Science.gov

Sample records for urine arsenic concentrations

  1. ARSENIC LEVELS IN HUMAN BLOOD, URINE, AND HAIR IN RESPONSE TO EXPOSURE VIA DRINKING WATER

    EPA Science Inventory

    Five communities with water supplies having arsenic concentrations of 6, 51, 98, 123 and 393 micrograms/liter were selected for study. Samples of blood, hair, urine and tap water were obtained from participants in each community and analyzed for arsenic content. Results showed an...

  2. Arsenic concentrations in Chinese coals.

    PubMed

    Wang, Mingshi; Zheng, Baoshan; Wang, Binbin; Li, Shehong; Wu, Daishe; Hu, Jun

    2006-03-15

    The arsenic concentrations in 297 coal samples were collected from the main coal-mines of 26 provinces in China were determined by molybdenum blue coloration method. These samples were collected from coals that vary widely in coal rank and coal-forming periods from the five main coal-bearing regions in China. Arsenic content in Chinese coals range between 0.24 to 71 mg/kg. The mean of the concentration of Arsenic is 6.4+/-0.5 mg/kg and the geometric mean is 4.0+/-8.5 mg/kg. The level of arsenic in China is higher in northeastern and southern provinces, but lower in northwestern provinces. The relationship between arsenic content and coal-forming period, coal rank is studied. It was observed that the arsenic contents decreases with coal rank in the order: Tertiary>Early Jurassic>Late Triassic>Late Jurassic>Middle Jurassic>Late Permian>Early Carboniferous>Middle Carboniferous>Late Carboniferous>Early Permian; It was also noted that the arsenic contents decrease in the order: Subbituminous>Anthracite>Bituminous. However, compared with the geological characteristics of coal forming region, coal rank and coal-forming period have little effect on the concentration of arsenic in Chinese coal. The average arsenic concentration of Chinese coal is lower than that of the whole world. The health problems in China derived from in coal (arsenism) are due largely to poor local life-style practices in cooking and home heating with coal rather than to high arsenic contents in the coal. PMID:16256172

  3. The effect of variable environmental arsenic contamination on urinary concentrations of arsenic species.

    PubMed Central

    Kalman, D A; Hughes, J; van Belle, G; Burbacher, T; Bolgiano, D; Coble, K; Mottet, N K; Polissar, L

    1990-01-01

    Urinary arsenic species have been determined for approximately 3000 urine samples obtained from residents of a community surrounding an arsenic-emitting copper smelter. Levels of inorganic, monomethylated and dimethylated arsenic species ranged from less than 1 microgram/L (the instrumental detection limit) to 180 micrograms/L seen for dimethyl arsenic. Comparison of a subsample of this population that had the least environmental contamination with the subsample having highest environmental arsenic concentrations showed small but statistically significant differences in urinary arsenic levels for all species except dimethylated arsenic. However, for children under 7 years of age living in areas with increased environmental arsenic contamination, there was a larger and equally significant (p less than 0.001) increase in all urinary species. This effect was more pronounced in males (5-fold increase in median sum of species concentration over control group) than in females (2-fold increase in median sum of species concentration over control group) and was observed as a weaker effect in the next higher age group (7-13 years of age). Reported consumption of seafood also was significantly related to increased urinary dimethyl arsenic, but changes in distribution among the urinary arsenic species detected was not a sensitive indicator of recent seafood consumption. PMID:2088741

  4. Development and application of a robust speciation method for determination of six arsenic compounds present in human urine.

    PubMed Central

    Milstein, Lisa S; Essader, Amal; Pellizzari, Edo D; Fernando, Reshan A; Raymer, James H; Levine, Keith E; Akinbo, Olujide

    2003-01-01

    Six arsenic species [arsenate, arsenite, arsenocholine, arsenobetaine, monomethyl arsonic acid, and dimethyl arsinic acid] present in human urine were determined using ion-exchange chromatography combined with inductively coupled plasma mass spectrometry (IC-ICP-MS). Baseline separation was achieved for all six species as well as for the internal standard (potassium hexahydroxy antimonate V) in a single chromatographic run of less than 30 min, using an ammonium carbonate buffer gradient (between 10 and 50 mM) at ambient temperature, in conjunction with cation- and anion-exchange columns in series. The performance of the method was evaluated with respect to linearity, precision, accuracy, and detection limits. This method was applied to determine the concentration of these six arsenic species in human urine samples (n = 251) collected from a population-based exposure assessment survey. Method precision was demonstrated by the analysis of duplicate samples that were prepared over a 2-year analysis period. Total arsenic was also determined for the urine samples using flow injection analysis coupled to ICP-MS. The summed concentration of the arsenic species was compared with the measured arsenic total to demonstrate mass balance. PMID:12611657

  5. EXCRETION OF ARSENIC IN URINE AS A FUNCTION OF EXPOSURE TO ARSENIC IN DRINKING WATER

    EPA Science Inventory

    Urinary arsenic (As) concentrations were evaluated as a biomarker of exposure in a U.S. population chronically exposed to inorganic As (InAs) in their drinking water. Ninety-six individuals who consumed drinking water with As concentrations of 8-620 microg/L provided first mornin...

  6. SEPARATION OF TOXICOLOGICALLY RELEVANT ARSENICALS IN URINE USING A NEW SOLID PHASE EXTRACTION TECHNIQUE

    EPA Science Inventory

    Abstract - Metabolism and toxicity of arsenicals are critically influenced by the oxidation state of As. In human urine, inorganic and methylated arsenicals contain both As(III) and As(V). Because As(III) is easily oxidized, a method is needed to preserve the native oxidation sta...

  7. Preliminary screening method for the determination of inorganic arsenic in urine.

    PubMed

    Hua, Li; Nishida, Manami; Fujiwara, Akira; Yashiki, Mikio; Nagao, Masataka; Namera, Akira

    2009-03-01

    A simple and rapid method was developed for the routine determination and classification of inorganic arsenic based on its clinical and forensic properties. Inorganic arsenic was isolated from urine by using copper granules, which was then made to react with ammonium molybdate in order to detect its presence with the naked eye. Based on studies of extraction and reaction conditions, e.g., reaction temperature and time, a colorimetric screening method was established. The reaction mixture was measured by a spectrophotometer, and there was linearity from 0.05 to 2.0microg/ml and the correlation coefficients of the calibration curves were greater than 0.99. The coefficients of intra-day variation at 0.2 and 2.0microg/ml of inorganic arsenic in urine were 9.6 and 4.2%, respectively (n=5). The minimum detectable level in urine is 0.03microg/ml, and it is possible to detect the lowest level of poisoning according to the published reports. The proposed method was applied to a poisoning case wherein the patient ingested NEOARSEN BLACK with alcohol, which contained 45% of arsenic trioxide. This method produced positive results in all the urine samples tested, and this method is useful for the screening of inorganic arsenic based on its clinical properties because it enables the detection of inorganic arsenic in urine without expensive equipment. PMID:19041271

  8. Arsenic levels in tube-wells water, food, residents’ urine and the prevalence of skin lesions in Yatenga province, Burkina Faso

    PubMed Central

    Somé, Issa T.; Sakira, Abdoul K.; Ouédraogo, Theodore Z.; Traoré, Adama; Sondo, Blaise; Guissou, Pierre I.

    2012-01-01

    The aim of the present study was to evaluate the levels of arsenic in tube-well water, food and residents’ urines samples in Yatenga province, Burkina Faso. The prevalence of skin lesions was evaluated as well. The study was cross-sectional in design. It was conducted during April 2009. Permanent residents of 20 villages were included in the study. Water samples were collected from 31 tube-wells located in the selected villages. Tomatoes, cabbages, and potatoes produced in the selected village were randomly sampled. Arsenic content in water, food, and residents’ urine was determined by atomic absorption spectrophotometry using hydride generation method. Finally, 240 people were examined by a medical doctor for skin lesions. Arsenic concentrations from the tube-well water ranged from 1 to 124 ?g/l. Arsenic concentrations of more than one-half (52%) of the water samples exceeded the WHO guideline value (10 ?g/l). No trace of arsenic was found in the samples of tomatoes, cabbages, and potatoes. Variation in arsenic concentrations in the urines was correlated to arsenic concentrations in tube-well water. Clinical examinations revealed that melanosis and keratosis were respectively identified in 29.26% and 46.34% of the population. Both conditions were observed in 24.39% of the population. The frequency of skin lesions was positively associated with the arsenic concentration in tube-well water. A great majority (89.53%) of those who had skin lesions were at least 18 years old. In conclusion, chronic arsenic poisoning remains a major public health problem in the province of Yatenga (Burkina Faso). PMID:22783148

  9. Effects of arsenic on concentration and distribution of nutrients in the fronds of the arsenic

    E-print Network

    Ma, Lena

    Effects of arsenic on concentration and distribution of nutrients in the fronds of the arsenic, Gainesville, FL 32611-0290, USA Received 20 October 2003; accepted 29 March 2004 Arsenic hyperaccumulator P. vittata maintained adequate levels of essential nutrients in the fronds under arsenic stress. Abstract

  10. Understanding arsenic metabolism through a comparative study of arsenic levels in the urine, hair and fingernails of healthy volunteers from three unexposed ethnic groups in the United Kingdom

    SciTech Connect

    Brima, Eid I.; Haris, Parvez I. . E-mail: pharis@dmu.ac.uk; Jenkins, Richard O.; Polya, Dave A.; Gault, Andrew G.; Harrington, Chris F.

    2006-10-01

    Very little is known about arsenic (As) metabolism in healthy populations that are not exposed to high concentrations of As in their food or water. Here we present a study with healthy volunteers from three different ethnic groups, residing in Leicester, UK, which reveals statistically significant differences in the levels of total As in urine and fingernail samples. Urine (n = 63), hair (n = 36) and fingernail (n = 36) samples from Asians, Somali Black-Africans and Whites were analysed using inductively coupled plasma mass spectrometry (ICP-MS) and graphite furnace atomic absorption spectroscopy (GF-AAS). The results clearly show that the total concentrations of As in urine and fingernail samples of a Somali Black-African population (urine 7.2 {mu}g/g creatinine; fingernails 723.1 {mu}g/kg) are significantly (P < 0.05) different from the Asian (urine 24.5 {mu}g/g creatinine; fingernails 153.9 {mu}g/kg) and White groups (urine 20.9 {mu}g/g creatinine; fingernails 177.0 {mu}g/kg). The chemical speciation of As in the urine of the three groups was also measured using high performance liquid chromatography coupled to ICP-MS. This showed that the proportion of the total urinary As present as dimethylarsenate (DMA) was higher for the Somali Black-African group (50%) compared to the Asians (16%) and Whites (22%). However, there was no significant difference (P > 0.05) in the level of As in the hair samples from these three groups; Somali Black-Africans (116.0 {mu}g/kg), Asians (117.4 {mu}g/kg) and Whites (141.2 {mu}g/kg). Significantly different levels of total As in fingernail and urine and a higher percentage of urinary DMA in the Somali Black-Africans are suggestive of a different pattern of As metabolism in this ethnic group.

  11. Arsenic concentration and speciation in infant formulas and first foods

    PubMed Central

    Jackson, Brian P.; Taylor, Vivien F.; Punshon, Tracy; Cottingham, Kathryn L.

    2012-01-01

    Arsenic exposure to humans is pervasive, and, increasingly, studies are revealing adverse health effects at ever lower doses. Drinking water is the main route of exposure for many individuals; however, food can be a significant source of arsenic to an individual, especially if their diet is rice-based. Infants are particularly susceptible to dietary exposure, since many first foods contain rice and they have a low body mass. Here we report on arsenic concentration and speciation in infant formulas and first foods. Speciation is essential for food analysis because of the much greater toxicity of inorganic arsenic species and the possibility that arsenic in food (unlike water) may be present in either inorganic or organic forms. Infant milk formulas were low in total arsenic (2.2–12.6 ng g?1, n=15). Non-dairy formulas were significantly higher in arsenic than dairy-based formulas. Arsenic in formula was almost exclusively inorganic and predominantly arsenic(V). Arsenic concentration in purees (n=41) and stage 3 foods (n=18) ranged from 0.3–22 ng g?1. Rice-fortified foods had significantly higher total arsenic concentrations than non rice-based foods. Again arsenic speciation was predominantly inorganic; arsenic(III) was the main species with lower concentrations of DMA and arsenic(V) also present. These data confirm that infants are exposed to arsenic via diet, and suggest that careful attention to diet choices may limit this. PMID:22701232

  12. Linkage Analysis of Urine Arsenic Species Patterns in the Strong Heart Family Study.

    PubMed

    Gribble, Matthew O; Voruganti, Venkata Saroja; Cole, Shelley A; Haack, Karin; Balakrishnan, Poojitha; Laston, Sandra L; Tellez-Plaza, Maria; Francesconi, Kevin A; Goessler, Walter; Umans, Jason G; Thomas, Duncan C; Gilliland, Frank; North, Kari E; Franceschini, Nora; Navas-Acien, Ana

    2015-11-01

    Arsenic toxicokinetics are important for disease risks in exposed populations, but genetic determinants are not fully understood. We examined urine arsenic species patterns measured by HPLC-ICPMS among 2189 Strong Heart Study participants 18 years of age and older with data on ?400 genome-wide microsatellite markers spaced ?10 cM and arsenic speciation (683 participants from Arizona, 684 from Oklahoma, and 822 from North and South Dakota). We logit-transformed % arsenic species (% inorganic arsenic, %MMA, and %DMA) and also conducted principal component analyses of the logit % arsenic species. We used inverse-normalized residuals from multivariable-adjusted polygenic heritability analysis for multipoint variance components linkage analysis. We also examined the contribution of polymorphisms in the arsenic metabolism gene AS3MT via conditional linkage analysis. We localized a quantitative trait locus (QTL) on chromosome 10 (LOD 4.12 for %MMA, 4.65 for %DMA, and 4.84 for the first principal component of logit % arsenic species). This peak was partially but not fully explained by measured AS3MT variants. We also localized a QTL for the second principal component of logit % arsenic species on chromosome 5 (LOD 4.21) that was not evident from considering % arsenic species individually. Some other loci were suggestive or significant for 1 geographical area but not overall across all areas, indicating possible locus heterogeneity. This genome-wide linkage scan suggests genetic determinants of arsenic toxicokinetics to be identified by future fine-mapping, and illustrates the utility of principal component analysis as a novel approach that considers % arsenic species jointly. PMID:26209557

  13. Chronic arsenic exposure increases TGFalpha concentration in bladder urothelial cells of Mexican populations environmentally exposed to inorganic arsenic

    SciTech Connect

    Valenzuela, Olga L.; Germolec, Dori R.; Borja-Aburto, Victor H.; Contreras-Ruiz, Jose; Garcia-Vargas, Gonzalo G.; Razo, Luz M. del

    2007-08-01

    Inorganic arsenic (iAs) is a well-established carcinogen and human exposure has been associated with a variety of cancers including those of skin, lung, and bladder. High expression of transforming growth factor alpha (TGF-{alpha}) has associated with local relapses in early stages of urinary bladder cancer. iAs exposures are at least in part determined by the rate of formation and composition of iAs metabolites (MAs{sup III}, MAs{sup V}, DMAs{sup III}, DMAs{sup V}). This study examines the relationship between TGF-{alpha} concentration in exfoliated bladder urothelial cells (BUC) separated from urine and urinary arsenic species in 72 resident women (18-51 years old) from areas exposed to different concentrations of iAs in drinking water (2-378 ppb) in central Mexico. Urinary arsenic species, including trivalent methylated metabolites were measured by hydride generation atomic absorption spectrometry method. The concentration of TGF-{alpha} in BUC was measured using an ELISA assay. Results show a statistically significant positive correlation between TGF-{alpha} concentration in BUC and each of the six arsenic species present in urine. The multivariate linear regression analyses show that the increment of TGF-{alpha} levels in BUC was importantly associated with the presence of arsenic species after adjusting by age, and presence of urinary infection. People from areas with high arsenic exposure had a significantly higher TGF-{alpha} concentration in BUC than people from areas of low arsenic exposure (128.8 vs. 64.4 pg/mg protein; p < 0.05). Notably, exfoliated cells isolated from individuals with skin lesions contained significantly greater amount of TGF-{alpha} than cells from individuals without skin lesions: 157.7 vs. 64.9 pg/mg protein (p = 0.003). These results suggest that TGF-{alpha} in exfoliated BUC may serve as a susceptibility marker of adverse health effects on epithelial tissue in arsenic-endemic areas.

  14. Genetic variability in arsenic concentration and speciation in rice grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field studies were conducted in 2004-2007 with selected rice varieties to evaluate arsenic concentration and speciation (methyl-arsenic:inorganic-arsenic ratio) in the rice grain. There were substantial differences between rice varieties for each of these traits, which demonstrate the potential to s...

  15. Association of urinary monomethylated arsenic concentration and risk of hypertension: a cross-sectional study from arsenic contaminated areas in northwestern China

    PubMed Central

    2013-01-01

    Background Although some studies mainly from Taiwan, Bangladesh and the United States, have suggested a consistent dose–response increase in the prevalence of hypertension with increasing arsenic exposure, the association between chronic environmental arsenic exposure and the risk of hypertension is still inconclusive. Most of the studies discussed the association from the point of view of arsenic concentration in drinking water or cumulative arsenic exposure (CAE), few involved arsenic speciation into the discussion. In this cross-sectional study, we evaluated the potential association between environmental arsenic exposure through drinking water and the prevalence of hypertension by analyzing not only CAE but also urinary arsenic speciation, and provided data on arsenic exposure and hypertension from mainland of China. Methods A cross-sectional study was conducted in one of the arsenic contaminated areas in the northwest of China. Among a total of 1005 residents who voluntarily participated in the study, 604 of eligible subjects were confirmed and interviewed door to door. Standing height, body weight, and blood pressure were measured. First void urine was collected and measured for the concentration of urinary arsenic speciation. CAE was calculated in a subpopulation of 360 subjects with detailed water consumption history. The association between urinary arsenic speciation, CAE and the risk of hypertension were analyzed by multiple logistic regressions. Results We found that the levels of urinary arsenic species of inorganic arsenic (iAs), monomethylated arsenic (MMA), dimethylated arsenic (DMA) and total arsenic (tAs) were significantly correlated with systolic or pulse blood pressure. A positive relationship was found between the highest tertile of CAE and hypertension in a dose-dependent manner. Subjects with higher concentration of urinary MMA or lower percentage of DMA tended to be liable to suffer from hypertension. A significant increasing trend of the risk of hypertension with increasing tertiles of MMA concentration was also observed in the logistic regression models both before and after adjustment for confounders. Conclusions Our findings suggested that arsenic exposure, especially high level of CAE, was positively associated with the prevalence of hypertension, and that higher concentration of urinary MMA might be related to the increased susceptibility to hypertension. PMID:23602086

  16. Total grain-arsenic and arsenic-species concentrations in diverse rice cultivars under flooded conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arsenic is not an essential element and can be toxic to both plants and animals in high concentration. Decreasing arsenic concentrations in all foodstuffs, including rice grain, is a desirable goal because of the potential detrimental impacts of As on plant growth and yield and its potential toxici...

  17. Arsenic concentrations, related environmental factors, and the predicted probability of elevated arsenic in groundwater in Pennsylvania

    USGS Publications Warehouse

    Gross, Eliza L.; Low, Dennis J.

    2013-01-01

    Analytical results for arsenic in water samples from 5,023 wells obtained during 1969–2007 across Pennsylvania were compiled and related to other associated groundwater-quality and environmental factors and used to predict the probability of elevated arsenic concentrations, defined as greater than or equal to 4.0 micrograms per liter (µg/L), in groundwater. Arsenic concentrations of 4.0 µg/L or greater (elevated concentrations) were detected in 18 percent of samples across Pennsylvania; 8 percent of samples had concentrations that equaled or exceeded the U.S. Environmental Protection Agency’s drinking-water maximum contaminant level of 10.0 µg/L. The highest arsenic concentration was 490.0 µg/L. Comparison of arsenic concentrations in Pennsylvania groundwater by physiographic province indicates that the Central Lowland physiographic province had the highest median arsenic concentration (4.5 µg/L) and the highest percentage of sample records with arsenic concentrations greater than or equal to 4.0 µg/L (59 percent) and greater than or equal to 10.0 µg/L (43 percent). Evaluation of four major aquifer types (carbonate, crystalline, siliciclastic, and surficial) in Pennsylvania showed that all types had median arsenic concentrations less than 4.0 µg/L, and the highest arsenic concentration (490.0 µg/L) was in a siliciclastic aquifer. The siliciclastic and surficial aquifers had the highest percentage of sample records with arsenic concentrations greater than or equal to 4.0 µg/L and 10.0 µg/L. Elevated arsenic concentrations were associated with low pH (less than or equal to 4.0), high pH (greater than or equal to 8.0), or reducing conditions. For waters classified as anoxic (405 samples), 20 percent of sampled wells contained water with elevated concentrations of arsenic; for waters classified as oxic (1,530 samples) only 10 percent of sampled wells contained water with elevated arsenic concentrations. Nevertheless, regardless of the reduction-oxidation classification, 54 percent of samples with low pH (13 of 24 samples) and 25 percent of samples with high pH (57 of 230 samples) had elevated arsenic concentrations. Arsenic concentrations in groundwater in Pennsylvania were correlated with concentrations of several chemical constituents or properties, including (1) constituents associated with redox processes, (2) constituents that may have a similar origin or be mobilized under similar chemical conditions as arsenic, and (3) anions or oxyanions that have similar sorption behavior or compete for sorption sites on iron oxides. Logistic regression models were created to predict and map the probability of elevated arsenic concentrations in groundwater statewide in Pennsylvania and in three intrastate regions to further improve predictions for those three regions (glacial aquifer system, Gettysburg Basin, Newark Basin). Although the Pennsylvania and regional predictive models retained some different variables, they have common characteristics that can be grouped by (1) geologic and soils variables describing arsenic sources and mobilizers, (2) geochemical variables describing the geochemical environment of the groundwater, and (3) locally specific variables that are unique to each of the three regions studied and not applicable to statewide analysis. Maps of Pennsylvania and the three intrastate regions were produced that illustrate that areas most at risk are those with geology and soils capable of functioning as an arsenic source or mobilizer and geochemical groundwater conditions able to facilitate redox reactions. The models have limitations because they may not characterize areas that have localized controls on arsenic mobility. The probability maps associated with this report are intended for regional-scale use and may not be accurate for use at the field scale or when considering individual wells.

  18. Arsenic Methylation Patterns Before and After Changing from High to Lower Concentrations of Arsenic in Drinking Water

    E-print Network

    California at Berkeley, University of

    Arsenic Methylation Patterns Before and After Changing from High to Lower Concentrations of Arsenic±r pefluon.E irnH lh :.... .... .... Inorganic arsenic (In-As) is known to increase the risk of cancer at several target sites. Inhalation of arsenic, mainly from dust exposure in occupational settings

  19. Glycogen synthase kinase 3? regulates urine concentrating mechanism in mice.

    PubMed

    Nørregaard, Rikke; Tao, Shixin; Nilsson, Line; Woodgett, James R; Kakade, Vijayakumar; Yu, Alan S L; Howard, Christiana; Rao, Reena

    2015-03-15

    In mammals, glycogen synthase kinase (GSK)3 comprises GSK3? and GSK3? isoforms. GSK3? has been shown to play a role in the ability of kidneys to concentrate urine by regulating vasopressin-mediated water permeability of collecting ducts, whereas the role of GSK3? has yet to be discerned. To investigate the role of GSK3? in urine concentration, we compared GSK3? knockout (GSK3?KO) mice with wild-type (WT) littermates. Under normal conditions, GSK3?KO mice had higher water intake and urine output. GSK3?KO mice also showed reduced urine osmolality and aquaporin-2 levels but higher urinary vasopressin. When water deprived, they failed to concentrate their urine to the same level as WT littermates. The addition of 1-desamino-8-d-arginine vasopressin to isolated inner medullary collecting ducts increased the cAMP response in WT mice, but this response was reduced in GSK3?KO mice, suggesting reduced responsiveness to vasopressin. Gene silencing of GSK3? in mpkCCD cells also reduced forskolin-induced aquaporin-2 expression. When treated with LiCl, an isoform nonselective inhibitor of GSK3 and known inducer of polyuria, WT mice developed significant polyuria within 6 days. However, in GSK3?KO mice, the polyuric response was markedly reduced. This study demonstrates, for the first time, that GSK3? could play a crucial role in renal urine concentration and suggest that GSK3? might be one of the initial targets of Li(+) in LiCl-induced nephrogenic diabetes insipidus. PMID:25608967

  20. Bisphenol A concentrations in maternal breast milk and infant urine

    PubMed Central

    Mendonca, K.; Hauser, R.; Calafat, A.M.; Arbuckle, T.E.; Duty, S.M.

    2013-01-01

    Purpose The present report describes the distribution of breast milk and urinary free and total bisphenol A (BPA) concentrations, from 27 post-partum women and their 31 infants, and explores the influence of age, sex, and nutritional source on infant BPA urinary concentration. Methods Both free (unconjugated) and total (free plus conjugated) BPA concentrations from women’s breast milk samples and infants’ urine samples were measured by online solid-phase extraction coupled to high-performance liquid chromatography–isotope dilution tandem mass spectrometry. Descriptive statistics and non-parametric tests of group comparisons were conducted. Results Total BPA was detected in 93% of urine samples in this healthy infant population aged 3–15 months who were without known environmental exposure to BPA (interquartile range [IQR]=1.2 – 4.4 ?g/L). Similarly, 75% of the mothers’ breast milk samples had detectable concentrations of total BPA (IQR=0.4 – 1.4 ?g/L). The magnitude and frequency of detection of free BPA in the children’s urine and the mothers’ breast milk were much lower than the total concentrations. Conclusions Total BPA was detected in 93% of this healthy infant population aged 3–15 months who are without known environmental exposure to BPA. Neither free nor total BPA urinary concentrations differed significantly by infant’s sex or by nutritional source (breast milk and/or formula) while age group was of borderline significance. There were no significant correlations between free or total BPA concentrations in mothers’ breast milk and their infants’ urine. PMID:23212895

  1. Arsenic Background Concentrations in Florida, U.S.A. Surface Soils: Determination and Interpretation

    E-print Network

    Ma, Lena

    Arsenic Background Concentrations in Florida, U.S.A. Surface Soils: Determination 2001) Background concentrations of soil arsenic have been used as an alternative soil cleanup criterion concentrations of arsenic in near pristine soils in Florida. Total arsenic was measured in 448 taxonomic

  2. Rice consumption and urinary concentrations of arsenic in US adults.

    PubMed

    Wei, Yudan; Zhu, Jianmin; Nguyen, An

    2014-01-01

    Exposure to inorganic arsenic in the general population occurs mainly from drinking water and food sources. This study examined the association between rice consumption and urinary concentrations of arsenic in US adults, aged 20-85 years, in the 2003-2006 National Health and Nutrition Examination Survey. Significantly higher geometric means of creatinine-corrected urinary concentrations of total arsenic (TAs) and dimethylarsinic acid (DMA) were found in participants who consumed rice more than twice per week, compared to the reference group. Multivariate logistic regression analysis revealed a statistically significant association between rice consumption and urinary concentrations of TAs [odds ratio (OR) = 1.51 (1.08, 2.09)] and DMA [OR = 2.24 (1.57, 3.21)] after adjustment for demographic variables, seafood intake (the main source of organic arsenic), and source of drinking water. Furthermore, significant variations in rice consumption and urinary concentrations of arsenic were observed in different racial groups. This study demonstrated that rice consumption contributed to inorganic arsenic exposure in US adults. PMID:24236891

  3. Challenges for environmental epidemiology research: are biomarker concentrations altered by kidney function or urine concentration adjustment?

    PubMed

    Weaver, Virginia M; Kotchmar, Dennis J; Fadrowski, Jeffrey J; Silbergeld, Ellen K

    2016-01-01

    Biomonitoring has become a standard approach for exposure assessment in occupational and environmental epidemiology. The use of biological effect markers to identify early adverse changes in target organs has also become widely adopted. However, the potential for kidney function to affect biomarker levels in the body and the optimal approach to adjustment of biomarker concentrations in spot urine samples for hydration status are two important but underappreciated challenges associated with biomarker use. Several unexpected findings, such as positive associations between urine nephrotoxicant levels and estimated glomerular filtration rate (eGFR), have been reported recently in research using biomarkers. These and other findings, discussed herein, suggest an impact of kidney glomerular filtration or tubule processing on biomarker levels. This is more commonly raised in the context of decreased kidney filtration, traditionally referred to as reverse causality; however, recent data suggest that populations with normal kidney filtration may be affected as well. Misclassification bias would result if biomarkers reflect kidney function as well as either exposures or early biological effect outcomes. Furthermore, urine biomarker associations with eGFR that differ markedly by approach used to adjust for urine concentration have been reported. Associations between urine measures commonly used for this adjustment, such as urine creatinine, and specific research outcomes could alter observed biomarker associations with outcomes. Research recommendations to address the potential impact of kidney function and hydration status adjustment on biomarkers are provided, including a range of approaches to study design, exposure and outcome assessment, and adjustment for urine concentration. PMID:25736163

  4. Distributional patterns of arsenic concentrations in contaminant plumes offer clues to the source of arsenic in groundwater at landfills

    USGS Publications Warehouse

    Harte, Philip T.

    2015-01-01

    The distributional pattern of dissolved arsenic concentrations from landfill plumes can provide clues to the source of arsenic contamination. Under simple idealized conditions, arsenic concentrations along flow paths in aquifers proximal to a landfill will decrease under anthropogenic sources but potentially increase under in situ sources. This paper presents several conceptual distributional patterns of arsenic in groundwater based on the arsenic source under idealized conditions. An example of advanced subsurface mapping of dissolved arsenic with geophysical surveys, chemical monitoring, and redox fingerprinting is presented for a landfill site in New Hampshire with a complex flow pattern. Tools to assist in the mapping of arsenic in groundwater ultimately provide information on the source of contamination. Once an understanding of the arsenic contamination is achieved, appropriate remedial strategies can then be formulated.

  5. Evaluation of two new arsenic field test kits capable of detecting arsenic water concentrations close to 10 microg/L.

    PubMed

    Steinmaus, Craig M; George, Christine M; Kalman, David A; Smith, Allan H

    2006-05-15

    Millions of people worldwide are exposed to arsenic-contaminated drinking water. Arsenic field test kits may offer a cost-effective approach for measuring these exposures in the field, although the accuracy of some kits used in the past has been poor. In this study, arsenic concentrations were measured in 136 water sources in western Nevada using two relatively new arsenic test kits and compared to laboratory measurements using atomic fluorescence spectroscopy (AFS). Spearman's rank correlation coefficients comparing the Quick Arsenic and Hach EZ kits to laboratory measurements were 0.96 (p < 0.001) and 0.95 (p < 0.001), respectively. When analyzed in seven exposure categories (0-9, 10-19, 20-49, 50-99, 100-199, 200-499, and > or = 500 microg/L), test kit and AFS measurements were in the same category in 71% (Quick Arsenic) and 62% (Hach EZ) of samples, and within one category of each other in 99% (Quick Arsenic) and 97% (Hach EZ) of samples. Both kits identified all water samples with high arsenic concentrations (> 15 microg/L) as being above the United States Environmental Protection Agency's drinking water standard and the World Health Organization's guideline value for arsenic of 10 microg/L. These results suggestthatthese easily portable kits can be used to identify water sources with high arsenic concentrations and may provide an important tool for arsenic surveillance and remediation programs. PMID:16749706

  6. Arsenic exposure in Hungary, Romania and Slovakia.

    PubMed

    Lindberg, Anna-Lena; Goessler, Walter; Gurzau, Eugen; Koppova, Kvetoslava; Rudnai, Peter; Kumar, Rajiv; Fletcher, Tony; Leonardi, Giovanni; Slotova, Katarina; Gheorghiu, Emilia; Vahter, Marie

    2006-01-01

    Inorganic arsenic is a potent human carcinogen and toxicant which people are exposed to mainly via drinking water and food. The objective of the present study was to assess current exposure to arsenic via drinking water in three European countries. For this purpose, 520 individuals from four Hungarian, two Slovakian and two Romanian countries were investigated by measuring inorganic arsenic and methylated arsenic metabolites in urine by high performance liquid chromatography with hydride generation and inductively coupled plasma mass spectrometry. Arsenic in drinking water was determined by atomic absorption spectrometry. Significantly higher concentrations of arsenic were found in both the water and the urine samples from the Hungarian counties (median: 11 and 15 microg dm(-3), respectively; p < 0.001) than from the Slovakian (median: 0.94 and 4.5 microg dm(-3), respectively) and Romanian (median: 0.70 and 2.1 microg dm(-3), respectively) counties. A significant correlation was seen between arsenic in water and arsenic in urine (R(2)= 0.46). At low water arsenic concentrations, the relative amount of dimethylarsinic acid (DMA) in urine was increased, indicating exposure via food. Also, high body mass index was associated with higher concentrations of arsenic in urine (p= 0.03), mostly in the form of DMA. Smokers had significantly higher urinary arsenic concentrations than non-smokers (p= 0.03). In conclusion, elevated arsenic exposure via drinking water was prevalent in some of the counties. Exposure to arsenic from food, mainly as DMA, and cigarette smoke, mainly as inorganic arsenic, are major determinants of arsenic exposure at very low concentrations of arsenic in drinking water. PMID:16395480

  7. Lung Cancer and Arsenic Concentrations in Drinking Water in Chile

    E-print Network

    California at Berkeley, University of

    Lung Cancer and Arsenic Concentrations in Drinking Water in Chile Catterina Ferreccio,1,2 Claudia- trations have since been reduced to 40 g/liter. We investi- gated the relation between lung cancer cancer between 1994 and 1996 and frequency-matched hospital controls. The study identified 152 lung

  8. Screening of rice cultivars for grain arsenic concentration and speciation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, there has been growing interest in the concentration and speciation of arsenic in rice grain because of concerns with food quality and interest in minimizing any potential risk from dietary exposure. Our objective was to screen a range of rice varieties from the USDA world collection for ...

  9. Estimation of Arsenic Intake from Drinking Water and Food (Raw and Cooked) in a Rural Village of Northern Chile. Urine as a Biomarker of Recent Exposure

    PubMed Central

    Diaz, Oscar Pablo; Arcos, Rafael; Tapia, Yasna; Pastene, Rubén; Velez, Dínoraz; Devesa, Vicenta; Montoro, Rosa; Aguilera, Valeska; Becerra, Miriam

    2015-01-01

    The aim of this study was to estimate both the contribution of drinking water and food (raw and cooked) to the total (t-As) and inorganic (i-As) arsenic intake and the exposure of inhabitants of Socaire, a rural village in Chile´s Antofagasta Region, by using urine as biomarker. The i-As intake from food and water was estimated using samples collected between November 2008 and September 2009. A 24-hour dietary recall questionnaire was given to 20 participants. Drinking water, food (raw and cooked) and urine samples were collected directly from the homes where the interviewees lived. The percentage of i-As/t-As in the drinking water that contributed to the total intake was variable (26.8–92.9). Cereals and vegetables are the food groups that contain higher concentrations of i-As. All of the participants interviewed exceeded the reference intake FAO/OMS (149.8 µg?i-As·day?1) by approximately nine times. The concentration of t-As in urine in each individual ranged from 78 to 459 ng·mL?1. Estimated As intake from drinking water and food was not associated with total urinary As concentration. The results show that both drinking water and food substantially contribute to i-As intake and an increased exposure risk to adult residents in contaminated areas. PMID:26006131

  10. Chemical concentration measurement in blood serum and urine samples using liquid-core optical fiber Raman

    E-print Network

    Berger, Andrew J.

    Chemical concentration measurement in blood serum and urine samples using liquid-core optical fiber in clinical blood serum and urine samples using liquid-core optical fiber (LCOF) Raman spectroscopy. Introduction Biofluids, including blood, urine, lymph, and saliva, provide rich information on human health

  11. Arsenic-rich acid mine water with extreme arsenic concentration: mineralogy, geochemistry, microbiology, and environmental implications.

    PubMed

    Majzlan, Juraj; Plášil, Jakub; Škoda, Radek; Gescher, Johannes; Kögler, Felix; Rusznyak, Anna; Küsel, Kirsten; Neu, Thomas R; Mangold, Stefan; Rothe, Jörg

    2014-12-01

    Extremely arsenic-rich acid mine waters have developed by weathering of native arsenic in a sulfide-poor environment on the 10th level of the Svornost mine in Jáchymov (Czech Republic). Arsenic rapidly oxidizes to arsenolite (As2O3), and there are droplets of liquid on the arsenolite crust with high As concentration (80,000-130,000 mg·L(-1)), pH close to 0, and density of 1.65 g·cm(-1). According to the X-ray absorption spectroscopy on the frozen droplets, most of the arsenic is As(III) and iron is fully oxidized to Fe(III). The EXAFS spectra on the As K edge can be interpreted in terms of arsenic polymerization in the aqueous solution. The secondary mineral that precipitates in the droplets is kaatialaite [Fe(3+)(H2AsO4)3·5H2O]. Other unusual minerals associated with the arsenic lens are b?hounekite [U(4+)(SO4)2·4H2O], št?pite [U(4+)(AsO3OH)2·4H2O], vysokýite [U(4+)[AsO2(OH)2]4·4H2O], and an unnamed phase (H3O)(+)2(UO2)2(AsO4)2·nH2O. The extremely low cell densities and low microbial biomass have led to insufficient amounts of DNA for downstream polymerase chain reaction amplification and clone library construction. We were able to isolate microorganisms on oligotrophic media with pH ? 1.5 supplemented with up to 30 mM As(III). These microorganisms were adapted to highly oligotrophic conditions which disabled long-term culturing under laboratory conditions. The extreme conditions make this environment unfavorable for intensive microbial colonization, but our first results show that certain microorganisms can adapt even to these harsh conditions. PMID:25365451

  12. Impact of urine concentration adjustment method on associations between urine metals and estimated glomerular filtration rates (eGFR) in adolescents?

    PubMed Central

    Weaver, Virginia M.; Vargas, Gonzalo García; Silbergeld, Ellen K.; Rothenberg, Stephen J.; Fadrowski, Jeffrey J.; Rubio-Andrade, Marisela; Parsons, Patrick J.; Steuerwald, Amy J.; Navas-Acien, Ana; Guallar, Eliseo

    2014-01-01

    Positive associations between urine toxicant levels and measures of glomerular filtration rate (GFR) have been reported recently in a range of populations. The explanation for these associations, in a direction opposite that of traditional nephrotoxicity, is uncertain. Variation in associations by urine concentration adjustment approach has also been observed. Associations of urine cadmium, thallium and uranium in models of serum creatinine- and cystatin-C-based estimated GFR (eGFR) were examined using multiple linear regression in a cross-sectional study of adolescents residing near a lead smelter complex. Urine concentration adjustment approaches compared included urine creatinine, urine osmolality and no adjustment. Median age, blood lead and urine cadmium, thallium and uranium were 13.9 years, 4.0 ?g/dL, 0.22, 0.27 and 0.04 g/g creatinine, respectively, in 512 adolescents. Urine cadmium and thallium were positively associated with serum creatinine-based eGFR only when urine creatinine was used to adjust for urine concentration (? coefficient=3.1 mL/min/1.73 m2; 95% confidence interval=1.4, 4.8 per each doubling of urine cadmium). Weaker positive associations, also only with urine creatinine adjustment, were observed between these metals and serum cystatin-C-based eGFR and between urine uranium and serum creatinine-based eGFR. Additional research using non-creatinine-based methods of adjustment for urine concentration is necessary. PMID:24815335

  13. Breast-feeding Protects against Arsenic Exposure in Bangladeshi Infants

    PubMed Central

    Fängström, Britta; Moore, Sophie; Nermell, Barbro; Kuenstl, Linda; Goessler, Walter; Grandér, Margaretha; Kabir, Iqbal; Palm, Brita; Arifeen, Shams El; Vahter, Marie

    2008-01-01

    Background Chronic arsenic exposure causes a wide range of health effects, but little is known about critical windows of exposure. Arsenic readily crosses the placenta, but the few available data on postnatal exposure to arsenic via breast milk are not conclusive. Aim Our goal was to assess the arsenic exposure through breast milk in Bangladeshi infants, living in an area with high prevalence of arsenic-rich tube-well water. Methods We analyzed metabolites of inorganic arsenic in breast milk and infant urine at 3 months of age and compared them with detailed information on breast-feeding practices and maternal arsenic exposure, as measured by concentrations in blood, urine, and saliva. Results Arsenic concentrations in breast-milk samples were low (median, 1 ?g/kg; range, 0.25–19 ?g/kg), despite high arsenic exposures via drinking water (10–1,100 ?g/L in urine and 2–40 ?g/L in red blood cells). Accordingly, the arsenic concentrations in urine of infants whose mothers reported exclusive breast-feeding were low (median, 1.1 ?g/L; range, 0.3–29 ?g/L), whereas concentrations for those whose mothers reported partial breast-feeding ranged from 0.4 to 1,520 ?g/L (median 1.9 ?g/L). The major part of arsenic in milk was inorganic. Still, the infants had a high fraction (median, 87%) of the dimethylated arsenic metabolite in urine. Arsenic in breast milk was associated with arsenic in maternal blood, urine, and saliva. Conclusion Very little arsenic is excreted in breast milk, even in women with high exposure from drinking water. Thus, exclusive breast-feeding protects the infant from exposure to arsenic. PMID:18629322

  14. Essential and toxic element concentrations in blood and urine and their associations with diet: results from a Norwegian population study including high-consumers of seafood and game.

    PubMed

    Birgisdottir, B E; Knutsen, H K; Haugen, M; Gjelstad, I M; Jenssen, M T S; Ellingsen, D G; Thomassen, Y; Alexander, J; Meltzer, H M; Brantsæter, A L

    2013-10-01

    The first aim of the study was to evaluate calculated dietary intake and concentrations measured in blood or urine of essential and toxic elements in relation to nutritional and toxicological reference values. The second aim was to identify patterns of the element concentrations in blood and urine and to identify possible dietary determinants of the concentrations of these elements. Adults with a known high consumption of environmental contaminants (n=111), and a random sample of controls (n=76) answered a validated food frequency questionnaire (FFQ). Complete data on biological measures were available for 179 individuals. Blood and urine samples were analyzed for selenium, iodine, arsenic, mercury, cadmium and lead. Principal component analysis was used to identify underlying patterns of correlated blood and urine concentrations. The calculated intakes of selenium, iodine, inorganic arsenic and mercury were within guideline levels. For cadmium 24% of the high consumer group and 8% of the control group had intakes above the tolerable weekly intake. Concentrations of lead in blood exceeded the bench-mark dose lower confidence limits for some participants. However, overall, the examined exposures did not give rise to nutritional or toxicological concerns. Game consumption was associated with lead in blood (B(ln) 0.021; 95%CI:0.010, 0.031) and wine consumption. Seafood consumption was associated with urinary cadmium in non-smokers (B(ln) 0.009; 95%CI:0.003, 0.015). A novel finding was a distinct pattern of positively associated biological markers, comprising iodine, selenium, arsenic and mercury (eigenvalue 3.8), reflecting seafood intake (B 0.007; 95%CI:0.004, 0.010). The study clearly demonstrates the significance of seafood as a source of both essential nutrients and toxic elements simultaneously and shows that exposure to various essential and toxic elements can be intertwined. PMID:23867847

  15. Stress-induced changes in corticosteroid metabolism. [plasma and urine concentrations

    NASA Technical Reports Server (NTRS)

    Tacker, M. M.

    1975-01-01

    Because plasma and urine corticosteroid concentrations are influenced by several factors in addition to adrenal cortex secretion, the effect of stress on all of these factors was determined in order to interpret the plasma and urine concentrations. Progress on the investigation is reported.

  16. RESPONSE TO COMMENTARIES On Arsenic, Diabetes, Creatinine, and Multiple Regression

    E-print Network

    California at Berkeley, University of

    . Adjustment for creatinine is done to account for urine dilution, but there is an expanding body of literature­2006, for example, the range in urine creatinine concentrations was over 100-fold (7­768 mg/dL)--well beyond any. In addition, arsenic and creatinine concentrations in urine have been found to be correlated, even after

  17. Environmental Research 99 (2005) 164168 The temporal stability of arsenic concentrations in well water in

    E-print Network

    California at Berkeley, University of

    2005-01-01

    Environmental Research 99 (2005) 164­168 The temporal stability of arsenic concentrations in well water in western Nevada$ Craig Murray Steinmausa,b,Ã, Yan Yuana , Allan H. Smitha a Arsenic Health of people worldwide are exposed to drinking water containing arsenic, and epidemiologic studies have

  18. Measurement of the glucose concentration in human urine with optical refractometer

    NASA Astrophysics Data System (ADS)

    Wu, Rui-Yang; Hsu, Cheng-Chih; Meng, Ching-Tang; Cheng, Chih-Ching; Liao, Yu-Ching

    2015-07-01

    In this paper, a new type of human urine glucose measurement system is proposed. We measured the phase variation of human urine with/without glucose-urine mixture (to simulate diabetes mellitus). We were able to achieve high resolution with the proposed method. The relation curve between the phase difference and glucose concentration can be estimated, and the glucose concentration of a urine sample can be determined by using this relation curve. The proposed method showed that theoretical resolution is approximated of 1.47 mg/dl.

  19. Concentration and chemical status of arsenic in the early placentas of arsenate-dosed hamsters

    SciTech Connect

    Hanlon, D.P.; Ferm, V.H.

    1987-04-01

    The authors determined the concentration and chemical status of arsenic in the placentas of hamsters following continuous exposure via the osmotic minipump to minimally and frankly teratogenic doses of arsenate. Close to 70% of the placental arsenic is bound to macromolecules, two-thirds of which is dialyzable. The remaining 30% of arsenic consists of low molecular weight species, predominantly inorganic arsenic. This mix is the same for minimally teratogenic and frankly teratogenic doses of arsenate.

  20. Arsenic methylation patterns before and after changing from high to lower concentrations of arsenic in drinking water.

    PubMed Central

    Hopenhayn-Rich, C; Biggs, M L; Kalman, D A; Moore, L E; Smith, A H

    1996-01-01

    Inorganic arsenic (In-As), an occupational and environmental human carcinogen, undergoes biomethylation to monomethylarsonate (MMA) and dimethylarsinate (DMA). It has been proposed that saturation of methylation capacity at high exposure levels may lead to a threshold for the carcinogenicity of In-As. The relative distribution of urinary In-As, MMA, and DMA is used as a measure of human methylation capacity. The most common pathway for elevated environmental exposure to In-As worldwide is through drinking water. We conducted a biomarker study in northern Chile of a population chronically exposed to water naturally contaminated with high arsenic content (600 micrograms/l). In this paper we present the results of a prospective follow-up of 73 exposed individuals, who were provided with water of lower arsenic content (45 micrograms/l) for 2 months. The proportions of In-As, MMA, and DMA in urine were compared before and after intervention, and the effect of other factors on the distribution of arsenic metabolites was also analyzed. The findings of this study indicate that the decrease in arsenic exposure was associated with a small decrease in the percent In-As in urine (from 17.8% to 14.6%) and in the MMA/DMA ratio (from 0.23 to 0.18). Other factors such as smoking, gender, age, years of residence, and ethnicity were associated mainly with changes in the MMA/DMA ratio, with smoking having the strongest effect. Nevertheless, the factors investigated accounted for only about 20% of the large interindividual variability observed. Genetic polymorphisms in As-methylating enzymes and other co-factors are likely to contribute to some of the unexplained variation. The changes observed in the percent In-As and in the MMA/DMA ratio do not support an exposure-based threshold for arsenic methylation in humans. Images Figure 1. A Figure 1. B Figure 2. A Figure 2. B PMID:8959409

  1. Quantitative concentration measurements of creatinine dissolved in water and urine using Raman

    E-print Network

    Berger, Andrew J.

    Quantitative concentration measurements of creatinine dissolved in water and urine using Raman (LCOF) geometry to enhance the collection of Raman scattering from the biochemical creatinine, dissolved in water and in urine. At short integration times, where shot noise is most troublesome, the enhanced

  2. Certification of Total Arsenic in Blood and Urine Standard Reference Materials by Radiochemical Neutron Activation Analysis and Inductively Coupled Plasma - Mass Spectrometry

    PubMed Central

    Paul, Rick L.; Davis, W. Clay; Yu, Lee; Murphy, Karen E.; Guthrie, William F.; Leber, Dennis D.; Bryan, Colleen E.; Vetter, Thomas W.; Shakirova, Gulchekhra; Mitchell, Graylin; Kyle, David J.; Jarrett, Jeffery M.; Caldwell, Kathleen L.; Jones, Robert L.; Eckdahl, Steven; Wermers, Michelle; Maras, Melissa; Palmer, C. D.; Verostek, M.F.; Geraghty, C. M.; Steuerwald, Amy J.; Parsons, Patrick J.

    2015-01-01

    A newly developed procedure for determination of arsenic by radiochemical neutron activation analysis (RNAA) was used to measure arsenic at four levels in SRM 955c Toxic Elements in Caprine Blood and at two levels in SRM 2668 Toxic Elements in Frozen Human Urine for the purpose of providing mass concentration values for certification. Samples were freeze-dried prior to analysis followed by neutron irradiation for 3 h at a fluence rate of 1×1014cm?2s?1. After sample dissolution in perchloric and nitric acids, arsenic was separated from the matrix by extraction into zinc diethyldithiocarbamate in chloroform, and 76As quantified by gamma-ray spectroscopy. Differences in chemical yield and counting geometry between samples and standards were monitored by measuring the count rate of a 77As tracer added before sample dissolution. RNAA results were combined with inductively coupled plasma – mass spectrometry (ICP-MS) values from NIST and collaborating laboratories to provide certified values of (10.81 ± 0.54) ?g/kg and (213.1 ± 0.73) ?g/kg for SRM 2668 Levels I and II, and certified values of (21.66 ± 0.73) ?g/kg, (52.7 ± 1.1) ?g/kg, and (78.8 ± 4.9) ?g/kg for SRM 955c Levels 2, 3, and 4 respectively. Because of discrepancies between values obtained by different methods for SRM 955c Level 1, an information value of < 5 ?g/kg was assigned for this material. PMID:26300575

  3. Total grain-arsenic and arsenic-species concentrations in rice as impacted by genotype and water management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies have indicated that high soil arsenic (As) concentrations can result in decreased rice (Oryza sativa L.) grain yields and increased grain-As concentrations. Low As-concentration in rice grain is especially desirable for populations that rely upon rice as a staple food and live where ...

  4. Dietary Sources of Methylated Arsenic Species in Urine of the United States Population, NHANES 2003–2010

    PubMed Central

    deCastro, B. Rey; Caldwell, Kathleen L.; Jones, Robert L.; Blount, Benjamin C.; Pan, Yi; Ward, Cynthia; Mortensen, Mary E.

    2014-01-01

    Background Arsenic is an ubiquitous element linked to carcinogenicity, neurotoxicity, as well as adverse respiratory, gastrointestinal, hepatic, and dermal health effects. Objective Identify dietary sources of speciated arsenic: monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA). Methods Age-stratified, sample-weighted regression of NHANES (National Health and Nutrition Examination Survey) 2003–2010 data (?8,300 participants ?6 years old) characterized the association between urinary arsenic species and the additional mass consumed of USDA-standardized food groups (24-hour dietary recall data), controlling for potential confounders. Results For all arsenic species, the rank-order of age strata for median urinary molar concentration was children 6–11 years > adults 20–84 years > adolescents 12–19 years, and for all age strata, the rank-order was DMA > MMA. Median urinary molar concentrations of methylated arsenic species ranged from 0.56 to 3.52 µmol/mol creatinine. Statistically significant increases in urinary arsenic species were associated with increased consumption of: fish (DMA); fruits (DMA, MMA); grain products (DMA, MMA); legumes, nuts, seeds (DMA); meat, poultry (DMA); rice (DMA, MMA); rice cakes/crackers (DMA, MMA); and sugars, sweets, beverages (MMA). And, for adults, rice beverage/milk (DMA, MMA). In addition, based on US (United States) median and 90th percentile consumption rates of each food group, exposure from the following food groups was highlighted: fish; fruits; grain products; legumes, nuts, seeds; meat, poultry; and sugars, sweets, beverages. Conclusions In a nationally representative sample of the US civilian, noninstitutionalized population, fish (adults), rice (children), and rice cakes/crackers (adolescents) had the largest associations with urinary DMA. For MMA, rice beverage/milk (adults) and rice cakes/crackers (children, adolescents) had the largest associations. PMID:25251890

  5. Urine concentrations of oral salbutamol in samples collected after intense exercise in endurance athletes.

    PubMed

    Hostrup, Morten; Kalsen, Anders; Auchenberg, Michael; Rzeppa, Sebastian; Hemmersbach, Peter; Bangsbo, Jens; Backer, Vibeke

    2014-06-01

    Our objective was to investigate urine concentrations of 8 mg oral salbutamol in samples collected after intense exercise in endurance athletes. Nine male endurance athletes with a VO2max of 70.2 ± 5.9 mL/min/kg (mean ± SD) took part in the study. Two hours after administration of 8 mg oral salbutamol, subjects performed submaximal exercise for 15 min followed by two, 2-min exercise bouts at an intensity corresponding to 110% of VO2max and a bout to exhaustion at same intensity. Urine samples were collected 4, 8, and 12 h following administration of salbutamol. Samples were analyzed by the Norwegian World Anti-doping Agency (WADA) laboratory. Adjustment of urine concentrations of salbutamol to a urine specific gravity (USG) of 1.020 g/mL was compared with no adjustment according to WADA's technical documents. We observed greater (P = 0.01) urine concentrations of salbutamol 4 h after administration when samples were adjusted to a USG of 1.020 g/mL compared with no adjustment (3089 ± 911 vs. 1918 ± 1081 ng/mL). With the current urine decision limit of 1200 ng/mL for salbutamol on WADA's 2013 list of prohibited substances, fewer false negative urine samples were observed when adjusted to a USG of 1.020 g/mL compared with no adjustment. In conclusion, adjustment of urine samples to a USG of 1.020 g/mL decreases risk of false negative doping tests after administration of oral salbutamol. Adjusting urine samples for USG might be useful when evaluating urine concentrations of salbutamol in doping cases. PMID:24166762

  6. Silver nanoparticles promote osteogenic differentiation of human urine-derived stem cells at noncytotoxic concentrations

    PubMed Central

    Qin, Hui; Zhu, Chen; An, Zhiquan; Jiang, Yao; Zhao, Yaochao; Wang, Jiaxin; Liu, Xin; Hui, Bing; Zhang, Xianlong; Wang, Yang

    2014-01-01

    In tissue engineering, urine-derived stem cells are ideal seed cells and silver nanoparticles (AgNPs) are perfect antimicrobial agents. Due to a distinct lack of information on the effects of AgNPs on urine-derived stem cells, a study was conducted to evaluate the effects of silver ions and AgNPs upon the cytotoxicity and osteogenic differentiation of urine-derived stem cells. Initially, AgNPs or AgNO3 were exposed to urine-derived stem cells for 24 hours. Cytotoxicity was measured using the Cell Counting kit-8 (CCK-8) test. The effects of AgNPs or AgNO3 at the maximum safety concentration determined by the CCK-8 test on osteogenic differentiation of urine-derived stem cells were assessed by alkaline phosphatase activity, Alizarin Red S staining, and the quantitative reverse transcription polymerase chain reaction. Lastly, the effects of AgNPs or AgNO3 on “urine-derived stem cell actin cytoskeleton organization” and RhoA activity were assessed by rhodamine-phalloidin staining and Western blotting. Concentration-dependent toxicity was observed starting at an AgNO3 concentration of 2 ?g/mL and at an AgNP concentration of 4 ?g/mL. At these concentrations, AgNPs were observed to promote osteogenic differentiation of urine-derived stem cells, induce actin polymerization and increase cytoskeletal tension, and activate RhoA; AgNO3 had no such effects. In conclusion, AgNPs can promote osteogenic differentiation of urine-derived stem cells at a suitable concentration, independently of silver ions, and are suitable for incorporation into tissue-engineered scaffolds that utilize urine-derived stem cells as seed cells. PMID:24899804

  7. Spectral reflectance as an indicator of foliar concentrations of arsenic in common sunflower (Helianthus annuus)

    NASA Astrophysics Data System (ADS)

    Gandy, Yuridia Patricia Peralta De

    Studies were conducted to investigate the use of spectral reflectance by foliage of common sunflower as a potential indicator of arsenic contamination of soil. Germination method was developed for sunflower seeds, and cohorts of sunflower seedlings in hydroponic tanks were established. The cohorts were exposed to 0 ppm, 5 ppm, 7.5 ppm, and 10 ppm treatments of As (V) and reflectance measurements of foliage were collected using a spectroradiometer during two experiments. Results demonstrated the feasibility of using spectral reflectance by foliage of common sunflower as a potential indicator of arsenic contamination. In both experiments, arsenic concentrations in leaf tissues were directly proportional to arsenic concentrations in hydroponic solutions in which such plants were grown. Although the effect(s) of arsenic accumulation had minimal impact on reflectance of visible wavelengths, the effects on NIR reflectance were substantial and resulted in a progressive decrease in reflectance as arsenic concentrations in foliage increased.

  8. Distribution of Microbial Arsenic Reduction, Oxidation and Extrusion Genes along a Wide Range of Environmental Arsenic Concentrations

    PubMed Central

    Escudero, Lorena V.; Casamayor, Emilio O.; Chong, Guillermo; Pedrós-Alió, Carles; Demergasso, Cecilia

    2013-01-01

    The presence of the arsenic oxidation, reduction, and extrusion genes arsC, arrA, aioA, and acr3 was explored in a range of natural environments in northern Chile, with arsenic concentrations spanning six orders of magnitude. A combination of primers from the literature and newly designed primers were used to explore the presence of the arsC gene, coding for the reduction of As (V) to As (III) in one of the most common detoxification mechanisms. Enterobacterial related arsC genes appeared only in the environments with the lowest As concentration, while Firmicutes-like genes were present throughout the range of As concentrations. The arrA gene, involved in anaerobic respiration using As (V) as electron acceptor, was found in all the systems studied. The As (III) oxidation gene aioA and the As (III) transport gene acr3 were tracked with two primer sets each and they were also found to be spread through the As concentration gradient. Sediment samples had a higher number of arsenic related genes than water samples. Considering the results of the bacterial community composition available for these samples, the higher microbial phylogenetic diversity of microbes inhabiting the sediments may explain the increased number of genetic resources found to cope with arsenic. Overall, the environmental distribution of arsenic related genes suggests that the occurrence of different ArsC families provides different degrees of protection against arsenic as previously described in laboratory strains, and that the glutaredoxin (Grx)-linked arsenate reductases related to Enterobacteria do not confer enough arsenic resistance to live above certain levels of As concentrations. PMID:24205341

  9. Influence of groundwater recharge and well characteristics on dissolved arsenic concentrations in southeastern Michigan groundwater

    USGS Publications Warehouse

    Meliker, J.R.; Slotnick, M.J.; Avruskin, G.A.; Haack, S.K.; Nriagu, J.O.

    2009-01-01

    Arsenic concentrations exceeding 10 ??g/l, the United States maximum contaminant level and the World Health Organization guideline value, are frequently reported in groundwater from bedrock and unconsolidated aquifers of southeastern Michigan. Although arsenic-bearing minerals (including arsenian pyrite and oxide/hydroxide phases) have been identified in Marshall Sandstone bedrock of the Mississippian aquifer system and in tills of the unconsolidated aquifer system, mechanisms responsible for arsenic mobilization and subsequent transport in groundwater are equivocal. Recent evidence has begun to suggest that groundwater recharge and characteristics of well construction may affect arsenic mobilization and transport. Therefore, we investigated the relationship between dissolved arsenic concentrations, reported groundwater recharge rates, well construction characteristics, and geology in unconsolidated and bedrock aquifers. Results of multiple linear regression analyses indicate that arsenic contamination is more prevalent in bedrock wells that are cased in proximity to the bedrock-unconsolidated interface; no other factors were associated with arsenic contamination in water drawn from bedrock or unconsolidated aquifers. Conditions appropriate for arsenic mobilization may be found along the bedrock-unconsolidated interface, including changes in reduction/oxidation potential and enhanced biogeochemical activity because of differences between geologic strata. These results are valuable for understanding arsenic mobilization and guiding well construction practices in southeastern Michigan, and may also provide insights for other regions faced with groundwater arsenic contamination. ?? Springer-Verlag 2008.

  10. Surface and Airborne Arsenic Concentrations in a Recreational Site near Las Vegas, Nevada, USA

    PubMed Central

    Goossens, Dirk

    2015-01-01

    Elevated concentrations of arsenic, up to 7058 ?g g-1 in topsoil and bedrock, and more than 0.03 ?g m-3 in air on a 2-week basis, were measured in the Nellis Dunes Recreation Area (NDRA), a very popular off-road area near Las Vegas, Nevada, USA. The elevated arsenic concentrations in the topsoil and bedrock are correlated to outcrops of yellow sandstone belonging to the Muddy Creek Formation (? 10 to 4 Ma) and to faults crossing the area. Mineralized fluids moved to the surface through the faults and deposited the arsenic. A technique was developed to calculate airborne arsenic concentrations from the arsenic content in the topsoil. The technique was tested by comparing calculated with measured concentrations at 34 locations in the NDRA, for 3 periods of 2 weeks each. We then applied it to calculate airborne arsenic concentrations for more than 500 locations all over the NDRA. The highest airborne arsenic concentrations occur over sand dunes and other zones with a surficial layer of aeolian sand. Ironically these areas show the lowest levels of arsenic in the topsoil. However, they are highly susceptible to wind erosion and emit very large amounts of sand and dust during episodes of strong winds, thereby also emitting much arsenic. Elsewhere in the NDRA, in areas not or only very slightly affected by wind erosion, airborne arsenic levels equal the background level for airborne arsenic in the USA, approximately 0.0004 ?g m-3. The results of this study are important because the NDRA is visited by more than 300,000 people annually. PMID:25897667

  11. Arsenic Concentrations in Rice and Associated Health Risks Along the Upper Mekong Delta, Cambodia

    NASA Astrophysics Data System (ADS)

    Barragan, L.; Seyfferth, A.; Fendorf, S.

    2011-12-01

    The consumption of arsenic contaminated food, such as rice, can be a significant portion of daily arsenic exposure, even for populations already exposed through drinking water. While arsenic contamination of rice grains has been documented in parts of Southern Asia, (e.g. Bangladesh), little research has been conducted on arsenic contamination of Cambodian-grown rice. We collected rice plant samples at various locations within the upper Mekong River Delta near Phnom Penh, Cambodia, and we analyzed total arsenic concentrations in plant digests of grains, husk, and straw. In addition, we used CaCl2-, DTPA-, and oxalate-extractable arsenic to define plant-available soil pools. We found variability of arsenic concentration in the plants, with grain arsenic ranging from 0.046 to 0.214 ?g g-1; other researchers have shown that concentrations higher than 0.1 ?g g-1 could be a concern for human health. Although more extensive sampling is needed to assess the risk of arsenic exposure from rice consumption on a country-wide basis, our work clearly illustrates the risk within regions of the Mekong Delta.

  12. Arsenic

    MedlinePLUS

    ... and minerals. Arsenic compounds are used to preserve wood, as pesticides, and in some industries. Arsenic can get into air, water, and the ground from wind-blown dust. It may also get into water from runoff. ...

  13. Culturable associated-bacteria of the sponge Theonella swinhoei show tolerance to high arsenic concentrations

    PubMed Central

    Keren, Ray; Lavy, Adi; Mayzel, Boaz; Ilan, Micha

    2015-01-01

    Sponges are potent filter feeders and as such are exposed to high fluxes of toxic trace elements, which can accumulate in their body over time. Such is the case of the Red Sea sponge Theonella swinhoei, which has been shown to accumulate up to 8500 mg/Kg of the highly toxicelement arsenic. T. swinhoei is known to harbor a multitude of sponge-associated bacteria, so it is hypothesized that the associated-bacteria will be tolerant to high arsenic concentration. This study also investigates the fate of the arsenic accumulated in the sponge to test if the associated-bacteria have an important role in the arsenic accumulation process of their host, since bacteria are key players in the natural arsenic cycle. Separation of the sponge to sponge cells and bacteria enriched fractions showed that arsenic is accumulated by the bacteria. Sponge-associated, arsenic-tolerant bacteria were cultured in the presence of 5 mM of either arsenate or arsenite (equivalent to 6150 mg/Kg arsenic, dry weight). The 54 isolated bacteria were grouped to 15 operational taxonomic units (OTUs) and isolates belonging to 12 OTUs were assessed for tolerance to arsenate at increased concentrations up to 100 mM. Eight of the 12 OTUs tolerated an order of magnitude increase in the concentration of arsenate, and some exhibited external biomineralization of arsenic–magnesium salts. The biomineralization of this unique mineral was directly observed in bacteria for the first time. These results may provide an explanation for the ability of the sponge to accumulate considerable amounts of arsenic. Furthermore arsenic-mineralizing bacteria can potentially be used for the study of bioremediation, as arsenic toxicity affects millions of people worldwide. PMID:25762993

  14. Measurement of Sterigmatocystin Concentrations in Urine for Monitoring the Contamination of Cattle Feed

    PubMed Central

    Fushimi, Yasuo; Takagi, Mitsuhiro; Uno, Seiichi; Kokushi, Emiko; Nakamura, Masayuki; Hasunuma, Hiroshi; Shinya, Urara; Deguchi, Eisaburo; Fink-Gremmels, Johanna

    2014-01-01

    This study aimed (1) at determining the levels of the fungal toxin sterigmatocystin (STC) in the feed and urine of cattle and (2) at evaluating the effects of supplementing the feed with a mycotoxin adsorbent (MA) on STC concentrations in urine. Two herds of female Japanese Black cattle were used in this study. The cattle in each herd were fed a standard ration containing rice straw from different sources and a standard concentrate; two groups of cattle from each herd (n = six per group) received the commercial MA, mixed with the concentrate or given as top-dressing, whereas a third group received no supplement and served as control. Urine and feed samples were collected at various time points throughout the experiment. STC concentrations were measured using liquid chromatography-tandem mass spectrometry (LC-TMS). STC concentrations in straw were higher in Herd 1 (range 0.15–0.24 mg/kg DM) than in Herd 2 (range <0.01–0.06 mg/kg DM). In Herd 1, STC concentrations in urine significantly declined 2 weeks after replacing the contaminated feed, whereas MA supplementation had no effect. In conclusion, mycotoxins in urine samples are useful biological markers for monitoring the systemic exposure of cattle to multiple mycotoxins, as well as evaluating the effectiveness of interventions. PMID:25375815

  15. Arsenic pollution of agricultural soils by concentrated animal feeding operations (CAFOs).

    PubMed

    Liu, Xueping; Zhang, Wenfeng; Hu, Yuanan; Hu, Erdan; Xie, Xiande; Wang, Lingling; Cheng, Hefa

    2015-01-01

    Animal wastes from concentrated animal feeding operations (CAFOs) can cause soil arsenic pollution due to the widespread use of organoarsenic feed additives. This study investigated the arsenic pollution of surface soils in a typical CAFO zone, in comparison with that of agricultural soils in the Pearl River Delta, China. The mean soil arsenic contents in the CAFO zone were elevated compared to those in the local background and agricultural soils of the Pearl River Delta region. Chemical speciation analysis showed that the soils in the CAFO zone were clearly contaminated by the organoarsenic feed additive, p-arsanilic acid (ASA). Transformation of ASA to inorganic arsenic (arsenite and arsenate) in the surface soils was also observed. Although the potential ecological risk posed by the arsenic in the surface soils was relatively low in the CAFO zone, continuous discharge of organoarsenic feed additives could cause accumulation of arsenic and thus deserves significant attention. PMID:25036941

  16. Original Contribution Elevated Lung Cancer in Younger Adults and Low Concentrations of Arsenic

    E-print Network

    California at Berkeley, University of

    Original Contribution Elevated Lung Cancer in Younger Adults and Low Concentrations of Arsenic-term effects of arsenic. We performed a case-control study of lung cancer from 2007 to 2010 in areas or more years ago resulted in odds ratios for lung cancer of 1.00, 1.43 (90% confidence interval: 0.82, 2

  17. Impaired arsenic metabolism in children during weaning

    SciTech Connect

    Faengstroem, Britta; Hamadani, Jena; Nermell, Barbro; Grander, Margaretha; Palm, Brita; Vahter, Marie

    2009-09-01

    Background: Methylation of inorganic arsenic (iAs) via one-carbon metabolism is a susceptibility factor for a range of arsenic-related health effects, but there is no data on the importance of arsenic metabolism for effects on child development. Aim: To elucidate the development of arsenic metabolism in early childhood. Methods: We measured iAs, methylarsonic acid (MA) and dimethylarsinic acid (DMA), the metabolites of iAs, in spot urine samples of 2400 children at 18 months of age. The children were born to women participating in a population-based longitudinal study of arsenic effects on pregnancy outcomes and child development, carried out in Matlab, a rural area in Bangladesh with a wide range of arsenic concentrations in drinking water. Arsenic metabolism was evaluated in relation to age, sex, anthropometry, socio-economic status and arsenic exposure. Results: Arsenic concentrations in child urine (median 34 {mu}g/L, range 2.4-940 {mu}g/L), adjusted to average specific gravity of 1.009 g/mL, were considerably higher than that measured at 3 months of age, but lower than that in maternal urine. Child urine contained on average 12% iAs, 9.4% MA and 78% DMA, which implies a marked change in metabolite pattern since infancy. In particular, there was a marked increase in urinary %MA, which has been associated with increased risk of health effects. Conclusion: The arsenic metabolite pattern in urine of children at 18 months of age in rural Bangladesh indicates a marked decrease in arsenic methylation efficiency during weaning.

  18. Concentrations of environmental phenols and parabens in milk, urine and serum of lactating North Carolina women.

    PubMed

    Hines, Erin P; Mendola, Pauline; von Ehrenstein, Ondine S; Ye, Xiaoyun; Calafat, Antonia M; Fenton, Suzanne E

    2015-07-01

    Phenols and parabens show some evidence for endocrine disruption in laboratory animals. The goal of the Methods Advancement for Milk Analysis (MAMA) Study was to develop or adapt methods to measure parabens (methyl, ethyl, butyl, propyl) and phenols (bisphenol A (BPA), 2,4- and 2,5-dichlorophenol, benzophenone-3, triclosan) in urine, milk and serum twice during lactation, to compare concentrations across matrices and with endogenous biomarkers among 34 North Carolina women. These non-persistent chemicals were detected in most urine samples (53-100%) and less frequently in milk or serum; concentrations differed by matrix. Although urinary parabens, triclosan and dichlorophenols concentrations correlated significantly at two time points, those of BPA and benzophenone-3 did not, suggesting considerable variability in those exposures. These pilot data suggest that nursing mothers are exposed to phenols and parabens; urine is the best measurement matrix; and correlations between chemical and endogenous immune-related biomarkers merit further investigation. PMID:25463527

  19. Short term effects of increasing dietary salt concentrations on urine composition in healthy cats.

    PubMed

    Paßlack, N; Burmeier, H; Brenten, T; Neumann, K; Zentek, J

    2014-09-01

    High dietary salt (NaCl) concentrations are assumed to be beneficial in preventing the formation of calcium oxalate (CaOx) uroliths in cats, since increased water intake and urine volume have been observed subsequent to intake. In human beings, dietary NaCl restriction is recommended for the prevention of CaOx urolith formation, since high NaCl intake is associated with increased urinary Ca excretion. The aim of the present study was to clarify the role of dietary NaCl in the formation of CaOx uroliths in cats. Eight cats received four diets that differed in Na and Cl concentrations (0.38-1.43% Na and 0.56-2.52% Cl dry matter, DM). Each feeding period consisted of a 21?day adaptation period, followed by a 7?day sampling period for urine collection. Higher dietary NaCl concentrations were associated with increased urine volume and renal Na excretion. Urinary Ca concentration was constant, but renal Ca excretion increased from 0.62 to 1.05?mg/kg bodyweight (BW)/day with higher dietary NaCl concentrations (P???0.05). Urinary oxalate (Ox), citrate, P and K concentrations decreased when NaCl intake was high (P???0.05), and urinary pH was low in all groups (6.33-6.45; P?>?0.05). Relative supersaturation of CaOx in the urine was unaffected by dietary NaCl concentrations. In conclusion, the present study demonstrated several beneficial effects of high dietary NaCl intake over a relatively short time period. In particular, urinary Ca concentration remained unchanged because of increased urine volume. Decreased urinary Ox concentrations might help to prevent the formation of CaOx uroliths, but this should be verified in future studies in diseased or predisposed cats. PMID:24881513

  20. Expression of transporters involved in urine concentration recovers differently after cessation of lithium treatment.

