and forest resources, regulate climate and air quality, and ameliorate infectious diseases. We face the challenge of managing trade-offs between immediate human needs and maintaining the capacity of the biosphere to provide goods and services in the long term.

Foley, Jonathan A.; DeFries, Ruth; Asner, Gregory P.; Barford, Carol; Bonan, Gordon; Carpenter, Stephen R.; Chapin, F. Stuart; Coe, Michael T.; Daily, Gretchen C.; Gibbs, Holly K.; Helkowski, Joseph H.; Holloway, Tracey; Howard, Erica A.; Kucharik, Christopher J.; Monfreda, Chad; Patz, Jonathan A.; Prentice, I. Colin; Ramankutty, Navin; Snyder, Peter K.

2005-07-01

200

Mapping carbon storage in urban trees with multi-source remote sensing data: Relationships between biomass, land use, and demographics in  

E-print Network

are powerful tools for policy-makers and community groups seeking to reduce rates of urban runoff, moderate resolution remote sensing have the potential to improve the characterization and management of urbanMapping carbon storage in urban trees with multi-source remote sensing data: Relationships between

Hutyra, Lucy R.

201

An analysis of Milwaukee county land use  

NASA Technical Reports Server (NTRS)

The identification and classification of urban and suburban phenomena through analysis of remotely-acquired sensor data can provide information of great potential value to many regional analysts. Such classifications, particularly those using spectral data obtained from satellites such as the first Earth Resources Technology Satellite (ERTS-1) orbited by NASA, allow rapid frequent and accurate general land use inventories that are of value in many types of spatial analyses. In this study, Milwaukee County, Wisconsin was classified into several broad land use categories on the basis of computer analysis of four bands of ERTS spectral data (ERTS Frame Number E1017-16093). Categories identified were: (1) road-central business district, (2) grass (green vegetation), (3) suburban, (4) wooded suburb, (5) heavy industry, (6) inner city, and (7) water. Overall, 90 percent accuracy was attained in classification of these urban land use categories.

Todd, W. J.; Mausel, P. E.

1973-01-01

202

Land-use Leakage  

SciTech Connect

Leakage occurs whenever actions to mitigate greenhouse gas emissions in one part of the world unleash countervailing forces elsewhere in the world so that reductions in global emissions are less than emissions mitigation in the mitigating region. While many researchers have examined the concept of industrial leakage, land-use policies can also result in leakage. We show that land-use leakage is potentially as large as or larger than industrial leakage. We identify two potential land-use leakage drivers, land-use policies and bioenergy. We distinguish between these two pathways and run numerical experiments for each. We also show that the land-use policy environment exerts a powerful influence on leakage and that under some policy designs leakage can be negative. International “offsets” are a potential mechanism to communicate emissions mitigation beyond the borders of emissions mitigating regions, but in a stabilization regime designed to limit radiative forcing to 3.7 2/m2, this also implies greater emissions mitigation commitments on the part of mitigating regions.

Calvin, Katherine V.; Edmonds, James A.; Clarke, Leon E.; Bond-Lamberty, Benjamin; Kim, Son H.; Wise, Marshall A.; Thomson, Allison M.; Kyle, G. Page

2009-12-01

203

Future land use plan  

SciTech Connect

The US Department of Energy`s (DOE) changing mission, coupled with the need to apply appropriate cleanup standards for current and future environmental restoration, prompted the need for a process to determine preferred Future Land Uses for DOE-owned sites. DOE began the ``Future Land Use`` initiative in 1994 to ensure that its cleanup efforts reflect the surrounding communities` interests in future land use. This plan presents the results of a study of stakeholder-preferred future land uses for the Brookhaven National Laboratory (BNL), located in central Long Island, New York. The plan gives the Laboratory`s view of its future development over the next 20 years, as well as land uses preferred by the community were BNL ever to cease operations as a national laboratory (the post-BNL scenario). The plan provides an overview of the physical features of the site including its history, topography, geology/hydrogeology, biological inventory, floodplains, wetlands, climate, and atmosphere. Utility systems and current environmental operations are described including waste management, waste water treatment, hazardous waste management, refuse disposal and ground water management. To complement the physical descriptions of the site, demographics are discussed, including overviews of the surrounding areas, laboratory population, and economic and non-economic impacts.

NONE

1995-08-31

204

Land Use. Ag Ed Environmental Education Series.  

ERIC Educational Resources Information Center

Land use is the subject of the student resource unit to be used with high school vocational agriculture students. Uses of the land in an urban environment, suburban environment, rural environment (as cropland, forest, and others), recreation and parks, and other environments are described. The supply of and demand for land is discussed.…

Tulloch, Rodney W.

205

Global Land Use History: A New Synthesis  

NASA Astrophysics Data System (ADS)

Human use of land has transformed the terrestrial biosphere, causing global changes in ecosystems, landscapes, biogeochemistry, climate, and biodiversity. This global transformation is commonly described as recent in human-environment history. Interdisciplinary paleo and historical data reconstructions and global land use and land cover modeling challenge this view, indicating that human use of land has been extensive and sustained for millennia, and may represent more of a recovery than an acceleration of land use in this century and beyond. Here we present a new global synthesis of recent scientific work on the emergence, history, and future of land use as a global force transforming the Earth system. Central to this synthesis is early human use of fire to engineer ecosystems and other systemic changes in land use dynamics, which together explain how relatively small human populations may have caused widespread and profound ecological changes early in the Holocene, while the largest human populations in history are associated with forests recovery across large regions. While quantitative global models of Holocene and even contemporary land use are still at early stage of development, improved land use histories and models that incorporate land change processes offer a more spatially detailed and accurate view of our planet's history, with a biosphere and perhaps even climate long ago affected by humans. The implicit view from the Anthropocene that humans have reached a historical moment in which "wild nature" is threatened is thus challenged by a view that humans are ancestral shapers and permanent stewards of Earth's terrestrial surface. Land use intensification processes have long sustained human interactions with the terrestrial biosphere, and they continue to evolve as populations grow and urbanize. While these processes are rapidly shifting from their historic patterns in both scale and type, integrative land use and land cover models that incorporate dynamics in human-environment relations help advance our understanding of both past and future land use changes and their global effects.

Ellis, E. C.

2011-12-01

206

Spatial analysis and land use regression of VOCs and NO 2 from school-based urban air monitoring in Detroit\\/Dearborn, USA  

Microsoft Academic Search

Passive ambient air sampling for nitrogen dioxide (NO2) and volatile organic compounds (VOCs) was conducted at 25 school and two compliance sites in Detroit and Dearborn, Michigan, USA during the summer of 2005. Geographic Information System (GIS) data were calculated at each of 116 schools. The 25 selected schools were monitored to assess and model intra-urban gradients of air pollutants

Shaibal Mukerjee; Luther A. Smith; Mary M. Johnson; Lucas M. Neas; Casson A. Stallings

2009-01-01

207

Land Use and Nitrogen  

NSDL National Science Digital Library

In this lesson students explore the impacts of concentrated development and sprawl on water quality and land use. The concept of a watershed is introduced, along with information on basins and tributaries and the impacts of growth and nitrogen loading. The students are able to develop a plan to reduce nitrogen runoff to a targeted level. Several handouts and maps are included.

208

Land Use in Saskatchewan.  

ERIC Educational Resources Information Center

Information on land use in Saskatchewan is provided in this updated report by the Policy, Planning, and Research Branch of Saskatchewan Environment. Chapter I discusses the physical, economic, and cultural geography of Saskatchewan and traces the history of settlement in this province. Chapter II provides information on the province's resource…

Saskatchewan Dept. of the Environment, Regina. Public Information and Education Branch.

209

Comparison of land use change models with focus on spatial and temporal frameworks and data issues  

E-print Network

Comparison of land use change models with focus on spatial and temporal frameworks and data issues of spatial land use pattern, especially urban land use § Model on generalized level (regional/historical growth pattern in a fixed time frame to project future land use pattern for the same time frame Spatial

Clarke, Keith

210

Urban and regional land use analysis: CARETS and Census Cities experiment package. [Pennsylvania, New Jersey, Delaware, Maryland, Virginia, District of Columbia, Washington, California  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. A number of likely applications and follow-on analyses are suggested by the census cities evaluation of ERTS-1 and Skylab data. Some of these applications are: (1) estimate water use requirements; (2) define urban expansion; (3) document the pattern of residential development and assess quality of residential environment: (4) project future population densities, and estimate changes in population distribution between censuses; (5) assess environmental impact resulting from gradual as well as catastrophic changes.

Alexander, R. (principal investigator); Lins, H. F., Jr.; Wray, J. R.

1974-01-01

211

Techniques for detecting effects of urban and rural land-use practices on stream-water chemistry in selected watersheds in Texas, Minnesota,and Illinois  

USGS Publications Warehouse

A discussion is presented of several parametric and nonparametric statistical techniques for detecting trends in water-chemistry data. The need for reducing the effects of natural variability was recognized and accomplished through the use of regression equations. This report describes the use of storm mass-transport data as a means of improving regression relations, thereby reducing data variability. Selected statistical techniques were applied to 1 urban watershed in Texas, 2 urban watersheds in Minnesota, and 3 rural watersheds in Illinois. For the urban watersheds, single- and paired-site data-collection strategies were considered. The paired-site strategy was much more effective than the single-site strategy for detecting trends. For the rural watersheds, none of the selected techniques proved to be effective at identifying trends, primarily because of a small degree of management-practice implementation, potential errors introduced through the estimation of storm mass transport, and small sample sizes. A Monte Carlo sensitivity analysis was used to determine the percent change in chemistry that could be detected for each watershed. In most instances, the use of regressions improved the ability to detect trends. (USGS)

Walker, J.F.

1993-01-01

212

Modeling historical changes in nutrient delivery and water quality of the Zenne River (1790s-2010): The role of land use, waterscape and urban wastewater management  

NASA Astrophysics Data System (ADS)

The Seneque/Riverstrahler model has been used to explore the effect of human-induced changes in drainage network morphology and land use on organic and nutrient pollutions, for the last 20 years and back to the 1890s and 1790s. With the development of human civilization, past environmental constraints differed compared to today. Research has sought to reconstruct (i) point sources (domestic and industrial), using statistics and archives from these periods, and (ii) diffuse sources via landscape and riverscape analysis based both on maps and agricultural statistics from the periods concerned.This study shows that a maximum of pollution occurred in the 1890s at the height of the industrial period, due more to the industrial load than to the domestic load. This substantial organic and nutrient pollution might have lasted up to very recently, when the Brussels Northern wastewater treatment plant began operation in 2007, significantly reducing the organic and nutrient load of the Zenne River, returning to a background pollution level assessed herein for the 1790s before industrialization expanded.

Garnier, Josette; Brion, Natacha; Callens, Julie; Passy, Paul; Deligne, Chloé; Billen, Gilles; Servais, Pierre; Billen, Claire

2013-12-01

213

Development and Applications of a Comprehensive Land Use Classification and Map for the US  

PubMed Central

Land cover maps reasonably depict areas that are strongly converted by human activities, but typically are unable to resolve low-density but widespread development patterns. Data products specifically designed to resolve land uses complement land cover datasets and likely improve our ability to understand the extent and complexity of human modification. Methods for developing a comprehensive land use classification system are described, and a map of land use for the conterminous United States is presented to reveal what we are doing on the land. The comprehensive, detailed and high-resolution dataset was developed through spatial analysis of nearly two-dozen publicly-available, national spatial datasets – predominately based on census housing, employment, and infrastructure, as well as land cover from satellite imagery. This effort resulted in 79 land use classes that fit within five main land use groups: built-up, production, recreation, conservation, and water. Key findings from this study are that built-up areas occupy 13.6% of mainland US, but that the majority of this occurs as low-density exurban/rural residential (9.1% of the US), while more intensive built-up land uses occupy 4.5%. For every acre of urban and suburban residential land, there are 0.13 commercial, 0.07 industrial, 0.48 institutional, and 0.29 acres of interstates/highways. This database can be used to address a variety of natural resource applications, and I provide three examples here: an entropy index of the diversity of land uses for smart-growth planning, a power-law scaling of metropolitan area population to developed footprint, and identifying potential conflict areas by delineating the urban interface. PMID:24728210

Theobald, David M.

2014-01-01

214

Development and applications of a comprehensive land use classification and map for the US.  

PubMed

Land cover maps reasonably depict areas that are strongly converted by human activities, but typically are unable to resolve low-density but widespread development patterns. Data products specifically designed to resolve land uses complement land cover datasets and likely improve our ability to understand the extent and complexity of human modification. Methods for developing a comprehensive land use classification system are described, and a map of land use for the conterminous United States is presented to reveal what we are doing on the land. The comprehensive, detailed and high-resolution dataset was developed through spatial analysis of nearly two-dozen publicly-available, national spatial datasets--predominantly based on census housing, employment, and infrastructure, as well as land cover from satellite imagery. This effort resulted in 79 land use classes that fit within five main land use groups: built-up, production, recreation, conservation, and water. Key findings from this study are that built-up areas occupy 13.6% of mainland US, but that the majority of this occurs as low-density exurban/rural residential (9.1% of the US), while more intensive built-up land uses occupy 4.5%. For every acre of urban and suburban residential land, there are 0.13 commercial, 0.07 industrial, 0.48 institutional, and 0.29 acres of interstates/highways. This database can be used to address a variety of natural resource applications, and I provide three examples here: an entropy index of the diversity of land uses for smart-growth planning, a power-law scaling of metropolitan area population to developed footprint, and identifying potential conflict areas by delineating the urban interface. PMID:24728210

Theobald, David M

2014-01-01

215

USING THE EARTHQUAKE ENGINEERING INTENSITY SCALE TO IMPROVE URBAN AREA EARTHQUAKE EMERGENCY RESPONSE  

E-print Network

USING THE EARTHQUAKE ENGINEERING INTENSITY SCALE TO IMPROVE URBAN AREA EARTHQUAKE EMERGENCY distribution estimation of earthquake damage in building stocks is presented. The purpose is to start a strong urban area earthquake. We used a pair of ground motion and building-tag color databases

Irfanoglu, Ayhan

216

Land use and energy  

SciTech Connect

This report provides estimates of the amount of land required by past and future energy development in the United States and examines major federal legislation that regulates the impact of energy facilities on land use. An example of one land use issue associated with energy development - the potential conflict between surface mining and agriculture - is illustrated by describing the actual and projected changes in land use caused by coal mining in western Indiana. Energy activities addressed in the report include extraction of coal, oil, natural gas, uranium, oil shale, and geothermal steam; uranium processing; preparation of synfuels from coal; oil refineries; fossil-fuel, nuclear, and hydro-electric power plants; biomass energy farms; and disposal of solid wastes generated during combustion of fossil fuels. Approximately 1.1 to 3.3 x 10/sup 6/ acres were devoted to these activities in the United States in 1975. As much as 1.8 to 2.0 x 10/sup 6/ additional acres could be required by 1990 for new, nonbiomass energy development. The production of grain for fuel ethanol could require an additional 16.9 to 55.7 x 10/sup 6/ acres by 1990. Federal laws that directly or indirectly regulate the land-use impacts of energy facilities include the National Environmental Protection Act, Clean Air Act, Federal Water Pollution Control Act, Surface Mining Control and Reclamation Act, and Coastal Zone Management Act. The major provisions of these acts, other relevant federal regulations, and similar state and local regulatons are described in this report. Federal legislation relating to air quality, water quality, and the management of public lands has the greatest potential to influence the location and timing of future energy development in the United States.

Robeck, K.E.; Ballou, S.W.; South, D.W.; Davis, M.J.; Chiu, S.Y.; Baker, J.E.; Dauzvardis, P.A.; Garvey, D.B.; Torpy, M.F.

1980-07-01

217

Energy and land use  

SciTech Connect

This report addresses the land use impacts of past and future energy development and summarizes the major federal and state legislation which influences the potential land use impacts of energy facilities and can thus influence the locations and timing of energy development. In addition, this report describes and presents the data which are used to measure, and in some cases, predict the potential conflicts between energy development and alternative uses of the nation's land resources. The topics section of this report is divided into three parts. The first part describes the myriad of federal, state and local legislation which have a direct or indirect impact upon the use of land for energy development. The second part addresses the potential land use impacts associated with the extraction, conversion and combustion of energy resources, as well as the disposal of wastes generated by these processes. The third part discusses the conflicts that might arise between agriculture and energy development as projected under a number of DOE mid-term (1990) energy supply and demand scenarios.

Not Available

1981-12-01

218

Land Use Change in Phoenix, Arizona-- Remote Sensing Lesson  

NSDL National Science Digital Library

This lesson examines land use in Phoenix, Arizona; specifically, the lesson gives students the opportunity to look at land use change in an urban environment. South Phoenix has experienced rapid urbanization in the last 15 years. ArcGIS 9.3, ENVI 4.5 and the internet (to access Landsat Data) are utilized in this exercise. A learning unit summary, instructor and student guides and supporting documents are included. A quick, free login is required to view or download the materials.

219

Modeling enzootic raccoon rabies from land use patterns - Georgia (USA) 2006-2010  

PubMed Central

We analyzed how land-use patterns and changes in urbanization influence reported rabid raccoons in Georgia from 2006 - 2010.  Using Geographical Information Systems and rabies surveillance data, multivariate analysis was conducted on 15 land-use variables that included natural topography, agricultural development, and urbanization to model positive raccoon rabies cases while controlling for potential raccoon submission bias associated with higher human population densities.  Low intensity residential development was positively associated with reported rabid raccoons while a negative association was found with evergreen forest.  Evergreen forests may offer a barrier effect where resources are low and raccoon populations are not supported.  Areas with pure stands of upland evergreen forest might be utilized in baiting strategies for oral rabies vaccination programs where fewer or no baits may be needed.  Their use as a barrier should be considered carefully in a cost-effective strategy for oral rabies vaccination (ORV) programs to contain the western spread of this important zoonotic disease. PMID:24715971

Duke, John E.

2014-01-01

220

IDAHO LAND USE  

EPA Science Inventory

Use groupings are: Surface gravity irrigation, Sprinkler irrigation, Dryland agriculture, Rangeland, Forest, Exposed rock, Riparian, Urban, Water. Easily incorporated into maps at the region to watershed level. Too coarse for site-scale applications. Scale: 1:500,000. Major ...

221

Land Use and Change  

NASA Technical Reports Server (NTRS)

The overall purpose of this training session is to familiarize Central American project cooperators with the remote sensing and image processing research that is being conducted by the NASA research team and to acquaint them with the data products being produced in the areas of Land Cover and Land Use Change and carbon modeling under the NASA SERVIR project. The training session, therefore, will be both informative and practical in nature. Specifically, the course will focus on the physics of remote sensing, various satellite and airborne sensors (Landsat, MODIS, IKONOS, Star-3i), processing techniques, and commercial off the shelf image processing software.

Irwin, Daniel E.

2004-01-01

222

Monitoring land use change using remote sensing and GIS  

NASA Astrophysics Data System (ADS)

Rapid land use change has take place in Wuhan, the largest mega-city in central China during the last decade. Remotely sensed imagery together with geographical information system have long been utilized to monitor spatial and temporal land use change. The aim of this paper is to find out the land use change and the trend of urban growth in Wuhan, China using satellite images. The Landsat TM image acquired in 1991 and the Landsat ETM image acquired in 2002 were used to monitor land use change in Wuhan. The images were geo-referenced according to Gauss-Kruger projection with Krasovsky spheroid, by using 1:50, 000 topographical maps. The image processing is implemented by using Erdas Imagine package. The RMS error has been controlled under the limit of 1 pixel. The geo-referenced images were classified as seven land use types: cultivated land, forest land, grassland, urban and villages, transportation, water bodies and barren land. Two land use maps were produced for each date. The geo-referenced, classified images were compared pixel by pixel to locate and quantify land use changes that took place from 1991 to 2002 period. The further change detection analysis in a later stage is performed in ArcGIS. The transition matrix was produced and the quantitative information on the size of land use change from one type to another was compiles. The results of study indicate that the conversion of land use from cultivated land to urban was prominent, the rapid urban sprawl has occupied lots of cultivated land and water bodies, the urban area significantly increased 30%, most of which are converted from cultivated land. these valuable cultivated land need careful protection by providing land use plans to guide urban growth going toward the right directions. The results obtained from this application also indicate that the use of satellite imageries is very useful for mapping land use changes, and the monitoring land use change is essential for land use planning and urban sustainable development.

Xie, Yunlin; Peng, Mingjun

2008-12-01

223

Predicting land-use change  

Microsoft Academic Search

Land use change modelling, especially if done in a spatially-explicit, integrated and multi-scale manner, is an important technique for the projection of alternative pathways into the future, for conducting experiments that test our understanding of key processes in land use changes. Land-use change models should represent part of the complexity of land use systems. They offer the possibility to test

A. Veldkamp; E. F. Lambin

2001-01-01

224

Analysis of urban land use in the megacity of Dhaka, Bangladesh: Roof-top detection in the context of assessing solar photovoltaic potential  

NASA Astrophysics Data System (ADS)

The megacity of Dhaka, Bangladesh is considered to be one of the world’s fastest growing urban centers. With nearly 14 million people Dhaka currently faces tremendous power crisis. The available power supply of Dhaka Megacity is currently 1000-1200 MW against the maximum demand of nearly 2000 MW. The objective of this study is to classify land cover of Dhaka to locate roof-top areas which are adequate for solar photovoltaic applications. Usually this task is performed with additional building-heights data. With lack of that, we present an object-based classification approach which is based on high resolution Quickbird data only. Extensive formal buildings in Dhaka mostly have flat roof-tops made from concrete which are well suited for PV applications. The classification is focused to detect these ‘Bright Roof-Tops’ to assess a lower limit for potential PV areas. With that conservative approach bright roof-top areas of 10.554 km2 out of the city’s 134.282 km2 could be found. The overall classification accuracy is 0.918, the producer’s accuracy of ‘Bright Roof-Tops’ is 0.833. Preliminary result of the PhD work of Humayun Kabir indicates that the application of only 75 Wp stand-alone solar modules on these available bright roof-tops can generate nearly 1,000 MW of electricity. The application of solar modules with high capacity (i.e., >200 Wp) preferably through grid-connected PV systems can substantially meet-up the city’s power demand, although several techno-economic and socio-political factors are certainly involved.

Jaegermeyr, J.; Kabir, H.; Endlicher, W.

2009-12-01

225

Land Use History  

E-print Network

This study focuses on the cultural-historical environment of the 88,900-acre (35,560-ha) Valles Caldera National Preserve (VCNP) over the past four centuries of Spanish, Mexican, and U.S. governance. It includes a review and synthesis of available published and unpublished historical, ethnohistorical, and ethnographic literature about the human occupation of the area now contained within the VCNP. Documents include historical maps, texts, letters, diaries, business records, photographs, land and mineral patents, and court testimony. This study presents a cultural-historical framework of VCNP land use that will be useful to land managers and researchers in assessing the historical ecology of the property. It provides VCNP administrators and agents the cultural-historical background needed to develop management plans that acknowledge traditional associations with the Preserve, and offers managers additional background for structuring and acting on consultations with affiliated communities.

United States; Forest Service; Kurt F. Anschuetz

2007-01-01

226

Change in agricultural land use constrains adaptation of national wildlife refuges to climate change  

USGS Publications Warehouse

Land-use change around protected areas limits their ability to conserve biodiversity by altering ecological processes such as natural hydrologic and disturbance regimes, facilitating species invasions, and interfering with dispersal of organisms. This paper informs USA National Wildlife Refuge System conservation planning by predicting future land-use change on lands within 25 km distance of 461 refuges in the USA using an econometric model. The model contained two differing policy scenarios, namely a ‘business-as-usual’ scenario and a ‘pro-agriculture’ scenario. Regardless of scenario, by 2051, forest cover and urban land use were predicted to increase around refuges, while the extent of range and pasture was predicted to decrease; cropland use decreased under the business-as-usual scenario, but increased under the pro-agriculture scenario. Increasing agricultural land value under the pro-agriculture scenario slowed an expected increase in forest around refuges, and doubled the rate of range and pasture loss. Intensity of land-use change on lands surrounding refuges differed by regions. Regional differences among scenarios revealed that an understanding of regional and local land-use dynamics and management options was an essential requirement to effectively manage these conserved lands. Such knowledge is particularly important given the predicted need to adapt to a changing global climate.

