Science.gov

Sample records for urine arsenic concentrations

  1. Seafood Intake and Urine Concentrations of Total Arsenic, Dimethylarsinate and Arsenobetaine in the US Population

    PubMed Central

    Navas-Acien, Ana; Francesconi, Kevin A.; Silbergeld, Ellen K; Guallar, Eliseo

    2010-01-01

    Background Seafood is the main source of organic arsenic exposure (arsenobetaine, arsenosugars and arsenolipids) in the population. Arsenosugars and arsenolipids are metabolized to several species including dimethylarsinate (DMA). Objective Evaluate the association of seafood intake with spot urine arsenic concentrations in the 2003–2006 National Health Nutrition and Examination Survey (NHANES). Methods We studied 4276 participants ≥6 y. Total arsenic was measured using inductively coupled plasma dynamic reaction cell mass spectrometry (ICPMS). Urine DMA and arsenobetaine were measured by high-performance liquid chromatography coupled with ICPMS. Results Participants reporting seafood in the past 24-h had higher urine concentrations of total arsenic (median 24.5 vs. 7.3 µg/L), DMA (6.0 vs. 3.5 µg/L), arsenobetaine (10.2 vs. 0.9 µg/L) and total arsenic minus arsenobetaine (11.0 vs. 5.5 µg/L). Participants reporting seafood ≥2/wk vs. never during the past year had 2.3 (95% confidence interval 1.9, 2.7), 1.4 (1.2, 1.6), 6.0 (4.6, 7.8) and 1.7 (1.4, 2.0) times higher (p-trend <0.001) concentrations of total arsenic, DMA, arsenobetaine and total arsenic minus arsenobetaine, respectively. In participants without detectable arsenobetaine and in analyses adjusted for arsenobetaine, seafood consumption in the past year was not associated with total arsenic or DMA concentrations in urine. Conclusion Seafood intake was a major determinant of increased urine concentrations of total arsenic, DMA, arsenobetaine and total arsenic minus arsenobetaine in the US population. Epidemiologic studies that use total arsenic, DMA, the sum of inorganic arsenic, methylarsonate and DMA, and total arsenic minus arsenobetaine as markers of inorganic arsenic exposure and/or metabolism need to address seafood intake. PMID:21093857

  2. Urine concentration test

    MedlinePlus

    A urine concentration test measures the ability of the kidneys to conserve or excrete water. ... Increased urine concentration may be due to different conditions, such as: Heart failure Loss of body fluids (dehydration) from diarrhea or ...

  3. Associations between Blood and Urine Arsenic Concentrations and Global Levels of Post-Translational Histone Modifications in Bangladeshi Men and Women

    PubMed Central

    Howe, Caitlin G.; Liu, Xinhua; Hall, Megan N.; Slavkovich, Vesna; Ilievski, Vesna; Parvez, Faruque; Siddique, Abu B.; Shahriar, Hasan; Uddin, Mohammad N.; Islam, Tariqul; Graziano, Joseph H.; Costa, Max; Gamble, Mary V.

    2016-01-01

    Background: Exposure to inorganic arsenic is associated with numerous adverse health outcomes, with susceptibility differing by sex. Although evidence from in vitro studies suggests that arsenic alters post-translational histone modifications (PTHMs), evidence in humans is limited. Objectives: The objectives were to determine: a) if arsenic exposure is associated with global (percent) levels of PTHMs H3K36me2, H3K36me3, and H3K79me2 in a sex-dependent manner, and b) if %PTHMs are stable when arsenic exposure is reduced. Methods: We examined associations between arsenic, measured in blood and urine, and %PTHMs in peripheral blood mononuclear cells from 317 participants enrolled in the Bangladesh Folic Acid and Creatine Trial (FACT). We also examined the stability of %PTHMs after the use of arsenic-removal water filters (n = 60). Results: Associations between natural log–transformed (ln) urinary arsenic, adjusted for creatinine (uAsCr), and %H3K36me2 differed significantly between men and women (p = 0.01). ln(uAsCr) was positively associated with %H3K36me2 in men [β = 0.12; 95% confidence interval (CI): 0.01, 0.23, p = 0.03] but was negatively associated with %H3K36me2 in women (β = –0.05; 95% CI: –0.12, 0.02, p = 0.19). The patterns of associations with blood arsenic were similar. On average, water filter use was also associated with reductions in %H3K36me2 (p < 0.01), but this did not differ significantly by sex. Arsenic was not significantly associated with %H3K36me3 or %H3K79me2 in men or women. Conclusions: Arsenic exposure was associated with %H3K36me2 in a sex-specific manner but was not associated with %H3K36me3 or %H3K79me2. Additional studies are needed to assess changes in %H3K36me2 after arsenic removal. Citation: Howe CG, Liu X, Hall MN, Slavkovich V, Ilievski V, Parvez F, Siddique AB, Shahriar H, Uddin MN, Islam T, Graziano JH, Costa M, Gamble MV. 2016. Associations between blood and urine arsenic concentrations and global levels of post

  4. Binational Arsenic Exposure Survey: Methodology and Estimated Arsenic Intake from Drinking Water and Urinary Arsenic Concentrations

    PubMed Central

    Roberge, Jason; O’Rourke, Mary Kay; Meza-Montenegro, Maria Mercedes; Gutiérrez-Millán, Luis Enrique; Burgess, Jefferey L.; Harris, Robin B.

    2012-01-01

    The Binational Arsenic Exposure Survey (BAsES) was designed to evaluate probable arsenic exposures in selected areas of southern Arizona and northern Mexico, two regions with known elevated levels of arsenic in groundwater reserves. This paper describes the methodology of BAsES and the relationship between estimated arsenic intake from beverages and arsenic output in urine. Households from eight communities were selected for their varying groundwater arsenic concentrations in Arizona, USA and Sonora, Mexico. Adults responded to questionnaires and provided dietary information. A first morning urine void and water from all household drinking sources were collected. Associations between urinary arsenic concentration (total, organic, inorganic) and estimated level of arsenic consumed from water and other beverages were evaluated through crude associations and by random effects models. Median estimated total arsenic intake from beverages among participants from Arizona communities ranged from 1.7 to 14.1 µg/day compared to 0.6 to 3.4 µg/day among those from Mexico communities. In contrast, median urinary inorganic arsenic concentrations were greatest among participants from Hermosillo, Mexico (6.2 µg/L) whereas a high of 2.0 µg/L was found among participants from Ajo, Arizona. Estimated arsenic intake from drinking water was associated with urinary total arsenic concentration (p < 0.001), urinary inorganic arsenic concentration (p < 0.001), and urinary sum of species (p < 0.001). Urinary arsenic concentrations increased between 7% and 12% for each one percent increase in arsenic consumed from drinking water. Variability in arsenic intake from beverages and urinary arsenic output yielded counter intuitive results. Estimated intake of arsenic from all beverages was greatest among Arizonans yet participants in Mexico had higher urinary total and inorganic arsenic concentrations. Other contributors to urinary arsenic concentrations should be evaluated. PMID:22690182

  5. Excretion of arsenic in urine as a function of exposure to arsenic in drinking water.

    PubMed Central

    Calderon, R L; Hudgens, E; Le, X C; Schreinemachers, D; Thomas, D J

    1999-01-01

    Urinary arsenic (As) concentrations were evaluated as a biomarker of exposure in a U.S. population chronically exposed to inorganic As (InAs) in their drinking water. Ninety-six individuals who consumed drinking water with As concentrations of 8-620 microg/L provided first morning urine voids for up to 5 consecutive days. The study population was 56% male, and 44% was younger than 18 years of age. On one day of the study period, all voided urines were collected over a 24-hr period. Arsenic intake from drinking water was estimated from daily food diaries. Comparison between the concentration of As in individual urine voids with that in the 24-hr urine collection indicated that the concentration of As in urine was stable throughout the day. Comparison of the concentration of As in each first morning urine void over the 5-day study period indicated that there was little day-to-day variation in the concentration of As in urine. The concentration of As in drinking water was a better predictor of the concentration of As in urine than was the estimated intake of As from drinking water. The concentration of As in urine did not vary by gender. An age-dependent difference in the concentration of As in urine may be attributed to the higher As dosage rate per unit body weight in children than in adults. These findings suggest that the analysis of a small number of urine samples may be adequate to estimate an individual's exposure to InAs from drinking water and that the determination of the concentration of InAs in a drinking water supply may be a useful surrogate for estimating exposure to this metalloid. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:10417365