    PubMed

    Blount, Mitsi A; Sim, Jae H; Zhou, Rong; Martin, Christopher F; Lu, Wei; Sands, Jeff M; Klein, Janet D

    2010-03-01

    Patients receiving lithium therapy, an effective treatment for bipolar disorder, often present with acquired nephrogenic diabetes insipidus. The nephrotoxic effects of lithium can be detected 3 wk after the start of treatment and many of these symptoms may disappear in a few weeks after lithium use is stopped. Most patients, however, still have a urine-concentrating defect years after ending treatment. This prompted an investigation of the transporters involved in the urine concentration mechanism, UT-A1, UT-A3, aquaporin-2 (AQP2), and NKCC2, after discontinuing lithium therapy. Sprague-Dawley rats fed a Li2CO3-supplemented diet produced large volumes of dilute urine after 14 days. After lithium treatment was discontinued, urine osmolality returned to normal within 14 days but urine volume and urine urea failed to reach basal levels. Western blot and immunohistochemical analyses revealed that both urea transporters UT-A1 and UT-A3 were reduced at 7 and 14 days of lithium treatment and both transporters recovered to basal levels 14 days after discontinuing lithium administration. Similar analyses demonstrated a decrease in AQP2 expression after 7 and 14 days of lithium therapy. AQP2 expression increased over the 7 and 14 days following the cessation of lithium but failed to recover to normal levels. NKCC2 expression was unaltered during the 14-day lithium regimen but did increase 14 days after the treatment was stopped. In summary, the rapid restoration of UT-A1 and UT-A3 as well as the increased expression of NKCC2 are critical components to the reestablishment of urine concentration after lithium treatment. PMID:20032119

  1. Triazolothienopyrimidine Inhibitors of Urea Transporter UT-B Reduce Urine Concentration

    PubMed Central

    Yao, Chenjuan; Anderson, Marc O.; Zhang, Jicheng; Yang, Baoxue; Phuan, Puay-Wah

    2012-01-01

    Urea transport (UT) proteins facilitate the concentration of urine by the kidney, suggesting that inhibition of these proteins could have therapeutic use as a diuretic strategy. We screened 100,000 compounds for UT-B inhibition using an optical assay based on the hypotonic lysis of acetamide-loaded mouse erythrocytes. We identified a class of triazolothienopyrimidine UT-B inhibitors; the most potent compound, UTBinh-14, fully and reversibly inhibited urea transport with IC50 values of 10 nM and 25 nM for human and mouse UT-B, respectively. UTBinh-14 competed with urea binding at an intracellular site on the UT-B protein. UTBinh-14 exhibited low toxicity and high selectivity for UT-B over UT-A isoforms. After intraperitoneal administration of UTBinh-14 in mice to achieve predicted therapeutic concentrations in the kidney, urine osmolality after administration of 1-deamino-8-D-arginine-vasopressin was approximately 700 mosm/kg H2O lower in UTBinh-14–treated mice than vehicle-treated mice. UTBinh-14 also increased urine output and reduced urine osmolality in mice given free access to water. UTBinh-14 did not reduce urine osmolality in UT-B knockout mice. In summary, these data provide proof of concept for the potential utility of UT inhibitors to reduce urinary concentration in high-vasopressin, fluid-retaining conditions. The diuretic mechanism of UT inhibitors may complement the action of conventional diuretics, which target sodium transport. PMID:22491419

  2. Assessment of arsenic concentration in stream water using neuro fuzzy networks with factor analysis.

    PubMed

    Chang, Fi-John; Chung, Chang-Han; Chen, Pin-An; Liu, Chen-Wuing; Coynel, Alexandra; Vachaud, Georges

    2014-10-01

    We propose a systematical approach to assessing arsenic concentration in a river through: important factor extraction by a nonlinear factor analysis; arsenic concentration estimation by the neuro-fuzzy network; and impact assessment of important factors on arsenic concentration by the membership degrees of the constructed neuro-fuzzy network. The arsenic-contaminated Huang Gang Creek in northern Taiwan is used as a study case. Results indicate that rainfall, nitrite nitrogen and temperature are important factors and the proposed estimation model (ANFIS(GT)) is superior to the two comparative models, in which 50% and 52% improvements in RMSE are made over ANFIS(CC) and ANFIS(all), respectively. Results reveal that arsenic concentration reaches the highest in an environment of lower temperature, higher nitrite nitrogen concentration and larger one-month antecedent rainfall; while it reaches the lowest in an environment of higher temperature, lower nitrite nitrogen concentration and smaller one-month antecedent rainfall. It is noted that these three selected factors are easy-to-collect. We demonstrate that the proposed methodology is a useful and effective methodology, which can be adapted to other similar settings to reliably model water quality based on parameters of interest and/or study areas of interest for universal usage. The proposed methodology gives a quick and reliable way to estimate arsenic concentration, which makes good contribution to water environment management. PMID:25046611

  3. Variability of Grain Arsenic Concentration and Speciation in Rice (Oryza sativa L.) 

    E-print Network

    Pillai, Tushara Raghvan

    2011-02-22

    -1 VARIABILITY OF GRAIN ARSENIC CONCENTRATION AND SPECIATION IN RICE (Oryza sativa L.) A Dissertation by TUSHARA RAGHVAN PILLAI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of DOCTOR OF PHILOSOPHY December 2009 Major Subject: Molecular and Environmental Plant Sciences VARIABILITY OF GRAIN ARSENIC CONCENTRATION AND SPECIATION IN RICE (Oryza sativa L.) A Dissertation by TUSHARA RAGHVAN PILLAI...

  4. Role of thin descending limb urea transport in renal urea handling and the urine concentrating mechanism

    PubMed Central

    Lei, Tianluo; Zhou, Lei; Layton, Anita T.; Zhou, Hong; Zhao, Xuejian; Bankir, Lise

    2011-01-01

    Urea transporters UT-A2 and UT-B are expressed in epithelia of thin descending limb of Henle's loop and in descending vasa recta, respectively. To study their role and possible interaction in the context of the urine concentration mechanism, a UT-A2 and UT-B double knockout (UT-A2/B knockout) mouse model was generated by targeted deletion of the UT-A2 promoter in embryonic stem cells with UT-B gene knockout. The UT-A2/B knockout mice lacked detectable UT-A2 and UT-B transcripts and proteins and showed normal survival and growth. Daily urine output was significantly higher in UT-A2/B knockout mice than that in wild-type mice and lower than that in UT-B knockout mice. Urine osmolality in UT-A2/B knockout mice was intermediate between that in UT-B knockout and wild-type mice. The changes in urine osmolality and flow rate, plasma and urine urea concentration, as well as non-urea solute concentration after an acute urea load or chronic changes in protein intake suggested that UT-A2 plays a role in the progressive accumulation of urea in the inner medulla. These results suggest that in wild-type mice UT-A2 facilitates urea absorption by urea efflux from the thin descending limb of short loops of Henle. Moreover, UT-A2 deletion in UT-B knockout mice partially remedies the urine concentrating defect caused by UT-B deletion, by reducing urea loss from the descending limbs to the peripheral circulation; instead, urea is returned to the inner medulla through the loops of Henle and the collecting ducts. PMID:21849488

  5. AT1 receptors in the collecting duct directly modulate the concentration of urine.

    PubMed

    Stegbauer, Johannes; Gurley, Susan B; Sparks, Matthew A; Woznowski, Magdalena; Kohan, Donald E; Yan, Ming; Lehrich, Ruediger W; Coffman, Thomas M

    2011-12-01

    Mice lacking AT(1) angiotensin receptors have an impaired capacity to concentrate the urine, but the underlying mechanism is unknown. To determine whether direct actions of AT(1) receptors in epithelial cells of the collecting duct regulate water reabsorption, we used Cre-Loxp technology to specifically eliminate AT(1A) receptors from the collecting duct in mice (CD-KOs). Although levels of AT(1A) receptor mRNA in the inner medulla of CD-KO mice were significantly reduced, their kidneys appeared structurally normal. Under basal conditions, plasma and urine osmolalities and urine volumes were similar between CD-KO mice and controls. The increase in urine osmolality in response to water deprivation or vasopressin administration, however, was consistently attenuated in CD-KO mice. Similarly, levels of aquaporin-2 protein in inner and outer medulla after water deprivation were significantly lower in CD-KO mice compared with controls, despite its normal localization to the apical membrane. In summary, these results demonstrate that AT(1A) receptors in epithelial cells of the collecting duct directly modulate aquaporin-2 levels and contribute to the concentration of urine. PMID:22052052

  6. ARSENIC

    EPA Science Inventory

    The report is an in-depth study that attempts to assemble, organize, and interpret present-day information on arsenic and its compounds, and the effects of these substances on man, animals, and plants. Emphasis is given to the effects of arsenic on man, conclusions are drawn from...

  7. Infant toenails as a biomarker of in utero arsenic exposure

    PubMed Central

    Davis, Matthew A.; Li, Zhigang; Gilbert-Diamond, Diane; Mackenzie, Todd A.; Cottingham, Kathryn L.; Jackson, Brian P.; Lee, Joyce S.; Baker, Emily R.; Marsit, Carmen J.; Karagas, Margaret R.

    2014-01-01

    A growing body of evidence suggests that in utero and early-life exposure to arsenic may have detrimental effects on children, even at the low to moderate levels common in the United States and elsewhere. In a sample of 170 mother–infant pairs from New Hampshire, we determined infant exposure to in utero arsenic by evaluating infant toenails as a biomarker using inductively coupled plasma mass spectrometry. Infant toenail arsenic concentration correlated with maternal postpartum toenail concentrations (Spearman’s correlation coefficient 0.34). In adjusted linear models, a doubling of maternal toenail arsenic concentration was associated with a 53.8% increase in infant toenail arsenic concentration as compared with 20.4% for a doubling of maternal urine arsenic concentration. In a structural equation model, a doubling of the latent variable integrating maternal toenail and urine arsenic concentrations was associated with a 67.5% increase in infant toenail arsenic concentration. A similar correlation between infant and maternal postpartum toenail concentrations was observed in a validation cohort of 130 mother–infant pairs from Rhode Island. In utero exposure to arsenic occurs through maternal water and dietary sources, and infant toenails appear to be a reliable biomarker for estimating arsenic exposure during the critical window of gestation. PMID:24896769

  8. Correlations between cadmium concentration in urine and exposure variables

    NASA Astrophysics Data System (ADS)

    Schwarz, Elmar; Chutsch, Martina; Krause, Christian M.; Schulz, Christine; Thefeld, Wolfgang

    1993-03-01

    As part of the study 'UMWELT und GESUNDHEIT 1985/86', a representative samples of the population of the Federal Republic of Germany was examined for urinary Cd. A log-linear prediction model based on 2109 cases led to an explained variance portion of R2 equals .32. Strong associations were revealed between urinary cadmium and the smoking history and age of the subjects. This is evidence of the function urinary cadmium has as an indicator of the Cd body burden. However, there are also clear connections with physiological parameters (urinary creatinine and serum urea), which are taken to be a modification of Cd excretion by renal function. The association between urinary Cd and serum urea can also be interpreted as a cadmium-induced renal dysfunction. Urinary Cd concentrations tend to be lower in regions with low industrial nitrogen oxide emissions and high economic dynamics, as well as in non- urban residential structures.

  9. Arsenic concentrations and bacterial contamination in a pilot shallow dugwell program in West Bengal, India.

    PubMed

    Hira-Smith, Meera M; Yuan, Yan; Savarimuthu, Xavier; Liaw, Jane; Hira, Alpana; Green, Cynthia; Hore, Timir; Chakraborty, Protap; von Ehrenstein, Ondine S; Smith, Allan H

    2007-01-01

    Project Well has developed a pilot self-supporting community-based mitigation program to provide arsenic-safe water to the villagers of North 24 Parganas, West Bengal, India. Shallow concrete dugwells, less than 25 feet deep, that tap into an unconfined aquifer are constructed following stipulated guidelines. The design differs from the traditional dugwell in two major ways: (i) there is a layer of coarse sand in the annular space enveloping the outer wall of the concrete cylinder; and (ii) handpumps are used for water extraction to reduce the potential for bacterial contamination. Monitoring programs for arsenic and coliform bacteria in selected dugwells have been completed. In summer, when the water levels were low, the arsenic concentrations were measured. In 11 wells, measured over three years, the average water arsenic concentration was 29 micro gL-1. Two dugwells had high concentrations of arsenic (average 152 micro gL-1 and 61 micro gL-1), but the remaining nine dugwells had an overall average of 11 micro gL-1. Seasonal variation was assessed in five wells with monthly measurements and there was a direct relationship between increases in arsenic concentrations and decreases in the volume of water in the dugwells in the dry summer season. To control bacterial contamination, sodium hypochlorite solution containing 5% chlorine was applied once a month. In 2005, fecal coliform was undetected in 65% (n = 13) of the dugwells but detected at high levels in 35% (n = 7) of the dugwells. The program clearly reduced exposure to arsenic, but we conclude that further study of increases in arsenic concentrations in the dry season are warranted, as well as assessment of ways to more effectively control bacterial contamination such as more frequent chlorination, perhaps with lower doses on each occasion. PMID:17129953

  10. Concentrations of arsenic, antimony, and boron in steam and steam condensate at The Geysers, California

    USGS Publications Warehouse

    Smith, C.L.; Ficklin, W.H.; Thompson, J.M.

    1987-01-01

    Studies at The Geysers Geothermal Field, California indicate that under some circumstances elements that are transported in the vapor phase can become enriched in the liquid phase. Waters from two condensate traps (steam traps) on steam lines at The Geysers are enriched with arsenic, antimony, and boron compared to the concentrations of these elements in coexisting steam. Concentrations of boron in condensate-trap waters were as high as 160 mg/L, arsenic as high as 35 mg/L, and antimony as high as 200 ??g/L. Enrichment of arsenic, antimony, and boron is at least partially controlled by the partitioning of these elements into the liquid phase, according to their vapor-liquid distribution coefficients, after they are transported in steam. Several of the elements that are most soluble in steam, including arsenic and antimony, are part of the trace-element suite that characterizes precious-metal epithermal ore deposits. ?? 1987.

  11. Peat formation concentrates arsenic within sediment deposits of the Mekong Delta

    NASA Astrophysics Data System (ADS)

    Stuckey, Jason W.; Schaefer, Michael V.; Kocar, Benjamin D.; Dittmar, Jessica; Pacheco, Juan Lezama; Benner, Shawn G.; Fendorf, Scott

    2015-01-01

    Mekong River Delta sediment bears arsenic that has been released to groundwater under anaerobic conditions over the past several thousand years. The oxidation state, speciation, and distribution of arsenic and the associated iron bearing phases are crucial determinants of As reactivity in sediments. Peat from buried mangrove swamps in particular may be an important host, source, or sink of arsenic in the Mekong Delta. The total concentration, speciation, and reactivity of arsenic and iron were examined in sediments in a Mekong Delta wetland by X-ray fluorescence spectrometry (XRF), X-ray absorption spectroscopy (XAS), and selective chemical extractions. Total solid-phase arsenic concentrations in a peat layer at a depth of 6 m below ground increased 10-fold relative to the overlying sediment. Extended X-ray absorption fine structure (EXAFS) spectroscopy revealed that arsenic in the peat was predominantly in the form of arsenian pyrite. Arsenic speciation in the peat was examined further at the micron-scale using ?XRF and ?X-ray absorption near-edge structure (XANES) spectroscopy coupled with principal component analysis. The multiple energy ?XRF mapping and ?XANES routine was repeated for both iron and sulfur phase analyses. Our ?XRF/?XANES analyses confirm arsenic association with pyrite - a less reactive host phase than iron (hydr)oxides under anaerobic conditions. The arsenian pyrite likely formed upon deposition/formation of the peat in a past estuarine environment (?5.5 ka BP), a process that is not expected under current geochemical conditions. Presently, arsenian pyrite is neither a detectable source nor a sink for aqueous arsenic in our sediment profile, and under present geochemical conditions represents a stable host of As under the reducing aquifer conditions of the Mekong Delta. Furthermore, organic carbon within the peat is unable to fuel Fe(III) reduction, as noted by the persistence of goethite which can be reduced microbially with the addition of glucose.

  12. Bioaccessibility and excretion of arsenic in Niu Huang Jie Du Pian pills

    SciTech Connect

    Koch, Iris; Sylvester, Steven; Lai, Vivian W.-M.; Owen, Andrew; Reimer, Kenneth J. Cullen, William R.

    2007-08-01

    Traditional Chinese medicines (TCMs) often contain significant levels of potentially toxic elements, including arsenic. Niu Huang Jie Du Pian pills were analyzed to determine the concentration, bioaccessibility (arsenic fraction soluble in the human gastrointestinal system) and chemical form (speciation) of arsenic. Arsenic excretion in urine (including speciation) and facial hair were studied after a one-time ingestion. The pills contained arsenic in the form of realgar, and although the total arsenic that was present in a single pill was high (28 mg), the low bioaccessibility of this form of arsenic predicted that only 4% of it was available for absorption into the bloodstream (1 mg of arsenic per pill). The species of arsenic that were solubilized were inorganic arsenate (As(V)) and arsenite (As(III)) but DMAA and MMAA were detected in urine. Two urinary arsenic excretion peaks were observed: an initial peak several (4-8) hours after ingestion corresponding to the excretion of predominantly As(III), and a larger peak at 14 h corresponding predominantly to DMAA and MMAA. No methylated As(III) species were observed. Facial hair analysis revealed that arsenic concentrations did not increase significantly as a result of the ingestion. Arsenic is incompletely soluble under human gastrointestinal conditions, and is metabolized from the inorganic to organic forms found in urine. Bioaccessible arsenic is comparable to the quantity excreted. Facial hair as a bio-indicator should be further tested.

  13. Experimental studies on arsenic absorption routes in rats

    PubMed Central

    Dutkiewicz, Tadeusz

    1977-01-01

    Pentavalent inorganic arsenic was introduced by intravenous, intratracheal, gastrointestinal, and skin application in doses 0.1 to 4.0 mg/kg in rats. Isotopic technics were applied by use of As74. It was found that the dynamics of arsenic distribution in the body as well as the kinetics of its elimination in urine and feces varies very substantially, depending on the mode of administration. Intravenous administration of As causes immediate appearance of arsenic in most tissues and a slow decrease of its concentrations in time. Similar situations could be observed with intratracheal dosing, because arsenic is very rapidly absorbed from the site of administration. Concentration in tissues increases more slowly after gastrointestinal resorption. Skin application causes first the accumulation of arsenic in the skin and next continuous, slow transport from the skin into the blood stream. The rate of skin resorption was 1.14–33.1 ?g/cm2-hr for 0.01–0.2M concentrations. The red blood cell level of arsenic is very substantial and does not change with time, which indicates the accumulation of arsenic in this tissue. The elimination of arsenic occurred chiefly in urine and feces, but the urine/feces ratio changed very substantially, depending on the route of administration. The kinetics of arsenic elimination in urine was multiphasic, being three-phase in case of intravenous and intratracheal administration and two-phase after gavage and skin resorption. After intravenous administration of As, the half-times of elimination were 2.5, 10, and 690 hr, respectively. Administration of selenium salts during the slow phase increased the rate of arsenic elimination. The straight-line relations found between the absorbed dose of arsenic and its blood or urine concentrations could serve as baselines for exposure tests for humans. PMID:908295

  14. Arsenic Species in Drinking Water Wells in the USA with High Arsenic Concentrations

    EPA Science Inventory

    As part of the United States Environmental Protection Agency (USEPA) arsenic treatment demonstration program, 65 five well waters scattered across the US were speciated for As(III) and As(V). The speciation test data showed that most (60) well waters had one dominant species, but...

  15. Influence of storage conditions on aluminum concentrations in serum, dialysis fluid, urine, and tap water.

    PubMed

    Wilhelm, M; Ohnesorge, F K

    1990-01-01

    The influence of storage temperature, vessel type, and treatment on alterations of aluminum (Al) concentrations in serum, urine, and dialysis fluid samples was studied at three different concentrations for each sample over an 18-month period. Furthermore, the influence of acidification on Al levels in tap water, urine, and dialysis fluid samples was studied over a four-month period. Al was measured by atomic absorption spectrometry. Sample storage in glass vessels was unsuitable, whereas only minor alterations of Al levels were observed with storage in polypropylene tubes, polystyrene tubes, and Monovettes. By using appropriate plastic containers, acid washing of the vessels showed no improvement. Frozen storage was superior compared with 4 degrees C, whereas storage at -80 degrees C offered no advantage compared with storage at -20 degrees C. Acidification of tap water samples was necessary to stabilize Al levels during storage. No striking effect of acidification on Al levels in urine and dialysis fluid samples was found. It is concluded that longterm storage of serum, urine, tap water, and dialysis fluid samples is possible if appropriate conditions are used. PMID:2395338

  16. Impacts of active urea secretion into pars recta on urine concentration and urea excretion rate

    PubMed Central

    Layton, Anita T; Bankir, Lise

    2013-01-01

    It has been observed experimentally that early distal tubular urea flow exceeds urea delivery by the proximal convoluted tubule to the pars recta and loop of Henle. Moreover, the fractional excretion of urea in the urine may exceed values compatible with the reabsorption known to occur in the proximal convoluted tubule in the cortex. A likely explanation for these observations is that urea may be actively secreted into the pars recta, as proposed in a few studies. However, this hypothesis has yet to be demonstrated experimentally. In this study, we used a mathematical model of the renal medulla of the rat kidney to investigate the impacts of active urea secretion in the intrarenal handling of urea and in the urine concentrating ability. The model represents only the outer and inner medullary zones, with the actions taking place in the cortex incorporated via boundary conditions. Blood flow in the model vasculature is divided into plasma and red blood cell compartments. We compared urea flow rates and other related model variables without and with the hypothetical active urea secretion in the pars recta. The simulation suggests that active urea secretion induces a “urea-selective” improvement in urine concentrating ability by enhancing the efficiency of urea excretion without requiring a higher urine flow rate, and with only modest changes in the excretion of other solutes. These results should encourage experimental studies in order to assess the existence of an active urea secretion in the rodent kidney. PMID:24058732

  17. Reduction of arsenic content in a complex galena concentrate by Acidithiobacillus ferrooxidans

    PubMed Central

    Makita, Mario; Esperón, Margarita; Pereyra, Benito; López, Alejandro; Orrantia, Erasmo

    2004-01-01

    Background Bioleaching is a process that has been used in the past in mineral pretreatment of refractory sulfides, mainly in the gold, copper and uranium benefit. This technology has been proved to be cheaper, more efficient and environmentally friendly than roasting and high pressure moisture heating processes. So far the most studied microorganism in bioleaching is Acidithiobacillus ferrooxidans. There are a few studies about the benefit of metals of low value through bioleaching. From all of these, there are almost no studies dealing with complex minerals containing arsenopyrite (FeAsS). Reduction and/or elimination of arsenic in these ores increase their value and allows the exploitation of a vast variety of minerals that today are being underexploited. Results Arsenopyrite was totally oxidized. The sum of arsenic remaining in solution and removed by sampling represents from 22 to 33% in weight (yield) of the original content in the mineral. The rest of the biooxidized arsenic form amorphous compounds that precipitate. Galena (PbS) was totally oxidized too, anglesite (PbSO4) formed is virtually insoluble and remains in the solids. The influence of seven factors in a batch process was studied. The maximum rate of arsenic dissolution in the concentrate was found using the following levels of factors: small surface area of particle exposure, low pulp density, injecting air and adding 9 K medium to the system. It was also found that ferric chloride and carbon dioxide decreased the arsenic dissolution rate. Bioleaching kinetic data of arsenic solubilization were used to estimate the dilution rate for a continuous culture. Calculated dilution rates were relatively small (0.088–0.103 day-1). Conclusion Proper conditions of solubilization of arsenic during bioleaching are key features to improve the percentage (22 to 33% in weight) of arsenic removal. Further studies are needed to determine other factors that influence specifically the solubilization of arsenic in the bioleaching system such as: pH, dissolved oxygen concentration, redox potentials, nature of concentrate and temperature among others. At. ferrooxidans was able to completely oxidize the minerals present during the arsenic bioleaching. Other elements present originally in the concentrate such as Zn, Sb, and Cu were also solubilized. The process of bioleaching is expected to be influenced by mechanisms that still need to be established due to the diversity of the minerals involved and by the presence of traces of metals in the concentrate. The increase in pulp density generates a decrease in the dissolved arsenic concentration. This decrease is greater in runs where air was not injected to the system. The maximum rate of arsenic dissolution in the concentrate was found using; small surface area of particle exposure, low pulp density, injecting air and adding 9 K medium to the system. The effect of addition of ferric chloride during the arsenic bioleaching resulted in a decrease of the solubilized arsenic in the system. The presence of CO2 is associated to the decrease in arsenic dissolution. PMID:15482595

  18. Association of Arsenic and Metals with Concentrations of 25-Hydroxyvitamin D and 1,25-Dihydroxyvitamin D among Adolescents in Torreón, Mexico

    PubMed Central

    Zamoiski, Rachel D.; Guallar, Eliseo; García-Vargas, Gonzalo G.; Rothenberg, Stephen J.; Resnick, Carol; Andrade, Marisela Rubio; Steuerwald, Amy J.; Parsons, Patrick J.; Weaver, Virginia M.; Navas-Acien, Ana

    2014-01-01

    Background: Limited data suggest that lead (Pb), cadmium (Cd), and uranium (U) may disrupt vitamin D metabolism and inhibit production of 1,25-dihydroxyvitamin D [1,25(OH)2D], the active vitamin D metabolite, from 25-hydroxyvitamin D [25(OH)D] in the kidney. Objectives: We evaluated the association between blood lead (BPb) and urine arsenic (As), Cd, molybdenum (Mo), thallium (Tl), and U with markers of vitamin D metabolism [25(OH)D and 1,25(OH)2D]. Methods: We conducted a cross-sectional study of 512 adolescents in Torreón, a town in Mexico with a Pb smelter near residential areas. BPb was measured using atomic absorption spectrometry. Urine As, Cd, Mo, Tl, and U were measured using inductively coupled plasma mass spectrometry. Serum 25(OH)D and 1,25(OH)2D were measured using a chemiluminescent immunoassay and a radioimmunoassay, respectively. Multivariable linear models with vitamin D markers as the outcome were used to estimate associations of BPb and creatinine-corrected urine As and metal concentrations with serum vitamin D concentrations, controlling for age, sex, adiposity, smoking, socioeconomic status, and time outdoors. Results: Serum 25(OH)D was positively associated with urine Mo and Tl [1.5 (95% CI: 0.4, 2.6) and 1.2 (95% CI: 0.3, 2.1) ng/mL higher with a doubling of exposure, respectively]. Serum 1,25(OH)2D was positively associated with urine As and U [3.4 (95% CI: 0.9, 5.9) and 2.2 (95% CI: 0.7, 3.7) pg/mL higher, respectively], with little change in associations after additional adjustment for serum 25(OH)D. Pb and Cd were not associated with 25(OH)D or 1,25(OH)2D concentrations. Conclusions: Overall, our findings did not support a negative effect of As or metal exposures on serum 1,25(OH)2D concentrations. Additional research is needed to confirm positive associations between serum 1,25(OH)2D and urine U and As concentrations and to clarify potential underlying mechanisms. Citation: Zamoiski RD, Guallar E, García-Vargas GG, Rothenberg SJ, Resnick C, Rubio Andrade M, Steuerwald AJ, Parsons PJ, Weaver VM, Navas-Acien A, Silbergeld EK. 2014. Association of arsenic and metals with concentrations of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D among adolescents in Torreón, Mexico. Environ Health Perspect 122:1233–1238; http://dx.doi.org/10.1289/ehp.1307861 PMID:25095279

  19. Urinary Arsenic Metabolites of Subjects Exposed to Elevated Arsenic Present in Coal in Shaanxi Province, China

    PubMed Central

    Gao, Jianwei; Yu, Jiangping; Yang, Linsheng

    2011-01-01

    In contrast to arsenic (As) poisoning caused by naturally occurring inorganic arsenic-contaminated water consumption, coal arsenic poisoning (CAP) induced by elevated arsenic exposure from coal combustion has rarely been reported. In this study, the concentrations and distributions of urinary arsenic metabolites in 57 volunteers (36 subjects with skin lesions and 21 subjects without skin lesions), who had been exposed to elevated levels of arsenic present in coal in Changshapu village in the south of Shaanxi Province (China), were reported. The urinary arsenic species, including inorganic arsenic (iAs) [arsenite (iAsIII) and arsenate (iAsV)], monomethylarsonic acid (MMAV) and dimethylarsinic acid (DMAV), were determined by high-performance liquid chromatography (HPLC) combined with inductively coupled plasma mass spectroscopy (ICP-MS). The relative distributions of arsenic species, the primary methylation index (PMI = MMAV/iAs) and the secondary methylation index (SMI = DMAV/MMAV) were calculated to assess the metabolism of arsenic. Subjects with skin lesions had a higher concentration of urinary arsenic and a lower arsenic methylation capability than subjects without skin lesions. Women had a significantly higher methylation capability of arsenic than men, as defined by a higher percent DMAV and SMI in urine among women, which was the one possible interpretation of women with a higher concentration of urinary arsenic but lower susceptibility to skin lesions. The findings suggested that not only the dose of arsenic exposure but also the arsenic methylation capability have an impact on the individual susceptibility to skin lesions induced by coal arsenic exposure. PMID:21776214

  20. Morphine and Codeine Concentrations in Human Urine following Controlled Poppy Seeds Administration of Known Opiate Content

    PubMed Central

    Smith, Michael L.; Nichols, Daniel C.; Underwood, Paula; Fuller, Zachary; Moser, Matthew A.; LoDico, Charles; Gorelick, David A.; Newmeyer, Matthew N.; Concheiro, Marta; Huestis, Marilyn A.

    2014-01-01

    Opiates are an important component for drug testing due to their high abuse potential. Proper urine opiate interpretation includes ruling out poppy seed ingestion; however, detailed elimination studies after controlled poppy seed administration with known morphine and codeine doses are not available. Therefore, we investigated urine opiate pharmacokinetics after controlled oral administration of uncooked poppy seeds with known morphine and codeine content. Participants were administered two 45g oral poppy seed doses 8h apart, each containing 15.7mg morphine and 3mg codeine. Urine was collected ad libitum up to 32h after the first dose. Specimens were analyzed with the Roche Opiates II immunoassay at 2,000 and 300?g/L cutoffs, and the ThermoFisher CEDIA® Heroin Metabolite (6-acetylmorphine, 6AM) and Lin-Zhi 6AM immunoassays with 10?g/L cutoffs to determine if poppy seed ingestion could produce positive results in these heroin marker assays. In addition, all specimens were quantified for morphine and codeine by GC/MS. Participants (N=22) provided 391 urine specimens over 32h following dosing; 26.6% and 83.4% were positive for morphine at 2,000 and 300?g/L GC/MS cutoffs, respectively. For the 19 subjects who completed the study, morphine concentrations ranged from <300 to 7,522?g/L with a median peak concentration of 5,239?g/L. The median first morphine-positive urine sample at 2,000?g/L cutoff concentration occurred at 6.6h (1.2-12.1), with the last positive from 2.6 to 18h after the second dose. No specimens were positive for codeine at a cutoff concentration of 2,000?g/L, but 20.2% exceeded 300?g/L, with peak concentrations of 658 ?g/L (284-1540). The Roche Opiates II immunoassay had efficiencies greater than 96% for the 2000 and 300?g/L cutoffs. The CEDIA 6AM immunoassay had a specificity of 91%, while the Lin-Zhi assay had no false positive results. These data provide valuable information for interpreting urine opiate results. PMID:24887324

  1. Using DET and DGT probes (ferrihydrite and titanium dioxide) to investigate arsenic concentrations in soil porewater of an arsenic-contaminated paddy field in Bangladesh.

    PubMed

    Garnier, Jean-Marie; Garnier, Jérémie; Jézéquel, Didier; Angeletti, Bernard

    2015-12-01

    Arsenic concentration in the pore water of paddy fields (Csoln) irrigated with arsenic-rich groundwater is a key parameter in arsenic uptake by rice. Pore water extracts from cores and in situ deployment of DET and DGT probes were used to measure the arsenic concentration in the pore water. Ferrihydrite (Fe) and titanium dioxide (Ti) were used as DGT binding agents. Six sampling events during different growing stages of the rice, inducing different biogeochemical conditions, were performed in one rice field. A time series of DGT experiments allow the determination of an in situ arsenic diffusion coefficient in the diffusive gel (3.34×10(-6) cm(2) s(-1)) needed to calculate the so-called CDGT(Fe) and CDGT(Ti) concentrations. Over 3 days of a given sampling event and for cores sampled at intervals smaller than 50 cm, great variability in arsenic Csoln concentrations between vertical profiles was observed, with maxima of concentrations varying from 690 to 2800 ?g L(-1). Comparisons between arsenic measured Csol and CDET and calculated CDGT(Fe) and CDGT(Ti) concentrations show either, in a few cases, roughly similar vertical profiles, or in other cases, significantly different profiles. An established iron oxyhydroxide precipitation in the DET gel may explain why measured arsenic CDET concentrations occasionally exceeded Csoln. The large spread in results suggests limitations to the use of DET and type of DGT probes used here for similarly representing the spatio-temporal variations of arsenic content in soil pore water in specific environmental such as paddy soils. PMID:26225738

  2. A cultural practice of drinking realgar wine leading to elevated urinary arsenic and its potential health risk.

    PubMed

    Zhang, Ying-Nan; Sun, Guo-Xin; Huang, Qing; Williams, Paul N; Zhu, Yong-Guan

    2011-07-01

    Toasting friends and family with realgar wines and painting children's foreheads and limbs with the leftover realgar/alcohol slurries is an important customary ritual during the Dragon Boat Festival (DBF); a Chinese national holiday and ancient feast day celebrated throughout Asia. Realgar is an arsenic sulfide mineral, and source of highly toxic inorganic arsenic. Despite the long history of realgar use during the DBF, associated risk to human health by arsenic ingestion or percutaneous adsorption is unknown. To address this urine samples were collected from a cohort of volunteers who were partaking in the DBF festivities. The total concentration of arsenic in the wine consumed was 70 mg L?¹ with all the arsenic found to be inorganic. Total arsenic concentrations in adult urine reached a maximum of ca. 550 ?g L?¹ (mean 220.2 ?g L?¹) after 16 h post-ingestion of realgar wine, while face painting caused arsenic levels in children's urine to soar to 100 ?g L?¹ (mean 85.3 ?g L?¹) 40 h after the initial paint application. The average concentration of inorganic arsenic in the urine of realgar wine drinkers on average doubled 16 h after drinking, although this was not permanent and levels subsided after 28 h. As would be expected in young children, the proportions of organic arsenic in the urine remained high throughout the 88-h monitoring period. However, even when arsenic concentrations in the urine peaked at 40 h after paint application, concentrations in the urine only declined slightly thereafter, suggesting pronounced longer term dermal accumulation and penetration of arsenic. Drinking wines blended with realgar or using realgar based paints on children does result in the significant absorption of arsenic and therefore presents a potentially serious and currently unquantified health risk. PMID:21450346

  3. The Concentration Of Tritium In Urine And Internal Radiation Dose Estimation Of PTNBR Radiation Workers

    SciTech Connect

    Tjahaja, Poppy Intan; Sukmabuana, Putu; Aisyah, Neneng Nur

    2010-12-23

    The operation of Triga 2000 reactor in Nuclear Technology Center for Materials and Radiometry (PTNBR BATAN) normally produce tritium radionuclide which is the activation product of deuterium atom in reactor primary cooling water. According to previous monitoring, tritium was detected with the concentration of 8.236{+-}0.677 kBq/L and 1.704{+-}0.046 Bq/L in the primary cooling water and in reactor hall air, respectively. The tritium in reactor hall air chronically can be inhaled by the workers. In this research, tritium content in radiation workers' urine was determined to estimate the internal radiation doses received by the workers. About 50-100 mL of urine samples were collected from 48 PTNBR workers that is classified as 24 radiation workers and 24 administration staffs as a control. Urine samples of 25 mL were then prepared by active charcoal and KMnO{sub 4} addition and followed with complete distillation. The 2 mL of distillate was added with 13 mL scintillator, shaked vigorously and remained in cool and dark condition for about 24 hours. The tritium in the samples was then measured using liquid scintillation counter (LSC) for 1 hour. From the measurement results it was obtained that the tritium concentration in the urine of radiation workers were in the range of not detected and 5.191 Bq/mL, whereas in the administration staffs the concentration were between not detected and 4.607 Bq/mL. Internally radiation doses were calculated using the tritium concentration data, and it was found the averages about 0.602 {mu}Sv/year and 0.532 {mu}Sv/year for radiation workers and administration staffs, respectively. The doses received by the workers were lower than that of the permissible doses from tritium, i.e. 40 {mu}Sv/year.

  4. Reconnaissance of Arsenic Concentrations in Ground Water From Bedrock and Unconsolidated Aquifers in Eight Northern-Tier Counties of Pennsylvania

    USGS Publications Warehouse

    Low, Dennis J.; Galeone, Daniel G.

    2007-01-01

    Samples of ground water for analysis of total-arsenic concentrations were collected in eight counties--Potter, Tioga, Bradford, Susquehanna, Wayne, Pike, Sullivan, and Wyoming--and from eight bedrock formations (bedrock aquifers) and overlying glacial aquifers in the north-central and northeastern parts of Pennsylvania in July 2005 and from March through June 2006. The samples were collected from a total of 143 domestic wells, 2 stock wells, 4 non-community wells, 2 community water-system wells, and 3 domestic springs by well or spring owners using sampling kits provided by the U.S. Geological Survey (USGS). An additional 15 domestic wells were sampled by the USGS for analysis of total arsenic. These 15 samples were collected using the same methods and sampling kits provided to the homeowners. Samples were analyzed for total arsenic by the Pennsylvania Department of Environmental Protection Laboratory using a minimum reporting level of 4.0 ?g/L (micrograms per liter). Arsenic was detected in water from 18 domestic wells in four counties--Bradford (3 wells), Sullivan (1 well), Tioga (13 wells), and Wayne (1 well). The median concentration of total arsenic was less than 4.0 ?g/L, and the maximum concentration was 188 ?g/L. Water from 10 wells had concentrations of total arsenic greater than the U.S. Environmental Protection Agency Maximum Contaminant Level of 10 ?g/L. Detectable concentrations of total arsenic were measured in water from wells that ranged in depth from 29 to 400 feet, and that were completed in three aquifers--Lock Haven Formation, Catskill Formation, and unconsolidated glacial sediments; no springs had detectable concentrations of total arsenic. Water samples representing the Lock Haven Formation were collected from 60 wells; water from 12 of these wells had detectable concentrations of total arsenic. Water samples representing the Catskill Formation were collected from 57 wells; water from 4 wells had detectable concentrations of total arsenic. Water samples representing the unconsolidated glacial sediments were collected from 17 wells; 2 wells had water with detectable concentrations of total arsenic. Contingency tables tested for significant differences in total arsenic between aquifers, topographic settings, and well depths. Concentrations of total arsenic were significantly greater (95-percent confidence level) in the Lock Haven Formation than in the other bedrock units. Concentrations of total arsenic also varied significantly by topographic setting. Wells completed in the Lock Haven Formation and located in valleys had significantly greater concentrations of total arsenic than similar wells located on hilltops or slopes. Concentrations of total arsenic did not vary significantly by topographic setting in the Catskill Formation. Concentrations of total arsenic did not vary significantly by well depth for any aquifer. Iron staining, hydrogen-sulfide odor, or both were common complaints of well owners. Iron staining was a complaint of 44 well owners. Hydrogen-sulfide odor was a complaint of 35 well owners. Fourteen well owners complained of both iron staining and hydrogen sulfide. No correlation to the presence of arsenic in the wells sampled was found with iron staining, hydrogen-sulfide odor, or both. Water from 8 of the 10 wells that contained concentrations of total arsenic greater than 10 ?g/L were sampled by USGS personnel for the determination of concentrations of dissolved arsenic (minimum reporting level 0.3 ?g/L) and arsenic species {arsenite [As (III)], arsenate [As (V)], monomethylarsonate (MMA), and dimethylarsinate (DMA)} at the USGS National Water Quality Laboratory. Analytical results from these samples showed a median concentration of 38.7 ?g/L dissolved arsenic in water and a maximum of 178 ?g/L. As (III) was the most common arsenic species present in the water for seven of the eight wells and was found in water characteristic of reducing environments [pH 8.2

  5. Honey increased saliva, plasma, and urine content of total nitrite concentrations in normal individuals.

    PubMed

    Al-Waili, Noori S; Boni, Nadir S

    2004-01-01

    This study investigated effects of oral honey solution on total nitrite, a stable nitric oxide metabolite, in saliva, plasma, and urine samples collected from normal subjects. Fourteen adult healthy volunteers, 25-50 years old, nine males and three females, were enrolled in the study. Total nitrite was estimated in saliva, plasma, and urine after 14 hours of food fasting. Each subject was then asked to drink honey solution (80 g of raw honey dissolved in 250 mL of water). Saliva and blood samples were collected at 1, 2, and 3 hours after ingestion of honey solution for total nitrite assay, while urine samples were collected after 3 hours for total nitrite assay. The mean total fasting nitrite in saliva was 108 +/- 61.3 micromol/L, which was increased to 130 +/- 62.9, 131.2 +/- 59, and 135.1 +/- 64.3 micromol/L at 1, 2, and 3 hours, respectively. Plasma total nitrite was 22.41 +/- 16.22 micromol/L before drinking honey, which was increased to 34.71 +/- 18.13, 29.38 +/- 14.29, and 33 +/- 13.09 micromol/L at 1, 2, and 3 hours, respectively, after drinking honey. Urine total nitrite before drinking honey was 75.8 +/- 54.79 micromol/L, which was increased to 107.8 +/- 70.83 micromol/L 3 hours after ingestion of honey solution. Although not statistically significant, honey solution showed a tendency to increase total nitrite concentration in different biological fluids from humans, including saliva, plasma, and urine. PMID:15383235

  6. Role of UTB urea transporters in the urine concentrating mechanism of the rat kidney.

    PubMed

    Layton, Anita T

    2007-04-01

    A mathematical model of the renal medulla of the rat kidney was used to investigate urine concentrating mechanism function in animals lacking the UTB urea transporter. The UTB transporter is believed to mediate countercurrent urea exchange between descending vasa recta (DVR) and ascending vasa recta (AVR) by facilitating urea transport across DVR endothelia. The model represents the outer medulla (OM) and inner medulla (IM), with the actions of the cortex incorporated via boundary conditions. Blood flow in the model vasculature is divided into plasma and red blood cell compartments. In the base-case model configuration tubular dimensions and transport parameters are based on, or estimated from, experimental measurements or immunohistochemical evidence in wild-type rats. The base-case model configuration generated an osmolality gradient along the cortico-medullary axis that is consistent with measurements from rats in a moderately antidiuretic state. When expression of UTB was eliminated in the model, model results indicated that, relative to wild-type, the OM cortico-medullary osmolality gradient and the net urea flow through the OM were little affected by absence of UTB transporter. However, because urea transfer from AVR to DVR was much reduced, urea trapping by countercurrent exchange was significantly compromised. Consequently, urine urea concentration and osmolality were decreased by 12% and 8.9% from base case, respectively, with most of the reduction attributable to the impaired IM concentrating mechanism. These results indicate that the in vivo urine concentrating defect in knockout mouse, reported by Yang et al. (J Biol Chem 277(12), 10633-10637, 2002), is not attributable to an OM concentrating mechanism defect, but that reduced urea trapping by long vasa recta plays a significant role in compromising the concentrating mechanism of the IM. Moreover, model results are in general agreement with the explanation of knockout renal function proposed by Yang et al. PMID:17265123

  7. Weight dependence of arsenic concentration in the Arabian Sea tuna fish

    SciTech Connect

    Ashraf, M.; Jaffar, M.

    1988-02-01

    The objective of the present investigation was to estimate the arsenic concentration in the edible muscle of Thunnus thynnus and Thunnus toggel (hereafter called tuna and longtail tune) as they have great commercial value. These fish are widely available along the coastal line of Pakistan and are consumed abundantly in large bulk. Thus, it was felt justifiable on the basis of safety of human health that data, in the first instance, be obtained on arsenic concentration in tuna as a function of weight to check whether the metal distribution was species-specific or it depended on individual mode of development. The data, the first of the kind so far presented on the Arabian Sea tuna, would thus provide the required baseline quantitative information needed in future studies on the physiological processes regulating the distribution and uptake of arsenic by these and other species of fish common to the region.

  8. Fluoride in workplace air and in urine of workers concentrating fluorspar.

    PubMed

    Rees, D; Rama, D B; Yousefi, V

    1990-01-01

    The urinary fluoride concentrations of workers exposed to calcium fluoride (CaF2) during fluorspar processing were measured. Personal dust measurement showed that the mean occupational exposure to fluoride for 12 workers in the most dusty environment was 24.3 mg/m3, which is 9.7 times the threshold limit value (TLV) of 2.5 mg/m3. Exposure was below the TLV for the remaining 23 workers. Urinary fluoride concentrations were measured pre- and postshift. The heavily exposed workers had a mean preshift concentration of 3.3 mg/liter (range 1.4-8.5 mg/liter), only slightly higher than the mean of 2.8 mg/liter (range 1.3-4.2 mg/liter) in the workers with fluoride exposure below the TLV. Four of the preshift concentrations exceeded the recommended upper limit of 4 mg/liter. The mean postshift concentration for workers exposed above the TLV was 4.4 mg/liter (range 2.4-7.1 mg/liter) and the difference between pre- and postshift concentrations was significant (p less than 0.05). Only one urinary concentration exceeded the recommended upper limit of 7 mg/liter. There was poor correlation between intensity of environmental exposure to fluorspar and postshift fluoride concentration in the urine. Eighteen workers provided a urine sample 7-14 hr after the end of a shift. The mean fluoride concentration was 4.7 mg/liter (range 2.4-11.7 mg/liter), which exceeded their postshift concentration by 0.2 mg/liter. These results indicate that the low aqueous solubility of fluorspar reduced the biologic availability of the fluoride ion but that this did not prevent excessive fluoride absorption in some workers. PMID:2305811

  9. March 23, 2000 Hierarchical Modeling of Arsenic Concentrations at Entry Points in

    E-print Network

    in public drinking water. The 1996 Safe Drinking Water Act (SDWA) requires EPA to re­evaluate the MCL Drinking Water Supplies (ADA report) Yangang Zhang A Bayesian hierarchical model is built to describe arsenic concentrations in treated water from sources of public drinking water systems. The model allows us

  10. Soil and Water Science Department University of Florida Arsenic background concentrations in Florida urban soils

    E-print Network

    Ma, Lena

    Soil and Water Science Department University of Florida Arsenic background concentrations in Florida urban soils Ma, L. Q., W. Harris, and A. Hornsby 1/2000-12/2002 OBJECTIVE Establish a robust and agricultural areas throughout Florida will be collected based on locations, soil types, and land uses

  11. Protocol Development for Assessing Arsenic Background Concentrations in Florida Urban Soils

    E-print Network

    Ma, Lena

    Protocol Development for Assessing Arsenic Background Concentrations in Florida Urban Soils Tait Chirenje*, L. Q. Ma and A. G. Hornsby Soil and Water Science Department, University of Florida, Gainesville-0339, U.S.A. W. Harris Soil and Water Science Department, University of Florida, Gainesville, FL 32611

  12. HIGH ARSENIC CONCENTRATIONS AND ENRICHED SULFUR AND OXYGEN ISOTOPES IN A FRACTURED-BEDROCK GROUND-WATER SYSTEM

    EPA Science Inventory

    Elevated arsenic concentrations are coincident with enriched sulfur and oxygen isotopes of sulfate in bedrock ground water within Kelly's Cove watershed, Northport, Maine, USA. Interpretation of the data is complicated by the lack of correlations between sulfate concentrations an...

  13. Arsenic concentrations in prediagnostic toenails and the risk of bladder cancer in a cohort study of male smokers.

    PubMed

    Michaud, Dominique S; Wright, Margaret E; Cantor, Kenneth P; Taylor, Philip R; Virtamo, Jarmo; Albanes, Demetrius

    2004-11-01

    At high concentrations, inorganic arsenic can cause bladder cancer in humans. However, it is unclear whether low exposure to inorganic arsenic in drinking water (<100 microg/liter) is related to bladder cancer risk. No study has been known to use biomarkers to assess the relation between individual arsenic exposure and bladder cancer risk. Toenail samples provide an integrated measure of internal arsenic exposure and reflect long-term exposure. The authors examined the relation between toenail arsenic levels and bladder cancer risk among participants in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study, a cohort of Finnish male smokers aged 50-69 years. Data for 280 incident bladder cancer cases, identified between baseline (1985-1988) and April 1999, were available for analysis. One control was matched to each case on the basis of age, toenail collection date, intervention group, and smoking duration. Arsenic levels in toenail samples were determined by using neutron activation analysis. Logistic regression analyses were performed to estimate odds ratios. Arsenic toenail concentrations in this Finnish study were similar to those reported in US studies (range: 0.02-17.5 microg/g). The authors observed no association between inorganic arsenic concentration and bladder cancer risk (odds ratio = 1.13, 95% confidence interval: 0.70, 1.81 for the highest vs. lowest quartile). These findings suggest that low-level arsenic exposure is unlikely to explain a substantial excess risk of bladder cancer. PMID:15496537

  14. Application of granular ferric hydroxides for removal elevated concentrations of arsenic from mine waters

    NASA Astrophysics Data System (ADS)

    Szlachta, Ma?gorzata; W?odarczyk, Pawe?; Wójtowicz, Patryk

    2015-04-01

    Arsenic is naturally occurring element in the environment. Over three hundred minerals are known to contain some form of arsenic and among them arsenopyrite is the most common one. Arsenic-bearing minerals are frequently associated with ores containing mined metals such as copper, tin, nickel, lead, uranium, zinc, cobalt, platinum and gold. In the aquatic environment arsenic is typically present in inorganic forms, mainly in two oxidation states (+5, +3). As(III) is dominant in more reduced conditions, whereas As(V) is mostly present in an oxidizing environment. However, due to certain human activities the elevated arsenic levels in aquatic ecosystems are arising to a serious environmental problem. High arsenic concentrations found in surface and groundwaters, in some regions originate from mining activities and ore processing. Therefore, the major concern of mining industry is to maintain a good quality of effluents discharged in large volumes. This requires constant monitoring of effluents quality that guarantee the efficient protection of the receiving waters and reacting to possible negative impact of contamination on local communities. A number of proven technologies are available for arsenic removal from waters and wastewaters. In the presented work special attention is given to the adsorption method as a technically feasible, commonly applied and effective technique for the treatment of arsenic rich mine effluents. It is know that arsenic has a strong affinity towards iron rich materials. Thus, in this study the granular ferric hydroxides (CFH 12, provided by Kemira Oyj, Finland) was applied to remove As(III) and As(V) from aqueous solutions. The batch adsorption experiments were carried out to assess the efficiency of the tested Fe-based material under various operating parameters, including composition of treated water, solution pH and temperature. The results obtained from the fixed bed adsorption tests demonstrated the benefits of applying granular ferric hydroxides for treatment As-contaminated waters. This research is a part of the study supported by the National Centre for Research and Development grant (2014-2017) "Sustainable and responsible supply of primary resources - SUSMIN" (http://projects.gtk.fi/susmin), within the EU ERA-NET ERA-MIN program.

  15. Impact of enzymatic and alkaline hydrolysis on CBD concentration in urine.

    PubMed

    Bergamaschi, Mateus M; Barnes, Allan; Queiroz, Regina H C; Hurd, Yasmin L; Huestis, Marilyn A

    2013-05-01

    A sensitive and specific analytical method for cannabidiol (CBD) in urine was needed to define urinary CBD pharmacokinetics after controlled CBD administration, and to confirm compliance with CBD medications including Sativex-a cannabis plant extract containing 1:1 ?(9)-tetrahydrocannabinol (THC) and CBD. Non-psychoactive CBD has a wide range of therapeutic applications and may also influence psychotropic smoked cannabis effects. Few methods exist for the quantification of CBD excretion in urine, and no data are available for phase II metabolism of CBD to CBD-glucuronide or CBD-sulfate. We optimized the hydrolysis of CBD-glucuronide and/or -sulfate, and developed and validated a GC-MS method for urinary CBD quantification. Solid-phase extraction isolated and concentrated analytes prior to GC-MS. Method validation included overnight hydrolysis (16 h) at 37 °C with 2,500 units ?-glucuronidase from Red Abalone. Calibration curves were fit by linear least squares regression with 1/x (2) weighting with linear ranges (r(2) > 0.990) of 2.5-100 ng/mL for non-hydrolyzed CBD and 2.5-500 ng/mL for enzyme-hydrolyzed CBD. Bias was 88.7-105.3 %, imprecision 1.4-6.4 % CV and extraction efficiency 82.5-92.7 % (no hydrolysis) and 34.3-47.0 % (enzyme hydrolysis). Enzyme-hydrolyzed urine specimens exhibited more than a 250-fold CBD concentration increase compared to alkaline and non-hydrolyzed specimens. This method can be applied for urinary CBD quantification and further pharmacokinetics characterization following controlled CBD administration. PMID:23494274

  16. Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate.

    PubMed

    Xu, Pei; Capito, Marissa; Cath, Tzahi Y

    2013-09-15

    Concentrate disposal and management is a considerable challenge for the implementation of desalination technologies, especially for inland applications where concentrate disposal options are limited. This study has focused on selective removal of arsenic and monovalent ions from brackish groundwater reverse osmosis (RO) concentrate for beneficial use and safe environmental disposal using in situ and pre-formed hydrous ferric oxides/hydroxides adsorption, and electrodialysis (ED) with monovalent permselective membranes. Coagulation with ferric salts is highly efficient at removing arsenic from RO concentrate to meet a drinking water standard of 10 ?g/L. The chemical demand for ferric chloride however is much lower than ferric sulfate as coagulant. An alternative method using ferric sludge from surface water treatment plant is demonstrated as an efficient adsorbent to remove arsenic from RO concentrate, providing a promising low cost, "waste treat waste" approach. The monovalent permselective anion exchange membranes exhibit high selectivity in removing monovalent anions over di- and multi-valent anions. The transport of sulfate and phosphate through the anion exchange membranes was negligible over a broad range of electrical current density. However, the transport of divalent cations such as calcium and magnesium increases through monovalent permselective cation exchange membranes with increasing current density. Higher overall salt concentration reduction is achieved around limiting current density while higher normalized salt removal rate in terms of mass of salt per membrane area and applied energy is attained at lower current density because the energy unitization efficiency decreases at higher current density. PMID:23892312

  17. Rat subcutaneous tissue response to calcium silicate containing different arsenic concentrations

    PubMed Central

    MINOTTI, Paloma Gagliardi; ORDINOLA-ZAPATA, Ronald; MIDENA, Raquel Zanin; MARCIANO, Marina Angélica; CAVENAGO, Bruno Cavalini; BRAMANTE, Clovis Monteiro; GARCIA, Roberto Brandão; DUARTE, Marco Antonio Hungaro; de MORAES, Ivaldo Gomes

    2015-01-01

    Objective To evaluate the response of rat subcutaneous tissue in implanted polyethylene tubes that were filled with GMTA Angelus and Portland cements containing different arsenic concentrations. Material and Methods Atomic absorption spectrophotometry was utilized to obtain the values of the arsenic concentration in the materials. Thirty-six rats were divided into 3 groups of 12 animals for each experimental period. Each animal received two implants of polyethylene tubes filled with different test cements and the lateral of the tubes was used as a control group. After 15, 30 and 60 days of implantation, the animals were killed and the specimens were prepared for descriptive and morphometric analysis considering: inflammatory cells, collagen fibers, fibroblasts, blood vessels and other components. The results were analyzed utilizing the Kuskal-Wallis test and the Dunn´s Multiple test for comparison (p<0.05). Results The materials showed, according to atomic absorption spectrophotometry, the following doses of arsenic: GMTA Angelus: 5.01 mg/kg, WPC Irajazinho: 0.69 mg/kg, GPC Minetti: 18.46 mg/kg and GPC Votoran: 10.76 mg/kg. In a 60-day periods, all specimens displayed a neoformation of connective tissue with a structure of fibrocellular aspect (capsule). Control groups and MTA Angelus produced the lower amount of inflammatory reaction and GPC Minetti, the highest reaction. Conclusions There was no direct relationship between the concentration of arsenic present in the composition of the materials and the intensity of the inflammatory reactions. Higher values, as 18.46 mg/kg of arsenic in the cement, produce characteristics of severe inflammation reaction at the 60-day period. The best results were found in MTA angelus. PMID:25075671

  18. Catecholamines - urine

    MedlinePLUS

    Dopamine-urine test; Epinephrine-urine test; Adrenalin-urine test; Urine metanephrine; Normetanephrine; Norepinephrine-urine test; Urine catecholamines; VMA; HVA; Metanephrine; Homovanillic acid (HVA)

  19. Urinary arsenic speciation and its correlation with 8-OHdG in Chinese residents exposed to arsenic through coal burning

    SciTech Connect

    Li, X.; Pi, J.B.; Li, B.; Xu, Y.Y.; Jin, Y.P.; Sun, G.F.

    2008-10-15

    In contrast to arsenicosis caused by consumption of water contaminated by naturally occurring inorganic arsenic, human exposure to this metalloid through coal burning has been rarely reported. In this study, arsenic speciation and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in urine were determined in the Chinese residents exposed to arsenic through coal burning in Guizhou, China, an epidemic area of chronic arsenic poisoning caused by coal burning. The urinary concentrations of inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and total arsenic (tAs) of high-arsenic exposed subjects were significantly higher than those of low-arsenic exposed residents. A biomarker of oxidative DNA damage, urinary 8-OHdG level was significantly higher in high-arsenic exposed subjects than that of low exposed. Significant positive correlations were found between 8-OHdG levels and concentrations of iAs, MMA, DMA and tAs, respectively. In addition, a significant negative correlation was observed between 8-OHdG levels and the secondary methylation ratio (DMA/(MMA + DMA)). The results suggest that chronic arsenic exposure through burning coal rich in arsenic is associated with oxidative DNA damages, and that secondary methylation capacity is potentially related to the susceptibility of individuals to oxidative DNA damage induced by arsenic exposure through coal burning in domestic living.

  20. Geochemical controls of elevated arsenic concentrations in groundwater, Ester Dome, Fairbanks district, Alaska

    USGS Publications Warehouse

    Verplanck, P.L.; Mueller, S.H.; Goldfarb, R.J.; Nordstrom, D.K.; Youcha, E.K.

    2008-01-01

    Ester Dome, an upland area near Fairbanks, Alaska, was chosen for a detailed hydrogeochemical study because of the previously reported elevated arsenic in groundwater, and the presence of a large set of wells amenable to detailed sampling. Ester Dome lies within the Fairbanks mining district, where gold-bearing quartz veins, typically containing 2-3??vol.% sulfide minerals (arsenopyrite, stibnite, and pyrite), have been mined both underground and in open cuts. Gold-bearing veins on Ester Dome occur in shear zones and the sulfide minerals in these veins have been crushed to fine-grained material by syn- or post-mineralization movement. Groundwater at Ester Dome is circumneutral, Ca-HCO3 to Ca-SO4 type, and ranges from dilute (specific conductance of 48????S/cm) to more concentrated (specific conductance as high as 2070????S/cm). In general, solute concentrations increase down hydrologic gradient. Redox species indicate that the groundwaters range from oxic to sub-oxic (low dissolved oxygen, Fe(III) reduction, no SO4 reduction). Waters with the highest Fe concentrations, as high as 10.7??mg/L, are the most anoxic. Dissolved As concentrations range from < 1 to 1160????g/L, with a median value of 146????g/L. Arsenic concentrations are not correlated with specific conductance or Fe concentrations, suggesting that neither groundwater residence time, nor reductive dissolution of iron oxyhydroxides, control the arsenic chemistry. Furthermore, As concentrations do not covary with other constituents that form anions and oxyanions in solution (e.g., HCO3, Mo, F, or U) such that desorption of arsenic from clays or oxides also does not control arsenic mobility. Oxidation of arsenopyrite and dissolution of scorodite, in the near-surface environment appears to be the primary control of dissolved As in this upland area. More specifically, the elevated As concentrations are spatially associated with sulfidized shear zones and localities of gold-bearing quartz veins. Consistent with this interpretation, elevated dissolved Sb concentrations (as high as 59????g/L), also correlated with occurrences of hypogene sulfide minerals, were measured in samples with high dissolved As concentrations.

  1. GSTO and AS3MT genetic polymorphisms and differences in urinary arsenic concentrations among residents in Bangladesh

    PubMed Central

    Rodrigues, Ema G.; Kile, Molly; Hoffman, Elaine; Quamruzzaman, Quazi; Rahman, Mahmuder; Mahiuddin, Golam; Hsueh, Yumei; Christiani, David C.

    2012-01-01

    We determined whether single nucleotide polymorphisms (SNPs) in the glutathione S-transferase omega (GSTO) and arsenic(III)methyltransferase (AS3MT) genes were associated with concentrations of urinary arsenic metabolites among 900 individualswithout skin lesions in Bangladesh. Four SNPs were assessed in these genes. A pathway analysis evaluated the association between urinary arsenic metabolites and SNPs. GSTO1 rs4925 homozygous wild type was significantly associated with higher monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) urinary concentrations, whereas wild type AS3MT rs11191439 had significantly lower levels of AsIII and MMA. Genetic polymorphisms GSTO and As3MT modify arsenic metabolism as evidenced by altered urinary arsenic excretion. PMID:22339537

  2. Vitamin C concentrations in blood plasma, tissues and urine of camels (Camelus dromedarius) in Sudanese herds.

    PubMed

    Mohamed, H E; Beynen, A C

    2002-10-01

    There is suggestive evidence that a low status of ascorbic acid in ruminants is related with decreased disease resistance. In a first attempt to identify conditions in camels that could affect their health, an inventory was made of ascorbic acid (vitamin C) concentrations in plasma and tissues as related to breed, gender, sexual activity and season. A total of 3429 camels were studied and sub-samples were used for selected comparisons. The highest concentrations of ascorbic acid were found in adrenals (152 mg/100 g wet tissue) and the lowest in heart (8 mg/100 g), the levels being unrelated with season. Arabi camels had higher plasma concentrations of ascorbic acid (6.42 microg/ml) than did Anafi and Bishari camels, the latter breed showing the lowest concentrations (3.24 microg/ml). Female camels of the Anafi breed had higher concentrations urinary ascorbic acid than did their male counterparts. It is suggested that in camels the main elimination route of vitamin C is with urine. Female and male Arabi camels that were sexually active had 52 and 23% lower plasma ascorbic acid concentrations than did their sexually inactive counterparts. It is suggested that especially Bishari camels during the breeding season might be sensitive to disease. PMID:12452976

  3. Spatial and Temporal Variations in Arsenic Exposure via Drinking-water in Northern Argentina

    PubMed Central

    Concha, Gabriela; Nermell, Barbro

    2006-01-01

    This study evaluated the spatial, temporal and inter-individual variations in exposure to arsenic via drinking-water in Northern Argentina, based on measurements of arsenic in water, urine, and hair. Arsenic concentrations in drinking-water varied markedly among locations, from <1 to about 200 ?g/L. Over a 10-year period, water from the same source in San Antonio de los Cobres fluctuated within 140 and 220 ?g/L, with no trend of decreasing concentration. Arsenic concentrations in women's urine (3–900 ?g/L, specific weight 1.018 g/mL) highly correlated with concentrations in water on a group level, but showed marked variations between individuals. Arsenic concentrations in hair (range 20–1,500 ?g/kg) rather poorly correlated with urinary arsenic, possibly due to external contamination. Thus, arsenic concentration in urine seems to be a better marker of individual arsenic exposure than concentrations in drinking-water and hair. PMID:17366773

  4. Urine specific gravity test

    MedlinePLUS

    Urine specific gravity is a laboratory test that shows the concentration of all chemical particles in the urine. ... changes to will tell the provider the specific gravity of your urine. The dipstick test gives only ...

  5. A Cross-sectional Study of the Impact of Blood Selenium on Blood and Urinary Arsenic Concentrations in Bangladesh

    PubMed Central

    2013-01-01

    Background Arsenic can naturally occur in the groundwater without an anthropogenic source of contamination. In Bangladesh over 50 million people are exposed to naturally occurring arsenic concentrations exceeding the World Health Organization’s guideline of 10 ?g/L. Selenium and arsenic have been shown to facilitate the excretion of each other in bile. Recent evidence suggests that selenium may play a role in arsenic elimination by forming a selenium-arsenic conjugate in the liver before excretion into the bile. Methods A cross-sectional study of 1601 adults and 287 children was conducted to assess the relationship between blood selenium and urinary and blood arsenic in a study population residing in a moderately arsenic-contaminated rural area in Bangladesh. Results The results of this study indicate a statistically significant inverse relationship between blood selenium and urinary arsenic concentrations in both adult and pediatric populations in rural Bangladesh after adjustment for age, sex, Body Mass Index, plasma folate and B12 (in children), and ever smoking and current betel nut use (in adults). In addition, there appears to be a statistically significant inverse relationship between blood selenium and blood arsenic in children. Conclusions Our results suggest that selenium is inversely associated with biomarkers of arsenic burden in both adults and children. These findings support the hypothesis that Se facilitates the biliary elimination of As, possibly via the putative formation of a Se-As conjugate using a glutathione complex. However, laboratory based studies are needed to provide further evidence to elucidate the presence of Se-As conjugate and its role in arsenic elimination in humans. PMID:23816141

  6. Phthalate metabolites in urine of Chinese young adults: Concentration, profile, exposure and cumulative risk assessment.

    PubMed

    Gao, Chong-Jing; Liu, Li-Yan; Ma, Wan-Li; Ren, Nan-Qi; Guo, Ying; Zhu, Ning-Zheng; Jiang, Ling; Li, Yi-Fan; Kannan, Kurunthachalam

    2016-02-01

    Phthalates are widely used in consumer products. People are frequently exposed to phthalates due to their applications in daily life. In this study, 14 phthalate metabolites were analyzed in 108 urine samples collected from Chinese young adults using high-performance liquid chromatography-tandem mass spectrometry. The total concentrations of 14 phthalate metabolites ranged from 71.3 to 2670ng/mL, with the geometric mean concentration of 306ng/mL. mBP and miBP were the two most abundant compounds, accounting for 48% of the total concentrations. Principal component analysis suggested two major sources of phthalates: one dominated by the DEHP metabolites and one by the group of mCPP, mBP and miBP metabolites. The estimated daily intakes of DMP, DEP, DBP, DiBP and DEHP were 1.68, 2.14, 4.12, 3.52 and 1.26-2.98?g/kg-bw/day, respectively. In a sensitivity analysis, urinary concentration and body weight were the most influential variables for human exposure estimation. Furthermore, cumulative risk for hazard quotient (HQ) and hazard index (HI) were evaluated. Nearly half of Chinese young adults had high HI values exceeding the safe threshold. This is the first study on the occurrence and human exposure to urinary phthalate metabolites with Chinese young adults. PMID:26575634

  7. Reagent- and separation-free measurements of urine creatinine concentration using stamping surface enhanced Raman scattering (S-SERS)

    PubMed Central

    Li, Ming; Du, Yong; Zhao, Fusheng; Zeng, Jianbo; Mohan, Chandra; Shih, Wei-Chuan

    2015-01-01

    We report a novel reagent- and separation-free method for urine creatinine concentration measurement using stamping surface enhanced Raman scattering (S-SERS) technique with nanoporous gold disk (NPGD) plasmonic substrates, a label-free, multiplexed molecular sensing and imaging technique recently developed by us. The performance of this new technology is evaluated by the detection and quantification of creatinine spiked in three different liquids: creatinine in water, mixture of creatinine and urea in water, and creatinine in artificial urine within physiologically relevant concentration ranges. Moreover, the potential application of our method is demonstrated by creatinine concentration measurements in urine samples collected from a mouse model of nephritis. The limit of detection of creatinine was 13.2 nM (0.15 µg/dl) and 0.68 mg/dl in water and urine, respectively. Our method would provide an alternative tool for rapid, cost-effective, and reliable urine analysis for non-invasive diagnosis and monitoring of renal function. PMID:25798309

  8. Evaluation of Urine Aquaporin 1 and Perilipin 2 Concentrations as Biomarkers to Screen for Renal Cell Carcinoma

    PubMed Central

    Morrissey, Jeremiah J.; Mellnick, Vincent M.; Luo, Jinquin; Siegel, Marilyn J.; Figenshau, R. Sherburne; Bhayani, Sam; Kharasch, Evan D.

    2015-01-01

    IMPORTANCE Early detection of small asymptomatic kidney tumors presages better patient outcome. Incidental discovery of asymptomatic renal tumors by abdominal imaging is expensive and cannot reliably distinguish benign from malignant tumors. OBJECTIVE This investigation evaluated the clinical utility, sensitivity and specificity of urine aquaporin-1 (AQP1) and perilipin-2 (PLIN2) concentrations as unique noninvasive biomarkers to diagnose malignant clear cell or papillary renal cell carcinoma (RCC) in a screening paradigm. DESIGN, SETTING, AND PARTICIPANTS Urine samples were obtained from 720 patients undergoing routine abdominal CT (screening population), 80 healthy controls and 19 patients with pathologically confirmed RCC. Urine AQP1 and PLIN2 concentrations were measured by sensitive and specific ELISA and Western blot procedures, respectively. MAIN OUTCOMES AND MEASURES AQP1 and PLIN2 were measured prospectively in a screening paradigm in an otherwise asymptomatic population. The absence or presence of a renal mass and of RCC, were verified by abdominal computed tomography (CT) and by post-nephrectomy pathologic diagnosis, respectively. RESULTS Median urine AQP1 and PLIN2 concentrations in patients with known RCC were more than 12-fold higher (P<0.0001 each) than controls and the screening population. The area under the receiver operating characteristic curve for urine AQP1 and PLIN2 concentrations individually or in combination was ?0.92, with ?85% sensitivity and ?87% specificity compared with control or screening patients. Three of the 720 screening patients had biomarker concentrations suggestive of RCC and were found to have an imaged renal mass by CT. Two patients, evaluated further, had RCC. CONCLUSIONS AND RELEVANCE These results demonstrate the clinical utility, specificity and sensitivity of urine AQP1 and PLIN2 to diagnose RCC. These novel tumor-specific proteins have high clinical validity and substantial potential as specific diagnostic and screening biomarkers for clear cell and papillary RCC, and in the differential diagnosis of imaged renal masses. PMID:26181025

  9. Comparison of the precision of seven analytical methods for the H2O concentration in human serum and urine.

    PubMed

    de Jong, G M; Huizenga, J R; Wolthers, B G; Jansen, H G; Uges, D R; Hindriks, F R; Gips, C H

    1987-07-15

    In order to calculate a true renal H2O clearance (U X V/P), serum and urine H2O concentrations have to be known. In this investigation we compared the precision (repeatability) and the ease of performance of 7 H2O assays in human serum and urine. The 3 gravimetric assays (oven-drying, freeze-drying or freeze-drying as well as oven-drying) had a very high precision (coefficients of variation (CV) 0.2-0.4%) and were easy to perform. The precision of mass spectrometry, gas chromatography and titrimetry (Karl Fischer) was better in urine than in serum (ranges of CV 1.2-1.5% in urine vs. 2.4-4.3% in serum), but the precision of osmometry was better in serum than in urine (CV 1.0 vs. 1.6%). Accuracy was not determined as storage effects at 4 degrees C and at -20 degrees C caused insuperable logistic problems. Only small sample volumes are used in titrimetry and gas chromatography, making them more suitable for determinations in babies and animal studies. With titrimetry determinations can be done in a short time. The gravimetric assays appear to reflect the true H2O content of serum and urine, thus enabling calculation of the true renal H2O clearance, which can be of clinical importance in liver, renal and cardiac disease. PMID:3304719

  10. Predicting arsenic concentrations in the porewaters of buried uranium mill tailings

    NASA Astrophysics Data System (ADS)

    Langmuir, Donald; Mahoney, John; MacDonald, Anjali; Rowson, John

    1999-10-01

    The proposed JEB Tailings Management Facility (TMF) to be emplaced below the groundwater table in northern Saskatchewan, Canada, will contain uranium mill tailings from McClean Lake, Midwest and Cigar Lake ore bodies, which are high in arsenic (up to 10%) and nickel (up to 5%). A serious concern is the possibility that high arsenic and nickel concentrations may be released from the buried tailings, contaminating adjacent groundwaters and a nearby lake. Laboratory tests and geochemical modeling were performed to examine ways to reduce the arsenic and nickel concentrations in TMF porewaters so as to minimize such contamination from tailings buried for 50 years and longer. The tests were designed to mimic conditions in the mill neutralization circuit (3 hr tests at 25°C), and in the TMF after burial (5-49 day aging tests). The aging tests were run at, 50, 25 and 4°C (the temperature in the TMF). In order to optimize the removal of arsenic by adsorption and precipitation, ferric sulfate was added to tailings raffinates having Fe/As ratios of less that 3-5. The acid raffinates were then neutralized by addition of slaked lime to nominal pH values of 7, 8, or 9. Analysis and modeling of the test results showed that with slaked lime addition to acid tailings raffinates, relatively amorphous scorodite (ferric arsenate) precipitates near pH 1, and is the dominant form of arsenate in slake limed tailings solids except those high in Ni and As and low in Fe, in which cabrerite-annabergite (Ni, Mg, Fe(II) arsenate) may also precipitate near pH 5-6. In addition to the arsenate precipitates, smaller amounts of arsenate are also adsorbed onto tailings solids. The aging tests showed that after burial of the tailings, arsenic concentrations may increase with time from the breakdown of the arsenate phases (chiefly scorodite). However, the tests indicate that the rate of change decreases and approaches zero after 72 hrs at 25°C, and may equal zero at all times in the TMF at 4°C. Consistent with a kinetic model that describes the rate of breakdown of scorodite to form hydrous ferric oxide, the rate of release of dissolved arsenate to tailings porewaters from slake limed tailings: (1) is proportional to pH above pH 6-7; (2) decreases exponentially as the total molar Fe/As ratio of tailings raffinates is increased from 1/1 to greater than 5/1; and (3) is proportional to temperature with an average Arrhenius activation energy of 13.4 ± 4.2 kcal/mol. Study results suggest that if ferric sulfate and slaked lime are added in the tailings neutralization circuit to give a raffinate Fe/As molar ratio of at least 3-5 and a nominal (initial) pH of 8 (final pH of 7-8), arsenic and nickel concentrations of 2 mg/L or less, are probable in porewaters of individual tailings in the TMF for 50 to 10,000 yrs after tailings disposal. However, the tailings will be mixed in the TMF, which will contain about 35% tailings with Fe/As = 3.0, and 65% tailings with Fe/As = 5.0-7.7. Thus, it seems likely that average arsenic pore water concentrations in the TMF may not exceed 1 mg/L.