Hamilton, Christopher M.; Thogmartin, Wayne E.; Radeloff, Volker C.; Plantinga, Andrew J.; Heglund, Patricia J.; Martinuzzi, Sebastian; Pidgeon, Anna M.

2014-01-01

227

Using cloud computing to process intensive floating car data for urban traffic surveillance  

Microsoft Academic Search

The advances in data collection techniques and geosimulation models have contributed to the abundance of geospatial data in urban systems. The surveillance of urban traffic systems relies on the effective handling of near real-time traffic observation data, which is usually data-intensive in nature. We investigated the processing of massive floating car data (FCD) for traffic surveillance in cloud-computing environments, with

Q. Li; T. Zhang; Y. Yu

2011-01-01

228

Assessing the consequence of land use change on agricultural productivity in China  

NASA Astrophysics Data System (ADS)

China's cultivated land has been undergoing dramatic changes along with its rapidly growing economy and population. The impacts of land use transformation on food production at the national scale, however, have been poorly understood due to the lack of detailed spatially explicit agricultural productivity information on cropland change and crop productivity. This study evaluates the effect of the cropland transformation on agricultural productivity by combining the land use data of China for the period of 1990-2000 from TM images and a satellite-based NPP (net primary production) model driven with NOAA/AVHRR data. The cropland area of China has a net increase of 2.79 Mha in the study period, which causes a slightly increased agricultural productivity (6.96 Mt C) at the national level. Although the newly cultivated lands compensated for the loss from urban expansion, but the contribution to production is insignificant because of the low productivity. The decrease in crop production resulting from urban expansion is about twice of that from abandonment of arable lands to forests and grasslands. The productivity of arable lands occupied by urban expansion was 80% higher than that of the newly cultivated lands in the regions with unfavorable natural conditions. Significance of cropland transformation impacts is spatially diverse with the differences in land use change intensity and land productivity across China. The increase in arable land area and yet decline in land quality may reduce the production potential and sustainability of China's agro-ecosystems.

Yan, Huimin; Liu, Jiyuan; Huang, He Qing; Tao, Bo; Cao, Mingkui

2009-05-01

229

Energy-Based Land Use Predictors of Proximal Factors and Benthic Diatom Composition in Florida Freshwater Marshes  

Microsoft Academic Search

The Landscape Development Intensity index (LDI), which is based on non-renewable energy use and integrates diverse land use\\u000a activities, was compared to other measures of LU (e.g., %agriculture, %urban) to determine its ability for predicting benthic\\u000a diatom composition in freshwater marshes of peninsular Florida. In this study, 70 small, isolated herbaceous marshes located\\u000a along a human disturbance gradient (generally agricultural)

Mark T. Brown

2006-01-01

230

Land Use Intensity Controls Actinobacterial Community Structure  

Microsoft Academic Search

Actinobacteria are major producers of secondary metabolites; however, it is unclear how they are distributed in the environment.\\u000a DNA was extracted from forest, pasture and cultivated soils, street sediments (dust and material in place), and sediments\\u000a affected by animal activity (e.g. guano, vermicompost) and characterised with two actinobacterial and a bacterial-specific\\u000a 16S rDNA primer set. Amplicons (140\\/156) generated with the

Patrick Hill; Václav Krišt?fek; Lubbert Dijkhuizen; Christopher Boddy; David Kroetsch; Jan Dirk van Elsas

2011-01-01

231

A Basic Introduction to Land Use Control Law and Doctrine. Publication 6.  

ERIC Educational Resources Information Center

Divided into four sections, this paper discusses the historical development of land-use control law and doctrine. Entitled "Genesis of the Zoning Mechanism", Part 1 discusses zoning in terms of: a by-product of urbanization: common law land-use controls (public and private nuisance laws); private property as restraint on land-use legislation…

Roberts, E. F.

232

Land use in the northern Coachella Valley  

NASA Technical Reports Server (NTRS)

Satellite imagery has proved to have great utility for monitoring land use change and as a data source for regional planning. In California, open space desert resources are under severe pressure to serve as a source for recreational gratification to individuals living in the heavily populated southern coastal plain. Concern for these sensitive arid environments has been expressed by both federal and state agencies. The northern half of the Coachella Valley has historically served as a focal point for weekend recreational activity and second homes. Since demand in this area has remained high, land use change from rural to urban residential has been occurring continuously since 1968. This area of rapid change is an ideal site to illustrate the utility of satellite imagery as a data source for planning information, and has served as the areal focus of this investigation.

Bale, J. B.; Bowden, L. W.

1973-01-01

233

Land Use and Land Cover Change in Guangzhou, China, from 1998 to 2003, Based on Landsat TM /ETM+ Imagery  

PubMed Central

Land use and land cover change is a major issue in global environment change, and is especially significant in rapidly developing regions in the world. With its economic development, population growth, and urbanization, Guangzhou, a major metropolitan in South China, have experienced a dramatic land use and land cover (LULC) change over the past 30 years. Fast LULC change have resulted in degradation of its ecosystems and affected adversely the environment. It is urgently needed to monitor its LULC changes and to analyses the consequences of these changes in order to provide information for policymakers to support sustainable development. This study employed two Landsat TM/ETM+ images in the dry season to detect LULC patterns in 1998 and 2003, and to examine LULC changes during the period from 1998 to 2003. The type, rate, and pattern of the changes among five counties of Guangzhou Municipality were analyzed in details by post-classification method. LULC conversion matrix was produced for each county in order to explore and explain the urban expansion and cropland loss, the most significant types of LULC change. Land use conversion matrixes of five counties were discussed respectively in order to explore and explain the inherence of land use change. The results showed that urban expansion in these five counties kept an even rate of increase, while substantial amount of cropland vanished during the period. It is also noted that the conversion between cropland and orchard land was intensive. Forest land became the main source of new croplands.

Fan, Fenglei; Weng, Qihao; Wang, Yunpeng

2007-01-01

234

Impact of Low-Level Jets on the Nocturnal Urban Heat Island Intensity in Oklahoma City  

E-print Network

Impact of Low-Level Jets on the Nocturnal Urban Heat Island Intensity in Oklahoma City XIAO-MING HU Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma PETRA M. KLEIN AND MING XUE Center for Analysis and Prediction of Storms and School of Meteorology, University of Oklahoma

Xue, Ming

235

Synthesis of China's land use in the past 300 years  

NASA Astrophysics Data System (ADS)

China's land use has undergone many changes over the past 300 years due to the significant transformations caused by natural and human factors and their impact on regional climate and the environment. This comprehensive review of recent state-of-the-art studies of China's land-use changes during that period concentrates on cropland, forest, grassland and urban areas. While most small-scale studies have reconstructed information from historical archive data and focused on a specific time period, large-scale studies have tended to rely on inverse modeling techniques to interpret land-use change dynamics based on remote-sensing data for example, the global land-use products of the History Database of the Global Environment (HYDE) and Center for Sustainability and the Global Environment (SAGE) datasets. All studies have shown that the cropland areas in China increased between 1700 and 1950, although they indicate different magnitudes and rates. A decrease in forest coverage was also reported in all studies. Little information was available on urban and grassland areas over the same period. Rapid urbanization in China has been particularly evident in the past 50 years. Meanwhile, spatially explicit reconstructions of historical land-use change in China since 1700 remain highly uncertain due to the lack of reliable data. Extensive work on primary data collection is required, including land-use records and drivers for future change.

Miao, Lijuan; Zhu, Feng; He, Bin; Ferrat, Marion; Liu, Qiang; Cao, Xue; Cui, Xuefeng

2013-01-01

236

Land-use Effect on Stream Organic Matter Composition in Two Metropolitan Areas in USA  

NASA Astrophysics Data System (ADS)

Urbanization is a form of land-use change that is increasing in coastal watersheds and may affect the quantity and quality of organic carbon delivered to streams and coastal ocean. Here, we examine the changes in optical and isotopic characteristics of organic matter in streams (Gwynns Fall and Buffalo Bayou) draining Baltimore and Houston Metropolitan Areas (USA), relative to nearby less affected forested watersheds. A summer longitudinal sampling in Gwynns Fall along a rural-urban gradient showed increases in dissolved organic carbon (DOC) and fluorescent protein to humic ratio but a decrease in specific UV absorption (SUVA). Parallel Factor modeling shows dominance of terrestrial component of DOC, and the ratio of an unknown component to the component of humic substance was high in urban watersheds and it was positively correlated impervious surface cover (an index of urbanization). Incubation experiments with leaves and stream algae suggest origin of decayed leaf leachate of this component. Conversely, DOM in Buffalo Bayou showed higher intensity of protein-like fluorescence, and the intensity increased longitudinal along a rural-urban gradient but decreased from low-flows to a flooding event. The difference in fluorescent organic matter composition between the two streams probably reflected different management of wastewater in watersheds. Surface sediment collected at sites of sub-watersheds of Gwynns Fall showed changes in particle size, elemental and isotopic composition with land use. Sediment incubations showed that higher temperature (due to urban heat island effect) enhanced loss of labile organic matter and release of refractory organic matter into stream water. Release of reactive soluble phosphorus, loss of nitrogen and reduction of sulfate also occurred at high incubating temperatures, along with mineralization of sediment organic matter. Bed sediment collected along Buffalo Bayou displayed a longitudinal decrease in N-15, probably reflecting the displacement of waste water treatment plant in upper watershed. Organic matter compositions of suspended sediment, however, were more related to abundance of phytoplankton biomass.

Duan, S.; Kaushal, S.; Amon, R. M.; Brinkmeyer, R.

2011-12-01

237

Distribution patterns and sources of metals and PAHs in an intensely urbanized area: The Acerra-Pomigliano-Marigliano conurbation (Italy)  

NASA Astrophysics Data System (ADS)

The main objective of the URGE (URban GEochemistry) project is to define, map and interpretate the geochemical baseline patterns of potentially harmful elements and compounds in the soils of 12 european urban areas using shared procedures for both sampling and analytical techniques. In Italy, in the framework of the URGE project, the north-eastern sector of the Napoli metropolitan area, namely the Acerra-Pomigliano-Marigliano conurbation, has undergone a geochemical characterization based on 145 soil samples collected over an area of 90 sq km. This area has been selected on the basis of the results obtained from previous regional studies [1, 2, 3] and because of the presence on its territory of an historical industrial settlement (formerly devoted to plastic materials and synthetic fibres production) which was partly dismantled and party converted to a power plant fuelled by palm oil. Furthermore, in March 2009 also an incinerator came into operation in the northern sector of the study area. The main objective of the study carried out for the Acerra-Pomigliano-Marigliano conurbation was to define the local geochemical baselines for both 53 elements (among which the toxic ones) and some organic compounds, including PAHs and OCPs. The study also aimed at supporting epidemiological researches at local scale and at establishing a record of the actual environmental conditions to evaluate the future impact of the incinerator on both the territory and the public health. Results obtained showed that Pb, Zn and V exceed the trigger limits established by the Italian Environmental law (D.Lgs. 152/2006) especially in correspondence with the most densely populated areas of the conurbation and where the traffic load is higher (Road junctions and fast lanes). Furthermore, most of the soils collected in the surroundings of the urbanized areas resulted to be generally enriched in Cu, Co, Cd, Be, Ni and P suggesting the presence of a relevant influence on their chemistry of an agricultural intensive land use. PAHs distribution pattern showed anomalous values across the whole study area. Especially, Benzo[a]pyrene values exceeds the trigger limits established by the Italian Environmental law (D.Lgs. 152/2006) in most of the analyzed soils and the diagnostic ratios calculated among several PAHs compounds suggested that the biomass burning in the rural sector of the study area could be a relevant source of pollution. The palm oil fuelled power plant in the northern sector of Acerra could not be excluded as a source of PAHs in the environment. [1] Albanese et al (2007) JGE 93, 21-34. [2] Cicchella et al (2008) GEEA 8 (1), 19-29. [3] De Vivo et al (2006) Aracne Editrice, Roma. 324 pp.

Albanese, Stefano; Lima, Annamaria; Rezza, Carmela; Ferullo, Giampiero; De Vivo, Benedetto; Chen, Wei; Qi, Shihua

2014-05-01

238

Land use mapping and modelling for the Phoenix Quadrangle  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. The mapping of generalized land use (level 1) from ERTS 1 images was shown to be feasible with better than 95% accuracy in the Phoenix quadrangle. The accuracy of level 2 mapping in urban areas is still a problem. Updating existing maps also proved to be feasible, especially in water categories and agricultural uses; however, expanding urban growth has presented with accuracy. ERTS 1 film images indicated where areas of change were occurring, thus aiding focusing-in for more detailed investigation. ERTS color composite transparencies provided a cost effective source of information for land use mapping of very large regions at small map scales.

Place, J. L. (principal investigator)

1974-01-01

239

Modeling land-use change  

SciTech Connect

Tropical land-use change is generally considered to be the greatest net contributor of carbon dioxide to the atmosphere after fossil-fuel burning. However, estimates vary widely, with one major cause of variation being that terrestrial ecosystems are both a source and a sink for carbon. This article describes two spatially explicit models which simulate rates and patterns of tropical land-use change: GEOMOD1, based on intuitive assumptions about how people develop land over time, and GEOMOD2, based on a statistical analysis of how people have actually used the land. The models more closely estimate the connections between atmospheric carbon dioxide, deforestation, and other land use changes.

NONE

1995-12-31

240

Leaf breakdown in streams differing in catchment land use  

USGS Publications Warehouse

1. The impact of changes in land use on stream ecosystem function is poorly understood. We studied leaf breakdown, a fundamental process of stream ecosystems, in streams that represent a range of catchment land use in the Piedmont physiographic province of the south-eastern United States. 2. We placed bags of chalk maple (Acer barbatum) leaves in similar-sized streams in 12 catchments of differing dominant land use: four forested, three agricultural, two suburban and three urban catchments. We measured leaf mass, invertebrate abundance and fungal biomass in leaf bags over time. 3. Leaves decayed significantly faster in agricultural (0.0465 day-1) and urban (0.0474 day-1) streams than in suburban (0.0173 day-1) and forested (0.0100 day-1) streams. Additionally, breakdown rates in the agricultural and urban streams were among the fastest reported for deciduous leaves in any stream. Nutrient concentrations in agricultural streams were significantly higher than in any other land-use type. Fungal biomass associated with leaves was significantly lower in urban streams; while shredder abundance in leaf bags was significantly higher in forested and agricultural streams than in suburban and urban streams. Storm runoff was significantly higher in urban and suburban catchments that had higher impervious surface cover than forested or agricultural catchments. 4. We propose that processes accelerating leaf breakdown in agricultural and urban streams were not the same: faster breakdown in agricultural streams was due to increased biological activity as a result of nutrient enrichment, whereas faster breakdown in urban streams was a result of physical fragmentation resulting from higher storm runoff. ?? 2006 The Authors.

Paul, M.J.; Meyer, J.L.; Couch, C.A.

2006-01-01

241

Influence of land use on hyporheos in catchment of the Jarama River (central Spain)  

NASA Astrophysics Data System (ADS)

The Water Framework Directive (2000) requires integrated assessment of water bodies based on water resources but also the evaluation of land-use catchment effect on chemical and ecological conditions of aquatic ecosystems. The hyporheic zone (HZ) supporting obligate subterranean species are particularly vulnerable in river ecosystems when environmental stress occurs at surface and require management strategies to protect both the stream catchment and the aquifer that feed the stream channel. The influence of catchment land-use in the Jarama basin (central Spain) on river geomorphology and hyporheic zone granulometry, chemical and biological variables inferred from crustacean community biodiversity (species richness, taxonomic distinctness) and ecology was assessed. The study was conducted in four streams from the Madrid metropolitan area under distinct local land-use and water resource protection: i) a preserved forested natural sites where critical river ecosystem processes were unaltered or less altered by human activities, and ii) different degree of anthropogenic impact sites from agriculture, urban industrial and mining activities. The river bed permeability reduction and the increase of low sediment size input associated with changes in geomorphology of the stream channels are greatly affected by land-use changes in the Jarama watershed. Water chemical parameters linked to land-use increase from the natural stream to the urban industrial and agricultural dominated catchment. Principal coordinate analysis (PCO) and multidimensional scaling (MDS) clearly discriminate the pristine sites from forested areas by those under anthropogenic stressors. In streams draining forested areas, groundwater discharge and regular exchange between groundwater and surface water occur due to relatively high permeability of the sediments. Consequently, forested land-use produce sites of high water quality and crustacean richness (both groundwater dwellers and surface-benthos species), as indicate the expected diversity pattern after the simulation procedure for taxonomic distinctness. Crustacean diversity (Shannon index) was greatest in less extensive agricultural land-use sites where riparian zone is slightly developed, while intensive agricultural activities cause a decline of water quality and therefore of crustacean richness. Intensively urban industrial land-use yield highly contaminated hyporheic water with heavy metals and VOC (i.e. toluene, benzene). Complementarily, the streams geomorphology and low rates of water flow favour the deposition of fine sediments that clog the interstices, generate a reverse dynamic of river channel and induce a reduction of groundwater discharge. In results, the hyporheic is unsuitable for hyporheos that are missing or harbour reduced populations of exclusively surface-water taxa. There are sites of intermediate biodiversity including hypogeans, located in natural regional parks thriving well-established riparian zone and relatively good water quality. The differences among sites in the Jarama basin indicate the impact that changes in land-use have upon the hyporheic ecology as shown the pattern of crustacean community distribution, diversity and ecological structure. We suggest that in rehabilitation processes of streams sectors require the understanding and recognition of the potential roles of the hyporheic zone and its biota in the whole stream ecosystem.

Iepure, S.; Martínez-Hernández, V.; Herrera, S.; de Bustamante, I.; Rasines, R.

2012-04-01

242

Biodiversity across a Rural Land-Use Gradient  

Microsoft Academic Search

Private lands in the American West are undergoing a land-use conversion from agriculture to ex- urban development, although little is known about the ecological consequences of this change. Some nongov- ernmental organizations are working with ranchers to keep their lands out of development and in ranching, ostensibly because they believe biodiversity is better protected on ranches than on exurban developments.

Jeremy D. Maestas; Richard L. Knight; Wendell C. Gilgert

2003-01-01

243

Experiments in Globalisation, Food Security and Land Use Decision Making  

PubMed Central

The globalisation of trade affects land use, food production and environments around the world. In principle, globalisation can maximise productivity and efficiency if competition prompts specialisation on the basis of productive capacity. In reality, however, such specialisation is often constrained by practical or political barriers, including those intended to ensure national or regional food security. These are likely to produce globally sub-optimal distributions of land uses. Both outcomes are subject to the responses of individual land managers to economic and environmental stimuli, and these responses are known to be variable and often (economically) irrational. We investigate the consequences of stylised food security policies and globalisation of agricultural markets on land use patterns under a variety of modelled forms of land manager behaviour, including variation in production levels, tenacity, land use intensity and multi-functionality. We find that a system entirely dedicated to regional food security is inferior to an entirely globalised system in terms of overall production levels, but that several forms of behaviour limit the difference between the two, and that variations in land use intensity and functionality can substantially increase the provision of food and other ecosystem services in both cases. We also find emergent behaviour that results in the abandonment of productive land, the slowing of rates of land use change and the fragmentation or, conversely, concentration of land uses following changes in demand levels. PMID:25437010

Brown, Calum; Murray-Rust, Dave; van Vliet, Jasper; Alam, Shah Jamal; Verburg, Peter H.; Rounsevell, Mark D.

2014-01-01

244

The Biogeohydroclimatology of Land Use  

NASA Astrophysics Data System (ADS)

When John Donne wrote his Meditation XVII, which includes the famous"No man is an island" passage, he was thinking about connections between people; no human being is isolated from another. Donne might just as well have been writing about the science of land use, however. What happens on one plot of land clearly affects what happens on another, whether downhill, downstream, or downwind. I will explore the consequences of land use for mass and energy fluxes, focusing on pasture, crop, and forest transitions in the Americas. I'll discuss my own work, some work of collaborators, and a few examples from the literature. No man is an island.

Jackson, R. B.

2008-05-01

245

Indirect land use change and biofuel policy  

NASA Astrophysics Data System (ADS)

Biofuel debates often focus heavily on carbon emissions, with parties arguing for (or against) biofuels solely on the basis of whether the greenhouse gas emissions of biofuels are less than (or greater than) those of gasoline. Recent studies argue that land use change leads to significant greenhouse gas emissions, making some biofuels more carbon intensive than gasoline. We argue that evaluating the suitability and utility of biofuels or any alternative energy source within the limited framework of plus and minus carbon emissions is too narrow an approach. Biofuels have numerous impacts, and policy makers should seek compromises rather than relying solely on carbon emissions to determine policy. Here, we estimate that cellulosic ethanol, despite having potentially higher life cycle CO2 emissions (including from land use) than gasoline, would still be cost-effective at a CO2 price of 80 per ton or less, well above estimated CO2 mitigation costs for many alternatives. As an example of the broader approach to biofuel policy, we suggest the possibility of using the potential cost reductions of cellulosic ethanol relative to gasoline to balance out additional carbon emissions resulting from indirect land use change as an example of ways in which policies could be used to arrive at workable solutions.

Kocoloski, Matthew; Griffin, W. Michael; Matthews, H. Scott

2009-09-01

246

Ground-Water Quality and its Relation to Land Use on Oahu, Hawaii, 2000-01  

USGS Publications Warehouse

Water quality in the main drinking-water source aquifers of Oahu was assessed by a one-time sampling of untreated ground water from 30 public-supply wells and 15 monitoring wells. The 384 square-mile study area, which includes urban Honolulu and large tracts of forested, agricultural, and suburban residential lands in central Oahu, accounts for 93 percent of the island's ground-water withdrawals. Organic compounds were detected in 73 percent of public-supply wells, but mostly at low concentrations below minimum reporting levels. Concentrations exceeded drinking-water standards in just a few cases: the solvent trichloroethene and the radionuclide radon-222 exceeded Federal standards in one public-supply well each, and the fumigants 1,2-dibromo-3-chloropropane (DBCP) and 1,2,3-trichloropropane (TCP) exceeded State standards in three public-supply wells each. Solvents, fumigants, trihalomethanes, and herbicides were prevalent (detected in more than 30 percent of samples) but gasoline components and insecticides were detected in few wells. Most water samples contained complex mixtures of organic compounds: multiple solvents, fumigants, or herbicides, and in some cases compounds from two or all three of these classes. Characteristic suites of chemicals were associated with particular land uses and geographic locales. Solvents were associated with central Oahu urban-military lands whereas fumigants, herbicides, and fertilizer nutrients were associated with central Oahu agricultural lands. Somewhat unexpectedly, little contamination was detected in Honolulu where urban density is highest, most likely as a consequence of sound land-use planning, favorable aquifer structure, and less intensive application of chemicals (or of less mobile chemicals) over recharge zones in comparison to agricultural areas. For the most part, organic and nutrient contamination appear to reflect decades-old releases and former land use. Most ground-water ages were decades old, with recharge dates ranging from pre-1940 to the present, and with most dates falling within the 1950s to 1980s time span. Several widely detected compounds were discontinued as long ago as the 1970s but have yet to be flushed from the ground-water system. Although large tracts of land in central Oahu have been converted from agriculture to residential urban use since the 1950s, water quality in the converted areas still more closely reflects the former agricultural land. It appears to be too early to detect a distinct water-quality signature characteristic of the newer urban use, although several urban turfgrass herbicides in use for just 10 years or so were detected in monitoring wells and may represent early arrivals of urban contaminants at the water table.

Hunt, Charles D.