  6. Biological monitoring of arsenic exposure of gallium arsenide- and inorganic arsenic-exposed workers by determination of inorganic arsenic and its metabolites in urine and hair

    SciTech Connect

    Yamauchi, H.; Takahashi, K.; Mashiko, M.; Yamamura, Y. )

    1989-11-01

    In an attempt to establish a method for biological monitoring of inorganic arsenic exposure, the chemical species of arsenic were measured in the urine and hair of gallium arsenide (GaAs) plant and copper smelter workers. Determination of urinary inorganic arsenic concentration proved sensitive enough to monitor the low-level inorganic arsenic exposure of the GaAs plant workers. The urinary inorganic arsenic concentration in the copper smelter workers was far higher than that of a control group and was associated with high urinary concentrations of the inorganic arsenic metabolites, methylarsonic acid (MAA) and dimethylarsinic acid (DMAA). The results established a method for exposure level-dependent biological monitoring of inorganic arsenic exposure. Low-level exposures could be monitored only by determining urinary inorganic arsenic concentration. High-level exposures clearly produced an increased urinary inorganic arsenic concentration, with an increased sum of urinary concentrations of inorganic arsenic and its metabolites (inorganic arsenic + MAA + DMAA). The determination of urinary arsenobetaine proved to determine specifically the seafood-derived arsenic, allowing this arsenic to be distinguished clearly from the arsenic from occupational exposure. Monitoring arsenic exposure by determining the arsenic in the hair appeared to be of value only when used for environmental monitoring of arsenic contamination rather than for biological monitoring.

  7. Measurements of Arsenic in the Urine and Nails of Individuals Exposed to Low Concentrations of Arsenic in Drinking Water From Private Wells in a Rural Region of Québec, Canada.

    PubMed

    Gagnon, Fabien; Lampron-Goulet, Eric; Normandin, Louise; Langlois, Marie-France

    2016-01-01

    Chronic exposure to inorganic arsenic leads to an increased risk of cancer. A biological measurement was conducted in 153 private well owners and their families consuming water contaminated by inorganic arsenic at concentrations that straddle 10 μg/L. The relationship between the external dose indicators (concentration of inorganic arsenic in wells and daily well water inorganic arsenic intake) and the internal doses (urinary arsenic--sum of As(III), DMA, and MMA, adjusted for creatinine--and total arsenic in toenails) was evaluated using multiple linear regressions, controlling for age, gender, dietary sources of arsenic, and number of cigarettes smoked. It showed that urinary arsenic was associated with concentration of inorganic arsenic in wells (p < .001) and daily well water inorganic arsenic intake (p < .001) in adults, and with daily well water inorganic arsenic intake (p = .017) and rice consumption (p = .022) in children (n = 43). The authors' study reinforces the drinking-water quality guidelines for inorganic arsenic. PMID:26867295

  8. Arsenic levels in blood, urine, and hair of workers applying monosodium methanearsonate (MSMA)

    SciTech Connect

    Abdelghani, A.A.; Anderson, A.C.; Jaghabir, M.; Mather, F.

    1986-05-01

    Uptake and excretion of total arsenic from monosodium methanearsonate (MSMA) in workers who applied the herbicide was followed during the spraying season. Urine, blood, and hair samples were collected and air samples were taken from the workers' breathing zone. Arsenic concentrations in air samples ranged from 0.001-1.086 micrograms/m3. Blood and urine arsenic values ranged from 0.0-0.2 mg/L and 0.002-1.725 mg/L, respectively. The geometric mean arsenic concentration in urine increased during the week but returned to base levels on weekends. Hair arsenic concentrations ranged from 0.02-358.0 mg/kg, increased during the spraying season, and returned to pre-season levels once herbicide application ceased. Three workers had higher than normal pre-exposure hair values. However, only one of the three workers had consistently above normal values throughout the study period.

  9. Urine concentration test

    MedlinePlus

    ... or osmolality, your provider will send your urine sample to a lab. If needed, your provider may ask you to collect your urine at home over 24 hours . Your provider will tell you how to do this. Follow instructions exactly so that the results are accurate.

  10. Urinary arsenic concentration adjustment factors and malnutrition.

    PubMed

    Nermell, Barbro; Lindberg, Anna-Lena; Rahman, Mahfuzar; Berglund, Marika; Persson, Lars Ake; El Arifeen, Shams; Vahter, Marie

    2008-02-01

    This study aims at evaluating the suitability of adjusting urinary concentrations of arsenic, or any other urinary biomarker, for variations in urine dilution by creatinine and specific gravity in a malnourished population. We measured the concentrations of metabolites of inorganic arsenic, creatinine and specific gravity in spot urine samples collected from 1466 individuals, 5-88 years of age, in Matlab, rural Bangladesh, where arsenic-contaminated drinking water and malnutrition are prevalent (about 30% of the adults had body mass index (BMI) below 18.5 kg/m(2)). The urinary concentrations of creatinine were low; on average 0.55 g/L in the adolescents and adults and about 0.35 g/L in the 5-12 years old children. Therefore, adjustment by creatinine gave much higher numerical values for the urinary arsenic concentrations than did the corresponding data expressed as microg/L, adjusted by specific gravity. As evaluated by multiple regression analyses, urinary creatinine, adjusted by specific gravity, was more affected by body size, age, gender and season than was specific gravity. Furthermore, urinary creatinine was found to be significantly associated with urinary arsenic, which further disqualifies the creatinine adjustment. PMID:17900556

  11. Heritability and Preliminary Genome-Wide Linkage Analysis of Arsenic Metabolites in Urine

    PubMed Central

    Tellez-Plaza, Maria; Gribble, Matthew O.; Voruganti, V. Saroja; Francesconi, Kevin A.; Goessler, Walter; Umans, Jason G.; Silbergeld, Ellen K.; Guallar, Eliseo; Franceschini, Nora; Kao, Wen H.; MacCluer, Jean W.; Cole, Shelley A.

    2013-01-01

    Background: Arsenic (III) methyltransferase (AS3MT) has been related to urine arsenic metabolites in association studies. Other genes might also play roles in arsenic metabolism and excretion. Objective: We evaluated genetic determinants of urine arsenic metabolites in American Indian adults from the Strong Heart Study (SHS). Methods: We evaluated heritability of urine arsenic metabolites [percent inorganic arsenic (%iAs), percent monomethylarsonate (%MMA), and percent dimethylarsinate (%DMA)] in 2,907 SHS participants with urine arsenic measurements and at least one relative within the cohort. We conducted a preliminary linkage analysis in a subset of 487 participants with available genotypes on approximately 400 short tandem repeat markers using a general pedigree variance component approach for localizing quantitative trait loci (QTL). Results: The medians (interquartile ranges) for %iAs, %MMA, and %DMA were 7.7% (5.4–10.7%), 13.6% (10.5–17.1%), and 78.4% (72.5–83.1%), respectively. The estimated heritability was 53% for %iAs, 50% for %MMA, and 59% for %DMA. After adjustment for sex, age, smoking, body mass index, alcohol consumption, region, and total urine arsenic concentrations, LOD [logarithm (to the base of 10) of the odds] scores indicated suggestive evidence for genetic linkage with QTLs influencing urine arsenic metabolites on chromosomes 5 (LOD = 2.03 for %iAs), 9 (LOD = 2.05 for %iAs and 2.10 for %MMA), and 11 (LOD = 1.94 for %iAs). A peak for %DMA on chromosome 10 within 2 Mb of AS3MT had an LOD of 1.80. Conclusions: This population-based family study in American Indian communities supports a genetic contribution to variation in the distribution of arsenic metabolites in urine and, potentially, the involvement of genes other than AS3MT. PMID:23322787