  11. Impacts of nitric oxide and superoxide on renal medullary oxygen transport and urine concentration.

    PubMed

    Fry, Brendan C; Edwards, Aurélie; Layton, Anita T

    2015-05-01

    The goal of this study was to investigate the reciprocal interactions among oxygen (O2), nitric oxide (NO), and superoxide (O2 (-)) and their effects on medullary oxygenation and urinary output. To accomplish that goal, we developed a detailed mathematical model of solute transport in the renal medulla of the rat kidney. The model represents the radial organization of the renal tubules and vessels, which centers around the vascular bundles in the outer medulla and around clusters of collecting ducts in the inner medulla. Model simulations yield significant radial gradients in interstitial fluid oxygen tension (Po2) and NO and O2 (-) concentration in the OM and upper IM. In the deep inner medulla, interstitial fluid concentrations become much more homogeneous, as the radial organization of tubules and vessels is not distinguishable. The model further predicts that due to the nonlinear interactions among O2, NO, and O2 (-), the effects of NO and O2 (-) on sodium transport, osmolality, and medullary oxygenation cannot be gleaned by considering each solute's effect in isolation. An additional simulation suggests that a sufficiently large reduction in tubular transport efficiency may be the key contributing factor, more so than oxidative stress alone, to hypertension-induced medullary hypoxia. Moreover, model predictions suggest that urine Po2 could serve as a biomarker for medullary hypoxia and a predictor of the risk for hospital-acquired acute kidney injury. PMID:25651567

  12. Multi-trace element levels and arsenic speciation in urine of e-waste recycling workers from Agbogbloshie, Accra in Ghana.

    PubMed

    Asante, Kwadwo Ansong; Agusa, Tetsuro; Biney, Charles Augustus; Agyekum, William Atuobi; Bello, Mohammed; Otsuka, Masanari; Itai, Takaaki; Takahashi, Shin; Tanabe, Shinsuke

    2012-05-01

    To understand human contamination by multi-trace elements (TEs) in electrical and electronic waste (e-waste) recycling site at Agbogbloshie, Accra in Ghana, this study analyzed TEs and As speciation in urine of e-waste recycling workers. Concentrations of Fe, Sb, and Pb in urine of e-waste recycling workers were significantly higher than those of reference sites after consideration of interaction by age, indicating that the recycling workers are exposed to these TEs through the recycling activity. Urinary As concentration was relatively high, although the level in drinking water was quite low. Speciation analysis of As in human urine revealed that arsenobetaine and dimethylarsinic acid were the predominant As species and concentrations of both species were positively correlated with total As concentration as well as between each other. These results suggest that such compounds may be derived from the same source, probably fish and shellfish and greatly influence As exposure levels. To our knowledge, this is the first study on human contamination resulting from the primitive recycling of e-waste in Ghana. This study will contribute to the knowledge about human exposure to trace elements from an e-waste site in a less industrialized region so far scantly covered in the literature. PMID:22446112

  13. Inorganic arsenic exposure and type 2 diabetes mellitus in Mexico

    SciTech Connect

    Coronado-Gonzalez, Jose Antonio; Razo, Luz Maria del; Garcia-Vargas, Gonzalo; Sanmiguel-Salazar, Francisca; Escobedo-de la Pena, Jorge . E-mail: jorgeep@servidor.unam.mx

    2007-07-15

    Inorganic arsenic exposure in drinking water has been recently related to diabetes mellitus. To evaluate this relationship the authors conducted in 2003, a case-control study in an arseniasis-endemic region from Coahuila, a northern state of Mexico with a high incidence of diabetes. The present analysis includes 200 cases and 200 controls. Cases were obtained from a previous cross-sectional study conducted in that region. Diagnosis of diabetes was established following the American Diabetes Association criteria, with two fasting glucose values {>=}126 mg/100 ml ({>=}7.0 mmol/l) or a history of diabetes treated with insulin or oral hypoglycemic agents. The next subject studied, subsequent to the identification of a case in the cross-sectional study was taken as control. Inorganic arsenic exposure was measured through total arsenic concentrations in urine, measured by hydride-generation atomic absorption spectrophotometry. Subjects with intermediate total arsenic concentration in urine (63.5-104 {mu}g/g creatinine) had two-fold higher risk of having diabetes (odds ratio=2.16; 95% confidence interval: 1.23, 3.79), but the risk was almost three times greater in subjects with higher concentrations of total arsenic in urine (odds ratio=2.84; 95% confidence interval: 1.64, 4.92). This data provides additional evidence that inorganic arsenic exposure may be diabetogenic.

  14. Assessment of Arsenic Exposure by Measurement of Urinary Speciated Inorganic Arsenic Metabolites in Workers in a Semiconductor Manufacturing Plant

    PubMed Central

    2013-01-01

    Objectives The purpose of this study was to evaluate the exposure to arsenic in preventive maintenance (PM) engineers in a semiconductor industry by detecting speciated inorganic arsenic metabolites in the urine. Methods The exposed group included 8 PM engineers from the clean process area and 13 PM engineers from the ion implantation process area; the non-exposed group consisted of 14 office workers from another company who were not occupationally exposed to arsenic. A spot urine specimen was collected from each participant for the detection and measurement of speciated inorganic arsenic metabolites. Metabolites were separated by high performance liquid chromatography-inductively coupled plasma spectrometry-mass spectrometry. Results Urinary arsenic metabolite concentrations were 1.73 g/L, 0.76 g/L, 3.45 g/L, 43.65 g/L, and 51.32 g/L for trivalent arsenic (As3+), pentavalent arsenic (As5+), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and total inorganic arsenic metabolites (As3+ + As5+ + MMA?+?DMA), respectively, in clean process PM engineers. In ion implantation process PM engineers, the concentrations were 1.74 g/L, 0.39 g/L, 3.08 g/L, 23.17 g/L, 28.92 g/L for As3+, As5+, MMA, DMA, and total inorganic arsenic metabolites, respectively. Levels of urinary As3+, As5+, MMA, and total inorganic arsenic metabolites in clean process PM engineers were significantly higher than that in the non-exposed group. Urinary As3+ and As5+ levels in ion implantation process PM engineers were significantly higher than that in non-exposed group. Conclusion Levels of urinary arsenic metabolites in PM engineers from the clean process and ion implantation process areas were higher than that in office workers. For a complete assessment of arsenic exposure in the semiconductor industry, further studies are needed. PMID:24472712

  15. Plasma and urine dimercaptopropanesulfonate concentrations after dermal application of transdermal DMPS (TD-DMPS).

    PubMed

    Cohen, Jennifer P; Ruha, Anne-Michelle; Curry, Steven C; Biswas, Kallol; Westenberger, Benjamin; Ye, Wei; Caldwell, Kathleen L; Lovecchio, Frank; Burkhart, Keith; Samia, Nasr

    2013-03-01

    2,3-Dimercaptopropane-1-sulfonate (DMPS) is a metal chelator approved in Europe for oral or intravenous use for heavy metal poisoning. Transdermally applied DMPS (TD-DMPS) is used by some alternative practitioners to treat autism, despite the absence of evidence for its efficacy. We found no literature evaluating the pharmacokinetics of the transdermal route of delivery or the ability of TD-DMPS to enhance urinary mercury elimination. We hypothesized that TD-DMPS is not absorbed. Eight adult volunteers underwent application of 1.5-3 drops/kg of TD-DMPS. Subjects provided 12-h urine collections the day before and day of application. Subjects underwent blood draws at 0, 30, 60,90, 120, and 240 min after TD-DMPS application. Plasma and urine were assayed for the presence of DMPS. Urine was assayed for any change in urinary mercury excretion after DMPS. One control subject ingested 250 mg of oral DMPS and underwent the same urine and blood collections and analyses. No subject had detectable urine DMPS or increased urine mercury excretion after TD-DMPS. One subject had detectable levels of DMPS in the 30-min plasma sample, suspected to be contamination. All other samples for that subject and the other seven subjects showed no detectable plasma DMPS. The control subject had detectable urine and plasma DMPS levels and increased urine mercury excretion. These results indicate that TD-DMPS is not absorbed. There was no increase in urine mercury excretion after TD-DMPS. Our results argue that TD-DMPS is an ineffective metal chelator. PMID:23143832

  16. Post mortem concentrations of endogenous gamma hydroxybutyric acid (GHB) and in vitro formation in stored blood and urine samples.

    PubMed

    Busardò, Francesco Paolo; Bertol, Elisabetta; Vaiano, Fabio; Baglio, Giovanni; Montana, Angelo; Barbera, Nunziata; Zaami, Simona; Romano, Guido

    2014-10-01

    Gamma-hydroxybutyrate (GHB) is a central nervous system depressant, primarily used as a recreational drug of abuse with numerous names. It has also been involved in various instances of drug-facilitated sexual assault due to its potential incapacitating effects. The first aim of this paper is to measure the post-mortem concentration of endogenous GHB in whole blood and urine samples of 30 GHB free-users, who have been divided according to the post-mortem interval (PMI) in three groups (first group: 24-36h; second group: 37-72h; third group: 73-192h), trying to evaluate the role of PMI in affecting post mortem levels. Second, the Authors have evaluated the new formation of GHB in vitro in blood and urine samples of the three groups, which have been stored at -20°C, 4°C and 20°C over a period of one month. The concentrations were measured by GC-MS after liquid-liquid extraction according to the method validated and published by Elliot (For. Sci. Int., 2003). For urine samples, GHB concentrations were creatinine-normalized. In the first group the GHB mean concentration measured after autopsy was: 2.14mg/L (range 0.54-3.21mg/L) in blood and 3.90mg/g (range 0.60-4.81mg/g) in urine; in the second group it was: 5.13mg/L (range 1.11-9.60mg/L) in blood and 3.93mg/g (range 0.91-7.25mg/g) in urine; in the third group it was: 11.8mg/L (range 3.95-24.12mg/L) in blood and 9.83mg/g (range 3.67-21.90mg/g) in urine. The results obtained in blood and urine samples showed a statistically significant difference among groups (p<0.001) in the first analysis performed immediately after autopsy. Throughout the period of investigation up to 4 weeks, the comparison of storage temperatures within each group showed in blood and urine samples a mean difference at 20°C compared to -20°C not statistically significant at the 10% level. These findings allow us to affirm that the PMI strongly affects the post mortem production of GHB in blood and urine samples. Regarding the new formation of GHB in vitro both in blood and urine samples of the three groups, which have been stored at -20°C, 4°C and 20°C over a period of one month, although there was no significant increases of GHB levels throughout the period of investigation, the lowest increases were found both in blood and urine at -20°C, therefore we recommend the latter as optimal storage temperature. PMID:25123534

  17. The evolutionary origin of the vasopressin/V2-type receptor/aquaporin axis and the urine-concentrating mechanism.

    PubMed

    Juul, Kristian Vinter

    2012-08-01

    In this mini-review, current evidence for how the vasopressin/V2-type receptor/aquaporin axis developed co-evolutionary as a crucial part of the urine-concentrating mechanism will be presented. The present-day human kidney, allowing the concentration of urine up to a maximal osmolality around 1200 mosmol kg(-1)-or urine to plasma osmolality ratio around 4-with essentially no sodium secreted is the result of up to 3 billion years evolution. Moving from aquatic to terrestrial habitats required profound changes in kidney morphology, most notable the loops of Henle modifying the kidneys from basically a water excretory system to a water conserving system. Vasopressin-like molecules has during the evolution played a significant role in body fluid homeostasis, more specifically, the osmolality of body liquids by controlling the elimination/reabsorption of fluid trough stimulating V2-type receptors to mobilize aquaporin water channels in the renal collector tubules. Recent evidence supports that all components of the vasopressin/V2-type receptor/aquaporin axis can be traced back to early precursors in evolutionary history. The potential clinical and pharmacological implications of a better phylogenetic understanding of these biological systems so essential for body fluid homeostasis relates to any pathological aspects of the urine-concentrating mechanism, in particular deficiencies of any part of the vasopressin-V2R-AQP2 axis causing central or nephrogenic diabetes insipidus-and for broader patient populations also in preventing and treating disturbances in human circadian regulation of urine volume and osmolality that may lead to enuresis and nocturia. PMID:22374125

  18. Arsenic in groundwater in six districts of West Bengal, India.

    PubMed

    Das, D; Samanta, G; Mandal, B K; Roy Chowdhury, T; Chanda, C R; Chowdhury, P P; Basu, G K; Chakraborti, D

    1996-03-01

    Arsenic in groundwater above the WHO maximum permissible limit of 0.05 mg l(-1) has been found in six districts of West Bengal covering an area of 34 000 km(2) with a population of 30 million. At present, 37 administrative blocks by the side of the River Ganga and adjoining areas are affected. Areas affected by arsenic contamination in groundwater are all located in the upper delta plain, and are mostly in the abandoned meander belt. More than 800 000 people from 312 villages/wards are drinking arsenic contaminated water and amongst them at least 175 000 people show arsenical skin lesions. Thousands of tube-well water in these six districts have been analysed for arsenic species. Hair, nails, scales, urine, liver tissue analyses show elevated concentrations of arsenic in people drinking arsenic-contaminated water for a longer period. The source of the arsenic is geological. Bore-hole sediment analyses show high arsenic concentrations in only few soil layers which is found to be associated with iron-pyrites. Various social problems arise due to arsenical skin lesions in these districts. Malnutrition, poor socio-economic conditions, illiteracy, food habits and intake of arsenic-contaminated water for many years have aggravated the arsenic toxicity. In all these districts, major water demands are met from groundwater and the geochemical reaction, caused by high withdrawal of water may be the cause of arsenic leaching from the source. If alternative water resources are not utilised, a good percentage of the 30 million people of these six districts may suffer from arsenic toxicity in the near future. PMID:24194364

  19. Oxidative DNA damage and repair in children exposed to low levels of arsenic in utero and during early childhood: Application of salivary and urinary biomarkers

    SciTech Connect

    Hinhumpatch, Pantip; Navasumrit, Panida; Chaisatra, Krittinee; Promvijit, Jeerawan; Mahidol, Chulabhorn; Ruchirawat, Mathuros

    2013-12-15

    The present study aimed to assess arsenic exposure and its effect on oxidative DNA damage and repair in young children exposed in utero and continued to live in arsenic-contaminated areas. To address the need for biological specimens that can be acquired with minimal discomfort to children, we used non-invasive urinary and salivary-based assays for assessing arsenic exposure and early biological effects that have potentially serious health implications. Levels of arsenic in nails showed the greatest magnitude of difference between exposed and control groups, followed by arsenic concentrations in saliva and urine. Arsenic levels in saliva showed significant positive correlations with other biomarkers of arsenic exposure, including arsenic accumulation in nails (r = 0.56, P < 0.001) and arsenic concentration in urine (r = 0.50, P < 0.05). Exposed children had a significant reduction in arsenic methylation capacity indicated by decreased primary methylation index and secondary methylation index in both urine and saliva samples. Levels of salivary 8-OHdG in exposed children were significantly higher (? 4-fold, P < 0.01), whereas levels of urinary 8-OHdG excretion and salivary hOGG1 expression were significantly lower in exposed children (? 3-fold, P < 0.05), suggesting a defect in hOGG1 that resulted in ineffective cleavage of 8-OHdG. Multiple regression analysis results showed that levels of inorganic arsenic (iAs) in saliva and urine had a significant positive association with salivary 8-OHdG and a significant negative association with salivary hOGG1 expression. - Highlights: • The effects of arsenic exposure in utero and through early childhood were studied. • Arsenic-exposed children had a reduction in arsenic methylation capacity. • Exposed children had more DNA damage, observed as elevated salivary 8-OHdG. • Lower salivary hOGG1 in exposed children indicated impairment of 8-OHdG repair. • Salivary and urinary 8-OHdG levels were discordant.

  20. Reduction in urinary arsenic with bottled-water intervention.

    PubMed

    Josyula, Arun B; McClellen, Hannah; Hysong, Tracy A; Kurzius-Spencer, Margaret; Poplin, Gerald S; Stürup, Stefan; Burgess, Jefferey L

    2006-09-01

    The study was conducted to measure the effectiveness of providing bottled water in reducing arsenic exposure. Urine, tap-water and toenail samples were collected from non-smoking adults residing in Ajo (n=40) and Tucson (n=33), Arizona, USA. The Ajo subjects were provided bottled water for 12 months prior to re-sampling. The mean total arsenic (microg/L) in tap-water was 20.3+/-3.7 in Ajo and 4.0+/-2.3 in Tucson. Baseline urinary total inorganic arsenic (microg/L) was significantly higher among the Ajo subjects (n=40, 29.1+/-20.4) than among the Tucson subjects (n=32, 11.0+/-12.0, p<0.001), as was creatinine-adjusted urinary total inorganic arsenic (microg/g) (35.5+/-25.2 vs 13.2+/-9.3, p<0.001). Baseline concentrations of arsenic (microg/g) in toenails were also higher among the Ajo subjects (0.51+/-0.72) than among the Tucson subjects (0.17+/-0.21) (p<0.001). After the intervention, the mean urinary total inorganic arsenic in Ajo (n=36) dropped by 21%, from 29.4+/-21.1 to 23.2+/-23.2 (p=0.026). The creatinine-adjusted urinary total inorganic arsenic and toenail arsenic levels did not differ significantly with the intervention. Provision of arsenic-free bottled water resulted in a modest reduction in urinary total inorganic arsenic. PMID:17366771

  1. Arsenic and Chronic Kidney Disease: A Systematic Review

    PubMed Central

    Zheng, Laura; Kuo, Chin-Chi; Fadrowski, Jeffrey; Agnew, Jackie; Weaver, Virginia M.; Navas-Acien, Ana

    2014-01-01

    In epidemiologic studies, high arsenic exposure has been associated with adverse kidney disease outcomes. We performed a systematic review of the epidemiologic evidence of the association between arsenic and various kidney disease outcomes. The search period was January 1966 through January 2014. Twenty-five papers (comprising 24 studies) meeting the search criteria were identified and included in this review. In most studies, arsenic exposure was assessed by measurement of urine concentrations or with an ecological indicator. There was a generally positive association between arsenic and albuminuria and proteinuria outcomes. There was mixed evidence of an association between arsenic exposure and chronic kidney disease (CKD), ?-2 microglobulin (?2MG), and N-acetyl-?-D-glucosaminidase (NAG) outcomes. There was evidence of a positive association between arsenic exposure and kidney disease mortality. Assessment of a small number of studies with three or more categories showed a clear dose-response association between arsenic and prevalent albuminuria and proteinuria, but not with CKD outcomes. Eight studies lacked adjustment for possible confounders, and two had small study populations. The evaluation of the causality of the association between arsenic exposure and kidney disease outcomes is limited by the small number of studies, lack of study quality, and limited prospective evidence. Because of the high prevalence of arsenic exposure worldwide, there is a need for additional well-designed epidemiologic and mechanistic studies of arsenic and kidney disease outcomes. PMID:25221743

  2. Fate of arsenic in swine waste from concentrated animal feeding operations.

    PubMed

    Makris, Konstantinos C; Quazi, Shahida; Punamiya, Pravin; Sarkar, Dibyendu; Datta, Rupali

    2008-01-01

    Swine diets are often supplemented by organoarsenicals, such as 3-nitro-4-hydroxyphenylarsonic acid (roxarsone) to treat animal diseases and promote growth. Recent work reported roxarsone degradation under anaerobic conditions in poultry litter, but no such data exist for swine wastes typically stored in lagoons nearby concentrated animal feeding operations (CAFOs). The objectives of this study were to: (i) characterize a suite of swine wastes collected from 19 randomly selected CAFOs for soluble arsenate [As(V)], arsenite [As(III)], dimethylarsenic acid (DMA), monomethylarsonic acid (MMA), 3-amino-4-hydroxyphenylarsonic acid (3-HPPA), p-arsanilic acid, and roxarsone, and (ii) determine the geochemical fate of roxarsone in storage lagoons nearby CAFOs. Swine waste suspensions were spiked with roxarsone and incubated under dark/light and aerobic/anaerobic conditions to monitor roxarsone degradation kinetics. Arsenic speciation analysis using liquid chromatography and inductively coupled plasma mass spectrometry (LC-ICPMS) illustrated the prevalence of As(V) in swine waste suspensions. Roxarsone underwent degradation to either organoarsenicals (3-HPPA) or As(V) and a number of unidentified metabolites. Roxarsone degradation occurred under anaerobic conditions for suspensions low in solids content, but suspensions higher in solids content facilitated roxarsone degradation under both anaerobic and aerobic conditions. Increased solids content enhanced roxarsone degradation kinetics under aerobic conditions. According to current waste storage and sampling practices, arsenic in swine wastes stored in lagoons has been overlooked as a possible environmental health issue. PMID:18574196

  3. Concentration of lead, mercury, cadmium, aluminum, arsenic and manganese in umbilical cord blood of Jamaican newborns.

    PubMed

    Rahbar, Mohammad H; Samms-Vaughan, Maureen; Dickerson, Aisha S; Hessabi, Manouchehr; Bressler, Jan; Desai, Charlene Coore; Shakespeare-Pellington, Sydonnie; Reece, Jody-Ann; Morgan, Renee; Loveland, Katherine A; Grove, Megan L; Boerwinkle, Eric

    2015-05-01

    The objective of this study was to characterize the concentrations of lead, mercury, cadmium, aluminum, and manganese in umbilical cord blood of Jamaican newborns and to explore the possible association between concentrations of these elements and certain birth outcomes. Based on data from 100 pregnant mothers and their 100 newborns who were enrolled from Jamaica in 2011, the arithmetic mean (standard deviation) concentrations of cord blood lead, mercury, aluminum, and manganese were 0.8 (1.3 ?g/dL), 4.4 (2.4 ?g/L), 10.9 (9.2 ?g/L), and 43.7 (17.7 ?g/L), respectively. In univariable General Linear Models, the geometric mean cord blood aluminum concentration was higher for children whose mothers had completed their education up to high school compared to those whose mothers had any education beyond high school (12.2 ?g/L vs. 6.4 ?g/L; p < 0.01). After controlling for maternal education level and socio-economic status (through ownership of a family car), the cord blood lead concentration was significantly associated with head circumference (adjusted p < 0.01). Our results not only provide levels of arsenic and the aforementioned metals in cord blood that could serve as a reference for the Jamaican population, but also replicate previously reported significant associations between cord blood lead concentrations and head circumference at birth in other populations. PMID:25915835

  4. Concentration of Lead, Mercury, Cadmium, Aluminum, Arsenic and Manganese in Umbilical Cord Blood of Jamaican Newborns

    PubMed Central

    Rahbar, Mohammad H.; Samms-Vaughan, Maureen; Dickerson, Aisha S.; Hessabi, Manouchehr; Bressler, Jan; Coore Desai, Charlene; Shakespeare-Pellington, Sydonnie; Reece, Jody-Ann; Morgan, Renee; Loveland, Katherine A.; Grove, Megan L.; Boerwinkle, Eric

    2015-01-01

    The objective of this study was to characterize the concentrations of lead, mercury, cadmium, aluminum, and manganese in umbilical cord blood of Jamaican newborns and to explore the possible association between concentrations of these elements and certain birth outcomes. Based on data from 100 pregnant mothers and their 100 newborns who were enrolled from Jamaica in 2011, the arithmetic mean (standard deviation) concentrations of cord blood lead, mercury, aluminum, and manganese were 0.8 (1.3 ?g/dL), 4.4 (2.4 ?g/L), 10.9 (9.2 ?g/L), and 43.7 (17.7 ?g/L), respectively. In univariable General Linear Models, the geometric mean cord blood aluminum concentration was higher for children whose mothers had completed their education up to high school compared to those whose mothers had any education beyond high school (12.2 ?g/L vs. 6.4 ?g/L; p < 0.01). After controlling for maternal education level and socio-economic status (through ownership of a family car), the cord blood lead concentration was significantly associated with head circumference (adjusted p < 0.01). Our results not only provide levels of arsenic and the aforementioned metals in cord blood that could serve as a reference for the Jamaican population, but also replicate previously reported significant associations between cord blood lead concentrations and head circumference at birth in other populations. PMID:25915835

  5. ARSENIC URINARY METABOLITES: BIOMARKER STUDY

    EPA Science Inventory

    A population of adults and children with ranges of 10 to 300 g/l of arsenic in their drinking water will have their urine analyzed for total and speciated arsenic. A sample of 30 families will be selected based on tap water analyses for arsenic. This sample will comprise 50% adul...

  6. Airborne arsenic and urinary excretion of arsenic metabolites during boiler cleaning operations in a Slovak coal-fired power plant.

    PubMed Central

    Yager, J W; Hicks, J B; Fabianova, E

    1997-01-01

    Little information is available on the relationship between occupational exposure to inorganic arsenic in coal fly ash and urinary excretion of arsenic metabolites. This study ws undertaken in a coal-fired power plant in Slovakia during a routine maintenance outage. Arsenic was measured in the breathing zone of workers during 5 consecutive workdays, and urine samples were obtained for analysis of arsenic metabolites--inorganic arsenic (Asi), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA)--prior to the start of each shift. Results from a small number of cascade impactor air samples indicated that approximately 90% of total particle mass and arsenic was present in particle size fractions >/= 3.5 micron. The 8-hr time-weighted average (TWA) mean arsenic air concentration was 48.3 microg/m3 (range 0.17-375.2) and the mean sum of urinary arsenic (SigmaAs) metabolites was 16.9 microg As/g creatinine (range 2.6-50.8). For an 8-hr TWA of 10 microg/m3 arsenic from coal fly ash, the predicted mean concentration of the SigmaAs urinary metabolites was 13.2 microg As/G creatinine [95% confidence interval (CI), 10.1-16.3). Comparisons with previously published studies of exposure to arsenic trioxide vapors and dusts in copper smelters suggest that bioavailability of arsenic from airborne coal fly ash (as indicated by urinary excretion) is about one-third that seen in smelters and similar settings. Arsenic compound characteristics, matrix composition, and particle size distribution probably play major roles in determining actual uptake of airborne arsenic. Images Figure 1. A Figure 1. B Figure 2. PMID:9347899

  7. Nephron-specific deletion of the prorenin receptor causes a urine concentration defect.

    PubMed

    Ramkumar, Nirupama; Stuart, Deborah; Calquin, Matias; Quadri, Syed; Wang, Shuping; Van Hoek, Alfred N; Siragy, Helmy M; Ichihara, Atsuhiro; Kohan, Donald E

    2015-07-01

    The prorenin receptor (PRR), a recently discovered component of the renin-angiotensin system, is expressed in the nephron in general and the collecting duct in particular. However, the physiological significance of nephron PRR remains unclear, partly due to developmental abnormalities associated with global or renal-specific PRR gene knockout (KO). Therefore, we developed mice with inducible nephron-wide PRR deletion using Pax8-reverse tetracycline transactivator and LC-1 transgenes and loxP flanked PRR alleles such that ablation of PRR occurs in adulthood, after induction with doxycycline. Nephron-specific PRR KO mice have normal survival to ?1 yr of age and no renal histological defects. Compared with control mice, PRR KO mice had 65% lower medullary PRR mRNA and protein levels and markedly diminished renal PRR immunofluorescence. During both normal water intake and mild water restriction, PRR KO mice had significantly lower urine osmolality, higher water intake, and higher urine volume compared with control mice. No differences were seen in urine vasopressin excretion, urine Na(+) and K(+) excretion, plasma Na(+), or plasma osmolality between the two groups. However, PRR KO mice had reduced medullary aquaporin-2 levels and arginine vasopressin-stimulated cAMP accumulation in the isolated renal medulla compared with control mice. Taken together, these results suggest nephron PRR can potentially modulate renal water excretion. PMID:25995108

  8. Maps of estimated nitrate and arsenic concentrations in basin-fill aquifers of the southwestern United States

    USGS Publications Warehouse

    Beisner, Kimberly R.; Anning, David W.; Paul, Angela P.; McKinney, Tim S.; Huntington, Jena M.; Bexfield, Laura M.; Thiros, Susan A.

    2012-01-01

    Human-health concerns and economic considerations associated with meeting drinking-water standards motivated a study of the vulnerability of basin-fill aquifers to nitrate contamination and arsenic enrichment in the southwestern United States. Statistical models were developed by using the random forest classifier algorithm to predict concentrations of nitrate and arsenic across a model grid representing about 190,600 square miles of basin-fill aquifers in parts of Arizona, California, Colorado, Nevada, New Mexico, and Utah. The statistical models, referred to as classifiers, reflect natural and human-related factors that affect aquifer vulnerability to contamination and relate nitrate and arsenic concentrations to explanatory variables representing local- and basin-scale measures of source and aquifer susceptibility conditions. Geochemical variables were not used in concentration predictions because they were not available for the entire study area. The models were calibrated to assess model accuracy on the basis of measured values. Only 2 percent of the area underlain by basin-fill aquifers in the study area was predicted to equal or exceed the U.S. Environmental Protection Agency drinking-water standard for nitrate as N (10 milligrams per liter), whereas 43 percent of the area was predicted to equal or exceed the standard for arsenic (10 micrograms per liter). Areas predicted to equal or exceed the drinking-water standard for nitrate include basins in central Arizona near Phoenix; the San Joaquin Valley, the Santa Ana Inland, and San Jacinto Basins of California; and the San Luis Valley of Colorado. Much of the area predicted to equal or exceed the drinking-water standard for arsenic is within a belt of basins along the western portion of the Basin and Range Physiographic Province that includes almost all of Nevada and parts of California and Arizona. Predicted nitrate and arsenic concentrations are substantially lower than the drinking-water standards in much of the study area-about 93 percent of the area underlain by basin-fill aquifers was less than one-half the standard for nitrate as N (5.0 milligrams per liter), and 50 percent was less than one-half the standard for arsenic (5.0 micrograms per liter). The predicted concentrations and the improved understanding of the susceptibility and vulnerability of southwestern basin-fill aquifers to nitrate contamination and arsenic enrichment can be used by water managers as a qualitative tool to assess and protect the quality of groundwater resources in the Southwest.

  9. Urine-concentrating mechanism in the inner medulla: function of the thin limbs of the loops of Henle.

    PubMed

    Dantzler, William H; Layton, Anita T; Layton, Harold E; Pannabecker, Thomas L

    2014-10-01

    The ability of mammals to produce urine hyperosmotic to plasma requires the generation of a gradient of increasing osmolality along the medulla from the corticomedullary junction to the papilla tip. Countercurrent multiplication apparently establishes this gradient in the outer medulla, where there is substantial transepithelial reabsorption of NaCl from the water-impermeable thick ascending limbs of the loops of Henle. However, this process does not establish the much steeper osmotic gradient in the inner medulla, where there are no thick ascending limbs of the loops of Henle and the water-impermeable ascending thin limbs lack active transepithelial transport of NaCl or any other solute. The mechanism generating the osmotic gradient in the inner medulla remains an unsolved mystery, although it is generally considered to involve countercurrent flows in the tubules and vessels. A possible role for the three-dimensional interactions between these inner medullary tubules and vessels in the concentrating process is suggested by creation of physiologic models that depict the three-dimensional relationships of tubules and vessels and their solute and water permeabilities in rat kidneys and by creation of mathematical models based on biologic phenomena. The current mathematical model, which incorporates experimentally determined or estimated solute and water flows through clearly defined tubular and interstitial compartments, predicts a urine osmolality in good agreement with that observed in moderately antidiuretic rats. The current model provides substantially better predictions than previous models; however, the current model still fails to predict urine osmolalities of maximally concentrating rats. PMID:23908457

  10. Blood and urine responses to ingesting fluids of various salt and glucose concentrations. [to combat orthostatic intolerance

    NASA Technical Reports Server (NTRS)

    Frey, Mary A.; Riddle, Jeanne; Charles, John B.; Bungo, Michael W.

    1991-01-01

    To compensate for the reduced blood and fluid volumes that develop during weightlessness, the Space Shuttle crewmembers consume salt tablets and water equivalent to 1 l of normal saline, about 2 hrs before landing. This paper compares the effects on blood, urine, and cardiovascular variables of the ingestion of 1 l of normal (0.9 percent) saline with the effects of distilled water, 1 percent glucose, 0.74 percent saline with 1 percent glucose, 0.9 percent saline with 1 percent glucose, and 1.07 percent saline. It was found that the expansion of plasma volume and the concentration of urine were greater 4 hrs after ingestion of 1.07 percent saline solution than after ingestion of normal saline and that the solutions containig glucose did not enhance any variables as compared with normal saline.

  11. Arsenic, Iron, Lead, Manganese and Uranium Concentrations in Private Bedrock Wells in Southeastern New Hampshire, 2012-2013

    EPA Science Inventory

    Trace metals, such as arsenic, iron, lead, manganese, and uranium, in groundwater used for drinking have long been a concern because of the potential adverse effects on human health and the aesthetic or nuisance problems that some present. Moderate to high concentrations of the t...

  12. Arsenic is cytotoxic at micromolar concentration, but does not inhibit purified human DNA repair enzymes at less than millimolar concentrations

    SciTech Connect

    Su, Lin; Hu, Yu; Dunlop, B.

    1997-10-01

    Arsenic is a well-known human carcinogen, but not a mutagen. However it can act as a co-mutagen with UV and alkylating agents, and has been shown to inhibit DNA repair. The activities of several purified human enzymes involved in DNA repair have been tested in the presence of inorganic arsenite [As(III)] and arsenate [As(V)]. We have not found that both As(III) and As(V) stimulated the activity of DNA polymerase {beta} (pol {beta}), O{sup 6}methylguanine DNA methyltransferase (MGMT), and DNA ligase III. The activity of pol {beta} was increased up to 3.5-fold in the presence of 50 mM As (III), and 2-fold in the presence of 20 mM As(V). Inhibition of enzyme activity was only observed with concentrations of As(III) and As(V) higher than 100 mM. Terminal deoxynucleotidal transferase (TdT), an enzyme with homology to pol {beta}, is also stimulated 3-fold by 50 mM As(III). Unlike pol {beta} and TdT, MGMT was preferentially activated by millimolar As(V), rather than As(III). Similar concentrations of inorganic phosphate also increased the activity of MGMT. The activity of DNA ligase I was inhibited by 1 to 5 mM As(III). However, both DNA ligase I and DNA ligase III were significantly activated by As(V). In contrast to these results, human keratinocyte cells exhibit significant cytotoxicity when exposed to 10 {mu}M As(III) and 200 {mu}M AS(V). Cell survival was decreased by over 50% at these concentrations, as measured by neutral red uptake, LDH release, and MTT uptake. Interestingly, both As(III) and As(V) produced increased cell proliferation at submicromolar concentrations. These results suggest that arsenic compounds do not exert their toxic effects by direct inhibition of DNA repair enzymes, but by other mechanisms.

  13. Bilirubin - urine

    MedlinePLUS

    Conjugated bilirubin - urine; Direct bilirubin - urine ... This test can be done on any urine sample. For an infant, thoroughly wash the area where urine exits the body. Open a urine collection bag (a plastic bag with an ...

  14. Immunoelectrophoresis - urine

    MedlinePLUS

    Immunoglobulin electrophoresis - urine; Gamma globulin electrophoresis - urine; Urine immunoglobulin electrophoresis; IEP - urine ... A clean-catch urine sample is needed. The clean-catch method is used to prevent germs from the penis or vagina from getting ...

  15. Respiratory effect related to exposure of different concentrations of arsenic in drinking water in West Bengal, India.

    PubMed

    Chattopadhyay, B P; Mukherjee, A K; Gangopadhyay, P K; Alam, J; Roychowdhury, A

    2010-04-01

    Arsenic toxicity due to drinking of arsenic contaminated water has been one of the worst environmental health hazards. High levels of arsenic have been reported in different natural water sources from West Bengal for more than two decades. Groundwater contamination by arsenic and its adverse effects on the health of a big population in nine districts of West Bengal have been reported. The problems found were mainly related to skin and respiratory, digestive, cardiovascular and nervous systems. The respiratory effects are largely confined to those who had the skin lesion. The present study was undertaken to evaluate the respiratory effects of exposure to different levels of arsenic in drinking water. The water samples were collected from different tube wells and wells in the study area. Analysis of arsenic was done by Atomic Absorption Spectrophotometer with hydride generation system. Based on the consumption of arsenic concentrations in drinking water the populations were divided into three categories, i.e., <=50 microg/L, >50 - <= 150 microg/L and >150 microg/L. Standard techniques of medical examination were applied to elicit signs and recorded in the pre-designed proforma. A written consent was taken from each subject for their voluntary participation in the study. 112 subjects were investigated. The respiratory effect was evaluated by measuring the pulmonary function test (PFT). Vital Capacity (VC) and Forced Vital Capacity (FVC) were measured by Spirovit-SP-10 (Schiller Health Care Pvt Ltd., Switzerland) and Peak Expiratory Flow Rate by Wrights Peak Flow Meter (Clement and Clarke, UK). The PFT values showed gradual decrement among the males following skin pigmentation, keratosis and arsenicosis. The respiratory function impairment among the male subjects found as restrictive type (26.41%), obstructive type (3.77%) and combined type (7.54%), whereas in females only the restrictive type of impairment (10.16%) was found. Restrictive type of impairments among the subjects increased as the concentration of arsenic in drinking water increased, in males 15.78%, 29.41% and 35.29% and in females 4.54%, 5.00% and 23.52% respectively. The pathophysiologic mechanism, by which ingested arsenic leads to impairments of lung function and increased respiratory symptoms, is yet to be understood and needs further investigation. PMID:21114123

  16. Urine and Urination

    MedlinePLUS

    Your kidneys make urine by filtering wastes and extra water from your blood. The waste is called urea. Your blood carries it to the kidneys. From the kidneys, urine travels down two thin tubes called ureters to ...

  17. Association between risk of birth defects occurring level and arsenic concentrations in soils of Lvliang, Shanxi province of China.

    PubMed

    Wu, Jilei; Zhang, Chaosheng; Pei, Lijun; Chen, Gong; Zheng, Xiaoying

    2014-08-01

    The risk of birth defects is generally accredited with genetic factors, environmental causes, but the contribution of environmental factors to birth defects is still inconclusive. With the hypothesis of associations of geochemical features distribution and birth defects risk, we collected birth records and measured the chemical components in soil samples from a high prevalence area of birth defects in Shanxi province, China. The relative risk levels among villages were estimated with conditional spatial autoregressive model and the relationships between the risk levels of the villages and the 15 types of chemical elements concentration in the cropland and woodland soils were explored. The results revealed that the arsenic levels in cropland soil showed a significant association with birth defects occurring risk in this area, which is consistent with existing evidences of arsenic as a teratogen and warrants further investigation on arsenic exposure routine to birth defect occurring risk. PMID:24769413

  18. Arsenic exposure from drinking water, arsenic methylation capacity, and carotid intima-media thickness in Bangladesh.

    PubMed

    Chen, Yu; Wu, Fen; Graziano, Joseph H; Parvez, Faruque; Liu, Mengling; Paul, Rina Rani; Shaheen, Ishrat; Sarwar, Golam; Ahmed, Alauddin; Islam, Tariqul; Slavkovich, Vesna; Rundek, Tatjana; Demmer, Ryan T; Desvarieux, Moise; Ahsan, Habibul

    2013-08-01

    We conducted a cross-sectional study to evaluate the interrelationships between past arsenic exposure, biomarkers specific for susceptibility to arsenic exposure, and carotid intima-media thickness (cIMT) in 959 subjects from the Health Effects of Arsenic Longitudinal Study in Bangladesh. We measured cIMT levels on average 7.2 years after baseline during 2010-2011. Arsenic exposure was measured in well water at baseline and in urine samples collected at baseline and during follow-up. Every 1-standard-deviation increase in urinary arsenic (357.9 µg/g creatinine) and well-water arsenic (102.0 µg/L) concentration was related to a 11.7-µm (95% confidence interval (CI): 1.8, 21.6) and 5.1-µm (95% CI: -0.2, 10.3) increase in cIMT, respectively. For every 10% increase in monomethylarsonic acid (MMA) percentage, there was an increase of 12.1 µm (95% CI: 0.4, 23.8) in cIMT. Among participants with a higher urinary MMA percentage, a higher ratio of urinary MMA to inorganic arsenic, and a lower ratio of dimethylarsinic acid to MMA, the association between well-water arsenic and cIMT was stronger. The findings indicate an effect of past long-term arsenic exposure on cIMT, which may be potentiated by suboptimal or incomplete arsenic methylation capacity. Future prospective studies are needed to confirm the association between arsenic methylation capacity and atherosclerosis-related outcomes. PMID:23788675

  19. Urine concentrating mechanism in the inner medulla of the mammalian kidney: role of three-dimensional architecture.

    PubMed

    Dantzler, W H; Pannabecker, T L; Layton, A T; Layton, H E

    2011-07-01

    The urine concentrating mechanism in the mammalian renal inner medulla (IM) is not understood, although it is generally considered to involve countercurrent flows in tubules and blood vessels. A possible role for the three-dimensional relationships of these tubules and vessels in the concentrating process is suggested by recent reconstructions from serial sections labelled with antibodies to tubular and vascular proteins and mathematical models based on these studies. The reconstructions revealed that the lower 60% of each descending thin limb (DTL) of Henle's loops lacks water channels (aquaporin-1) and osmotic water permeability and ascending thin limbs (ATLs) begin with a prebend segment of constant length. In the outer zone of the IM (i) clusters of coalescing collecting ducts (CDs) form organizing motif for loops of Henle and vasa recta; (ii) DTLs and descending vasa recta (DVR) are arrayed outside CD clusters, whereas ATLs and ascending vasa recta (AVR) are uniformly distributed inside and outside clusters; (iii) within CD clusters, interstitial nodal spaces are formed by a CD on one side, AVR on two sides, and an ATL on the fourth side. These spaces may function as mixing chambers for urea from CDs and NaCl from ATLs. In the inner zone of the IM, cluster organization disappears and half of Henle's loops have broad lateral bends wrapped around terminal CDs. Mathematical models based on these findings and involving solute mixing in the interstitial spaces can produce urine slightly more concentrated than that of a moderately antidiuretic rat but no higher. PMID:21054810

  20. Synthesis of mixed coating with multi-functional groups for in-tube hollow fiber solid phase microextraction-high performance liquid chromatography-inductively coupled plasma mass spectrometry speciation of arsenic in human urine.

    PubMed

    Chen, Beibei; Hu, Bin; He, Man; Mao, Xiangju; Zu, Wanqing

    2012-03-01

    A novel method based on in-tube hollow fiber-solid phase microextraction (in-tube HF-SPME) on-line coupled with ion pair reversed phase high performance liquid chromatography (IP-RP-HPLC)-inductively coupled plasma mass spectrometry (ICP-MS) was developed for arsenic speciation. Partially sulfonated poly(styrene) (PSP) and mixed-sol of 3-mercapto propyltrimethoxysilane (MPTS) and N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AAPTS) were prepared and immobilized in the pores and the inner surface of polypropylene hollow fiber (HF). The prepared MPTS-AAPTS/PSP immobilized HF was characterized by FT-IR spectroscopy and scanning electron microscope (SEM). With arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMA), dimethylarsenic acid (DMA), arsenobetaine (AsB) and arsenocholine (AsC) as model arsenic species, a series of factors that influence the extraction of target arsenic species by in-tube HF-SPME, including pH value, sample volume and flow rate, elution conditions and interference of co-existing ions were investigated in details, and the conditions for subsequent HPLC-ICP-MS determination were also optimized. Under the optimal conditions, the sampling frequency was 6.5 h?¹, the detection limits for six target arsenic species were in the range of 0.017-0.053 ?g L?¹ with the relative standard deviations (c(As(V),MMA)=0.1 ?g L?¹, c(As(III),DMA,AsB,AsC)=0.5 ?g L?¹, n=5) ranging in 3.1-8.7%, and the enrichment factors were varied from 4 to 19-fold. To validate the accuracy of this method, certified reference materials DORM-2 (dogfish) and CRM No. 18 (human urine) were analyzed, and the determined values were in good agreement with the certified values. The proposed method was also successfully applied for arsenic speciation in human urine samples, and the recoveries for the spiked samples were in the range of 92.6-107%. The self-designed in-tube HF-SPME-HPLC-ICP-MS system shows high efficiency and good stability, and the proposed method is sensitive and suitable for simultaneous speciation of organic and inorganic arsenic species (including anions and cations) in biological samples. PMID:22265781

  1. CONTAINMENT OF HIGHLY CONCENTRATED ARSENIC-LADEN SPENT REGENERANT ON THE INDIAN SUBCONTINENT

    EPA Science Inventory

    The Phase II EPA P3 project encompasses the following two activities in the Indian subcontinent: Continued installation of arsenic removal units in rural villages and extension of sustainable arsenic-laden waste disposal practices. For ten years, Lehigh University and Benga...

  2. COMPLEMENTARY APPROACHES TO THE DETERMINATION OF ARSENIC SPECIES RELEVANT TO CONCENTRATED ANIMAL FEEDING OPERATIONS

    EPA Science Inventory

    Ion-exchange chromatography is the most often used analytical approach for arsenic

    speciation, due to the weak-acid nature of several of its species. However, no single

    technique can determine all potentially occurring arsenic species, especially in complex

    e...

  3. A mathematical model of the urine concentrating mechanism in the rat renal medulla. I. Formulation and base-case results

    PubMed Central

    2011-01-01

    A new, region-based mathematical model of the urine concentrating mechanism of the rat renal medulla was used to investigate the significance of transport and structural properties revealed in anatomic studies. The model simulates preferential interactions among tubules and vessels by representing concentric regions that are centered on a vascular bundle in the outer medulla (OM) and on a collecting duct cluster in the inner medulla (IM). Particularly noteworthy features of this model include highly urea-permeable and water-impermeable segments of the long descending limbs and highly urea-permeable ascending thin limbs. Indeed, this is the first detailed mathematical model of the rat urine concentrating mechanism that represents high long-loop urea permeabilities and that produces a substantial axial osmolality gradient in the IM. That axial osmolality gradient is attributable to the increasing urea concentration gradient. The model equations, which are based on conservation of solutes and water and on standard expressions for transmural transport, were solved to steady state. Model simulations predict that the interstitial NaCl and urea concentrations in adjoining regions differ substantially in the OM but not in the IM. In the OM, active NaCl transport from thick ascending limbs, at rates inferred from the physiological literature, resulted in a concentrating effect such that the intratubular fluid osmolality of the collecting duct increases ?2.5 times along the OM. As a result of the separation of urea from NaCl and the subsequent mixing of that urea and NaCl in the interstitium and vasculature of the IM, collecting duct fluid osmolality further increases by a factor of ?1.55 along the IM. PMID:21068086

  4. Urine-Concentrating Mechanism in the Inner Medulla: Function of the Thin Limbs of the Loops of Henle

    PubMed Central

    Layton, Anita T.; Layton, Harold E.; Pannabecker, Thomas L.

    2014-01-01

    Summary The ability of mammals to produce urine hyperosmotic to plasma requires the generation of a gradient of increasing osmolality along the medulla from the corticomedullary junction to the papilla tip. Countercurrent multiplication apparently establishes this gradient in the outer medulla, where there is substantial transepithelial reabsorption of NaCl from the water-impermeable thick ascending limbs of the loops of Henle. However, this process does not establish the much steeper osmotic gradient in the inner medulla, where there are no thick ascending limbs of the loops of Henle and the water-impermeable ascending thin limbs lack active transepithelial transport of NaCl or any other solute. The mechanism generating the osmotic gradient in the inner medulla remains an unsolved mystery, although it is generally considered to involve countercurrent flows in the tubules and vessels. A possible role for the three-dimensional interactions between these inner medullary tubules and vessels in the concentrating process is suggested by creation of physiologic models that depict the three-dimensional relationships of tubules and vessels and their solute and water permeabilities in rat kidneys and by creation of mathematical models based on biologic phenomena. The current mathematical model, which incorporates experimentally determined or estimated solute and water flows through clearly defined tubular and interstitial compartments, predicts a urine osmolality in good agreement with that observed in moderately antidiuretic rats. The current model provides substantially better predictions than previous models; however, the current model still fails to predict urine osmolalities of maximally concentrating rats. PMID:23908457

  5. Relaxin concentrations in serum and urine of endangered and crazy mixed-up species.

    PubMed

    Steinetz, B; Lasano, S; de Haas van Dorsser, F; Glickman, S; Bergfelt, D; Santymire, R; Songsassen, N; Swanson, W

    2009-04-01

    The human population explosion has pushed many mammalian wildlife species to the brink of extinction. Conservationists are increasingly turning to captive breeding as a means of preserving the gene pool. We previously reported that serum immunoactive relaxin provided a reliable means of distinguishing between true and pseudopregnancy in domestic dogs, and this method has since been found to be a reliable indicator of true pregnancy in endangered Asian and African elephants and Sumatran rhinoceroses. Our canine relaxin radioimmunoassay (RIA) has now been adapted and validated to measure relaxin in the serum and urine of felids, including domestic and wild species. Moreover, a commercially available canine serum relaxin kit (Witness) Relaxin Kit; Synbiotics, San Diego, CA), has been adapted for reliable detection of relaxin in urine of some felid species. Our porcine relaxin RIA has also been utilized to investigate the role of relaxin in reproductive processes of the spotted hyena, a species in which the female fetuses are severely masculinized in utero. Indeed, this species might well now be extinct were it not for the timely secretion of relaxin to enable copulation and birth of young through the clitoris. Additional studies have suggested relaxin may be a useful marker of pregnancy in the northern fur seal and the maned wolf (the former species has been designated as "depleted" and the latter as "near threatened"). Given appropriate immunoassay reagents, relaxin determination in body fluids thus provides a powerful tool for conservationists and biologists investigating reproduction in a wide variety of endangered and exotic species. PMID:19416182

  6. Naturally dissolved arsenic concentrations in the Alpine/Mediterranean Var River watershed (France).

    PubMed

    Barats, Aurélie; Féraud, Gilbert; Potot, Cécile; Philippini, Violaine; Travi, Yves; Durrieu, Gaël; Dubar, Michel; Simler, Roland

    2014-03-01

    A detailed study on arsenic (As) in rocks and water from the Var River watershed was undertaken aiming at identifying (i) the origin and the distribution of As in this typical Alpine/Mediterranean basin, and (ii) As input into the Mediterranean Sea. Dissolved As concentrations in the Var River range from 0.1 to 4.5 ?g?L(-1), due to high hydrological variability and the draining through different geological formations. In the upper part of the Var drainage basin, in the Tinée and the Vésubie valleys, high levels of dissolved As concentrations occur (up to 263 ?g?L(-1)). The two main sources of As in rocks are the Hercynian metamorphic rocks and the Permian argilites. Highly heterogeneous distribution of As in waters draining through metamorphic rocks is probably related to ore deposits containing arsenopyrite. As, U, W and Mo concentrations in water and rocks correspond to the formation of As-rich ore deposits around Argentera granite by hydrothermal fluids deposited at the end of the Hercynian chain formation, which occurred about 300 My ago. In 2009, weekly monitoring was performed on the Var River (15 km upstream of the mouth), highlighting an average dissolved As concentration (<0.45 ?m) of 2.7 ± 0.9 ?g?L(-1), which is significantly higher than the world-average baseline for river water (0.83 ?g?L(-1)). Taking the average annual discharge (49.4 m(3)?s(-1)) into account and the As levels in the dissolved phase and in deposits of the Var River, dissolved As input into the Mediterranean Sea would be 4. 2± 1.4 tons?year(-1) which represents 59% of the total As flux. This study also reveals a probable non-conservative As behaviour, i.e., possible transfer between aqueous and solid phases, during the mixing of the Var River with a tributary. PMID:24388820

  7. Urine culture

    MedlinePLUS

    Culture and sensitivity - urine ... sample will be collected as a clean catch urine sample in your health care provider's office or ... will use a special kit to collect the urine. A urine sample can also be taken by ...

  8. Arsenic hazards to humans, plants, and animals from gold mining

    USGS Publications Warehouse

    Eisler, R.

    2004-01-01

    Arsenic sources to the biosphere associated with gold mining include waste soil and rocks, residual water from ore concentrations, roasting of some types of gold-containing ores to remove sulfur and sulfur oxides, and bacterially-enhanced leaching. Arsenic concentrations near gold mining operations were elevated in abiotic materials and biota: maximum total arsenic concentrations measured were 560 ug/L in surface waters, 5.16 mg/L in sediment pore waters, 5.6 mg/kg dry weight (DW) in bird liver, 27 mg/kg DW in terrestrial grasses, 50 mg/kg DW in soils, 79 mg/kg DW in aquatic plants, 103 mg/kg DW in bird diets, 225 mg/kg DW in soft parts of bivalve molluscs, 324 mg/L in mine drainage waters, 625 mg/kg DW in aquatic insects, 7700 mg/kg DW in sediments, and 21,000 mg/kg DW in tailings. Single oral doses of arsenicals that were fatal to 50% of tested species ranged from 17 to 48 mg/kg body weight (BW) in birds and from 2.5 to 33 mg/kg BW in mammals. Susceptible species of mammals were adversely affected at chronic doses of 1 to 10 mg As/kg BW, or 50 mg As/kg diet. Sensitive aquatic species were damaged at water concentrations of 19 to 48 ug As/L, 120 mg As/kg diet, or tissue residues (in the case of freshwater fish) >1.3 mg/kg fresh weight. Adverse effects to crops and vegetation were recorded at 3 to 28 mg of water-soluble As/L (equivalent to about 25 to 85 mg total As/kg soil) and at atmospheric concentrations >3.9 ug As/m3. Gold miners had a number of arsenic-associated health problems including excess mortality from cancer of the lung, stomach, and respiratory tract. Miners and schoolchildren in the vicinity of gold mining activities had elevated urine arsenic of 25.7 ug/L (range 2.2-106.0 ug/L). Of the total population at this location, 20% showed elevated urine arsenic concentrations associated with future adverse health effects; arsenic-contaminated drinking water is the probable causative factor of elevated arsenic in urine. Proposed arsenic criteria to protect human health and natural resources are listed and discussed. Many of these proposed criteria do not adequately protect sensitive species.

  9. Modeling spatial patterns in soil arsenic to estimate natural baseline concentrations

    SciTech Connect

    Venteris, Erik R.; Basta, Nicolas T.; Bigham, Jerry M.; Rea, Ron

    2014-05-09

    ABSTRACT Arsenic in soil is an important public health concern. Toxicity guidelines and models based on laboratory studies (i.e., U.S. EPA’s Integrated Risk Information System) should consider natural soil As concentrations to avoid unnecessary remediation burdens on society. We used soil and stream sediment samples from the USGS National Geochemical Survey database to assess the spatial distribution of natural As in a 1.16E+5 km2 area. Samples were collected at 348 soil and 144 stream locations, providing approximately one sample for every 290 km2. Sample sites were selected to minimize the potential influence of anthropogenic inputs. Samples were processed using acid digestion of whole samples (concentrated HCl and ascorbic acid) and concentrations were measured using hydride-generation atomic absorption spectrometry. Soil As ranged from 2.0 to 45.6 mg kg-1. Geostatistical techniques were used to model and map the spatial variability of As. The mean and variance at unsampled locations were estimated using sequential Gaussian simulation. Five areas of elevated concentration (> the median of 10 mg kg-1) were identified and the relationships to geologic parent materials, glacial sedimentation patterns, and soil conditions interpreted. Our results showed As concentrations >10 mg kg-1 were common, and >20 mg kg-1 were not unusual for the central and west central portions of Ohio (USA). In contrast, concentrations <4 mg kg-1 were rare. Measured concentrations typically exceeded the soil As human generic screening levels of 0.39 mg/kg (1); the calculated value that corresponds to a cancer risk level of 1 in 1,000,000 for soil ingestion. Because the As content of Ohio soils is similar to many world soils, the USEPA generic soil screening level of 0.39 mg/kg is of little utility. A more useful and practical approach would be the uses of natural background levels. Regional soil As patterns based on geology and biogeochemistry and not political boundaries should be used for soil screening and other risk assessment determinations.

  10. Cadmium blood and urine concentrations as measures of exposure: NHANES 1999-2010.

    PubMed

    Adams, Scott V; Newcomb, Polly A

    2014-01-01

    Exposure to cadmium, a heavy metal present in cigarettes, can be assessed in both urine and blood. Few studies have compared the properties of concurrent measurements of urine cadmium (uCd) and blood cadmium (bCd) in relation to the duration and timing of a known exposure. In this study, bCd and uCd were modeled with data from the National Health and Nutrition Examination Survey (1999-2010). Adjusted geometric mean bCd and uCd were estimated from regression results. Each 1% higher geometric mean uCd was associated with 0.50% (95% confidence interval: 0.47%-0.54%; R(2)=0.30) higher bCd. In male never-smokers, bCd was 69% (59%-81%) and uCd was 200% (166%-234%) higher at age ?70 years versus 20-29 years. Ten pack-years (py) of smoking were associated with 13.7% (10.0%-17.4%) higher bCd and 16.8% (12.6%-21.1%) higher uCd in male smokers. The first year after smoking cessation was associated with 53% (48%-58%) lower bCd and 23% (14%-33%) lower uCd in representative males aged 55 years with 20?py smoking. Smoking in the previous 5 days was associated with 55% (40%-71%) higher bCd and 7% (-3%-18%) higher uCd. Results were similar for women. uCd mainly measures long-term exposure and bCd recent exposure, but with noticeable overlap. Epidemiological studies should base the choice of uCd or bCd on the timing of cadmium exposure relevant to the disease under study. PMID:24002489

  11. Concentration and chemical status of arsenic in the blood of pregnant hamsters during critical embryogenesis. 1. Subchronic exposure to arsenate utilizing constant rate administration

    SciTech Connect

    Hanlon, D.P.; Ferm, V.H.

    1986-08-01

    The concentration, availability, and chemical status of radiolabeled arsenic has been determined in the blood of pregnant hamsters at the beginning (morning of Day 8) and the end (morning of Day 9) of the critical period of embryogenesis. Hamster dams were exposed to teratogenic doses of arsenate by means of osmotic minipumps implanted on the morning of Day 6 of the gestation period. Whole blood arsenic concentrations were the same for 48 and 72 hr postimplant. The arsenic concentration of plasma equaled that of red cells. Plasma arsenic was not bound to macromolecules and had the same chemical status 48 and 72 hr postimplant. Arsenate was the dominant form (67% of the total). However, the presence of dimethylarsinic acid and arsenite indicates that the pentavalent species was metabolized. Red cell arsenic was bound to macromolecules in the cell sap. Seventy percent of red cell sap arsenic was dialyzable 48 hr postimplant, but only 56% 72 hr postimplant. Arsenate was the dominant dialyzable red cell species on Day 8 and arsenite was the major dialyzable form on Day 9. The authors findings demonstrate a relationship between the maternal blood concentration and chemical status of arsenic and the presence of malformations resulting from a constant rate exposure of pregnant hamsters to arsenate via the osmotic minipump.

  12. Digital spatial data for predicted nitrate and arsenic concentrations in basin-fill aquifers of the Southwest Principal Aquifers study area

    USGS Publications Warehouse

    McKinney, Tim S.; Anning, David W.

    2012-01-01

    This product "Digital spatial data for predicted nitrate and arsenic concentrations in basin-fill aquifers of the Southwest Principal Aquifers study area" is a 1:250,000-scale vector spatial dataset developed as part of a regional Southwest Principal Aquifers (SWPA) study (Anning and others, 2012). The study examined the vulnerability of basin-fill aquifers in the southwestern United States to nitrate contamination and arsenic enrichment. Statistical models were developed by using the random forest classifier algorithm to predict concentrations of nitrate and arsenic across a model grid that represents local- and basin-scale measures of source, aquifer susceptibility, and geochemical conditions.

  13. Origin of high ammonium, arsenic and boron concentrations in the proximity of a mine: Natural vs. anthropogenic processes.

    PubMed

    Scheiber, Laura; Ayora, Carlos; Vázquez-Suñé, Enric; Cendón, Dioni I; Soler, Albert; Baquero, Juan Carlos

    2016-01-15

    High ammonium (NH4), arsenic (As) and boron (B) concentrations are found in aquifers worldwide and are often related to human activities. However, natural processes can also lead to groundwater quality problems. High NH4, As and B concentrations have been identified in the confined, deep portion of the Niebla-Posadas aquifer, which is near the Cobre Las Cruces (CLC) mining complex. The mine has implemented a Drainage and Reinjection System comprising two rings of wells around the open pit mine, were the internal ring drains and the external ring is used for water reinjection into the aquifer. Differentiating geogenic and anthropogenic sources and processes is therefore crucial to ensuring good management of groundwater in this sensitive area where groundwater is extensively used for agriculture, industry, mining and human supply. No NH4, As and B are found in the recharge area, but their concentrations increase with depth, salinity and residence time of water in the aquifer. The increased salinity down-flow is interpreted as the result of natural mixing between infiltrated meteoric water and the remains of connate waters (up to 8%) trapped within the pores. Ammonium and boron are interpreted as the result of marine solid organic matter degradation by the sulfate dissolved in the recharge water. The light ?(15)NNH4 values confirm that its origin is linked to marine organic matter. High arsenic concentrations in groundwater are interpreted as being derived from reductive dissolution of As-bearing goethite by dissolved organic matter. The lack of correlation between dissolved Fe and As is explained by the massive precipitation of siderite, which is abundantly found in the mineralization. Therefore, the presence of high arsenic, ammonium and boron concentrations is attributed to natural processes. Ammonium, arsenic, boron and salinity define three zones of groundwater quality: the first zone is close to the recharge area and contains water of sufficient quality for human drinking; the second zone is downflow and contains groundwater suitable for continuous irrigation but not drinkable due to high ammonium concentrations; and the third zone contains groundwater of elevated salinity (up to 5940?Scm(-1)) and is not useable due to high ammonium, arsenic and boron concentrations. PMID:26437343

  14. Concentrations of Inorganic Arsenic in Milled Rice from China and Associated Dietary Exposure Assessment.

    PubMed

    Huang, Yatao; Wang, Min; Mao, Xuefei; Qian, Yongzhong; Chen, Tianjin; Zhang, Ying

    2015-12-23

    Total arsenic (As) and inorganic As (Asi) in milled rice (n = 1653) collected from China were studied to evaluate the contamination level, distribution, and health risks. The mean concentrations of the total As and Asi were 116.5 and 90.9 ?g/kg, respectively. There were significant differences (P < 0.01) between the 11 provinces, and 1.1% of samples exceeded the maximum contaminant level established by Chinese legislation. According to the exposure assessment method of probabilistic simulation, all values of the target hazard quotients (THQs) for chronic noncarcinogenic risks (skin lesions as the point of departure) were below 1, suggesting that the Chinese population will not encounter a significant noncarcinogenic risk. However, the mean values of margin of exposure (MOE) for lung cancer risks ranging from 3.86 to 8.54 were under 100 for all age groups and genders of the Chinese population; moreover, MOE values for some major rice-producing and -consuming countries, such as Japan, Thailand, Bangladesh, and the United States, were all also below 100. More attention should be paid to carcinogenic risks from rice Asi intake, and some control measures to reduce rice Asi intake should be taken. PMID:26641731

  15. Effect of hydrological flow pattern on groundwater arsenic concentration in Bangladesh by Khandaker Ashfaque.

    E-print Network

    Ashfaque, Khandaker

    2007-01-01

    Widespread arsenic contamination of groundwater has become a major concern in Bangladesh since the water supply, particularly in rural areas, is heavily dependent on groundwater. However, relative to the extent of research ...

  16. Fate of low arsenic concentrations during full-scale aeration and rapid filtration.

    PubMed

    Gude, J C J; Rietveld, L C; van Halem, D

    2016-01-01

    In the Netherlands, groundwater treatment commonly consists of aeration, with subsequent sand filtration without using chemical oxidants like chlorine. With arsenic (As) concentrations well below the actual guidelines of 10 ?g As/L, groundwater treatment plants have been exclusively designed for the removal of iron (Fe), manganese and ammonium. The aim of this study was to investigate the As removal capacity at three of these groundwater treatment plants (10-26 ?g As/L) in order to identify operational parameters that can contribute to lowering the filtrate As concentration to <1 ?g/L. For this purpose a sampling campaign and experiments with supernatant water and hydrous ferric oxide (HFO) flocs were executed to identify the key mechanisms controlling As removal. Results showed that after aeration, As largely remained mobile in the supernatant water; even during extended residence times only 20-48% removal was achieved (with 1.4-4.2 mg/L precipitated Fe(II)). Speciation showed that the mobile As was in the reduced As(III) form, whereas, As(V) was readily adsorbed to the formed HFO flocs. In the filter bed, the remaining As(III) completely oxidized within 2 min of residence time and As removal efficiencies increased to 48-90%. Filter grain coating analysis showed the presence of manganese at all three treatment plants. It is hypothesized that these manganese oxides are responsible for the accelerated As(III) oxidation in the filter bed, leading to an increased removal capacity. In addition, pH adjustment from 7.8 to 7.0 has been found to improve the capacity for As(V) uptake by the HFO flocs in the filter bed. The overall conclusion is, that during groundwater treatment, the filter bed is crucial for rapid As(III) removal, indicating the importance to control the oxidation sequence of Fe and As for improved As removal efficiencies. PMID:26547752

  17. Low concentration of arsenic could induce caspase-3 mediated head kidney macrophage apoptosis with JNK-p38 activation in Clarias batrachus

    SciTech Connect

    Datta, Soma; Mazumder, Shibnath; Ghosh, Debabrata; Dey, Saibal; Bhattacharya, Shelley

    2009-12-15

    We had earlier demonstrated that chronic exposure (30 days) to micro-molar concentration (0.50 muM) of arsenic induced head kidney macrophage (HKM) death in Clarias batrachus. The purpose of the present study is to characterize the nature of HKM death induced by arsenic and elucidate the signal transduction pathways involved in the process. Arsenic-induced HKM death was apoptotic in nature as evident from DNA gel, Annexin V-propidium iodide, Hoechst 33342 staining and TdT-mediated dUTP nick end labeling (TUNEL) assays. Inhibitor studies and immunoblot analyses further demonstrated that arsenic-induced HKM apoptosis involved activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase, a well-characterized caspase-3 substrate. Preincubation with antioxidants N-acetyl-cysteine or dimethyl sulfoxide significantly lowered reactive oxygen species (ROS) levels in arsenic-treated HKM and prevented caspase activation, malondialdehyde formation and HKM apoptosis. Arsenic induced membrane translocation of the NADPH oxidase subunit p47{sup phox}. Preincubation with apocynin and diphenyleneiodonium chloride, both selective inhibitors of NADPH oxidases, prevented p47{sup phox} translocation, ROS production and HKM death. Exposure of HKM to arsenic induced the activation of mitogen-activated protein kinase family (MAPK) proteins including c-Jun NH{sub 2}-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (p38). Preincubation of HKM with p38 inhibitor SB203580 and JNK inhibitor SP600125 protected the HKM against arsenic-induced apoptosis. We conclude that exposure to micro-molar concentration of arsenic induces ROS generation through the activation of NADPH oxidases, which in turn causes caspase-3 mediated HKM apoptosis. In addition, the study also indicates a role of p38-JNK pathway in arsenic-induced HKM apoptosis in C. batrachus.

  18. Decrease in the urine cotinine concentrations of Korean non-smokers between 2009 and 2011 following implementation of stricter smoking regulations.

    PubMed

    Park, Ju Hyoung; Lee, Chae Kwan; Kim, Kun Hyung; Son, Byung Chul; Kim, Jeong Ho; Suh, Chun Hui; Kim, Se Yeong; Yu, Seung Do; Kim, Sue Jin; Choi, Wook Hee; Kim, Dae Hwan; Park, Yeong Beom; Park, Seok Hwan; Lee, Soo Woong

    2016-01-01

    This study aimed to determine if there was an association between the implementation of smoking regulation policies and the urine cotinine concentrations of Korean non-smokers. The subjects of this study were 4612 non-smoking Korean citizens (aged 19 or older) selected from the first stage of the Korean National Environmental Health Survey conducted by the National Institute of Environmental Research from 2009 to 2011. Cotinine concentrations in urine were measured by GC-MS (limit of detection: 0.05ng/mL). Changes in the urine cotinine concentration were analyzed using a weighted general linear model and linear regression and values were shown as geometric mean (GM). The GM urine cotinine concentration decreased over time (2.92ng/mL in 2009, 1.93ng/mL in 2010, and 1.25ng/mL in 2011). The total decrease in the subjects' urine cotinine concentration between 2009 and 2011 was 2.79ng/mL, representing a relative decrease of 54.7%. The decrease in GM urine cotinine concentration in each subgroup ranged from 2.17ng/mL to 3.29ng/mL (relative decreases of 46.4% and 62.8%, respectively), with the largest absolute reductions in subjects in the following groups: females, aged 40-49 years, detached residence type, no alcohol consumption, employed, secondhand smoke exposure. All groups had negative regression coefficients, all of which were significant (p<0.001). Our results provide indirect indicators of the effectiveness of smoking regulation policies including the revision of the National Health Promotion Act in Korea. PMID:26507969

  19. Role of three-dimensional architecture in the urine concentrating mechanism of the rat renal inner medulla.

    PubMed

    Pannabecker, Thomas L; Dantzler, William H; Layton, Harold E; Layton, Anita T

    2008-11-01

    Recent studies of three-dimensional architecture of rat renal inner medulla (IM) and expression of membrane proteins associated with fluid and solute transport in nephrons and vasculature have revealed structural and transport properties that likely impact the IM urine concentrating mechanism. These studies have shown that 1) IM descending thin limbs (DTLs) have at least two or three functionally distinct subsegments; 2) most ascending thin limbs (ATLs) and about half the ascending vasa recta (AVR) are arranged among clusters of collecting ducts (CDs), which form the organizing motif through the first 3-3.5 mm of the IM, whereas other ATLs and AVR, along with aquaporin-1-positive DTLs and urea transporter B-positive descending vasa recta (DVR), are external to the CD clusters; 3) ATLs, AVR, CDs, and interstitial cells delimit interstitial microdomains within the CD clusters; and 4) many of the longest loops of Henle form bends that include subsegments that run transversely along CDs that lie in the terminal 500 microm of the papilla tip. Based on a more comprehensive understanding of three-dimensional IM architecture, we distinguish two distinct countercurrent systems in the first 3-3.5 mm of the IM (an intra-CD cluster system and an inter-CD cluster system) and a third countercurrent system in the final 1.5-2 mm. Spatial arrangements of loop of Henle subsegments and multiple countercurrent systems throughout four distinct axial IM zones, as well as our initial mathematical model, are consistent with a solute-separation, solute-mixing mechanism for concentrating urine in the IM. PMID:18495796

  20. Influence of compost application on arsenic uptake by beans (Phaseolus vulgaris L.), irrigated with arsenic-contaminated waters at four different concentrations

    NASA Astrophysics Data System (ADS)

    Caporale, A. G.; Pigna, M.; Sommella, A.; Cozzolino, V.; Violante, A.

    2012-04-01

    The presence of arsenic (As) in soils and/or groundwaters, used for agricultural purposes, causes a strong abiotic stress to the cultivated plants, which results in the reduction of biomasses and yields, and the abundance of non-tradable products. It is therefore desirable to identify and develop production techniques capable of limiting the mobility and phyto-availability of As in soil, through the stabilization of the metalloid on the more recalcitrant soil fractions. Incorporation of compost into soil for As immobilization offers various potential advantages over other methods such as low-cost, simple methodology and low environmental impact. We studied the influence of compost application on the mobility and phyto-availability of As in soil, the growth of the bean plants irrigated with As-contaminated waters and their own As uptake. Bean was selected as test plant, because this crop is grown in several As-contaminated areas and suffers As toxicity. Bean plants growth was significantly affected by As and compost treatments. Increasing As concentration in the irrigation water decreased markedly the dry biomass, as a consequence of As phytotoxicity. The influence of compost application on plants growth was also significant, indicating the ability of the compost to alleviate the As phytotoxicity. Arsenic caused a reduction of the photosynthesis rate. By increasing As concentration in irrigation water, in fact, bean leaves showed a decrease in both chlorophyll A and B concentrations in their own mesophylls. However, by increasing level of compost application there was an increase of both chlorophylls concentrations in bean leaves. Arsenic concentration in roots was higher than that in shoots and bean yield. Bean plants showed a typical behavior of the plants sensitive to As toxicity, which usually tend to limit the As translocation from roots to shoots and yield. A low As allocation in bean yield is desirable, because a high As content in edible part of the plants could cause contamination of the human food-chain, being beans a low-cost proteins source and a staple food in many Countries. Moreover, the compost application has allowed to reduce the As concentration in all tissues of the amended plants than those non-amended. The concentration of the As free-fraction in soil decreased significantly by increasing level of compost application, whereas the higher the compost application the higher was the concentration of specifically sorbed As by soil colloidal particles. The results of this study suggest that the growth of bean plants and their own As uptake were substantially affected by the mobility of As in soils and the plant management. Higher mobility of As in soil resulted in higher As uptake by bean plants. The use of compost, in addition to improve bean plants growth and their nutritional status, has allowed to limit the As uptake by biomasses, through the immobilization of the metalloid, derived by irrigation water, on/in their humified organic macromolecules. Furthermore, the supply of nutrients through the compost falls within the context of the organic farming, eco-friendly production system, which ensures the sustainability of the soil, improving its fertility.

  1. The concentrations of arsenic and other toxic elements in Bangladesh's drinking water.

    PubMed Central

    Frisbie, Seth H; Ortega, Richard; Maynard, Donald M; Sarkar, Bibudhendra

    2002-01-01

    For drinking water, the people of Bangladesh used to rely on surface water, which was often contaminated with bacteria causing diarrhea, cholera, typhoid, and other life-threatening diseases. To reduce the incidences of these diseases, millions of tubewells were installed in Bangladesh since independence in 1971. This recent transition from surface water to groundwater has significantly reduced deaths from waterborne pathogens; however, new evidence suggests disease and death from arsenic (As) and other toxic elements in groundwater are affecting large areas of Bangladesh. In this evaluation, the areal and vertical distribution of As and 29 other inorganic chemicals in groundwater were determined throughout Bangladesh. This study of 30 analytes per sample and 112 samples suggests that the most significant health risk from drinking Bangladesh's tubewell water is chronic As poisoning. The As concentration ranged from < 0.0007 to 0.64 mg/L, with 48% of samples above the 0.01 mg/L World Health Organization drinking water guideline. Furthermore, this study reveals unsafe levels of manganese (Mn), lead (Pb), nickel (Ni), and chromium (Cr). Our survey also suggests that groundwater with unsafe levels of As, Mn, Pb, Ni, and Cr may extend beyond Bangladesh's border into the four adjacent and densely populated states in India. In addition to the health risks from individual toxins, possible multimetal synergistic and inhibitory effects are discussed. Antimony was detected in 98% of the samples from this study and magnifies the toxic effects of As. In contrast, Se and Zn were below our detection limits in large parts of Bangladesh and prevent the toxic effects of As. PMID:12417487

  2. Dissolved sulfide in groundwater with elevated arsenic concentrations at Winthrop, Maine

    NASA Astrophysics Data System (ADS)

    He, Y.; Zheng, Y.; Zheng, Y.; Locke, D. C.; Simpson, J. H.; Stute, M.