2003-01-01

247

Variability of atmospheric pesticide concentrations between urban and rural areas during intensive pesticide application  

NASA Astrophysics Data System (ADS)

Intensive pesticide use leads to the contamination of water, soil and atmosphere. Atmospheric transport is responsible for pesticide dispersal over long distances. In this study, we evaluate the local dispersal of pesticides from agricultural to urban areas. For this purpose, three high-volume samplers, each equipped with a glass fiber filter and XAD-2 resin for the sampling of particulate and gas phase have been placed in a south-west transect (predominant wind direction) characteristic of rural and urban areas. The urban site (Strasbourg centre) is situated in the middle of two rural sites. Samples were taken simultaneously at three sites during pesticide treatments in autumn and spring 2002-2003. Sampling took place for 24 h at a flow rate of 10-15 m 3 h -1. The pesticides studied were those commonly used in the Alsace region for all crops (maize, cereal, vines …). Many of the pesticides analysed in atmospheric samples were not detected or observed very episodically at very low concentrations. For metolachlor, alachlor, trifluralin, atrazine and diflufenican, higher concentrations were observed, essentially during the application of these compounds. Moreover, some "spraying peaks" were observed for alachlor in the south rural site (near crops) at a level of 31 ng m -3 on 16-17 May 2003. These results show site and time dependence of atmospheric contamination by pesticides. A limited dispersal was also observed especially in the urban area during the application periods of pesticides.

Scheyer, Anne; Morville, Stéphane; Mirabel, Philippe; Millet, Maurice

248

Study of USGS/NASA land use classification system. [compatibility of land use classification system with computer processing techniques employed for land use mapping from ERTS data  

NASA Technical Reports Server (NTRS)

It is known from several previous investigations that many categories of land-use can be mapped via computer processing of Earth Resources Technology Satellite data. The results are presented of one such experiment using the USGS/NASA land-use classification system. Douglas County, Georgia, was chosen as the test site for this project. It was chosen primarily because of its recent rapid growth and future growth potential. Results of the investigation indicate an overall land-use mapping accuracy of 67% with higher accuracies in rural areas and lower accuracies in urban areas. It is estimated, however, that 95% of the State of Georgia could be mapped by these techniques with an accuracy of 80% to 90%.

Spann, G. W.; Faust, N. L.

1974-01-01

249

Remote sensing. [land use mapping  

NASA Technical Reports Server (NTRS)

Various imaging techniques are outlined for use in mapping, land use, and land management in Mexico. Among the techniques discussed are pattern recognition and photographic processing. The utilization of information from remote sensing devices on satellites are studied. Multispectral band scanners are examined and software, hardware, and other program requirements are surveyed.

Jinich, A.

1979-01-01

250

Land Use and Rural Planning  

Microsoft Academic Search

As trees seem to be objects of hate as well as of love in the British landscape, this paper attempts to assess the place of forestry in the tangled pattern of British land uses. Both the weaknesses and the strengths of forestry as an important use of land are examined in the light of past events and analyses and as

G. Wibberley; D. R. Johnston; K. N. Rankin

1975-01-01

251

Spatiotemporal trends of terrestrial vegetation activity along the urban development intensity gradient in China's 32 major cities.  

PubMed

Terrestrial vegetation plays many pivotal roles in urban systems. However, the impacts of urbanization on vegetation are poorly understood. Here we examined the spatiotemporal trends of the vegetation activity measured by MODIS Enhanced Vegetation Index (EVI) along Urban Development Intensity (UDI) gradient in 32 major Chinese cities from 2000 to 2012. We also proposed to use a new set of concepts (i.e., actual, theoretical, and positive urbanization effects) to better understand and quantify the impacts of urbanization on vegetation activities. Results showed that the EVI decreased significantly along a rising UDI for 28 of 32 cities (p<0.05) in linear, convex or concave form, signifying the urbanization impacts on vegetation varied across cities and UDI zones within a city. Further, the actual urbanization effects were much weaker than the theoretical estimates because of the offsetting positive effects generated by multiple urban environmental and anthropogenic factors. Examining the relative changes of EVI in various UDI zones against that in the rural area (?EVI), which effectively removed the effects of climate variability, demonstrated that ?EVI decreased markedly from 2000 to 2012 for about three-quarters of the cities in the exurban (0.05urban (0.5urban core (0.75urban and urban core of many cities could primarily be attributed to the importance of positive effects derived from the urban environment and the improvement of management and maintenance of urban green space. More work is needed to quantify mechanistically the detailed negative and positive effects of urban environmental factors and management practices on vegetation activities. PMID:24829041

Zhou, Decheng; Zhao, Shuqing; Liu, Shuguang; Zhang, Liangxia

2014-08-01

252

Web-GIS Based System for the Management of Objections to a Comprehensive Municipal Land Use Plan  

E-print Network

Web-GIS Based System for the Management of Objections to a Comprehensive Municipal Land Use Plan of a comprehensive municipal land use plan is a long and arduous process that requires great effort from local of urban information and to enable citizens to register objections to the land use plan during

Touriño, Juan

253

Examining the impacts of changing land use on biological integrity in streams using Geographical Information Systems and statistical modeling  

Microsoft Academic Search

Land-use activities and land cover of a watershed influence chemical and physical properties of streams which may impact the biota of the aquatic ecosystem. This study was designed to investigate the impacts of the conversion of forests to urbanized land, including construction and development impacts of land use conversion on water quality and biological integrity of streams. Land use and

Megan A. Goddard; Christopher J. Post; William R. English; Jeremy W. Pike

2008-01-01

254

Some findings on the applications of ERTS and Skylab imagery for metropolitan land use analysis  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. Work undertaken on a three-sensor land use data evaluation for a portion of the Phoenix area is reported. Analyses between land use data generated from 1970 high altitude photography and that detectable from ERTS and Skylab, especially in terms of changes in land use indicate that ERTS and Skylab imagery can be used effectively to detect and identify areas of post-1970 land use change, especially those documenting urban expansion at the rural-urban fringe. Significant preliminary findings on the utility of ERTS and Skylab data for metropolitan land use analysis, substantiated by evaluation with 1970 and 1972 ground control land use data are reported.

Alexander, R. H. (principal investigator); Milazzo, V. A.

1974-01-01

255

MODELING LAND USE CHANGE AND ITS ECOLOGICAL CONSEQUENCES IN THE PHOENIX METROPOLITAN REGION Jianguo Wu, John David, Darrel Jenerette, Matt Luck, and Sheryl Berling-Wolff  

E-print Network

MODELING LAND USE CHANGE AND ITS ECOLOGICAL CONSEQUENCES IN THE PHOENIX METROPOLITAN REGION Jianguo land use change, multiple-scale analysis of the current urban landscape, spatial ecological footprint), (2) Land Use and Land Cover Change Modeling (a CA-Markov-GA model, a rule-based urban growth model

Hall, Sharon J.

256

Effects of land use on water quality and aquatic biota of three North Carolina Piedmont streams  

Microsoft Academic Search

Three streams in the Piedmont ecoregion of North Carolina were studied to evaluate the effect of land use (forested, agricultural, urban) on water quality and aquatic biota. In comparison with the forested stream, there were few changes in water quality at the agricultural and urban streams. Suspended-sediment yield was greatest for the urban catchment and least at the forested catchment.

David R. Lenat; J. Kent Crawford

1994-01-01

257

LAND USE, COVER AND FORMS CLASSIFICATION SYSTEM  

E-print Network

FLORIDA LAND USE, COVER AND FORMS CLASSIFICATION SYSTEM HANDBOOK JANUARY 1999 DEPARTMENT OF TRANSPORTATION SURVEYING AND MAPPING GEOGRAPHIC MAPPING SECTION #12;FLORIDA LAND USE, COVER AND FORMS LAND USE, COVER AND FORMS CLASSIFICATION SYSTEM ABOUT THIS EDITION: This is an updated FLORIDA LAND USE

Binford, Michael W.

258

DYNAMICS OF LAND-USE AND LAND-COVER CHANGE IN TROPICAL REGIONS  

Microsoft Academic Search

We highlight the complexity of land-use\\/cover change and propose a framework for a more general understanding of the issue, with emphasis on tropical regions. The review summarizes recent estimates on changes in cropland, agricultural intensification, tropical deforestation, pasture expansion, and urbanization and identifies the still unmeasured land-cover changes. Climate-driven land-cover modifications interact with land-use changes. Land-use change is driven by

Eric F. Lambin; Helmut J. Geist; Erika Lepers

2003-01-01

259

Integrating global socio-economic influences into a regional land use change model for China  

NASA Astrophysics Data System (ADS)

With rapid economic development and urbanization, land use in China has experienced huge changes in recent years; and this will probably continue in the future. Land use problems in China are urgent and need further study. Rapid land-use change and economic development make China an ideal region for integrated land use change studies, particularly the examination of multiple factors and global-regional interactions in the context of global economic integration. This paper presents an integrated modeling approach to examine the impact of global socio-economic processes on land use changes at a regional scale. We develop an integrated model system by coupling a simple global socio-economic model (GLOBFOOD) and regional spatial allocation model (CLUE). The model system is illustrated with an application to land use in China. For a given climate change, population growth, and various socio-economic situations, a global socio-economic model simulates the impact of global market and economy on land use, and quantifies changes of different land use types. The land use spatial distribution model decides the type of land use most appropriate in each spatial grid by employing a weighted suitability index, derived from expert knowledge about the ecosystem state and site conditions. A series of model simulations will be conducted and analyzed to demonstrate the ability of the integrated model to link global socioeconomic factors with regional land use changes in China. The results allow an exploration of the future dynamics of land use and landscapes in China.

Xu, Xia; Gao, Qiong; Peng, Changhui; Cui, Xuefeng; Liu, Yinghui; Jiang, Li

2014-03-01

260

Analysis of land use and land cover change in a coastal area of Rio de Janeiro using high-resolution remotely sensed data  

NASA Astrophysics Data System (ADS)

Coastal areas offer great recreational and economic opportunities, but require intensive resource management and environmental protection. Land use and land cover information provides a rapid and cost-effective means for monitoring and planning coastal area development. This study quantitatively describes spatiotemporal changes of land use and land cover over the last four decades in a coastal area of the state of Rio de Janeiro, Brazil. Historical aerial photographs from 1976 and satellite images from 1990 and 2012 were classified and analyzed. We used supervised classification and machine learning techniques to classify the images. An accuracy assessment of results was performed. Land use change statistics for the period indicate that urban areas have increased to the detriment of dense vegetation, salines, and bare soil. The analysis provides a basis for better control of anthropogenic impacts and geoconservation activities in this coastal area of Rio de Janeiro.

Avelar, Silvania; Tokarczyk, Piotr

2014-01-01

261

Impervious Surface Area Mapping using Landsat Imagery: Applications to Hydrology and Land Use Change Monitoring  

NASA Astrophysics Data System (ADS)

Impervious surfaces include rooftops, roads, parking lots and other areas that are impermeable to moisture. As the amount of built environment around urban areas has increased, it has been widely recognized that more impervious surface area (ISA) results in greater volume and intensity of stream flow, which can degrade stream health and require expensive modifications to flood control structures. Other effects include increased urban "heat island" influences and changes in local weather. If impervious areas could be accurately mapped using satellite imagery, it would provide valuable input to many applications, from hydrologic modeling to land use planning. We have developed a method to map subpixel ISA with Landsat Thematic Mapper (TM) imagery and classification - regression tree algorithms. This approach provides highly accurate (90+ percent) maps of ISA, but also permits estimation of the proportion of each cell occupied by impervious materials (between 0-100 percent). We report on a recently completed a map of ISA for the entire 163,000 km2 Chesapeake Bay watershed, a region of highly altered land cover and rapid land use change. We also report on the mapping of change patterns, indicated by ISA changes between 1986 - 2001, in an 18,000 km2 area centered on Baltimore - Washington, D.C. We review the methods, issues, technical challenges, results, accuracy, and advantages of this approach, and provide an overview of various applications for which the products are currently being used.

Smith, A.; Goetz, S. J.; Mazzacato, M. E.; Jantz, C.; Wright, R.

2002-12-01

262

Applications of Skylab data to land use and climatological analysis  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. Skylab study in Central Atlantic Regional Ecological Test Site encompassed two separate but related tasks: (1) evaluation of photographic sensors S190A and B as sources of land use data for planning and managing land resources in major metropolitan regions, and (2) evaluation of the multispectral scanner S192 used in conjunction with associated data and analytical techniques as a data source on urban climates and the surface energy balance. Photographs from the Skylab S190B earth terrain camera were of greatest interest in the land use analysis task; they were of sufficiently high resolution to identify and map many level 2 and 3 land use categories. After being corrected to allow for atmosphere effects, output from thermal and visible bands of the S192 was employed in constructing computer map plots of albedo and surface temperature.

Alexander, R. H. (principal investigator); Lewis, J. E., Jr.; Lins, H. F., Jr.; Jenner, C. B.; Outcalt, S. I.; Pease, R. W.

1976-01-01

263

Aerosol accumulation intensity and composition variations under different weather conditions in urban environment  

NASA Astrophysics Data System (ADS)

During the last decade aerosol (PM10, PM2.5) mass and composition measurements were done in different urban environments - parallel street canyons, industrial sites and at the background level in Riga, Latvia. Effect of meteorological parameters on the accumulation and ventilation intensity was investigated in order to understand microclimatological parameters affecting aerosol pollution level and chemical composition changes. In comparison to industrial sites (shipping activities, bulk cargo, oil and naphtha processing), urban street canyon aerosol mass concentration was significantly higher, for PM10 number of daily limit exceedances are higher by factor 3.4 - 3.9 in street canyons. Exceedances of PM2.5 annual limits were identified only in street canyons as well. Precipitation intensity, wind speed, days with mist highly correlates with aerosol concentration; in average during the year about 1 - 2 % presence of calm wind days, 20 - 30 days with mist facilitate accumulation of aerosols and mitigating growing of secondary aerosols. It has been assessed that about 25 % of daily exceedances in street canyons are connected with sea salt/street sanding factor. Strong dependency of wind speed and direction were identified in winter time - low winds (0.4 - 1.7 m/s) blowing from south, south-east (cross section of the street) contributing to PM10 concentrations over 100 - 150 ug/m3. Seasonal differences in aerosol concentrations were identified as a result of recombination of direct source impact, specific meteorological and synoptical conditions during the period from January until April when usually dominates extremely high aerosol concentrations. While aerosol mass concentration levels in monitoring sites significantly differs, concentrations of heavy metals (Pb, Ni, Cd, and As) are almost at the same level, even more - concentration of Cd for some years was higher in industrial area where main pollution is caused by oil processing and storage, heavy traffic activities and transportation by rail. The type of prevailing secondary aerosol formation was estimated by linear regression analysis which shows NOx prevalence in street canyons and urban background and SO2 associated reactions in industrial sites. Linear regression of traffic intensity in connection with aerosol pollution level shows domination of exhaust emissions during traffic jams and resuspension intensity during middle of the week.

Steinberga, Iveta; Bikshe, Janis; Eindorfa, Aiva

2014-05-01

264

Estimating Demand for Industrial and Commercial Land Use Given Economic Forecasts  

PubMed Central

Current developments in the field of land use modelling point towards greater level of spatial and thematic resolution and the possibility to model large geographical extents. Improvements are taking place as computational capabilities increase and socioeconomic and environmental data are produced with sufficient detail. Integrated approaches to land use modelling rely on the development of interfaces with specialized models from fields like economy, hydrology, and agriculture. Impact assessment of scenarios/policies at various geographical scales can particularly benefit from these advances. A comprehensive land use modelling framework includes necessarily both the estimation of the quantity and the spatial allocation of land uses within a given timeframe. In this paper, we seek to establish straightforward methods to estimate demand for industrial and commercial land uses that can be used in the context of land use modelling, in particular for applications at continental scale, where the unavailability of data is often a major constraint. We propose a set of approaches based on ‘land use intensity’ measures indicating the amount of economic output per existing areal unit of land use. A base model was designed to estimate land demand based on regional-specific land use intensities; in addition, variants accounting for sectoral differences in land use intensity were introduced. A validation was carried out for a set of European countries by estimating land use for 2006 and comparing it to observations. The models’ results were compared with estimations generated using the ‘null model’ (no land use change) and simple trend extrapolations. Results indicate that the proposed approaches clearly outperformed the ‘null model’, but did not consistently outperform the linear extrapolation. An uncertainty analysis further revealed that the models’ performances are particularly sensitive to the quality of the input land use data. In addition, unknown future trends of regional land use intensity widen considerably the uncertainty bands of the predictions. PMID:24647587

Batista e Silva, Filipe; Koomen, Eric; Diogo, Vasco; Lavalle, Carlo

2014-01-01

265

ERTS-1 applications to Minnesota land use mapping  

NASA Technical Reports Server (NTRS)

Land use class definitions that can be operationally employed with ERTS-1 imagery are being developed with the cooperation of personnel from several state, regional, and federal agencies with land management responsibilities within the state and the University of Minnesota. Investigations of urban, extractive, forest, and wetlands areas indicate that it is feasible to subdivide each of these classes into several sub-classes with the use of ERTS-1 images from one or more time periods.

Brown, D.; Gamble, J.; Prestin, S.; Trippler, D.; Meyer, M. P.; Ulliman, J. J.; Eller, R. G.

1973-01-01

266

Biodiversity, Urban Areas, and Agriculture: Locating Priority Ecoregions for Conservation  

Microsoft Academic Search

Urbanization and agriculture are two of the most important threats to biodiversity worldwide. The intensities of these land-use phenomena, however, as well as levels of biodiversity itself, differ widely among regions. Thus, there is a need to develop a quick but rigorous method of identifying where high levels of human threats and biodiversity coincide. These areas are clear priorities for

Taylor Ricketts; Marc Imhoff

2003-01-01

267

Land use mapping and modelling for the Phoenix Quadrangle  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. Comparison of 9 x 9 MSS band images and color composites made from bands 4, 5, and 6 showing vegetated areas near Phoenix during the summer and fall seasons aided in definitely establishing that certain land areas were being used as agricultural land and not as rangeland. Agricultural land, which appeared to be fallow, idle, or not irrigated, often became more readily identifiable as agricultural land when comparing different images of identical land areas which have been affected by seasonal vegetation changes. Experimentation with color density slicing portions of 9 x 9 MSS band 7 transparency showing the central urban core of phoenix enabled dense commercial and industrial areas to be separated from less dense urbanized land uses; however, loss of resolution produced results of limited usefulness. The best results in agricultural areas near Sun City were obtained using MSS band 5 imagery. Discrimination of different land uses in both urban and agricultural areas which were color density sliced was not possible to the degree of accuracy necessary to make mapping feasible. Examination of MSS transparencies and color composites allowed updating of a map of land use change in the Phoenix Quadrangle.

Place, J. L. (principal investigator)

1973-01-01

268

Land Use Planning (3cr.) Spring 2007  

E-print Network

ENV 3016 Land Use Planning (3cr.) Spring 2007 Tuesday 2:30-5:30 Bogue 17 Instructor Greg Brown Juergensmeyer, J.C. and T.E. Roberts. (2003). Land Use Planning and Development Regulation Law. St. Paul, MN: West Group. Randolph, J. (2004). Environmental Land Use Planning and Management. Washington, DC: Island

Brown, Gregory G.

269

Simulated impact of past and possible future land use changes on the hydrological response of the Northern German lowland ‘Hunte’ catchment  

NASA Astrophysics Data System (ADS)

SummaryLand use is a key factor controlling the hydrological behaviour of catchments. Changing land use therefore can have an important influence on the local hydrological cycle. Validated and process-based hydrological models are suitable tools to quantify the impact of a change in land use on the hydrological processes. In this study, the physically based catchment model WaSiM-ETH (Water Balance Simulation Model) was applied to a mesoscale lowland catchment in northern Germany (Hunte river, 2141 km 2 at gauge Oldenburg). Model calibration and validation showed that WaSiM-ETH well represented the discharge of the main Hunte river while the discharge dynamics of a few lowland tributaries whose catchments are characterised by peaty soils and intense artificial drainage could not be represented. The purpose of this study was twofold; on the one hand to analyse the sensitivity of WaSiM-ETH to changes in land use observed in the decade 1990-2000, and on the other hand to quantify the impact of land use change projected for the future in terms of land use scenarios available to the public. The results showed that WaSiM-ETH is hardly sensitive to the slight changes observed in the last decade of the 20th century. By contrast, water flows simulated by WaSiM-ETH are clearly impacted by agricultural land use scenarios which were developed based on IPCC scenarios. However, the results also show that it is not sufficient to focus on agricultural land use, only. The proposed reduction of agricultural land leaves open the final land cover after land use change, e.g., forest or urban areas. This study demonstrated that WaSiM-ETH was more sensitive to the choice of the final land cover than to the difference in the scenarios (e.g., A1F1 versus B1). Therefore, we recommend to precisely define change in agricultural land use as well as the final land cover in order to estimate the realistic impact of land use change on hydrological behaviour.

Elfert, Simon; Bormann, Helge

2010-03-01

270

Ecological influence and pathways of land use in sagebrush  

USGS Publications Warehouse

Land use in sagebrush (Artemisia spp.) landscapes influences all sage-grouse (Centrocer-cus spp.) populations in western North America. Croplands and the network of irrigation canals cover 230,000 km2 and indirectly influence up to 77% of the Sage-Grouse Conservation Area and 73% of sagebrush land cover by subsidizing synanthropic predators on sage-grouse. Urbanization and the demands of human population growth have created an extensive network of con-necting infrastructure that is expanding its influence on sagebrush landscapes. Over 2,500 km2 are now covered by interstate highways and paved roads; when secondary roads are included, 15% of the Sage-Grouse Conservation Area and 5% of existing sagebrush habitats are 2.5 km from roads. Density of secondary roads often exceeds 5 km/km2, resulting in widespread motorized access for recreation, creating extensive travel corridors for management actions and resource development, subsidizing predators adapted to human presence, and facilitating spread of exotic or invasive plants. Sagebrush lands also are being used for their wilderness and recreation values, including off highway vehicle use. Approximately 12,000,000 animal use months (AUM amount of forage to support one livestock unit per month) are permitted for grazing livestock on public lands in the western states. Direct effects of grazing on sage-grouse populations or sagebrush landscapes are not possible to assess from current data. However, management of lands grazed by livestock has influenced sagebrush ecosystems by vegetation treatments to increase forage and reduce sagebrush and other plant species unpalatable to livestock. Fences (2 km/km2 in some regions), roads, and water developments to manage livestock movements further modify the landscape. Oil and gas development influences 8% of the sagebrush habitats with the highest intensities occurring in the eastern range of sage-grouse; 20% of the sagebrush distribution is indirectly influenced in the Great Plains, Wyoming Basin, and Colorado Plateau SMZs. Energy development physically removes habitat to construct well pads, roads, power lines, and pipelines; indirect effects include habitat fragmentation, soil disturbance, and facilitation of exotic plant and animal spread. More recent development of alternative energy, such as wind and geothermal, creates infrastructure in new regions of the sage-grouse distribution. Land use will continue to be a dominant stressor on sage-brush systems; its individual and cumulative effects will challenge long-term conservation of sage-grouse populations.

Knick, Steven T.; Hanser, Steven E.; Miller, Richard F.; Pyke, David A.; Wisdom, Michael J.; Finn, Sean P.; Rinkes, E. Thomas; Henny, Charles J.

2011-01-01

271

Long-Term Effects of Changing Land Use Practices on Surface Water Quality in a Coastal River and Lagoonal Estuary  

NASA Astrophysics Data System (ADS)

The watershed of the Neuse River, a major tributary of the largest lagoonal estuary on the U.S. mainland, has sustained rapid growth of human and swine populations. This study integrated a decade of available land cover and water quality data to examine relationships between land use changes and surface water quality. Geographic Information Systems (GIS) analysis was used to characterize 26 subbasins throughout the watershed for changes in land use during 1992-2001, considering urban, agricultural (cropland, animal as pasture, and densities of confined animal feed operations [CAFOs]), forested, grassland, and wetland categories and numbers of wastewater treatment plants (WWTPs). GIS was also used together with longitudinal regression analysis to identify specific land use characteristics that influenced surface water quality. Total phosphorus concentrations were significantly higher during summer in subbasins with high densities of WWTPs and CAFOs. Nitrate was significantly higher during winter in subbasins with high numbers of WWTPs, and organic nitrogen was higher in subbasins with higher agricultural coverage, especially with high coverage of pastures fertilized with animal manure. Ammonium concentrations were elevated after high precipitation. Overall, wastewater discharges in the upper, increasingly urbanized Neuse basin and intensive swine agriculture in the lower basin have been the highest contributors of nitrogen and phosphorus to receiving surface waters. Although nonpoint sources have been emphasized in the eutrophication of rivers and estuaries such as the Neuse, point sources continue to be major nutrient contributors in watersheds sustaining increasing human population growth. The described correlation and regression analyses represent a rapid, reliable method to relate land use patterns to water quality, and they can be adapted to watersheds in any region.