  12. Determination of monomethylarsonous acid, a key arsenic methylation intermediate, in human urine.

    PubMed Central

    Le, X C; Ma, M; Cullen, W R; Aposhian, H V; Lu, X; Zheng, B

    2000-01-01

    In this study we report on the finding of monomethylarsonous acid [MMA(III)] in human urine. This newly identified arsenic species is a key intermediate in the metabolic pathway of arsenic biomethylation, which involves stepwise reduction of pentavalent to trivalent arsenic species followed by oxidative addition of a methyl group. Arsenic speciation was carried out using ion-pair chromatographic separation of arsenic compounds with hydride generation atomic fluorescence spectrometry detection. Speciation of the inorganic arsenite [As(III)], inorganic arsenate [As(V)], monomethylarsonic acid [MMA(V)], dimethylarsinic acid [DMA(V)], and MMA(III) in a urine sample was complete in 5 min. Urine samples collected from humans before and after a single oral administration of 300 mg sodium 2,3-dimercapto-1-propane sulfonate (DMPS) were analyzed for arsenic species. MMA(III) was found in 51 out of 123 urine samples collected from 41 people in inner Mongolia 0-6 hr after the administration of DMPS. MMA(III )in urine samples did not arise from the reduction of MMA(V) by DMPS. DMPS probably assisted the release of MMA(III) that was formed in the body. Along with the presence of MMA(III), there was an increase in the relative concentration of MMA(V) and a decrease in DMA(V) in the urine samples collected after the DMPS ingestion. PMID:11102289

  13. Arsenic concentrations in Chinese coals.

    PubMed

    Wang, Mingshi; Zheng, Baoshan; Wang, Binbin; Li, Shehong; Wu, Daishe; Hu, Jun

    2006-03-15

    The arsenic concentrations in 297 coal samples were collected from the main coal-mines of 26 provinces in China were determined by molybdenum blue coloration method. These samples were collected from coals that vary widely in coal rank and coal-forming periods from the five main coal-bearing regions in China. Arsenic content in Chinese coals range between 0.24 to 71 mg/kg. The mean of the concentration of Arsenic is 6.4+/-0.5 mg/kg and the geometric mean is 4.0+/-8.5 mg/kg. The level of arsenic in China is higher in northeastern and southern provinces, but lower in northwestern provinces. The relationship between arsenic content and coal-forming period, coal rank is studied. It was observed that the arsenic contents decreases with coal rank in the order: Tertiary>Early Jurassic>Late Triassic>Late Jurassic>Middle Jurassic>Late Permian>Early Carboniferous>Middle Carboniferous>Late Carboniferous>Early Permian; It was also noted that the arsenic contents decrease in the order: Subbituminous>Anthracite>Bituminous. However, compared with the geological characteristics of coal forming region, coal rank and coal-forming period have little effect on the concentration of arsenic in Chinese coal. The average arsenic concentration of Chinese coal is lower than that of the whole world. The health problems in China derived from in coal (arsenism) are due largely to poor local life-style practices in cooking and home heating with coal rather than to high arsenic contents in the coal. PMID:16256172

  14. Assessment of occupational exposure to inorganic arsenic based on urinary concentrations and speciation of arsenic.

    PubMed

    Farmer, J G; Johnson, L R

    1990-05-01

    An analytical speciation method, capable of separating inorganic arsenic (As (V), As (III] and its methylated metabolites (MMAA, DMAA) from common, inert, dietary organoarsenicals, was applied to the determination of arsenic in urine from a variety of workers occupationally exposed to inorganic arsenic compounds. Mean urinary arsenic (As (V) + As (III) + MMAA + DMAA) concentrations ranged from 4.4 micrograms/g creatinine for controls to less than 10 micrograms/g for those in the electronics industry, 47.9 micrograms/g for timber treatment workers applying arsenical wood preservatives, 79.4 micrograms/g for a group of glassworkers using arsenic trioxide, and 245 micrograms/g for chemical workers engaged in manufacturing and handling inorganic arsenicals. The maximum recorded concentration was 956 micrograms/g. For the most exposed groups, the ranges in the average urinary arsenic speciation pattern were 1-6% As (V), 11-14% As (III), 14-18% MMAA, and 63-70% DMAA. The highly raised urinary arsenic concentrations for the chemical workers, in particular, and some glassworkers are shown to correspond to possible atmospheric concentrations in the workplace and intakes in excess of, or close to, recommended and statutory limits and those associated with inorganic arsenic related diseases. PMID:2357455

  15. Assessment of occupational exposure to inorganic arsenic based on urinary concentrations and speciation of arsenic.

    PubMed Central

    Farmer, J G; Johnson, L R

    1990-01-01

    An analytical speciation method, capable of separating inorganic arsenic (As (V), As (III] and its methylated metabolites (MMAA, DMAA) from common, inert, dietary organoarsenicals, was applied to the determination of arsenic in urine from a variety of workers occupationally exposed to inorganic arsenic compounds. Mean urinary arsenic (As (V) + As (III) + MMAA + DMAA) concentrations ranged from 4.4 micrograms/g creatinine for controls to less than 10 micrograms/g for those in the electronics industry, 47.9 micrograms/g for timber treatment workers applying arsenical wood preservatives, 79.4 micrograms/g for a group of glassworkers using arsenic trioxide, and 245 micrograms/g for chemical workers engaged in manufacturing and handling inorganic arsenicals. The maximum recorded concentration was 956 micrograms/g. For the most exposed groups, the ranges in the average urinary arsenic speciation pattern were 1-6% As (V), 11-14% As (III), 14-18% MMAA, and 63-70% DMAA. The highly raised urinary arsenic concentrations for the chemical workers, in particular, and some glassworkers are shown to correspond to possible atmospheric concentrations in the workplace and intakes in excess of, or close to, recommended and statutory limits and those associated with inorganic arsenic related diseases. PMID:2357455

  16. Thio-dimethylarsinate is a common metabolite in urine samples from arsenic-exposed women in Bangladesh

    SciTech Connect

    Raml, Reingard; Rumpler, Alice; Goessler, Walter; Vahter, Marie; Li Li; Ochi, Takafumi; Francesconi, Kevin A.

    2007-08-01

    Over the last 6 years, much work on arsenic species in urine samples has been directed toward the determination of the reduced dimethylated arsenic species, DMA(III), because of its high toxicity and perceived key role in the metabolism of inorganic arsenic. Recent work, however, has suggested that DMA(III) may at times have been misidentified because its chromatographic properties can be similar to those of thio-dimethylarsinate (thio-DMA). We analyzed by HPLC-ICPMS (inductively coupled plasma mass spectrometry) urine samples from 75 arsenic-exposed women from Bangladesh with total arsenic concentrations ranging from 8 to 1034 {mu}g As/L and found that thio-DMA was present in 44% of the samples at concentrations ranging mostly from trace amounts to 24 {mu}g As/L (one sample contained 123 {mu}g As/L). Cytotoxicity testing with HepG2 cells derived from human hepatocarcinoma indicated that thio-DMA was about 10-fold more cytotoxic than dimethylarsinate (DMA). The widespread occurrence of thio-DMA in urine from these arsenic-exposed women suggests that this arsenical may also be present in other urine samples and has so far escaped detection. The work highlights the need for analytical methods providing specific determinations of arsenic compounds in future studies on arsenic metabolism and toxicology.