    2001-12-01

    Although sulfur is a biogeochemically significant element because of its strong influence on and response to redox conditions, there are relatively few reliable data sets of trace levels of dissolved sulfide \\(less than1 uM \\) in groundwaters This circumstance results from the relatively high detection limit \\(˜ 1uM \\) of methylene blue colorimetry and the general lack of sensitive methods for field analysis. We were motivated to investigate trace levels of dissolved sulfide because highly insoluble sulfide precipitates of many elements such as As and Fe represent important removal pathways for these metals in reducing groundwaters. Using differential pulse cathodic stripping voltammetry \\(DPCSV\\) capable of detecting 4 nM of dissolved sulfide, we observed that at a site in Winthrop, Maine, groundwater sulfide concentrations ranged from less than 4 nM to ˜ 2000 nM for about a dozen multi-level observation wells under a landfill cap and less than 4 nM to ˜ 7300 nM from several nearby monitoring wells outside the landfill. Sulfide concentrations generally increased when oxygen reduction potential \\(ORP\\) values became more negative. Determination of sulfide should be carried out within 1 hr of sample collection. Samples taken by two methods, \\(1\\) PTFE syringes with luer-lock valves and \\(2\\) BOD bottles show a rapid decline of sulfide following sampling, with up to 90% and 60% losses, respectively, after 24 hrs of storage at 4 ° C. Despite the three orders of magnitude range of dissolved sulfide, arsenic and iron concentrations were all elevated in observational wells installed in a roughly 25 m by 20 m rectangle under the landfill cap, suggesting that As remains mobile under mildly sulfate-reducing conditions. In one well outside of the landfill area, with extremely negative ORP \\(-321 mV\\) and ˜ 7300 nM of dissolved sulfide, groundwater was very low in dissolved As, Fe, and sulfate, suggesting that precipitation of arsenopyrite could be a plausible mechanism for removing As in extremely reducing groundwaters.

  3. Low-Concentration Arsenic Trioxide Inhibits Skeletal Myoblast Cell Proliferation via a Reactive Oxygen Species-Independent Pathway

    PubMed Central

    Yang, Rong-Sen; Chiu, Chen-Yuan; Tsai, Keh-Sung; Lan, Kuo-Cheng

    2015-01-01

    Myoblast proliferation and differentiation are essential for skeletal muscle regeneration. Myoblast proliferation is a critical step in the growth and maintenance of skeletal muscle. The precise action of inorganic arsenic on myoblast growth has not been investigated. Here, we investigated the in vitro effect of inorganic arsenic trioxide (As2O3) on the growth of C2C12 myoblasts. As2O3 decreased myoblast growth at submicromolar concentrations (0.25–1 ?M) after 72 h of treatment. Submicromolar concentrations of As2O3 did not induce the myoblast apoptosis. Low-concentration As2O3 (0.5 and 1 ?M) significantly suppressed the myoblast cell proliferative activity, which was accompanied by a small proportion of bromodeoxyuridine (BrdU) incorporation and decreased proliferating cell nuclear antigen (PCNA) protein expression. As2O3 (0.5 and 1 ?M) increased the intracellular arsenic content but did not affect the reactive oxygen species (ROS) levels in the myoblasts. Cell cycle analysis indicated that low-concentrations of As2O3 inhibited cell proliferation via cell cycle arrest in the G1 and G2/M phases. As2O3 also decreased the protein expressions of cyclin D1, cyclin E, cyclin B1, cyclin-dependent kinase (CDK) 2, and CDK4, but did not affect the protein expressions of p21 and p27. Furthermore, As2O3 inhibited the phosphorylation of Akt. Insulin-like growth factor-1 significantly reversed the inhibitory effect of As2O3 on Akt phosphorylation and cell proliferation in the myoblasts. These results suggest that submicromolar concentrations of As2O3 alter cell cycle progression and reduce myoblast proliferation, at least in part, through a ROS-independent Akt inhibition pathway. PMID:26359868

  4. Urine odor

    MedlinePLUS

    Urine odor refers to the smell from your urine. Urine odor varies. Most of the time, urine does not have a strong smell if you ... Most changes in urine odor are not a sign of disease and go away in time. Some foods and medicines, including vitamins, may ...

  5. SPECIATION OF ARSENIC IN EXPOSURE ASSESSMENT MATRICES

    EPA Science Inventory

    The speciaton of arsenic in water, food and urine are analytical capabilities which are an essential part in arsenic risk assessment. The cancer risk associated with arsenic has been the driving force in generating the analytical research in each of these matrices. This presentat...

  6. [Forensic medical expertise of sudden cardiac death from alcoholic cardiomyopathy in the subjects having a low ethanol concentration in the blood and urine].

    PubMed

    Sokolova, O V; Petrova, Yu A

    2015-01-01

    The objective of the present study was to evaluate the cases of sudden cardiac death from alcoholic cardiomyopathy of the subjects having a low ethanol concentration in the blood and urine; the second objective was the statistical analysis of the data thus obtained. It was shown that sudden cardiac death from alcoholic cardiomyopathy occurs in the men more frequently than in the women despite rather low ethanol levels in the blood and urine of both genders or even in the cases of complete absence of ethanol in these fluids. It is concluded that ethanol concentration in the blood and urine of the subjects who died from the alcohol-induced heart injury depends on their age and sex. PMID:26521311

  7. Role of Metabolic Genes in Blood Arsenic Concentrations of Jamaican Children with and without Autism Spectrum Disorder

    PubMed Central

    Rahbar, Mohammad H.; Samms-Vaughan, Maureen; Ma, Jianzhong; Bressler, Jan; Loveland, Katherine A.; Ardjomand-Hessabi, Manouchehr; Dickerson, Aisha S.; Grove, Megan L.; Shakespeare-Pellington, Sydonnie; Beecher, Compton; McLaughlin, Wayne; Boerwinkle, Eric

    2014-01-01

    Arsenic is a toxic metalloid with known adverse effects on human health. Glutathione-S-transferase (GST) genes, including GSTT1, GSTP1, and GSTM1, play a major role in detoxification and metabolism of xenobiotics. We investigated the association between GST genotypes and whole blood arsenic concentrations (BASC) in Jamaican children with and without autism spectrum disorder (ASD). We used data from 100 ASD cases and their 1:1 age- and sex-matched typically developing (TD) controls (age 2–8 years) from Jamaica. Using log-transformed BASC as the dependent variable in a General Linear Model, we observed a significant interaction between GSTP1 and ASD case status while controlling for several confounding variables. However, for GSTT1 and GSTM1 we did not observe any significant associations with BASC. Our findings indicate that TD children who had the Ile/Ile or Ile/Val genotype for GSTP1 had a significantly higher geometric mean BASC than those with genotype Val/Val (3.67 µg/L vs. 2.69 µg/L, p < 0.01). Although, among the ASD cases, this difference was not statistically significant, the direction of the observed difference was consistent with that of the TD control children. These findings suggest a possible role of GSTP1 in the detoxification of arsenic. PMID:25101770

  8. Urine chemistry

    MedlinePLUS

    Chemistry - urine ... For this test, a clean catch (midstream) urine sample is needed. Some tests require that you collect all of your urine for 24 hours. Your doctor will order certain tests, which ...

  9. Calcium - urine

    MedlinePLUS

    This test measures the amount of calcium in urine. All cells need calcium in order to work. ... A 24-hour urine sample is usually needed: On day 1, urinate into the toilet when you wake up in the morning. Collect ...

  10. Isotope Concentrations from 24-h Urine and 3-h Serum Samples Can Be Used to Measure Intestinal Magnesium Absorption in Postmenopausal Women123

    PubMed Central

    Hansen, Karen E.; Nabak, Andrea C.; Johnson, Rachael Erin; Marvdashti, Sheeva; Keuler, Nicholas S.; Shafer, Martin M.; Abrams, Steven A.

    2014-01-01

    Studies suggest a link between magnesium status and osteoporosis. One barrier to more conclusive research on the potential relation is measuring intestinal magnesium absorption (MgA), which requires the use of stable isotopes and a ?6-d stool or 3-d urine collection. We evaluated alternative methods of measuring MgA. We administered 2 stable magnesium isotopes to 15 postmenopausal women (cohort 1) aged 62 ± 8 y with a dietary magnesium intake of 345 ± 72 mg/d. Participants fasted from 1200 h to 0700 h and then consumed breakfast with ?23 mg of oral 26Mg and ?11 mg of i.v. 25Mg. We measured magnesium isotope concentrations in 72-h urine, spot urine (36, 48, 60, and 72 h), and spot serum (1, 3, and 5 h) samples collected after isotope dosing. We calculated MgA using the dose-corrected fraction of isotope concentrations from the 72-h urine collection. We validated new methods in 10 postmenopausal women (cohort 2) aged 59 ± 5 y with a dietary magnesium intake of 325 ± 122 mg/d. In cohort 1, MgA based on the 72-h urine collection was 0.28 ± 0.08. The 72-h MgA correlated most highly with 0–24 h urine MgA value alone (? = 0.95, P < 0.001) or the mean of the 0–24 h urine and the 3-h (? = 0.93, P < 0.001) or 5-h (? = 0.96, P < 0.001) serum MgA values. In cohort 2, Bland-Altman bias was lowest (?0.003, P = 0.82) using means of the 0–24 h urine and 3-h serum MgA values. We conclude that means of 0–24 h urine and 3-h serum MgA provide a reasonable estimate of 72-h MgA. However, if researchers seek to identify small changes in MgA, we recommend a 3-d urine or extended stool collection. This trial was registered at clinicaltrials.gov as NCT01593501. PMID:24500940

  11. Arsenic groundwater contamination in Middle Ganga Plain, Bihar, India: a future danger?

    PubMed Central

    Chakraborti, Dipankar; Mukherjee, Subhash C; Pati, Shyamapada; Sengupta, Mrinal K; Rahman, Mohammad M; Chowdhury, Uttam K; Lodh, Dilip; Chanda, Chitta R; Chakraborti, Anil K; Basu, Gautam K

    2003-01-01

    The pandemic of arsenic poisoning due to contaminated groundwater in West Bengal, India, and all of Bangladesh has been thought to be limited to the Ganges Delta (the Lower Ganga Plain), despite early survey reports of arsenic contamination in groundwater in the Union Territory of Chandigarh and its surroundings in the northwestern Upper Ganga Plain and recent findings in the Terai area of Nepal. Anecdotal reports of arsenical skin lesions in villagers led us to evaluate arsenic exposure and sequelae in the Semria Ojha Patti village in the Middle Ganga Plain, Bihar, where tube wells replaced dug wells about 20 years ago. Analyses of the arsenic content of 206 tube wells (95% of the total) showed that 56.8% exceeded arsenic concentrations of 50 micro g/L, with 19.9% > 300 micro g/L, the concentration predicting overt arsenical skin lesions. On medical examination of a self-selected sample of 550 (390 adults and 160 children), 13% of the adults and 6.3% of the children had typical skin lesions, an unusually high involvement for children, except in extreme exposures combined with malnutrition. The urine, hair, and nail concentrations of arsenic correlated significantly (r = 0.72-0.77) with drinking water arsenic concentrations up to 1,654 micro g/L. On neurologic examination, arsenic-typical neuropathy was diagnosed in 63% of the adults, a prevalence previously seen only in severe, subacute exposures. We also observed an apparent increase in fetal loss and premature delivery in the women with the highest concentrations of arsenic in their drinking water. The possibility of contaminated groundwater at other sites in the Middle and Upper Ganga Plain merits investigation. PMID:12842773

  12. 21 CFR 862.3120 - Arsenic test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Arsenic test system. 862.3120 Section 862.3120....3120 Arsenic test system. (a) Identification. An arsenic test system is a device intended to measure arsenic, a poisonous heavy metal, in urine, vomitus, stomach contents, nails, hair, and...

  13. 21 CFR 862.3120 - Arsenic test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Arsenic test system. 862.3120 Section 862.3120....3120 Arsenic test system. (a) Identification. An arsenic test system is a device intended to measure arsenic, a poisonous heavy metal, in urine, vomitus, stomach contents, nails, hair, and...

  14. 21 CFR 862.3120 - Arsenic test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Arsenic test system. 862.3120 Section 862.3120....3120 Arsenic test system. (a) Identification. An arsenic test system is a device intended to measure arsenic, a poisonous heavy metal, in urine, vomitus, stomach contents, nails, hair, and...

  15. 21 CFR 862.3120 - Arsenic test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Arsenic test system. 862.3120 Section 862.3120....3120 Arsenic test system. (a) Identification. An arsenic test system is a device intended to measure arsenic, a poisonous heavy metal, in urine, vomitus, stomach contents, nails, hair, and...

  16. 21 CFR 862.3120 - Arsenic test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Arsenic test system. 862.3120 Section 862.3120....3120 Arsenic test system. (a) Identification. An arsenic test system is a device intended to measure arsenic, a poisonous heavy metal, in urine, vomitus, stomach contents, nails, hair, and...

  17. Impacts of CCA-treated wood and wood ash on arsenic concentrations in soils and plants

    E-print Network

    Ma, Lena

    application of wood ash to forest soils in Florida (ash was applied 8 years ago in our previous study by garden vegetables, and by determining the long term effect of land application of wood ash on arsenic uptake by garden vegetables (year 2). 4. Evaluate the long-term environmental impacts of piling

  18. Association of arsenic concentration and speciation with straighthead disease in US produced rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent reports have indicated that rice when grown under anaerobic flooded field conditions can accumulate high levels of grain arsenic (As). This is a public health concern due to the high daily consumption of rice by some populations. The As-based herbicide (monosodium methanearsonate, MSMA) has ...

  19. Arsenic levels in immigrant children from countries at risk of consuming arsenic polluted water compared to children from Barcelona.

    PubMed

    Piñol, S; Sala, A; Guzman, C; Marcos, S; Joya, X; Puig, C; Velasco, M; Velez, D; Vall, O; Garcia-Algar, O

    2015-11-01

    Arsenic is a highly toxic element that pollutes groundwater, being a major environmental problem worldwide, especially in the Bengal Basin. About 40 % of patients in our outpatient clinics come from those countries, and there is no published data about their arsenic exposure. This study compares arsenic exposure between immigrant and native children. A total of 114 children (57 natives, 57 immigrants), aged 2 months to 16 years, were recruited and sociodemographic and environmental exposure data were recorded. Total arsenic in urine, hair, and nails and arsenic-speciated compounds in urine were determined. We did not find significant differences in total and inorganic arsenic levels in urine and hair, but in organic arsenic monomethylarsenic acid (MMA) and dimethylarsinous acid (DMA) in urine and in total arsenic in nails. However, these values were not in the toxic range. There were significant differences between longer than 5 years exposure and less than 5 years exposure(consumption of water from tube wells), with respect to inorganic and organic MMA arsenic in urine and total arsenic in nails. There was partial correlation between the duration of exposure and inorganic arsenic levels in urine. Immigrant children have higher arsenic levels than native children, but they are not toxic. At present, there is no need for specific arsenic screening or follow-up in immigrant children recently arrived in Spain from exposure high-risk countries. PMID:26431705

  20. Arsenic in the groundwater of Majuli - The largest river island of the Brahmaputra: Magnitude of occurrence and human exposure

    NASA Astrophysics Data System (ADS)

    Goswami, Ritusmita; Rahman, Mohammad Mahmudur; Murrill, Matthew; Sarma, Kali Prasad; Thakur, Ritu; Chakraborti, Dipankar

    2014-10-01

    Arsenic (As) concentrations in tube-well water, sediment, and biological samples, including hair, nail and urine were measured to determine the degree of contamination in groundwater and its impact on local inhabitants in the largest populated riverine island Majuli, Assam, India. Arsenic in the groundwater (n = 380) ranged from <3 to 468 ?g/L with 37.6% and 16% of the samples having As above 10 ?g/L and 50 ?g/L, respectively. Arsenic concentration in the groundwater gradually decreased beyond 25 m depth of tube-wells. Nearly 90% of urine, 100% of hair and 97% of nail samples had As above the normal ranges, but mean As concentrations in hair, nail and urine of Majuli residents were lower than those in other contaminated areas of the Ganga-Meghna-Brahmaputra Plain. Significant positive correlations were observed between As in drinking water and As concentrations in hair, nail and urine samples (r = 0.71-0.78). The range of As concentration in bore-hole sediment was 0.29-1.44 mg/kg. The correlation between As and iron in sediment was found to be very poor. Hydrogeological studies are required to understand the source and mobilization process of As in groundwater of Majuli. Early mitigation measures are urgently needed to save the inhabitants of Majuli from arsenic exposure and possible health effects.

  1. Determination of 238u/235u, 236u/238u and uranium concentration in urine using sf-icp-ms and mc-icp-ms: an interlaboratory comparison.

    PubMed

    Parrish, Randall R; Thirlwall, Matthew F; Pickford, Chris; Horstwood, Matthew; Gerdes, Axel; Anderson, James; Coggon, David

    2006-02-01

    Accidental exposure to depleted or enriched uranium may occur in a variety of circumstances. There is a need to quantify such exposure, with the possibility that the testing may post-date exposure by months or years. Therefore, it is important to develop a very sensitive test to measure precisely the isotopic composition of uranium in urine at low levels of concentration. The results of an interlaboratory comparison using sector field (SF)-inductively coupled plasma-mass spectrometry (ICP-MS) and multiple collector (MC)-ICP-MS for the measurement of uranium concentration and U/U and U/U isotopic ratios of human urine samples are presented. Three urine samples were verified to contain uranium at 1-5 ng L and shown to have natural uranium isotopic composition. Portions of these urine batches were doped with depleted uranium (DU) containing small quantities of U, and the solutions were split into 100 mL and 400 mL aliquots that were subsequently measured blind by three laboratories. All methods investigated were able to measure accurately U/U with precisions of approximately 0.5% to approximately 4%, but only selected MC-ICP-MS methods were capable of consistently analyzing U/U to reasonable precision at the approximately 20 fg L level of U abundance. Isotope dilution using a U tracer demonstrates the ability to measure concentrations to better than +/-4% with the MC-ICP-MS method, though sample heterogeneity in urine samples was shown to be problematic in some cases. MC-ICP-MS outperformed SF-ICP-MS methods, as was expected. The MC-ICP-MS methodology described is capable of measuring to approximately 1% precision the U/U of any sample of human urine over the entire range of uranium abundance down to <1 ng L, and detecting very small amounts of DU contained therein. PMID:16404170

  2. Pathways of human exposure to arsenic in a community surrounding a copper smelter

    SciTech Connect

    Polissar, L.; Lowry-Coble, K.; Kalman, D.A.; Hughes, J.P.; van Belle, G.; Covert, D.S.; Burbacher, T.M.; Bolgiano, D.; Mottet, N.K. )

    1990-10-01

    Several studies have found elevated levels of urinary arsenic among residents living near a copper smelter in Tacoma, Washington. To assess pathways of exposure to arsenic from the smelter, biological and environmental samples were collected longitudinally from 121 households up to 8 miles from the smelter. The concentration of inorganic and methylated arsenic compounds in spot urine samples was used as the primary measure of exposure to environmental arsenic. Urinary concentration of arsenic dropped off to a constant background level within one-half mile of the smelter in contrast to environmental concentrations, which decreased more steadily with increasing distance. Among all age-sex-specific groups in all areas, only children ages 0-6 living within one-half mile of the smelter had elevated levels of arsenic in urine. A separate analysis of data for these children suggests that hand-to-mouth activity was the primary source of exposure. Inhalation of ambient air and resuspension of contaminated soil were not important sources of exposure for children or adults.

  3. A medical geology study of an arsenic-contaminated area in Kouhsorkh, NE Iran.

    PubMed

    Tabasi, Samira; Abedi, Arezoo

    2012-04-01

    High concentrations of arsenic were determined in sediments from the Kouhsorkh area, Khorasan province, NE Iran. The main rock formations in the area consist of Tertiary volcanic rocks as Tuffaceous sandstone, polymictic conglomerate and andesite. Furthermore, some As-Sb-Au mineralization occurred in this area. Concentrations of arsenic in sediments were determined to range between 4.2 and 268.2 ppm, exceeding US EPA (2004) limits. It seems that young volcanic activity is one of the most important factors for arsenic contamination in this area. The first stage of this medical geology study was done at 2 villages in the Kouhsorkh area in which the arsenic concentration in water is high. People in this residential area suffer from skin diseases including hyperpigmentation, hypopigmentation, keratosis on head, hands, and feet. The 24-h urine specimens were tested for arsenic, the level of total arsenic in urine were determined to range between 13.66 and 75.92 ?g/l day, exceeding permissible limits from 5 to 40 ?g/day. More systematic studies are needed to determine the link between As exposure and its related diseases. PMID:21960314

  4. Concentrations of delta9-tetrahydrocannabinol and 11-nor-9-carboxytetrahydrocannabinol in blood and urine after passive exposure to Cannabis smoke in a coffee shop.

    PubMed

    Röhrich, J; Schimmel, I; Zörntlein, S; Becker, J; Drobnik, S; Kaufmann, T; Kuntz, V; Urban, R

    2010-05-01

    Cannabinoid concentrations in blood and urine after passive exposure to cannabis smoke under real-life conditions were investigated in this study. Eight healthy volunteers were exposed to cannabis smoke for 3 h in a well-attended coffee shop in Maastricht, Netherlands. An initial blood and urine sample was taken from each volunteer before exposure. Blood samples were taken 1.5, 3.5, 6, and 14 h after start of initial exposure, and urine samples were taken after 3.5, 6, 14, 36, 60, and 84 h. The samples were subjected to immunoassay screening for cannabinoids and analyzed using gas chromatography-mass spectrometry (GC-MS) for Delta(9)-tetrahydrocannabinol (THC), 11-nor-hydroxy-Delta(9)-tetrahydrocannabinol (THC-OH), and 11-nor-9-carboxy-Delta(9)-tetrahydrocannabinol (THC-COOH). It could be demonstrated that all volunteers absorbed THC. However, the detected concentrations were rather small. None of the urine samples produced immunoassay results above the cutoff concentration of 25 ng/mL. THC-COOH concentrations up to 5.0 and 7.8 ng/mL before and after hydrolysis, respectively, were found in the quantitative GC-MS analysis of urine. THC could be detected in trace amounts close to the detection limit of the used method in the first two blood samples after initial exposure (1.5 and 3.5 h). In the 6 h blood samples, THC was not detectable anymore. THC-COOH could be detected after 1.5 h and was still found in 3 out of 8 blood samples after 14 h in concentrations between 0.5 and 1.0 ng/mL. PMID:20465865

  5. [Tracing for arsenic exposure - a differentiation of arsenic compounds is essential for the health assessment].

    PubMed

    Weistenhöfer, Wobbeke; Ochsmann, Elke; Drexler, Hans; Göen, Thomas; Klotz, Katrin

    2016-01-01

    Arsenic is ubiquitous and harmful to health in occupation and environment. Arsenic exposure is measured through analysis of arsenic compounds in urine. The identification of several arsenic species is necessary to understand the hazardous potential of the arsenic compounds which differ highly in their toxicity. To estimate the extent of an occupational exposure to arsenic, arsenic species were evaluated for the first time by the working group "Setting of Threshold Limit Values in Biological Material" of the DFG Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area and Biologische Arbeitsstoffreferenzwerte (BAR) of 0.5 ?g / L urine for arsenic (III), 0.5 ?g / L urine for arsenic (V), 2 ?g / L urine for monomethylarsonic acid (MMA) and 10 ?g / L urine for dimethylarsinic acid (DMA) were set. If the reference value for total arsenic is exceeded, a further differentiation of arsenic species now enables to estimate the individual health risks taking into account special influences such as seafood consumption. PMID:26710207

  6. Association of exposure to polycyclic aromatic hydrocarbons (estimated from job category) with concentration of 1-hydroxypyrene glucuronide in urine from workers at a steel plant.

    PubMed Central

    Kang, D; Rothman, N; Cho, S H; Lim, H S; Kwon, H J; Kim, S M; Schwartz, B; Strickland, P T

    1995-01-01

    OBJECTIVES--Increased risk of lung cancer has been associated with employment in the steel industry. This association is thought to be due in part to increased concentrations of polycyclic aromatic hydrocarbons (PAHs) in air found in this work environment. Measurement of PAH metabolites in human urine provides a means of assessing individual internal dose of PAHs. This study examined the relative contribution of occupation and smoking to urinary concentration of 1-hydroxypyrene glucuronide (1-OHPG) among a group of workers at a steel plant. METHODS--Concentrations of 1-OHPG in urine from 44 workers with jobs associated with increased air concentrations of PAHs and 40 workers with jobs with low or no exposure to PAHs were measured. 20 workers in each group were not current smokers. Urinary 1-OHPG was measured by synchronous fluorescence spectroscopy after immunoaffinity chromatography specific for PAH metabolites. RESULTS--Mean (SEM) urinary 1-OHPG concentration was 2.16 (0.42) pmol/ml urine among the 44 occupationally exposed workers compared with 0.38 (0.05) among the 40 workers with no or low exposure (P < 0.0001). Mean urinary 1-OHPG concentration was 1.82 (0.41) pmol/ml urine among the 44 current smokers compared with 0.75 (0.20) among the 40 non-smokers (P < 0.005). Mean 1-OHPG concentrations in non-smokers were 0.26 (n = 20), 0.70 (n = 15), and 2.84 pmol/ml urine (n = 5) for strata of exposure to PAHs (no or low, mid, and high) based on job category; the corresponding values in smokers were 0.55 (n = 20), 0.94 (n = 12), and 4.91 pmol/ml (n = 12), respectively. Multiple linear regression showed significant differences between subjects in different PAH exposure with increased concentrations of 1-OHPG in urine. Amounts of foods containing PAHs ingested by this group of workers were relatively low and did not contribute significantly to urinary 1-OHPG concentrations. CONCLUSIONS--These results indicate that 1-OHPG is a common urinary metabolite in people with recent occupational exposure to PAHs and is associated with both job category and estimated stratum of PAH exposure. PMID:7550799

  7. Determining the concentration and distribution of arsenic deposits in rock matrices and porous media by X-ray difference microtomography

    NASA Astrophysics Data System (ADS)

    Peng, D.; Alsina, M.; Chen, C.; Keane, D.; Packman, A. I.; Gaillard, J.; Aubeneau, A. F.; Pasten, P. A.; Pizarro, G.

    2009-12-01

    Synchrotron-based high resolution X-ray microtomography was used to characterize arsenic (As) deposits within porous media. The distribution of arsenic was determined using difference tomography, where the X-rays used to image the sample were selected to be just above and below the As absorption edge at 11,853 eV. The difference tomograms have background noise from other minerals contained in the sample, local variation of X-ray beam intensity, and electronic noise associated with the data acquisition process. Image processing filters, such as windowing or adaptive filters derived from the Fast Fourier Transform (FFT) method, were employed to reduce background noise in the tomograms and enhance information on the arsenic deposits. These errors are generally larger in difference tomography than in conventional X-ray microtomography because this method requires operating at very specific X-ray energies (i.e., an edge of the element of interest), and this constraint makes it very difficult to obtain optimal contrast for tomographic reconstruction. In particular, the signal-to-noise ratio is often low in difference tomograms of geological samples having high background X-ray absorption. The relationship between As concentration and difference image intensity was evaluated using well defined As samples prepared in the laboratory, along with As-rich sinter deposits from El Tatio hydrothermal field and fluvial sediments from the Loa River downstream of El Tatio. This relationship is non-linear because of interactions between the different sources of error in the construction of the difference tomograms. As a result, the difference tomography method is relatively insensitive to bulk As concentrations, and instead primarily provides information on the distribution of regions of the sample that have high As concentrations, such as As-rich particles, precipitates, or evaporite deposits. Tomographic 3D reconstructions of the porous media and of the aggregate structure thus provide an unique opportunity to observe the distribution and morphology of arsenic deposits within primary source formations and mixed fluvial sediments. This approach provides a useful method for obtaining 3D microstructural and chemical information in rock matrices, for investigating contaminant distributions within sedimentary deposits, and for assessing distributions of different mineral phases within biofilms and other organic material.

  8. Urine melanin

    MedlinePLUS

    Thormahlen's test; Melanin - urine ... A clean-catch urine sample is needed. ... this substance that it shows up in the urine. ... Normally, melanin is not present in urine. Normal value ranges may ... measurements or test different samples. Talk to your doctor ...

  9. Urine - bloody

    MedlinePLUS

    Hematuria; Blood in the urine ... are many possible causes of blood in the urine. Bloody urine is may be due to a problem in ... glomerulonephritis ) -- a common cause of blood in the urine in children Kidney failure Polycystic kidney disease Recent ...

  10. Arsenic, Boron, and Fluoride Concentrations in Ground Water in and Near Diabase Intrusions, Newark Basin, Southeastern Pennsylvania

    USGS Publications Warehouse

    Senior, Lisa A.; Sloto, Ronald A.

    2006-01-01

    During an investigation in 2000 by the U.S. Environmental Protection Agency (USEPA) of possible contaminant releases from an industrial facility on Congo Road near Gilbertsville in Berks and Montgomery Counties, southeastern Pennsylvania, concentrations of arsenic and fluoride above USEPA drinking-water standards of 10 ?g/L and 4 mg/L, respectively, and of boron above the USEPA health advisory level of 600 ?g/L were measured in ground water in an area along the northwestern edge of the Newark Basin. In 2003, the USEPA requested technical assistance from the U.S. Geological Survey (USGS) to help identify sources of arsenic, boron, and fluoride in the ground water in the Congo Road area, which included possible anthropogenic releases and naturally occurring mineralization in the local bedrock aquifer, and to identify other areas in the Newark Basin of southeastern Pennsylvania with similarly elevated concentrations of these constituents. The USGS reviewed available data and collected additional ground-water samples in the Congo Road area and four similar hydrogeologic settings. The Newark Basin is the largest of the 13 major exposed Mesozoic rift basins that stretch from Nova Scotia to South Carolina. Rocks in the Newark Basin include Triassic through Jurassic-age sedimentary sequences of sandstones and shales that were intruded by diabase. Mineral deposits of hydrothermal origin are associated with alteration zones bordering intrusions of diabase and also occur as strata-bound replacement deposits of copper and zinc in sedimentary rocks. The USGS review of data available in 2003 showed that water from about 10 percent of wells throughout the Newark Basin of southeastern Pennsylvania had concentrations of arsenic greater than the USEPA maximum contaminant level (MCL) of 10 ?g/L; the highest reported arsenic concentration was at about 70 ?g/L. Few data on boron were available, and the highest reported boron concentration in well-water samples was 60 ?g/L in contrast to concentrations over 5,000 ?g/L in the Congo Road area. Although concentrations of fluoride up to 4 mg/L were reported for a few well-water samples collected throughout the Newark Basin, about 90 percent of the samples had concentrations of 0.5 mg/L or less. The USGS sampled 58 wells primarily in 5 areas in the Newark Basin, southeastern Pennsylvania, from February 2004 through April 2005 to identify other possible areas of elevated arsenic, boron, and fluoride and to characterize the geochemical environment associated with elevated concentrations of these constituents. Sampled wells included 12 monitor wells at an industrial facility near Congo Road, 45 private-supply wells in Berks, Montgomery, and Bucks Counties, and 1 private-supply well near Dillsburg, York County, an area where elevated fluoride in ground water had been reported in the adjacent Gettysburg Basin. Wells were sampled in transects from the diabase through the adjacent hornfels and into the unaltered shales of the Brunswick Group. Field measurements were made of pH, temperature, dissolved oxygen concentration, and specific conductance. Samples were analyzed in the laboratory for major ions, nutrients, total organic carbon, dissolved and total concentrations of selected trace elements, and boron isotopic composition. Generally, the ground water from the 46 private-supply wells had relatively neutral to alkaline pH (ranging from 6.1 to 9.1) and moderate concentrations of dissolved oxygen. Most water samples were of the calcium-bicarbonate type. Concentrations of arsenic up to 60 ?g/L, boron up to 3,950 ?g/L, and fluoride up to 0.70 mg/L were measured. Drinking-water standards or health advisories (for constituents that do not have standards established) were exceeded most frequently (about 20 percent of samples) for arsenic and boron and less frequently (6 percent or less of samples) for total iron, manganese, sulfate, nitrate, lead, molybdenum, and strontium. In water from 12 monitor

  11. Intraindividual variation in urinary iodine concentrations: effect of adjustment on population distribution using two and three repeated spot urine collections

    PubMed Central

    Charlton, Karen E; Batterham, Marijka J; Buchanan, Li Min; Mackerras, Dorothy

    2014-01-01

    Objectives To determine the effect of adjustment for intraindividual variation on estimations of urinary iodine concentrations (UIC), prevalence of iodine deficiency and population distribution of iodine status. Setting Community-dwelling older adults from New South Wales, Australia. Participants 84 healthy men and women aged 60–95?years were recruited prior to introduction of the mandatory iodine fortification programme. Primary and secondary outcome measures UIC data were collected from three spot urine samples, each 1?week apart. Repeated measures analysis of variance were determined between-person (sb) and total (sobs) SDs. Adjusted UIC values were calculated as ((person's UIC?group mean)×(sb/sobs))+group mean, and a corrected UIC distribution was calculated. Results The sb/sobs for using three samples and two samples were 0.83 and 0.79, respectively. Following adjustment for intraindividual variation, the proportion with UIC <50??g/L reduced from 33% to 19%, while the proportion with UIC ?100??g/L changed from 21% to 17%. The 95th centile for UIC decreased from 176 to 136??g/L. Adjustment by taking averages yielded a lesser degree of contraction in the distribution than the analysis of variance method. Conclusions The addition of information about intraindividual variability has potential for increasing the interpretability of UIC data collected to monitor the iodine status of a population. PMID:24401724

  12. Arsenic metabolism and thioarsenicals.

    PubMed

    Rehman, Kanwal; Naranmandura, Hua

    2012-08-01

    Arsenic has received considerable attention in the world, since it can lead to a multitude of toxic effects and has been recognized as a human carcinogen causing cancers. Here, we focus on the current state of knowledge regarding the proposed mechanisms of arsenic biotransformation, with a little about cellular uptake, toxicity and clinical utilization of arsenicals. Since pentavalent methylated metabolites were found in animal urine after exposure to iAs(III), methylation was considered to be a detoxification process, but the discovery of methylated trivalent intermediates and thioarsenicals in urine has diverted the view and gained much interest regarding arsenic biotransformation. To further investigate the partially understood phenomena relating to arsenic toxicity and the uses of arsenic as a drug, it is important to elucidate the exact pathways involved in metabolism of this metalloid, as the toxicity and the clinical uses of arsenic can be best recognized in context of its biotransformation. Thereby, in this perspective, we have focused on arsenic metabolic pathways including three proposed mechanisms: a classic pathway by Challenger in 1945, followed by a new metabolic pathway proposed by Hayakawa in 2005 involving arsenic-glutathione complexes, while the third is a new reductive methylation pathway that is proposed by our group involving As-protein complexes. According to previous and present in vivo and in vitro experiments, we conclude that the methylation reaction takes place with simultaneous reductive rather than stepwise oxidative methylation. In addition, production of pentavalent methylated arsenic metabolites are suggested to be as the end product of metabolism, rather than intermediates. PMID:22358131

  13. Arsenic Exposure and Cancer Mortality in a US-based Prospective Cohort: the Strong Heart Study

    PubMed Central

    García-Esquinas, Esther; Pollán, Marina; Umans, Jason G.; Francesconi, Kevin A.; Goessler, Walter; Guallar, Eliseo; Howard, Barbara; Farley, John; Yeh, Jeunliang; Best, Lyle G.; Navas-Acien, Ana

    2013-01-01

    Background Inorganic arsenic, a carcinogen at high exposure levels, is a major global health problem. Prospective studies on carcinogenic effects at low-moderate arsenic levels are lacking. Methods We evaluated the association between baseline arsenic exposure and cancer mortality in 3,932 American Indians 45–74 years from Arizona, Oklahoma and North/South Dakota who participated in the Strong Heart Study in 1989–1991 and were followed through 2008. We estimated inorganic arsenic exposure as the sum of inorganic and methylated species in urine. Cancer deaths (386 overall, 78 lung, 34 liver, 18 prostate, 26 kidney, 24 esophagus/stomach, 25 pancreas, 32 colon/rectal, 26 breast, 40 lymphatic/hematopoietic) were assessed by mortality surveillance reviews. We hypothesized an association with lung, liver, prostate and kidney cancer. Results Median (interquartile range) urine concentration for inorganic plus methylated arsenic species was 9.7 (5.8–15.6) ?g/g creatinine. The adjusted hazard ratios (95% CI) comparing the 80th versus 20th percentiles of arsenic were 1.14 (0.92–1.41) for overall cancer, 1.56 (1.02–2.39) for lung cancer, 1.34 (0.66, 2.72) for liver cancer, 3.30 (1.28–8.48) for prostate cancer, and 0.44 (0.14, 1.14) for kidney cancer. The corresponding hazard ratios were 2.46 (1.09–5.58) for pancreatic cancer, and 0.46 (0.22–0.96) for lymphatic and hematopoietic cancers. Arsenic was not associated with cancers of the esophagus and stomach, colon and rectum, and breast. Conclusions Low to moderate exposure to inorganic arsenic was prospectively associated with increased mortality for cancers of the lung, prostate and pancreas. Impact These findings support the role of low-moderate arsenic exposure in lung, prostate and pancreas cancer development and can inform arsenic risk assessment. PMID:23800676

  14. Natural variation in 210Po and 210Pb activity concentrations in the urine of Finnish population groups.

    PubMed

    Muikku, Maarit; Heikkinen, Tarja; Solatie, Dina; Vesterbacka, Pia

    2011-11-01

    A study to determine activity concentrations of (210)Pb and (210)Po in the urine of certain Finnish population groups was conducted, to investigate the variation in natural background level of urinary excretion. The study participants were divided into three groups mainly based on their diet. The first group comprised recreational fishermen and the second group represented people consuming more reindeer meat than an average Finn, while people using drinking water with very high activity concentrations of (210)Po were selected for the third group. The fourth group was a control group. The mean urinary excretion of (210)Po in groups 1 and 2 was 73 and 100 mBq d(-1), respectively. These values were higher than the value of the control group (20 mBq d(-1)) and the mean values reported in the literature. The mean daily urinary excretion of (210)Pb in groups 1 and 2, 70 and 52 mBq d(-1), was also slightly higher than that in the control group (32 mBq d(-1)). In contrast, the excretion rates of both (210)Po and (210)Pb for the members of group 3 were one to two orders of magnitude higher than those reported in the literature. This was clearly due to the elevated levels of natural radionuclides in their drinking water. The present study demonstrates the importance of possessing good knowledge of the background levels, in order to allow the determination of the additional exposure due, for example, to the malevolent use of radiation. PMID:21922285

  15. Relaxin concentrations in serum and urine of endangered species: correlations with physiologic events and use as a marker of pregnancy.

    PubMed

    Steinetz, Bernard G; Brown, Janine L; Roth, Terri L; Czekala, Nancy

    2005-05-01

    Many mammalian species are facing extinction due to problems created by human encroachment, agriculture, pollution, and willful slaughter. Among those at risk are the Asian and African elephant, Sumatran rhinoceros, and giant panda. Conservation groups try to save species in the wild by preserving habitat and limiting animal-human conflicts, often with limited success. Another alternative is to preserve the extant gene pool through captive breeding as a hedge against extinction. Measurement of circulating reproductive hormones is impractical for most wildlife species; determination of urinary or fecal hormone metabolites provides a more viable approach. To aid breeding management, one important tool is the ability to diagnose and monitor pregnancy, especially in species with long gestations (e.g., rhinos over 15 mo and elephants over 20 mo). Unfortunately, measuring progestins often is not useful diagnostically, because concentrations are similar during at least part of the pregnancy and the nonpregnant luteal phase in some species (e.g., elephants, rhinoceroses, and giant pandas). As serum relaxin reliably distinguishes between pregnancy and pseudopregnancy in bitches, relaxin measurement might also provide a method for detecting a successful pregnancy in endangered species. Appropriate immunoassay reagents have enabled the estimation of relaxin concentrations in the serum of elephants and rhinos and the determination of pregnancy establishment and the outcome. Relaxin was also detected in panda serum and urine. However, the extreme variability of the time between observed mating and parturition and the confounding factors of delayed implantation, pseudopregnancy, and frequent fetal resorptions made it impossible to use the panda relaxin data as a specific marker of pregnancy. PMID:15956734

  16. Spectrophotometric determination of arsenic in concentrates and copper-base alloys by the molybdenum blue method after separations by iron collection and xanthate extraction.

    PubMed

    Donaldson, E M

    1977-02-01

    A method for determining 0.0001-1% of arsenic in copper, nickel, molybdenum, lead and zinc concentrates is described. After sample decomposition, arsenic is separated from most of the matrix elements by co-precipitation with hydrous ferric oxide from an ammoniacal medium. Following reprecipitation of arsenic and iron, the precipitate is dissolved in approximately 2 M hydrochloric acid and the solution is evaporated to a small volume to remove water. Arsenic(V) is reduced to the tervalent state with iron(II) and separated from iron, lead and other co-precipitated elements by chloroform extraction of its xanthate from an 11M hydrochloric acid medium. After oxidation of arsenic(III) in the extract to arsenic(V) with bromine-carbon tetrachloride solution, it is back-extracted into water and determined by the molybdenum blue method. Small amounts of iron, copper and molybdenum, which are co-extracted as xanthates, and antimony, which is co-extracted to a slight extent as the chloro-complex under the proposed conditions, do not interfere. The proposed method is also applicable to copper-base alloys. PMID:18962035

  17. Metabolites of arsenic and increased DNA damage of p53 gene in arsenic plant workers

    SciTech Connect

    Wen Weihua; Wen Jinghua; Lu Lin; Liu Hua; Yang Jun; Cheng Huirong; Che Wangjun; Li Liang; Zhang Guanbei

    2011-07-01

    Recent studies have shown that monomethylarsonous acid is more cytotoxic and genotoxic than arsenate and arsenite, which may attribute to the increased levels of reactive oxygen species. In this study, we used hydride generation-atomic absorption spectrometry to determine three arsenic species in urine of workers who had been working in arsenic plants,and calculated primary and secondary methylation indexes. The damages of exon 5, 6, 8 of p53 gene were determined by the method developed by Sikorsky, et al. Results show that the concentrations of each urinary arsenic species,and damage indexes of exon 5 and 8 of p53 gene in the exposed population were significantly higher, but SMI was significantly lower than in the control group. The closely positive correlation between the damage index of exon 5 and PMI,MMA, DMA were found, but there was closely negative correlation between the damage index of exon 5 and SMI. Those findings suggested that DNA damage of exon 5 and 8 of p53 gene existed in the population occupationally exposed to arsenic. For exon 5, the important factors may include the model of arsenic metabolic transformation, the concentrations of MMA and DMA, and the MMA may be of great importance. - Research Highlights: > In our study, the mean SMI for workers came from arsenic plants is 4.06, so they may be in danger. > There are more MMA, there are more damage of exon 5 of p53 gene. > MMA and damage of exon 5 of p53 gene may be useful biomarkers to assess adverse health effects caused by arsenic.

  18. Arsenic pollution sources.

    PubMed

    Garelick, Hemda; Jones, Huw; Dybowska, Agnieszka; Valsami-Jones, Eugenia

    2008-01-01

    Arsenic is a widely dispersed element in the Earth's crust and exists at an average concentration of approximately 5 mg/kg. There are many possible routes of human exposure to arsenic from both natural and anthropogenic sources. Arsenic occurs as a constituent in more than 200 minerals, although it primarily exists as arsenopyrite and as a constituent in several other sulfide minerals. The introduction of arsenic into drinking water can occur as a result of its natural geological presence in local bedrock. Arsenic-containing bedrock formations of this sort are known in Bangladesh, West Bengal (India), and regions of China, and many cases of endemic contamination by arsenic with serious consequences to human health are known from these areas. Significant natural contamination of surface waters and soil can arise when arsenic-rich geothermal fluids come into contact with surface waters. When humans are implicated in causing or exacerbating arsenic pollution, the cause can almost always be traced to mining or mining-related activities. Arsenic exists in many oxidation states, with arsenic (III) and (V) being the most common forms. Similar to many metalloids, the prevalence of particular species of arsenic depends greatly on the pH and redox conditions of the matrix in which it exists. Speciation is also important in determining the toxicity of arsenic. Arsenic minerals exist in the environment principally as sulfides, oxides, and phosphates. In igneous rocks, only those of volcanic origin are implicated in high aqueous arsenic concentrations. Sedimentary rocks tend not to bear high arsenic loads, and common matrices such as sands and sandstones contain lower concentrations owing to the dominance of quartz and feldspars. Groundwater contamination by arsenic arises from sources of arsenopyrite, base metal sulfides, realgar and orpiment, arsenic-rich pyrite, and iron oxyhydroxide. Mechanisms by which arsenic is released from minerals are varied and are accounted for by many (bio)geochemical processes: oxidation of arsenic-bearing sulfides, desorption from oxides and hydroxides, reductive dissolution, evaporative concentration, leaching from sulfides by carbonate, and microbial mobilization. Arsenic enrichment also takes place in geothermally active areas; surface waters are more susceptible than groundwater to contamination in the vicinity of such geothermal systems, and evidence suggests that increased use of geothermal power may elevate risks of arsenic exposure in affected areas. Past and current mining activities continue to provide sources of environmental contamination by arsenic. Because gold- and arsenic-bearing minerals coexist, there is a hazard of mobilizing arsenic during gold mining activities. The Ashanti region of central Ghana currently faces this as a real risk. Historical arsenic contamination exists in Cornwall, UK; an example of a recent arsenic pollution event is that of Ron Phibun town in southern Thailand, where arsenic-related human health effects have been reported. Other important sources of arsenic exposure include coal burning in Slovakia, Turkey, and the Guizhou Province of China; use of arsenic as pesticides in Australia, New Zealand, and the US; and consumption of contaminated foodstuffs (China) and exposure to wood preserving arsenicals (Europe and North America). PMID:18982996

  19. Arsenic methylation and lung and bladder cancer in a case-control study in northern Chile

    SciTech Connect

    Melak, Dawit; Ferreccio, Catterina; Kalman, David; Parra, Roxana; Acevedo, Johanna; Pérez, Liliana; Cortés, Sandra; Smith, Allan H.; Yuan, Yan; Liaw, Jane; Steinmaus, Craig

    2014-01-15

    In humans, ingested inorganic arsenic is metabolized to monomethylarsenic (MMA) then to dimethylarsenic (DMA), although this process is not complete in most people. The trivalent form of MMA is highly toxic in vitro and previous studies have identified associations between the proportion of urinary arsenic as MMA (%MMA) and several arsenic-related diseases. To date, however, relatively little is known about its role in lung cancer, the most common cause of arsenic-related death, or about its impacts on people drinking water with lower arsenic concentrations (e.g., < 200 ?g/L). In this study, urinary arsenic metabolites were measured in 94 lung and 117 bladder cancer cases and 347 population-based controls from areas in northern Chile with a wide range of drinking water arsenic concentrations. Lung cancer odds ratios adjusted for age, sex, and smoking by increasing tertiles of %MMA were 1.00, 1.91 (95% confidence interval (CI), 0.99–3.67), and 3.26 (1.76–6.04) (p-trend < 0.001). Corresponding odds ratios for bladder cancer were 1.00, 1.81 (1.06–3.11), and 2.02 (1.15–3.54) (p-trend < 0.001). In analyses confined to subjects only with arsenic water concentrations < 200 ?g/L (median = 60 ?g/L), lung and bladder cancer odds ratios for subjects in the upper tertile of %MMA compared to subjects in the lower two tertiles were 2.48 (1.08–5.68) and 2.37 (1.01–5.57), respectively. Overall, these findings provide evidence that inter-individual differences in arsenic metabolism may be an important risk factor for arsenic-related lung cancer, and may play a role in cancer risks among people exposed to relatively low arsenic water concentrations. - Highlights: • Urine arsenic metabolites were measured in cancer cases and controls from Chile. • Higher urine %MMA values were associated with increased lung and bladder cancer. • %MMA-cancer associations were seen at drinking water arsenic levels < 200 ?g/L.

  20. AT1a receptor signaling is required for basal and water deprivation-induced urine concentration in AT1a receptor-deficient mice

    PubMed Central

    Li, Xiao C.; Shao, Yuan

    2012-01-01

    It is well recognized that ANG II interacts with arginine vasopressin (AVP) to regulate water reabsorption and urine concentration in the kidney. The present study used ANG II type 1a (AT1a) receptor-deficient (Agtr1a?/?) mice to test the hypothesis that AT1a receptor signaling is required for basal and water deprivation-induced urine concentration in the renal medulla. Eight groups of wild-type (WT) and Agtr1a?/? mice were treated with or without 24-h water deprivation and 1-desamino-8-d-AVP (DDAVP; 100 ng/h ip) for 2 wk or with losartan (10 mg/kg ip) during water deprivation. Under basal conditions, Agtr1a?/? mice had lower systolic blood pressure (P < 0.01), greater than threefold higher 24-h urine excretion (WT mice: 1.3 ± 0.1 ml vs. Agtr1a?/? mice: 5.9 ± 0.7 ml, P < 0.01), and markedly decreased urine osmolality (WT mice: 1,834 ± 86 mosM/kg vs. Agtr1a?/? mice: 843 ± 170 mosM/kg, P < 0.01), without significant changes in 24-h urinary Na+ excretion. These responses in Agtr1a?/? mice were associated with lower basal plasma AVP (WT mice: 105 ± 8 pg/ml vs. Agtr1a?/? mice: 67 ± 6 pg/ml, P < 0.01) and decreases in total lysate and membrane aquaporin-2 (AQP2; 48.6 ± 7% of WT mice, P < 0.001) and adenylyl cyclase isoform III (55.6 ± 8% of WT mice, P < 0.01) proteins. Although 24-h water deprivation increased plasma AVP to the same levels in both strains, 24-h urine excretion was still higher, whereas urine osmolality remained lower, in Agtr1a?/? mice (P < 0.01). Water deprivation increased total lysate AQP2 proteins in the inner medulla but had no effect on adenylyl cyclase III, phosphorylated MAPK ERK1/2, and membrane AQP2 proteins in Agtr1a?/? mice. Furthermore, infusion of DDAVP for 2 wk was unable to correct the urine-concentrating defects in Agtr1a?/? mice. These results demonstrate that AT1a receptor-mediated ANG II signaling is required to maintain tonic AVP release and regulate V2 receptor-mediated responses to water deprivation in the inner medulla. PMID:22739536

  1. Urine concentration test

    MedlinePLUS

    ... normal, balanced diet for several days before the test. Your health care provider will give you instructions for water loading or water deprivation. Your health care provider will ask you to ... affect the test results. Be sure to tell your provider about ...

  2. Association between Arsenic Exposure from Drinking Water and Longitudinal Change in Blood Pressure among HEALS Cohort Participants

    PubMed Central

    Jiang, Jieying; Liu, Mengling; Parvez, Faruque; Wang, Binhuan; Wu, Fen; Eunus, Mahbub; Bangalore, Sripal; Newman, Jonathan D.; Ahmed, Alauddin; Islam, Tariqul; Rakibuz-Zaman, Muhammad; Hasan, Rabiul; Sarwar, Golam; Levy, Diane; Slavkovich, Vesna; Argos, Maria; Bryan, Molly Scannell; Farzan, Shohreh F.; Hayes, Richard B.; Graziano, Joseph H.

    2015-01-01

    Background Cross-sectional studies have shown associations between arsenic exposure and prevalence of high blood pressure; however, studies examining the relationship of arsenic exposure with longitudinal changes in blood pressure are lacking. Method We evaluated associations of arsenic exposure in relation to longitudinal change in blood pressure in 10,853 participants in the Health Effects of Arsenic Longitudinal Study (HEALS). Arsenic was measured in well water and in urine samples at baseline and in urine samples every 2 years after baseline. Mixed-effect models were used to estimate the association of baseline well and urinary creatinine-adjusted arsenic with annual change in blood pressure during follow-up (median, 6.7 years). Result In the HEALS population, the median water arsenic concentration at baseline was 62 ?g/L. Individuals in the highest quartile of baseline water arsenic or urinary creatinine-adjusted arsenic had a greater annual increase in systolic blood pressure compared with those in the reference group (? = 0.48 mmHg/year; 95% CI: 0.35, 0.61, and ? = 0.43 mmHg/year; 95% CI: 0.29, 0.56 for water arsenic and urinary creatinine-adjusted arsenic, respectively) in fully adjusted models. Likewise, individuals in the highest quartile of baseline arsenic exposure had a greater annual increase in diastolic blood pressure for water arsenic and urinary creatinine-adjusted arsenic, (? = 0.39 mmHg/year; 95% CI: 0.30, 0.49, and ? = 0.45 mmHg/year; 95% CI: 0.36, 0.55, respectively) compared with those in the lowest quartile. Conclusion Our findings suggest that long-term arsenic exposure may accelerate age-related increases in blood pressure. These findings may help explain associations between arsenic exposure and cardiovascular disease. Citation Jiang J, Liu M, Parvez F, Wang B, Wu F, Eunus M, Bangalore S, Newman JD, Ahmed A, Islam T, Rakibuz-Zaman M, Hasan R, Sarwar G, Levy D, Slavkovich V, Argos M, Scannell Bryan M, Farzan SF, Hayes RB, Graziano JH, Ahsan H, Chen Y. 2015. Association between arsenic exposure from drinking water and longitudinal change in blood pressure among HEALS cohort participants. Environ Health Perspect 123:806–812;?http://dx.doi.org/10.1289/ehp.1409004 PMID:25816368

  3. Urine Metanephrines

    MedlinePLUS

    ... Urine Metanephrines, Total and Fractionated Related tests: Catecholamines , Plasma Free Metanephrines , VMA All content on Lab Tests ... The Endocrine Society recommends using a test for plasma free metanephrines or urine metanephrines to evaluate an ...

  4. Myoglobin - urine

    MedlinePLUS

    ... urine exits the body. Open a urine collection bag (a plastic bag with an adhesive paper on one end), and ... For boys, place the entire penis in the bag and attach the adhesive to the skin. For ...

  5. Arsenic removal from water

    DOEpatents

    Moore, Robert C. (Edgewood, NM); Anderson, D. Richard (Albuquerque, NM)

    2007-07-24

    Methods for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical methods for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A method for continuous removal of arsenic from water is provided. Also provided is a method for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

  6. Concentrations of arsenic and other elements in groundwater of Bangladesh and West Bengal, India: Potential cancer risk.

    PubMed

    Rahman, Mohammad Mahmudur; Dong, Zhaomin; Naidu, Ravi

    2015-11-01

    We investigated the concentrations of 23 elements in groundwater from arsenic (As) contaminated areas of Bangladesh and West Bengal, India to determine the potential human exposure to metals and metalloids. Elevated concentrations of As was found in all five study areas that exceeded the World Health Organization (WHO) guideline value of 10?g/L. The mean As concentrations in groundwater of Noakhali, Jalangi and Domkal, Dasdia Nonaghata, Deganga and Baruipur were 297?g/L, 262?g/L, 115?g/L, 161?g/L and 349?g/L, respectively. Elevated concentrations of Mn were also detected in all areas with mean concentrations were 139?g/L, 807?g/L, 341?g/L, 579?g/L and 584?g/L for Noakhali, Jalangi and Domkal, Dasdia Nonaghata, Deganga and Baruipur, respectively. Daily As intakes from drinking water for adults and the potential cancer risk for all areas was also estimated. Results suggest that mitigation activities such as water treatment should not only be focused on As but must also consider other elements including Mn, B and Ba. The groundwater used for public drinking purposes needs to be tested periodically for As and other elements to ensure the quality of drinking water is within the prescribed national guidelines. PMID:26047720

  7. Architecture of vasa recta in the renal inner medulla of the desert rodent Dipodomys merriami: potential impact on the urine concentrating mechanism.

    PubMed

    Issaian, Tadeh; Urity, Vinoo B; Dantzler, William H; Pannabecker, Thomas L

    2012-10-01

    We hypothesize that the inner medulla of the kangaroo rat Dipodomys merriami, a desert rodent that concentrates its urine to over 6,000 mosmol/kg H(2)O, provides unique examples of architectural features necessary for production of highly concentrated urine. To investigate this architecture, inner medullary vascular segments in the outer inner medulla were assessed with immunofluorescence and digital reconstructions from tissue sections. Descending vasa recta (DVR) expressing the urea transporter UT-B and the water channel aquaporin 1 lie at the periphery of groups of collecting ducts (CDs) that coalesce in their descent through the inner medulla. Ascending vasa recta (AVR) lie inside and outside groups of CDs. DVR peel away from vascular bundles at a uniform rate as they descend the inner medulla, and feed into networks of AVR that are associated with organized clusters of CDs. These AVR form interstitial nodal spaces, with each space composed of a single CD, two AVR, and one or more ascending thin limbs or prebend segments, an architecture that may lead to solute compartmentation and fluid fluxes essential to the urine concentrating mechanism. Although we have identified several apparent differences, the tubulovascular architecture of the kangaroo rat inner medulla is remarkably similar to that of the Munich Wistar rat at the level of our analyses. More detailed studies are required for identifying interspecies functional differences. PMID:22914749

  8. Creatinine - urine

    MedlinePLUS

    Urine creatinine test ... Urine creatinine (24-hour sample) values can range from 500 to 2000 mg/day. Results depend on your ... Abnormal results of urine creatinine may be due to any of the following: High meat diet Kidney problems, such as damage to the tubule ...

  9. Relationship between blood and urine concentrations of intact human chorionic gonadotropin and its free subunits in early pregnancy

    SciTech Connect

    Norman, R.J.; Menabawey, M.; Lowings, C.; Buck, R.H.; Chard, T.

    1987-04-01

    Paired blood and urine samples were obtained from patients between the sixth and 14th weeks of normal pregnancy. The levels of intact human chorionic gonadotropin (hCG), and of the free alpha and beta subunits, were measured by specific radioimmunoassays. There was a close association between blood and urine levels of intact hCG and of the alpha subunit of hCG, but no relation between the levels of beta subunit in these sites. These findings suggest that the use of beta subunit assays may give discrepant results according to the fluid examined. By contrast, measurement of intact hCG appears to give similar results in blood and urine.

  10. Urinary excretion of arsenic following rice consumption.

    PubMed

    Meharg, A A; Williams, P N; Deacon, C M; Norton, G J; Hossain, M; Louhing, D; Marwa, E; Lawgalwi, Y; Taggart, M; Cascio, C; Haris, P

    2014-11-01

    Patterns of arsenic excretion were followed in a cohort (n = 6) eating a defined rice diet, 300 g per day d.wt. where arsenic speciation was characterized in cooked rice, following a period of abstinence from rice, and other high arsenic containing foods. A control group who did not consume rice were also monitored. The rice consumed in the study contained inorganic arsenic and dimethylarsinic acid (DMA) at a ratio of 1:1, yet the urine speciation was dominated by DMA (90%). At steady state (rice consumption/urinary excretion) ?40% of rice derived arsenic was excreted via urine. By monitoring of each urine pass throughout the day it was observed that there was considerable variation (up to 13-fold) for an individual's total arsenic urine content, and that there was a time dependent variation in urinary total arsenic content. This calls into question the robustness of routinely used first pass/spot check urine sampling for arsenic analysis. PMID:25145278

  11. Glutathione-S-transferase-omega [MMA(V) reductase] knockout mice: Enzyme and arsenic species concentrations in tissues after arsenate administration

    SciTech Connect

    Chowdhury, Uttam K.; Zakharyan, Robert A.; Hernandez, Alba; Avram, Mihaela D.; Kopplin, Michael J.; Aposhian, H. Vasken . E-mail: aposhian@u.arizona.edu

    2006-11-01

    Inorganic arsenic is a human carcinogen to which millions of people are exposed via their naturally contaminated drinking water. Its molecular mechanisms of carcinogenicity have remained an enigma, perhaps because arsenate is biochemically transformed to at least five other arsenic-containing metabolites. In the biotransformation of inorganic arsenic, GSTO1 catalyzes the reduction of arsenate, MMA(V), and DMA(V) to the more toxic + 3 arsenic species. MMA(V) reductase and human (hGSTO1-1) are identical proteins. The hypothesis that GST-Omega knockout mice biotransformed inorganic arsenic differently than wild-type mice has been tested. The livers of male knockout (KO) mice, in which 222 bp of Exon 3 of the GSTO1 gene were eliminated, were analyzed by PCR for mRNA. The level of transcripts of the GSTO1 gene in KO mice was 3.3-fold less than in DBA/1lacJ wild-type (WT) mice. The GSTO2 transcripts were about two-fold less in the KO mouse. When KO and WT mice were injected intramuscularly with Na arsenate (4.16 mg As/kg body weight); tissues removed at 0.5, 1, 2, 4, 8, and 12 h after arsenate injection; and the arsenic species measured by HPLC-ICP-MS, the results indicated that the highest concentration of the recently discovered and very toxic MMA(III), a key biotransformant, was in the kidneys of both KO and WT mice. The highest concentration of DMA(III) was in the urinary bladder tissue for both the KO and WT mice. The MMA(V) reducing activity of the liver cytosol of KO mice was only 20% of that found in wild-type mice. There appears to be another enzyme(s) other than GST-O able to reduce arsenic(V) species but to a lesser extent. This and other studies suggest that each step of the biotransformation of inorganic arsenic has an alternative enzyme to biotransform the arsenic substrate.

  12. Effects of Mn, Cu doping concentration to the properties of magnetic nanoparticles and arsenic adsorption capacity in wastewater

    NASA Astrophysics Data System (ADS)

    Thi, Tran Minh; Trang, Nguyen Thi Huyen; Van Anh, Nguyen Thi

    2015-06-01

    The research results of Fe3O4 and Mn, Cu doped Fe3O4 nanomaterials synthesized by a chemical method for As(III) wastewater treatment are presented in this paper. The X-ray diffraction patterns and transmission electron microscopy images showed that samples had the cubic spinel structure with the grain sizes were varied from 9.4 nm to 18.1 nm. The results of vibrating sample magnetometer measurements at room temperature showed that saturation magnetic moments of Fe1-xCuxFe2O4 and Fe1-xMnxFe2O4 samples decreased from 65.9 emu/g to 53.2 emu/g and 65.9 emu/g to 61.5 emu/g, respectively, with the increase of Cu, Mn concentrations from 0.0 to 0.15. The nitrogen adsorption-desorption isotherm of a typical Fe3O4 sample at 77 K was studied in order to investigate the surface and porous structure of nanoparticles by BET method. The specific surface area of Fe3O4 magnetic nanoparticles was calculated about of 100.2 m2/g. The pore size distribution of about 15-20 nm calculated by the BJH (Barrett, Joyner, and Halendar) method at a relative pressure P/P0 of about 1. Although the saturation magnetic moments of samples decreased when the increase of doping concentration, but the arsenic adsorption capacity of Cu doped Fe3O4 nanoparticles is better than that of Fe3O4 and Mn doped Fe3O4 nanoparticles in a solution with pH = 7. In the solution with a pH > 14, the arsenic adsorption of magnetic nanoparticles is insignificant.

  13. Non-analytic problems in detecting arsenic and cadmium in children living near a cadmium refinery in Denver, Colorado

    SciTech Connect

    Gottlieb, K.; Koehler, J.R.; Tessari, J. )

    1993-04-01

    The aim of the present study was to determine urinary arsenic (N = 322) and cadmium (N = 366) levels in children aged six months to six years who live near a working cadmium refinery and to compare their values with those of children from comparison neighborhoods. A questionnaire designed to identify exposure pathways was administered to the parents. There were unexpected problems in the study. Eighty-four percent of the arsenic samples were below the detection limit of 10 micrograms/l and summary statistics could not be calculated. Urinary arsenic and cadmium values could not be standardized for volume and concentration of urine because a large proportion of the samples had very low creatinine values. The original round of cadmium testing was afflicted with contamination problems, possibly due to the mishandling of pediatric urine bags by the parents during the collection procedure. A retest for cadmium levels under clinical conditions showed lower cadmium levels, all but two were below the detection limit. While biological monitoring of exposure to metals can be undertaken indirectly by measuring the concentration of the metals in urine, the analyses in this study were complicated by (1) not using more sensitive analytical tests for arsenic and cadmium determination, (2) not being able to standardize children's urinary values with creatinine, and (3) allowing in-home urine collection.

  14. Assessment of in vivo Bioaccessibility of Arsenic in Dietary Rice by a Mass Balance Approach

    PubMed Central

    He, Yi; Zheng, Yan

    2010-01-01

    A pilot dietary experiment was conducted over ten days to evaluate whether a simple yet often under utilized approach of constructing mass balance of arsenic metabolites can be used to assess in vivo bioaccessibility of arsenic in cooked rice. Two volunteers were involved in this study. The quantity of drinking water, food and urine samples, together with arsenic concentration and speciation of these samples were monitored to construct a mass balance of arsenic intake and excretion. In the first five days, the two volunteers on a wheat diet had an average arsenic daily intake of 15.4 ± 2.6 µg and 9.6 ± 0.7 µg, respectively. In the next five days, these volunteers switched to a rice diet, increasing the average arsenic daily intake to 36.4 ± 2.8 µg and 34.1 ± 7.7 µg, respectively. Daily excretion of urinary arsenic, mostly as dimethylarsenic acid (DMA), doubled from 9.8 ± 0.3 µg to 21.0 ± 3.0 µg, and from 6.5 ± 0.8 µg to 11.6 ± 4.5 µg, respectively. The percentage of ingested arsenic excreted in urine remained constant at ~ 58% for one volunteer before and after the rice diet, and was ~ 69 % for another. Mass balance established during a controlled dietary experiment over 10 days is shown to be a useful approach to evaluate in vivo bioaccessibility and metabolism of arsenic uptake from diet and is applicable to study with more subjects. PMID:20071009

  15. Urine Pretreat Injection System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A new method of introducing the OXONE (Registered Trademark) Monopersulfate Compound for urine pretreat into a two-phase urine/air flow stream has been successfully tested and evaluated. The feasibility of this innovative method has been established for purposes of providing a simple, convenient, and safe method of handling a chemical pretreat required for urine processing in a microgravity space environment. Also, the Oxone portion of the urine pretreat has demonstrated the following advantages during real time collection of 750 pounds of urine in a Space Station design two-phase urine Fan/Separator: Eliminated urine precipitate buildup on internal hardware and plumbing; Minimized odor from collected urine; and Virtually eliminated airborne bacteria. The urine pretreat, as presently defined for the Space Station program for proper downstream processing of urine, is a two-part chemical treatment of 5.0 grams of Oxone and 2.3 ml of H2SO4 per liter of urine. This study program and test demonstrated only the addition of the proper ratio of Oxone into the urine collection system upstream of the Fan/Separator. This program was divided into the following three major tasks: (1) A trade study, to define and recommend the type of Oxone injection method to pursue further; (2) The design and fabrication of the selected method; and (3) A test program using high fidelity hardware and fresh urine to demonstrate the method feasibility. The trade study was conducted which included defining several methods for injecting Oxone in different forms into a urine system. Oxone was considered in a liquid, solid, paste and powered form. The trade study and the resulting recommendation were presented at a trade study review held at Hamilton Standard on 24-25 October 94. An agreement was reached at the meeting to continue the solid tablet in a bag concept which included a series of tablets suspended in the urine/air flow stream. These Oxone tablets would slowly dissolve at a controlled rate providing the proper concentration in the collected urine. To implement the solid tablet in a bag approach, a design concept was completed with prototype drawings of the complete urine pretreat prefilter assembly. A successful fabrication technique was developed for retaining the Oxone tablets in a fabric casing attached to the end of the existing Space Station Waste Collection System urine prefilter assembly. The final pretreat prefilter configuration held sufficient Oxone in a tablet form to allow normal scheduled daily (or twice daily) change out of the urine filter depending on the use rate of the Space Station urine collection system. The actual tests to prove the concept were conducted using the Urine Fan/Separator assembly that was originally used in the STS-52 Design Test Objective (DTO) urinal assembly. Other related tests were conducted to demonstrate the actual minimum ratio of Oxone to urine that will control microbial growth.

  16. GHB Pharmacology and Toxicology: Acute Intoxication, Concentrations in Blood and Urine in Forensic Cases and Treatment of the Withdrawal Syndrome

    PubMed Central

    Busardò, Francesco P.; Jones, Alan W.

    2015-01-01

    The illicit recreational drug of abuse, ?-hydroxybutyrate (GHB) is a potent central nervous system depressant and is often encountered during forensic investigations of living and deceased persons. The sodium salt of GHB is registered as a therapeutic agent (Xyrem®), approved in some countries for the treatment of narcolepsy-associated cataplexy and (Alcover®) is an adjuvant medication for detoxification and withdrawal in alcoholics. Trace amounts of GHB are produced endogenously (0.5-1.0 mg/L) in various tissues, including the brain, where it functions as both a precursor and a metabolite of the major inhibitory neurotransmitter ?-aminobutyric acid (GABA). Available information indicates that GHB serves as a neurotransmitter or neuromodulator in the GABAergic system, especially via binding to the GABA-B receptor subtype. Although GHB is listed as a controlled substance in many countries abuse still continues, owing to the availability of precursor drugs, ?-butyrolactone (GBL) and 1,4-butanediol (BD), which are not regulated. After ingestion both GBL and BD are rapidly converted into GHB (t½ ~1 min). The Cmax occurs after 20-40 min and GHB is then eliminated from plasma with a half-life of 30-50 min. Only about 1-5% of the dose of GHB is recoverable in urine and the window of detection is relatively short (3-10 h). This calls for expeditious sampling when evidence of drug use and/or abuse is required in forensic casework. The recreational dose of GHB is not easy to estimate and a concentration in plasma of ~100 mg/L produces euphoria and disinhibition, whereas 500 mg/L might cause death from cardiorespiratory depression. Effective antidotes to reverse the sedative and intoxicating effects of GHB do not exist. The poisoned patients require supportive care, vital signs should be monitored and the airways kept clear in case of emesis. After prolonged regular use of GHB tolerance and dependence develop and abrupt cessation of drug use leads to unpleasant withdrawal symptoms. There is no evidence-based protocol available to deal with GHB withdrawal, apart from administering benzodiazepines. PMID:26074743

  17. Three-dimensional simulation of urine concentrating mechanism in a functional unit of rat outer medulla. I. Model structure and base case results.

    PubMed

    Sohrabi, Salman; Saidi, Mohammad Said; Saadatmand, Maryam; Banazadeh, Mohamad Hossein; Firoozabadi, Bahar

    2014-12-01

    The urine formation and excretion system have long been of interest for mathematicians and physiologists to elucidate the obscurities within the process happens in renal tissue. In this study, a novel three-dimensional approach is utilized for modeling the urine concentrating mechanism in rat renal outer medulla which is essentially focused on demonstrating the significance of tubule's architecture revealed in anatomic studies and physiological literature. Since nephrons and vasculatures work interdependently through a highly structured arrangement in outer medulla which is dominated by vascular bundles, a detailed functional unit is proposed based on this specific configuration. Furthermore, due to relatively lesser influence of vasa recta on interstitial medullary osmolality and osmotic gradients as well as model structure simplicity, central core assumption is employed. The model equations are based on three spatial dimensional mass, momentum and species transport equations as well as standard expressions for solutes and water transmural transport. Our model can simulate preferential interactions between different tubules and it is shown that such interactions promote solute cycling and subsequently, enhance urine-concentrating capability. The numerical results are well consistent with tissue slice experiments and moreover, our model predicts more corticomedullary osmolality gradient in outer medulla than previous influential 1-D simulations. PMID:25223232

  18. Occurrence of trivalent monomethyl arsenic and other urinary arsenic species in a highly exposed juvenile population in Bangladesh.

    PubMed

    Kalman, David A; Dills, Russell L; Steinmaus, Craig; Yunus, Md; Khan, Al Fazal; Prodhan, Md Mofijuddin; Yuan, Yan; Smith, Allan H

    2014-01-01

    Following reports of high cytotoxicity and mutagenicity of monomethyl arsonous acid (MMA(III)) and early reports of urinary MMA(III) in arsenic-exposed individuals, MMA(III) has often been included in population studies. Use of urinary MMA(III) as an indicator of exposure and/or health risk is challenged by inconsistent results from field studies and stability studies, which indicate potential artifacts. We measured urinary arsenic species in children chronically exposed to arsenic in drinking water, using collection, storage, and analysis methods shown to conserve MMA(III). MMA(III) was easily oxidized in sample storage and processing, but recoveries of 80% or better in spiked urine samples were achieved. Attempts to preserve the distribution of MMA between trivalent and pentavalent forms using complexing agents were unsuccessful and MMA(III) spiked into treated urine samples actually showed lower stability than in untreated samples. In 643 urine samples from a highly exposed population from the Matlab district in Bangladesh stored for 3-6 months at ?-70?°C, MMA(III) was detected in 41 samples, with an estimated median value of 0.3??g/l, and levels of MMA(III) above 1??g/l in only two samples. The low urinary concentrations in highly exposed individuals and known difficulties in preserving sample oxidation state indicate that urinary MMA(III) is not suitable for use as an epidemiological biomarker. PMID:23549402

  19. Genetic variation in arsenic (+3 oxidation state) methyltransferase (AS3MT), arsenic metabolism and risk of basal cell carcinoma in a European population.

