Science.gov

Sample records for urban land-use intensity

  1. Evaluating the compatibility of multi-functional and intensive urban land uses

    NASA Astrophysics Data System (ADS)

    Taleai, M.; Sharifi, A.; Sliuzas, R.; Mesgari, M.

    2007-12-01

    This research is aimed at developing a model for assessing land use compatibility in densely built-up urban areas. In this process, a new model was developed through the combination of a suite of existing methods and tools: geographical information system, Delphi methods and spatial decision support tools: namely multi-criteria evaluation analysis, analytical hierarchy process and ordered weighted average method. The developed model has the potential to calculate land use compatibility in both horizontal and vertical directions. Furthermore, the compatibility between the use of each floor in a building and its neighboring land uses can be evaluated. The method was tested in a built-up urban area located in Tehran, the capital city of Iran. The results show that the model is robust in clarifying different levels of physical compatibility between neighboring land uses. This paper describes the various steps and processes of developing the proposed land use compatibility evaluation model (CEM).

  2. Noise levels associated with urban land use.

    PubMed

    King, Gavin; Roland-Mieszkowski, Marek; Jason, Timothy; Rainham, Daniel G

    2012-12-01

    Recent trends towards the intensification of urban development to increase urban densities and avoid sprawl should be accompanied by research into the potential for related health impacts from environmental exposure. The objective of the current study was to examine the effect of the built environment and land use on levels of environmental noise. Two different study areas were selected using a combination of small area census geography, land use information, air photography, and ground-truthing. The first study area represented residential land use and consisted of two- to three-story single-family homes. The second study area was characteristic of mixed-use urban planning with apartment buildings as well as commercial and institutional development. Study areas were subdivided into six grids, and a location was randomly selected within each grid for noise monitoring. Each location was sampled four times over a 24-h day, resulting in a total of 24 samples for each of the two areas. Results showed significant variability in noise within study areas and significantly higher levels of environmental noise in the mixed-use area. Both study areas exceeded recommended noise limits when evaluated against World Health Organization guidelines and yielded average noise events values in the moderate to serious annoyance range with the potential to obscure normal conversation and cause sleep disturbance. PMID:22707308

  3. Urban Dynamics: Analyzing Land Use Change in Urban Environments

    NASA Technical Reports Server (NTRS)

    Acevedo, William; Richards, Lora R.; Buchanan, Janis T.; Wegener, Whitney R.

    2000-01-01

    In FY99, the Earth Resource Observation System (EROS) staff at Ames continued managing the U.S. Geological Survey's (USGS) Urban Dynamics Research program, which has mapping and analysis activities at five USGS mapping centers. Historic land use reconstruction work continued while activities in geographic analysis and modeling were expanded. Retrospective geographic information system (GIS) development - the spatial reconstruction of a region's urban land-use history - focused on the Detroit River Corridor, California's Central Valley, and the city of Sioux Falls, South Dakota.

  4. Agent-based modeling of urban land-use change

    NASA Astrophysics Data System (ADS)

    Li, Xinyan; Li, Deren

    2005-10-01

    ABM (Agent-Based Modeling) is a newly developed method of computer simulation. It has characteristics such as active, dynamic, and operational. Urban land-use change has been a focus problem all over the world, especially for the developing countries. We try to use ABM to model the urban land-use changes. By studying the mechanism of urban land use evolvement, we put forwards the thinking of modeling. And an urban land-use change model is built primarily based on the RePast software and GIS spatial database.

  5. Challenges and opportunities in mapping land use intensity globally☆

    PubMed Central

    Kuemmerle, Tobias; Erb, Karlheinz; Meyfroidt, Patrick; Müller, Daniel; Verburg, Peter H; Estel, Stephan; Haberl, Helmut; Hostert, Patrick; Jepsen, Martin R.; Kastner, Thomas; Levers, Christian; Lindner, Marcus; Plutzar, Christoph; Verkerk, Pieter Johannes; van der Zanden, Emma H; Reenberg, Anette

    2013-01-01

    Future increases in land-based production will need to focus more on sustainably intensifying existing production systems. Unfortunately, our understanding of the global patterns of land use intensity is weak, partly because land use intensity is a complex, multidimensional term, and partly because we lack appropriate datasets to assess land use intensity across broad geographic extents. Here, we review the state of the art regarding approaches for mapping land use intensity and provide a comprehensive overview of available global-scale datasets on land use intensity. We also outline major challenges and opportunities for mapping land use intensity for cropland, grazing, and forestry systems, and identify key issues for future research. PMID:24143157

  6. Effects of urban land-use on largescale stonerollers in the Mobile River Basin, Birmingham, AL.

    PubMed

    Iwanowicz, D; Black, M C; Blazer, V S; Zappia, H; Bryant, W

    2016-04-01

    During the spring and fall of 2001 and the spring of 2002 a study was conducted to evaluate the health of the largescale stoneroller (Campostoma oligolepis) populations in streams along an urban land-use gradient. Sites were selected from a pool of naturally similar sub-basins (eco-region, basin size, and geology) of the Mobile River basin (MRB), using an index of urban intensity derived from infrastructure, socioeconomic, and land-use data. This urban land-use gradient (ULUG) is a multimetric indicator of urban intensity, ranging from 0 (background) to 100 (intense urbanization). Campostoma sp. have been used previously as indicators of stream health and are common species found in all sites within the MRB. Endpoints used to determine the effects of urban land-use on the largescale stoneroller included total glutathione, histology, hepatic apoptosis, condition factor and external lesions. Liver glutathione levels were positively associated with increasing urban land-use (r(2) = 0.94). Histopathological examination determined that some abnormalities and lesions were correlated with the ULUG and generally increased in prevalence or severity with increasing urbanization. Liver macrophage aggregates were positively correlated to the ULUG. The occurrence of nucleosomal ladders (indicating apoptotic cell death) did not correspond with urban intensity in a linear fashion. Apoptosis, as well as prevalence and severity of a myxozoan parasite, appeared to have a hormetic dose-response relationship. The majority of the biomarkers suggested fish health was compromised in areas where the ULUG ≥ 36. PMID:26892787

  7. Cities and Urban Land Use in Advanced Placement Human Geography.

    ERIC Educational Resources Information Center

    Ford, Larry R.

    2000-01-01

    Discusses the cities and urban land use section of the Advanced Placement (AP) human geography course, focusing on the: (1) definitions of urbanism; (2) origin and evolution of cities; (3) functional character of contemporary cities; (4) built environment and social space; and (5) responses to urban growth. (CMK)

  8. Influences of Different Land Use Spatial Control Schemes on Farmland Conversion and Urban Development

    PubMed Central

    Zhou, Min; Tan, Shukui; Zhang, Lu

    2015-01-01

    Land use planning is always officially implemented as an effective tool to control urban development and protect farmland. However, its impact on land use change remains untested in China. Using a case study of Hang-Jia-Hu region, the main objective of this paper was to investigate the influence of different land use spatial control schemes on farmland conversion and urban development. Comparisons of farmland conversion and urban development patterns between the urban planning area and the non-urban planning area were characterized by using remote sensing, geographical information systems, and landscape metrics. Results indicated that farmland conversion in the non-urban planning area was more intensive than that in the urban planning area, and that farmland patterns was more fragmented in the non-urban planning area. Built-up land patterns in the non-urban planning area showed a trend of aggregation, while those in the urban planning area had a dual trend of fragmentation and aggregation. Existing built-up areas had less influence on built-up land sprawl in the non-urban planning area than that in the urban planning area. Built-up land sprawl in the form of continuous development in the urban planning area led to farmland conversion; and in the non-urban planning area, built-up land sprawl in the form of leapfrogging development resulted in farmland areal declines and fragmentation. We argued that it is a basic requirement to integrate land use plans in urban and non-urban planning areas for land use planning and management. PMID:25915897

  9. Influences of different land use spatial control schemes on farmland conversion and urban development.

    PubMed

    Zhou, Min; Tan, Shukui; Zhang, Lu

    2015-01-01

    Land use planning is always officially implemented as an effective tool to control urban development and protect farmland. However, its impact on land use change remains untested in China. Using a case study of Hang-Jia-Hu region, the main objective of this paper was to investigate the influence of different land use spatial control schemes on farmland conversion and urban development. Comparisons of farmland conversion and urban development patterns between the urban planning area and the non-urban planning area were characterized by using remote sensing, geographical information systems, and landscape metrics. Results indicated that farmland conversion in the non-urban planning area was more intensive than that in the urban planning area, and that farmland patterns was more fragmented in the non-urban planning area. Built-up land patterns in the non-urban planning area showed a trend of aggregation, while those in the urban planning area had a dual trend of fragmentation and aggregation. Existing built-up areas had less influence on built-up land sprawl in the non-urban planning area than that in the urban planning area. Built-up land sprawl in the form of continuous development in the urban planning area led to farmland conversion; and in the non-urban planning area, built-up land sprawl in the form of leapfrogging development resulted in farmland areal declines and fragmentation. We argued that it is a basic requirement to integrate land use plans in urban and non-urban planning areas for land use planning and management. PMID:25915897

  10. Airborne lidar intensity calibration and application for land use classification

    NASA Astrophysics Data System (ADS)

    Li, Dong; Wang, Cheng; Luo, She-Zhou; Zuo, Zheng-Li

    2014-11-01

    Airborne Light Detection and Ranging (LiDAR) is an active remote sensing technology which can acquire the topographic information efficiently. It can record the accurate 3D coordinates of the targets and also the signal intensity (the amplitude of backscattered echoes) which represents reflectance characteristics of targets. The intensity data has been used in land use classification, vegetation fractional cover and leaf area index (LAI) estimation. Apart from the reflectance characteristics of the targets, the intensity data can also be influenced by many other factors, such as flying height, incident angle, atmospheric attenuation, laser pulse power and laser beam width. It is therefore necessary to calibrate intensity values before further applications. In this study, we analyze the factors affecting LiDAR intensity based on radar range equation firstly, and then applying the intensity calibration method, which includes the sensor-to-target distance and incident angle, to the laser intensity data over the study area. Finally the raw LiDAR intensity and normalized intensity data are used for land use classification along with LiDAR elevation data respectively. The results show that the classification accuracy from the normalized intensity data is higher than that from raw LiDAR intensity data and also indicate that the calibration of LiDAR intensity data is necessary in the application of land use classification.

  11. Urban nocturnal temperatures, street geometry and land use

    NASA Astrophysics Data System (ADS)

    Eliasson, Ingegärd

    The climate in the city of Goteborg, Sweden, was investigated for a three year period. In this paper the nocturnal temperature distribution is analysed in relation to differences in street geometry and land use. The seasonal and monthly air temperature difference between a street canyon and a nearby open area, as well as case studies of the vertical and horizontal temperature distribution within and between different urban units and urban districts are discussed. In spite of a good relationship between the local surface temperature and the sky view-factor, both continuous measurements and case studies show small variations in air temperature within the city centre. Air temperature variations between urban districts of different land use are greater. The average horizontal temperature decrease of 4°C in the transition zone from the city centre to a large park southwest of the centre are, in fact, of the same order as the average urban-rural air temperature difference.

  12. Benchmarking land use change impacts on direct runoff in ungauged urban watersheds

    NASA Astrophysics Data System (ADS)

    Ozdemir, Hasan; Elbaşı, Emre

    This paper describes the results of benchmark testing of land use change impact on direct runoff using Soil Conservation Service-Curve Number (SCS-CN) model in two ungauged neighbouring urban watersheds (Çınar and Kadıyakuplu) in Istanbul, Turkey. To examine this impact, the model was applied to daily rainfall data using three different dated (1982, 1996 and 2012) hydrological soil groups and land use of the two ungauged urban watersheds. Finally, the impact of land use change and model performance were evaluated with the rainfall-runoff regression, the coefficient of determination and the NSE test using benchmark runoff data based on 1982 land use conditions. The results of the analysis indicate that the changing of land use types from natural surfaces to impervious surfaces has a significant impact on surface runoff. Additionally, remarkable spatial variations of the land use changes and their impact on the runoff in 1996 and 2012 were more detected in the Çınar watershed compared with the Kadıyakuplu watershed. The planning decision on land use of the watersheds, has vital role in these differences. The results of this research also reveal that change to intensive land use in urban watersheds has a significantly larger impact on runoff generation than those rainfall.

  13. Land-use suitability analysis for urban development in Beijing.

    PubMed

    Liu, Renzhi; Zhang, Ke; Zhang, Zhijiao; Borthwick, Alistair G L

    2014-12-01

    Land-use suitability analyses are of considerable use in the planning of mega-cities. An Urban Development Land-use Suitability Mapping (UDLSM) approach has been constructed, based on opportunity and constraint criteria. Two Multi-criteria Evaluation (MCE) methods, the Ideal Point Method (IPM) and Ordered Weighted Averaging (OWA), were used to generate the opportunity map. The protection map was obtained by means of constraint criteria, utilizing the Boolean union operator. A suitability map was then generated by overlaying the opportunity and protection maps. By applying the UDLSM approach to Beijing, its urban development land-use suitability was mapped, and a sensitivity analysis undertaken to examine the robustness of the proposed approach. Indirect validation was achieved by mutual comparisons of suitability maps resulting from the two MCE methods, where the overall agreement of 91% and kappa coefficient of 0.78 indicated that both methods provide very similar spatial land-use suitability distributions. The suitability level decreases from central Beijing to its periphery, and the area classed as suitable amounts to 28% of the total area. Leading attributes of each opportunity factor for suitability were revealed, with 2256 km(2), i.e. 70%, of existing development land being overlaid by suitable areas in Beijing. Conflicting parcels of land were identified by overlaying the resultant map with two previous development blueprints for Beijing. The paper includes several recommendations aimed at improving the long-term urban development plans for Beijing. PMID:25036557

  14. Classifying environmentally significant urban land uses with satellite imagery.

    PubMed

    Park, Mi-Hyun; Stenstrom, Michael K

    2008-01-01

    We investigated Bayesian networks to classify urban land use from satellite imagery. Landsat Enhanced Thematic Mapper Plus (ETM(+)) images were used for the classification in two study areas: (1) Marina del Rey and its vicinity in the Santa Monica Bay Watershed, CA and (2) drainage basins adjacent to the Sweetwater Reservoir in San Diego, CA. Bayesian networks provided 80-95% classification accuracy for urban land use using four different classification systems. The classifications were robust with small training data sets with normal and reduced radiometric resolution. The networks needed only 5% of the total data (i.e., 1500 pixels) for sample size and only 5- or 6-bit information for accurate classification. The network explicitly showed the relationship among variables from its structure and was also capable of utilizing information from non-spectral data. The classification can be used to provide timely and inexpensive land use information over large areas for environmental purposes such as estimating stormwater pollutant loads. PMID:17291679

  15. Effects of Land Use Development on Urban Open Spaces

    NASA Astrophysics Data System (ADS)

    Esbah, Hayriye; Deniz, Bulent

    City of Aydin has grown extremely due to immigration from the eastern part of Turkey, immigration from rural areas to urban areas of the city and alterations in economic and social structure of the nation. The rapid expansion of the urban area results in dramatic change in the open space system of the town. Understanding this transformation is important to generate sustainable planning in the area. The purpose of this study is to elaborate the different open space opportunities in Aydin and to detect the change in these areas. Black and white aerial photographs from 1977 and 1993 and Ikonos 2002 images are utilized for the analysis in GIS environment. First, 14 different open space types are defined and the open spaces are delineated from the aerials and satellite images. Second, the change in the area of these patches is analyzed. The results indicate that urban open spaces are negatively affected by historic land use development. The natural and agricultural patches diminished while semi-natural or man made open space patches increased. Opportunities to increase the variability in the open space types should be embraced to promote sustainability in the urban matrix. Ecological design of the man made open spaces is necessary to increase their contribution in this endeavor.

  16. [Spatial tendency of urban land use in new Yinzhou Town of Ningbo City, Zhejiang Province of East China].

    PubMed

    Jiang, Wen-Wei; Guo, Hui-Hui; Mei, Yan-Xia

    2012-03-01

    By adopting gradient analysis combining with the analysis of urban land use degree, this paper studied the spatial layout characteristics of residential and industrial lands in new Yinzhou Town, and explored the location characters of various urban land use by selecting public green land, public facilities, and road as the location advantage factors. Gradient analysis could effectively connect with the spatial layout of urban land use, and quantitatively depict the spatial character of urban land use. In the new town, there was a new urban spatial center mostly within the radius of 2 km, namely, the urban core area had obvious location advantage in the cross-shaft direction urban development. On the south of Yinzhou Avenue, the urban hinterland would be constructed soon. In the future land use of the new town, the focus would be the reasonable vicissitude of industrial land after the adjustment of industrial structure, the high-efficient intensive use of the commercial land restricted by the compulsive condition of urban core area, and the agricultural land protection in the southeastern urban-rural fringe. PMID:22720614

  17. The ERTS-1 investigation (ER-600). Volume 5: ERTS-1 urban land use analysis

    NASA Technical Reports Server (NTRS)

    Erb, R. B.

    1974-01-01

    The Urban Land Use Team conducted a year's investigation of ERTS-1 MSS data to determine the number of Land Use categories in the Houston, Texas, area. They discovered unusually low classification accuracies occurred when a spectrally complex urban scene was classified with extensive rural areas containing spectrally homogeneous features. Separate computer processing of only data in the urbanized area increased classification accuracies of certain urban land use categories. Even so, accuracies of urban landscape were in the 40-70 percent range compared to 70-90 percent for the land use categories containing more homogeneous features (agriculture, forest, water, etc.) in the nonurban areas.

  18. Fractal analysis of urban environment: land use and sewer system

    NASA Astrophysics Data System (ADS)

    Gires, A.; Ochoa Rodriguez, S.; Van Assel, J.; Bruni, G.; Murla Tulys, D.; Wang, L.; Pina, R.; Richard, J.; Ichiba, A.; Willems, P.; Tchiguirinskaia, I.; ten Veldhuis, M. C.; Schertzer, D. J. M.

    2014-12-01

    Land use distribution are usually obtained by automatic processing of satellite and airborne pictures. The complexity of the obtained patterns which are furthermore scale dependent is enhanced in urban environment. This scale dependency is even more visible in a rasterized representation where only a unique class is affected to each pixel. A parameter commonly analysed in urban hydrology is the coefficient of imperviousness, which reflects the proportion of rainfall that will be immediately active in the catchment response. This coefficient is strongly scale dependent with a rasterized representation. This complex behaviour is well grasped with the help of the scale invariant notion of fractal dimension which enables to quantify the space occupied by a geometrical set (here the impervious areas) not only at a single scale but across all scales. This fractal dimension is also compared to the ones computed on the representation of the catchments with the help of operational semi-distributed models. Fractal dimensions of the corresponding sewer systems are also computed and compared with values found in the literature for natural river networks. This methodology is tested on 7 pilot sites of the European NWE Interreg IV RainGain project located in France, Belgium, Netherlands, United-Kingdom and Portugal. Results are compared between all the case study which exhibit different physical features (slope, level of urbanisation, population density...).

  19. Aggregating land use quantity and intensity to link water quality in upper catchment of Miyun Reservoir

    NASA Astrophysics Data System (ADS)

    Xu, E.

    2015-12-01

    Land use is closely related to hydrological and biochemical processes influencing the water quality. Quantifying relationship between both of them can help effectively manage land use to improve water quality. Previous studies majorly utilized land use quantity as an indicator to link water quality parameters, which lacked an insight to the influence of land use intensity. Taking upper catchment of Miyun Reservoir as a case study, we proposed a method of aggregating land use quantity and intensity to build a new land use indicator and investigated its explanation empower on water quality. Six nutrient concentrations from 52 sub-watersheds covering the whole catchment were used to characterize spatial distributions of water eutrophication. Based on spatial techniques and empirical conversion coefficients, combined remote sensing with socio-economic statistical data, land use intensity was measured and mapped visually. Then the new land use indicator was calculated and linked to nutrient concentrations by Pearson correlation coefficients. Results demonstrated that our new land use indicator incorporating intensity information can quantify the potential different nutrients exporting abilities from land uses. Comparing to traditional indicators only characterized by land use quantity, most Pearson correlation coefficients between new indicator and water nutrient concentrations increased. New information enhanced the explanatory power of land use on water nutrient concentrations. Then it can help better understand the impact of land use on water quality and guide land use management for supporting decision making.

  20. Urban Land Use Decouples Plant-Herbivore-Parasitoid Interactions at Multiple Spatial Scales

    PubMed Central

    Nelson, Amanda E.; Forbes, Andrew A.

    2014-01-01

    Intense urban and agricultural development alters habitats, increases fragmentation, and may decouple trophic interactions if plants or animals cannot disperse to needed resources. Specialist insects represent a substantial proportion of global biodiversity and their fidelity to discrete microhabitats provides a powerful framework for investigating organismal responses to human land use. We sampled site occupancy and densities for two plant-herbivore-parasitoid systems from 250 sites across a 360 km2 urban/agricultural landscape to ask whether and how human development decouples interactions between trophic levels. We compared patterns of site occupancy, host plant density, herbivory and parasitism rates of insects at two trophic levels with respect to landcover at multiple spatial scales. Geospatial analyses were used to identify landcover characters predictive of insect distributions. We found that herbivorous insect densities were decoupled from host tree densities in urban landcover types at several spatial scales. This effect was amplified for the third trophic level in one of the two insect systems: despite being abundant regionally, a parasitoid species was absent from all urban/suburban landcover even where its herbivore host was common. Our results indicate that human land use patterns limit distributions of specialist insects. Dispersal constraints associated with urban built development are specifically implicated as a limiting factor. PMID:25019962

  1. Gravel resources, urbanization, and future land use, Front Range Urban Corridor, Colorado

    USGS Publications Warehouse

    Soule, James M.; Fitch, Harold R.

    1974-01-01

    An assessment of gravel needs in Front Range Urban Corridor markets to 2000 A.D., based on forecast population increases and urbanization, indicates that adequate resources to meet anticipated needs are potentially available, if future land use does not preclude their extraction. Because of urban encroachment onto gravel-bearing lands, this basic construction material is in short supply nationally and in the Front Range Urban Corridor. Longer hauls, increased prices, and use of alternatives, especially crushed rock aggregate, have resulted. An analysis of possible sequential land uses following gravel mining indicates that a desirable use is for 'real estate' ponds and small lakes. A method for computing gravel reserves, based on planimeter measurement of area of resource-bearing lands and statistical analysis of reliability of thickness and size distribution data, was developed to compute reserves in individual markets. A discussion of the qualitative 'usability' of these reserves is then made for the individual markets.

  2. Land use patterns and urbanization in the holy city of Varanasi, India: a scenario.

    PubMed

    Kumar, Manoj; Mukherjee, Nivedita; Sharma, Gyan Prakash; Raghubanshi, A S

    2010-08-01

    Rapid urbanization and increasing land use changes due to population and economic growth in selected landscapes is being witnessed of late in India and other developing countries. The cities are expanding in all directions resulting in large-scale urban sprawl and changes in urban land use. The spatial pattern of such changes is clearly noticed on the urban fringes or city peripheral rural areas than in the city center. In fact, this is reflected in changing urban land use patterns. There is an urgent need to accurately describe land use changes for planning and sustainable management. In the recent times, remote sensing is gaining importance as vital tool in the analysis and integration of spatial data. This study intends to estimate land use pattern in a planned and unplanned urban setup and also to analyze the impact of change in land use pattern in the Varanasi urban environment. The results indicate that the planned urban setup had a higher tree cover to that of unplanned area in the Varanasi City, although a considerable disparity existed within the planned urban setups. The results emphasize the need to critically review concepts of urban planning and give more consideration to the preservation and management of urban tree cover/greenspace. PMID:19562495

  3. Green Infrastructure & Sustainable Urban Land Use Decision Analysis Workshop

    EPA Science Inventory

    Introduce green infrastructure, concepts and land use alternatives, to City of Cleveland operations staff. Discuss potential of green alternatives to impact daily operations and routine maintenance activities. Tie in sustainability concepts to long-term City planning and discu...

  4. LUMIS: A Land Use Management Information System for urban planning

    NASA Technical Reports Server (NTRS)

    Paul, C. K.

    1975-01-01

    The Land Use Management Information System (LUMIS) consists of a methodology of compiling land use maps by means of air photo interpretation techniques, digitizing these and other maps into machine-readable form, and numerically overlaying these various maps in two computer software routines to provide land use and natural resource data files referenced to the individual census block. The two computer routines are the Polygon Intersection Overlay System (PIOS) and an interactive graphics APL program. A block referenced file of land use, natural resources, geology, elevation, slope, and fault-line items has been created and supplied to the Los Angeles Department of City Planning for the City's portion of the Santa Monica Mountains. In addition, the interactive system contains one hundred and seventy-three socio-economic data items created by merging the Third Count U.S. Census Bureau tapes and the Los Angeles County Secured Assessor File. This data can be graphically displayed for each and every block, block group, or tract for six test tracts in Woodland Hills, California. Other benefits of LUMIS are the knowledge of air photo availability, flight pattern coverage and frequencies, and private photogrammetry companies flying Southern California, as well as a formal Delphi study of relevant land use informational needs in the Santa Monicas.

  5. Atmospheric carbon exchange associated with vegetation and soils in urban and suburban land uses

    SciTech Connect

    Rowntree, R.A.

    1993-12-31

    In studies of the global C cycle prior to the 1980s, urban ecosystems were largely ignored, in part because them were inadequate measures of phytomass and soil carbon for the various land uses associated with cities. In the last decade, progress has been made in gathering urban vegetation data and recently, estimates of urban land use carbon storage and fluxes have been attempted. Demographic trends in many countries suggest that urban areas are growing. Thus it is important to discover the appropriate concepts and methods for understanding greenhouse gas fluxes from urban-related vegetation and soils.

  6. Beacon City: An Urban Land Use Simulation. Teacher's Guide. Preparing for Tomorrow's World.

    ERIC Educational Resources Information Center

    Iozzi, Louis A.; And Others

    "Preparing for Tomorrow's World" (PTW) is an interdisciplinary, future-oriented program incorporating information from the sciences/social sciences and addressing societal concerns which interface science/technology/society. "Beacon City," one of a series of program modules, is an urban land use simulation. Land use planning techniques patterned…

  7. Spatial stochastic regression modelling of urban land use

    NASA Astrophysics Data System (ADS)

    Arshad, S. H. M.; Jaafar, J.; Abiden, M. Z. Z.; Latif, Z. A.; Rasam, A. R. A.

    2014-02-01

    Urbanization is very closely linked to industrialization, commercialization or overall economic growth and development. This results in innumerable benefits of the quantity and quality of the urban environment and lifestyle but on the other hand contributes to unbounded development, urban sprawl, overcrowding and decreasing standard of living. Regulation and observation of urban development activities is crucial. The understanding of urban systems that promotes urban growth are also essential for the purpose of policy making, formulating development strategies as well as development plan preparation. This study aims to compare two different stochastic regression modeling techniques for spatial structure models of urban growth in the same specific study area. Both techniques will utilize the same datasets and their results will be analyzed. The work starts by producing an urban growth model by using stochastic regression modeling techniques namely the Ordinary Least Square (OLS) and Geographically Weighted Regression (GWR). The two techniques are compared to and it is found that, GWR seems to be a more significant stochastic regression model compared to OLS, it gives a smaller AICc (Akaike's Information Corrected Criterion) value and its output is more spatially explainable.

  8. EFFECTS OF LAND USE AND SEASON ON MICROORGANISM CONCENTRATIONS IN URBAN STORMWATER RUNOFF

    EPA Science Inventory

    This study investigated differences in pathogen and indicator organism concentrations in stormwater runoff between different urban land uses and seasons. Stormwater samples collected from storm sewers draining small municipal separate storm sewer systems shown to be free of cros...

  9. Remote sensing in Arizona. [for land use and urban development planning

    NASA Technical Reports Server (NTRS)

    Winikka, C. C.; Adams, R. E.

    1975-01-01

    Orthophotoquads prepared from high altitude photography and LANDSAT imagery were utilized for land use mapping and urban development planning. LANDSAT imagery of rough terrains were evaluated by photographic projection on a viewer screen for enlargement of details.

  10. Quantifying uncertainty in remote sensing-based urban land-use mapping

    NASA Astrophysics Data System (ADS)

    Cockx, Kasper; Van de Voorde, Tim; Canters, Frank

    2014-09-01

    Land-use/land-cover information constitutes an important component in the calibration of many urban growth models. Typically, the model building involves a process of historic calibration based on time series of land-use maps. Medium-resolution satellite imagery is an interesting source for obtaining data on land-use change, yet inferring information on the use of urbanised spaces from these images is a challenging task that is subject to different types of uncertainty. Quantifying and reducing the uncertainties in land-use mapping and land-use change model parameter assessment are therefore crucial to improve the reliability of urban growth models relying on these data. In this paper, a remote sensing-based land-use mapping approach is adopted, consisting of two stages: (i) estimating impervious surface cover at sub-pixel level through linear regression unmixing and (ii) inferring urban land use from urban form using metrics describing the spatial structure of the built-up area, together with address data. The focus lies on quantifying the uncertainty involved in this approach. Both stages of the land-use mapping process are subjected to Monte Carlo simulation to assess their relative contribution to and their combined impact on the uncertainty in the derived land-use maps. The robustness to uncertainty of the land-use mapping strategy is addressed by comparing the most likely land-use maps obtained from the simulation with the original land-use map, obtained without taking uncertainty into account. The approach was applied on the Brussels-Capital Region and the central part of the Flanders region (Belgium), covering the city of Antwerp, using a time series of SPOT data for 1996, 2005 and 2012. Although the most likely land-use map obtained from the simulation is very similar to the original land-use map - indicating absence of bias in the mapping process - it is shown that the errors related to the impervious surface sub-pixel fraction estimation have a strong

  11. Relationships between human disturbance and wildlife land use in urban habitat fragments.

    PubMed

    Markovchick-Nicholls, Lisa; Regan, Helen M; Deutschman, Douglas H; Widyanata, Astrid; Martin, Barry; Noreke, Lani; Hunt, Timothy Ann

    2008-02-01

    Habitat remnants in urbanized areas typically conserve biodiversity and serve the recreation and urban open-space needs of human populations. Nevertheless, these goals can be in conflict if human activity negatively affects wildlife. Hence, when considering habitat remnants as conservation refuges it is crucial to understand how human activities and land uses affect wildlife use of those and adjacent areas. We used tracking data (animal tracks and den or bed sites) on 10 animal species and information on human activity and environmental factors associated with anthropogenic disturbance in 12 habitat fragments across San Diego County, California, to examine the relationships among habitat fragment characteristics, human activity, and wildlife presence. There were no significant correlations of species presence and abundance with percent plant cover for all species or with different land-use intensities for all species, except the opossum (Didelphis virginiana), which preferred areas with intensive development. Woodrats (Neotoma spp.) and cougars (Puma concolor) were associated significantly and positively and significantly and negatively, respectively, with the presence and prominence of utilities. Woodrats were also negatively associated with the presence of horses. Raccoons (Procyon lotor) and coyotes (Canis latrans) were associated significantly and negatively and significantly and positively, respectively, with plant bulk and permanence. Cougars and gray foxes (Urocyon cinereoargenteus) were negatively associated with the presence of roads. Roadrunners (Geococcyx californianus) were positively associated with litter. The only species that had no significant correlations with any of the environmental variables were black-tailed jackrabbits (Lepus californicus) and mule deer (Odocoileus hemionus). Bobcat tracks were observed more often than gray foxes in the study area and bobcats correlated significantly only with water availability, contrasting with results from

  12. Determining urban land uses through building-associated element attributes derived from lidar and aerial photographs

    NASA Astrophysics Data System (ADS)

    Meng, Xuelian

    Urban land-use research is a key component in analyzing the interactions between human activities and environmental change. Researchers have conducted many experiments to classify urban or built-up land, forest, water, agriculture, and other land-use and land-cover types. Separating residential land uses from other land uses within urban areas, however, has proven to be surprisingly troublesome. Although high-resolution images have recently become more available for land-use classification, an increase in spatial resolution does not guarantee improved classification accuracy by traditional classifiers due to the increase of class complexity. This research presents an approach to detect and separate residential land uses on a building scale directly from remotely sensed imagery to enhance urban land-use analysis. Specifically, the proposed methodology applies a multi-directional ground filter to generate a bare ground surface from lidar data, then utilizes a morphology-based building detection algorithm to identify buildings from lidar and aerial photographs, and finally separates residential buildings using a supervised C4.5 decision tree analysis based on the seven selected building land-use indicators. Successful execution of this study produces three independent methods, each corresponding to the steps of the methodology: lidar ground filtering, building detection, and building-based object-oriented land-use classification. Furthermore, this research provides a prototype as one of the few early explorations of building-based land-use analysis and successful separation of more than 85% of residential buildings based on an experiment on an 8.25-km2 study site located in Austin, Texas.

  13. Urban land use: Remote sensing of ground-basin permeability

    NASA Technical Reports Server (NTRS)

    Tinney, L. R.; Jensen, J. R.; Estes, J. E.

    1975-01-01

    A remote sensing analysis of the amount and type of permeable and impermeable surfaces overlying an urban recharge basin is discussed. An effective methodology for accurately generating this data as input to a safe yield study is detailed and compared to more conventional alternative approaches. The amount of area inventoried, approximately 10 sq. miles, should provide a reliable base against which automatic pattern recognition algorithms, currently under investigation for this task, can be evaluated. If successful, such approaches can significantly reduce the time and effort involved in obtaining permeability data, an important aspect of urban hydrology dynamics.

  14. Urban and regional land use analysis: CARETS and Census Cities experiment package. [mapping land use climatology from MSS imagery

    NASA Technical Reports Server (NTRS)

    Alexander, R. H. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The arrival of the so-called energy crisis makes the portion of this experiment dealing with land use climatology of more immediate significance than before, since in addition to helping to understand the processes of climatic change associated with urbanization, the knowledge obtained may be useful in assigning an energy balance impact factor to proposed changes in land use in and around cities. Thermal maps derived from S-192 data are to be used as a measure of the energy being radiated into space from the mosaic of different surfaces in and around the city. While presenting excellent spatial sampling potential for a metropolitan area tests site, the Skylab data permit a very poor temporal sampling opportunity, owing to the large number of factors beyond the investigator's control that determine when data will be taken over a given test site. The strategy is to augment the thermal maps derived from S-192 with a modeling technique which enables the simulation of a number of components of the surface energy balance, calculated at regular time intervals throughout the day or year. Preliminary tests on the performance of the model are still underway, using airborne MSS data from NASA aircraft flights. Results look extremely promising.

  15. LAND USE CHANGE DUE TO URBANIZATION FOR THE NEUSE RIVER BASIN

    EPA Science Inventory

    The Urban Growth Model (UGM) was applied to analysis of land use change in the Neuse River Basin as part of a larger project for estimating the regional and broader impact of urbanization. UGM is based on cellular automation (CA) simulation techniques developed at the University...

  16. Perfluoroalkyl acids in urban stormwater runoff: influence of land use.

    PubMed

    Xiao, Feng; Simcik, Matt F; Gulliver, John S

    2012-12-15

    Perfluoroalkyl acids (PFAAs) are persistent organic pollutants in the environment and have been reported to have nonpoint sources. In this study, six PFAAs with different chain lengths were monitored in stormwater runoff from seven storm events (2009-2011) at various outfall locations corresponding to different watershed land uses. We found PFAA(s) in 100% of stormwater runoff samples. Monitoring results and statistical analysis show that PFAAs in stormwater runoff from residential areas mainly came from rainfall. On the other hand, non-atmospheric sources at both industrial and commercial areas contributed PFAAs in stormwater runoff. The mass flux of PFAAs from stormwater runoff in the Twin Cities (Minneapolis and St. Paul, MN) metropolitan area is estimated to be about 7.86 kg/year. In addition, for the first time, we monitored PFAAs on the particles/debris in stormwater runoff and found high-level PFOS on the particulate matter in runoff collected from both industrial and commercial areas; the levels were so high that the finding could not be explained by the solid-water partitioning or adsorption. PFOS on the particulate matter is suspected to have originated from industrial/commercial products, entering the waste stream as PFOS containing particles. PMID:22154107

  17. Agricultural and urban land use change analysis in Changping County, Beijing, using remote sensing and GIS

    NASA Astrophysics Data System (ADS)

    Guo, Meng; Huang, Xiaoxia; Li, Hongga; Li, Xia; Ming, An

    Urban growth is regarded as a necessary transitional stage for a sustainable economy, but uncontrolled or arbitrary urban growth rapidly consumes rural resources and causes environmental pollution, ecological deterioration. In this paper, we developed a remote sensing and GIS-based integrated approach to monitor and analyze agricultural and urban spatial land use and ecological landscape change characteristics. In the proposed approach, multi-temporal satellite images from 1995 to 2010 were selected and classified to obtain land cover and use spatial changes. And GIS was used to analyze variation tendency for land use and ecological landscape indices. Experiments were performed in the Changping County, north of Beijing to analyze rapid urbanization effects in the past two decades, especially during the Beijing 2008 Olympic Games. The results indicate that there has been a notable urban growth and a visible loss about 38.8% in cropland, meanwhile dominated landscape structures and patterns have greatly changed from agriculture to urban in the study area.

  18. Potential Impacts of Future Warming and Land Use Changes on Intra-Urban Heat Exposure in Houston, Texas.

    PubMed

    Conlon, Kathryn; Monaghan, Andrew; Hayden, Mary; Wilhelmi, Olga

    2016-01-01

    Extreme heat events in the United States are projected to become more frequent and intense as a result of climate change. We investigated the individual and combined effects of land use and warming on the spatial and temporal distribution of daily minimum temperature (Tmin) and daily maximum heat index (HImax) during summer in Houston, Texas. Present-day (2010) and near-future (2040) parcel-level land use scenarios were embedded within 1-km resolution land surface model (LSM) simulations. For each land use scenario, LSM simulations were conducted for climatic scenarios representative of both the present-day and near-future periods. LSM simulations assuming present-day climate but 2040 land use patterns led to spatially heterogeneous temperature changes characterized by warmer conditions over most areas, with summer average increases of up to 1.5°C (Tmin) and 7.3°C (HImax) in some newly developed suburban areas compared to simulations using 2010 land use patterns. LSM simulations assuming present-day land use but a 1°C temperature increase above the urban canopy (consistent with warming projections for 2040) yielded more spatially homogeneous metropolitan-wide average increases of about 1°C (Tmin) and 2.5°C (HImax), respectively. LSM simulations assuming both land use and warming for 2040 led to summer average increases of up to 2.5°C (Tmin) and 8.3°C (HImax), with the largest increases in areas projected to be converted to residential, industrial and mixed-use types. Our results suggest that urbanization and climate change may significantly increase the average number of summer days that exceed current threshold temperatures for initiating a heat advisory for metropolitan Houston, potentially increasing population exposure to extreme heat. PMID:26863298

  19. Potential Impacts of Future Warming and Land Use Changes on Intra-Urban Heat Exposure in Houston, Texas

    PubMed Central

    Conlon, Kathryn; Monaghan, Andrew; Hayden, Mary; Wilhelmi, Olga

    2016-01-01

    Extreme heat events in the United States are projected to become more frequent and intense as a result of climate change. We investigated the individual and combined effects of land use and warming on the spatial and temporal distribution of daily minimum temperature (Tmin) and daily maximum heat index (HImax) during summer in Houston, Texas. Present-day (2010) and near-future (2040) parcel-level land use scenarios were embedded within 1-km resolution land surface model (LSM) simulations. For each land use scenario, LSM simulations were conducted for climatic scenarios representative of both the present-day and near-future periods. LSM simulations assuming present-day climate but 2040 land use patterns led to spatially heterogeneous temperature changes characterized by warmer conditions over most areas, with summer average increases of up to 1.5°C (Tmin) and 7.3°C (HImax) in some newly developed suburban areas compared to simulations using 2010 land use patterns. LSM simulations assuming present-day land use but a 1°C temperature increase above the urban canopy (consistent with warming projections for 2040) yielded more spatially homogeneous metropolitan-wide average increases of about 1°C (Tmin) and 2.5°C (HImax), respectively. LSM simulations assuming both land use and warming for 2040 led to summer average increases of up to 2.5°C (Tmin) and 8.3°C (HImax), with the largest increases in areas projected to be converted to residential, industrial and mixed-use types. Our results suggest that urbanization and climate change may significantly increase the average number of summer days that exceed current threshold temperatures for initiating a heat advisory for metropolitan Houston, potentially increasing population exposure to extreme heat. PMID:26863298

  20. Analysing Relationships Between Urban Land Use Fragmentation Metrics and Socio-Economic Variables

    NASA Astrophysics Data System (ADS)

    Sapena, M.; Ruiz, L. A.; Goerlich, F. J.

    2016-06-01

    Analysing urban regions is essential for their correct monitoring and planning. This is mainly accounted for the sharp increase of people living in urban areas, and consequently, the need to manage them. At the same time there has been a rise in the use of spatial and statistical datasets, such as the Urban Atlas, which offers high-resolution urban land use maps obtained from satellite imagery, and the Urban Audit, which provides statistics of European cities and their surroundings. In this study, we analyse the relations between urban fragmentation metrics derived from Land Use and Land Cover (LULC) data from the Urban Atlas dataset, and socio-economic data from the Urban Audit for the reference years 2006 and 2012. We conducted the analysis on a sample of sixty-eight Functional Urban Areas (FUAs). One-date and two-date based fragmentation indices were computed for each FUA, land use class and date. Correlation tests and principal component analysis were then applied to select the most representative indices. Finally, multiple regression models were tested to explore the prediction of socio-economic variables, using different combinations of land use metrics as explanatory variables, both at a given date and in a dynamic context. The outcomes show that demography, living conditions, labour, and transportation variables have a clear relation with the morphology of the FUAs. This methodology allows us to compare European FUAs in terms of the spatial distribution of the land use classes, their complexity, and their structural changes, as well as to preview and model different growth patterns and socio-economic indicators.

  1. Monitoring the effects of land use/landcover changes on urban heat island

    NASA Astrophysics Data System (ADS)

    Gee, Ong K.; Sarker, Md Latifur Rahman

    2013-10-01

    Urban heat island effects are well known nowadays and observed in cities throughout the World. The main reason behind the effects of urban heat island (UHI) is the transformation of land use/ land cover, and this transformation is associated with UHI through different actions: i) removal of vegetated areas, ii) land reclamation from sea/river, iii) construction of new building as well as other concrete structures, and iv) industrial and domestic activity. In rapidly developing cities, urban heat island effects increases very hastily with the transformation of vegetated/ other types of areas into urban surface because of the increasing population as well as for economical activities. In this research the effect of land use/ land cover on urban heat island was investigated in two growing cities in Asia i.e. Singapore and Johor Bahru, (Malaysia) using 10 years data (from 1997 to 2010) from Landsat TM/ETM+. Multispectral visible band along with indices such as Normalized Difference Vegetation Index (NDVI), Normalized Difference Build Index (NDBI), and Normalized Difference Bareness Index (NDBaI) were used for the classification of major land use/land cover types using Maximum Likelihood Classifiers. On the other hand, land surface temperature (LST) was estimated from thermal image using Land Surface Temperature algorithm. Emissivity correction was applied to the LST map using the emissivity values from the major land use/ land cover types, and validation of the UHI map was carried out using in situ data. Results of this research indicate that there is a strong relationship between the land use/land cover changes and UHI. Over this 10 years period, significant percentage of non-urban surface was decreased but urban heat surface was increased because of the rapid urbanization. With the increase of UHI effect it is expected that local urban climate has been modified and some heat related health problem has been exposed, so appropriate measure should be taken in order to

  2. Urban-field land use in southern New England: A first look

    NASA Technical Reports Server (NTRS)

    Simpson, R. B. (Principal Investigator)

    1972-01-01

    There are no author-identified significant results in this report. First look evaluation of ERTS-1 multiband imagery for urban-field land use applications revealed a great deal of potentially valuable information. The amount of land use detail which can be extracted confidently from ERTS imagery is encouraging, and the objectives of the proposed project are considered feasible providing timely cloud-free coverage is available.

  3. Land use intensity trajectories on Amazonian pastures derived from Landsat time series

    NASA Astrophysics Data System (ADS)

    Rufin, Philippe; Müller, Hannes; Pflugmacher, Dirk; Hostert, Patrick

    2015-09-01

    Monitoring changes in land use intensity of grazing systems in the Amazon is an important prerequisite to study the complex political and socio-economic forces driving Amazonian deforestation. Remote sensing offers the potential to map pasture vegetation over large areas, but mapping pasture conditions consistently through time is not a trivial task because of seasonal changes associated with phenology and data gaps from clouds and cloud shadows. In this study, we tested spectral-temporal metrics derived from intra-annual Landsat time series to distinguish between grass-dominated and woody pastures. The abundance of woody vegetation on pastures is an indicator for management intensity, since the duration and intensity of land use steer secondary succession rates, apart from climate and soil conditions. We used the developed Landsat-based metrics to analyze pasture intensity trajectories between 1985 and 2012 in Novo Progresso, Brazil, finding that woody vegetation cover generally decreased after four to ten years of grazing activity. Pastures established in the 80s and early 90s showed a higher fraction of woody vegetation during their initial land use history than pastures established in the early 2000s. Historic intensity trajectories suggested a trend towards more intensive land use in the last decade, which aligns well with regional environmental policies and market dynamics. This study demonstrates the potential of dense Landsat time series to monitor land-use intensification on Amazonian pastures.

  4. Simulating the Response of Urban Water Quality to Climate and Land Use Change in Partially Urbanized Basins

    NASA Astrophysics Data System (ADS)

    Sun, N.; Yearsley, J. R.; Nijssen, B.; Lettenmaier, D. P.

    2014-12-01

    Urban stream quality is particularly susceptible to extreme precipitation events and land use change. Although the projected effects of extreme events and land use change on hydrology have been resonably well studied, the impacts on urban water quality have not been widely examined due in part to the scale mismatch between global climate models and the spatial scales required to represent urban hydrology and water quality signals. Here we describe a grid-based modeling system that integrates the Distributed Hydrology Soil Vegetation Model (DHSVM) and urban water quality module adpated from EPA's Storm Water Management Model (SWMM) and Soil and water assessment tool (SWAT). Using the model system, we evaluate, for four partially urbanized catchments within the Puget Sound basin, urban water quality under current climate conditions, and projected potential changes in urban water quality associated with future changes in climate and land use. We examine in particular total suspended solids, toal nitrogen, total phosphorous, and coliform bacteria, with catchment representations at the 150-meter spatial resolution and the sub-daily timestep. We report long-term streamflow and water quality predictions in response to extreme precipitation events of varying magnitudes in the four partially urbanized catchments. Our simulations show that urban water quality is highly sensitive to both climatic and land use change.

  5. Assigning land use to supply wells for the statistical characterization of regional groundwater quality: Correlating urban land use and VOC occurrence

    USGS Publications Warehouse

    Johnson, T.D.; Belitz, K.

    2009-01-01

    Many national and regional groundwater studies have correlated land use "near" a well, often using a 500 m radius circle, with water quality. However, the use of a 500 m circle may seem counterintuitive given that contributing areas are expected to extend up-gradient from wells, and not be circular in shape. The objective of this study was to evaluate if a 500 m circle is adequate for assigning land use to a well for the statistical correlation between urban land use and the occurrence of volatile organic compounds (VOCs). Land use and VOC data came from 277 supply wells in four study areas in California. Land use was computed using ten different-sized circles and wedges (250 m to 10 km in radius), and three different-sized "searchlights" (1-2 km in length). We define these shapes as contributing area surrogates (CASs), recognizing that a simple shape is at best a surrogate for the actual contributing area. The presence or absence of correlation between land use and the occurrence of VOCs was evaluated using Kendall's tau (??). Values of ?? were within 10% of one another for wedges and circles ranging in size from 500 m to 2 km, with correlations remaining statistically significant (p < 0.05) for all CAS sizes and shapes, suggesting that a 500 m circular CAS is adequate for assigning land use to a well. Additional evaluation indicated that urban land use is autocorrelated at distances ranging from 8 to 36 km. Thus, urban land use in a 500 m CAS is likely to be predictive of urban land use in the actual contributing area.

  6. Conversion of prime agricultural land to urban land uses in Kansas City

    NASA Technical Reports Server (NTRS)

    Shaklee, R. V.

    1976-01-01

    In an expanding urban environment, agriculture and urban land uses are the two primary competitors for regional land resources. As a result of an increasing awareness of the effects which urban expansion has upon the regional environment, the conversion of prime agricultural land to urban land uses has become a point of concern to urban planners. A study was undertaken for the Kansas City Metropolitan Region, to determine the rate at which prime agricultural land has been converted to urban land uses over a five year period from 1969 to 1974. Using NASA high altitude color infrared imagery acquired over the city in October, 1969 and in May, 1974 to monitor the extent and location of urban expansion in the interim period, it was revealed that 42% of that expansion had occurred upon land classified as having prime agricultural potential. This involved a total of 10,727 acres of prime agricultural land and indicated a 7% increase over the 1969 which showed that 35% of the urban area had been developed on prime agricultural land.

  7. Impact of land-use on water pollution in a rapidly urbanizing catchment in China

    NASA Astrophysics Data System (ADS)

    Khu, Soon-Thiam; Qin, Huapeng

    2010-05-01

    Many catchments in developing countries are undergoing fast urbanization which is usually characterized by population increase, economic growth as well as drastic changes of land-use from natural/rural to urban area. During the urbanization process, some catchments experience water quality deterioration due to rapid increase of pollution loads. Nonpoint source pollution resulting from storm water runoff has been recognized as one of the major causes of pollutants in many cities in developing countries. The composition of land-use for a rapidly urbanizing catchment is usually heterogeneous, and this may result in significant spatial variations of storm runoff pollution and increase the difficulties of water quality management in the catchment. The Shiyan Reservoir catchment, a typical rapidly urbanizing area in China, is chosen as the study area, and temporary monitoring sites were set at the outlets of its 6 sub-catchments to synchronously measured rainfall, runoff and water quality during 4 storm events. Three indicators, event pollutant loads per unit area (EPL), event mean concentration (EMC) and pollutant loads transported by the first 50% of runoff volume (FF50), were used to describe the runoff pollution for different pollutants (such as COD, BOD, NH3-N, TN, TP and SS) in each sub-catchment during the storm events; and the correlations between runoff pollution spatial variations and land-use patterns were tested by Spearman's rank correlation analysis. The results indicated that similar spatial variation trends were found for different pollutants (EPL or EMC) in light storm events, which strongly correlate with the proportion of residential land-use; however, they have different trends in heavy storm events, which correlate with the different proportional combination of residential, industrial, agricultural and bare land-use. It is also shown that it is necessary to consider some pervious land-use types in runoff pollution monitoring or management for a

  8. Uncertainty in Urban Flooding Assessment under Climate and Land Use Change

    NASA Astrophysics Data System (ADS)

    Jung, Il Won; Chang, Heejun; Moradkhani, Hamid

    2010-05-01

    According to IPCC AR4 projections, the frequency of heavy precipitation events is likely to increase over the Pacific Northwestern (PNW) of USA during the 21st century. Consequently, flood risk is expected to increase in this region. Additionally, the land use change, such as urban development exacerbates the flood risk. We investigate potential changes in urban flood frequency and their uncertainty caused by future climate change and urban development in two urbanizing watersheds, the Fanno and Johnson, located in the PNW. The Fanno creek watershed is highly developed with a 84% urban land use, and the Johnson creek watershed is moderately developed with a 40% urban land use. The urban development of these watersheds will increase in the future with a higher rate of urban development in the Johnson watershed. This study employs three possible land use change scenarios, Conservation, Development, and Plan Trend, developed by the Pacific Northwest Ecosystem Research Consorthium (PNW-ERC). The Precipitation Runoff Modeling System (PRMS) hydrological model developed by U.S. Geological Survey is employed to simulate runoff changes and resulting changes in flood frequency. To consider model parameter uncertainty, Latin Hypercube Sampling is employed to sample the PRMS model parameter space and estimate the acceptable parameter ranges according to the Nash-Sutcliffe efficiency criterion. The U.S. Geological Survey PeakFQ program is also applied to estimate flood frequency with different recurrence intervals. To estimate uncertainties of climate change projection, we use eight GCMs and two emission scenarios (A1B and B1). The results show that change in flood frequency in the Johnson watershed is more significant than in the Fanno watershed because of the higher rate of urban development. The flood frequency changes are most sensitive to uncertainty in the GCM structure and downscaling method but are less affected by uncertainties due to hydrological model parameters and

  9. Modeling the ecological consequences of land-use policies in an urbanizing region.

    PubMed

    Conway, Tenley M; Lathrop, Richard G

    2005-03-01

    Insight into future land use and effective ways to control land-use change is crucial to addressing environmental change. A variety of growth-control policies have been adopted by municipal and regional governments within the United States to try to minimize the ecological impact of continued urbanization, but it is often unclear if those policies can meet the stated ecological goals. Land-use-change models provide a way to generate predictions of future change, while exploring the impact of different land-use policies before irreversible transformations occur. In this article, an approach to modeling land-use policies that focuses on their ecological consequences is described. The policy simulation approach was used to predict future land use in the Barnegat Bay and Mullica River watersheds, in southeastern New Jersey, USA. Four commonly used policies were considered: down-zoning, cluster development, wetlands/water buffers, and open space protection. The results of the analysis suggest that none of the policies modeled were able to alter future land-use patterns, raising questions about the effectiveness of commonly adopted land-use policies. However, the policy modeling approach used in this study proved to be a useful way to determine if adoption of a given policy could improve the likelihood of meeting ecological goals. PMID:15772716

  10. Urban and regional land use analysis: CARETS and Census Cities experiment package

    NASA Technical Reports Server (NTRS)

    Alexander, R. H. (Principal Investigator); Milazzo, V. A.

    1973-01-01

    The author has identified the following significant results. Areas of post 1970 and 1972 land use changes were identified solely from the Skylab imagery from comparisons with 1970 land use maps. Most land use changes identified involved transition from agriculture to single family residential land use. The second most prominent changes identified from the Skylab imagery were areas presently under construction. Post 1970 changes from Skylab were compared with the 1972 changes noted from the high altitude photographs. A good correlation existed between the change polygons mapped from Skylab and those mapped from the 1972 high altitude aerial photos. In addition, there were a number of instances where additional built-up land use not noted in the 1972 aerial photo as being developed were identified on the Skylab imagery. While these cases have not been documented by field observation, by correlating these areas with the appearance of similar land use areas whose identity has been determined, we can safely say that we have been able to map further occurrences of land use change beyond existing high altitude photo coverage from the Skylab imagery. It was concluded that Skylab data can be used to detect areas of land use change within an urban setting.

  11. Agricultural land use intensity and its determinants: A case study in Taibus Banner, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Hao, Haiguang; Li, Xiubin; Tan, Minghong; Zhang, Jiping; Zhang, Huiyuan

    2015-06-01

    Based on rural household survey data from Taibus Banner, in the Inner Mongolia Autonomous Region, China, this study separately categorizes agricultural land use intensity into labor intensity, capital intensity, the intensity of labor-saving inputs, and the intensity of yield-increasing inputs, and then analyzes their determinants at the household level. The findings reveal that within the study area: (1) labor intensity is higher and capital intensity is lower than in the major grain-producing and economically developed areas of eastern and central China; (2) the most widely planted crops are those with the lowest labor intensity (oats) and capital intensity (benne); (3) there are marked differences in agricultural land use intensity among households; a major factor affecting land use decision-making is the reduced need for labor intensity for those households with high opportunity costs, such as those with income earned from non-farming activities which alleviates financial constraints and allows for increased capital intensity. As a result, these households invest more in labor-saving inputs; (4) households with a larger number of workers will allocate adequate time to manage their land and thus they will not necessarily invest more in labor-saving inputs. Those households with more land to manage tend to adopt an extensive cultivation strategy. Total income has a positive impact on capital intensity and a negative impact on labor intensity. Households that derive a higher proportion of their total income through farming are more reliant upon agriculture, which necessitates significant labor and yield-increasing inputs. Finally, the authors contend that policy makers should clearly recognize the impacts of non-farming employment on agricultural land use intensity. In order to ensure long-term food security and sustainable agricultural development in China, income streams from both farming and non-farming employment should be balanced.

  12. Land use/cover change detection and urban sprawl analysis in Bandar Abbas city, Iran.

    PubMed

    Dadras, Mohsen; Shafri, Helmi Zulhaidi Mohd; Ahmad, Noordin; Pradhan, Biswajeet; Safarpour, Sahabeh

    2014-01-01

    The process of land use change and urban sprawl has been considered as a prominent characteristic of urban development. This study aims to investigate urban growth process in Bandar Abbas city, Iran, focusing on urban sprawl and land use change during 1956-2012. To calculate urban sprawl and land use changes, aerial photos and satellite images are utilized in different time spans. The results demonstrate that urban region area has changed from 403.77 to 4959.59 hectares between 1956 and 2012. Moreover, the population has increased more than 30 times in last six decades. The major part of population growth is related to migration from other parts the country to Bandar Abbas city. Considering the speed of urban sprawl growth rate, the scale and the role of the city have changed from medium and regional to large scale and transregional. Due to natural and structural limitations, more than 80% of barren lands, stone cliffs, beach zone, and agricultural lands are occupied by built-up areas. Our results revealed that the irregular expansion of Bandar Abbas city must be controlled so that sustainable development could be achieved. PMID:25276858

  13. Land Use/Cover Change Detection and Urban Sprawl Analysis in Bandar Abbas City, Iran

    PubMed Central

    Mohd Shafri, Helmi Zulhaidi; Ahmad, Noordin; Pradhan, Biswajeet; Safarpour, Sahabeh

    2014-01-01

    The process of land use change and urban sprawl has been considered as a prominent characteristic of urban development. This study aims to investigate urban growth process in Bandar Abbas city, Iran, focusing on urban sprawl and land use change during 1956–2012. To calculate urban sprawl and land use changes, aerial photos and satellite images are utilized in different time spans. The results demonstrate that urban region area has changed from 403.77 to 4959.59 hectares between 1956 and 2012. Moreover, the population has increased more than 30 times in last six decades. The major part of population growth is related to migration from other parts the country to Bandar Abbas city. Considering the speed of urban sprawl growth rate, the scale and the role of the city have changed from medium and regional to large scale and transregional. Due to natural and structural limitations, more than 80% of barren lands, stone cliffs, beach zone, and agricultural lands are occupied by built-up areas. Our results revealed that the irregular expansion of Bandar Abbas city must be controlled so that sustainable development could be achieved. PMID:25276858

  14. Increasing land-use intensity decreases floral colour diversity of plant communities in temperate grasslands.

    PubMed

    Binkenstein, Julia; Renoult, Julien P; Schaefer, H Martin

    2013-10-01

    To preserve biodiversity and ecosystem functions in a globally changing world it is crucial to understand the effect of land use on ecosystem processes such as pollination. Floral colouration is known to be central in plant-pollinator interactions. To date, it is still unknown whether land use affects the colouration of flowering plant communities. To assess the effect of land use on the diversity and composition of flower colours in temperate grasslands, we collected data on the number of flowering plant species, blossom cover and flower reflectance spectra from 69 plant communities in two German regions, Schwäbische Alb (SA) and Hainich-Dün (HD). We analysed reflectance data of flower colours as they are perceived by honeybees and studied floral colour diversity based upon spectral loci of each flowering plant species in the Maxwell triangle. Before the first mowing, flower colour diversity decreased with increasing land-use intensity in SA, accompanied by a shift of mean flower colours of communities towards an increasing proportion of white blossom cover in both regions. By changing colour characteristics of grasslands, we suggest that increasing land-use intensity can affect the flower visitor fauna in terms of visitor behaviour and diversity. These changes may in turn influence plant reproduction in grassland plant communities. Our results indicate that land use is likely to affect communication processes between plants and flower visitors by altering flower colour traits. PMID:23568710

  15. Preliminary Analysis of the efficacy of Artificial neural Network (ANN) and Cellular Automaton (CA) based Land Use Models in Urban Land-Use Planning

    NASA Astrophysics Data System (ADS)

    Harun, R.

    2013-05-01

    This research provides an opportunity of collaboration between urban planners and modellers by providing a clear theoretical foundations on the two most widely used urban land use models, and assessing the effectiveness of applying the models in urban planning context. Understanding urban land cover change is an essential element for sustainable urban development as it affects ecological functioning in urban ecosystem. Rapid urbanization due to growing inclination of people to settle in urban areas has increased the complexities in predicting that at what shape and size cities will grow. The dynamic changes in the spatial pattern of urban landscapes has exposed the policy makers and environmental scientists to great challenge. But geographic science has grown in symmetry to the advancements in computer science. Models and tools are developed to support urban planning by analyzing the causes and consequences of land use changes and project the future. Of all the different types of land use models available in recent days, it has been found by researchers that the most frequently used models are Cellular Automaton (CA) and Artificial Neural Networks (ANN) models. But studies have demonstrated that the existing land use models have not been able to meet the needs of planners and policy makers. There are two primary causes identified behind this prologue. First, there is inadequate understanding of the fundamental theories and application of the models in urban planning context i.e., there is a gap in communication between modellers and urban planners. Second, the existing models exclude many key drivers in the process of simplification of the complex urban system that guide urban spatial pattern. Thus the models end up being effective in assessing the impacts of certain land use policies, but cannot contribute in new policy formulation. This paper is an attempt to increase the knowledge base of planners on the most frequently used land use model and also assess the

  16. Multi-Agent Based Simulation of Optimal Urban Land Use Allocation in the Middle Reaches of the Yangtze River, China

    NASA Astrophysics Data System (ADS)

    Zeng, Y.; Huang, W.; Jin, W.; Li, S.

    2016-06-01

    The optimization of land-use allocation is one of important approaches to achieve regional sustainable development. This study selects Chang-Zhu-Tan agglomeration as study area and proposed a new land use optimization allocation model. Using multi-agent based simulation model, the future urban land use optimization allocation was simulated in 2020 and 2030 under three different scenarios. This kind of quantitative information about urban land use optimization allocation and urban expansions in future would be of great interest to urban planning, water and land resource management, and climate change research.

  17. Urban land use of the Sao Paulo metropolitan area by automatic analysis of LANDSAT data

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Niero, M.; Foresti, C.

    1983-01-01

    The separability of urban land use classes in the metropolitan area of Sao Paulo was studied by means of automatic analysis of MSS/LANDSAT digital data. The data were analyzed using the media K and MAXVER classification algorithms. The land use classes obtained were: CBD/vertical growth area, residential area, mixed area, industrial area, embankment area type 1, embankment area type 2, dense vegetation area and sparse vegetation area. The spectral analysis of representative samples of urban land use classes was done using the "Single Cell" analysis option. The classes CBD/vertical growth area, residential area and embankment area type 2 showed better spectral separability when compared to the other classes.

  18. Ecological traits affect the response of tropical forest bird species to land-use intensity.

    PubMed

    Newbold, Tim; Scharlemann, Jörn P W; Butchart, Stuart H M; Sekercioğlu, Cağan H; Alkemade, Rob; Booth, Hollie; Purves, Drew W

    2013-01-01

    Land-use change is one of the main drivers of current and likely future biodiversity loss. Therefore, understanding how species are affected by it is crucial to guide conservation decisions. Species respond differently to land-use change, possibly related to their traits. Using pan-tropical data on bird occurrence and abundance across a human land-use intensity gradient, we tested the effects of seven traits on observed responses. A likelihood-based approach allowed us to quantify uncertainty in modelled responses, essential for applying the model to project future change. Compared with undisturbed habitats, the average probability of occurrence of bird species was 7.8 per cent and 31.4 per cent lower, and abundance declined by 3.7 per cent and 19.2 per cent in habitats with low and high human land-use intensity, respectively. Five of the seven traits tested affected the observed responses significantly: long-lived, large, non-migratory, primarily frugivorous or insectivorous forest specialists were both less likely to occur and less abundant in more intensively used habitats than short-lived, small, migratory, non-frugivorous/insectivorous habitat generalists. The finding that species responses to land use depend on their traits is important for understanding ecosystem functioning, because species' traits determine their contribution to ecosystem processes. Furthermore, the loss of species with particular traits might have implications for the delivery of ecosystem services. PMID:23173205

  19. The Major Environmentally-Based Land Use Issues on the Urban Fringe.

    ERIC Educational Resources Information Center

    Hordon, Robert M.

    Types of land-use issues which form current problems in urban areas are discussed in this paper. The majority of these environmentally based issues revolve around the management of water. The five most often encountered water-oriented issues are denoted in rank order of importance. First, an ample water supply which is free from contamination must…

  20. LAND USE AND SEASONAL EFFECTS ON URBAN STORMWATER RUNOFF MICROORGANISM CONCENTRATIONS

    EPA Science Inventory

    Stormwater samples collected from storm sewers draining small municipal separate storm sewer systems shown to be free of cross connections within an urban watershed dominated by a single land use were analyzed for pathogens (Pseudomonas aeruginosa and Staphylococcus aureus) and i...

  1. Land use analysis of US urban areas using high-resolution imagery from Skylab

    NASA Technical Reports Server (NTRS)

    Gallagher, D. B. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. The S-190B imagery from Skylab 3 permitted the detection of higher levels of land use detail than any satellite imagery previously evaluated using manual interpretation techniques. Resolution approaches that of 1:100,000 scale infrared aircraft photography, especially regarding urban areas. Nonurban areas are less distinct.

  2. Relative effects of land use and near-stream chemistry on phosphorus in an urban stream.

    PubMed

    Sonoda, Kazuhiro; Yeakley, J Alan

    2007-01-01

    Elevated levels of P in urban streams can pose significant water quality problems. Sources of P in urban streams, however, are difficult to identify. It is important to recognize both natural and anthropogenic sources of P. We investigated near-stream chemistry and land use factors on stream water P in the urbanizing Johnson Creek watershed in Portland, OR, USA. We sampled stream water and shallow groundwater soluble reactive P (SRP) and total P (TP) and estimated P flux at 13 sites along the main stem of Johnson Creek, with eight sites in urban land use areas and five sites in nonurban land use areas. At each site, we sampled the A and B horizons, measuring soil pH, water-soluble P, acid-soluble P, base-soluble P, total P, Fe, and Al. We found continuous input of P to the stream water via shallow groundwater throughout the Johnson Creek watershed. The shallow groundwater P concentrations were correlated with stream water P within the nonurban area; however, this correlation was not found in the urban area, suggesting that other factors in the urban area masked the relationship between groundwater P and stream water P. Aluminum and Fe concentrations were inversely correlated with shallow groundwater P, suggesting that greater P adsorption to Al and Fe oxides in the nonurban area reduced availability of shallow groundwater P. Using stepwise multiple regression analysis, however, we concluded that while riparian soil chemistry was related to stream water P, land use patterns had a more significant relationship with stream water P concentrations in this urbanizing system. PMID:17215222

  3. Satellite-Supported Modeling of the Relationships between Urban Heat Island and Land Use/Cover Changes

    NASA Astrophysics Data System (ADS)

    Vahmani, P.; Ban-Weiss, G. A.

    2015-12-01

    Reliable assessment of the primary causes of urban heat island (UHI) and the efficiency of various heat mitigation strategies requires accurate prediction of urban temperatures and realistic representation of land surface physical characteristics in models. In this study, we expand the capabilities of the Weather Research and Forecasting (WRF) model and the Urban Canopy Model (UCM) by implementing high-resolution real-time satellite observations of green vegetation fraction (GVF), leaf area index (LAI), and albedo. We use MODIS-based GVF, LAI, and albedo to replace constant values that are assumed for urban pixels and climatological values that are used for non-urban pixels in the default WRF-UCM. Utilizing the improved model, summertime climate of Los Angeles is simulated over the span of three years (2010-2012). Next, thermal sensitivity of urban climate to anthropogenic land use/cover is assessed via replacing current urban cover with pre-development vegetation cover, consisting of shrubland and grassland. Surrounding undeveloped areas and inverse distance weighting method are utilized to estimate GVF and LAI of pre-development vegetation cover. Our analysis of diurnal and nocturnal surface and air temperatures shows cooling effects of urbanization in neighborhoods with high fractions of irrigated vegetation. However, urban warming is consistently detected over industrial/commercial and high-intensity residential areas. In addition to well-known mechanisms such as a shift in surface energy partitioning, high heat storage in urban material, and inefficiency of urban surfaces in transferring convective heat from the surface to the boundary layer, our results show decreased wind speed and sea breeze also contribute to the UHI intensity. We further evaluate the interactions between UHI and replacing irrigated and imported vegetation with non-irrigated native vegetation as a water conservation strategy in water-stressed Los Angeles metropolitan area.