  17. The Association of Urine Arsenic with Prevalent and Incident Chronic Kidney Disease: Evidence from the Strong Heart Study

    PubMed Central

    Zheng, Laura Y.; Umans, Jason G.; Yeh, Fawn; Francesconi, Kevin A.; Goessler, Walter; Silbergeld, Ellen K; Bandeen-Roche, Karen; Guallar, Eliseo; Howard, Barbara V.; Weaver, Virginia M.; Navas-Acien, Ana

    2016-01-01

    Background Few studies have evaluated associations between low to moderate arsenic levels and chronic kidney disease (CKD). The objective was to evaluate the associations of inorganic arsenic exposure with prevalent and incident CKD in American Indian adults. Methods We evaluated the associations of inorganic arsenic exposure with CKD in American Indians who participated in the Strong Heart Study (SHS) in 3,851 adults aged 45–74 years in a cross-sectional analysis, and 3,119 adults with follow-up data in a prospective analysis. Inorganic arsenic, monomethylarsonate, and dimethylarsinate were measured in urine at baseline. CKD was defined as eGFR≤60 mL/min/1.73m2, kidney transplant or dialysis. Results CKD prevalence was 10.3%. The median (IQR) concentration of inorganic plus methylated arsenic species (total arsenic) in urine was 9.7 (5.8, 15.7) μg/L. The adjusted OR (95% CI) of prevalent CKD for an interquartile range in total arsenic was 0.7 (0.6, 0.8), mostly due to an inverse association with inorganic arsenic (OR 0.4 (0.3, 0.4)). Monomethylarsonate and dimethylarsinate were positively associated with prevalent CKD after adjustment for inorganic arsenic (OR 3.8 and 1.8). The adjusted HR of incident CKD for an IQR in ΣAs was 1.2 (1.03, 1.41). The corresponding HR for inorganic arsenic, monomethylarsonate and dimethylarsinate were 1.0 (0.9, 1.2), 1.2 (1.00, 1.3) and 1.2 (1.0, 1.4). Conclusions The inverse association of urine inorganic arsenic with prevalent CKD suggests that kidney disease affects excretion of inorganic arsenic. Arsenic species were positively associated with incident CKD. Studies with repeated measures are needed to further characterize the relationship between arsenic and kidney disease development. PMID:25929811

  18. Biomonitoring of arsenic, cadmium, lead, manganese and mercury in urine and hair of children living near mining and industrial areas.

    PubMed

    Molina-Villalba, Isabel; Lacasaña, Marina; Rodríguez-Barranco, Miguel; Hernández, Antonio F; Gonzalez-Alzaga, Beatriz; Aguilar-Garduño, Clemente; Gil, Fernando

    2015-04-01

    Huelva (South West Spain) and its surrounding municipalities represent one of the most polluted estuaries in the world owing to the discharge of mining and industrial related pollutants in their proximity. A biomonitoring study was conducted to assess exposure to arsenic and some trace metals (cadmium, mercury, manganese and lead) in urine and scalp hair from a representative sample of children aged 6-9 years (n=261). This is the only study simultaneously analyzing those five metal elements in children urine and hair. The potential contribution of gender, water consumption, residence area and body mass index on urinary and hair metal concentrations was also studied. Urine levels of cadmium and total mercury in a proportion (25-50%) of our children population living near industrial/mining areas might have an impact on health, likely due to environmental exposure to metal pollution. The only significant correlation between urine and hair levels was found for mercury. Children living near agriculture areas showed increased levels of cadmium and manganese (in urine) and arsenic (in hair). In contrast, decreased urine Hg concentrations were observed in children living near mining areas. Girls exhibited significantly higher trace metal concentrations in hair than boys. The greatest urine arsenic concentrations were found in children drinking well/spring water. Although human hair can be a useful tool for biomonitoring temporal changes in metal concentrations, levels are not correlated with those found in urine except for total mercury, thus providing additional information. PMID:25434277

  19. Arsenic speciation in the urine and hair of individuals exposed to airborne arsenic through coal-burning in Guizhou, PR China.

    PubMed

    Shraim, Amjad; Cui, Xing; Li, Song; Ng, Jack C; Wang, Jianping; Jin, Yinlong; Liu, Yingchun; Guo, Lei; Li, Dasheng; Wang, Shuquan; Zhang, Ruizhi; Hirano, Seishiro

    2003-01-31

    The extent of exposure of residents of Changqing (Guizhou, PR China) to arsenic through coal-burning was investigated. Despite the low coal-arsenic content (56.3+/-42.5 mg As kg(-1)) when compared with coals collected at different location and times from the same province, more than 30% of the study subjects have shown symptoms of arsenicosis. Coal, urine, hair, and water samples were collected in mid-September 2001 and analysed for arsenic. The average urinary and hair-arsenic concentrations in the exposed subjects were 71.4+/-37.1 microg As g(-1) creatinine (control 41.6+/-12.1) and 7.99+/-8.16 mg kg(-1), respectively. A positive correlation between the hair and urinary-arsenic concentration (R(2)=0.601) was found. There was no significant difference between females and males for both urinary and hair-arsenic concentrations. Females were found to have a higher dimethylarsinic acid but lower percentages of inorganic arsenic and monomethylarsonic acid in their urine than males. PMID:12505431

  20. Determination of arsenic metabolic complex excreted in human urine after administration of sodium 2,3-dimercapto-1-propane sulfonate.

    PubMed

    Gong, Zhilong; Jiang, Guifeng; Cullen, William R; Aposhian, H Vasken; Le, X Chris

    2002-10-01

    Sodium 2,3-dimercapto-1-propane sulfonate (DMPS) has been used to treat acute arsenic poisoning. Presumably DMPS functions by chelating some arsenic species to increase the excretion of arsenic from the body. However, the excreted complex of DMPS with arsenic has not been detected. Here we describe a DMPS complex with monomethylarsonous acid (MMA(III)), a key trivalent arsenic in the arsenic methylation process, and show the presence of the DMPS-MMA(III) complex in human urine after the administration of DMPS. The DMPS-MMA(III) complex was characterized using electrospray tandem mass spectrometry and determined by using HPLC separation with hydride generation atomic fluorescence detection (HGAFD). The DMPS-MMA(III) complex did not form a volatile hydride with borohydride treatment. On-line digestion with 0.1 M sodium hydroxide following HPLC separation decomposed the DMPS-MMA(III) complex and allowed for the subsequent quantification by hydride generation atomic fluorescence. Arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMA(V)), dimethylarsinic acid (DMA(V)), MMA(III), and DMPS-MMA(III) complex were analyzed in urine samples from human subjects collected after the ingestion of 300 mg of DMPS. The administration of DMPS resulted in a decrease of the DMA(V) concentration and an increase of the MMA(V) concentration excreted in the urine, confirming the previous results. The finding of the DMPS-MMA(III) complex in human urine after DMPS treatment provides an explanation for the inhibition of arsenic methylation by DMPS. Because MMA(III) is the substrate for the biomethylation of arsenic from MMA(V) to DMA(V), the formation of DMPS-MMA(III) complex would reduce the availability of MMA(III) for the subsequent biomethylation. PMID:12387631

  1. EXCRETION OF ARSENIC IN URINE AS A FUNCTION OF EXPOSURE TO ARSENIC IN DRINKING WATER

    EPA Science Inventory

    Urinary arsenic (As) concentrations were evaluated as a biomarker of exposure in a U.S. population chronically exposed to inorganic As (InAs) in their drinking water. Ninety-six individuals who consumed drinking water with As concentrations of 8-620 microg/L provided first mornin...