    PubMed

    Engström, Karin S; Vahter, Marie; Fletcher, Tony; Leonardi, Giovanni; Goessler, Walter; Gurzau, Eugen; Koppova, Kvetoslava; Rudnai, Peter; Kumar, Rajiv; Broberg, Karin

    2015-01-01

    Exposure to inorganic arsenic increases the risk of basal cell carcinoma (BCC). Arsenic metabolism is a susceptibility factor for arsenic toxicity, and specific haplotypes in arsenic (+3 oxidation state) methyltransferase (AS3MT) have been associated with increased urinary fractions of the most toxic arsenic metabolite, methylarsonic acid (MMA). The aim of this study is to elucidate the association of AS3MT haplotypes with arsenic metabolism and the risk of BCC. Four AS3MT polymorphisms were genotyped in BCC cases (N = 529) and controls (N = 533) from Eastern Europe with low to moderate arsenic exposure (lifetime average drinking water concentration: 1.3 µg/L, range 0.01-167 µg/L). Urinary metabolites [inorganic arsenic (iAs), MMA, dimethylarsinic acid (DMA)] were analyzed by HPLC-ICPMS. Five AS3MT haplotypes (based on rs3740400 A/C, rs3740393 G/C, rs11191439 T/C and rs1046778 T/C) had frequencies >5%. Individuals with the CCTC haplotype had lower %iAs (P = 0.032) and %MMA (P = 0.020) in urine, and higher %DMA (P = 0.033); individuals with the CGCT haplotype had higher %MMA (P < 0.001) and lower %DMA (P < 0.001). All haplotypes showed increased risk of BCC with increasing arsenic exposure through drinking water (ORs 1.1-1.4, P values from <0.001 to 0.082), except for the CCTC haplotype (OR 1.0, CI 0.9-1.2, P value 0.85). The results suggest that carriage of AS3MT haplotypes associated with less-efficient arsenic methylation, or lack of AS3MT haplotypes associated with a more-efficient arsenic methylation, results in higher risk of arsenic-related BCC. The fact that AS3MT haplotype status modified arsenic metabolism, and in turn the arsenic-related BCC risk, supports a causal relationship between low-level arsenic exposure and BCC. PMID:25156000

  20. Comparison of different medical cases in urinary arsenic speciation by fast HPLC-ICP-MS.

    PubMed

    Heitland, Peter; Köster, Helmut D

    2009-07-01

    The inorganic arsenic species As(III), As(V) and the organic species methylarsonate (MMA(V)), dimethylarsinate (DMA(V)) and arsenobetaine (AsB) were determined in human urine by a fast anion exchange HPLC-ICP-MS method, which was developed for clinical laboratories with high sample throughput. This paper compares typical chromatograms of the arsenic species in urine samples collected in different medical cases, for example, for the non-exposed population, for environmentally (plant protectants) and occupationally (glass manufacture) exposed persons, for a person after a failed suicide attempt with As2O3 and for persons before and after administration of the antidot sodium 2,3-dimercapto-1-propane-sulfonate (DMPS). Concentration data of the urinary As species for the non-exposed German population (n=82) are compared with the concentrations before and after administration of DMPS (n=37). For the non-exposed group the toxicologically relevant As in urine consists of 81% DMA(V), 10% MMA(V) and 9% inorganic As. However, a few hours after an acute intoxication with inorganic As this distribution changes dramatically and As(III) and As(V) are predominantly found in urine. After treatment with DMPS the total As concentration increases significantly and mainly MMA(V) and As(III) were found in urine samples. PMID:18948060

  1. Genetic polymorphisms in glutathione S-transferase (GST) superfamily and arsenic metabolism in residents of the Red River Delta, Vietnam

    SciTech Connect

    Agusa, Tetsuro; Iwata, Hisato; Fujihara, Junko; Kunito, Takashi; Takeshita, Haruo; Tu Binh Minh; Pham Thi Kim Trang; Pham Hung Viet; Tanabe, Shinsuke

    2010-02-01

    To elucidate the role of genetic factors in arsenic metabolism, we investigated associations of genetic polymorphisms in the members of glutathione S-transferase (GST) superfamily with the arsenic concentrations in hair and urine, and urinary arsenic profile in residents in the Red River Delta, Vietnam. Genotyping was conducted for GST omega1 (GSTO1) Ala140Asp, Glu155del, Glu208Lys, Thr217Asn, and Ala236Val, GST omega2 (GSTO2) Asn142Asp, GST pi1 (GSTP1) Ile105Val, GST mu1 (GSTM1) wild/null, and GST theta1 (GSTT1) wild/null. There were no mutation alleles for GSTO1 Glu208Lys, Thr217Asn, and Ala236Val in this population. GSTO1 Glu155del hetero type showed higher urinary concentration of As{sup V} than the wild homo type. Higher percentage of DMA{sup V} in urine of GSTM1 wild type was observed compared with that of the null type. Strong correlations between GSTP1 Ile105Val and arsenic exposure level and profile were observed in this study. Especially, heterozygote of GSTP1 Ile105Val had a higher metabolic capacity from inorganic arsenic to monomethyl arsenic, while the opposite trend was observed for ability of metabolism from As{sup V} to As{sup III}. Furthermore, other factors including sex, age, body mass index, arsenic level in drinking water, and genotypes of As (+ 3 oxidation state) methyltransferase (AS3MT) were also significantly co-associated with arsenic level and profile in the Vietnamese. To our knowledge, this is the first study indicating the associations of genetic factors of GST superfamily with arsenic metabolism in a Vietnamese population.

  2. Relations between exposure to arsenic, skin lesions, and glucosuria

    PubMed Central

    Rahman, M.; Tondel, M.; Chowdhury, I. A.; Axelson, O.

    1999-01-01

    OBJECTIVES: Exposure to arsenic causes keratosis, hyperpigmentation, and hypopigmentation and seemingly also diabetes mellitus, at least in subjects with skin lesions. Here we evaluate the relations of arsenical skin lesions and glucosuria as a proxy for diabetes mellitus. METHODS: Through existing measurements of arsenic in drinking water in Bangladesh, wells with and without arsenic contamination were identified. Based on a questionnaire, 1595 subjects > or = 30 years of age were interviewed; 1481 had a history of drinking water contaminated with arsenic whereas 114 had not. Time weighted mean arsenic concentrations and mg-years/l of exposure to arsenic were estimated based on the history of consumption of well water and current arsenic concentrations. Urine samples from the study subjects were tested by means of a glucometric strip. People with positive tests were considered to be cases of glucosuria. RESULTS: A total of 430 (29%) of the exposed people were found to have skin lesions. Corresponding to drinking water with < 0.5, 0.5-1.0, and > 1.0 mg/l of arsenic, and with the 114 unexposed subjects as the reference, the prevalence ratios for glucosuria, as adjusted for age and sex, were 0.8, 1.4, and 1.4 for those without skin lesions, and 1.1, 2.2, and 2.6 for those with skin lesions. Taking exposure as < 1.0, 1.0-5.0, > 5.0-10.0 and > 10.0 mg- years/l of exposure to arsenic the prevalence ratios, similarly adjusted, were 0.4, 0.9, 1.2, and 1.7 for those without and 0.8, 1.7, 2.1, and 2.9 for those with skin lesions. All series of risk estimates were significant for trend, (p < 0.01). CONCLUSIONS: The results suggest that skin lesions and diabetes mellitus, as here indicated by glucosuria, are largely independent effects of exposure to arsenic although glucosuria had some tendency to be associated with skin lesions. Importantly, however, glucosuria (diabetes mellitus) may occur independently of skin lesions.   PMID:10450246

  3. Arsenic, iron, lead, manganese, and uranium concentrations in private bedrock wells in southeastern New Hampshire, 2012-2013

    USGS Publications Warehouse

    Flanagan, Sarah M.; Belaval, Marcel; Ayotte, Joseph D.

    2014-01-01

    Trace metals, such as arsenic, iron, lead, manganese, and uranium, in groundwater used for drinking have long been a concern because of the potential adverse effects on human health and the aesthetic or nuisance problems that some present. Moderate to high concentrations of the trace metal arsenic have been identified in drinking water from groundwater sources in southeastern New Hampshire, a rapidly growing region of the State (Montgomery and others, 2003). During the past decade (2000–10), southeastern New Hampshire, which is composed of Hillsborough, Rockingham, and Strafford Counties, has grown in population by nearly 48,700 (or 6.4 percent) to 819,100. These three counties contain 62 percent of the State’s population but encompass only about 22 percent of the land area (New Hampshire Office of Energy and Planning, 2011). According to a 2005 water-use study (Hayes and Horn, 2009), about 39 percent of the population in these three counties in southeastern New Hampshire uses private wells as sources of drinking water, and these wells are not required by the State to be routinely tested for trace metals or other contaminants. Some trace metals have associated human-health benchmarks or nonhealth guidelines that have been established by the U.S. Environmental Protection Agency (EPA) to regulate public water supplies. The EPA has established a maximum contaminant level (MCL) of 10 micrograms per liter (?g/L) for arsenic (As) and a MCL of 30 ?g/L for uranium (U) because of associated health risks (U.S. Environmental Protection Agency, 2012). Iron (Fe) and manganese (Mn) are essential for human health, but Mn at high doses may have adverse cognitive effects in children (Bouchard and others, 2011; Agency for Toxic Substances and Disease Registry, 2012); therefore, the EPA has issued a lifetime health advisory (LHA) of 300 ?g/L for Mn. Recommended secondary maximum contaminant levels (SMCLs) for Fe (300 ?g/L) and Mn (50 ?g/L) were established primarily as nonhealth guidelines—based on aesthetic considerations, such as taste or the staining of laundry and plumbing fixtures—because these contaminants, at the SMCLs, are not considered to present risks to human health. Because lead (Pb) contamination of drinking water typically results from corrosion of plumbing materials belonging to water-system customers but still poses a risk to human health, the EPA established an action level (AL) of 15 ?g/L for Pb instead of an MCL or SMCL (U.S. Environmental Protection Agency, 2012). The 15-?g/L AL for Pb has been adopted by the New Hampshire Department of Environmental Services for public water systems, and if exceeded, the public water system must inform their customers and undertake additional actions to control corrosion in the pipes of the distribution system (New Hampshire Department of Environmental Services, 2013). Unlike the quality of drinking water provided by public water suppliers, the quality of drinking water obtained from private wells in New Hampshire is not regulated; consequently, private wells are sampled only when individual well owners voluntarily choose to sample them. The U.S. Geological Survey (USGS), in cooperation with the EPA New England, conducted an assessment in 2012–13 to provide private well owners and State and Federal health officials with information on the distribution of trace-metal (As, Fe, Pb, Mn, and U) concentrations in groundwater from bedrock aquifers in the three counties of southeastern New Hampshire. This fact sheet analyzes data from water samples collected by a randomly selected group of private well owners from the three-county study area and describes the major findings for trace-metal concentrations.

  4. The influence of groundwater chemistry on arsenic concentrations and speciation in a quartz sand and gravel aquifer

    USGS Publications Warehouse

    Kent, D.B.; Fox, P.M.

    2004-01-01

    We examined the chemical reactions influencing dissolved concentrations, speciation, and transport of naturally occurring arsenic (As) in a shallow, sand and gravel aquifer with distinct geochemical zones resulting from land disposal of dilute sewage effluent. The principal geochemical zones were: (1) the uncontaminated zone above the sewage plume [350 ??M dissolved oxygen (DO), pH 5.9]; (2) the suboxic zone (5 ??M DO, pH 6.2, elevated concentrations of sewage-derived phosphate and nitrate); and (3) the anoxic zone [dissolved iron(II) 100-300 ??M, pH 6.5-6.9, elevated concentrations of sewage-derived phosphate]. Sediments are comprised of greater than 90% quartz but the surfaces of quartz and other mineral grains are coated with nanometer-size iron (Fe) and aluminum (Al) oxides and/or silicates, which control the adsorption properties of the sediments. Uncontaminated groundwater with added phosphate (620 ??M) was pumped into the uncontaminated zone while samples were collected 0.3 m above the injection point. Concentrations of As(V) increased from below detection (0.005 ??M) to a maximum of 0.07 ??M during breakthrough of phosphate at the sampling port; As(III) concentrations remained below detection. These results are consistent with the hypothesis that naturally occurring As(V) adsorbed to constituents of the coatings on grain surfaces was desorbed by phosphate in the injected groundwater. Also consistent with this hypothesis, vertical profiles of groundwater chemistry measured prior to the tracer test showed that dissolved As(V) concentrations increased along with dissolved phosphate from below detection in the uncontaminated zone to approximately 0.07 and 70 ??M, respectively, in the suboxic zone. Concentrations of As(III) were below detection in both zones. The anoxic zone had approximately 0.07 ??M As(V) but also had As(III) concentrations of 0.07-0.14 ??M, suggesting that release of As bound to sediment grains occurred by desorption by phosphate, reductive dissolution of Fe oxides, and reduction of As(V) to As(III), which adsorbs only weakly to the Fe-oxide-depleted material in the coatings. Results of reductive extractions of the sediments suggest that As associated with the coatings was relatively uniformly distributed at approximately 1 nmol/g of sediment (equivalent to 0.075 ppm As) and comprised 20%-50% of the total As in the sediments, determined from oxidative extractions. Quartz sand aquifers provide high-quality drinking water but can become contaminated when naturally occurring arsenic bound to Fe and Al oxides or silicates on sediment surfaces is released by desorption and dissolution of Fe oxides in response to changing chemical conditions. ?? 2004 American Institute of Physics.

  5. Urine Eggs

    E-print Network

    Hacker, Randi

    2012-07-25

    Broadcast Transcript: In spring, a young man's fancy turns to thoughts of urine-soaked eggs. You heard that right. Here in Dongyang, China, eggs boiled in the urine of 10-year-old boys are a considered a delicacy of spring. Also known as virgin boy...

  6. High-throughput chemical screening identifies AG-490 as a stimulator of aquaporin 2 membrane expression and urine concentration.

    PubMed

    Nomura, Naohiro; Nunes, Paula; Bouley, Richard; Nair, Anil V; Shaw, Stanley; Ueda, Erica; Pathomthongtaweechai, Nutthapoom; Lu, Hua A Jenny; Brown, Dennis

    2014-10-01

    A reduction or loss of plasma membrane aquaporin 2 (AQP2) in kidney principal cells due to defective vasopressin (VP) signaling through the VP receptor causes excessive urine production, i.e., diabetes insipidus. The amount of AQP2 on the plasma membrane is regulated by a balance of exocytosis and endocytosis and is the rate limiting step for water reabsorption in the collecting duct. We describe here a systematic approach using high-throughput screening (HTS) followed by in vitro and in vivo assays to discover novel compounds that enhance vasopressin-independent AQP2 membrane expression. We performed initial chemical library screening with a high-throughput exocytosis fluorescence assay using LLC-PK1 cells expressing soluble secreted yellow fluorescent protein and AQP2. Thirty-six candidate exocytosis enhancers were identified. These compounds were then rescreened in AQP2-expressing cells to determine their ability to increase AQP2 membrane accumulation. Effective drugs were then applied to kidney slices in vitro. Three compounds, AG-490, ?-lapachone, and HA14-1 increased AQP2 membrane accumulation in LLC-PK1 cells, and both AG-490 and ?-lapachone were also effective in MDCK cells and principal cells in rat kidney slices. Finally, one compound, AG-490 (an EGF receptor and JAK-2 kinase inhibitor), decreased urine volume and increased urine osmolality significantly in the first 2-4 h after a single injection into VP-deficient Brattleboro rats. In conclusion, we have developed a systematic procedure for identifying new compounds that modulate AQP2 trafficking using initial HTS followed by in vitro assays in cells and kidney slices, and concluding with in vivo testing in an animal model. PMID:24944200

  7. Estimated Exposure to Arsenic in Breastfed and Formula-Fed Infants in a United States Cohort

    PubMed Central

    Carignan, Courtney C.; Jackson, Brian P.; Farzan, Shohreh F.; Gandolfi, A. Jay; Punshon, Tracy; Folt, Carol L.; Karagas, Margaret R.

    2015-01-01

    Background: Previous studies indicate that concentrations of arsenic in breast milk are relatively low even in areas with high drinking-water arsenic. However, it is uncertain whether breastfeeding leads to reduced infant exposure to arsenic in regions with lower arsenic concentrations. Objective: We estimated the relative contributions of breast milk and formula to arsenic exposure during early infancy in a U.S. population. Methods: We measured arsenic in home tap water (n = 874), urine from 6-week-old infants (n = 72), and breast milk from mothers (n = 9) enrolled in the New Hampshire Birth Cohort Study (NHBCS) using inductively coupled plasma mass spectrometry. Using data from a 3-day food diary, we compared urinary arsenic across infant feeding types and developed predictive exposure models to estimate daily arsenic intake from breast milk and formula. Results: Urinary arsenic concentrations were generally low (median, 0.17 ?g/L; maximum, 2.9 ?g/L) but 7.5 times higher for infants fed exclusively with formula than for infants fed exclusively with breast milk (? = 2.02; 95% CI: 1.21, 2.83; p < 0.0001, adjusted for specific gravity). Similarly, the median estimated daily arsenic intake by NHBCS infants was 5.5 times higher for formula-fed infants (0.22 ?g/kg/day) than for breastfed infants (0.04 ?g/kg/day). Given median arsenic concentrations measured in NHBCS tap water and previously published for formula powder, formula powder was estimated to account for ~ 70% of median exposure among formula-fed NHBCS infants. Conclusions: Our findings suggest that breastfed infants have lower arsenic exposure than formula-fed infants, and that both formula powder and drinking water can be sources of exposure for U.S. infants. Citation: Carignan CC, Cottingham KL, Jackson BP, Farzan SF, Gandolfi AJ, Punshon T, Folt CL, Karagas MR. 2015. Estimated exposure to arsenic in breastfed and formula-fed infants in a United States cohort. Environ Health Perspect 123:500–506;?http://dx.doi.org/10.1289/ehp.1408789 PMID:25707031

  8. Can folate intake reduce arsenic toxicity?

    PubMed Central

    Kile, Molly L; Ronnenberg, Alayne G

    2014-01-01

    Arsenic-contaminated groundwater is a global environmental health concern. Inorganic arsenic is a known carcinogen, and epidemiologic studies suggest that persons with impaired arsenic metabolism are at increased risk for certain cancers, including skin and bladder carcinoma. Arsenic metabolism involves methylation to monomethylarsonic acid and dimethylarsinic acid (DMA) by a folate-dependent process. Persons possessing polymorphisms in certain genes involved in folate metabolism excrete a lower proportion of urinary arsenic as DMA, which may influence susceptibility to arsenic toxicity. A double-blind placebo-controlled trial in a population with low plasma folate observed that after 12 weeks of folic acid supplementation, the proportion of total urinary arsenic excreted as DMA increased and blood arsenic concentration decreased, suggesting an improvement in arsenic metabolism. Although no studies have directly shown that high folate intake reduces the risk of arsenic toxicity, these findings provide evidence to support an interaction between folate and arsenic metabolism. PMID:18522624

  9. Associations between land cover/use categories and soil concentrations of arsenic, lead and barium, and population race/ethnicity and socioeconomic status

    PubMed Central

    Davis, Harley T.; Aelion, C. Marjorie; Lawson, Andrew B.; Cai, Bo; McDermott, Suzanne

    2015-01-01

    The potential of using land cover/use categories as a proxy for soil metal concentrations was examined by measuring associations between percentages of Anderson land cover categories with soil concentrations of As, Pb, and Ba in ten sampling areas. Land cover category and metal associations with ethnicity and socioeconomic status at the United States Census 2000 block and block group levels also were examined. Arsenic and Pb were highest in urban locations; Ba was a function of geology. Consistent associations were observed between urban/built up land cover, and Pb and poverty. Land cover can be used as proxy for metal concentrations, although associations are metal-dependent. PMID:24914533

  10. Do arsenic concentrations in groundwater change over time? A fourteen-year follow-up study of 760 tubewells in Bangladesh

    NASA Astrophysics Data System (ADS)

    Mailloux, B. J.; Chen, T. L.; van Geen, A.; Bostick, B. C.; Ellis, T.; Ahmed, E. B.; Ahmed, K. M.

    2014-12-01

    Naturally occurring arsenic (As) contamination of shallow groundwater affects numerous tubewells utilized for drinking water in Bangladesh. Long-term exposure to As contaminated water increases the risk of skin lesions and internal cancers. In 2000-2001, water samples from 61 villages distributed within a 25 km area of Araihazar, Bangladesh were collected and tested for As to better understand the spatial distribution of arsenic in groundwater. In 2012, village health workers returned to the same area and performed field kit tests for arsenic and resurveyed well owners. Of the 9,000 tubewells originally sampled in 2000-01, 760 of them have been identified as potentially still in existence by matching GPS coordinates, well depth, and well age information. The goal of this work is to determine whether arsenic concentrations along with groundwater chemistry have changed over the past 14 years in these tubewells. Archived water samples from the 2000-2001 sampling campaign are being assessed for sample storage integrity and village health workers are currently resampling these 760 tubewells. In 2000-2001, these samples were initially analyzed for As using Graphite Furnace Atomic Absorption (GFAA). The 2000-2001 archived water samples are currently being reanalyzed with Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to improve sensitivity, accuracy and precision of arsenic detection. ICP-MS will also be used to analyze for 13 other elements. Comparing ICP-MS with the GFAA As demonstrated that the long-term storage of these samples did not alter the water chemistry. Analysis of the samples currently being collected in Bangladesh will enable us to determine the stability of groundwater chemistry over time.

  11. Arsenic behavior in newly drilled wells

    USGS Publications Warehouse

    Kim, M.-J.; Nriagu, J.; Haack, S.

    2003-01-01

    In the present paper, inorganic arsenic species and chemical parameters in groundwater were determined to investigate the factors related to the distribution of arsenic species and their dissolution from rock into groundwater. For the study, groundwater and core samples were taken at different depths of two newly drilled wells in Huron and Lapeer Counties, Michigan. Results show that total arsenic concentrations in the core samples varied, ranging from 0.8 to 70.7 mg/kg. Iron concentration in rock was about 1800 times higher than that of arsenic, and there was no correlation between arsenic and iron occurrences in the rock samples. Arsenic concentrations in groundwater ranged from <1 to 171 ??g/l. The arsenic concentration in groundwater depended on the amount of arsenic in aquifer rocks, and as well decreased with increasing depth. Over 90% of arsenic existed in the form of As(III), implying that the groundwater systems were in the reduced condition. The results such as high ferrous ion, low redox potential and low dissolved oxygen supported the observed arsenic species distribution. There was no noticeable difference in the total arsenic concentration and arsenic species ratio between unfiltered and filtered (0.45 ??m) waters, indicating that the particulate form of arsenic was negligible in the groundwater samples. There were correlations between water sampling depth and chemical parameters, and between arsenic concentration and chemical parameters, however, the trends were not always consistent in both wells. ?? 2003 Elsevier Science Ltd. All rights reserved.

  12. Dose-response relation between arsenic concentration in well water and mortality from cancers and vascular diseases

    SciTech Connect

    Wu, M.M.; Kuo, T.L.; Hwang, Y.H.; Chen, C.J. )

    1989-12-01

    Age-adjusted mortality rates were analyzed to examine the dose-response relation between ingested arsenic levels and risk of cancers and vascular diseases among residents in the endemic area of blackfoot disease, a unique peripheral vascular disease associated with long-term exposure to high-arsenic artesian well water and confined to the southwestern coast of Taiwan. The arsenic levels in well water determined in 1964-1966 were available in 42 villages of the study area, while mortality and population data during 1973-1986 were obtained from the local household registration offices and Taiwan Provincial Department of Health. Age-adjusted mortality rates from various cancers and vascular diseases by sex were calculated using the 1976 world population as the standard population. A significant dose-response relation was observed between arsenic levels in well water and cancers of the bladder, kidney, skin, and lung in both males and females, and cancers of the prostate and liver in males. However, there was no association for cancers of the nasopharynx, esophagus, stomach, colon, and uterine cervix, and for leukemia. Arsenic levels in well water were also associated with peripheral vascular diseases and cardiovascular diseases in a dose-response pattern, but not with cerebrovascular accidents. The dual effect of arsenic on carcinogenesis and arteriosclerosis and the interrelation between these two pathogenic mechanisms deserve more intensive study.

  13. Methyl tert-butyl ether (MTBE) detected in abnormally high concentrations in postmortem blood and urine from two persons found dead inside a car containing a gasoline spill.

    PubMed

    Karinen, Ritva; Vindenes, Vigdis; Morild, Inge; Johnsen, Lene; Le Nygaard, Ilah; Christophersen, Asbjørg S

    2013-09-01

    Two deep frozen persons, a female and a male, were found dead in a car. There had been an explosive fire inside the car which had extinguished itself. On the floor inside the car were large pools of liquid which smelled of gasoline. The autopsy findings and routine toxicological analyses could not explain the cause of death. Carboxyhemoglobin levels in the blood samples were <10%. Analysis with a headspace gas chromatography revealed methyl tert-butyl ether (MTBE) concentrations of 185 mg/L (female victim) and 115 mg/L (male victim) in peripheral blood. The urine MTBE concentrations were 150 mg/L and 256 mg/L, respectively. MTBE is a synthetic chemical which is added to gasoline as a fuel oxygenate. Gasoline poisoning is likely to be the cause of the death in these two cases, and MTBE can be a suitable marker of gasoline exposure, when other volatile components have vaporized. PMID:23879346

  14. Urine Preservative

    NASA Technical Reports Server (NTRS)

    Smith, Scott M. (Inventor); Nillen, Jeannie (Inventor)

    2001-01-01

    Disclosed is CPG, a combination of a chlorhexidine salt (such as chlorhexidine digluconate, chlorhexidine diacetate, or chlorhexidine dichloride) and n-propyl gallate that can be used at ambient temperatures as a urine preservative.

  15. Frequent Urination

    MedlinePLUS

    ... Spotlight Become a youth volunteer leader World Prematurity Day World Prematurity Your support helps babies We are ... very strong. After birth For the first few days after delivery, you may urinate even more often ...

  16. Novel DFO-functionalized mesoporous silica for iron sensing. Part 2. Experimental detection of free iron concentration (pFe) in urine samples.

    PubMed

    Alberti, Giancarla; Emma, Giovanni; Colleoni, Roberta; Pesavento, Maria; Nurchi, Valeria Marina; Biesuz, Raffaela

    2014-08-21

    Successful in vivo chelation treatment of iron(iii) overload pathologies requires that a significant fraction of the administered drug actually chelates the toxic metal. Increased mobilization of the iron(iii) in experiments on animals or humans, most often evaluated from urinary output, is usually used as an assessment tool for chelation therapy. Alternatively, the efficiency of a drug is estimated by calculating the complexing ability of a chelating agent towards Fe(iii). The latter is calculated by the pFe value, defined as the negative logarithm of the concentration of the free metal ion in a solution containing 10 ?M total ligand and 1 ?M total metal at a physiological pH of 7.4. In theory, pFe has to be calculated taking into account all the complexation equilibria involving the metal and the possible ligands. Nevertheless, complexation reactions in complex systems such as serum and urine may hardly be accurately modelled by computer software. The experimental determination of the bioavailable fraction of iron(iii) in biological fluids would therefore be of the utmost relevance in the clinical practice. The efficiency of the therapy could be more easily estimated as well as the course of overload pathologies. In this context, the aim of the present work was the development of a sensor to assess the free iron directly in biological fluids (urine) of patients under treatment with chelating agents. In the proposed device (DFO-MS), the strong iron chelator deferoxamine (DFO) is immobilized on the MCM-41 mesoporous silica. The characterization of the iron(iii) sorption on DFO-MS was undertaken, firstly in 0.1 M KNO3, then directly in urine samples, in order to identify the sorption mechanism. The stoichiometry of the reaction in the solid phase was found to be: with an exchange constant (average value) of log??ex = 40(1). The application of DFO-MS to assess pFe in SPU (Simulating Pathology Urine) samples was also considered. The results obtained were very promising for a future validation and subsequent application of the sensor in samples of patients undergoing chelation therapy. PMID:24883429

  17. Association of oxidative stress with arsenic methylation in chronic arsenic-exposed children and adults

    SciTech Connect

    Xu Yuanyuan; Wang Yi; Zheng Quanmei; Li Xin; Li Bing; Jin Yaping; Sun Xiance; Sun Guifan

    2008-10-01

    Though oxidative stress is recognized as an important pathogenic mechanism of arsenic, and arsenic methylation capacity is suggested to be highly involved in arsenic-related diseases, the association of arsenic methylation capacity with arsenic-induced oxidative stress remains unclear. To explore oxidative stress and its association with arsenic methylation, cross-sectional studies were conducted among 208 high and 59 low arsenic-exposed subjects. Levels of urinary arsenic species [inorganic arsenic (iAs), monomethylated arsenic (MMA) and dimethylated arsenic (DMA)] were determined by hydride generation atomic absorption spectrometry. Proportions of urinary arsenic species, the first methylation ratio (FMR) and the secondary methylation ratio (SMR) were used as indicators for arsenic methylation capacity. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations were analyzed by enzyme-linked immunosorbent assay kits. Reduced glutathione (GSH) levels and superoxide dismutase (SOD) activity in whole blood were determined to reflect anti-oxidative status. The high arsenic-exposed children and adults were significantly increased in urinary 8-OHdG concentrations but decreased in blood GSH levels compared with the low exposed children and adults. In multiple linear regression models, blood GSH levels and urinary 8-OHdG concentrations of arsenic-exposed children and adults showed strong associations with the levels of urinary arsenic species. Arsenic-exposed subjects in the lower and the upper quartiles of proportions of urinary arsenic species, FMR or SMR were significantly different in urinary 8-OHdG, blood GSH and SOD. The associations of arsenic methylation capacity with 8-OHdG, GSH and SOD were also observed in multivariate regression analyses. These results may provide linkage between arsenic methylation capacity and oxidative stress in humans and suggest that adverse health effects induced by arsenic are related to arsenic methylation through oxidative stress.

  18. On-site testing of saliva and sweat with Drugwipe and determination of concentrations of drugs of abuse in saliva, plasma and urine of suspected users.

    PubMed

    Samyn, N; van Haeren, C

    2000-01-01

    Potential drug users participated voluntarily in a Belgian study on the usefulness of the non-instrumental immunoassay Drugwipe (Securetec, Germany) for the screening of cocaine, opiates, amphetamine and cannabinoids in saliva and sweat. If one of the screening assays (urine, oral fluid, sweat) showed a positive result, blood and saliva were collected. The on-site Drugwipe results were correlated with the Drugwipe results for saliva in the laboratory and with the GC/MS results of the corresponding saliva, plasma and urine samples and pharmacological effects at the time of sampling. The Drugwipe assay proved to be sufficiently sensitive for the detection of recent cocaine (n = 6) and amphetamine (n = 15) abuse, whether the device was wiped on the tongue or on the surface of the body, or when a saliva sample was applied to the wiping part. In five of the six potential cocaine users, the saliva concentrations of cocaine exceeded 1,000 ng/ml. In the amphetamine group, the saliva concentrations of amphetamine, MDMA or both were high (> 1,000 ng/ml) in 13 subjects. For cocaine and amphetamine, the positive scores for Drugwipe matched the GC/MS results for the three body fluids. Recent heroin abuse (n = 5) could be demonstrated to some extent with Drugwipe on samples from the tongue but only the two subjects with the highest saliva concentrations of MAM (> 500 ng/ml) and morphine (> 500 ng/ml) were positive. If the legal cut-off value for driving under the influence of opiates in Belgium (20 ng/ml of free morphine in plasma) was taken into account, only three subjects would have been legally positive. For cannabinoids (n = 15), false negatives and even some false positives were observed. Saliva can be considered as a useful analytical matrix for the detection of drugs of abuse after recent abuse when analysed with GC/MS. PMID:10876986

  19. Arsenic Speciation of Terrestrial Invertebrates

    SciTech Connect

    Moriarty, M.M.; Koch, I.; Gordon, R.A.; Reimer, K.J. ); )

    2009-07-01

    The distribution and chemical form (speciation) of arsenic in terrestrial food chains determines both the amount of arsenic available to higher organisms, and the toxicity of this metalloid in affected ecosystems. Invertebrates are part of complex terrestrial food webs. This paper provides arsenic concentrations and arsenic speciation profiles for eight orders of terrestrial invertebrates collected at three historical gold mine sites and one background site in Nova Scotia, Canada. Total arsenic concentrations, determined by inductively coupled plasma mass spectrometry (ICP-MS), were dependent upon the classification of invertebrate. Arsenic species were determined by high-performance liquid chromatography (HPLC) ICP-MS and X-ray absorption spectroscopy (XAS). Invertebrates were found by HPLC ICP-MS to contain predominantly arsenite and arsenate in methanol/water extracts, while XAS revealed that most arsenic is bound to sulfur in vivo. Examination of the spatial distribution of arsenic within an ant tissue highlighted the differences between exogenous and endogenous arsenic, as well as the extent to which arsenic is transformed upon ingestion. Similar arsenic speciation patterns for invertebrate groups were observed across sites. Trace amounts of arsenobetaine and arsenocholine were identified in slugs, ants, and spiders.

  20. Arsenic speciation and bioaccessibility in arsenic-contaminated soils: sequential extraction and mineralogical investigation.

    PubMed

    Kim, Eun Jung; Yoo, Jong-Chan; Baek, Kitae

    2014-03-01

    In this study, a combination of sequential extraction and mineralogical investigation by X-ray diffraction and X-ray photoelectron spectroscopy was employed in order to evaluate arsenic solid-state speciation and bioaccessibility in soils highly contaminated with arsenic from mining and smelting. Combination of these techniques indicated that iron oxides and the weathering products of sulfide minerals played an important role in regulating the arsenic retention in the soils. Higher bioaccessibility of arsenic was observed in the following order; i) arsenic bound to amorphous iron oxides (smelter-2), ii) arsenic associated with crystalline iron oxides and arsenic sulfide phase (smelter-1), and iii) arsenic associated with the weathering products of arsenic sulfide minerals, such as scorodite, orpiment, jarosite, and pyrite (mine). Even though the bioaccessibility of arsenic was very low in the mine soil, its environmental impact could be significant due to its high arsenic concentration and mobility. PMID:24361561

  1. Solid-Phase Speciation of Arsenic As the Primary Control on Dissolved As Concentrations in a Glacial Aquifer System: Quantifying Speciation of Arsenic in Glacial Aquifer Solids with ?XAS Mapping.

    NASA Astrophysics Data System (ADS)

    Nicholas, S. L.; Gowan, A. S.; Knaeble, A. R.; Erickson, M. L.; Woodruff, L. G.; Marcus, M.; Toner, B. M.

    2014-12-01

    Western Minnesota, USA, is a regional locus of drinking-water wells with high arsenic (As) (As>10µgL-1). Arsenic concentrations vary widely among neighboring wells with otherwise similar water chemistry [1,2]. As(III) should be the most mobile As species in Minnesota well waters (median Eh in As affected wells is -50mV). This As is geogenic, sourced from glacial deposits derived from Cretaceous sedimentary bedrock (dolostone, limestone, shale). Our hypothesis is that As speciation in the solid phase is the important factor controlling the introduction of As to groundwater—more significant in this region than absolute As concentrations or landscape variability. Our previous research used micro-X-ray absorption spectroscopy (µXAS) speciation mapping [3] on archived glacial tills (stored dry at room temperature in air). µXAS results from this material showed that As in a reduced chemical state within the till aquitard is spatially correlated with iron sulfide at the micron scale. Conversley, As in aquifer sediments was mainly oxidized As(V). At the aquifer-aquitard contact As was observed as a mixture of both reduced and oxidized forms. This suggests that the aquifer-aquitard contact is a geochemically active zone in which reduced As species present within glacial till are converted to As(V) through complex redox processes, and subsequently release into aquifer sediments. Our current research applies the same methods to describe As speciation in samples collected from fresh cores of glacial sediment and frozen under argon in the field. Preliminary results are similar to our previous work in that As is, in general, more reduced in aquitard sediments, and more oxidized at the contact and in aquifer sediments. Arsenic(III) was preserved as a minor consitutent in ambient archived cores but is a more significant constituent in fresh, anaerobically preserved cores. Results will be presented comparing anaerobic samples with ambient-air aliquots of the same sample to document changes in the relative abundance of As species depending on sample preservation. This work was supported by LBNL-ALS, ANL-APS, USGS-MNWSC, MGS, and CURA. [1]Berndt & Soule (1999) Minnesota Arsenic Research Study: Report on Geochemistry. [2] Erickson & Barnes (2005) Water Research 39 4029-4039. [3] Toner et al. (2014) Env. Chem. 11 4-9.

  2. Efficacy of arsenic filtration by Kanchan arsenic filter in Nepal.

    PubMed

    Singh, Anjana; Smith, Linda S; Shrestha, Shreekrishna; Maden, Narendra

    2014-09-01

    Groundwater arsenic contamination has caused a significant public health burden in lowland regions of Nepal. For arsenic mitigation purposes, the Kanchan Arsenic Filter (KAF) was developed and validated for use in 2003 after pilot studies showed its effectiveness in removing arsenic. However, its efficacy in field conditions operating for a long period has been scarcely observed. In this study, we observe the efficacy of KAFs running over 6 months in highly arsenic-affected households in Nawalparasi district. We assessed pair-wise arsenic concentrations of 62 randomly selected household tubewells before filtration and after filtration via KAFs. Of 62 tubewells, 41 had influent arsenic concentration exceeding the Nepal drinking water quality standard value (50 ?g/L). Of the 41 tubewells having unsafe arsenic levels, KAFs reduced arsenic concentration to the safe level for only 22 tubewells, an efficacy of 54%. In conclusion, we did not find significantly high efficacy of KAFs in reducing unsafe influent arsenic level to the safe level under the in situ field conditions. PMID:25252363

  3. Sequential Determination of Total Arsenic and Cadmium in Concentrated Cadmium Sulphate Solutions by Flow-Through Stripping Chronopotentiometry after Online Cation Exchanger Separation

    PubMed Central

    Cacho, Frantisek; Lauko, Lukas; Manova, Alena; Dzurov, Jan; Beinrohr, Ernest

    2012-01-01

    Flow-through stripping chronopotentiometry with a gold wire electrode was used for the determination of total arsenic and cadmium in cadmium sulphate solutions for cadmium production. The analysis is based on the online separation of arsenic as arsenate anion from cadmium cations by means of a cation exchanger. On measuring arsenate in the effluent, the trapped cadmium is eluted by sodium chloride solution and determined in a small segment of the effluent by making use of the same electrode. The elaborated protocol enables a full automatic measurement of both species in the same sample solution. The accuracy of the results was confirmed by atomic absorption spectrometry. The LOD and LOQ for Arsenic were found to be 0.9??g dm?3 and 2.7??g dm?3, respectively. A linear response range was observed in the concentration range of 1 to 300??g dm?3 for sample volumes of 4?mL. The repeatability and reproducibility were found to be 2.9% and 5.2%, respectively. The linear response range for cadmium was found to be 0.5 to 60?g/L. The method was tested on samples from a cadmium production plant. PMID:22448343

  4. Pink urine.

    PubMed

    Verhoeven, E; Capron, A; Hantson, P

    2014-11-01

    A 55-year-old man was admitted after a suspected hypnotic overdose of valerian extracts. In addition to altered consciousness, the first clinical symptoms included not only diffuse rash on the face, trunk, and limbs, but also an inspiratory dyspnea with a marked hypoxemia. A major laryngeal edema was noted during orotracheal intubation. After correction of hypoxemia, the patient became agitated and propofol was administered by continuous infusion. In addition, the patient passed pink urine staining the urine collection bag. The presence of an unidentified toxic substance was suspected. PMID:25233954

  5. Urinary arsenic metabolism in a Western Chinese population exposed to high-dose inorganic arsenic in drinking water: Influence of ethnicity and genetic polymorphisms

    SciTech Connect

    Fu, Songbo; Wu, Jie; Li, Yuanyuan; Liu, Yan; Gao, Yanhui; Yao, Feifei; Qiu, Chuanying; Song, Li; Wu, Yu; Liao, Yongjian; Sun, Dianjun

    2014-01-01

    To investigate the differences in urinary arsenic metabolism patterns of individuals exposed to a high concentration of inorganic arsenic (iAs) in drinking water, an epidemiological investigation was conducted with 155 individuals living in a village where the arsenic concentration in the drinking water was 969 ?g/L. Blood and urine samples were collected from 66 individuals including 51 cases with skin lesions and 15 controls without skin lesions. The results showed that monomethylated arsenic (MMA), the percentage of MMA (%MMA) and the ratio of MMA to iAs (MMA/iAs) were significantly increased in patients with skin lesions as compared to controls, while dimethylated arsenic (DMA), the percentage of DMA (%DMA) and the ratio of DMA to MMA (DMA/MMA) were significantly reduced. The percent DMA of individuals with the Ala/Asp genotype of glutathione S-transferase omega 1 (GSTO1) was significantly lower than those with Ala/Ala. The percent MMA of individuals with the A2B/A2B genotype of arsenic (+ 3 oxidation state) methyltransferase (AS3MT) was significantly lower than those with AB/A2B. The iAs and total arsenic (tAs) content in the urine of a Tibetan population were significantly higher than that of Han and Hui ethnicities, whereas MMA/iAs was significantly lower than that of Han and Hui ethnicities. Our results showed that when exposed to the same arsenic environment, different individuals exhibited different urinary arsenic metabolism patterns. Gender and ethnicity affect these differences and above polymorphisms may be effectors too. - Highlights: • We first survey a village with high iAs content in the drinking water (969 ?g/L). • 90 villagers suffered typical skin lesions with a morbidity rate of 58%. • Cases exhibited higher %MMA and MMA/iAs, and lower %DMA and DMA/MMA than controls. • Gender and ethnicity affect the differences of iAs methylation metabolism levels. • GSTO1 and AS3MT gene polymorphisms may be factors too.

  6. Mobilisation of heavy metals into the urine by CaEDTA: relation to erythrocyte and plasma concentrations and exposure indicators.

    PubMed Central

    Araki, S; Aono, H; Murata, K

    1986-01-01

    To investigate the effects of calcium disodium ethylenediamine tetra-acetate (CaEDTA) on the urinary excretion, erythrocyte, and plasma concentrations and exposure indicators of seven heavy metals, CaEDTA was administered by intravenous infusion to 20 workers exposed to lead, zinc, and copper. The workers' blood lead concentrations ranged from 22 to 59 micrograms/dl (mean 38 micrograms/dl (1.8 mumol/l]. The 24 hour urinary excretion of metals after CaEDTA administration (mobilisation yield) was on average 13 times the background excretion for lead, 11 times for zinc, 3.8 times for manganese, 3.4 times for cadmium, 1.3 times for copper, and 1.1 times for chromium; no significant increase was found for mercury. The mobilisation yield of lead (MPb) was significantly correlated with whole blood and erythrocyte concentrations and the urinary excretion of lead but not with its plasma concentration; similarly, the mobilisation yield of cadmium was significantly correlated with its erythrocyte concentration. In addition, MPb was significantly correlated with intra-erythrocytic enzyme delta-aminolaevulinic acid dehydratase activity and urinary coproporphyrin excretion. The relation between the mobilisation yield of heavy metals and their body burden (and toxic signs) is discussed in the light of these findings. PMID:3092853

  7. Concentrations of arsenic, copper, cobalt, lead and zinc in cassava (Manihot esculenta Crantz) growing on uncontaminated and contaminated soils of the Zambian Copperbelt

    NASA Astrophysics Data System (ADS)

    K?íbek, B.; Majer, V.; Knésl, I.; Nyambe, I.; Mihaljevi?, M.; Ettler, V.; Sracek, O.

    2014-11-01

    The concentrations of arsenic (As), copper (Cu), cobalt (Co), lead (Pb) and zinc (Zn) in washed leaves and washed and peeled tubers of cassava (Manihot esculenta Crantz, Euphorbiaceae) growing on uncontaminated and contaminated soils of the Zambian Copperbelt mining district have been analyzed. An enrichment index (EI) was used to distinguish between contaminated and uncontaminated areas. This index is based on the average ratio of the actual and median concentration of the given contaminants (As, Co, Cu, mercury (Hg), Pb and Zn) in topsoil. The concentrations of copper in cassava leaves growing on contaminated soils reach as much as 612 mg kg-1 Cu (total dry weight [dw]). Concentrations of copper in leaves of cassava growing on uncontaminated soils are much lower (up to 252 mg kg-1 Cu dw). The concentrations of Co (up to 78 mg kg-1 dw), As (up to 8 mg kg-1 dw) and Zn (up to 231 mg kg-1 dw) in leaves of cassava growing on contaminated soils are higher compared with uncontaminated areas, while the concentrations of lead do not differ significantly. The concentrations of analyzed chemical elements in the tubers of cassava are much lower than in its leaves with the exception of As. Even in strongly contaminated areas, the concentrations of copper in the leaves and tubers of cassava do not exceed the daily maximum tolerance limit of 0.5 mg kg-1/human body weight (HBW) established by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). The highest tolerable weekly ingestion of 0.025 mg kg-1/HBW for lead and the highest tolerable weekly ingestion of 0.015 mg kg-1/HBW for arsenic are exceeded predominantly in the vicinity of smelters. Therefore, the preliminary assessment of dietary exposure to metals through the consumption of uncooked cassava leaves and tubers has been identified as a moderate hazard to human health. Nevertheless, as the surfaces of leaves are strongly contaminated by metalliferous dust in the polluted areas, there is still a potential hazard of ingesting dangerous levels of copper, lead and arsenic if dishes are prepared with poorly washed foliage.

  8. Protein urine test

    MedlinePLUS

    Urine protein; Albumin - urine; Urine albumin; Proteinuria; Albuminuria ... After you provide a urine sample, it is tested. The health care provider uses a dipstick made with a color-sensitive pad. The color the ...

  9. Chloride - urine test

    MedlinePLUS

    The urine chloride test measures the amount of chloride in a certain volume of urine. ... After you provide a urine sample, it is tested in the lab. If needed, the health care provider may ask you to collect your urine ...

  10. Ketones urine test

    MedlinePLUS

    Ketone bodies - urine; Urine ketones ... Urine ketones are usually measured as a "spot test." This is available in a test kit that ... ketone bodies. A dipstick is dipped in the urine sample. A color change indicates the presence of ...

  11. Cytology exam of urine

    MedlinePLUS

    Urine cytology ... time, the sample is collected as clean catch urine sample in your doctor's office or at home. ... the penis or vagina from getting into a urine sample. To collect your urine, the health care ...

  12. Evaluation of arsenic speciation in rainbow trout and fathead minnows from dietary exposure

    EPA Science Inventory

    The concentration of total arsenic and various arsenic species were measured in food and fish tissue samples from two dietary arsenic exposures to juvenile fish. For arsenic speciation, samples were extracted with 10% MeOH and analyzed by HPLC/ICPMS. Total arsenic concentration...

  13. Arsenic Methyltransferase

    EPA Science Inventory

    The metalloid arsenic enters the environment by natural processes (volcanic activity, weathering of rocks) and by human activity (mining, smelting, herbicides and pesticides). Although arsenic has been exploited for homicidal and suicidal purposes since antiquity, its significan...

  14. Associations of estimated residential soil arsenic and lead concentrations and community-level environmental measures with mother-child health conditions in South Carolina

    PubMed Central

    Aelion, C. Marjorie; Davis, Harley T.; Lawson, Andrew B.; Cai, Bo; McDermott, Suzanne

    2015-01-01

    We undertook a community-level aggregate analysis in South Carolina, USA, to examine associations between mother-child conditions from a Medicaid cohort of pregnant women and their children using spatially interpolated arsenic (As) and lead (Pb) concentrations in three geographic case areas and a control area. Weeks of gestation at birth was significantly negatively correlated with higher estimated As (rs=?0.28, p=0.01) and Pb (rs=?0.26, p=0.02) concentrations in one case area. Higher estimated Pb concentrations were consistently positively associated with frequency of black mothers (all p<0.02) and negatively associated with frequency of white mothers (all p<0.01), suggesting a racial disparity with respect to Pb. PMID:22579118

  15. ARSENIC REMOVAL

    EPA Science Inventory

    Presentation covered five topics; arsenic chemistry, best available technology (BAT), surface water technology, ground water technology and case studies of arsenic removal. The discussion on arsenic chemistry focused on the need and method of speciation for AsIII and AsV. BAT me...

  16. Arsenic occurrence in New Hampshire drinking water

    SciTech Connect

    Peters, S.C.; Blum, J.D.; Klaue, B.; Karagas, M.R.

    1999-05-01

    Arsenic concentrations were measured in 992 drinking water samples collected from New Hampshire households using online hydride generation ICP-MS. These randomly selected household water samples contain much less arsenic than those voluntarily submitted for analysis to the New Hampshire Department of Environmental Services (NHDES). Extrapolation of the voluntarily submitted sample set to all New Hampshire residents significantly overestimates arsenic exposure. In randomly selected households, concentrations ranged from <0.0003 to 180 {micro}g/L, with water from domestic wells containing significantly more arsenic than water from municipal sources. Water samples from drilled bedrock wells had the highest arsenic concentrations, while samples from surficial wells had the lowest arsenic concentrations. The authors suggest that much of the groundwater arsenic in New Hampshire is derived from weathering of bedrock materials and not from anthropogenic contamination. The spatial distribution of elevated arsenic concentrations correlates with Late-Devonian Concord-type granitic bedrock. Field observations in the region exhibiting the highest groundwater arsenic concentrations revealed abundant pegmatite dikes associated with nearby granites. Analysis of rock digests indicates arsenic concentrations up to 60 mg/kg in pegmatites, with much lower values in surrounding schists and granites. Weak acid leaches show that approximately half of the total arsenic in the pegmatites is labile and therefore can be mobilized during rock-water interaction.

  17. 1308 volume 119 | number 9 | September 2011 Environmental Health Perspectives Arsenic in drinking water is a major public

    E-print Network

    California at Berkeley, University of

    micronutrients, and urine creatinine with arsenic methylation patterns in urine, in what we believe is the first effects resulting from exposure to InAs in drinking water. We were also interested in urine creatinine cancer among persons with higher proportions of MMA in their urine (Steinmaus et al. 2003). Therefore

  18. Arsenical keratosis caused by medication: a case report and literature

    PubMed Central

    Zhou, Sijing; Zhou, Junsheng; Liu, Shengping; Wang, Ran; Wang, Zaixing

    2015-01-01

    Medication-induced arsenical keratosis is a rare type of arsenical keratosis. We describe here a case of 70-year-old man to explore the clinical characters, diagnosis and treatment of medication-induced arsenical keratosis in order to improve the understanding of this disease and reduce the misdiagnosis rate. The clinical characters, signs, lab findings as well as progression, diagnosis and treatment in the case of arsenical keratosis were analyzed. The patient of medication-induced arsenical keratosis suffered from chronic eczema. He has taken realgar during the treatment. His medication caused arsenical keratosis. Medication-induced arsenical keratosis is rare. Making the medication history clear and using urine arsenic detection if necessary are of significance to understand the patients’ condition. It is quite effective that using Sodium Dimercaptosulphonate during the treatment without delay. PMID:25785160

  19. Evaluation of Arsenic Contamination in Texas

    E-print Network

    Scanlon, Bridget R.

    Evaluation of Arsenic Contamination in Texas Report Prepared for Texas Commission on Environmental;#12;FINAL REPORT ­ August 2005 Evaluation of Arsenic Contamination in Texas Prepared for Texas Commission............................................................................................................................8 Subtask A1: Review Elevated Arsenic Concentrations (>10 ppb) in Groundwater in Surrounding States

  20. The Human Urine Metabolome

    PubMed Central

    Bouatra, Souhaila; Aziat, Farid; Mandal, Rupasri; Guo, An Chi; Wilson, Michael R.; Knox, Craig; Bjorndahl, Trent C.; Krishnamurthy, Ramanarayan; Saleem, Fozia; Liu, Philip; Dame, Zerihun T.; Poelzer, Jenna; Huynh, Jessica; Yallou, Faizath S.; Psychogios, Nick; Dong, Edison; Bogumil, Ralf; Roehring, Cornelia; Wishart, David S.

    2013-01-01

    Urine has long been a “favored” biofluid among metabolomics researchers. It is sterile, easy-to-obtain in large volumes, largely free from interfering proteins or lipids and chemically complex. However, this chemical complexity has also made urine a particularly difficult substrate to fully understand. As a biological waste material, urine typically contains metabolic breakdown products from a wide range of foods, drinks, drugs, environmental contaminants, endogenous waste metabolites and bacterial by-products. Many of these compounds are poorly characterized and poorly understood. In an effort to improve our understanding of this biofluid we have undertaken a comprehensive, quantitative, metabolome-wide characterization of human urine. This involved both computer-aided literature mining and comprehensive, quantitative experimental assessment/validation. The experimental portion employed NMR spectroscopy, gas chromatography mass spectrometry (GC-MS), direct flow injection mass spectrometry (DFI/LC-MS/MS), inductively coupled plasma mass spectrometry (ICP-MS) and high performance liquid chromatography (HPLC) experiments performed on multiple human urine samples. This multi-platform metabolomic analysis allowed us to identify 445 and quantify 378 unique urine metabolites or metabolite species. The different analytical platforms were able to identify (quantify) a total of: 209 (209) by NMR, 179 (85) by GC-MS, 127 (127) by DFI/LC-MS/MS, 40 (40) by ICP-MS and 10 (10) by HPLC. Our use of multiple metabolomics platforms and technologies allowed us to identify several previously unknown urine metabolites and to substantially enhance the level of metabolome coverage. It also allowed us to critically assess the relative strengths and weaknesses of different platforms or technologies. The literature review led to the identification and annotation of another 2206 urinary compounds and was used to help guide the subsequent experimental studies. An online database containing the complete set of 2651 confirmed human urine metabolite species, their structures (3079 in total), concentrations, related literature references and links to their known disease associations are freely available at http://www.urinemetabolome.ca. PMID:24023812

  1. Respective associations between ureteral obstruction and renomegaly, urine specific gravity, and serum creatinine concentration in cats: 29 cases (2006-2013).

    PubMed

    Bua, Anne-Sophie; Dunn, Marilyn E; Pey, Pascaline

    2015-09-01

    Objective-To determine the respective associations between ureteral obstruction and renomegaly, urine specific gravity (USG), and serum creatinine concentration and to assess the reliability of abdominal palpation for detection of renomegaly in cats. Design-Retrospective case series. Animals-89 client-owned cats with (n = 29) or without ureteral obstruction and with (30) or without (30) kidney disease. Procedures-Medical records of cats that underwent abdominal ultrasonography at a veterinary teaching hospital from January 2006 through April 2013 were reviewed. Cats were categorized as having ureteral obstruction (obstructed group) or no ureteral obstruction with (KD group) or without kidney disease (NKD group). Renomegaly and renal asymmetry were defined on the basis of mean renal length for NKD cats. Prevalence of renomegaly and renal asymmetry, mean USG and serum creatinine concentration, and abdominal palpation and ultrasonographic findings were compared among the groups. Results-Renomegaly was identified in 2 obstructed cats and 1 KD cat and was not associated with ureteral obstruction. Renal asymmetry was detected in 18 obstructed cats and 11 KD cats. For obstructed and KD cats, the mean USG was significantly lower and the mean serum creatinine concentration was significantly greater than those for NKD cats. Twenty-eight of 29 cats with ureteral obstruction had hypercreatininemia. Abdominal palpation was not a reliable method for detection of renomegaly. Conclusions and Clinical Relevance-Results indicated renomegaly was not associated with ureteral obstruction in cats, and abdominal palpation was an unreliable method for detection of renomegaly. The most consistent abnormal finding for cats with ureteral obstruction was hypercreatininemia. (J Am Vet Med Assoc 2015;247:518-524). PMID:26295557

  2. Concentrations of Morphine and Codeine in Paired Oral Fluid and Urine Specimens Following Ingestion of a Poppy Seed Roll and Raw Poppy Seeds.

    PubMed

    Samano, Kimberly L; Clouette, Randal E; Rowland, Barbara J; Sample, R H Barry

    2015-10-01

    Interpretation of opiate drug test results can be challenging due to casual dietary consumption of poppy seeds, which may contain variable opiate content. Opiate concentrations in paired oral fluid (OF), collected with the Oral-Eze(®) Oral Fluid Collection System, and urine were analyzed after ingestion of poppy seeds from the same source, consumed raw or contained in a roll. In Part 1, 12 individuals consumed equal portions of a poppy seed roll. For Part 2, the same individuals consumed an equivalent quantity of raw poppy seeds, containing ?3.2 mg of morphine and 0.6 mg of codeine. Specimens were analyzed both by enzyme immunoassay (opiates) and by GC-MS (morphine/codeine). Urinary morphine was between 155-1,408 (roll) and 294-4,213 ng/mL (raw), measured at 2, 4, 6 and 20 h post-ingestion. Urinary codeine concentrations between 140-194 (roll) and 121-664 ng/mL (raw) were observed up to 6 h post-ingestion. Following consumption of raw poppy seeds, OF specimens were positive, above LOQ, from 0.25 to 3.0 h with morphine ranging from 7 to 600 ng/mL and codeine from 8 to 112 ng/mL. After poppy seed roll consumption, morphine concentrations of 7-143 ng/mL were observed up to 1.5 h with codeine detected in only 5.5% of OF specimens and ranging from 8 to 28 ng/mL. Combined with the existing poppy seed literature, these results support previous findings and provide guidance for interpretation of OF opiate testing. PMID:26378141

  3. Concentrations of Morphine and Codeine in Paired Oral Fluid and Urine Specimens Following Ingestion of a Poppy Seed Roll and Raw Poppy Seeds

    PubMed Central

    Samano, Kimberly L.; Clouette, Randal E.; Rowland, Barbara J.; Sample, R.H. Barry

    2015-01-01

    Interpretation of opiate drug test results can be challenging due to casual dietary consumption of poppy seeds, which may contain variable opiate content. Opiate concentrations in paired oral fluid (OF), collected with the Oral-Eze® Oral Fluid Collection System, and urine were analyzed after ingestion of poppy seeds from the same source, consumed raw or contained in a roll. In Part 1, 12 individuals consumed equal portions of a poppy seed roll. For Part 2, the same individuals consumed an equivalent quantity of raw poppy seeds, containing ?3.2 mg of morphine and 0.6 mg of codeine. Specimens were analyzed both by enzyme immunoassay (opiates) and by GC–MS (morphine/codeine). Urinary morphine was between 155–1,408 (roll) and 294–4,213 ng/mL (raw), measured at 2, 4, 6 and 20 h post-ingestion. Urinary codeine concentrations between 140–194 (roll) and 121–664 ng/mL (raw) were observed up to 6 h post-ingestion. Following consumption of raw poppy seeds, OF specimens were positive, above LOQ, from 0.25 to 3.0 h with morphine ranging from 7 to 600 ng/mL and codeine from 8 to 112 ng/mL. After poppy seed roll consumption, morphine concentrations of 7–143 ng/mL were observed up to 1.5 h with codeine detected in only 5.5% of OF specimens and ranging from 8 to 28 ng/mL. Combined with the existing poppy seed literature, these results support previous findings and provide guidance for interpretation of OF opiate testing. PMID:26378141

  4. ORIGINAL ARTICLE Arsenic Exposure and Risk of Spontaneous Abortion,

    E-print Network

    California at Berkeley, University of

    ORIGINAL ARTICLE Arsenic Exposure and Risk of Spontaneous Abortion, Stillbirth, and Infant out during 2002­2004 in Matlab, Bangladesh. Spontaneous abortion was evaluated in relation to urinary of spontaneous abortion was 1.4 (95% confi- dence interval CI 0.96­2.2) among women with urine arsenic

  5. XAS Speciation of Arsenic in a Hyper-Accumulating Fern

    E-print Network

    Ma, Lena

    XAS Speciation of Arsenic in a Hyper-Accumulating Fern S A M U E L M . W E B B , J E A N - F R A N environment and the redox speciation of arsenic in a newly discovered arsenic hyper-accumulating fern (Pteris high As concentrations (ca. 1% As per dry weight) arsenic in the fern leaves is coordinated

  6. Digital spatial data for observed, predicted, and misclassification errors for observations in the training dataset for nitrate and arsenic concentrations in basin-fill aquifers in the Southwest Principal Aquifers study area

    USGS Publications Warehouse

    McKinney, Tim S.; Anning, David W.

    2012-01-01

    This product "Digital spatial data for observed, predicted, and misclassification errors for observations in the training dataset for nitrate and arsenic concentrations in basin-fill aquifers in the Southwest Principal Aquifers study area" is a 1:250,000-scale point spatial dataset developed as part of a regional Southwest Principal Aquifers (SWPA) study (Anning and others, 2012). The study examined the vulnerability of basin-fill aquifers in the southwestern United States to nitrate contamination and arsenic enrichment. Statistical models were developed by using the random forest classifier algorithm to predict concentrations of nitrate and arsenic across a model grid that represents local- and basin-scale measures of source, aquifer susceptibility, and geochemical conditions.

  7. A Dose-Response Study of Arsenic Exposure and Markers of Oxidative Damage in Bangladesh

    PubMed Central

    Harper, Kristin N.; Liu, Xinhua; Hall, Megan N.; Ilievski, Vesna; Oka, Julie; Calancie, Larissa; Slavkovich, Vesna; Levy, Diane; Siddique, Abu; Alam, Shafiul; Mey, Jacob L.; van Geen, Alexander; Graziano, Joseph H.; Gamble, Mary V.

    2014-01-01

    Objective To evaluate the dose-response relationship between arsenic exposure and markers of oxidative damage in Bangladeshi adults. Methods We recruited 378 participants drinking from wells assigned to five water arsenic exposure categories; the distribution of subjects was as follows: 1) <10 ?g/L (n=76); 2) 10–100 ?g/L (n=104); 3) 101–200 ?g/L (n=86); 4) 201–300 ?g/L (n=67); and 5) > 300 ?g/L (n=45). Arsenic concentrations were measured in well water, as well as in urine and blood. Urinary 8-oxo-2’-deoxyguanosine (8-oxo-dG) and plasma protein carbonyls were measured to assess oxidative damage. Results None of our measures of arsenic exposure were significantly associated with protein carbonyl or 8-oxo-dG levels. Conclusions We found no evidence to support a significant relationship between chronic exposure to arsenic-contaminated drinking water and biomarkers of oxidative damage among Bangladeshi adults. PMID:24854259

  8. The studying of washing of arsenic and sulfur from coals having different ranges of arsenic contents

    USGS Publications Warehouse

    Wang, M.; Song, D.; Zheng, B.; Finkelman, R.B.

    2008-01-01

    To study the effectiveness of washing in removal of arsenic and sulfur from coals with different ranges of arsenic concentration, coal was divided into three groups on the basis of arsenic content: 0-5.5 mg/kg, 5.5 mg/kg-8.00 mg/kg, and over 8.00 mg/kg. The result shows that the arsenic in coals with higher arsenic content occurs mainly in an inorganic state and can be relatively easily removed. Arsenic removal is very difficult and less complete when the arsenic content is lower than 5.5 mg/kg because most of this arsenic is in an organic state. There is no relationship between washing rate of total sulfur and arsenic content, but the relationship between the washing rate of total sulfur and percent of organic sulfur is very strong. ?? 2008 New York Academy of Sciences.

  9. The studying of washing of arsenic and sulfur from coals having different ranges of arsenic contents

    SciTech Connect

    Mingshi Wang; Dangyu Song; Baoshan Zheng; R.B. Finkelman

    2008-10-15

    To study the effectiveness of washing in removal of arsenic and sulfur from coals with different ranges of arsenic concentration, coal was divided into three groups on the basis of arsenic content: 0-5.5 mg/kg, 5.5 mg/kg-8.00 mg/kg, and over 8.00 mg/kg. The result shows that the arsenic in coals with higher arsenic content occurs mainly in an inorganic state and can be relatively easily removed. Arsenic removal is very difficult and less complete when the arsenic content is lower than 5.5 mg/kg because most of this arsenic is in an organic state. There is no relationship between washing rate of total sulfur and arsenic content, but the relationship between the washing rate of total sulfur and percent of organic sulfur is very strong.

  10. Arsenic and Other Metals' Presence in Biomarkers of Cambodians in Arsenic Contaminated Areas.

    PubMed

    Chanpiwat, Penradee; Himeno, Seiichiro; Sthiannopkao, Suthipong

    2015-01-01

    Chemical analyses of metal (Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Mo, Ba, and Pb) concentrations in hair, nails, and urine of Cambodians in arsenic-contaminated areas who consumed groundwater daily showed elevated levels in these biomarkers for most metals of toxicological interest. The levels of metals in biomarkers corresponded to their levels in groundwater, especially for As, whose concentrations exceeded the WHO guidelines for drinking water. About 75.6% of hair samples from the population in this study contained As levels higher than the normal level in unexposed individuals (1 mg·kg(-1)). Most of the population (83.3%) showed As urinary levels exceeding the normal (<50 ng·mg(-1)). These results indicate the possibility of arsenicosis symptoms in residents of the areas studied. Among the three biomarkers tested, hair has shown to be a reliable indicator of metal exposures. The levels of As (r² = 0.633), Ba (r² = 0.646), Fe (r² = 0.595), and Mo (r² = 0.555) in hair were strongly positively associated with the levels of those metals in groundwater. In addition, significant weak correlations (p < 0.01) were found between levels of exposure to As and As concentrations in both nails (r² = 0.544) and urine (r² = 0.243). PMID:26569276

  11. Arsenic and Other Metals’ Presence in Biomarkers of Cambodians in Arsenic Contaminated Areas

    PubMed Central

    Chanpiwat, Penradee; Himeno, Seiichiro; Sthiannopkao, Suthipong

    2015-01-01

    Chemical analyses of metal (Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Mo, Ba, and Pb) concentrations in hair, nails, and urine of Cambodians in arsenic-contaminated areas who consumed groundwater daily showed elevated levels in these biomarkers for most metals of toxicological interest. The levels of metals in biomarkers corresponded to their levels in groundwater, especially for As, whose concentrations exceeded the WHO guidelines for drinking water. About 75.6% of hair samples from the population in this study contained As levels higher than the normal level in unexposed individuals (1 mg·kg?1). Most of the population (83.3%) showed As urinary levels exceeding the normal (<50 ng·mg?1). These results indicate the possibility of arsenicosis symptoms in residents of the areas studied. Among the three biomarkers tested, hair has shown to be a reliable indicator of metal exposures. The levels of As (r2 = 0.633), Ba (r2 = 0.646), Fe (r2 = 0.595), and Mo (r2 = 0.555) in hair were strongly positively associated with the levels of those metals in groundwater. In addition, significant weak correlations (p < 0.01) were found between levels of exposure to As and As concentrations in both nails (r2 = 0.544) and urine (r2 = 0.243). PMID:26569276

  12. Clean catch urine sample

    MedlinePLUS

    Urine culture - clean catch; Urinalysis - clean catch; Clean catch urine specimen; Urine collection - clean catch ... If possible, collect the sample when urine has been in your bladder for 2 to 3 hours. You will use a special kit to collect the urine. It will ...

  13. Arsenic in rain and the Atmospheric mass balance of arsenic

    NASA Astrophysics Data System (ADS)

    Andreae, Meinrat O.

    1980-08-01

    An attempt to construct a mass balance of arsenic in the world atmosphere showed that the published data on arsenic concentrations in rain were not compatible with measured values of atmospheric concentrations at remote sites and with estimates of arsenic fluxes into the atmosphere. To resolve this problem, samples of rainwater and snow from eight sites in California, Washington, and Hawaii were analyzed for arsenite, arsenate, and methylated forms of arsenic. The inorganic species were detectable in most samples, but no methylated forms were present above the detection limit of 0.2 ppt. Between October 1976 and March 1978, 43 samples of rain were collected at three locations near the coast in La Jolla. No significant differences between these sites were evident. The average concentration, weighted for rainfall amounts, was 0.007 ppb arsenite and 0.012 ppb arsenate, giving a total concentration of 0.019 ppb As. The samples from Kauai gave an average total arsenic identical to that from La Jolla. This suggests that the La Jolla samples, most of which were collected during strong onshore flow of air from the Pacific, represent very clean air. During some periods of pollutant buildup, values up to 0.59 ppb were found in La Jolla. In a few samples, on the other hand, the arsenic concentrations were below the detection limit of 0.004 ppb. Comparable values were also found in samples of snow from Norden, California, a site at 2225 m elevation in the Sierra Nevada. These values fit well with concentrations modeled on the basis of aerosol analyses from remote sites. The average arsenic concentration at Anacortes Island, Washington, was significantly higher: 1.06 ppb with 88% of the arsenic in the form of arsenite. This value can be explained by a Gaussian plume model with the Tacoma smelter at its origin. This plant, which is 154 krn from the sampling site, emits ˜180 kg of arsenic per day in the form of arsenic trioxide, which is transported northward by the prevailing winds. The ratio of arsenite to arsenate in rain varies over a wide range. This is interpreted as a result of different oxidation states of arsenic in the source emissions and to redox reactions within atmospheric particulates and hydrometeors. By using the data from this study, a mass balance can be constructed for arsenic in the atmosphere which does not require biogenic methylation or hitherto unknown processes as a source for atmospheric arsenic.

  14. An oral cathepsin K inhibitor ONO-5334 inhibits N-terminal and C-terminal collagen crosslinks in serum and urine at similar plasma concentrations in postmenopausal women.

    PubMed

    Tanaka, Makoto; Hashimoto, Yoshitaka; Hasegawa, Chihiro

    2015-12-01

    Relationships between the plasma concentration of a cathepsin K inhibitor (ONO-5334) and inhibition of bone resorption markers N-telopeptide of type I collagen (NTX) and C-telopeptide of type I collagen (CTX) in serum and urinary NTX/creatinine and CTX/creatinine were examined in 10 postmenopausal women. The subjects received slow-release tablets of 100mg ONO-5534 under fasted or fed conditions in a study with a crossover design. Inhibition of serum NTX and CTX levels and plasma concentrations of ONO-5334 were monitored at 0, 24, 48 and 168h after dosing. Changes in urinary NTX/creatinine and CTX/creatinine levels in second morning urine were evaluated on 0, 1, 2 and 7days after dosing. Data were analyzed using sigmoid maximal drug effect (Emax) models. The maximal inhibition, estimated Emax values, were -31.8% for serum NTX, -53.1% for serum CTX, -67.2% for urinary NTX/creatinine, and -95.2% for urinary CTX/creatinine. The estimated half maximal effective plasma concentrations (EC50) of ONO-5334 and confidence intervals were 1.79 (1.01 to 3.16) ng/mL for serum NTX, 2.07 (1.63 to 2.62) ng/mL for serum CTX, 1.85 (1.30 to 2.61) ng/mL for urinary NTX/creatinine, and 1.98 (0.94 to 3.76) ng/mL for urinary CTX/creatinine. EC50 values for the four crosslinks did not significantly differ, as indicated by the overlapping 95% confidence intervals. The highest signal-to-noise ratio was achieved with serum CTX, and was 2-fold higher than that on serum NTX. Inhibition for serum NTX and CTX, and urinary NTX/creatinine and CTX/creatinine by ONO-5334 were all correlated with correlation coefficients ranging from 0.55 to 0.80. In conclusion, data of ONO-5334 slow-releasing tablets in postmenopausal women were well fitted in Emax model. In all measured telopeptides, the maximal inhibition was obtained at urinary CTX/creatinine level, but serum CTX had the highest signal-to-noise ratio. Inhibition for all measured telopeptides by ONO-5334 were all correlated. The estimated half maximal effective plasma concentrations were not significantly different between all measured telopeptides. PMID:26188109

  15. Mobility of arsenic in aquifer sediments at Datong Basin, northern China: Effect of bicarbonate and phosphate

    E-print Network

    Hu, Qinhong "Max"

    Mobility of arsenic in aquifer sediments at Datong Basin, northern China: Effect of bicarbonate 2012 Available online xxxx Keywords: Arsenic Aquifer sediment Column leaching Phosphate Bicarbonate Datong Basin Effects of phosphate and bicarbonate concentration on mobilization of arsenic in aquifer

  16. Urinal Dynamics

    NASA Astrophysics Data System (ADS)

    Hurd, Randy; Hacking, Kip; Haymore, Benjamin; Truscott, Tadd; Splash Lab Team

    2013-11-01

    In response to harsh and repeated criticisms from our mothers and several failed relationships with women, we present the splash dynamics of a simulated human male urine stream impacting rigid and free surfaces. Our study aims to reduce undesired splashing that may result from lavatory usage. Experiments are performed at a pressure and flow rate that would be expected from healthy male subjects. For a rigid surface, the effects of stream breakup and surface impact angle on lateral and vertical droplet ejection distances are measured using high-speed photography and image processing. For free surface impact, the effects of velocity and fluid depth on droplet ejection distances are measured. Guided by our results, techniques for splash reduction are proposed.

  17. Arsenic-induced bladder cancer in an animal model

    SciTech Connect

    Cohen, Samuel M. Ohnishi, Takamasa Arnold, Lora L. Le, X. Chris

    2007-08-01

    Dimethylarsinic acid (DMA{sup V}) is carcinogenic to the rat urinary bladder, but not in mice. The carcinogenic mode of action involves cytotoxicity followed by regenerative cell proliferation. Dietary DMA{sup V} does not produce urinary solids or significant alterations in urinary composition. The cytotoxicity is due to formation of a reactive metabolite, likely dimethylarsinous acid (DMA{sup III}), concentrated and excreted in the urine. Urinary concentrations of DMA{sup III} are dose-dependent, and the urinary concentrations are at cytotoxic levels based on in vitro studies. The no observed effect level (NOEL) in these rat dietary studies for detectable levels of DMA{sup III}, cytotoxicity, and proliferation is 2 ppm, with marginal changes at 10 ppm. The tumorigenic dose is 100 ppm. Recent investigations have demonstrated that arsenicals administered to the rat result in binding to a specific cysteine in the hemoglobin alpha chain as DMA{sup III}, regardless of the arsenical being administered. Monomethylarsonic acid (MMA{sup V}) is not carcinogenic in rats or mice. In short term experiments ({<=} 10 weeks), sodium arsenate in the drinking water induces significant cytotoxicity and regenerative proliferation. There is little evidence that the cytotoxicity produced following administration of arsenicals is caused by oxidative damage, as antioxidants show little inhibitory activity of the cytotoxicity of the various arsenicals either in vitro or in vivo. In summary, the mode of action for DMA{sup V}-induced bladder carcinogenesis in the rat involves generation of a reactive metabolite (DMA{sup III}) leading to cytotoxicity and regenerative proliferation, is a non-linear process, and likely involves a threshold. Extrapolation to human risk needs to take this into account along with the significant differences in toxicokinetics and toxicodynamics that occur between different species.