  4. Urban land-use study plan for the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Squillace, P.J.; Price, C.V.

    1996-01-01

    This study plan is for Urban Land-Use Studies initiated as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. There are two Urban Land-Use Study objectives: (1) Define the water quality in recharge areas of shallow aquifers underlying areas of new residential and commercial land use in large metropolitan areas, and (2) determine which natural and human factors most strongly affect the occurrence of contaminants in these shallow aquifers. To meet objective 1, each NAWQA Study Unit will install and collect water samples from at least 30 randomly located monitoring wells in a metropolitan area. To meet objective 2, aquifer characteristics and land-use information will be documented. This includes particle-size analysis of each major lithologic unit both in the unsaturated zone and in the aquifer near the water table. The percentage of organic carbon also will be determined for each lithologic unit. Geographic information system coverages will be created that document existing land use around the wells. These data will aid NAWQA personnel in relating natural and human factors to the occurrence of contaminants. Water samples for age dating also will be collected from all monitoring wells, but the samples will be stored until the occurrence of contaminants has been determined. Age-date analysis will be done only on those samples that have no detectable concentrations of anthropogenic contaminants.

  5. Preparation of urban land use inventories by machine-processing of ERTS MSS data

    NASA Technical Reports Server (NTRS)

    Todd, W.; Mausel, P. E.; Wenner, K. A.

    1973-01-01

    Spectral classes of urban phenomena identified from ERTS multispectral scanner data in Milwaukee included Surburban, Inner City, Industry, Grassy (open area), Road, Wooded Suburb, Water, Cloud, and Shadow. The Milwaukee spectral class statistics were used to classify the Chicago area, within the same ERTS frame, and similar results were achieved. In another ERTS frame, Marion County (Indianapolis) data were classified into similar classes. The Marion County ERTS study was supported by a land use classification of an area near downtown Indianapolis that utilized 12-band MSS data collected by aircraft from 3000 feet. The results of the ERTS analyses suggest that satellite data will be a useful tool for the urban planner for monitoring urban land use.

  6. Preparation of urban land use inventories by machine processing of ERTS MSS data

    NASA Technical Reports Server (NTRS)

    Todd, W.; Mausel, P. E.; Wenner, K. A.

    1973-01-01

    Spectral classes of urban phenomena identified from Earth Resources Technology Satellite (ERTS) multispectral scanner data in Milwaukee included suburban inner city, industry, grassy (open area), road, wooded suburb, water cloud, and shadow. The Milwaukee spectral class statistics were used to classify the Chicago area, within the same ERTS frame, and similar results were achieved. In another ERTS frame, Marion County (Indianapolis) data were classified into similar classes. The Marion County ERTS study was supported by a land use classification of an area near downtown Indianapolis that utilized 12-band MSS data collected by aircraft from 3000 feet. The results of the ERTS analyses suggest that satellite data will be a useful tool for the urban planner for monitoring urban land use.

  7. a Study of Urban Intensive Land Evaluating System

    NASA Astrophysics Data System (ADS)

    Jiang, L.; Gu, J.; Chen, X.; You, Y.; Tang, Q.

    2012-07-01

    The contradiction of land supply and demand is becoming increasingly prominent in China. The increasing efficiency of land use is an important means to resolve the conflict. We propose a scientific approach for promoting the urban intensive land use. In this paper, an evaluation system of urban intensive land use is programmed. It is designed to change the manual way of collecting index data and building index system to a dynamical way. The system improves the efficiency and accuracy of the evaluation of urban intensive land use. It achieves intensive evaluation on three scales: macro-level, medium-level and micro-level. We build two data extraction methods. One is XML-based meta-data exchange method that obtains index data from the cadastral database. Another is data monitoring method that writes the index data to the evaluation database at real time. Database technologies are used to calculate index values and build index systems dynamically. GIS technologies are use to achieve three scales evaluation of urban intensive land use.

  8. The Emergence of Urban Land Use Patterns Driven by Dispersion and Aggregation Mechanisms

    PubMed Central

    Decraene, James; Monterola, Christopher; Lee, Gary Kee Khoon; Hung, Terence Gih Guang; Batty, Michael

    2013-01-01

    We employ a cellular-automata to reconstruct the land use patterns of cities that we characterize by two measures of spatial heterogeneity: (a) a variant of spatial entropy, which measures the spread of residential, business, and industrial activity sectors, and (b) an index of dissimilarity, which quantifies the degree of spatial mixing of these land use activity parcels. A minimalist and bottom-up approach is adopted that utilizes a limited set of three parameters which represent the forces which determine the extent to which each of these sectors spatially aggregate into clusters. The dispersion degrees of the land uses are governed by a fixed pre-specified power-law distribution based on empirical observations in other cities. Our method is then used to reconstruct land use patterns for the city state of Singapore and a selection of North American cities. We demonstrate the emergence of land use patterns that exhibit comparable visual features to the actual city maps defining our case studies whilst sharing similar spatial characteristics. Our work provides a complementary approach to other measures of urban spatial structure that differentiate cities by their land use patterns resulting from bottom-up dispersion and aggregation processes. PMID:24386078

  9. Effects of land use on the cooling effect of green areas on surrounding urban areas

    NASA Astrophysics Data System (ADS)

    Hamada, S.; Tanaka, T.

    2011-12-01

    The spatial distribution of the cooling effect of the green area on surrounding urban area in Nagoya, central Japan was examined by applying ASTER data. First, we clarified the correlation between surface temperature and land use in a green area. Second, we also examined the extent of the cooling effect of the green area on the surrounding urban area. Third, we extracted the land-use factors that significantly affect the extent of the cooling effect. Finally, we referred to new knowledge about the effect of terrain on the cooling effect. The surface temperature differed with land use in the green area. Surface temperatures for green areas were lower than those for other categories, except ponds. In green areas, the temperature in forest lands was lower than that in lawn and agricultural land, suggesting that the forest contributes strongly to the cooling effect of the green area. The surface temperature differences among the categories were small in October, compared to the other analysed days during summer. The extent of the cooling effect of the green area on the surrounding urban area averaged in all directions reached about 200m in the surrounding urban area from July to October. However, the surface temperature difference between the urban area and the green area decreased in October. This phenomenon indicated that the cooling effect of the green area was weaker during autumn than during summer. By examining the spatial distribution of the surface temperature, the cooling effect was shown to stretch in almost all directions of the urban area, and it appears unlikely that wind direction affected the extent of the cooling effect (Fig.1). The cooling effect of Heiwa Park was affected by the roads and buildings. Their effect on the cooling effect depended on their layout and size. It is desirable to have green areas scattered throughout an urban environment rather than concentrated at one spot because the cooling range of a single green area is limited to a few

  10. Landscaping practices, land use patterns and stormwater quantity and quality in urban watersheds

    NASA Astrophysics Data System (ADS)

    Miles, B.; Band, L. E.

    2011-12-01

    Increasing quantity and decreasing quality of urban stormwater threatens biodiversity in local streams and reservoirs, jeopardizes water supplies, and ultimately contributes to estuarine eutrophication. To estimate the effects that present and alternative landscaping practices and land use patterns may have on urban stormwater quantity and quality, simulations of existing land use/land cover using the Regional Hydro-Ecologic Simulation System (RHESSys), a process-based surface hydrology and biogeochemistry model, were developed for watersheds in Baltimore, MD (as part of the Baltimore Ecosystem Study (BES) NSF Long-Term Ecological Research (LTER) site) and Durham, NC (as part of the NSF Urban Long-Term Research Area (ULTRA) program). The influence of land use patterns and landscaping practices on nutrient export in urban watersheds has been explored as part of the BES; this work has focused on improving our understanding of how residential landscaping practices (i.e. lawn fertilization rates) vary across land use and socioeconomic gradients. Elsewhere, others have explored the political ecology of residential landscaping practices - seeking to understand the economic, political, and cultural influences on the practice of high-input residential turf-grass management. Going forward, my research will synthesize and extend this prior work. Rather than pre-supposing predominant residential land use patterns and landscaping practices (i.e. lower-density periphery development incorporating high-input turf landscapes) alternate land use and landscaping scenarios (e.g. higher-density/transit-oriented development, rain gardens, vegetable gardens, native plant/xeriscaping) will be developed through interviews/focus groups with stakeholders (citizens, public officials, developers, non-profits). These scenarios will then be applied to the RHESSys models already developed for catchments in Baltimore and Durham. The modeled scenario results will be used to identify alternate land

  11. Follow-up and modeling of the land use in an intensive agricultural watershed in France

    NASA Astrophysics Data System (ADS)

    Corgne, Samuel; Barbier, Johann; Hubert-Moy, Laurence; Mercier, Gregoire; Solaiman, Basel

    2003-03-01

    In intensive agricultural regions, monitoring land use and cover change represents an important stake. Some land cover changes in agro-systems cause modifications in the management of land use that contribute to increase environmental problems, including an important degradation of water quality. In this context, the identification of land-cover dynamics at high spatial scales constitutes a prior approach for the restoration of water resources. The modeling approach used to study land use and cover changes at a field-scale is adapted from a vector change analysis method generally applied to assess land cover changes from regional to global scales. The main objective of this study is to identify vegetation changes at the field scale during winter, in relation with crop successions. Magnitude and direction of the vector of changes with remote sensing data and GIS, calculated on a small watershed located in Western France for a six-year period (1996-2001) indicate both intensity and nature of observed changes in this area. The results allow to qualify accurately (i.e. at the scale of the field) the type of changes, to quantify them and weigh up their intensity. Then, all the results are integrated in a probabilistic model to build-up a short time land use prediction.

  12. Climate Change, Pacific Ocean and Land Use Influences on Los Angeles' Urban Heat Islands

    NASA Astrophysics Data System (ADS)

    Gamelin, B.; Hsu, F.; LaDochy, S.; Ramirez, P. C.; Ye, H.; Sequera, P.; Gonzalez, J.; McDonald, K.; Patzert, W. C.

    2013-12-01

    The Los Angeles urban heat island (UHI) is a complex entity that is changing in time, space and intensity. The major influences on its characteristics appear to be population, landuse, and Pacific Ocean variability. Since 1950, the city of Los Angeles has nearly tripled in population from 1,333,300 to 3,792,621 in 2010. The downtown skyline has also changed as more high-rises replace lower density buildings and parking lots. Downtown average temperatures have increased rapidly, rising over 3oC in the last century. Tmin values have increased faster than Tmax similar to other UHI cities. However the Los Angeles UHI is unique among most cities, with its complex terrain and dominant land/sea breeze circulations. Also, the city is part of a regional megalopolis, where the surrounding rural areas are distant and ill-defined, in contrast to most UHIs. Our study looks at the diurnal and seasonal patterns in the urban thermal regime and how they have changed over recent decades. Temporal changes in land use, particularly vegetation, coastal sea surface temperatures, Pacific climatic indices such as the Pacific Decadal Oscillation (PDO) and coastal upwelling all seem to contribute to the changes in city temperatures. The PDO especially correlates well with Los Angeles temperatures. The spatial changes in an UHI are described combining surface met data and aircraft remote sensing, using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the MODIS/ASTER Airborne Simulator (MASTER) sensors at spatial resolutions of 30 and 50 m, respectively. In our study recent sea breeze enhancement will be investigated in its influence on coastal cooling. Implications of the role of the intensifying UHI in the increases in Los Angeles heat waves will also be discussed.

  13. Impact of Land-Use Intensity and Productivity on Bryophyte Diversity in Agricultural Grasslands

    PubMed Central

    Müller, Jörg; Klaus, Valentin H.; Kleinebecker, Till; Prati, Daniel; Hölzel, Norbert; Fischer, Markus

    2012-01-01

    While bryophytes greatly contribute to plant diversity of semi-natural grasslands, little is known about the relationships between land-use intensity, productivity, and bryophyte diversity in these habitats. We recorded vascular plant and bryophyte vegetation in 85 agricultural used grasslands in two regions in northern and central Germany and gathered information on land-use intensity. To assess grassland productivity, we harvested aboveground vascular plant biomass and analyzed nutrient concentrations of N, P, K, Ca and Mg. Further we calculated mean Ellenberg indicator values of vascular plant vegetation. We tested for effects of land-use intensity and productivity on total bryophyte species richness and on the species richness of acrocarpous (small & erect) and pleurocarpous (creeping, including liverworts) growth forms separately. Bryophyte species were found in almost all studied grasslands, but species richness differed considerably between study regions in northern Germany (2.8 species per 16 m2) and central Germany (6.4 species per 16 m2) due environmental differences as well as land-use history. Increased fertilizer application, coinciding with high mowing frequency, reduced bryophyte species richness significantly. Accordingly, productivity estimates such as plant biomass and nitrogen concentration were strongly negatively related to bryophyte species richness, although productivity decreased only pleurocarpous species. Ellenberg indicator values for nutrients proved to be useful indicators of species richness and productivity. In conclusion, bryophyte composition was strongly dependent on productivity, with smaller bryophytes that were likely negatively affected by greater competition for light. Intensive land-use, however, can also indirectly decrease bryophyte species richness by promoting grassland productivity. Thus, increasing productivity is likely to cause a loss of bryophyte species and a decrease in species diversity. PMID:23251563

  14. a Quantitative Procedure for the Spatial Characterization of Urban Land Use

    NASA Astrophysics Data System (ADS)

    Decraene, James; Monterola, Christopher; Lee, Gary Kee Khoon; Hung, Terence Gih Guang

    2013-02-01

    We have developed a procedure that characterizes the land use pattern of an urban system using: (a) Spatial entropy that measures the extent of spread of residential, business and industrial sectors; and (b) Index of dissimilarity that quantifies the degree of mixing in space of different sectors. The approach is illustrated by using the land use zoning maps of the city state of Singapore and a selection of North American cities. We show that a common feature of most cities is for the industrial areas to be highly clustered while at the same time segregated from the residential or business districts. We also demonstrate that the combination of entropy of residential and dissimilarity index between residential and business areas provides a quantitative and potentially useful means of differentiating the land use pattern of different cities.

  15. Exploiting Volunteered Geographic Information to Ease Land Use Mapping of AN Urban Landscape

    NASA Astrophysics Data System (ADS)

    Jokar Arsanjani, J.; Helbich, M.; Bakillah, M.

    2013-05-01

    Remote sensing techniques have eased land use/cover mapping substantially by observing the earth remotely through diminishing field surveying and in-site data collection. However, field measurement is still required to identify training sites for defining the existing land use classes, which requires visiting the study area. This paper is intended to utilize volunteered geographic information (VGI) contributions to the OpenStreetMap (OSM) project as an alternative data source instead of gathering training sites through insite visits and to evaluate how accurate land use patterns can be mapped. High resolution imagery of RapidEye with 5 meter spatial resolution is selected to derive land use patterns of Koblenz, Germany through a maximum likelihood classification technique. The achieved land use map is compared with the Global Monitoring for Environment and Security Urban Atlas (GMESUA) and a Kappa Index of 89% is achieved. The outcomes prove that VGI can be integrated within remote sensing processes to facilitate the process of earth observation and monitoring.

  16. Modeling Occurrence of Urban Mosquitos Based on Land Use Types and Meteorological Factors in Korea

    PubMed Central

    Kwon, Yong-Su; Bae, Mi-Jung; Chung, Namil; Lee, Yeo-Rang; Hwang, Suntae; Kim, Sang-Ae; Choi, Young Jean; Park, Young-Seuk

    2015-01-01

    Mosquitoes are a public health concern because they are vectors of pathogen, which cause human-related diseases. It is well known that the occurrence of mosquitoes is highly influenced by meteorological conditions (e.g., temperature and precipitation) and land use, but there are insufficient studies quantifying their impacts. Therefore, three analytical methods were applied to determine the relationships between urban mosquito occurrence, land use type, and meteorological factors: cluster analysis based on land use types; principal component analysis (PCA) based on mosquito occurrence; and three prediction models, support vector machine (SVM), classification and regression tree (CART), and random forest (RF). We used mosquito data collected at 12 sites from 2011 to 2012. Mosquito abundance was highest from August to September in both years. The monitoring sites were differentiated into three clusters based on differences in land use type such as culture and sport areas, inland water, artificial grasslands, and traffic areas. These clusters were well reflected in PCA ordinations, indicating that mosquito occurrence was highly influenced by land use types. Lastly, the RF represented the highest predictive power for mosquito occurrence and temperature-related factors were the most influential. Our study will contribute to effective control and management of mosquito occurrences. PMID:26492260

  17. Modeling Occurrence of Urban Mosquitos Based on Land Use Types and Meteorological Factors in Korea.

    PubMed

    Kwon, Yong-Su; Bae, Mi-Jung; Chung, Namil; Lee, Yeo-Rang; Hwang, Suntae; Kim, Sang-Ae; Choi, Young Jean; Park, Young-Seuk

    2015-10-01

    Mosquitoes are a public health concern because they are vectors of pathogen, which cause human-related diseases. It is well known that the occurrence of mosquitoes is highly influenced by meteorological conditions (e.g., temperature and precipitation) and land use, but there are insufficient studies quantifying their impacts. Therefore, three analytical methods were applied to determine the relationships between urban mosquito occurrence, land use type, and meteorological factors: cluster analysis based on land use types; principal component analysis (PCA) based on mosquito occurrence; and three prediction models, support vector machine (SVM), classification and regression tree (CART), and random forest (RF). We used mosquito data collected at 12 sites from 2011 to 2012. Mosquito abundance was highest from August to September in both years. The monitoring sites were differentiated into three clusters based on differences in land use type such as culture and sport areas, inland water, artificial grasslands, and traffic areas. These clusters were well reflected in PCA ordinations, indicating that mosquito occurrence was highly influenced by land use types. Lastly, the RF represented the highest predictive power for mosquito occurrence and temperature-related factors were the most influential. Our study will contribute to effective control and management of mosquito occurrences. PMID:26492260

  18. WRF Model Evaluation for the Urban Heat Island Assessment under Varying Land Use/Land Cover and Reference Site Conditions

    NASA Astrophysics Data System (ADS)

    Bhati, S.

    2015-12-01

    Urban heat island effect has been assessed using Weather Research and Forecasting model (WRF v3.5) coupled with urban canopy model (UCM) focusing on air temperature and surface skin temperature in the sub-tropical urban Indian megacity of Delhi. The estimated heat island intensities for different land use/land cover (LULC) have been compared with those derived from in-situ and satellite observations. There is a significant improvement in model performance with inclusion of UCM both for meteorological parameters (T and RH) and the UHIs. Overall, RMSEs for near surface temperature improved from 1.63°C to 1.13°C for urban areas and from 2.89°C to 2.75°C for non-urban areas with inclusion of urban canopy model in WRF. Similarly, index of agreement and RMSEs for mean urban heat island intensities (UHI) improved from 0.77 to 0.88 and 1.91°C to 1.60°C respectively with WRF-UCM. Hit rate from the model simulated mean heat island intensities using WRF model are 72 % for urban areas and 58 % for non-urban areas such as green areas and riverside areas. The corresponding values improved in WRF-UCM with a hit rate of 75% for urban areas and 72 % for non-urban areas. In general, model is able to capture the magnitude of UHI well though it performs better during night than during the daytime. High UHI zones and top 3 hotspots are captured well by the model. The relevance of selecting a rural reference point for UHI estimation near the urban area is examined in the context of rapidly growing cities where nearby rural areas are transforming fast into built-up areas themselves and reference site may not be appropriate for future years. Both WRF and WRF-UCM simulated UHI shows satisfactory performance against benchmarks for the statistical measures with classical methodology using rural site as a reference point. Using an alternate methodology of considering a green area within the city having minimum temperature as a reference site worked satisfactorily only with WRF- UCM. In

  19. Solute Sourcing and Hydrologic Response to Monsoon Precipitation Along a Gradient of Urban Land Use

    NASA Astrophysics Data System (ADS)

    Gallo, E. L.; Brooks, P. D.; Lohse, K.; McIntosh, J.; McLain, J. E.; Meixner, T.

    2008-12-01

    Urban storm runoff in arid and semiarid areas is used as a potential groundwater recharge resource, but knowledge gaps remain in our understanding on the underlying hydrologic and biogeochemical processes that control the water quality of urban runoff. This study addresses this gap by evaluating how hydrologic and biogeochemical processes interact to produce distinct storm runoff chemistry. We hypothesized that transport processes dominate the solute chemistry of highly urbanized watersheds with large impervious cover; whereas biogeochemical reactions dominate solute responses in less urbanized watersheds with potentially more vegetation and longer flow paths. Utilizing automatic water samplers, we collected urban storm runoff from five distinct urban land use watersheds: 1) low density residential (least urbanized), 2) old medium density residential, 3) new medium density residential, 4) mixed land use and 5) commercial (most urbanized). We coupled a conservative tracer (chloride, Cl-) with stable isotope data (δD and δ18O) to infer physical and biogeochemical processes contributing to the solute chemistry observed. Solute response was similar in the least and most urbanized watersheds, which had the highest mean seasonal concentrations of Cl-, DOC, fecal indicator bacteria (E. coli), Na, Hg and Cu among others, and had the lowest As, Ca and Ni concentrations. The low density site exhibited weak seasonal chloride flushing, contrasting with the commercial site's stronger flushing response. Coupling of Cl-, δD and δ18O data, and comparing it across sites demonstrates solute flushing and evapoconcentration in the commercial site as inferred by δ18O and δD values that plot along an evaporation trend (from -34 to -24 ‰ δD, and -5.3 to -3.5 ‰ δ18O) with increasing Cl- concentrations (from 1.8 to 7.4 mg L-1) during the runoff event. In contrast, high δD values (-27 to -22 ‰) of runoff and a simultaneous decrease in Cl- concentrations (from 11.5 to 3.7 mg L

  20. Graph-Based Urban Land Use Mapping from High Resolution Satellite Images

    NASA Astrophysics Data System (ADS)

    Walde, I.; Hese, S.; Berger, C.; Schmullius, C.

    2012-07-01

    Due to the dynamic character of urban land use (e.g. urban sprawl) there is a demand for frequent updates for monitoring, modeling, and controlling purposes. Urban land use is an added value that can be indirectly derived with the help of various properties of land cover classes that describe a certain area and create a distinguishable structure. The goal of this project is to extract land use (LU) classes out of a structure of land cover (LC) classes from high resolution Quickbird data and additional LiDAR building height models. The study area is Rostock, a German city with more than 200.000 inhabitants. To model the properties of urban land use a graph based approach is adapted from other disciplines (industrial image processing, medicine, informatics). A graph consists of nodes and edges while nodes describe the land cover and edges define the relationship of neighboring objects. To calculate the adjacency that describes which nodes are combined with an edge several distance ranges and building height properties are tested. Furthermore the information value of planar versus non-planar graph types is analyzed. After creating the graphs specific indices are computed that evaluate how compact or connected the graphs are. In this work several graph indices are explained and applied to training areas. Results show that the distance of buildings and building height are reliable indicators for LU-categories. The separability of LU-classes improves when properties of land cover classes and graph indices are combined to a LU-signature.

  1. ICCLP: An Inexact Chance-Constrained Linear Programming Model for Land-Use Management of Lake Areas in Urban Fringes

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Qin, Xiaosheng; Guo, Huaicheng; Zhou, Feng; Wang, Jinfeng; Lv, Xiaojian; Mao, Guozhu

    2007-12-01

    Lake areas in urban fringes are under increasing urbanization pressure. Consequently, the conflict between rapid urban development and the maintenance of water bodies in such areas urgently needs to be addressed. An inexact chance-constrained linear programming (ICCLP) model for optimal land-use management of lake areas in urban fringes was developed. The ICCLP model was based on land-use suitability assessment and land evaluation. The maximum net economic benefit (NEB) was selected as the objective of land-use allocation. The total environmental capacity (TEC) of water systems and the public financial investment (PFI) at different probability levels were considered key constraints. Other constraints included in the model were land-use suitability, governmental requirements on the ratios of various land-use types, and technical constraints. A case study implementing the system was performed for the lake area of Hanyang at the urban fringe of Wuhan, central China, based on our previous study on land-use suitability assessment. The Hanyang lake area is under significant urbanization pressure. A 15-year optimal model for land-use allocation is proposed during 2006 to 2020 to better protect the water system and to gain the maximum benefits of development. Sixteen constraints were set for the optimal model. The model results indicated that NEB was between 1.48 × 109 and 8.76 × 109 or between 3.98 × 109 and 16.7 × 109, depending on the different urban-expansion patterns and land demands. The changes in total developed area and the land-use structure were analyzed under different probabilities ( q i ) of TEC. Changes in q i resulted in different urban expansion patterns and demands on land, which were the direct result of the constraints imposed by TEC and PFI. The ICCLP model might help local authorities better understand and address complex land-use systems and develop optimal land-use management strategies that better balance urban expansion and grassland

  2. Variations of Soil Lead in Different Land Uses Along the Urbanization Gradient in the Beijing Metropolitan Area

    PubMed Central

    Mao, Qizheng; Huang, Ganlin; Ma, Keming; Sun, Zexiang

    2014-01-01

    Understanding the spatial pattern of soil lead (Pb) levels is essential to protecting human health. Most previous studies have examined soil Pb distributions by either urbanization gradient or land-use type. Few studies, however, have examined both factors together. It remains unclear whether the impacts of land use on soil Pb levels are consistent along the urbanization gradient. To fill this gap, we investigated variations in soil Pb level under different land-use types along the urbanization gradient in Beijing, China. We classified the degree of urbanization as the urban core, transitional zone, or suburban area and the land-use type as industrial area, roadside, residential area, institutional area, road greenbelt, park, or forest. Our results showed that the range of soil Pb levels in Beijing is <1 mg/kg–292 mg/kg, with a mean of 22 mg/kg. Along the urbanization gradient, the mean soil Pb level increased from the suburban area to the urban core. Land-use types have an impact on soil Pb levels, however, when the degree of urbanization is considered, the impact from land use on soil Pb level was only significant in the transitional zone. Parks and road greenbelts were found to have lower soil Pb, primarily due to soil restoration. Roadside and residential areas were found to have higher soil Pb because of traffic emissions, leaded paint, and previous industrial contamination. In the urban core and suburban area, the soil Pb level showed no significant differences among various land-use types. Given the results of soil Pb in various land-use types, we suggest that future studies consider the urbanization gradient in which different land-use samples are located. PMID:24646863

  3. Urban land use in Natura 2000 surrounding areas in Vilnius Region, Lithuania.

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Misiūnė, Ieva; Depellegrin, Daniel

    2015-04-01

    Urban development is one of the major causes of land degradation and pressure on protected areas. (Hansen and DeFries, 2007; Salvati and Sabbi, 2011). The urban areas in the fringe of the protected areas are a source of pollutants considered a negative disturbance to the ecosystems services and biodiversity within the protected areas. The distance between urban and protected areas is decreasing and in the future it is estimated that 88% of the world protected areas will be affected by urban growth (McDonald et al., 2008). The surrounding or buffer areas, are lands adjacent to the Natura 2000 territories, which aim to reduce the human influence within the protected areas. Presently there is no common definition of buffer area it is not clear among stakeholders (Van Dasselaar, 2013). The objective of this work is to identify the urban land use in the Natura 2000 areas in Vilnius region, Lithuania. Data from Natura 2000 areas and urban land use (Corine Land Cover 2006) in Vilnius region were collected in the European Environmental Agency website (http://www.eea.europa.eu/). In the surroundings of each Natura 2000 site, we identified the urban land use at the distances of 500, 1000 and 1500 m. The Natura 2000 sites and the urban areas occupied a total of 13.2% and 3.4% of Vilnius region, respectively. However, the urban areas are very dispersed in the territory, especially in the surroundings of Vilnius, which since the end of the XX century is growing (Pereira et al., 2014). This can represent a major threat to Natura 2000 areas ecosystem services quality and biodiversity. Overall, urban areas occupied approximately 50 km2, in the buffer area of 500 m, 95 km2 in buffer area of 1000 m and 131 km2 in the buffer area of 1500 km2. This shows that Natura 2000 surrounding areas in Vilnius region are subjected to a high urban pressure. This is especially evident in the Vilnius city and is a consequence of the uncontrolled urban development. The lack of a clear legislation

  4. Multi-taxa approach shows consistent shifts in arthropod functional traits along grassland land-use intensity gradient.

    PubMed

    Simons, Nadja K; Weisser, Wolfgang W; Gossner, Martin M

    2016-03-01

    Intensification of land use reduces biodiversity but may also shift the trait composition of communities. Understanding how land use affects single traits and community trait composition, helps to understand why some species are more affected by land use than others. Trait-based analyses are common for plants, but rare for arthropods. We collected literature-based traits for nearly 1000 insect and spider species to test how land- use intensity (including mowing, fertilization, and grazing) across 124 grasslands in three regions of Germany affects community-weighted mean traits across taxa and in single taxa. We additionally measured morphometric traits for more than 150 Heteroptera species and tested whether the weighted mean morphometric traits change with increasing land-use intensity. Community average body size decreased and community average dispersal ability increased from low to high land-use intensity. Furthermore, the relative abundance of herbivores and of specialists among herbivores decreased and the relative abundance of species using the herb layer increased with increasing land-use intensity. Community-weighted means of the morphometric traits in Heteroptera also changed from low to high land-use intensity toward longer and thinner shapes as well as longer appendices (legs, wings, and antenna). While changes in traits with increasing mowing and fertilization intensity were consistent with the combined land-use intensity, community average traits did often not change or with opposite direction under increasing grazing intensity. We conclude that high land-use intensity acts as an environmental filter selecting for on average smaller, more mobile, and less specialized species across taxa. Although trait collection across multiple arthropod taxa is laborious and needs clear trait definitions, it is essential for understanding the functional consequences of biodiversity loss due to land-use intensification. PMID:27197401

  5. Geographically explicit urban land use change scenarios for Mega cities: a case study in Tokyo

    NASA Astrophysics Data System (ADS)

    Yamagata, Y.; Bagan, H.; Seya, H.; Nakamichi, K.

    2010-12-01

    In preparation for the IPCC 5th assessment report, the international modeling community is developing four Representative Concentration Paths employing the scenarios developed by four different Integrated Assessment Models. These RCPs will be employed as an input to climate models, such as Earth System Models. In these days, the importance of assessment of not only global but also local (city/zone level) impacts of global change has gradually been recognized, thereby downscaling climate models are one of the urgent problems to be solved. Needless to say, reliable downscaling requires spatially high resolution land use change scenarios. So far, there has been proposed a lot of methods for constructing land use change scenarios with considering economic behavior of human, such as agent-based model (e.g., Parker et al., 2001), and land use transport (LUT) model (e.g., Anas and Liu, 2007). The latter approach in particular has widely been applied to actual urban/transport policy; hence modeling the interaction between them is very important for creating reliable land use change scenarios. However, the LUT models are usually built based on the zones of cities/municipalities whose spatial resolutions are too low to derive sensible parameters of the climate models. Moreover, almost all of the works which attempt to build spatially high resolution LUT model employs very small regions as the study area. The objective of this research is deriving various input parameters to climate models such as population density, fractional green vegetation cover, and anthropogenic heat emission with spatially high resolution land use change scenarios constructed with LUT model. The study area of this research is Tokyo metropolitan area, which is the largest urban area in the world (United Nations., 2010). Firstly, this study employs very high ground resolution zones composed of micro districts around 1km2. Secondly, the research attempt to combine remote sensing techniques and LUT models

  6. Watershed Characteristics Influencing Stream Nutrient Concentrations Across a Rural-to-Urban Land Use Gradient

    NASA Astrophysics Data System (ADS)

    Pellerin, B. A.; Wollheim, W. M.; Vorosmarty, C. J.; McDowell, W. H.; Hopkinson, C. S.

    2005-05-01

    We assessed the influence of several watershed-scale features on mean annual stream inorganic nitrogen (N) and phosphorus (P) concentrations in 23 urbanizing catchments (rural-to-urban) dominated by non-point source inputs. Population density was not a strong predictor of N or P concentrations across the gradient, while residential land use (%) explained 52% of the NO3 variability both across the gradient and even more variability (0.70%) in a subset of catchments with intermediate population densities (suburban, 100 to 620 people / km2). A multiple regression using percent wetlands and septic density explained a similar amount (51 and 73 %) of the NO3 variability across the rural-to-urban gradient and within suburban watersheds, highlighting the potential role of septic wastewater and wetlands as N sources and sinks, respectively. Isotopic data (15N-NO3) suggested that wastewater was the dominant source of NO3 in suburban and urban watersheds. While residential land use was the best single predictor, it provided little information on mechanisms controlling stream chemistry. In contrast, the use of wetland percentage and septic density in a multiple regression explained as much variability and suggested key sources and sinks for management at the watershed-scale.

  7. Impacts of land use and land cover on surface and air temperature in urban landscapes

    NASA Astrophysics Data System (ADS)

    Crum, S.; Jenerette, D.

    2015-12-01

    Accelerating urbanization affects regional climate as the result of changing land cover and land use (LCLU). Urban land cover composition may provide valuable insight into relationships among urbanization, air, and land-surface temperature (Ta and LST, respectively). Climate may alter these relationships, where hotter climates experience larger LULC effects. To address these hypotheses we examined links between Ta, LST, LCLU, and vegetation across an urban coastal to desert climate gradient in southern California, USA. Using surface temperature radiometers, continuously measuring LST on standardized asphalt, concrete, and turf grass surfaces across the climate gradient, we found a 7.2°C and 4.6°C temperature decrease from asphalt to vegetated cover in the coast and desert, respectively. There is 131% more temporal variation in asphalt than turf grass surfaces, but 37% less temporal variation in concrete than turf grass. For concrete and turf grass surfaces, temporal variation in temperature increased from coast to desert. Using ground-based thermal imagery, measuring LST for 24 h sequences over citrus orchard and industrial use locations, we found a 14.5°C temperature decrease from industrial to orchard land use types (38.4°C and 23.9°C, respectively). Additionally, industrial land use types have 209% more spatial variation than orchard (CV=0.20 and 0.09, respectively). Using a network of 300 Ta (iButton) sensors mounted in city street trees throughout the region and hyperspectral imagery data we found urban vegetation greenness, measured using the normalized difference vegetation index (NDVI), was negatively correlated to Ta at night across the climate gradient. Contrasting previous findings, the closest coupling between NDVI and Ta is at the coast from 0000 h to 0800 h (highest r2 = 0.6, P < 0.05) while relationships at the desert are weaker (highest r2 = 0.38, P < 0.05). These findings indicate that vegetation cover in urbanized regions of southern

  8. WRF model evaluation for the urban heat island assessment under varying land use/land cover and reference site conditions

    NASA Astrophysics Data System (ADS)

    Bhati, Shweta; Mohan, Manju

    2015-08-01

    Urban heat island effect in Delhi has been assessed using Weather Research and Forecasting (WRF v3.5) coupled with urban canopy model (UCM) focusing on air temperature and surface skin temperature. The estimated heat island intensities for different land use/land cover (LULC) have been compared with those derived from in situ and satellite observations. The model performs reasonably well for urban heat island intensity (UHI) estimation and is able to reproduce trend of UHI for urban areas. There is a significant improvement in model performance with inclusion of UCM which results in reduction in root mean-squared errors (RMSE) for temperatures from 1.63 °C (2.89 °C) to 1.13 °C (2.75 °C) for urban (non-urban) areas. Modification of LULC also improves performance for non-urban areas. High UHI zones and top 3 hotspots are captured well by the model. The relevance of selecting a reference point at the periphery of the city away from populated and built-up areas for UHI estimation is examined in the context of rapidly growing cities where rural areas are transforming fast into built-up areas, and reference site may not be appropriate for future years. UHI estimated by WRF model (with and without UCM) with respect to reference rural site compares well with the UHI based on observed in situ data. An alternative methodology is explored using a green area with minimum temperature within the city as a reference site. This alternative methodology works well with observed UHIs and WRF-UCM-simulated UHIs but has poor performance for WRF-simulated UHIs. It is concluded that WRF model can be applied for UHI estimation with classical methodology based on rural reference site. In general, many times WRF model performs satisfactorily, though WRF-UCM always shows a better performance. Hence, inclusion of appropriate representation of urban canopies and land use-land cover is important for improving predictive capabilities of the mesoscale models.

  9. Density of insect-pollinated grassland plants decreases with increasing surrounding land-use intensity.

    PubMed

    Clough, Yann; Ekroos, Johan; Báldi, András; Batáry, Péter; Bommarco, Riccardo; Gross, Nicolas; Holzschuh, Andrea; Hopfenmüller, Sebastian; Knop, Eva; Kuussaari, Mikko; Lindborg, Regina; Marini, Lorenzo; Öckinger, Erik; Potts, Simon G; Pöyry, Juha; Roberts, Stuart Pm; Steffan-Dewenter, Ingolf; Smith, Henrik G

    2014-09-01

    Pollinator declines have raised concerns about the persistence of plant species that depend on insect pollination, in particular by bees, for their reproduction. The impact of pollinator declines remains unknown for species-rich plant communities found in temperate seminatural grasslands. We investigated effects of land-use intensity in the surrounding landscape on the distribution of plant traits related to insect pollination in 239 European seminatural grasslands. Increasing arable land use in the surrounding landscape consistently reduced the density of plants depending on bee and insect pollination. Similarly, the relative abundance of bee-pollination-dependent plants increased with higher proportions of non-arable agricultural land (e.g. permanent grassland). This was paralleled by an overall increase in bee abundance and diversity. By isolating the impact of the surrounding landscape from effects of local habitat quality, we show for the first time that grassland plants dependent on insect pollination are particularly susceptible to increasing land-use intensity in the landscape. PMID:25040328

  10. A Coordinated Approach to Food Safety and Land Use Law at the Urban Fringe.

    PubMed

    Miller, Stephen R

    2015-01-01

    Much has been written about the rise of the local food movement in urban and suburban areas. This essay tackles an emerging outgrowth of that movement: the growing desire of urban and suburban dwellers to engage rural areas where food is produced not only to obtain food but also as a means of tourism and cultural activity. This represents a potentially much-needed means of economic development for rural areas and small farmers who are increasingly dependent on non-farm income for survival. The problem, however, is that food safety and land use laws struggle to keep up with these changes, waffling between over-regulation and de-regulation. This essay posits a legal path forward to steer clear of regulatory extremes and to help the local food movement grow and prosper at the urban fringe. We must cultivate our garden. PMID:26591827

  11. Relationship study on land use spatial distribution structure and energy-related carbon emission intensity in different land use types of Guangdong, China, 1996-2008.

    PubMed

    Huang, Yi; Xia, Bin; Yang, Lei

    2013-01-01

    This study attempts to discuss the relationship between land use spatial distribution structure and energy-related carbon emission intensity in Guangdong during 1996-2008. We quantized the spatial distribution structure of five land use types including agricultural land, industrial land, residential and commercial land, traffic land, and other land through applying spatial Lorenz curve and Gini coefficient. Then the corresponding energy-related carbon emissions in each type of land were calculated in the study period. Through building the reasonable regression models, we found that the concentration degree of industrial land is negatively correlated with carbon emission intensity in the long term, whereas the concentration degree is positively correlated with carbon emission intensity in agricultural land, residential and commercial land, traffic land, and other land. The results also indicate that land use spatial distribution structure affects carbon emission intensity more intensively than energy efficiency and production efficiency do. These conclusions provide valuable reference to develop comprehensive policies for energy conservation and carbon emission reduction in a new perspective. PMID:23476128

  12. Relationship Study on Land Use Spatial Distribution Structure and Energy-Related Carbon Emission Intensity in Different Land Use Types of Guangdong, China, 1996–2008

    PubMed Central

    Huang, Yi; Yang, Lei

    2013-01-01

    This study attempts to discuss the relationship between land use spatial distribution structure and energy-related carbon emission intensity in Guangdong during 1996–2008. We quantized the spatial distribution structure of five land use types including agricultural land, industrial land, residential and commercial land, traffic land, and other land through applying spatial Lorenz curve and Gini coefficient. Then the corresponding energy-related carbon emissions in each type of land were calculated in the study period. Through building the reasonable regression models, we found that the concentration degree of industrial land is negatively correlated with carbon emission intensity in the long term, whereas the concentration degree is positively correlated with carbon emission intensity in agricultural land, residential and commercial land, traffic land, and other land. The results also indicate that land use spatial distribution structure affects carbon emission intensity more intensively than energy efficiency and production efficiency do. These conclusions provide valuable reference to develop comprehensive policies for energy conservation and carbon emission reduction in a new perspective. PMID:23476128

  13. Hydrology for urban land planning--A guidebook on the hydrologic effects of urban land use

    USGS Publications Warehouse

    Leopold, Luna Bergere

    1968-01-01

    The application of current knowledge of the hydrologic effects of urbanization to the Brandywine should be viewed as a forecast of conditions which may be expected as urbanization proceeds. By making such forecasts in advance of actual urban development, the methods can be tested, data can be extended, and procedures improved as verification becomes possible.

  14. EVALUATION OF LAND USE/LAND COVER DATASETS FOR URBAN WATERSHED MODELING

    SciTech Connect

    S.J. BURIAN; M.J. BROWN; T.N. MCPHERSON

    2001-08-01

    Land use/land cover (LULC) data are a vital component for nonpoint source pollution modeling. Most watershed hydrology and pollutant loading models use, in some capacity, LULC information to generate runoff and pollutant loading estimates. Simple equation methods predict runoff and pollutant loads using runoff coefficients or pollutant export coefficients that are often correlated to LULC type. Complex models use input variables and parameters to represent watershed characteristics and pollutant buildup and washoff rates as a function of LULC type. Whether using simple or complex models an accurate LULC dataset with an appropriate spatial resolution and level of detail is paramount for reliable predictions. The study presented in this paper compared and evaluated several LULC dataset sources for application in urban environmental modeling. The commonly used USGS LULC datasets have coarser spatial resolution and lower levels of classification than other LULC datasets. In addition, the USGS datasets do not accurately represent the land use in areas that have undergone significant land use change during the past two decades. We performed a watershed modeling analysis of three urban catchments in Los Angeles, California, USA to investigate the relative difference in average annual runoff volumes and total suspended solids (TSS) loads when using the USGS LULC dataset versus using a more detailed and current LULC dataset. When the two LULC datasets were aggregated to the same land use categories, the relative differences in predicted average annual runoff volumes and TSS loads from the three catchments were 8 to 14% and 13 to 40%, respectively. The relative differences did not have a predictable relationship with catchment size.

  15. Characteristics of ground level CO2 concentrations over contrasting land uses in a tropical urban environment

    NASA Astrophysics Data System (ADS)

    Kishore Kumar, M.; Shiva Nagendra, S. M.

    2015-08-01

    Indian cities feature high human population density, heterogeneous traffic, mixed land-use patterns and mostly tropical meteorological conditions. Characteristics of ambient CO2 concentrations under these distinctive features are very specific and the related studies are limited. This paper presents the characteristics of ground level CO2 concentrations at three contrasting land uses (residential, commercial and industrial) in a tropical urban area of India. The CO2 concentrations were monitored in Chennai city for 31 days at each land use during June-September, 2013. Emissions of CO2 from all the major anthropogenic sources present at the three study sites were also quantified. Results indicated that the daily average CO2 concentrations were high at commercial (467 ± 35.15 ppm) and industrial (464 ± 31.68 ppm) sites than at residential site (448 ± 33.45 ppm). The quantified CO2 emissions were also showed high levels at commercial (1190 tons/day) and industrial sites (8886 tons/day) than at residential site (90 tons/day). On a diurnal scale, CO2 concentrations were low during afternoons and high during the late evenings and early morning hours at all the three types of land use sites. At the urban residential site, the domestic sector had a strong impact on the day time CO2 concentrations, while soil and plant respiration phenomena had a greater control over the night time CO2 concentrations. Further, the CO2 concentrations were high during the stagnation and stable meteorological conditions than the ventilation and unstable conditions.

  16. Changes in Urban Climate due to Future Land-Use Changes based on Population Changes in the Nagoya Region

    NASA Astrophysics Data System (ADS)

    Adachi, S. A.; Hara, M.; Takahashi, H. G.; Ma, X.; Yoshikane, T.; Kimura, F.

    2013-12-01

    Severe hot weather in summer season becomes a big social problem in metropolitan areas, including the Nagoya region in Japan. Surface air temperature warming is projected in the future. Therefore, the reduction of surface air temperature is an urgent issue in the urban area. Although there are several studies dealing with the effects of global climate change and urbanization to the local climate in the future, these studies tend to ignore the future population changes. This study estimates future land-use scenarios associated with the multi-projections of future population and investigates the impacts of these scenarios on the surface temperature change. The Weather Research and Forecast model ver. 3.3.1 (hereafter, WRF) was used in this study. The horizontal resolutions were 20km, 4km, and 2km, for outer, middle, and inner domains, respectively. The results from the inner domain, covering the Nagoya region, were used for the analysis. The Noah land surface model and the single-layer urban canopy model were applied to calculate the land surface processes and urban surface processes, respectively. The initial and boundary conditions were given from the NCEP/NCAR reanalysis data in August 2010. The urban area ratio used in the WRF model was calculated from the future land-use data provided by the S8 project. The land-use data was created as follows. (1) Three scenarios of population, namely, with high-fertility assumption and low-mortality assumption (POP-high), with medium-fertility assumption and medium-mortality assumption (POP-med), and with low-fertility assumption and high-mortality assumption (POP-low), are estimated using the method proposed by Ariga and Matsuhashi (2012). These scenarios are based on the future projections provided by the National Institute of Population and Social Security Research. (2) The future changes in urban area ratio were assumed to be proportional to the population change (Hanasaki et al., 2012). The averaged urban area ratio in

  17. Effects of urbanization on stream ecosystems along an agriculture-to-urban land-use gradient, Milwaukee to Green Bay, Wisconsin, 2003-2004

    USGS Publications Warehouse

    Richards, Kevin D.; Scudder, Barbara C.; Fitzpatrick, Faith A.; Steuer, Jeffery J.; Bell, Amanda H.; Peppler, Marie C.; Stewart, Jana S.; Harris, Mitchell A.

    2010-01-01

    In 2003 and 2004, 30 streams near Milwaukee and Green Bay, Wisconsin, were part of a national study by the U.S. Geological Survey to assess urbanization effects on physical, chemical, and biological characteristics along an agriculture-to-urban land-use gradient. A geographic information system was used to characterize natural landscape features that define the environmental setting and the degree of urbanization within each stream watershed. A combination of land cover, socioeconomic, and infrastructure variables were integrated into a multi-metric urban intensity index, scaled from 0 to 100, and assigned to each stream site to identify a gradient of urbanization within relatively homogeneous environmental settings. The 35 variables used to develop the final urban intensity index characterized the degree of urbanization and included road infrastructure (road area and road traffic index), 100-meter riparian land cover (percentage of impervious surface, shrubland, and agriculture), watershed land cover (percentage of impervious surface, developed/urban land, shrubland, and agriculture), and 26 socioeconomic variables (U.S. Census Bureau, 2001). Characteristics examined as part of this study included: habitat, hydrology, stream temperature, water chemistry (chloride, sulfate, nutrients, dissolved and particulate organic and inorganic carbon, pesticides, and suspended sediment), benthic algae, benthic invertebrates, and fish. Semipermeable membrane devices (SPMDs) were used to assess the potential for bioconcentration of hydrophobic organic contaminants (specifically polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine and pyrethroid insecticides) in biological membranes, such as the gills of fish. Physical habitat measurements reflective of channel enlargement, including bankfull channel size and bank erosion, increased with increasing urbanization within the watershed. In this study, percentage of riffles and streambed substrate size were

  18. Predicting runoff induced mass loads in urban watersheds: Linking land use and pyrethroid contamination.

    PubMed

    Chinen, Kazue; Lau, Sim-Lin; Nonezyan, Michael; McElroy, Elizabeth; Wolfe, Becky; Suffet, Irwin H; Stenstrom, Michael K

    2016-10-01

    Pyrethroid pesticide mass loadings in the Ballona Creek Watershed were calculated using the volume-concentration method with a Geographic Information Systems (GIS) to explore potential relationships between urban land use, impervious surfaces, and pyrethroid runoff flowing into an urban stream. A calibration of the GIS volume-concentration model was performed using 2013 and 2014 wet-weather sampling data. Permethrin and lambda-cyhalothrin were detected as the highest concentrations; deltamethrin, lambda-cyhalothrin, permethrin and cyfluthrin were the most frequently detected synthetic pyrethroids. Eight neighborhoods within the watershed were highlighted as target areas based on a Weighted Overlay Analysis (WOA) in GIS. Water phase concentration of synthetic pyrethroids (SPs) were calculated from the reported usage. The need for stricter BMP and consumer product controls was identified as a possible way of reducing the detections of pyrethroids in Ballona Creek. This model has significant implications for determining mass loadings due to land use influence, and offers a flexible method to extrapolate data for a limited amount of samplings for a larger watershed, particularly for chemicals that are not subject to environmental monitoring. Offered as a simple approach to watershed management, the GIS-volume concentration model has the potential to be applied to other target pesticides and is useful for simulating different watershed scenarios. Further research is needed to compare results against other similar urban watersheds situated in mediterranean climates. PMID:27475081

  19. Effects of soil texture and land use interactions on organic carbon in soils in North China cities' urban fringe

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Limited information exists on the effects of the linkages between soil texture and land use on C storage efficiency. Organic C concentration in soils at the rural-urban interface were measured in 1982, 2000, and 2006 to determine controlling factors and optimal land use type to enhance soil organic ...

  20. SPATIALLY EXPLICIT MICRO-LEVEL MODELLING OF LAND USE CHANGE AT THE RURAL-URBAN INTERFACE. (R828012)

    EPA Science Inventory

    This paper describes micro-economic models of land use change applicable to the rural–urban interface in the US. Use of a spatially explicit micro-level modelling approach permits the analysis of regional patterns of land use as the aggregate outcomes of many, disparate...

  1. Contrasting Effects of Land Use Intensity and Exotic Host Plants on the Specialization of Interactions in Plant-Herbivore Networks

    PubMed Central

    de Araújo, Walter Santos; Vieira, Marcos Costa; Lewinsohn, Thomas M.; Almeida-Neto, Mário

    2015-01-01

    Human land use tends to decrease the diversity of native plant species and facilitate the invasion and establishment of exotic ones. Such changes in land use and plant community composition usually have negative impacts on the assemblages of native herbivorous insects. Highly specialized herbivores are expected to be especially sensitive to land use intensification and the presence of exotic plant species because they are neither capable of consuming alternative plant species of the native flora nor exotic plant species. Therefore, higher levels of land use intensity might reduce the proportion of highly specialized herbivores, which ultimately would lead to changes in the specialization of interactions in plant-herbivore networks. This study investigates the community-wide effects of land use intensity on the degree of specialization of 72 plant-herbivore networks, including effects mediated by the increase in the proportion of exotic plant species. Contrary to our expectation, the net effect of land use intensity on network specialization was positive. However, this positive effect of land use intensity was partially canceled by an opposite effect of the proportion of exotic plant species on network specialization. When we analyzed networks composed exclusively of endophagous herbivores separately from those composed exclusively of exophagous herbivores, we found that only endophages showed a consistent change in network specialization at higher land use levels. Altogether, these results indicate that land use intensity is an important ecological driver of network specialization, by way of reducing the local host range of herbivore guilds with highly specialized feeding habits. However, because the effect of land use intensity is offset by an opposite effect owing to the proportion of exotic host species, the net effect of land use in a given herbivore assemblage will likely depend on the extent of the replacement of native host species with exotic ones. PMID

  2. Contrasting effects of land use intensity and exotic host plants on the specialization of interactions in plant-herbivore networks.

    PubMed

    de Araújo, Walter Santos; Vieira, Marcos Costa; Lewinsohn, Thomas M; Almeida-Neto, Mário

    2015-01-01

    Human land use tends to decrease the diversity of native plant species and facilitate the invasion and establishment of exotic ones. Such changes in land use and plant community composition usually have negative impacts on the assemblages of native herbivorous insects. Highly specialized herbivores are expected to be especially sensitive to land use intensification and the presence of exotic plant species because they are neither capable of consuming alternative plant species of the native flora nor exotic plant species. Therefore, higher levels of land use intensity might reduce the proportion of highly specialized herbivores, which ultimately would lead to changes in the specialization of interactions in plant-herbivore networks. This study investigates the community-wide effects of land use intensity on the degree of specialization of 72 plant-herbivore networks, including effects mediated by the increase in the proportion of exotic plant species. Contrary to our expectation, the net effect of land use intensity on network specialization was positive. However, this positive effect of land use intensity was partially canceled by an opposite effect of the proportion of exotic plant species on network specialization. When we analyzed networks composed exclusively of endophagous herbivores separately from those composed exclusively of exophagous herbivores, we found that only endophages showed a consistent change in network specialization at higher land use levels. Altogether, these results indicate that land use intensity is an important ecological driver of network specialization, by way of reducing the local host range of herbivore guilds with highly specialized feeding habits. However, because the effect of land use intensity is offset by an opposite effect owing to the proportion of exotic host species, the net effect of land use in a given herbivore assemblage will likely depend on the extent of the replacement of native host species with exotic ones. PMID

  3. Tempo-Spatial Patterns of Land Use Changes and Urban Development in Globalizing China: A Study of Beijing

    PubMed Central

    Xie, Yichun; Fang, Chuanglin; Lin, George C.S.; Gong, Hongmian; Qiao, Biao

    2007-01-01

    This study examines the temporal and spatial changes in land use as a consequence of rapid urban development in the city of Beijing. Using a combination of techniques of remote sensing and GIS, the study identifies a substantial loss of plain dryland and a phenomenal expansion of urban construction land over the recent decade. Geographically, there is a clear shifting of urban construction land from the inner city to the outskirts as a consequence of suburbanization. The outward expansion of the ring-road system is found to be one of the most important driving forces explaining the temporal and spatial pattern of land use change. The uneven distribution of population stands as another factor with significant correlation with land use change. The application of the techniques of remote sensing and GIS can enhance the precision and comparability of research on land use change and urban transformation in China.

  4. Spatio-temporal analysis of agricultural land-use intensity across the Western Siberian grain belt.

    PubMed

    Kühling, Insa; Broll, Gabriele; Trautz, Dieter

    2016-02-15

    The Western Siberian grain belt covers 1millionkm² in Asiatic Russia and is of global importance for agriculture. Massive land-use changes took place in that region after the dissolution of the Soviet Union and the collapse of the state farm system. Decreasing land-use intensity (LUI) in post-Soviet Western Siberia was observed on grassland due to declining livestock whilst on cropland trends of land abandonment reversed in the early 2000s. Recultivation of abandoned cropland as well as increasing fertilizer inputs and narrowing crop rotations led to increasing LUI on cropland during the last two decades. Beyond that general trend, no information is available about spatial distribution and magnitude but a crucial precondition for the development of strategies for sustainable land management. To quantify changes and patterns in LUI, we developed an intensity index that reflects the impacts of land-based agricultural production. Based on subnational yearly statistical data, we calculated two separate input-orientated indices for cropland and grassland, respectively. The indices were applied on two spatial scale: at seven provinces covering the Western Siberian grain belt (Altay Kray, Chelyabinsk, Kurgan, Novosibirsk, Omsk, Sverdlovsk and Tyumen) and at all districts of the central province Tyumen. The spatio-temporal analysis clearly showed opposite trends for the two land-use types: decreasing intensity on grassland (-0.015 LUI units per year) and intensification on cropland (+0.014 LUI units per year). Furthermore, a spatial concentration towards intensity centres occurred during transition from a planned to a market economy. A principal component analysis enabled the individual calculations of both land-use types to be combined and revealed a strong link between biophysical conditions and LUI. The findings clearly showed the need for having a different strategy for future sustainable land management for grassland (predominantly used by livestock of households

  5. The impact of urban planning on land use and land cover in Pudong of Shanghai, China.

    PubMed

    Zhao, Bin; Nakagoshi, Nobukazu; Chen, Jia-kuan; Kong, Ling-yi

    2003-03-01

    Functional zones in cities constitute the most conspicuous components of newly developed urban area, and have been a hot spot for domestic and foreign investors in China, which not only show the expanse of urban space accompanied by the shifts both in landscape (from rural to urban) and land use (from less extensive to extensive), but also display the transformation of regional ecological functions. By using the theories and methods of landscape ecology, the structure of landscape and landscape ecological planning can be analyzed and evaluated for studying the urban functional zones' layout. In 1990, the Central Government of China declared to develop and open up Pudong New Area so as to promote economic development in Shanghai. Benefited from the advantages of Shanghai's location and economy, the government of Pudong New Area has successively built up 7 different functional zones over the past decade according to their functions and strategic goals. Based on the multi-spectral satellite imageries taken in 1990, 1997 and 2000, a landscape ecology analysis was carried out for Pudong New Area of Shanghai, supported by GIS technology. Green space (including croplands) and built-up area are the major factors considered in developing urban landscape. This paper was mainly concerned with the different spatial patterns and dynamic of green space, built-up areas and new buildings in different functional zones, influenced by different functional layouts and development strategies. The rapid urbanization in Pudong New Area resulted in a more homogeneous landscape. Agricultural landscape and suburban landscape were gradually replaced by urban landscape as the degree of urbanization increased. As consequence of urbanization in Pudong, not only built-up patches, but also newly-built patches and green patches merged into one large patch, which should be attributed to the construction policy of extensive green space as the urban development process in Pudong New Area. The shape

  6. Land use and soil contamination with Toxoplasma gondii oocysts in urban areas.

    PubMed

    Gao, Xiang; Wang, Hongbin; Wang, Huan; Qin, Hongyu; Xiao, Jianhua

    2016-10-15

    Because soil contaminated with Toxoplasma gondii oocysts is increasingly recognized as a major source of infection for humans, in this study, we investigated the spatial pattern of soil contamination with T. gondii oocysts in urban area of northeastern Mainland China. From April 2014 to May 2015, more than 9000 soil samples were collected. Detection of T. gondii oocysts was performed applying real-time quantitative PCR. Sensitivity was improved by analyzing four replicates for each sampling point. T. gondii was detected in 30.3% of all samples. Subsequently, a maximum entropy model was used to evaluate the effect of land use and intrinsic soil properties on the risk of contamination with oocysts. Jackknife analysis revealed that the likelihood for positive results is significantly enhanced in soil originating from foci of human habitation, wood land and grass land. Furthermore, soil temperature and humidity significantly influence the probability of contamination with T. gondii oocysts. Our findings indicate that land use may affect distribution of T. gondii oocysts in urban areas. PMID:27373378

  7. Variation in Stormwater Characteristics Depending on Urban Land Uses Using Remote- Sensing and GIS in Conjunction to Hydro-Chemical Monitoring

    NASA Astrophysics Data System (ADS)

    Asaf, L.; Goldshlger, N.; Ben Dor, E.; Filin, S.; Shoshany, M.

    2008-12-01

    Urban Hydrology has attracted growing attention in the last decades due to the environmental implications resulting from the expansion of built-up areas. Understanding stormwater characteristics and potential can be beneficial in contributing to sustainable urban water resources management. Studying stormwater in relation to the various urban land uses (residential ,industrial, roods, parking areas ,etc) using remote sensing and GIS coupled with hydrological and chemical monitoring is an advanced practice which is used in this study. The study area covers the growing cities of Herzlia and Ra'anana which site along the Israeli Coastal Plain. High resolution GIS data, Air Photo images combine with LIDAR, and hyper-spectral remote sensing data were used to study land-use distribution within the highly developed urban setting (45%-87% paved areas). Temporal variations in the runoff coefficient and chemical compositions of urban stormwater under different land uses, and their dependence on physical parameters such as precipitation intensity, stormwater discharge, cumulative stormwater volumes and the size of paved areas were analyzed. Results indicate that runoff coefficient is directly correlated to the percentage of paved areas. Fluxes of major ions and trace elements were highest in industrial areas. The concentrations and variety of semi- volatile organic compounds were significantly higher in stormwater generated in the industrial areas than in that draining from residential areas. Concentrations of fecal coliform bacteria from all land-uses exceeded the drinking water standards and displayed a random pattern. The results of this work suggest that while stormwater can contribute to urban water resources it must be treated accordingly with regard to its land uses origin within the city.

  8. Significance of urban and agricultural land use for biocide and pesticide dynamics in surface waters.

    PubMed

    Wittmer, I K; Bader, H-P; Scheidegger, R; Singer, H; Lück, A; Hanke, I; Carlsson, C; Stamm, C

    2010-05-01

    Biocides and pesticides are designed to control the occurrence of unwanted organisms. From their point of application, these substances can be mobilized and transported to surface waters posing a threat to the aquatic environment. Historically, agricultural pesticides have received substantially more attention than biocidal compounds from urban use, despite being used in similar quantities. This study aims at improving our understanding of the influence of mixed urban and agricultural land use on the overall concentration dynamics of biocides and pesticides during rain events throughout the year. A comprehensive field study was conducted in a catchment within the Swiss plateau (25 km(2)). Four surface water sampling sites represented varying combinations of urban and agricultural sources. Additionally, the urban drainage system was studied by sampling the only wastewater treatment plant (WWTP) in the catchment, a combined sewer overflow (CSO), and a storm sewer (SS). High temporal resolution sampling was carried out during rain events from March to November 2007. The results, based on more than 600 samples analyzed for 23 substances, revealed distinct and complex concentration patterns for different compounds and sources. Five types of concentration patterns can be distinguished: a) compounds that showed elevated background concentrations throughout the year (e.g. diazinon >50 ng L(-1)), indicating a constant household source; b) compounds that showed elevated concentrations driven by rain events throughout the year (e.g. diuron 100-300 ng L(-1)), indicating a constant urban outdoor source such as facades; c) compounds with seasonal peak concentrations driven by rain events from urban and agricultural areas (e.g. mecoprop 1600 ng L(-1) and atrazine 2500 ng L(-1) respectively); d) compounds that showed unpredictably sharp peaks (e.g. atrazine 10,000 ng L(-1), diazinon 2500 ng L(-1)), which were most probably due to improper handling or even disposal of products; and

  9. Mapping of the CO2 and anthropogenic heat emission under spatially explicit urban land use scenarios

    NASA Astrophysics Data System (ADS)

    Nakamichi, K.; Yamagata, Y.; Seya, H.

    2010-12-01

    The serious further efforts on CO2 and other green house gases emission reduction by global climate change mitigation remain as an urgent global issue to be solved. From the viewpoint of urban land use measures, the realization of low-carbon city is the key to change people’s behavior to reduce CO2 emission. In this respect, a lot of studies aimed at realizing low-carbon city are progressing on a number of fronts, including city planning and transportation planning. With respect to the low-carbon city, compact city is expected to reduce CO2 emission from transportation sector. Hence many studies have been conducted with scenario analysis considering modal share change, for instance, increase of public transportation use and reduction of trip length by car. On the other hand, it is important that CO2 emission from not only transportation sector but also residential sector can be reduced by a move from a detached house to a condominium, the change of family composition types and so on. In regard to residential sector, it has been founded that CO2 emission units differ among family composition types, for example, the single-person household emit more CO2 in general. From the viewpoint of an urban climate prediction, the possible range of future land use change should be recognized as the input parameters for the climate models. In addition to CO2 emission, the anthropogenic heat emission is also important as an input data of climate models in order to evaluate the social and economic impacts of urban land use change. The objective of this study is to demonstrate a compact city scenario and a dispersion scenario in Tokyo metropolitan area, which is the largest metropolitan area in the world, and to examine future climate change mitigation policies including land use for realization of low-carbon city. We have created two scenarios of population distribution by using an urban economic model. In these scenarios we have assumed extreme cases in order to show the

  10. Soil humus composition - comparison between mountain grasslands and forest lands with different land-use intensity

    NASA Astrophysics Data System (ADS)

    Naydenova, Lora; Zhiyanski, Miglena; Leifeld, Jens; Filcheva, Ekaterina

    2015-04-01

    Soil humus is a dynamic characteristic greatly vulnerable to land use and climate and with important feedbacks to the atmospheric green house gas balance and the rate of climate change. The increased demand for accurate soil carbon stocks assessments and predictions of its changes as a result of land use/cover and climate change has triggered large-scale and long-term measurements of soil organic matter specifics. We studied the soil humus composition in four mountain grasslands, differentiated according to the land-use sub-type and land-use intensity and four forest lands. Two pastures - with intensive (Pi) and extensive grazing (Pe) and two meadows- managed (Mm) and unmanaged (Mu) were objects of present study. Two spruce plantations (Picea abies Karst), and two natural beech forests (Fagus sylvatica L.) - control, unmanaged for the both (Su and Bu) and with 10 % cutting intensity (Sc and Bc). Humus composition was analyzed following the methodology of Kononova-Belchikova. The aggressive and mobile fulvic acids predominated in all of the investigated plots, except Pe and Bu. Humic acids are "free" and bonded with R3O3 and no Ca-bonded humic acids were established under the grasslands, but in the soils under the two beech forest we observed Ca-bonded humic acids in small quantities. The values of total org. C and C-extracted by 0.1 N NaOH was similar in most of studied horizons. Our results showed that the highest total carbon content was localized in the organic-mineral soil horizon and decreased toward deeper soil. The highest total carbon content estimated at 14.04 % was determined in A-horizon of soil in pasture with extensive grazing, for the grasslands. The higher grazing disturbance in Pi leads to increase root biomass in patch areas and in inter-patch upper soil related with decrease of soil humus content. We supposed that the reduced amount of litter input with increased recalcitrance to decomposition provoked the reduction of organic carbon content and

  11. ICCLP: an inexact chance-constrained linear programming model for land-use management of lake areas in urban fringes.

    PubMed

    Liu, Yong; Qin, Xiaosheng; Guo, Huaicheng; Zhou, Feng; Wang, Jinfeng; Lv, Xiaojian; Mao, Guozhu

    2007-12-01

    Lake areas in urban fringes are under increasing urbanization pressure. Consequently, the conflict between rapid urban development and the maintenance of water bodies in such areas urgently needs to be addressed. An inexact chance-constrained linear programming (ICCLP) model for optimal land-use management of lake areas in urban fringes was developed. The ICCLP model was based on land-use suitability assessment and land evaluation. The maximum net economic benefit (NEB) was selected as the objective of land-use allocation. The total environmental capacity (TEC) of water systems and the public financial investment (PFI) at different probability levels were considered key constraints. Other constraints included in the model were land-use suitability, governmental requirements on the ratios of various land-use types, and technical constraints. A case study implementing the system was performed for the lake area of Hanyang at the urban fringe of Wuhan, central China, based on our previous study on land-use suitability assessment. The Hanyang lake area is under significant urbanization pressure. A 15-year optimal model for land-use allocation is proposed during 2006 to 2020 to better protect the water system and to gain the maximum benefits of development. Sixteen constraints were set for the optimal model. The model results indicated that NEB was between $1.48 x 10(9) and $8.76 x 10(9) or between $3.98 x 10(9) and $16.7 x 10(9), depending on the different urban-expansion patterns and land demands. The changes in total developed area and the land-use structure were analyzed under different probabilities (q ( i )) of TEC. Changes in q ( i ) resulted in different urban expansion patterns and demands on land, which were the direct result of the constraints imposed by TEC and PFI. The ICCLP model might help local authorities better understand and address complex land-use systems and develop optimal land-use management strategies that better balance urban expansion and

  12. Direct and indirect effects of land use on floral resources and flower-visiting insects across an urban landscape

    USGS Publications Warehouse

    Matteson, K.C.; Grace, James B.; Minor, E.S.