Rothenberger, Meghan B.; Burkholder, Joann M.; Brownie, Cavell

2009-09-01

272

APPLIED ISSUES Influence of land use on stream ecosystem function in a  

E-print Network

take into consideration these connections when designing stream management and restoration plans contrasting land use gradients: (i) from forested- to urban-dominated catchments and (ii) from low to moderate the gradient from forested- to urban-dominated catch- ments primarily in response to increases in stream

Marks, Jane

273

Integrated climate/land use/hydrological change scenarios for assessing threats to ecosystem services on California rangelands  

NASA Astrophysics Data System (ADS)

In California there are over 18 million acres of rangelands in the Central Valley and the interior Coast Range, most of which are privately owned and managed for livestock production. Ranches provide extensive wildlife habitat and generate multiple ecosystem services that carry considerable market and non-market values. These rangelands are under pressure from urbanization and conversion to intensive agriculture, as well as from climate change that can alter the flow of these services. To understand the coupled and isolated impacts of land use and climate change on rangeland ecosystem services, we developed six spatially explicit (250 m) coupled climate/land use/hydrological change scenarios for the Central Valley and oak woodland regions of California consistent with three IPCC emission scenarios - A2, A1B and B1. Three land use land cover (LULC) change scenarios were each integrated with two downscaled global climate models (GCMs) (a warm, wet future and a hot, dry future) and related hydrologic data. We used these scenarios to quantify wildlife habitat, water supply (recharge potential and streamflow) and carbon sequestration on rangelands and to conduct an economic analysis associated with changes in these benefits. The USGS FOREcasting SCEnarios of land-use change model (FORE-SCE), which runs dynamically with downscaled GCM outputs, was used to generate maps of yearly LULC change for each scenario from 2006 to 2100. We used the USGS Basin Characterization Model (BCM), a regional water balance model, to generate change in runoff, recharge, and stream discharge based on land use change and climate change. Metrics derived from model outputs were generated at the landscape scale and for six case-study watersheds. At the landscape scale, over a quarter of the million acres set aside for conservation in the B1 scenario would otherwise be converted to agriculture in the A2 scenario, where temperatures increase by up to 4.5 °C compared to 1.3 °C in the B1 scenario. A comparison of two watersheds - Alameda Creek, an urbanized watershed, and Upper Stony Creek, impacted by intensified agriculture, demonstrates the relative contribution of urbanization and climate change to water supply. In Upper Stony Creek, where 24% of grassland is converted to agriculture in the A1B scenario, a hotter, dryer 4-year time period could lead to a 40% reduction in streamflow compared to present day. In Alameda Creek, for the same scenario, 47% of grassland is converted to urbanized lands and streamflow may increase by 11%, resulting in a recharge:runoff ratio of 0.26; though if urbanization does not take place, streamflow could decrease by 64% and the recharge:runoff ratio would be 1.2. Model outputs quantify the impact of urbanization on water supply and show the importance of soil storage capacity. Scenarios have applications for climate-smart conservation and land use planning by identifying outcomes associated with coupled future land use scenarios and more variable and extreme potential future climates.

Byrd, K. B.; Flint, L. E.; Casey, C. F.; Alvarez, P.; Sleeter, B. M.; Sohl, T.

2013-12-01

274

Analysis of land use and land cover change in a coastal area of Rio de Janeiro using  

E-print Network

1 Analysis of land use and land cover change in a coastal area of Rio de Janeiro using high opportunities, but require intensive resource management and environmental protection. Land use and land cover. This study quantitatively describes spatiotemporal changes of land use and land cover over the last four

275

Current and Future Land Use around a Nationwide Protected Area Network  

PubMed Central

Land-use change around protected areas can reduce their effective size and limit their ability to conserve biodiversity because land-use change alters ecological processes and the ability of organisms to move freely among protected areas. The goal of our analysis was to inform conservation planning efforts for a nationwide network of protected lands by predicting future land use change. We evaluated the relative effect of three economic policy scenarios on land use surrounding the U.S. Fish and Wildlife Service's National Wildlife Refuges. We predicted changes for three land-use classes (forest/range, crop/pasture, and urban) by 2051. Our results showed an increase in forest/range lands (by 1.9% to 4.7% depending on the scenario), a decrease in crop/pasture between 15.2% and 23.1%, and a substantial increase in urban land use between 28.5% and 57.0%. The magnitude of land-use change differed strongly among different USFWS administrative regions, with the most change in the Upper Midwestern US (approximately 30%), and the Southeastern and Northeastern US (25%), and the rest of the U.S. between 15 and 20%. Among our scenarios, changes in land use were similar, with the exception of our “restricted-urban-growth” scenario, which resulted in noticeably different rates of change. This demonstrates that it will likely be difficult to influence land-use change patterns with national policies and that understanding regional land-use dynamics is critical for effective management and planning of protected lands throughout the U.S. PMID:23383275

Hamilton, Christopher M.; Martinuzzi, Sebastian; Plantinga, Andrew J.; Radeloff, Volker C.; Lewis, David J.; Thogmartin, Wayne E.; Heglund, Patricia J.; Pidgeon, Anna M.

2013-01-01

276

Current and future land use around a nationwide protected area network.  

PubMed

Land-use change around protected areas can reduce their effective size and limit their ability to conserve biodiversity because land-use change alters ecological processes and the ability of organisms to move freely among protected areas. The goal of our analysis was to inform conservation planning efforts for a nationwide network of protected lands by predicting future land use change. We evaluated the relative effect of three economic policy scenarios on land use surrounding the U.S. Fish and Wildlife Service's National Wildlife Refuges. We predicted changes for three land-use classes (forest/range, crop/pasture, and urban) by 2051. Our results showed an increase in forest/range lands (by 1.9% to 4.7% depending on the scenario), a decrease in crop/pasture between 15.2% and 23.1%, and a substantial increase in urban land use between 28.5% and 57.0%. The magnitude of land-use change differed strongly among different USFWS administrative regions, with the most change in the Upper Midwestern US (approximately 30%), and the Southeastern and Northeastern US (25%), and the rest of the U.S. between 15 and 20%. Among our scenarios, changes in land use were similar, with the exception of our "restricted-urban-growth" scenario, which resulted in noticeably different rates of change. This demonstrates that it will likely be difficult to influence land-use change patterns with national policies and that understanding regional land-use dynamics is critical for effective management and planning of protected lands throughout the U.S. PMID:23383275

Hamilton, Christopher M; Martinuzzi, Sebastian; Plantinga, Andrew J; Radeloff, Volker C; Lewis, David J; Thogmartin, Wayne E; Heglund, Patricia J; Pidgeon, Anna M

2013-01-01

277

Land use causes genetic differentiation of life-history traits in Bromus hordeaceus.  

PubMed

There is increasing evidence that species can evolve rapidly in response to environmental change. However, although land use is one of the key drivers of current environmental change, studies of its evolutionary consequences are still fairly scarce, in particular studies that examine land-use effects across large numbers of populations, and discriminate between different aspects of land use. Here, we investigated genetic differentiation in relation to land use in the annual grass Bromus hordeaceus. A common garden study with offspring from 51 populations from three regions and a broad range of land-use types and intensities showed that there was indeed systematic population differentiation of ecologically important plant traits in relation to land use, in particular due to increasing mowing and grazing intensities. We also found strong land-use-related genetic differentiation in plant phenology, where the onset of flowering consistently shifted away from the typical time of management. In addition, increased grazing intensity significantly increased the genetic variability within populations. Our study suggests that land use can cause considerable genetic differentiation among plant populations, and that the timing of land use may select for phenological escape strategies, particularly in monocarpic plant species. PMID:23504845

Völler, Eva; Auge, Harald; Bossdorf, Oliver; Prati, Daniel

2013-03-01

278

Changes in Land Cover and Land Use in the Pearl River Delta, China  

Microsoft Academic Search

Over the last two decades, land-use changes in China have been dominated by an urban transformation unprecedented in human\\u000a history. The Chinese landscape, which for thousands of years was mainly rural, is becoming increasingly urban. Natural ecosystems,\\u000a farms, rangelands, towns, and villages are being converted into, or enveloped by, extended metropolitan regions. This urban\\u000a revolution has profound environmental impacts, including

Karen C. Seto; Curtis E. Woodcock; Robert K. Kaufmann

279

Land use map, Finney County, Kansas  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. Methods for the mapping of land use in agricultural regions are developed and applied to preparation of a land use map of Finney County, Kanas. Six land use categories were identified from an MSS-5 image. These categories are: (1) large field irrigation; (2) small field irrigation; (3) dryland cultivation; (4) rangeland; (5) cultural features; and (6) riverine land. The map is composed of basically homogeneous regions with definable mixtures of the six categories. Each region is bounded by an ocularly evident change in land use.

Morain, S. A. (principal investigator); Williams, D. L.; Coiner, J. C.

1973-01-01

280

A land use and environmental impact analysis of the Norfolk-Portsmouth SMSA  

NASA Technical Reports Server (NTRS)

The feasibility of using remote sensing techniques for land use and environmental assessment in the Norfolk-Portsmouth area is discussed. Data cover the use of high altitude aircraft and satellite remote sensing data for: (1) identifying various heirarchial levels of land use, (2) monitoring land use changes for repetitive basis, (3) assessing the impact of competing land uses, and (4) identifying areas of potential environmental deterioration. High altitude aircraft photographs (scale 1:120,000) acquired in 1959, 1970, and 1972, plus Earth Resources Technology Satellite (ERTS-1) color composite images acquired in 1972 were used for the land use and environmental assessments. The high altitude aircraft photography, as expected, was successfully used to map Level 1, Level 2, as well as some urban Level 3 land use categories. However, the detail of land use analysis obtainable from the ERTS imagery exceeded the expectations for the U.S. Geological Survey's land use classification scheme. Study results are consistent with the initial investigation which determined Level 1 land use change to be 16.7 square km per year.

Mitchel, W. B.; Berlin, G. L.

1973-01-01

281

Systemic change increases forecast uncertainty of land use change models  

NASA Astrophysics Data System (ADS)

Cellular Automaton (CA) models of land use change are based on the assumption that the relationship between land use change and its explanatory processes is stationary. This means that model structure and parameterization are usually kept constant over time, ignoring potential systemic changes in this relationship resulting from societal changes, thereby overlooking a source of uncertainty. Evaluation of the stationarity of the relationship between land use and a set of spatial attributes has been done by others (e.g., Bakker and Veldkamp, 2012). These studies, however, use logistic regression, separate from the land use change model. Therefore, they do not gain information on how to implement the spatial attributes into the model. In addition, they often compare observations for only two points in time and do not check whether the change is statistically significant. To overcome these restrictions, we assimilate a time series of observations of real land use into a land use change CA (Verstegen et al., 2012), using a Bayesian data assimilation technique, the particle filter. The particle filter was used to update the prior knowledge about the parameterization and model structure, i.e. the selection and relative importance of the drivers of location of land use change. In a case study of sugar cane expansion in Brazil, optimal model structure and parameterization were determined for each point in time for which observations were available (all years from 2004 to 2012). A systemic change, i.e. a statistically significant deviation in model structure, was detected for the period 2006 to 2008. In this period the influence on the location of sugar cane expansion of the driver sugar cane in the neighborhood doubled, while the influence of slope and potential yield decreased by 75% and 25% respectively. Allowing these systemic changes to occur in our CA in the future (up to 2022) resulted in an increase in model forecast uncertainty by a factor two compared to the assumption of a stationary system. This means that the assumption of a constant model structure is not adequate and largely underestimates uncertainty in the forecast. Non-stationarity in land use change projections is challenging to model, because it is difficult to determine when the system will change and how. We believe that, in sight of these findings, land use change modelers should be more aware, and communicate more clearly, that what they try to project is at the limits, and perhaps beyond the limits, of what is still projectable. References Bakker, M., Veldkamp, A., 2012. Changing relationships between land use and environmental characteristics and their consequences for spatially explicit land-use change prediction. Journal of Land Use Science 7, 407-424. Verstegen, J.A., Karssenberg, D., van der Hilst, F., Faaij, A.P.C., 2012. Spatio-Temporal Uncertainty in Spatial Decision Support Systems: a Case Study of Changing Land Availability for Bioenergy Crops in Mozambique. Computers , Environment and Urban Systems 36, 30-42.

Verstegen, J. A.; Karssenberg, D.; van der Hilst, F.; Faaij, A.

2013-12-01

282

Remote sensing of effects of land use practices on water quality  

NASA Technical Reports Server (NTRS)

An intensive study was conducted to determine the utility of manual densitometry and color additive viewing of aircraft and LANDSAT transparencies for monitoring land use and land use change. The relationship between land use and selected water quality parameters was also evaluated. Six watersheds located in the Cumberland Plateau region of eastern Kentucky comprised the study area for the project. Land uses present within the study area were reclaimed surface mining and forestry. Fertilization of one of the forested watersheds also occurred during the study period.

Graves, D. H.; Colthrap, G. B.

1977-01-01

283

Shallow ground-water quality beneath a major urban center: Denver, Colorado, USA  

NASA Astrophysics Data System (ADS)

A survey of the chemical quality of ground water in the unconsolidated alluvial aquifer beneath a major urban center (Denver, Colorado, USA) was performed in 1993 with the objective of characterizing the quality of shallow ground-water in the urban area and relating water quality to land use. Thirty randomly selected alluvial wells were each sampled once for a broad range of dissolved constituents. The urban land use at each well site was sub-classified into one of three land-use settings: residential, commercial, and industrial. Shallow ground-water quality was highly variable in the urban area and the variability could be related to these land-use setting classifications. Sulfate (SO 4) was the predominant anion in most samples from the residential and commercial land-use settings, whereas bicarbonate (HCO 3) was the predominant anion in samples from the industrial land-use setting, indicating a possible shift in redox conditions associated with land use. Only three of 30 samples had nitrate concentrations that exceeded the US national drinking-water standard of 10 mg l -1 as nitrogen, indicating that nitrate contamination of shallow ground water may not be a serious problem in this urban area. However, the highest median nitrate concentration (4.2 mg l -1) was in samples from the residential setting, where fertilizer application is assumed to be most intense. Twenty-seven of 30 samples had detectable pesticides and nine of 82 analyzed pesticide compounds were detected at low concentrations, indicating that pesticides are widely distributed in shallow ground water in this urban area. Although the highest median total pesticide concentration (0.17 ?g l -) was in the commercial setting, the herbicides prometon and atrazine were found in each land-use setting. Similarly, 25 of 29 samples analyzed had detectable volatile organic compounds (VOCs) indicating these compounds are also widely distributed in this urban area. The total VOC concentrations in sampled wells ranged from nondetectable to 23 442 ?g l -. Widespread detections and occasionally high concentrations point to VOCs as the major anthropogenic ground-water impact in this urban environment. Generally, the highest VOC concentrations occurred in samples from the industrial setting. The most frequently detected VOC was the gasoline additive methyl tert-butyl ether (MTBE, in 23 of 29 wells). Results from this study indicate that the quality of shallow ground water in major urban areas can be related to land-use settings. Moreover, some VOCs and pesitides may be widely distributed at low concentrations in shallow ground water throughout major urban areas. As a result, the differentiation between point and non-point sources for these compounds in urban areas may be difficult.

Bruce, Breton W.; McMahon, Peter B.

1996-11-01

284

Stream fish occurrence in response to impervious cover, historic land use, and hydrogeomorphic factors  

Microsoft Academic Search

Abstract: We evaluated competing,models,explaining the occurrence of five stream fishes in an urbanizing watershed to determine the relative importance of (a) impervious surface and other indicators of current land use, (b) historic land use (e.g., agriculture, impoundments), and (c) hydrogeomorphic characteristics (e.g., stream size, elevation, geology). For four of five species, the best-supported models were those that included both current

Seth J. Wenger; James T. Peterson; Mary C. Freeman; Byron J. Freeman; D. David Homans

2008-01-01

285

High-Resolution Land Use and Land Cover Mapping  

USGS Publications Warehouse

As the Nation?s population grows, quantifying, monitoring, and managing land use becomes increasingly important. The U.S. Geological Survey (USGS) has a long heritage of leadership and innovation in land use and land cover (LULC) mapping that has been the model both nationally and internationally for over 20 years. At present, the USGS is producing high-resolution LULC data for several watershed and urban areas within the United States. This high-resolution LULC mapping is part of an ongoing USGS Land Cover Characterization Program (LCCP). The four components of the LCCP are global (1:2,000,000-scale), national (1:100,000-scale), urban (1:24,000-scale), and special projects (various scales and time periods). Within the urban and special project components, the USGS Rocky Mountain Mapping Center (RMMC) is collecting historical as well as contemporary high-resolution LULC data. RMMC?s high-resolution LULC mapping builds on the heritage and success of previous USGS LULC programs and provides LULC information to meet user requirements.

U.S. Geological Survey

1999-01-01

286

PLACES: A Tool For Sustainable Land Use  

EPA Science Inventory

Rapid development of the human made environment to meet human needs and expand the economy is largely responsible for environmental losses. Because all land uses will incrementally and cumulatively degrade ecosystems that sustain human life, site-level land use decisions must ac...

287

Land-use survey of Idukki District  

Microsoft Academic Search

The growing population pressure and limited availability of land necessitates proper utilization of the available land through scientific land-use planning. Realizing this fact, a project using multiband aerial photography was taken up with following objectives: identification and mapping of areas under various land uses, study of geomorphology, identification of potential groundwater areas and identification of areas requiring soil conservation and

Baldev Sahai; J. S. Parihar; S. R. Nayak; T. P. Singh; M. V. Muley; C. B. Tiwari; V. Tamilarasan; D. M. Shende; T. V. Samuel; C. V. Thomas; G. Gopinathan; G. Vijayan; K. Rajamohan; G. Devapalan Nair

1985-01-01

288

Land Use Management for Solid Waste Programs  

ERIC Educational Resources Information Center

The author discusses the problems of solid waste disposal and examines various land use management techniques. These include the land use plan, zoning, regionalization, land utilities, and interim use. Information concerning solid waste processing site zoning and analysis is given. Bibliography included. (MA)

Brown, Sanford M., Jr.

1974-01-01

289

Future scenarios of European agricultural land use  

Microsoft Academic Search

This paper presents the development of quantitative, spatially explicit and alternative scenarios of future agricultural land use in Europe (the 15 European Union member states, Norway and Switzerland). The scenarios were constructed to support analyses of the vulnerability of ecosystem services, but the approach also provides an exploration of how agricultural land use might respond to a range of future

M. D. A. Rounsevell; F. Ewert; I. Reginster; R. Leemans; T. R. Carter

2005-01-01

290

Planning for Transportation, Land Use, and Sustainability  

E-print Network

Planning for Transportation, Land Use, and Sustainability Big Issues / Broad Thoughts Terry Moore, FAICP! ECONorthwest and! National Center for Smart Growth! moore@eugene.econw.com" www.econw.com! Iceland: Conference on Transportation / Land Use ! 2! Terry Moore February 2010! Conference: Broad Topics

Karlsson, Brynjar

291

Monitoring 1985-2005 land use and land cover change in the Phoenix metropolitan area: distance and direction  

E-print Network

Monitoring 1985-2005 land use and land cover change in the Phoenix metropolitan area: distance changed the land surfaces in Phoenix. Changes of land use and land cover, especially from the expansion converted into some category of urban use, 54% was agricultural and 40% was desert land. Of the converted

Hall, Sharon J.

292

Application of spatial features to satellite land-use analysis. [spectral signature variations  

NASA Technical Reports Server (NTRS)

A Level I land-use analysis of selected training areas of the Colorado Front Range was carried out using digital ERTS-A satellite imagery. Level I land-use categories included urban, agriculture (irrigated and dryland farming), rangeland, and forests. The spatial variations in spectral response for these land-use classes were analyzed using discrete two-dimensional Fourier transforms to isolate and extract spatial features. Analysis was performed on ERTS frame 1352-17134 (July 10, 1973) and frame number 1388-17131 (August 15, 1973). On training sets, spatial features yielded 80 to 100 percent classification accuracies with commission errors ranging from 0 to 20 percent.

Smith, J.; Hornung, R.; Berry, J.

1975-01-01

293

Assessing the impacts of land use changes on watershed hydrology using MIKE SHE  

NASA Astrophysics Data System (ADS)

A fully distributed, physically-based hydrologic modeling system, MIKE SHE, was used in this study to investigate whole-watershed hydrologic response to land use changes within the Gyeongancheon watershed in Korea. A grid of 200 × 200 m was established to represent spatial variations in geology, soil, and land use. Initial model performance was evaluated by comparing observed and simulated streamflow from 1988 to 1991. Results indicated that the calibrated MIKE SHE model was able to predict streamflow well during the calibration and validation periods. Proportional changes in five classes of land use within the watershed were derived from multi-temporal Landsat TM imageries taken in 1980, 1990 and 2000. These imageries revealed that the watershed experienced conversion of approximately 10% non-urban area to urban area between 1980 and 2000. The calibrated MIKE SHE model was then programmed to repeatedly analyze an artificial dataset under the various land use proportions identified in the Landsat TM imageries. The analysis was made to quantitatively assess the impact of land use changes (predominantly urbanization) on watershed hydrology. There were increases in total runoff (5.5%) and overland flow (24.8%) as a response to the land use change.

Im, Sangjun; Kim, Hyeonjun; Kim, Chulgyum; Jang, Cheolhee

2009-03-01

294

Evaluation of land use regression models (LURs) for nitrogen dioxide and benzene in four U.S. Cities.  

EPA Science Inventory

Spatial analysis studies have included application of land use regression models (LURs) for health and air quality assessments. Recent LUR studies have collected nitrogen dioxide (NO2) and volatile organic compounds (VOCs) using passive samplers at urban air monitoring networks ...

295

CARETS: A prototype regional environmental information system. Volume 2, parts A and B: Norfolk and environs; a land use perspective  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. The Norfolk-Portsmouth metropolitan statistical area in southeastern Virginia was the site of intensive testing of a number of land resources assessment methods. Land use and land cover data at three levels of detail were derived by manual image interpretation from both aircraft and satellite sources and used to characterize the 1,766 sq km (682 sq mi) area from the perspective of its various resource-related activities and problems. Measurements at level 1 from 1:100, 000 scale maps revealed 42 percent of the test area (excluding bays and estuaries) to be forest, 28 percent agriculture, 23 percent urban and built-up, 4 percent nonforested wetlands, and 2 percent water. At the same scale and level of detail, 10 percent of the area underwent change from one land use category to another in the period 1959-70, 62 percent of which involved the relatively irreversible change from forest or agriculture to urban uses.

Alexander, R. H. (principal investigator); Buzzanell, P. J.; Fitzpatrick, K. A.; Lins, H. F., Jr.; Mcginty, H. K., III

1975-01-01

296

Introduction to Land Use Decision Making Kit and Economics of Land Use. [2 Units].  

ERIC Educational Resources Information Center

Included in this set of materials are two units: (1) Introduction to Land Use Decision Making Kit, and (2) Economics of Land Use. Each unit includes student guide sheets, reference material, and tape script. A set of 35mm slides and audiotapes are usually used with the materials. The introductory unit provides an overview of land use and suggested…

Haakonsen, Harry O., Ed.; Schaefer, Larry, Ed.