  18. Arsenic speciation in edible mushrooms.

    PubMed

    Nearing, Michelle M; Koch, Iris; Reimer, Kenneth J

    2014-12-16

    The fruiting bodies, or mushrooms, of terrestrial fungi have been found to contain a high proportion of the nontoxic arsenic compound arsenobetaine (AB), but data gaps include a limited phylogenetic diversity of the fungi for which arsenic speciation is available, a focus on mushrooms with higher total arsenic concentrations, and the unknown formation and role of AB in mushrooms. To address these, the mushrooms of 46 different fungus species (73 samples) over a diverse range of phylogenetic groups were collected from Canadian grocery stores and background and arsenic-contaminated areas. Total arsenic was determined using ICP-MS, and arsenic speciation was determined using HPLC-ICP-MS and complementary X-ray absorption spectroscopy (XAS). The major arsenic compounds in mushrooms were found to be similar among phylogenetic groups, and AB was found to be the major compound in the Lycoperdaceae and Agaricaceae families but generally absent in log-growing mushrooms, suggesting the microbial community may influence arsenic speciation in mushrooms. The high proportion of AB in mushrooms with puffball or gilled morphologies may suggest that AB acts as an osmolyte in certain mushrooms to help maintain fruiting body structure. The presence of an As(III)-sulfur compound, for the first time in mushrooms, was identified in the XAS analysis. Except for Agaricus sp. (with predominantly AB), inorganic arsenic predominated in most of the store-bought mushrooms (albeit with low total arsenic concentrations). Should inorganic arsenic predominate in these mushrooms from contaminated areas, the risk to consumers under these circumstances should be considered. PMID:25417842

  19. Leucine aminopeptidase - urine

    MedlinePLUS

    ... how much of this protein appears in your urine. Your blood can also be checked for this ... A 24-hour urine sample is needed. On day 1, urinate into the toilet when you get up in the morning. Afterwards, collect ...

  20. Glucose urine test

    MedlinePLUS

    Urine sugar test; Urine glucose test; Glucosuria test; Glycosuria test ... After you provide a urine sample, it is tested right away. The health care provider uses a dipstick made with a color-sensitive pad. The ...

  1. Frequent or urgent urination

    MedlinePLUS

    Urgent urination; Urinary frequency or urgency ... Common causes of these symptoms are: Urinary tract infection (UTI) Enlarged prostate in middle-aged and older men Leakage of urine from the urethra (the tube that carries urine ...

  2. Urine bag as a modern day matula.

    PubMed

    Viswanathan, Stalin

    2013-01-01

    Since time immemorial uroscopic analysis has been a staple of diagnostic medicine. It received prominence during the middle ages with the introduction of the matula. Urinary discoloration is generally due to changes in urochrome concentration associated with the presence of other endogenous or exogenous pigments. Observation of urine colors has received less attention due to the advances made in urinalysis. A gamut of urine colors can be seen in urine bags of hospitalized patients that may give clue to presence of infections, medications, poisons, and hemolysis. Although worrisome to the patient, urine discoloration is mostly benign and resolves with removal of the offending agent. Twelve urine bags with discolored urine (and their predisposing causes) have been shown as examples. Urine colors (blue-green, yellow, orange, pink, red, brown, black, white, and purple) and their etiologies have been reviewed following a literature search in these databases: Pubmed, EBSCO, Science Direct, Proquest, Google Scholar, Springer, and Ovid. PMID:24959539

  3. Urine Bag as a Modern Day Matula

    PubMed Central

    Viswanathan, Stalin

    2013-01-01

    Since time immemorial uroscopic analysis has been a staple of diagnostic medicine. It received prominence during the middle ages with the introduction of the matula. Urinary discoloration is generally due to changes in urochrome concentration associated with the presence of other endogenous or exogenous pigments. Observation of urine colors has received less attention due to the advances made in urinalysis. A gamut of urine colors can be seen in urine bags of hospitalized patients that may give clue to presence of infections, medications, poisons, and hemolysis. Although worrisome to the patient, urine discoloration is mostly benign and resolves with removal of the offending agent. Twelve urine bags with discolored urine (and their predisposing causes) have been shown as examples. Urine colors (blue-green, yellow, orange, pink, red, brown, black, white, and purple) and their etiologies have been reviewed following a literature search in these databases: Pubmed, EBSCO, Science Direct, Proquest, Google Scholar, Springer, and Ovid. PMID:24959539

  4. Evaluation of Exposure to Arsenic in Residential Soil

    SciTech Connect

    Tsuji, Joyce S.; Van Kerkhove, Maria D.; Kaetzel, Rhonda; Scrafford, Carolyn; Mink, Pamela; Barraj, Leila M.; Crecelius, Eric A.; Goodman, Michael

    2005-12-01

    In response to concerns regarding arsenic in soil from a pesticide manufacturing plant, we conducted a biomonitoring study on children younger than 7 years of age, the age category of children most exposed to soil. Urine samples from 77 children (47% participation rate) were analyzed for total arsenic and arsenic species related to ingestion of inorganic arsenic. Older individuals also provided urine (n = 362) and toenail (n = 67) samples. Speciated urinary arsenic levels were similar between children (geometric mean, geometric SD, and range: 4.0, 2.2, and 0.89?17.7 ?g/L, respectively) and older participants (3.8, 1.9, 0.91?19.9 ?g/L) and consistent with unexposed populations. Toenail samples were < 1 mg/kg. Correlations between speciated urinary arsenic and arsenic in soil (r = 0.137, p = 0.39; n = 41) or house dust (r = 0.049, p = 0.73; n = 52) were not significant for children. Similarly, questionnaire responses indicating soil exposure were not associated with increased urinary arsenic levels. Relatively low soil arsenic exposure likely precluded quantification of arsenic exposure above background.

  5. Arsenic and cadmium exposure in children living near a smelter complex in San Luis Potosi, Mexico

    SciTech Connect

    Diaz-Barriga, F.; Santos, M.A.; Mejia, J.J.; Batres, L.; Yanez, L.; Carrizales, L.; Vera, E.; del Razo, L.M.; Cebrian, M.E. )

    1993-08-01

    The main purpose of this study was to assess environmental contamination by arsenic and cadmium in a smelter community (San Luis Potosi City, Mexico) and its possible contribution to an increased body burden of these elements in children. Arsenic and cadmium were found in the environment (air, soil, and household dust, and tap water) as well as in the urine and hair from children. The study was undertaken in three zones: Morales, an urban area close to the smelter complex; Graciano, an urban area 7 km away from the complex; and Mexquitic, a small rural town 25 km away. The environmental study showed that Morales is the most contaminated of the zones studied. The range of arsenic levels in soil (117-1396 ppm), dust (515-2625 ppm), and air (0.13-1.45 micrograms/m3) in the exposed area (Morales) was higher than those in the control areas. Cadmium concentrations were also higher in Morales. Estimates of the arsenic ingestion rate in Morales (1.0-19.8 micrograms/kg/day) were equal to or higher than the reference dose of 1 microgram/kg/day calculated by the Environmental Protection Agency. The range of arsenic levels in urine (69-594 micrograms/g creatinine) and hair (1.4-57.3 micrograms/g) and that of cadmium in hair (0.25-3.5 micrograms/g) indicated that environmental exposure has resulted in an increased body burden of these elements in children, suggesting that children living in Morales are at high risk of suffering adverse health effects if exposure continues.

  6. COMPARISON OF THE URINARY METABOLITES OF RATS, MICE, AND HUMANS AFTER ORAL ARSENIC EXPOSURE FOCUSING ON THIOARSENICALS

    EPA Science Inventory

    Urinary metabolites of arsenic are useful as biomarkers of exposure because ingested arsenic is excreted primarily in urine1. Complete urinary arsenic speciation can provide insight into possible metabolic pathways as well as potential exposure sources. The pattern of excreted me...

  7. Glutathione Modulates Recominant Rat Arsenic (+3 Oxidation State) Methyltransferase-Catalyzed Formation of Trimethylarsine Oxide and Trimethylarsine

    EPA Science Inventory

    Humans and other species enzymatically convert inorganic arsenic (iAs) into methylated metabolites. Although the major metabolites are mono- and dimethylated arsenicals, trimethylated arsenicals have been detected in urine following exposure to iAs. The AS3MT gene encodes an ars...

  8. The relationship between body iron stores and blood and urine cadmium concentrations in US never-smoking, non-pregnant women aged 20-49 years

    SciTech Connect

    Gallagher, Carolyn M.; Chen, John J.; Kovach, John S.

    2011-07-15

    Background: Cadmium is a ubiquitous environmental pollutant associated with increased risk of leading causes of mortality and morbidity in women, including breast cancer and osteoporosis. Iron deficiency increases absorption of dietary cadmium, rendering women, who tend to have lower iron stores than men, more susceptible to cadmium uptake. We used body iron, a measure that incorporates both serum ferritin and soluble transferrin receptor, as recommended by the World Health Organization, to evaluate the relationships between iron status and urine and blood cadmium. Methods: Serum ferritin, soluble transferrin receptor, urine and blood cadmium values in never-smoking, non-pregnant, non-lactating, non-menopausal women aged 20-49 years (n=599) were obtained from the 2003-2008 National Health and Nutrition Examination Surveys. Body iron was calculated from serum ferritin and soluble transferrin receptor, and iron deficiency defined as body iron <0 mg/kg. Robust linear regression was used to evaluate the relationships between body iron and blood and urine cadmium, adjusted for age, race, poverty, body mass index, and parity. Results: Per incremental (mg/kg) increase in body iron, urine cadmium decreased by 0.003 {mu}g/g creatinine and blood cadmium decreased by 0.014 {mu}g/L. Iron deficiency was associated with 0.044 {mu}g/g creatinine greater urine cadmium (95% CI=0.020, 0.069) and 0.162 {mu}g/L greater blood cadmium (95% CI=0.132, 0.193). Conclusions: Iron deficiency is a risk factor for increased blood and urine cadmium among never-smoking, pre-menopausal, non-pregnant US women, independent of age, race, poverty, body mass index and parity. Expanding programs to detect and correct iron deficiency among non-pregnant women merits consideration as a potential means to reduce the risk of cadmium associated diseases. - Highlights: {yields} Body iron was calculated from serum ferritin and soluble transferrin receptor. {yields} Body iron was inversely associated with blood and urine cadmium in US women. {yields} Inverse associations with blood cadmium were evident in all race/ethnic subsamples. {yields} Inverse associations with urine cadmium were evident in women of other/multi-race. {yields} Black women had lower mean body iron compared to white women.

  9. Arsenic, Anaerobes, and Astrobiology

    NASA Astrophysics Data System (ADS)

    Stolz, J. F.; Oremland, R. S.; Switzer Blum, J.; Hoeft, S. E.; Baesman, S. M.; Bennett, S.; Miller, L. G.; Kulp, T. R.; Saltikov, C.

    2013-12-01

    Arsenic is an element best known for its highly poisonous nature, so it is not something one would associate with being a well-spring for life. Yet discoveries made over the past two decades have delineated that not only are some microbes resistant to arsenic, but that this element's primary redox states can be exploited to conserve energy and support prokaryotic growth ('arsenotrophy') in the absence of oxygen. Hence, arsenite [As(III)] can serve as an electron donor for chemo- or photo-autotrophy while arsenate [As(V)] will serve as an electron acceptor for chemo-heterotrophs and chemo-autotrophs. The phylogenetic diversity of these microbes is broad, encompassing many individual species from diverse taxonomic groups in the Domain Bacteria, with fewer representatives in the Domain Archaea. Speculation with regard to the evolutionary origins of the key functional genes in anaerobic arsenic transformations (arrA and arxA) and aerobic oxidation (aioB) has led to a disputation as to which gene and function is the most ancient and whether arsenic metabolism extended back into the Archaean. Regardless of its origin, robust arsenic metabolism has been documented in extreme environments that are rich in their arsenic content, such as hot springs and especially hypersaline soda lakes associated with volcanic regions. Searles Lake, CA is an extreme, salt-saturated end member where vigorous arsenic metabolism occurs, but there is no detectable sulfate-reduction or methanogenesis. The latter processes are too weak bio-energetically to survive as compared with arsenotrophy, and are also highly sensitive to the abundance of borate ions present in these locales. These observations have implications with respect to the search for microbial life elsewhere in the Solar System where volcanic-like processes have been operative. Hence, because of the likelihood of encountering dense brines in the regolith of Mars (formed by evapo-concentration) or beneath the ice layers of Europa, Ganymede, Titan or Enceladus (formed by cryo-concentration), arsenotrophy could serve as a credible means of microbial energy conservation. Regrettably, the direct search for arsenic biomarkers is restricted because only one stable isotope exists (75As), which rules out the use of stable isotopic ratios in this regard. However, antimony oxyanions often co-occur with arsenic in the environment. Its two stable isotopes (123Sb and 121Sb) hold the potential to be exploited as a proxy isotopic biomarker for the fingerprint of microbial arsenotrophy. Whether such an approach is feasible needs to be investigated.

  10. A Phytoremediation Strategy for Arsenic

    SciTech Connect

    Meagher, Richard B.

    2005-06-01

    A Phytoremediation Strategy for Arsenic Progress Report May, 2005 Richard B. Meagher Principal Investigator Arsenic pollution affects the health of several hundred millions of people world wide, and an estimated 10 million Americans have unsafe levels of arsenic in their drinking water. However, few environmentally sound remedies for cleaning up arsenic contaminated soil and water have been proposed. Phytoremediation, the use of plants to extract and sequester environmental pollutants, is one new technology that offers an ecologically sound solution to a devastating problem. We propose that it is less disruptive to the environment to harvest and dispose of several thousand pounds per acre of contaminated aboveground plant material, than to excavate and dispose of 1 to 5 million pounds of contaminated soil per acre (assumes contamination runs 3 ft deep). Our objective is to develop a genetics-based phytoremediation strategy for arsenic removal that can be used in any plant species. This strategy requires the enhanced expression of several transgenes from diverse sources. Our working hypothesis is that organ-specific expression of several genes controlling the transport, electrochemical state, and binding of arsenic will result in the efficient extraction and hyperaccumulation of arsenic into aboveground plant tissues. This hypothesis is supported by theoretical arguments and strong preliminary data. We proposed six Specific Aims focused on testing and developing this arsenic phytoremediation strategy. During the first 18 months of the grant we made significant progress on five Specific Aims and began work on the sixth as summarized below. Specific Aim 1: Enhance plant arsenic resistance and greatly expand sinks for arsenite by expressing elevated levels of thiol-rich, arsenic-binding peptides. Hyperaccumulation of arsenic depends upon making plants that are both highly tolerant to arsenic and that have the capacity to store large amounts of arsenic aboveground. Phytochelatins bind diverse thiol-reactive elements like As(III) and are synthesized from amino acids in a three-step enzymatic pathway utilizing three enzymes: ECS = gamma-glutamylcysteine synthetase; GS = GSH synthetase; and PS = phytochelatin synthase. We cloned each of the genes that encode these enzymes and used at least two different plant promoters to express them in transgenic Arabidopsis. We have shown that all three confer significant resistance to arsenic and allow rapid growth on a concentration of arsenic (300 micromolar) that kills wild-type seeds and plants.

  11. NHEXAS PHASE I REGION 5 STUDY--METALS IN URINE ANALYTICAL RESULTS

    EPA Science Inventory

    This data set includes analytical results for measurements of metals in 600 urine samples. For some chemicals, particularly arsenic, urine provides the best information about the relationship between exposure and body burden. Two samples were collected from each participant on da...

  12. Sodium urine test

    MedlinePLUS

    Urinary 24 hours sodium; Urine Na+ ... your kidneys are able to maintain or remove sodium from the urine. It may be used to ... For adults, normal urine sodium values are generally 20 mEq/L in a random urine sample and 40 to 220 mEq/L per day (mEq/ ...

  13. Urine - abnormal color

    MedlinePLUS

    The usual color of urine is straw-yellow. Abnormally colored urine may be cloudy, dark, or blood-colored. ... Abnormal urine color may be caused by infection, disease, medicines, or food you eat. Cloudy or milky urine is a sign ...

  14. Arsenic: The Silent Killer

    SciTech Connect

    Foster, Andrea

    2006-02-28

    Andrea Foster uses x-rays to determine the forms of potentially toxic elements in environmentally-important matrices such as water, sediments, plants, and microorganisms. In this free public lecture, Foster will discuss her research on arsenic, which is called the silent killer because dissolved in water, it is colorless, odorless, and tasteless, yet consumption of relatively small doses of this element in its most toxic forms can cause rapid and violent death. Arsenic is a well-known poison, and has been used as such since ancient times. Less well known is the fact that much lower doses of the element, consumed over years, can lead to a variety of skin and internal cancers that can also be fatal. Currently, what has been called the largest mass poisoning in history is occurring in Bangladesh, where most people are by necessity drinking ground water that is contaminated with arsenic far in excess of the maximum amounts determined to be safe by the World Health Organization. This presentation will review the long and complicated history with arsenic, describe how x-rays have helped explain the high yet spatially variable arsenic concentrations in Bangladesh, discuss the ways in which land use in Bangladesh may be exacerbating the problem, and summarize the impact of this silent killer on drinking water systems worldwide.

  15. Isotope concentrations from 24-h urine and 3-h serum samples can be used to measure intestinal magnesium absorption in postmenopausal women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies suggest a link between magnesium status and osteoporosis. One barrier to more conclusive research on the potential relation is measuring intestinal magnesium absorption (MgA), which requires the use of stable isotopes and a >/= 6-d stool or 3-d urine collection. We evaluated alternative meth...

  16. Arsenic in Food

    MedlinePLUS

    ... Products Food Home Food Foodborne Illness & Contaminants Metals Arsenic Share Tweet Linkedin Pin it More sharing options ... Mercury and Lead in Foods Questions & Answers on Arsenic What is Arsenic? Arsenic is a chemical element ...

  17. Differences in trace metal concentrations (Co, Cu, Fe, Mn, Zn, Cd, And Ni) in whole blood, plasma, and urine of obese and nonobese children.

    PubMed

    B?a?ewicz, Anna; Klatka, Maria; Astel, Aleksander; Partyka, Ma?gorzata; Kocjan, Ryszard

    2013-11-01

    High-performance ion chromatography and inductively coupled plasma-mass spectrometry methods have been applied to estimate the content of Cd, Co, Cu, Fe, Mn, Zn, and Ni in whole blood, plasma, and urine of obese and nonobese children. The study was conducted on a group of 81 Polish children of age 6-17 years (37 males, 44 females). Obese children were defined as those with body mass index (BMI) >95th percentile in each age-gender-specific group. Statistical testing was done by the use of nonparametric tests (Kruskal-Wallis's and Mann-Whitney's U) and Spearman's correlation coefficient. Significant correlations appeared for control group in plasma (Mn-Cd, Ni-Co), urine (Cu-Co), and blood (Fe-Cu), while for obese patients in plasma (Cd-Mn, Ni-Cu, Ni-Zn) and urine (Fe-Cd, Co-Mn). Sex criteria did not influence correlations between metals' content in plasma and urine of obese patients. Metals' abundance was correlated in non-corresponding combinations of body fluids. Rare significant differences between content of metals according to sex and the type of body fluids were discovered: Zn in plasma from obese patients of both sexes, and Zn, Co, and Mn in blood, Mn in plasma from healthy subjects. Negative correlations between BMI and Zn in blood, Cu in plasma, and Fe in urine were discovered for girls (control group). Positive correlation between Co content in plasma and BMI was discovered for obese boys. The changes in metals' content in body fluids may be indicators of obesity. Content of zinc, copper, and cobalt should be monitored in children with elevated BMI to avoid deficiency problems. PMID:23975578

  18. In vivo and in vitro percutaneous absorption and skin decontamination of arsenic from water and soil.

    PubMed

    Wester, R C; Maibach, H I; Sedik, L; Melendres, J; Wade, M

    1993-04-01

    The objective was to determine the percutaneous absorption of arsenic-73 as H3ASO4 from water and soil. Soil (Yolo County 65-California-57-8) was passed through 10-, 20-, and 48-mesh sieves. Soil retained by 80 mesh was mixed with radioactive arsenic-73 at a low (trace) level of 0.0004 microgram/cm2 (micrograms arsenic per square centimeter skin surface area) and a higher dose of 0.6 micrograms/cm2. Water solutions of arsenic-73 at a low (trace) level of 0.000024 micrograms/cm2 and a higher dose of 2.1 micrograms/cm2 were prepared for comparative analysis. In vivo in Rhesus monkey a total of 80.1 +/- 6.7% (SD) intravenous arsenic-73 dose was recovered in urine over 7 days; the majority of the dose was excreted in the first day. With topical administration for 24 hr, absorption of the low dose from water was 6.4 +/- 3.9% and 2.0 +/- 1.2% from the high dose. In vitro percutaneous absorption of the low dose from water with human skin resulted in 24-hr receptor fluid (phosphate-buffered saline) accumulation of 0.93 +/- 1.1% dose and skin concentration (after washing) of 0.98 +/- 0.96%. Combining receptor fluid accumulation and skin concentration gave a combined amount of 1.9%, a value less than that in vivo (6.4%) in the Rhesus monkey. From soil, receptor fluid accumulation was 0.43 +/- 0.54% and skin concentration was 0.33 +/- 0.25%. Combining receptor fluid plus skin concentrations gave an absorption value of 0.8%, an amount less than that with in vivo absorption (4.5%) in the Rhesus. These absorption values did not match current EPA default assumptions.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8504907

  19. System for removal of arsenic from water

    DOEpatents

    Moore, Robert C.; Anderson, D. Richard

    2004-11-23

    Systems for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical systems for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A system for continuous removal of arsenic from water is provided. Also provided is a system for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

  20. Mass Flux Measurements of Arsenic in Groundwater (Battelle Conference)

    EPA Science Inventory

    Concentration trends of arsenic are typically used to evaluate the performance of remediation efforts designed to mitigate arsenic contamination in groundwater. A complementary approach would be to track changes in mass flux of the contaminant through the subsurface, for exampl...

  1. Urinary Trivalent Methylated Arsenic Species in a Population Chronically Exposed to Inorganic Arsenic

    PubMed Central

    Valenzuela, Olga L.; Borja-Aburto, Victor H.; Garcia-Vargas, Gonzalo G.; Cruz-Gonzalez, Martha B.; Garcia-Montalvo, Eliud A.; Calderon-Aranda, Emma S.; Del Razo, Luz M.

    2005-01-01

    Chronic exposure to inorganic arsenic (iAs) has been associated with increased risk of various forms of cancer and of noncancerous diseases. Metabolic conversions of iAs that yield highly toxic and genotoxic methylarsonite (MAsIII) and dimethylarsinite (DMAsIII) may play a significant role in determining the extent and character of toxic and cancer-promoting effects of iAs exposure. In this study we examined the relationship between urinary profiles of MAsIII and DMAsIII and skin lesion markers of iAs toxicity in individuals exposed to iAs in drinking water. The study subjects were recruited among the residents of an endemic region of central Mexico. Drinking-water reservoirs in this region are heavily contaminated with iAs. Previous studies carried out in the local populations have found an increased incidence of pathologies, primarily skin lesions, that are characteristic of arseniasis. The goal of this study was to investigate the urinary profiles for the trivalent and pentavalent As metabolites in both high- and low-iAs–exposed subjects. Notably, methylated trivalent arsenicals were detected in 98% of analyzed urine samples. On average, the major metabolite, DMAsIII, represented 49% of total urinary As, followed by DMAsV (23.7%), iAsV (8.6%), iAsIII (8.5%), MAsIII (7.4%), and MAsV (2.8%). More important, the average MAsIII concentration was significantly higher in the urine of exposed individuals with skin lesions compared with those who drank iAs-contaminated water but had no skin lesions. These data suggest that urinary levels of MAsIII, the most toxic species among identified metabolites of iAs, may serve as an indicator to identify individuals with increased susceptibility to toxic and cancer-promoting effects of arseniasis. PMID:15743710

  2. Determination of arsenic compounds in earthworms

    SciTech Connect

    Geiszinger, A.; Goessler, W.; Kuehnelt, D.; Kosmus, W.; Francesconi, K.

    1998-08-01

    Earthworms and soil collected from six sites in Styria, Austria, were investigated for total arsenic concentrations by ICP-MS and for arsenic compounds by HPLC-ICP-MS. Total arsenic concentrations ranged from 3.2 to 17.9 mg/kg dry weight in the worms and from 5.0 to 79.7 mg/kg dry weight in the soil samples. There was no strict correlation between the total arsenic concentrations in the worms and soil. Arsenic compounds were extracted from soil and a freeze-dried earthworm sample with a methanol/water mixture (9:1, v/v). The extracts were evaporated to dryness, redissolved in water, and chromatographed on an anion- and a cation-exchange column. Arsenic compounds were identified by comparison of the retention times with known standards. Only traces of arsenic acid could be extracted from the soil with the methanol/water (9:1, v/v) mixture. The major arsenic compounds detected in the extracts of the earthworms were arsenous acid and arsenic acid. Arsenobetaine was present as a minor constituent, and traces of dimethylarsinic acid were also detected. Two dimethylarsinoyltribosides were also identified in the extracts by co-chromatography with standard compounds. This is the first report of the presence of dimethylarsinoylribosides in a terrestrial organism. Two other minor arsenic species were present in the extract, but their retention times did not match with the retention times of the available standards.

  3. Arsenic chemistry in soils and sediments

    SciTech Connect

    Fendorf, S.; Nico, P.; Kocar, B.D.; Masue, Y.; Tufano, K.J.

    2009-10-15

    Arsenic is a naturally occurring trace element that poses a threat to human and ecosystem health, particularly when incorporated into food or water supplies. The greatest risk imposed by arsenic to human health results from contamination of drinking water, for which the World Health Organization recommends a maximum limit of 10 {micro}g L{sup -1}. Continued ingestion of drinking water having hazardous levels of arsenic can lead to arsenicosis and cancers of the bladder, skin, lungs and kidneys. Unfortunately, arsenic tainted drinking waters are a global threat and presently having a devastating impact on human health within Asia. Nearly 100 million people, for example, are presently consuming drinking water having arsenic concentrations exceeding the World Health Organization's recommended limit (Ahmed et al., 2006). Arsenic contamination of the environment often results from human activities such as mining or pesticide application, but recently natural sources of arsenic have demonstrated a devastating impact on water quality. Arsenic becomes problematic from a health perspective principally when it partitions into the aqueous rather than the solid phase. Dissolved concentrations, and the resulting mobility, of arsenic within soils and sediments are the combined result of biogeochemical processes linked to hydrologic factors. Processes favoring the partitioning of As into the aqueous phase, potentially leading to hazardous concentrations, vary extensively but can broadly be grouped into four categories: (1) ion displacement, (2) desorption (or limited sorption) at pH values > 8.5, (3) reduction of arsenate to arsenite, and (4) mineral dissolution, particularly reductive dissolution of Fe and Mn (hydr)oxides. Although various processes may liberate arsenic from solids, a transition from aerobic to anaerobic conditions, and commensurate arsenic and iron/manganese reduction, appears to be a dominant, but not exclusive, means by which high concentrations of dissolved arsenic are generated. Within the subsequent sections of this chapter, we explore and describe the biological and chemical processes that control the partitioning of arsenic between the solid and aqueous phase.

  4. Chronic arsenic toxicity in Bangladesh and West Bengal, India--a review and commentary.

    PubMed

    Rahman, M M; Chowdhury, U K; Mukherjee, S C; Mondal, B K; Paul, K; Lodh, D; Biswas, B K; Chanda, C R; Basu, G K; Saha, K C; Roy, S; Das, R; Palit, S K; Quamruzzaman, Q; Chakraborti, D

    2001-01-01

    Fifty districts of Bangladesh and 9 districts in West Bengal, India have arsenic levels in groundwater above the World Health Organization's maximum permissible limit of 50 microg/L. The area and population of 50 districts of Bangladesh and 9 districts in West Bengal are 118,849 km2 and 104.9 million and 38,865 km2 and 42.7 million, respectively. Our current data show arsenic levels above 50 microg/ L in 2000 villages, 178 police stations of 50 affected districts in Bangladesh and 2600 villages, 74 police stations/blocks of 9 affected districts in West Bengal. We have so far analyzed 34,000 and 101,934 hand tube-well water samples from Bangladesh and West Bengal respectively by FI-HG-AAS of which 56% and 52%, respectively, contained arsenic above 10 microg/L and 37% and 25% arsenic above 50 microg/L. In our preliminary study 18,000 persons in Bangladesh and 86,000 persons in West Bengal were clinically examined in arsenic-affected districts. Of them, 3695 (20.6% including 6.11% children) in Bangladesh and 8500 (9.8% including 1.7% children) in West Bengal had arsenical dermatological features. Symptoms of chronic arsenic toxicity developed insidiously after 6 months to 2 years or more of exposure. The time of onset depends on the concentration of arsenic in the drinking water, volume of intake, and the health and nutritional status of individuals. Major dermatological signs are diffuse or spotted melanosis, leucomelanosis, and keratosis. Chronic arsenicosis is a multisystem disorder. Apart from generalized weakness, appetite and weight loss, and anemia, our patients had symptoms relating to involvement of the lungs, gastrointestinal system, liver, spleen, genitourinary system, hemopoietic system, eyes, nervous system, and cardiovascular system. We found evidence of arsenic neuropathy in 37.3% (154 of 413 cases) in one group and 86.8% (33 of 38 cases) in another. Most of these cases had mild and predominantly sensory neuropathy. Central nervous system involvement was evident with and without neuropathy. Electrodiagnostic studies proved helpful for the diagnosis of neurological involvement. Advanced neglected cases with many years of exposure presented with cancer of skin and of the lung, liver, kidney, and bladder. The diagnosis of subclinical arsenicosis was made in 83%, 93%, and 95% of hair, nail and urine samples, respectively, in Bangladesh; and 57%, 83%, and 89% of hair, nail, and urine samples, respectively in West Bengal. Approximately 90% of children below 11 years of age living in the affected areas show hair and nail arsenic above the normal level. Children appear to have a higher body burden than adults despite fewer dermatological manifestations. Limited trials of 4 arsenic chelators in the treatment of chronic arsenic toxicity in West Bengal over the last 2 decades do not provide any clinical, biochemical, or histopathological benefit except for the accompanying preliminary report of clinical benefit with dimercaptopropanesulfonate therapy. Extensive efforts are needed in both countries to combat the arsenic crisis including control of tube-wells, watershed management with effective use of the prodigious supplies of surface water, traditional water management, public awareness programs, and education concerning the apparent benefits of optimal nutrition. PMID:11778666

  5. Nature and reactivity of layered double hydroxides formed by coprecipitating Mg, Al and As(V): Effect of arsenic concentration, pH, and aging.

    PubMed

    Sommella, Alessia; Caporale, Antonio G; Denecke, Melissa A; Mangold, Stefan; Pigna, Massimo; Santoro, Anna; Terzano, Roberto; Violante, Antonio

    2015-12-30

    Arsenic (As) co-precipitation is one of the major processes controlling As solubility in soils and waters. When As is co-precipitated with Al and Mg, the possible formation of layered double hydroxides (LDHs) and other nanocomposites can stabilize As in their structures thus making this toxic element less available. We investigated the nature and reactivity of Mg-Al-arsenate [As(V)] co-precipitated LDHs formed in solution affected by As concentration, pH, and aging. At the beginning of the co-precipitation process, poorly crystalline LDH and non-crystalline Al(Mg)-oxides form. Prolonged aging of the samples promotes crystallization of LDHs, evidenced by an increase in As K XANES intensities and XRD peak intensities. During aging Al- and/or Mg-oxides are likely transformed by dissolution/re-precipitation processes into more crystalline but still defective LDHs. Surface area, chemical composition, reactivity of the precipitates, and anion exchange properties of As(V) in the co-precipitates are influenced by pH, aging, and As concentration. This study demonstrates that (i) As(V) retards or inhibits the formation and transformation of LDHs and (ii) more As(V) is removed from solution if co-precipitated with Mg and Al than by sorption onto well crystallized LDHs. PMID:26241870

  6. Ultratrace determination of arsenic in water samples by electrothermal atomic absorption spectrometry after pre-concentration with Mg-Al-Fe ternary layered double hydroxide nano-sorbent.

    PubMed

    Abdolmohammad-Zadeh, Hossein; Jouyban, Abolghasem; Amini, Roghayeh

    2013-11-15

    A selective solid phase extraction method, based on nano-structured Mg-Al-Fe(NO3(-)) ternary layered double hydroxide as a sorbent, is developed for the pre-concentration of ultra-trace levels of arsenic (As) prior to determination by electrothermal atomic absorption spectrometry. It is found that both As(III) and As(V) could be quantitatively retained on the sorbent within a wide pH range of 4-12. Accordingly, the presented method is applied to determination of total inorganic As in aqueous solutions. Maximum analytical signal of As is achieved when the pyrolysis and atomization temperatures are close to 900 °C and 2300 °C, respectively. Several variables affecting the extraction efficiency including pH, sample flow rate, amount of nano-sorbent, elution conditions and sample volume are optimized. Under the optimized conditions, the limit of detection (3Sb/m) and the relative standard deviation are 4.6 pg mL(-1) and 3.9%, respectively. The calibration graph is linear in the range of 15.0-650 pg mL(-1) with a correlation coefficient of 0.9979, sorption capacity and pre-concentration factor are 8.68 mg g(-1) and 300, respectively. The developed method is validated by the analysis of a standard reference material (SRM 1643e) and is successfully applied to the determination of ultra-trace amounts of As in different water samples. PMID:24148451

  7. Arsenic speciation, and arsenic and phosphate distribution in arsenic hyperaccumulator Pteris vittata L. and

    E-print Network

    Ma, Lena

    Arsenic speciation, and arsenic and phosphate distribution in arsenic hyperaccumulator Pteris examined the roles of arsenic translocation and reduction, and P distribution in arsenic detoxification of Pteris vittata L. (Chinese Brake fern), an arsenic hyperaccumulator and Pteris ensiformis L. (Slender

  8. Soil and Water Science Department University of Florida Environmental impacts of lead pellets at shooting ranges and arsenical herbicides

    E-print Network

    Ma, Lena

    at shooting ranges and arsenical herbicides on golf courses in Florida Ma, L. Q., W. Harris and Jerry Sartain of arsenical herbicides on golf courses in Florida Determine arsenic concentrations in soil, green and water

  9. Nephrotoxic contaminants in drinking water and urine, and chronic kidney disease in rural Sri Lanka.

    PubMed

    Rango, Tewodros; Jeuland, Marc; Manthrithilake, Herath; McCornick, Peter

    2015-06-15

    Chronic kidney disease of unknown ("u") cause (CKDu) is a growing public health concern in Sri Lanka. Prior research has hypothesized a link with drinking water quality, but rigorous studies are lacking. This study assesses the relationship between nephrotoxic elements (namely arsenic (As), cadmium (Cd), lead (Pb), and uranium (U)) in drinking water, and urine samples collected from individuals with and/or without CKDu in endemic areas, and from individuals without CKDu in nonendemic areas. All water samples - from a variety of source types (i.e. shallow and deep wells, springs, piped and surface water) - contained extremely low concentrations of nephrotoxic elements, and all were well below drinking water guideline values. Concentrations in individual urine samples were higher than, and uncorrelated with, those measured in drinking water, suggesting potential exposure from other sources. Mean urinary concentrations of these elements for individuals with clinically diagnosed CKDu were consistently lower than individuals without CKDu both in endemic and nonendemic areas. This likely stems from the inability of the kidney to excrete these toxic elements via urine in CKDu patients. Urinary concentrations of individuals were also found to be within the range of reference values measured in urine of healthy unexposed individuals from international biomonitoring studies, though these reference levels may not be safe for the Sri Lankan population. The results suggest that CKDu cannot be clearly linked with the presence of these contaminants in drinking water. There remains a need to investigate potential interactions of low doses of these elements (particularly Cd and As) with other risk factors that appear linked to CKDu, prior to developing public health strategies to address this illness. PMID:25782025

  10. Chronic arsenic poisoning from burning high-arsenic-containing coal in Guizhou, China.

    PubMed Central

    Liu, Jie; Zheng, Baoshan; Aposhian, H Vasken; Zhou, Yunshu; Chen, Ming-Liang; Zhang, Aihua; Waalkes, Michael P

    2002-01-01

    Arsenic is an environmental hazard and the reduction of drinking water arsenic levels is under consideration. People are exposed to arsenic not only through drinking water but also through arsenic-contaminated air and food. Here we report the health effects of arsenic exposure from burning high arsenic-containing coal in Guizhou, China. Coal in this region has undergone mineralization and thus produces high concentrations of arsenic. Coal is burned inside the home in open pits for daily cooking and crop drying, producing a high concentration of arsenic in indoor air. Arsenic in the air coats and permeates food being dried producing high concentrations in food; however, arsenic concentrations in the drinking water are in the normal range. The estimated sources of total arsenic exposure in this area are from arsenic-contaminated food (50-80%), air (10-20%), water (1-5%), and direct contact in coal-mining workers (1%). At least 3,000 patients with arsenic poisoning were found in the Southwest Prefecture of Guizhou, and approximately 200,000 people are at risk for such overexposures. Skin lesions are common, including keratosis of the hands and feet, pigmentation on the trunk, skin ulceration, and skin cancers. Toxicities to internal organs, including lung dysfunction, neuropathy, and nephrotoxicity, are clinically evident. The prevalence of hepatomegaly was 20%, and cirrhosis, ascites, and liver cancer are the most serious outcomes of arsenic poisoning. The Chinese government and international organizations are attempting to improve the house conditions and the coal source, and thereby protect human health in this area. PMID:11836136

  11. Validation of Bayesian kriging of arsenic, chromium, lead and mercury surface soil concentrations based on internode sampling

    PubMed Central

    Aelion, C.M.; Davis, H.T.; Liu, Y.; Lawson, A.B.; McDermott, S.

    2009-01-01

    Bayesian kriging is a useful tool for estimating spatial distributions of metals; however, estimates are generally only verified statistically. In this study surface soil samples were collected on a uniform grid and analyzed for As, Cr, Pb, and Hg. The data were interpolated at individual locations by Bayesian kriging. Estimates were validated using a leave-one-out cross validation (LOOCV) statistical method which compared the measured and LOOCV predicted values. Validation also was carried out using additional field sampling of soil metal concentrations at points between original sampling locations, which were compared to kriging prediction distributions. LOOCV results suggest that Bayesian kriging was a good predictor of metal concentrations. When measured internode metal concentrations and estimated kriged values were compared, the measured values were located within the 5th – 95th percentile prediction distributions in over half of the internode locations. Estimated and measured internode concentrations were most similar for As and Pb. Kriged estimates did not compare as well to measured values for concentrations below the analytical minimum detection limit, or for internode samples that were very close to the original sampling node. Despite inherent variability in metal concentrations in soils, the kriged estimates were validated statistically and by in situ measurement. PMID:19603658

  12. Validation of Bayesian kriging of arsenic, chromium, lead, and mercury surface soil concentrations based on internode sampling.

    PubMed

    Aelion, C M; Davis, H T; Liu, Y; Lawson, A B; McDermott, S

    2009-06-15

    Bayesian kriging is a useful tool for estimating spatial distributions of metals; however, estimates are generally only verified statistically. In this study surface soil samples were collected on a uniform grid and analyzed for As, Cr, Pb, and Hg. The data were interpolated at individual locations by Bayesian kriging. Estimates were validated using a leave-one-out cross validation (LOOCV) statistical method which compared the measured and LOOCV predicted values. Validation also was carried out using additional field sampling of soil metal concentrations at points between original sampling locations, which were compared to kriging prediction distributions. LOOCV results suggest that Bayesian kriging was a good predictor of metal concentrations. When measured internode metal concentrations and estimated kriged values were compared, the measured values were located within the 5th-95th percentile prediction distributions in over half of the internode locations. Estimated and measured internode concentrations were most similar for As and Pb. Kriged estimates did not compare as well to measured values for concentrations below the analytical minimum detection limit, or for internode samples that were very close to the original sampling node. Despite inherent variability in, metal concentrations in soils, the kriged estimates were validated statistically and by in situ measurement. PMID:19603658

  13. Associations between the polymorphisms of GSTT1, GSTM1 and methylation of arsenic in the residents exposed to low-level arsenic in drinking water in China.

    PubMed

    Yang, Jinyou; Yan, Li; Zhang, Min; Wang, Yijun; Wang, Chun; Xiang, Quanyong

    2015-07-01

    We carry out a study to analyze the relation between polymorphisms of GSTT1, GSTM1 and the capacity of arsenic methylation in a human population exposed to arsenic in drinking water. 230 randomly chose subjects were divided into four subgroups based on the arsenic levels, and then the associations between the polymorphisms of GSTT1, GSTM1 and methylation of arsenic were investigated. The levels of inorganic arsenic (iAs), monomethylated arsenic (MMA), dimethylated arsenic (DMA) and total arsenic (TAs) in urine were higher in males than that in females. Moreover, the levels of iAs and TAs in urine in the subjects with genotype of GSTM1(+) were significantly higher than those with GSTM1(-); the level of DMA in the subjects with GSTT1(+) and GSTM1(+) were higher than those with GSTT1(-) and GSTM1(-), although it is not statistically significant. Secondary methylation index (SMI) was significantly higher in the subjects with genotype of GSTT1(+) than those with GSTT1(-). The levels of TAs in urine, together with the genotypes of GSTT1/GSTM1 were associated with the levels of MMA and DMA. Our results suggested that the polymorphisms of GSTT1 and GSTM1 were associated with the methylation of arsenic, especially the levels of DMA and SMI. PMID:25876999

  14. Arsenic in hair and nails of individuals exposed to arsenic-rich groundwaters in Kandal province, Cambodia.

    PubMed

    Gault, Andrew G; Rowland, Helen A L; Charnock, John M; Wogelius, Roy A; Gomez-Morilla, Inma; Vong, Sovathana; Leng, Moniphea; Samreth, Sopheap; Sampson, Mickey L; Polya, David A

    2008-04-01

    The health implications of the consumption of high arsenic groundwater in Bangladesh and West Bengal are well-documented, however, little is known about the level of arsenic exposure elsewhere in Southeast Asia, where widespread exploitation of groundwater resources is less well established. We measured the arsenic concentrations of nail and hair samples collected from residents of Kandal province, Cambodia, an area recently identified to host arsenic-rich groundwaters, in order to evaluate the extent of arsenic exposure. Nail and hair arsenic concentrations ranged from 0.20 to 6.50 microg g(-1) (n=70) and 0.10 to 7.95 microg g(-1) (n=40), respectively, in many cases exceeding typical baseline levels. The arsenic content of the groundwater used for drinking water purposes (0.21-943 microg L(-1) (n=31)) was positively correlated with both nail (r=0.74, p<0.0001) and hair (r=0.86, p<0.0001) arsenic concentrations. In addition, the nail and hair samples collected from inhabitants using groundwater that exceeded the Cambodian drinking water legal limit of 50 microg L(-1) arsenic contained significantly more arsenic than those of individuals using groundwater containing <50 microg L(-1) arsenic. X-ray absorption near edge structure (XANES) spectroscopy suggested that sulfur-coordinated arsenic was the dominant species in the bulk of the samples analysed, with additional varying degrees of As(III)-O character. Tentative linear least squares fitting of the XANES data pointed towards differences in the pattern of arsenic speciation between the nail and hair samples analysed, however, mismatches in sample and standard absorption peak intensity prevented us from unambiguously determining the arsenic species distribution. The good correlation with the groundwater arsenic concentration, allied with the relative ease of sampling such tissues, indicate that the arsenic content of hair and nail samples may be used as an effective biomarker of arsenic intake in this relatively recently exposed population. PMID:18234288

  15. Urination - excessive amount

    MedlinePLUS

    ... Blood sugar (glucose) test Blood urea nitrogen test Creatinine (serum) Electrolytes (serum) Fluid deprivation test (limiting fluids to see if the urine volume decreases) Osmolality blood test Urinalysis Urine osmolality ...

  16. Urine drug screen

    MedlinePLUS

    Drug screen -- urine ... detect the presence of illegal and some prescription drugs in your urine. Their presence indicates that you recently used these drugs. Some drugs may remain in your system for ...

  17. Effect of Arsenic on Growth, Arsenic Uptake, Distribution of Nutrient Elements and Thiols in Seedlings of Wrightia arborea (Dennst.) Mabb.

    PubMed

    Kumar, Dharmendra; Singh, Vijay Pratap; Tripathi, Durgesh Kumar; Prasad, Sheo Mohan; Chauhan, Devendra Kumar

    2015-01-01

    Hydroponic experiments were conducted to investigate the effect of arsenic on seedlings of Wrightia arborea and Holoptelea integrifolia. Results revealed that W. arborea could tolerate much higher arsenic concentration than H. integrifolia. Therefore, further investigations were focused on W. arborea using higher arsenic concentrations (0.2-2.0 mM). Seedlings of W. arborea accumulated about 312-2147 and 1048-5688 mg/kg dry weight of arsenic in shoots and roots, respectively, following treatments with 0.2-1.5 mM of arsenic without exhibiting arsenic toxicity signs. However, arsenic at 2.0 mM caused decline in growth. Macronutrients content such as Ca, S (except at 2.0 mM), and K (only in root) increased while Mg, P, and K (shoot) decreased by arsenic treatments. However, the content of micronutrients was enhanced under arsenic treatments. Non-protein thiols (NP-SH) showed positive correlations with arsenic doses up to 0.2-1.5 mM but at 2.0 mM there was a decline in NP-SH thus suggesting important role of NP-SH in imparting arsenic tolerance. This study demonstrated that W. arborea that could tolerate arsenic concentrations up to 0.2-1.5 mM may be useful in arsenic phytoremediation programs. PMID:25237723

  18. Broiler Litter Management Practices: Effects on Phosphorus, Copper, Zinc, Manganese and Arsenic Concentrations in Maryland Coastal Plain Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to assess the long-term effects of broiler litter applications on soil P and metal (Cu, Zn, Mn and As) concentrations in Chesapeake Bay watershed Costal Plain soils. Soil samples were collected from 10 farms having over 40 years of broiler production and from wood...

  19. Improvement in quantification of urine components: Alternate technique

    E-print Network

    Kumar, S

    2014-01-01

    Urea and creatinine are two important diagnostic components of urine. The study of creatinine in liquid phase is difficult due to its feeble concentration in urine. To bring down the detection limit, DCD Raman spectroscopy was employed. Raman studies in association with partial least square algorithm of artificial urine samples gave improved results in dried phase as compared to liquid phase. These findings were further validated on real urine samples.

  20. Urine sample (image)

    MedlinePLUS

    A "clean-catch" urine sample is performed by collecting the sample of urine in midstream. Men or boys should wipe clean the head ... water and rinse well. A small amount of urine should initially fall into the toilet bowl before ...

  1. Getting a Urine Test

    MedlinePLUS Videos and Cool Tools

    ... the Body Works Main Page Getting a Urine Test (Video) KidsHealth > Kids > Movies & More > Movies > Getting a Urine Test (Video) Print A A A Text Size It ... cup, but docs learn a lot from urine tests. Obviously, this test doesn't hurt. And if ...

  2. Urine Protein and Urine Protein to Creatinine Ratio

    MedlinePLUS

    ... Visit Global Sites Search Help? Urine Protein and Urine Protein to Creatinine Ratio Share this page: Was this page helpful? ... Urine Protein; Urine Total Protein; Urine Protein to Creatinine Ratio; UPCR Formal name: Urine Protein Related tests: Urinalysis ; Albumin ; Microalbumin ; Protein Electrophoresis ; ...

  3. 24-hour urine copper test

    MedlinePLUS

    The 24-hour urine copper test measures the amount of copper in a urine sample. ... A 24-hour urine sample is needed. On day 1, urinate into the toilet when you get up in the morning. Afterwards, collect ...

  4. Enhanced Arsenic Accumulation by Engineered Yeast Cells Expressing

    E-print Network

    Chen, Wilfred

    ARTICLE Enhanced Arsenic Accumulation by Engineered Yeast Cells Expressing Arabidopsis thaliana occurring peptides with high-binding capabilities for a wide range of heavy metals including arsenic (As As accumulation as compared to the control strain under a wide range of As concentrations. For the high-arsenic

  5. ORIGINAL PAPER Fractionation and speciation of arsenic in fresh

    E-print Network

    Hu, Qinhong "Max"

    ORIGINAL PAPER Fractionation and speciation of arsenic in fresh and combusted coal wastes from, the content and speciation of arsenic in coal waste and gas condensates from coal waste fires were-ICP-MS) was used to determine the concentrations of four major arsenic species [As(III), As(V), monomethylarsonic

  6. TRACE ANALYSIS OF ARSENIC BY COLORIMETRY, ATOMIC ABSORPTION, AND POLAROGRAPHY

    EPA Science Inventory

    A differential pulse polarographic method was developed for determining total arsenic concentrations in water samples from ash ponds at steam-electric generating plants. After digestion of the sample and isolation of arsenic by solvent extraction, the peak current for arsenic is ...

  7. Dietary administration of sodium arsenite to rats: Relations between dose and urinary concentrations of methylated and thio-metabolites and effects on the rat urinary bladder epithelium

    SciTech Connect

    Suzuki, Shugo; Arnold, Lora L.; Pennington, Karen L.; Chen, Baowei; Naranmandura, Hua; Le, X. Chris; Cohen, Samuel M.

    2010-04-15

    Based on epidemiological data, chronic exposure to high levels of inorganic arsenic in drinking water is carcinogenic to humans, inducing skin, urinary bladder and lung tumors. In vivo, inorganic arsenic is metabolized to organic methylated arsenicals including the highly toxic dimethylarsinous acid (DMA{sup III}) and monomethylarsonous acid (MMA{sup III}). Short-term treatment of rats with 100 mug/g trivalent arsenic (As{sup III}) as sodium arsenite in the diet or in drinking water induced cytotoxicity and necrosis of the urothelial superficial layer, with increased cell proliferation and hyperplasia. The objectives of this study were to determine if these arsenic-induced urothelial effects are dose responsive, the dose of arsenic at which urothelial effects are not detected, and the urinary concentrations of the arsenical metabolites. We treated female F344 rats for 5 weeks with sodium arsenite at dietary doses of 0, 1, 10, 25, 50, and 100 ppm. Cytotoxicity, cell proliferation and hyperplasia of urothelial superficial cells were increased in a dose-responsive manner, with maximum effects found at 50 ppm As{sup III}. There were no effects at 1 ppm As{sup III}. The main urinary arsenical in As{sup III}-treated rats was the organic arsenical dimethylarsinic acid (DMA{sup V}). The thio-metabolites dimethylmonothioarsinic acid (DMMTA{sup V}) and monomethylmonothioarsinic acid (MMMTA{sup V}) were also found in the urine of As{sup III}-treated rats. The LC{sub 50} concentrations of DMMTA{sup V} for rat and human urothelial cells in vitro were similar to trivalent oxygen-containing arsenicals. These data suggest that dietary As{sup III}-induced urothelial cytotoxicity and proliferation are dose responsive, and the urothelial effects have a threshold corresponding to the urinary excretion of measurable reactive metabolites.

  8. Groundwater arsenic contamination in Bangladesh-21 Years of research.

    PubMed

    Chakraborti, Dipankar; Rahman, Mohammad Mahmudur; Mukherjee, Amitava; Alauddin, Mohammad; Hassan, Manzurul; Dutta, Rathindra Nath; Pati, Shymapada; Mukherjee, Subhash Chandra; Roy, Shibtosh; Quamruzzman, Quazi; Rahman, Mahmuder; Morshed, Salim; Islam, Tanzima; Sorif, Shaharir; Selim, Md; Islam, Md Razaul; Hossain, Md Monower

    2015-07-01

    Department of Public Health Engineering (DPHE), Bangladesh first identified their groundwater arsenic contamination in 1993. But before the international arsenic conference in Dhaka in February 1998, the problem was not widely accepted. Even in the international arsenic conference in West-Bengal, India in February, 1995, representatives of international agencies in Bangladesh and Bangladesh government attended the conference but they denied the groundwater arsenic contamination in Bangladesh. School of Environmental Studies (SOES), Jadavpur University, Kolkata, India first identified arsenic patient in Bangladesh in 1992 and informed WHO, UNICEF of Bangladesh and Govt. of Bangladesh from April 1994 to August 1995. British Geological Survey (BGS) dug hand tube-wells in Bangladesh in 1980s and early 1990s but they did not test the water for arsenic. Again BGS came back to Bangladesh in 1992 to assess the quality of the water of the tube-wells they installed but they still did not test for arsenic when groundwater arsenic contamination and its health effects in West Bengal in Bengal delta was already published in WHO Bulletin in 1988. From December 1996, SOES in collaboration with Dhaka Community Hospital (DCH), Bangladesh started analyzing hand tube-wells for arsenic from all 64 districts in four geomorphologic regions of Bangladesh. So far over 54,000 tube-well water samples had been analyzed by flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS). From SOES water analysis data at present we could assess status of arsenic groundwater contamination in four geo-morphological regions of Bangladesh and location of possible arsenic safe groundwater. SOES and DCH also made some preliminary work with their medical team to identify patients suffering from arsenic related diseases. SOES further analyzed few thousands biological samples (hair, nail, urine and skin scales) and foodstuffs for arsenic to know arsenic body burden and people sub-clinically affected. SOES and DCH made a few follow-up studies in some districts to know their overall situations after 9 to 18 years of their first exposure. The overall conclusion from these follow-up studies is (a) villagers are now more aware about the danger of drinking arsenic contaminated water (b) villagers are currently drinking less arsenic contaminated water (c) many villagers in affected village died of cancer (d) arsenic contaminated water is in use for agricultural irrigation and arsenic exposure from food chain could be future danger. Since at present more information is coming about health effects from low arsenic exposure, Bangladesh Government should immediately focus on their huge surface water management and reduce their permissible limit of arsenic in drinking water. PMID:25660323

  9. XAS Studies of Arsenic in the Environment

    SciTech Connect

    Charnock, J. M.; Polya, D. A.; Gault, A. G.; Morgan, A. J.

    2007-02-02

    Arsenic is present in low concentrations in much of the Earth's crust and changes in its speciation are vital to understanding its transport and toxicity in the environment. We have used X-ray absorption spectroscopy to investigate the coordination sites of arsenic in a wide variety of samples, including soil and earthworm tissues from arsenic-contaminated land, and human hair and nail samples from people exposed to arsenic in Cambodia. Our results confirm the effectiveness of using X-ray absorption near edge structure (XANES) and X-ray absorption fine structure (EXAFS) spectroscopy to determine speciation changes in environmental samples.

  10. Toenails as a biomarker of inorganic arsenic intake from drinking water and foods.

    PubMed

    Slotnick, Melissa J; Meliker, Jaymie R; AvRuskin, Gillian A; Ghosh, Debashis; Nriagu, Jerome O

    2007-01-15

    Toenails were used recently in epidemiological and environmental health studies as a means of assessing exposure to arsenic from drinking water. While positive correlations between toenail and drinking-water arsenic concentrations were reported in the literature, a significant percentage of the variation in toenail arsenic concentration remains unexplained by drinking-water concentration alone. Here, the influence of water consumption at home and work, food intake, and drinking-water concentration on toenail arsenic concentration was investigated using data from a case-control study being conducted in 11 counties of Michigan. The results from 440 controls are presented. Log-transformed drinking-water arsenic concentration at home was a significant predictor (p < .05) of toenail arsenic concentration (R2 = .32). When arsenic intake from consumption of tap water and beverages made from tap water (microg/L arsenic x L/d = microg/d) was used as a predictor variable, the correlation was markedly increased for individuals with >1 microg/L arsenic (R2 = .48). Increased intake of seafood and intake of arsenic from water at work were independently and significantly associated with increased toenail arsenic concentration. However, when added to intake at home, work drinking-water exposure and food intake had little influence on the overall correlation. These results suggest that arsenic exposure from drinking-water consumption is an important determinant of toenail arsenic concentration, and therefore should be considered when validating and applying toenails as a biomarker of arsenic exposure. PMID:17365576

  11. A Population-based Case–Control Study of Urinary Arsenic Species and Squamous Cell Carcinoma in New Hampshire, USA

    PubMed Central

    Li, Zhigang; Perry, Ann E.; Spencer, Steven K.; Gandolfi, A. Jay; Karagas, Margaret R.

    2013-01-01

    Background: Chronic high arsenic exposure is associated with squamous cell carcinoma (SCC) of the skin, and inorganic arsenic (iAs) metabolites may play an important role in this association. However, little is known about the carcinogenicity of arsenic at levels commonly observed in the United States. Objective: We estimated associations between total urinary arsenic and arsenic species and SCC in a U.S. population. Methods: We conducted a population-based case–control SCC study (470 cases, 447 controls) in a U.S. region with moderate arsenic exposure through private well water and diet. We measured urinary iAs, monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA), and summed these arsenic species (?As). Because seafood contains arsenolipids and arsenosugars that metabolize into DMA through alternate pathways, participants who reported seafood consumption within 2 days before urine collection were excluded from the analyses. Results: In adjusted logistic regression analyses (323 cases, 319 controls), the SCC odds ratio (OR) was 1.37 for each ln-transformed microgram per liter increase in ln-transformed ?As concentration [ln(?As)] (95% CI: 1.04, 1.80). Urinary ln(MMA) and ln(DMA) also were positively associated with SCC (OR = 1.34; 95% CI: 1.04, 1.71 and OR = 1.34; 95% CI: 1.03, 1.74, respectively). A similar trend was observed for ln(iAs) (OR = 1.20; 95% CI: 0.97, 1.49). Percent iAs, MMA, and DMA were not associated with SCC. Conclusions: These results suggest that arsenic exposure at levels common in the United States relates to SCC and that arsenic metabolism ability does not modify the association. Citation: Gilbert-Diamond D, Li Z, Perry AE, Spencer SK, Gandolfi AJ, Karagas MR. 2013. A population-based case–control study of urinary arsenic species and squamous cell carcinoma in New Hampshire, USA. Environ Health Perspect 121:1154–1160;?http://dx.doi.org/10.1289/ehp.1206178 PMID:23872349

  12. Arsenic in Drinking Water and Skin Lesions: Dose-Response Data from West Bengal, India

    E-print Network

    California at Berkeley, University of

    Arsenic in Drinking Water and Skin Lesions: Dose-Response Data from West Bengal, India Reina Haque with naturally occurring arsenic. The key objective of this nested case-control study was to characterize the dose-re- sponse relation between low arsenic concentrations in drinking water and arsenic-induced skin

  13. Arsenic speciation driving risk based corrective action.

    PubMed

    Marlborough, Sidney J; Wilson, Vincent L

    2015-07-01

    The toxicity of arsenic depends on a number of factors including its valence state. The more potent trivalent arsenic [arsenite (As3+)] inhibits a large number of cellular enzymatic pathways involved in energy production, while the less toxic pentavalent arsenic [arsenate (As5+)] interferes with phosphate metabolism, phosphoproteins and ATP formation (uncoupling of oxidative phosphorylation). Environmental risk based corrective action for arsenic contamination utilizes data derived from arsenite studies of toxicity to be conservative. However, depending upon environmental conditions, the arsenate species may predominate substantially, especially in well aerated surface soils. Analyses of soil concentrations of arsenic species at two sites in northeastern Texas historically contaminated with arsenical pesticides yielded mean arsenate concentrations above 90% of total arsenic with the majority of the remainder being the trivalent arsenite species. Ecological risk assessments based on the concentration of the trivalent arsenite species will lead to restrictive remediation requirements that do not adequately reflect the level of risk associated with the predominate species of arsenic found in the soil. The greater concentration of the pentavalent arsenate species in soils would be the more appropriate species to monitor remediation at sites that contain high arsenate to arsenite ratios. PMID:25817762

  14. Arsenic Species in the Ground Water

    EPA Science Inventory

    Abstract Arsenic concentrations in ground varies widely and regionally across the United States and exists as oxyanions having two oxidation states: As(+III) and As(+V). As(V) is effectively removed by most arsenic treatment processes whereas uncharged As(III) is poorly removed...

  15. Arsenic and lead concentrations in the Pond Creek and Fire Clay coal beds, eastern Kentucky coal field

    USGS Publications Warehouse

    Hower, J.C.; Robertson, J.D.; Wong, A.S.; Eble, C.F.; Ruppert, L.F.

    1997-01-01

    The Middle Pennsylvanian Breathitt Formation (Westphalian B) Pond Creek and Fire Clay coal beds are the 2 largest producing coal beds in eastern Kentucky. Single channel samples from 22 localities in the Pond Creek coal bed were obtained from active coal mines in Pike and Martin Countries, Kentucky, and a total of 18 Fire Clay coal bed channel samples were collected from localities in the central portion of the coal field. The overall objective of this study was to investigate the concentration and distribution of potentially hazardous elements in the Fire Clay and Pond Creek coal beds, with particular emphasis on As and Pb, 2 elements that are included in the 1990 Clean Air Act Amendments as potential air toxics. The 2 coals are discussed individually as the depositional histories are distinct, the Fire Clay coal bed having more sites where relatively high-S lithologies are encountered. In an effort to characterize these coals, 40 whole channel samples, excluding 1-cm partings, were analyzed for major, minor and trace elements by X-ray fluorescence and proton-induced X-ray emission spectroscopy. Previously analyzed samples were added to provide additional geographic coverage and lithotype samples from one site were analyzed in order to provide detail of vertical elemental trends. The As and Pb levels in the Fire Clay coal bed tend to be higher than in the Pond Creek coal bed. One whole channel sample of the Fire Clay coal bed contains 1156 ppm As (ash basis), with a single lithotype containing 4000 ppm As (ash basis). Most of the As and Pb appears to be associated with pyrite, which potentially can be removed in beneficiation (particularly coarser pyrite). Disseminated finer pyrite may not be completely removable by cleaning. In the examination of pyrite conducted in this study, it does not appear that significant concentration of As or Pb occurs in the finer pyrite forms. The biggest potential problem of As- or Pb-enriched pyrite is, therefore, one of refuse disposal.

  16. Arsenic species and chemistry in groundwater of southeast Michigan

    USGS Publications Warehouse

    Kim, M.-J.; Nriagu, J.; Haack, S.

    2002-01-01

    Groundwater samples, taken from 73 wells in 10 counties of southeast Michigan in 1997 had arsenic concentrations in the range of 0.5 to 278 ??g/l, the average being 29 ??g/l. About 12% of these wells had arsenic concentrations that exceeded the current USEPA's maximum contaminant level of 50 ??g/l. Most (53-98%) of the arsenic detected was arsenite [As(III)] and other observations supported the arsenic species distribution (low redox potential and DO). In shallow groundwater (15 m), the concentration of arsenic is possibly controlled by reductive dissolution of arsenic-rich iron hydroxide/oxyhydroxide and dissolution of arsenic sulfide minerals. ?? 2002 Elsevier Science Ltd. All rights reserved.

  17. Arsenic, inorganic

    Integrated Risk Information System (IRIS)

    Arsenic , inorganic ; CASRN 7440 - 38 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  18. Maternal exposure to metals—Concentrations and predictors of exposure

    SciTech Connect

    Callan, A.C.; Hinwood, A.L.; Ramalingam, M.; Boyce, M.; Heyworth, J.; McCafferty, P.; Odland, J.Ø.

    2013-10-15

    A variety of metals are important for biological function but have also been shown to impact health at elevated concentrations, whereas others have no known biological function. Pregnant women are a vulnerable population and measures to reduce exposure in this group are important. We undertook a study of maternal exposure to the metals, aluminium, arsenic, copper, cobalt, chromium, lithium, manganese, nickel, selenium, tin, uranium and zinc in 173 participants across Western Australia. Each participant provided a whole blood and urine sample, as well as drinking water, residential soil and dust samples and completed a questionnaire. In general the concentrations of metals in all samples were low with the notable exception of uranium (blood U mean 0.07 µg/L, range <0.01–0.25 µg/L; urinary U mean 0.018 µg/g creatinine, range <0.01–0.199 µg/g creatinine). Factors that influenced biological concentrations were consumption of fish which increased urinary arsenic concentrations, hobbies (including mechanics and welding) which increased blood manganese concentrations and iron/folic acid supplement use which was associated with decreased concentrations of aluminium and nickel in urine and manganese in blood. Environmental concentrations of aluminium, copper and lithium were found to influence biological concentrations, but this was not the case for other environmental metals concentrations. Further work is underway to explore the influence of diet on biological metals concentrations in more detail. The high concentrations of uranium require further investigation. -- Highlights: • High concentrations of uranium with respect to international literature. • Environmental concentrations of Al, Cu and Li influenced urinary concentrations. • Exposure to mechanics/welding hobbies increased blood Mn concentrations. • Iron/Folic acid supplements reduced biological concentrations of Al, Ni and Mn.

  19. Drinking Water Problems: Arsenic 

    E-print Network

    Lesikar, Bruce J.; Melton, Rebecca; Hare, Michael; Hopkins, Janie; Dozier, Monty

    2005-12-02

    High levels of arsenic in drinking water can poison and even kill people. This publication explains the symptoms of arsenic poisoning and common treatment methods for removing arsenic from your water supply....

  20. Exposure, metabolism, and health effects of arsenic in residents from arsenic-contaminated groundwater areas of Vietnam and Cambodia: a review.

    PubMed

    Agusa, Tetsuro; Kunito, Takashi; Kubota, Reiji; Inoue, Suguru; Fujihara, Junko; Minh, Tu Binh; Ha, Nguyen Ngoc; Tu, Nguyen Phuc Cam; Trang, Pham Thi Kim; Chamnan, Chhoun; Takeshita, Haruo; Iwata, Hisato; Tuyen, Bui Cach; Viet, Pham Hung; Tana, Touch Seang; Tanabe, Shinsuke

    2010-01-01

    In this review, we summarize the current knowledge on exposure, metabolism, and health effects of arsenic (As) in residents from As-contaminated groundwater areas of Vietnam and Cambodia based on our findings from 2000 and other studies. The health effects of As in humans include severe gastrointestinal disorders, hepatic and renal failure, cardiovascular disturbances, skin pigmentation, hyperkeratosis, and cancers in the lung, bladder, liver, kidney, and skin. Arsenic contamination in groundwater is widely present at Vietnam and Cambodia and the highest As levels are frequently found in groundwater from Cambodia. Sand filter system can reduce As concentration in raw groundwater. The results of hair and urine analyses indicate that residents from these As-contaminated areas are exposed to As. In general, sex, age, body mass index, and As exposure level are significantly associated with As metabolism. Genetic polymorphisms in arsenic (+III) methyltransferase and glutathione-S-transferase isoforms may be influenced As metabolism and accumulation in a Vietnamese population. It is suggested oxidative DNA damage is caused by exposure to As in groundwater from residents in Cambodia. An epidemiologic study on an association of As exposure with human health effects is required in these areas. PMID:21038756

  1. ARSENIC HYPERACCUMULATION BY Pteris vittata L. AND ITS POTENTIAL FOR PHYTOREMEDIATION OF ARSENIC-CONTAMINATED SOILS

    E-print Network

    Ma, Lena

    ARSENIC HYPERACCUMULATION BY Pteris vittata L. AND ITS POTENTIAL FOR PHYTOREMEDIATION OF ARSENIC.............................................................................................4 Arsenic..........................................................................................................................4 Chemistry of Arsenic

  2. Purple Urine Bag Syndrome.

    PubMed

    Abubacker, Naufal Rizwan Taraganar; Jayaraman, Senthil Manikandan Thirumanilayur; R, Kannan; Sivanesan, Magesh Kumar; Mathew, Renu

    2015-08-01

    Purple urine bag syndrome (PUBS) is a rare disorder seen in elderly persons, wherein the urinary bag and the tubing turn in to purple colour. It is usually seen in patients who are on urinary catheters for a long time. Purple coloured urine occurs due to the accumulation of indigo and indirubin, which are the end products of tryptophan metabolism due to the action of sulfatases and phosphatases formed by bacteria like Providencia, Citrobacter, Enterobacter, Klebsiella etc. We present this interesting phenomenon of purple urine in a young male who was on prolonged urinary catheterization. The urine culture was positive for Providencia and constipation was an added risk factor for the purple urine. The urinary catheter and tubing was changed along with a course of antibiotics which lead to the normalization of the urine colour. PMID:26435987

  3. Uptake of arsenic by New Zealand watercress (Lepidium sativum).

    PubMed

    Robinson, Brett; Duwig, Céline; Bolan, Nanthi; Kannathasan, M; Saravanan, A

    2003-01-01

    Watercress (Lepidium sativum) is consumed as a vegetable, especially by the indigenous community in New Zealand. An investigation was carried out on the accumulation of arsenic by watercress, following earlier reports of inordinate arsenic concentrations in some aquatic macrophytes collected from the Waikato River, North Island, New Zealand. The Waikato River and some other aquatic systems in Taupo Volcanic Zone, New Zealand have elevated arsenic concentrations due to geothermal activity. Watercress, river water and sediment samples were collected from 27 sites along the Waikato river and analysed for arsenic. Greenhouse trials with watercress grown in beakers containing added arsenic were conducted to confirm the ability of this species to accumulate arsenic. At a number of sites, the concentration of arsenic in both the water and the watercress samples exceeded the World Health Organisation (WHO) limit for drinking water (0.01 mg l(-1)) and foodstuffs (2 mg kg(-1) on a fresh weight basis). The average leaf and stem arsenic concentrations were, respectively, 29.0 and 15.9 mg kg(-1) on a fresh weight basis. Plants grown in solutions of >0.4 mg l(-1) arsenic concentration had fresh weight arsenic concentrations above the WHO limit. Despite these higher concentrations, arsenic levels in plants grown under greenhouse conditions were approximately fivefold lower than in plants growing in the Waikato River, possibly because under natural conditions, the watercress is rooted in sediment containing on average approximately 35 mg kg(-1) arsenic. It is recommended that watercress from the Waikato River, or other areas with elevated water arsenic concentrations, should not be consumed. PMID:12493186

  4. Altered Arsenic Disposition in Experimental Nonalcoholic Fatty Liver Disease

    PubMed Central

    Canet, Mark J.; Hardwick, Rhiannon N.; Lake, April D.; Kopplin, Michael J.; Scheffer, George L.; Klimecki, Walter T.; Gandolfi, A. Jay

    2012-01-01

    Nonalcoholic fatty liver disease (NAFLD) is represented by a spectrum of liver pathologies ranging from simple steatosis to nonalcoholic steatohepatitis (NASH). Liver damage sustained in the progressive stages of NAFLD may alter the ability of the liver to properly metabolize and eliminate xenobiotics. The purpose of the current study was to determine whether NAFLD alters the disposition of the environmental toxicant arsenic. C57BL/6 mice were fed either a high-fat or a methionine-choline-deficient diet to model simple steatosis and NASH, respectively. At the conclusion of the dietary regimen, all mice were given a single oral dose of either sodium arsenate or arsenic trioxide. Mice with NASH excreted significantly higher levels of total arsenic in urine (24 h) compared with controls. Total arsenic in the liver and kidneys of NASH mice was not altered; however, NASH liver retained significantly higher levels of the monomethyl arsenic metabolite, whereas dimethyl arsenic was retained significantly less in the kidneys of NASH mice. NASH mice had significantly higher levels of the more toxic trivalent form in their urine, whereas the pentavalent form was preferentially retained in the liver of NASH mice. Moreover, hepatic protein expression of the arsenic biotransformation enzyme arsenic (3+ oxidation state) methyltransferase was not altered in NASH animals, whereas protein expression of the membrane transporter multidrug resistance-associated protein 1 was increased, implicating cellular transport rather than biotransformation as a possible mechanism. These results suggest that NASH alters the disposition of arsenical species, which may have significant implications on the overall toxicity associated with arsenic in NASH. PMID:22699396

  5. Water recovery by catalytic treatment of urine vapor

    NASA Technical Reports Server (NTRS)

    Budininkas, P.; Quattrone, P. D.; Leban, M. I.

    1980-01-01

    The objective of this investigation was to demonstrate the feasibility of water recovery on a man-rated scale by the catalytic processing of untreated urine vapor. For this purpose, two catalytic systems, one capable of processing an air stream containing low urine vapor concentrations and another to process streams with high urine vapor concentrations, were designed, constructed, and tested to establish the quality of the recovered water.

  6. Technical assistance to the Montana Department of Health and Environmental Sciences. Arsenic and lead exposure study of residents living near the Rocker operable unit of the Silver Bow Creek Superfund site, Rocker, Montana. Final report

    SciTech Connect

    Gaventa, S.; Coull, B.; Gedrose, J.; Jones, P.; Dennehy, D.

    1992-01-01

    The ATSDR and the Montana Department of Health and Environmental Sciences conducted a study to assess arsenic and lead exposure among residents of Rocker, Montana, where arsenic had been detected in soil up to 214,000 ppm. No statistically significant difference was found between Rocker residents and a comparison population with respect to the geometric mean of the urine arsenic levels. When data were combined from both groups, recent seafood ingestion was the variable most strongly associated with detectable urine arsenic levels. Although blood lead levels in the target area differed significantly from those in the comparison, a significant association was not detected between blood lead levels > or = 10 microgram/d1 and area of residence. Lead was detected in the blood of two siblings in the target area at levels of 20.7 and 31.3 microgram/d1. A lead based paint hazard and elevated concentrations of soil lead from the children's play area were detected in the household.

  7. Arsenic (+ 3 oxidation state) methyltransferase genotype affects steady-state distribution and clearance of arsenic in arsenate-treated mice

    SciTech Connect

    Hughes, Michael F.; Edwards, Brenda C.; Herbin-Davis, Karen M.; Saunders, Jesse; Styblo, Miroslav; Thomas, David J.