    2013-01-01

    Although urban areas are often considered to have uniformly negative effects on biodiversity, cities are most accurately characterized as heterogeneous mosaics of buildings, streets, parks, and gardens that include both ‘good’ and ‘bad’ areas for wildlife. However, to date, few studies have evaluated how human impacts vary in direction and magnitude across a heterogeneous urban landscape. In this study, we assessed the distribution of floral resources and flower-visiting insects across a variety of land uses in New York City. We visited both green spaces (e.g. parks, cemeteries) and heavily developed neighborhood blocks (e.g. with high or low density residential zoning) and used structural equation modeling (SEM) to evaluate the direct and indirect effects of median income, vegetation, and development intensity on floral resources and insects in both settings. Abundance and taxonomic richness of flower-visiting insects was significantly greater in green spaces than neighborhood blocks. The SEM results indicated that heavily-developed neighborhoods generally had fewer flower-visiting insects consistent with reductions in floral resources. However, some low-density residential neighborhoods maintained high levels of floral resources and flower-visiting insects. We found that the effects of surrounding vegetation on floral resources, and thus indirect effects on insects, varied considerably between green spaces and neighborhood blocks. Along neighborhood blocks, vegetation consisted of a mosaic of open gardens and sparsely distributed trees and had a positive indirect effect on flower-visiting insects. In contrast, vegetation in urban green spaces was associated with increased canopy cover and thus had a negative indirect effect on flower-visiting insects through reductions in floral resources. In both neighborhood blocks and green spaces, vegetation had a positive direct effect on flower-visiting insects independent of the influence of vegetation on floral

  13. Evaluation of Effecting Parameters on Optimum Arrangement of Urban Land Uses and Assessment of Their Compatibility Using Adjacency Matrix

    NASA Astrophysics Data System (ADS)

    Vaezi, S.; Mesgari, M. S.; Kaviary, F.

    2015-12-01

    Todays, stability of human life is threatened by a set of parameters. So sustainable urban development theory is introduced after the stability theory to protect the urban environment. In recent years, sustainable urban development gains a lot of attraction by different sciences and totally becomes a final target for urban development planners and managers to use resources properly and to establish a balanced relationship among human, community, and nature. Proper distribution of services for decreasing spatial inequalities, promoting the quality of living environment, and approaching an urban stability requires an analytical understanding of the present situation. Understanding the present situation is the first step for making a decision and planning effectively. This paper evaluates effective parameters affecting proper arrangement of land-uses using a descriptive-analytical method, to develop a conceptual framework for understanding of the present situation of urban land-uses, based on the assessment of their compatibility. This study considers not only the local parameters, but also spatial parameters are included in this study. The results indicate that land-uses in the zone considered here are not distributed properly. Considering mentioned parameters and distributing service land-uses effectively cause the better use of these land-uses.

  14. Soil Organic Matter Stability and Soil Carbon Storage with Changes in Land Use Intensity in Uganda

    NASA Astrophysics Data System (ADS)

    Tiemann, L. K.; Grandy, S.; Hartter, J.

    2014-12-01

    As the foundation of soil fertility, soil organic matter (SOM) formation and break-down is a critical factor of agroecosystem sustainability. In tropical systems where soils are quickly weathered, the link between SOM and soil fertility is particularly strong; however, the mechanisms controlling the stabilization and destabilization of SOM are not well characterized in tropical soils. In western Uganda, we collected soil samples under different levels of land use intensity including maize fields, banana plantations and inside an un-cultivated native tropical forest, Kibale National Park (KNP). To better understand the link between land use intensity and SOM stability we measured total soil C and N, and respiration rates during a 369 d soil incubation. In addition, we separated soils into particle size fractions, and mineral adsorbed SOM in the silt (2-50 μm ) and clay (< 2 μm) fractions was dissociated, purified and chemically characterized via pyrolysis-GC/MS. Cultivated soil C and N have declined by 22 and 48%, respectively, in comparison to uncultivated KNP soils. Incubation data indicate that over the last decade, relatively accessible and labile soil organic carbon (SOC) pools have been depleted by 55-59% in cultivated soils. As a result of this depletion, the chemical composition of SOM has been altered such that clay and silt associated SOM differed significantly between agricultural fields and KNP. In particular, nitrogen containing compounds were in lower abundance in agricultural compared to KNP soils. This suggests that N depletion due to agriculture has advanced to pools of mineral associated organic N that are typically protected from break-down. In areas where land use intensity is relatively greater, increases in polysaccharides and lipids in maize fields compared to KNP indicate increases in microbial residues and decomposition by-products as microbes mine SOM for organic N. Chemical characterization of post-incubation SOM will help us better

  15. Assessing changes in urban flood vulnerability through mapping land use from historical information

    NASA Astrophysics Data System (ADS)

    Boudou, M.; Danière, B.; Lang, M.

    2016-01-01

    This paper presents an appraisal of the temporal evolution of flood vulnerability of two French cities, Besançon and Moissac, which were largely impacted by floods in January 1910 and March 1930, respectively. Both flood events figure among the most significant events recorded in France during the 20th century, in terms of certain parameters such as the intensity and severity of the flood and spatial extension of the damage. An analysis of historical sources allows the mapping of land use and occupation within the areas affected by the two floods, both in past and present contexts, providing an insight of the complexity of flood risk evolution at a local scale.

  16. Land use dynamics of the fast-growing Shanghai Metropolis, China (1979-2008) and its implications for land use and urban planning policy.

    PubMed

    Zhang, Hao; Zhou, Li-Guo; Chen, Ming-Nan; Ma, Wei-Chun

    2011-01-01

    Through the integrated approach of remote sensing and geographic information system (GIS) techniques, four Landsat TM/ETM+ imagery acquired during 1979 and 2008 were used to quantitatively characterize the patterns of land use and land cover change (LULC) and urban sprawl in the fast-growing Shanghai Metropolis, China. Results showed that, the urban/built-up area grew on average by 4,242.06 ha yr(-1). Bare land grew by 1,594.66 ha yr(-1) on average. In contrast, cropland decreased by 3,286.26 ha yr(-1) on average, followed by forest and shrub, water, and tidal land, which decreased by 1,331.33 ha yr(-1), 903.43 ha yr(-1), and 315.72 ha yr(-1) on average, respectively. As a result, during 1979 and 2008 approximately 83.83% of the newly urban/built-up land was converted from cropland (67.35%), forest and shrub (9.12%), water (4.80%), and tidal land (2.19%). Another significant change was the continuous increase in regular residents, which played a very important role in contributing to local population growth and increase in urban/built-up land. This can be explained with this city's huge demand for investment and qualified labor since the latest industrial transformation. Moreover, with a decrease in cropland, the proportion of population engaged in farming decreased 13.84%. Therefore, significant socio-economic transformation occurred, and this would lead to new demand for land resources. However, due to very scarce land resources and overload of population in Shanghai, the drive to achieve economic goals at the loss of cropland, water, and the other lands is not sustainable. Future urban planning policy aiming at ensuring a win-win balance between sustainable land use and economic growth is urgently needed. PMID:22319382

  17. Land Use Dynamics of the Fast-Growing Shanghai Metropolis, China (1979–2008) and its Implications for Land Use and Urban Planning Policy

    PubMed Central

    Zhang, Hao; Zhou, Li-Guo; Chen, Ming-Nan; Ma, Wei-Chun

    2011-01-01

    Through the integrated approach of remote sensing and geographic information system (GIS) techniques, four Landsat TM/ETM+ imagery acquired during 1979 and 2008 were used to quantitatively characterize the patterns of land use and land cover change (LULC) and urban sprawl in the fast-growing Shanghai Metropolis, China. Results showed that, the urban/built-up area grew on average by 4,242.06 ha yr−1. Bare land grew by 1,594.66 ha yr−1 on average. In contrast, cropland decreased by 3,286.26 ha yr−1 on average, followed by forest and shrub, water, and tidal land, which decreased by 1,331.33 ha yr−1, 903.43 ha yr−1, and 315.72 ha yr−1 on average, respectively. As a result, during 1979 and 2008 approximately 83.83% of the newly urban/built-up land was converted from cropland (67.35%), forest and shrub (9.12%), water (4.80%), and tidal land (2.19%). Another significant change was the continuous increase in regular residents, which played a very important role in contributing to local population growth and increase in urban/built-up land. This can be explained with this city’s huge demand for investment and qualified labor since the latest industrial transformation. Moreover, with a decrease in cropland, the proportion of population engaged in farming decreased 13.84%. Therefore, significant socio-economic transformation occurred, and this would lead to new demand for land resources. However, due to very scarce land resources and overload of population in Shanghai, the drive to achieve economic goals at the loss of cropland, water, and the other lands is not sustainable. Future urban planning policy aiming at ensuring a win-win balance between sustainable land use and economic growth is urgently needed. PMID:22319382

  18. Comparative study of heavy metals concentration in topsoil of urban green space and agricultural land uses.

    PubMed

    Mirzaei, Rouhollah; Teymourzade, Safiye; Sakizadeh, Mohamad; Ghorbani, Hadi

    2015-12-01

    The main objective of this study was to determine the concentration of cadmium, chromium, copper, nickel, lead, and zinc in surface soils of two land uses including agricultural and urban green space in Semnan Province, Iran. For this purpose, the soil samples of 27 urban green space and 47 agricultural fields were collected and analyzed. The correlation coefficients, analysis of variance, principal component analysis, cluster analysis, and geoaccumulation index were utilized to compare the mean values in the two land uses and pinpoint the possible sources of contamination in the study area. The average contents of Cd, Cu, Cr, Ni, Pb, and Zn in green space soils were 0.1, 24.9, 78.7, 28.2, 22.1, and 82.1 mg/kg, respectively, while the mean concentrations of Cd, Cu, Cr, Ni, Pb, and Zn in agricultural soils were 0.3, 24.3, 83.7, 33.3, 18.1, and 80.4 mg/kg, respectively. The mean concentrations of lead, copper, and zinc were higher in urban green space in comparison with those of agricultural fields, while it was vice versa for chromium, cadmium, and nickel. In general, significant, but weak, correlations were observed between Zn with Pb (r = 0.53) and Cu (r = 0.61) and Ni with Cr (r = 0.55) and Cu(r = 0.51). The main sources of contamination turned out to be both natural and anthropogenic as the results of correlation coefficients, principal component analysis, and cluster analysis showed. That is to say, chromium and nickel had emanated from natural while the sources of cadmium, lead, and zinc could be attributed to anthropogenic activities. For the case of copper, both natural and anthropogenic activities were influential; however, the role of human activities was more effective. The results of contamination assessment showed that heavy metal contamination in agricultural land use was higher than green space indicating the role of human activities in this respect. PMID:26559555

  19. Quantifying suspended sediment flux in a mixed-land-use urbanizing watershed using a nested-scale study design.

    PubMed

    Zeiger, Sean; Hubbart, Jason A

    2016-01-15

    Suspended sediment (SS) remains the most pervasive water quality problem globally and yet, despite progress, SS process understanding remains relatively poor in watersheds with mixed-land-use practices. The main objective of the current work was to investigate relationships between suspended sediment and land use types at multiple spatial scales (n=5) using four years of suspended sediment data collected in a representative urbanized mixed-land-use (forest, agriculture, urban) watershed. Water samples were analyzed for SS using a nested-scale experimental watershed study design (n=836 samples×5 gauging sites). Kruskal-Wallis and Dunn's post-hoc multiple comparison tests were used to test for significant differences (CI=95%, p<0.05) in SS levels between gauging sites. Climate extremes (high precipitation/drought) were observed during the study period. Annual maximum SS concentrations exceeded 2387.6 mg/L. Median SS concentrations decreased by 60% from the agricultural headwaters to the rural/urban interface, and increased by 98% as urban land use increased. Multiple linear regression analysis results showed significant relationships between SS, annual total precipitation (positive correlate), forested land use (negative correlate), agricultural land use (negative correlate), and urban land use (negative correlate). Estimated annual SS yields ranged from 16.1 to 313.0 t km(-2) year(-1) mainly due to differences in annual total precipitation. Results highlight the need for additional studies, and point to the need for improved best management practices designed to reduce anthropogenic SS loading in mixed-land-use watersheds. PMID:26519591

  20. Effect of land use activities on PAH contamination in urban soils of Rawalpindi and Islamabad, Pakistan.

    PubMed

    Ud Din, Ikhtiar; Rashid, Audil; Mahmood, Tariq; Khalid, Azeem

    2013-10-01

    Urbanization can increase the vulnerability of soils to various types of contamination. Increased contamination of urban soils with polycyclic aromatic hydrocarbon (PAH) could relate to increased number of petrol pump stations and mechanical workshops-a phenomenon that needs to be constantly monitored. This study was undertaken to explore the soil PAH levels in Rawalpindi and Islamabad urban areas in relation to land use activities. Composite soil samples from petrol pump stations and mechanical workshops (n = 32) areas were evaluated for five PAHs--naphthalene, phenanthrene, pyrene, benzo[a]pyrene, and indeno(1,2,3-cd)pyrene-and compared with control area locations with minimum petroleum-related activity (n = 16). Surface samples up to 3 cm depth were collected and extraction of analytes was carried out using n-hexane and dichloromethane. Prior to running the samples, standards (100 μg ml(-1)) were run on HPLC to optimize signal to noise ratio using acetonitrile as mobile phase at a flow rate of 1.25 ml/min at 40 °C. Significant differences between petrol pump stations and mechanical workshop areas were observed for individual PAH as well as with control area soil samples. Naphthalene was found to be the most abundant PAH in soil, ranging from 2.47 to 24.36 mg kg(-1). Correlation between the benzo[a]pyrene (BaP) level in soil and the total PAH concentration (r = 0.82, P < 0.0001) revealed that BaP can be used as a potential marker for PAH pollution. A clear segregation between petrogenic and pyrogenic sources of contamination was observed when low molecular weight PAHs detected in soil was plotted against high molecular weight PAHs. The former source comprised lubricants and used engine oil found at mechanical workshops, whereas the latter could be mostly attributed to vehicular emission at petrol pumps. The results indicate that PAH contamination in urban areas of Rawalpindi and Islamabad has direct relevance with land use for petroleum

  1. Modelling the effects of land use changes on the streamflow of a peri-urban catchment in central Portugal

    NASA Astrophysics Data System (ADS)

    Hävermark, Saga; Santos Ferreira, Carla Sofia; Kalantari, Zahra; Di Baldassarre, Giuliano

    2016-04-01

    Many river basis around the world are rapidly changing together with societal development. Such developments may involve changes in land use, which in turn affect the surrounding environment in various ways. Since the start of industrialisation, the urban areas have extended worldwide. Urbanization can influence hydrological processes by decreasing evapotranspiration, infiltration and groundwater recharge as well as increasing runoff and overland flow. It is therefore of uttermost importance to understand the relationship between land use and hydrology. Although several studies have been investigating the impacts of urbanization on streamflow over the last decades, less is known on how urbanization affects hydrological processes in peri-urban areas, characterized by a complex mosaic of different land uses. This study aimed to model the impact of land use changes, specifically urbanization and commercial forest plantation, on the hydrological responses of the small Ribeira dos Covões peri-urban catchment (6,2 km2) located in central Portugal. The catchment has undergone rapid land use changes between 1958 and 2012 associated with the conversion of agricultural fields (cover area decreased from 48% to 4%) into woodland and urban areas, which increased from 44% to 56% and from 8% to 40%, respectively. For the study, the fully-distributed, physically-based modelling system MIKE SHE was used. The model was designed to examine both how past land use changes might have affected the streamflow and to investigate the impacts on hydrology of possible future scenarios, including a 50 %, 60 % and 70 % urban cover. To this end, a variety of data including daily rainfall since 1958 and forward, daily potential evapotranspiration from 2009 to 2013, monthly temperature averages from 1971 to 2013, land use for the years 1958, 1973, 1979, 1990, 1995, 2002, 2007 and 2012, streamflow from the hydrological years 2008 to 2013, catchment topography and soil types were used. The model

  2. [Regional ecosecurity pattern in urban area based on land use analysis: a case study in Lanzhou].

    PubMed

    Fang, Shubo; Xiao, Dunin; An, Shuqing

    2005-12-01

    Mid-scale regional ecosecurity, which takes practical ecosecurity issues as its priority, should be viewed as the core of the multi-scale concept of ecosecurity. For urban area, a special region taking ecological infrastructure as its core mission, the construction of regional ecosecurity pattern may provide a good chance to realize its sustainable development. Based on land use analysis, a qualitative and quantitative research on the landscape pattern, ecovalue evaluation, and driving force analysis of social economy could provide an effective approach to construct the ecosecurity pattern in urban area. This study showed that in Lanzhou, the ecosecurity pattern consisted of three parts, i.e., eco-safeguarding system, eco-buffering system and eco-percolating system, among which, eco-buffering system was the decisive part determining ecosecurity pattern construction. The quantitative analysis of urban spatial expansion pattern was taken as the decisive function to determine the security level of the ecosecurity pattern, which was divided into low, middle and high levels. PMID:16515173

  3. Effects of land-use type on urban groundwater quality, Seoul metropolitan city, Korea

    NASA Astrophysics Data System (ADS)

    Yu, S.; Yun, S.; Chae, G.; So, C.; Kweon, S.; Lee, P.

    2001-12-01

    The progressive degradation of urban groundwater becomes an important environmental problem encountered in South Korea. This study aims to examine the relationships between land-use type and groundwater quality in Seoul metropolitan city, based on the results of hydrogeochemical monitoring. For this purpose, land-use type was divided into five categories (green zone, housing, agricultural, traffic, and industrialized). The mean concentrations of TDS (total dissolved solids) effectively reflect the degree of anthropogenic contamination and increase in the following order: green zone (152.5 mg/l), then agricultural (380.7 mg/l) and housing (384.2 mg/l), then traffic (457.0 mg/l), and finally industrialized area (554.5 mg/l). Among major dissolved solutes, the concentrations of Na, Ca, Mg, HCO3, and Cl increase with increasing TDS. In case of Na and Ca, de-icing salts and sewage are considered as major contamination sources. The corrosion of cements may also increase Ca. Nitrate concentration is characteristically very high in housing and agricultural areas, reflecting the severe contamination from domestic sewage and fertilizer. Sulfate and magnesium are enriched in industrialized area, possibly due to their derivation from industrial facilities. Chlorine ion is considered to be derived from de-chlorination of hydrocarbons as well as de-icing salts. Bicarbonate also increases with increasing TDS, for which cement dissolution and oxidation of organics are considered as source materials. However, enhanced water-rock(or construction materials) interaction also may increase the bicarbonate, because acidic wastewater in urban area is very corrosive. Trace metals and organic compounds generally does not show any distinct pattern of regional variation. However, Fe, Mn, Ni, Se, Zn, TCE, and PCE tend to increase locally in industrialized area, whereas high concentrations of Br, Ni, and Cu are found in traffic area. The groundwaters with very high concentrations of Fe, Zn, and

  4. Hydrochemistry of urban groundwater in Seoul, South Korea: effects of land-use and pollutant recharge

    NASA Astrophysics Data System (ADS)

    Choi, Byoung-Young; Yun, Seong-Taek; Yu, Soon-Young; Lee, Pyeong-Koo; Park, Seong-Sook; Chae, Gi-Tak; Mayer, Bernhard

    2005-10-01

    The ionic and isotopic compositions (δD, δ18O, and 3H) of urban groundwaters have been monitored in Seoul to examine the water quality in relation to land-use. High tritium contents (6.1-12.0 TU) and the absence of spatial/seasonal change of O-H isotope data indicate that groundwaters are well mixed within aquifers with recently recharged waters of high contamination susceptibility. Statistical analyses show a spatial variation of major ions in relation to land-use type. The major ion concentrations tend to increase with anthropogenic contamination, due to the local pollutants recharge. The TDS concentration appears to be a useful contamination indicator, as it generally increases by the order of forested green zone (average 151 mg/l), agricultural area, residential area, traffic area, and industrialized area (average 585 mg/l). With the increased anthropogenic contamination, the groundwater chemistry changes from a Ca-HCO3 type toward a Ca-Cl(+NO3) type. The source and behavior of major ions are discussed and the hydrochemical backgrounds are proposed as the basis of a groundwater management plan.

  5. Apportioning riverine DIN load to export coefficients of land uses in an urbanized watershed.

    PubMed

    Shih, Yu-Ting; Lee, Tsung-Yu; Huang, Jr-Chuan; Kao, Shuh-Ji; Chang

    2016-08-01

    The apportionment of riverine dissolved inorganic nitrogen (DIN) load to individual land use on a watershed scale demands the support of accurate DIN load estimation and differentiation of point and non-point sources, but both of them are rarely quantitatively determined in small montane watersheds. We introduced the Danshui River watershed of Taiwan, a mountainous urbanized watershed, to determine the export coefficients via a reverse Monte Carlo approach from riverine DIN load. The results showed that the dynamics of N fluctuation determines the load estimation method and sampling frequency. On a monthly sampling frequency basis, the average load estimation of the methods (GM, FW, and LI) outperformed that of individual method. Export coefficient analysis showed that the forest DIN yield of 521.5kg-Nkm(-2)yr(-1) was ~2.7-fold higher than the global riverine DIN yield (mainly from temperate large rivers with various land use compositions). Such a high yield was attributable to high rainfall and atmospheric N deposition. The export coefficient of agriculture was disproportionately larger than forest suggesting that a small replacement of forest to agriculture could lead to considerable change of DIN load. The analysis of differentiation between point and non-point sources showed that the untreated wastewater (non-point source), accounting for ~93% of the total human-associated wastewater, resulted in a high export coefficient of urban. The inclusion of the treated and untreated wastewater completes the N budget of wastewater. The export coefficient approach serves well to assess the riverine DIN load and to improve the understanding of N cascade. PMID:27093117

  6. Geo-information Based Spatio-temporal Modeling of Urban Land Use and Land Cover Change in Butwal Municipality, Nepal

    NASA Astrophysics Data System (ADS)

    Mandal, U. K.

    2014-11-01

    Unscientific utilization of land use and land cover due to rapid growth of urban population deteriorates urban condition. Urban growth, land use change and future urban land demand are key concerns of urban planners. This paper is aimed to model urban land use change essential for sustainable urban development. GI science technology was employed to study the urban change dynamics using Markov Chain and CA-Markov and predicted the magnitude and spatial pattern. It was performed using the probability transition matrix from the Markov chain process, the suitability map of each land use/cover types and the contiguity filter. Suitability maps were generated from the MCE process where weight was derived from the pair wise comparison in the AHP process considering slope, land capability, distance to road, and settlement and water bodies as criterion of factor maps. Thematic land use land cover types of 1999, 2006, and 2013 of Landsat sensors were classified using MLC algorithm. The spatial extent increase from 1999 to 2013 in built up , bush and forest was observed to be 48.30 percent,79.48 percent and 7.79 percent, respectively, while decrease in agriculture and water bodies were 30.26 percent and 28.22 percent. The predicted urban LULC for 2020 and 2027 would provide useful inputs to the decision makers. Built up and bush expansion are explored as the main driving force for loss of agriculture and river areas and has the potential to continue in future also. The abandoned area of river bed has been converted to built- up areas.

  7. Microzonation in Urban Areas, Basic Element for Land-Use Planning, Risk Management and Sustainable Development

    NASA Astrophysics Data System (ADS)

    Torres Morales, G. F.; Dávalos Sotelo, R.; Castillo Aguilar, S.; Mora González, I.; Lermo Samaniego, J. F.; Rodriguez, M.; García Martínez, J.; Suárez, M. Leonardo; Hernández Juan, F.

    2013-05-01

    This paper presents the results of microzonification of the natural hazards for different metropolitan areas and highlights the importance of integrating these results in urban planning. The cities that have been covered for the definition of danger in the state of Veracruz are: Orizaba, Veracruz and Xalapa, as part of the production of a Geological and Hydrometeorology Hazards Atlas for the state of Veracruz, financed by the Funds for the Prevention of Natural Disasters FOPREDEN and CONACYT. The general data of each metropolitan area was integrated in a geographic information system (GIS), obtaining different theme maps, and maps of dynamic characteristics of soils in each metropolitan area. For the planning of an urban area to aspire to promote sustainable development, it is essential to have a great deal of the details on the pertinent information and the most important is that that has to do with the degree of exposure to natural phenomena. In general, microzonation investigations consider all natural phenomena that could potentially affect an area of interest and hazard maps for each of potential hazards are prepared. With all the data collected and generated and fed into a SIG, models were generated which define the areas most threatened by earthquake, flood and landslide slopes. These results were compared with maps of the main features in the urban zones and a qualitative classification of areas of high to low hazard was established. It will have the basic elements of information for urban planning and land use. This information will be made available to the authorities and the general public through an Internet portal where people can download and view maps using free software available online.;

  8. Bayesian networks and agent-based modeling approach for urban land-use and population density change: a BNAS model

    NASA Astrophysics Data System (ADS)

    Kocabas, Verda; Dragicevic, Suzana

    2013-10-01

    Land-use change models grounded in complexity theory such as agent-based models (ABMs) are increasingly being used to examine evolving urban systems. The objective of this study is to develop a spatial model that simulates land-use change under the influence of human land-use choice behavior. This is achieved by integrating the key physical and social drivers of land-use change using Bayesian networks (BNs) coupled with agent-based modeling. The BNAS model, integrated Bayesian network-based agent system, presented in this study uses geographic information systems, ABMs, BNs, and influence diagram principles to model population change on an irregular spatial structure. The model is parameterized with historical data and then used to simulate 20 years of future population and land-use change for the City of Surrey, British Columbia, Canada. The simulation results identify feasible new urban areas for development around the main transportation corridors. The obtained new development areas and the projected population trajectories with the“what-if” scenario capabilities can provide insights into urban planners for better and more informed land-use policy or decision-making processes.

  9. The impact of land use, season, age, and sex on the prevalence and intensity of Baylisascaris procyonis infections in raccoons (Procyon lotor) from Ontario, Canada.

    PubMed

    Jardine, Claire M; Pearl, David L; Puskas, Kirstie; Campbell, Doug G; Shirose, Lenny; Peregrine, Andrew S

    2014-10-01

    We assessed the impact of land use, demographic factors, and season on the prevalence and intensity of Baylisascaris procyonis infections in raccoons (Procyon lotor) in Ontario, Canada. From March to October 2012, we recorded the number of B. procyonis in the intestinal tracts of raccoons submitted to the Canadian Cooperative Wildlife Health Centre for necropsy. Logistic regression models were used to examine associations between the presence of B. procyonis and age (adult, juvenile), sex, land use (suburban/urban, rural), and season (March-June and July-October); negative binomial regression models were used to examine associations between the number of worms and the same variables. We detected B. procyonis in 38% (95% confidence interval 30-47%) of raccoons examined (n=128). In univariable models, the presence of B. procyonis was significantly associated with age, land use, and season (P<0.05). Age was not retained in the multivariable model, and the impact of sex on the presence of B. procyonis varied with land use and season. For example, from March to June, suburban/urban male raccoons were significantly more likely to be infected with B. procyonis than suburban/urban female raccoons. However, later in the summer (July-October), the opposite was true. The median number of worms in the intestinal tracts of infected raccoons was 3 (range 1-116). Worm number was significantly associated with age and season in univariable models; in the multivariable model, juvenile raccoons had significantly more worms than adults, and the impact of season on the number of worms varied with land use and sex. A better understanding of the epidemiology of B. procyonis in raccoons is important for developing appropriate strategies to reduce the risk of human exposure to B. procyonis from the environment. PMID:25098302

  10. A Comparative Land Use-Based Analysis of Noise Pollution Levels in Selected Urban Centers of Nigeria.

    PubMed

    Baloye, David O; Palamuleni, Lobina G

    2015-10-01

    Growth in the commercialization, mobility and urbanization of human settlements across the globe has greatly exposed world urban population to potentially harmful noise levels. The situation is more disturbing in developing countries like Nigeria, where there are no sacrosanct noise laws and regulations. This study characterized noise pollution levels in Ibadan and Ile-Ife, two urban areas of Southwestern Nigeria that have experienced significant increases in population and land use activities. Eight hundred noise measurements, taken at 20 different positions in the morning, afternoon, and evening of carefully selected weekdays, in each urban area, were used for this study. Findings put the average noise levels in the urban centers at between 53 dB(A) and 89 dB (A), a far cry from the World Health Organization (WHO) permissible limits in all the land use types, with highest noise pollution levels recorded for transportation, commercial, residential and educational land use types. The result of the one-way ANOVA test carried out on the dependent variable noise and fixed factor land use types reveals a statistically significant mean noise levels across the study area (F(3,34) = 15.13, p = 0.000). The study underscores noise pollution monitoring and the urgent need to control urban noise pollution with appropriate and effective policies. PMID:26426033

  11. A Comparative Land Use-Based Analysis of Noise Pollution Levels in Selected Urban Centers of Nigeria

    PubMed Central

    Baloye, David O.; Palamuleni, Lobina G.

    2015-01-01

    Growth in the commercialization, mobility and urbanization of human settlements across the globe has greatly exposed world urban population to potentially harmful noise levels. The situation is more disturbing in developing countries like Nigeria, where there are no sacrosanct noise laws and regulations. This study characterized noise pollution levels in Ibadan and Ile-Ife, two urban areas of Southwestern Nigeria that have experienced significant increases in population and land use activities. Eight hundred noise measurements, taken at 20 different positions in the morning, afternoon, and evening of carefully selected weekdays, in each urban area, were used for this study. Findings put the average noise levels in the urban centers at between 53 dB(A) and 89 dB (A), a far cry from the World Health Organization (WHO) permissible limits in all the land use types, with highest noise pollution levels recorded for transportation, commercial, residential and educational land use types. The result of the one-way ANOVA test carried out on the dependent variable noise and fixed factor land use types reveals a statistically significant mean noise levels across the study area (F(3,34) = 15.13, p = 0.000). The study underscores noise pollution monitoring and the urgent need to control urban noise pollution with appropriate and effective policies. PMID:26426033

  12. Land-Use Intensity of Electricity Production: Comparison Across Multiple Sources

    NASA Astrophysics Data System (ADS)

    Swain, M.; Lovering, J.; Blomqvist, L.; Nordhaus, T.; Hernandez, R. R.

    2015-12-01

    Land is an increasingly scarce global resource that is subject to competing pressures from agriculture, human settlement, and energy development. As countries concerned about climate change seek to decarbonize their power sectors, renewable energy sources like wind and solar offer obvious advantages. However, the land needed for new energy infrastructure is also an important environmental consideration. The land requirement of different electricity sources varies considerably, but there are very few studies that offer a normalized comparison. In this paper, we use meta-analysis to calculate the land-use intensity (LUI) of the following electricity generation sources: wind, solar photovoltaic (PV), concentrated solar power (CSP), hydropower, geothermal, nuclear, biomass, natural gas, and coal. We used data from existing studies as well as original data gathered from public records and geospatial analysis. Our land-use metric includes land needed for the generation facility (e.g., power plant or wind farm) as well as the area needed to mine fuel for natural gas, coal, and nuclear power plants. Our results found the lowest total LUI for nuclear power (115 ha/TWh/y) and the highest LUI for biomass (114,817 ha/TWh/y). Solar PV and CSP had a considerably lower LUI than wind power, but both were an order of magnitude higher than fossil fuels (which ranged from 435 ha/TWh/y for natural gas to 579 ha/TWh/y for coal). Our results suggest that a large build-out of renewable electricity, though it would offer many environmental advantages over fossil fuel power sources, would require considerable land area. Among low-carbon energy sources, relatively compact sources like nuclear and solar have the potential to reduce land requirements.

  13. Land Use and Watersheds: Human Influence on Hydrology and Geomorphology in Urban and Forest Areas. Water Science and Application Series

    SciTech Connect

    Wigmosta, Mark S.; Burges, S J.

    2001-10-01

    What is the effect of urbanization and forest use on hydrologic and geomorphic processes? How can we develop land use policies that minimize adverse impacts on ecosystems while sustaining biodiversity? Land Use and Watersheds: Human Influence on Hydrology and Geomorphology in Urban and Forest Areas addresses these issues and more. By featuring watersheds principally in the American Pacific Northwest, and the effects of timber harvesting and road construction on stream flow, sediment yield and landslide occurrence, scientists can advance their understanding of what constitutes appropriate management of environments with similar hydro-climatic-geomorphic settings worldwide.

  14. Disentangling the relative importance of changes in climate and land-use intensity in driving recent bird population trends.

    PubMed

    Eglington, Sarah M; Pearce-Higgins, James W

    2012-01-01

    Threats to biodiversity resulting from habitat destruction and deterioration have been documented for many species, whilst climate change is regarded as increasingly impacting upon species' distribution and abundance. However, few studies have disentangled the relative importance of these two drivers in causing recent population declines. We quantify the relative importance of both processes by modelling annual variation in population growth of 18 farmland bird species in the UK as a function of measures of land-use intensity and weather. Modelled together, both had similar explanatory power in accounting for annual fluctuations in population growth. When these models were used to retrodict population trends for each species as a function of annual variation in land-use intensity and weather combined, and separately, retrodictions incorporating land-use intensity were more closely linked to observed population trends than retrodictions based only on weather, and closely matched the UK farmland bird index from 1970 onwards. Despite more stable land-use intensity in recent years, climate change (inferred from weather trends) has not overtaken land-use intensity as the dominant driver of bird populations. PMID:22479304

  15. Evaluating Spatial Patterns of Land Use and urban Heat Island in The Fast Growing Metropolitan Shanghai, China

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Ma, W.; Li, J.; Wang, X.

    2007-12-01

    Remotely sensed data (Landsat TM5) were used to quantitatively characterize the patterns of land use and urban heat island (UHI) in the fast growing Metropolitan Shanghai, China. Results showed that, with dramatic change in land use and land cover driven by substantial economic growth since the 1990s, rapid expansion of the urbanized and urbanizing areas occurred at regional level during 1997 and 2004. Similarly, both the extent and magnitude of UHI in Shanghai have undergone a significant increase, though some newly emerging cooling patches were detected in the central urban area. On small and meso scales, a significant spatial patterning was present in UHI as indicated by land surface temperature (LST). Moreover, based on the satellite images, the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Normalized Difference Bareness Index (NDBaI), and Normalized Difference Build-up Index (NDBI) were produced to explore the relationship between land use and UHI effect. Although these indices were effective in characterizing the spatial and temporal patterns of UHI, there were some unexplainable factors due to the complexity in ecological process. As a whole, it can be predicted that the ongoing urban sprawl in the satellite towns will adversely cause a long term effect on regional atmospheric environment. Keywords Spatial pattern; Urban heat island (UHI); Land surface temperature (LST);urban sprawl ;Shanghai; China.

  16. Urban Growth in a Fragmented Landscape: Estimating the Relationship between Landscape Pattern and Urban Land Use Change in Germany, 2000-2006

    NASA Astrophysics Data System (ADS)

    Keller, R.

    2013-12-01

    One of the highest priorities in the conservation and management of biodiversity, natural resources and other vital ecosystem services is the assessment of the mechanisms that drive urban land use change. Using key landscape indicators, this study addresses why urban land increased 6 percent overall in Germany from 2000-2006. Building on regional science and economic geography research, I develop a model of landscape change that integrates remotely sensed and other geospatial data, and socioeconomic data in a spatial autoregressive model to explain the variance in urban land use change observed in German kreise (counties) over the past decade. The results reveal three key landscape mechanisms that drive urban land use change across Germany, aligning with those observed in US studies: (1) the level of fragmentation, (2) the share of designated protected areas, and (3) the share of prime soil. First, as fragmentation of once continuous habitats in the landscape increases, extensive urban growth follows. Second, designated protected areas have the perverse effect of hastening urbanization in surrounding areas. Third, greater shares of prime, productive soil experienced less urban land take over the 6 year period, an effect that is stronger in the former East Germany, where the agricultural sector remains large. The results suggest that policy makers concentrate their conservation efforts on preexisting fragmented land with high shares of protected areas in Germany to effectively stem urban land take. Given that comparative studies of land use change are vital for the scientific community to grasp the wider global process of urbanization and coincident ecological impacts, the methodology employed here is easily exportable to land cover and land use research programs in other fields and geographic areas. Key words: Urban land use change, Ecosystem services, Landscape fragmentation, Remote sensing, Spatial regression models, GermanyOLS and Spatial Autoregressive Model

  17. Land use, urban, environmental, and cartographic applications, chapter 2, part D

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Microwave data and its use in effective state, regional, and national land use planning are dealt with. Special attention was given to monitoring land use change, especially dynamic components, and the interaction between land use and dynamic features of the environment. Disaster and environmental monitoring are also discussed.

  18. Effects of land use intensity on the full greenhouse gas balance in an Atlantic peat bog

    NASA Astrophysics Data System (ADS)

    Beetz, S.; Liebersbach, H.; Glatzel, S.; Jurasinski, G.; Buczko, U.; Höper, H.

    2013-02-01

    Wetlands can either be net sinks or net sources of greenhouse gases (GHGs), depending on the mean annual water level and other factors like average annual temperature, vegetation development, and land use. Whereas drained and agriculturally used peatlands tend to be carbon dioxide (CO2) and nitrous oxide (N2O) sources but methane (CH4) sinks, restored (i.e. rewetted) peatlands rather incorporate CO2, tend to be N2O neutral and release CH4. One of the aims of peatland restoration is to decrease their global warming potential (GWP) by reducing GHG emissions. We estimated the greenhouse gas exchange of a peat bog restoration sequence over a period of 2 yr (1 July 2007-30 June 2009) in an Atlantic raised bog in northwest Germany. We set up three study sites representing different land use intensities: intensive grassland (deeply drained, mineral fertilizer, cattle manure and 4-5 cuts per year); extensive grassland (rewetted, no fertilizer or manure, up to 1 cutting per year); near-natural peat bog (almost no anthropogenic influence). Daily and annual greenhouse gas exchange was estimated based on closed-chamber measurements. CH4 and N2O fluxes were recorded bi-weekly, and net ecosystem exchange (NEE) measurements were carried out every 3-4 weeks. Annual sums of CH4 and N2O fluxes were estimated by linear interpolation while NEE was modelled. Regarding GWP, the intensive grassland site emitted 564 ± 255 g CO2-C equivalents m-2 yr-1 and 850 ± 238 g CO2-C equivalents m-2 yr-1 in the first (2007/2008) and the second (2008/2009) measuring year, respectively. The GWP of the extensive grassland amounted to -129 ± 231 g CO2-C equivalents m-2 yr-1 and 94 ± 200 g CO2-C equivalents m-2 yr-1, while it added up to 45 ± 117 g CO2-C equivalents m-2 yr-1 and -101 ± 93 g CO2-C equivalents m-2 yr-1 in 2007/08 and 2008/09 for the near-natural site. In contrast, in calendar year 2008 GWP aggregated to 441 ± 201 g CO2-C equivalents m-2 yr-1, 14 ± 162 g CO2-C equivalents m-2 yr-1

  19. An object-based multisensoral approach for the derivation of urban land use structures in the city of Rostock, Germany

    NASA Astrophysics Data System (ADS)

    Lindner, Martin; Hese, Sören; Berger, Christian; Schmullius, Christiane

    2011-11-01

    The present work is part of the Enviland-2 research project, which investigates the synergism between radar- and optical satellite data for ENVIronment and LAND use applications. The urban work package of Enviland aims at the combined analysis of RapidEye and TerraSAR-X data for the parameterization of different urban land use structures. This study focuses on the development of a transferable, object-based rule set for the derivation of urban land use structures at block level. The data base consists of RapidEye and TerraSAR-X imagery, as well as height information of a LiDAR nDSM (normalized Digital Surface Model) and object boundaries of ATKIS (Official Topographic Cartographic Information System) vector data for a study area in the city of Rostock, Germany. The classification of various land cover units forms the basis of the analysis. Therefore, an object-based land cover classification is implemented that uses feature level fusion to combine the information of all available input data. Besides spectral values also shape and context features are employed to characterize and extract specific land cover objects as indicators for the prevalent land use. The different land use structures are then determined by typical combinations and constellations of the extracted land use indicators and land cover proportions. Accuracy assessment is done by utilizing the available ATKIS information. From this analysis the land use structure classes residential, industrial/commercial, other built-up, allotments, sports facility, forest, grassland, other green spaces, squares/parking areas and water are distinguished with an overall accuracy of 63.2 %.

  20. Different Land Use Intensities in Grassland Ecosystems Drive Ecology of Microbial Communities Involved in Nitrogen Turnover in Soil

    PubMed Central

    Meyer, Annabel; Focks, Andreas; Radl, Viviane; Keil, Daniel; Welzl, Gerhard; Schöning, Ingo; Boch, Steffen; Marhan, Sven; Kandeler, Ellen; Schloter, Michael

    2013-01-01

    Understanding factors driving the ecology of N cycling microbial communities is of central importance for sustainable land use. In this study we report changes of abundance of denitrifiers, nitrifiers and nitrogen-fixing microorganisms (based on qPCR data for selected functional genes) in response to different land use intensity levels and the consequences for potential turnover rates. We investigated selected grassland sites being comparable with respect to soil type and climatic conditions, which have been continuously treated for many years as intensely used meadows (IM), intensely used mown pastures (IP) and extensively used pastures (EP), respectively. The obtained data were linked to above ground biodiversity pattern as well as water extractable fractions of nitrogen and carbon in soil. Shifts in land use intensity changed plant community composition from systems dominated by s-strategists in extensive managed grasslands to c-strategist dominated communities in intensive managed grasslands. Along the different types of land use intensity, the availability of inorganic nitrogen regulated the abundance of bacterial and archaeal ammonia oxidizers. In contrast, the amount of dissolved organic nitrogen determined the abundance of denitrifiers (nirS and nirK). The high abundance of nifH carrying bacteria at intensive managed sites gave evidence that the amounts of substrates as energy source outcompete the high availability of inorganic nitrogen in these sites. Overall, we revealed that abundance and function of microorganisms involved in key processes of inorganic N cycling (nitrification, denitrification and N fixation) might be independently regulated by different abiotic and biotic factors in response to land use intensity. PMID:24039974

  1. Four decades urban growth and land use change in Samara Russia through remote sensing and GIS techniques

    NASA Astrophysics Data System (ADS)

    Boori, Mukesh Singh; Choudhary, Komal; Kupriyanov, Alexander; Kovelskiy, Viktor

    2015-12-01

    This study illustrates the spatio-temporal dynamics of urban growth and land use changes in Samara city, Russia from 1975 to 2015. Landsat satellite imageries of five different time periods from 1975 to 2015 were acquired and quantify the changes with the help of ArcGIS 10.1 Software. By applying classification methods to the satellite images four main types of land use were extracted: water, built-up, forest and grassland. Then, the area coverage for all the land use types at different points in time were measured and coupled with population data. The results demonstrate that, over the entire study period, population was increased from 1146 thousand people to 1244 thousand from 1975 to 1990 but later on first reduce and then increase again, now 1173 thousand population. Built-up area is also change according to population. The present study revealed an increase in built-up by 37.01% from 1975 to 1995, than reduce -88.83% till 2005 and an increase by 39.16% from 2005 to 2015, along with the increase in population, migration from rural areas owing to the economic growth and technological advantages associated with urbanization. Information on urban growth, land use and land cover change study is very useful to local government and urban planners for the betterment of future plans to sustainable development of the city.

  2. Improving urban land use and land cover classification from high-spatial-resolution hyperspectral imagery using contextual information

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, we propose approaches to improve the pixel-based support vector machine (SVM) classification for urban land use and land cover (LULC) mapping from airborne hyperspectral imagery with high spatial resolution. Class spatial neighborhood relationship is used to correct the misclassified ...

  3. Urban land use mapping by machine processing of ERTS-1 multispectral data: A San Francisco Bay area example

    NASA Technical Reports Server (NTRS)

    Ellefsen, R.; Swain, P. H.; Wray, J. R.

    1973-01-01

    The study is reported to develop computer produced urban land use maps using multispectral scanner data from a satellite is reported. Data processing is discussed along with the results of the San Francisco Bay area, which was chosen as the test area.

  4. Quantifying outdoor water consumption of urban land use/land cover: sensitivity to drought.

    PubMed

    Kaplan, Shai; Myint, Soe W; Fan, Chao; Brazel, Anthony J

    2014-04-01

    Outdoor water use is a key component in arid city water systems for achieving sustainable water use and ensuring water security. Using evapotranspiration (ET) calculations as a proxy for outdoor water consumption, the objectives of this research are to quantify outdoor water consumption of different land use and land cover types, and compare the spatio-temporal variation in water consumption between drought and wet years. An energy balance model was applied to Landsat 5 TM time series images to estimate daily and seasonal ET for the Central Arizona Phoenix Long-Term Ecological Research region (CAP-LTER). Modeled ET estimations were correlated with water use data in 49 parks within CAP-LTER and showed good agreement (r² = 0.77), indicating model effectiveness to capture the variations across park water consumption. Seasonally, active agriculture shows high ET (>500 mm) for both wet and dry conditions, while the desert and urban land cover types experienced lower ET during drought (<300 mm). Within urban locales of CAP-LTER, xeric neighborhoods show significant differences from year to year, while mesic neighborhoods retain their ET values (400-500 mm) during drought, implying considerable use of irrigation to sustain their greenness. Considering the potentially limiting water availability of this region in the future due to large population increases and the threat of a warming and drying climate, maintaining large water-consuming, irrigated landscapes challenges sustainable practices of water conservation and the need to provide amenities of this desert area for enhancing quality of life. PMID:24499870

  5. Water in urban planning, Salt Creek Basin, Illinois water management as related to alternative land-use practices

    USGS Publications Warehouse

    Spieker, Andrew Maute

    1970-01-01

    regarded as an area of potential recharge to the shallow aquifers. Preservation of the effectiveness of these potential recharge areas should be considered in land-use planning. Salt Creek is polluted in times of both low and high flow. Most communities in the basin in Du Page County discharge their treated sewage into the creek, whereas those in Cook County transfer their sewage to plants of the Metropolitan Sanitary District outside the basin. During periods of high runoff, combined storm runoff and overflow from sanitary sewers enter the creek. Such polluted water detracts from the stream's esthetic and recreational potential and poses a threat to ground-water supplies owing to induced recharge of polluted water to shallow aquifers. Alternative approaches .to the pollution problem include improvement of the degree of sewage treatment, detention and treatment of storm runoff, dilution of sewage through flow augmentation, or transfer of sewage from the basin to a central treatment plant. To result in an enhanced environment, the streambed would have to be cleansed of accumulated sludge deposits. The overbank flooding in Salt Creek basin every 2 to 3 years presents problems because of encroachments and developments on the flood plains. Flood plains in an urban area can be managed by identifying them, by recognizing that either their natural storage capacity or equivalent artificial capacity is needed to accommodate floods, and by planning land use accordingly. Examples of effective floodplain management include (1) preservation of greenbelts or regional parks along stream courses, (2) use of flood plains for recreation, parking lots. or other low-intensity uses, (3) use of flood-proofed commercial buildings, and (4) provision for compensatory storage to replace natural storage capacity. Results of poor flood-plain management include uncontrolled residential development and encroachment by fill into natural storage areas where no compensatory storage has been

  6. Effects of land use on the spatial distribution of trace metals and volatile organic compounds in urban groundwater, Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Park, Seong-Sook; Kim, Soon-Oh; Yun, Seong-Taek; Chae, Gi-Tak; Yu, Soon-Young; Kim, Seungki; Kim, Young

    2005-10-01

    To investigate the urban groundwater contamination by eight trace metals and 69 volatile organic compounds (VOCs) in relation to land use in Seoul, a total of 57 groundwater samples collected from wells were examined using a non-parametric statistical analysis. Land use was classified into five categories: less-developed, residential, agricultural, traffic, and industrial. A comparison of analyzed data with US EPA and Korean standards for drinking water showed that some metals and VOCs exceeded the standards in a few localities, such as Fe ( N=5), Mn ( N=6), Cu ( N=1), TCE ( N=6), PCE ( N=8), 1,2-DCA ( N=1), and 1,2-dichloropropane ( N=1). Among the 69 investigated VOCs, 19 compounds such as some gasoline-related compounds (e.g., toluene) and chlorinated compounds (e.g., chloroform, PCE, TCE) were detected in groundwater. Non-parametric statistical analysis showed that the concentrations of most trace metals (Fe, Mn, As, Cr, Pb, Cd) and some VOCs (especially, TCE, PCE, chloroform; toluene, carbon tetrachloride, bromodichloromethane, CFC113) are significantly higher in the industrial, residential, and traffic areas ( P<0.05), indicating that anthropogenic contamination of urban groundwater by those chemicals is growing. Those chemicals can be used as effective indicators of anthropogenic contamination of groundwater in urban areas and therefore a special attention is warranted for a safe water supply in those areas. The results of this study suggest that urban groundwater quality in urban areas is closely related with land use.

  7. Influence of land use intensity on the diversity of ammonia oxidizing bacteria and archaea in soils from grassland ecosystems.

    PubMed

    Meyer, Annabel; Focks, Andreas; Radl, Viviane; Welzl, Gerhard; Schöning, Ingo; Schloter, Michael

    2014-01-01

    In the present study, the influence of the land use intensity on the diversity of ammonia oxidizing bacteria (AOB) and archaea (AOA) in soils from different grassland ecosystems has been investigated in spring and summer of the season (April and July). Diversity of AOA and AOB was studied by TRFLP fingerprinting of amoA amplicons. The diversity from AOB was low and dominated by a peak that could be assigned to Nitrosospira. The obtained profiles for AOB were very stable and neither influenced by the land use intensity nor by the time point of sampling. In contrast, the obtained patterns for AOA were more complex although one peak that could be assigned to Nitrosopumilus was dominating all profiles independent from the land use intensity and the sampling time point. Overall, the AOA profiles were much more dynamic than those of AOB and responded clearly to the land use intensity. An influence of the sampling time point was again not visible. Whereas AOB profiles were clearly linked to potential nitrification rates in soil, major TRFs from AOA were negatively correlated to DOC and ammonium availability and not related to potential nitrification rates. PMID:24141944

  8. Land Use and Land Cover Change, Urban Heat Island Phenomenon, and Health Implications: A Remote Sensing Approach

    NASA Technical Reports Server (NTRS)

    Lo, C. P.; Quattrochi, Dale A.

    2003-01-01

    Land use and land cover maps of Atlanta Metropolitan Area in Georgia were produced from Landsat MSS and TM images for 1973,1979,1983,1987,1992, and 1997, spanning a period of 25 years. Dramatic changes in land use and land cover have occurred with loss of forest and cropland to urban use. In particular, low-density urban use, which includes largely residential use, has increased by over 119% between 1973 and 1997. These land use and land cover changes have drastically altered the land surface characteristics. An analysis of Landsat images revealed an increase in surface temperature and a decline in NDVI from 1973 to 1997. These changes have forced the development of a significant urban heat island effect and an increase in ground level ozone production to such an extent, that Atlanta has violated EPA's ozone level standard in recent years. The urban heat island initiated precipitation events that were identified between 1996 and 2000 tended to occur near high-density urban areas but outside the I-285 loop that traverses around the Central Business District, i.e. not in the inner city area, but some in close proximity to the highways. The health implications were investigated by comparing the spatial patterns of volatile organic compounds (VOC) and nitrogen oxides (NOx) emissions, the two ingredients that form ozone by reacting with sunlight, with those of rates of cardiovascular and chronic lower respiratory diseases. A clear core-periphery pattern was revealed for both VOC and NOx emissions, but the spatial pattern was more random in the cases of rates of cardiovascular and chronic lower respiratory diseases. Clearly, factors other than ozone pollution were involved in explaining the rates of these diseases. Further research is therefore needed to understand the health geography and its relationship to land use and land cover change as well as urban heat island effect. This paper illustrates the usefulness of a remote sensing approach for this purpose.

  9. Associations between land use and Perkinsus marinus infection of eastern oysters in a high salinity, partially urbanized estuary

    USGS Publications Warehouse

    Gray, Brian R.; Bushek, David; Drane, J. Wanzer; Porter, Dwayne

    2009-01-01

    Infection levels of eastern oysters by the unicellular pathogen Perkinsus marinus have been associated with anthropogenic influences in laboratory studies. However, these relationships have been difficult to investigate in the field because anthropogenic inputs are often associated with natural influences such as freshwater inflow, which can also affect infection levels. We addressed P. marinus-land use associations using field-collected data from Murrells Inlet, South Carolina, USA, a developed, coastal estuary with relatively minor freshwater inputs. Ten oysters from each of 30 reefs were sampled quarterly in each of 2 years. Distances to nearest urbanized land class and to nearest stormwater outfall were measured via both tidal creeks and an elaboration of Euclidean distance. As the forms of any associations between oyster infection and distance to urbanization were unknown a priori, we used data from the first and second years of the study as exploratory and confirmatory datasets, respectively. With one exception, quarterly land use associations identified using the exploratory dataset were not confirmed using the confirmatory dataset. The exception was an association between the prevalence of moderate to high infection levels in winter and decreasing distance to nearest urban land use. Given that the study design appeared adequate to detect effects inferred from the exploratory dataset, these results suggest that effects of land use gradients were largely insubstantial or were ephemeral with duration less than 3 months.

  10. Soil erosion evaluation in a rapidly urbanizing city (Shenzhen, China) and implementation of spatial land-use optimization.

    PubMed

    Zhang, Wenting; Huang, Bo

    2015-03-01

    Soil erosion has become a pressing environmental concern worldwide. In addition to such natural factors as slope, rainfall, vegetation cover, and soil characteristics, land-use changes-a direct reflection of human activities-also exert a huge influence on soil erosion. In recent years, such dramatic changes, in conjunction with the increasing trend toward urbanization worldwide, have led to severe soil erosion. Against this backdrop, geographic information system-assisted research on the effects of land-use changes on soil erosion has become increasingly common, producing a number of meaningful results. In most of these studies, however, even when the spatial and temporal effects of land-use changes are evaluated, knowledge of how the resulting data can be used to formulate sound land-use plans is generally lacking. At the same time, land-use decisions are driven by social, environmental, and economic factors and thus cannot be made solely with the goal of controlling soil erosion. To address these issues, a genetic algorithm (GA)-based multi-objective optimization (MOO) approach has been proposed to find a balance among various land-use objectives, including soil erosion control, to achieve sound land-use plans. GA-based MOO offers decision-makers and land-use planners a set of Pareto-optimal solutions from which to choose. Shenzhen, a fast-developing Chinese city that has long suffered from severe soil erosion, is selected as a case study area to validate the efficacy of the GA-based MOO approach for controlling soil erosion. Based on the MOO results, three multiple land-use objectives are proposed for Shenzhen: (1) to minimize soil erosion, (2) to minimize the incompatibility of neighboring land-use types, and (3) to minimize the cost of changes to the status quo. In addition to these land-use objectives, several constraints are also defined: (1) the provision of sufficient built-up land to accommodate a growing population, (2) restrictions on the development of

  11. Modeling approaches to detect land-use changes: Urbanization analyzed on a set of 43 US catchments

    NASA Astrophysics Data System (ADS)

    Salavati, Bahar; Oudin, Ludovic; Furusho-Percot, Carina; Ribstein, Pierre

    2016-07-01

    Paired catchment approach probably provides the most robust method to detect the effects of land-use change on catchments' flow characteristics. This approach is limited by the availability of two neighbor catchments with and without land-use change under similar climate conditions. This paper uses a hydrological model to detect the hydrological change caused by urbanization. This study describes (1) use a statistical method to evaluate change detection relative to variation of land use change, (2) simulation of non-urban condition for the urban catchment with an alternative approach, to this aim stream flow series of urban catchments have been reconstructed from the period that urbanization had not taken place yet, and (3) the model validation with observed data. This paper intends to compare the flow changes detected by two different approaches: a regional statistical approach (the paired-catchment approach) and a conceptual modeling approach (the residual approach) on the particular case of urbanized catchments. To investigate the sensitivity of the results to the settings of both approaches, the comparison is made on a relatively large number of 43 catchments located in the United States, with relatively large gradients in terms of geomorphology and hydroclimatic characteristics. Results show that the two approaches are generally in relative good agreement in terms of detection and quantification of changes for the three flow characteristics analyzed (mean annual flow, high and low flow characteristics). Besides, it is found that the impact of urbanization on the catchment's hydrologic response is difficult to generalize: the proportion of nonsignificant trends, significantly increasing decreasing trends are on the same order of magnitude, even if an increase in urban areas generally has a greater impact on mean flows and high flows than on low flows.

  12. Change in Environmental Benefits of Urban Land Use and Its Drivers in Chinese Cities, 2000-2010.

    PubMed

    Song, Xiaoqing; Chang, Kang-Tsung; Yang, Liang; Scheffran, Jürgen

    2016-01-01

    Driven by rising income and urban population growth, China has experienced rapid urban expansion since the 1980s. Urbanization can have positive effects on the urban environment; however, improvement of urban environment quality, especially its divergence between relatively developed and undeveloped cities in China, is currently a rather rudimentary and subjective issue. This study analyzed urban environmental benefits among China's prefectural cities based on their structure of urban land use in 2000 and 2010. First, we divided 347 prefectural cities into two groups, 81 coastal and capital cities in the relatively developed group (RD) and 266 other prefectural cities in the undeveloped group (RP). Then, we defined three areas of urban environmental benefits, including green infrastructure, industrial upgrade, and environmental management, and developed an assessment index system. Results showed that all prefectural cities saw improvement in urban environmental quality in 2000-2010. Although the RD cities had higher income and more population growth, they had less improvement than the RP cities during the same period. We also found that demographic and urban land agglomeration among RD cities restrained green infrastructure expansion, making green infrastructure unsuitable as a permanent solution to environmental improvement. It is therefore urgent for China to promote balanced improvement among the three areas of urban environmental benefits and between the RD and RP cities through regional differentiation policies. PMID:27240386

  13. Change in Environmental Benefits of Urban Land Use and Its Drivers in Chinese Cities, 2000–2010

    PubMed Central

    Song, Xiaoqing; Chang, Kang-tsung; Yang, Liang; Scheffran, Jürgen

    2016-01-01

    Driven by rising income and urban population growth, China has experienced rapid urban expansion since the 1980s. Urbanization can have positive effects on the urban environment; however, improvement of urban environment quality, especially its divergence between relatively developed and undeveloped cities in China, is currently a rather rudimentary and subjective issue. This study analyzed urban environmental benefits among China’s prefectural cities based on their structure of urban land use in 2000 and 2010. First, we divided 347 prefectural cities into two groups, 81 coastal and capital cities in the relatively developed group (RD) and 266 other prefectural cities in the undeveloped group (RP). Then, we defined three areas of urban environmental benefits, including green infrastructure, industrial upgrade, and environmental management, and developed an assessment index system. Results showed that all prefectural cities saw improvement in urban environmental quality in 2000–2010. Although the RD cities had higher income and more population growth, they had less improvement than the RP cities during the same period. We also found that demographic and urban land agglomeration among RD cities restrained green infrastructure expansion, making green infrastructure unsuitable as a permanent solution to environmental improvement. It is therefore urgent for China to promote balanced improvement among the three areas of urban environmental benefits and between the RD and RP cities through regional differentiation policies. PMID:27240386

  14. A Statistical Assessment of the Impact of Agricultural Land Use Intensity on Regional Surface Water Quality at Multiple Scales

    PubMed Central

    Zhang, Weiwei; Li, Hong; Sun, Danfeng; Zhou, Liandi

    2012-01-01

    Understanding the effects of intensive agricultural land use activities on water resources is essential for natural resource management and environmental improvement. In this paper, multi-scale nested watersheds were delineated and the relationships between two representative water quality indexes and agricultural land use intensity were assessed and quantified for the year 2000 using multi-scale regression analysis. The results show that the log-transformed nitrate-nitrogen (NO3-N) index exhibited a relationship with chemical fertilizer input intensity and several natural factors, including soil loss, rainfall and sunlight at the first order watershed scale, while permanganate index (CODMn) had a positive relationship with another two input intensities of pesticides and agricultural plastic mulch and organic manure at the fifth order watershed scale. The first order watershed and the fifth order watershed were considered as the watershed adaptive response units for NO3-N and CODMn, respectively. The adjustment of agricultural input and its intensity may be carried out inside the individual watershed adaptive response unit. The multiple linear regression model demonstrated the cause-and-effect relationship between agricultural land use intensity and stream water quality at multiple scales, which is an important factor for the maintenance of stream water quality. PMID:23202839

  15. A statistical assessment of the impact of agricultural land use intensity on regional surface water quality at multiple scales.

    PubMed

    Zhang, Weiwei; Li, Hong; Sun, Danfeng; Zhou, Liandi

    2012-11-01

    Understanding the effects of intensive agricultural land use activities on water resources is essential for natural resource management and environmental improvement. In this paper, multi-scale nested watersheds were delineated and the relationships between two representative water quality indexes and agricultural land use intensity were assessed and quantified for the year 2000 using multi-scale regression analysis. The results show that the log-transformed nitrate-nitrogen (NO(3)-N) index exhibited a relationship with chemical fertilizer input intensity and several natural factors, including soil loss, rainfall and sunlight at the first order watershed scale, while permanganate index (COD(Mn)) had a positive relationship with another two input intensities of pesticides and agricultural plastic mulch and organic manure at the fifth order watershed scale. The first order watershed and the fifth order watershed were considered as the watershed adaptive response units for NO(3)-N and COD(Mn), respectively. The adjustment of agricultural input and its intensity may be carried out inside the individual watershed adaptive response unit. The multiple linear regression model demonstrated the cause-and-effect relationship between agricultural land use intensity and stream water quality at multiple scales, which is an important factor for the maintenance of stream water quality. PMID:23202839

  16. Variation in surface water-groundwater exchange with land use in an urban stream

    NASA Astrophysics Data System (ADS)

    Ryan, Robert J.; Welty, Claire; Larson, Philip C.

    2010-10-01

    SummaryA suite of methods is being utilized in the Baltimore metropolitan area to develop an understanding of the interaction between groundwater and surface water at multiple space and time scales. As part of this effort, bromide tracer experiments were conducted over two 10-day periods in August 2007 and May 2008 along two sections (each approximately 900 m long) of Dead Run, a small urban stream located in Baltimore County, Maryland, to investigate the influence of distinct zones of riparian land cover on surface-subsurface exchange and transient storage under low and high baseflow conditions. Riparian land cover varied by reach along a gradient of land use spanning parkland, suburban/residential, commercial, institutional, and transportation, and included wooded, meadow, turf grass, and impervious cover. Under summer low baseflow conditions, surface water-groundwater exchange, defined by gross inflow and gross outflow, was larger and net inflow (gross inflow minus gross outflow) had greater spatial variability, than was observed under spring high baseflow conditions. In addition, the fraction of nominal travel time attributable to transient storage ( Fmed) was lower and was more spatially variable under high baseflow conditions than under low baseflow conditions. The influence of baseflow condition on surface water-ground water exchange and transient storage was most evident in the subreaches with the least riparian forest cover and these effects are attributed to a lack of shading in reaches with little riparian forest cover. We suggest that under summer low baseflow conditions, the lack of shading allowed excess in-channel vegetation growth which acted as a transient storage zone and a conduit for outflow (i.e. uptake and evapotranspiration). Under spring high baseflow conditions the transient storage capacity of the channel was reduced because there was little in-channel vegetation.

  17. A Study on the Land Use Characteristics of Urban Medium and Small stream Depending on the Width of stream

    NASA Astrophysics Data System (ADS)

    Seok, Song Young; Ho, Song Yang; Ho, Lee Jung; Moo Jong, Park

    2015-04-01

    Due to the increase of impervious layers caused by increased rainfall and urbanization which were brought about by the climate change after the late 1990s, the flood damage in urban watersheds is rising. The recent flood damage is occurring in medium and small stream rather than in large stream. Particularly, in medium stream which pass the cities, sudden flood occurs due to the short concentration of rainfall and urban areas suffer large damage, even though the flood damage is small, since residential areas and social infrastructures are concentrated. In spite of the importance of medium and small stream to pass the cities, there is no certain standard for classification of natural or urban stream and existing studies are mostly focused on the impervious area among the land use characteristics of watersheds. Most of existing river studies are based on the watershed scale, but in most urban watersheds where stream pass, urban areas are concentrated in the confluence, so urban areas only occupy less than 10% of the whole watershed and there is a high uncertainty in the classification of urban areas, based the watershed of stream. This study aims to suggest a classification standard of medium and small stream between local stream and small stream where suffer flood damage. According to the classified medium and small stream, this study analyzed the stream area to the stream width and distance using Arcgis Buffer tool, based on the stream line, not the existing watershed scale. This study then chose urban watersheds by analyzing the river area at certain intervals from the center of the chosen medium and small stream, in different ways. Among the land use characteristics in urban areas, the impervious area was applied to the selection standard of urban watersheds and the characteristics of urban watersheds were presented by calculating the ratio of the stream area to the impervious area using the Buffer tool. Acknowledgement "This research was supported by a grant

  18. Spatial distribution of ultrafine particles in urban settings: A land use regression model

    NASA Astrophysics Data System (ADS)

    Rivera, Marcela; Basagaña, Xavier; Aguilera, Inmaculada; Agis, David; Bouso, Laura; Foraster, Maria; Medina-Ramón, Mercedes; Pey, Jorge; Künzli, Nino; Hoek, Gerard

    2012-07-01

    BackgroundThe toxic effects of ultrafine particles (UFP) are a public health concern. However, epidemiological studies on the long term effects of UFP are limited due to lacking exposure models. Given the high spatial variation of UFP, the assignment of exposure levels in epidemiological studies requires a fine spatial scale. The aim of this study was to assess the performance of a short-term measurement protocol used at a large number of locations to derive a land use regression (LUR) model of the spatial variation of UFP in Girona, Spain. MethodsWe measured UFP for 15 min on the sidewalk of 644 participants' homes in 12 towns of Girona province (Spain). The measurements were done during non-rush traffic hours 9:15-12:45 and 15:15-16:45 during 32 days between June 15 and July 31, 2009. In parallel, we counted the number of vehicles driving in both directions. Measurements were repeated on a different day for a subset of 25 sites in Girona city. Potential predictor variables such as building density, distance to bus lines and land cover were derived using geographic information systems. We adjusted for temporal variation using daily mean NOx concentrations at a central monitor. Land use regression models for the entire area (Core model) and for individual towns were derived using a supervised forward selection algorithm. ResultsThe best predictors of UFP were traffic intensity, distance to nearest major crossroad, area of high density residential land and household density. The LUR Core model explained 36% of UFP total variation. Adding sampling date and hour of the day to the Core model increased the R2 to 51% without changing the regression slopes. Local models included predictor variables similar to those in the Core model, but performed better with an R2 of 50% in Girona city. Independent LUR models for the first and second measurements at the subset of sites with repetitions had R2's of about 47%. When the mean of the two measurements was used R2 improved to

  19. KH-series satellite imagery and Landsat MSS data fusion in support of assessing urban land use growth

    NASA Astrophysics Data System (ADS)

    Civco, Daniel; Chabaeva, Anna; Parent, Jason

    2009-09-01

    Multi-temporal land use data, circa 1990 and 2000, have been analyzed an our urban growth model which identifies three levels of the urban extent - the impervious surface, the urbanized area, and the urban footprint - to account for the differing degrees of open space degradation associated with the city. The model also generates metrics such as cohesion, proximity, population densities, average openness, open space contiguity, and depth which quantify spatial characteristics that are indicative of urban sprawl. We plan on expanding this time-series further, and for additional cities, with mid-decadal, gap-filled Landsat ETM data, as well as resolution-enhanced Landsat MSS data from the 19070's. The cities used in this pilot project consisted of: (a) Kigali, Rwanda; (b) Portland, Oregon; (c) Tacoma, Washington; and (d) Plock, Poland. Based on research done in this project, complemented by results from other efforts, the Ehlers data fusion approach was used in the resolution enhancement of Landsat MSS imagery. In this paper, using Portland and Kigali as the principal examples, we discuss the procedures by which (a) the KH-series declassified military intelligence imagery was geometrically-corrected and registered to Landsat data, (b) the Ehlers Fusion of the KH-data with Landsat MSS, (c) the derivation of 1970's urban land use information, and (d) the calculation of select urban growth metrics. This paper illustrates the power of leveraging the high resolution of the military reconnaissance imagery with the multispectral information contained in the vintage Landsat MSS data in historical land use analyses.

  20. Effects of Green Space and Land Use/Land Cover on Urban Heat Island in a Subtropical Mega-city in China

    NASA Astrophysics Data System (ADS)

    Qiu, G. Y.; Li, X.; Li, H.; Guo, Q.