  2. Health effects and arsenic species in urine of copper smelter workers.

    PubMed

    Halatek, Tadeusz; Sinczuk-Walczak, Halina; Janasik, Beata; Trzcinka-Ochocka, Malgorzata; Winnicka, Renata; Wasowicz, Wojciech

    2014-01-01

    The aim of this study was to compare indices of exposure in workers employed at different work posts in a copper smelter plant using neurophysiological tests and to evaluate the relationship between urinary arsenic species with the aid of sensitive respiratory and renal biomarkers. We have attempted to elucidate the impact of different arsenic speciation forms on the observed health effects. We focused on the workers (n = 45) exposed to atmospheres containing specific diverse mixtures of metals (such as those occurring in Departments of Furnaces, Lead and Electrolysis) compared to controls (n = 16). Subjective symptoms from the central (CNS) and the peripheral (PNS) nervous system were recorded and visual evoked potential (VEP), electroneurography (ENeG) and electroencephalography (EEG) curves were analysed. Levels of airborne lead (PbA), zinc (ZnA) and copper (CuA) and Pb levels in blood (PbB) and the relationships between airborne As concentrations (AsA) and the urinary levels of the inorganic (iAs); As(+3), As(+5) and the organic; methylarsonate (MMA(V)), dimethylarsinate (DMA(V)) and arsenobetaine (AsB) arsenic species were determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Effects of exposure were expressed in terms of biomarker levels: Clara cell protein (CC16) in serum as early pulmonary biomarker and β2-microglobulin (β2M) in urine and serum, retinol binding protein (RBP) as renal markers, measured by sensitive latex-immunoassay (LIA). Abnormal results of neurophysiological tests, VEP, EEG and ENeG showed dominant subclinical effects in CNS and PNS of workers from Departments of Lead and Furnace. In group of smelters from Departments of Furnace exposed to arsenic above current TLV, excreted arsenic species As(+3) and As(+5) seemed to reduce the level of Clara cell protein (CC16), thereby reducing anti-inflammatory potential of the lungs and increasing the levels of renal biomarker (β2M) and copper in urine (CuU). The study confirmed

  3. SEPARATION OF TOXICOLOGICALLY RELEVANT ARSENICALS IN URINE USING A NEW SOLID PHASE EXTRACTION TECHNIQUE

    EPA Science Inventory

    Abstract - Metabolism and toxicity of arsenicals are critically influenced by the oxidation state of As. In human urine, inorganic and methylated arsenicals contain both As(III) and As(V). Because As(III) is easily oxidized, a method is needed to preserve the native oxidation sta...

  4. Placental arsenic concentrations in relation to both maternal and infant biomarkers of exposure in a US cohort

    PubMed Central

    Punshon, Tracy; Davis, Matthew A.; Marsit, Carmen J.; Theiler, Shaleen K.; Baker, Emily R.; Jackson Brian, P.; Conway, David C.; Karagas, Margaret R.

    2015-01-01

    Arsenic crosses the placenta and may have adverse consequences in utero and later in life. At present, little is known about arsenic concentrations in placenta and their relation to maternal and infant exposures particularly at common levels of exposure. We measured placenta arsenic in a US cohort potentially exposed via drinking water from private wells, and evaluated the relationships between placenta and maternal and infant biomarker arsenic concentrations. We measured total arsenic concentrations in placental samples from women enrolled in the New Hampshire Birth Cohort Study (N=766). We compared these data to maternal urinary arsenic (total arsenic and individual species) collected at approximately 24–28 week gestation, along with maternal post-partum toenails and infant toenails using non-parametric multivariate analysis of log10-transformed data. We also examined the association between placental arsenic and household drinking water arsenic. Placenta arsenic concentrations were related to arsenic concentrations in maternal urine (β 0.55, P value <0.0001), maternal (β 0.30, P value 0.0196) and infant toenails (β 0.40, P value 0.0293) and household drinking water (β 0.09, P value <0.0001). Thus, our data suggest that placenta arsenic concentrations reflect both maternal and infant exposures. PMID:25805251

  5. Placental arsenic concentrations in relation to both maternal and infant biomarkers of exposure in a US cohort.

    PubMed

    Punshon, Tracy; Davis, Matthew A; Marsit, Carmen J; Theiler, Shaleen K; Baker, Emily R; Jackson, Brian P; Conway, David C; Karagas, Margaret R

    2015-01-01

    Arsenic crosses the placenta and may have adverse consequences in utero and later in life. At present, little is known about arsenic concentrations in placenta and their relation to maternal and infant exposures particularly at common levels of exposure. We measured placenta arsenic in a US cohort potentially exposed via drinking water from private wells, and evaluated the relationships between placenta and maternal and infant biomarker arsenic concentrations. We measured total arsenic concentrations in placental samples from women enrolled in the New Hampshire Birth Cohort Study (N=766). We compared these data to maternal urinary arsenic (total arsenic and individual species) collected at approximately 24-28 week gestation, along with maternal post-partum toenails and infant toenails using non-parametric multivariate analysis of log10-transformed data. We also examined the association between placental arsenic and household drinking water arsenic. Placenta arsenic concentrations were related to arsenic concentrations in maternal urine (β 0.55, P value <0.0001), maternal (β 0.30, P value 0.0196) and infant toenails (β 0.40, P value 0.0293) and household drinking water (β 0.09, P value <0.0001). Thus, our data suggest that placenta arsenic concentrations reflect both maternal and infant exposures. PMID:25805251

  6. Urine protein concentration estimation for biomarker discovery.

    PubMed

    Mistry, Hiten D; Bramham, Kate; Weston, Andrew J; Ward, Malcolm A; Thompson, Andrew J; Chappell, Lucy C

    2013-10-01

    Recent advances have been made in the study of urinary proteomics as a diagnostic tool for renal disease and pre-eclampsia which requires accurate measurement of urinary protein. We compared different protein assays (Bicinchoninic acid (BCA), Lowry and Bradford) against the 'gold standard' amino-acid assay in urine from 43 women (8 non-pregnant, 34 pregnant, including 8 with pre-eclampsia). BCA assay was superior to both Lowry and Bradford assays (Bland Altman bias: 0.08) compared to amino-acid assay, which performed particularly poorly at higher protein concentrations. These data highlight the need to use amino-acid or BCA assays for unprocessed urine protein estimation. PMID:26103798

  7. Arsenic concentration and speciation in infant formulas and first foods

    PubMed Central

    Jackson, Brian P.; Taylor, Vivien F.; Punshon, Tracy; Cottingham, Kathryn L.

    2012-01-01

    Arsenic exposure to humans is pervasive, and, increasingly, studies are revealing adverse health effects at ever lower doses. Drinking water is the main route of exposure for many individuals; however, food can be a significant source of arsenic to an individual, especially if their diet is rice-based. Infants are particularly susceptible to dietary exposure, since many first foods contain rice and they have a low body mass. Here we report on arsenic concentration and speciation in infant formulas and first foods. Speciation is essential for food analysis because of the much greater toxicity of inorganic arsenic species and the possibility that arsenic in food (unlike water) may be present in either inorganic or organic forms. Infant milk formulas were low in total arsenic (2.2–12.6 ng g−1, n=15). Non-dairy formulas were significantly higher in arsenic than dairy-based formulas. Arsenic in formula was almost exclusively inorganic and predominantly arsenic(V). Arsenic concentration in purees (n=41) and stage 3 foods (n=18) ranged from 0.3–22 ng g−1. Rice-fortified foods had significantly higher total arsenic concentrations than non rice-based foods. Again arsenic speciation was predominantly inorganic; arsenic(III) was the main species with lower concentrations of DMA and arsenic(V) also present. These data confirm that infants are exposed to arsenic via diet, and suggest that careful attention to diet choices may limit this. PMID:22701232