    2010-12-15

    Arsenic (+ 3 oxidation state) methyltransferase (As3mt) catalyzes formation of mono-, di-, and tri-methylated metabolites of inorganic arsenic. Distribution and retention of arsenic were compared in adult female As3mt knockout mice and wild-type C57BL/6 mice using a regimen in which mice received daily oral doses of 0.5 mg of arsenic as arsenate per kilogram of body weight. Regardless of genotype, arsenic body burdens attained steady state after 10 daily doses. At steady state, arsenic body burdens in As3mt knockout mice were 16 to 20 times greater than in wild-type mice. During the post dosing clearance period, arsenic body burdens declined in As3mt knockout mice to {approx} 35% and in wild-type mice to {approx} 10% of steady-state levels. Urinary concentration of arsenic was significantly lower in As3mt knockout mice than in wild-type mice. At steady state, As3mt knockout mice had significantly higher fractions of the body burden of arsenic in liver, kidney, and urinary bladder than did wild-type mice. These organs and lung had significantly higher arsenic concentrations than did corresponding organs from wild-type mice. Inorganic arsenic was the predominant species in tissues of As3mt knockout mice; tissues from wild-type mice contained mixtures of inorganic arsenic and its methylated metabolites. Diminished capacity for arsenic methylation in As3mt knockout mice prolongs retention of inorganic arsenic in tissues and affects whole body clearance of arsenic. Altered retention and tissue tropism of arsenic in As3mt knockout mice could affect the toxic or carcinogenic effects associated with exposure to this metalloid or its methylated metabolites.

  8. Total and Extractable Lead and Arsenic Concentrations in U.S. Long-Term Orchard Soils and Potential Accumulation by Vegetable Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lead arsenate was used as an insecticide in the United States (U.S.) from 1900 to 1960s to control codling moth (Cydia pomonella) in apple orchards. As a result these soils are contaminated with lead (Pb) and arsenic (As). Concerns have been raised about conversion of land use of such Pb and As ri...

  9. Can arsenic occurrence rate in bedrock aquifers be predicted?

    USGS Publications Warehouse

    Yang, Qiang; Jung, Hun Bok; Marvinney, Robert G.; Culbertson, Charles W.; Zheng, Yan

    2012-01-01

    A high percentage (31%) of groundwater samples from bedrock aquifers in the greater Augusta area, Maine was found to contain greater than 10 ?g L–1 of arsenic. Elevated arsenic concentrations are associated with bedrock geology, and more frequently observed in samples with high pH, low dissolved oxygen, and low nitrate. These associations were quantitatively compared by statistical analysis. Stepwise logistic regression models using bedrock geology and/or water chemistry parameters are developed and tested with external data sets to explore the feasibility of predicting groundwater arsenic occurrence rates (the percentages of arsenic concentrations higher than 10 ?g L–1) in bedrock aquifers. Despite the under-prediction of high arsenic occurrence rates, models including groundwater geochemistry parameters predict arsenic occurrence rates better than those with bedrock geology only. Such simple models with very few parameters can be applied to obtain a preliminary arsenic risk assessment in bedrock aquifers at local to intermediate scales at other localities with similar geology.

  10. Arsenic detection in water: YPO4:Eu3+ nanoparticles

    NASA Astrophysics Data System (ADS)

    Ghosh, Debasish; Luwang, Meitram Niraj

    2015-12-01

    This work reports on the novel technique of detection of arsenic in aqueous solution utilising the luminescence properties of lanthanide doped nanomaterials. Eu3+ (5%) doped YPO4nanorodswere utilised for the said experiment. Co-precipitation method was used for the synthesis of the materials and characterised them with different instrumental techniques like X-ray diffraction (XRD), Infra-red (IR), UV-absorption, scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and photoluminescence studies. This nanoparticle can adsorb both arsenic and arsenious acids. We studied the effect of arsenic adsorption on the luminescence behaviour of the nanoparticles. Arsenic acid enhanced the luminescence intensity whereas arsenious acid quenched the luminescence. This luminescence enhancement or quenching is related with arsenic concentration. This relation of luminescence property with concentration of arsenic can be used to detect arsenic in industrial waste.

  11. The Genetic Architecture of Arsenic Metabolism Efficiency:A SNP-Based Heritability Study of Bangladeshi Adults

    PubMed Central

    Gao, Jianjun; Tong, Lin; Argos, Maria; Bryan, Molly Scannell; Ahmed, Alauddin; Rakibuz-Zaman, Muhammad; Kibriya, Muhammad G.; Jasmine, Farzana; Slavkovich, Vesna; Graziano, Joseph H.

    2015-01-01

    Background Consumption of arsenic-contaminated drinking water adversely affects health. There is interindividual variation in arsenic metabolism efficiency, partially due to genetic variation in the arsenic methyltransferase (AS3MT) gene region. Objectives The goal of this study was to assess the overall contribution of genetic factors to variation in arsenic metabolism efficiency, as measured by the relative concentration of dimethylarsinic acid (DMA%) in urine. Methods Using data on genome-wide single nucleotide polymorphisms (SNPs) and urinary DMA% for 2,053 arsenic-exposed Bangladeshi individuals, we employed various SNP-based approaches for heritability estimation and polygenic modeling. Results Using data on all participants, the percent variance explained (PVE) for DMA% by all measured and imputed SNPs was 16% (p = 0.08), which was reduced to 5% (p = 0.34) after adjusting for AS3MT SNPs. Using information on close relatives only, the PVE was 63% (p = 0.0002), but decreased to 41% (p = 0.01) after adjusting for AS3MT SNPs. Regional heritability analysis confirmed 10q24.32 (AS3MT) as a major arsenic metabolism locus (PVE = 7%, p = 4.4 × 10–10), but revealed no additional regions. We observed a moderate association between a polygenic score reflecting elevated DMA% (composed of thousands of non-AS3MT SNPs) and reduced skin lesion risk in an independent sample (p < 0.05). We observed no associations for SNPs reported in prior candidate gene studies of arsenic metabolism. Conclusions Our results suggest that there are common variants outside of the AS3MT region that influence arsenic metabolism in Bangladeshi individuals, but the effects of these variants are very weak compared with variants near AS3MT. The high heritability estimates observed using family-based heritability approaches suggest substantial effects for rare variants and/or unmeasured environmental factors. Citation Gao J, Tong L, Argos M, Scannell Bryan M, Ahmed A, Rakibuz-Zaman M, Kibriya MG, Jasmine F, Slavkovich V, Graziano JH, Ahsan H, Pierce BL. 2015. The genetic architecture of arsenic metabolism efficiency: a SNP-based heritability study of Bangladeshi adults. Environ Health Perspect 123:985–992;?http://dx.doi.org/10.1289/ehp.1408909 PMID:25768001

  12. Arsenic Speciation in Honeysuckle (Lonicera japonica Thunb.) from China.

    PubMed

    Tang, Fubin; Ni, Zhanglin; Liu, Yihua; Yu, Qing; Wang, Zhikun; Mo, Runhong

    2015-11-01

    In this study, honeysuckle, a common Chinese herbal medicine, produced from different areas was investigated for total arsenic and arsenic species concentration. The total arsenic concentrations were determined by inductively coupled plasma mass spectrometry (ICP-MS) and ranged from 275 to 635 ?g kg(-1). A microwave-assisted procedure with 1 % phosphoric acid (v/v) was used for the extraction of arsenic species in honeysuckle. The total arsenic species concentration found by liquid chromatography-inductively coupled plasma mass spectrometry (LC-ICP-MS) was in agreement with the total arsenic concentration determined by the ICP-MS analysis after the microwave digestion. Arsenate (As(V)) with an average proportion of 54.3 % was the predominant arsenic species in honeysuckle. The order of concentration is as follows: As(V) > arsenite (As(III)) > dimethylarsinic acid (DMA) > arsenobetaine (AsB) > monomethylarsonic acid (MMA). The proportion of organic arsenic (24.7 %) was higher than that in most terrestrial plants. Moreover, the distributions of arsenic species in the honeysuckle from different producing areas were significantly different. This study provides useful information for better understanding of the distribution of arsenic species in terrestrial plants. PMID:25865059

  13. Arsenic hydrogeochemistry in an irrigated river valley - A reevaluation

    USGS Publications Warehouse

    Nimick, D.A.

    1998-01-01

    Arsenic concentrations in ground water of the lower Madison River valley, Montana, are high (16 to 176 ??g/L). Previous studies hypothesized that arsenic-rich river water, applied as irrigation, was evapoconcentrated during recharge and contaminated the thin alluvial aquifer. Based on additional data collection and a reevaluation of the hydrology and geochemistry of the valley, the high arsenic concentrations in ground water are caused by a unique combination of natural hydrologic and geochemical factors, and irrigation appears to play a secondary role. The high arsenic concentrations in ground water have several causes: direct aquifer recharge by Madison River water having arsenic concentrations as high as 100 ??g/L, leaching of arsenic from Tertiary volcano-clastic sediment, and release of sorbed arsenic where redox conditions in ground water are reduced. The findings are consistent with related studies that demonstrate that arsenic is sorbed by irrigated soils in the valley. Although evaporation of applied irrigation water does not significantly increase arsenic concentrations in ground water, irrigation with arsenic-rich water raises other environmental concerns.

  14. Surveillance of workers exposed to mercury vapor:validation of a previously proposed biological threshold limit value for mercury concentration in urine

    SciTech Connect

    Roels, H.; Gennart, J.P.; Lauwerys, R.; Buchet, J.P.; Malchaire, J.; Bernard, A.

    1985-01-01

    A cross-sectional epidemiological study was carried out among subjects exposed to mercury (Hg) vapor, ie, a group of 131 male workers (mean age: 30.9 yr; average duration of exposure, 4.8 yr) and a group of 54 female workers (mean age, 29.9 yr; average duration of exposure 7 yr). The results were compared with those obtained in well-matched control groups comprising 114 and 48 male and female workers, respectively. The intensity of current Hg vapor exposure was rather moderate as reflected by the levels of mercury in urine (HgU) (mean and 95th percentile: males 52 and 147 micrograms/g creatinine; females 37 and 63 micrograms/g creatinine) and of mercury in blood (mean and 95th percentile: males 1.4 and 3.7 micrograms/dl; females 0.9 and 1.4 microgram/dl). Several symptoms mainly related to the central nervous system (memory disturbances, depressive feelings, fatigue, irritability) were more prevalent in the Hg-exposed subjects. They were, however, not related to exposure parameters. In both male and female Hg-exposed workers no significant disturbances were found in short-term memory (audioverbal), simple reaction time (visual), critical flicker fusion, and color discrimination ability. Only slight renal tubular effects were detected in Hg-exposed males and females, ie, an increased urinary beta-galactosidase activity and an increased urinary excretion of retinol-binding protein. The prevalence of these preclinical renal effects was more related to the current exposure intensity (HgU) than to the duration of exposure and was detected mainly when HgU exceeds 50 micrograms/g creatinine. Changes in hand tremor spectrum recorded with an accelerometer were found in the Hg-exposed males only.

  15. Leukocyte esterase urine test

    MedlinePLUS

    Leukocyte esterase is a urine test to look for white blood cells and other signs of infection. ... A clean-catch urine sample is preferred. The clean-catch method is used to prevent germs from the penis or vagina from getting ...

  16. RBC urine test

    MedlinePLUS

    Red blood cells in urine; Hematuria test; Urine - red blood cells ... A normal result is 4 red blood cells per high power field (RBC/HPF) or less when the sample is examined under a microscope. The example above is a common measurement ...

  17. Genetic polymorphisms in AS3MT and arsenic metabolism in residents of the Red River Delta, Vietnam

    SciTech Connect

    Agusa, Tetsuro; Iwata, Hisato Fujihara, Junko; Kunito, Takashi; Takeshita, Haruo; Minh, Tu Binh; Trang, Pham Thi Kim; Viet, Pham Hung; Tanabe, Shinsuke

    2009-04-15

    To elucidate the role of genetic factors in arsenic (As) metabolism, we studied associations of single nucleotide polymorphisms (SNPs) in As (+ 3 oxidation state) methyltransferase (AS3MT) with the As concentrations in hair and urine, and urinary As profile in residents in the Red River Delta, Vietnam. Concentrations of total As in groundwater were 0.7-502 {mu}g/l. Total As levels in groundwater drastically decreased by using sand filter, indicating that the filter could be effective to remove As from raw groundwater. Concentrations of inorganic As (IAs) in urine and total As in hair of males were higher than those of females. A significant positive correlation between monomethylarsonic acid (MMA)/IAs and age in females indicates that older females have higher methylation capacity from IAs to MMA. Body mass index negatively correlated with urinary As concentrations in males. Homozygote for SNPs 4602AA, 35991GG, and 37853GG, which showed strong linkage disequilibrium (LD), had higher percentage (%) of dimethylarsinic acid (DMA) in urine. SNPs 4740 and 12590 had strong LD and associated with urinary %DMA. Although SNPs 6144, 12390, 14215, and 35587 comprised LD cluster, homozygotes in SNPs 12390GG and 35587CC had lower DMA/MMA in urine, suggesting low methylation capacity from MMA to DMA in homo types for these SNPs. SNPs 5913 and 8973 correlated with %MMA and %DMA, respectively. Heterozygote for SNP 14458TC had higher MMA/IAs in urine than TT homozygote, indicating that the heterozygote may have stronger methylation ability of IAs. To our knowledge, this is the first study on the association of genetic factors with As metabolism in Vietnamese.

  18. Arsenic surveillance program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Background information about arsenic is presented including forms, common sources, and clinical symptoms of arsenic exposure. The purpose of the Arsenic Surveillance Program and LeRC is outlined, and the specifics of the Medical Surveillance Program for Arsenic Exposure at LeRC are discussed.

  19. On-Demand Urine Analyzer

    NASA Technical Reports Server (NTRS)

    Farquharson, Stuart; Inscore, Frank; Shende, Chetan

    2010-01-01

    A lab-on-a-chip was developed that is capable of extracting biochemical indicators from urine samples and generating their surface-enhanced Raman spectra (SERS) so that the indicators can be quantified and identified. The development was motivated by the need to monitor and assess the effects of extended weightlessness, which include space motion sickness and loss of bone and muscle mass. The results may lead to developments of effective exercise programs and drug regimes that would maintain astronaut health. The analyzer containing the lab-on-a- chip includes materials to extract 3- methylhistidine (a muscle-loss indicator) and Risedronate (a bone-loss indicator) from the urine sample and detect them at the required concentrations using a Raman analyzer. The lab-on- a-chip has both an extractive material and a SERS-active material. The analyzer could be used to monitor the onset of diseases, such as osteoporosis.

  20. Urine collection device

    NASA Technical Reports Server (NTRS)

    Michaud, R. B. (inventor)

    1981-01-01

    A urine collection device for females is described. It is comprised of a collection element defining a urine collection chamber and an inlet opening into the chamber and is adapted to be disposed in surrounding relation to the urethral opening of the user. A drainage conduit is connected to the collection element in communication with the chamber whereby the chamber and conduit together comprise a urine flow pathway for carrying urine generally away from the inlet. A first body of wicking material is mounted adjacent the collection element and extends at least partially into the flow pathway. The device preferably also comprise a vaginal insert element including a seal portion for preventing the entry of urine into the vagina.

  1. Urine Monitoring System

    NASA Technical Reports Server (NTRS)

    Feedback, Daniel L.; Cibuzar, Branelle R.

    2009-01-01

    The Urine Monitoring System (UMS) is a system designed to collect an individual crewmember's void, gently separate urine from air, accurately measure void volume, allow for void sample acquisition, and discharge remaining urine into the Waste Collector Subsystem (WCS) onboard the International Space Station. The Urine Monitoring System (UMS) is a successor design to the existing Space Shuttle system and will resolve anomalies such as: liquid carry-over, inaccurate void volume measurements, and cross contamination in void samples. The crew will perform an evaluation of airflow at the ISS UMS urinal hose interface, a calibration evaluation, and a full user interface evaluation. o The UMS can be used to facilitate non-invasive methods for monitoring crew health, evaluation of countermeasures, and implementation of a variety of biomedical research protocols on future exploration missions.

  2. Earth Abides Arsenic Biotransformations

    NASA Astrophysics Data System (ADS)

    Zhu, Yong-Guan; Yoshinaga, Masafumi; Zhao, Fang-Jie; Rosen, Barry P.

    2014-05-01

    Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology is described. The article provides a comprehensive overview of molecular mechanisms of arsenic redox and methylation cycles as well as other arsenic biotransformations. It also discusses the implications of arsenic biotransformation in environmental remediation and food safety, with particular emphasis on groundwater arsenic contamination and arsenic accumulation in rice.

  3. Cancer risks from arsenic in drinking water.

    PubMed Central

    Smith, A H; Hopenhayn-Rich, C; Bates, M N; Goeden, H M; Hertz-Picciotto, I; Duggan, H M; Wood, R; Kosnett, M J; Smith, M T

    1992-01-01

    Ingestion of arsenic, both from water supplies and medicinal preparations, is known to cause skin cancer. The evidence assessed here indicates that arsenic can also cause liver, lung, kidney, and bladder cancer and that the population cancer risks due to arsenic in U.S. water supplies may be comparable to those from environmental tobacco smoke and radon in homes. Large population studies in an area of Taiwan with high arsenic levels in well water (170-800 micrograms/L) were used to establish dose-response relationships between cancer risks and the concentration of inorganic arsenic naturally present in water supplies. It was estimated that at the current EPA standard of 50 micrograms/L, the lifetime risk of dying from cancer of the liver, lung, kidney, or bladder from drinking 1 L/day of water could be as high as 13 per 1000 persons. It has been estimated that more than 350,000 people in the United States may be supplied with water containing more than 50 micrograms/L arsenic, and more than 2.5 million people may be supplied with water with levels above 25 micrograms/L. For average arsenic levels and water consumption patterns in the United States, the risk estimate was around 1/1000. Although further research is needed to validate these findings, measures to reduce arsenic levels in water supplies should be considered. PMID:1396465

  4. Tissue dosimetry, metabolism and excretion of pentavalent and trivalent dimethylated arsenic in mice after oral administration

    SciTech Connect

    Hughes, Michael F. Devesa, Vicenta; Adair, Blakely M.; Conklin, Sean D.; Creed, John T.; Styblo, Miroslav; Kenyon, Elaina M.; Thomas, David J.

    2008-02-15

    Dimethylarsinic acid (DMA(V)) is a rat bladder carcinogen and the major urinary metabolite of administered inorganic arsenic in most mammals. This study examined the disposition of pentavalent and trivalent dimethylated arsenic in mice after acute oral administration. Adult female mice were administered [{sup 14}C]-DMA(V) (0.6 or 60 mg As/kg) and sacrificed serially over 24 h. Tissues and excreta were collected for analysis of radioactivity. Other mice were administered unlabeled DMA(V) (0.6 or 60 mg As/kg) or dimethylarsinous acid (DMA(III)) (0.6 mg As/kg) and sacrificed at 2 or 24 h. Tissues (2 h) and urine (24 h) were collected and analyzed for arsenicals. Absorption, distribution and excretion of [{sup 14}C]-DMA(V) were rapid, as radioactivity was detected in tissues and urine at 0.25 h. For low dose DMA(V) mice, there was a greater fractional absorption of DMA(V) and significantly greater tissue concentrations of radioactivity at several time points. Radioactivity distributed greatest to the liver (1-2% of dose) and declined to less than 0.05% in all tissues examined at 24 h. Urinary excretion of radioactivity was significantly greater in the 0.6 mg As/kg DMA(V) group. Conversely, fecal excretion of radioactivity was significantly greater in the high dose group. Urinary metabolites of DMA(V) included DMA(III), trimethylarsine oxide (TMAO), dimethylthioarsinic acid and trimethylarsine sulfide. Urinary metabolites of DMA(III) included TMAO, dimethylthioarsinic acid and trimethylarsine sulfide. DMA(V) was also excreted by DMA(III)-treated mice, showing its sensitivity to oxidation. TMAO was detected in tissues of the high dose DMA(V) group. The low acute toxicity of DMA(V) in the mouse appears to be due in part to its minimal retention and rapid elimination.

  5. Tissue dosimetry, metabolism and excretion of pentavalent and trivalent dimethylated arsenic in mice after oral administration

    PubMed Central

    Hughes, Michael F.; Devesa, Vicenta; Adair, Blakely M.; Conklin, Sean D.; Creed, John T.; Styblo, Miroslav; Kenyon, Elaina M.; Thomas, David J.

    2008-01-01

    Dimethylarsinic acid (DMA(V)) is a rat bladder carcinogen and the major urinary metabolite of administered inorganic arsenic in most mammals. This study examined the disposition of pentavalent and trivalent dimethylated arsenic in mice after acute oral administration. Adult female mice were administered [14C]-DMA(V) (0.6 or 60 mg As/kg) and sacrificed serially over 24 h. Tissues and excreta were collected for analysis of radioactivity. Other mice were administered unlabeled DMA(V) (0.6 or 60 mg As/kg) or dimethylarsinous acid (DMA(III)) (0.6 mg As/kg) and sacrificed at 2 or 24 h. Tissues (2 h) and urine (24 h) were collected and analyzed for arsenicals. Absorption, distribution and excretion of [14C]-DMA(V) were rapid, as radioactivity was detected in tissues and urine at 0.25 h. For low dose DMA(V) mice, there was a greater fractional absorption of DMA(V) and significantly greater tissue concentrations of radioactivity at several time points. Radioactivity distributed greatest to the liver (1–2% of dose) and declined to less than 0.05% in all tissues examined at 24 h. Urinary excretion of radioactivity was significantly greater in the 0.6 mg As/kg DMA(V) group. Conversely, fecal excretion of radioactivity was significantly greater in the high dose group. Urinary metabolites of DMA(V) included DMA(III), trimethylarsine oxide (TMAO), dimethylthioarsinic acid and trimethylarsine sulfide. Urinary metabolites of DMA(III) included TMAO, dimethylthioarsinic acid and trimethylarsine sulfide. DMA(V) was also excreted by DMA(III)-treated mice, showing its sensitivity to oxidation. TMAO was detected in tissues of the high dose DMA(V) group. The low acute toxicity of DMA (V) in the mouse appears to be due in part to its minimal retention and rapid elimination. PMID:18036629

  6. ORIGINAL ARTICLE Low-level Population Exposure to Inorganic Arsenic in the

    E-print Network

    California at Berkeley, University of

    ORIGINAL ARTICLE Low-level Population Exposure to Inorganic Arsenic in the United States: Although studies have reported associations between high concentrations of ingested inorganic arsenic increase in diabetes at low concentrations of urinary arsenic. This potentially affects 40 million adults

  7. Rice consumption contributes to arsenic exposure in US women

    PubMed Central

    Gilbert-Diamond, Diane; Cottingham, Kathryn L.; Gruber, Joann F.; Punshon, Tracy; Sayarath, Vicki; Gandolfi, A. Jay; Baker, Emily R.; Jackson, Brian P.; Folt, Carol L.; Karagas, Margaret R.

    2011-01-01

    Emerging data indicate that rice consumption may lead to potentially harmful arsenic exposure. However, few human data are available, and virtually none exist for vulnerable periods such as pregnancy. Here we document a positive association between rice consumption and urinary arsenic excretion, a biomarker of recent arsenic exposure, in 229 pregnant women. At a 6-mo prenatal visit, we collected a urine sample and 3-d dietary record for water, fish/seafood, and rice. We also tested women's home tap water for arsenic, which we combined with tap water consumption to estimate arsenic exposure through water. Women who reported rice intake (n = 73) consumed a median of 28.3 g/d, which is ?0.5 cup of cooked rice each day. In general linear models adjusted for age and urinary dilution, both rice consumption (g, dry mass/d) and arsenic exposure through water (?g/d) were significantly associated with natural log-transformed total urinary arsenic (, , both P < 0.0001), as well as inorganic arsenic, monomethylarsonic acid, and dimethylarsinic acid (each P < 0.005). Based on total arsenic, consumption of 0.56 cup/d of cooked rice was comparable to drinking 1 L/d of 10 ?g As/L water, the current US maximum contaminant limit. US rice consumption varies, averaging ?0.5 cup/d, with Asian Americans consuming an average of >2 cups/d. Rice arsenic content and speciation also vary, with some strains predominated by dimethylarsinic acid, particularly those grown in the United States. Our findings along with others indicate that rice consumption should be considered when designing arsenic reduction strategies in the United States. PMID:22143778

  8. Rice consumption contributes to arsenic exposure in US women.

    PubMed

    Gilbert-Diamond, Diane; Cottingham, Kathryn L; Gruber, Joann F; Punshon, Tracy; Sayarath, Vicki; Gandolfi, A Jay; Baker, Emily R; Jackson, Brian P; Folt, Carol L; Karagas, Margaret R

    2011-12-20

    Emerging data indicate that rice consumption may lead to potentially harmful arsenic exposure. However, few human data are available, and virtually none exist for vulnerable periods such as pregnancy. Here we document a positive association between rice consumption and urinary arsenic excretion, a biomarker of recent arsenic exposure, in 229 pregnant women. At a 6-mo prenatal visit, we collected a urine sample and 3-d dietary record for water, fish/seafood, and rice. We also tested women's home tap water for arsenic, which we combined with tap water consumption to estimate arsenic exposure through water. Women who reported rice intake (n = 73) consumed a median of 28.3 g/d, which is ?0.5 cup of cooked rice each day. In general linear models adjusted for age and urinary dilution, both rice consumption (g, dry mass/d) and arsenic exposure through water (?g/d) were significantly associated with natural log-transformed total urinary arsenic (?rice = 0.009, ?water = 0.028, both P < 0.0001), as well as inorganic arsenic, monomethylarsonic acid, and dimethylarsinic acid (each P < 0.005). Based on total arsenic, consumption of 0.56 cup/d of cooked rice was comparable to drinking 1 L/d of 10 ?g As/L water, the current US maximum contaminant limit. US rice consumption varies, averaging ?0.5 cup/d, with Asian Americans consuming an average of >2 cups/d. Rice arsenic content and speciation also vary, with some strains predominated by dimethylarsinic acid, particularly those grown in the United States. Our findings along with others indicate that rice consumption should be considered when designing arsenic reduction strategies in the United States. PMID:22143778

  9. THE CELLUAR METABOLISM OF ARSENIC

    EPA Science Inventory

    Because the methylation of arsenic produces intermediates and terminal products that exceed inorganic arsenic in potency as enzyme inhibitors, cytotoxins, and genotoxins, the methylation of arsenic is properly regarded as an activation process. The methylation of arsenic is an e...

  10. Arsenic Speciation in Blue Mussels (Mytilus edulis) Along a Highly Contaminated Arsenic Gradient

    SciTech Connect

    Whaley-Martin, K.J.; Koch, I.; Moriarty, M.; Reimer, K.J.

    2012-11-01

    Arsenic is naturally present in marine ecosystems, and these can become contaminated from mining activities, which may be of toxicological concern to organisms that bioaccumulate the metalloid into their tissues. The toxic properties of arsenic are dependent on the chemical form in which it is found (e.g., toxic inorganic arsenicals vs nontoxic arsenobetaine), and two analytical techniques, high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) and X-ray absorption spectroscopy (XAS), were used in the present study to examine the arsenic species distribution in blue mussels (Mytilus edulis) obtained from an area where there is a strong arsenic concentration gradient as a consequence of mining impacted sediments. A strong positive correlation was observed between the concentration of inorganic arsenic species (arsenic compounds with no As-C bonds) and total arsenic concentrations present in M. edulis tissues (R{sup 2} = 0.983), which could result in significant toxicological consequences to the mussels and higher trophic consumers. However, concentrations of organoarsenicals, dominated by arsenobetaine, remained relatively constant regardless of the increasing As concentration in M. edulis tissue (R{sup 2} = 0.307). XANES bulk analysis and XAS two-dimensional mapping of wet M. edulis tissue revealed the presence of predominantly arsenic-sulfur compounds. The XAS mapping revealed that the As(III)-S and/or As(III) compounds were concentrated in the digestive gland. However, arsenobetaine was found in small and similar concentrations in the digestive gland as well as the surrounding tissue suggesting arsenobetaine may being used in all of the mussel's cells in a physiological function such as an intracellular osmolyte.

  11. Mechanism of Arsenic Adsorption Using Wheat Biomass -- a spectroscopic study

    NASA Astrophysics Data System (ADS)

    Calvo, Oscar; Manciu, Felicia; Maldonado, Josefina; Gardea-Torresdey, Jorge

    2006-10-01

    Arsenic is a trace element that is toxic to animals, humans included. Since the current Environmental Protection Agency guidelines regarding water quality standards indicate that arsenic concentrations in excess of 50 ppb are hazardous to welfare of humans, the search for new water remediation methods or improvements of previous methods have been a focus in environmental technology. Investigations of arsenic uptake have used wide range of sorbents including iron oxides and oxyhydroxides, for which it have been proved that arsenic shows high affinity. In this study, we used far-infrared spectroscopy to examine the arsenic reduction using biomaterials. pH dependence analysis by FTIR demonstrates the sorption of iron oxides and oxyhydroxides by the wheat biomass. The splitting of 350 cm-1 amorphous iron oxide vibrations is a direct proof of the arsenic uptake. In addition, there is evidence of sorption of arsenic at sulfhydryl group of cysteine existent in wheat.

  12. Arsenic in Illinois ground water : community and private supplies

    USGS Publications Warehouse

    Warner, Kelly L.; Martin, Angel; Arnold, Terri L.

    2003-01-01

    Assessing the distribution of arsenic in ground water from community-water supplies, private supplies, or monitoring wells is part of the process of determining the risk of arsenic contamination of drinking water in Illinois. Lifestyle, genetic, and environmental factors make certain members of the population more susceptible to adverse health effects from repeated exposure to drinking water with high arsenic concentrations (Ryker, 2001). In addition, such factors may have geographic distribution patterns that complicate the analysis of the relation between arsenic in drinking water and health effects. For example, arsenic may not be the only constituent affecting the quality of drinking water in a region (Ryker, 2001); however, determining the extent and distribution of arsenic in ground water is a starting place to assess the potential risk for persons drinking from a community or private supply. Understanding the potential sources and pathways that mobilize arsenic in ground water is a necessary step in protecting the drinking-water supply in Illinois.

  13. Induction of Human Squamous Cell-Type Carcinomas by Arsenic

    PubMed Central

    Martinez, Victor D.; Becker-Santos, Daiana D.; Vucic, Emily A.; Lam, Stephen; Lam, Wan L.

    2011-01-01

    Arsenic is a potent human carcinogen. Around one hundred million people worldwide have potentially been exposed to this metalloid at concentrations considered unsafe. Exposure occurs generally through drinking water from natural geological sources, making it difficult to control this contamination. Arsenic biotransformation is suspected to have a role in arsenic-related health effects ranging from acute toxicities to development of malignancies associated with chronic exposure. It has been demonstrated that arsenic exhibits preference for induction of squamous cell carcinomas in the human, especially skin and lung cancer. Interestingly, keratins emerge as a relevant factor in this arsenic-related squamous cell-type preference. Additionally, both genomic and epigenomic alterations have been associated with arsenic-driven neoplastic process. Some of these aberrations, as well as changes in other factors such as keratins, could explain the association between arsenic and squamous cell carcinomas in humans. PMID:22175027

  14. Arsenic Toxicity and Altered Mitochondrial Bioenergetics in Response to Oxidative Stress

    E-print Network

    Mickey, Kristen Elizabeth

    2015-05-31

    Environmental exposure to arsenic is a worldwide health concern which is linked to a number of diseases. Areas with arsenic levels above the current safe concentration have higher levels of skin, lung, liver, and bladder cancers and non...

  15. Maternal drinking water arsenic exposure and perinatal outcomes in Inner Mongolia, China, Journal

    EPA Science Inventory

    BACKGROUND: Bayingnormen is a region located in western Inner Mongolia China with a population that is exposed to a wide range of drinking water Arsenic concentrations. This study evaluated the relationship between maternal drinking water arsenic exposure and perinatal endpoints ...

  16. GENE EXPRESSION CHANGES IN MOUSE BLADDER TISSUE IN RESPONSE TO INORGANIC ARSENIC

    EPA Science Inventory

    Chronic human exposures to high arsenic concentrations are associated with lung, skin, and bladder cancer. Considerable controversy exists concerning arsenic mode of action and low dose extrapolation. This investigation was designed to identify dose-response changes in gene expre...

  17. Nonhazardous Urine Pretreatment Method

    NASA Technical Reports Server (NTRS)

    Akse, James R.; Holtsnider, John T.

    2012-01-01

    A method combines solid phase acidification with two non-toxic biocides to prevent ammonia volatilization and microbial proliferation. The safe, non-oxidizing biocide combination consists of a quaternary amine and a food preservative. This combination has exhibited excellent stabilization of both acidified and unacidified urine. During pretreatment tests, composite urine collected from donors was challenged with a microorganism known to proliferate in urine, and then was processed using the nonhazardous urine pre-treatment method. The challenge microorganisms included Escherichia coli, a common gram-negative bacteria; Enterococcus faecalis, a ureolytic gram-positive bacteria; Candida albicans, a yeast commonly found in urine; and Aspergillus niger, a problematic mold that resists urine pre-treatment. Urine processed in this manner remained microbially stable for over 57 days. Such effective urine stabilization was achieved using non-toxic, non-oxidizing biocides at higher pH (3.6 to 5.8) than previous methods in use or projected for use aboard the International Space Station (ISS). ISS urine pretreatment methods employ strong oxidants including ozone and hexavalent chromium (Cr(VI)), a carcinogenic material, under very acidic conditions (pH = 1.8 to 2.4). The method described here offers a much more benign chemical environment than previous pretreatment methods, and will lower equivalent system mass (ESM) by reducing containment volume and mass, system complexity, and crew time needed to handle pre-treatment chemicals. The biocides, being non-oxidizing, minimize the potential for chemical reactions with urine constituents to produce volatile, airborne contaminants such as cyanogen chloride. Additionally, the biocides are active under significantly less acidic conditions than those used in the current system, thereby reducing the degree of required acidification. A simple flow-through solid phase acidification (SPA) bed is employed to overcome the natural buffering capacity of urine, and to lower the pH to levels that fix ammoniacal nitrogen in the non-volatile and highly water soluble NH4 + form. Citric acid, a highly soluble, solid tricarboxylic acid essential to cellular metabolism, and typically used as a food preservative, has also been shown to efficiently acidify urine in conjunction with non-oxidizing biocides to provide effective stabilization with respect to both microbial growth and ammonia volatilization.

  18. Significantly increased risk of carotid atherosclerosis with arsenic exposure and polymorphisms in arsenic metabolism genes

    SciTech Connect

    Hsieh, Yi-Chen; Lien, Li-Ming; School of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Neurology, Shin Kong WHS Memorial Hospital, Taipei, Taiwan ; Chung, Wen-Ting; Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan ; Hsieh, Fang-I; Hsieh, Pei-Fan; Wu, Meei-Maan; Graduate Institute of Basic Medicine, College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan ; Tseng, Hung-Pin; Chiou, Hung-Yi; Chen, Chien-Jen

    2011-08-15

    Individual susceptibility to arsenic-induced carotid atherosclerosis might be associated with genetic variations in arsenic metabolism. The purpose of this study is to explore the interaction effect on risk of carotid atherosclerosis between arsenic exposure and risk genotypes of purine nucleoside phosphorylase (PNP), arsenic (+3) methyltransferase (As3MT), and glutathione S-transferase omega 1 (GSTO1) and omega 2 (GSTO2). A community-based case-control study was conducted in northeastern Taiwan to investigate the arsenic metabolic-related genetic susceptibility to carotid atherosclerosis. In total, 863 subjects, who had been genotyped and for whom the severity of carotid atherosclerosis had been determined, were included in the present study. Individual well water was collected and arsenic concentration determined using hydride generation combined with flame atomic absorption spectrometry. The result showed that a significant dose-response trend (P=0.04) of carotid atherosclerosis risk associated with increasing arsenic concentration. Non-significant association between genetic polymorphisms of PNP Gly51Ser, Pro57Pro, As3MT Met287Thr, GSTO1 Ala140Asp, and GSTO2 A-183G and the risk for development of carotid atherosclerosis were observed. However, the significant interaction effect on carotid atherosclerosis risk was found for arsenic exposure (>50 {mu}g/l) and the haplotypes of PNP (p=0.0115). A marked elevated risk of carotid atherosclerosis was observed in subjects with arsenic exposure of >50 {mu}g/l in drinking water and those who carried the PNP A-T haplotype and at least either of the As3MT risk polymorphism or GSTO risk haplotypes (OR, 6.43; 95% CI, 1.79-23.19). In conclusion, arsenic metabolic genes, PNP, As3MT, and GSTO, may exacerbate the formation of atherosclerosis in individuals with high levels of arsenic concentration in well water (>50 {mu}g/l). - Highlights: {yields}Arsenic metabolic genes might be associated with carotid atherosclerosis. {yields} A case-control study was conducted to investigate the arsenic metabolic-related genetic susceptibility to carotid atherosclerosis. {yields} Arsenic metabolic genes, PNP, As3MT, and GSTO, may exacerbate atherosclerosis risk in individuals with high levels of arsenic in well water.

  19. Chem I Supplement: Arsenic and Old Myths.

    ERIC Educational Resources Information Center

    Sarquis, Mickey

    1979-01-01

    Describes the history of arsenic, the properties of arsenic, production and uses of arsenicals, arsenic in the environment; toxic levels of arsenic, arsenic in the human body, and the Marsh Test. (BT)

  20. Arsenic in Drinking Water--The Silent Killer

    ERIC Educational Resources Information Center

    Wajrak, Magdalena

    2011-01-01

    Natural arsenic salts are present in all waters, with natural concentrations of less than 10 parts per billion (ppb). Unfortunately, there is an increasing number of countries where toxic arsenic compounds in groundwater, which is used for drinking and irrigation, have been detected at concentrations above the World Health Organization's…

  1. Arsenic in detergents: Possible danger and pollution hazard

    USGS Publications Warehouse

    Angino, E.E.; Magnuson, L.M.; Waugh, T.C.; Galle, O.K.; Bredfeldt, J.

    1970-01-01

    Arsenic at a concentration of 10 to 70 parts per million has been detected in several common presoaks and household detergents. Arsenic values of 2 to 8 parts per billion have been measured in the Kansas River. These concentrations are close to the amount (10 parts per billion) recommended by the United States Public Health Service as a drinking-water standard.

  2. Arsenic in marine mammals, seabirds, and sea turtles.

    PubMed

    Kunito, Takashi; Kubota, Reiji; Fujihara, Junko; Agusa, Tetsuro; Tanabe, Shinsuke

    2008-01-01

    Although there have been numerous studies on arsenic in low-trophic-level marine organisms, few studies exist on arsenic in marine mammals, seabirds, and sea turtles. Studies on arsenic species and their concentrations in these animals are needed to evaluate their possible health effects and to deepen our understanding of how arsenic behaves and cycles in marine ecosystems. Most arsenic in the livers of marine mammals, seabirds, and sea turtles is AB, but this form is absent or occurs at surprisingly low levels in the dugong. Although arsenic levels were low in marine mammals, some seabirds, and some sea turtles, the black-footed albatross and hawksbill and loggerhead turtles showed high concentrations, comparable to those in marine organisms at low trophic levels. Hence, these animals may have a specific mechanism for accumulating arsenic. Osmoregulation in these animals may play a role in the high accumulation of AB. Highly toxic inorganic arsenic is found in some seabirds and sea turtles, and some evidence suggests it may act as an endocrine disruptor, requiring new and more detailed studies for confirmation. Furthermore, DMA(V) and arsenosugars, which are commonly found in marine animals and marine algae, respectively, might pose risks to highly exposed animals because of their tendency to form reactive oxygen species. In marine mammals, arsenic is thought to be mainly stored in blubber as lipid-soluble arsenicals. Because marine mammals occupy the top levels of their food chain, work to characterize the lipid-soluble arsenicals and how they cycle in marine ecosystems is needed. These lipid-soluble arsenicals have DMA precursors, the exact structures of which remain to be determined. Because many more arsenicals are assumed to be present in the marine environment, further advances in analytical capabilities can and will provide useful future information on the transformation and cycling of arsenic in the marine environment. PMID:18418953

  3. Arsenic in ground water in selected parts of southwestern Ohio, 2002-03

    USGS Publications Warehouse

    Thomas, Mary Ann; Schumann, Thomas L.; Pletsch, Bruce A.

    2005-01-01

    Arsenic concentrations were measured in 57 domestic wells in Preble, Miami, and Shelby Counties, in southwestern Ohio. The median arsenic concentration was 7.1 ?g/L (micrograms per liter), and the maximum was 67.6 ?g/L. Thirty-seven percent of samples had arsenic concentrations greater than the U.S. Environmental Protection Agency drinking-water standard of 10 ?g/L. Elevated arsenic concentrations (>10 ?g/L) were detected over the entire range of depths sampled (42 to 221 feet) and in each of three aquifer types, Silurian carbonate bedrock, glacial buried-valley deposits, and glacial till with interbedded sand and gravel. One factor common in all samples with elevated arsenic concentrations was that iron concentrations were greater than 1,000 ?g/L. The observed correlations of arsenic with iron and alkalinity are consistent with the hypothesis that arsenic was released from iron oxides under reducing conditions (by reductive dissolution or reductive desorption). Comparisons among the three aquifer types revealed some differences in arsenic occurrence. For buried-valley deposits, the median arsenic concentration was 4.6 ?g/L, and the maximum was 67.6 ?g/L. There was no correlation between arsenic concentrations and depth; the highest concentrations were at intermediate depths (about 100 feet). Half of the buried-valley samples were estimated to be methanic. Most of the samples with elevated arsenic concentrations also had elevated concentrations of dissolved organic carbon and ammonia. For carbonate bedrock, the median arsenic concentration was 8.0 ?g/L, and the maximum was 30.7 ?g/L. Arsenic concentrations increased with depth. Elevated arsenic concentrations were detected in iron- or sulfate-reducing samples. Arsenic was significantly correled with molybdenum, strontium, fluoride, and silica, which are components of naturally ocurring minerals. For glacial till with interbedded sand and gravel, half of the samples had elevated arsenic concentrations. The median was 11.4 ?g/L, and the maximum was 27.6 ?g/L. At shallow depths (<100 feet), this aquifer type had higher arsenic and iron concentrations than carbonate bedrock. It is not known whether these observed differences among aquifer types are related to variations in (1) arsenic content of the aquifer material, (2) organic carbon content of the aquifer material, (3) mechanisms of arsenic mobilization (or uptake), or (4) rates of arsenic mobilization (or uptake). A followup study that includes solid-phase analyses and geochemical modeling was begun in 2004 in northwestern Preble County.

  4. Arsenic in Bangladesh Decision analysis

    E-print Network

    Gelman, Andrew

    Arsenic in Bangladesh Decision analysis Regression models Take-home points Arsenic and old models 2007 Andrew Gelman Arsenic and old models #12;Arsenic in Bangladesh Decision analysis Regression models Arsenic and old models #12;Arsenic in Bangladesh Decision analysis Regression models Take-home points

  5. Health burden of skin lesions at low arsenic exposure through groundwater in Pakistan. Is river the source?

    SciTech Connect

    Fatmi, Zafar; Azam, Iqbal; Ahmed, Faiza; Kazi, Ambreen; Gill, Albert Bruce; Kadir, Muhmmad Masood; Ahmed, Mubashir; Ara, Naseem; Janjua, Naveed Zafar

    2009-07-15

    A significant proportion of groundwater in south Asia is contaminated with arsenic. Pakistan has low levels of arsenic in groundwater compared with China, Bangladesh and India. A representative multi-stage cluster survey conducted among 3874 persons {>=}15 years of age to determine the prevalence of arsenic skin lesions, its relation with arsenic levels and cumulative arsenic dose in drinking water in a rural district (population: 1.82 million) in Pakistan. Spot-urine arsenic levels were compared among individuals with and without arsenic skin lesions. In addition, the relation of age, body mass index, smoking status with arsenic skin lesions was determined. The geographical distribution of the skin lesions and arsenic-contaminated wells in the district were ascertained using global positioning system. The total arsenic, inorganic and organic forms, in water and spot-urine samples were determined by atomic absorption spectrophotometry. The prevalence of skin lesions of arsenic was estimated for complex survey design, using surveyfreq and surveylogistic options of SAS 9.1 software.The prevalence of definitive cases i.e. hyperkeratosis of both palms and soles, was 3.4 per 1000 and suspected cases i.e. any sign of arsenic skin lesions (melanosis and/or keratosis), were 13.0 per 1000 among {>=}15-year-old persons in the district. Cumulative arsenic exposure (dose) was calculated from levels of arsenic in water and duration of use of current drinking water source. Prevalence of skin lesions increases with cumulative arsenic exposure (dose) in drinking water and arsenic levels in urine. Skin lesions were 2.5-fold among individuals with BMI <18.5 kg/m{sup 2}. Geographically, more arsenic-contaminated wells and skin lesions were alongside Indus River, suggests a strong link between arsenic contamination of groundwater with proximity to river.This is the first reported epidemiological and clinical evidence of arsenic skin lesions due to groundwater in Pakistan. Further investigations and focal mitigation measures for arsenic may be carried out alongside Indus River.

  6. Urinating more at night

    MedlinePLUS

    ... you to urinate more often during the night. Caffeine and alcohol after dinner can also lead to ... or urinary tract Drinking a lot of alcohol, caffeine, or other fluids before bedtime Enlarged prostate gland ( ...

  7. Osmolality urine - series (image)

    MedlinePLUS

    ... area around the urethra. Open a urine-collection bag (a plastic bag with adhesive paper on one end), and place ... the entire penis can be placed in the bag with the adhesive attached to the skin. For ...

  8. 24-hour urine protein

    MedlinePLUS

    ... area around the urethra. Open a urine collection bag (a plastic bag with an adhesive paper on one end), and ... For males, place the entire penis in the bag and attach the adhesive to the skin. For ...

  9. PBG urine test

    MedlinePLUS

    Porphobilinogen test ... temporarily stop taking medicines that may affect the test results. Be sure to tell your provider about ... This test involves only normal urination, and there is no discomfort.

  10. Maple syrup urine disease

    MedlinePLUS

    ... Persons with this condition cannot break down the amino acids leucine, isoleucine, and valine. This leads to a ... Plasma amino acid test Urine amino acid test There will be signs of ketosis and excess acid in blood (acidosis).

  11. Dietary Intake of Methionine, Cysteine, and Protein and Urinary Arsenic Excretion in Bangladesh

    PubMed Central

    Heck, Julia E.; Nieves, Jeri W.; Chen, Yu; Parvez, Faruque; Brandt-Rauf, Paul W.; Graziano, Joseph H.; Slavkovich, Vesna; Howe, Geoffrey R.; Ahsan, Habibul

    2009-01-01

    Background In Bangladesh, millions of people are exposed to arsenic in drinking water; arsenic is associated with increased risk of cancer. Once ingested, arsenic is metabolized via methylation and excreted in urine. Knowledge about nutritional factors affecting individual variation in methylation is limited. Objectives The purpose of this study was to examine associations between intakes of protein, methionine, and cysteine total urinary arsenic in a large population-based sample. Methods The study subjects were 10,402 disease-free residents of Araihazar, Bangladesh, who participated in the Health Effects of Arsenic Longitudinal Study (HEALS). Food intakes were assessed using a validated food frequency questionnaire developed for the study population. Nutrient composition was determined by using the U.S. Department of Agriculture National Nutrient Database for Standard Reference. Generalized estimating equations were used to examine association between total urinary arsenic across quintiles of nutrient intakes while controlling for arsenic exposure from drinking water and other predictors of urinary arsenic. Results Greater intakes of protein, methionine, and cysteine were associated with 10–15% greater total urinary arsenic excretion, after controlling for total energy intake, body weight, sex, age, tobacco use, and intake of some other nutrients. Conclusions Given previously reported risks between lower rates of arsenic excretion and increased rates of cancer, these findings support the role of nutrition in preventing arsenic-related disease. PMID:19165394

  12. COMPARISON OF A CHEMICAL AND ENZYMATIC EXTRACTION OF ARSENIC FROM RICE AND AN ASSESSMENT OF THE ARSENIC ABSORPTION FROM CONTAMINATED WATER BY COOKED RICE

    EPA Science Inventory

    Rice represents a unique set of arsenic exposure assessment challenges in that it contains relatively high concentrations of arsenic and it absorbs about 100% of its dry weight in water during cooking. The actual arsenic exposure from rice consumption becomes difficult to calcul...

  13. Arsenic and Manganese Alter Lead Deposition in the Rat

    PubMed Central

    Andrade, V; Mateus, ML; Santos, D; Aschner, M; Batoreu, MC; Marreilha dos Santos, AP

    2014-01-01

    Lead (Pb) continues to be a major toxic metal in the environment. Pb exposure frequently occurs in the presence of other metals, such as arsenic (As) and manganese (Mn). Continued exposure to low levels of these metals may lead to long-term toxic effects due to their accumulation in several organs. Despite the recognition that metals in a mixture may alter each other’s toxicity by affecting deposition, there is dearth of information on their interactions in vivo. In this work, we investigated the effect of As and Mn on Pb tissue deposition, focusing on the kidney, brain and liver. Wistar rats were treated with 8 doses of each single metal, Pb (5 mg/Kg bw), As (60 mg/L) and Mn mg/Kg bw), or the same doses in a triple metal mixture. Kidney, brain, liver, blood and urine Pb, As and Mn concentrations were determined by graphite furnace atomic absorption spectrophotometry. Pb kidney, brain and liver concentrations in the metal mixture-treated group were significantly increased compared to the Pb alone treated group, being more pronounced in the kidney (5.4 fold), brain (2.5 fold) and liver (1.6 fold). Urinary excretion of Pb in the metal mixture-treated rats significantly increased compared with the Pb treated group, although blood Pb concentrations were analogous to the Pb treated group. Co-treatment with As, Mn and Pb alters Pb deposition compared to Pb alone treatment, increasing Pb accumulation predominantly in kidney and brain. Blood Pb levels, unlike urine, do not reflect the increased Pb deposition in the kidney and brain. Taken together, the results suggest that the nephro- and neurotoxicity of “real-life” Pb exposure scenarios should be considered within the context of metal mixture exposures. PMID:24715659

  14. Arsenic stress after the Proterozoic glaciations

    PubMed Central

    Chi Fru, Ernest; Arvestål, Emma; Callac, Nolwenn; El Albani, Abderrazak; Kilias, Stephanos; Argyraki, Ariadne; Jakobsson, Martin

    2015-01-01

    Protection against arsenic damage in organisms positioned deep in the tree of life points to early evolutionary sensitization. Here, marine sedimentary records reveal a Proterozoic arsenic concentration patterned to glacial-interglacial ages. The low glacial and high interglacial sedimentary arsenic concentrations, suggest deteriorating habitable marine conditions may have coincided with atmospheric oxygen decline after ~2.1 billion years ago. A similar intensification of near continental margin sedimentary arsenic levels after the Cryogenian glaciations is also associated with amplified continental weathering. However, interpreted atmospheric oxygen increase at this time, suggests that the marine biosphere had widely adapted to the reorganization of global marine elemental cycles by glaciations. Such a glacially induced biogeochemical bridge would have produced physiologically robust communities that enabled increased oxygenation of the ocean-atmosphere system and the radiation of the complex Ediacaran-Cambrian life. PMID:26635187

  15. Arsenic stress after the Proterozoic glaciations.

    PubMed

    Chi Fru, Ernest; Arvestål, Emma; Callac, Nolwenn; El Albani, Abderrazak; Kilias, Stephanos; Argyraki, Ariadne; Jakobsson, Martin

    2015-01-01

    Protection against arsenic damage in organisms positioned deep in the tree of life points to early evolutionary sensitization. Here, marine sedimentary records reveal a Proterozoic arsenic concentration patterned to glacial-interglacial ages. The low glacial and high interglacial sedimentary arsenic concentrations, suggest deteriorating habitable marine conditions may have coincided with atmospheric oxygen decline after ~2.1 billion years ago. A similar intensification of near continental margin sedimentary arsenic levels after the Cryogenian glaciations is also associated with amplified continental weathering. However, interpreted atmospheric oxygen increase at this time, suggests that the marine biosphere had widely adapted to the reorganization of global marine elemental cycles by glaciations. Such a glacially induced biogeochemical bridge would have produced physiologically robust communities that enabled increased oxygenation of the ocean-atmosphere system and the radiation of the complex Ediacaran-Cambrian life. PMID:26635187

  16. TU & MA: ARSENIC UPTAKE BY THE HYPERACCUMULATOR LADDER BRAKE 641 reproductive growth of simulated and field-grown soybean. I. Seed-dynamics of N2-fixing, field-growing Alnus glutinosa under elevated

    E-print Network

    Ma, Lena

    TU & MA: ARSENIC UPTAKE BY THE HYPERACCUMULATOR LADDER BRAKE 641 reproductive growth of simulated and nitrogen Effects of Arsenic Concentrations and Forms on Arsenic Uptake by the Hyperaccumulator Ladder Brake of arsenic-contaminated soils has thus become aLadder brake (Pteris vittata L.) is a newly discovered arsenic

  17. Substantial contribution of biomethylation to aquifer arsenic cycling

    NASA Astrophysics Data System (ADS)

    Maguffin, Scott C.; Kirk, Matthew F.; Daigle, Ashley R.; Hinkle, Stephen R.; Jin, Qusheng

    2015-04-01

    Microbes play a prominent role in transforming arsenic to and from immobile forms in aquifers. Much of this cycling involves inorganic forms of arsenic, but microbes can also generate organic forms through methylation, although this process is often considered insignificant in aquifers. Here we identify the presence of dimethylarsinate and other methylated arsenic species in an aquifer hosted in volcaniclastic sedimentary rocks. We find that dimethylarsinate is widespread in the aquifer and its concentration correlates strongly with arsenite concentration. We use laboratory incubation experiments and an aquifer injection test to show that aquifer microbes can produce dimethylarsinate at rates of about 0.1% of total dissolved arsenic per day, comparable to rates of dimethylarsinate production in surface environments. Based on these results, we estimate that globally, biomethylation in aquifers has the potential to transform 100 tons of inorganic arsenic to methylated arsenic species per year, compared with the 420-1,250 tons of inorganic arsenic that undergoes biomethylation in soils. We therefore conclude that biomethylation could contribute significantly to aquifer arsenic cycling. Because biomethylation yields arsine and methylarsines, which are more volatile and prone to diffusion than other arsenic species, we further suggest that biomethylation may serve as a link between surface and subsurface arsenic cycling.

  18. Arsenic in North Carolina: Public Health Implications

    PubMed Central

    Sanders, Alison P.; Messier, Kyle P.; Shehee, Mina; Rudo, Kenneth; Serre, Marc L.; Fry, Rebecca C.

    2012-01-01

    Arsenic is a known human carcinogen and relevant environmental contaminant in drinking water systems. We set out to comprehensively examine statewide arsenic trends and identify areas of public health concern. Specifically, arsenic trends in North Carolina private wells were evaluated over an eleven-year period using the North Carolina Department of Health and Human Services (NCDHHS) database for private domestic well waters. We geocoded over 63,000 domestic well measurements by applying a novel geocoding algorithm and error validation scheme. Arsenic measurements and geographical coordinates for database entries were mapped using Geographic Information System (GIS) techniques. Furthermore, we employed a Bayesian Maximum Entropy (BME) geostatistical framework, which accounts for geocoding error to better estimate arsenic values across the state and identify trends for unmonitored locations. Of the approximately 63,000 monitored wells, 7,712 showed detectable arsenic concentrations that ranged between 1 and 806 ?g/L. Additionally, 1,436 well samples exceeded the EPA drinking water standard. We reveal counties of concern and demonstrate a historical pattern of elevated arsenic in some counties, particularly those located along the Carolina terrane (Carolina slate belt). We analyzed these data in the context of populations using private well water and identify counties for targeted monitoring, such as Stanly and Union Counties. By spatiotemporally mapping these data, our BME estimate revealed arsenic trends at unmonitored locations within counties and better predicted well concentrations when compared to the classical kriging method. This study reveals relevant information on the location of arsenic-contaminated private domestic wells in North Carolina and indicates potential areas at increased risk for adverse health outcomes. PMID:21982028

  19. Arsenic loads in Spearfish Creek, western South Dakota, water years 1989-91

    USGS Publications Warehouse

    Driscoll, Daniel G.; Hayes, Timothy S.

    1995-01-01

    Numerous small tributaries on the eastern flank of Spearfish Creek originate within a mineralized area with a long history of gold-mining activity. Some streams draining this area are known to have elevated concentrations of arsenic. One such tributary is Annie Creek, where arsenic concentrations regularly approach the Maximum Contaminant Level of 50 mg/L (micrograms per liter) established by the U.S. Environmental Protection Agency. A site on Annie Creek was proposed for inclusion on the National Priorities List by the Environmental Protection Agency in 1991. This report presents information about arsenic loads and concentrations in Spearfish Creek and its tributaries, including Annie Creek. Stream types were classified according to geologic characteris- tics and in-stream arsenic concentrations. The first type includes streams that lack significant arsenic sources and have low in-stream arsenic concentra- tions. The second type has abundant arsenic sources and high in-stream concentrations. The third type has abundant arsenic sources but only moderate in-stream concentrations. The fourth type is a mixture of the first three types. Annual loads of dissolved arsenic were calculated for two reaches of Spearfish Creek to quantify arsenic loads at selected gaging stations during water years 1989-91. Mass-balance calculations also were performed to estimate arsenic concentrations for ungaged inflows to Spearfish Creek. The drainage area of the upstream reach includes significant mineralized areas, whereas the drainage area of the downstream reach generally is without known arsenic sources. The average load of dissolved arsenic transported from the upstream reach of Spearfish Creek, which is representative of a type 4 stream, was 158 kilograms per year, calculated for station 06430900, Spearfish Creek above Spearfish. Gaged headwater tributaries draining unmineralized areas (type 1) contributed only 16 percent of the arsenic load in 63 percent of the discharge. Annie Creek (type 2), which has the highest measured arsenic concentra- tions in the Spearfish Creek drainage, contributed about 15 percent of the arsenic load in about 2 percent of the discharge of the upstream reach. Squaw Creek, which drains another mineralized area, but has only moderate in-stream concentrations (type 3), contributed 4 percent of the arsenic load in 5 percent of the discharge. Ungaged inflows to the reach contributed the remaining 65 percent of the arsenic load in 30 percent of the discharge. The calculated loads from ungaged inflows include all arsenic contributed by surface- and ground-water sources, as well as any additions of arsenic from dissolution of arsenic-bearing solid phases, or from desorption of arsenic from solid surfaces, within the streambed of the upstream reach. Mass-balance calculations indicate that dissolved arsenic concentrations of the ungaged inflows in the upstream reach averaged about 9 mg/L. In-stream arsenic concentrations of ungaged inflows from the unmineralized western flank of Spearfish Creek probably are generally low (type 1). Thus, in-stream arsenic concentrations for ungaged inflows draining the mineralized eastern flank of Spearfish probably average almost twice that level, or about 18 mg/L. Some ungaged, eastern-flank inflows probably are derived from type 3 drainages, with only moderate arsenic concentrations. If so, other ungaged, eastern-flank inflows could have in-stream arsenic concentrations similar to those of Annie Creek. No significant arsenic sources were apparent in the downstream reach of Spearfish Creek. Over the course of the downstream reach, arsenic concentrations decreased somewhat, probably resulting from dilution, as well as from possible chemical adsorption to sediment surfaces or arsenic-phase precipitation. A decrease in arsenic loads resulted from various diversions from the creek and from the potential chemical removal processes. Because of a large margin of error associated with calculation o

  20. MDI Biological Laboratory Arsenic Summit: Approaches to Limiting Human Exposure to Arsenic.

    PubMed

    Stanton, Bruce A; Caldwell, Kathleen; Congdon, Clare Bates; Disney, Jane; Donahue, Maria; Ferguson, Elizabeth; Flemings, Elsie; Golden, Meredith; Guerinot, Mary Lou; Highman, Jay; James, Karen; Kim, Carol; Lantz, R Clark; Marvinney, Robert G; Mayer, Greg; Miller, David; Navas-Acien, Ana; Nordstrom, D Kirk; Postema, Sonia; Rardin, Laurie; Rosen, Barry; SenGupta, Arup; Shaw, Joseph; Stanton, Elizabeth; Susca, Paul

    2015-09-01

    This report is the outcome of the meeting "Environmental and Human Health Consequences of Arsenic" held at the MDI Biological Laboratory in Salisbury Cove, Maine, August 13-15, 2014. Human exposure to arsenic represents a significant health problem worldwide that requires immediate attention according to the World Health Organization (WHO). One billion people are exposed to arsenic in food, and more than 200 million people ingest arsenic via drinking water at concentrations greater than international standards. Although the US Environmental Protection Agency (EPA) has set a limit of 10 ?g/L in public water supplies and the WHO has recommended an upper limit of 10 ?g/L, recent studies indicate that these limits are not protective enough. In addition, there are currently few standards for arsenic in food. Those who participated in the Summit support citizens, scientists, policymakers, industry, and educators at the local, state, national, and international levels to (1) establish science-based evidence for setting standards at the local, state, national, and global levels for arsenic in water and food; (2) work with government agencies to set regulations for arsenic in water and food, to establish and strengthen non-regulatory programs, and to strengthen collaboration among government agencies, NGOs, academia, the private sector, industry, and others; (3) develop novel and cost-effective technologies for identification and reduction of exposure to arsenic in water; (4) develop novel and cost-effective approaches to reduce arsenic exposure in juice, rice, and other relevant foods; and (5) develop an Arsenic Education Plan to guide the development of science curricula as well as community outreach and education programs that serve to inform students and consumers about arsenic exposure and engage them in well water testing and development of remediation strategies. PMID:26231509

  1. Quality of our groundwater resources: arsenic and fluoride

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    2011-01-01

    Groundwater often contains arsenic or fluoride concentrations too high for drinking or cooking. These constituents, often naturally occurring, are not easy to remove. The right combination of natural or manmade conditions can lead to elevated arsenic or fluoride which includes continental source rocks, high alkalinity and pH, reducing conditions for arsenic, high phosphate, high temperature and high silica. Agencies responsible for safe drinking water should be aware of these conditions, be prepared to monitor, and treat if necessary.

  2. Natural arsenic in Triassic rocks: A source of drinking-water contamination in Bavaria, Germany

    NASA Astrophysics Data System (ADS)

    Heinrichs, Gerold; Udluft, Peter

    The aquifer system of the Upper Triassic Keuper Sandstone, an important source of drinking water in northern Bavaria, is affected by elevated arsenic concentrations. Within the study area of 8000km2, no evidence exists for any artificial source of arsenic. Data from about 500 deep water wells show that in approximately 160 wells arsenic concentrations are 10-150?g/L. The regional distribution of arsenic in the groundwater shows that elevated arsenic concentrations are probably related to specific lithofacies of the aquifers that contain more sediments of terrestrial origin. Geochemical measurements on samples from four selected well cores show that arsenic has accumulated in the rocks. This indigenous arsenic is the source of arsenic in the groundwater of certain facies of the middle unit of the Keuper Sandstone. Résumé Le système aquifère des grès du Keuper, ressource en eau potable importante du nord de la Bavière, est marqué par des concentrations en arsenic élevées. Dans la région étudiée, qui s'étend sur 8000km2, il n'existe aucun indice d'une source artificielle d'arsenic. Les données provenant d'environ 500 puits profonds montrent que dans environ 160 puits les concentrations en arsenic sont comprises entre 10-150?g/L. La distribution régionale de l'arsenic dans les eaux souterraines montre que les concentrations élevées en arsenic sont probablement associées à des lithofaciès spécifiques qui contiennent plus de sédiments d'origine continentale. Des analyses géochimiques sur des échantillons provenant des carottes de quatre puits sélectionnés montrent que l'arsenic s'est accumulé dans ces roches. L'arsenic autochtone est la source de l'arsenic dans les eaux souterraines de certains faciès de l'unité médiane des grès du Keuper.

  3. ARSENIC RESEARCH AT GWERD

    EPA Science Inventory

    Abstract - The presentation will summarize the arsenic research program at the Ground Water & Ecosystems Restoration Division of the National Risk Management Research Laboratory of USEPA. Topics include use of permeable reactive barriers for in situ arsenic remediation in ground...

  4. Cryptic exposure to arsenic.

    PubMed

    Rossy, Kathleen M; Janusz, Christopher A; Schwartz, Robert A

    2005-01-01

    Arsenic is an odorless, colorless and tasteless element long linked with effects on the skin and viscera. Exposure to it may be cryptic. Although human intake can occur from four forms, elemental, inorganic (trivalent and pentavalent arsenic) and organic arsenic, the trivalent inorganic arsenicals constitute the major human hazard. Arsenic usually reaches the skin from occupational, therapeutic, or environmental exposure, although it still may be employed as a poison. Occupations involving new technologies are not exempt from arsenic exposure. Its acute and chronic effects are noteworthy. Treatment options exist for arsenic-induced pathology, but prevention of toxicity remains the main focus. Vitamin and mineral supplementation may play a role in the treatment of arsenic toxicity. PMID:16394429

  5. Arsenic Trioxide Injection

    MedlinePLUS

    Arsenic trioxide is used to treat acute promyelocytic leukemia (APL; a type of cancer in which there ... worsened following treatment with other types of chemotherapy. Arsenic trioxide is in a class of medications called ...

  6. Reverse Osmosis Filter Use and High Arsenic Levels in Private Well Water

    PubMed Central

    George, Christine M.; Smith, Allan H.; Kalman, David A.; Steinmaus, Craig M.

    2013-01-01

    Inorganic arsenic causes cancer, and millions of people worldwide are exposed to arsenic-contaminated water. Regulatory standards for arsenic levels in drinking water generally do not apply to private domestic wells. Reverse osmosis (RO) units commonly are used by well owners to reduce arsenic concentrations, but may not always be effective. In a survey of 102 homes in Nevada, 19 used RO devices. Pre- and post-RO filtration arsenic concentrations averaged 443 ?g/l and 87 ?g/l, respectively. The average absolute and percent reductions in arsenic concentrations after filtration were 356 ?g/l and 79%, respectively. Postfiltration concentrations were higher than 10 ?g/l in 10 homes and higher than 100 ?g/l in 4 homes. These findings provide evidence that RO filters do not guarantee safe drinking water and, despite regulatory standards, some people continue to be exposed to very high arsenic concentrations. PMID:17867571

  7. Association between occupational exposure to arsenic and neurological, respiratory and renal effects

    SciTech Connect

    Halatek, Tadeusz Sinczuk-Walczak, Halina; Rabieh, Sasan; Wasowicz, Wojciech

    2009-09-01

    Occupational exposure by inhalation in copper smelter is associated with several subclinical health phenomena. The respiratory tract is usually involved in the process of detoxication of inhaled noxious agents which, as arsenic, can act as inductors of oxidative stress (Lantz, R.C., Hays, A.M., 2006. Role of oxidative stress in arsenic-induced toxicity. Drug Metab. Rev. 38, 791-804). It is also known that irritating fumes affect distal bronchioles of non-ciliated, epithelial Clara cells, which secrete anti-inflammatory and immunosuppressive Clara cell protein (CC16) into the respiratory tract. The study group comprised 39 smelters employed at different workplaces in a copper foundry, matched for age and smoking habits with the control group (n = 16). Subjective neurological symptoms (SNS), visual evoked potentials (VEP), electroneurographic (EneG) and electroencephalographic (EEG) results were examined in the workers and the relationships between As concentration in the air (As-Air) and urine (As-U) were assessed. Effects of exposure were expressed in terms of biomarkers: CC16 as early pulmonary biomarker and {beta}{sub 2}-microglobulin ({beta}{sub 2}M) in urine and serum and retinol binding protein (RBP) as renal markers, measured by sensitive latex immunoassay. The concentrations of arsenic exceeded about two times the Threshold Limit Values (TLV) (0.01 mg/m{sup 3}). The contents of lead did not exceed the TLV (0.05 mg/m{sup 3}). Low CC16 levels in serum (12.1 {mu}g/l) of workers with SNS and VEP symptoms and highest level As-U (x{sub a} 39.0 {mu}g/l) were noted earliest in relation to occupational time. Moreover, those effects were associated with increased levels of urinary and serum {beta}{sub 2}M and urinary RBP. Results of our study suggested the initiative key role of oxidative stress in triggering the processes that eventually lead to the subclinical effects of arsenic on the nervous system.

  8. Comparison of tunable bandpass reaction cell inductively coupled plasma mass spectrometry with conventional inductively coupled plasma mass spectrometry for the determination of heavy metals in whole blood and urine

    NASA Astrophysics Data System (ADS)

    Nixon, David E.; Neubauer, Kenneth R.; Eckdahl, Steven J.; Butz, John A.; Burritt, Mary F.

    2004-09-01

    A Dynamic Reaction Cell™ inductively coupled plasma mass spectrometer (DRC-ICP-MS) was evaluated for the determination of arsenic, lead, cadmium, mercury, and thallium in urine and whole blood. Reaction cell conditions were evaluated for suppression of ArCl + and CaCl + polyatomic interferences. The reaction gas was 5% hydrogen in argon. Lead, cadmium, mercury, and thallium were determined with the reaction cell vented. Mixture of 2.5% t-butanol, 0.5% HCl, and 2 mg Au/l plus Ga, Rh, and Bi internal standards was used to dilute whole blood and urine. Calibration was achieved using aqueous acidic standards spiked into urine matrix. Urine and whole blood addition calibration curves were nearly identical for all five elements. DRC-ICP-MS detection limits were equivalent or better than conventional ICP-MS. Within run coefficients of variation (CV's) were nearly the same for DRC-ICP-MS and conventional ICP-MS for National Institute of Standards and Technology (NIST) SRM 2670 and BioRad Lyphochek Urine Metals Control. DRC-ICP-MS within run CV's for As, Pb, Cd, and Hg were 1.9%, 4%, 1.7%, and 1.7%, respectively, for NIST 2670 and 2.9%, 1.8%, 3.4%, 1.7%, and 1.0% for BioRad urine. BioRad Lyphochek Whole Blood control concentrations and CV's were: 78 ?g/l (3.8%), 284 ?g/l (0.52%), and 544 ?g/l (0.9%). With the exception of mercury day-to-day CV's for certified whole blood and urine controls were less than 4% on both the DRC-ICP-MS and conventional ICP-MS.

  9. Arsenic management through well modification and simulation

    USGS Publications Warehouse

    Halford, Keith J.; Stamos, Christina L.; Nishikawa, Tracy; Martin, Peter

    2010-01-01

    Arsenic concentrations can be managed with a relatively simple strategy of grouting instead of completely destroying a selected interval of well. The strategy of selective grouting was investigated in Antelope Valley, California, where groundwater supplies most of the water demand. Naturally occurring arsenic typically exceeds concentrations of 10 (mu or u)g/L in the water produced from these long-screened wells. The vertical distributions of arsenic concentrations in intervals of the aquifer contributing water to selected supply wells were characterized with depth-dependent water-quality sampling and flow logs. Arsenic primarily entered the lower half of the wells where lacustrine clay deposits and a deeper aquifer occurred. Five wells were modified by grouting from below the top of the lacustrine clay deposits to the bottom of the well, which reduced produced arsenic concentrations to less than 2 (mu or u)g/L in four of the five wells. Long-term viability of well modification and reduction of specific capacity was assessed for well 4-54 with AnalyzeHOLE, which creates and uses axisymmetric, radial MODFLOW models. Two radial models were calibrated to observed borehole flows, drawdowns, and transmissivity by estimating hydraulicconductivity values in the aquifer system and gravel packs of the original and modified wells. Lithology also constrained hydraulic-conductivity estimates as regularization observations. Well encrustations caused as much as 2 (mu or u)g/L increase in simulated arsenic concentration by reducing the contribution of flow from the aquifer system above the lacustrine clay deposits. Simulated arsenic concentrations in the modified well remained less than 3 (mu or u)g/L over a 20-year period.

  10. Arsenic in benthic bivalves of San Francisco Bay and the Sacramento/San Joaquin River Delta

    USGS Publications Warehouse

    Johns, C.; Luoma, S.N.

    1990-01-01

    Arsenic concentrations were determined in fine-grained, oxidized, surface sediments and in two benthic bivalves, Corbicula sp. and Macoma balthica, within San Francisco Bay, the Sacramento/San Joaquin River Delta, and selected rivers not influenced by urban or industrial activity. Arsenic concentrations in all samples were characteristic of values reported for uncontaminated estuaries. Small temporal fluctuations and low arsenic concentrations in bivalves and sediments suggest that most inputs of arsenic are likely to be minor and arsenic contamination is not widespread in the Bay.