    2014-12-01

    With the quick expansion of urban in size and population, its urban heat island intensity (UHII, expressed as the temperature difference between urban and rural areas) increased rapidly. However, very few studies could quantitatively reveal the effects of green space and land use/land cover (LULC) on urban thermal environment because of lacking of the detailed measurement. This study focuses on quantifying the effects of green space and LULC on urban Heat Island (UHI) in Shenzhen, a mega subtropical city in China. Extensive measurements (air temperature and humidity) were made by mobile traverse method in a transect of 8 km in length, where a variety of LULC types were included. Measurements were carried out at 2 hours interval for 2 years (totally repeated for 7011 times). According to LULC types, we selected 5 different LULC types for studying, including water body, village in the city, shopping center (commercial area), urban green space (well-vegetated area) and suburb (forest). The main conclusions are obtained as follows: (1) The temperature difference between the 5 different urban landscapes is obvious, i.e. shopping center > village in the city > urban water body > urban green space > suburb; (2) Air temperature and UHII decreases linearly with the increase of green space in urban; (3) Green space and water body in urban have obvious effects to reduce the air temperature by evapotranspiration. Compared to the commercial areas, urban water body can relieve the IUHI by 0.9℃, while the urban green space can relieve the IUHI by 1.57℃. The cooling effect of the urban green space is better than that of the urban water body; (4) Periodic activity of human being has obvious effects on urban air temperature. The UHII on Saturday and Sunday are higher than that from Monday to Friday, respectively higher for 0.65, 0.57, 0.26 and 0.21℃. Thursday and Friday have the minimum air temperature and UHII. These results indicate that increase in urban evapotranspiration

  1. Investigation of Urban Heat Island Intensity in Istanbul

    NASA Astrophysics Data System (ADS)

    Irem Bilgen, Simge; Unal, Yurdanur S.; Yuruk, Cemre; Goktepe, Nur; Diren, Deniz; Topcu, Sema; Mentes, Sibel; Incecik, Selahattin; Guney, Caner; Ozgur Dogru, Ahmet

    2016-04-01

    and CORINE Land Cover Raster Data are used to generate the land use distribution. Furthermore, the new urban land use types are defined by considering the spatial coverage and the average height of the buildings. Effects of change in land use on daytime and nighttime urban heat island (UHI) of Istanbul is examined using the local-scale atmospheric model MUKLIMO 3. The hot spots of the Istanbul have been identified as central area especially through the southern part of Bosphorus and the historical peninsula. This work is supported by TUBITAK Project, number 114Y047. Keywords: Urban climate, urban heat island (UHI), Istanbul, MUKLIMO 3, urbanization

  2. Land use and Hydrological Characteristics of Volcanic Urban Soils for Flood Susceptibility Modeling, Ciudad de Colima (Mexico)

    NASA Astrophysics Data System (ADS)

    Perez Gonzalez, M. L.; Capra, L.; Borselli, L.; Ortiz, A.

    2015-12-01

    The fast population rate growth and the unplanned urban development has created an increase of urban floods in the City of Colima. Land use change has transformed the hydrological behavior of the watersheds that participates on the runoff-infiltration processes that governs the pluvial concentrations. After the urban areas enlargement, 13% from 2010 to 2015, rainfall has caused significant damages to the downtown community. Therefore it is important to define the main hydraulic properties of the soils surrounding the city. The soil of the region is derived from the debris avalanche deposits of the Volcano of Colima. The volcanic soil cover is only 10 to 15 cm depth. To test the soils of the region, sampling locations were chosen after making a land use map from a Landsat image. The map was done by selecting and dividing similar surface images patterns into three main classifications: Natural (N1), Agricultural (N5) and Urban (N4) surfaces. Thirty-Three soil samples were collected and grouped in nine out of ten land use subdivisions. The 10thsubdivision, represents the completed urbanized area. The land use model is made using spot 4 1A images from the year 2010 up to year 2015. This land use evolutionary analysis will be a base to evaluate the change of the runoff-infiltration rate, direction, and concentration areas for the future flood susceptibility model. To get the parameters above, several soil analysis were performed. The results were that all the soil samples tested were classified as sandy soils. The water content values were from 7% (N4) to 45% (N1) while bulk density values for the same sample were form 0.65 (N1) to 1.50 (N4) g/cm3. The particle density and the porosity values were from 1.65 g/cm3 /5.5% (N4) - 2.65 g/cm3/ 75.40% (N1). The organic matter content was around 0.1% for urban soils and up to 6% on natural and agricultural soils. Some other test like electric conductivity and pH were performed. The obtained parameters were used to get other

  3. Monitoring urban expansion and its effects on land use and land cover changes in Guangzhou city, China.

    PubMed

    Wu, Yanyan; Li, Shuyuan; Yu, Shixiao

    2016-01-01

    There are widespread concerns about urban sprawl in China. In response, modeling and assessing urban expansion and subsequent land use and land cover (LULC) changes have become important approaches to support decisions about appropriate development and land resource use. Guangzhou, a major metropolitan city in South China, has experienced rapid urbanization and great economic growth in the past few decades. This study applied a series of Landsat images to assess the urban expansion and subsequent LULC changes over 35 years, from 1979 to 2013. From start to end, urban expansion increased by 1512.24 km(2) with an annual growth rate of 11.25 %. There were four stages of urban growth: low rates from 1979 to 1990, increased rates from 1990 to 2001, high rates from 2001 to 2009, and steady increased rates from 2009 to 2013. There were also three different urban growth types in these different stages: edge-expansion growth, infilling growth, and spontaneous growth. Other land cover, such as cropland, forest, and mosaics of cropland and natural vegetation, were severely impacted as a result. To analyze these changes, we used landscape metrics to characterize the changes in the spatial patterns across the Guangzhou landscape and the impacts of urban growth on other types of land cover. The significant changes in LULC and urban expansion were highly correlated with economic development, population growth, technical progress, policy elements, and other similar indexes. PMID:26700678

  4. Urban land use monitoring from computer-implemented processing of airborne multispectral data

    NASA Technical Reports Server (NTRS)

    Todd, W. J.; Mausel, P. W.; Baumgardner, M. F.

    1976-01-01

    Machine processing techniques were applied to multispectral data obtained from airborne scanners at an elevation of 600 meters over central Indianapolis in August, 1972. Computer analysis of these spectral data indicate that roads (two types), roof tops (three types), dense grass (two types), sparse grass (two types), trees, bare soil, and water (two types) can be accurately identified. Using computers, it is possible to determine land uses from analysis of type, size, shape, and spatial associations of earth surface images identified from multispectral data. Land use data developed through machine processing techniques can be programmed to monitor land use changes, simulate land use conditions, and provide impact statistics that are required to analyze stresses placed on spatial systems.

  5. VARIATIONS OF MICROORGANISM CONCENTRATIONS IN URBAN STORMWATER RUNOFF WITH LAND USE AND SEASONS

    EPA Science Inventory

    Stormwater runoff samples were collected from outfalls draining small municipal separate storm sewer systems. The samples were collected from three different land use areas based on local designation (high-density residential, low-density residential, and landscaped commercial)....

  6. Urban and regional land use analysis: CARETS and census cities experiment package

    NASA Technical Reports Server (NTRS)

    Alexander, R. (Principal Investigator); Lins, H. F., Jr.

    1974-01-01

    The author has identified the following significant results. The most significant finding has been the ability of the S-190B data to produce land use maps not far removed from the quality of high altitude aircraft photography generated maps.

  7. Water resources: Effects of land use and urbanization. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-03-01

    The bibliography contains citations concerning the effects of land use and urban development on water supply quality and quantity. Topics include appropriate local, state, and federal government policies, and utilization of mathematical models as predictive tools. Studies performed at specific localities are included if they provide comprehensive strategies that can be applied to other locations. (Contains 250 citations and includes a subject term index and title list.)

  8. Water resources: effects of land use and urbanization. (Latest citations from the NTIS data base). Published Search

    SciTech Connect

    Not Available

    1992-04-01

    The bibliography contains citations concerning the effects of land use and urban development on water supply quality and quantity. Topics include appropriate local, state, and federal government policies, and utilization of mathematical models as predictive tools. Studies performed at specific localities are included if they provide comprehensive strategies that can be applied to other locations. (Contains 250 citations and includes a subject term index and title list.)

  9. Impact of Land-Use and Land-Cover Change on urban air quality in representative cities of China

    NASA Astrophysics Data System (ADS)

    Sun, L.; Wei, J.; Duan, D. H.; Guo, Y. M.; Yang, D. X.; Jia, C.; Mi, X. T.

    2016-05-01

    The atmospheric particulate pollution in China is getting worse. Land-Use and Land-Cover Change (LUCC) is a key factor that affects atmospheric particulate pollution. Understanding the response of particulate pollution to LUCC is necessary for environmental protection. Eight representative cities in China, Qingdao, Jinan, Zhengzhou, Xi'an, Lanzhou, Zhangye, Jiuquan, and Urumqi were selected to analyze the relationship between particulate pollution and LUCC. The MODIS (MODerate-resolution Imaging Spectroradiometer) aerosol product (MOD04) was used to estimate atmospheric particulate pollution for nearly 10 years, from 2001 to 2010. Six land-use types, water, woodland, grassland, cultivated land, urban, and unused land, were obtained from the MODIS land cover product (MOD12), where the LUCC of each category was estimated. The response of particulate pollution to LUCC was analyzed from the above mentioned two types of data. Moreover, the impacts of time-lag and urban type changes on particulate pollution were also considered. Analysis results showed that due to natural factors, or human activities such as urban sprawl or deforestation, etc., the response of particulate pollution to LUCC shows obvious differences in different areas. The correlation between particulate pollution and LUCC is lower in coastal areas but higher in inland areas. The dominant factor affecting urban air quality in LUCC changes from ocean, to woodland, to urban land, and eventually into grassland or unused land when moving from the coast to inland China.

  10. Land-Use Change Impacts on Intensity, Duration, and Frequency of Precipitation in the South Platte River Basin

    NASA Astrophysics Data System (ADS)

    Pina, A.; Denning, A. S.

    2014-12-01

    The Westward Expansion of the mid-1800s directly impacted the distribution of moisture in the South Platte River Basin (SPRB) by changing land surfaces from natural rangelands, grasslands, and shrublands to a disturbed state of urbanized cities, livestock pastures, and irrigated croplands. Changing land surfaces repartitions latent and sensible energy surface fluxes and inadvertently results in changes to the regional climate. In this study, we examined the impacts of land-use change on the meteorology and climate in the South Platte River Basin, a region sensitive to water-use management. WRF-ARW v3.4.1 was used to downscale the reanalysis of a climatologically normal summer (2010) to 0.5 km horizontal resolution over the SPRB. To analyze meteorological and climatological effects of land-use changes in northeastern Colorado, a control run where no changes to the input data was compared with a run which changed land-use index from anthropogenic-influenced landscapes back to their original vegetative land cover. Notable changes in the Bowen ratio around urban and irrigated lands as well as an enhancement of the mountain-valley circulation east of the Rocky Mountains were observed due to land-use changes. Output from the control run of the WRF simulation were used as a baseline for running a simulation to 2100 using a newly-developed multi-scale modeling framework based on the Community Earth System Model, which explicitly resolves convection in global climate model grid cells. Results of changing IDF curves over the 21st century can be compared with results shown in national and international documents such as the National Climate Assessment and Intergovernmental Panel on Climate Change reports and used as planning tools for optimizing the balance of water management between agriculture communities and municipalities in Colorado.

  11. Analyzing the Relative Linkages of Land Use and Hydrologic Variables with Urban Surface Water Quality using Multivariate Techniques

    NASA Astrophysics Data System (ADS)

    Ahmed, S.; Abdul-Aziz, O. I.

    2015-12-01

    We used a systematic data-analytics approach to analyze and quantify relative linkages of four stream water quality indicators (total nitrogen, TN; total phosphorus, TP; chlorophyll-a, Chla; and dissolved oxygen, DO) with six land use and four hydrologic variables, along with the potential external (upstream in-land and downstream coastal) controls in highly complex coastal urban watersheds of southeast Florida, U.S.A. Multivariate pattern recognition techniques of principle component and factor analyses, in concert with Pearson correlation analysis, were applied to map interrelations and identify latent patterns of the participatory variables. Relative linkages of the in-stream water quality variables with their associated drivers were then quantified by developing dimensionless partial least squares (PLS) regression model based on standardized data. Model fitting efficiency (R2=0.71-0.87) and accuracy (ratio of root-mean-square error to the standard deviation of the observations, RSR=0.35-0.53) suggested good predictions of the water quality variables in both wet and dry seasons. Agricultural land and groundwater exhibited substantial controls on surface water quality. In-stream TN concentration appeared to be mostly contributed by the upstream water entering from Everglades in both wet and dry seasons. In contrast, watershed land uses had stronger linkages with TP and Chla than that of the watershed hydrologic and upstream (Everglades) components for both seasons. Both land use and hydrologic components showed strong linkages with DO in wet season; however, the land use linkage appeared to be less in dry season. The data-analytics method provided a comprehensive empirical framework to achieve crucial mechanistic insights into the urban stream water quality processes. Our study quantitatively identified dominant drivers of water quality, indicating key management targets to maintain healthy stream ecosystems in complex urban-natural environments near the coast.

  12. The legacy of land-use is revealed in the biogeochemistry of urban streams

    EPA Science Inventory

    Urban streams are among the most profoundly impacted aquatic ecosystems, characterized by altered hydrology or burial, increased sediment input, and myriad pollutants. We present results from a series of urban stream studies that revealed unique geochemical and biochemical patte...

  13. Impact of urban land-use change in eastern China on the East Asian subtropical monsoon: A numerical study

    NASA Astrophysics Data System (ADS)

    Yu, Rong; Jiang, Zhihong; Zhai, Panmao

    2016-04-01

    The effect of urban land-use change in eastern China on the East Asian subtropical monsoon (EASTM) is investigated by using the Community Atmosphere Model version 5.1. Comparison of the results between the urban expansion and reference experiments shows that with the urban expansion, the land surface energy balance alters: surface net radiation and sensible heat fluxes enhance while the latent heat fluxes reduce. As a result, a significant increase in surface air temperature over eastern China is detected. The urban land-use change contributes to a change in the zonal land-sea temperature difference (LSTD), leading to a delay in the time when LSTD changes from positive to negative, and vice versa. Additionally, the onset and retreat dates of the EASTM are also delayed. Meanwhile, the rise in surface air temperature leads to formation of abnormal northerly air flows, which may be the reason for the slower northward movement of the EASTM and a more southward location of its northern boundary.

  14. Polycyclic aromatic hydrocarbons in urban soils of different land uses in Beijing, China: distribution, sources and their correlation with the city's urbanization history.

    PubMed

    Liu, Shaoda; Xia, Xinghui; Yang, Lingyan; Shen, Mohai; Liu, Ruimin

    2010-05-15

    A total of 127 surface soil samples (0-20 cm) were collected from Beijing's urban district and determined for 16 polycyclic aromatic hydrocarbons (PAHs). The mean concentration of summation SigmaPAHs was 1802.6 ng g(-1) with a standard deviation of 1824.2 ng g(-1). Average summation SigmaPAHs concentration and the percentage of high-molecular weight PAHs (4-6-rings) decreased from inner city to exterior areas. This correlated with the urbanization history of Beijing's urban district and inferred an increasing trend of soil PAHs with accumulation time and age of the urban area. summation SigmaPAHs in different land uses decreased in an order as: culture and education area (CEA)>classical garden (CG), business area (BA)>residential area (RA), roadside area (RSA)>public green space (PGS). PAHs in CEA mainly came from coal combustion, while soils of RSA exhibited clear traffic emission characteristics. PAHs in other land uses came from mixed sources. Principle component analysis followed by multivariate linear regression indicated that coal combustion and vehicle emission contributed about 46.0% and 54.0% to PAHs in Beijing's urban soils, respectively. Risk assessment based on the Canadian soil criterion indicated a low contamination level of PAHs. However, higher contents in some sensitive land uses such as CEA and CG should draw enough attention. PMID:20097001

  15. Physico-chemical characteristics of topsoil for contrasted forest, agricultural, urban and industrial land uses in France.

    PubMed

    Joimel, S; Cortet, J; Jolivet, C C; Saby, N P A; Chenot, E D; Branchu, P; Consalès, J N; Lefort, C; Morel, J L; Schwartz, C

    2016-03-01

    Soil quality is related to soil characteristics such as fertility and contamination. The aim of this study is to assess the effect of land use on these soil characteristics and to confirm the following anthropisation gradient: (i) forest, (ii) grassland, (iii) cultivated, (iv) orchard and vineyard, (v) urban vegetable garden, and (vi) SUITMA (urban, industrial, traffic, mining and military areas). A database comprising the characteristics of 2451 soils has been constituted. In order to compare the topsoils from six contrasting land uses, a principal components analysis (PCA) was performed on nine geochemical variables (C, N, pH, POlsen, total Cd, Cu, Ni, Pb, Zn). The first axis of the PCA is interpreted as a global increase of topsoil metallic elements along the anthropisation gradient. Axis 2 reflects the variability of fertility levels. Human activity increases the pressure on soils along the proposed gradient according to six different distribution patterns. This better knowledge of topsoil quality and its dependence on current land use should therefore help to manage and preserve the soil mantle. PMID:26745291

  16. Controls on mass loss and nitrogen dynamics of oak leaf litter along an urban-rural land-use gradient.

    PubMed

    Pouyat, Richard V; Carreiro, Margaret M

    2003-04-01

    Using reciprocal leaf litter transplants, we investigated the effects of contrasting environments (urban vs. rural) and intraspecific variations in oak leaf litter quality on mass loss rates and nitrogen (N) dynamics along an urban-rural gradient in the New York City metropolitan area. Differences in earthworm abundances and temperature had previously been documented in the stands along this gradient. Red oak leaf litter was collected and returned to its original source stand as native litter to measure decay rates along the gradient. To separate site effects from litter quality effects on decay, reciprocal transplants of litter were also made between stands at the extremes of the environmental gradient (urban and rural stands). Land-use had no effect on mass loss and N dynamics of native litter by the end of the 22-month incubation period. The lack of differences in native litter suggests the factors affecting decay were similar across the stands in this study. However, in the transplant study both environment and litter type strongly affected decay of oak leaf litter. On average urban and rural litter decomposed faster over the incubation period in urban than in rural stands (P=0.016 and P=0.001, respectively, repeated measures ANOVA). Differences in mass loss between urban and rural stands resulted in rural environments having less mass remaining than urban environments at the end of the incubation period (25.6 and 46.2% for urban and rural sites, respectively). Likewise, less N remained in leaf residue in urban sites (71.3%) compared to that in rural sites (115.1%). Litter type also affected mass loss rates during the 22-month incubation period. On average rural litter mass loss rates were faster than urban litter rates in both urban and rural stands (P=0.030 and P=0.026, respectively, repeated measures ANOVA). By the end of the incubation period, rural litter exhibited 43 and 20% greater mass loss and retained 44 and 5% less N than urban litter decomposing in

  17. Urban Land Use Change Effects on Below and Aboveground Carbon Stocks—a Global Perspective and Future Research Needs

    NASA Astrophysics Data System (ADS)

    Pouyat, R. V.; Chen, Y.; Yesilonis, I.; Day, S.

    2014-12-01

    Land use change (LUC) has a significant impact on both above- and below-ground carbon (C) stocks; however, little is known about the net effects of urban LUC on the C cycle and climate system. Moreover, as climate change becomes an increasingly pressing concern, there is growing evidence that urban policy and management decisions can have significant regional impacts on C dynamics. Soil organic carbon (SOC) varies significantly across ecoregions at global and continental scales due to differential sensitivity of primary production, substrate quality, and organic matter decay to changes in temperature and soil moisture. These factors are highly modified by urban LUC due to vegetation removal, soil relocation and disruption, pollution, urban heat island effects, and increased atmospheric CO2 concentrations. As a result, on a global scale urban LUC differentially affects the C cycle from ecoregion to ecoregion. For urban ecosystems, the data collected thus far suggests urbanization can lead to both an increase and decrease in soil C pools and fluxes, depending on the native ecosystem being impacted by urban development. For example, in drier climates, urban landscapes accumulate higher C densities than the native ecosystems they replaced. Results suggest also that soil C storage in urban ecosystems is highly variable with very high (> 20.0) and low (< 2.0) C densities (kg m-2 to a 1 m depth) present in the landscape at any one time. Moreover, similar to non-urban soils, total SOC densities are consistently 2-fold greater than aboveground stocks. For those soils with low SOC densities, there is potential to increase C sequestration through management, but specific urban related management practices need to be evaluated. In addition, urban LUC is a human-driven process and thus can be modified or adjusted to reduce its impacts on the C cycle. For example, policies that influence development patterns, population density, management practices, and other human factors can

  18. Integrating Geospatial Technologies to Examine Urban Land Use Change: A Design Partnership

    ERIC Educational Resources Information Center

    Bodzin, Alec M.; Cirucci, Lori

    2009-01-01

    This article describes a design partnership that investigated how to integrate Google Earth, remotely sensed satellite and aerial imagery, with other instructional resources to investigate ground cover and land use in diverse middle school classrooms. Data analysis from the implementation study revealed that students acquired skills for…

  19. Land Use/Land Cover Classification of Urban SAR Scenes: An Envisat/ASAR and HJ-1 Joint Approach

    NASA Astrophysics Data System (ADS)

    Aldrighi, M.; Gamba, P.; Lisini, G.

    2013-01-01

    The classification of urban areas in terms of Land-Use/Land-Cover (LULC) maps is a challenging as well as essential task in order to monitor how the urban sprawl is changing the environment. In many case, this phenomenon leads to dramatic changes, since in many parts of the world commercial as well as residential areas are replacing natural environments, such as crops and forests. In this work we present the description of a novel procedure designed to exploit coarse resolution SAR images and obtain both the built-up area extents and a LULC map of the individuated urban area. Moreover, a data fusion approach, able to combine optical (HJ-1) and SAR (ENVISAT/ASAR) data, has been introduced in order to obtain a better vegetation assessment by means of the Normalized Difference Vegetation Index (NDVI). An experimental result is presented using a data set of the Beijing megacity acquired by ENVISAT/ASAR and HJ-1.

  20. Does mixed-species flocking influence how birds respond to a gradient of land-use intensity?

    PubMed

    Mammides, Christos; Chen, Jin; Goodale, Uromi Manage; Kotagama, Sarath Wimalabandara; Sidhu, Swati; Goodale, Eben

    2015-07-22

    Conservation biology is increasingly concerned with preserving interactions among species such as mutualisms in landscapes facing anthropogenic change. We investigated how one kind of mutualism, mixed-species bird flocks, influences the way in which birds respond to different habitat types of varying land-use intensity. We use data from a well-replicated, large-scale study in Sri Lanka and the Western Ghats of India, in which flocks were observed inside forest reserves, in 'buffer zones' of degraded forest or timber plantations, and in areas of intensive agriculture. We find flocks affected the responses of birds in three ways: (i) species with high propensity to flock were more sensitive to land use; (ii) different flock types, dominated by different flock leaders, varied in their sensitivity to land use and because following species have distinct preferences for leaders, this can have a cascading effect on followers' habitat selection; and (iii) those forest-interior species that remain outside of forests were found more inside flocks than would be expected by chance, as they may use flocks more in suboptimal habitat. We conclude that designing policies to protect flocks and their leading species may be an effective way to conserve multiple bird species in mixed forest and agricultural landscapes. PMID:26156772

  1. Does mixed-species flocking influence how birds respond to a gradient of land-use intensity?

    PubMed Central

    Mammides, Christos; Chen, Jin; Goodale, Uromi Manage; Kotagama, Sarath Wimalabandara; Sidhu, Swati; Goodale, Eben

    2015-01-01

    Conservation biology is increasingly concerned with preserving interactions among species such as mutualisms in landscapes facing anthropogenic change. We investigated how one kind of mutualism, mixed-species bird flocks, influences the way in which birds respond to different habitat types of varying land-use intensity. We use data from a well-replicated, large-scale study in Sri Lanka and the Western Ghats of India, in which flocks were observed inside forest reserves, in ‘buffer zones' of degraded forest or timber plantations, and in areas of intensive agriculture. We find flocks affected the responses of birds in three ways: (i) species with high propensity to flock were more sensitive to land use; (ii) different flock types, dominated by different flock leaders, varied in their sensitivity to land use and because following species have distinct preferences for leaders, this can have a cascading effect on followers' habitat selection; and (iii) those forest-interior species that remain outside of forests were found more inside flocks than would be expected by chance, as they may use flocks more in suboptimal habitat. We conclude that designing policies to protect flocks and their leading species may be an effective way to conserve multiple bird species in mixed forest and agricultural landscapes. PMID:26156772

  2. A technical review of urban land use - transportation models as tools for evaluating vehicle travel reduction strategies

    SciTech Connect

    Southworth, F.

    1995-07-01

    The continued growth of highway traffic in the United States has led to unwanted urban traffic congestion as well as to noticeable urban air quality problems. These problems include emissions covered by the 1990 Clean Air Act Amendments (CAAA) and 1991 Intermodal Surface Transportation Efficiency Act (ISTEA), as well as carbon dioxide and related {open_quotes}greenhouse gas{close_quotes} emissions. Urban travel also creates a major demand for imported oil. Therefore, for economic as well as environmental reasons, transportation planning agencies at both the state and metropolitan area level are focussing a good deal of attention on urban travel reduction policies. Much discussed policy instruments include those that encourage fewer trip starts, shorter trip distances, shifts to higher-occupancy vehicles or to nonvehicular modes, and shifts in the timing of trips from the more to the less congested periods of the day or week. Some analysts have concluded that in order to bring about sustainable reductions in urban traffic volumes, significant changes will be necessary in the way our households and businesses engage in daily travel. Such changes are likely to involve changes in the ways we organize and use traffic-generating and-attracting land within our urban areas. The purpose of this review is to evaluate the ability of current analytic methods and models to support both the evaluation and possibly the design of such vehicle travel reduction strategies, including those strategies involving the reorganization and use of urban land. The review is organized into three sections. Section 1 describes the nature of the problem we are trying to model, Section 2 reviews the state of the art in operational urban land use-transportation simulation models, and Section 3 provides a critical assessment of such models as useful urban transportation planning tools. A number of areas are identified where further model development or testing is required.

  3. Mathematical relationships for metal build-up on urban road surfaces based on traffic and land use characteristics.

    PubMed

    Gunawardena, Janaka; Ziyath, Abdul M; Egodawatta, Prasanna; Ayoko, Godwin A; Goonetilleke, Ashantha

    2014-03-01

    The study investigated the influence of traffic and land use parameters on metal build-up on urban road surfaces. Mathematical relationships were developed to predict metals originating from fuel combustion and vehicle wear. The analysis undertaken found that nickel and chromium originate from exhaust emissions, lead, copper and zinc from vehicle wear, cadmium from both exhaust and wear and manganese from geogenic sources. Land use does not demonstrate a clear pattern in relation to the metal build-up process, though its inherent characteristics such as traffic activities exert influence. The equation derived for fuel related metal load has high cross-validated coefficient of determination (Q(2)) and low Standard Error of Cross-Validation (SECV) values which indicates that the model is reliable, while the equation derived for wear-related metal load has low Q(2) and high SECV values suggesting its use only in preliminary investigations. Relative Prediction Error values for both equations are considered to be well within the error limits for a complex system such as an urban road surface. These equations will be beneficial for developing reliable stormwater treatment strategies in urban areas which specifically focus on mitigation of metal pollution. PMID:24268173

  4. A spatially distributed model for the assessment of land use impacts on stream temperature in small urban watersheds

    SciTech Connect

    Sun, Ning; Yearsley, John; Voisin, Nathalie; Lettenmaier, D. P.

    2015-05-15

    Stream temperatures in urban watersheds are influenced to a high degree by anthropogenic impacts related to changes in landscape, stream channel morphology, and climate. These impacts can occur at small time and length scales, hence require analytical tools that consider the influence of the hydrologic regime, energy fluxes, topography, channel morphology, and near-stream vegetation distribution. Here we describe a modeling system that integrates the Distributed Hydrologic Soil Vegetation Model, DHSVM, with the semi-Lagrangian stream temperature model RBM, which has the capability to simulate the hydrology and water temperature of urban streams at high time and space resolutions, as well as a representation of the effects of riparian shading on stream energetics. We demonstrate the modeling system through application to the Mercer Creek watershed, a small urban catchment near Bellevue, Washington. The results suggest that the model is able both to produce realistic streamflow predictions at fine temporal and spatial scales, and to provide spatially distributed water temperature predictions that are consistent with observations throughout a complex stream network. We use the modeling construct to characterize impacts of land use change and near-stream vegetation change on stream temperature throughout the Mercer Creek system. We then explore the sensitivity of stream temperature to land use changes and modifications in vegetation along the riparian corridor.

  5. Monitoring and predicting the fecal indicator bacteria concentrations from agricultural, mixed land use and urban stormwater runoff.

    PubMed

    Paule-Mercado, M A; Ventura, J S; Memon, S A; Jahng, D; Kang, J-H; Lee, C-H

    2016-04-15

    While the urban runoff are increasingly being studied as a source of fecal indicator bacteria (FIB), less is known about the occurrence of FIB in watershed with mixed land use and ongoing land use and land cover (LULC) change. In this study, Escherichia coli (EC) and fecal streptococcus (FS) were monitored from 2012 to 2013 in agricultural, mixed and urban LULC and analyzed according to the most probable number (MPN). Pearson correlation was used to determine the relationship between FIB and environmental parameters (physicochemical and hydrometeorological). Multiple linear regressions (MLR) were used to identify the significant parameters that affect the FIB concentrations and to predict the response of FIB in LULC change. Overall, the FIB concentrations were higher in urban LULC (EC=3.33-7.39; FS=3.30-7.36log10MPN/100mL) possibly because of runoff from commercial market and 100% impervious cover (IC). Also, during early-summer season; this reflects a greater persistence and growth rate of FIB in a warmer environment. During intra-event, however, the FIB concentrations varied according to site condition. Anthropogenic activities and IC influenced the correlation between the FIB concentrations and environmental parameters. Stormwater temperature (TEMP), turbidity, and TSS positively correlated with the FIB concentrations (p>0.01), since IC increased, implying an accumulation of bacterial sources in urban activities. TEMP, BOD5, turbidity, TSS, and antecedent dry days (ADD) were the most significant explanatory variables for FIB as determined in MLR, possibly because they promoted the FIB growth and survival. The model confirmed the FIB concentrations: EC (R(2)=0.71-0.85; NSE=0.72-0.86) and FS (R(2)=0.65-0.83; NSE=0.66-0.84) are predicted to increase due to urbanization. Therefore, these findings will help in stormwater monitoring strategies, designing the best management practice for FIB removal and as input data for stormwater models. PMID:26895037

  6. Determination of the Impact of Urbanization on Agricultural Lands using Multi-temporal Satellite Sensor Images

    NASA Astrophysics Data System (ADS)

    Kaya, S.; Alganci, U.; Sertel, E.; Ustundag, B.

    2015-12-01

    Throughout the history, agricultural activities have been performed close to urban areas. Main reason behind this phenomenon is the need of fast marketing of the agricultural production to urban residents and financial provision. Thus, using the areas nearby cities for agricultural activities brings out advantage of easy transportation of productions and fast marketing. For decades, heavy migration to cities has directly and negatively affected natural grasslands, forests and agricultural lands. This pressure has caused agricultural lands to be changed into urban areas. Dense urbanization causes increase in impervious surfaces, heat islands and many other problems in addition to destruction of agricultural lands. Considering the negative impacts of urbanization on agricultural lands and natural resources, a periodic monitoring of these changes becomes indisputably important. At this point, satellite images are known to be good data sources for land cover / use change monitoring with their fast data acquisition, large area coverages and temporal resolution properties. Classification of the satellite images provides thematic the land cover / use maps of the earth surface and changes can be determined with GIS based analysis multi-temporal maps. In this study, effects of heavy urbanization over agricultural lands in Istanbul, metropolitan city of Turkey, were investigated with use of multi-temporal Landsat TM satellite images acquired between 1984 and 2011. Images were geometrically registered to each other and classified using supervised maximum likelihood classification algorithm. Resulting thematic maps were exported to GIS environment and destructed agricultural lands by urbanization were determined using spatial analysis.

  7. The hydrometeorological implications of zoning laws: Can land use regulations of urban density and sprawl improve a city's resilience?

    NASA Astrophysics Data System (ADS)

    Bou-Zeid, E.; Ryu, Y. H.; Smith, J. A.; Newburn, D. A.

    2015-12-01

    The intensification of heat waves and of the hydrological cycle due to global climate change pose particularly high risks to urban residents. Cities are already hotter than their surroundings due to the urban heat island effect and are known to result in local intensification of rainfall and flooding due to their coupled impacts on the surface and the lower atmosphere. These interacting local and global changes can adversely affect the health and well being of urban residents, and city administrators are increasing efforts to mitigate and adapt to the potential disruptions though various infrastructure and preparedness programs. However, as cities worldwide continue to expand, a key decision is how to manage that urban sprawl and regulate its spatial features to aid in the mitigation and adaptation effort. This study assesses whether alternative zoning regulations that modify the density and extent of a metropolitan region, but have a minimal impact on total population and demographic growth, have an appreciable impact on its response to extreme weather events, and as such, whether they can be used to increase urban resilience. We consider Baltimore (the city and its surrounding suburbs), which in 1967 adopted one of the first urban growth boundaries (UGBs) in the United States, as our test case. Departing from the urban extent circa 1900, we create alternative land use patterns that, compared to the actual current land use baseline, would have resulted from drastically different policy scenarios and approaches to zoning that the city would have undertaken. We consider various alternatives where the city is smaller and denser, due to stricter regulation, versus larger and less dense than the actual baseline, while maintaining the same total population. Our findings indicate that lower densities have significant benefits: compared to the current landscape and to denser patterns, they reduce both extreme temperatures during heat waves and spatio-temporal rainfall

  8. Monitoring Land Use Dynamics of Peri-Urban Agricultutre in Central Kenya with Rapideye Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Willkomm, M.; Dannenberg, P.

    2016-06-01

    The poster submitted to the ISPRS Congress 2016 in Prague illustrates the concept behind the research project in its initial stage. The project concerns recent dynamics of urban and peri-urban agriculture (PUA) in middle-size cities of central Kenya. On the date of submission, only general research ideas were presented due to the unavailability of remote sensing data at the early stage of the project.

  9. Remote sensing applications for urban planning - The LUMIS project. [Land Use Management Information System

    NASA Technical Reports Server (NTRS)

    Paul, C. K.; Landini, A. J.; Diegert, C.

    1975-01-01

    The Santa Monica mountains of Los Angeles consist primarily of complexly folded sedimentary marine strata with igneous and metamorphic rocks at the eastern end of the mountains. With the increased development of the Santa Monicas, a study was conducted to determine the critical land use data items in the mountains. Two information systems developed in parallel are described. One capitalizes on the City's present computer line printer system, and the second utilizes map overlay techniques on an interactive computer terminal. Results concerning population, housing, and land improvement illustrate the successful linking of ordinal and nominal data files in the interactive system.-

  10. Detecting agricultural to urban land use change from multi-temporal MSS digital data. [Salt Lake County, Utah

    NASA Technical Reports Server (NTRS)

    Ridd, M. K.; Merola, J. A.; Jaynes, R. A.

    1983-01-01

    Conversion of agricultural land to a variety of urban uses is a major problem along the Wasatch Front, Utah. Although LANDSAT MSS data is a relatively coarse tool for discriminating categories of change in urban-size plots, its availability prompts a thorough test of its power to detect change. The procedures being applied to a test area in Salt Lake County, Utah, where the land conversion problem is acute are presented. The identity of land uses before and after conversion was determined and digital procedures for doing so were compared. Several algorithms were compared, utilizing both raw data and preprocessed data. Verification of results involved high quality color infrared photography and field observation. Two data sets were digitally registered, specific change categories internally identified in the software, results tabulated by computer, and change maps printed at 1:24,000 scale.

  11. Fine-Scale Exposure to Allergenic Pollen in the Urban Environment: Evaluation of Land Use Regression Approach

    PubMed Central

    Hjort, Jan; Hugg, Timo T.; Antikainen, Harri; Rusanen, Jarmo; Sofiev, Mikhail; Kukkonen, Jaakko; Jaakkola, Maritta S.; Jaakkola, Jouni J.K.

    2015-01-01

    Background: Despite the recent developments in physically and chemically based analysis of atmospheric particles, no models exist for resolving the spatial variability of pollen concentration at urban scale. Objectives: We developed a land use regression (LUR) approach for predicting spatial fine-scale allergenic pollen concentrations in the Helsinki metropolitan area, Finland, and evaluated the performance of the models against available empirical data. Methods: We used grass pollen data monitored at 16 sites in an urban area during the peak pollen season and geospatial environmental data. The main statistical method was generalized linear model (GLM). Results: GLM-based LURs explained 79% of the spatial variation in the grass pollen data based on all samples, and 47% of the variation when samples from two sites with very high concentrations were excluded. In model evaluation, prediction errors ranged from 6% to 26% of the observed range of grass pollen concentrations. Our findings support the use of geospatial data–based statistical models to predict the spatial variation of allergenic grass pollen concentrations at intra-urban scales. A remote sensing–based vegetation index was the strongest predictor of pollen concentrations for exposure assessments at local scales. Conclusions: The LUR approach provides new opportunities to estimate the relations between environmental determinants and allergenic pollen concentration in human-modified environments at fine spatial scales. This approach could potentially be applied to estimate retrospectively pollen concentrations to be used for long-term exposure assessments. Citation: Hjort J, Hugg TT, Antikainen H, Rusanen J, Sofiev M, Kukkonen J, Jaakkola MS, Jaakkola JJ. 2016. Fine-scale exposure to allergenic pollen in the urban environment: evaluation of land use regression approach. Environ Health Perspect 124:619–626; http://dx.doi.org/10.1289/ehp.1509761 PMID:26452296

  12. Urban land use and geohazards in the Itanagar Capital city, Arunachal Pradesh, India: Need for geoethics in urban disaster resilience governance in a changing climate

    NASA Astrophysics Data System (ADS)

    Acharjee, Swapna

    2013-04-01

    The capital city, Itanagar, Arunachal Pradesh, India is exposed to the multiple geohazards as the city is located in the region which experiences extreme physical phenomenon due to changing climate in the tectonically active North-Eastern Himalayas. The geohazards in Itanagar includes landslides, floods, soil erosion and earthquakes. The high decadal growth rate of 111.36% in 1991-2001 census has brought in many challenges with respect to the capital city developmental planning. Due to rapid and haphazard growth in urban land use the people residing in the city are gradually becoming more vulnerable to the geohazards in the past decades. The city condition at present has raised issues of grave concern related to effective hazard management. It is observed that geoscientific approach is violated at many places in the urban developmental activities along the central spine, the National Highway-52A of the capital city. There is an urgent need of geoscientists to apprise the urban populace about land suitability and stability in terms of rock types, soil, slope, geomorphology, groundwater condition etc. and the vulnerability of the existing urban land use to landslides, flood, soil erosion and earthquakes. In this paper major issue, critical issues and elements at risk are discussed in the context of ethics in geohazard management and developmental planning for urban disaster resilience governance in a changing climate.

  13. Future Land Use and Concerns About the Idaho National Engineering and Environmental Laboratory: A Survey of Urban Dwellers.

    PubMed

    Burger; Roush; Wartenberg; Gochfeld

    1999-11-01

    / We examined environmental concerns and future land-use preferences of 487 people attending the Boise River Festival in Boise, Idaho, USA, about the Idaho National Engineering and Environmental Laboratory (INEEL), owned by the US Department of Energy (DOE). We were particularly interested in the perceptions of urban dwellers living at some distance from the facility, since attitudes and perceptions are usually examined for people living near such facilities. More than 50% of the people were most worried about contamination and about waste storage and transport, another 23% were concerned about human health and accidents and spills, and the rest listed other concerns such as jobs and the economy or education. When given a list of possible concerns, accidents and spills, storage of current nuclear materials, and storage of additional nuclear materials were rated the highest. Thus both open-ended and structured questions identified nuclear storage and accidents and spills as the most important concerns, even for people living far from a DOE site. The highest rated future land uses were: National Environmental Research Park, recreation (including hiking, camping, fishing and hunting), and returning the land to the Shoshone-Bannock tribes; the lowest rated future land uses were homes and increased nuclear waste storage. These relative rankings are similar to those obtained for other Idahoans living closer to the site and for people living near the Savannah River Site, another DOE facility in South Carolina. The concern expressed about accidents and spills and waste storage translated into a desire not to see additional waste brought to INEEL and a low rating for using INEEL for building homes.KEY WORDS: Future land use; Perceptions; Recreation; Hazardous waste; Department of Energy; Idaho National Engineering and Environmental Laboratory.http://link.springer-ny.com/link/service/journals/00267/bibs/24n4p532.html

  14. Hotspots of land use change in Europe

    NASA Astrophysics Data System (ADS)

    Kuemmerle, Tobias; Levers, Christian; Erb, Karlheinz; Estel, Stephan; Jepsen, Martin R.; Müller, Daniel; Plutzar, Christoph; Stürck, Julia; Verkerk, Pieter J.; Verburg, Peter H.; Reenberg, Anette

    2016-06-01

    Assessing changes in the extent and management intensity of land use is crucial to understanding land-system dynamics and their environmental and social outcomes. Yet, changes in the spatial patterns of land management intensity, and thus how they might relate to changes in the extent of land uses, remains unclear for many world regions. We compiled and analyzed high-resolution, spatially-explicit land-use change indicators capturing changes in both the extent and management intensity of cropland, grazing land, forests, and urban areas for all of Europe for the period 1990–2006. Based on these indicators, we identified hotspots of change and explored the spatial concordance of area versus intensity changes. We found a clear East–West divide with regard to agriculture, with stronger cropland declines and lower management intensity in the East compared to the West. Yet, these patterns were not uniform and diverging patterns of intensification in areas highly suitable for farming, and disintensification and cropland contraction in more marginal areas emerged. Despite the moderate overall rates of change, many regions in Europe fell into at least one land-use change hotspot during 1990–2006, often related to a spatial reorganization of land use (i.e., co-occurring area decline and intensification or co-occurring area increase and disintensification). Our analyses highlighted the diverse spatial patterns and heterogeneity of land-use changes in Europe, and the importance of jointly considering changes in the extent and management intensity of land use, as well as feedbacks among land-use sectors. Given this spatial differentiation of land-use change, and thus its environmental impacts, spatially-explicit assessments of land-use dynamics are important for context-specific, regionalized land-use policy making.

  15. SEDIMENT SOURCES IN AN URBANIZING, MIXED LAND-USE WATERSHED. (R825284)

    EPA Science Inventory

    Abstract

    The Issaquah Creek watershed is a rapidly urbanizing watershed of 144 km2 in western Washington, where sediment aggradation of the main channel and delivery of fine sediment into a large downstream lake have raised increasingly frequent concern...

  16. Spatiotemporal urban land use changes in the Changzhutan Region of Hunan Province in China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Changzhutan region in the north-central part of Hunan Province in China has experienced a rapid urbanization in the past few decades that has led to substantial changes in its environment. In 2007, the National Development and Reform Commission of China designated the metropolitan district of Ch...

  17. The Implementation of a Geospatial Information Technology (GIT)-Supported Land Use Change Curriculum with Urban Middle School Learners to Promote Spatial Thinking

    ERIC Educational Resources Information Center

    Bodzin, Alec M.

    2011-01-01

    This study investigated whether a geospatial information technology (GIT)-supported science curriculum helped students in an urban middle school understand land use change (LUC) concepts and enhanced their spatial thinking. Five 8th grade earth and space science classes in an urban middle school consisting of three different ability level tracks…

  18. Accounting for spatial effects in land use regression for urban air pollution modeling.

    PubMed

    Bertazzon, Stefania; Johnson, Markey; Eccles, Kristin; Kaplan, Gilaad G

    2015-01-01

    In order to accurately assess air pollution risks, health studies require spatially resolved pollution concentrations. Land-use regression (LUR) models estimate ambient concentrations at a fine spatial scale. However, spatial effects such as spatial non-stationarity and spatial autocorrelation can reduce the accuracy of LUR estimates by increasing regression errors and uncertainty; and statistical methods for resolving these effects--e.g., spatially autoregressive (SAR) and geographically weighted regression (GWR) models--may be difficult to apply simultaneously. We used an alternate approach to address spatial non-stationarity and spatial autocorrelation in LUR models for nitrogen dioxide. Traditional models were re-specified to include a variable capturing wind speed and direction, and re-fit as GWR models. Mean R(2) values for the resulting GWR-wind models (summer: 0.86, winter: 0.73) showed a 10-20% improvement over traditional LUR models. GWR-wind models effectively addressed both spatial effects and produced meaningful predictive models. These results suggest a useful method for improving spatially explicit models. PMID:26530819

  19. Future land use and concerns about the Idaho National Engineering and Environmental Laboratory: A survey of urban dwellers

    SciTech Connect

    Burger, J.; Roush, D.; Wartenberg, D.; Gochfeld, M.

    1999-11-01

    The authors examined environmental concerns and future land-use preferences of 487 people attending the Boise River Festival in Boise, Idaho, USA, about the Idaho National Engineering and Environmental Laboratory (NEEL), owned by the US Department of Energy (DOE). They were particularly interested in the perceptions of urban dwellers living at some distance from the facility, since attitudes and perceptions are usually examined for people living near such facilities. More than 50% of the people were most worried about contamination and about waste storage and transport, another 23% were concerned about human health and accidents and spills, and the rest listed other concerns such as jobs and the economy of education. When given a list of possible concerns, accidents and spills, storage of current nuclear materials, and storage of additional nuclear materials were rated the highest. Thus both open-ended and structured questions identified nuclear storage and accidents and spills as the most important concerns, even for people living far from a DOE site. The highest rated future land used were National Environmental Research Park, recreation, and returning the land to the Shoshone-Bannock tribes; the lowest rated future land uses were homes and increased nuclear waste storage. These relative rankings are similar to those obtained for other Idahoans living closer to the site and for the people living near the Savannah River Site. The concern expressed about accidents and spills and waste storage translated into a desire not to see additional waste brought to INEEL and a low rating for using INEEL for building homes.

  20. Project ATLANTA (Atlanta Land use Analysis: Temperature and Air Quality): Use of Remote Sensing and Modeling to Analyze How Urban Land Use Change Affects Meteorology and Air Quality Through Time

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.

    1999-01-01

    This paper presents an overview of Project ATLANTA (ATlanta Land use ANalysis: Temperature and Air-quality) which is an investigation that seeks to observe, measure, model, and analyze how the rapid growth of the Atlanta, Georgia metropolitan area since the early 1970's has impacted the region's climate and air quality. The primary objectives for this research effort are: (1) To investigate and model the relationships between land cover change in the Atlanta metropolitan, and the development of the urban heat island phenomenon through time; (2) To investigate and model the temporal relationships between Atlanta urban growth and land cover change on air quality; and (3) To model the overall effects of urban development on surface energy budget characteristics across the Atlanta urban landscape through time. Our key goal is to derive a better scientific understanding of how land cover changes associated with urbanization in the Atlanta area, principally in transforming forest lands to urban land covers through time, has, and will, effect local and regional climate, surface energy flux, and air quality characteristics. Allied with this goal is the prospect that the results from this research can be applied by urban planners, environmental managers and other decision-makers, for determining how urbanization has impacted the climate and overall environment of the Atlanta area. Multiscaled remote sensing data, particularly high resolution thermal infrared data, are integral to this study for the analysis of thermal energy fluxes across the Atlanta urban landscape.

  1. A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification

    SciTech Connect

    Paola, J.D.; Schowengerdt, R.A.

    1995-07-01

    A detailed comparison of the backpropagation neural network and maximum-likelihood classifiers for urban land use classification is presented in this paper. Landsat Thematic Mapper images of Tucson, Arizona, and Oakland, California, were used for this comparison. For the Tucson image, the percentage of matching pixels in the two classification maps was only 64.5%, while for the Oakland image it was 83.3%. Although the test site accuracies of the two Tucson maps were similar,the map produced by the neural network was visually more accurate; this difference is explained by examining class regions and density plots in the decision space and the continuous likelihood values produced by both classifiers. For the Oakland scene, the two maps were visually and numerically similar, although the neural network was superior in suppression of mixed pixel classification errors. From this analysis, the authors conclude that the neural network is more robust to training site heterogeneity and the use of class labels for land use that are mixtures of land cover spectral signatures. The differences between the two algorithms may be viewed, in part, as the differences between nonparametric (neural network) and parametric (maximum-likelihood) classifiers. Computationally, the backpropagation neural network is at a serious disadvantage to maximum-likelihood, taking nearly an order of magnitude more computing time when implemented n a serial workstation.

  2. Automobile dependence in cities: An international comparison of urban transport and land use patterns with implications for sustainability

    SciTech Connect

    Kenworthy, J.R.; Laube, F.B.

    1996-07-01

    Cities around the world are subject to increasing levels of environmental impact from dependence on the automobile. In the highly auto-dependent cities of the US and Australia, this is manifested in problems such as urban sprawl and its destruction of prime farming land and natural landscapes, photochemical smog that can be primarily attributed to auto emissions. On top of the more local impacts of the automobile, the global dimension should not be forgotten. Perhaps the two most pressing issues in this regard are the oil problem and the greenhouse problem. A comparison of global cities over the period 1980 to 1990 reveals large differences in automobile dependence with implications for the future sustainability of cities in different countries. This study explores some of the underlying land use, transport, and economic reasons for these different transport patterns. It briefly reviews what the sustainability agenda means for transport and land use patterns in cities and suggests a suite of targets or goals for sustainability by which cities might measure their current directions and plans.

  3. Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses.

    PubMed

    Trujillo-González, Juan Manuel; Torres-Mora, Marco Aurelio; Keesstra, Saskia; Brevik, Eric C; Jiménez-Ballesta, Raimundo

    2016-05-15

    Soil pollution is a key component of the land degradation process, but little is known about the impact of soil pollution on human health in the urban environment. The heavy metals Pb, Zn, Cu, Cr, Cd and Ni were analyzed by acid digestion (method EPA 3050B) and a total of 15 dust samples were collected from streets of three sectors of the city with different land uses; commercial, residential and a highway. The purpose was to measure the concentrations of heavy metals in road sediment samples taken from urban sites under different land uses, and to assess pollution through pollution indices, namely the ecological risk index and geoaccumulation index. Heavy metals concentrations (mg/kg) followed the following sequences for each sector: commercial sector Pb (1289.4)>Cu (490.2)>Zn (387.6)>Cr (60.2)>Ni (54.3); highway Zn (133.3)>Cu (126.3)>Pb (87.5)>Cr (9.4)>Ni (5.3); residential sector Zn (108.3)>Pb (26.0)>Cu (23.7)>Cr (7.3)>Ni (7.2). The geoaccumulation index indicated that the commercial sector was moderately to strongly polluted while the other sectors fell into the unpolluted category. Similarly, using the ecological risk index the commercial sector fell into the considerable category while the other sectors classified as low risk. Road dust increased along with city growth and its dynamics, additionally, road dust might cause a number of negative environmental impacts, therefore the monitoring this dust is crucial. PMID:26986764

  4. Urgency for sustainable development in coastal urban areas with reference to weather pattern, land use, and water quality.

    PubMed

    Sheela, A M; Letha, J; Swarnalatha, K; Baiju, K V; Sankar, Divya

    2014-05-01

    Water pollution is one of the most critical problems affecting mankind. Weather pattern and land use of catchment area have significant role in quality of water bodies. Due to climate change, there is frequent variation in weather pattern all over the world. There is also rapid change in land use due to increase in population and urbanization. The study was carried out to analyze the effect of change in weather pattern during the monsoon periods of 2008 and 2012 on water quality of a tropical coastal lake system. The nature and extent of variation in different water quality parameters namely electrical conductivity (EC), magnesium (Mg), sodium (Na), chloride (Cl), sulphate (SO4), turbidity, Secchi disk depth, biochemical oxygen demand (BOD), phosphate (PO4), calcium (Ca), and water temperature as well as the effect of various land use activities in the lake basin on water quality have also been studied. There is significant reduction in precipitation, EC, Mg, Na, Cl, SO4, turbidity, and Secchi disk depths whereas a significant rise in the BOD, PO4, Ca, and water temperature were observed in 2012. This significant reduction in electrical conductivity during 2012 revealed that because of less precipitation, the lake was separated from the sea by the sandbar during most of the monsoon period and thereby interrupted the natural flushing process. This caused the accumulation of organic matter including phosphate and thereby resulting reduction in clarity and chlorophyll-a (algae) in the lake. The unsustainable development activities of Thiruvanathapuram city are mainly responsible for the degradation of water bodies. The lack of maintenance and augmentation activities namely replacement of old pipes and periodical cleaning of pipe lines of the old sewer system in the city results in the bypass of sewage into water bodies. Because of the existence of the old sewerage system, no effort has been taken by the individual establishment/house of the city to provide their own

  5. Intra-urban variation of ultrafine particles as evaluated by process related land use and pollutant driven regression modelling.

    PubMed

    Ghassoun, Yahya; Ruths, Matthias; Löwner, Marc-Oliver; Weber, Stephan

    2015-12-01

    The microscale intra-urban variation of ultrafine particle concentrations (UFP, diameter Dp<100 nm) and particle number size distributions was studied by two statistical regression approaches. The models were applied to a 1 km2 study area in Braunschweig, Germany. A land use regression model (LUR) using different urban morphology parameters as input is compared to a multiple regression type model driven by pollutant and meteorological parameters (PDR). While the LUR model was trained with UFP concentration the PDR model was trained with measured particle number size distribution data. The UFP concentration was then calculated from the modelled size distributions. Both statistical approaches include explanatory variables that try to address the 'process chain' of particle emission, dilution and deposition. LUR explained 74% and 85% of the variance of UFP for the full data set with a root mean square error (RMSE) of 668 cm(-3) and 1639 cm(-3) in summer and winter, respectively. PDR explained 56% and 74% of the variance with RMSE of 4066 cm(-3) and 6030 cm(-3) in summer and winter, respectively. Both models are capable to depict the spatial variation of UFP across the study area and in different outdoor microenvironments. The deviation from measured UFP concentrations is smaller in the LUR model than in PDR. The PDR model is well suited to predict urban particle number size distributions from the explanatory variables (total particle number concentration, black carbon and wind speed). The urban morphology parameters in the LUR model are able to resolve size dependent concentration variations but not as adequately as PDR. PMID:26204051

  6. Monitoring Land Use/Land Cover Changes in a River Basin due to Urbanization using Remote Sensing and GIS Approach

    NASA Astrophysics Data System (ADS)

    Shukla, S.; Khire, M. V.; Gedam, S. S.

    2014-11-01

    Faster pace of urbanization, industrialization, unplanned infrastructure developments and extensive agriculture result in the rapid changes in the Land Use/Land Cover (LU/LC) of the sub-tropical river basins. Study of LU/LC transformations in a river basin is crucial for vulnerability assessment and proper management of the natural resources of a river basin. Remote sensing technology is very promising in mapping the LU/LC distribution of a large region on different spatio-temporal scales. The present study is intended to understand the LU/LC changes in the Upper Bhima river basin due to urbanization using modern geospatial techniques such as remote sensing and GIS. In this study, the Upper Bhima river basin is divided into three adjacent sub-basins: Mula-Mutha sub-basin (ubanized), Bhima sub-basin (semi-urbanized) and Ghod sub-basin (unurbanized). Time series LU/LC maps were prepared for the study area for a period of 1980, 2002 and 2009 using satellite datasets viz. Landsat MSS (October, 1980), Landsat ETM+ (October, 2002) and IRS LISS III (October 2008 and November 2009). All the satellite images were classified into five LU/LC classes viz. built-up lands, agricultural lands, waterbodies, forests and wastelands using supervised classification approach. Post classification change detection method was used to understand the LU/LC changes in the study area. Results reveal that built up lands, waterbodies and agricultural lands are increasing in all the three sub-basins of the study area at the cost of decreasing forests and wastelands. But the change is more drastic in urbanized Mula-Mutha sub-basin compared to the other two sub-basins.

  7. Impacts of land use/land cover change on regional carbon dynamics: an investigation along an urban-to-rural gradient in Massachusetts, USA

    NASA Astrophysics Data System (ADS)

    Dunn, Allison L.; Briber, Brittain M.; Reinmann, Andrew B.; Hutyra, Lucy R.

    2016-04-01

    More than half the world's population lives in cities, a fraction which is projected to increase over the next century. Land use and land cover changes associated with the urbanization process have important implications for vegetation and soil carbon cycling. The impact of urbanization on carbon dynamics is poorly understood, representing a major uncertainty in constraining regional carbon budgets. We initiated a suite of field measurements, remote sensing analyses, and modeling activities in order to investigate how urbanization alters carbon dynamics. We found that conversion of forest to urban land uses resulted in a decrease in overall biomass but a marked increase in productivity of the remaining vegetation. We also found that land use patterns had a profound impact on atmospheric carbon dioxide concentrations on daily, seasonal, and annual timescales. Our results suggest that urbanization has a profound impact on regional carbon dynamics that extends from the time of land use change out well into the future, and the trajectory of urban carbon exchange in the future strongly depends on development patterns.

  8. Analysis of Urban-Rural Land-Use Change during 1995-2006 and Its Policy Dimensional Driving Forces in Chongqing, China

    PubMed Central

    Long, Hualou; Wu, Xiuqin; Wang, Wenjie; Dong, Guihua

    2008-01-01

    This paper analyzes the urban-rural land-use change of Chongqing and its policy dimensional driving forces from 1995 to 2006, using high-resolution Landsat TM (Thematic Mapper) data of 1995, 2000 and 2006, and socio-economic data from both research institutes and government departments. The outcomes indicated that urban-rural land-use change in Chongqing can be characterized by two major trends: First, the non-agricultural land increased substantially from 1995 to 2006, thus causing agricultural land especially farmland to decrease continuously. Second, the aggregation index of urban settlements and rural settlements shows that local urban-rural development experienced a process of changing from aggregation (1995-2000) to decentralization (2000-2006). Chongqing is a special area getting immersed in many important policies, which include the establishment of the municipality directly under the Central Government, the building of Three Gorges Dam Project, the Western China Development Program and the Grain-for-Green Programme, and bring about tremendous influences on its land-use change. By analyzing Chongqing's land-use change and its policy driving forces, some implications for its new policy of ‘Urban-rural Integrated Reform’ are obtained. That is more attentions need to be paid to curbing excessive and idle rural housing and consolidating rural construction land, and to laying out a scientific land-use plan for its rural areas taking such rural land-use issues as farmland occupation and rural housing land management into accounts, so as to coordinate and balance the urban-rural development.

  9. Suspended sediment export in five intensive agricultural river catchments with contrasting land use and soil drainage characteristics

    NASA Astrophysics Data System (ADS)

    Sherriff, Sophie; Rowan, John; Melland, Alice; Jordan, Phil; Fenton, Owen; hUallacháin, Daire Ó.

    2015-04-01

    Soil erosion and sediment loss from land can have a negative impact on the chemical and ecological quality of freshwater resources. In catchments dominated by agriculture, prediction of soil erosion risk is complex due to the interaction of physical characteristics such as topography, soil erodibility, hydrological connectivity and climate. Robust measurement approaches facilitate the assessment of sediment loss magnitudes in relation to a range of agricultural settings. These approaches improve our understanding of critical sediment transfer periods and inform development of evidence-based and cost-effective management strategies. The aim of this study was to i) assess the efficacy of out-of-channel (ex-situ) suspended sediment measurement approaches, ii) to quantify the variability of sediment exported from five river catchments with varying hydrology and agricultural land uses over multiple years and iii) to investigate trends in relation to physical and land use characteristics when sediment data were compared between catchments. Sediment data were collected in five intensive agricultural river catchments in Ireland (3-11 km2) which featured contrasting land uses (predominantly intensive grassland or arable) and soil drainage classes (well, moderate and poor). High-resolution suspended sediment concentration data (SSC - using a calibrated turbidity proxy) were collected ex-situ and combined with in-stream discharge data measured at each catchment outlet to estimate suspended sediment yield (SSY - t km-2 yr-1). In two catchments additional in-stream turbidity monitoring equipment replicated ex-situ measurements including site specific calibration of individual in-stream and ex-situ turbidity probes. Depth-integrated samples were collected to assess the accuracy of both approaches. Method comparison results showed that true SSC values (from depth-integrated sampling) were predominantly within the 95% confidence interval of ex-situ predicted SSC consequently

  10. Analysis of Land Use/Land Cover Changes Using Remote Sensing Data and GIS at an Urban Area, Tirupati, India

    PubMed Central

    Mallupattu, Praveen Kumar; Sreenivasula Reddy, Jayarama Reddy

    2013-01-01

    Land use/land cover (LU/LC) changes were determined in an urban area, Tirupati, from 1976 to 2003 by using Geographical Information Systems (GISs) and remote sensing technology. These studies were employed by using the Survey of India topographic map 57 O/6 and the remote sensing data of LISS III and PAN of IRS ID of 2003. The study area was classified into eight categories on the basis of field study, geographical conditions, and remote sensing data. The comparison of LU/LC in 1976 and 2003 derived from toposheet and satellite imagery interpretation indicates that there is a significant increase in built-up area, open forest, plantation, and other lands. It is also noted that substantial amount of agriculture land, water spread area, and dense forest area vanished during the period of study which may be due to rapid urbanization of the study area. No mining activities were found in the study area in 1976, but a small addition of mining land was found in 2003. PMID:23781152

  11. Land use regression modeling of intra-urban residential variability in multiple traffic-related air pollutants

    PubMed Central

    Clougherty, Jane E; Wright, Rosalind J; Baxter, Lisa K; Levy, Jonathan I

    2008-01-01

    Background There is a growing body of literature linking GIS-based measures of traffic density to asthma and other respiratory outcomes. However, no consensus exists on which traffic indicators best capture variability in different pollutants or within different settings. As part of a study on childhood asthma etiology, we examined variability in outdoor concentrations of multiple traffic-related air pollutants within urban communities, using a range of GIS-based predictors and land use regression techniques. Methods We measured fine particulate matter (PM2.5), nitrogen dioxide (NO2), and elemental carbon (EC) outside 44 homes representing a range of traffic densities and neighborhoods across Boston, Massachusetts and nearby communities. Multiple three to four-day average samples were collected at each home during winters and summers from 2003 to 2005. Traffic indicators were derived using Massachusetts Highway Department data and direct traffic counts. Multivariate regression analyses were performed separately for each pollutant, using traffic indicators, land use, meteorology, site characteristics, and central site concentrations. Results PM2.5 was strongly associated with the central site monitor (R2 = 0.68). Additional variability was explained by total roadway length within 100 m of the home, smoking or grilling near the monitor, and block-group population density (R2 = 0.76). EC showed greater spatial variability, especially during winter months, and was predicted by roadway length within 200 m of the home. The influence of traffic was greater under low wind speed conditions, and concentrations were lower during summer (R2 = 0.52). NO2 showed significant spatial variability, predicted by population density and roadway length within 50 m of the home, modified by site characteristics (obstruction), and with higher concentrations during summer (R2 = 0.56). Conclusion Each pollutant examined displayed somewhat different spatial patterns within urban neighborhoods

  12. Impact of the Spatial Arrangement of Agricultural Land Use on Ecosystems Services and Peri-Urban Livelihoods at the Landscape Scale.

    NASA Astrophysics Data System (ADS)

    Inkoom, J. N.; Fürst, C.

    2014-12-01

    The relationship between agricultural land uses (ALU) and their impact on ecosystems services (ES) including biodiversity conservation is complex. This complexity has been augmented by isolated research on the impact of ALU on the landscape's capacity to provide ES in most climatically vulnerable areas of Sub-Saharan Africa. Though a considerable number of studies emphasise the nexus between specific land use types and their impact on ES, a sufficient modelling basis for an empirical consideration of spatial interactions between different agricultural land uses at the landscape scale within peri-urban areas in Sub-Saharan Africa is consistently missing. The need to assess and address significant issues regarding size, shape, spatial location, and interactivity of different land use patches in assessing land use interactions and their impact on ecosystem service provision necessitated this investigation. To formulate a methodology to correspond to this complexity, ES obtained from a characteristically agricultural and urbanizing landscapes were mapped using analytical hierarchical processes and management expert approaches. Further, landscape metrics and mean enrichment factor approaches are explored as neighbourhood assessment tools aimed at assessing the mutual impact gradient of agricultural and adjacent urban land uses on ES provision. Implementation is undertaken in GISCAME using a 2012 rapideye image classification and primary data collected on selected ES from local farmers within the VEA catchment of Upper East, Ghana. The outcome aims to provide the understanding of expected trade-offs and synergies varying ALU could pose to current and potential ES provision within urbanizing landscapes. Policy implications for observed trade-offs and synergies of ALU interaction on ES, rural livelihoods, and food security are communicated to farmers and decision makers. Keywords: Agricultural land use, neighbourhood interaction, ecosystems services, livelihoods, GISCAME.

  13. Advanced Land use Classification Considering Intra-annual Cropping patterns and Urbanization processes as a Contribution to Improve Knowledge base for Water Management.

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Tischbein, B.; Beg, M. K.

    2014-12-01

    Land use and its spatial pattern and dynamics strongly influence water resources and water demand. Therefore, integrated water resources management coordinating water supply and demand is using modeling tools in order to assess the impact of land use changes on the water balance and to conceive infrastructural and operational measures to cope with these impacts. As a consequence, the appropriateness of water management measures depends on the reliability of the output gained by the modeling tools which in turn is highly determined by the capability of the models and the quality of model inputs. This research combines the Soil and Water Assessment Tool (SWAT) and an advanced procedure for spatio-temporal detection of land use dynamics and irrigation in the Upper Kharun basin in the Chhattisgarh State in India. An on-screen visual digitization technique using the Landsat satellite images and their derivatives (NDVI and tasseled cap indices) were employed for land use classification. The land use maps prepared at different time steps within a year can be combined to produce a single multi-temporal land use classification. This approach captures and integrates all the major variations within a year in a single map and hence better represents an area with multiple crop rotations and different levels of urbanization. Urbanization and intensification of irrigation by increasing use of groundwater are major land use processes at the global scale as well as in the study region. The study reveals that an increasing pumping rate of groundwater for irrigation is the main reason for decreasing the groundwater contribution to streamflow and subsequently a lowering in discharge and water yield. On the other hand, annual surface runoff is increased significantly by an expansion in built up areas over the decades in the study area. This information (i) enhances the understanding of land use changes and their relevant drivers, and (ii) facilitates the introduction of best water and

  14. Dynamic modelling of future land use change under urbanization and climate change pressures: application to a case study in central Belgium

    NASA Astrophysics Data System (ADS)

    Jacquemin, I.; Fontaine, C. M.; Dendoncker, N.; François, L.; De Vreese, R.; Marek, A.; Mortelmans, D.; Van Herzele, A.; Devillet, G.

    2012-04-01

    version of the model developed for natural vegetation has been upgraded to include crop systems and pastures. The ABM (Murray-Rust, Journal of Land Use Science, 6(2-3):83-99, 2011) describes the management choices (e.g., crop rotation, intensive agriculture or organic farming, etc) for each land plot, as well as the possible change in their affectation (e.g., conversion of farm fields to residential areas in response to urbanization), under different socio-economic contexts described in the storyline of three scenarios depicting general societal orientations (business-as-usual; market oriented; sustainability oriented). As a result, the ABM produces a dynamic evolution of land use and management options to be passed on to the DVM for further analysis. The outputs from the DVM allow evaluating quantitatively the provision of EGS by each land plot. This DVM-ABM modelling tool is thus able to describe the future evolution of land use and land cover, as well as of EGS production, in the context of socio-economic scenarios. The model is applied to a case study area covering four municipalities located in central Belgium close to Brussels and Leuven. The area is mostly composed of agricultural fields (crops and meadows), residential areas and a large protected forest (Meerdaalbos) and is subject to intense urbanization pressure due to the proximity to Brussels.

  15. A hybrid land use regression/AERMOD model for predicting intra-urban variation in PM2.5

    NASA Astrophysics Data System (ADS)

    Michanowicz, Drew R.; Shmool, Jessie L. C.; Tunno, Brett J.; Tripathy, Sheila; Gillooly, Sara; Kinnee, Ellen; Clougherty, Jane E.