297

Understanding the global land-use marketplace  

NASA Astrophysics Data System (ADS)

Over 7 billion humans inhabit Earth and our population increases by more than a hundred per minute. Satisfying the resource demands of seven-plus billion people whilst sustaining the Earth System is a delicate balancing act. We need to balance resource use with regenerative capacity and this balance must avoid tipping points beyond which return and recovery are impossible. Tipping points in the physical, biogeochemical and ecological components of the Earth System have all been proposed - adding the global land-use marketplace to such a list may not be obvious but it undeniably deserves attention. The land is where most humans live most of the time. It meets most food, fuel, freshwater and fibre requirements and shapes Earth's climate. As land is essentially a finite resource this leads to intense competition. Monetizing land resources is nothing new. Choice of agricultural practice has long been governed in part by economics. But in recent years monetization has extended to include new dimensions such as carbon trading and biodiversity offsetting. Our land-use marketplace now has to optimise food, fibre and fuel production whilst maintaining and enhancing land's role as a carbon sink, a hydrologic reservoir and a support for biological diversity. International (and national) environmental policies aim to find a balance between such competing uses. These policies call for accurate, accountable and timely evidence concerning how, when and where land resources are changing. In 2013 the European Space Agency will launch the first of the Copernicus programme's Earth Observing Sentinel satellites. These technologically advanced systems are matched to data acquisition and processing strategies that should provide scientific evidence concerning the land on an unprecedented scale. This paper provides one vision of how Earth science will benefit from the Sentinels and their associated services and how this science will subsequently inform and shape policies, especially those linked to Multilateral Environmental Agreements. Examples will show how the science can promote transparency and good governance, help build knowledge-bases, capacity and markets and illustrates how Copernicus services and the Sentinels are an important component of EU international co-operation.

Belward, Alan

2013-04-01

298

Modeling biofuel expansion effects on land use change dynamics  

NASA Astrophysics Data System (ADS)

Increasing demand for crop-based biofuels, in addition to other human drivers of land use, induces direct and indirect land use changes (LUC). Our system dynamics tool is intended to complement existing LUC modeling approaches and to improve the understanding of global LUC drivers and dynamics by allowing examination of global LUC under diverse scenarios and varying model assumptions. We report on a small subset of such analyses. This model provides insights into the drivers and dynamic interactions of LUC (e.g., dietary choices and biofuel policy) and is not intended to assert improvement in numerical results relative to other works. Demand for food commodities are mostly met in high food and high crop-based biofuel demand scenarios, but cropland must expand substantially. Meeting roughly 25% of global transportation fuel demand by 2050 with biofuels requires >2 times the land used to meet food demands under a presumed 40% increase in per capita food demand. In comparison, the high food demand scenario requires greater pastureland for meat production, leading to larger overall expansion into forest and grassland. Our results indicate that, in all scenarios, there is a potential for supply shortfalls, and associated upward pressure on prices, of food commodities requiring higher land use intensity (e.g., beef) which biofuels could exacerbate.

Warner, Ethan; Inman, Daniel; Kunstman, Benjamin; Bush, Brian; Vimmerstedt, Laura; Peterson, Steve; Macknick, Jordan; Zhang, Yimin

2013-03-01

299

Land-use/land-cover drives variation in the specific inherent optical properties of estuaries  

NASA Astrophysics Data System (ADS)

Land-use/land-cover change impacts the exports of biogeochemically active constituents to estuaries. Specific inherent optical properties (SIOPs) are directly related to the composition of optically active water constituent in estuaries, and are important inputs for semi-analytical ocean color remote sensing algorithms. Studying the relationship between land-use/land-cover and SIOPs may help us to better understand how land-use/land-cover change affects the biological properties in the estuaries, and assist to optimize and tune local ocean color remote sensing algorithms for water quality retrieval. Using data from six estuaries on the northeast coast of the Gulf of Mexico, the relationships between land-use/land-cover and SIOPs were analyzed in this study. The results showed that land-use/land-cover change significantly affected the SIOPs in the six systems. Changing vegetation (Evergreen+Wetland) cover to developed land cover (Urban+Agriculture) decreased specific phytoplankton absorption (a*ph), but increased the slope of absorption spectral from detrital particles (Sd) and chromophoric dissolved organic matter (Sg). These trends indicated that land-use/land-cover change significantly influenced the phytoplankton cell size distribution, organic particle concentration, and the ratio of dissolved organic matter to dissolved inorganic nitrogen (DOC/DIN) in these systems by enhancing the nutrient loading and organic matter transport. The strong relationships between SIOPs and land-use/land-cover implied that the variation of SIOPs may be predictable in different systems with knowledge of land-use/land-cover.

Le, C.; Lehrter, J. C.; Schaeffer, B. A.; Hu, C.

2013-12-01

300

Land use classification utilizing remote multispectral scanner data and computer analysis techniques  

NASA Technical Reports Server (NTRS)

An airborne multispectral scanner was used to collect the visible and reflective infrared data. A small subdivision near Lafayette, Indiana was selected as the test site for the urban land use study. Multispectral scanner data were collected over the subdivision on May 1, 1970 from an altitude of 915 meters. The data were collected in twelve wavelength bands from 0.40 to 1.00 micrometers by the scanner. The results indicated that computer analysis of multispectral data can be very accurate in classifying and estimating the natural and man-made materials that characterize land uses in an urban scene.

Leblanc, P. N.; Johannsen, C. J.; Yanner, J. E.

1973-01-01

301

An analysis of metropolitan land-use by machine processing of earth resources technology satellite data  

NASA Technical Reports Server (NTRS)

A successful application of state-of-the-art remote sensing technology in classifying an urban area into its broad land use classes is reported. This research proves that numerous urban features are amenable to classification using ERTS multispectral data automatically processed by computer. Furthermore, such automatic data processing (ADP) techniques permit areal analysis on an unprecedented scale with a minimum expenditure of time. Also, classification results obtained using ADP procedures are consistent, comparable, and replicable. The results of classification are compared with the proposed U. S. G. S. land use classification system in order to determine the level of classification that is feasible to obtain through ERTS analysis of metropolitan areas.

Mausel, P. W.; Todd, W. J.; Baumgardner, M. F.

1976-01-01

302

Mapping Global Urban Extent and Intensity for Environmental Monitoring and Modeling  

NASA Astrophysics Data System (ADS)

The human dimensions of global environmental change have received increased attention in policy, decision- making, research, and even the media. However, the influence of urban areas in global change processes is still often assumed to be negligible. Although local environmental conditions such as the urban heat island effect are well-documented, little or no work has focused on cross-scale interactions, or the ways in which local urban processes cumulatively impact global changes. Given the rapid rates of rural-urban migration, economic development and urban spatial expansion, it is becoming increasingly clear that the `ecological footprint' of cities may play a critical role in environmental changes at regional and global scales. Our understanding of the cumulative impacts of urban areas on natural systems has been limited foremost by a lack of reliable, accurate data on current urban form and extent at the global scale. The data sets that have emerged to fill this gap (LandScan, GRUMP, nighttime lights) suffer from a number of limitations that prevent widespread use. Building on our early efforts with MODIS data, our current work focuses on: (1) completing a new, validated map of global urban extent; and (2) developing methods to estimate the subpixel fraction of impervious surface, vegetation, and other land cover types within urbanized areas using coarse resolution satellite imagery. For the first task, a technique called boosting is used to improve classification accuracy and provides a means to integrate 500 m resolution MODIS data with ancillary data sources. For the second task, we present an approach for estimating percent cover that relies on continuous training data for a full range of city types. These exemplars are used as inputs to fuzzy neural network and regression tree algorithms to predict fractional amounts of land cover types with increased accuracy. Preliminary results for a global sample of 100 cities (which vary in population size, level of economic development, and spatial extent) show good agreement with the expected morphology in each region.

Schneider, A.; Friedl, M. A.

2007-05-01

303

Integrating life-cycle environmental and economic assessment with transportation and land use planning.  

PubMed

The environmental outcomes of urban form changes should couple life-cycle and behavioral assessment methods to better understand urban sustainability policy outcomes. Using Phoenix, Arizona light rail as a case study, an integrated transportation and land use life-cycle assessment (ITLU-LCA) framework is developed to assess the changes to energy consumption and air emissions from transit-oriented neighborhood designs. Residential travel, commercial travel, and building energy use are included and the framework integrates household behavior change assessment to explore the environmental and economic outcomes of policies that affect infrastructure. The results show that upfront environmental and economic investments are needed (through more energy-intense building materials for high-density structures) to produce long run benefits in reduced building energy use and automobile travel. The annualized life-cycle benefits of transit-oriented developments in Phoenix can range from 1.7 to 230 Gg CO2e depending on the aggressiveness of residential density. Midpoint impact stressors for respiratory effects and photochemical smog formation are also assessed and can be reduced by 1.2-170 Mg PM10e and 41-5200 Mg O3e annually. These benefits will come at an additional construction cost of up to $410 million resulting in a cost of avoided CO2e at $16-29 and household cost savings. PMID:24053574

Chester, Mikhail V; Nahlik, Matthew J; Fraser, Andrew M; Kimball, Mindy A; Garikapati, Venu M

2013-11-01

304

Threats and opportunities for freshwater conservation under future land use change scenarios in the United States.  

PubMed

Freshwater ecosystems provide vital resources for humans and support high levels of biodiversity, yet are severely threatened throughout the world. The expansion of human land uses, such as urban and crop cover, typically degrades water quality and reduces freshwater biodiversity, thereby jeopardizing both biodiversity and ecosystem services. Identifying and mitigating future threats to freshwater ecosystems requires forecasting where land use changes are most likely. Our goal was to evaluate the potential consequences of future land use on freshwater ecosystems in the coterminous United States by comparing alternative scenarios of land use change (2001-2051) with current patterns of freshwater biodiversity and water quality risk. Using an econometric model, each of our land use scenarios projected greater changes in watersheds of the eastern half of the country, where freshwater ecosystems already experience higher stress from human activities. Future urban expansion emerged as a major threat in regions with high freshwater biodiversity (e.g., the Southeast) or severe water quality problems (e.g., the Midwest). Our scenarios reflecting environmentally oriented policies had some positive effects. Subsidizing afforestation for carbon sequestration reduced crop cover and increased natural vegetation in areas that are currently stressed by low water quality, while discouraging urban sprawl diminished urban expansion in areas of high biodiversity. On the other hand, we found that increases in crop commodity prices could lead to increased agricultural threats in areas of high freshwater biodiversity. Our analyses illustrate the potential for policy changes and market factors to influence future land use trends in certain regions of the country, with important consequences for freshwater ecosystems. Successful conservation of aquatic biodiversity and ecosystem services in the United States into the future will require attending to the potential threats and opportunities arising from policies and market changes affecting land use. PMID:24022881

Martinuzzi, Sebastián; Januchowski-Hartley, Stephanie R; Pracheil, Brenda M; McIntyre, Peter B; Plantinga, Andrew J; Lewis, David J; Radeloff, Volker C

2014-01-01

305

An analysis of urban development and its environmental impact on the Tampa Bay watershed  

Microsoft Academic Search

Urbanization has transformed natural landscapes into anthropogenic impervious surfaces. Urban land use has become a major driving force for land cover and land use change in the Tampa Bay watershed of west-central Florida. This study investigates urban land use change and its impact on the watershed. The spatial and temporal changes, as well as the development density of urban land

George Xian; Mike Crane; Junshan Su

2007-01-01

306

Nitrate stable isotopes: Tools for determining nitrate sources among different land uses in the Mississippi River Basin  

USGS Publications Warehouse

A study was conducted to determine whether NO3- stable isotopes (??15N and ??18O), at natural abundance levels, could discriminate among NO3- sources from sites with different land uses at the basin scale. Water samples were collected from 24 sites in the Mississippi River Basin from five land-use categories: (1) large river basins (>34 590 km2) draining multiple land uses and smaller basins in which the predominant land use was (2) urban (3) undeveloped, (4) crops, or (5) crops and livestock. Our data suggest that riverine nitrates from different land uses have overlapping but moderately distinct isotopic signatures. ??18O data were critical in showing abrupt changes in NO3- source with discharge. The isotopic values of large rivers resembled crop sites, sites with livestock tended to have ??15N values characteristic of manure, and urban sites tended to have high ??18O values characteristic of atmospheric nitrate.

Chang, C.C.Y.; Kendall, C.; Silva, S.R.; Battaglin, W.A.; Campbell, D.H.

2002-01-01

307

Agriculture, land use, and commercial biomass energy  

SciTech Connect

In this paper we have considered commercial biomass energy in the context of overall agriculture and land-use change. We have described a model of energy, agriculture, and land-use and employed that model to examine the implications of commercial biomass energy or both energy sector and land-use change carbon emissions. In general we find that the introduction of biomass energy has a negative effect on the extent of unmanaged ecosystems. Commercial biomass introduces a major new land use which raises land rental rates, and provides an incentive to bring more land into production, increasing the rate of incursion into unmanaged ecosystems. But while the emergence of a commercial biomass industry may increase land-use change emissions, the overall effect is strongly to reduce total anthropogenic carbon emissions. Further, the higher the rate of commercial biomass energy productivity, the lower net emissions. Higher commercial biomass energy productivity, while leading to higher land-use change emissions, has a far stronger effect on fossil fuel carbon emissions. Highly productive and inexpensive commercial biomass energy technologies appear to have a substantial depressing effect on total anthropogenic carbon emissions, though their introduction raises the rental rate on land, providing incentives for greater rates of deforestation than in the reference case.

Edmonds, J.A.; Wise, M.A.; Sands, R.D.; Brown, R.A.; Kheshgi, H.

1996-06-01

308

Generalized probabilistic seimsic hazard estimates in terms of macroseismic intensity as a tool for risk assessment in urban areas  

NASA Astrophysics Data System (ADS)

The use of macroseismic intensity to parameterize earthquakes effects allows a direct link of hazard assessment with risk estimates in urban areas. This is particularly true in most of European countries where long lasting documentary history is available about the effects of past earthquakes. This is why the use of the computational code SASHA (Site Approach to Seismic Hazard Assessment), on purpose developed for a coherent probabilistic analysis of intensity data locally available (site seismic histories) to provided hazard estimates in terms of intensity by taking into account the specific nature of intensity (ordinal, discrete, finite in range, site-dependent) and relevant uncertainty (completeness, ill-definition of the oldest earthquakes, etc.), resulted of specific interest in the frame of the EU research project UPStratMAFA "Urban Disaster Prevention Strategies Using MAcroseismic Fields and FAult Sources" (Grant Agreement n. 230301/2011/613486/SUB/A5). In order to extend the application of this approach to sites and countries where local seismic histories are relatively poor, a new implementation of the code was provided, allowing to include in the hazard assessment information coming from different branches (historical studies, seismological instrumental information and numerical simulations). In particular, macroseismic information related to the seismic history locally documented, that represents the bulk of the considered information, can be integrated with "virtual" intensities deduced from epicentral data (via earthquake-specific probabilistic attenuation relationships) and "simulated" intensities deduced via physical/stochastic simulations from data concerning seismogenic faults activated during past earthquakes. This allows a more complete reconstruction of local seismic history and also reducing uncertainty affecting macroseismic data relative to older earthquakes. Results of some applications of the new release of the SASHA code will be described.

Albarello, Dario; D'Amico, Vera; Rotondi, Renata; Varini, Elsa; Zonno, Gaetano

2013-04-01

309

An assessment of a collaborative mapping approach for exploring land use patterns for several European metropolises  

NASA Astrophysics Data System (ADS)

Until recently, land surveys and digital interpretation of remotely sensed imagery have been used to generate land use inventories. These techniques however, are often cumbersome and costly, allocating large amounts of technical and temporal costs. The technological advances of web 2.0 have brought a wide array of technological achievements, stimulating the participatory role in collaborative and crowd sourced mapping products. This has been fostered by GPS-enabled devices, and accessible tools that enable visual interpretation of high resolution satellite images/air photos provided in collaborative mapping projects. Such technologies offer an integrative approach to geography by means of promoting public participation and allowing accurate assessment and classification of land use as well as geographical features. OpenStreetMap (OSM) has supported the evolution of such techniques, contributing to the existence of a large inventory of spatial land use information. This paper explores the introduction of this novel participatory phenomenon for land use classification in Europe's metropolitan regions. We adopt a positivistic approach to assess comparatively the accuracy of these contributions of OSM for land use classifications in seven large European metropolitan regions. Thematic accuracy and degree of completeness of OSM data was compared to available Global Monitoring for Environment and Security Urban Atlas (GMESUA) datasets for the chosen metropolises. We further extend our findings of land use within a novel framework for geography, justifying that volunteered geographic information (VGI) sources are of great benefit for land use mapping depending on location and degree of VGI dynamism and offer a great alternative to traditional mapping techniques for metropolitan regions throughout Europe. Evaluation of several land use types at the local level suggests that a number of OSM classes (such as anthropogenic land use, agricultural and some natural environment classes) are viable alternatives for land use classification. These classes are highly accurate and can be integrated into planning decisions for stakeholders and policymakers.

Jokar Arsanjani, Jamal; Vaz, Eric

2015-03-01

310

The Land Gini Coefficient and Its Application for Land Use Structure Analysis in China  

PubMed Central

We introduce the Gini coefficient to assess the rationality of land use structure. The rapid transformation of land use in China provides a typical case for land use structure analysis. In this study, a land Gini coefficient (LGC) analysis tool was developed. The land use structure rationality was analyzed and evaluated based on statistical data for China between 1996 and 2008. The results show: (1)The LGC of three major land use types–farmland, built-up land and unused land–was smaller when the four economic districts were considered as assessment units instead of the provinces. Therefore, the LGC is spatially dependent; if the calculation unit expands, then the LGC decreases, and this relationship does not change with time. Additionally, land use activities in different provinces of a single district differed greatly. (2) At the national level, the LGC of the three main land use types indicated that during the 13 years analyzed, the farmland and unused land were evenly distributed across China. However, the built-up land distribution was relatively or absolutely unequal and highlights the rapid urbanization in China. (3) Trends in the distribution of the three major land use types are very different. At the national level, when using a district as the calculation unit, the LGC of the three main land use types increased, and their distribution became increasingly concentrated. However, when a province was used as the calculation unit, the LGC of the farmland increased, while the LGC of the built-up and unused land decreased. These findings indicate that the distribution of the farmland became increasingly concentrated, while the built-up land and unused land became increasingly uniform. (4) The LGC analysis method of land use structure based on geographic information systems (GIS) is flexible and convenient. PMID:24130764

Zheng, Xinqi; Xia, Tian; Yang, Xin; Yuan, Tao; Hu, Yecui

2013-01-01

311

Erratum to "Effects of intensive urbanization on the intrusion of shallow groundwater into deep groundwater: examples from Bangkok and Jakarta".  

PubMed

Asian megacities have severe pollution problems in both coastal and urban areas. In addition, the groundwater potential has decreased and land subsidence has occurred because of intensive groundwater pumping in urban areas. To prevent the adverse effects of urbanization on groundwater quality, it is necessary to confirm the changes in groundwater flow and contaminant transport caused by urbanization. We examined the effects of urbanization on contaminant transport in groundwater. The research areas were located around Bangkok, Thailand, and Jakarta, Indonesia, cities with populations of approximately 8 and 12 million, respectively. Each metropolitan city is located on a river delta and is adjacent to a bay. We measured the water level and collected water samples at boreholes at multiple depths (100 to 200 m) in 2004 and 2006 in Bangkok and Jakarta, respectively. The current hydraulic potential is below sea level in both cities because of prior excess abstraction of groundwater. As a result, the direction of groundwater flow is now downward in the coastal area. The Cl- concentration and delta18O distributions in groundwater suggest that the decline in hydraulic potential has caused the intrusion of seawater and shallow groundwater into deep groundwater. Concentrations of Mn and NO3--N in groundwater suggest the intrusion of these contaminants from shallow to deep aquifers with downward groundwater flow and implies an accumulation of contaminants in deep aquifers. Therefore, it is important to recognize the possibility of future contaminant transport with the discharge of deep groundwater into the sea after the recovery of groundwater potential in the coastal areas. PMID:19437605

Onodera, Shin-ichi; Saito, Mitsuyo; Sawano, Misa; Hosono, Takahiro; Taniguchi, Makoto; Shimada, Jun; Umezawa, Yu; Lubis, Rachmat Fajar; Buapeng, Somkid; Delinom, Robert

2009-04-15

312

Effects of intensive urbanization on the intrusion of shallow groundwater into deep groundwater: examples from Bangkok and Jakarta.  

PubMed

Asian megacities have severe pollution problems in both coastal and urban areas. In addition, the groundwater potential has decreased and land subsidence has occurred because of intensive groundwater pumping in urban areas. To prevent the adverse effects of urbanization on groundwater quality, it is necessary to confirm the changes in groundwater flow and contaminant transport caused by urbanization. We examined the effects of urbanization on contaminant transport in groundwater. The research areas were located around Bangkok, Thailand, and Jakarta, Indonesia, cities with populations of approximately 8 and 12 million, respectively. Each metropolitan city is located on a river delta and is adjacent to a bay. We measured the water level and collected water samples at boreholes at multiple depths (100 to 200 m) in 2004 and 2006 in Bangkok and Jakarta, respectively. The current hydraulic potential is below sea level in both cities because of prior excess abstraction of groundwater. As a result, the direction of groundwater flow is now downward in the coastal area. The Cl(-) concentration and delta(18)O distributions in groundwater suggest that the decline in hydraulic potential has caused the intrusion of seawater and shallow groundwater into deep groundwater. Concentrations of Mn and NO3(-)-N in groundwater suggest the intrusion of these contaminants from shallow to deep aquifers with downward groundwater flow and implies an accumulation of contaminants in deep aquifers. Therefore, it is important to recognize the possibility of future contaminant transport with the discharge of deep groundwater into the sea after the recovery of groundwater potential in the coastal areas. PMID:18804843

Onodera, Shin-ichi; Saito, Mitsuyo; Sawano, Misa; Hosono, Takahiro; Taniguchi, Makoto; Shimada, Jun; Umezawa, Yu; Lubis, Rachmat Fajar; Buapeng, Somkid; Delinom, Robert

2008-10-15

313

Characterization of salinity and selenium loading and land-use change in Montrose Arroyo, western Colorado, from 1992 to 2010  

USGS Publications Warehouse

Salinity and selenium are naturally occurring and perva-sive in the lower Gunnison River Basin of Colorado, includ-ing the watershed of Montrose Arroyo. Although some of the salinity and selenium loading in the Montrose Arroyo study area is from natural sources, additional loading has resulted from the introduction of intensive irrigation in the water-shed. With increasing land-use change and the conversion from irrigated agricultural to urban land, land managers and stakeholders need information about the long-term effects of land-use change on salinity and selenium loading. In response to the need to advance salinity and selenium science, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, Colorado River Basin Salinity Control Forum, and Colorado River Water Conservation District, developed a study to characterize salinity and selenium loading and how salinity and selenium sources may relate to land-use change in Montrose Arroyo. This report characterizes changes in salinity and selenium loading to Montrose Arroyo from March 1992 to February 2010 and the magnitude of land-use change between unirrigated desert, irrigated agricultural, and urban land-use/land-cover types, and discusses how the respective loads may relate to land-use change. Montrose Arroyo is an approximately 8-square-mile watershed in Montrose County in western Colorado. Salinity and selenium were studied in Montrose Arroyo in a 2001 study as part of a salinity- and selenium-control lateral project. The robust nature of the historical dataset indicated that Montrose Arroyo was a prime watershed for a follow-up study. Two sites from the 2001 study were used to monitor salinity and selenium loads in Montrose Arroyo in the follow-up study. Over the period of 2 water years and respective irrigation seasons (2008-2010), 27 water-quality samples were collected and streamflow measurements were made at the historical sites MA2 and MA4. Salinity and selenium concen-trations, loads, and streamflow were compared between the pre-lateral-project and post-growth periods and between the post-lateral-project and post-growth periods. No significant differences in streamflow, salinity (concen-tration and load), or selenium (concentration and load) were found at MA4 between the pre-lateral project and post-growth periods or between the post-lateral-project and post-growth periods. The statistical analysis indicated no significant dif-ferences in streamflow or salinity (both concentration and load) between the pre-lateral-project and post-growth periods or between the post-lateral-project and post-growth periods at MA2; however, selenium concentrations and loads were significantly greater between the pre-lateral-project and post-growth periods and between the post-lateral-project and post-growth periods at MA2. Land-use change between MA4 and MA2 may have contributed to the determined differences in selenium values, but the specific mechanisms causing the increases between periods are unknown. The size of the urbanized area in Montrose Arroyo was quantified for 1993, 2002, and 2009 by using a geographic information system (GIS) with imagery from the specified years. The greatest change in land use from 1993 to 2009 was the increase of urban land due to conversion from irrigated agricultural land. The conversion of previously unirrigated desert to urban land or irrigated agriculture could become more common if urbanization and development expands into the eastern part of the watershed because a majority of the un-urbanized land in eastern Montrose Arroyo is unirrigated desert. By applying GIS to the City of Montrose 2008 com-prehensive growth plan, it was estimated that approximately 786 acres of previously irrigated agricultural land will be converted to urban land and 689 acres of unirrigated desert will be converted to urban land under the plan scenario. New development on previously unirrigated land in shale areas would likely increase the potential for mobilization of sele-nium and salinity from new sources to Montrose Arroyo and the Lower Gunnis

Moore, Jennifer L.