  11. Associations between Arsenic Species in Exfoliated Urothelial Cells and Prevalence of Diabetes among Residents of Chihuahua, Mexico

    PubMed Central

    Currier, Jenna M.; Ishida, María C.; González-Horta, Carmen; Sánchez-Ramírez, Blanca; Ballinas-Casarrubias, Lourdes; Gutiérrez-Torres, Daniela S.; Cerón, Roberto Hernández; Morales, Damián Viniegra; Terrazas, Francisco A. Baeza; Del Razo, Luz M.; García-Vargas, Gonzalo G.; Saunders, R. Jesse; Drobná, Zuzana; Fry, Rebecca C.; Matoušek, Tomáš; Buse, John B.; Mendez, Michelle A.; Loomis, Dana

    2014-01-01

    Background: A growing number of studies link chronic exposure to inorganic arsenic (iAs) with the risk of diabetes. Many of these studies assessed iAs exposure by measuring arsenic (As) species in urine. However, this approach has been criticized because of uncertainties associated with renal function and urine dilution in diabetic individuals. Objectives: Our goal was to examine associations between the prevalence of diabetes and concentrations of As species in exfoliated urothelial cells (EUC) as an alternative to the measures of As in urine. Methods: We measured concentrations of trivalent and pentavalent iAs methyl-As (MAs) and dimethyl-As (DMAs) species in EUC from 374 residents of Chihuahua, Mexico, who were exposed to iAs in drinking water. We used fasting plasma glucose, glucose tolerance tests, and self-reported diabetes diagnoses or medication to identify diabetic participants. Associations between As species in EUC and diabetes were estimated using logistic and linear regression, adjusting for age, sex, and body mass index. Results: Interquartile-range increases in trivalent, but not pentavalent, As species in EUC were positively and significantly associated with diabetes, with ORs of 1.57 (95% CI: 1.19, 2.07) for iAsIII, 1.63 (1.24, 2.15) for MAsIII, and 1.31 (0.96, 1.84) for DMAsIII. DMAs/MAs and DMAs/iAs ratios were negatively associated with diabetes (OR = 0.62; 95% CI: 0.47, 0.83 and OR = 0.72; 95% CI: 0.55, 0.96, respectively). Conclusions: Our data suggest that uncertainties associated with measures of As species in urine may be avoided by using As species in EUC as markers of iAs exposure and metabolism. Our results provide additional support to previous findings suggesting that trivalent As species may be responsible for associations between diabetes and chronic iAs exposure. Citation: Currier JM, Ishida MC, González-Horta C, Sánchez-Ramírez B, Ballinas-Casarrubias L, Gutiérrez-Torres DS, Hernández Cerón R, Viniegra Morales D, Baeza Terrazas FA, Del Razo LM, García-Vargas GG, Saunders RJ, Drobná Z, Fry RC, Matoušek T, Buse JB, Mendez MA, Loomis D, Stýblo M. 2014. Associations between arsenic species in exfoliated urothelial cells and prevalence of diabetes among residents of Chihuahua, Mexico. Environ Health Perspect 122:1088–1094;?http://dx.doi.org/10.1289/ehp.1307756 PMID:25000461

  12. Evidence against the nuclear in situ binding of arsenicals-oxidative stress theory of arsenic carcinogenesis

    SciTech Connect

    Kitchin, Kirk T. Wallace, Kathleen

    2008-10-15

    A large amount of evidence suggests that arsenicals act via oxidative stress in causing cancer in humans and experimental animals. It is possible that arsenicals could bind in situ close to nuclear DNA followed by Haber-Weiss type oxidative DNA damage. Therefore, we tested this hypothesis by using radioactive {sup 73}As labeled arsenite and vacuum filtration methodology to determine the binding affinity and capacity of {sup 73}As arsenite to calf thymus DNA and Type 2A unfractionated histones, histone H3, H4 and horse spleen ferritin. Arsenicals are known to release redox active Fe from ferritin. At concentrations up to about 1 mM, neither DNA nor any of the three proteins studied, Type II-A histones, histone H3, H4 or ferritin, bound radioactive arsenite in a specific manner. Therefore, it appears highly unlikely that initial in situ binding of trivalent arsenicals, followed by in situ oxidative DNA damage, can account for arsenic's carcinogenicity. This experimental evidence (lack of arsenite binding to DNA, histone Type II-A and histone H3, H4) does not rule out other possible oxidative stress modes of action for arsenic such as (a) diffusion of longer lived oxidative stress molecules, such as H{sub 2}O{sub 2} into the nucleus and ensuing oxidative damage, (b) redox chemistry by unbound arsenicals in the nucleus, or (c) arsenical-induced perturbations in Fe, Cu or other metals which are already known to oxidize DNA in vitro and in vivo.

  13. Interspecies differences in metabolism of arsenic by cultured primary hepatocytes

    SciTech Connect

    Drobna, Zuzana; Walton, Felecia S.; Harmon, Anne W.; Thomas, David J.; Styblo, Miroslav

    2010-05-15

    Biomethylation is the major pathway for the metabolism of inorganic arsenic (iAs) in many mammalian species, including the human. However, significant interspecies differences have been reported in the rate of in vivo metabolism of iAs and in yields of iAs metabolites found in urine. Liver is considered the primary site for the methylation of iAs and arsenic (+3 oxidation state) methyltransferase (As3mt) is the key enzyme in this pathway. Thus, the As3mt-catalyzed methylation of iAs in the liver determines in part the rate and the pattern of iAs metabolism in various species. We examined kinetics and concentration-response patterns for iAs methylation by cultured primary hepatocytes derived from human, rat, mice, dog, rabbit, and rhesus monkey. Hepatocytes were exposed to [{sup 73}As]arsenite (iAs{sup III}; 0.3, 0.9, 3.0, 9.0 or 30 nmol As/mg protein) for 24 h and radiolabeled metabolites were analyzed in cells and culture media. Hepatocytes from all six species methylated iAs{sup III} to methylarsenic (MAs) and dimethylarsenic (DMAs). Notably, dog, rat and monkey hepatocytes were considerably more efficient methylators of iAs{sup III} than mouse, rabbit or human hepatocytes. The low efficiency of mouse, rabbit and human hepatocytes to methylate iAs{sup III} was associated with inhibition of DMAs production by moderate concentrations of iAs{sup III} and with retention of iAs and MAs in cells. No significant correlations were found between the rate of iAs methylation and the thioredoxin reductase activity or glutathione concentration, two factors that modulate the activity of recombinant As3mt. No associations between the rates of iAs methylation and As3mt protein structures were found for the six species examined. Immunoblot analyses indicate that the superior arsenic methylation capacities of dog, rat and monkey hepatocytes examined in this study may be associated with a higher As3mt expression. However, factors other than As3mt expression may also contribute to the interspecies differences in the hepatocyte capacity to methylate iAs.

  14. Interspecies Differences in Metabolism of Arsenic by Cultured Primary Hepatocytes

    PubMed Central

    Drobná, Zuzana; Walton, Felecia S.; Harmon, Anne W.; Thomas, David J.; Stýblo, Miroslav

    2010-01-01

    Biomethylation is the major pathway for the metabolism of inorganic arsenic (iAs) in many mammalian species, including the human. However, significant interspecies differences have been reported in the rate of in vivo metabolism of iAs and in yields of iAs metabolites found in urine. Liver is considered the primary site for the methylation of iAs and arsenic (+3 oxidation state) methyltransferase (As3mt) is the key enzyme in this pathway. Thus, the As3mt-catalyzed methylation of iAs in the liver determines in part the rate and the pattern of iAs metabolism in various species. We examined kinetics and concentration-response patterns for iAs methylation by cultured primary hepatocytes derived from human, rat, mice, dog, rabbit, and rhesus monkey. Hepatocytes were exposed to [73As]arsenite (iAsIII; 0.3, 0.9, 3.0, 9.0 or 30 nmol As/mg protein) for 24 hours and radiolabeled metabolites were analyzed in cells and culture media. Hepatocytes from all six species methylated iAsIII to methylarsenic (MAs) and dimethylarsenic (DMAs). Notably, dog, rat and monkey hepatocytes were considerably more efficient methylators of iAsIII than mouse, rabbit or human hepatocytes. The low efficiency of mouse, rabbit and human hepatocytes to methylate iAsIII was associated with inhibition of DMAs production by moderate concentrations of iAsIII and with retention of iAs and MAs in cells. No significant correlations were found between the rate of iAs methylation and the thioredoxin reductase activity or glutathione concentration, two factors that modulate the activity of recombinant As3mt. No associations between the rates of iAs methylation and As3mt protein structures were found for the six species examined. Immunoblot analyses indicate that the superior arsenic methylation capacities of dog, rat and monkey hepatocytes examined in this study may be associated with a higher As3mt expression. However, factors other than As3mt expression may also contribute to the interspecies differences in the hepatocyte capacity to methylate iAs. PMID:20138079

  15. HUMAN CARCINOGENESIS BY ARSENIC

    EPA Science Inventory

    Arsenic is one of the few human carcinogens for which there is not yet a reliable animal cancer model. s such, the classification of arsenic as a carcinogen is based upon data derived from human epidemiologic studies. Although the mechanisms of action of arsenic as a toxic agent ...

  16. NEVADA ARSENIC STUDY

    EPA Science Inventory

    The effects of exposure to arsenic in U.S. drinking water at low levels are difficult to assess. In particular, studies of sufficient sample size on US populations exposed to arsenic in drinking water are few. Churchill County, NV (population 25000) has arsenic levels in drinki...

  17. ARSENIC REMOVAL TECHNOLOGY

    EPA Science Inventory

    Presentation will discuss the state-of-art technology for removal of arsenic from drinking water. Presentation includes results of several EPA field studies on removal of arsenic from existing arsenic removal plants and key results from several EPA sponsored research studies. T...

  18. ARSENIC SOURCES AND ASSESSMENT

    EPA Science Inventory

    Recent research has identified a number of potential and current links between environmental arsenic releases and the management of operational and abandoned landfills. Many landfills will receive an increasing arsenic load due to the disposal of arsenic-bearing solid residuals ...

  19. Electrochemical arsenic remediation for rural Bangladesh

    SciTech Connect

    Addy, Susan Amrose

    2009-01-01

    Arsenic in drinking water is a major public health problem threatening the lives of over 140 million people worldwide. In Bangladesh alone, up to 57 million people drink arsenic-laden water from shallow wells. ElectroChemical Arsenic Remediation(ECAR) overcomes many of the obstacles that plague current technologies and can be used affordably and on a small-scale, allowing for rapid dissemination into Bangladesh to address this arsenic crisis. In this work, ECAR was shown to effectively reduce 550 - 580 mu g=L arsenic (including both As[III]and As[V]in a 1:1 ratio) to below the WHO recommended maximum limit of 10 mu g=L in synthetic Bangladesh groundwater containing relevant concentrations of competitive ions such as phosphate, silicate, and bicarbonate. Arsenic removal capacity was found to be approximately constant within certain ranges of current density, but was found to change substantially between ranges. In order of decreasing arsenic removal capacity, the pattern was: 0.02 mA=cm2> 0.07 mA=cm2> 0.30 - 1.1 mA=cm2> 5.0 - 100 mA=cm2. Current processing time was found to effect arsenic removal capacity independent of either charge density or current density. Electrode polarization studies showed no passivation of the electrode in the tested range (up to current density 10 mA=cm2) and ruled out oxygen evolution as the cause of decreasing removal capacity with current density. Simple settling and decantation required approximately 3 days to achieve arsenic removal comparable to filtration with a 0.1 mu m membrane. X-ray Absorption Spectroscopy (XAS) showed that (1) there is no significant difference in the arsenic removal mechanism of ECAR during operation at different current densities and (2) the arsenic removal mechanism in ECAR is consistent with arsenate adsorption onto a homogenous Fe(III)oxyhydroxide similar in structure to 2-line ferrihydrite. ECAR effectively reduced high arsenic concentrations (100 - 500 mu g=L) in real Bangladesh tube well water collected from three regions to below the WHO limit of 10 mu g=L. Prototype fabrication and field testing are currently underway.

  20. Case studies--arsenic.

    PubMed

    Chou, C H Selene J; De Rosa, Christopher T

    2003-08-01

    Arsenic is found naturally in the environment. People may be exposed to arsenic by eating food, drinking water, breathing air, or by skin contact with soil or water that contains arsenic. In the U.S., the diet is a predominant source of exposure for the general population with smaller amounts coming from drinking water and air. Children may also be exposed to arsenic because of hand to mouth contact or eating dirt. In addition to the normal levels of arsenic in air, water, soil, and food, people could by exposed to higher levels in several ways such as in areas containing unusually high natural levels of arsenic in rocks which can lead to unusually high levels of arsenic in soil or water. People living in an area like this could take in elevated amounts of arsenic in drinking water. Workers in an occupation that involves arsenic production or use (for example, copper or lead smelting, wood treatment, pesticide application) could be exposed to elevated levels of arsenic at work. People who saw or sand arsenic-treated wood could inhale/ingest some of the sawdust which contains high levels of arsenic. Similarly, when pressure-treated wood is burned, high levels of arsenic could be released in the smoke. In agricultural areas where arsenic pesticides were used on crops the soil could contain high levels of arsenic. Some hazardous waste sites contain large quantities of arsenic. Arsenic ranks #1 on the ATSDR/EPA priority list of hazardous substances. Arsenic has been found in at least 1,014 current or former NPL sites. At the hazardous waster sites evaluated by ATSDR, exposure to arsenic in soil predominated over exposure to water, and no exposure to air had been recorded. However, there is no information on morbidity or mortality from exposure to arsenic in soil at hazardous waste sites. Exposure assessment, community and tribal involvement, and evaluation and surveillance of health effects are among the ATSDR future Superfund research program priority focus areas. Examples of exposures to arsenic in drinking water, diet and pesticide are given. PMID:12971693

  1. Leaching Behaviors of Five Arsenic-Contaminated Soils

    NASA Astrophysics Data System (ADS)

    Qi, Y.; Donahoe, R. J.; Graham, E. Y.

    2005-12-01

    The vadose zone is susceptible to anthropogenic arsenic contamination and may serve as a long-term source of arsenic to ground water. Understanding the processes governing the distribution of arsenic between the aqueous phase and the solid phase is crucial to minimizing the environmental impact of vadose zone contamination. Arsenic can be retained by several soil components through adsorption. The magnitude and controlling factors of arsenic adsorption by these individual components have been investigated by a number of researchers. The desorption behavior of arsenic in bulk soil from actual contaminated sites, however, is rarely reported. Soil samples were collected from five sites contaminated with herbicide containing arsenic trioxide. The environmentally available element concentrations of each soil were determined by microwave-assisted acid digestion (MWD) and ICP-AES analysis. A ferrous sulfate solution was applied to the contaminated soil to precipitate ferric hydroxide as an arsenic fixation method. Sequential leaching experiments were performed upon the treated and untreated soil samples to evaluate the effectiveness of the treatment method. Supernatant leachate solutions were analyzed for total arsenic by ICP-AES. MWD results showed that the original soils contain 47 to 316 ppm arsenic, on a dry weight basis. The arsenic concentrations in the initial leachate ranged from 0.42 to 1.37 ppm for the untreated soils. Due to the high Kd values of the rainwater leachable portion of the soil arsenic, 500 to 4000 pore volumes of SPLP solution were required to bring the leachate arsenic concentration below the MCL for arsenic (50 ppb). In contrast, the ferrous sulfate treatment successfully transferred the loosely adsorbed portion of the soil arsenic to strongly bonded adsorption sites on ferric hydroxide. After treatment, the two soil samples with low calcium content lost their pH buffer capacity and their leachate maintained a pH value of 4.5. No arsenic was detected in the leachate of these two treated samples during three months of sequential leaching. For the other three soils with higher buffer capacity, the treated samples also showed significant decrease in both initial (56-86% decrease) and overall (43-62% decrease) release of arsenic.

  2. Contamination of drinking-water by arsenic in Bangladesh: a public health emergency.

    PubMed Central

    Smith, A. H.; Lingas, E. O.; Rahman, M.

    2000-01-01

    The contamination of groundwater by arsenic in Bangladesh is the largest poisoning of a population in history, with millions of people exposed. This paper describes the history of the discovery of arsenic in drinking-water in Bangladesh and recommends intervention strategies. Tube-wells were installed to provide "pure water" to prevent morbidity and mortality from gastrointestinal disease. The water from the millions of tube-wells that were installed was not tested for arsenic contamination. Studies in other countries where the population has had long-term exposure to arsenic in groundwater indicate that 1 in 10 people who drink water containing 500 micrograms of arsenic per litre may ultimately die from cancers caused by arsenic, including lung, bladder and skin cancers. The rapid allocation of funding and prompt expansion of current interventions to address this contamination should be facilitated. The fundamental intervention is the identification and provision of arsenic-free drinking water. Arsenic is rapidly excreted in urine, and for early or mild cases, no specific treatment is required. Community education and participation are essential to ensure that interventions are successful; these should be coupled with follow-up monitoring to confirm that exposure has ended. Taken together with the discovery of arsenic in groundwater in other countries, the experience in Bangladesh shows that groundwater sources throughout the world that are used for drinking-water should be tested for arsenic. PMID:11019458

  3. Arsenic in tree rings at a highly contaminated site Zhongqi Cheng a,, Brendan M. Buckley a

    E-print Network

    van Geen, Alexander

    Author's personal copy Arsenic in tree rings at a highly contaminated site Zhongqi Cheng a 2007 Available online 16 February 2007 Abstract Arsenic concentrations were measured in annual rings Elsevier B.V. All rights reserved. Keywords: Arsenic; Tree ring; Radial profile; Dendrochemistry 1

  4. Effect of arsenic doping on ^311 defect dissolution in silicon Richard Brindos,a)

    E-print Network

    Florida, University of

    Effect of arsenic doping on ^311 defect dissolution in silicon Richard Brindos,a) Patrick Keys into silicon wafers with background concentrations of arsenic ranging from 1 1017 to 3 1019 cm 3 to study the interaction between arsenic atoms and excess self-interstitials. Samples were then annealed at 750 °C

  5. The International Agency for Research on Cancer (IARC) has classified arsenic in drink-

    E-print Network

    California at Berkeley, University of

    The International Agency for Research on Cancer (IARC) has classified arsenic in drink- ing water evidence supports the biologic plausibility that exposure to arsenic can lead to skin and bladder cancer. For example, arsenic concentrates in the skin and is known to cause nonmalignant skin lesions [National

  6. Arsenic Behavior in Paddy Fields during the Cycle of Flooded and

    E-print Network

    Hattori, Kéiko H.

    Arsenic Behavior in Paddy Fields during the Cycle of Flooded and Non-flooded Periods Y O S H I O. The results show that Fe (hydr)oxide hosts As in soil. Arsenic in irrigation waters is incorporated in Fe, which produces the staple food in the region. Arsenic concentration is generally less than 10 mg

  7. Effects of arsenic incorporation on jarosite dissolution rates and reaction products

    E-print Network

    Hu, Qinhong "Max"

    Effects of arsenic incorporation on jarosite dissolution rates and reaction products Matthew R to hematite with time in ultra-pure water, but increasing arsenic concentrations slow this transition. At pH >3.5, arsenic from the dissolution of arsenojarosite adsorbs onto newly formed reaction products

  8. MODELING DIETARY CONTRIBUTIONS TO ARSENIC DOSE AND METHYLATION: ELUCIDATING PREDICTIVE LINKAGES

    EPA Science Inventory

    This study will generate and validate arsenic exposure indicators based on diet over a range of drinking water arsenic concentrations and a health outcome indicator modeling the effect of diet on arsenic methylation. These indicators will provide a means of assessing the impac...

  9. Soil and Water Science Department University of Florida Phytoremediation of Arsenic Contaminated Sites: Feasibility and Optimization

    E-print Network

    Ma, Lena

    contaminated with heavy metals, except for arsenic. We have discovered the only known arsenic hyperaccumulating is of great environmental concern due to its extensive contamination and carcinogenic toxicity demonstration. The effectiveness of the plants in removing different arsenic species at different concentrations

  10. Urine and Urination - Multiple Languages: MedlinePlus

    MedlinePLUS

    ... of All Topics All Urine and Urination - Multiple Languages To use the sharing features on this page, please enable JavaScript. Chinese - Traditional (????) French (français) Japanese (???) Korean (???) Russian (???????) Somali (af Soomaali) Spanish (español) ...

  11. Earthworms produce phytochelatins in response to arsenic.

    PubMed

    Liebeke, Manuel; Garcia-Perez, Isabel; Anderson, Craig J; Lawlor, Alan J; Bennett, Mark H; Morris, Ceri A; Kille, Peter; Svendsen, Claus; Spurgeon, David J; Bundy, Jacob G

    2013-01-01

    Phytochelatins are small cysteine-rich non-ribosomal peptides that chelate soft metal and metalloid ions, such as cadmium and arsenic. They are widely produced by plants and microbes; phytochelatin synthase genes are also present in animal species from several different phyla, but there is still little known about whether these genes are functional in animals, and if so, whether they are metal-responsive. We analysed phytochelatin production by direct chemical analysis in Lumbricus rubellus earthworms exposed to arsenic for a 28 day period, and found that arsenic clearly induced phytochelatin production in a dose-dependent manner. It was necessary to measure the phytochelatin metabolite concentrations directly, as there was no upregulation of phytochelatin synthase gene expression after 28 days: phytochelatin synthesis appears not to be transcriptionally regulated in animals. A further untargetted metabolomic analysis also found changes in metabolites associated with the transsulfuration pathway, which channels sulfur flux from methionine for phytochelatin synthesis. There was no evidence of biological transformation of arsenic (e.g. into methylated species) as a result of laboratory arsenic exposure. Finally, we compared wild populations of earthworms sampled from the field, and found that both arsenic-contaminated and cadmium-contaminated mine site worms had elevated phytochelatin concentrations. PMID:24278409

  12. Earthworms Produce phytochelatins in Response to Arsenic

    PubMed Central

    Lawlor, Alan J.; Bennett, Mark H.; Morris, Ceri A.; Kille, Peter; Svendsen, Claus; Spurgeon, David J.; Bundy, Jacob G.

    2013-01-01

    Phytochelatins are small cysteine-rich non-ribosomal peptides that chelate soft metal and metalloid ions, such as cadmium and arsenic. They are widely produced by plants and microbes; phytochelatin synthase genes are also present in animal species from several different phyla, but there is still little known about whether these genes are functional in animals, and if so, whether they are metal-responsive. We analysed phytochelatin production by direct chemical analysis in Lumbricus rubellus earthworms exposed to arsenic for a 28 day period, and found that arsenic clearly induced phytochelatin production in a dose-dependent manner. It was necessary to measure the phytochelatin metabolite concentrations directly, as there was no upregulation of phytochelatin synthase gene expression after 28 days: phytochelatin synthesis appears not to be transcriptionally regulated in animals. A further untargetted metabolomic analysis also found changes in metabolites associated with the transsulfuration pathway, which channels sulfur flux from methionine for phytochelatin synthesis. There was no evidence of biological transformation of arsenic (e.g. into methylated species) as a result of laboratory arsenic exposure. Finally, we compared wild populations of earthworms sampled from the field, and found that both arsenic-contaminated and cadmium-contaminated mine site worms had elevated phytochelatin concentrations. PMID:24278409

  13. Quantitative analysis of creatinine in urine by metalized nanostructured parylene

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Malvadkar, Niranjan; Koytek, S.; Bylander, J.; Reeves, W. Brian; Demirel, Melik C.

    2010-03-01

    A highly accurate, real-time multisensor agent monitor for biomarker detection is required for early detection of kidney diseases. Urine creatinine level can provide useful information on the status of the kidney. We prepare nanostructured surface-enhanced Raman spectroscopy (SERS) substrates without template or lithography, which provides controllable, well-organized nanostructures on the surface, for the quantitative analysis of creatinine concentration in urine. We present our work on sensitivity of the SERS substrate to urine samples collected from diabetic patients and healthy persons. We report the preparation of a new type of SERS substrate, which provides fast (<10 s), highly sensitive (creatinine concentration <0.5 ?g/mL) and reproducible (<5% variation) detection of urine. Our method to analyze the creatinine level in urine is in good agreement with the enzymatic method.

  14. Environmental assessment of arsenic released from potential pollution sources.

    PubMed

    Bignoli, G; Sabbioni, E

    1984-03-01

    An assessment study of the environmental pathways of arsenic released from a coal-fired power plant (CFPP) or introduced into soil as a contaminant by phosphatic fertilizers has been carried out using a time-dependent forecasting model.The long-term predictions indicate that arsenic can be taken up by plants and that it can migrate into the groundwater system through soil layers. However, arsenic exhibits such a high degree of mobility that its retention and accumulation in biota should remain low. This fact may explain the relatively low concentrations of arsenic in environmental media as well as in groundwater systems. PMID:24259146

  15. Ecotoxicology of arsenic in the marine environment

    SciTech Connect

    Neff, J.M.

    1997-05-01

    Arsenic has a complex marine biogeochemistry that has important implications for its toxicity to marine organisms and their consumers. The average concentration of total arsenic in the ocean is about 1.7 {micro}g/L, about two orders of magnitude higher than the US Environmental Protection Agency`s human health criterion value of 0.0175 {micro}g/L. The dominant form of arsenic in oxygenated marine and brackish waters in arsenate (As V). The more toxic and potentially carcinogenic arsenite (As III) rarely accounts for more than 20% of total arsenic in seawater. Uncontaminated marine sediments contain from 5 to about 40 {micro}g/g dry weight total arsenic. Arsenate dominates in oxidized sediments and is associated primarily with iron oxyhydroxides. In reducing marine sediments, arsenate is reduced to arsenite and is associated primarily with sulfide minerals. Marine algae accumulate arsenate from seawater, reduce it to arsenite, and then oxidize the arsenite to a large number of organoarsenic compounds. The algae release arsenite, methylarsonic acid, and dimethylarsinic acid to seawater. Dissolved arsenite and arsenate are more toxic to marine phytoplankton than to marine invertebrates and fish. This may be due to the fact that marine animals have a limited ability to bioconcentrate inorganic arsenic from seawater but can bioaccumulate organoarsenic compounds from their food. Tissues of marine invertebrates and fish contain high concentrations of arsenic, usually in the range of about 1 to 100 {micro}g/g dry weight, most of it in the form of organoarsenic compounds, particularly arsenobetaine. Organoarsenic compounds are bioaccumulated by human consumers of seafood products, but the arsenic is excreted rapidly, mostly as organoarsenic compounds. Arsenobetaine, the most abundant organoarsenic compound in seafoods, is not toxic or carcinogenic to mammals. Little of the organoarsenic accumulated by humans from seafood is converted to toxic inorganic arsenite.

  16. Arsenic exposure at low-to-moderate levels and skin lesions, arsenic metabolism, neurological functions, and biomarkers for respiratory and cardiovascular diseases: Review of recent findings from the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh

    SciTech Connect

    Chen Yu; Parvez, Faruque; Gamble, Mary; Islam, Tariqul; Ahmed, Alauddin; Argos, Maria; Graziano, Joseph H.; Ahsan, Habibul

    2009-09-01

    The contamination of groundwater by arsenic in Bangladesh is a major public health concern affecting 35-75 million people. Although it is evident that high levels (> 300 {mu}g/L) of arsenic exposure from drinking water are related to adverse health outcomes, health effects of arsenic exposure at low-to-moderate levels (10-300 {mu}g/L) are not well understood. We established the Health Effects of Arsenic Longitudinal Study (HEALS) with more than 20,000 men and women in Araihazar, Bangladesh, to prospectively investigate the health effects of arsenic predominately at low-to-moderate levels (0.1 to 864 {mu}g/L, mean 99 {mu}g/L) of arsenic exposure. Findings to date suggest adverse effects of low-to-moderate levels of arsenic exposure on the risk of pre-malignant skin lesions, high blood pressure, neurological dysfunctions, and all-cause and chronic disease mortality. In addition, the data also indicate that the risk of skin lesion due to arsenic exposure is modifiable by nutritional factors, such as folate and selenium status, lifestyle factors, including cigarette smoking and body mass index, and genetic polymorphisms in genes related to arsenic metabolism. The analyses of biomarkers for respiratory and cardiovascular functions support that there may be adverse effects of arsenic on these outcomes and call for confirmation in large studies. A unique strength of the HEALS is the availability of outcome data collected prospectively and data on detailed individual-level arsenic exposure estimated using water, blood and repeated urine samples. Future prospective analyses of clinical endpoints and related host susceptibility will enhance our knowledge on the health effects of low-to-moderate levels of arsenic exposure, elucidate disease mechanisms, and give directions for prevention.

  17. Arsenic exposure at low-to-moderate levels and skin lesions, arsenic metabolism, neurological functions, and biomarkers for respiratory and cardiovascular diseases: review of recent findings from the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh.

    PubMed

    Chen, Yu; Parvez, Faruque; Gamble, Mary; Islam, Tariqul; Ahmed, Alauddin; Argos, Maria; Graziano, Joseph H; Ahsan, Habibul

    2009-09-01

    The contamination of groundwater by arsenic in Bangladesh is a major public health concern affecting 35-75 million people. Although it is evident that high levels (>300 microg/L) of arsenic exposure from drinking water are related to adverse health outcomes, health effects of arsenic exposure at low-to-moderate levels (10-300 microg/L) are not well understood. We established the Health Effects of Arsenic Longitudinal Study (HEALS) with more than 20,000 men and women in Araihazar, Bangladesh, to prospectively investigate the health effects of arsenic predominantly at low-to-moderate levels (0.1 to 864 microg/L, mean 99 microg/L) of arsenic exposure. Findings to date suggest adverse effects of low-to-moderate levels of arsenic exposure on the risk of pre-malignant skin lesions, high blood pressure, neurological dysfunctions, and all-cause and chronic disease mortality. In addition, the data also indicate that the risk of skin lesion due to arsenic exposure is modifiable by nutritional factors, such as folate and selenium status, lifestyle factors, including cigarette smoking and body mass index, and genetic polymorphisms in genes related to arsenic metabolism. The analyses of biomarkers for respiratory and cardiovascular functions support that there may be adverse effects of arsenic on these outcomes and call for confirmation in large studies. A unique strength of the HEALS is the availability of outcome data collected prospectively and data on detailed individual-level arsenic exposure estimated using water, blood and repeated urine samples. Future prospective analyses of clinical endpoints and related host susceptibility will enhance our knowledge on the health effects of low-to-moderate levels of arsenic exposure, elucidate disease mechanisms, and give directions for prevention. PMID:19371619

  18. Arsenic: homicidal intoxication

    SciTech Connect

    Massey, E.W.; Wold, D.; Heyman, A.

    1984-07-01

    Arsenic-induced deaths have been known to occur from accidental poisoning, as a result of medical therapy, and from intentional poisonings in homicide and suicide. Twenty-eight arsenic deaths in North Carolina from 1972 to 1982 included 14 homicides and seven suicides. In addition, 56 hospitalized victims of arsenic poisoning were identified at Duke Medical Center from 1970 to 1980. Four case histories of arsenic poisoning in North Carolina are presented and clinical manifestations are discussed. In view of the continued widespread use of arsenic in industry and agriculture, and its ubiquity in the environment, arsenic poisoning will continue to occur. A need for knowledge of its toxicity and of the clinical manifestations of acute and chronic arsenic poisoning will also continue.

  19. Arsenic poisoning in livestock.

    PubMed

    el Bahri, L; Ben Romdane, S

    1991-06-01

    Arsenic is an important heavy metal intoxicant to livestock. Arsenical pesticides present significant hazards to animal health. The toxicity of arsenic varies with several factors--its chemical form, oxidation states, solubility. The phenylarsonic compounds are the least toxic and are used as feed additives in swine and poultry rations. However, roxarsone has a higher absolute toxicity than arsanilic acid. The mechanism of action is related to its reaction with sulfhydryl groups values to enzyme function and to its ability to uncouple oxydative phosphorylation. Most animals excrete arsenic quite readily. Toxicoses caused by inorganic and aliphatic organic arsenicals result in a different clinical syndrome than that from the phenylarsonic compounds. Arsenic poisoning may be confused with other types of intoxication. The specific antidote for inorganic arsenical poisoning is dimercaprol (BAL). PMID:1858306

  20. Arsenic cardiotoxicity: An overview.

    PubMed

    Alamolhodaei, Nafiseh Sadat; Shirani, Kobra; Karimi, Gholamreza

    2015-11-01

    Arsenic, a naturally ubiquitous element, is found in foods and environment. Cardiac dysfunction is one of the major causes of morbidity and mortality in the world. Arsenic exposure is associated with various cardiopathologic effects including ischemia, arrhythmia and heart failure. Possible mechanisms of arsenic cardiotoxicity include oxidative stress, DNA fragmentation, apoptosis and functional changes of ion channels. Several evidences have shown that mitochondrial disruption, caspase activation, MAPK signaling and p53 are the pathways for arsenic induced apoptosis. Arsenic trioxide is an effective and potent antitumor agent used in patients with acute promyelocytic leukemia and produces dramatic remissions. As2O3 administration has major limitations such as T wave changes, QT prolongation and sudden death in humans. In this review, we discuss the underlying pathobiology of arsenic cardiotoxicity and provide information about cardiac health effects associated with some medicinal plants in arsenic toxicity. PMID:26606645

  1. Ethanol production in a postmortem urine sample.

    PubMed

    Antonides, Heather; Marinetti, Laureen

    2011-09-01

    Significant ethanol production in a urine sample is not a common phenomenon that occurs in postmortem volatile anaylsis. Here, a 66-year-old female decedent with a history of renal failure and diabetes originally presented at the hospital as "acting funny". After expiring at the hospital, the toxicology section received both hospital and postmortem samples for analysis. Initially, only hospital blood and urine were analyzed for volatiles. The hospital blood was only positive for acetone. As a second matrix confirmation, the autopsy urine was also analyzed and found to be positive for acetone and ethanol. Upon initial examination, the urine sample had an ethanol value of 0.10 g%, which continued to increase to a peak concentration of 0.28 g%. This case study focuses on the production of ethanol in a urine sample that was analyzed over a three-month period. Also presented is a vitreous humor metabolic panel that contains glucose, creatinine, and urea nitrogen data for this case. PMID:21871162

  2. DRINKING WATER ARSENIC IN UTAH: A COHORT MORTALITY STUDY

    EPA Science Inventory

    The association of drinking water arsenic and mortality outcome was investigated in a cohort of residents from Millard County, Utah. Median drinking water arsenic concentrations for selected study towns ranged from 14 to 166 ppb and were from public and private samples collected ...

  3. Urine collection - infants

    MedlinePLUS

    ... gave you. You will be given a special bag to collect the urine. It will be a plastic bag with a sticky strip on one end, made ... fit over your baby's genital area. Open this bag and place it on the infant. For males, ...

  4. Microdetermination of urea in urine using p-dimethylaminobenzaldehyde /PDAB/

    NASA Technical Reports Server (NTRS)

    Geiger, P. J.

    1969-01-01

    Adaptation of the p-dimethylaminobenzaldehyde method for determining urea concentration in urine is an improved micromechanical method. Accuracy and precision are satisfactory. This method avoids extra steps of deproteinizing or removing normal urinary chromogens.

  5. Emissions of air toxics from coal-fired boilers: Arsenic

    SciTech Connect

    Mendelsohn, M.H.; Huang, H.S.; Livengood, C.D.

    1994-08-01

    Concerns over emissions of hazardous air pollutants (air toxics) have emerged as a major environmental issue; the authority of the US Environmental Protection Agency to regulate such pollutants has been greatly expanded through passage of the Clean Air Act Amendments of 1990. Arsenic and arsenic compounds are of concern mainly because of their generally recognized toxicity. Arsenic is also regarded as one of the trace elements in coal subject to significant vaporization. This report summarizes and evaluates available published information on the arsenic content of coals mined in the United States, on arsenic emitted in coal combustion, and on the efficacy of various environmental control technologies for controlling airborne emissions. Bituminous and lignite coals have the highest mean arsenic concentrations, with subbituminous and anthracite coals having the lowest. However, all coal types show very significant variations in arsenic concentrations. Arsenic emissions from coal combustion are not well-characterized, particularly with regard to determination of specific arsenic compounds. Variations in emission, rates of more than an order of magnitude have been reported for some boiler types. Data on the capture of arsenic by environmental control technologies are available primarily for systems with cold electrostatic precipitators, where removals of approximately 50 to 98% have been reported. Limited data for wet flue-gas-desulfurization systems show widely varying removals of from 6 to 97%. On the other hand, waste incineration plants report removals in a narrow range of from 95 to 99%. This report briefly reviews several areas of research that may lead to improvements in arsenic control for existing flue-gas-cleanup technologies and summarizes the status of analytical techniques for measuring arsenic emissions from combustion sources.

  6. ARSENIC (+3 OXIDATION STATE) METHYLTRANSFERASE AND THE METHYLATION OF ARSENICALS

    EPA Science Inventory

    Metabolic conversion of inorganic arsenic into methylated products is a multistep process that yields mono, di, and trimethylated arsenicals. In recent years, it has become apparent that formation of methylated metabolites of inorganic arsenic is not necessarily a detoxification...

  7. Naturally occurring arsenic in the groundwater at the Kansas City Plant

    SciTech Connect

    Korte, N.E.

    1990-12-01

    This report describes an investigation concerning the presence of arsenic in concentrations exceeding 0.4 mg/L in the groundwater under the Department of Energy's Kansas City Plant (KCP). The study consisted of four distinct phases: a thorough review of the technical literature, a historical survey of arsenic use at the facility, a laboratory study of existing techniques for determining arsenic speciation, and a field program including water, soil, and sediment sampling. The historical survey and literature review demonstrated that plant activities had not released significant quantities of arsenic to the environment but that similar occurrences of arsenic in alluvial groundwater are widespread in the midwestern United States. Laboratory studies showed that a chromatographic separation technique was necessary to accurately determine arsenic speciation for the KCP groundwater samples. Field studies revealed that naturally occurring reducing conditions prevalent in the subsurface are responsible for dissolving arsenic previously sorbed by iron oxides. Indeed, the data demonstrated that the bulk arsenic concentration of site subsoils and sediments is {approximately}7 mg/kg, whereas the arsenic content of iron oxide subsamples is as high as 84 mg/kg. Literature showed that similar concentrations of arsenic in sediments occur naturally and are capable of producing the levels of arsenic found in groundwater monitoring wells at the KCP. The study concludes, therefore, that the arsenic present in the KCP groundwater is the result of natural phenomena. 44 refs., 8 figs., 14 tabs.

  8. Arsenic mobilization in the critical zone: Oxidation by hydrous manganese oxide Jason S. Fischel, fischjs06@juniata.edu1

    E-print Network

    Sparks, Donald L.

    Arsenic mobilization in the critical zone: Oxidation by hydrous manganese oxide GEOC 112 Jason S manganese (Mn) oxides, even in low concentrations, to oxidize trace metals such as arsenic from arsenite [As

  9. SPECIATION OF ARSENIC IN EDIBLE BIOTA TO SUPPORT RISK ASSESSMENT DETERMINATION OF RELATIVE SOURCE CONTRIBUTION FOR ARSENIC

    EPA Science Inventory

    The Office of Research and Development has designated the study of arsenic as a high priority research area because of the health risk associated from exposure to this element. Present monitoring efforts are primarily focused on total concentration of arsenic in drinking water. ...

  10. The risk of arsenic induced skin lesions in Bangladeshi men and women is affected by arsenic metabolism and the age at first exposure

    SciTech Connect

    Lindberg, Anna-Lena; Rahman, Mahfuzar; Persson, Lars-Ake; Vahter, Marie

    2008-07-01

    It is known that a high fraction of methylarsonate (MA) in urine is a risk modifying factor for several arsenic induced health effects, including skin lesions, and that men are more susceptible for developing skin lesions than women. Thus, we aimed at elucidating the interaction between gender and arsenic metabolism for the risk of developing skin lesions. This study is part of a population-based case-referent study concerning the risk for skin lesions in relation to arsenic exposure via drinking water carried out in Matlab, a rural area 53km south-east of Dhaka, Bangladesh. We randomly selected 526 from 1579 referents and all 504 cases for analysis of arsenic metabolites in urine using HPLC coupled to inductively coupled plasma mass spectrometry (HPLC-HG-ICPMS). The present study confirm previous studies, with the risk for skin lesions being almost three times higher in the highest tertile of %MA (adjusted OR 2.8, 95% CI: 1.9-4.2, p < 0.001) compared to the lowest tertile. The present study is the first to show that the well documented higher risk for men to develop arsenic-related skin lesions compared to women is mainly explained by the less efficient methylation of arsenic, as defined by a higher fraction of MA and lower fraction of DMA in the urine, among men. Our previously documented lower risk for skin lesions in individuals exposed since infancy, or before, was found to be independent of the observed arsenic methylation efficiency. Thus, it can be speculated that this is due to a programming effect of arsenic in utero.

  11. Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany.

    PubMed

    Mkandawire, Martin; Dudel, E Gert

    2005-01-01

    Accumulation of arsenic in Lemna gibba L. was investigated in tailing waters of abandoned uranium mine sites, following the hypothesis that arsenic poses contamination risks in post uranium mining in Saxony, Germany. Consequently, macrophytes growing in mine tailing waters accumulate high amounts of arsenic, which might be advantageous for biomonitoring arsenic transfer to higher trophic levels, and for phytoremediation. Water and L. gibba sample collected from pond on tailing dumps of abandoned mine sites at Lengenfeld and Neuensalz-Mechelgrun were analysed for arsenic. Laboratory cultures in nutrient solutions modified with six arsenic and three PO(4)(3-) concentrations were conducted to gain insight into the arsenic-L. gibba interaction. Arsenic accumulation coefficients in L. gibba were 10 times as much as the background concentrations in both tailing waters and nutrient solutions. Arsenic accumulations in L. gibba increased with arsenic concentration in the milieu but they decreased with phosphorus concentration. Significant reductions in arsenic accumulation in L. gibba were observed with the addition of PO(4)(3-) at all six arsenic test concentrations in laboratory experiments. Plant samples from laboratory trials had on average twofold higher bioaccumulation coefficients than tailing water at similar arsenic concentrations. This would be attributed to strong interaction among chemical components, and competition among ions in natural aquatic environment. The results of the study indicate that L. gibba can be a preliminary bioindicator for arsenic transfer from substrate to plants and might be used to monitor the transfer of arsenic from lower to higher trophic levels in the abandoned mine sites. There is also the potential of using L. gibba L. for arsenic phytoremediation of mine tailing waters because of its high accumulation capacity as demonstrated in this study. Transfer of arsenic contamination transported by accumulations in L. gibba carried with flowing waters, remobilisation through decay, possible methylisation and volatilisation by L. gibba need to be considered. PMID:15589251

  12. Drinking Water Problems: Arsenic (Spanish) 

    E-print Network

    Lesikar, Bruce J.; Melton, Rebecca; Hare, Michael; Hopkins, Janie; Dozier, Monty

    2006-06-19

    High levels of arsenic in drinking water can poison and even kill people. This publication explains the symptoms of arsenic poisoning and common treatment methods for removing arsenic from your water supply....

  13. COMMONALITIES IN METABOLISM OF ARSENICALS

    EPA Science Inventory

    Elucidating the pathway of inorganic arsenic metabolism shows that some of methylated arsenicals formed as intermediates and products are reactive and toxic species. Hence, methylated arsenicals likely mediate at least some of the toxic and carcinogenic effects associated with e...

  14. Arsenic in Ground-Water Resources of the United States

    USGS Publications Warehouse

    Welch, Alan H.; Watkins, Sharon A.; Helsel, Dennis R.; Focazio, Michael J.

    2000-01-01

    Arsenic is a naturally occurring element in rocks, soils, and the waters in contact with them. Recognized as a toxic element for centuries, arsenic today also is a human health concern because it can contribute to skin, bladder, and other cancers (National Research Council, 1999). Recently, the National Research Council (1999) recommended lowering the current maximum contaminant level (MCL) allowed for arsenic in drinking water of 50 ?g/L (micrograms per liter), citing risks for developing bladder and other cancers. The U.S. Environmental Protection Agency (USEPA) will propose a new, and likely lower, arsenic MCL during 2000 (U.S. Environmental Protection Agency, 2000). This fact sheet provides information on where and to what extent natural concentrations of arsenic in ground water exceed possible new standards. The U.S. Geological Survey (USGS) has collected and analyzed arsenic in potable (drinkable) water from 18,850 wells in 595 counties across the United States during the past two decades. These wells are used for irrigation, industrial purposes, and research, as well as for public and private water supply. Arsenic concentrations in samples from these wells are similar to those found in nearby public supplies (see Focazio and others, 1999). The large number of samples, broad geographic coverage, and consistency of methods produce a more accurate and detailed picture of arsenic concentrations than provided by any previous studies.

  15. Aquatic arsenic: phytoremediation using floating macrophytes.

    PubMed

    Rahman, M Azizur; Hasegawa, H

    2011-04-01

    Phytoremediation, a plant based green technology, has received increasing attention after the discovery of hyperaccumulating plants which are able to accumulate, translocate, and concentrate high amount of certain toxic elements in their above-ground/harvestable parts. Phytoremediation includes several processes namely, phytoextraction, phytodegradation, rhizofiltration, phytostabilization and phytovolatilization. Both terrestrial and aquatic plants have been tested to remediate contaminated soils and waters, respectively. A number of aquatic plant species have been investigated for the remediation of toxic contaminants such as As, Zn, Cd, Cu, Pb, Cr, Hg, etc. Arsenic, one of the deadly toxic elements, is widely distributed in the aquatic systems as a result of mineral dissolution from volcanic or sedimentary rocks as well as from the dilution of geothermal waters. In addition, the agricultural and industrial effluent discharges are also considered for arsenic contamination in natural waters. Some aquatic plants have been reported to accumulate high level of arsenic from contaminated water. Water hyacinth (Eichhornia crassipes), duckweeds (Lemna gibba, Lemna minor, Spirodela polyrhiza), water spinach (Ipomoea aquatica), water ferns (Azolla caroliniana, Azolla filiculoides, and Azolla pinnata), water cabbage (Pistia stratiotes), hydrilla (Hydrilla verticillata) and watercress (Lepidium sativum) have been studied to investigate their arsenic uptake ability and mechanisms, and to evaluate their potential in phytoremediation technology. It has been suggested that the aquatic macrophytes would be potential for arsenic phytoremediation, and this paper reviews up to date knowledge on arsenic phytoremediation by common aquatic macrophytes. PMID:21435676

  16. Disruption of the arsenic (+3 oxidation state) methyltransferase gene in the mouse alters the phenotype for methylation of arsenic and affects distribution and retention of orally administered arsenate

    PubMed Central

    Drobna, Zuzana; Narenmandura, Hua; Kubachka, Kevin M.; Edwards, Brenda C.; Herbin-Davis, Karen; Styblo, Miroslav; Le, X. Chris; Creed, John T.; Maeda, Noboyu; Hughes, Michael F.; Thomas, David J.

    2009-01-01

    The arsenic (+3 oxidation state) methyltransferase (As3mt) gene encodes a 43 kDa protein that catalyzes methylation of inorganic arsenic. Altered expression of AS3MT in cultured human cells controls arsenic methylation phenotypes, suggesting a critical role in arsenic metabolism. Because methylated arsenicals mediate some toxic or carcinogenic effects linked to inorganic arsenic exposure, studies of the fate and effects of arsenicals in mice which cannot methylate arsenic could be instructive. This study compared retention and distribution of arsenic in As3mt knockout mice and in wild-type C57BL/6 mice in which expression of the As3mt gene is normal. Male and female mice of either genotype received an oral dose of 0.5 mg of arsenic as arsenate per kg containing [73As]-arsenate. Mice were radioassayed for up to 96 hours after dosing; tissues were collected at 2 and 24 hours after dosing. At 2 and 24 hours after dosing, livers of As3mt knockouts contained a greater proportion of inorganic and monomethylated arsenic than did livers of C57BL/6 mice. A similar predominance of inorganic and monomethylated arsenic was found in the urine of As3mt knockouts. At 24 hours after dosing, As3mt knockouts retained significantly higher percentages of arsenic dose in liver, kidneys, urinary bladder, lungs, heart, and carcass than did C57BL/6 mice. Whole body clearance of [73As] in As3mt knockouts was substantially slower than in C57BL/6 mice. At 24 hours after dosing, As3mt knockouts retained about 50% and C57BL/6 mice about 6% of the dose. After 96 hours, As3mt knockouts retained about 20% and C57BL/6 mice retained less than 2% of the dose. These data confirm a central role for As3mt in metabolism of inorganic arsenic and indicate that phenotypes for arsenic retention and distribution are markedly affected by the null genotype for arsenic methylation, indicating a close linkage between the metabolism and retention of arsenicals. PMID:19691357

  17. Evaluating the cement stabilization of arsenic-bearing iron wastes from drinking water treatment.

    PubMed

    Clancy, Tara M; Snyder, Kathryn V; Reddy, Raghav; Lanzirotti, Antonio; Amrose, Susan E; Raskin, Lutgarde; Hayes, Kim F

    2015-12-30

    Cement stabilization of arsenic-bearing wastes is recommended to limit arsenic release from wastes following disposal. Such stabilization has been demonstrated to reduce the arsenic concentration in the Toxicity Characteristic Leaching Procedure (TCLP), which regulates landfill disposal of arsenic waste. However, few studies have evaluated leaching from actual wastes under conditions similar to ultimate disposal environments. In this study, land disposal in areas where flooding is likely was simulated to test arsenic release from cement stabilized arsenic-bearing iron oxide wastes. After 406 days submersed in chemically simulated rainwater, <0.4% of total arsenic was leached, which was comparable to the amount leached during the TCLP (<0.3%). Short-term (18h) modified TCLP tests (pH 3-12) found that cement stabilization lowered arsenic leaching at high pH, but increased leaching at pH<4.2 compared to non-stabilized wastes. Presenting the first characterization of cement stabilized waste using ?XRF, these results revealed the majority of arsenic in cement stabilized waste remained associated with iron. This distribution of arsenic differed from previous observations of calcium-arsenic solid phases when arsenic salts were stabilized with cement, illustrating that the initial waste form influences the stabilized form. Overall, cement stabilization is effective for arsenic-bearing wastes when acidic conditions can be avoided. PMID:26247378

  18. Reduced arsenic clearance and increased toxicity in aquaglyceroporin-9-null mice

    PubMed Central

    Carbrey, Jennifer M.; Song, Linhua; Zhou, Yao; Yoshinaga, Masafumi; Rojek, Aleksandra; Wang, Yiding; Liu, Yangjian; Lujan, Heidi L.; DiCarlo, Stephen E.; Nielsen, Søren; Rosen, Barry P.; Agre, Peter; Mukhopadhyay, Rita

    2009-01-01

    Expressed in liver, aquaglyceroporin-9 (AQP9) is permeated by glycerol, arsenite, and other small, neutral solutes. To evaluate a possible protective role, AQP9-null mice were evaluated for in vivo arsenic toxicity. After injection with NaAsO2, AQP9-null mice suffer reduced survival rates (LD50, 12 mg/kg) compared with WT mice (LD50, 15 mg/kg). The highest tissue level of arsenic is in heart, with AQP9-null mice accumulating 10–20 times more arsenic than WT mice. Within hours after NaAsO2 injection, AQP9-null mice sustain profound bradycardia, despite normal serum electrolytes. Increased arsenic levels are also present in liver, lung, spleen, and testis of AQP9-null mice. Arsenic levels in the feces and urine of AQP9-null mice are only ?10% of the WT levels, and reduced clearance of multiple arsenic species by the AQP9-null mice suggests that AQP9 is involved in the export of multiple forms of arsenic. Immunohistochemical staining of liver sections revealed that AQP9 is most abundant in basolateral membrane of hepatocytes adjacent to the sinusoids. AQP9 is not detected in heart or kidney by PCR or immunohistochemistry. We propose that AQP9 provides a route for excretion of arsenic by the liver, thereby providing partial protection of the whole animal from arsenic toxicity. PMID:19805235

  19. Status of groundwater arsenic contamination in all 17 blocks of Nadia district in the state of West Bengal, India: A 23-year study report

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammad Mahmudur; Mondal, Debapriya; Das, Bhaskar; Sengupta, Mrinal Kumar; Ahamed, Sad; Hossain, M. Amir; Samal, Alok Chandra; Saha, Kshitish Chandra; Mukherjee, Subhash Chandra; Dutta, Rathindra Nath; Chakraborti, Dipankar

    2014-10-01

    A comprehensive study was conducted in Nadia, one of the nine arsenic (As) affected districts in West Bengal, India to determine the extent and severity of groundwater As contamination and its health effects in particular, dermatological effects and neurological complications. We collected 28,947 hand tube-well water samples from all 17 blocks of Nadia district and analyzed for As by the flow injection-hydride generation atomic absorption spectrometer (FI-HG-AAS). We found 51.4% and 17.3% of the tube-wells had As above 10 and 50 ?g/L, respectively and observed that groundwater of all 17 blocks contained As above 50 ?g/L with maximum observed level of 3200 ?g/L. We estimated that about 2.1 million and 0.6 million people could be drinking As contaminated water above 10 and 50 ?g/L, respectively, while 0.048 million could be at risk of drinking As-contaminated water above 300 ?g/L, the concentration predicted to cause overt arsenical skin lesions. We screened 15,153 villagers from 50 villages and registered 1077 with arsenical skin lesions resulting in a prevalence rate of 7.1%. Analyzing 2671 biological samples (hair, nail and urine), from people with and without arsenical skin symptoms we found 95% of the samples had As above the normal level, indicating many people in Nadia district are sub-clinically affected. Arsenical neuropathy was observed in 33% of 255 arsenicosis patients with 28.2% prevalence for predominant sensory neuropathy and 4.7% for sensorimotor. As groundwater is still the main source of drinking water, targeting low-As aquifers and switching tube-well from unsafe to nearby safe sources are two visible options to obtain safe drinking water.

  20. Application of electrolysis for detoxification of an antineoplastic in urine.

    PubMed

    Kobayashi, Toyohide; Hirose, Jun; Sano, Kouichi; Kato, Ryuji; Ijiri, Yoshio; Takiuchi, Hiroya; Tanaka, Kazuhiko; Goto, Emi; Tamai, Hiroshi; Nakano, Takashi

    2012-04-01

    Antineoplastics in excreta from patients have been considered to be one of the origins of cytotoxic, carcinogenic, teratogenic, and mutagenic contaminants in surface water. Recent studies have demonstrated that antineoplastics in clinical wastewater can be detoxified by electrolysis. In this study, to develop a method for the detoxification of antineoplastics in excreta, methotrexate solution in the presence of human urine was electrolyzed and evaluated. We found that urine inhibits detoxification by electrolysis; however, this inhibition decreased by diluting urine. In urine samples, the concentrations of active chlorine generated by anodic oxidation from 0.9% NaCl solution for inactivation of antineoplastics increased in dilution-dependent and time-dependent manner. These results indicate that electrolysis with platinum-based iridium oxide composite electrode is a possible method for the detoxification of a certain antineoplastic in urine. PMID:22154144

  1. Environmental Arsenic Exposure and Microbiota in Induced Sputum

    PubMed Central

    White, Allison G.; Watts, George S.; Lu, Zhenqiang; Meza-Montenegro, Maria M.; Lutz, Eric A.; Harber, Philip; Burgess, Jefferey L.

    2014-01-01

    Arsenic exposure from drinking water is associated with adverse respiratory outcomes, but it is unknown whether arsenic affects pulmonary microbiota. This exploratory study assessed the effect of exposure to arsenic in drinking water on bacterial diversity in the respiratory tract of non-smokers. Induced sputum was collected from 10 subjects with moderate mean household water arsenic concentration (21.1 ± 6.4 ppb) and 10 subjects with low household water arsenic (2.4 ± 0.8 ppb). To assess microbiota in sputum, the V6 hypervariable region amplicons of bacterial 16s rRNA genes were sequenced using the Ion Torrent Personal Genome Machine. Microbial community differences between arsenic exposure groups were evaluated using QIIME and Metastats. A total of 3,920,441 sequence reads, ranging from 37,935 to 508,787 per sample for 316 chips after QIIME quality filtering, were taxonomically classified into 142 individual genera and five phyla. Firmicutes (22%), Proteobacteria (17%) and Bacteriodetes (12%) were the main phyla in all samples, with Neisseriaceae (15%), Prevotellaceae (12%) and Veillonellacea (7%) being most common at the genus level. Some genera, including Gemella, Lactobacillales, Streptococcus, Neisseria and Pasteurellaceae were elevated in the moderate arsenic exposure group, while Rothia, Prevotella, Prevotellaceae Fusobacterium and Neisseriaceae were decreased, although none of these differences was statistically significant. Future studies with more participants and a greater range of arsenic exposure are needed to further elucidate the effects of drinking water arsenic consumption on respiratory microbiota. PMID:24566055

  2. Electrolytic pretreatment of urine

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Electrolysis has been under evaluation for several years as a process to pretreat urine for ultimate recovery of potable water in manned spacecraft applications. The conclusions that were drawn from this investigation are the following: (1) A platinum alloy containing 10 percent rhodium has been shown to be an effective, corrosion-resistant anode material for the electrolytic pretreatment of urine. Black platinum has been found to be suitable as a cathode material. (2) The mechanism of the reactions occurring during the electrolysis of urine is two-stage: (a) a total Kjeldahl nitrogen and total organic carbon (TOC) removal in the first stage is the result of electrochemical oxidation of urea to CO2, H2O, and ammonia followed by chloride interaction to produce N2 from ammonia, (b) after the urea has been essentially removed and the chloride ions have no more ammonia to interact with, the chloride ions start to oxidize to higher valence states, thus producing perchlorates. (3) Formation of perchlorates can be suppressed by high/low current operation, elevated temperature, and pH adjustment. (4) UV-radiation showed promise in assisting electrolytic TOC removal in beaker tests, but was not substantiated in limited single cell testing. This may have been due to non-optimum configurations of the single cell test rig and the light source.

  3. Electrochemical quantification of iodide ions in synthetic urine using silver nanoparticles: a proof-of-concept.

    PubMed

    Toh, Her Shuang; Tschulik, Kristina; Batchelor-McAuley, Christopher; Compton, Richard G

    2014-08-21

    Typical urinary iodide concentrations range from 0.3 ?M to 6.0 ?M. The conventional analytical method is based on the Sandell-Kolthoff reaction. It involves the toxic reagent, arsenic acid, and a waiting time of 30 minutes for the iodide ions to reduce the cerium(iv) ions. In the presented work, an alternative fast electrochemical method based on a silver nanoparticle modified electrode is proposed. Cyclic voltammetry was performed with a freshly modified electrode in presence of iodide ions and the voltammetric peaks corresponding to the oxidation of silver to silver iodide and the reverse reaction were recorded. The peak height of the reduction signal of silver iodide was used to plot a calibration line for the iodide ions. Two calibration plots for the iodide ions were obtained, one in 0.1 M sodium nitrate (a chloride-ion free environment to circumvent any interference from the other halides) and another in synthetic urine (which contains 0.2 M KCl). In both of the calibration plots, linear relationships were found between the reduction peak height and the iodide ion concentration of 0.3 ?M to 6.0 ?M. A slope of 1.46 × 10(-2) A M(-1) and a R(2) value of 0.999 were obtained for the iodide detection in sodium nitrate. For the synthetic urine experiments, a slope of 3.58 × 10(-3) A M(-1) and a R(2) value of 0.942 were measured. A robust iodide sensor with the potential to be developed into a point-of-care system has been validated. PMID:24921222

  4. Dependence of particle concentration effect on pH and redox for arsenic removal by FeS-coated sand under anoxic conditions.

    PubMed

    Han, Young-Soo; Demond, Avery H; Gallegos, Tanya J; Hayes, Kim F

    2015-09-01

    FeS has been recognized as a good scavenger for arsenic under anoxic conditions. To create a suitable adsorbent for flow-through reactors such as permeable reactive barriers, it has been suggested that this material may be coated onto sand. However, previous work on FeS-coated sand has focused on batch reactors, while flow-through reactors usually have higher solid-solution ratios. To ascertain whether differences in the solid-solution ratio (SSR) are important in this system, batch sorption experiments were conducted as a function of pH using As(III) and FeS-coated sands at various solid-solution ratios. The results showed little variation in the distribution coefficient with SSR at pH 7 and 9. However, at pH 5, the results showed lower values of the distribution coefficient at lower SSRs, the reverse of typically reported SSR effects. Measured pe values showed a dependence on SSR, which, when coupled with chemical modeling of the Fe-As-S-H2O system, suggested a change in the removal mechanism with SSR, from adsorption to a reduced Fe(II) oxyhydroxide phase (represented by Fe2(OH)5) to precipitation as As2S3 or AsS. On the other hand, at pH 7 and 9, arsenite adsorption is the most probable removal mechanism regardless of the pe. Thus, this study identified variations in pH and redox conditions, and the removal mechanisms that these parameters govern, as the reason for the apparent SSR effect. PMID:25553897

  5. NEW COLUMN SEPARATION METHOD FOR EMERGENCY URINE SAMPLES

    SciTech Connect

    Maxwell, S; Brian Culligan, B

    2007-08-28

    The Savannah River Site Environmental Bioassay Lab participated in the 2007 NRIP Emergency Response program administered by the National Institute for Standards and Technology (NIST) in May, 2007. A new rapid column separation method was applied directly to the NRIP 2007 emergency urine samples, with only minimal sample preparation to reduce preparation time. Calcium phosphate precipitation, previously used to pre-concentrate actinides and Sr-90 in NRIP 2006 urine and water samples, was not used for the NRIP 2007 urine samples. Instead, the raw urine was acidified and passed directly through the stacked resin columns (TEVA+TRU+SR Resins) to separate the actinides and strontium from the NRIP urine samples more quickly. This improvement reduced sample preparation time for the NRIP 2007 emergency urine analyses significantly. This approach works well for small volume urine samples expected during an emergency response event. Based on initial feedback from NIST, the SRS Environmental Bioassay Lab had the most rapid analysis times for actinides and strontium-90 analyses for NRIP 2007 urine samples.

  6. Effect of Fluoride on Arsenic Uptake from Arsenic-Contaminated Groundwater using Pteris vittata L.

    PubMed

    Zhao, Junying; Guo, Huaming; Ma, Jie; Shen, Zhaoli

    2015-01-01

    High-arsenic groundwater in inland basins usually contains high concentrations of fluoride. In the present study, the effects of fluoride on arsenic uptake by Pteris vittata and on arsenic transformation in growth media were investigated under greenhouse conditions. After P. vittata was hydroponically exposed to 66.8 ?M As (V) in the presence of 1.05 mM F- in the form of NaF, KF, or NaF+KF for 10 d, no visible toxicity symptoms were observed, and there were not significant differences in the dry biomass among the four treatments. The results showed that P. vittata tolerated F- concentrations as high as 1.05 mM but did not accumulate fluoride in their own tissues. Arsenic uptake was inhibited in the presence of 1.05 mM F-. However, in hydroponic batches with 60 ?M As (III) or 65 ?M As (V), it was found that 210.6 and 316.0 ?M F(-) promoted arsenic uptake. As(III) was oxidized to As(V) in the growth media in the presence and absence of plants, and F- had no effect on the rate of As(III) transformation. These experiments demonstrated that P. vittata was a good candidate to remediate arsenic-contaminated groundwater in the presence of fluoride. Our results can be used to develop strategies to remediate As-F-contaminated water using P. vittata. PMID:25409248

  7. Spatial modeling for groundwater arsenic levels in North Carolina

    USGS Publications Warehouse

    Kim, D.; Miranda, M.L.; Tootoo, J.; Bradley, P.; Gelfand, A.E.

    2011-01-01

    To examine environmental and geologic determinants of arsenic in groundwater, detailed geologic data were integrated with well water arsenic concentration data and well construction data for 471 private wells in Orange County, NC, via a geographic information system. For the statistical analysis, the geologic units were simplified into four generalized categories based on rock type and interpreted mode of deposition/emplacement. The geologic transitions from rocks of a primary pyroclastic origin to rocks of volcaniclastic sedimentary origin were designated as polylines. The data were fitted to a left-censored regression model to identify key determinants of arsenic levels in groundwater. A Bayesian spatial random effects model was then developed to capture any spatial patterns in groundwater arsenic residuals into model estimation. Statistical model results indicate (1) wells close to a transition zone or fault are more likely to contain detectible arsenic; (2) welded tuffs and hydrothermal quartz bodies are associated with relatively higher groundwater arsenic concentrations and even higher for those proximal to a pluton; and (3) wells of greater depth are more likely to contain elevated arsenic. This modeling effort informs policy intervention by creating three-dimensional maps of predicted arsenic levels in groundwater for any location and depth in the area. ?? 2011 American Chemical Society.

  8. Arsenic Dissolution from Arsenopyrite Under Carbon Dioxide Geologic Sequestration Conditions

    NASA Astrophysics Data System (ADS)

    Parthasarathy, H.; Tasneem, K.; Dzombak, D. A.; Karamalidis, A.

    2011-12-01

    Possible leakage of CO2-saturated brine from saline, sedimentary rock formations used for CO2 sequestration may pose risks of environmental impacts to the overlying aquifers, including mobilization of metals from reservoir and overlying rocks. Preliminary U.S. DOE studies of metal mobilization from sedimentary reservoir materials upon contact with CO2 saturated brine have indicated potential for arsenic release in concentrations that may exceed the U.S. EPA maximum contaminant level of 10 ?g/L for drinking water. The mobilization of arsenic from reservoir and caprock formations under CO2 geologic sequestration conditions is the focus of this study. The most common naturally occurring source of arsenic in such formations is arsenopyrite (FeAsS) along with arsenian pyrite. Dissolution experiments conducted under ambient temperature and pressure conditions have indicated that arsenic, iron and sulfur released from arsenopyrite are non-stoichiometric. Also, the release of arsenic is further inhibited by mass transfer limitations. Experiments are in progress to determine the rate of release of arsenic from arsenopyrite under carbon dioxide sequestration conditions, considering high salinity brine, 25 to 160 °C and pressures up-to 300 bars. A flow through system was designed to induce maximum rates of dissolution through maintenance of low concentration of dissolved arsenic. These experiments allow the interpretation of arsenopyrite dissolution kinetics and lead to the determination of the rate of arsenic release under conditions that are relevant to carbon dioxide sequestration.

  9. Bioaccumulation of Arsenic Species in Rays from the Northern Adriatic Sea

    PubMed Central

    Šlejkovec, Zdenka; Stajnko, Anja; Falnoga, Ingrid; Lipej, Lovrenc; Mazej, Darja; Horvat, Milena; Faganeli, Jadran

    2014-01-01

    The difference in arsenic concentration and speciation between benthic (Pteromylaeus bovinus, Myliobatis aquila) and pelagic rays (Pteroplatytrygon violacea) from the northern Adriatic Sea (Gulf of Trieste) in relation to their size (age) was investigated. High arsenic concentrations were found in both groups with tendency of more efficient arsenic accumulation in benthic species, particularly in muscle (32.4 to 362 µg·g?1 of total arsenic). This was attributed to species differences in arsenic access, uptake and retention. In liver most arsenic was present in a form of arsenobetaine, dimethylarsinic acid and arsenoipids, whereas in muscle mainly arsenobetaine was found. The good correlations between total arsenic/arsenobetaine and size reflect the importance of accumulation of arsenobetaine with age. Arsenobetaine is an analogue of glycine betaine, a known osmoregulator in marine animals and both are very abundant in mussels, representing an important source of food for benthic species P. bovinus and M. aquila. PMID:25470025

  10. Source of arsenic in licorice confectionery products.

    PubMed

    Carbonell-Barrachina, Angel Antonio; Aracil, Pedro; García, Elena; Burló, Francisco; Martínez-Sánchez, Francisco

    2003-03-12

    Spanish legislation sets a maximum level for total arsenic (As) in confectionery products at 0.1 microg g(-)(1). The U.S. Food and Drug Administration limitations for glycyrrhizic acid in hard and soft candies are 160 and 31 mg g(-)(1), respectively. Arsenic and glycyrrhizic acid were determined in 22 different confectionery products: 9 throat pearls, 4 hard candies, and 9 soft candies. Arsenic and glycyrrhizic acid were quantified by atomic absorption spectrometry with hydride generation and high-performance liquid chromatography, respectively. Levels of glycyrrhizic acid were always below the maximum limits established by the U.S. FDA; however, the As concentration in seven of nine throat pearls (0.55 +/- 0.15 microg g(-)(1)) were above the Spanish maximum limit. A clear empirical relationship between the arsenic and glycyrrhizic acid concentrations was observed (R (2) = 0.9357), implying that to avoid high levels of potentially toxic arsenic in licorice confections high-quality licorice extract should be used. PMID:12617618

  11. Arsenic in eggs and excreta of laying hens in Bangladesh: a preliminary study.

    PubMed

    Ghosh, Amalendu; Awal, M A; Majumder, Shankar; Mostofa, Mahbub; Khair, Abul; Islam, M Z; Rao, D Ramkishan

    2012-12-01

    The aim of this study was to detect arsenic concentrations in feed, well-water for drinking, eggs, and excreta of laying hens in arsenic-prone areas of Bangladesh and to assess the effect of arsenic-containing feed and well-water on the accumulation of arsenic in eggs and excreta of the same subject. One egg from each laying hen (n = 248) and its excreta, feed, and well-water for drinking were collected. Total arsenic concentrations were determined by atomic absorption spectrophotometer, coupled with hydride generator. Effects of arsenic-containing feed and drinking-water on the accumulation of arsenic in eggs and excreta were analyzed by multivariate regression model, using Stata software. Mean arsenic concentrations in drinking-water, feed (dry weight [DW]), egg (wet weight [WW]), and excreta (DW) of hens were 77.3, 176.6, 19.2, and 1,439.9 ppb respectively. Significant (p < 0.01) positive correlations were found between the arsenic contents in eggs and drinking-water (r = 0.602), drinking-water and excreta (r = 0.716), feed and excreta (r = 0.402) as well as between the arsenic content in eggs and the age of the layer (r = 0.243). On an average, 55% and 82% of the total variation in arsenic contents of eggs and excreta respectively could be attributed to the variation in the geographic area, age, feed type, and arsenic contents of drinking-water and feed. For each week's increase in age of hens, arsenic content in eggs increased by 0.94%. For every 1% elevation of arsenic in drinking-water, arsenic in eggs and excreta increased by 0.41% and 0.44% respectively whereas for a 1% rise of arsenic in feed, arsenic in eggs and excreta increased by 0.40% and 0.52% respectively. These results provide evidence that, although high arsenic level prevails in well-water for drinking in Bangladesh, the arsenic shows low biological transmission capability from body to eggs and, thus, the value was below the maximum tolerable limit for humans. However, arsenic in drinking-water and/or feed makes a significant contribution to the arsenic accumulations in eggs and excreta of laying hens. PMID:23304904

  12. Arsenic in Eggs and Excreta of Laying Hens in Bangladesh: A Preliminary Study

    PubMed Central

    Awal, M. A.; Majumder, Shankar; Mostofa, Mahbub; Khair, Abul; Islam, M. Z.; Rao, D. Ramkishan

    2012-01-01

    The aim of this study was to detect arsenic concentrations in feed, well-water for drinking, eggs, and excreta of laying hens in arsenic-prone areas of Bangladesh and to assess the effect of arsenic-containing feed and well-water on the accumulation of arsenic in eggs and excreta of the same subject. One egg from each laying hen (n=248) and its excreta, feed, and well-water for drinking were collected. Total arsenic concentrations were determined by atomic absorption spectrophotometer, coupled with hydride generator. Effects of arsenic-containing feed and drinking-water on the accumulation of arsenic in eggs and excreta were analyzed by multivariate regression model, using Stata software. Mean arsenic concentrations in drinking-water, feed (dry weight [DW]), egg (wet weight [WW]), and excreta (DW) of hens were 77.3, 176.6, 19.2, and 1,439.9 ppb respectively. Significant (p<0.01) positive correlations were found between the arsenic contents in eggs and drinking-water (r=0.602), drinking-water and excreta (r=0.716), feed and excreta (r=0.402) as well as between the arsenic content in eggs and the age of the layer (r=0.243). On an average, 55% and 82% of the total variation in arsenic contents of eggs and excreta respectively could be attributed to the variation in the geographic area, age, feed type, and arsenic contents of drinking-water and feed. For each week's increase in age of hens, arsenic content in eggs increased by 0.94%. For every 1% elevation of arsenic in drinking-water, arsenic in eggs and excreta increased by 0.41% and 0.44% respectively whereas for a 1% rise of arsenic in feed, arsenic in eggs and excreta increased by 0.40% and 0.52% respectively. These results provide evidence that, although high arsenic level prevails in well-water for drinking in Bangladesh, the arsenic shows low biological transmission capability from body to eggs and, thus, the value was below the maximum tolerable limit for humans. However, arsenic in drinking-water and/or feed makes a significant contribution to the arsenic accumulations in eggs and excreta of laying hens. PMID:23304904

  13. Arsenic in Drinking Water, Transition Cell Cancer and Chronic Cystitis in Rural Bangladesh

    PubMed Central

    Mostafa, Mohammad Golam; Cherry, Nicola

    2015-01-01

    In earlier analyses, we demonstrated dose-response relationships between renal and lung cancer and local arsenic concentrations in wells used by Bangladeshi villagers. We used the same case-referent approach to examine the relation of arsenic to biopsy confirmed transition cell cancer (TCC) of the ureter, bladder or urethra in these villagers. As the International Agency for Research on Cancer (IARC) has conclude that arsenic in drinking water causes bladder cancer, we expected to find higher risk with increasing arsenic concentration. We used histology/cytology results from biopsies carried out at a single clinic in Dhaka, Bangladesh from January 2008 to October 2011. We classified these into four groups, TCC (n = 1466), other malignancies (n = 145), chronic cystitis (CC) (n = 844) and other benign (n = 194). Arsenic concentration was estimated from British Geological Survey reports. Odds ratios were calculated by multilevel logistic regression adjusted for confounding and allowing for geographic clustering. We found no consistent trend for TCC with increasing arsenic concentration but the likelihood of a patient with benign disease having CC was significantly increased at arsenic concentrations >100 µg/L. We conclude that the expected relationship of TCC to arsenic was masked by over-matching that resulted from the previously unreported relationship between arsenic and CC. We hypothesize that CC may be a precursor of TCC in high arsenic areas. PMID:26516891

  14. Arsenic in tube well water in Bangladesh: health and economic impacts and implications for arsenic mitigation

    PubMed Central

    Flanagan, Sara V; Johnston, Richard B

    2012-01-01

    Abstract A national drinking water quality survey conducted in 2009 furnished data that were used to make an updated estimate of chronic arsenic exposure in Bangladesh. About 20 million and 45 million people were found to be exposed to concentrations above the national standard of 50 µg/L and the World Health Organization’s guideline value of 10 µg/L, respectively. From the updated exposure data and all-cause mortality hazard ratios based on local epidemiological studies, it was estimated that arsenic exposures to concentrations >?50 µg/L and 10–50 µg/L account for an annual 24?000 and perhaps as many as 19?000 adult deaths in the country, respectively. Exposure varies widely in the 64 districts; among adults, arsenic-related deaths account for 0–15% of all deaths. An arsenic-related mortality rate of 1 in every 16 adult deaths could represent an economic burden of 13 billion United States dollars (US$) in lost productivity alone over the next 20 years. Arsenic mitigation should follow a two-tiered approach: (i) prioritizing provision of safe water to an estimated 5 million people exposed to >?200 µg/L arsenic, and (ii) building local arsenic testing capacity. The effectiveness of such an approach was demonstrated during the United Nations Children’s Fund 2006–2011 country programme, which provided safe water to arsenic-contaminated areas at a cost of US$ 11 per capita. National scale-up of such an approach would cost a few hundred million US dollars but would improve the health and productivity of the population, especially in future generations. PMID:23226896

  15. ARSENIC OCCURRENCE AND SOURCES THE HEALTH CONCERNS OF ARSENIC EXPOSURE

    E-print Network

    Radcliffe, David

    ARSENIC OCCURRENCE AND SOURCES THE HEALTH CONCERNS OF ARSENIC EXPOSURE · · · · · YOUR HOUSEHOLD WATER QUALITY: ARSENIC IN YOUR WATER THE UNIVERSITY OF