  8. Diet and toenail arsenic concentrations in a New Hampshire population with arsenic-containing water

    PubMed Central

    2013-01-01

    Background Limited data exist on the contribution of dietary sources of arsenic to an individual’s total exposure, particularly in populations with exposure via drinking water. Here, the association between diet and toenail arsenic concentrations (a long-term biomarker of exposure) was evaluated for individuals with measured household tap water arsenic. Foods known to be high in arsenic, including rice and seafood, were of particular interest. Methods Associations between toenail arsenic and consumption of 120 individual diet items were quantified using general linear models that also accounted for household tap water arsenic and potentially confounding factors (e.g., age, caloric intake, sex, smoking) (n = 852). As part of the analysis, we assessed whether associations between log-transformed toenail arsenic and each diet item differed between subjects with household drinking water arsenic concentrations <1 μg/L versus ≥1 μg/L. Results As expected, toenail arsenic concentrations increased with household water arsenic concentrations. Among the foods known to be high in arsenic, no clear relationship between toenail arsenic and rice consumption was detected, but there was a positive association with consumption of dark meat fish, a category that includes tuna steaks, mackerel, salmon, sardines, bluefish, and swordfish. Positive associations between toenail arsenic and consumption of white wine, beer, and Brussels sprouts were also observed; these and most other associations were not modified by exposure via water. However, consumption of two foods cooked in water, beans/lentils and cooked oatmeal, was more strongly related to toenail arsenic among those with arsenic-containing drinking water (≥1 μg/L). Conclusions This study suggests that diet can be an important contributor to total arsenic exposure in U.S. populations regardless of arsenic concentrations in drinking water. Thus, dietary exposure to arsenic in the US warrants consideration as a potential

  9. Understanding arsenic metabolism through a comparative study of arsenic levels in the urine, hair and fingernails of healthy volunteers from three unexposed ethnic groups in the United Kingdom

    SciTech Connect

    Brima, Eid I.; Haris, Parvez I. . E-mail: pharis@dmu.ac.uk; Jenkins, Richard O.; Polya, Dave A.; Gault, Andrew G.; Harrington, Chris F.

    2006-10-01

    Very little is known about arsenic (As) metabolism in healthy populations that are not exposed to high concentrations of As in their food or water. Here we present a study with healthy volunteers from three different ethnic groups, residing in Leicester, UK, which reveals statistically significant differences in the levels of total As in urine and fingernail samples. Urine (n = 63), hair (n = 36) and fingernail (n = 36) samples from Asians, Somali Black-Africans and Whites were analysed using inductively coupled plasma mass spectrometry (ICP-MS) and graphite furnace atomic absorption spectroscopy (GF-AAS). The results clearly show that the total concentrations of As in urine and fingernail samples of a Somali Black-African population (urine 7.2 {mu}g/g creatinine; fingernails 723.1 {mu}g/kg) are significantly (P < 0.05) different from the Asian (urine 24.5 {mu}g/g creatinine; fingernails 153.9 {mu}g/kg) and White groups (urine 20.9 {mu}g/g creatinine; fingernails 177.0 {mu}g/kg). The chemical speciation of As in the urine of the three groups was also measured using high performance liquid chromatography coupled to ICP-MS. This showed that the proportion of the total urinary As present as dimethylarsenate (DMA) was higher for the Somali Black-African group (50%) compared to the Asians (16%) and Whites (22%). However, there was no significant difference (P > 0.05) in the level of As in the hair samples from these three groups; Somali Black-Africans (116.0 {mu}g/kg), Asians (117.4 {mu}g/kg) and Whites (141.2 {mu}g/kg). Significantly different levels of total As in fingernail and urine and a higher percentage of urinary DMA in the Somali Black-Africans are suggestive of a different pattern of As metabolism in this ethnic group.

  10. Linkage Analysis of Urine Arsenic Species Patterns in the Strong Heart Family Study.

    PubMed

    Gribble, Matthew O; Voruganti, Venkata Saroja; Cole, Shelley A; Haack, Karin; Balakrishnan, Poojitha; Laston, Sandra L; Tellez-Plaza, Maria; Francesconi, Kevin A; Goessler, Walter; Umans, Jason G; Thomas, Duncan C; Gilliland, Frank; North, Kari E; Franceschini, Nora; Navas-Acien, Ana

    2015-11-01

    Arsenic toxicokinetics are important for disease risks in exposed populations, but genetic determinants are not fully understood. We examined urine arsenic species patterns measured by HPLC-ICPMS among 2189 Strong Heart Study participants 18 years of age and older with data on ~400 genome-wide microsatellite markers spaced ~10 cM and arsenic speciation (683 participants from Arizona, 684 from Oklahoma, and 822 from North and South Dakota). We logit-transformed % arsenic species (% inorganic arsenic, %MMA, and %DMA) and also conducted principal component analyses of the logit % arsenic species. We used inverse-normalized residuals from multivariable-adjusted polygenic heritability analysis for multipoint variance components linkage analysis. We also examined the contribution of polymorphisms in the arsenic metabolism gene AS3MT via conditional linkage analysis. We localized a quantitative trait locus (QTL) on chromosome 10 (LOD 4.12 for %MMA, 4.65 for %DMA, and 4.84 for the first principal component of logit % arsenic species). This peak was partially but not fully explained by measured AS3MT variants. We also localized a QTL for the second principal component of logit % arsenic species on chromosome 5 (LOD 4.21) that was not evident from considering % arsenic species individually. Some other loci were suggestive or significant for 1 geographical area but not overall across all areas, indicating possible locus heterogeneity. This genome-wide linkage scan suggests genetic determinants of arsenic toxicokinetics to be identified by future fine-mapping, and illustrates the utility of principal component analysis as a novel approach that considers % arsenic species jointly. PMID:26209557

  11. Arsenic concentrations in groundwaters of Cyprus

    NASA Astrophysics Data System (ADS)

    Christodoulidou, M.; Charalambous, C.; Aletrari, M.; Nicolaidou Kanari, P.; Petronda, A.; Ward, N. I.

    2012-10-01

    SummaryCyprus being a Mediterranean island with long dry summers and mild winters suffers from water deficiency and over exploitation of its water resources. Groundwater in Cyprus is a valuable natural resource as approximately 50% of the total water needs come from underground water supplies. According to the Directive 118/2006/EC, groundwater should be protected from deterioration and chemical pollution, this is particularly important for groundwater dependent ecosystems and for the use of groundwater as a water supply for human consumption. During 2007 to 2009, as part of a national monitoring programme, 84 boreholes were sampled in Cyprus and subsequently analysed for total arsenic by inductively coupled plasma mass spectrometry (ICP-MS). The groundwater concentrations ranged from <0.3 to 41 μg/L As. Several boreholes located in a rural farming district near Nicosia had concentrations above the World Health Organisation (WHO) Drinking Water Guideline limit of 10 μg/L As. Evaluation of the groundwater sampling procedure for boreholes provided data recommending that water samples should be collected after an initial borehole washout for 5 min. Further sampling of these boreholes in 2010, revealed total arsenic concentrations of <0.3-64.2 μg/L As, with the predominant arsenic species (determined using a novel field-based methodology) being arsenate (AsV). The maximum total arsenic concentration is 6-fold higher than the WHO Drinking Water Guideline limit (10 μg/L As) and approximately half of the United Nations Food and Agriculture Organisation (UN-FAO) irrigational limit of 100 μg/L As.

  12. Total arsenic concentrations in toenails quantified by two techniques provide a useful biomarker of chronic arsenic exposure in drinking water

    SciTech Connect

    Adair, Blakely M. . E-mail: adair.blakely@epa.gov; Hudgens, Edward E.; Schmitt, Michael T.; Calderon, Rebecca L.; Thomas, David J.

    2006-06-15

    Accurate quantitation of any contaminant of interest is critical for exposure assessment and metabolism studies that support risk assessment. A preliminary step in an arsenic exposure assessment study in Nevada quantified total arsenic (TAs) concentrations in tissues as biomarkers of exposure. Participants in this study (n=95) were at least 45 years old, had lived in the area for more than 20 years, and were exposed to a wide range of arsenic concentrations in drinking water (3-2100ppb). Concentrations of TAs in blood, urine, and toenails determined by hydride generation-atomic fluorescence spectrometry (HG-AFS) ranged from below detection to 0.03, 0.76, and 12ppm, respectively; TAs in blood rarely exceeded the limit of detection. For comparison, TAs in toenails determined by neutron activation analysis (NAA) ranged from below detection to 16ppm. Significant (P<0.0001) positive regressions were seen between the TAs concentration in toenails and in drinking water (adjusted r{sup 2}=0.3557 HG-AFS, adjusted r{sup 2}=0.3922 NAA); TAs concentrations in urine were not described by drinking water As (adjusted r{sup 2}=0.0170, P=0.1369). Analyses of TAs in toenails by HGAFS and NAA yielded highly concordant estimates (r=0.7977, P<0.0001). These results suggest that toenails are a better biomarker of chronic As exposure than urine in the current study, because the sequestration of As in toenails provides an integration of exposure over time that does not occur in urine.