    2016-04-01

    Characterizing near-source spatio-temporal variation is a long -standing challenge in air pollution epidemiology, and common intra-urban modeling approaches [e.g., land use regression (LUR)], do not account for short-term meteorological variation. Atmospheric dispersion modeling approaches, such as AERMOD, can account for near-source pollutant behavior by capturing source-meteorological interactions, but requires external validation and resolved background concentrations. In this study, we integrate AERMOD-based predictions for source-specific fine particle (PM2.5) concentrations into LUR models derived from total ambient PM2.5 measured at 36 unique sites selected to represent different source and elevation profiles, during summer and winter, 2012-2013 in Pittsburgh, Pennsylvania (PA). We modeled PM2.5 emissions from 207 local stationary sources in AERMOD, utilizing the monitoring locations as receptors, and hourly meteorological information matching each sampling period. Finally, we compare results of the integrated LUR/AERMOD hybrid model to those of the AERMOD + background and standard LUR models, at the full domain scale and within a 5 km2 sub-domain surrounding a large industrial facility. The hybrid model improved out-of-sample prediction accuracy by 2-10% over LUR alone, though performance differed by season, in part due to within-season temporal variability. We found differences up to 10 μg/m3 in predicted concentrations, and observed the largest differences within the industrial sub-domain. LUR underestimated concentrations from 500 to 2500 m downwind of major sources. The hybrid modeling approach we developed may help to improve intra-urban exposure estimates, particularly in regions of large industrial sources, sharp elevation gradients, or complex meteorology (e.g., frequent inversion events), such as Pittsburgh, PA. More broadly, the approach may inform the development of spatio-temporal modeling frameworks for air pollution exposure assessment for

  16. Use of an urban intensity index to assess urban effects on streams in three contrasting environmental settings

    USGS Publications Warehouse

    Tate, C.M.; Cuffney, T.F.; McMahon, G.; Giddings, E.M.P.; Coles, J.F.; Zappia, H.

    2005-01-01

    To assess the effects of urbanization on assemblages (fish, invertebrate, and algal), physical habitat, and water chemistry, we investigated the relations among varying intensities of basin urbanization and stream ecology in three metropolitan areas: the humid northeastern United States around Boston, Massachusetts; the humid southeastern United States around Birmingham, Alabama; and the semiarid western United States around Salt Lake City, Utah. A consistent process was used to develop a multimetric urban intensity index (UII) based on locally important variables (land-use/land-cover, infrastructure, and socioeconomic variables) in each study area and a common urban intensity index (CUII) based on a subset of five variables common to all study areas. The UII was used to characterize 30 basins along an urban gradient in each metropolitan area. Study basins were located within a single ecoregion in each of the metropolitan areas. The UII, ecoregions, and site characteristics provided a method for limiting the variability of natural landscape characteristics while assessing the magnitude of urban effects. Conditions in Salt Lake City (semiarid climate and water diversions) and Birmingham (topography) required nesting sites within the same basin. The UII and CUII facilitated comparisons of aquatic assemblages response to urbanization across different environmental settings. ?? 2005 by the American Fisheries Society.

  17. Remote Sensing of Urban Land Cover/Land Use Change, Surface Thermal Responses, and Potential Meteorological and Climate Change Impacts

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Jedlovec, Gary; Meyer, Paul

    2011-01-01

    City growth influences the development of the urban heat island (UHI), but the effect that local meteorology has on the UHI is less well known. This paper presents some preliminary findings from a study that uses multitemporal Landsat TM and ASTER data to evaluate land cover/land use change (LULCC) over the NASA Marshall Space Flight Center (MFSC) and its Huntsville, AL metropolitan area. Landsat NLCD data for 1992 and 2001 have been used to evaluate LULCC for MSFC and the surrounding urban area. Land surface temperature (LST) and emissivity derived from NLCD data have also been analyzed to assess changes in these parameters in relation to LULCC. Additionally, LULCC, LST, and emissivity have been identified from ASTER data from 2001 and 2011 to provide a comparison with the 2001 NLCD and as a measure of current conditions within the study area. As anticipated, the multi-temporal NLCD and ASTER data show that significant changes have occurred in land covers, LST, and emissivity within and around MSFC. The patterns and arrangement of these changes, however, is significant because the juxtaposition of urban land covers within and outside of MSFC provides insight on what impacts at a local to regional scale, the inter-linkage of these changes potentially have on meteorology. To further analyze these interactions between LULCC, LST, and emissivity with the lower atmosphere, a network of eleven weather stations has been established across the MSFC property. These weather stations provide data at a 10 minute interval, and these data are uplinked for use by MSFC facilities operations and the National Weather Service. The weather data are also integrated within a larger network of meteorological stations across north Alabama. Given that the MSFC weather stations will operate for an extended period of time, they can be used to evaluate how the building of new structures, and changes in roadways, and green spaces as identified in the MSFC master plan for the future, will

  18. Remote Sensing of Urban Land Cover/Land Use Change, Surface Thermal Responses, and Potential Meteorological and Climate Change Impacts

    NASA Astrophysics Data System (ADS)

    Quattrochi, D. A.; Jedlovec, G.; Meyer, P. J.

    2011-12-01

    City growth influences the development of the urban heat island (UHI), but the effect that local meteorology has on the UHI is less well known. This paper presents some preliminary findings from a study that uses multitemporal Landsat TM and ASTER data to evaluate land cover/land use change (LULCC) over the NASA Marshall Space Flight Center (MFSC) and its Huntsville, AL metropolitan area. Landsat NLCD data for 1992 and 2001 have been used to evaluate LULCC for MSFC and the surrounding urban area. Land surface temperature (LST) and emissivity derived from NLCD data have also been analyzed to assess changes in these parameters in relation to LULCC. Additionally, LULCC, LST, and emissivity have been identified from ASTER data from 2001 and 2011 to provide a comparison with the 2001 NLCD and as a measure of current conditions within the study area. As anticipated, the multi-temporal NLCD and ASTER data show that significant changes have occurred in land covers, LST, and emissivity within and around MSFC. The patterns and arrangement of these changes, however, is significant because the juxtaposition of urban land covers within and outside of MSFC provides insight on what impacts at a local to regional scale, the inter-linkage of these changes potentially have on meteorology. To further analyze these interactions between LULCC, LST, and emissivity with the lower atmosphere, a network of eleven weather stations has been established across the MSFC property. These weather stations provide data at a 10 minute interval, and these data are uplinked for use by MSFC facilities operations and the National Weather Service. The weather data are also integrated within a larger network of meteorological stations across north Alabama. Given that the MSFC weather stations will operate for an extended period of time, they can be used to evaluate how the building of new structures, and changes in roadways, and green spaces as identified in the MSFC master plan for the future, will

  19. Evaluation of land-use regression models used to predict air quality concentrations in an urban area

    NASA Astrophysics Data System (ADS)

    Johnson, Markey; Isakov, V.; Touma, J. S.; Mukerjee, S.; Özkaynak, H.

    2010-09-01

    Cohort studies designed to estimate human health effects of exposures to urban pollutants require accurate determination of ambient concentrations in order to minimize exposure misclassification errors. However, it is often difficult to collect concentration information at each study subject location. In the absence of complete subject-specific measurements, land-use regression (LUR) models have frequently been used for estimating individual levels of exposures to ambient air pollution. The LUR models, however, have several limitations mainly dealing with extensive monitoring data needs and challenges involved in their broader applicability to other locations. In contrast, air quality models can provide high-resolution source-concentration linkages for multiple pollutants, but require detailed emissions and meteorological information. In this study, first we predicted air quality concentrations of PM 2.5, NO x, and benzene in New Haven, CT using hybrid modeling techniques based on CMAQ and AERMOD model results. Next, we used these values as pseudo-observations to develop and evaluate the different LUR models built using alternative numbers of (training) sites (ranging from 25 to 285 locations out of the total 318 receptors). We then evaluated the fitted LUR models using various approaches, including: 1) internal "Leave-One-Out-Cross-Validation" (LOOCV) procedure within the "training" sites selected; and 2) "Hold-Out" evaluation procedure, where we set aside 33-293 tests sites as independent datasets for external model evaluation. LUR models appeared to perform well in the training datasets. However, when these LUR models were tested against independent hold out (test) datasets, their performance diminished considerably. Our results confirm the challenges facing the LUR community in attempting to fit empirical response surfaces to spatially- and temporally-varying pollution levels using LUR techniques that are site dependent. These results also illustrate the

  20. Modeling concentration patterns of agricultural and urban micropollutants in surface waters in catchment of mixed land use

    NASA Astrophysics Data System (ADS)

    Stamm, C.; Scheidegger, R.; Bader, H. P.

    2012-04-01

    Organic micropollutants detected in surface waters can originate from agricultural and urban sources. Depending on the use of the compounds, the temporal loss patterns vary substantially. Therefore models that simulate water quality in watersheds of mixed land use have to account for all relevant sources. We present here simulation results of a transport model that describes the dynamic of several biocidal compounds as well as the behaviour of human pharmaceuticals. The model consists of the sub-model Rexpo simulating the transfer of the compounds from the point of application to the stream in semi-lumped manner. The river sub-model, which is programmed in the Aquasim software, describes the fate of the compounds in the stream. Both sub-models are process-based. The Rexpo sub-model was calibrated at the scale of a small catchment of 25 km2, which is inhabited by about 12'000 people. Based on the resulting model parameters the loss dynamics of two herbicides (atrazine, isoproturon) and a compound of mixed urban and agricultural use (diuron) were predicted for two nested catchment of 212 and 1696 km2, respectively. The model output was compared to observed time-series of concentrations and loads obtained for the entire year 2009. Additionally, the fate of two pharmaceuticals with constant input (carbamazepine, diclofenac) was simulated for improving the understanding of possible degradation processes. The simulated loads and concentrations of the biocidal compounds differed by a factor of 2 to 3 from the observations. In general, the seasonal patterns were well captured by the model. However, a detailed analysis of the seasonality revealed substantial input uncertainty for the application of the compounds. The model results also demonstrated that for the dynamics of rain-driven losses of biocidal compounds the semi-lumped approach of the Rexpo sub-model was sufficient. Only for simulating the photolytic degradation of diclofenac in the stream the detailed

  1. Linking river nutrient concentrations to land use and rainfall in a paddy agriculture-urban area gradient watershed in southeast China.

    PubMed

    Xia, Yongqiu; Ti, Chaopu; She, Dongli; Yan, Xiaoyuan

    2016-10-01

    The effects of land use and land-use changes on river nutrient concentrations are not well understood, especially in the watersheds of developing countries that have a mixed land use of rice paddy fields and developing urban surfaces. Here, we present a three-year study of a paddy agricultural-urban area gradient watershed in southeast China. The annual anthropogenic nitrogen (N) input from the agricultural region to the urban region was high, yet the results showed that the monthly nutrient concentrations in the river were low in the rainy seasons. The nutrient concentrations decreased continuously as the river water passed through the traditional agriculture region (TAR; paddy rice and wheat rotation) and increased substantially in the city region (CR). The traditional agricultural reference region exported most of the nutrient loads at high flows (>1mmd(-1)), the intensified agricultural region (IAR, aquaculture and poultry farming) exported most of the nutrient loads at moderate flows (between 0.5 and 1mmd(-1)), and the CR reference area exported most of the nutrient loads under low to moderate flows. We developed a statistical model to link variations in the nutrient concentrations to the proportion of land-use types and rainfall. The statistical results showed that impervious surfaces, which we interpret as a proxy for urban activities including sewage disposal, were the most important drivers of nutrient concentrations, whereas water surfaces accounted for a substantial proportion of the nutrient sinks. Therefore, to efficiently reduce water pollution, sewage from urban areas must be addressed as a priority, although wetland restoration could also achieve substantial pollutant removal. PMID:27289141

  2. Urban stream syndrome in a small, lightly developed watershed: a statistical analysis of water chemistry parameters, land use patterns, and natural sources.

    PubMed

    Halstead, Judith A; Kliman, Sabrina; Berheide, Catherine White; Chaucer, Alexander; Cock-Esteb, Alicea

    2014-06-01

    The relationships among land use patterns, geology, soil, and major solute concentrations in stream water for eight tributaries of the Kayaderosseras Creek watershed in Saratoga County, NY, were investigated using Pearson correlation coefficients and multivariate regression analysis. Sub-watersheds corresponding to each sampling site were delineated, and land use patterns were determined for each of the eight sub-watersheds using GIS. Four land use categories (urban development, agriculture, forests, and wetlands) constituted more than 99 % of the land in the sub-watersheds. Eleven water chemistry parameters were highly and positively correlated with each other and urban development. Multivariate regression models indicated urban development was the most powerful predictor for the same eleven parameters (conductivity, TN, TP, NO[Formula: see text], Cl(-), HCO(-)3, SO9(2-)4, Na(+), K(+), Ca(2+), and Mg(2+)). Adjusted R(2) values, ranging from 19 to 91 %, indicated that these models explained an average of 64 % of the variance in these 11 parameters across the samples and 70 % when Mg(2+) was omitted. The more common R (2), ranging from 29 to 92 %, averaged 68 % for these 11 parameters and 72 % when Mg(2+) was omitted. Water quality improved most with forest coverage in stream watersheds. The strong associations between water quality variables and urban development indicated an urban source for these 11 water quality parameters at all eight sampling sites was likely, suggesting that urban stream syndrome can be detected even on a relatively small scale in a lightly developed area. Possible urban sources of Ca(2+) and HCO(-)3 are suggested. PMID:24554019

  3. Simulation of Urban Heat Island Mitigation Strategies in Atlanta, GA Using High-Resolution Land Use/Land Cover Data Set to Enhance Meteorological Modeling

    NASA Technical Reports Server (NTRS)

    Crosson, William L.; Dembek, Scott; Estes, Maurice G., Jr.; Limaye, Ashutosh S.; Lapenta, William; Quattrochi, Dale A.; Johnson, Hoyt; Khan, Maudood

    2006-01-01

    The specification of land use/land cover (LULC) and associated land surface parameters in meteorological models at all scales has a major influence on modeled surface energy fluxes and boundary layer states. In urban areas, accurate representation of the land surface may be even more important than in undeveloped regions due to the large heterogeneity within the urban area. Deficiencies in the characterization of the land surface related to the spatial or temporal resolution of the data, the number of LULC classes defined, the accuracy with which they are defined, or the degree of heterogeneity of the land surface properties within each class may degrade the performance of the models. In this study, an experiment was conducted to test a new high-resolution LULC data set for meteorological simulations for the Atlanta, Georgia metropolitan area using a mesoscale meteorological model and to evaluate the effects of urban heat island (UHI) mitigation strategies on modeled meteorology for 2030. Simulation results showed that use of the new LULC data set reduced a major deficiency of the land use data used previously, specifically the poor representation of urban and suburban land use. Performance of the meteorological model improved substantially, with the overall daytime cold bias reduced by over 30%. UHI mitigation strategies were projected to offset much of a predicted urban warming between 2000 and 2030. In fact, for the urban core, the cooling due to UHI mitigation strategies was slightly greater than the warming associated with urbanization over this period. For the larger metropolitan area, cooling only partially offset the projected warming trend.

  4. Impact of urbanization and land-use/land-cover change on diurnal temperature range: a case study of tropical urban airshed of India using remote sensing data.

    PubMed

    Mohan, Manju; Kandya, Anurag

    2015-02-15

    Diurnal temperature range (DTR) is an important climate change index. Its knowledge is important to a range of issues and themes in earth sciences central to urban climatology and human-environment interactions. The present study investigates the effect of urbanization on the land surface temperature (LST) based DTR. This study presents spatial and temporal variations of satellite based estimates of annually averaged DTR over megacity Delhi, the capital of India, which are shown for a period of 11 years during 2001-2011 and analyzes this with regard to its land-use/land-cover (LU/LC) changes and population growth. Delhi which witnessed massive urbanization in terms of population growth (decadal growth rate of Delhi during 2001-2011 was 20.96%) and major transformations in the LU/LC (built-up area crossed more than 53%) are experiencing severity in its micro and macroclimate. There was a consistent increase in the areas experiencing DTR below 11°C which typically resembled the 'urban class' viz. from 26.4% in the year 2001 to 65.3% in the year 2011 and subsequently the DTR of entire Delhi which was 12.48°C in the year 2001 gradually reduced to 10.34°C in the year 2011, exhibiting a significant decreasing trend. Rapidly urbanizing areas like Rohini, Dwarka, Vasant Kunj, Kaushambi, Khanjhawala Village, IIT, Safdarjung Airport, etc. registered a significant decreasing trend in the DTR. In the background of the converging DTR, which was primarily due to the increase in the minimum temperatures, a grim situation in terms of potentially net increase in the heat-related mortality rate especially for the young children below 15years of age is envisaged for Delhi. Considering the earlier findings that the level of risk of death remained the highest and longest for Delhi, in comparison to megacities like Sao Paulo and London, the study calls for strong and urgent heat island mitigation measures. PMID:25437763

  5. Data concurrency is required for estimating urban heat island intensity.

    PubMed

    Zhao, Shuqing; Zhou, Decheng; Liu, Shuguang

    2016-01-01

    Urban heat island (UHI) can generate profound impacts on socioeconomics, human life, and the environment. Most previous studies have estimated UHI intensity using outdated urban extent maps to define urban and its surrounding areas, and the impacts of urban boundary expansion have never been quantified. Here, we assess the possible biases in UHI intensity estimates induced by outdated urban boundary maps using MODIS Land surface temperature (LST) data from 2009 to 2011 for China's 32 major cities, in combination with the urban boundaries generated from urban extent maps of the years 2000, 2005 and 2010. Our results suggest that it is critical to use concurrent urban extent and LST maps to estimate UHI at the city and national levels. Specific definition of UHI matters for the direction and magnitude of potential biases in estimating UHI intensity using outdated urban extent maps. PMID:26243476

  6. A study of the utilization of ERTS-1 data from the Wabash River Basin. [crop identification, water resources, urban land use, soil mapping, and atmospheric modeling

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. The most significant results were obtained in the water resources research, urban land use mapping, and soil association mapping projects. ERTS-1 data was used to classify water bodies to determine acreages and high agreement was obtained with USGS figures. Quantitative evaluation was achieved of urban land use classifications from ERTS-1 data and an overall test accuracy of 90.3% was observed. ERTS-1 data classifications of soil test sites were compared with soil association maps scaled to match the computer produced map and good agreement was observed. In some cases the ERTS-1 results proved to be more accurate than the soil association map.

  7. Project ATLANTA (ATlanta Land-use ANalysis: Temperature and Air quality): A Study of how the Urban Landscape Affects Meteorology and Air Quality Through Time

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G.; Lo, C. P.; Kidder, Stanley Q.; Hafner, Jan; Taha, Haider; Bornstein, Robert D.; Gillies, Robert R.; Gallo, Kevin P.

    1998-01-01

    It is our intent through this investigation to help facilitate measures that can be Project ATLANTA (ATlanta Land-use ANalysis: applied to mitigate climatological or air quality Temperature and Air-quality) is a NASA Earth degradation, or to design alternate measures to sustain Observing System (EOS) Interdisciplinary Science or improve the overall urban environment in the future. investigation that seeks to observe, measure, model, and analyze how the rapid growth of the Atlanta. The primary objectives for this research effort are: 1) To In the last half of the 20th century, Atlanta, investigate and model the relationship between Atlanta Georgia has risen as the premier commercial, urban growth, land cover change, and the development industrial, and transportation urban area of the of the urban heat island phenomenon through time at southeastern United States. The rapid growth of the nested spatial scales from local to regional; 2) To Atlanta area, particularly within the last 25 years, has investigate and model the relationship between Atlanta made Atlanta one of the fastest growing metropolitan urban growth and land cover change on air quality areas in the United States. The population of the through time at nested spatial scales from local to Atlanta metropolitan area increased 27% between 1970 regional; and 3) To model the overall effects of urban and 1980, and 33% between 1980-1990 (Research development on surface energy budget characteristics Atlanta, Inc., 1993). Concomitant with this high rate of across the Atlanta urban landscape through time at population growth, has been an explosive growth in nested spatial scales from local to regional. Our key retail, industrial, commercial, and transportation goal is to derive a better scientific understanding of how services within the Atlanta region. This has resulted in land cover changes associated with urbanization in the tremendous land cover change dynamics within the Atlanta area, principally in transforming

  8. Land use/land cover change and urban expansion during 1983-2008 in the coastal area of Dakshina Kannada district, South India

    NASA Astrophysics Data System (ADS)

    Bhagyanagar, Rajagopal; Kawal, Babita M.; Dwarakish, Gowdagere S.; Surathkal, Shrihari

    2012-01-01

    Urban settlements in developing countries are, at present, growing five times as fast as those in developed countries. This paper presents the urban expansion and land use/land cover changes in the fast urbanizing coastal area of the Dakshina Kannada district in Karnataka state, South India, during the years 1983-2008 as a case study. Six Indian Remote Sensing (IRS) satellite images were used in the present work. Supervised classification was carried out using maximum likelihood algorithm. The overall accuracy of the classification varied from 79% to 86.6%, and the kappa statistics varied from 0.761 to 0.850. The results indicate that the urban/built-up area in the study area has almost tripled during the study period. During the same time, the population has increased by 215%. The major driving forces for the urbanization were the enhanced economic activity due to the port and industrialization in the area. The urban/built-up area is projected to increase to 381 km2 and the population in the study area is expected to reach 2.68 million by the year 2028. Urban growth prediction helps urban planners and policymakers provide better infrastructure services to a huge number of new urban residents.

  9. Water resources: effects of land use and urbanization. September 1981-May 1988 (Citations from the NTIS data base). Report for September 1981-May 1988

    SciTech Connect

    Not Available

    1988-05-01

    This bibliography contains citations concerning the effects of land use and urban development on water-supply quality and quantity. Topics include appropriate local, state, and federal government policies, and utilization of mathematical models as predictive tools. Studies performed at specific localities are included if they provide comprehensive strategies that can be applied to other locations. (This updated bibliography contains 123 citations, 11 of which are new entries to the previous edition.)

  10. Water resources: effects of land use and urbanization. September 1981-June 1989 (Citations from the NTIS data base). Report for September 1981-June 1989

    SciTech Connect

    Not Available

    1989-06-01

    This bibliography contains citations concerning the effects of land use and urban development on water-supply quality and quantity. Topics include appropriate local, state, and federal government policies, and utilization of mathematical models as predictive tools. Studies performed at specific localities are included if they provide comprehensive strategies that can be applied to other locations. (This updated bibliography contains 177 citations, 54 of which are new entries to the previous edition.)

  11. A land use regression application into assessing spatial variation of intra-urban fine particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations in City of Shanghai, China.

    PubMed

    Liu, Chao; Henderson, Barron H; Wang, Dongfang; Yang, Xinyuan; Peng, Zhong-Ren

    2016-09-15

    Intra-urban assessment of air pollution exposure has become a priority study while international attention was attracted to PM2.5 pollution in China in recent years. Land Use Regression (LUR), which has previously been proved to be a feasible way to describe the relationship between land use and air pollution level in European and American cities, was employed in this paper to explain the correlations and spatial variations in Shanghai, China. PM2.5 and NO2 concentrations at 35-45 monitoring locations were selected as dependent variables, and a total of 44 built environmental factors were extracted as independent variables. Only five factors showed significant explanatory value for both PM2.5 and NO2 models: longitude, distance from monitors to the ocean, highway intensity, waterbody area, and industrial land area for PM2.5 model; residential area, distance to the coast, industrial area, urban district, and highway intensity for NO2 model. Respectively, both PM2.5 and NO2 showed anti-correlation with coastal proximity (an indicator of clean air dilution) and correlation with highway and industrial intensity (source indicators). NO2 also showed significant correlation with local indicators of population density (residential intensity and urban classification), while PM2.5 showed significant correlation with regional dilution (longitude as a indicator of distance from polluted neighbors and local water features). Both adjusted R squared values were strong with PM2.5 (0.88) being higher than NO2 (0.62). The LUR was then used to produce continuous concentration fields for NO2 and PM2.5 to illustrate the features and, potentially, for use by future studies. Comparison to PM2.5 studies in New York and Beijing show that Shanghai PM2.5 pollutant distribution was more sensitive to geographic location and proximity to neighboring regions. PMID:27203521

  12. Determination of impact of urbanization on agricultural land and wetland land use in Balçovas' delta by remote sensing and GIS technique.

    PubMed

    Bolca, Mustafa; Turkyilmaz, Bahar; Kurucu, Yusuf; Altinbas, Unal; Esetlili, M Tolga; Gulgun, Bahriye

    2007-08-01

    Because of their intense vegetation and the fact that they include areas of coastline, deltas situated in the vicinity of big cities are areas of greet attraction for people who wish to get away from in a crowded city. However, deltas, with their fertile soil and unique flora and fauna, need to be protected. In order for the use of such areas to be planned in a sustainable way by local authorities, there is a need for detailed data about these regions. In this study, the changes in land use of the Balçova Delta, which is to the immediate west of Turkey's third largest city Izmir, from 1957 up to the present day, were investigated. In the study, using aerial photographs taken in 1957, 1976 and 1995 and an IKONOS satellite image from the year 2005, the natural and cultural characteristics of the region and changes in the coastline were determined spatially. Through this study, which aimed to reveal the characteristics of the areas of land already lost as well as the types of land use in the Balçova delta and to determine geographically the remaining areas in need of protection, local authorities were provided with the required data support. Balçova consists of flat and fertile wetland with mainly citrus-fruit orchards and flower-producing green houses. The marsh and lagoon system situated in the coastal areas of the delta provides a habitat for wild life, in particular birds. In the Balçova Delta, which provides feeding and resting for migratory birds, freshwater sources are of vital importance for fauna and flora. The settlement area, which in 1957 was 182 ha, increased 11-fold up to the year 2005 when it reached 2,141 ha. On the other hand, great losses were determined in farming land, olive groves, forest and in the marsh and lagoon system. This unsystematic and rapid urbanization occurring in the study region is not only causing the loss of important agricultural land and wetland, but also lasting water and soil pollution. PMID:17180418

  13. Comparison of the performances of land use regression modelling and dispersion modelling in estimating small-scale variations in long-term air pollution concentrations in a Dutch urban area

    NASA Astrophysics Data System (ADS)

    Beelen, Rob; Voogt, Marita; Duyzer, Jan; Zandveld, Peter; Hoek, Gerard

    2010-11-01

    The performance of a Land Use Regression (LUR) model and a dispersion model (URBIS - URBis Information System) was compared in a Dutch urban area. For the Rijnmond area, i.e. Rotterdam and surroundings, nitrogen dioxide (NO 2) concentrations for 2001 were estimated for nearly 70 000 centroids of a regular grid of 100 × 100 m. A LUR model based upon measurements carried out on 44 sites from the Dutch national monitoring network and upon Geographic Information System (GIS) predictor variables including traffic intensity, industry, population and residential land use was developed. Interpolation of regional background concentration measurements was used to obtain the regional background. The URBIS system was used to estimate NO 2 concentrations using dispersion modelling. URBIS includes the CAR model (Calculation of Air pollution from Road traffic) to calculate concentrations of air pollutants near urban roads and Gaussian plume models to calculate air pollution levels near motorways and industrial sources. Background concentrations were accounted for using 1 × 1 km maps derived from monitoring and model calculations. Moderate agreement was found between the URBIS and LUR in calculating NO 2 concentrations ( R = 0.55). The predictions agreed well for the central part of the concentration distribution but differed substantially for the highest and lowest concentrations. The URBIS dispersion model performed better than the LUR model ( R = 0.77 versus R = 0.47 respectively) in the comparison between measured and calculated concentrations on 18 validation sites. Differences can be understood because of the use of different regional background concentrations, inclusion of rather coarse land use category industry as a predictor variable in the LUR model and different treatment of conversion of NO to NO 2. Moderate agreement was found between a dispersion model and a land use regression model in calculating annual average NO 2 concentrations in an area with multiple

  14. Use of remotely sensed data for analysis of land-use change in a highly urbanized district of mega city, Istanbul.

    PubMed

    Musaoglu, Nebiye; Gurel, Melike; Ulugtekin, Necla; Tanik, Aysegul; Seker, Dursun Zafer

    2006-01-01

    The study forms an example on monitoring and understanding urban dynamics by using remotely sensed data. The selected region is a rapidly urbanizing district of the mega city Istanbul, Gaziosmanpasa, whose population has almost doubled between years 1990 and 2000. The significance of this district besides its urban sprawl is that 61% of its land lies within the boundaries of an important drinking water reservoir watershed of the mega city, the Alibeykoy Reservoir. The land-use/cover changes that has occurred in the years of 1987 and 2001 are analyzed by utilizing a variety of data sources including satellite images (Landsat TM image of September 1987 and Landsat ETM+ image of May 2001), aerial photographs, orthophoto maps, standard 1:25000 scale topographic maps, and various thematic maps together with ground survey. Land-use changes are analyzed on the basis of protection zones of the reservoir watershed and the conversion of bare land and forests to settlements are clearly observed despite the national regulation on watershed protection. The decline of forests within the protection zones was from 69% to 63.6% whereas the increase in settlements was from 0.8% to 3.9%. The associated impact of establishing new residential sites with insufficient infrastructure is then linked with the water quality of the reservoir that has already reached to Class III characteristics regarding the recently revised national legislation stating that any class exceeding Class II cannot be used as a drinking water supply that in turn, had consequences on regulating the water services such as upgrading the existing water treatment plant. The paper aims to help the managers, decision-makers and urban planners by informing them of the past and current land-use/cover changes, to influence the cessation of illegal urbanization through suitable decision-making and environmental policy that adhere to sustainable resource use. PMID:16849146

  15. The legacy of land-use is revealed in the biogeochemistry of urban streams - 3-4-2014

    EPA Science Inventory

    Urban streams are among the most profoundly impacted aquatic ecosystems, characterized by altered hydrology or burial, increased sediment input, and myriad pollutants. We present results from a series of urban stream studies that revealed unique geochemical and biochemical patte...

  16. Monitoring land use/land cover transformations from 1945 to 2007 in two peri-urban mountainous areas of Athens metropolitan area, Greece.

    PubMed

    Mallinis, Giorgos; Koutsias, Nikos; Arianoutsou, Margarita

    2014-08-15

    The aims of this study were to map and analyze land use/land cover transitions and landscape changes in the Parnitha and Penteli mountains, which surround the Athens metropolitan area of Attica, Greece over a period of 62 years. In order to quantify the changes between land categories through time, we computed the transition matrices for three distinct periods (1945-1960, 1960-1996, and 1996-2007), on the basis of available aerial photographs used to create multi-temporal maps. We identified systematic and stationary transitions with multi-level intensity analysis. Forest areas in Parnitha remained the dominant class of land cover throughout the 62 years studied, while transitional woodlands and shrublands were the main classes involved in LULC transitions. Conversely, in Penteli, transitional woodlands, along with shrublands, dominated the study site. The annual rate of change was faster in the first and third time intervals, compared to the second (1960-1996) time interval, in both study areas. The category level analysis results indicated that in both sites annual crops avoided to gain while discontinuous urban fabric avoided to lose areas. At the transition level of analysis, similarities as well as distinct differences existed between the two areas. In both sites the gaining pattern of permanent crops with respect to annual crops and the gain of forest with respect to transitional woodland/shrublands were stationary across the three time intervals. Overall, we identified more systematic transitions and stationary processes in Penteli. We discussed these LULC changes and associated them with human interference (activity) and other major socio-economic developments that were simultaneously occurring in the area. The different patterns of change of the areas, despite their geographical proximity, throughout the period of analysis imply that site-specific studies are needed in order to comprehensively assess the driving forces and develop models of landscape

  17. Development of a modular streamflow model to quantify runoff contributions from different land uses in tropical urban environments using Genetic Programming

    NASA Astrophysics Data System (ADS)

    Meshgi, Ali; Schmitter, Petra; Chui, Ting Fong May; Babovic, Vladan

    2015-06-01

    The decrease of pervious areas during urbanization has severely altered the hydrological cycle, diminishing infiltration and therefore sub-surface flows during rainfall events, and further increasing peak discharges in urban drainage infrastructure. Designing appropriate waster sensitive infrastructure that reduces peak discharges requires a better understanding of land use specific contributions towards surface and sub-surface processes. However, to date, such understanding in tropical urban environments is still limited. On the other hand, the rainfall-runoff process in tropical urban systems experiences a high degree of non-linearity and heterogeneity. Therefore, this study used Genetic Programming to establish a physically interpretable modular model consisting of two sub-models: (i) a baseflow module and (ii) a quick flow module to simulate the two hydrograph flow components. The relationship between the input variables in the model (i.e. meteorological data and catchment initial conditions) and its overall structure can be explained in terms of catchment hydrological processes. Therefore, the model is a partial greying of what is often a black-box approach in catchment modelling. The model was further generalized to the sub-catchments of the main catchment, extending the potential for more widespread applications. Subsequently, this study used the modular model to predict both flow components of events as well as time series, and applied optimization techniques to estimate the contributions of various land uses (i.e. impervious, steep grassland, grassland on mild slope, mixed grasses and trees and relatively natural vegetation) towards baseflow and quickflow in tropical urban systems. The sub-catchment containing the highest portion of impervious surfaces (40% of the area) contributed the least towards the baseflow (6.3%) while the sub-catchment covered with 87% of relatively natural vegetation contributed the most (34.9%). The results from the quickflow

  18. Vegetation cover and land use impacts on soil water repellency in an Urban Park located in Vilnius, Lithuania

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Cerda, Artemi

    2015-04-01

    It is strongly recognized that vegetation cover, land use have important impacts on the degree of soil water repellency (SWR). Soil water repellency is a natural property of soils, but can be induced by natural and anthropogenic disturbances as fire and soil tillage (Doerr et al., 2000; Urbanek et al., 2007; Mataix-Solera et al., 2014). Urban parks are areas where soils have a strong human impact, with implications on their hydrological properties. The aim of this work is to study the impact of different vegetations cover and urban soils impact on SWR and the relation to other soil variables as pH, Electrical Conductivity (EC) and soil organic matter (SOM) in an urban park. The study area is located in Vilnius city (54°.68' N, 25°.25' E). It was collected 15 soil samples under different vegetation cover as Pine (Pinus Sylvestris), Birch (Alnus glutinosa), Penduculate Oak (Quercus robur), Platanus (Platanus orientalis) and other human disturbed areas as forest trails and soils collected from human planted grass. Soils were taken to the laboratory, air-dried at room temperature and sieved with the <2 mm mesh in order to remove the coarse material. Subsequently were placed in petri dishes and exposed to a controlled laboratory environment (temperature of 20C and 50% of air relative humidity) for one week to avoid potential impacts of the atmospheric conditions on SWR (Doerr, 1998). The persistence of SWR was measured using the water drop penetration time (WDPT) (Wessel, 1998). The classification of WDPT was according to Bisdom et al. (1993) <5 (wettable), 5-60 (slightly water repellent), 60-600 (strongly water repellent), 600-3600 (severely water repellent) and >3600 (extremely water repellent). The results showed significant differences among the different vegetation cover (Kruskal-Wallis H=20.64, p<0.001). The WDPT soil median values collected under Pine, Birch, Penduculate Oak, forest trails and soils from planted grass were significantly higher than Platanus

  19. Separation of land-use change induced signals from noise by means of evaluating perturbed RCM ensembles: Assessing the potential impacts of urbanization and deforestation in Central Vietnam

    NASA Astrophysics Data System (ADS)

    Laux, Patrick; Nguyen, Phuong N. B.; Cullmann, Johannes; Kunstmann, Harald

    2016-04-01

    Regional climate models (RCMs) comprise both terrestrial and atmospheric compartments and thereby allowing to study land atmosphere feedbacks, and in particular the land-use and climate change impacts. In this study, a methodological framework is developed to separate the land use change induced signals in RCM simulations from noise caused by perturbed initial boundary conditions. The framework is applied for two different case studies in SE Asia, i.e. an urbanization and a deforestation scenario, which are implemented into the Weather Research and Forecasting (WRF) model. The urbanization scenario is produced for Da Nang, one of the fastest growing cities in Central Vietnam, by converting the land-use in a 20 km, 14 km, and 9 km radius around the Da Nang meteorological station systematically from cropland to urban. Likewise, three deforestation scenarios are derived for Nong Son (Central Vietnam). Based on WRF ensemble simulations with perturbed initial conditions for 2010, the signal to-noise ratio (SNR) is calculated to identify areas with pronounced signals induced by LULCC. While clear and significant signals are found for air temperature, latent and sensible heat flux in the urbanization scenario (SNR values up to 24), the signals are not pronounced for deforestation (SNR values < 1). Albeit statistically significant signals are found for precipitation, low SNR values hinder scientifically sound inferences for climate change adaptation options. It is demonstrated that ensemble simulations with more than at least 5 ensemble members are required to derive robust LULCC adaptation strategies, particularly if precipitation is considered. This is rarely done in practice, thus potentially leading to erroneous estimates of the LULCC induced signals of water and energy fluxes, which are propagated through the regional climate - hydrological model modeling chains, and finally leading to unfavorable decision support.

  20. Analysis of impacts of urban land use and land cover on air quality in the Las Vegas region using remote sensing information and ground observations

    USGS Publications Warehouse

    Xian, G.

    2007-01-01

    Urban development in the Las Vegas Valley of Nevada (USA) has expanded rapidly over the past 50 years. The air quality in the valley has suffered owing to increases from anthropogenic emissions of carbon monoxide, ozone and criteria pollutants of particular matter. Air quality observations show that pollutant concentrations have apparent heterogeneous characteristics in the urban area. Quantified urban land use and land cover information derived from satellite remote sensing data indicate an apparent local influence of urban development density on air pollutant distributions. Multi-year observational data collected by a network of local air monitoring stations specify that ozone maximums develop in the May and June timeframe, whereas minimum concentrations generally occur from November to February. The fine particulate matter maximum occurs in July. Ozone concentrations are highest on the west and northwest sides of the valley. Night-time ozone reduction contributes to the heterogeneous features of the spatial distribution for average ozone levels in the Las Vegas metropolitan area. Decreased ozone levels associated with increased urban development density suggest that the highest ozone and lowest nitrogen oxides concentrations are associated with medium to low density urban development in Las Vegas.

  1. The Application of Satellite-Derived, High-Resolution Land Use/Land Cover Data to Improve Urban Air Quality Model Forecasts

    NASA Technical Reports Server (NTRS)

    Quattrochi, D. A.; Lapenta, W. M.; Crosson, W. L.; Estes, M. G., Jr.; Limaye, A.; Kahn, M.

    2006-01-01

    Local and state agencies are responsible for developing state implementation plans to meet National Ambient Air Quality Standards. Numerical models used for this purpose simulate the transport and transformation of criteria pollutants and their precursors. The specification of land use/land cover (LULC) plays an important role in controlling modeled surface meteorology and emissions. NASA researchers have worked with partners and Atlanta stakeholders to incorporate an improved high-resolution LULC dataset for the Atlanta area within their modeling system and to assess meteorological and air quality impacts of Urban Heat Island (UHI) mitigation strategies. The new LULC dataset provides a more accurate representation of land use, has the potential to improve model accuracy, and facilitates prediction of LULC changes. Use of the new LULC dataset for two summertime episodes improved meteorological forecasts, with an existing daytime cold bias of approx. equal to 3 C reduced by 30%. Model performance for ozone prediction did not show improvement. In addition, LULC changes due to Atlanta area urbanization were predicted through 2030, for which model simulations predict higher urban air temperatures. The incorporation of UHI mitigation strategies partially offset this warming trend. The data and modeling methods used are generally applicable to other U.S. cities.

  2. Evaluating the effect of land use land cover change in a rapidly urbanizing semi-arid watershed on estuarine freshwater inflows

    NASA Astrophysics Data System (ADS)

    Sahoo, D.; Smith, P.; Popescu, S.

    2006-12-01

    Estuarine freshwater inflows along with their associated nutrient and metal delivery are influenced by the land use/land cover (LULC) and water management practices in the contributing watershed. This study evaluates the effect of rapid urbanization in the San Antonio River Watershed on the amount of freshwater inflow reaching the San Antonio-Guadalupe estuary on the Gulf Coast of Texas. Remotely sensed data from satellite imagery provided a source of reliable data for land use classification and land cover change analysis; while long time series of the geophysical signals of stream flow and precipitation provided the data needed to assess change in flow in the watershed. LULC was determined using LANDSAT (5 TM and 7 ETM) satellite images over 20 years (1985-2003). The LANDSAT images were classified using an ENVI. ISODATA classification scheme. Changes were quantified in terms of the urban expansion that had occurred in past 20 years using an urban index. Streamflow was analyzed using 20 years (1985-2004) of average daily discharge obtained from the USGS gauging station (08188500) closest to the headwaters of the estuary. Baseflow and storm flow were partitioned from total flow using a universally used baseflow separation technique. Precipitation data was obtained from an NCDC station in the watershed. Preliminary results indicate that the most significant change in land use over the 20 year period was an increase in the total amount of impervious area in the watershed. This increase in impervious area was accompanied by an increase in both total streamflow and in baseflow over the same period. The investigation did not show a significant change in total annual precipitation from 1990 to 2004. This suggests that the increase in streamflow was more influenced by LULC than climate change. One explanation for the increase in baseflow may be an increase in return flows resulting from an increase in the total number of wastewater treatment plants in the watershed.

  3. Detailed climate-change projections for urban land-use change and green-house gas increases for Belgium with COSMO-CLM coupled to TERRA_URB

    NASA Astrophysics Data System (ADS)

    Wouters, Hendrik; Vanden Broucke, Sam; van Lipzig, Nicole; Demuzere, Matthias

    2016-04-01

    Recent research clearly show that climate modelling at high resolution - which resolve the deep convection, the detailed orography and land-use including urbanization - leads to better modelling performance with respect to temperatures, the boundary-layer, clouds and precipitation. The increasing computational power enables the climate research community to address climate-change projections with higher accuracy and much more detail. In the framework of the CORDEX.be project aiming for coherent high-resolution micro-ensemble projections for Belgium employing different GCMs and RCMs, the KU Leuven contributes by means of the downscaling of EC-EARTH global climate model projections (provided by the Royal Meteorological Institute of the Netherlands) to the Belgian domain. The downscaling is obtained with regional climate simulations at 12.5km resolution over Europe (CORDEX-EU domain) and at 2.8km resolution over Belgium (CORDEX.be domain) using COSMO-CLM coupled to urban land-surface parametrization TERRA_URB. This is done for the present-day (1975-2005) and future (2040 → 2070 and 2070 → 2100). In these high-resolution runs, both GHG changes (in accordance to RCP8.5) and urban land-use changes (in accordance to a business-as-usual urban expansion scenario) are taken into account. Based on these simulations, it is shown how climate-change statistics are modified when going from coarse resolution modelling to high-resolution modelling. The climate-change statistics of particular interest are the changes in number of extreme precipitation events and extreme heat waves in cities. Hereby, it is futher investigated for the robustness of the signal change between the course and high-resolution and whether a (statistical) translation is possible. The different simulations also allow to address the relative impact and synergy between the urban expansion and increased GHG on the climate-change statistics. Hereby, it is investigated for which climate-change statistics the

  4. Fish assemblage responses to urban intensity gradients in contrasting metropolitan areas: Birmingham, Alabama and Boston, Massachusetts

    USGS Publications Warehouse

    Meador, M.R.; Coles, J.F.; Zappia, H.

    2005-01-01

    We examined fish assemblage responses to urban intensify gradients in two contrasting metropolitan areas: Birmingham, Alabama (BIR) and Boston, Massachusetts (BOS). Urbanization was quantified by using an urban intensity index (UII) that included multiple stream buffers and basin land uses, human population density, and road density variables. We evaluated fish assemblage responses by using species richness metrics and detrended correspondence analyses (DCA). Fish species richness metrics included total fish species richness, and percentages of endemic species richness, alien species, and fluvial specialist species. Fish species richness decreased significantly with increasing urbanization in BIR (r = -0.82, P = 0.001) and BOS (r = -0.48, P = 0.008). Percentages of endemic species richness decreased significantly with increasing urbanization only in BIR (r = - 0.71, P = 0.001), whereas percentages of fluvial specialist species decreased significantly with increasing urbanization only in BOS (r = -0.56, P = 0.002). Our DCA results for BIR indicate that highly urbanized fish assemblages are composed primarily of largescale stoneroller Campostoma oligolepis, largemouth bass Micropterus salmoides, and creek chub Semotilus atromaculatus, whereas the highly urbanized fish assemblages in BOS are dominated by yellow perch Perca flavescens, bluegill Lefomis macrochirus, yellow bullhead Ameiurus natalis, largemouth bass, pumpkinseed L. gibbosus, brown bullhead A. nebulosus, and redfin pickerel Esox americanus. Differences in fish assemblage responses to urbanization between the two areas appear to be related to differences in nutrient enrichment, habitat alterations, and invasive species. Because species richness can increase or decrease with increasing urbanization, a general response model is not applicable. Instead, response models based on species' life histories, behavior, and autecologies offer greater potential for understanding fish assemblage responses to

  5. SPATIAL ANALYSIS OF AIR POLLUTION AND DEVELOPMENT OF A LAND-USE REGRESSION ( LUR ) MODEL IN AN URBAN AIRSHED

    EPA Science Inventory

    The Detroit Children's Health Study is an epidemiologic study examining associations between chronic ambient environmental exposures to gaseous air pollutants and respiratory health outcomes among elementary school-age children in an urban airshed. The exposure component of this...

  6. Relation of urban land-use and dry-weather storm and snowmelt flow characteristics to stream-water quality, Shunganunga Creek basin, Topeka, Kansas

    USGS Publications Warehouse

    Pope, L.M.; Bevans, H.E.

    1984-01-01

    Water-quality characteristics of streams draining Topeka, Kansas , and the Shunganunga Creek basin were investigated from October , 1979, through November 1981, to determine the effects of runoff from urban areas. Characteristics were determined at six sites and summarized statistically for three streamflow conditions-dry weather, storm, and snowmelt. Median concentrations of trace metals and nutrients were greater in storm streamflow than in dry-weather streamflow. Regression equations were developed to estimate median concentrations of total lead and zinc in storm streamflow from the percentage of drainage area in residential plus commercial land-use areas and from street density. Median concentrations of dissolved sodium, chloride, and solids were considerably greater in snowmelt streamflow than in dry-weather streamflow. Regression equations were also developed to estimate median concentrations of dissolved sodium, chloride, and solids from the summation of percentages of the drainage area in residential, commercial, and industrial land-use areas and from street density. Multiple-regression analysis relating storm-runoff volumes and average constituent concentrations to land-use and storm charactersitcs produced significant relations for storm-runoff volume, total lead, total zinc, and suspended sediment. (USGS)

  7. The Land Use and Land Cover Dichotomy: A Comparison of Two Land Classification Systems in Support of Urban Earth Science Applications

    NASA Technical Reports Server (NTRS)

    McAllister, William K.

    2003-01-01

    One is likely to read the terms 'land use' and 'land cover' in the same sentence, yet these concepts have different origins and different applications. Land cover is typically analyzed by earth scientists working with remotely sensed images. Land use is typically studied by urban planners who must prescribe solutions that could prevent future problems. This apparent dichotomy has led to different classification systems for land-based data. The works of earth scientists and urban planning practitioners are beginning to come together in the field of spatial analysis and in their common use of new spatial analysis technology. In this context, the technology can stimulate a common 'language' that allows a broader sharing of ideas. The increasing amount of land use and land cover change challenges the various efforts to classify in ways that are efficient, effective, and agreeable to all groups of users. If land cover and land uses can be identified by remote methods using aerial photography and satellites, then these ways are more efficient than field surveys of the same area. New technology, such as high-resolution satellite sensors, and new methods, such as more refined algorithms for image interpretation, are providing refined data to better identify the actual cover and apparent use of land, thus effectiveness is improved. However, the closer together and the more vertical the land uses are, the more difficult the task of identification is, and the greater is the need to supplement remotely sensed data with field study (in situ). Thus, a number of land classification methods were developed in order to organize the greatly expanding volume of data on land characteristics in ways useful to different groups. This paper distinguishes two land based classification systems, one developed primarily for remotely sensed data, and the other, a more comprehensive system requiring in situ collection methods. The intent is to look at how the two systems developed and how they

  8. Change detection of land use and land cover in an urban region with SPOT-5 images and partial Lanczos extreme learning machine

    NASA Astrophysics Data System (ADS)

    Chang, Ni-Bin; Han, Min; Yao, Wei; Chen, Liang-Chien; Xu, Shiguo

    2010-11-01

    Satellite remote sensing technology and the science associated with evaluation of land use and land cover (LULC) in an urban region makes use of the wide range images and algorithms. Improved land management capacity is critically dependent on real-time or near real-time monitoring of land-use/land cover change (LUCC) to the extent to which solutions to a whole host of urban/rural interface development issues may be well managed promptly. Yet previous processing with LULC methods is often time-consuming, laborious, and tedious making the outputs unavailable within the required time window. This paper presents a new image classification approach based on a novel neural computing technique that is applied to identify the LULC patterns in a fast growing urban region with the aid of 2.5-meter resolution SPOT-5 image products. The classifier was constructed based on the partial Lanczos extreme learning machine (PL-ELM), which is a novel machine learning algorithm with fast learning speed and outstanding generalization performance. Since some different classes of LULC may be linked with similar spectral characteristics, texture features and vegetation indexes were extracted and included during the classification process to enhance the discernability. A validation procedure based on ground truth data and comparisons with some classic classifiers prove the credibility of the proposed PL-ELM classification approach in terms of the classification accuracy as well as the processing speed. A case study in Dalian Development Area (DDA) with the aid of the SPOT-5 satellite images collected in the year of 2003 and 2007 and PL-ELM fully supports the monitoring needs and aids in the rapid change detection with respect to both urban expansion and coastal land reclamations.

  9. Effects of urban land-use change in East China on the East Asian summer monsoon based on the CAM5.1 model

    NASA Astrophysics Data System (ADS)

    Ma, Hongyun; Jiang, Zhihong; Song, Jie; Dai, Aiguo; Yang, Xiuqun; Huo, Fei

    2016-05-01

    The effects of urban land-use change in East China on the East Asian summer monsoon (EASM) are investigated using a Community Atmosphere Model Version 5.1. The results show that the urban land-use change in East China causes spatially-varying changes in surface net radiation and heat fluxes, atmospheric circulation, and water budgets. It results in significant surface warming (cooling) and precipitation decrease (increase) in a large region north (south) of 30°N. Urban expansion agglomerated in (29°-41°N, 110°-122°E) alters the surface energy budget and warms the surface, resulting in strengthened southwesterly airflow south of 25°N and increased convergence below the mid-troposphere between 20° and 30°N. A concomitant northward downdraft associated with the increased convection generates an anomalous high pressure north of 30°N. Meanwhile, the downdraft not only produces adiabatic warming but also inhibits the dynamic condition for precipitation formation. The anomalous high pressure formed in North China prevents the southwesterly airflow from advancing northward, leading to increase the convergence and precipitation in South China. These changes reduce the meridional temperature gradient in the mid-lower troposphere and weaken the westerly airflow near 30°N. In addition, horizontal transport of vorticity north of 35°N weakens significantly, which leads to an anomalous barotropic structure of anticyclonic there. As a result, the anomalous anticyclonic circulation and descent north of 30°N are strengthened. At the same time, the anomalous cyclonic circulation and ascent south of 30°N are enhanced. These process induced by the thermal state changes due to urbanization weakens the EASM.

  10. Water- and sediment-quality effects on Pimephales promelas spawning vary along an agriculture-to-urban land-use gradient

    USGS Publications Warehouse

    Corsi, S.R.; Klaper, R.D.; Weber, D.N.; Bannerman, R.T.

    2011-01-01

    Many streams in the U.S. are "impaired" due to anthropogenic influence. For watershed managers to achieve practical understanding of these impairments, a multitude of factors must be considered, including point and nonpoint-source influence on water quality. A spawning assay was developed in this study to evaluate water- and sediment-quality effects that influenced Pimephales promelas (fathead minnow) egg production over a gradient of urban and agricultural land use in 27 small watersheds in Eastern Wisconsin. Six pairs of reproducing fathead minnows were contained in separate mesh cartridges within one larger flow-through chamber. Water- and sediment quality were sampled for an array of parameters. Egg production was monitored for each pair providing an assessment of spawning success throughout the 21-day test periods. Incidences of low dissolved oxygen (DO) in many of these streams negatively impacted spawning success. Nine of 27 streams experienced DO less than 3.1. mg/L and 15 streams experienced DO less than 4.8. mg/L. Low DO was observed in urban and agricultural watersheds, but the upper threshold of minimum DO decreased with increasing urban development. An increase in specific conductance was related to a decrease in spawning success. In previous studies for streams in this region, specific conductance had a linear relation with chloride, suggesting the possibility that chloride could be a factor in egg production. Egg production was lower at sites with substantial urban development, but sites with low egg production were not limited to urban sites. Degradation of water- and sediment-quality parameters with increasing urban development is indicated for multiple parameters while patterns were not detected for others. Results from this study indicate that DO must be a high priority watershed management consideration for this region, specific conductance should be investigated further to determine the mechanism of the relation with egg production, and water

  11. Knowledge and prevention of tick-borne diseases vary across an urban-to-rural human land-use gradient.

    PubMed

    Bayles, Brett R; Evans, Gregory; Allan, Brian F

    2013-06-01

    We sought to determine the behavioral risk of exposure to tick-borne diseases across a human land-use gradient in a region endemic for diseases transmitted by the lone star tick. We measured the knowledge, attitudes, and preventive behaviors of visitors to 14 suburban, exurban, and rural recreational parks. A structured interview was conducted to determine respondents' (n=238) knowledge of tick-borne disease risk, perceived susceptibility to tick-borne disease, and tick bite prevention behaviors. We found significant differences across park types for most personal protective behaviors. Individuals in exurban parks were more likely to perform frequent tick checks and use chemical insect repellents compared to other park types (p<0.001), while suburban park visitors were more likely to avoid tick habitats (p<0.05). Disparities exist in the level of knowledge, perceived personal risk, and use of preventive measures across the human land-use gradient, suggesting that targeted public health intervention programs could reduce behavioral exposure risk by addressing specific gaps in knowledge and prevention. PMID:23538110

  12. Land Use Planning

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Computer technology, aerial photography and space imagery are being combined in a NASA community services program designed to help solve land use and natural resource planning problems. As urban areas grow, so grows the need for comprehensive, up-to-date information on which to base intelligent decisions regarding land use. State and local planners need information such as the nature of urban change, where the changes are occurring, how they affect public safety, transportation, the economy, tax assessment, sewer systems, water quality, flood hazard, noise impact and a great variety of other considerations. Most importantly they need continually updated maps. Preparing timely maps, gathering the essential data and maintaining it in orderly fashion are becoming matters of increasing difficulty. The NASA project, which has nationwide potential for improving efficiency in the planning process, is a pilot program focused on Tacoma, Washington and surrounding Pierce County. Its key element, developed by Jet Propulsion Laboratory (JPL), is a computerized Land Use Management Information System (LUMIS).

  13. A two-sector model of land use and deforestation: Funding urban development with a tax on urban and rural employment

    SciTech Connect

    Jones, D.W.; O`Neill, R.V.

    1992-07-17

    We model a small country with an urban manufacturing sector and a rural agricultural sector. Government taxes rural and urban employment to finance urban infrastructure which contributes to urban production. The manufacturing wage is fixed, leading to urban unemployment. Expansion of cultivated area involves deforestation at frontiers. An increment to urban infrastructure may draw resources into the city but a large enough addition to infrastructure may cause the tax rate to rise by more than urban labor productivity, which would exacerbate frontier deforestation. Improvement of rural transportation raises rural wages, reduces the urban unemployment rate, and extends the area under cultivation, causing deforestation; it also reduces the employment tax rate, which permits expansion of fixed-wage urban manufacturing. Such a wide, sectoral distribution of benefits may help explain the popularity of such policies despite their damage to frontier forest resources.

  14. Concentration patterns of agricultural pesticides and urban biocides in surface waters of a catchment of mixed land use

    NASA Astrophysics Data System (ADS)

    Stamm, C.; Wittmer, I.; Bader, H.-P.; Scheidegger, R.; Alder, A.; Lück, A.; Hanke, I.; Singer, H.

    2009-04-01

    Organic pesticides and biocides that are found in surface waters, can originate from agricultural and urban sources. For a long time, agricultural pesticides have received substantially more attention than biocidal compounds from urban use like material protection or in-can preservatives (cosmetics etc.). Recent studies however revealed that the amounts of urban biocides used may exceed those of agricultural pesticides. This study aims at comparing the input of several important pesticides and biocides into a small Swiss stream with a special focus on loss events triggered by rainfall. A set of 16 substances was selected to represent urban and agricultural sources. The selected substances are either only used as biocides (irgarol, isothiazolinones, IPBC), as pesticides (atrazine, sulcotrione, dichlofluanid, tolylfluanid) or have a mixed use (isoproturon, terbutryn, terbutylazine, mecoprop, diazinon, carbendazim) The study catchment has an area of 25 km2 and is inhabited by about 12'000 people. Four sampling sites were selected in the river system in order to reflect different urban and agricultural sources. Additionally, we sampled a combined sewer overflow, a rain sewer and the outflow of a wastewater treatment plant. At each site discharge was measured continuously from March to November 2007. During 16 rain events samples were taken by automatic devices at a high temporal resolution. The results, based on more than 500 analyzed samples, revealed distinct concentration patterns for different compounds and sources. Agricultural pesticides exhibited a strong seasonality as expected based on the application periods. During the first one or two rain events after application the concentrations reached up to several thousand ng/l during peak flow (atrazine, isoproturon). The temporal patterns of urban biocides were more diverse. Some compounds obviously stem from permanent sources independent of rainfall because they were found mostly in the outlet of the wastewater

  15. Visitation and physical activity intensity at rural and urban parks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Less physical activity among rural residents may contribute to rural–urban health disparities. This study compared park visitation and activity intensity at 15 urban and 15 rural parks matched for acreage and amenities. Each park was observed (System for Observing Play and Recreation in Communities...

  16. Effects of Land Use, Topography and Socio-Economic Factors on River Water Quality in a Mountainous Watershed with Intensive Agricultural Production in East China

    PubMed Central

    Chen, Jiabo; Lu, Jun

    2014-01-01

    Understanding the primary effects of anthropogenic activities and natural factors on river water quality is important in the study and efficient management of water resources. In this study, analysis of Variance (ANOVA), Principal component analysis (PCA), Pearson correlations, Multiple regression analysis (MRA) and Redundancy analysis (RDA) were applied as an integrated approach in a GIS environment to explore the temporal and spatial variations in river water quality and to estimate the influence of watershed land use, topography and socio-economic factors on river water quality based on 3 years of water quality monitoring data for the Cao-E River system. The statistical analysis revealed that TN, pH and temperature were generally higher in the rainy season, whereas BOD5, DO and turbidity were higher in the dry season. Spatial variations in river water quality were related to numerous anthropogenic and natural factors. Urban land use was found to be the most important explanatory variable for BOD5, CODMn, TN, DN, NH4+-N, NO3−-N, DO, pH and TP. The animal husbandry output per capita was an important predictor of TP and turbidity, and the gross domestic product per capita largely determined spatial variations in EC. The remaining unexplained variance was related to other factors, such as topography. Our results suggested that pollution control of animal waste discharge in rural settlements, agricultural runoff in cropland, industrial production pollution and domestic pollution in urban and industrial areas were important within the Cao-E River basin. Moreover, the percentage of the total overall river water quality variance explained by an individual variable and/or all environmental variables (according to RDA) can assist in quantitatively identifying the primary factors that control pollution at the watershed scale. PMID:25090375

  17. Facing the Urban Challenge: Reimagining Land Use in America's Distressed Older Cities--The Federal Policy Role

    ERIC Educational Resources Information Center

    Mallach, Alan

    2010-01-01

    The end of World War II heralded an era of urban disinvestment in the United States. While some cities began to rebound in the 1990s with population and economic growth, others--including large cities like Detroit, Cleveland, and St. Louis as well as many smaller cities and towns--did not, and have continued to decline. As these communities…

  18. SMART GROWTH LAND USE PLANNING FOR A COMMUNITY AT THE RURAL URBAN INTERFACE UTILIZING STRUCTURED PUBLIC INVOLVEMENT

    EPA Science Inventory

    A. Simpson County, KY is facing suburban growth pressure like many communities across the country at the rural urban interface. This presents opportunities and challenges to maintain community identity, build economic diversity, protect environmental resources, and imp...

  19. Spatial distribution of pH and organic matter in urban soils and its implications on site-specific land uses in Xuzhou, China.

    PubMed

    Mao, Yingming; Sang, Shuxun; Liu, Shiqi; Jia, Jinlong

    2014-05-01

    The spatial variation of soil pH and soil organic matter (SOM) in the urban area of Xuzhou, China, was investigated in this study. Conventional statistics, geostatistics, and a geographical information system (GIS) were used to produce spatial distribution maps and to provide information about land use types. A total of 172 soil samples were collected based on grid method in the study area. Soil pH ranged from 6.47 to 8.48, with an average of 7.62. SOM content was very variable, ranging from 3.51 g/kg to 17.12 g/kg, with an average of 8.26 g/kg. Soil pH followed a normal distribution, while SOM followed a log-normal distribution. The results of semi-variograms indicated that soil pH and SOM had strong (21%) and moderate (44%) spatial dependence, respectively. The variogram model was spherical for soil pH and exponential for SOM. The spatial distribution maps were achieved using kriging interpolation. The high pH and high SOM tended to occur in the mixed forest land cover areas such as those in the southwestern part of the urban area, while the low values were found in the eastern and the northern parts, probably due to the effect of industrial and human activities. In the central urban area, the soil pH was low, but the SOM content was high, which is mainly attributed to the disturbance of regional resident activities and urban transportation. Furthermore, anthropogenic organic particles are possible sources of organic matter after entering the soil ecosystem in urban areas. These maps provide useful information for urban planning and environmental management. PMID:24841960

  20. Evaluating the effects of urbanization and land-use planning using ground-water and surface-water models

    USGS Publications Warehouse

    Hunt, R.J.; Steuer, J.J.

    2001-01-01

    Why are the effects of urbanization a concern? As the city of Middleton, Wisconsin, and its surroundings continue to develop, the Pheasant Branch watershed (fig.l) is expected to undergo urbanization. For the downstream city of Middleton, urbanization in the watershed can mean increased flood peaks, water volume and pollutant loads. More subtly, it may also reduce water that sustains the ground-water system (called "recharge") and adversely affect downstream ecosystems that depend on ground water such as the Pheasant Branch Springs (hereafter referred to as the Springs). The relation of stormwater runoff and reduced ground-water recharge is complex because the surface-water system is coupled to the underlying ground-water system. In many cases there is movement of water from one system to the other that varies seasonally or daily depending on changing conditions. Therefore, it is difficult to reliably determine the effects of urbanization on stream baseflow and spring flows without rigorous investigation. Moreover, mitigating adverse effects after development has occurred can be expensive and administratively difficult. Overlying these concerns are issues such as stewardship of the resource, the rights of the public, and land owners' rights both of those developing their land and those whose land is affected by this development. With the often- contradictory goals, a scientific basis for assessing effects of urbanization and effectiveness of mitigation measures helps ensure fair and constructive decision-making. The U.S. Geological Survey, in cooperation with the City of Middleton and Wisconsin Department of Natural Resources, completed a study that helps address these issues through modeling of the hydrologic system. This Fact Sheet discusses the results of this work.

  1. Developing a framework to assess the water quality and quantity impacts of climate change, shifting land use, and urbanization in a Midwestern agricultural landscape

    NASA Astrophysics Data System (ADS)

    Loheide, S. P.; Booth, E. G.; Kucharik, C. J.; Carpenter, S. R.; Gries, C.; Katt-Reinders, E.; Rissman, A. R.; Turner, M. G.

    2011-12-01

    Dynamic hydrological processes play a critical role in the structure and functioning of agricultural watersheds undergoing urbanization. Developing a predictive understanding of the complex interaction between agricultural productivity, ecosystem health, water quality, urban development, and public policy requires an interdisciplinary effort that investigates the important biophysical and social processes of the system. Our research group has initiated such a framework that includes a coordinated program of integrated scenarios, model experiments to assess the effects of changing drivers on a broad set of ecosystem services, evaluations of governance and leverage points, outreach and public engagement, and information management. Our geographic focus is the Yahara River watershed in south-central Wisconsin, which is an exemplar of water-related issues in the Upper Midwest. This research addresses three specific questions. 1) How do different patterns of land use, land cover, land management, and water resources engineering practices affect the resilience and sensitivity of ecosystem services under a changing climate? 2) How can regional governance systems for water and land use be made more resilient and adaptive to meet diverse human needs? 3) In what ways are regional human-environment systems resilient and in what ways are they vulnerable to potential changes in climate and water resources? A comprehensive program of model experiments and biophysical measurements will be utilized to evaluate changes in five freshwater ecosystem services (flood regulation, groundwater recharge, surface water quality, groundwater quality, and lake recreation) and five related ecosystem services (food crop yields, bioenergy crop yields, carbon storage in soil, albedo, and terrestrial recreation). Novel additions to existing biophysical models will allow us to simulate all components of the hydrological cycle as well as agricultural productivity, nitrogen and phosphorus transport

  2. Determination of the effects of temporal change in urban and agricultural land uses as seen in the example of the town of Akhisar, using remote sensing techniques.

    PubMed

    Gulgun, Bahriye; Yörük, Ismail; Turkyilmaz, Bahar; Bolca, Mustafa; Güneş, Asli

    2009-03-01

    Today, as a result of erratic and unplanned urbanization, towns are rapidly becoming a mass of concrete and town-dwellers are suffocated by their busy and stressful professional lives. They feel a need for places where they can find breathing-space in their free time. Green areas within towns are important spaces where townspeople are able to carry out recreational activities. These places form a link between townspeople and nature. The importance of urban green areas is increasing with every passing day due to their social, psychological, ecological, physical and economic functions and their impact on the quality of towns. In this study it has been attempted to demonstrate the pressures of urban development on agricultural land by determining the changing land use situation over the years in the district of Akhisar. In this research, an aerial photograph from year 1939 and satellite images of the town from the years 2000 and 2007 were used. Land use changes in the region were determined spatially. As a result of this study, which aims to determine in which direction urbanization is progressing in the district, the importance of town planning emerges. This study will be informative for the local authorities in their future town planning projects. With its flat and almost flat fertile arable land, the district of Akhisar occupies an important position within the province of Manisa. From the point of view of olive production the region is one of Turkey's important centres. Fifty-five percent of the olive production in the province of Manisa is realized in Akhisar. However, the results of the present study show that while agricultural areas comprised 2.5805 km(2) in 1939, these had diminished to 1.5146 km(2) in the year 2000 and had diminished to 1.0762 km(2) in the year 2007 and residential area (dense) 0.449 km(2) occupied in 1939, in the year 2000 this had risen to 1.9472 and 2.3238 km(2) in the year 2007. This planless urbanization in the study area has led to

  3. Human lead (Pb) exposure via dust from different land use settings of Pakistan: A case study from two urban mountainous cities.

    PubMed

    Eqani, Syed Ali Musstjab Akber Shah; Khalid, Ramsha; Bostan, Nazish; Saqib, Zafeer; Mohmand, Jawad; Rehan, Mohammad; Ali, Nadeem; Katsoyiannis, Ioannis A; Shen, Heqing

    2016-07-01

    The current study aims to determine the dust-borne lead (Pb) levels into outdoor dust, which were collected from the areas nearby the cities/districts of Islamabad and Swat in Pakistan. In general dust samples from all land use settings (industrial, urban and rural) showed significantly higher (p<0.05) Pb-levels (median, ppm) from Islamabad (110, 52, 24) than those of Swat district (75, 37, 21), respectively. Index of Geo-accumulation (Igeo values) indicated that industrial and urban areas of both sites were highly polluted due to severe anthropogenic influence, whereas the rural areas were in most parts unpolluted and where moderately polluted, this was mainly due to geological factors and short and/or long distance atmospheric deposition from surrounding polluted areas. According to the calculated chemical daily intake (mg/kg-day) values, dust ingestion is one of the major routes of human exposure for lead. Hazard Index (HI) values, calculated for both adult and children populations, were above unity in industrial and urban areas, indicating serious health risks especially to the children populations. PMID:27129063

  4. Developing Street-Level PM2.5 and PM10 Land Use Regression Models in High-Density Hong Kong with Urban Morphological Factors.