2011-01-01

314

Land use in the Paraiba Valley through remotely sensed data. [Brazil  

NASA Technical Reports Server (NTRS)

A methodology for land use survey was developed and land use modification rates were determined using LANDSAT imagery of the Paraiba Valley (state of Sao Paulo). Both visual and automatic interpretation methods were employed to analyze seven land use classes: urban area, industrial area, bare soil, cultivated area, pastureland, reforestation and natural vegetation. By means of visual interpretation, little spectral differences are observed among those classes. The automatic classification of LANDSAT MSS data using maximum likelihood algorithm shows a 39% average error of omission and a 3.4% error of inclusion for the seven classes. The complexity of land uses in the study area, the large spectral variations of analyzed classes, and the low resolution of LANDSAT data influenced the classification results.

Dejesusparada, N. (principal investigator); Lombardo, M. A.; Novo, E. M. L. D.; Niero, M.; Foresti, C.

1980-01-01

315

Projected land-use change impacts on ecosystem services in the United States.  

PubMed

Providing food, timber, energy, housing, and other goods and services, while maintaining ecosystem functions and biodiversity that underpin their sustainable supply, is one of the great challenges of our time. Understanding the drivers of land-use change and how policies can alter land-use change will be critical to meeting this challenge. Here we project land-use change in the contiguous United States to 2051 under two plausible baseline trajectories of economic conditions to illustrate how differences in underlying market forces can have large impacts on land-use with cascading effects on ecosystem services and wildlife habitat. We project a large increase in croplands (28.2 million ha) under a scenario with high crop demand mirroring conditions starting in 2007, compared with a loss of cropland (11.2 million ha) mirroring conditions in the 1990s. Projected land-use changes result in increases in carbon storage, timber production, food production from increased yields, and >10% decreases in habitat for 25% of modeled species. We also analyze policy alternatives designed to encourage forest cover and natural landscapes and reduce urban expansion. Although these policy scenarios modify baseline land-use patterns, they do not reverse powerful underlying trends. Policy interventions need to be aggressive to significantly alter underlying land-use change trends and shift the trajectory of ecosystem service provision. PMID:24799685

Lawler, Joshua J; Lewis, David J; Nelson, Erik; Plantinga, Andrew J; Polasky, Stephen; Withey, John C; Helmers, David P; Martinuzzi, Sebastián; Pennington, Derric; Radeloff, Volker C

2014-05-20

316

Projected land-use change impacts on ecosystem services in the United States  

PubMed Central

Providing food, timber, energy, housing, and other goods and services, while maintaining ecosystem functions and biodiversity that underpin their sustainable supply, is one of the great challenges of our time. Understanding the drivers of land-use change and how policies can alter land-use change will be critical to meeting this challenge. Here we project land-use change in the contiguous United States to 2051 under two plausible baseline trajectories of economic conditions to illustrate how differences in underlying market forces can have large impacts on land-use with cascading effects on ecosystem services and wildlife habitat. We project a large increase in croplands (28.2 million ha) under a scenario with high crop demand mirroring conditions starting in 2007, compared with a loss of cropland (11.2 million ha) mirroring conditions in the 1990s. Projected land-use changes result in increases in carbon storage, timber production, food production from increased yields, and >10% decreases in habitat for 25% of modeled species. We also analyze policy alternatives designed to encourage forest cover and natural landscapes and reduce urban expansion. Although these policy scenarios modify baseline land-use patterns, they do not reverse powerful underlying trends. Policy interventions need to be aggressive to significantly alter underlying land-use change trends and shift the trajectory of ecosystem service provision. PMID:24799685

Lawler, Joshua J.; Lewis, David J.; Nelson, Erik; Plantinga, Andrew J.; Polasky, Stephen; Withey, John C.; Helmers, David P.; Martinuzzi, Sebastián; Pennington, Derric; Radeloff, Volker C.

2014-01-01

317

Land use inventory of Salt Lake County, Utah from color infrared aerial photography 1982  

NASA Technical Reports Server (NTRS)

The preparation of land use maps of Salt Lake County, Utah from high altitude color infrared photography is described. The primary purpose of the maps is to aid in the assessment of the effects of urban development on the agricultural land base and water resources. The first stage of map production was to determine the categories of land use/land cover and the mapping unit detail. The highest level of interpretive detail was given to the land use categories found in the agricultural or urbanized portions of the county; these areas are of primary interest with regard to the consumptive use of water from surface streams and wells. A slightly lower level of mapping detail was given to wetland environments; areas to which water is not purposely diverted by man but which have a high consumptive rate of water use. Photos were interpreted on the basis of color, tone, texture, and pattern, together with features of the topographic, hydrologic, and ecological context.

Price, K. P.; Willie, R. D.; Wheeler, D. J.; Ridd, M. K.

1983-01-01

318

Future fire emissions associated with projected land use change in Sumatra.  

PubMed

Indonesia has experienced rapid land use change over the last few decades as forests and peatswamps have been cleared for more intensively managed land uses, including oil palm and timber plantations. Fires are the predominant method of clearing and managing land for more intensive uses, and the related emissions affect public health by contributing to regional particulate matter and ozone concentrations and adding to global atmospheric carbon dioxide concentrations. Here, we examine emissions from fires associated with land use clearing and land management on the Indonesian island of Sumatra and the sensitivity of this fire activity to interannual meteorological variability. We find ~80% of 2005-2009 Sumatra emissions are associated with degradation or land use maintenance instead of immediate land use conversion, especially in dry years. We estimate Sumatra fire emissions from land use change and maintenance for the next two decades with five scenarios of land use change, the Global Fire Emissions Database Version 3, detailed 1-km2 land use change maps, and MODIS fire radiative power observations. Despite comprising only 16% of the original study area, we predict that 37-48% of future Sumatra emissions from land use change will occur in fuel-rich peatswamps unless this land cover type is protected effectively. This result means that the impact of fires on future air quality and climate in Equatorial Asia will be decided in part by the conservation status given to the remaining peatswamps on Sumatra. Results from this article will be implemented in an atmospheric transport model to quantify the public health impacts from the transport of fire emissions associated with future land use scenarios in Sumatra. PMID:25044917

Marlier, Miriam E; DeFries, Ruth; Pennington, Derric; Nelson, Erik; Ordway, Elsa M; Lewis, Jeremy; Koplitz, Shannon N; Mickley, Loretta J

2015-01-01

319

Land use changes assessment using spatial data: Case study in Cong river basin - Thai Nguyen City - Viet Nam  

NASA Astrophysics Data System (ADS)

Land use changes are being interested in most countries, especially in developing countries. Because land use changes always impacts on sustainable development not only in a region or a country but also in whole the world. Viet Nam is a developing country, in the last 10 years, land uses have rapidly changed in most provinces. Many of agriculture areas, forest areas have changed for various purposes as urban sprawl, establishing new industrial parks, public areas, mining and other land uses relate to human activities or economic function associated with a specific piece of land. Beside efficiencies of economic and social, then environment issues have been threatening serious pollution, are from land use changes. Remote sensing images application on studying land use changes, has been done in many countries around the world, and has brought high efficiencies. However, this application is still very new and limited in Viet Nam due to lacking of materials, tools, experts of remote sensing. This study used spatial data as Landsat TM images, SOPT5 images and land use planning maps to rapidly assess on happenings of land uses in the period 2000 -2010 in Cong river basin (Thai Nguyen City, Viet Nam), and to forecast the changes of land uses in the period 2010 - 2020. The results had a good accuracy and to be important references for authorities, policy makers in local land use.

Nguyen, Hieu

320

Forests and competing land uses in Kenya  

NASA Astrophysics Data System (ADS)

Indigenous forests in Kenya, as in other developing countries, are under heavy pressure from competing agricultural land uses and from unsustainable cutting. The problem in Kenya is compounded by high population growth rates and an agriculturally based economy, which, even with efforts to control birth rates and industrialize, will persist into the next century. Both ecological and economic consequences of these pressures need to be considered in land-use decision making for land and forest management to be effective. This paper presents one way to combine ecological and economic considerations. The status of principal forest areas in Kenya is summarized and competing land uses compared on the basis of ecological functions and economic analysis. Replacement uses do not match the ecological functions of forest, although established stands of tree crops (forest plantations, fuel wood, tea) can have roughly comparable effects on soil and water resources. Indigenous forests have high, although difficult to estimate, economic benefits from tourism and protection of downstream agricultural productivity. Economic returns from competing land uses range widely, with tea having the highest and fuel wood plantations having returns comparable to some annual crops and dairying. Consideration of ecological and economic factors together suggests some trade-offs for improving land allocation decisions and several management opportunities for increasing benefits or reducing costs from particular land uses. The evaluation also suggests a general strategy for forest land management in Kenya.

Allaway, James; Cox, Pamela M. J.

1989-03-01

321

Land use surveys by means of automatic interpretation of LANDSAT system data  

NASA Technical Reports Server (NTRS)

Analyses for seven land-use classes are presented. The classes are: urban area, industrial area, bare soil, cultivated area, pastureland, reforestation, and natural vegetation. The automatic classification of LANDSAT MSS data using a maximum likelihood algorithm shows a 39% average error of emission and a 3.45 error of commission for the seven classes.

Dejesusparada, N. (principal investigator); Lombardo, M. A.; Novo, E. M. L. D.; Niero, M.; Foresti, C.

1981-01-01

322

Interaction between land use and climate variability amplifies stream nitrate export  

EPA Science Inventory

We investigated regional effects of urban land use change on nitrate concentrations in approximately 1,000 small streams in Maryland, U.S.A. during record drought and wet years in 2001-2003. We also investigated changes in nitrate-N export during the same time period in 8 intens...

323

EFFECTS OF HUMAN LAND USE ON WESTERN BURROWING OWL FORAGING AND ACTIVITY BUDGETS  

E-print Network

EFFECTS OF HUMAN LAND USE ON WESTERN BURROWING OWL FORAGING AND ACTIVITY BUDGETS ERICA D. CHIPMAN.--Western Burrowing Owls (Athene cunicularia hypugaea) often live in close proximity to humans, yet their behavioral budgets of adult male Burrowing Owls during the breeding seasons of 2004 and 2005 at three urban and three

Wallace, Mark C.

324

ASSESSMENT OF LAND USE CHANGE IMPACTS ON FLOW CHARACTERISTICS IN AN EASTERN PENNSYLVANIA WATERSHED  

EPA Science Inventory

The impacts of changes in land use/cover due to urbanization on the hydrologic regime of the watershed have long been recognized and have been the subject of many studies. Distributed hydrologic models are one means of assessing such impacts. In this study we evaluated the potent...

325

Smart Growth and The Transportation-Land Use Connection: What Does the Research Tell Us?  

E-print Network

Smart Growth and The Transportation-Land Use Connection: What Does the Research Tell Us? Susan slhandy@ucdavis.edu Prepared for "New Urbanism and Smart Growth: A Research Symposium" National Center for Smart Growth Research and Education University of Maryland May 3, 2002 June 7, 2002 #12;2 Smart Growth

Handy, Susan L.

326

Land use and human impact in the Mediterranean karst of southern Italy  

Microsoft Academic Search

Human activities such as land use transformation, changes in land cover and soil surface conditions, and increasing urbanization in catchment basins may result in serious consequences for the natural environment: episodes of degradation or pollution, and deterioration in the water quality are continuously registered in many areas of the world. In addition, the human impact is also frequently at the

M. Delle Rose; M. Parise

2003-01-01

327

44 CFR 9.15 - Planning programs affecting land use.  

Code of Federal Regulations, 2011 CFR

...false Planning programs affecting land use. 9.15 Section 9.15 Emergency...15 Planning programs affecting land use. The Agency shall take floodplain...formulating or evaluating any water and land use plans. No plan may be approved...

2011-10-01

328

44 CFR 9.15 - Planning programs affecting land use.  

Code of Federal Regulations, 2012 CFR

...true Planning programs affecting land use. 9.15 Section 9.15 Emergency...15 Planning programs affecting land use. The Agency shall take floodplain...formulating or evaluating any water and land use plans. No plan may be approved...

2012-10-01

329

CALIFORNIA ENERGY EFFECT OF LAND USE CHOICES ON  

E-print Network

CALIFORNIA ENERGY COMMISSION EFFECT OF LAND USE CHOICES ON TRANSPORTATION FUEL DEMAND IN SUPPORT ................................................................................................................... 1 Current Approach to Transportation Fuel Demand and Land Use Planning........... 1 Obstacles to Efficient Land Use Planning .................................................................. 2 Trends

330

40 CFR 52.784 - Transportation and land use controls.  

Code of Federal Regulations, 2012 CFR

...2012-07-01 false Transportation and land use controls. 52.784 Section 52... § 52.784 Transportation and land use controls. (a) To complete...15, 1973, transportation and/or land use control strategies and a...

2012-07-01

331

40 CFR 52.784 - Transportation and land use controls.  

...2014-07-01 false Transportation and land use controls. 52.784 Section 52... § 52.784 Transportation and land use controls. (a) To complete...15, 1973, transportation and/or land use control strategies and a...

2014-07-01

332

44 CFR 9.15 - Planning programs affecting land use.  

...false Planning programs affecting land use. 9.15 Section 9.15 Emergency...15 Planning programs affecting land use. The Agency shall take floodplain...formulating or evaluating any water and land use plans. No plan may be approved...

2014-10-01

333

44 CFR 9.15 - Planning programs affecting land use.  

Code of Federal Regulations, 2013 CFR

...false Planning programs affecting land use. 9.15 Section 9.15 Emergency...15 Planning programs affecting land use. The Agency shall take floodplain...formulating or evaluating any water and land use plans. No plan may be approved...

2013-10-01

334

40 CFR 52.784 - Transportation and land use controls.  

Code of Federal Regulations, 2013 CFR

...2013-07-01 false Transportation and land use controls. 52.784 Section 52... § 52.784 Transportation and land use controls. (a) To complete...15, 1973, transportation and/or land use control strategies and a...

2013-07-01

335

40 CFR 52.784 - Transportation and land use controls.  

Code of Federal Regulations, 2011 CFR

...2011-07-01 false Transportation and land use controls. 52.784 Section 52... § 52.784 Transportation and land use controls. (a) To complete...15, 1973, transportation and/or land use control strategies and a...

2011-07-01

336

THE ROLE OF LAND USE IN MEETING CALIFORNIA'S ENERGY AND  

E-print Network

CALIFORNIA ENERGY COMMISSION THE ROLE OF LAND USE IN MEETING CALIFORNIA'S ENERGY AND CLIMATE CHANGE. The Role of Land Use in Meeting California's Energy and Climate Change Goals. California Energy Commission .....................................................................................................1 Examples of Better Land Use Planning

337

40 CFR 52.784 - Transportation and land use controls.  

Code of Federal Regulations, 2010 CFR

...2010-07-01 false Transportation and land use controls. 52.784 Section 52... § 52.784 Transportation and land use controls. (a) To complete...15, 1973, transportation and/or land use control strategies and a...

2010-07-01

338

44 CFR 9.15 - Planning programs affecting land use.  

Code of Federal Regulations, 2010 CFR

...false Planning programs affecting land use. 9.15 Section 9.15 Emergency...15 Planning programs affecting land use. The Agency shall take floodplain...formulating or evaluating any water and land use plans. No plan may be approved...

2010-10-01

339

A GIS approach to urban heat island research: The case of Huntsville, Alabama  

NASA Technical Reports Server (NTRS)

The urban heat island represents a case of inadvertent human modification of climate in an urban environment. Urbanization changes the nature of the surface and atmospheric properties of a region. As a result, radiation balance in the urban areas is altered and sensible heat is added to the point that urban areas are warmer than surrounding rural areas. At the boundary between the rural and urban area, a sharp rise in temperature occurs, culminating to a peak temperature at the central business district of the city, hence the name 'urban heat island'. The extent and intensity of the urban heat island are a function of population size, land use, and topography. Because the urban heat island exhibits spatial variations of temperatures, the use of Geographic Information System (GIS) is appropriate. The research on the urban heat island focuses on the acquisition of 15 bands of visible and thermal infrared data (ranging from 0.45 to 12.2 microns) from an aerial platform using NASA's ATLAS (Airborne Thermal/Visible Land Application Sensor) over Huntsville, Alabama. The research reported in this paper is an analysis of the impact of population, land use, and topography on the shape of the urban heat island that could be developed in Huntsville using the GIS approach. The outcome of this analysis can then be verified using the acquired remotely sensed data.

Lo, Chor Pong

1994-01-01

340

Selecting reasonable future land use scenarios  

SciTech Connect

This paper examines a process to help select the most reasonable future land use scenario for hazardous waste and/or low-level radioactive waste disposal sites. The process involves evaluating future land use scenarios ab applying selected criteria currently used by commercial mortgage companies to determine the feasibility of obtaining a loan for purchasing such land. The basis for the process is that only land use activities for which a loan can be obtained well be considered. To examine the process, a low-level radioactive waste site, the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory, is used as an example. The authors suggest that the process is a very precise, comprehensive, and systematic approach for determining reasonable future use of land. Implementing such a process will help enhance the planning, decisionmaking, safe management, and cleanup of present and future disposal facilities.

Allred, W.E.; Smith, R.W.

1995-12-31

341

The 2011 heat wave in Greater Houston: Effects of land use on temperature.  

PubMed

Effects of land use on temperatures during severe heat waves have been rarely studied. This paper examines land use-temperature associations during the 2011 heat wave in Greater Houston. We obtained high resolution of satellite-derived land use data from the US National Land Cover Database, and temperature observations at 138 weather stations from Weather Underground, Inc (WU) during the August of 2011, which was the hottest month in Houston since 1889. Land use regression and quantile regression methods were applied to the monthly averages of daily maximum/mean/minimum temperatures and 114 land use-related predictors. Although selected variables vary with temperature metric, distance to the coastline consistently appears among all models. Other variables are generally related to high developed intensity, open water or wetlands. In addition, our quantile regression analysis shows that distance to the coastline and high developed intensity areas have larger impacts on daily average temperatures at higher quantiles, and open water area has greater impacts on daily minimum temperatures at lower quantiles. By utilizing both land use regression and quantile regression on a recent heat wave in one of the largest US metropolitan areas, this paper provides a new perspective on the impacts of land use on temperatures. Our models can provide estimates of heat exposures for epidemiological studies, and our findings can be combined with demographic variables, air conditioning and relevant diseases information to identify 'hot spots' of population vulnerability for public health interventions to reduce heat-related health effects during heat waves. PMID:25262079

Zhou, Weihe; Ji, Shuang; Chen, Tsun-Hsuan; Hou, Yi; Zhang, Kai

2014-11-01

342

Urban Modelling  

Microsoft Academic Search

Urban models are computer-based simulations used for testing theories about spatial location and interaction between land uses and related activities. They also provide digital environments for testing the consequences of physical planning policies on the future form of cities. As computers, software and data have become richer, and as our conception of the way complex systems such as cities grow

Michael Batty; Rob Kitchin; Nigel Thrift

343

Land Use: Past, Present, and Future  

NSDL National Science Digital Library

In this laboratory activity students will gain an understanding of the National Environmental Policy Act (NEPA) and be able to apply it to a (perhaps hypothetical) community project. In the process, they will learn the methods of investigating an environmental history and integrate this pursuit with sciences of ecology and geology along with environmental land use policy. While engaged in this activity students will come to understand and apply the requirements of the National Environmental Policy Act (NEPA) for a class project, understand and execute geological and geographical analysis for the study area, understand the land use policy issues confronting the project, and make recommendations.

Edward Wells

344

Inter-regional comparison of land-use effects on stream metabolism  

USGS Publications Warehouse

1. Rates of whole-system metabolism (production and respiration) are fundamental indicators of ecosystem structure and function. Although first-order, proximal controls are well understood, assessments of the interactions between proximal controls and distal controls, such as land use and geographic region, are lacking. Thus, the influence of land use on stream metabolism across geographic regions is unknown. Further, there is limited understanding of how land use may alter variability in ecosystem metabolism across regions.2. Stream metabolism was measured in nine streams in each of eight regions (n = 72) across the United States and Puerto Rico. In each region, three streams were selected from a range of three land uses: agriculturally influenced, urban-influenced, and reference streams. Stream metabolism was estimated from diel changes in dissolved oxygen concentrations in each stream reach with correction for reaeration and groundwater input.3. Gross primary production (GPP) was highest in regions with little riparian vegetation (sagebrush steppe in Wyoming, desert shrub in Arizona/New Mexico) and lowest in forested regions (North Carolina, Oregon). In contrast, ecosystem respiration (ER) varied both within and among regions. Reference streams had significantly lower rates of GPP than urban or agriculturally influenced streams.4. GPP was positively correlated with photosynthetically active radiation and autotrophic biomass. Multiple regression models compared using Akaike's information criterion (AIC) indicated GPP increased with water column ammonium and the fraction of the catchment in urban and reference land-use categories. Multiple regression models also identified velocity, temperature, nitrate, ammonium, dissolved organic carbon, GPP, coarse benthic organic matter, fine benthic organic matter and the fraction of all land-use categories in the catchment as regulators of ER.5. Structural equation modelling indicated significant distal as well as proximal control pathways including a direct effect of land-use on GPP as well as SRP, DIN, and PAR effects on GPP; GPP effects on autotrophic biomass, organic matter, and ER; and organic matter effects on ER.6. Overall, consideration of the data separated by land-use categories showed reduced inter-regional variability in rates of metabolism, indicating that the influence of agricultural and urban land use can obscure regional differences in stream metabolism. ?? 2010 Blackwell Publishing Ltd.

Bernot, M.J.; Sobota, D.J.; Hall, R.O.; Mulholland, P.J.; Dodds, W.K.; Webster, J.R.; Tank, J.L.; Ashkenas, L.R.; Cooper, L.W.; Dahm, C. N.; Gregory, S.V.; Grimm, N. B.; Hamilton, S.K.; Johnson, S.L.; McDowell, W.H.; Meyer, J.L.; Peterson, B.; Poole, G.C.; Maurice, Valett H.M.; Arango, C.; Beaulieu, J.J.; Burgin, A.J.; Crenshaw, C.; Helton, A.M.; Johnson, L.; Merriam, J.; Niederlehner, B.R.; O'Brien, J. M.; Potter, J.D.; Sheibley, R.W.; Thomas, S.M.; Wilson, K.