  13. Chronic arsenic exposure increases TGFalpha concentration in bladder urothelial cells of Mexican populations environmentally exposed to inorganic arsenic

    SciTech Connect

    Valenzuela, Olga L.; Germolec, Dori R.; Borja-Aburto, Victor H.; Contreras-Ruiz, Jose; Garcia-Vargas, Gonzalo G.; Razo, Luz M. del

    2007-08-01

    Inorganic arsenic (iAs) is a well-established carcinogen and human exposure has been associated with a variety of cancers including those of skin, lung, and bladder. High expression of transforming growth factor alpha (TGF-{alpha}) has associated with local relapses in early stages of urinary bladder cancer. iAs exposures are at least in part determined by the rate of formation and composition of iAs metabolites (MAs{sup III}, MAs{sup V}, DMAs{sup III}, DMAs{sup V}). This study examines the relationship between TGF-{alpha} concentration in exfoliated bladder urothelial cells (BUC) separated from urine and urinary arsenic species in 72 resident women (18-51 years old) from areas exposed to different concentrations of iAs in drinking water (2-378 ppb) in central Mexico. Urinary arsenic species, including trivalent methylated metabolites were measured by hydride generation atomic absorption spectrometry method. The concentration of TGF-{alpha} in BUC was measured using an ELISA assay. Results show a statistically significant positive correlation between TGF-{alpha} concentration in BUC and each of the six arsenic species present in urine. The multivariate linear regression analyses show that the increment of TGF-{alpha} levels in BUC was importantly associated with the presence of arsenic species after adjusting by age, and presence of urinary infection. People from areas with high arsenic exposure had a significantly higher TGF-{alpha} concentration in BUC than people from areas of low arsenic exposure (128.8 vs. 64.4 pg/mg protein; p < 0.05). Notably, exfoliated cells isolated from individuals with skin lesions contained significantly greater amount of TGF-{alpha} than cells from individuals without skin lesions: 157.7 vs. 64.9 pg/mg protein (p = 0.003). These results suggest that TGF-{alpha} in exfoliated BUC may serve as a susceptibility marker of adverse health effects on epithelial tissue in arsenic-endemic areas.

  14. SLCO1B1 Variants and Urine Arsenic Metabolites in the Strong Heart Family Study

    PubMed Central

    Gribble, Matthew O.

    2013-01-01

    Arsenic species patterns in urine are associated with risk for cancer and cardiovascular diseases. The organic anion transporter coded by the gene SLCO1B1 may transport arsenic species, but its association with arsenic metabolites in human urine has not yet been studied. The objective of this study is to evaluate associations of urine arsenic metabolites with variants in the candidate gene SLCO1B1 in adults from the Strong Heart Family Study. We estimated associations between % arsenic species biomarker traits and 5 single-nucleotide polymorphisms (SNPs) in the SLCO1B1 gene in 157 participants, assuming additive genetics. Linear regression models for each SNP accounted for kinships and were adjusted for sex, body mass index, and study center. The minor allele of rs1564370 was associated with lower %MMA (p = .0003) and higher %DMA (p = .0002), accounting for 8% of the variance for %MMA and 9% for %DMA. The rs1564370 minor allele homozygote frequency was 17% and the heterozygote frequency was 43%. The minor allele of rs2291075 was associated with lower %MMA (p = .0006) and higher %DMA (p = .0014), accounting for 7% of the variance for %MMA and 5% for %DMA. The frequency of rs2291075 minor allele homozygotes was 1% and of heterozygotes was 15%. Common variants in SLCO1B1 were associated with differences in arsenic metabolites in a preliminary candidate gene study. Replication of this finding in other populations and analyses with respect to disease outcomes are needed to determine whether this novel candidate gene is important for arsenic-associated disease risks. PMID:23970802

  15. Association of Children’s Urinary CC16 Levels with Arsenic Concentrations in Multiple Environmental Media

    PubMed Central

    Beamer, Paloma I.; Klimecki, Walter T.; Loh, Miranda; Van Horne, Yoshira Ornelas; Sugeng, Anastasia J.; Lothrop, Nathan; Billheimer, Dean; Guerra, Stefano; Lantz, Robert Clark; Canales, Robert A.; Martinez, Fernando D.

    2016-01-01

    Arsenic exposure has been associated with decreased club cell secretory protein (CC16) levels in adults. Further, both arsenic exposure and decreased levels of CC16 in childhood have been associated with decreased adult lung function. Our objective was to determine if urinary CC16 levels in children are associated with arsenic concentrations in environmental media collected from their homes. Yard soil, house dust, and tap water were taken from 34 homes. Urine and toenail samples were collected from 68 children. All concentrations were natural log-transformed prior to data analysis. There were associations between urinary CC16 and arsenic concentration in soil (b = −0.43, p = 0.001, R2 = 0.08), water (b = −0.22, p = 0.07, R2 = 0.03), house dust (b = −0.37, p = 0.07, R2 = 0.04), and dust loading (b = −0.21, p = 0.04, R2 = 0.04). In multiple analyses, only the concentration of arsenic in soil was associated with urinary CC16 levels (b = −0.42, p = 0.02, R2 = 0.14 (full model)) after accounting for other factors. The association between urinary CC16 and soil arsenic may suggest that localized arsenic exposure in the lungs could damage the airway epithelium and predispose children for diminished lung function. Future work to assess this possible mechanism should examine potential associations between airborne arsenic exposures, CC16 levels, lung function, and other possible confounders in children in arsenic-impacted communities. PMID:27223295

  16. Association of Children's Urinary CC16 Levels with Arsenic Concentrations in Multiple Environmental Media.

    PubMed

    Beamer, Paloma I; Klimecki, Walter T; Loh, Miranda; Van Horne, Yoshira Ornelas; Sugeng, Anastasia J; Lothrop, Nathan; Billheimer, Dean; Guerra, Stefano; Lantz, Robert Clark; Canales, Robert A; Martinez, Fernando D

    2016-01-01

    Arsenic exposure has been associated with decreased club cell secretory protein (CC16) levels in adults. Further, both arsenic exposure and decreased levels of CC16 in childhood have been associated with decreased adult lung function. Our objective was to determine if urinary CC16 levels in children are associated with arsenic concentrations in environmental media collected from their homes. Yard soil, house dust, and tap water were taken from 34 homes. Urine and toenail samples were collected from 68 children. All concentrations were natural log-transformed prior to data analysis. There were associations between urinary CC16 and arsenic concentration in soil (b = -0.43, p = 0.001, R² = 0.08), water (b = -0.22, p = 0.07, R² = 0.03), house dust (b = -0.37, p = 0.07, R² = 0.04), and dust loading (b = -0.21, p = 0.04, R² = 0.04). In multiple analyses, only the concentration of arsenic in soil was associated with urinary CC16 levels (b = -0.42, p = 0.02, R² = 0.14 (full model)) after accounting for other factors. The association between urinary CC16 and soil arsenic may suggest that localized arsenic exposure in the lungs could damage the airway epithelium and predispose children for diminished lung function. Future work to assess this possible mechanism should examine potential associations between airborne arsenic exposures, CC16 levels, lung function, and other possible confounders in children in arsenic-impacted communities. PMID:27223295

  17. The Case for Visual Analytics of Arsenic Concentrations in Foods

    PubMed Central

    Johnson, Matilda O.; Cohly, Hari H.P.; Isokpehi, Raphael D.; Awofolu, Omotayo R.