    PubMed

    Shi, Yuan; Lau, Kevin Ka-Lun; Ng, Edward

    2016-08-01

    Monitoring street-level particulates is essential to air quality management but challenging in high-density Hong Kong due to limitations in local monitoring network and the complexities of street environment. By employing vehicle-based mobile measurements, land use regression (LUR) models were developed to estimate the spatial variation of PM2.5 and PM10 in the downtown area of Hong Kong. Sampling runs were conducted along routes measuring a total of 30 km during a selected measurement period of total 14 days. In total, 321 independent variables were examined to develop LUR models by using stepwise regression with PM2.5 and PM10 as dependent variables. Approximately, 10% increases in the model adjusted R(2) were achieved by integrating urban/building morphology as independent variables into the LUR models. Resultant LUR models show that the most decisive factors on street-level air quality in Hong Kong are frontal area index, an urban/building morphological parameter, and road network line density and traffic volume, two parameters of road traffic. The adjusted R(2) of the final LUR models of PM2.5 and PM10 are 0.633 and 0.707, respectively. These results indicate that urban morphology is more decisive to the street-level air quality in high-density cities than other cities. Air pollution hotspots were also identified based on the LUR mapping. PMID:27381187

  5. A comparison between developed and developing countries in terms of urban land use change effects on nitrogen cycle: Paris and São Paulo metropolitan areas

    NASA Astrophysics Data System (ADS)

    Nardoto, Gabriela; Svirejeva-Hopkin, Anastasia; Martinelli, Luiz Antonio

    2010-05-01

    (rivers and soil). For example treated sewage effluent could be used as a source of N for some crops, especially vegetables. PMA is also a source of reactive nitrogen, emitting in total about 32 Gg of N per year, or about 3000 g of N per capita, being the major part attributed to the atmospheric emissions from transportation and energy. An important outcome of this study has been the identification of several key uncertainties regarding the N budget that require further research for either developed and developing regions studied. The following uncertainties of N cycling in an urban system need better understanding: the mechanisms of dry-deposition processes in urban systems with patchy vegetation; high NOx emissions and the increase in travel distance of smaller particles coming from modern engines; and complex patterns of air flow in the dense build-up areas. Urban soil N dynamics is very uncertain, while soil represents a major sink of N in natural ecosystems. Ultimately, the challenge is to integrate human choices and ecosystem dynamics into a multidisciplinary model of biogeochemical cycling in urban ecosystems, focusing as a first step on the quantitatively evaluating the mutual relationship between urban land-use changes and natural ecosystem from the standpoint of global N balance. To develop those schemes will require the construction of detailed ecosystem-level N balances, an in-depth understanding of the interplay of inputs, geographical and climatic factors, nonspecific management practices, and deliberate N management practices that control the fate of N in urban landscapes.

  6. Mapping carbon storage in urban trees with multi-source remote sensing data: relationships between biomass, land use, and demographics in Boston neighborhoods.

    PubMed

    Raciti, Steve M; Hutyra, Lucy R; Newell, Jared D

    2014-12-01

    High resolution maps of urban vegetation and biomass are powerful tools for policy-makers and community groups seeking to reduce rates of urban runoff, moderate urban heat island effects, and mitigate the effects of greenhouse gas emissions. We developed a very high resolution map of urban tree biomass, assessed the scale sensitivities in biomass estimation, compared our results with lower resolution estimates, and explored the demographic relationships in biomass distribution across the City of Boston. We integrated remote sensing data (including LiDAR-based tree height estimates) and field-based observations to map canopy cover and aboveground tree carbon storage at ~1m spatial scale. Mean tree canopy cover was estimated to be 25.5±1.5% and carbon storage was 355Gg (28.8MgCha(-1)) for the City of Boston. Tree biomass was highest in forest patches (110.7MgCha(-1)), but residential (32.8MgCha(-1)) and developed open (23.5MgCha(-1)) land uses also contained relatively high carbon stocks. In contrast with previous studies, we did not find significant correlations between tree biomass and the demographic characteristics of Boston neighborhoods, including income, education, race, or population density. The proportion of households that rent was negatively correlated with urban tree biomass (R(2)=0.26, p=0.04) and correlated with Priority Planting Index values (R(2)=0.55, p=0.001), potentially reflecting differences in land management among rented and owner-occupied residential properties. We compared our very high resolution biomass map to lower resolution biomass products from other sources and found that those products consistently underestimated biomass within urban areas. This underestimation became more severe as spatial resolution decreased. This research demonstrates that 1) urban areas contain considerable tree carbon stocks; 2) canopy cover and biomass may not be related to the demographic characteristics of Boston neighborhoods; and 3) that recent advances

  7. Mapping Carbon Storage in Urban Trees with Multi-source Remote Sensing Data: Relationships between Biomass, Land Use, and Demographics in Boston Neighborhoods

    NASA Astrophysics Data System (ADS)

    Raciti, S. M.; Hutyra, L.

    2014-12-01

    High resolution maps of urban vegetation and biomass are powerful tools for policy-makers and community groups seeking to reduce rates of urban runoff, moderate urban heat island effects, and mitigate the effects of greenhouse gas emissions. We develop a very high resolution map of urban tree biomass, assess the scale sensitivities in biomass estimation, compare our results with lower resolution estimates, and explore the demographic relationships in biomass distribution across the City of Boston. We integrated remote sensing data (including LiDAR-based tree height estimates) and field-based observations to map canopy cover and aboveground tree carbon storage at ~1 m spatial scale. Mean tree canopy cover was estimated to be 25.5±1.5% and carbon storage was 355 Gg (28.8 Mg C ha-1) for the City of Boston. Tree biomass was highest in forest patches (110.7 Mg C ha-1), but residential (32.8 Mg C ha-1) and developed open (23.5 Mg C ha-1) land uses also contained relatively high carbon stocks. In contrast with previous studies, we did not find significant correlations between tree biomass and the demographic characteristics of Boston neighborhoods, including income, education, race, or population density. The proportion of households that rent was negatively correlated with urban tree biomass (R2=0.26, p=0.04) and correlated with Priority Planting Index values (R2=0.55, p=0.001), potentially reflecting differences in land management among rented and owner-occupied residential properties. We compared our very high resolution biomass map to lower resolution biomass products from other sources and found that those products consistently underestimated biomass within urban areas. This underestimation became more severe as spatial resolution decreased. This research demonstrates that 1) urban areas contain considerable tree carbon stocks; 2) canopy cover and biomass may not be related to the demographic characteristics of Boston neighborhoods; and 3) that recent advances in

  8. An evaluation of machine processing techniques of ERTS-1 data for user applications. [urban land use and soil association mapping in Indiana

    NASA Technical Reports Server (NTRS)

    Landgrebe, D.

    1974-01-01

    A broad study is described to evaluate a set of machine analysis and processing techniques applied to ERTS-1 data. Based on the analysis results in urban land use analysis and soil association mapping together with previously reported results in general earth surface feature identification and crop species classification, a profile of general applicability of this procedure is beginning to emerge. Put in the hands of a user who knows well the information needed from the data and also is familiar with the region to be analyzed it appears that significantly useful information can be generated by these methods. When supported by preprocessing techniques such as the geometric correction and temporal registration capabilities, final products readily useable by user agencies appear possible. In parallel with application, through further research, there is much potential for further development of these techniques both with regard to providing higher performance and in new situations not yet studied.

  9. Future land-use related water demand in California

    NASA Astrophysics Data System (ADS)

    Wilson, Tamara S.; Sleeter, Benjamin M.; Cameron, D. Richard

    2016-05-01

    Water shortages in California are a growing concern amidst ongoing drought, earlier spring snowmelt, projected future climate warming, and currently mandated water use restrictions. Increases in population and land use in coming decades will place additional pressure on already limited available water supplies. We used a state-and-transition simulation model to project future changes in developed (municipal and industrial) and agricultural land use to estimate associated water use demand from 2012 to 2062. Under current efficiency rates, total water use was projected to increase 1.8 billion cubic meters (+4.1%) driven primarily by urbanization and shifts to more water intensive crops. Only if currently mandated 25% reductions in municipal water use are continuously implemented would water demand in 2062 balance to water use levels in 2012. This is the first modeling effort of its kind to examine regional land-use related water demand incorporating historical trends of both developed and agricultural land uses.

  10. Downstream cumulative effects of land use on freshwater communities

    NASA Astrophysics Data System (ADS)

    Kuglerová, L.; Kielstra, B. W.; Moore, D.; Richardson, J. S.

    2015-12-01

    Many streams and rivers are subject to disturbance from intense land use such as urbanization and agriculture, and this is especially obvious for small headwaters. Streams are spatially organized into networks where headwaters represent the tributaries and provide water, nutrients, and organic material to the main stems. Therefore perturbations within the headwaters might be cumulatively carried on downstream. Although we know that the disturbance of headwaters in urban and agricultural landscapes poses threats to downstream river reaches, the magnitude and severity of these changes for ecological communities is less known. We studied stream networks along a gradient of disturbance connected to land use intensity, from urbanized watersheds to watersheds placed in agricultural settings in the Greater Toronto Area. Further, we compared the patterns and processes found in the modified watershed to a control watershed, situated in a forested, less impacted landscape. Preliminary results suggest that hydrological modifications (flash floods), habitat loss (drainage and sewer systems), and water quality issues of small streams in urbanized and agricultural watersheds represent major disturbances and threats for aquatic and riparian biota on local as well as larger spatial scales. For example, communities of riparian plants are dominated by species typical of the land use on adjacent uplands as well as the dominant land use on the upstream contributing area, instead of riparian obligates commonly found in forested watersheds. Further, riparian communities in disturbed environments are dominated by invasive species. The changes in riparian communities are vital for various functions of riparian vegetation. Bank erosion control is suppressed, leading to severe channel transformations and sediment loadings in urbanized watersheds. Food sources for instream biota and thermal regimes are also changed, which further triggers alterations of in-stream biological communities

  11. Rainfall and runoff quantity and quality data collected at four urban land-use catchments in Fresno, California, October 1981-April 1983

    USGS Publications Warehouse

    Oltmann, R.N.; Guay, J.R.; Shay, J.M.

    1987-01-01

    Data were collected as part of the National Urban Runoff Program to characterize urban runoff in Fresno, California. Rainfall-runoff quantity and quality data are included along with atmospheric dry-deposition and street-surface particulate quality data. The data are presented in figures and tables that reflect four land uses: industrial, single-dwelling residential, multiple-dwelling residential, and commercial. A total of 255 storms were monitored for rainfall and runoff quantity. Runoff samples from 112 of these storms were analyzed for physical, organic, inorganic, and biological constituents. The majority of the remaining storms have pH and specific conductance data only. Ninety-two composite rain samples were collected. Of these, 63 were analyzed for physical, inorganic, and (or) organic constituents. The remaining rainfall samples have pH and specific conductance data only. Nineteen atmospheric deposition and 21 street-particulate samples were collected and analyzed for inorganic and organic constituents. The report also details equipment utilization and operation, and discusses data collection methods. (USGS)

  12. Urban Heat Island Connections to Neighborhood Microclimates in Phoenix, Arizona: Defining the Influences of Land Use and Social Variables on Temperature

    NASA Astrophysics Data System (ADS)

    Prashad, L. C.; Stefanov, W. L.; Brazel, A.; Harlan, S.

    2003-12-01

    Phoenix, AZ is known to have an urban heat island that significantly increases minimum and maximum temperatures, which continue to climb as the city grows and becomes denser. We present a study that investigates "neighborhood" scale (1 square km) microclimate and its potential connections to the regional heat island. The purpose of our study is to: 1) identify social factors/ behaviors that influence temperature on a neighborhood scale and relate fluctuations to the overall heat island; 2) determine the effect of land use on temperature at the neighborhood and regional scales; 3) evaluate a range of thermal infrared (TIR) remotely sensed (RS) data and compare the RS surface temperatures to air temperature. Neighborhoods in both the urban core and fringe were delineated within Phoenix for our study. The neighborhoods represent a range of income levels and ethnicities. Daytime TIR data from Landsat sensors (TM, ETM+) and the airborne MASTER sensor were used to obtain surface temperatures for the neighborhoods. Nighttime surface temperature data were obtained from the ASTER sensor. Vegetation indices (SAVI) were created from Landsat and MASTER imagery. Climate monitors installed in each neighborhood recorded air temperature and dew point readings every 5 minutes. Land use was obtained from an expert systems classification of Landsat imagery and from aerial photos. Our results indicate surface temperatures correlate strongly with air temperatures. The 12.5m/pixel MASTER and 30m/pixel Landsat thermal data can highlight surface temperature gradients within a neighborhood while nighttime ASTER data provides better mean surface temperature discrimination between neighborhoods, and allows for quantification of local diurnal temperature variation. Neighborhoods with a low mean income, high percentage of Hispanics, and low educational attainment are significantly hotter than their high-income, non-Hispanic, highly educated counterparts. Urban core neighborhoods with high

  13. Influence of fipronil compounds and rice-cultivation land-use intensity on macroinvertebrate communities in streams of southwestern Louisiana, USA

    USGS Publications Warehouse

    Mize, S.V.; Porter, S.D.; Demcheck, D.K.

    2008-01-01

    Laboratory tests of fipronil and its degradation products have revealed acute lethal toxicity at very low concentrations (LC50) of <0.5 ??g/L to selected aquatic macroinvertebrates. In streams draining basins with intensive rice cultivation in southwestern Louisiana, USA, concentrations of fipronil compounds were an order of magnitude larger than the LC50. The abundance (?? = -0.64; p = 0.015) and taxa richness (r2 = 0.515, p < 0.005) of macroinvertebrate communities declined significantly with increases in concentrations of fipronil compounds and rice-cultivation land-use intensity. Macroinvertebrate community tolerance scores increased linearly (r2 = 0.442, p < 0.005) with increases in the percentage of rice cultivation in the basins, indicating increasingly degraded stream conditions. Similarly, macroinvertebrate community-tolerance scores increased rapidly as fipronil concentrations approached about 1 ??g/L. Pesticide toxicity index determinations indicated that aquatic macroinvertebrates respond to a gradient of fipronil compounds in water although stream size and habitat cannot be ruled out as contributing influences.

  14. The effects of changes in land cover and land use on nutrient loadings to the Chesapeake Bay using forecasts of urbanization

    NASA Astrophysics Data System (ADS)

    Roberts, Allen Derrick

    This dissertation examined the effects of land cover and land use (LC/LU) change on nutrient loadings (mass for a specified time) to the Chesapeake Bay, after future projections of urbanization were applied. This was accomplished by quantifying the comprehensive impacts of landscape on nutrients throughout the watershed. In order to quantify forecasted impacts of future development and LC/LU change, the current (2000) effects of landscape composition and configuration on total nitrogen (TN) and total phosphorus (TP) were examined. The effects of cover types were examined not only at catchment scales, but within riparian stream buffer to quantify the effects of spatial arrangement. Using the SPAtially Referenced Regressions On Watershed Attributes (SPARROW) model, several compositional and configurational metrics at both scales were significantly (p value ≤ 0.05) correlated to nutrient genesis and transport and helped estimate loadings to the Chesapeake Bay with slightly better accuracy and precision. Remotely sensed forecasts of future (2030) urbanization were integrated into SPARROWusing these metrics to project TN and TP loadings into the future. After estimation of these metrics and other LC/LU-based sources, it was found that overall nutrient transport to the Chesapeake Bay will decrease due to agricultural land losses and fertilizer reductions. Although point and non-point source urban loadings increased in the watershed, these gains were not enough to negate decreased agricultural impacts. In catchments forecasted to undergo urban sprawl conditions by 2030, the response of TN locally generated within catchments varied. The forecasted placement of smaller patches of development within agricultural lands of higher nutrient production was correlated to projected losses. However, shifting forecasted growth onto or adjacent to existing development, not agricultural lands, resulted in projected gains. This indicated the importance of forecasted spatial

  15. Analysis of the effect of evergreen and deciduous trees on urban nitrogen dioxide levels in the U.S. using land-use regression

    NASA Astrophysics Data System (ADS)

    Rao, M.; George, L. A.

    2012-12-01

    Nitrogen dioxide (NO2), an atmospheric pollutant generated primarily by anthropogenic combustion processes, is typically found at higher concentrations in urban areas compared to non-urbanized environments. Elevated NO2 levels have multiple ecosystem effects at different spatial scales. At the local scale, elevated levels affect human health directly and through the formation of secondary pollutants such as ozone and aerosols; at the regional scale secondary pollutants such as nitric acid and organic nitrates have deleterious effects on non-urbanized areas; and, at the global scale, nitrogen oxide emissions significantly alter the natural biogeochemical nitrogen cycle. As cities globally become larger and larger sources of nitrogen oxide emissions, it is important to assess possible mitigation strategies to reduce the impact of emissions locally, regionally and globally. In this study, we build a national land-use regression (LUR) model to compare the impacts of deciduous and evergreen trees on urban NO2 levels in the United States. We use the EPA monitoring network values of NO2 levels for 2006, the 2006 NLCD tree canopy data for deciduous and evergreen canopies, and the US Census Bureau's TIGER shapefiles for roads, railroads, impervious area & population density as proxies for NO2 sources on-road traffic, railroad traffic, off-road and area sources respectively. Our preliminary LUR model corroborates previous LUR studies showing that the presence of trees is associated with reduced urban NO2 levels. Additionally, our model indicates that deciduous and evergreen trees reduce NO2 to different extents, and that the amount of NO2 reduced varies seasonally. The model indicates that every square kilometer of deciduous canopy within a 2km buffer is associated with a reduction in ambient NO2 levels of 0.64 ppb in summer and 0.46ppb in winter. Similarly, every square kilometer of evergreen tree canopy within a 2 km buffer is associated with a reduction in ambient NO2 by

  16. Analysis of Relationship Between Urban Heat Island Effect and Land Use/cover Type Using Landsat 7 ETM+ and Landsat 8 Oli Images

    NASA Astrophysics Data System (ADS)

    Aslan, N.; Koc-San, D.

    2016-06-01

    The main objectives of this study are (i) to calculate Land Surface Temperature (LST) from Landsat imageries, (ii) to determine the UHI effects from Landsat 7 ETM+ (June 5, 2001) and Landsat 8 OLI (June 17, 2014) imageries, (iii) to examine the relationship between LST and different Land Use/Land Cover (LU/LC) types for the years 2001 and 2014. The study is implemented in the central districts of Antalya. Initially, the brightness temperatures are retrieved and the LST values are calculated from Landsat thermal images. Then, the LU/LC maps are created from Landsat pan-sharpened images using Random Forest (RF) classifier. Normalized Difference Vegetation Index (NDVI) image, ASTER Global Digital Elevation Model (GDEM) and DMSP_OLS nighttime lights data are used as auxiliary data during the classification procedure. Finally, UHI effect is determined and the LST values are compared with LU/LC classes. The overall accuracies of RF classification results were computed higher than 88 % for both Landsat images. During 13-year time interval, it was observed that the urban and industrial areas were increased significantly. Maximum LST values were detected for dry agriculture, urban, and bareland classes, while minimum LST values were detected for vegetation and irrigated agriculture classes. The UHI effect was computed as 5.6 °C for 2001 and 6.8 °C for 2014. The validity of the study results were assessed using MODIS/Terra LST and Emissivity data and it was found that there are high correlation between Landsat LST and MODIS LST data (r2 = 0.7 and r2 = 0.9 for 2001 and 2014, respectively).

  17. Interplay of climate and land-use change on transport dynamics of intensively managed landscapes: a catchment travel time distribution analysis

    NASA Astrophysics Data System (ADS)

    Danesh Yazdi, M.; Foufoula-Georgiou, E.; Karwan, D. L.

    2015-12-01

    Climatic trends and extensive implementation of drainage tiles in poorly drained agricultural lands have left significant fingerprints on the hydrology and water quality of the receiving streams. Tiles were initially designed to increase the crop productivity by removing excess soil moisture and improving field conditions. However, their hydro-ecological consequences have gradually emerged through observations of enhanced rates of nitrate and phosphorus delivered to the streams, as well as altered runoff volumes and timing. The Redwood River Basin (a 1,800 km2 basin located in southwest Minnesota) is an example of such a system where a considerable switch from small grains to row crops has taken place since 1970's, driving intensive tile installation culminating in a doubling of tiled length in the past two decades. Long-term hydrologic analysis of this basin shows that the daily streamflow has increased in all months after the land-use change period, and rising limbs of daily hydrographs exhibit increased dependence on precipitation during May-June. In this study we employ the recently developed theory of time-variant travel time distributions within the storage selection function framework to examine the interplay of climate and land-use change on transport dynamics. Comparison of two periods representing the tiled and untiled conditions demonstrates 18-38 days decrease in the mean travel time due to tile drainage during spring-summer, while almost no change is observed during winter showing an overall cyclic behavior over a year. Statistics of the marginal distributions also show less variability in the mean travel time for the tiled period, probably revealing the response of the more constrained engineered system. Furthermore, the relative impact of the climate and the spatial heterogeneity of the soil properties on the travel times are investigated via numerical experiments performed on nested sub-basins under untiled condition. The simulations suggest that

  18. Quantifying urban heat island intensity in Hong Kong SAR, China.

    PubMed

    Siu, Leong Wai; Hart, Melissa A

    2013-05-01

    This paper addresses the methodological concerns in quantifying urban heat island (UHI) intensity in Hong Kong SAR, China. Although the urban heat island in Hong Kong has been widely investigated, there is no consensus on the most appropriate fixed point meteorological sites to be used to calculate heat island intensity. This study utilized the Local Climate Zones landscape classification system to classify 17 weather stations from the Hong Kong Observatory's extensive fixed point meteorological observation network. According to the classification results, the meteorological site located at the Hong Kong Observatory Headquarters is the representative urban weather station in Hong Kong, whereas sites located at Tsak Yue Wu and Ta Kwu Ling are appropriate rural or nonurbanized counterparts. These choices were validated and supported quantitatively through comparison of long-term annual and diurnal UHI intensities with rural stations used in previous studies. Results indicate that the rural stations used in previous studies are not representative, and thus, the past UHI intensities calculated for Hong Kong may have been underestimated. PMID:23007798

  19. The Effects of Changes in Land Cover/Land Use on Nutrient Loadings to the Chesapeake Bay Estuary Using Forecasts of Future Urbanization

    NASA Astrophysics Data System (ADS)

    Prince, S.; Roberts, A. D.

    2006-12-01

    The effects of short-term and projected long-term changes in spatially explicit land cover/land use (LC/LU) on nutrient loadings (total nitrogen (TN) and total phosphorus (TP) in kg/ha/yr) were studied in the Chesapeake Bay watershed (164,000 km2) estuary. Version 3.0 of the USGS Chesapeake Bay's SPAtially Referenced Regressions on Watershed Attributes (SPARROW) model was implemented for the widely studied Patuxent River Basin in Maryland. Probabilities of LC change were estimated using projections of impervious surface locations at the LANDSAT (30m) scale and the Slope, Land use, Exclusion, Urban extent, Transportation, and Hillshade (SLEUTH) model for three development scenarios: current trends, smart growth, and ecologically sustainable to the Year 2030. Six Maryland Hydrologic Unit Code (HUC)-11 watersheds (three within and three outside of the basin) with verified (published) TN/TP nutrient loadings based on Year 2000 data from the Maryland Department of Natural Resources (DNR) were analyzed to see how they compared with the aggregated smaller catchments estimate of TN/TP that were contained within the larger boundaries of the HUC-11 watersheds and based on Year 2000 LC/LC and imperviousness data. The aggregated SPARROW TN always overpredicted the published values, whereas the SPARROW TP underpredicted the published DNR TP in three watersheds and overpredicted the DNR in the others. TN R2 = 0.90, whereas TP R2 = 0.69 in comparing DNR with SPARROW. Since the regression results just reported are only potential nutrient loadings for catchments independent of any other processes based on the model TN/TP general equations, when allowed to run in the true nonlinear structure of the SPARROW models that account for stream/catchment connectivity and water/land chemistry, even better nutrient estimates should able to be purported over larger watersheds throughout the Chesapeake Bay. In addition, TN/TP loadings from 85 of the smaller SPARROW reach catchments associated

  20. Study of the impact of land use and hydrogeological settings on the shallow groundwater quality in a peri-urban area of Kampala, Uganda.

    PubMed

    Kulabako, N R; Nalubega, M; Thunvik, R

    2007-08-01

    A study to assess the impacts of land use and hydrogeological characteristics on the shallow groundwater in one of Kampala's peri-urban areas (Bwaise III Parish) was undertaken for a period of 19 months. Water quality monitoring was carried out for 16 installed wells and one operational protected spring to ascertain the seasonal variation. The aspects of hydrogeological setting investigated in the study were the subsurface unconsolidated material characteristics (stratigraphy, lithology, hydraulic conductivity, porosity and chemical content), seasonal groundwater depths and spring discharge, topography and rainfall of the area. Both laboratory and field measurements were carried out to determine the soil and water characteristics. Field surveys were also undertaken to identify and locate the various land use activities that may potentially pollute. The results demonstrate that the water table in the area responds rapidly to short rains (48 h) due to the pervious (10(-5)-10(-3) ms(-1)) and shallow (<1 mbgl) vadose zone, which consists of foreign material (due to reclamation). This anthropogenically influenced vadose zone has a limited contaminant attenuation capacity resulting in water quality deterioration following the rains. There is widespread contamination of the groundwater with high organic (up to 370 mgTKN/l and 779 mgNO-3/l), thermotolerant coliforms (TTCs) and faecal streptococci (FS) (median values as high as 126E3 cfu/100 ml and 154E3 cfu/100 ml respectively) and total phosphorus (up to 13 mg/l) levels originating from multiple sources of contamination. These include animal rearing, solid waste dumping, pit latrine construction and greywater/stormwater disposal in unlined channels leading to increased localised microbial (faecal) and organic (TKN/NO-3) contamination during the rains. The spring discharge (range 1.22-1.48 m3/h) with high nitrate levels (median values of 117 and 129 mg/l in the wet and dry seasons) did not vary significantly with season (p

  1. Effects of urban land-use change on streamflow and water quality in Oakland County, Michigan, 1970-2003, as inferred from urban gradient and temporal analysis

    USGS Publications Warehouse

    Aichele, Stephen S.

    2005-01-01

    This apparent contradiction may be caused by the differences in the changes measured in each analysis. The change-through-time approach describes change from a fixed starting point of approximately 1970; the gradient approach describes the cumulative effect of all change up to approximately 2000. These findings indicate that although urbanization in Oakland County results in most of the effects observed in the literature, as evidenced in the gradient approach, relatively few of the anticipated effects have been observed during the past three decades. This relative stability despite rapid land-cover change may be related to efforts to mitigate the effects of development and a general decrease in the density of new residential development. It may also be related to external factors such as climate variability and reduced atmospheric deposition of specific chemicals. 

  2. 36 CFR 910.16 - Land use.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Land use. 910.16 Section 910.16 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT CORPORATION GENERAL GUIDELINES... DEVELOPMENT AREA Urban Planning and Design Concerns § 910.16 Land use. (a) Development within the...

  3. 36 CFR 910.16 - Land use.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Land use. 910.16 Section 910.16 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT CORPORATION GENERAL GUIDELINES... DEVELOPMENT AREA Urban Planning and Design Concerns § 910.16 Land use. (a) Development within the...

  4. 36 CFR 910.16 - Land use.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Land use. 910.16 Section 910.16 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT CORPORATION GENERAL GUIDELINES... DEVELOPMENT AREA Urban Planning and Design Concerns § 910.16 Land use. (a) Development within the...

  5. 36 CFR 910.16 - Land use.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Land use. 910.16 Section 910.16 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT CORPORATION GENERAL GUIDELINES... DEVELOPMENT AREA Urban Planning and Design Concerns § 910.16 Land use. (a) Development within the...

  6. 36 CFR 910.16 - Land use.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Land use. 910.16 Section 910.16 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT CORPORATION GENERAL GUIDELINES... DEVELOPMENT AREA Urban Planning and Design Concerns § 910.16 Land use. (a) Development within the...

  7. Local source identification of trace metals in urban/industrial mixed land-use areas with daily PM10 limit value exceedances

    NASA Astrophysics Data System (ADS)

    Fernández-Olmo, Ignacio; Andecochea, Carlos; Ruiz, Sara; Fernández-Ferreras, José Antonio; Irabien, Angel

    2016-05-01

    This study presents the analysis of the concentration levels, inter-site variation and source identification of trace metals at three urban/industrial mixed land-use sites of the Cantabria region (northern Spain), where local air quality plans were recently approved because the number of exceedances of the daily PM10 limit value according to the Directive 2008/50/EC had been relatively high in the last decade (more than 35 instances per year). PM10 samples were collected for over three years at the Torrelavega (TORR) and Los Corrales (CORR) sites and for over two years at the Camargo (GUAR) site and analysed for the presence of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), titanium (Ti), vanadium (V), molybdenum (Mo), manganese (Mn), iron (Fe), antimony (Sb) and zinc (Zn). Analysis of enrichment factors revealed an anthropogenic origin of most of the studied elements; Zn, Cd, Mo, Pb and Cu were the most enriched elements at the three sites, with Fe and V as the least enriched elements. Positive Matrix Factorisation (PMF) and pollutant roses (Cu at TORR, Zn at CORR and Mn at GUAR) were used to identify the local sources of the studied metals. Analysis of PMF results revealed the main sources of trace metals at each site as road traffic at the TORR site, iron foundry and casting industry at the CORR site and a ferro-manganese alloy industry at the GUAR site. Other sources were also identified at these sites, but with much lower contributions, such as minor industrial sources, combustion and traffic mixed with the previous sources.

  8. Land degradation in a semi-urban catchment in Burkina Faso: monitoring land use change and soil erosion with earth observations and field surveys

    NASA Astrophysics Data System (ADS)

    Angeluccetti, Irene; Coviello, Velio; Vezza, Paolo; Grimaldi, Stefania; Steffenino, Sara; Magloire Koussoubé, Alain

    2015-04-01

    Soil erosion is currently menacing the availability of arable land in various countries worldwide. In particular the countries located in the Sahel area of Sub-Saharan Africa are extremely prone to this type of environmental degradation. The same countries rely traditionally upon subsistence farming, which makes the population more vulnerable to environmental changes. The study here presented exploits remote sensed data for identifying the main degradation processes occurring in a small catchment of central Burkina Faso (i.e., Boulbi watershed). This catchment, approximately 100 square km large, is characterized by the presence of a 30 years old dam, whose reservoir feeds 80 ha of rice-fields. This produce contributes up to 13% of the regional rice production. Nonetheless other crops, along with rain-fed rice, are grown all across the Boulbi catchment during the rainy season. Both the increasing gully erosion and the urbanization of the capital city pushing from the North are significantly threatening the farming activities. By using aerial frames acquired with a 16 years' time interval (i.e., 1996, 2012), free satellite imagery, and field surveys, the base cartography of the investigated area was updated and the most active gullies were identified. Moreover a change detection analysis was performed on both artifacts and land use features. More than 200.000 square m of erosion areas and an increase of nearly 90% in built-up areas were detected. In addition, the importance of producing up-to-date base data was proven by the exploitation of the outcomes for the production of a catchment land and water management plan.

  9. Arbuscular mycorrhizal fungal communities in sub-Saharan savannas of Benin, West Africa, as affected by agricultural land use intensity and ecological zone.

    PubMed

    Tchabi, Atti; Coyne, Danny; Hountondji, Fabien; Lawouin, Louis; Wiemken, Andres; Oehl, Fritz

    2008-04-01

    richness were generally higher in the natural savannas and under yam than at the other cultivated sites and lowest under the intensively managed cotton. In the fallows, species richness was intermediate, indicating that the high richness of the natural savannas was not restored. Surprisingly, higher species richness was observed in the SU than in the SG and NG, mainly due to a high proportion of species in the Gigasporaceae, Acaulosporaceae, and Glomeraceae. We conclude that the West African savannas contain a high natural AM fungal species richness, but that this natural richness is significantly affected by the common agricultural land use practices and appears not to be quickly restored by fallow. PMID:18386078

  10. Norfolk and environs: A land use perspective

    USGS Publications Warehouse

    Alexander, Robert H.; Buzzanell, Peter J.; Fitzpatrick, Katherine A.; Lins, Harry F.; McGinty, Herbert K., III

    1975-01-01

    The Norfolk-Portsmouth Standard Metropolitan Statistical Area (SMSA) in southeastern Virginia was the site of intensive testing of a number of land resources assessment methods, built around the availability of remotely sensed data from the Earth Resources Technology Satellite (ERTS-I), later renamed LANDSAT I. The Norfolk tests were part of a larger experiment known as the Central Atlantic Regional Ecological Test Site (CARETS), designed to test the extent to which LANDSAT and associated high-altitude aircraft data could be used as cost-effective inputs to a regional land use information system. The Norfolk SMSA contains a variety of land uses typical of the urbanized eastern seaboard, along with typical associated problems: rapid urbanization; heavy recreational, commercial, and residential demands on fragile beaches and coastal marsh environments; industrial, transportation, and governmental land and water uses impacting on residential and agricultural areas; drainage and land stability difficulties affecting construction and other uses; and increasing difficulties in maintaining satisfactory air and water quality.

  11. Land use of northern megalopolis

    NASA Technical Reports Server (NTRS)

    Simpson, R. B.; Lindgren, D. T.

    1973-01-01

    The major objective is to map and digitize the land use of northern megalopolis, the states of Massachusetts, Connecticut, and Rhode Island, and to evaluate ERTS as a planning tool for megalopolitan areas. The southern New England region provides a good test ERTS's capabilities because of its complex landscape. Not only are there great differences in the degree of urban development, but in relief and vegetative cover as well.

  12. Remote Sensing Application to Land Use Classification in a Rapidly Changing Agricultural/Urban Area: City of Virginia Beach, Virginia. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Odenyo, V. A. O.

    1975-01-01

    Remote sensing data on computer-compatible tapes of LANDSAT 1 multispectral scanner imager were analyzed to generate a land use map of the City of Virginia Beach. All four bands were used in both the supervised and unsupervised approaches with the LAYSYS software system. Color IR imagery of a U-2 flight of the same area was also digitized and two sample areas were analyzed via the unsupervised approach. The relationships between the mapped land use and the soils of the area were investigated. A land use land cover map at a scale of 1:24,000 was obtained from the supervised analysis of LANDSAT 1 data. It was concluded that machine analysis of remote sensing data to produce land use maps was feasible; that the LAYSYS software system was usable for this purpose; and that the machine analysis was capable of extracting detailed information from the relatively small scale LANDSAT data in a much shorter time without compromising accuracy.

  13. Action planning for healthy cities: the role of multi-criteria analysis, developed in Italy and France, for assessing health performances in land-use plans and urban development projects.

    PubMed

    Capolongo, Stefano; Lemaire, Nina; Oppio, Alessandra; Buffoli, Maddalena; Roue Le Gall, Anne

    2016-01-01

    In the last decades a growing attention has been paid to the relationship between urban planning and public health. The introduction of the social model of health has stressed the importance of the determinants of health such as socioeconomic, cultural, and environmental conditions, in addition to living and working conditions. Starting from the assumption that urban planning plays a crucial role for enhancing healthy lifestyles and environments, the paper describes two different approaches to include health issues into land use plans and urban development projects. Two different evaluation tools, defined according to the Italian and French legal framework, have been compared in order to find out whether they could be considered as an innovative answer to the instance of creating a more effective cross field of work and training among urban planners and public health professionals. PMID:27436261

  14. Land use planning

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The organization, objectives, and accomplishments of the panel on Land Use Planning are reported. Technology developments, and projected developments are discussed along with anticipated information requirements. The issues for users, recommended remote sensing programs, and space systems are presented. It was found that remote sensing systems are useful in future land use planning. It is recommended that a change detection system for monitoring land use and critical environmental areas be developed by 1979.

  15. Land use and climate variability amplify carbon, nutrient, and contaminant pulses: a review with management implications

    EPA Science Inventory

    Nonpoint source pollution from agriculture and urbanization is increasing globally at the same time that climate extremes have increased in frequency and intensity. We review over 160 studies and show how the interaction between land use and climate variability alters the magnit...

  16. An integrated multi-criteria scenario evaluation web tool for participatory land-use planning in urbanized areas: The Ecosystem Portfolio Model

    USGS Publications Warehouse

    Labiosa, Bill; Forney, William M.; Hearn,, Paul P., Jr.; Hogan, Dianna M.; Strong, David R.; Swain, Eric D.; Esnard, Ann-Margaret; Mitsova-Boneva, D.; Bernknopf, R.; Pearlstine, Leonard; Gladwin, Hugh

    2013-01-01

    Land-use land-cover change is one of the most important and direct drivers of changes in ecosystem functions and services. Given the complexity of the decision-making, there is a need for Internet-based decision support systems with scenario evaluation capabilities to help planners, resource managers and communities visualize, compare and consider trade-offs among the many values at stake in land use planning. This article presents details on an Ecosystem Portfolio Model (EPM) prototype that integrates ecological, socio-economic information and associated values of relevance to decision-makers and stakeholders. The EPM uses a multi-criteria scenario evaluation framework, Geographic Information Systems (GIS) analysis and spatially-explicit land-use/land-cover change-sensitive models to characterize changes in important land-cover related ecosystem values related to ecosystem services and functions, land parcel prices, and community quality-of-life (QoL) metrics. Parameters in the underlying models can be modified through the interface, allowing users in a facilitated group setting to explore simultaneously issues of scientific uncertainty and divergence in the preferences of stakeholders. One application of the South Florida EPM prototype reported in this article shows the modeled changes (which are significant) in aggregate ecological value, landscape patterns and fragmentation, biodiversity potential and ecological restoration potential for current land uses compared to the 2050 land-use scenario. Ongoing refinements to EPM, and future work especially in regard to modifiable sea level rise scenarios are also discussed.

  17. Effects of Endogenous Factors on Regional Land-Use Carbon Emissions Based on the Grossman Decomposition Model: A Case Study of Zhejiang Province, China

    NASA Astrophysics Data System (ADS)

    Wu, Cifang; Li, Guan; Yue, Wenze; Lu, Rucheng; Lu, Zhangwei; You, Heyuan

    2015-02-01

    The impact of land-use change on greenhouse gas emissions has become a core issue in current studies on global change and carbon cycle. However, a comprehensive evaluation of the effects of land-use changes on carbon emissions is very necessary. This paper attempted to apply the Grossman decomposition model to estimate the scale, structural, and management effects of land-use carbon emissions based on final energy consumption by establishing the relationship between the types of land use and carbon emissions in energy consumption. It was shown that land-use carbon emissions increase from 169.5624 million tons in 2000 to 637.0984 million tons in 2010, with an annual average growth rate of 14.15 %. Meanwhile, land-use carbon intensity increased from 17.59 t/ha in 2000 to 64.42 t/ha in 2010, with an average annual growth rate of 13.86 %. The results indicated that rapid industrialization and urbanization in Zhejiang Province promptly increased urban land and industrial land, which consequently affected land-use extensive emissions. The structural and management effects did not mitigate land-use carbon emissions. By contrast, both factors evidently affected the growth of carbon emissions because of the rigid demands of energy-intensive land-use types and the absence of land management. Results called for the policy implications of optimizing land-use structures and strengthening land-use management.

  18. Effects of endogenous factors on regional land-use carbon emissions based on the Grossman decomposition model: a case study of Zhejiang Province, China.

    PubMed

    Wu, Cifang; Li, Guan; Yue, Wenze; Lu, Rucheng; Lu, Zhangwei; You, Heyuan

    2015-02-01

    The impact of land-use change on greenhouse gas emissions has become a core issue in current studies on global change and carbon cycle. However, a comprehensive evaluation of the effects of land-use changes on carbon emissions is very necessary. This paper attempted to apply the Grossman decomposition model to estimate the scale, structural, and management effects of land-use carbon emissions based on final energy consumption by establishing the relationship between the types of land use and carbon emissions in energy consumption. It was shown that land-use carbon emissions increase from 169.5624 million tons in 2000 to 637.0984 million tons in 2010, with an annual average growth rate of 14.15%. Meanwhile, land-use carbon intensity increased from 17.59 t/ha in 2000 to 64.42 t/ha in 2010, with an average annual growth rate of 13.86%. The results indicated that rapid industrialization and urbanization in Zhejiang Province promptly increased urban land and industrial land, which consequently affected land-use extensive emissions. The structural and management effects did not mitigate land-use carbon emissions. By contrast, both factors evidently affected the growth of carbon emissions because of the rigid demands of energy-intensive land-use types and the absence of land management. Results called for the policy implications of optimizing land-use structures and strengthening land-use management. PMID:25421995

  19. Global Consequences of Land Use

    NASA Astrophysics Data System (ADS)

    Foley, Jonathan A.; DeFries, Ruth; Asner, Gregory P.; Barford, Carol; Bonan, Gordon; Carpenter, Stephen R.; Chapin, F. Stuart; Coe, Michael T.; Daily, Gretchen C.; Gibbs, Holly K.; Helkowski, Joseph H.; Holloway, Tracey; Howard, Erica A.; Kucharik, Christopher J.; Monfreda, Chad; Patz, Jonathan A.; Prentice, I. Colin; Ramankutty, Navin; Snyder, Peter K.

    2005-07-01

    Land use has generally been considered a local environmental issue, but it is becoming a force of global importance. Worldwide changes to forests, farmlands, waterways, and air are being driven by the need to provide food, fiber, water, and shelter to more than six billion people. Global croplands, pastures, plantations, and urban areas have expanded in recent decades, accompanied by large increases in energy, water, and fertilizer consumption, along with considerable losses of biodiversity. Such changes in land use have enabled humans to appropriate an increasing share of the planet's resources, but they also potentially undermine the capacity of ecosystems to sustain food production, maintain freshwater and forest resources, regulate climate and air quality, and ameliorate infectious diseases. We face the challenge of managing trade-offs between immediate human needs and maintaining the capacity of the biosphere to provide goods and services in the long term.

  20. Using GIS to integrate the analysis of land-use, transportation, and the environment for managing urban growth based on transit oriented development in the metropolitan of Jabodetabek, Indonesia

    NASA Astrophysics Data System (ADS)

    Hasibuan, H. S.; Moersidik, S.; Koestoer, R.; Soemardi, T. P.

    2014-02-01

    There is an interaction between land use, transportation, and environment in improving and managing urban quality. One of the concpets to integrate those three aspects is Transit Oriented Development (TOD). It is a concept for managing urban growth in transit corridors which have characteristics of mixed land use, compact, walkability, and development focused around public transit area. This research aims at utilizing GIS to organize, sort, and analyze spatial data including aspects of land use, transportation, and environment. Jabodetabek is a strategic metropolitan area in Indonesia, and consists of DKI Jakarta and the neighboring Bodetabek cities, with more than 27 million population in 2010. Approximately 1,105,000 people are entering Jakarta every workday from the negihboring Bodetabek region. The surge in the number of passenger cars and motorcycles is astonishing. In contrast, the usage of public transport has declined deeply. Public transport infrastructure development without the integration of TOD may not attain the objective of reducing car dependency. This paper discusses the study which was carried out to identify the applicability of TOD principles in Jabodetabek using GIS as a tool to analysis and create model.

  1. Spatiotemporal trends of urban heat island effect along the urban development intensity gradient in China.

    PubMed

    Zhou, Decheng; Zhang, Liangxia; Hao, Lu; Sun, Ge; Liu, Yongqiang; Zhu, Chao

    2016-02-15

    Urban heat island (UHI) represents a major anthropogenic modification to the Earth system and its relationship with urban development is poorly understood at a regional scale. Using Aqua MODIS data and Landsat TM/ETM+ images, we examined the spatiotemporal trends of the UHI effect (ΔT, relative to the rural reference) along the urban development intensity (UDI) gradient in 32 major Chinese cities from 2003 to 2012. We found that the daytime and nighttime ΔT increased significantly (p<0.05, mostly in linear form) along a rising UDI for 27 and 30 out of 32 cities, respectively. More rapid increases were observed in the southeastern and northwestern parts of China in the day and night, respectively. Moreover, the ΔT trends differed greatly by season and during daytime in particular. The ΔT increased more rapidly in summer than in winter during the day and the reverse occurred at night for most cities. Inter-annually, the ΔT increased significantly in about one-third of the cities during both the day and night times from 2003 to 2012, especially in suburban areas (0.25urbanization effects on local climate cross China and offer limitations on how these certain methods should be used to quantify UHI intensity over large areas. Furthermore, the impacts of urbanization on climate are complex, thus future research efforts should focus more toward direct observation and physical-based modeling to make credible predictions of the effects. PMID:26674691

  2. Quantitative analysis of urban sprawl in Tripoli using Pearson's Chi-Square statistics and urban expansion intensity index

    NASA Astrophysics Data System (ADS)

    Al-sharif, Abubakr A. A.; Pradhan, Biswajeet; Zulhaidi Mohd Shafri, Helmi; Mansor, Shattri

    2014-06-01

    Urban expansion is a spatial phenomenon that reflects the increased level of importance of metropolises. The remotely sensed data and GIS have been widely used to study and analyze the process of urban expansions and their patterns. The capital of Libya (Tripoli) was selected to perform this study and to examine its urban growth patterns. Four satellite imageries of the study area in different dates (1984, 1996, 2002 and 2010) were used to conduct this research. The main goal of this work is identification and analyzes the urban sprawl of Tripoli metropolitan area. Urban expansion intensity index (UEII) and degree of freedom test were used to analyze and assess urban expansions in the area of study. The results show that Tripoli has sprawled urban expansion patterns; high urban expansion intensity index; and its urban development had high degree of freedom according to its urban expansion history during the time period (1984-2010). However, the novel proposed hypothesis used for zones division resulted in very good insight understanding of urban expansion direction and the effect of the distance from central business of district (CBD).

  3. A Comparison of Natural and Urban Characteristics and the Development of Urban Intensity Indices Across Six Geographic Settings

    USGS Publications Warehouse

    Falcone, James A.; Stewart, Jana; Sobieszczyk, Steven; Dupree, Jean; McMahon, Gerard; Buell, Gary

    2007-01-01

    As part of the U.S. Geological Survey National Water-Quality Assessment Program, the effects of urbanization on stream ecosystems have been intensively investigated in six metropolitan areas in the United States. Approximately 30 watersheds in each area, ranging in size from 4 to 560 square kilometers (median is 50 square kilometers), and spanning a development gradient from very low to very high urbanization, were examined near Atlanta, Georgia; Raleigh, North Carolina; Denver, Colorado; Dallas-Fort Worth, Texas; Portland, Oregon; and Milwaukee-Green Bay, Wisconsin. These six studies are a continuation of three previous studies in Boston, Massachusetts; Birmingham, Alabama; and Salt Lake City, Utah. In each study, geographic information system data for approximately 300 variables were assembled to (a) characterize the environmental settings of the areas and (b) establish a consistent multimetric urban intensity index based on locally important land-cover, infrastructure, and socioeconomic variables. This paper describes the key features of urbanization and the urban intensity index for the study watersheds within each area, how they differ across study areas, and the relation between the environmental setting and the characteristics of urbanization. A number of features of urbanization were identified that correlated very strongly to population density in every study area. Of these, road density had the least variability across diverse geographic settings and most closely matched the multimetric nature of the urban intensity index. A common urban intensity index was derived that ranks watersheds across all six study areas. Differences in local natural settings and urban geography were challenging in (a) identifying consistent urban gradients in individual study areas and (b) creating a common urban intensity index that matched the site scores of the local urban intensity index in all areas. It is intended that the descriptions of the similarities and differences

  4. 24 CFR 1710.209 - Title and land use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Title and land use. 1710.209... URBAN DEVELOPMENT (INTERSTATE LAND SALES REGISTRATION PROGRAM) LAND REGISTRATION Reporting Requirements § 1710.209 Title and land use. (a) General information. (1) State whether the developer has reserved...

  5. 24 CFR 1710.209 - Title and land use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Title and land use. 1710.209... URBAN DEVELOPMENT (INTERSTATE LAND SALES REGISTRATION PROGRAM) LAND REGISTRATION Reporting Requirements § 1710.209 Title and land use. (a) General information. (1) State whether the developer has reserved...

  6. 24 CFR 1710.209 - Title and land use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Title and land use. 1710.209... URBAN DEVELOPMENT (INTERSTATE LAND SALES REGISTRATION PROGRAM) LAND REGISTRATION Reporting Requirements § 1710.209 Title and land use. (a) General information. (1) State whether the developer has reserved...

  7. 24 CFR 1710.209 - Title and land use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Title and land use. 1710.209... URBAN DEVELOPMENT (INTERSTATE LAND SALES REGISTRATION PROGRAM) LAND REGISTRATION Reporting Requirements § 1710.209 Title and land use. (a) General information. (1) State whether the developer has reserved...

  8. 24 CFR 1710.209 - Title and land use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Title and land use. 1710.209... URBAN DEVELOPMENT (INTERSTATE LAND SALES REGISTRATION PROGRAM) LAND REGISTRATION Reporting Requirements § 1710.209 Title and land use. (a) General information. (1) State whether the developer has reserved...

  9. Land-use Leakage

    SciTech Connect

    Calvin, Katherine V.; Edmonds, James A.; Clarke, Leon E.; Bond-Lamberty, Benjamin; Kim, Son H.; Wise, Marshall A.; Thomson, Allison M.; Kyle, G. Page

    2009-12-01

    Leakage occurs whenever actions to mitigate greenhouse gas emissions in one part of the world unleash countervailing forces elsewhere in the world so that reductions in global emissions are less than emissions mitigation in the mitigating region. While many researchers have examined the concept of industrial leakage, land-use policies can also result in leakage. We show that land-use leakage is potentially as large as or larger than industrial leakage. We identify two potential land-use leakage drivers, land-use policies and bioenergy. We distinguish between these two pathways and run numerical experiments for each. We also show that the land-use policy environment exerts a powerful influence on leakage and that under some policy designs leakage can be negative. International “offsets” are a potential mechanism to communicate emissions mitigation beyond the borders of emissions mitigating regions, but in a stabilization regime designed to limit radiative forcing to 3.7 2/m2, this also implies greater emissions mitigation commitments on the part of mitigating regions.

  10. Future land use plan

    SciTech Connect

    1995-08-31

    The US Department of Energy`s (DOE) changing mission, coupled with the need to apply appropriate cleanup standards for current and future environmental restoration, prompted the need for a process to determine preferred Future Land Uses for DOE-owned sites. DOE began the ``Future Land Use`` initiative in 1994 to ensure that its cleanup efforts reflect the surrounding communities` interests in future land use. This plan presents the results of a study of stakeholder-preferred future land uses for the Brookhaven National Laboratory (BNL), located in central Long Island, New York. The plan gives the Laboratory`s view of its future development over the next 20 years, as well as land uses preferred by the community were BNL ever to cease operations as a national laboratory (the post-BNL scenario). The plan provides an overview of the physical features of the site including its history, topography, geology/hydrogeology, biological inventory, floodplains, wetlands, climate, and atmosphere. Utility systems and current environmental operations are described including waste management, waste water treatment, hazardous waste management, refuse disposal and ground water management. To complement the physical descriptions of the site, demographics are discussed, including overviews of the surrounding areas, laboratory population, and economic and non-economic impacts.

  11. Modeling future water demand in California from developed and agricultural land uses

    NASA Astrophysics Data System (ADS)

    Wilson, T. S.; Sleeter, B. M.; Cameron, D. R.

    2015-12-01

    Municipal and urban land-use intensification in coming decades will place increasing pressure on water resources in California. The state is currently experiencing one of the most extreme droughts on record. This coupled with earlier spring snowmelt and projected future climate warming will increasingly constrain already limited water supplies. The development of spatially explicit models of future land use driven by empirical, historical land use change data allow exploration of plausible LULC-related water demand futures and potential mitigation strategies. We utilized the Land Use and Carbon Scenario Simulator (LUCAS) state-and-transition simulation model to project spatially explicit (1 km) future developed and agricultural land use from 2012 to 2062 and estimated the associated water use for California's Mediterranean ecoregions. We modeled 100 Monte Carlo simulations to better characterize and project historical land-use change variability. Under current efficiency rates, total water demand was projected to increase 15.1% by 2062, driven primarily by increases in urbanization and shifts to more water intensive crops. Developed land use was projected to increase by 89.8%-97.2% and result in an average 85.9% increase in municipal water use, while agricultural water use was projected to decline by approximately 3.9%, driven by decreases in row crops and increases in woody cropland. In order for water demand in 2062 to balance to current demand levels, the currently mandated 25% reduction in urban water use must remain in place in conjunction with a near 7% reduction in agricultural water use. Scenarios of land-use related water demand are useful for visualizing alternative futures, examining potential management approaches, and enabling better informed resource management decisions.

  12. Land Use in Saskatchewan.

    ERIC Educational Resources Information Center

    Saskatchewan Dept. of the Environment, Regina. Public Information and Education Branch.

    Information on land use in Saskatchewan is provided in this updated report by the Policy, Planning, and Research Branch of Saskatchewan Environment. Chapter I discusses the physical, economic, and cultural geography of Saskatchewan and traces the history of settlement in this province. Chapter II provides information on the province's resource…

  13. RESEARCH FOR MANAGING URBAN WATERSHED MICROBIAL CONTAMINATION (PROJECT 1: MANAGING URBAN WATERSHED PATHOGEN CONTAMINATION: 2. EFFECT OF LAND USE AND SEASON ON MICROORGANISM CONCENTRATION ON URBAN STORMWATER RUNOFF; 3. MICROORGANISM DIE-OFF RATES UNDER VARIOUS CONDITIONS.

    EPA Science Inventory

    The Water Supply and Water Resources Division (WSWRD) developed a document entitled Managing Urban Watershed Pathogen Contamination (EPA 600/R-03/111). This document provides information to support specific steps of the total maximum daily load (TMDL) process for meeting water q...

  14. Land Use and Land Cover Changes and Urban Sprawl in Riyadh, Saudi Arabia: AN Analysis Using Multi-Temporal Landsat Data and SHANNON'S Entropy Index

    NASA Astrophysics Data System (ADS)

    Rahman, M. T.

    2016-06-01

    The city of Riyadh, Saudi Arabia has experienced rapid population growth and urban expansion over the past several decades. Due to such growth, the capital city faces many short and long-term social and environmental consequences. In order to monitor and mitigate some of these consequences, it is essential to examine the past changes and historical growth of the city. It is also essential to measure its urban sprawl over the past few decades. The objective of this study is to fulfil these goals. It does so by first examining the historical growth of the city of Riyadh. To do so, Landsat data over the past two and half decades are classified using a combination of supervised and unsupervised classification techniques. Based on the classification results, the study then uses Shannon's Entropy to measure the urban sprawl in the city. The results show that from 1990-2009, the urban built-up area of the city has increased by 90% in the western, south-eastern, and northern parts. The Shannon's entropy values show that the city is dispersing towards the outskirts of the city. The results from this study will assist city planners and government officials to plan, reduce, and perhaps mitigate some of the social and environmental consequences and enable the growth of the city in a sustainable manner in the near future.

  15. An analysis of Milwaukee county land use

    NASA Technical Reports Server (NTRS)

    Todd, W. J.; Mausel, P. E.

    1973-01-01

    The identification and classification of urban and suburban phenomena through analysis of remotely-acquired sensor data can provide information of great potential value to many regional analysts. Such classifications, particularly those using spectral data obtained from satellites such as the first Earth Resources Technology Satellite (ERTS-1) orbited by NASA, allow rapid frequent and accurate general land use inventories that are of value in many types of spatial analyses. In this study, Milwaukee County, Wisconsin was classified into several broad land use categories on the basis of computer analysis of four bands of ERTS spectral data (ERTS Frame Number E1017-16093). Categories identified were: (1) road-central business district, (2) grass (green vegetation), (3) suburban, (4) wooded suburb, (5) heavy industry, (6) inner city, and (7) water. Overall, 90 percent accuracy was attained in classification of these urban land use categories.

  16. Long-term water monitoring in two Mediterranean lagoons as an indicator of land-use changes and intense precipitation events (Adra, Southeastern Spain)

    NASA Astrophysics Data System (ADS)

    Rodríguez-Rodríguez, Miguel; Benavente, José; Alcalá, Francisco J.; Paracuellos, Mariano

    2011-02-01

    During recent historical times the Adra river delta, a detrital coastal aquifer of nearly 32 km 2 located in a semi-arid, mountainous area of SE Spain, has undergone different changes caused by human activity. Within this context, both the river dynamics in the plain and the geomorphology of the coastline have at various times resulted in the formation of small lagoons. At present only two small (<0.5 km 2) lagoons exist, at the eastern edge of the aquifer, which, although closely surrounded by commercial market-garden greenhouses, are protected under international agreements. During the last 30 years of the twentieth century traditional agricultural irrigation techniques have undergone significant changes to improve their efficiency. Surface-water resources in the Adra river basin are regulated via the Beninar reservoir. In addition, the use of groundwater is increasing progressively. Both these factors affect the recharge of the coastal aquifer. To monitor these changes measurements of electrical conductivity and water level fluctuations have been recorded in these lagoons for the last 35 years (1975-2010). A comparison of the hydrochemical characteristics of the water in the lagoons and of the surrounding groundwater from 2003 to 2010 shows marked differences induced by the different hydrological dynamics in each lagoon, as well as by the hydrogeological impact of changes in land use in the delta. The increase in water demand is a consequence of the extension of irrigated areas from the fluvio-deltaic plain to its slopes, originally occupied by unirrigated crops. A reduction in irrigation return-flow is linked to the use of new irrigation techniques. These modifications affect both the recharge regime of the aquifer and its water quality. Moreover, extreme precipitation events, which are characteristic of Mediterranean semi-arid environments, can affect the lagoons' hydrological dynamics to a considerable extent. One such example is the unusually rainy period

  17. Land Use. Ag Ed Environmental Education Series.

    ERIC Educational Resources Information Center

    Tulloch, Rodney W.

    Land use is the subject of the student resource unit to be used with high school vocational agriculture students. Uses of the land in an urban environment, suburban environment, rural environment (as cropland, forest, and others), recreation and parks, and other environments are described. The supply of and demand for land is discussed.…

  18. Ecologically based municipal land use planning

    SciTech Connect

    Honachefsky, W.B.

    2000-07-01

    The book presents compelling evidence and sound arguments that make the case for sound land use policies that will reduce sprawl. The book provides easily understood solutions for municipal land planners dealing with urban sprawl; discusses ecological resources; emphasizes the use of new environmental indicators; and includes the use of the Geographic Information System (GIS) to problem solving.

  19. Urban and regional land use analysis: CARETS and Census Cities experiment package. [Pennsylvania, New Jersey, Delaware, Maryland, Virginia, District of Columbia, Washington, California

    NASA Technical Reports Server (NTRS)

    Alexander, R. (Principal Investigator); Lins, H. F., Jr.; Wray, J. R.

    1974-01-01

    The author has identified the following significant results. A number of likely applications and follow-on analyses are suggested by the census cities evaluation of ERTS-1 and Skylab data. Some of these applications are: (1) estimate water use requirements; (2) define urban expansion; (3) document the pattern of residential development and assess quality of residential environment: (4) project future population densities, and estimate changes in population distribution between censuses; (5) assess environmental impact resulting from gradual as well as catastrophic changes.

  20. Urban land use/land cover mapping with high-resolution SAR imagery by integrating support vector machines into object-based analysis

    NASA Astrophysics Data System (ADS)

    Hu, Hongtao; Ban, Yifang

    2008-10-01

    This paper investigates the capability of high-resolution SAR data for urban landuse/land-cover mapping by integrating support vector machines (SVMs) into object-based analysis. Five-date RADARSAT fine-beam C-HH SAR images with a pixel spacing of 6.25 meter were acquired over the rural-urban fringe of the Great Toronto Area (GTA) during May to August in 2002. First, the SAR images were segmented using multi-resolution segmentation algorithm and two segmentation levels were created. Next, a range of spectral, shape and texture features were selected and calculated for all image objects on both levels. The objects on the lower level then inherited features of their super objects. In this way, the objects on the lower level received detailed descriptions about their neighbours and contexts. Finally, SVM classifiers were used to classify the image objects on the lower level based on the selected features. For training the SVM, sample image objects on the lower level were used. One-against-one approach was chosen to apply SVM to multiclass classification of SAR images in this research. The results show that the proposed method can achieve a high accuracy for the classification of high-resolution SAR images over urban areas.

  1. Global Land Use History: A New Synthesis

    NASA Astrophysics Data System (ADS)

    Ellis, E. C.

    2011-12-01

    Human use of land has transformed the terrestrial biosphere, causing global changes in ecosystems, landscapes, biogeochemistry, climate, and biodiversity. This global transformation is commonly described as recent in human-environment history. Interdisciplinary paleo and historical data reconstructions and global land use and land cover modeling challenge this view, indicating that human use of land has been extensive and sustained for millennia, and may represent more of a recovery than an acceleration of land use in this century and beyond. Here we present a new global synthesis of recent scientific work on the emergence, history, and future of land use as a global force transforming the Earth system. Central to this synthesis is early human use of fire to engineer ecosystems and other systemic changes in land use dynamics, which together explain how relatively small human populations may have caused widespread and profound ecological changes early in the Holocene, while the largest human populations in history are associated with forests recovery across large regions. While quantitative global models of Holocene and even contemporary land use are still at early stage of development, improved land use histories and models that incorporate land change processes offer a more spatially detailed and accurate view of our planet's history, with a biosphere and perhaps even climate long ago affected by humans. The implicit view from the Anthropocene that humans have reached a historical moment in which "wild nature" is threatened is thus challenged by a view that humans are ancestral shapers and permanent stewards of Earth's terrestrial surface. Land use intensification processes have long sustained human interactions with the terrestrial biosphere, and they continue to evolve as populations grow and urbanize. While these processes are rapidly shifting from their historic patterns in both scale and type, integrative land use and land cover models that incorporate

  2. Land use and energy

    SciTech Connect

    Robeck, K.E.; Ballou, S.W.; South, D.W.; Davis, M.J.; Chiu, S.Y.; Baker, J.E.; Dauzvardis, P.A.; Garvey, D.B.; Torpy, M.F.

    1980-07-01

    This report provides estimates of the amount of land required by past and future energy development in the United States and examines major federal legislation that regulates the impact of energy facilities on land use. An example of one land use issue associated with energy development - the potential conflict between surface mining and agriculture - is illustrated by describing the actual and projected changes in land use caused by coal mining in western Indiana. Energy activities addressed in the report include extraction of coal, oil, natural gas, uranium, oil shale, and geothermal steam; uranium processing; preparation of synfuels from coal; oil refineries; fossil-fuel, nuclear, and hydro-electric power plants; biomass energy farms; and disposal of solid wastes generated during combustion of fossil fuels. Approximately 1.1 to 3.3 x 10/sup 6/ acres were devoted to these activities in the United States in 1975. As much as 1.8 to 2.0 x 10/sup 6/ additional acres could be required by 1990 for new, nonbiomass energy development. The production of grain for fuel ethanol could require an additional 16.9 to 55.7 x 10/sup 6/ acres by 1990. Federal laws that directly or indirectly regulate the land-use impacts of energy facilities include the National Environmental Protection Act, Clean Air Act, Federal Water Pollution Control Act, Surface Mining Control and Reclamation Act, and Coastal Zone Management Act. The major provisions of these acts, other relevant federal regulations, and similar state and local regulatons are described in this report. Federal legislation relating to air quality, water quality, and the management of public lands has the greatest potential to influence the location and timing of future energy development in the United States.

  3. Energy and land use

    SciTech Connect

    Not Available

    1981-12-01

    This report addresses the land use impacts of past and future energy development and summarizes the major federal and state legislation which influences the potential land use impacts of energy facilities and can thus influence the locations and timing of energy development. In addition, this report describes and presents the data which are used to measure, and in some cases, predict the potential conflicts between energy development and alternative uses of the nation's land resources. The topics section of this report is divided into three parts. The first part describes the myriad of federal, state and local legislation which have a direct or indirect impact upon the use of land for energy development. The second part addresses the potential land use impacts associated with the extraction, conversion and combustion of energy resources, as well as the disposal of wastes generated by these processes. The third part discusses the conflicts that might arise between agriculture and energy development as projected under a number of DOE mid-term (1990) energy supply and demand scenarios.

  4. Modeling historical changes in nutrient delivery and water quality of the Zenne River (1790s-2010): The role of land use, waterscape and urban wastewater management

    NASA Astrophysics Data System (ADS)

    Garnier, Josette; Brion, Natacha; Callens, Julie; Passy, Paul; Deligne, Chloé; Billen, Gilles; Servais, Pierre; Billen, Claire

    2013-12-01

    The Seneque/Riverstrahler model has been used to explore the effect of human-induced changes in drainage network morphology and land use on organic and nutrient pollutions, for the last 20 years and back to the 1890s and 1790s. With the development of human civilization, past environmental constraints differed compared to today. Research has sought to reconstruct (i) point sources (domestic and industrial), using statistics and archives from these periods, and (ii) diffuse sources via landscape and riverscape analysis based both on maps and agricultural statistics from the periods concerned.This study shows that a maximum of pollution occurred in the 1890s at the height of the industrial period, due more to the industrial load than to the domestic load. This substantial organic and nutrient pollution might have lasted up to very recently, when the Brussels Northern wastewater treatment plant began operation in 2007, significantly reducing the organic and nutrient load of the Zenne River, returning to a background pollution level assessed herein for the 1790s before industrialization expanded.

  5. Role of snow cover on urban heat island intensity investigated by urban canopy model with snow effects

    NASA Astrophysics Data System (ADS)

    Sato, T.; Mori, K.

    2015-12-01

    Urban heat islands have been investigated around the world including snowy regions. However, the relationship between urban heat island and snow cover remains unclear. This study examined the effect of snow cover in urban canopy on energy budget in urban areas of Sapporo, north Japan by 1km mesh WRF experiments. The modified urban canopy model permits snow cover in urban canopy by the modification of surface albedo, surface emissivity, and thermal conductivity for roof and road according to snow depth and snow water equivalent. The experiments revealed that snow cover in urban canopy decreases urban air temperature more strongly for daily maximum temperature (0.4-0.6 K) than for daily minimum temperature (0.1-0.3 K). The high snow albedo reduces the net radiation at building roof, leading to decrease in sensible heat flux. Interestingly, the cooling effect of snow cover compensates the warming effect by anthropogenic heat release in Sapporo, suggesting the importance of snow cover treatment in urban canopy model as well as estimating accurate anthropogenic heat distributions. In addition, the effect of road snow clearance tends to increase nocturnal surface air temperature in urban areas. A possible role of snow cover on urban heat island intensity was evaluated by two experiments with snow cover (i.e., realistic condition) and without snow cover in entire numerical domain. The snow cover decreases surface air temperature more in rural areas than in urban areas, which was commonly seen throughout a day, with stronger magnitude during nighttime than daytime, resulting in intensifying urban heat island by 4.0 K for daily minimum temperature.

  6. [Spatial analysis on land use in Xishuangbanna].

    PubMed

    Song, Guobao; Li, Zhenghai; Gao, Jixi; Wang, Haimei

    2006-06-01

    Based on remote image and GIS technology, this paper analyzed the relationships between land use system and natural topographic factors such as elevation, slope, and river system in Xishuangbanna. The results showed that the land use system in the study region was dominated by forestland, cropland and grassland. The area of forestland was 13 420 km, accounting for 74% of the total, and that of cropland and grassland was 3 251 km2 and 2 332 km2, accounting for 13% and 18% of the total, respectively. The areas of these three land use types varied with elevation in single-peaked curve. Forestland mainly distributed around the elevation of 1 000 - 1 200 m, while cropland and grassland centralized at the elevation of 900 m. Urban land and cropland, which were greatly influenced by human activity, had lower slope index than forestland and grassland. Besides elevation and slope, river system in valley had effects on land use condition. With increasing buffer distance in valley, a strong spatial pattern of land use type was presented, i. e. , cropland, urban land and unused land concentrated greatly adjacent to water, while forestland and grassland were far away from valley. A landscape with relatively primary status, which was comprised of forestland as matrix, river as corridor, and cropland as patch, would come into being. PMID:16964932

  7. The Great Plains low-level jet (LLJ) during the atmospheric radiation measurement (ARM) intensive observation period (IOP)-4 and simulations of land use pattern effect on the LLJ

    SciTech Connect

    Wu, Y.; Raman, S.