2010-01-01

345

Inter-regional comparison of land-use effects on stream metabolism  

SciTech Connect

Rates of whole-system metabolism (production and respiration) are fundamental indicators of ecosystem structure and function. Although first-order, proximal controls are well understood, assessments of the interactions between proximal controls and distal controls, such as land use and geographic region, are lacking. Thus, the influence of land use on stream metabolism across geographic regions is unknown. Further, there is limited understanding of how land use may alter variability in ecosystem metabolism across regions. 2. Stream metabolism was measured in nine streams in each of eight regions (n = 72) across the United States and Puerto Rico. In each region, three streams were selected from a range of three land uses: agriculturally influenced, urban-influenced, and reference streams. Stream metabolism was estimated from diel changes in dissolved oxygen concentrations in each stream reach with correction for reaeration and groundwater input. 3. Gross primary production (GPP) was highest in regions with little riparian vegetation (sagebrush steppe in Wyoming, desert shrub in Arizona/New Mexico) and lowest in forested regions (North Carolina, Oregon). In contrast, ecosystem respiration (ER) varied both within and among regions. Reference streams had significantly lower rates of GPP than urban or agriculturally influenced streams. 4. GPP was positively correlated with photosynthetically active radiation and autotrophic biomass. Multiple regression models compared using Akaike's information criterion (AIC) indicated GPP increased with water column ammonium and the fraction of the catchment in urban and reference land-use categories. Multiple regression models also identified velocity, temperature, nitrate, ammonium, dissolved organic carbon, GPP, coarse benthic organic matter, fine benthic organic matter and the fraction of all land-use categories in the catchment as regulators of ER. 5. Structural equation modelling indicated significant distal as well as proximal control pathways including a direct effect of land-use on GPP as well as SRP, DIN, and PAR effects on GPP; GPP effects on autotrophic biomass, organic matter, and ER; and organic matter effects on ER. 6. Overall, consideration of the data separated by land-use categories showed reduced inter-regional variability in rates of metabolism, indicating that the influence of agricultural and urban land use can obscure regional differences in stream metabolism.

Bernot, Melody [Ball State University; Sobota, Daniel [Oregon State University; Hall, Robert [University of Wyoming, Laramie; Mulholland, Patrick J [ORNL; Dodds, Walter [Kansas State University; Webster, Jackson [Virginia Polytechnic Institute and State University (Virginia Tech); Tank, Jennifer [University of Notre Dame, IN; Ashkenas, Linda [Oregon State University, Corvallis; Cooper, Lee W [ORNL; Dahm, Cliff [University of New Mexico, Albuquerque; Gregory, Stanley [Oregon State University, Corvallis; Grimm, Nancy [Arizona State University; Hamilton, Stephen [Michigan State University, East Lansing; Johnson, Sherri [Oregon State University; McDowell, William [University of Hew Hampshire; Meyer, Judy [University of Georgia, Athens, GA; Peterson, Bruce [Marine Biological Laboratory; Poole, Geoffrey C. [Montana State University; Valett, H. Maurice [Virginia Polytechnic Institute and State University (Virginia Tech); Arango, Clay [University of Notre Dame, IN; Beaulieu, Jake [University of Notre Dame, IN; Burgin, Amy [Michigan State University, East Lansing; Crenshaw, Chelsea [University of New Mexico, Albuquerque; Helton, Ashley [University of Georgia, Athens, GA; Johnson, Laura [University of Notre Dame, IN; Merriam, Jeffrey [University of New Hampshire; Niederlehner, Bobbie [Virginia Polytechnic Institute and State University (Virginia Tech); O'Brien, Jon [Michigan State University, East Lansing; Potter, Jody [University of New Hampshire; Sheibley, Rich [Arizona State University; Thomas, Suzanne [Marine Biological Laboratory; Wilson, Kym [Kansas State University

2010-01-01

346

[Influence of land use change on vegetation cover dynamics in Dapeng Peninsula of Shenzhen, Guangdong Province of South China].  

PubMed

To study the vegetation cover dynamics under urbanization is of significance to direct regional ecological conservation. Based on the 1995-2007 remote sensing data and the investigation data of 1996 and 2007 land use change in Shenzhen, and by using NDVI index tracking and algebraic overlay calculation, this paper analyzed the vegetation types and their spatial differentiation, land use change pattern, and the relationships between land use change and vegetation cover dynamics in Dapeng Peninsula of Shenzhen. In 1995-2007, the vegetation cover in 65% of the study area changed significantly, with an overall increasing trend. Land use change was mainly caused by the development of urbanization and commercial agriculture, with 31% of the land surface changed in land use function. The land use change was one of the main causes of vegetation cover dynamics, and about 35% of the region where vegetation cover significantly degraded was related to land use change. 55% of the region where land use function changed due to mechanical disturbance caused the degradation of vegetation cover, but by the end of the study period, the vegetation cover in most of the degraded region had being improved significantly. PMID:22489500

Liang, Yao-Qin; Zeng, Hui; Li, Jing

2012-01-01

347

Urban Land Use and Transportation Center University of California, Davis  

E-print Network

acceptable, Constructing the tools and models needed to support those policies and rules, and Mounting an active outreach and training initiative to assist implementation of policies, rules and models. Designing of policies and practices to reduce vehicle miles traveled, from parking pricing to infill development

California at Davis, University of

348

Land use changing and land use optimization of Lake Baikal basin on the example of two key areas  

NASA Astrophysics Data System (ADS)

Lake Baikal contains roughly 20% of the world's unfrozen surface fresh water. It was declared a UNESCO World Heritage Site in 1996. Today levels of urbanization and economic stress on environmental resources is increasing on the shorts of the lake Baikal. The potential of economic development (industry, local tourism, and mining) of the Severobaykalsky and Sludyansky districts is rather high although they are characterized not only by beneficial features for local economy but also by considerable disadvantages for nature of this world valuable territory. This investigation show human-caused landscape changes during economic development of the two key areas in Baikal water catchment basin during 10 years (point of reference is 2000 year). Key areas are 1) the Baikalo-Patomskoe highland in the north of the Baikal catchment basin (Severobaykalsky district, Republic of Buryatia); 2) Khamar-Daban mountain system in the south of the Baikal catchment basin (Sludyansky districy, Irkutsk region). Since 2000 year land use of the territory has changed. Areas of agriculture were reduced but recreation activity on the bank of the lake was increased. Methods of GIS analysis and local statistic analysis of landscape characteristic were used. Nature, rural and urban areas ratio are estimated. Vegetation and soil condition assessment were made. The essence of this research is in helping to make decisions linked to upcoming problems: situation identification, evaluation and forecasting of the potential landscape condition, optimization of land use, mitigation of impact and mapping of territories and nature resources which have a high ecological value or endangered by industrial impact. For this purpose landscape maps of the territories on the base of the remote sensing information and field investigations were created. They used to calculate potential landscape functions of the territory without taking into account present impact of anthropogenic actions. Land use maps for years 2000 and 2010 were created to show: 1) how many landscape functions (ecosystem services) have been missed in time period of 2000-2010 years; 2) trends of land use changing. The nature-anthropogenic landscapes classification is developed, where natural and anthropogenic factors are taken into account in one system. It used to considerate of cumulative impacts of anthropogenic actions for each relevant resource, and to analyse of all past, present, and reasonably foreseeable future condition of whole landscape and its components (parent rock, surface and ground water, soil, flora and fauna, air).

Solodyankina, S.

2012-04-01

349

Responses of physical, chemical, and biological indicators of water quality to a gradient of agricultural land use in the Yakima River Basin, Washington  

USGS Publications Warehouse

The condition of 25 stream sites in the Yakima River Basin, Washington, were assessed by the U.S. Geological Survey's National Water-Quality Assessment Program. Multimetric condition indices were developed and used to rank sites on the basis of physical, chemical, and biological characteristics. These indices showed that sites in the Cascades and Eastern Cascades ecoregions were largely unimpaired. In contrast, all but two sites in the Columbia Basin ecoregion were impaired, some severely. Agriculture (nutrients and pesticides) was the primary factor associated with impairment and all impaired sites were characterized by multiple indicators of impairment. All indices of biological condition (fish, invertebrates, and algae) declined as agricultural intensity increased. The response exhibited by invertebrates and algae suggested a threshold response with conditions declining precipitously at relatively low levels of agricultural intensity and little response at moderate to high levels of agricultural intensity. This pattern of response suggests that the success of mitigation will vary depending upon where on the response curve the mitigation is undertaken. Because the form of the community condition response is critical to effective water-quality management, the National Water-Quality Assessment Program is conducting studies to examine the response of biota to gradients of land-use intensity and the relevance of these responses to water-quality management. These land-use gradient pilot studies will be conducted in several urban areas starting in 1999.

Cuffney, T.F.; Meador, M.R.; Porter, S.D.; Gurtz, M.E.

2000-01-01

350

Evaluation of an Urban Canopy Parameterization in a Mesoscale Model  

SciTech Connect

A modified urban canopy parameterization (UCP) is developed and evaluated in a three-dimensional mesoscale model to assess the urban impact on surface and lower atmospheric properties. This parameterization accounts for the effects of building drag, turbulent production, radiation balance, anthropogenic heating, and building rooftop heating/cooling. USGS land-use data are also utilized to derive urban infrastructure and urban surface properties needed for driving the UCP. An intensive observational period with clear-sky, strong ambient wind and drainage flow, and the absence of land-lake breeze over the Salt Lake Valley, occurring on 25-26 October 2000, is selected for this study. A series of sensitivity experiments are performed to gain understanding of the urban impact in the mesoscale model. Results indicate that within the selected urban environment, urban surface characteristics and anthropogenic heating play little role in the formation of the modeled nocturnal urban boundary layer. The rooftop effect appears to be the main contributor to this urban boundary layer. Sensitivity experiments also show that for this weak urban heat island case, the model horizontal grid resolution is important in simulating the elevated inversion layer. The root mean square errors of the predicted wind and temperature with respect to surface station measurements exhibit substantially larger discrepancies at the urban locations than the rural counterparts. However, the close agreement of modeled tracer concentration with observations fairly justifies the modeled urban impact on the wind direction shift and wind drag effects.

Chin, H S; Leach, M J; Sugiyama, G A; Leone, Jr., J M; Walker, H; Nasstrom, J; Brown, M J

2004-03-18

351

Dynamic modeling of Tampa Bay urban development using parallel computing  

Microsoft Academic Search

Urban land use and land cover has changed significantly in the environs of Tampa Bay, Florida, over the past 50 years. Extensive urbanization has created substantial change to the region's landscape and ecosystems. This paper uses a dynamic urban-growth model, SLEUTH, which applies six geospatial data themes (slope, land use, exclusion, urban extent, transportation, hillside), to study the process of

George Xian; Mike Crane; Dan Steinwand

2005-01-01

352

Soil food web properties explain ecosystem services across European land use systems  

PubMed Central

Intensive land use reduces the diversity and abundance of many soil biota, with consequences for the processes that they govern and the ecosystem services that these processes underpin. Relationships between soil biota and ecosystem processes have mostly been found in laboratory experiments and rarely are found in the field. Here, we quantified, across four countries of contrasting climatic and soil conditions in Europe, how differences in soil food web composition resulting from land use systems (intensive wheat rotation, extensive rotation, and permanent grassland) influence the functioning of soils and the ecosystem services that they deliver. Intensive wheat rotation consistently reduced the biomass of all components of the soil food web across all countries. Soil food web properties strongly and consistently predicted processes of C and N cycling across land use systems and geographic locations, and they were a better predictor of these processes than land use. Processes of carbon loss increased with soil food web properties that correlated with soil C content, such as earthworm biomass and fungal/bacterial energy channel ratio, and were greatest in permanent grassland. In contrast, processes of N cycling were explained by soil food web properties independent of land use, such as arbuscular mycorrhizal fungi and bacterial channel biomass. Our quantification of the contribution of soil organisms to processes of C and N cycling across land use systems and geographic locations shows that soil biota need to be included in C and N cycling models and highlights the need to map and conserve soil biodiversity across the world. PMID:23940339

de Vries, Franciska T.; Thébault, Elisa; Liiri, Mira; Birkhofer, Klaus; Tsiafouli, Maria A.; Bjørnlund, Lisa; Bracht Jørgensen, Helene; Brady, Mark Vincent; Christensen, Søren; de Ruiter, Peter C.; d’Hertefeldt, Tina; Frouz, Jan; Hedlund, Katarina; Hemerik, Lia; Hol, W. H. Gera; Hotes, Stefan; Mortimer, Simon R.; Setälä, Heikki; Sgardelis, Stefanos P.; Uteseny, Karoline; van der Putten, Wim H.; Wolters, Volkmar; Bardgett, Richard D.

2013-01-01

353

Land use in LCA of biomaterials  

Microsoft Academic Search

When assessing biodegradable materials, all of the environmental impacts associated along its life cycle should be taken into account. The replacement of conventional materials by biopolymers entails modifications of environmental impacts which are not always evident or easy to quantify. Existing Life-Cycle Assessment studies of biopolymers have often neglected the land use impact category. Supposing biodegradable materials become more popular

Daniel Garraín; Rosario Vidal; Vicente Franco

354

Land Use Baseline Report Savannah River Site  

SciTech Connect

This document is to serve as a resource for Savannah River Site managers, planners, and SRS stakeholders by providing a general description of the site and land-use factors important to future use decisions and plans. The intent of this document is to be comprehensive in its review of SRS and the surrounding area.

Noah, J.C.

1995-06-29

355

National Land Use Policy: Objectives, Components, Implementation.  

ERIC Educational Resources Information Center

Proceedings of a special conference sponsored by the Soil Conservation Society of America, are compiled in this report. The conference served as a forum for those involved in land use planning and implementation at all levels of government and private enterprise. Comments were directed to four main topics: (1) Objectives and Need for a National…

Soil Conservation Society of America, Ankeny, IA.

356

Land Use History of North America  

NSDL National Science Digital Library

This book describes the historical and ongoing changes in land use and land cover for several regions around the U.S. Issues which are addressed include the types of changes that are occurring now and how fast they are occurring; a comparison of these changes with those in the past; and the consequences for future environmental quality and the habitability of the planet.

357

Journal of Land Use and Environmental Law  

NSDL National Science Digital Library

The Journal is published twice a year by the Journal of Land Use & Environmental Law at the Florida State University College of Law. (ISSN 0892-4480) Articles are indexed in Environmental Periodicals Bibliography and are also available on both Westlaw

358

Agricultural Land Use classification from Envisat MERIS  

Microsoft Academic Search

This study focuses on evaluation of a crop classification from middle-resolution images (Envisat MERIS) at national level. The main goal of such Land Use product is to provid spatial data for optimisation of monitoring of surface and groundwater pollution in the Czech Republic caused by pesticides use in agriculture. As there is a lack of spatial data on the pesticide

L. Brodsky; R. Kodesova

2009-01-01

359

Sustainable development in British land use regulation  

Microsoft Academic Search

Sustainable development is a new international theory of development founded on principles of futurity, environment, equity and participation. It is the legacy of twenty years of international environmental law that has established a doctrine of global trusteeship. Sustainable development has entered British land use regulation through the Maastricth Treaty; the EU`s Fifth Environmental Action Program; as well as the British

Basiago

1995-01-01

360

Land use, Transit and Jobs Adam Harrington  

E-print Network

Land use, Transit and Jobs Adam Harrington Director of Service Development May 22, 2014 #12;What is Effective Transit? · Transit that carries people · Transit that is a cost-effective use of public funding · Transit that supports efficient development · Transit that provides a basic level of access region-wide 2

Minnesota, University of

361

Current Research in Land Use Impact Assessment  

EPA Science Inventory

There is a continuing debate on how to best evaluate land use impacts within the LCA framework. While this problem is spatially and temporally complex, recent advances in tool development are providing options to allow a GIS-based analysis of various ecosystem services given the...

362

Social Organization, Population, and Land Use*  

PubMed Central

We present a new approach to the investigation of human influences on environmental change that explicitly adds consideration of social organization. This approach identifies social organization as an influence on the environment that is independent of population size, affluence, and technology. The framework we present also identifies population events, such as births, that are likely to influence environmental outcomes beyond the consequences of population size. The theoretical framework we construct explains that explicit attention to social organization is necessary for micro-level investigation of the population-environment relationship because social organization influences both. We use newly available longitudinal, multilevel, mixed-method measures of local land use changes, local population dynamics, and social organization from the Nepalese Himalayas to provide empirical tests of this new framework. These tests reveal that measures of change in social organization are strongly associated with measures of change in land use, and that the association is independent of common measures of population size, affluence, and technology. Also, local birth events shape local land use changes and key proximate determinants of land use change. Together the empirical results demonstrate key new scientific opportunities arising from the approach we present. PMID:21876607

Axinn, William G.; Ghimire, Dirgha J.

2011-01-01

363

Community Context, Land Use, and First Birth  

ERIC Educational Resources Information Center

This article examines the influence of community context and land use on the monthly odds of first birth in a society in the midst of dramatic fertility transition. The theoretical framework guiding our work predicts that proximity to nonfamily services should delay first births by creating opportunities for competing nonfamily activities and…

Ghimire, Dirgha J.; Axinn, William G.

2010-01-01

364

Land use and land cover change detection in Isfahan, Iran using remote sensing techniques  

NASA Astrophysics Data System (ADS)

Rapid urban growth and unprecedented rural to urban transition, along with a huge population growth are new phenomena for both high and low income countries, which started in the mid-20th century. However, urban growth rates and patterns are different in developed countries and developing ones. In less developed countries, urbanization and rural to urban transition usually takes place in an unmanaged way and they are associated with a series of socioeconomical and environmental issues and problems. Identification of the city growth trends in past decades can help urban planners and managers to minimize these negative impacts. In this research, urban growth in the city of Isfahan, Iran, is the subject of study. Isfahan the third largest city in Iran has experienced a huge urban growth and population boom during the last three decades. This transition led to the destruction of natural and agricultural lands and environmental pollutions. Historical and recent remotely sensed data, along with different remote sensing techniques and methods have been used by researchers for urban land use and land cover change detection. In this study three Landsat TM and ETM+ images of the study site, acquired in 1985, 2000 and 2009 are used. Before starting processing, radiometric normalization is done to minimize the atmospheric effects. Then, processing methods including principal component analysis (PCA), vegetation indices and supervised classification are implemented on the images. Accuracy assessment of the PCA method showed that the first PC was responsible for more than 81% of the total variance, and therefore used for analysis of PCA differencing. DeltaPC1t1-t2 shows the amount of changes in land use and land cover during the period of study. In this study ten vegetation indices were selected to be applied to the 1985 image. Accuracy assessments showed that Transformed Differencing Vegetation Index (TDVI) is the most sensitive and accurate index for mapping vegetation in arid and semi-arid urban areas. Hence, TDVI was applied to the 2000 and 2009 images. DeltaTDVIt1-t2 showed the changes in land use and land cover especially the land use transformation from vegetation cover into the urban class. Supervised classification is the last method applied to the images. Training sites were assigned for the selected classes and accuracy was monitored during the process of training site selection. The results of classification show the expansion of urban class and diminishment in natural and agricultural lands.

Alavi, Niloofar

365

Determining land use changes by radar-optic fused images and monitoring its environmental impacts in Edremit region of western Turkey.  

PubMed

Rapid and unplanned urbanization and industrialization are the main reasons of environmental problems. If urban growth is not based on resource sustainability criteria and urban plans are not applied, natural and human resources are damaged dramatically. In this study, land use change and urban expansion in Edremit region of Turkey is determined by means of remote sensing techniques between 1971 and 2002. To improve the accuracy of land use/cover maps, the contribution of SAR images to optic images in defining land cover types was investigated. To determine the situation of land use/cover types in 2002 accurately, Landsat-5 images and Radarsat-1 images were fused, and the land use/cover types were defined from the fused images. Comparisons with the ground truth reveal that land use maps generated using the fuse technique are improved about 6% with an accuracy of 81.20%. To define land use types and urban expansion, screen digitizing and classification methods were used. The results of the study indicate that the urban areas have been increased 1,826 ha across the agricultural fields which are in land use capability classes of I and II, and significant environmental changes such as land degradation and degeneration of ground water quality occurred. PMID:18437516

Balik Sanli, Fusun; Kurucu, Yusuf; Esetlili, Mustafa Tolga

2009-04-01

366

Dynamics of land use\\/cover changes and the analysis of landscape fragmentation in Dhaka Metropolitan, Bangladesh  

Microsoft Academic Search

Rapid urban expansion due to large scale land use\\/cover change, particularly in developing countries becomes a matter of concern\\u000a since urbanization drives environmental change at multiple scales. Dhaka, the capital of Bangladesh, has been experienced\\u000a break-neck urban growth in the last few decades that resulted many adverse impacts on the environment. This paper was an attempt\\u000a to document spatio-temporal pattern

Ashraf M. Dewan; Yasushi Yamaguchi

367

Land use mapping and modelling for the Phoenix Quadrangle  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. Comparison of 9 x 9 MSS band images and color composites made from bands 4, 5, and 6 showing vegetated areas near Phoenix during the summer, fall, and winter seasons aided in definitely establishing that certain land areas were being used as agricultural land and not as rangeland. Agricultural land, which appeared to be fallow, idle, or not irrigated, often became more readily identifiable as agricultural land when comparing different images of identical land areas which have been affected by seasonal vegetation changes. Experimentation with the Bausch and Lomb Zoom Transferscope using MSS images of identical areas in the same spectral band from different time periods, with a quick flip method of alternately viewing the frame areas, enabled rapid detection of a major land use change from agricultural to urban use on the northwest fringe of the metropolitan Phoenix area. The best results in this case were obtained when comparing MSS band 5 images. Examination of MSS transparencies and color composites allowed further updating of a map of land use change in the Phoenix Quadrangle.

Place, J. L. (principal investigator)

1973-01-01

368

Land use mapping and modelling for the Phoenix Quadrangle  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. In comparing the land use changes from the overlay as detected from ERTS-1 and the high altitude change overlay, total areas of change were of the same magnitude. The greatest variations were a result of differences in dates and areas of coverage between ERTS-1 images and aerial photographs. Separation of citrus from other agricultural land has been moderately successful in the ERTS-1 1:100,000 scale Level 2 land use mapping around Phoenix, although accuracy estimates are not yet available. No feeding operations have been detected from ERTS-1 so far. Preliminary indications are that commercial and services, industrial, and institutional land are not separable from each other using present image interpretation techniques. Urban open areas such as parks and golf courses are readily detectable, particularly when local maps are consulted even though out-of-date. Strip and clustered settlements may be detected depending upon their size and contrast with the surrounding area on the ERTS-1 image.

Place, J. L. (principal investigator)

1973-01-01

369

Application of Skylab EREP data for land use management  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. The 1.09-1.19 micron band proved to be very valuable for discriminating a variety of land use categories, including agriculture, forest, and urban classes. The 1.55-1.75 micron band proved very useful in combination with the 1.09-1.19 micron band. Misregistration between spectral bands, even by as little as 1/2 pixel, may degrade classification accuracy. Identification accuracy of boundary or border pixels was as much as 13% lower than the accuracy for identifying internal field pixels. The principal conclusion with respect to the S190B camera system is that the higher resolution of the S190B system in comparison to previous space photography (Gemini, Apollo), to the S190A system (Skylab), and to LANDSAT imagery significantly increases the range of additional discrimination achievable.