    1996-04-01

    The Great Plains low-level jet (LLJ) is an important element of the low-level atmospheric circulation. It transports water vapor from the Gulf of Mexico, which in turn affects the development of weather over the Great Plains of the central United States. The LLJ is generally recognized as a complex response of the atmospheric boundary layer to the diurnal cycle of thermal forcing. Early studies have attributed the Great Plains LLJ to the diurnal oscillations of frictional effect, buoyancy over sloping terrain, and the blocking effects of the Rocky Mountains. Recent investigations show that the speed of the LLJ is also affected by the soil type and soil moisture. Some studies also suggest that synoptic patterns may play an important role in the development of the LLJ. Land surface heterogeneties significantly affect mesoscale circulations by generating strong contrasts in surface thermal fluxes. Thus one would expect that the land use pattern should have effects on the LLJ`s development and structure. In this study, we try to determine the relative roles of the synoptic forcing, planetary boundary layers (PBL) processes, and the land use pattern in the formation of the LLJ using the observations from the Atmospheric Radiation Measurement (ARM) Intensive Operation Period (IOP)-4 and numerical sensitivity tests.

  8. Effects of grass species and grass growth on atmospheric nitrogen deposition to a bog ecosystem surrounded by intensive agricultural land use

    PubMed Central

    Hurkuck, Miriam; Brümmer, Christian; Mohr, Karsten; Spott, Oliver; Well, Reinhard; Flessa, Heinz; Kutsch, Werner L

    2015-01-01

    We applied a 15N dilution technique called “Integrated Total Nitrogen Input” (ITNI) to quantify annual atmospheric N input into a peatland surrounded by intensive agricultural practices over a 2-year period. Grass species and grass growth effects on atmospheric N deposition were investigated using Lolium multiflorum and Eriophorum vaginatum and different levels of added N resulting in increased biomass production. Plant biomass production was positively correlated with atmospheric N uptake (up to 102.7 mg N pot−1) when using Lolium multiflorum. In contrast, atmospheric N deposition to Eriophorum vaginatum did not show a clear dependency to produced biomass and ranged from 81.9 to 138.2 mg N pot−1. Both species revealed a relationship between atmospheric N input and total biomass N contents. Airborne N deposition varied from about 24 to 55 kg N ha−1 yr−1. Partitioning of airborne N within the monitor system differed such that most of the deposited N was found in roots of Eriophorum vaginatum while the highest share was allocated in aboveground biomass of Lolium multiflorum. Compared to other approaches determining atmospheric N deposition, ITNI showed highest airborne N input and an up to fivefold exceedance of the ecosystem-specific critical load of 5–10 kg N ha−1 yr−1. PMID:26257870

  9. A Coupled SD and CLUE-S Model for Exploring the Impact of Land Use Change on Ecosystem Service Value: A Case Study in Baoshan District, Shanghai, China.

    PubMed

    Wu, Meng; Ren, Xiangyu; Che, Yue; Yang, Kai

    2015-08-01

    Most of the cities in developing countries are experiencing rapid urbanization. Land use change driven by urban sprawl, population growth, and intensified socio-economic activities have led to a steep decline of ecosystem service value (ESV) in rapid urbanization areas, and decision-makers often ignore some valuable ecosystem service functions and values in land use planning. In this paper, we attempt to build a modeling framework which integrated System Dynamics model with Conversion of Land Use and its Effects at Small Extent model to simulate the dynamics of ESV of landscape and explore the potential impacts of land use change on ESV. We take Baoshan district of Shanghai as an example which is a fast urbanization area of metropolitan in China. The results of the study indicate that: (1) The integrated methodology can improve the characterization and presentation of the dynamics of ESV, which may give insight into understanding the possible impacts of land use change on ESV and provide information for land use planning. (2) Land use polices can affect the magnitude and location of ESV both directly and indirectly. Land use changes tend to weaken and simplify ecosystem service functions and values of landscape at urban rural fringe where land use change is more intensive. (3) The application of the methodology has proved that the integration of currently existing models within a single modeling framework could be a beneficial exploration, and should be encouraged and enhanced in the future research on the changing dynamics of ESV due to the complexity of ecosystem services and land use system. PMID:25924787

  10. A Coupled SD and CLUE-S Model for Exploring the Impact of Land Use Change on Ecosystem Service Value: A Case Study in Baoshan District, Shanghai, China

    NASA Astrophysics Data System (ADS)

    Wu, Meng; Ren, Xiangyu; Che, Yue; Yang, Kai

    2015-08-01

    Most of the cities in developing countries are experiencing rapid urbanization. Land use change driven by urban sprawl, population growth, and intensified socio-economic activities have led to a steep decline of ecosystem service value (ESV) in rapid urbanization areas, and decision-makers often ignore some valuable ecosystem service functions and values in land use planning. In this paper, we attempt to build a modeling framework which integrated System Dynamics model with Conversion of Land Use and its Effects at Small Extent model to simulate the dynamics of ESV of landscape and explore the potential impacts of land use change on ESV. We take Baoshan district of Shanghai as an example which is a fast urbanization area of metropolitan in China. The results of the study indicate that: (1) The integrated methodology can improve the characterization and presentation of the dynamics of ESV, which may give insight into understanding the possible impacts of land use change on ESV and provide information for land use planning. (2) Land use polices can affect the magnitude and location of ESV both directly and indirectly. Land use changes tend to weaken and simplify ecosystem service functions and values of landscape at urban rural fringe where land use change is more intensive. (3) The application of the methodology has proved that the integration of currently existing models within a single modeling framework could be a beneficial exploration, and should be encouraged and enhanced in the future research on the changing dynamics of ESV due to the complexity of ecosystem services and land use system.

  11. IDAHO LAND USE

    EPA Science Inventory

    Use groupings are: Surface gravity irrigation, Sprinkler irrigation, Dryland agriculture, Rangeland, Forest, Exposed rock, Riparian, Urban, Water. Easily incorporated into maps at the region to watershed level. Too coarse for site-scale applications. Scale: 1:500,000. Major ...

  12. Land Use and Change

    NASA Technical Reports Server (NTRS)

    Irwin, Daniel E.

    2004-01-01

    The overall purpose of this training session is to familiarize Central American project cooperators with the remote sensing and image processing research that is being conducted by the NASA research team and to acquaint them with the data products being produced in the areas of Land Cover and Land Use Change and carbon modeling under the NASA SERVIR project. The training session, therefore, will be both informative and practical in nature. Specifically, the course will focus on the physics of remote sensing, various satellite and airborne sensors (Landsat, MODIS, IKONOS, Star-3i), processing techniques, and commercial off the shelf image processing software.

  13. Rainfall and runoff quantity and quality characteristics of four urban land-use catchments in Fresno, California, October 1981 to April 1983

    USGS Publications Warehouse

    Oltmann, Richard N.; Shulters, Michael V.

    1989-01-01

    Rainfall and runoff quantity and quality were monitored for industrial, single-dwelling residential, multiple-dwelling residential, and commercial land-use catchments during the 1981-82 and 1982-83 rain seasons. Storm-composite rainfall and discrete run6ff samples were analyzed for numerous inorganic, biological, physical, and organic constituents. Atmospheric dry-deposition and street-surface particulate samples also were collected and analyzed. With the exception of the industrial catchment, the highest runoff concentrations for most constituents occurred during the initial storm runoff and then decreased throughout the remainder of the storm, independent of hydraulic conditions. Metal concentrations were high during initial runoff, but also increased as flow increased. Constituent concentrations for the industrial catchment fluctuated greatly during storms. Statistical tests showed higher ammonia plus organic nitrogen, ammonia, pH, and phenol concentrations in rainfall at the industrial site than at the single-dwelling residential and laboratory sites. Statistical testing of runoff quality data showed higher concentrations for the industrial catchment than for the two residential and commercial catchments for most constituents. Total recoverable lead was one of the few constituents that had lower concentrations for the industrial catchment than for the other three catchments. The two residential catchments showed no significant difference in runoff concentrations for 50 of the 57 constituents used in the statistical analysis. The commercial catchment runoff concentrations for most constituents generally were similar to the residential catchments. Although constituent concentrations generally were higher for the industrial catchment than for the commercial catchment, constituent storm loads from the commercial catchment were similar to the industrial catchment because of the greater runoff volume from the highly impervious commercial catchment. Between 10 and 50

  14. Land use change and human health

    NASA Astrophysics Data System (ADS)

    Patz, Jonathan A.; Norris, Douglas E.

    Disease emergence events have been documented following several types of land use change. This chapter reviews several health-relevant land use changes recognized today, including: 1) urbanization and urban sprawl; 2) water projects and agricultural development; 3) road construction and deforestation in the tropics; and 4) regeneration of temperate forests. Because habitat or climatic change substantially affects intermediate invertebrate hosts involved in many prevalent diseases, this chapter provides a basic description of vector-borne disease biology as a foundation for analyzing the effects of land use change. Urban sprawl poses health challenges stemming from heat waves exacerbated by the "urban heat island" effect, as well as from water contamination due to expanses of impervious road and concrete surfaces. Dams, irrigation and agricultural development have long been associated with diseases such as schistosomiasis and filariasis. Better management methods are required to address the trade-offs between expanded food production and altered habitats promoting deadly diseases. Deforestation can increase the nature and number of breeding sites for vector-borne diseases, such as malaria and onchocerciasis. Human host and disease vector interaction further increases risk, as can a change in arthropod-vector species composition.

  15. Development and Applications of a Comprehensive Land Use Classification and Map for the US

    PubMed Central

    Theobald, David M.

    2014-01-01

    Land cover maps reasonably depict areas that are strongly converted by human activities, but typically are unable to resolve low-density but widespread development patterns. Data products specifically designed to resolve land uses complement land cover datasets and likely improve our ability to understand the extent and complexity of human modification. Methods for developing a comprehensive land use classification system are described, and a map of land use for the conterminous United States is presented to reveal what we are doing on the land. The comprehensive, detailed and high-resolution dataset was developed through spatial analysis of nearly two-dozen publicly-available, national spatial datasets – predominately based on census housing, employment, and infrastructure, as well as land cover from satellite imagery. This effort resulted in 79 land use classes that fit within five main land use groups: built-up, production, recreation, conservation, and water. Key findings from this study are that built-up areas occupy 13.6% of mainland US, but that the majority of this occurs as low-density exurban/rural residential (9.1% of the US), while more intensive built-up land uses occupy 4.5%. For every acre of urban and suburban residential land, there are 0.13 commercial, 0.07 industrial, 0.48 institutional, and 0.29 acres of interstates/highways. This database can be used to address a variety of natural resource applications, and I provide three examples here: an entropy index of the diversity of land uses for smart-growth planning, a power-law scaling of metropolitan area population to developed footprint, and identifying potential conflict areas by delineating the urban interface. PMID:24728210

  16. Unraveling Landscape Complexity: Land Use/Land Cover Changes and Landscape Pattern Dynamics (1954-2008) in Contrasting Peri-Urban and Agro-Forest Regions of Northern Italy

    NASA Astrophysics Data System (ADS)

    Smiraglia, D.; Ceccarelli, T.; Bajocco, S.; Perini, L.; Salvati, L.

    2015-10-01

    This study implements an exploratory data analysis of landscape metrics and a change detection analysis of land use and population density to assess landscape dynamics (1954-2008) in two physiographic zones (plain and hilly-mountain area) of Emilia Romagna, northern Italy. The two areas are characterized by different landscape types: a mixed urban-rural landscape dominated by arable land and peri-urban settlements in the plain and a traditional agro-forest landscape in the hilly-mountain area with deciduous and conifer forests, scrublands, meadows, and crop mosaic. Urbanization and, to a lesser extent, agricultural intensification were identified as the processes underlying landscape change in the plain. Land abandonment determining natural forestation and re-forestation driven by man was identified as the process of change most representative of the hilly-mountain area. Trends in landscape metrics indicate a shift toward more fragmented and convoluted patterns in both areas. Number of patches, the interspersion and juxtaposition index, and the large patch index are the metrics discriminating the two areas in terms of landscape patterns in 1954. In 2008, mean patch size, edge density, interspersion and juxtaposition index, and mean Euclidean nearest neighbor distance were the metrics with the most different spatial patterns in the two areas. The exploratory data analysis of landscape metrics contributed to link changes over time in both landscape composition and configuration providing a comprehensive picture of landscape transformations in a wealthy European region. Evidence from this study are hoped to inform sustainable land management designed for homogeneous landscape units in similar socioeconomic contexts.

  17. Remote sensing, land use, and demography - A look at people through their effects on the land

    NASA Technical Reports Server (NTRS)

    Paul, C. K.; Landini, A. J.

    1976-01-01

    Relevant causes of failure by the remote sensing community in the urban scene are analyzed. The reasons for the insignificant role of remote sensing in urban land use data collection are called the law of realism, the incompatibility of remote sensing and urban management system data formats is termed the law of nominal/ordinal systems compatibility, and the land use/population correlation dilemma is referred to as the law of missing persons. The study summarizes the three laws of urban land use information for which violations, avoidance, or ignorance have caused the decline of present remote sensing research. Particular attention is given to the rationale for urban land use information and for remote sensing. It is shown that remote sensing of urban land uses compatible with the three laws can be effectively developed by realizing the 10 percent contribution of remote sensing to urban land use planning data collection.

  18. Arizona land use experiment

    NASA Technical Reports Server (NTRS)

    Winikka, C. C.; Schumann, H. H.

    1975-01-01

    Utilization of new sources of statewide remote sensing data, taken from high-altitude aircraft and from spacecraft is discussed along with incorporation of information extracted from these sources into on-going land and resources management programs in Arizona. Statewide cartographic applications of remote sensor data taken by NASA high-altitude aircraft include the development of a statewide semi-analytic control network, the production of nearly 1900 orthophotoquads (image maps) that are coincident in scale and area with the U.S. Geological Survey (USGS) 7. 5 minute topographic quadrangle map series, and satellite image maps of Arizona produced from LANDSAt multispectral scanner imagery. These cartographic products are utilized for a wide variety of experimental and operational earth resources applications. Applications of the imagery, image maps, and derived information discussed include: soils and geologic mapping projects, water resources investigations, land use inventories, environmental impact studies, highway route locations and mapping, vegetation cover mapping, wildlife habitat studies, power plant siting studies, statewide delineation of irrigation cropland, position determination of drilling sites, pictorial geographic bases for thematic mapping, and court exhibits.

  19. Quantifying urban intensity in drainage basins for assessing stream ecological conditions

    USGS Publications Warehouse

    McMahon, G.; Cuffney, T.F.

    2000-01-01

    Three investigations are underway, as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program, to study the relation between varying levels of urban intensity in drainage basins and in-stream water quality, measured by physical, chemical, and biological factors. These studies are being conducted in the vicinities of Boston (Massachusetts), Salt Lake City (Utah), and Birmingham (Alabama), areas where rapid urbanization is occurring. For each study, water quality will be sampled in approximately 30 drainage basins that represent a gradient of urban intensity. This paper focuses on the methods used to characterize and select the basins used in the studies. It presents a methodology for limiting the variability of natural landscape characteristics in the potential study drainage basins and for ranking the magnitude of human influence, or urbanization, based on land cover, infrastructure, and socioeconomic data in potential study basins. Basin characterization efforts associated with the Boston study are described for illustrative purposes.

  20. Land use of northern megalopolis from ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Simpson, R. B. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. The preliminary map of land use of Rhode Island is believed to be the first urban-type land use map ever made from satellite imagery, and its preparation a significant scientific result for ERTS-1. Eight categories of land use were differentiated at a scale of 1:250,000 including 3 categories of residential area: single family and multiple/mixed urban types, plus a residential and open space rural one. This compares favorably with RB-57 mapping experience in which, mapping at 1:120,000 from photography taken from 60,000 feet, 11 basic categories of land use were discriminated. From ERTS, the urban cores of cities down to 7,000 population, and commercial and industrial sites down to 800 feet square, were consistently discriminated.

  1. High-resolution stochastic generation of extreme rainfall intensity for urban drainage modelling applications

    NASA Astrophysics Data System (ADS)

    Peleg, Nadav; Blumensaat, Frank; Molnar, Peter; Fatichi, Simone; Burlando, Paolo

    2016-04-01

    Urban drainage response is highly dependent on the spatial and temporal structure of rainfall. Therefore, measuring and simulating rainfall at a high spatial and temporal resolution is a fundamental step to fully assess urban drainage system reliability and related uncertainties. This is even more relevant when considering extreme rainfall events. However, the current space-time rainfall models have limitations in capturing extreme rainfall intensity statistics for short durations. Here, we use the STREAP (Space-Time Realizations of Areal Precipitation) model, which is a novel stochastic rainfall generator for simulating high-resolution rainfall fields that preserve the spatio-temporal structure of rainfall and its statistical characteristics. The model enables a generation of rain fields at 102 m and minute scales in a fast and computer-efficient way matching the requirements for hydrological analysis of urban drainage systems. The STREAP model was applied successfully in the past to generate high-resolution extreme rainfall intensities over a small domain. A sub-catchment in the city of Luzern (Switzerland) was chosen as a case study to: (i) evaluate the ability of STREAP to disaggregate extreme rainfall intensities for urban drainage applications; (ii) assessing the role of stochastic climate variability of rainfall in flow response and (iii) evaluate the degree of non-linearity between extreme rainfall intensity and system response (i.e. flow) for a small urban catchment. The channel flow at the catchment outlet is simulated by means of a calibrated hydrodynamic sewer model.

  2. Characterization of streamflow, salinity, and selenium loading and land-use change in Montrose Arroyo, western Colorado, from 1992 to 2013

    USGS Publications Warehouse

    Richards, Rodney J.; Moore, Jennifer L.

    2015-01-01

    Land use was characterized for 1992, 2002, and 2009 for site MA3. The common land-use change in the MA3 subwatershed was a conversion from previously irrigated agricultural land to urban land use. The MA3 subwatershed had 124 acres of irrigated land use converted to urban land use and 27.1 acres of unirrigated desert converted to urban land use from 1992 to 2009. Consistent with findings in previous land-use change reports, salinity and dissolved-selenium loading at site MA3 showed significant decreases as irrigated land was converted to urban land use.

  3. Change in agricultural land use constrains adaptation of national wildlife refuges to climate change

    USGS Publications Warehouse

    Hamilton, Christopher M.; Thogmartin, Wayne E.; Radeloff, Volker C.; Plantinga, Andrew J.; Heglund, Patricia J.; Martinuzzi, Sebastian; Pidgeon, Anna M.

    2015-01-01

    Land-use change around protected areas limits their ability to conserve biodiversity by altering ecological processes such as natural hydrologic and disturbance regimes, facilitating species invasions, and interfering with dispersal of organisms. This paper informs USA National Wildlife Refuge System conservation planning by predicting future land-use change on lands within 25 km distance of 461 refuges in the USA using an econometric model. The model contained two differing policy scenarios, namely a ‘business-as-usual’ scenario and a ‘pro-agriculture’ scenario. Regardless of scenario, by 2051, forest cover and urban land use were predicted to increase around refuges, while the extent of range and pasture was predicted to decrease; cropland use decreased under the business-as-usual scenario, but increased under the pro-agriculture scenario. Increasing agricultural land value under the pro-agriculture scenario slowed an expected increase in forest around refuges, and doubled the rate of range and pasture loss. Intensity of land-use change on lands surrounding refuges differed by regions. Regional differences among scenarios revealed that an understanding of regional and local land-use dynamics and management options was an essential requirement to effectively manage these conserved lands. Such knowledge is particularly important given the predicted need to adapt to a changing global climate.

  4. [Urban heat island intensity and its grading in Liaoning Province of Northeast China].

    PubMed

    Li, Li-Guang; Wang, Hong-Bo; Jia, Qing-Yu; Lü, Guo-Hong; Wang, Xiao-Ying; Zhang, Yu-Shu; Ai, Jing-Feng

    2012-05-01

    According to the recorded air temperature data and their continuity of each weather station, the location of each weather station, the numbers of and the distances among the weather stations, and the records on the weather stations migration, several weather stations in Liaoning Province were selected as the urban and rural representative stations to study the characteristics of urban heat island (UHI) intensity in the province. Based on the annual and monthly air temperature data of the representative stations, the ranges and amplitudes of the UHI intensity were analyzed, and the grades of the UHI intensity were classified. The Tieling station, Dalian station, Anshan station, Chaoyang station, Dandong station, and Jinzhou station and the 18 stations including Tai' an station were selected as the representative urban and rural weather stations, respectively. In 1980-2009, the changes of the annual UHI intensity in the 6 representative cities differed. The annual UHI intensity in Tieling was in a decreasing trend, while that in the other five cities was in an increasing trend. The UHI intensity was strong in Tieling but weak in Dalian. The changes of the monthly UHI intensity in the 6 representative cities also differed. The distribution of the monthly UHI intensity in Dandong, Jinzhou and Tieling took a "U" shape, with the maximum and minimum appeared in January and in May-August, respectively, indicating that the monthly UHI intensity was strong in winter and weak in summer. The ranges of the annual and monthly UHI intensity in the 6 cities were 0.57-2.15 degrees C and -0.70-4.60 degrees C, and the ranges of 0.5-2.0 degrees C accounted for 97.8% and 72.3%, respectively. The UHI intensity in the province could be classified into 4 grades, i. e., weak, strong, stronger and strongest. PMID:22919847

  5. New methods to assess severity and likelihood of urban flood risk from intense rainfall

    NASA Astrophysics Data System (ADS)

    Fewtrell, Tim; Foote, Matt; Bates, Paul; Ntelekos, Alexandros

    2010-05-01

    Flooding from intense local rainfall can contribute a significant proportion of total damages and losses experienced, particularly in urban areas, where sewerage overcharging, localised river flooding, and overland flow, can conspire to cause significant loss potential to concentrations of assets and populations. Events such as the Summer 2007 floods in the UK have shown that there is a significant risk to key urban centres. However, current approaches to the quantitative assessment of flood risk, and the estimation of the potential frequency and severity of events, poorly represent flood risk from intense, localised rainfall. This causes problems not only for insurers and reinsurers, but also for urban planners, local authorities and emergency services where assessment of localised impacts from intense rainfall flooding form a key component of risk assessment needs. The localised nature of pluvial flooding, and the importance of complex terrain, drainage and pathways in determining water ponding within urban areas, makes the modelling of urban pluvial flood risk particularly problematic. Current approaches, usually through statistical means, or simple flood risk ‘maps' based on conventional topographic information, provide some information to assist risk decisions, but lack the level of detail necessary for accurate representation of the flood extents and depths in relation to the properties and other assets exposed. New techniques including ground based lasers-canner (LIDAR) provide a potential source for ultra-high resolution (centimetre) terrain information, which can be incorporated within urban scale hydrological-hydraulic model to provide appropriate resolution flood models. The corresponding development of new, efficient hydraulic models [Paul, Tim to add a bit here] with the ability to handle the high spatial and temporal resolutions required of urban flood provides a new modelling environment with which to tackle urban flood risk assessment, including

  6. Photomorphic mapping for land-use planning

    NASA Technical Reports Server (NTRS)

    Nichol, J. E.

    1975-01-01

    A comparison of different land types based on their physical and environmental characteristics is seen as a useful, if not vital, element of land-use planning decisions. The use of the photomorphic-mapping technique is described in order to delineate and compare the different land types in Boulder County, Colorado, according to their constraints and values for agricultural and urban uses. Employing high-altitude color infrared aerial photography of Boulder County at a scale of 1:100,000, photomorphic areas were delineated according to similarities in pattern, tone, and texture on the photographs. The boundaries of the areas were checked and adjusted using information from thematic maps and sampling data. Constraints on specific land uses in the county could then be described on a regional basis using the photomorphic areas as a framework.

  7. Land use in the northern Coachella Valley

    NASA Technical Reports Server (NTRS)

    Bale, J. B.; Bowden, L. W.

    1973-01-01

    Satellite imagery has proved to have great utility for monitoring land use change and as a data source for regional planning. In California, open space desert resources are under severe pressure to serve as a source for recreational gratification to individuals living in the heavily populated southern coastal plain. Concern for these sensitive arid environments has been expressed by both federal and state agencies. The northern half of the Coachella Valley has historically served as a focal point for weekend recreational activity and second homes. Since demand in this area has remained high, land use change from rural to urban residential has been occurring continuously since 1968. This area of rapid change is an ideal site to illustrate the utility of satellite imagery as a data source for planning information, and has served as the areal focus of this investigation.

  8. Impact of Urbanization on Precipitation Distribution and Intensity over Lake Victoria Basin

    NASA Astrophysics Data System (ADS)

    Gudoshava, M.; Semazzi, F. H. M.

    2014-12-01

    In this study, sensitivity simulations on the impact of rapid urbanization over Lake Victoria Basin in East Africa were done using a Regional Climate Model (RegCM4.4-rc29) with the Hostetler lake model activated. The simulations were done for the rainy seasons that is the long rains (March-April-May) and short rains (October-November-December). Africa is projected to have a surge in urbanization with an approximate rate of 590% in 2030 over their 2000 levels. The Northern part of Lake Victoria Basin and some parts of Rwanda and Burundi are amongst the regions with high urbanization projections. Simulations were done with the land cover for 2000 and the projected 2030 urbanization levels. The results showed that increasing the urban fraction over the northern part of the basin modified the physical parameters such as albedo, moisture and surface energy fluxes, aerodynamic roughness and surface emissivity, thereby altering the precipitation distribution, intensity and frequency in the region. The change in the physical parameters gave a response of an average increase in temperature of approximately 2oC over the urbanized region. A strong convergence zone was formed over the urbanized region and thereby accelerating the lake-breeze front towards the urbanized region center. Precipitation in the urbanized region and regions immediate to the area increased by approximately 4mm/day, while drying up the southern (non-urbanized) side of the basin. The drying up of the southern side of the basin could be a result of divergent flow and subsidence that suppresses vertical development of storms.

  9. Temperature trends and Urban Heat Island intensity mapping of the Las Vegas valley area

    NASA Astrophysics Data System (ADS)

    Black, Adam Leland

    Modified urban climate regions that are warmer than rural areas at night are referred to as Urban Heat Islands or UHI. Islands of warmer air over a city can be 12 degrees Celsius greater than the surrounding cooler air. The exponential growth in Las Vegas for the last two decades provides an opportunity to detect gradual temperature changes influenced by an increasing presence of urban materials. This thesis compares ground based thermometric observations and satellite based remote sensing temperature observations to identify temperature trends and UHI areas caused by urban development. Analysis of temperature trends between 2000 and 2010 at ground weather stations has revealed a general cooling trend in the Las Vegas region. Results show that urban development accompanied by increased vegetation has a cooling effect in arid climates. Analysis of long term temperature trends at McCarran and Nellis weather stations show 2.4 K and 1.2 K rise in temperature over the last 60 years. The ground weather station temperature data is related to the land surface temperature images from the Landsat Thematic Mapper to estimate and evaluate urban heat island intensity for Las Vegas. Results show that spatial and temporal trends of temperature are related to the gradual change in urban landcover. UHI are mainly observed at the airport and in the industrial areas. This research provides useful insight into the temporal behavior of the Las Vegas area.

  10. Model-based study of the role of rainfall and land use-land cover in the changes in the occurrence and intensity of Niger red floods in Niamey between 1953 and 2012

    NASA Astrophysics Data System (ADS)

    Casse, Claire; Gosset, Marielle; Vischel, Théo; Quantin, Guillaume; Alkali Tanimoun, Bachir

    2016-07-01

    Since 1950, the Niger River basin has gone through three main climatic periods: a wet period (1950-1960), an extended drought (1970-1980) and since 1990 a recent partial recovery of annual rainfall. Hydrological changes co-occur with these rainfall fluctuations. In most of the basin, the rainfall deficit caused an enhanced discharge deficit, but in the Sahelian region the runoff increased despite the rainfall deficit. Since 2000 the Sahelian part of the Niger has been hit by an increase of flood hazards during the so-called red flood period. In Niamey city, the highest river levels and the longest flooded period ever recorded occurred in 2003, 2010, 2012 and 2013, with heavy casualties and property damage. The reasons for these changes, and the relative role of climate versus land use-land cover (LULC) changes are still debated and are investigated in this paper. The evolution of the Niger red flood in Niamey from 1950 to 2012 is analysed based on long-term records of rainfall (three data sets based on in situ and/or satellite data) and discharge, and a hydrological model. The model is first run with the present LULC conditions in order to analyse solely the effect of rainfall variability. The impact of LULC and drainage area modification is investigated in a second step. The simulations based on the current surface conditions are able to reproduce the observed trend in the red flood occurrence and intensity since the 1980s. This has been verified with three independent rainfall data sets and implies that rainfall variability is the main driver for the red flood intensification observed over the last 30 years. The simulation results since 1953 have revealed that LULC and drainage area changes need to be invoked to explain the changes over a 60-year period.

  11. Model-based study of the role of rainfall and land use land cover in the changes in Niger Red floods occurrence and intensity in Niamey between 1953 and 2012

    NASA Astrophysics Data System (ADS)

    Casse, C.; Gosset, M.; Vischel, T.; Quantin, G.; Tanimoun, B. A.

    2015-11-01

    Since 1950, the Niger River basin went through 3 main climatic periods: a wet period (1950-1960), an extended drought (1970-1980) and since 1990 a partial recovery of the rainfall. Hydrological changes co-occur with these rainfall fluctuations. In most of the basin the rainfall deficit caused an enhanced discharge deficit, but in the Sahelian region the runoff increased despite the rainfall deficit. Since 2000, the Sahelian part of the Niger has been hit by an increase of flood hazards during the so-called Red flood period. In Niamey city, the highest river levels and the longest flooded period ever recorded occurred in 2003, 2010, 2012 and 2013, with heavy casualties and property damage. The reasons for these changes, and the relative role of climate vs. Land Use Land Cover (LULC) changes are still debated and are investigated in this paper. The evolution of the Niger Red flood in Niamey from 1950 to 2012 is analysed based on long term records of rainfall (three data sets based on in situ and/or satellite data) and discharge, and a hydrological model. The model is first run with present LULC conditions in order to analyse solely the effect of rainfall variability. The impact of LULC and drainage area modification is investigated in a second step. The simulations based on the current surface conditions are able to reproduce the observed trend in Red flood occurrence and intensity since the 1980s. This has been verified with three independent rainfall data sets and implies that rainfall variability is the main driver for the Red flood intensification observed over the last 30 years. The simulation results since 1953 reveals that LULC and drainage area changes need to be invoked to explain the changes over a 60 year period.

  12. Modeling land-use change

    SciTech Connect

    1995-12-31

    Tropical land-use change is generally considered to be the greatest net contributor of carbon dioxide to the atmosphere after fossil-fuel burning. However, estimates vary widely, with one major cause of variation being that terrestrial ecosystems are both a source and a sink for carbon. This article describes two spatially explicit models which simulate rates and patterns of tropical land-use change: GEOMOD1, based on intuitive assumptions about how people develop land over time, and GEOMOD2, based on a statistical analysis of how people have actually used the land. The models more closely estimate the connections between atmospheric carbon dioxide, deforestation, and other land use changes.

  13. Comparing and modelling land use organization in cities

    PubMed Central

    Lenormand, Maxime; Picornell, Miguel; Cantú-Ros, Oliva G.; Louail, Thomas; Herranz, Ricardo; Barthelemy, Marc; Frías-Martínez, Enrique; San Miguel, Maxi; Ramasco, José J.

    2015-01-01

    The advent of geolocated information and communication technologies opens the possibility of exploring how people use space in cities, bringing an important new tool for urban scientists and planners, especially for regions where data are scarce or not available. Here we apply a functional network approach to determine land use patterns from mobile phone records. The versatility of the method allows us to run a systematic comparison between Spanish cities of various sizes. The method detects four major land use types that correspond to different temporal patterns. The proportion of these types, their spatial organization and scaling show a strong similarity between all cities that breaks down at a very local scale, where land use mixing is specific to each urban area. Finally, we introduce a model inspired by Schelling's segregation, able to explain and reproduce these results with simple interaction rules between different land uses. PMID:27019730

  14. Land use of northern megalopolis from ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Simpson, R. B. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A color-coded urban-type land use map of the three northern megalopolitan states of Massachusetts, Connecticut, and Rhode Island has been completed from ERTS-1 images. A computer data bank containing 11 categories of land use for the entire area by 1/4-square-kilometer cells is 80% completed. When completed, the data bank will permit the investigation to proceed to brief analytical studies for completion of the study.

  15. A Basic Introduction to Land Use Control Law and Doctrine. Publication 6.

    ERIC Educational Resources Information Center

    Roberts, E. F.

    Divided into four sections, this paper discusses the historical development of land-use control law and doctrine. Entitled "Genesis of the Zoning Mechanism", Part 1 discusses zoning in terms of: a by-product of urbanization: common law land-use controls (public and private nuisance laws); private property as restraint on land-use legislation…

  16. How Will America Grow? A Citizen Guide to Land-Use Planning.

    ERIC Educational Resources Information Center

    Citizens Advisory Committee on Environmental Quality.

    Citizens are encouraged to learn about and become involved in land use and growth issues in their communities. Intended as a follow-up of an earlier report by the Committee's Task Force on Land Use and Urban Growth which outlined philosophical, legal, and policy aspects of land-use planning, the document suggests planning guidelines for citizen…

  17. High resolution scenarios of land-use and land-cover change for the conterminous United States

    NASA Astrophysics Data System (ADS)

    Sleeter, B. M.; Sohl, T. L.; Bouchard, M. A.; Reker, R. R.; Sayler, K.; Sleeter, R.; Soulard, C. E.; Wilson, T. S.

    2012-12-01

    We describe a series of high resolution maps of past and projected changes in land use and land cover (LULC) for the conterminous United States for the period 1992 to 2100. Four scenarios from the Intergovernmental Panel on Climate Change's (IPCC) Special Report on Emission Scenarios (SRES) were used to create annual maps showing spatially explicit change in 15 LULC classes at a spatial resolution of 250 meters. A modular land-use modeling approach was utilized with distinct demand and spatial allocation components. To quantify demand for future LULC change (i.e. the quantity of changes in land use and land cover classes), a scenario downscaling model was developed to extend global scenarios from the IPCC to hierarchically nested ecoregions of the U.S. The Forecasting Scenarios (FORE-SCE) land use model was then employed to allocate scenario demand on the landscape. Both models were parameterized at the ecoregion scale and relied extensively on land use histories and expert knowledge. Results reveal large differences across IPCC-SRES scenarios. Scenarios prioritizing economic development over environmental protection result in the highest rates of LULC change, particularly in regions with extensive forest management, large urban areas, and/or large investments in agricultural land. Scenarios where environmental protection is emphasized result in slower rates of change and less intensity in regional land use patterns.

  18. Distribution patterns and sources of metals and PAHs in an intensely urbanized area: The Acerra-Pomigliano-Marigliano conurbation (Italy)

    NASA Astrophysics Data System (ADS)

    Albanese, Stefano; Lima, Annamaria; Rezza, Carmela; Ferullo, Giampiero; De Vivo, Benedetto; Chen, Wei; Qi, Shihua

    2014-05-01

    agricultural intensive land use. PAHs distribution pattern showed anomalous values across the whole study area. Especially, Benzo[a]pyrene values exceeds the trigger limits established by the Italian Environmental law (D.Lgs. 152/2006) in most of the analyzed soils and the diagnostic ratios calculated among several PAHs compounds suggested that the biomass burning in the rural sector of the study area could be a relevant source of pollution. The palm oil fuelled power plant in the northern sector of Acerra could not be excluded as a source of PAHs in the environment. [1] Albanese et al (2007) JGE 93, 21-34. [2] Cicchella et al (2008) GEEA 8 (1), 19-29. [3] De Vivo et al (2006) Aracne Editrice, Roma. 324 pp.

  19. Maximum urban heat island intensity in a medium-sized coastal Mediterranean city

    NASA Astrophysics Data System (ADS)

    Papanastasiou, Dimitris K.; Kittas, Constantinos

    2012-02-01

    This paper studies the maximum intensity of the urban heat island (UHI) that develops in Volos urban area, a medium-sized coastal city in central Greece. The maximum temperature difference between the city center and a suburb is 3.4°C and 3.1°C during winter and summer, respectively, while during both seasons the average maximum UHI intensity is 2.0°C. The UHI usually starts developing after sunset during both seasons. It could be attributed to the different nocturnal radiative cooling rate and to the different anthropogenic heat emission rate that are observed at the city center and at the suburb, as well as to meteorological conditions. The analysis reveals that during both seasons the daily maximum hourly (DMH) UHI intensity is positively correlated with solar radiation and with previous day's maximum hourly UHI intensity and negatively correlated with wind speed. It is also negatively correlated with relative humidity during winter but positively correlated with it during summer. This difference could be attributed to the different mechanisms that mainly drive humidity levels (i.e., evaporation in winter and sea breeze (SB) in summer). Moreover, it is found that SB development triggers a delay in UHI formation in summer. The impact of atmospheric pollution on maximum UHI intensity is also examined. An increase in PM10 concentration is associated with an increase in maximum UHI intensity during winter and with a decrease during summer. The impact of PM10 on UHI is caused by the attenuation of the incoming and the outgoing radiation. Additionally, this study shows that the weekly cycle of the city activities induces a weekly variation in maximum UHI intensity levels. The weekly range of DMH UHI intensity is not very large, being more pronounced during winter (0.4°C). Moreover, a first attempt is made to predict the DMH UHI intensity by applying regression models, whose success is rather promising.

  20. Land-use Effect on Stream Organic Matter Composition in Two Metropolitan Areas in USA

    NASA Astrophysics Data System (ADS)

    Duan, S.; Kaushal, S.; Amon, R. M.; Brinkmeyer, R.

    2011-12-01

    Urbanization is a form of land-use change that is increasing in coastal watersheds and may affect the quantity and quality of organic carbon delivered to streams and coastal ocean. Here, we examine the changes in optical and isotopic characteristics of organic matter in streams (Gwynns Fall and Buffalo Bayou) draining Baltimore and Houston Metropolitan Areas (USA), relative to nearby less affected forested watersheds. A summer longitudinal sampling in Gwynns Fall along a rural-urban gradient showed increases in dissolved organic carbon (DOC) and fluorescent protein to humic ratio but a decrease in specific UV absorption (SUVA). Parallel Factor modeling shows dominance of terrestrial component of DOC, and the ratio of an unknown component to the component of humic substance was high in urban watersheds and it was positively correlated impervious surface cover (an index of urbanization). Incubation experiments with leaves and stream algae suggest origin of decayed leaf leachate of this component. Conversely, DOM in Buffalo Bayou showed higher intensity of protein-like fluorescence, and the intensity increased longitudinal along a rural-urban gradient but decreased from low-flows to a flooding event. The difference in fluorescent organic matter composition between the two streams probably reflected different management of wastewater in watersheds. Surface sediment collected at sites of sub-watersheds of Gwynns Fall showed changes in particle size, elemental and isotopic composition with land use. Sediment incubations showed that higher temperature (due to urban heat island effect) enhanced loss of labile organic matter and release of refractory organic matter into stream water. Release of reactive soluble phosphorus, loss of nitrogen and reduction of sulfate also occurred at high incubating temperatures, along with mineralization of sediment organic matter. Bed sediment collected along Buffalo Bayou displayed a longitudinal decrease in N-15, probably reflecting the

  1. Land use mapping and modelling for the Phoenix Quadrangle

    NASA Technical Reports Server (NTRS)

    Place, J. L. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. The mapping of generalized land use (level 1) from ERTS 1 images was shown to be feasible with better than 95% accuracy in the Phoenix quadrangle. The accuracy of level 2 mapping in urban areas is still a problem. Updating existing maps also proved to be feasible, especially in water categories and agricultural uses; however, expanding urban growth has presented with accuracy. ERTS 1 film images indicated where areas of change were occurring, thus aiding focusing-in for more detailed investigation. ERTS color composite transparencies provided a cost effective source of information for land use mapping of very large regions at small map scales.

  2. Weekly cycles in peak time temperatures and urban heat island intensity

    NASA Astrophysics Data System (ADS)

    Earl, Nick; Simmonds, Ian; Tapper, Nigel

    2016-07-01

    Regular diurnal and weekly cycles (WCs) in temperature provide valuable insights into the consequences of anthropogenic activity on the urban environment. Different locations experience a range of identified WCs and have very different structures. Two important sources of urban heat are those associated with the effect of large urban structures on the radiation budget and energy storage and those from the heat generated as a consequence of anthropogenic activity. The former forcing will remain relatively constant, but a WC will appear in the latter. WCs for specific times of day and the urban heat island (UHI) have not been analysed heretofore. We use three-hourly surface (2 m) temperature data to analyse the WCs of seven major Australian cities at different times of day and to determine to what extent one of our major city’s (Melbourne) UHI exhibits a WC. We show that the WC of temperature in major cities differs according to the time of day and that the UHI intensity of Melbourne is affected on a WC. This provides crucial information that can contribute toward the push for healthier urban environments in the face of a more extreme climate.

  3. Influences of upland and riparian land use patterns on stream biotic integrity

    USGS Publications Warehouse

    Snyder, C.D.; Young, J.A.; Villella, R.; Lemarie, D.P.

    2003-01-01

    We explored land use, fish assemblage structure, and stream habitat associations in 20 catchments in Opequon Creek watershed, West Virginia. The purpose was to determine the relative importance of urban and agriculture land use on stream biotic integrity, and to evaluate the spatial scale (i.e., whole-catchment vs riparian buffer) at which land use effects were most pronounced. We found that index of biological integrity (IBI) scores were strongly associated with extent of urban land use in individual catchments. Sites that received ratings of poor or very poor based on IBI scores had > 7% of urban land use in their respective catchments. Habitat correlations suggested that urban land use disrupted flow regime, reduced water quality, and altered stream channels. In contrast, we found no meaningful relationship between agricultural land use and IBI at either whole-catchment or riparian scales despite strong correlations between percent agriculture and several important stream habitat measures, including nitrate concentrations, proportion of fine sediments in riffles, and the abundance of fish cover. We also found that variation in gradient (channel slope) influenced responses of fish assemblages to land use. Urban land use was more disruptive to biological integrity in catchments with steeper channel slopes. Based on comparisons of our results in the topographically diverse Opequon Creek watershed with results from watersheds in flatter terrains, we hypothesize that the potential for riparian forests to mitigate effects of deleterious land uses in upland portions of the watershed is inversely related to gradient.

  4. Land use classification in Bolivia

    NASA Technical Reports Server (NTRS)

    Brockmann, C. E.; Brooner, W. G.

    1975-01-01

    The Bolivian LANDSAT Program is an integrated, multidisciplinary project designed to provide thematic analysis of LANDSAT, Skylab, and other remotely sensed data for natural resource management and development in Bolivia, is discussed. Among the first requirements in the program is the development of a legend, and appropriate methodologies, for the analysis and classification of present land use based on landscape cover. The land use legend for Bolivia consists of approximately 80 categories in a hierarchical organization which may be collapsed for generalization, or expanded for greater detail. The categories, and their definitions, provide for both a graphic and textual description of the complex and diverse landscapes found in Bolivia, and are designed for analysis from LANDSAT and other remotely sensed data at scales of 1:1,000,000 and 1:250,000. Procedures and example products developed are described and illustrated, for the systematic analysis and mapping of present land use for all of Bolivia.

  5. Land Use Control Implementation Plan

    NASA Technical Reports Server (NTRS)

    Starr, Andrew Scott

    2015-01-01

    This Land Use Control Implementation Plan (LUCIP) has been prepared to inform current and potential future users of Building M7-505 of institutional controls that have been implemented at the site. Although there are no current unacceptable risks to human health or the environment associated with Building M7-505, institutional land use controls (LUCs) are necessary to prohibit the use of groundwater from the site. LUCs are also necessary to prevent access to soil under electrical equipment in the northwest portion of the site. Controls necessary to prevent human exposure will include periodic inspection, condition certification, and agency notification.

  6. The Biogeohydroclimatology of Land Use

    NASA Astrophysics Data System (ADS)

    Jackson, R. B.

    2008-05-01

    When John Donne wrote his Meditation XVII, which includes the famous"No man is an island" passage, he was thinking about connections between people; no human being is isolated from another. Donne might just as well have been writing about the science of land use, however. What happens on one plot of land clearly affects what happens on another, whether downhill, downstream, or downwind. I will explore the consequences of land use for mass and energy fluxes, focusing on pasture, crop, and forest transitions in the Americas. I'll discuss my own work, some work of collaborators, and a few examples from the literature. No man is an island.

  7. Indirect land use change and biofuel policy

    NASA Astrophysics Data System (ADS)

    Kocoloski, Matthew; Griffin, W. Michael; Matthews, H. Scott

    2009-09-01

    Biofuel debates often focus heavily on carbon emissions, with parties arguing for (or against) biofuels solely on the basis of whether the greenhouse gas emissions of biofuels are less than (or greater than) those of gasoline. Recent studies argue that land use change leads to significant greenhouse gas emissions, making some biofuels more carbon intensive than gasoline. We argue that evaluating the suitability and utility of biofuels or any alternative energy source within the limited framework of plus and minus carbon emissions is too narrow an approach. Biofuels have numerous impacts, and policy makers should seek compromises rather than relying solely on carbon emissions to determine policy. Here, we estimate that cellulosic ethanol, despite having potentially higher life cycle CO2 emissions (including from land use) than gasoline, would still be cost-effective at a CO2 price of 80 per ton or less, well above estimated CO2 mitigation costs for many alternatives. As an example of the broader approach to biofuel policy, we suggest the possibility of using the potential cost reductions of cellulosic ethanol relative to gasoline to balance out additional carbon emissions resulting from indirect land use change as an example of ways in which policies could be used to arrive at workable solutions.

  8. Remote sensing. [land use mapping

    NASA Technical Reports Server (NTRS)

    Jinich, A.

    1979-01-01

    Various imaging techniques are outlined for use in mapping, land use, and land management in Mexico. Among the techniques discussed are pattern recognition and photographic processing. The utilization of information from remote sensing devices on satellites are studied. Multispectral band scanners are examined and software, hardware, and other program requirements are surveyed.

  9. Leaf breakdown in streams differing in catchment land use

    USGS Publications Warehouse

    Paul, M.J.; Meyer, J.L.; Couch, C.A.

    2006-01-01

    1. The impact of changes in land use on stream ecosystem function is poorly understood. We studied leaf breakdown, a fundamental process of stream ecosystems, in streams that represent a range of catchment land use in the Piedmont physiographic province of the south-eastern United States. 2. We placed bags of chalk maple (Acer barbatum) leaves in similar-sized streams in 12 catchments of differing dominant land use: four forested, three agricultural, two suburban and three urban catchments. We measured leaf mass, invertebrate abundance and fungal biomass in leaf bags over time. 3. Leaves decayed significantly faster in agricultural (0.0465 day-1) and urban (0.0474 day-1) streams than in suburban (0.0173 day-1) and forested (0.0100 day-1) streams. Additionally, breakdown rates in the agricultural and urban streams were among the fastest reported for deciduous leaves in any stream. Nutrient concentrations in agricultural streams were significantly higher than in any other land-use type. Fungal biomass associated with leaves was significantly lower in urban streams; while shredder abundance in leaf bags was significantly higher in forested and agricultural streams than in suburban and urban streams. Storm runoff was significantly higher in urban and suburban catchments that had higher impervious surface cover than forested or agricultural catchments. 4. We propose that processes accelerating leaf breakdown in agricultural and urban streams were not the same: faster breakdown in agricultural streams was due to increased biological activity as a result of nutrient enrichment, whereas faster breakdown in urban streams was a result of physical fragmentation resulting from higher storm runoff. ?? 2006 The Authors.

  10. Characteristic variogram for land use in Multispectral Images

    NASA Astrophysics Data System (ADS)

    Mera, E.; Condal, A.; Rios, C.; Da Silva, L.

    2016-05-01

    In remote sensing is the concept of spectral signature in multispectral imagery to recognize different land uses in the area; This study proposes the existence of a characteristic variogram for land use in multispectral images. To test this idea we proceeded to work with a sector of a scene image of multispectral Landsat 7 ETM +, in 6 of their bands (1- 450nm to 520nm, 2 - 520nm to 600nm, 3 - 630nm to 690nm, 4 - 760nm to 900nm 5 - over 1550nm to 1.750nm and 7 - 2.080nm to 2.350nm), corresponding to two uses of urban land and agricultural, the omnidirectional variogram for each band was analyzed and modal variogram for each land use was established in the stripe set. Of the analyzed claims data for each land use is a model characteristic and modal cross variogram how their wavelengths.

  11. Challenges in Global Land Use/Land Cover Change Modeling

    NASA Astrophysics Data System (ADS)

    Clarke, K. C.

    2011-12-01

    For the purposes of projecting and anticipating human-induced land use change at the global scale, much work remains in the systematic mapping and modeling of world-wide land uses and their related dynamics. In particular, research has focused on tropical deforestation, loss of prime agricultural land, loss of wild land and open space, and the spread of urbanization. Fifteen years of experience in modeling land use and land cover change at the regional and city level with the cellular automata model SLEUTH, including cross city and regional comparisons, has led to an ability to comment on the challenges and constraints that apply to global level land use change modeling. Some issues are common to other modeling domains, such as scaling, earth geometry, and model coupling. Others relate to geographical scaling of human activity, while some are issues of data fusion and international interoperability. Grid computing now offers the prospect of global land use change simulation. This presentation summarizes what barriers face global scale land use modeling, but also highlights the benefits of such modeling activity on global change research. An approach to converting land use maps and forecasts into environmental impact measurements is proposed. Using such an approach means that multitemporal mapping, often using remotely sensed sources, and forecasting can also yield results showing the overall and disaggregated status of the environment.

  12. Modelling past land use using archaeological and pollen data

    NASA Astrophysics Data System (ADS)

    Pirzamanbein, Behnaz; Lindström, johan; Poska, Anneli; Gaillard-Lemdahl, Marie-José

    2016-04-01

    Accurate maps of past land use are necessary for studying the impact of anthropogenic land-cover changes on climate and biodiversity. We develop a Bayesian hierarchical model to reconstruct the land use using Gaussian Markov random fields. The model uses two observations sets: 1) archaeological data, representing human settlements, urbanization and agricultural findings; and 2) pollen-based land estimates of the three land-cover types Coniferous forest, Broadleaved forest and Unforested/Open land. The pollen based estimates are obtained from the REVEALS model, based on pollen counts from lakes and bogs. Our developed model uses the sparse pollen-based estimations to reconstruct the spatial continuous cover of three land cover types. Using the open-land component and the archaeological data, the extent of land-use is reconstructed. The model is applied on three time periods - centred around 1900 CE, 1000 and, 4000 BCE over Sweden for which both pollen-based estimates and archaeological data are available. To estimate the model parameters and land use, a block updated Markov chain Monte Carlo (MCMC) algorithm is applied. Using the MCMC posterior samples uncertainties in land-use predictions are computed. Due to lack of good historic land use data, model results are evaluated by cross-validation. Keywords. Spatial reconstruction, Gaussian Markov random field, Fossil pollen records, Archaeological data, Human land-use, Prediction uncertainty

  13. Variability of atmospheric pesticide concentrations between urban and rural areas during intensive pesticide application

    NASA Astrophysics Data System (ADS)

    Scheyer, Anne; Morville, Stéphane; Mirabel, Philippe; Millet, Maurice

    Intensive pesticide use leads to the contamination of water, soil and atmosphere. Atmospheric transport is responsible for pesticide dispersal over long distances. In this study, we evaluate the local dispersal of pesticides from agricultural to urban areas. For this purpose, three high-volume samplers, each equipped with a glass fiber filter and XAD-2 resin for the sampling of particulate and gas phase have been placed in a south-west transect (predominant wind direction) characteristic of rural and urban areas. The urban site (Strasbourg centre) is situated in the middle of two rural sites. Samples were taken simultaneously at three sites during pesticide treatments in autumn and spring 2002-2003. Sampling took place for 24 h at a flow rate of 10-15 m 3 h -1. The pesticides studied were those commonly used in the Alsace region for all crops (maize, cereal, vines …). Many of the pesticides analysed in atmospheric samples were not detected or observed very episodically at very low concentrations. For metolachlor, alachlor, trifluralin, atrazine and diflufenican, higher concentrations were observed, essentially during the application of these compounds. Moreover, some "spraying peaks" were observed for alachlor in the south rural site (near crops) at a level of 31 ng m -3 on 16-17 May 2003. These results show site and time dependence of atmospheric contamination by pesticides. A limited dispersal was also observed especially in the urban area during the application periods of pesticides.

  14. Development of Sub-Daily Intensity Duration Frequency (IDF) Curves for Major Urban Areas in India

    NASA Astrophysics Data System (ADS)

    Ali, H.; Mishra, V.

    2014-12-01

    Extreme precipitation events disrupt urban transportation and cause enormous damage to infrastructure. Urban areas are fast responding catchments due to significant impervious surface. Stormwater designs based on daily rainfall data provide inadequate information. We, therefore, develop intensity-duration-frequency curves using sub-daily (1 hour to 12 hour) rainfall data for 57 major urban areas in India. While rain gage stations data from urban areas are most suitable, but stations are unevenly distributed and their data have gaps and inconsistencies. Therefore, we used hourly rainfall data from the Modern Era Retrospective-analysis for Research and Applications (MERRA), which provides a long term data (1979 onwards). Since reanalysis products have uncertainty associated with them we need to enhance their accuracy before their application. We compared daily rain gage station data obtained from Global Surface Summary of Day Data (GSOD) available for 65 stations for the period of 2000-2010 with gridded daily rainfall data provided by Indian Meteorological Department (IMD). 3-hourly data from NOAA/Climate Prediction Center morphing technique (CMORPH), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), and the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) were aggregated to daily for comparison with GSOD station data . TMPA is found to be best correlated with GSOD data. We used TMPA data to correct MERRA's hourly precipitation, which were applied to develop IDF curves. We compared results with IDF curves from empirical methods and found substantial disparities in the existing stormwater designs in India.

  15. Experiments in Globalisation, Food Security and Land Use Decision Making

    PubMed Central

    Brown, Calum; Murray-Rust, Dave; van Vliet, Jasper; Alam, Shah Jamal; Verburg, Peter H.; Rounsevell, Mark D.

    2014-01-01

    The globalisation of trade affects land use, food production and environments around the world. In principle, globalisation can maximise productivity and efficiency if competition prompts specialisation on the basis of productive capacity. In reality, however, such specialisation is often constrained by practical or political barriers, including those intended to ensure national or regional food security. These are likely to produce globally sub-optimal distributions of land uses. Both outcomes are subject to the responses of individual land managers to economic and environmental stimuli, and these responses are known to be variable and often (economically) irrational. We investigate the consequences of stylised food security policies and globalisation of agricultural markets on land use patterns under a variety of modelled forms of land manager behaviour, including variation in production levels, tenacity, land use intensity and multi-functionality. We find that a system entirely dedicated to regional food security is inferior to an entirely globalised system in terms of overall production levels, but that several forms of behaviour limit the difference between the two, and that variations in land use intensity and functionality can substantially increase the provision of food and other ecosystem services in both cases. We also find emergent behaviour that results in the abandonment of productive land, the slowing of rates of land use change and the fragmentation or, conversely, concentration of land uses following changes in demand levels. PMID:25437010

  16. Experiments in globalisation, food security and land use decision making.

    PubMed

    Brown, Calum; Murray-Rust, Dave; van Vliet, Jasper; Alam, Shah Jamal; Verburg, Peter H; Rounsevell, Mark D

    2014-01-01

    The globalisation of trade affects land use, food production and environments around the world. In principle, globalisation can maximise productivity and efficiency if competition prompts specialisation on the basis of productive capacity. In reality, however, such specialisation is often constrained by practical or political barriers, including those intended to ensure national or regional food security. These are likely to produce globally sub-optimal distributions of land uses. Both outcomes are subject to the responses of individual land managers to economic and environmental stimuli, and these responses are known to be variable and often (economically) irrational. We investigate the consequences of stylised food security policies and globalisation of agricultural markets on land use patterns under a variety of modelled forms of land manager behaviour, including variation in production levels, tenacity, land use intensity and multi-functionality. We find that a system entirely dedicated to regional food security is inferior to an entirely globalised system in terms of overall production levels, but that several forms of behaviour limit the difference between the two, and that variations in land use intensity and functionality can substantially increase the provision of food and other ecosystem services in both cases. We also find emergent behaviour that results in the abandonment of productive land, the slowing of rates of land use change and the fragmentation or, conversely, concentration of land uses following changes in demand levels. PMID:25437010

  17. Clug; Community Land Use Game. Player's Manual with Selected Readings.

    ERIC Educational Resources Information Center

    Feldt, Allan G.

    CLUG (Community Land Use Game) is designed to provide players with an understanding of several underlying factors affecting the growth of an urban region. It has been used with players from junior high to graduate school and also with non-students. It unites concepts from sociology, economics, and geography. Players invest in land, construct…

  18. Influence of land use on hyporheos in catchment of the Jarama River (central Spain)

    NASA Astrophysics Data System (ADS)

    Iepure, S.; Martínez-Hernández, V.; Herrera, S.; de Bustamante, I.; Rasines, R.

    2012-04-01

    -benthos species), as indicate the expected diversity pattern after the simulation procedure for taxonomic distinctness. Crustacean diversity (Shannon index) was greatest in less extensive agricultural land-use sites where riparian zone is slightly developed, while intensive agricultural activities cause a decline of water quality and therefore of crustacean richness. Intensively urban industrial land-use yield highly contaminated hyporheic water with heavy metals and VOC (i.e. toluene, benzene). Complementarily, the streams geomorphology and low rates of water flow favour the deposition of fine sediments that clog the interstices, generate a reverse dynamic of river channel and induce a reduction of groundwater discharge. In results, the hyporheic is unsuitable for hyporheos that are missing or harbour reduced populations of exclusively surface-water taxa. There are sites of intermediate biodiversity including hypogeans, located in natural regional parks thriving well-established riparian zone and relatively good water quality. The differences among sites in the Jarama basin indicate the impact that changes in land-use have upon the hyporheic ecology as shown the pattern of crustacean community distribution, diversity and ecological structure. We suggest that in rehabilitation processes of streams sectors require the understanding and recognition of the potential roles of the hyporheic zone and its biota in the whole stream ecosystem.

  19. Downscaling land-use data to provide global 30″ estimates of five land-use classes.

    PubMed

    Hoskins, Andrew J; Bush, Alex; Gilmore, James; Harwood, Tom; Hudson, Lawrence N; Ware, Chris; Williams, Kristen J; Ferrier, Simon

    2016-05-01

    Land-use change is one of the biggest threats to biodiversity globally. The effects of land use on biodiversity manifest primarily at local scales which are not captured by the coarse spatial grain of current global land-use mapping. Assessments of land-use impacts on biodiversity across large spatial extents require data at a similar spatial grain to the ecological processes they are assessing. Here, we develop a method for statistically downscaling mapped land-use data that combines generalized additive modeling and constrained optimization. This method was applied to the 0.5° Land-use Harmonization data for the year 2005 to produce global 30″ (approx. 1 km(2)) estimates of five land-use classes: primary habitat, secondary habitat, cropland, pasture, and urban. The original dataset was partitioned into 61 bio-realms (unique combinations of biome and biogeographical realm) and downscaled using relationships with fine-grained climate, land cover, landform, and anthropogenic influence layers. The downscaled land-use data were validated using the PREDICTS database and the geoWiki global cropland dataset. Application of the new method to all 61 bio-realms produced global fine-grained layers from the 2005 time step of the Land-use Harmonization dataset. Coarse-scaled proportions of land use estimated from these data compared well with those estimated in the original datasets (mean R (2): 0.68 ± 0.19). Validation with the PREDICTS database showed the new downscaled land-use layers improved discrimination of all five classes at PREDICTS sites (P < 0.0001 in all cases). Additional validation of the downscaled cropping layer with the geoWiki layer showed an R (2) improvement of 0.12 compared with the Land-use Harmonization data. The downscaling method presented here produced the first global land-use dataset at a spatial grain relevant to ecological processes that drive changes in biodiversity over space and time. Integrating these data with biodiversity measures

  20. Different Patterns of the Urban Heat Island Intensity from Cluster Analysis

    NASA Astrophysics Data System (ADS)

    Silva, F. B.; Longo, K.

    2014-12-01

    This study analyzes the different variability patterns of the Urban Heat Island intensity (UHII) in the Metropolitan Area of Rio de Janeiro (MARJ), one of the largest urban agglomerations in Brazil. The UHII is defined as the difference in the surface air temperature between the urban/suburban and rural/vegetated areas. To choose one or more stations that represent those areas we used the technique of cluster analysis on the air temperature observations from 14 surface weather stations in the MARJ. The cluster analysis aims to classify objects based on their characteristics, gathering similar groups. The results show homogeneity patterns between air temperature observations, with 6 homogeneous groups being defined. Among those groups, one might be a natural choice for the representative urban area (Central station); one corresponds to suburban area (Afonsos station); and another group referred as rural area is compound of three stations (Ecologia, Santa Cruz and Xerém) that are located in vegetated regions. The arithmetic mean of temperature from the three rural stations is taken to represent the rural station temperature. The UHII is determined from these homogeneous groups. The first UHII is estimated from urban and rural temperature areas (Case 1), whilst the second UHII is obtained from suburban and rural temperature areas (Case 2). In Case 1, the maximum UHII occurs in two periods, one in the early morning and the other at night, while the minimum UHII occurs in the afternoon. In Case 2, the maximum UHII is observed during afternoon/night and the minimum during dawn/early morning. This study demonstrates that the stations choice reflects different UHII patterns, evidencing that distinct behaviors of this phenomenon can be identified.

  1. Land-use effects on prevalence of raccoon roundworm (Baylisascaris procyonis).

    PubMed

    Page, L Kristen; Gehrt, Stanley D; Robinson, Nathaniel P

    2008-07-01

    The raccoon (Procyon lotor) is the definitive host of Baylisascaris procyonis, a large intestinal roundworm that is zoonotic and can result in fatal or severe central nervous system disease in young children. Prevalence of infection among raccoon populations often is high, and in the midwestern United States, B. procyonis has been reported in 68-82% of raccoons. Raccoon populations have increased in response to changes in human land use, and often reach higher densities in urban and suburban landscapes than rural landscapes. However, shifts in foraging behavior among urban raccoons could impact the transmission of B. procyonis if small vertebrate intermediate hosts are not a significant part of the raccoon diet. The objective of this study was to compare prevalence of B. procyonis infection between urban and rural raccoon populations on a regional scale. Necropsy was done on 204 raccoons collected from September through February during 2000-2005 from seven states across the Midwest (regional sample). Baylisascaris procyonis was found in 54% of examined raccoons. Prevalence differed between land-use types (chi2=11.56, df=1, P=0.0007), and was higher among animals collected from rural locations (65%) than those collected in urban locations (41%). Intensity of infection also differed (F=5.52, df=1, P=0.02), with rural raccoons having greater worm burdens (x=29.63+/-36.42) than urban raccoons (x=13.85+/-18.47). Despite high densities of raccoons in urban landscapes, fewer urban raccoons were infected with B. procyonis, suggesting decreased dependence on intermediate hosts as a food source. This possible explanation was supported by a similar trend in prevalence among subsamples of raccoons collected from three Chicago-area populations (local samples) with differing levels of urbanization, population densities, and foraging behavior that had been intensively monitored during 1995-2002. Decreased transmission of B. procyonis in urban landscapes may be due to decreased

  2. Derivation of Nationally Consistent Indices Representing Urban Intensity Within and Across Nine Metropolitan Areas of the Conterminous United States

    USGS Publications Warehouse

    Cuffney, Thomas F.; Falcone, James A.

    2009-01-01

    Two nationally consistent multimetric indices of urban intensity were developed to support studies of the effects of urbanization on streams in nine metropolitan areas of the conterminous United States: Atlanta, Georgia; Birmingham, Alabama; Boston, Massachusetts; Dallas-Fort Worth, Texas; Denver, Colorado; Milwaukee-Green Bay, Wisconsin; Portland, Oregon; Raleigh, North Carolina; and Salt Lake City, Utah. These studies were conducted as a part of the U.S. Geological Survey's National Water-Quality Assessment Program. These urban intensity indices were used to define gradients of urbanization and to interpret biological, physical, and chemical changes along these gradients. Ninety census, land-cover, and infrastructure variables obtained from nationally available databases were evaluated. Only variables that exhibited a strong and consistent linear relation with 2000 population density were considered for use in the indices. Housing-unit density (HUDEN), percentage of basin area in developed land (P_NLCD1_2), and road density (ROADDEN) were selected as the best representatives of census, land-cover, and infrastructure variables. The metropolitan area national urban intensity index (MA-NUII) was scaled to represent urban intensity within each metropolitan area and ranged from 0 (little or no urban) to 100 (maximum urban) for sites within each metropolitan area. The national urban intensity index (NUII) was scaled to represent urban intensity across all nine metropolitan areas and ranged from 0 to 100 for all sites. The rates at which HUDEN, P_NLCD1_2, and ROADDEN changed with changes in population density varied among metropolitan areas. Therefore, these variables were adjusted to obtain a more uniform rate of response across metropolitan areas in the derivation of the NUII. The NUII indicated that maximum levels of urban intensity occurred in the West and Midwest rather than in the East primarily because small inner-city streams in eastern metropolitan areas are

  3. Constructing land-use maps of the Netherlands in 2030.

    PubMed

    de Nijs, Ton C M; de Niet, R; Crommentuijn, L

    2004-08-01

    The National Environmental Assessment Agency of the RIVM in the Netherlands is obliged to report on future trends in the environment and nature every 4 years. The last report, Nature Outlook 2, evaluated the effects of four alternative socio-economic and demographic scenarios on nature and the landscape. Spatially detailed land-use maps are needed to assess effects on nature and landscape. The objective of the study presented here was how to create spatially detailed land-use maps of the Netherlands in 2030 using the Environment Explorer, a Cellular Automata-based land-use model to construct land-use maps from four scenarios. One of these is discussed in great detail to show how the maps were constructed from the various scenario elements, story lines and additional data and assumptions on national, regional and local land-use developments. It was the first time in the history of our outlooks that consistent, spatially detailed land-use maps of the Netherlands for 2030 were constructed from national economic and demographic scenarios. Each map represents a direct reflection of model input and assumptions. The maps do not show the most probable developments in the Netherlands but describe the possible change in land use if Dutch society were to develop according to one of the four scenarios. The large (societal) uncertainties are reflected in the total set of future land-use maps. The application of a land-use model such as the Environment Explorer ensures that all relevant aspects of a scenario, i.e. economic and demographic developments, zoning policies and urban growth, are integrated systematically into one consistent framework. PMID:15246572

  4. Impact of land use changes on surface warming in China

    NASA Astrophysics Data System (ADS)

    Zhang, Jingyong; Dong, Wenjie; Wu, Lingyun; Wei, Jiangfeng; Chen, Peiyan; Lee, Dong-Kyou

    2005-06-01

    Land use changes such as urbanization, agriculture, pasturing, deforestation, desertification and irrigation can change the land surface heat flux directly, and also change the atmospheric circulation indirectly, and therefore affect the local temperature. But it is difficult to separate their effects from climate trends such as greenhouse-gas effects. Comparing the decadal trends of the observation station data with those of the NCEP/NCAR Reanalysis (NNR) data provides a good method to separate the effects because the NNR is insensitive to land surface changes. The effects of urbanization and other land use changes over China are estimated by using the difference between the station and the NNR surface temperature trends. Our results show that urbanization and other land use changes may contribute to the observed 0.12°C (10yr)-1 increase for daily mean surface temperature, and the 0.20°C (10yr)-1 and 0.03°C (10 yr)-1 increases for the daily minimum and maximum surface temperatures, respectively. The urban heat island effect and the effects of other land-use changes may also play an important role in the diurnal temperature range change. The spatial pattern of the differences in trends shows a marked heterogeneity. The land surface degradation such as deforestation and desertification due to human activities over northern China, and rapidly-developed urbanization over southern China, may have mostly contributed to the increases at stations north of about 38°N and in Southeast China, respectively. Furthermore, the vegetation cover increase due to irrigation and fertilization may have contributed to the decreasing trend of surface temperature over the lower Yellow River Basin. The study illustrates the possible impacts of land use changes on surface temperature over China.

  5. Study of USGS/NASA land use classification system. [compatibility of land use classification system with computer processing techniques employed for land use mapping from ERTS data

    NASA Technical Reports Server (NTRS)

    Spann, G. W.; Faust, N. L.

    1974-01-01

    It is known from several previous investigations that many categories of land-use can be mapped via computer processing of Earth Resources Technology Satellite data. The results are presented of one such experiment using the USGS/NASA land-use classification system. Douglas County, Georgia, was chosen as the test site for this project. It was chosen primarily because of its recent rapid growth and future growth potential. Results of the investigation indicate an overall land-use mapping accuracy of 67% with higher accuracies in rural areas and lower accuracies in urban areas. It is estimated, however, that 95% of the State of Georgia could be mapped by these techniques with an accuracy of 80% to 90%.

  6. Spatiotemporal trends of terrestrial vegetation activity along the urban development intensity gradient in China's 32 major cities.

    PubMed

    Zhou, Decheng; Zhao, Shuqing; Liu, Shuguang; Zhang, Liangxia

    2014-08-01

    Terrestrial vegetation plays many pivotal roles in urban systems. However, the impacts of urbanization on vegetation are poorly understood. Here we examined the spatiotemporal trends of the vegetation activity measured by MODIS Enhanced Vegetation Index (EVI) along Urban Development Intensity (UDI) gradient in 32 major Chinese cities from 2000 to 2012. We also proposed to use a new set of concepts (i.e., actual, theoretical, and positive urbanization effects) to better understand and quantify the impacts of urbanization on vegetation activities. Results showed that the EVI decreased significantly along a rising UDI for 28 of 32 cities (p<0.05) in linear, convex or concave form, signifying the urbanization impacts on vegetation varied across cities and UDI zones within a city. Further, the actual urbanization effects were much weaker than the theoretical estimates because of the offsetting positive effects generated by multiple urban environmental and anthropogenic factors. Examining the relative changes of EVI in various UDI zones against that in the rural area (ΔEVI), which effectively removed the effects of climate variability, demonstrated that ΔEVI decreased markedly from 2000 to 2012 for about three-quarters of the cities in the exurban (0.05urban (0.5urban core (0.75urban and urban core of many cities could primarily be attributed to the importance of positive effects derived from the urban environment and the improvement of management and maintenance of urban green space. More work is needed to quantify mechanistically the detailed negative and positive effects of urban environmental factors and management practices on vegetation activities. PMID:24829041

  7. Open and reproducible global land use classification

    NASA Astrophysics Data System (ADS)

    Nüst, Daniel; Václavík, Tomáš; Pross, Benjamin

    2015-04-01

    Researchers led by the Helmholtz Centre for Environmental research (UFZ) developed a new world map of land use systems based on over 30 diverse indicators (http://geoportal.glues.geo.tu-dresden.de/stories/landsystemarchetypes.html) of land use intensity, climate and environmental and socioeconomic factors. They identified twelve land system archetypes (LSA) using a data-driven classification algorithm (self-organizing maps) to assess global impacts of land use on the environment, and found unexpected similarities across global regions. We present how the algorithm behind this analysis can be published as an executable web process using 52°North WPS4R (https://wiki.52north.org/bin/view/Geostatistics/WPS4R) within the GLUES project (http://modul-a.nachhaltiges-landmanagement.de/en/scientific-coordination-glues/). WPS4R is an open source collaboration platform for researchers, analysts and software developers to publish R scripts (http://www.r-project.org/) as a geo-enabled OGC Web Processing Service (WPS) process. The interoperable interface to call the geoprocess allows both reproducibility of the analysis and integration of user data without knowledge about web services or classification algorithms. The open platform allows everybody to replicate the analysis in their own environments. The LSA WPS process has several input parameters, which can be changed via a simple web interface. The input parameters are used to configure both the WPS environment and the LSA algorithm itself. The encapsulation as a web process allows integration of non-public datasets, while at the same time the publication requires a well-defined documentation of the analysis. We demonstrate this platform specifically to domain scientists and show how reproducibility and open source publication of analyses can be enhanced. We also discuss future extensions of the reproducible land use classification, such as the possibility for users to enter their own areas of interest to the system and

  8. Land Use, Residential Density, and Walking

    PubMed Central

    Rodríguez, Daniel A.; Evenson, Kelly R.; Diez Roux, Ana V.; Brines, Shannon J.

    2009-01-01

    Background The neighborhood environment may play a role in encouraging sedentary patterns, especially for middle-aged and older adults. Purpose Associations between walking and neighborhood population density, retail availability, and land use distribution were examined using data from a cohort of adults aged 45 to 84 years old. Methods Data from a multi-ethnic sample of 5529 adult residents of Baltimore MD, Chicago IL, Forsyth County NC, Los Angeles CA, New York NY, and St. Paul MN, enrolled in the Multi-Ethnic Study of Atherosclerosis in 2000–2002 were linked to secondary land use and population data. Participant reports of access to destinations and stores and objective measures of the percentage of land area in parcels devoted to retail land uses, the population divided by land area in parcels, and the mixture of uses for areas within 200m of each participant's residence were examined. Multinomial logistic regression was used to investigate associations of self-reported and objective neighborhood characteristics with walking. All analyses were conducted in 2008 and 2009. Results After adjustment for individual-level characteristics and neighborhood connectivity, higher density, greater land area devoted to retail uses, and self-reported measures of proximity of destinations and ease of walking to places were each related to walking. In models including all land use measures, population density was positively associated with walking to places and with walking for exercise for more than 90 min/wk both relative to no walking. Availability of retail was associated with walking to places relative to not walking, having a more proportional mix of land uses was associated with walking for exercise for more than 90 min/wk, while self-reported ease of access to places was related to higher levels of exercise walking both relative to not walking. Conclusions Residential density and the presence of retail uses are related to various walking behaviors. Efforts to

  9. A quantitative analysis of urban growth and associated thermal characteristics using Landsat satellite data

    NASA Astrophysics Data System (ADS)

    Zeng, Yongnain; Zhang, Honghui; Zou, Bin; Li, Hua

    2008-10-01

    Urbanization transforms the natural landscape to anthropogenic urban land use and changes surface physical characteristics. Accurate information on the extent of urban growth and its impacts on environment are of great interest for diverse purposes. As a result, increased research interest is being directed to the mapping and monitoring of urban land use using remote sensing techniques. However, there are many challenges in deriving urban extent and development densities quantitatively. This study utilized remote sensing data of Landsat TM/ETM+ to assess urban sprawl and its thermal characteristics in Changsha of central China. A new approach was proposed for quantitatively determining urban land use extents and development densities. Firstly, impervious surface areas were mapped by integrating spectral index derived from remotely sensed data. Then, the urban land extents and development densities were identified by using moving window calculation and selecting certain threshold values. The urban surface thermal patterns were investigated using Landsat thermal band. Analysis results suggest that urban extent and development density and surface thermal characteristics and patterns can be identified through qualitatively based remotely sensed index and land surface temperature. Results show the built-up area and urban development densities have increased significantly in Changsha city since 1990s. The differences of urban development densities correspond to thermal effects where higher percent imperviousness is usually associated with higher surface temperature. Remotely sensed index and land surface temperature are demonstrated to be very useful sources in quantifying urban land use extent, development intensity, and urban thermal patterns.

  10. Meta-studies in land use science: Current coverage and prospects.

    PubMed

    van Vliet, Jasper; Magliocca, Nicholas R; Büchner, Bianka; Cook, Elizabeth; Rey Benayas, José M; Ellis, Erle C; Heinimann, Andreas; Keys, Eric; Lee, Tien Ming; Liu, Jianguo; Mertz, Ole; Meyfroidt, Patrick; Moritz, Mark; Poeplau, Christopher; Robinson, Brian E; Seppelt, Ralf; Seto, Karen C; Verburg, Peter H

    2016-02-01

    Land use science has traditionally used case-study approaches for in-depth investigation of land use change processes and impacts. Meta-studies synthesize findings across case-study evidence to identify general patterns. In this paper, we provide a review of meta-studies in land use science. Various meta-studies have been conducted, which synthesize deforestation and agricultural land use change processes, while other important changes, such as urbanization, wetland conversion, and grassland dynamics have hardly been addressed. Meta-studies of land use change impacts focus mostly on biodiversity and biogeochemical cycles, while meta-studies of socioeconomic consequences are rare. Land use change processes and land use change impacts are generally addressed in isolation, while only few studies considered trajectories of drivers through changes to their impacts and their potential feedbacks. We provide a conceptual framework for linking meta-studies of land use change processes and impacts for the analysis of coupled human-environmental systems. Moreover, we provide suggestions for combining meta-studies of different land use change processes to develop a more integrated theory of land use change, and for combining meta-studies of land use change impacts to identify tradeoffs between different impacts. Land use science can benefit from an improved conceptualization of land use change processes and their impacts, and from new methods that combine meta-study findings to advance our understanding of human-environmental systems. PMID:26408313

  11. Aerosol accumulation intensity and composition variations under different weather conditions in urban environment

    NASA Astrophysics Data System (ADS)

    Steinberga, Iveta; Bikshe, Janis; Eindorfa, Aiva

    2014-05-01

    During the last decade aerosol (PM10, PM2.5) mass and composition measurements were done in different urban environments - parallel street canyons, industrial sites and at the background level in Riga, Latvia. Effect of meteorological parameters on the accumulation and ventilation intensity was investigated in order to understand microclimatological parameters affecting aerosol pollution level and chemical composition changes. In comparison to industrial sites (shipping activities, bulk cargo, oil and naphtha processing), urban street canyon aerosol mass concentration was significantly higher, for PM10 number of daily limit exceedances are higher by factor 3.4 - 3.9 in street canyons. Exceedances of PM2.5 annual limits were identified only in street canyons as well. Precipitation intensity, wind speed, days with mist highly correlates with aerosol concentration; in average during the year about 1 - 2 % presence of calm wind days, 20 - 30 days with mist facilitate accumulation of aerosols and mitigating growing of secondary aerosols. It has been assessed that about 25 % of daily exceedances in street canyons are connected with sea salt/street sanding factor. Strong dependency of wind speed and direction were identified in winter time - low winds (0.4 - 1.7 m/s) blowing from south, south-east (cross section of the street) contributing to PM10 concentrations over 100 - 150 ug/m3. Seasonal differences in aerosol concentrations were identified as a result of recombination of direct source impact, specific meteorological and synoptical conditions during the period from January until April when usually dominates extremely high aerosol concentrations. While aerosol mass concentration levels in monitoring sites significantly differs, concentrations of heavy metals (Pb, Ni, Cd, and As) are almost at the same level, even more - concentration of Cd for some years was higher in industrial area where main pollution is caused by oil processing and storage, heavy traffic

  12. The use of LiDAR-derived high-resolution DSM and intensity data to support modelling of urban flooding

    NASA Astrophysics Data System (ADS)

    Aktaruzzaman, Md.; Schmitt, Theo G.

    2011-11-01

    This paper addresses the issue of a detailed representation of an urban catchment in terms of hydraulic and hydrologic attributes. Modelling of urban flooding requires a detailed knowledge of urban surface characteristics. The advancement in spatial data acquisition technology such as airborne LiDAR (Light Detection and Ranging) has greatly facilitated the collection of high-resolution topographic information. While the use of the LiDAR-derived Digital Surface Model (DSM) has gained popularity over the last few years as input data for a flood simulation model, the use of LiDAR intensity data has remained largely unexplored in this regard. LiDAR intensity data are acquired along with elevation data during the data collection mission by an aircraft. The practice of using of just aerial images with RGB (Red, Green and Blue) wavebands is often incapable of identifying types of surface under the shadow. On the other hand, LiDAR intensity data can provide surface information independent of sunlight conditions. The focus of this study is the use of intensity data in combination with aerial images to accurately map pervious and impervious urban areas. This study presents an Object-Based Image Analysis (OBIA) framework for detecting urban land cover types, mainly pervious and impervious surfaces in order to improve the rainfall-runoff modelling. Finally, this study shows the application of highresolution DSM and land cover maps to flood simulation software in order to visualize the depth and extent of urban flooding phenomena.

  13. Land use mapping and change detection using ERTS imagery in Montgomery County, Alabama

    NASA Technical Reports Server (NTRS)

    Wilms, R. P.

    1973-01-01

    The feasibility of using remotely sensed data from ERTS-1 for mapping land use and detecting land use change was investigated. Land use information was gathered from 1964 air photo mosaics and from 1972 ERTS data. The 1964 data provided the basis for comparison with ERTS-1 imagery. From this comparison, urban sprawl was quite evident for the city of Montgomery. A significant trend from forestland to agricultural was also discovered. The development of main traffic arteries between 1964 and 1972 was a vital factor in the development of some of the urban centers. Even though certain problems in interpreting and correlating land use data from ERTS imagery were encountered, it has been demonstrated that remotely sensed data from ERTS is useful for inventorying land use and detecting land use change.

  14. Land Use Compatibility Assessment Using a Mdified Topsis Model: a Case Study of Elementary Schools in Tehran

    NASA Astrophysics Data System (ADS)

    Abedini, A.; Lotfian, M.; Moradi, M.

    2015-12-01

    Being one of the most controversial issues in urban planning, land use planning has always been in the focus of researches. Land use planning is a subdivision of urban planning which tends to arrange land uses in order to avoid conflicts among them. In order to achieve a transparent and effective urban planning, land uses should be located and allocated in an ideal situation so that avoid negative impacts from neighbouring parcels and land uses. Neighbouring land uses can produce externalities and negative impacts on other land uses because of inter-land use interaction. These externalities may be undesirable effects such as noise, air and visual pollution or may be caused by hazardous facilities. The main objective of this research is to propose a new multi-criteria evaluation model for land use compatibility assessment. Considering the fact that a considerable number of factors affect the compatibility degree of neighbouring land uses, a multi-criteria evaluation approach is employed to address the aforementioned problem. This research employs the integration of Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and Ordered Weighted Averaging (OWA) methods to facilitate land use compatibility evaluation with respect to optimism degree. The applicability of the proposed model is illustrated by the problem of land use compatibility assessment for elementary schools in Tehran. The results indicate that most of the current schools are situated in a location which is incompatible for the land use type of elementary school especially in the southern and central parts of the city.

  15. Effect of land use and longitudinal gradient on carbon quality and lability in the Vesdre River catchment, Belgium

    NASA Astrophysics Data System (ADS)

    Gettel, G. M.; Bravo-Palacios, L.; Gupta, S.

    2011-12-01

    In order to construct accurate terrestrial carbon budgets, it is necessary to understand how land use and river processing affect the export and quality of organic matter. Fluorescence spectroscopy is commonly used to characterize dissolved organic matter (DOM) quality, but how fluorescence characteristics relate to the functional properties of DOM is hardly known. The objectives of this study were to: 1. Characterize DOM quality in diverse land-use types and along a longitudinal gradient in the Vesdre River, Belgium; and 2. At the same sites, relate fluorescence characteristics to DOM lability, which was quantified by microbial respiration and denitrification measurements. The Vesdre basin is 710 km2, contains 429 people/km2, and is characterized by peat, forest, agricultural, and urban land use. Surface water samples from main stem sites (14), tributaries (13), and reservoirs (2) were collected along a 40 km section of the River Vesdre in January 2011. Main stem sites were used to examine the effect of longitudinal processing while tributary sites were used to assess the effects of land use, which included peat, forest, agriculture and urban. Samples were analyzed for DOC concentration, fluorescence, and absorbance spectra. Excitation-emission matrices (EEMs) were generated and analyzed in a 13-component parallel factor analysis (PARAFAC) model. Lability was determined by 42-day incubations in which DOC consumption was fitted with a 3-pool kinetics model, which partitioned the DOM into labile, semi-labile, and refractory pools and generated a decay rate (k) for each pool. The effect of DOM quality on denitrification was also determined using an acetylene block assay in which only excess NO3 was added and samples were normalized to a similar DOC concentration. Mulitivariate regression was used to relate land use and river position to fluorescence properties and DOM lability. High concentration of DOC and intensity of fluorophore C (humic-like fraction, also

  16. Applications of Skylab data to land use and climatological analysis

    NASA Technical Reports Server (NTRS)

    Alexander, R. H. (Principal Investigator); Lewis, J. E., Jr.; Lins, H. F., Jr.; Jenner, C. B.; Outcalt, S. I.; Pease, R. W.

    1976-01-01

    The author has identified the following significant results. Skylab study in Central Atlantic Regional Ecological Test Site encompassed two separate but related tasks: (1) evaluation of photographic sensors S190A and B as sources of land use data for planning and managing land resources in major metropolitan regions, and (2) evaluation of the multispectral scanner S192 used in conjunction with associated data and analytical techniques as a data source on urban climates and the surface energy balance. Photographs from the Skylab S190B earth terrain camera were of greatest interest in the land use analysis task; they were of sufficiently high resolution to identify and map many level 2 and 3 land use categories. After being corrected to allow for atmosphere effects, output from thermal and visible bands of the S192 was employed in constructing computer map plots of albedo and surface temperature.

  17. A conceptual framework for analysing and measuring land-use intensity☆

    PubMed Central

    Erb, Karl-Heinz; Haberl, Helmut; Jepsen, Martin Rudbeck; Kuemmerle, Tobias; Lindner, Marcus; Müller, Daniel; Verburg, Peter H; Reenberg, Anette

    2013-01-01

    Large knowledge gaps currently exist that limit our ability to understand and characterise dynamics and patterns of land-use intensity: in particular, a comprehensive conceptual framework and a system of measurement are lacking. This situation hampers the development of a sound understanding of the mechanisms, determinants, and constraints underlying changes in land-use intensity. On the basis of a review of approaches for studying land-use intensity, we propose a conceptual framework to quantify and analyse land-use intensity. This framework integrates three dimensions: (a) input intensity, (b) output intensity, and (c) the associated system-level impacts of land-based production (e.g. changes in carbon storage or biodiversity). The systematic development of indicators across these dimensions would provide opportunities for the systematic analyses of the trade-offs, synergies and opportunity costs of land-use intensification strategies. PMID:24143156

  18. Impact of past and possible future land use changes on the hydrological behaviour of the Northern German lowland `Hunte' river

    NASA Astrophysics Data System (ADS)

    Bormann, H.; Elfert, S.

    2009-04-01

    Changing hydrological behaviour of catchments can be driven by several different influencing factors: e.g., climate change, water management and land use change. While changes in climate and water management directly affect the water cycle be changes in regional forcing (e.g., precipitation, radiation) and local management of surface and subsurface waters, the impact of land use changes on catchment hydrology is much more complex to assess as it results from regionally distributed local changes. Therefore, spatially distributed and process based hydrological catchment models are required for assessing the impacts of spatially distributed land use changes. The Hunte catchment in Lower Saxony is part of an intensively agriculturally used landscape in Northwest Germany. Pasture and cropland are dominating land uses, while surface sealing increases due to urban sprawl. As the catchment is dominated by agricultural landuse mostly, it can be expected that European and national policy as well as the agroeconomic development can strongly effect the land use distribution in future. Therefore, in this study, the effect of historical and projected land use changes on the catchment hydrological behaviour is assessed the process based catchment model WASIM-ETH (Schulla). WASIM-ETH has been applied to observed land use data sets (CORINE data) and projected land use scenarios (based on Ewert et al., 2005; Rounsevell et al., 2005) for the mesoscale catchment of the Hunte river in order to quantify the sensitivity with respect to land use change. The results of the study show that historical land use changes have almost no impact on the catchment hydrological processes in Northwest Germany. Simulated water balances and runoff hydrographs are almost identical, driving the model with different input data sets based on the CORINE data set. Differences are small compared to trends identified in the discharge data of the Hunte and Weser rivers. However, in relation to the ability of

  19. 24 CFR 1710.109 - Title to the property and land use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Title to the property and land use... Requirements § 1710.109 Title to the property and land use. (a) General instructions. (1) Below the heading “Title to the Property and Land Use” insert the following introductory paragraphs: “A person with...

  20. 24 CFR 1710.109 - Title to the property and land use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Title to the property and land use... Requirements § 1710.109 Title to the property and land use. (a) General instructions. (1) Below the heading “Title to the Property and Land Use” insert the following introductory paragraphs: “A person with...

  1. 24 CFR 1710.109 - Title to the property and land use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Title to the property and land use... Requirements § 1710.109 Title to the property and land use. (a) General instructions. (1) Below the heading “Title to the Property and Land Use” insert the following introductory paragraphs: “A person with...

  2. 24 CFR 1710.109 - Title to the property and land use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Title to the property and land use... Requirements § 1710.109 Title to the property and land use. (a) General instructions. (1) Below the heading “Title to the Property and Land Use” insert the following introductory paragraphs: “A person with...

  3. 24 CFR 1710.109 - Title to the property and land use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Title to the property and land use... Requirements § 1710.109 Title to the property and land use. (a) General instructions. (1) Below the heading “Title to the Property and Land Use” insert the following introductory paragraphs: “A person with...

  4. Resource analysis and land use planning with space and high altitude photography

    NASA Technical Reports Server (NTRS)

    Schrumpf, B. J.

    1972-01-01

    Photographic scales providing resource data for decision making processes of land use and a legend system for barren lands, water resources, natural vegetation, agricultural, urban, and industrial lands in hierarchical framework are applied to various remote sensing techniques. Two natural vegetation resource and land use maps for a major portion of Maricopa County, Arizona are also produced.

  5. Modeling enzootic raccoon rabies from land use patterns - Georgia (USA) 2006-2010.

    PubMed

    Duke, John E; Blanton, Jesse D; Ivey, Melissa; Rupprecht, Charles

    2013-01-01

    We analyzed how land-use patterns and changes in urbanization influence reported rabid raccoons in Georgia from 2006 - 2010.  Using Geographical Information Systems and rabies surveillance data, multivariate analysis was conducted on 15 land-use variables that included natural topography, agricultural development, and urbanization to model positive raccoon rabies cases while controlling for potential raccoon submission bias associated with higher human population densities.  Low intensity residential development was positively associated with reported rabid raccoons while a negative association was found with evergreen forest.  Evergreen forests may offer a barrier effect where resources are low and raccoon populations are not supported.  Areas with pure stands of upland evergreen forest might be utilized in baiting strategies for oral rabies vaccination programs where fewer or no baits may be needed.  Their use as a barrier should be considered carefully in a cost-effective strategy for oral rabies vaccination (ORV) programs to contain the western spread of this important zoonotic disease. PMID:24715971

  6. Analysis of land use and land cover change in a coastal area of Rio de Janeiro using high-resolution remotely sensed data

    NASA Astrophysics Data System (ADS)

    Avelar, Silvania; Tokarczyk, Piotr

    2014-01-01

    Coastal areas offer great recreational and economic opportunities, but require intensive resource management and environmental protection. Land use and land cover information provides a rapid and cost-effective means for monitoring and planning coastal area development. This study quantitatively describes spatiotemporal changes of land use and land cover over the last four decades in a coastal area of the state of Rio de Janeiro, Brazil. Historical aerial photographs from 1976 and satellite images from 1990 and 2012 were classified and analyzed. We used supervised classification and machine learning techniques to classify the images. An accuracy assessment of results was performed. Land use change statistics for the period indicate that urban areas have increased to the detriment of dense vegetation, salines, and bare soil. The analysis provides a basis for better control of anthropogenic impacts and geoconservation activities in this coastal area of Rio de Janeiro.

  7. Land-Use Change and Bioenergy

    SciTech Connect

    2011-07-01

    This publication describes the Biomass Program’s efforts to examine the intersection of land-use change and bioenergy production. It describes legislation requiring land-use change assessments, key data and modeling challenges, and the research needs to better assess and understand the impact of bioenergy policy on land-use decisions.

  8. Major land uses in the United States

    USGS Publications Warehouse

    Marschner, Francis J.; Anderson, James R.

    1967-01-01

    This is a polygon coverage of major land uses in the United States. The source of the coverage is the map of major land uses in the National Atlas, pages 158-159, which was adapted from U.S. Department of Agriculture, "Major Land Uses in the United States," by Francis J. Marschner, revised by James R. Anderson, 1967.

  9. Mapping of agricultural land use from ERTS-1 digital data

    NASA Technical Reports Server (NTRS)

    Wilson, A. D.; Max, G. A.; Peterson, G. W.

    1973-01-01

    A study area was selected in Lancaster and Lebanon Counties, two of the major agricultural counties in Pennsylvania. This area was delineated on positive transparencies on MSS data collected on October 11, 1972 (1080-15185). Channel seven was used to delineate general land forms, drainage patterns, water and urban areas. Channel five was used to delineate highway networks. These identifiable features were useful aids for locating areas on the computer output. Computer generated maps were used to delineate broad land use categories, such as forest land, agricultural land, urban areas and water. These digital maps have a scale of approximately 1:24,000 thereby allowing direct comparison with U.S.G.S. 7.5 minute quadrangle sheets. Aircraft data were used as a form of ground truth useful for the delineation of land use patterns.

  10. ERTS-1 applications to Minnesota land use mapping

    NASA Technical Reports Server (NTRS)

    Brown, D.; Gamble, J.; Prestin, S.; Trippler, D.; Meyer, M. P.; Ulliman, J. J.; Eller, R. G.

    1973-01-01

    Land use class definitions that can be operationally employed with ERTS-1 imagery are being developed with the cooperation of personnel from several state, regional, and federal agencies with land management responsibilities within the state and the University of Minnesota. Investigations of urban, extractive, forest, and wetlands areas indicate that it is feasible to subdivide each of these classes into several sub-classes with the use of ERTS-1 images from one or more time periods.

  11. Locational determinants of emissions from pollution-intensive firms in urban areas.

    PubMed

    Zhou, Min; Tan, Shukui; Guo, Mingjing; Zhang, Lu

    2015-01-01

    Industrial pollution has remained as one of the most daunting challenges for many regions around the world. Characterizing the determinants of industrial pollution should provide important management implications. Unfortunately, due to the absence of high-quality data, rather few studies have systematically examined the locational determinants using a geographical approach. This paper aimed to fill the gap by accessing the pollution source census dataset, which recorded the quantity of discharged wastes (waste water and solid waste) from 717 pollution-intensive firms within Huzhou City, China. Spatial exploratory analysis was applied to analyze the spatial dependency and local clusters of waste emissions. Results demonstrated that waste emissions presented significantly positive autocorrelation in space. The high-high hotspots generally concentrated towards the city boundary, while the low-low clusters approached the Taihu Lake. Their locational determinants were identified by spatial regression. In particular, firms near the city boundary and county road were prone to discharge more wastes. Lower waste emissions were more likely to be observed from firms with high proximity to freight transfer stations or the Taihu Lake. Dense populous districts saw more likelihood of solid waste emissions. Firms in the neighborhood of rivers exhibited higher waste water emissions. Besides, the control variables (firm size, ownership, operation time and industrial type) also exerted significant influence. The present methodology can be applicable to other areas, and further inform the industrial pollution control practices. Our study advanced the knowledge of determinants of emissions from pollution-intensive firms in urban areas. PMID:25927438

  12. Locational Determinants of Emissions from Pollution-Intensive Firms in Urban Areas

    PubMed Central

    Zhou, Min; Tan, Shukui; Guo, Mingjing; Zhang, Lu

    2015-01-01

    Industrial pollution has remained as one of the most daunting challenges for many regions around the world. Characterizing the determinants of industrial pollution should provide important management implications. Unfortunately, due to the absence of high-quality data, rather few studies have systematically examined the locational determinants using a geographical approach. This paper aimed to fill the gap by accessing the pollution source census dataset, which recorded the quantity of discharged wastes (waste water and solid waste) from 717 pollution-intensive firms within Huzhou City, China. Spatial exploratory analysis was applied to analyze the spatial dependency and local clusters of waste emissions. Results demonstrated that waste emissions presented significantly positive autocorrelation in space. The high-high hotspots generally concentrated towards the city boundary, while the low-low clusters approached the Taihu Lake. Their locational determinants were identified by spatial regression. In particular, firms near the city boundary and county road were prone to discharge more wastes. Lower waste emissions were more likely to be observed from firms with high proximity to freight transfer stations or the Taihu Lake. Dense populous districts saw more likelihood of solid waste emissions. Firms in the neighborhood of rivers exhibited higher waste water emissions. Besides, the control variables (firm size, ownership, operation time and industrial type) also exerted significant influence. The present methodology can be applicable to other areas, and further inform the industrial pollution control practices. Our study advanced the knowledge of determinants of emissions from pollution-intensive firms in urban areas. PMID:25927438

  13. Landsat sattelite multi-spectral image classification of land cover and land use changes for GIS-based urbanization analysis in irrigation districts of lower Rio Grande Valley of Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Lower Rio Grande Valley in the south of Texas is experiencing rapid increase of population to bring up urban growth that continues influencing on the irrigation districts in the region. This study evaluated the Landsat satellite multi-spectral imagery to provide information for GIS-based urbaniz...

  14. Risk assessment of flash floods in central Pyrenees (Spain) through land use change analysis

    NASA Astrophysics Data System (ADS)

    Serrano-Notivoli, Roberto; Mora, Daniel; Sánchez-Fabre, Miguel; Ángel Saz, Miguel; Ollero, Alfredo

    2015-04-01

    Nowadays, the main cause of the damages to human areas is the increased risk exposure. The urbanization in touristic areas in Pyrenees has increased enormously in last 25 years, and the most of urban development have been made on land occupied by the stream channel. We present two different case studies in central Pyrenees: one in Aragón river and one in Ésera river. We made a land use analysis from 1956 to 2013 in the headwaters of these two rivers delimiting the channel in different flash floods events, and analysing the amount and distribution of precipitation at the same time. The results show that the risk exposure is one of the main factors of the impact of flash floods. We found that most of the damage on urbanization and human activities was caused by the urban occupation of areas that were located on the floodplain of the river. For both Aragon and Esera headwaters precipitation events were considered extreme in their time series. However, the amount of precipitation of these extreme events does not support the consequences in geomorphological and human environments. The events of high intensity rainfall over the last years could be expected, yet, it had unexpected consequences that could be predictable by land managers through an appropriate regional planning.

  15. Investigation of land use of northern megalopolis using ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Simpson, R. B.; Lindgren, D. T.; Ruml, D. J.; Goldstein, W.

    1974-01-01

    Primary objective was to produce a color-coded land use map and digital data base for the northern third of Megalopolis. Secondary objective was to investigate possible applications of ERTS products to land use planning. Many of the materials in this report already have received national, dissemination as a result of unexpected interest in land use surveys from ERTS. Of special historical interest is the first comprehensive urban-type land use map from space imagery, which covered the entire state of Rhode Island and was made from a single image taken on 28 July 1972.

  16. Database Development of Land Use Characteristics along Major U.S. Highways

    SciTech Connect

    Xiong, D

    2000-06-06

    The major objective of the effort reported here is to develop methods to measure transportation land use at the national level (i.e., how much land and what types of lands are used by transportation systems) and to track changes over time. Data for transportation-related land use are important for environmental analysis, climate change studies, transportation-land use interaction research, policy decisions related to urban sprawl, and more. Transportation systems have direct effects on the environment through modification of vegetation, impacts on wildlife habitats, changes in local climate and alternation of drainage patterns (U.S. DOT/BTS, 1996; U.S. DOT/BTS, 1998; U.S. EPA, 1999; Maggi, 1994; Verhoef, 1994). However, without accurate and complete land use data, it is extremely difficult to study and evaluate these effects. Transportation systems also induce land use changes. Such indirect effects, while not the subject of this study, may be more significant than the direct land-use impacts of transportation infrastructure. Establishing an inventory of transportation infrastructure and adjacent land use and maintaining the inventory over time is an important first step towards understanding the full range of interactions between transportation and land use. While current and historic land use data are essential for investigating the relationships between transportation and land use, so far, no technological or institutional mechanisms have been established to systematically collect such data at the national level. The lack of long-term planning in land use data acquisition can be a major setback for future research in transportation land use studies. Land use data also play a key role in the understanding of problems related to urban sprawl and in policy decisions in dealing with these problems.

  17. Estimating Demand for Industrial and Commercial Land Use Given Economic Forecasts

    PubMed Central

    Batista e Silva, Filipe; Koomen, Eric; Diogo, Vasco; Lavalle, Carlo

    2014-01-01

    Current developments in the field of land use modelling point towards greater level of spatial and thematic resolution and the possibility to model large geographical extents. Improvements are taking place as computational capabilities increase and socioeconomic and environmental data are produced with sufficient detail. Integrated approaches to land use modelling rely on the development of interfaces with specialized models from fields like economy, hydrology, and agriculture. Impact assessment of scenarios/policies at various geographical scales can particularly benefit from these advances. A comprehensive land use modelling framework includes necessarily both the estimation of the quantity and the spatial allocation of land uses within a given timeframe. In this paper, we seek to establish straightforward methods to estimate demand for industrial and commercial land uses that can be used in the context of land use modelling, in particular for applications at continental scale, where the unavailability of data is often a major constraint. We propose a set of approaches based on ‘land use intensity’ measures indicating the amount of economic output per existing areal unit of land use. A base model was designed to estimate land demand based on regional-specific land use intensities; in addition, variants accounting for sectoral differences in land use intensity were introduced. A validation was carried out for a set of European countries by estimating land use for 2006 and comparing it to observations. The models’ results were compared with estimations generated using the ‘null model’ (no land use change) and simple trend extrapolations. Results indicate that the proposed approaches clearly outperformed the ‘null model’, but did not consistently outperform the linear extrapolation. An uncertainty analysis further revealed that the models’ performances are particularly sensitive to the quality of the input land use data. In addition, unknown future

  18. Future land-use scenarios and the loss of wildlife habitats in the southeastern United States.

    PubMed

    Martinuzzi, Sebastián; Withey, John C; Pidgeon, Anna M; Plantinga, Andrew J; McKerrow, Alexa J; Williams, Steven G; Helmers, David P; Radeloff, Volker C

    2015-01-01

    Land-use change is a major cause of wildlife habitat loss. Understanding how changes in land-use policies and economic factors can impact future trends in land use and wildlife habitat loss is therefore critical for conservation efforts. Our goal here was to evaluate the consequences of future land-use changes under different conservation policies and crop market conditions on habitat loss for wildlife species in the southeastern United States. We predicted the rates of habitat loss for 336 terrestrial vertebrate species by 2051. We focused on habitat loss due to the expansion of urban, crop, and pasture. Future land-use changes following business-as-usual conditions resulted in relatively low rates of wildlife habitat loss across the entire Southeast, but some ecoregions and species groups experienced much higher habitat loss than others. Increased crop commodity prices exacerbated wildlife habitat loss in most ecoregions, while the implementation of conservation policies (reduced urban sprawl, and payments for land conservation) reduced the projected habitat loss in some regions, to a certain degree. Overall, urban and crop expansion were the main drivers of habitat loss. Reptiles and wildlife species associated with open vegetation (grasslands, open woodlands) were the species groups most vulnerable to future land-use change. Effective conservation of wildlife habitat in the Southeast should give special consideration to future land-use changes, regional variations, and the forces that could shape land-use decisions. PMID:26255365

  19. The Relationship Between Fossil and Dairy Greenhouse Gas Emissions and Complex Urban Land-Use Patterns by In Situ and Remote Sensing Data from Surface Mobile, Airborne, and Satellite Instruments

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Melton, C.; Tratt, D. M.; Kuze, A.; Buckland, K. N.; Butz, A.; Deguchi, A.; Eastwood, M. L.; Fischer, M. L.; Frash, J.; Fladeland, M. M.; Gore, W.; Iraci, L. T.; Johnson, P. D.; Kataoka, F.; Kolyer, R.; Leen, J. B.; Quattrochi, D. A.; Shiomi, K.; Suto, H.; Tanaka, T.; Thompson, D. R.; Yates, E. L.; Van Damme, M.; Yokota, T.

    2015-12-01

    The GOSAT-COMEX-IASI Experiment (Greenhouse gases Observing SATellite-CO2and Methane EXperiment) demonstrated a novel approach to airborne-surface mobile in situ data fusion for interpretation and validation of satellite and airborne remote sensing data of greenhouse gases and direct calculation of flux. Key data were collected for the Chino Dairy in the Los Angeles Basin, California and for the Kern River Oil Fields adjacent to Bakersfield, California. In situ surface and remote sensing greenhouse gas and ammonia observations were compared with IASI and GOSAT retreivals, while hyperspectral imaging data from the AVIRIS, AVIRIS NG, and Mako airborne sensors were analyzed to relate emissions and land use. Figure - platforms participating in the experiment. TANSO-FTS aboard the Ibuki satellite (GOSAT) provided targeted pixels to measure column greenhouse gases. AMOG is the AutoMObile Gas Surveyor which supports a suite of meteorology and in situ trace gas sensors for mobile high speed measurement. AVIRIS, the Airborne Visual InfraRed Imaging Spectrometer aboard the NASA ER-2 airplane collected hyperspectral imaging data at 20 m resolution from 60,000 ft. Mako is a thermal infrared imaging spectrometer that was flown on the Twin Otter International. AJAX is a fighter jet outfitted for science sporting meteorology and greenhouse gas sensors. RAMVan is an upward looking FTIR for measuring column methane and ammonia and other trace gases.

  20. Agricultural land-use mapping using very high resolution satellite images in Canary Islands

    NASA Astrophysics Data System (ADS)

    Labrador Garcia, Mauricio; Arbelo, Manuel; Evora Brondo, Juan Antonio; Hernandez-Leal, Pedro A.; Alonso-Benito, Alfonso

    Crop maps are a basic tool for rural planning and a way to asses the impact of politics and infrastructures in the rural environment. Thus, they must be accurate and updated. Because of the small size of the land fields in Canary Islands, until now the crop maps have been made by means of an intense and expensive field work. The tiny crop terraces do not allow the use of traditional medium-size resolution satellite images. The launch of several satellites with sub-meter spatial resolutions in the last years provides an opportunity to update land use maps in these fragmented areas. SATELMAC is a project financed by the PCT-MAC 2007-2013 (FEDER funds). One of the main objectives of this project is to develop a methodology that allows the use of very high resolution satellite images to automate as much as possible the updating of agricultural land use maps. The study was carried out in 3 different areas of the two main islands of the Canarian Archipelago, Tenerife and Gran Canaria. The total area is about 550 km2 , which includes both urban and rural areas. Multitemporal images from Geo-Eye 1 were acquired during a whole agricultural season to extract information about annual and perennial crops. The work includes a detailed geographic correction of the images and dealing with many adverse factors like cloud shadows, variability of atmospheric conditions and the heterogeneity of the land uses within the study area. Different classification methods, including traditional pixel-based methods and object-oriented approach, were compared in order to obtain the best accuracy. An intensive field work was carried out to obtain the ground truth, which is the base for the classification procedures and the validation of the results. The final results will be integrated into a cadastral vector layer.

  1. Adding ecosystem function to agent-based land use models

    PubMed Central

    Yadav, V.; Del Grosso, S.J.; Parton, W.J.; Malanson, G.P.

    2015-01-01

    The objective of this paper is to examine issues in the inclusion of simulations of ecosystem functions in agent-based models of land use decision-making. The reasons for incorporating these simulations include local interests in land fertility and global interests in carbon sequestration. Biogeochemical models are needed in order to calculate such fluxes. The Century model is described with particular attention to the land use choices that it can encompass. When Century is applied to a land use problem the combinatorial choices lead to a potentially unmanageable number of simulation runs. Century is also parameter-intensive. Three ways of including Century output in agent-based models, ranging from separately calculated look-up tables to agents running Century within the simulation, are presented. The latter may be most efficient, but it moves the computing costs to where they are most problematic. Concern for computing costs should not be a roadblock. PMID:26191077

  2. Resilience of Groundwater Impacted by Land Use and Climate Change in a Karst Aquifer, South China.

    PubMed

    Guo, Fang; Jiang, Guanghui; Polk, Jason S; Huang, Xiufeng; Huang, Siyu

    2015-11-01

    Changes of groundwater flow and quality were investigated in a subtropical karst aquifer to determine the driving mechanism. Decreases in groundwater flow are more distinct in discharge zones than those in recharge and runoff zones. Long-term measurement of the represented regional groundwater outlet reveals that groundwater discharge decrease by nearly 50% during the dry season. The hydrochemistry of groundwater in the runoff and discharge zones is of poorer quality than in the recharge zone. Indications of intensive land resource exploitation and changes in land use patterns were attributed to changes in groundwater conditions since 1990, but the influence of climate change was likely from 2001, because the water temperature exhibited increasing trends at a mean rate of 0.02 °C/yr even though groundwater depth was high in the aquifer. These conclusions imply the need for further groundwater monitoring and reevaluation to understand the resilience of aquifer during urbanization and development. PMID:26564587

  3. Treatment of urban runoff at Lake Tahoe: low-intensity chemical dosing.

    PubMed

    Trejo-Gaytan, Julieta; Bachand, Philip; Darby, Jeannie

    2006-12-01

    A systematic investigation of the effect of coagulant type and dose and temperature, mixing, and water quality on subsequent charge neutralization and removal of phosphorus and fine particles from urban and/or stormwater runoff entering Lake Tahoe (Sierra Nevada mountains, western United States) was conducted. Dosing based on streaming current values resulted in turbidities of less than 10.9 +/- 0.35 NTU and filterable and total phosphorus concentrations of less than 9.83 +/- 0.54 and 25.6 +/- 5.71 microg/L, respectively. Inadequate slow mixing could be partially compensated for by increased settling time; however, such quiescent conditions are difficult to obtain in natural systems. For prehydrolyzed forms of aluminum, high intensity rapid mixing was counterproductive. Several classes of coagulants responded robustly to water quality and temperature changes. However, polyaluminum chlorides modified with silica or sulfate, with low to medium basicity, were consistently the best performers in these tests, in terms of simultaneously removing phosphorus and fine particles under a wide range of operating conditions with low doses. PMID:17243249

  4. Land Use and Land Cover Change

    SciTech Connect

    Brown, Daniel; Polsky, Colin; Bolstad, Paul V.; Brody, Samuel D.; Hulse, David; Kroh, Roger; Loveland, Thomas; Thomson, Allison M.

    2014-05-01

    A contribution to the 3rd National Climate Assessment report, discussing the following key messages: 1. Choices about land-use and land-cover patterns have affected and will continue to affect how vulnerable or resilient human communities and ecosystems are to the effects of climate change. 2. Land-use and land-cover changes affect local, regional, and global climate processes. 3. Individuals, organizations, and governments have the capacity to make land-use decisions to adapt to the effects of climate change. 4. Choices about land use and land management provide a means of reducing atmospheric greenhouse gas levels.

  5. Land use map, Finney County, Kansas

    NASA Technical Reports Server (NTRS)

    Morain, S. A. (Principal Investigator); Williams, D. L.; Coiner, J. C.

    1973-01-01

    The author has identified the following significant results. Methods for the mapping of land use in agricultural regions are developed and applied to preparation of a land use map of Finney County, Kanas. Six land use categories were identified from an MSS-5 image. These categories are: (1) large field irrigation; (2) small field irrigation; (3) dryland cultivation; (4) rangeland; (5) cultural features; and (6) riverine land. The map is composed of basically homogeneous regions with definable mixtures of the six categories. Each region is bounded by an ocularly evident change in land use.

  6. The effect of local land use and loss of forests on bats and nocturnal insects.

    PubMed

    Treitler, Julia T; Heim, Olga; Tschapka, Marco; Jung, Kirsten

    2016-07-01

    Land-use intensification at local and landscape level poses a serious threat to biodiversity and affects species interactions and ecosystem function. It is thus important to understand how interrelated taxa respond to land-use intensification and to consider the importance of different spatial scales. We investigated whether and how local land-use intensity and landscape features affect the predator-prey interaction of bats and insects. Bats and nocturnal insects were assessed on 50 grassland sites in the Schorfheide-Chorin. We analyzed the effect of local land use and distance to forested areas as a proxy for site accessibility on bats and insects and their biological interaction measured in bat's feeding activity. Insect abundance increased with higher land-use intensity, while size and diversity of insects decreased. In contrast, bat activity, diversity, and species composition were determined by the distance to forested areas and only slightly by land-use intensity. Feeding attempts of bats increased with higher insect abundance and diversity but decreased with insect size and distance to forested areas. Finally, our results revealed that near forested areas, the number of feeding attempts was much lower on grassland sites with high, compared to those with low land-use intensity. In contrast, far from forests, the feeding attempts did not differ significantly between intensively and extensively managed grassland sites. We conclude that the two interrelated taxa, bats and insects, respond to land-use intensification on very different scales. While insects respond to local land use, bats are rather influenced by surrounding landscape matrix. Hereby, proximity to forests reveals to be a prerequisite for higher bat species diversity and a higher rate of feeding attempts within the area. However, proximity to forest is not sufficient to compensate local high land-use intensity. Thus, local land-use intensification in combination with a loss of forest remnants

  7. Sustainable reduction in the flux of microbial compliance parameters from urban and arable land use to coastal bathing waters by a wetland ecosystem produced by a marine flood defence structure.

    PubMed

    Kay, David; Wyer, Mark D; Crowther, John; Wilkinson, Jeremy; Stapleton, Carl; Glass, Paul

    2005-09-01

    'Natural' treatment systems such as wetlands and reed beds have been proposed as sustainable means of reducing fluxes of faecal indicator organisms (FIOs) to recreational and shellfish harvesting waters. This is because FIO fluxes to coastal waters from both point (effluent) and diffuse (catchment) sources can cause non-compliance with microbiological standards for bathing and shellfish harvesting waters. The Water Framework Directive requires competent authorities in the member states to manage both point and diffuse sources of FIOs in an integrated manner to achieve compliance with 'good' water quality as defined in a series of daughter Directives. This study was undertaken to investigate the relative sources of FIOs to the popular bathing waters around Clacton, UK. In this predominantly arable (mainly cereal cropping) farming area, the principal land use predictor, explaining 76% of the variance in geometric mean presumptive Escherichia coli concentration at sub-catchment outlets during the bathing season, was the proportion of built-up (i.e. urbanised) land in each sub-catchment. This new finding contrasts with earlier studies in livestock farming regions where the proportion of improved grassland has proven to be the strongest predictor of microbial concentration. Also novel in this investigation, a flood defence wall has been built creating a wetland area which discharges every tidal cycle. The wetland produces over 97% reduction in the flux and concentrations of FIOs to the marine recreational waters. Also, FIO concentrations in water draining through the wetland to the sea were similar to concentrations measured in six UK sewage treatment plant effluents subject to secondary (biological) treatment followed by UV disinfection. PMID:16009396

  8. Modeling the relationship between land use and surface water quality.

    PubMed

    Tong, Susanna T Y; Chen, Wenli

    2002-12-01

    It is widely known that watershed hydrology is dependent on many factors, including land use, climate, and soil conditions. But the relative impacts of different types of land use on the surface water are yet to be ascertained and quantified. This research attempted to use a comprehensive approach to examine the hydrologic effects of land use at both a regional and a local scale. Statistical and spatial analyses were employed to examine the statistical and spatial relationships of land use and the flow and water quality in receiving waters on a regional scale in the State of Ohio. Besides, a widely accepted watershed-based water quality assessment tool, the Better Assessment Science Integrating Point and Nonpoint Sources (BASINS), was adopted to model the plausible effects of land use on water quality in a local watershed in the East Fork Little Miami River Basin. The results from the statistical analyses revealed that there was a significant relationship between land use and in-stream water quality, especially for nitrogen, phosphorus and Fecal coliform. The geographic information systems (GIS) spatial analyses identified the watersheds that have high levels of contaminants and percentages of agricultural and urban lands. Furthermore, the hydrologic and water quality modeling showed that agricultural and impervious urban lands produced a much higher level of nitrogen and phosphorus than other land surfaces. From this research, it seems that the approach adopted in this study is comprehensive, covering both the regional and local scales. It also reveals that BASINS is a very useful and reliable tool, capable of characterizing the flow and water quality conditions for the study area under different watershed scales. With little modification, these models should be able to adapt to other watersheds or to simulate other contaminants. They also can be used to study the plausible impacts of global environmental change. In addition, the information on the hydrologic

  9. Evaluating the Effects of Land Use Planning for Non-Point Source Pollution Based on a System Dynamics Approach in China

    PubMed Central

    Kuai, Peng; Li, Wei; Liu, Nianfeng

    2015-01-01

    Urbanization is proceeding rapidly in several developing countries such as China. This accelerating urbanization alters the existing land use types in a way that results in more Non-Point Source (NPS) pollution to local surface waters. Reasonable land use planning is necessary. This paper compares seven planning scenarios of a case study area, namely Wulijie, China, from the perspective of NPS pollution. A System Dynamics (SD) model was built for the comparison to adequately capture the planning complexity. These planning scenarios, which were developed by combining different land use intensities (LUIs) and construction speeds (CSs), were then simulated. The results show that compared to scenario S1 (business as usual) all other scenarios will introduce more NPS pollution (with an incremental rate of 22%-70%) to Wulijie. Scenario S6 was selected as the best because it induced relatively less NPS pollution while simultaneously maintaining a considerable development rate. Although LUIs represent a more critical factor compared to CSs, we conclude that both LUIs and CSs need to be taken into account to make the planning more environmentally friendly. Considering the power of SD in decision support, it is recommended that land use planning should take into consideration findings acquired from SD simulations. PMID:26267482

  10. Dynamic study of land-use in Yining City

    NASA Astrophysics Data System (ADS)

    Wang, Jiangping; Wei, Lu

    2009-10-01

    Based on models of land-use, the paper analyzes urban sprawl from the macroscopic to the micro level, predicts the demand for construction land in the city expansion, and presents the law between total amount of urban land demand and urban space expansion. Then by combining the data with current urban land and natural resources round the city, the paper appraises the rationality of the developed-land which will have changed their use-nature, to appraisal the feasibility and utilization ratio of the undeveloped land and nature resource which will be developed in nearly future, find out the irrationality that may appear in the urban space expanding, thus restrain through planning and policy. With the rapid develop of western regions in recent years, different with the eastern coastal zone; the western city is beginning its own urbanization process. Yili Prefecture, as the window of the development of western regions, is expected to see fast development within a few years. Meanwhile, to Yili Prefecture, the topographical ground form condition is complicated, the natural resources is extremely abundant, once it is destroyed will cause irretrievable losses. Under this background, how to handle the relation between city's development and natural environment and resources well, taking the urban development path that can be constant becomes the important subject that we can't avoid. So this paper uses linear regression mode and dynamics, offer valuable reference for smooth development of the city.

  11. Simulated impact of past and possible future land use changes on the hydrological response of the Northern German lowland ‘Hunte’ catchment

    NASA Astrophysics Data System (ADS)

    Elfert, Simon; Bormann, Helge

    2010-03-01

    SummaryLand use is a key factor controlling the hydrological behaviour of catchments. Changing land use therefore can have an important influence on the local hydrological cycle. Validated and process-based hydrological models are suitable tools to quantify the impact of a change in land use on the hydrological processes. In this study, the physically based catchment model WaSiM-ETH (Water Balance Simulation Model) was applied to a mesoscale lowland catchment in northern Germany (Hunte river, 2141 km 2 at gauge Oldenburg). Model calibration and validation showed that WaSiM-ETH well represented the discharge of the main Hunte river while the discharge dynamics of a few lowland tributaries whose catchments are characterised by peaty soils and intense artificial drainage could not be represented. The purpose of this study was twofold; on the one hand to analyse the sensitivity of WaSiM-ETH to changes in land use observed in the decade 1990-2000, and on the other hand to quantify the impact of land use change projected for the future in terms of land use scenarios available to the public. The results showed that WaSiM-ETH is hardly sensitive to the slight changes observed in the last decade of the 20th century. By contrast, water flows simulated by WaSiM-ETH are clearly impacted by agricultural land use scenarios which were developed based on IPCC scenarios. However, the results also show that it is not sufficient to focus on agricultural land use, only. The proposed reduction of agricultural land leaves open the final land cover after land use change, e.g., forest or urban areas. This study demonstrated that WaSiM-ETH was more sensitive to the choice of the final land cover than to the difference in the scenarios (e.g., A1F1 versus B1). Therefore, we recommend to precisely define change in agricultural land use as well as the final land cover in order to estimate the realistic impact of land use change on hydrological behaviour.

  12. Modeling Land Use Change in the Chesapeake Bay Watershed

    NASA Astrophysics Data System (ADS)

    Claire, J. A.; Goetz, S. J.; Bockstael, N.

    2003-12-01

    Low density, decentralized residential and commercial development is increasingly the dominant pattern of exurban land use in many developed countries, particularly the United States. The term "sprawl" is now commonly used to describe this form of development, the environmental and quality-of-life impacts of which are becoming central to debates over land use in urban and suburban areas. Continued poor health of the Chesapeake Bay, located in the Mid-Atlantic region of the United States, is due in part to disruptions in the hydrological system caused by urban and suburban development throughout the 167,000 square kilometer watershed. We present results of a spatial predictive model of land use change based on cellular automata (SLEUTH), which was calibrated using high resolution (30m cell size) maps of the built environment derived from Landsat ETM+ imagery for the period 1986-2000. The model was applied to a 23,740 square kilometer area centered on Washington DC - Baltimore MD, and predictions were made out to 2030 assuming three different policy scenarios (current trends, managed growth, and "sustainable"). Accuracy of the model was assessed at three scales (pixel, watershed and county) and overall strengths and weaknesses of the model are presented, particularly in comparison to other econometric modeling approaches.

  13. Remote sensing applied to land-use studies in Wyoming

    NASA Technical Reports Server (NTRS)

    Breckenridge, R. M.; Marrs, R. W.; Murphy, D. J.

    1973-01-01

    Impending development of Wyoming's vast fuel resources requires a quick and efficient method of land use inventory and evaluation. Preliminary evaluations of ERTS-1 imagery have shown that physiographic and land use inventory maps can be compiled by using a combination of visual and automated interpretation techniques. Test studies in the Powder River Basin showed that ERTS image interpretations can provide much of the needed physiographic and land use information. Water impoundments as small as one acre were detected and water bodies larger than five acres could be mapped and their acreage estimated. Flood plains and irrigated lands were successfully mapped, and some individual crops were identified and mapped. Coniferous and deciduous trees were mapped separately using color additive analysis on the ERTS multispectral imagery. Gross soil distinctions were made with the ERTS imagery, and were found to be closely related to the bedrock geology. Several broad unstable areas were identified. These were related to specific geologic and slope conditions and generally extended through large regions. Some new oil fields and all large open-cut coal mines were mapped. The most difficult task accomplished was that of mapping urban areas. Work in the urban areas provides a striking example of snow enhancement and the detail available from a snow enhanced image.

  14. Long-Term Effects of Changing Land Use Practices on Surface Water Quality in a Coastal River and Lagoonal Estuary

    NASA Astrophysics Data System (ADS)

    Rothenberger, Meghan B.; Burkholder, Joann M.; Brownie, Cavell

    2009-09-01

    The watershed of the Neuse River, a major tributary of the largest lagoonal estuary on the U.S. mainland, has sustained rapid growth of human and swine populations. This study integrated a decade of available land cover and water quality data to examine relationships between land use changes and surface water quality. Geographic Information Systems (GIS) analysis was used to characterize 26 subbasins throughout the watershed for changes in land use during 1992-2001, considering urban, agricultural (cropland, animal as pasture, and densities of confined animal feed operations [CAFOs]), forested, grassland, and wetland categories and numbers of wastewater treatment plants (WWTPs). GIS was also used together with longitudinal regression analysis to identify specific land use characteristics that influenced surface water quality. Total phosphorus concentrations were significantly higher during summer in subbasins with high densities of WWTPs and CAFOs. Nitrate was significantly higher during winter in subbasins with high numbers of WWTPs, and organic nitrogen was higher in subbasins with higher agricultural coverage, especially with high coverage of pastures fertilized with animal manure. Ammonium concentrations were elevated after high precipitation. Overall, wastewater discharges in the upper, increasingly urbanized Neuse basin and intensive swine agriculture in the lower basin have been the highest contributors of nitrogen and phosphorus to receiving surface waters. Although nonpoint sources have been emphasized in the eutrophication of rivers and estuaries such as the Neuse, point sources continue to be major nutrient contributors in watersheds sustaining increasing human population growth. The described correlation and regression analyses represent a rapid, reliable method to relate land use patterns to water quality, and they can be adapted to watersheds in any region.

  15. Integrated climate/land use/hydrological change scenarios for assessing threats to ecosystem services on California rangelands

    NASA Astrophysics Data System (ADS)

    Byrd, K. B.; Flint, L. E.; Casey, C. F.; Alvarez, P.; Sleeter, B. M.; Sohl, T.

    2013-12-01

    In California there are over 18 million acres of rangelands in the Central Valley and the interior Coast Range, most of which are privately owned and managed for livestock production. Ranches provide extensive wildlife habitat and generate multiple ecosystem services that carry considerable market and non-market values. These rangelands are under pressure from urbanization and conversion to intensive agriculture, as well as from climate change that can alter the flow of these services. To understand the coupled and isolated impacts of land use and climate change on rangeland ecosystem services, we developed six spatially explicit (250 m) coupled climate/land use/hydrological change scenarios for the Central Valley and oak woodland regions of California consistent with three IPCC emission scenarios - A2, A1B and B1. Three land use land cover (LULC) change scenarios were each integrated with two downscaled global climate models (GCMs) (a warm, wet future and a hot, dry future) and related hydrologic data. We used these scenarios to quantify wildlife habitat, water supply (recharge potential and streamflow) and carbon sequestration on rangelands and to conduct an economic analysis associated with changes in these benefits. The USGS FOREcasting SCEnarios of land-use change model (FORE-SCE), which runs dynamically with downscaled GCM outputs, was used to generate maps of yearly LULC change for each scenario from 2006 to 2100. We used the USGS Basin Characterization Model (BCM), a regional water balance model, to generate change in runoff, recharge, and stream discharge based on land use change and climate change. Metrics derived from model outputs were generated at the landscape scale and for six case-study watersheds. At the landscape scale, over a quarter of the million acres set aside for conservation in the B1 scenario would otherwise be converted to agriculture in the A2 scenario, where temperatures increase by up to 4.5 °C compared to 1.3 °C in the B1 scenario

  16. Land Use Systems Model. Technical Report. Preliminary.

    ERIC Educational Resources Information Center

    Austin, W. Burnet

    Since the service requirements of a utility depend on the distribution of population and land use in the service area, the planning for future requirements depends on accurate projections of future distributions. This systems approach model organizes land use data as an aid to facility planning. Included as variables are residential, commercial,…

  17. Agricultural land use change in the Northeast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA Census of Agriculture (http://www.agcensus.usda.gov/) provides county-level estimates of farm numbers, land use area and livestock and crop production every five years. In 2007, only eight of the 299 counties that make up the twelve Northeastern states had no agricultural land use. About 20...

  18. PLACES: A Tool For Sustainable Land Use

    EPA Science Inventory

    Rapid development of the human made environment to meet human needs and expand the economy is largely responsible for environmental losses. Because all land uses will incrementally and cumulatively degrade ecosystems that sustain human life, site-level land use decisions must ac...

  19. [Land Use Unit, Edmonds School District.

    ERIC Educational Resources Information Center

    Edmonds School District 15, Lynnwood, WA.

    This interdisciplinary program, developed for secondary students, contains 18 land use activities that can either be used directly in, or as a supplement to, curriculum in Science, Biology, Horticulture, Mathematics, Social Studies, English, Industrial Arts and Physical Education. The topics to be investigated include: land use simulation games,…

  20. Sustainable land use and agricultural soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainable land use is the management of the natural environment and the built environment to conserve the resources that help to sustain the current human population of the area and that of future generations. This concept of sustainable land use requires an analysis of the existing resources, the...

  1. Land Use Management for Solid Waste Programs

    ERIC Educational Resources Information Center

    Brown, Sanford M., Jr.

    1974-01-01

    The author discusses the problems of solid waste disposal and examines various land use management techniques. These include the land use plan, zoning, regionalization, land utilities, and interim use. Information concerning solid waste processing site zoning and analysis is given. Bibliography included. (MA)

  2. The Quiet Revolution in Land Use Control.

    ERIC Educational Resources Information Center

    Bosselman, Fred; Callies, David

    The Council on Environmental Quality commissioned this report on the innovative land use laws of several states to learn how some of the most complex land use issues and problems of re-allocating responsibilities between state and local governments are being addressed. Many of the laws analyzed are designed to deal with problems that are treated…

  3. Current and future land use around a nationwide protected area network

    USGS Publications Warehouse

    Hamilton, Christopher M.; Martinuzzi, Sebastian; Plantinga, Andrew J.; Radeloff, Volker C.; Lewis, David J.; Thogmartin, Wayne E.; Heglund, Patricia J.; Pidgeon, Anna M.

    2013-01-01

    Land-use change around protected areas can reduce their effective size and limit their ability to conserve biodiversity because land-use change alters ecological processes and the ability of organisms to move freely among protected areas. The goal of our analysis was to inform conservation planning efforts for a nationwide network of protected lands by predicting future land use change. We evaluated the relative effect of three economic policy scenarios on land use surrounding the U.S. Fish and Wildlife Service's National Wildlife Refuges. We predicted changes for three land-use classes (forest/range, crop/pasture, and urban) by 2051. Our results showed an increase in forest/range lands (by 1.9% to 4.7% depending on the scenario), a decrease in crop/pasture between 15.2% and 23.1%, and a substantial increase in urban land use between 28.5% and 57.0%. The magnitude of land-use change differed strongly among different USFWS administrative regions, with the most change in the Upper Midwestern US (approximately 30%), and the Southeastern and Northeastern US (25%), and the rest of the U.S. between 15 and 20%. Among our scenarios, changes in land use were similar, with the exception of our “restricted-urban-growth” scenario, which resulted in noticeably different rates of change. This demonstrates that it will likely be difficult to influence land-use change patterns with national policies and that understanding regional land-use dynamics is critical for effective management and planning of protected lands throughout the U.S.

  4. Current and future land use around a nationwide protected area network.

    PubMed

    Hamilton, Christopher M; Martinuzzi, Sebastian; Plantinga, Andrew J; Radeloff, Volker C; Lewis, David J; Thogmartin, Wayne E; Heglund, Patricia J; Pidgeon, Anna M

    2013-01-01

    Land-use change around protected areas can reduce their effective size and limit their ability to conserve biodiversity because land-use change alters ecological processes and the ability of organisms to move freely among protected areas. The goal of our analysis was to inform conservation planning efforts for a nationwide network of protected lands by predicting future land use change. We evaluated the relative effect of three economic policy scenarios on land use surrounding the U.S. Fish and Wildlife Service's National Wildlife Refuges. We predicted changes for three land-use classes (forest/range, crop/pasture, and urban) by 2051. Our results showed an increase in forest/range lands (by 1.9% to 4.7% depending on the scenario), a decrease in crop/pasture between 15.2% and 23.1%, and a substantial increase in urban land use between 28.5% and 57.0%. The magnitude of land-use change differed strongly among different USFWS administrative regions, with the most change in the Upper Midwestern US (approximately 30%), and the Southeastern and Northeastern US (25%), and the rest of the U.S. between 15 and 20%. Among our scenarios, changes in land use were similar, with the exception of our "restricted-urban-growth" scenario, which resulted in noticeably different rates of change. This demonstrates that it will likely be difficult to influence land-use change patterns with national policies and that understanding regional land-use dynamics is critical for effective management and planning of protected lands throughout the U.S. PMID:23383275

  5. Systemic change increases forecast uncertainty of land use change models

    NASA Astrophysics Data System (ADS)

    Verstegen, J. A.; Karssenberg, D.; van der Hilst, F.; Faaij, A.

    2013-12-01

    assumption of a stationary system. This means that the assumption of a constant model structure is not adequate and largely underestimates uncertainty in the forecast. Non-stationarity in land use change projections is challenging to model, because it is difficult to determine when the system will change and how. We believe that, in sight of these findings, land use change modelers should be more aware, and communicate more clearly, that what they try to project is at the limits, and perhaps beyond the limits, of what is still projectable. References Bakker, M., Veldkamp, A., 2012. Changing relationships between land use and environmental characteristics and their consequences for spatially explicit land-use change prediction. Journal of Land Use Science 7, 407-424. Verstegen, J.A., Karssenberg, D., van der Hilst, F., Faaij, A.P.C., 2012. Spatio-Temporal Uncertainty in Spatial Decision Support Systems: a Case Study of Changing Land Availability for Bioenergy Crops in Mozambique. Computers , Environment and Urban Systems 36, 30-42.

  6. Spatial Intensity Duration Frequency Relationships Using Hierarchical Bayesian Analysis for Urban Areas

    NASA Astrophysics Data System (ADS)

    Rupa, Chandra; Mujumdar, Pradeep

    2016-04-01

    In urban areas, quantification of extreme precipitation is important in the design of storm water drains and other infrastructure. Intensity Duration Frequency (IDF) relationships are generally used to obtain design return level for a given duration and return period. Due to lack of availability of extreme precipitation data for sufficiently large number of years, estimating the probability of extreme events is difficult. Typically, a single station data is used to obtain the design return levels for various durations and return periods, which are used in the design of urban infrastructure for the entire city. In an urban setting, the spatial variation of precipitation can be high; the precipitation amounts and patterns often vary within short distances of less than 5 km. Therefore it is crucial to study the uncertainties in the spatial variation of return levels for various durations. In this work, the extreme precipitation is modeled spatially using the Bayesian hierarchical analysis and the spatial variation of return levels is studied. The analysis is carried out with Block Maxima approach for defining the extreme precipitation, using Generalized Extreme Value (GEV) distribution for Bangalore city, Karnataka state, India. Daily data for nineteen stations in and around Bangalore city is considered in the study. The analysis is carried out for summer maxima (March - May), monsoon maxima (June - September) and the annual maxima rainfall. In the hierarchical analysis, the statistical model is specified in three layers. The data layer models the block maxima, pooling the extreme precipitation from all the stations. In the process layer, the latent spatial process characterized by geographical and climatological covariates (lat-lon, elevation, mean temperature etc.) which drives the extreme precipitation is modeled and in the prior level, the prior distributions that govern the latent process are modeled. Markov Chain Monte Carlo (MCMC) algorithm (Metropolis Hastings

  7. Dynamic integration of land use changes in a hydrologic assessment of a rapidly developing Indian catchment.

    PubMed

    Wagner, Paul D; Bhallamudi, S Murty; Narasimhan, Balaji; Kantakumar, Lakshmi N; Sudheer, K P; Kumar, Shamita; Schneider, Karl; Fiener, Peter

    2016-01-01

    Rapid land use and land-cover changes strongly affect water resources. Particularly in regions that experience seasonal water scarcity, land use scenario assessments provide a valuable basis for the evaluation of possible future water shortages. The objective of this study is to dynamically integrate land use model projections with a hydrologic model to analyze potential future impacts of land use change on the water resources of a rapidly developing catchment upstream of Pune, India. For the first time projections from the urban growth and land use change model SLEUTH are employed as a dynamic input to the hydrologic model SWAT. By this means, impacts of land use changes on the water balance components are assessed for the near future (2009-2028) employing four different climate conditions (baseline, IPCC A1B, dry, wet). The land use change modeling results in an increase of urban area by +23.1% at the fringes of Pune and by +12.2% in the upper catchment, whereas agricultural land (-14.0% and -0.3%, respectively) and semi-natural area (-9.1% and -11.9%, respectively) decrease between 2009 and 2028. Under baseline climate conditions, these land use changes induce seasonal changes in the water balance components. Water yield particularly increases at the onset of monsoon (up to +11.0mm per month) due to increased impervious area, whereas evapotranspiration decreases in the dry season (up to -15.1mm per month) as a result of the loss of irrigated agricultural area. As the projections are made for the near future (2009-2028) land use change impacts are similar under IPCC A1B climate conditions. Only if more extreme dry years occur, an exacerbation of the land use change impacts can be expected. Part