Simonett, D. S. (principal investigator)

1976-01-01

370

Evaluation of Nonpoint-Source Contamination, Wisconsin; Land-Use and Best-Management-Practices Inventory, Selected Streamwater-Quality Data, Urban-Watershed Quality Assurance and Quality Control, Constituent Loads in Rural Streams, and Snowmelt-Runoff Analysis, Water Year 1994  

USGS Publications Warehouse

The objective of the watershed-management evaluation monitoring program in Wisconsin is to evaluate the effectiveness of best-management practices (BMP) for controlling nonpoint-source contamination in rural and urban watersheds. This report is an annual summary of the data collected for the program by the U.S Geological Survey and a report of the results of several different detailed analyses of the data. A land-use and BMP inventory is ongoing for 12 evaluation monitoring projects to track the sources of nonpoint-source pollution in each watershed and to document implementation of BMP's that may cause changes in the water quality of streams. Updated information is gathered each year, mapped, and stored in a geographic-information-system data base. Summaries of data collected during water years 1989-94 are presented. A water year is the period beginning October 1 and ending September 30; the water year is designated by the calendar year in which it ends. Suspended-sediment and total-phosphorus data (storm loads and annual loads) are summarized for eight rural sites. For all sites, the annual suspended-sediment or suspended-solids load for water year 1993 exceeded the average for the period of data collection; the minimum annual loads were transported in water year 1991 or 1992. Continuous dissolved-oxygen data were collected at seven rural sites during water year 1994. Data for water years 1990-93 are summarized and plotted in terms of percentage of time that a particular concentration is equaled or exceeded. Dissolved-oxygen concentrations in four streams were less than 9 mg/L at least 50 percent of the time, a condition that fails to meet suggested criterion for coldwater streams. The dissolved-oxygen probability curve for one of the coldwater streams is markedly different than the curves for the other streams, perhaps because of differences in aquatic biomass. Blank quality-assurance samples were collected at two of the urban evaluation monitoring sites to isolate contamination in the sample bottle, the automatic sampler and splitter, and the filtration system. Significant contamination caused excessive concentrations of dissolved chloride, alkalinity, and biochemical oxygen demand. The level of contamination may be large enough to affect data for water samples in which these analytes are present at low concentration. Further investigation is being done to determine the source of contamination and take measures to minimize its effect on the sampling. A preliminary regression analysis was done for the rural sites using data collected during water years 1989-93. Loads of suspended solids and total phosphorus in stormflow were regressed against various precipitation-related measures. The results indicate that, for most sites, changes in constituent load on the order of 40 to 50 percent could be detected with a statistical test. For two sites, the change would have to be 60 to 70 percent to be detected. A detailed comparison of snowmelt runoff and rainfall stormflow in urban and rural areas was done using data collected during water years 1985-93. For the rural sites where statistically significant differences were found between constituent loads in snowmelt and storm runoff, the loads of suspended solids and total phosphorus in snowmelt runoff were greater than those in storm runoff. For the urban sites where statistically significant differences were found between snowmelt and storm runoff, the loads of suspended solids and total phosphorus in storm runoff were greater than those in snowmelt runoff. The importance of including snowmelt runoff in designing and analyzing the effects of BMP's on streamwater quality, particularly in rural areas, is emphasized by these results.

Walker, J.F.; Graczyk, D.J.; Corsi, S.R.; Owens, D.W.; Wierl, J.A.

1995-01-01

371

Extraction of multilayer vegetation coverage using airborne LiDAR discrete points with intensity information in urban areas: A case study in Nanjing City, China  

NASA Astrophysics Data System (ADS)

Urban vegetation is of a strategic importance for the life quality in the increasing urbanized societies. However, it is still difficult to extract accurately urban vegetation vertical distribution with remote sensing images. This paper presented an effective method to extract multilayer vegetation coverage in urban areas using airborne Light Detection and Ranging (LiDAR) discrete points with intensity information. It was applied in Nanjing City, one of the ecological cities in China. Firstly, a median filtering algorithm based on discrete points was used to restrain high-frequency noise. The airborne LiDAR data intensities of different urban objects were analyzed and obtained three rules, which can distinguish between vegetation and non-vegetation in urban areas, after removing the influence of topography. According to the footprint size and principles of distribution of the point cloud, multilayer vegetation coverage, including trees, shrubs and grass, was achieved by the inverse distance weighting (IDW) interpolation method. The results show that the overall accuracy of the vegetation point classification is 94.57%, which is much accurate than that of the methods in TerraSolid software, through comparing with the investigation in the field and Digital Orthophoto Maps (DOM). This method proposed in our work can be applied to in the extraction of multilayer vegetation coverage in urban area.

Han, Wenquan; Zhao, Shuhe; Feng, Xuezhi; Chen, Lei

2014-08-01

372

Wild bee pollinators provide the majority of crop visitation across land-use gradients in New Jersey and Pennsylvania, USA  

Microsoft Academic Search

Summary 1. Concern about a global decline in wild pollinators has increased interest in how pollinators are affected by human land use, and how this, in turn, affects crop pollination. 2. We measured wild bee visitation to four summer vegetable crops, and investigated associations between flower visitation rates and land-use intensity at local and landscape scales. We studied 29 farms

Rachael Winfree; Neal M. Williams; Hannah Gaines; John S. Ascher; Claire Kremen

2008-01-01

373

Simulation of Land Use Changes in Metropolitan Suburban Area: A Case Study of Sholinganallur  

NASA Astrophysics Data System (ADS)

Land use planning for a city is a complex activity involving assumptions on likely development. It is also a complex system wherein the planners need to recognize various influencing parameters. Verifying the factors influencing development over a period of time, that too for a vast area of metropolitan city is a herculean task. In order to keep them in control, planners need tools and techniques which may be handy to operate, allowing the planners at the beginning itself to have alternative plans as well as interim evaluation of the achievement of a plan. Absence of such a tool in the hands of the planners forces a plan to be monolithic and left with no interim evaluation. This research has identified four variables which highly influence land use change namely accessibility to transportation network; physical quality and land availability; proximity to work places; and plans and policies. A simulation model is developed to validate these variables for the suburbs of Chennai Metropolitan Area. Land use scenario for residential land use are simulated for the sub urban area-Sholinganallur for the years 1980, 1991, 2006 and 2011. Over 65 % agreement is observed in residential land use between the actual land use and the simulated extents.

Kanchanamala, S.; Sekar, S. P.

2015-01-01

374

Simulating land use change in China from a global perspective  

E-print Network

1 Simulating land use change in China from a global perspective Xuefeng Cui1,2,3,* , Mark explores land use change in China using a global, parsimonious land use model (PLUM). The model links as usual scenario suggests that PLUM could be used to project future land use change at the country level

Palmer, Paul

375

43 CFR 3425.2 - Land use plans.  

Code of Federal Regulations, 2013 CFR

...2013-10-01 2013-10-01 false Land use plans. 3425.2 Section 3425...Leasing on Application § 3425.2 Land use plans. No lease shall be offered...have been included in a comprehensive land use plan or a land use analysis,...

2013-10-01

376

43 CFR 4100.0-8 - Land use plans.  

Code of Federal Regulations, 2013 CFR

...2013-10-01 2013-10-01 false Land use plans. 4100.0-8 Section 4100...Alaska; General § 4100.0-8 Land use plans. The authorized officer...and in accordance with applicable land use plans. Land use plans shall...

2013-10-01

377

43 CFR 4100.0-8 - Land use plans.  

...2014-10-01 2014-10-01 false Land use plans. 4100.0-8 Section 4100...Alaska; General § 4100.0-8 Land use plans. The authorized officer...and in accordance with applicable land use plans. Land use plans shall...

2014-10-01

378

43 CFR 4100.0-8 - Land use plans.  

Code of Federal Regulations, 2011 CFR

...2011-10-01 2011-10-01 false Land use plans. 4100.0-8 Section 4100...Alaska; General § 4100.0-8 Land use plans. The authorized officer...and in accordance with applicable land use plans. Land use plans shall...

2011-10-01

379

43 CFR 3425.2 - Land use plans.  

Code of Federal Regulations, 2011 CFR

...2011-10-01 2011-10-01 false Land use plans. 3425.2 Section 3425...Leasing on Application § 3425.2 Land use plans. No lease shall be offered...have been included in a comprehensive land use plan or a land use analysis,...

2011-10-01

380

43 CFR 3425.2 - Land use plans.  

Code of Federal Regulations, 2012 CFR

...2012-10-01 2012-10-01 false Land use plans. 3425.2 Section 3425...Leasing on Application § 3425.2 Land use plans. No lease shall be offered...have been included in a comprehensive land use plan or a land use analysis,...

2012-10-01

381

43 CFR 4100.0-8 - Land use plans.  

Code of Federal Regulations, 2012 CFR

...2012-10-01 2012-10-01 false Land use plans. 4100.0-8 Section 4100...Alaska; General § 4100.0-8 Land use plans. The authorized officer...and in accordance with applicable land use plans. Land use plans shall...

2012-10-01

382

43 CFR 3425.2 - Land use plans.  

...2014-10-01 2014-10-01 false Land use plans. 3425.2 Section 3425...Leasing on Application § 3425.2 Land use plans. No lease shall be offered...have been included in a comprehensive land use plan or a land use analysis,...

2014-10-01

383

Development and Application of Nonlinear Land-Use Regression Models  

NASA Astrophysics Data System (ADS)

The problem of air pollution modelling in urban zones is of great importance both from scientific and applied points of view. At present there are several fundamental approaches either based on science-based modelling (air pollution dispersion) or on the application of space-time geostatistical methods (e.g. family of kriging models or conditional stochastic simulations). Recently, there were important developments in so-called Land Use Regression (LUR) models. These models take into account geospatial information (e.g. traffic network, sources of pollution, average traffic, population census, land use, etc.) at different scales, for example, using buffering operations. Usually the dimension of the input space (number of independent variables) is within the range of (10-100). It was shown that LUR models have some potential to model complex and highly variable patterns of air pollution in urban zones. Most of LUR models currently used are linear models. In the present research the nonlinear LUR models are developed and applied for Geneva city. Mainly two nonlinear data-driven models were elaborated: multilayer perceptron and random forest. An important part of the research deals also with a comprehensive exploratory data analysis using statistical, geostatistical and time series tools. Unsupervised self-organizing maps were applied to better understand space-time patterns of the pollution. The real data case study deals with spatial-temporal air pollution data of Geneva (2002-2011). Nitrogen dioxide (NO2) has caught our attention. It has effects on human health and on plants; NO2 contributes to the phenomenon of acid rain. The negative effects of nitrogen dioxides on plants are the reduction of the growth, production and pesticide resistance. And finally, the effects on materials: nitrogen dioxide increases the corrosion. The data used for this study consist of a set of 106 NO2 passive sensors. 80 were used to build the models and the remaining 36 have constituted the testing set. Missing data have been completed using multiple linear regression and annual average values of pollutant concentrations were computed. All sensors are dispersed homogeneously over the central urban area of Geneva. The main result of the study is that the nonlinear LUR models developed have demonstrated their efficiency in modelling complex phrenomena of air pollution in urban zones and significantly reduced the testing error in comparison with linear models. Further research deals with the development and application of other non-linear data-driven models (Kanevski et al. 2009). References Kanevski M., Pozdnoukhov A. and Timonin V. (2009). Machine Learning for Spatial Environmental Data. Theory, Applications and Software. EPLF Press, Lausanne.

Champendal, Alexandre; Kanevski, Mikhail; Huguenot, Pierre-Emmanuel

2014-05-01

384

Climate, Agriculture, Energy and the Optimal Allocation of Global Land Use  

NASA Astrophysics Data System (ADS)

The allocation of the world's land resources over the course of the next century has become a pressing research question. Continuing population increases, improving, land-intensive diets amongst the poorest populations in the world, increasing production of biofuels and rapid urbanization in developing countries are all competing for land even as the world looks to land resources to supply more environmental services. The latter include biodiversity and natural lands, as well as forests and grasslands devoted to carbon sequestration. And all of this is taking place in the context of faster than expected climate change which is altering the biophysical environment for land-related activities. The goal of the paper is to determine the optimal profile for global land use in the context of growing commercial demands for food and forest products, increasing non-market demands for ecosystem services, and more stringent GHG mitigation targets. We then seek to assess how the uncertainty associated with the underlying biophysical and economic processes influences this optimal profile of land use, in light of potential irreversibility in these decisions. We develop a dynamic long-run, forward-looking partial equilibrium framework in which the societal objective function being maximized places value on food production, liquid fuels (including biofuels), timber production, forest carbon and biodiversity. Given the importance of land-based emissions to any GHG mitigation strategy, as well as the potential impacts of climate change itself on the productivity of land in agriculture, forestry and ecosystem services, we aim to identify the optimal allocation of the world's land resources, over the course of the next century, in the face of alternative GHG constraints. The forestry sector is characterized by multiple forest vintages which add considerable computational complexity in the context of this dynamic analysis. In order to solve this model efficiently, we have employed the Purdue University parallel processing computing cluster. The model is solved over the period 2000 - 2100. Our 100 year baseline accurately reflects developments in global land use over the 10 years that have already transpired, while also incorporating projections of population, income and demand growth from a variety of international agencies. We also consider three counterfactual scenarios (higher growth in energy prices, lower growth in agricultural productivity, and global GHG emissions regulations). Our model baseline predicts that, in absence of market imperfections, growth in cropland/deforestation that account for a large share of land-use GHG emission, declines significantly in the medium run. However, energy prices and policies have a significant effect on agricultural land use. Sensitivity to energy prices is compounded by vulnerability of agriculture to adverse productivity shocks from climate. In a 'perfect storm' of high growth in energy prices and declining agricultural productivity growth, additional demand for cropland leads to significant deforestation and higher GHG emissions. As a result, large welfare losses occur. When we also expect the sector to deliver increased ecosystem services as well as land-based GHG abatement, the pressure on land and water resources can be very significant.

Steinbuks, J.; Hertel, T. W.

2011-12-01

385

Position Information Job Title Extension Assistant/Associate Professor -Urban Forestry  

E-print Network

Position Information Job Title Extension Assistant/Associate Professor - Urban Forestry Department field of urban forestry, with a focus on urbanization and changing land use. Potential topics include faculty. Extension responsibilities include developing and coordinating a statewide urban forestry

Watson, Craig A.

386

Applying parcel-specific land-use data for improved monitoring of semi-natural grassland in Denmark.  

PubMed

A major obstacle to the conservation and management of semi-natural grassland (SNG) is the general lack of consistent and precise maps showing the extent and quality of this habitat type. SNG is related to, and influenced by, agricultural land use. Both intensive land use as well as a lack of extensive land use can reduce the extent and quality of SNG. For Denmark, this paper demonstrates how parcel-specific land-use data can be applied to detect localities with spatial convergences and conflicts between SNG and agricultural land use. Based on their respective influence on SNG, land use is aggregated into five major classes and spatially overlaid with existing nationally registered SNG. Results show that almost 11 % of all SNG is mapped either on cropped land or on rotational grassland, indicating a conflict between mapped SNG and land use. Thirty percent of SNG is mapped outside any agricultural land use, pointing to a lack of management. Fifty nine percent of SNG is mapped either on land receiving payments for grazing/mowing or on other land under extensive management, indicating a convergence between SNG and land use. Finally, 30 % of land receiving payments for grazing/mowing and 62 % of other land under extensive management does not contain any semi-natural habitat. Potential, as yet unmapped, SNG might exist in these localities. Based on these results it is argued that the application of parcel-specific land-use data could significantly improve monitoring of SNG. PMID:22736210

Levin, Gregor

2013-03-01

387

Stream biodiversity: The ghost of land use past  

Microsoft Academic Search

The inf luence of past land use on the present- day diversity of stream invertebrates and fish was investigated by comparing watersheds with different land-use history. Whole watershed land use in the 1950s was the best predictor of present-day diversity, whereas riparian land use and wa- tershed land use in the 1990s were comparatively poor indi- cators. Our findings indicate

J. S. Harding; E. F. B ENFIELD; P. V. BOLSTAD; G. S. H ELFMAN; E. B. D. JONES

1998-01-01

388

Carbon Density and Anthropogenic Land Use Influences on Net Land-Use Change Emissions  

SciTech Connect

We examine historical and future land-use emissions using a simple mechanistic carbon-cycle model with regional and ecosystem specific parameterizations. Our central estimate of net terrestrial land-use change emissions, exclusive of climate feedbacks, is 250 GtC over the last three hundred years. This estimate is most sensitive to assumptions for preindustrial forest and soil carbon densities. We also find that estimates are sensitive to the treatment of crop and pasture lands. These sensitivities also translate into differences in future terrestrial uptake in the RCP4.5 land-use scenario. This estimate of future uptake is lower than the native values from the GCAM integrated assessment model result due to lower net reforestation in the RCP4.5 gridded land-use data product

Smith, Steven J.; Rothwell, Andrew J.

2013-10-08

389

Induced land use emissions due to first and second generation biofuels and uncertainty in land use emissions factors  

Microsoft Academic Search

Much research has provided estimates of induced land use change and emissions for first generation biofuels. Relatively little has estimated land use change for the second generation cellulosic biofuels. In this paper we estimate induced land use change and emissions for these biofuels. Estimated emissions due to land use changes induced by biofuels production are uncertain not only because their

Farzad Taheripour; Wallace E. Tyner

2012-01-01

390

Development and application of multi-proxy indices of land use change for riparian soils in southern New England, USA.  

PubMed

Understanding the effects of land use on riparian systems is dependent upon the development of methodologies to recognize changes in sedimentation related to shifts in land use. Land use trends in southern New England consist of shifts from forested precolonial conditions, to colonial and agrarian land uses, and toward modern industrial-urban landscapes. The goals of this study were to develop a set of stratigraphic indices that reflect these land use periods and to illustrate their applications. Twenty-four riparian sites from first- and second-order watersheds were chosen for study. Soil morphological features, such as buried surface horizons (layers), were useful to identify periods of watershed instability. The presence of human artifacts and increases in heavy metal concentration above background levels, were also effective indicators of industrial-urban land use periods. Increases and peak abundance of non-arboreal weed pollen (Ambrosia) were identified as stratigraphic markers indicative of agricultural land uses. Twelve 14C dates from riparian soils indicated that the rise in non-arboreal pollen corresponds to the start of regional deforestation (AD 1749 +/- 56 cal yr; mean +/- 2 SD) and peak non-arboreal pollen concentration corresponds to maximum agricultural land use (AD 1820 +/- 51 cal yr). These indices were applied to elucidate the impact of land use on riparian sedimentation and soil carbon (C) dynamics. This analysis indicated that the majority of sediment and soil organic carbon (SOC) stored in regional riparian soils is of postcolonial origins. Mean net sedimentation rates increased -100-fold during postcolonial time periods, and net SOC sequestration rates showed an approximate 200-fold increase since precolonial times. These results suggest that headwater riparian zones have acted as an effective sink for alluvial sediment and SOC associated with postcolonial land use. PMID:22611849

Ricker, M C; Donohue, S W; Stolt, M H; Zavada, M S

2012-03-01

391

Land-use forecasting and hydrologic model integration for improved land-use decision support  

Microsoft Academic Search

This paper develops a methodology for integrating a land-use forecasting model with an event scale, rainfall-runoff model in support of improving land-use policy formulation at the watershed scale. The models selected for integration are loosely coupled, structured upon a common GIS platform that facilitates data exchange. The hydrologic model HEC-HMS is calibrated for a specific storm event that occurred within

Chris McColl; Graeme Aggett

2007-01-01

392

Modelling land Use Change : Improving the prediction of future land use patterns  

Microsoft Academic Search

Modelling land Use Change: Improving the prediction of future land use patterns. Man has been altering his living environment since prehistoric times and will continue to do so. It is predicted that by 2030 about 90,000 ha will be needed for residential developments in the Netherlands and 55,000 ha for industry, offices and commerce. Moreover, nearly 250,000 ha of agricultural

A. C. M. de Nijs

2009-01-01

393

Predicting soil erosion for alternative land uses.  

PubMed

The APEX (Agricultural Policy-Environmental eXtender) model developed in the United States was calibrated for northwestern China's conditions. The model was then used to investigate soil erosion effects associated with alternative land uses at the ZFG (Zi-Fang-Gully) watershed in northwestern China. The results indicated that the APEX model could be calibrated reasonably well (+/-15% errors) to fit those areas with >50% slope within the watershed. Factors being considered during calibration include runoff, RUSLE (Revised Universal Soil Loss Equation) slope length and steepness factor, channel capacity flow rate, floodplain saturated hydraulic conductivity, and RUSLE C factor coefficient. No changes were made in the APEX computer code. Predictions suggest that reforestation is the best practice among the eight alternative land uses (the status quo, all grass, all grain, all grazing, all forest, half tree and half grass, 70% tree and 30% grain, and construction of a reservoir) for control of water runoff and soil erosion. Construction of a reservoir is the most effective strategy for controlling sediment yield although it does nothing to control upland erosion. For every 1 Mg of crop yield, 11 Mg of soil were lost during the 30-yr simulation period, suggesting that expanding land use for food production should not be encouraged on the ZFG watershed. Grass species are less effective than trees in controlling runoff and erosion on steep slopes because trees generally have deeper and more stable root systems. PMID:16455846

Wang, Erda; Xin, Chang; Williams, Jimmy R; Xu, Cheng

2006-01-01

394

The Center for Land Use Interpretation  

NSDL National Science Digital Library

Founded in 1994, the Center for Land Use Interpretation (CLUI) is a research organization "interested in understanding the nature and extent of human interaction with the earth's surface." To this end, CLUI has adopted a multidisciplinary approach to engaging themselves with its mission and actively produces a number of exhibits on land use themes. The site contains information about visiting the center's headquarters in Los Angeles, and a complete archive of the in-house newsletter, Lay of the Land. Visitors will want to take a look at the ongoing programs and projects, which include tours, information on the residency program for landscape interpreters, and the rather creative extrapolative projects. The definitive highlight of the site is the online CLUI Land Use Database which allows users to search an interactive map of the United States or perform a keyword search to look for sites that are unusual and exemplary throughout the country. Each listing generally contains a brief description, some type of visual documentation, and external website links where available.

395

Pollutant concentrations and pollution loads in stormwater runoff from different land uses in Chongqing.  

PubMed

To investigate the distribution of pollutant concentrations and pollution loads in stormwater runoff in Chongqing, six typical land use types were selected and studied from August 2009 to September 2011. Statistical analysis on the distribution of pollutant concentrations in all water samples shows that pollutant concentrations fluctuate greatly in rainfall-runoff, and the concentrations of the same pollutant also vary greatly in different rainfall events. In addition, it indicates that the event mean concentrations (EMCs) of total suspended solids (TSS) and chemical oxygen demand (COD) from urban traffic roads (UTR) are significantly higher than those from residential roads (RR), commercial areas (CA), concrete roofs (CR), tile roofs (TRoof), and campus catchment areas (CCA); and the EMCs of total phosphorus (TP) and NH3-N from UTR and CA are 2.35-5 and 3 times of the class-II standard values specified in the Environmental Quality Standards for Surface Water (GB 3838-2002). The EMCs of Fe, Pb and Cd are also much higher than the class-III standard values. The analysis of pollution load producing coefficients (PLPC) reveals that the main pollution source of TSS, COD and TP is UTR. The analysis of correlations between rainfall factors and EMCs/PLPC indicates that rainfall duration is correlated with EMCs/PLPC of TSS for TRoof and TP for UTR, while rainfall intensity is correlated with EMCs/PLPC of TP for both CR and CCA. The results of this study provide a reference for better management of non-point source pollution in urban regions. PMID:23923423

Wang, Shumin; He, Qiang; Ai, Hainan; Wang, Zhentao; Zhang, Qianqian

2013-03-01

396

Evaluating Global Land-use Change Scenario: Carbon Emission in RCP Scenarios and its Effects on Climate Response  

NASA Astrophysics Data System (ADS)

In CMIP5 experiments, new emissions scenarios for GCMs and Earth System Models (ESMs) have been constructed as Representative Concentration Pathways (RCPs) by a community effort of Integrated Assessment Modeling (IAM) groups. In RCP scenarios, regional land-use scenarios have been depicted based on the socio-economic assumption of IAMs, and also downscaled spatially explicit land-use maps from the regional scenarios are prepared. In the land-use harmonization project, integrated gridded land-use transition data for the past and future time period has been developed from the reconstruction based on HYDE 3 agricultural data and FAO wood harvest data, and the future land-use scenarios from IAMs. These gridded land-use dataset are used as a forcing of some ESMs participating to the CMIP5 experiments, to assess the biogeochemical and biogeophysical effects of land-use and land cover change in the climate change simulation. In this study, global net CO2 emissions from land-use change for RCP scenarios are evaluated with an offline terrestrial biogeochemical model, VISIT (Vegetation Integrative SImulation Tool). Also the emissions are evaluated with coupled ESM, MIROC-ESM following the LUCID-CMIP5 protocol to see the effect of land-use and land cover change on climate response. Using the model output, consistency of the land-use change CO2 emission scenarios provided by RCPs are evaluated in terms of effect of CO2 fertilization, climate change, and land-use transition itself including the effect of biomass crops production with CCS. We find that a land-use scenario with decreased agricultural land-use intensity such as RCP 6.0 shows possibility of further absorption of CO2 through the climate-carbon feedback, and cooling effect through both biogeochemical and biogeophysical effects.

Kato, E.; Kawamiya, M.

2011-12-01

397

Developing a top-down land-use management procedure for fish habitat enhancement  

NASA Astrophysics Data System (ADS)

Land-use change can influence stream ecosystem and alter instream physical, chemical and biologi