    2010-01-01

    Arsenic is a naturally occurring toxic metal and its presence in food could be a potential risk to the health of both humans and animals. Prolonged ingestion of arsenic contaminated water may result in manifestations of toxicity in all systems of the body. Visual Analytics is a multidisciplinary field that is defined as the science of analytical reasoning facilitated by interactive visual interfaces. The concentrations of arsenic vary in foods making it impractical and impossible to provide regulatory limit for each food. This review article presents a case for the use of visual analytics approaches to provide comparative assessment of arsenic in various foods. The topics covered include (i) metabolism of arsenic in the human body; (ii) arsenic concentrations in various foods; (ii) factors affecting arsenic uptake in plants; (ii) introduction to visual analytics; and (iv) benefits of visual analytics for comparative assessment of arsenic concentration in foods. Visual analytics can provide an information superstructure of arsenic in various foods to permit insightful comparative risk assessment of the diverse and continually expanding data on arsenic in food groups in the context of country of study or origin, year of study, method of analysis and arsenic species. PMID:20623005

  18. Nondestructive determination of arsenic in urine by epithermal neutron activation analysis and Compton suppression.

    PubMed

    Landsberger, S; Swift, G; Neuhoff, J

    1990-01-01

    Epithermal neutron activation analysis, in conjunction with Compton suppression, has been employed to determine arsenic levels in artificially doped urine samples. Typical detection limits were of the order of 10 ng/g. Replicate determinations gave precision values between 2 and 12%, whereas accuracy measurements were between +/- 1 and +/- 20%. Biological and geological reference materials from the National Institute of Standards and Technology (NIST) were also analyzed for arsenic content. Typically, the precision achieved again was between 2 and 12%, whereas the accuracy measurements were in excellent agreement with the certified values. PMID:1704729

  19. Arsenic Exposure within the Korean Community (United States) Based on Dietary Behavior and Arsenic Levels in Hair, Urine, Air, and Water

    PubMed Central

    Cleland, Bill; Tsuchiya, Ami; Kalman, David A.; Dills, Russell; Burbacher, Thomas M.; White, Jim W.; Faustman, Elaine M.; Mariën, Koenraad

    2009-01-01

    Background Determining arsenic exposure in groups based on geographic location, dietary behaviors, or lifestyles is important, as even moderate exposures may lead to health concerns. Objectives/Methods The Korean community in Washington State, represents a group warranting investigation, as they consume foods (e.g., shellfish, rice, finfish, and seaweed) known to contain arsenic. As part of the Arsenic Mercury Intake Biometric Study, we examined the arsenic levels in hair and urine along with the diets of 108 women of childbearing age from within this community. Arsenic levels in indoor air and drinking water were also investigated, and shellfish commonly consumed were collected and analyzed for total and speciated arsenic. Results The six shellfish species analyzed (n = 667) contain total arsenic (range, 1–5 μg/g) but are a small source of inorganic arsenic (range, 0.01–0.12 μg/g). Six percent of the individuals may have elevated urinary inorganic arsenic levels (> 10 μg/L) due to diet. Seaweed, rice, shellfish, and finfish are principal sources for total arsenic intake/excretion based on mass balance estimates. Rice consumption (163 g/person/day) may be a significant source of inorganic arsenic. Air and water are not significant sources of exposure. Hair is a poor biometric for examining arsenic levels at low to moderate exposures. Conclusions We conclude that a portion of this community may have dietary inorganic arsenic exposure resulting in urine levels exceeding 10 μg/L. Although their exposure is below that associated with populations exposed to high levels of arsenic from drinking water (> 100 μg/L), their exposure may be among the highest in the United States. PMID:19440504

  20. Association between arsenic exposure from a coal-burning power plant and urinary arsenic concentrations in Prievidza District, Slovakia.

    PubMed Central

    Ranft, Ulrich; Miskovic, Peter; Pesch, Beate; Jakubis, Pavel; Fabianova, Elenora; Keegan, Tom; Hergemöller, Andre; Jakubis, Marian; Nieuwenhuijsen, Mark J

    2003-01-01

    To assess the arsenic exposure of a population living in the vicinity of a coal-burning power plant with high arsenic emission in the Prievidza District, Slovakia, 548 spot urine samples were speciated for inorganic As (Asinorg), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and their sum (Assum). The urine samples were collected from the population of a case-control study on nonmelanoma skin cancer (NMSC). A total of 411 samples with complete As speciations and sufficient urine quality and without fish consumption were used for statistical analysis. Although current environmental As exposure and urinary As concentrations were low (median As in soil within 5 km distance to the power plant, 41 micro g/g; median urinary Assum, 5.8 microg/L), there was a significant but weak association between As in soil and urinary Assum(r = 0.21, p < 0.01). We performed a multivariate regression analysis to calculate adjusted regression coefficients for environmental As exposure and other determinants of urinary As. Persons living in the vicinity of the plant had 27% higher Assum values (p < 0.01), based on elevated concentrations of the methylated species. A 32% increase of MMA occurred among subjects who consumed homegrown food (p < 0.001). NMSC cases had significantly higher levels of Assum, DMA, and Asinorg. The methylation index Asinorg/(MMA + DMA) was about 20% lower among cases (p < 0.05) and in men (p < 0.05) compared with controls and females, respectively. PMID:12782488

  1. Total grain-arsenic and arsenic-species concentrations in diverse rice cultivars under flooded conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arsenic is not an essential element and can be toxic to both plants and animals in high concentration. Decreasing arsenic concentrations in all foodstuffs, including rice grain, is a desirable goal because of the potential detrimental impacts of As on plant growth and yield and its potential toxici...

  2. Speciation of arsenic in urine following intravenous administration of arsthinol in mice.

    PubMed

    Ajana, Imane; Astier, Alain; Gibaud, Stéphane

    2010-09-01

    Recent investigations have shown that arsthinol, a trivalent organoarsenic compound (dithiarsolane), has been active in vitro on leukemia cell lines and offers a better therapeutic index than arsenic trioxide, as estimated by the ratio LD50/IC50. To complete our understanding of its urinary excretion, a sensitive method using liquid chromatography coupled with mass spectrometry (LC-MS) was used. Mice were injected intravenously with a single dose of arsthinol at 0.2 mmol/kg of body weight. The amount of total arsenic in tissues and body fluids was determined by a colorimetric method and urine metabolites were analyzed on a C18 Acclaim PepMap 100 A column by LC-MS. Our results showed that only three arsenic species (acetarsol, acetarsol oxide and arsthinol) were detected in the first 24-h urine. Overall, this study confirms that the hydrolysis of dithiarsolanes to arsenoxides (i.e. acetarsol oxide) can be followed by an oxidation in arsonic acids (i.e. acetarsol). All these compounds are excreted in the urine. PMID:21495268

  3. Arsenic concentrations, related environmental factors, and the predicted probability of elevated arsenic in groundwater in Pennsylvania

    USGS Publications Warehouse

    Gross, Eliza L.; Low, Dennis J.

    2013-01-01

    Analytical results for arsenic in water samples from 5,023 wells obtained during 1969–2007 across Pennsylvania were compiled and related to other associated groundwater-quality and environmental factors and used to predict the probability of elevated arsenic concentrations, defined as greater than or equal to 4.0 micrograms per liter (µg/L), in groundwater. Arsenic concentrations of 4.0 µg/L or greater (elevated concentrations) were detected in 18 percent of samples across Pennsylvania; 8 percent of samples had concentrations that equaled or exceeded the U.S. Environmental Protection Agency’s drinking-water maximum contaminant level of 10.0 µg/L. The highest arsenic concentration was 490.0 µg/L. Comparison of arsenic concentrations in Pennsylvania groundwater by physiographic province indicates that the Central Lowland physiographic province had the highest median arsenic concentration (4.5 µg/L) and the highest percentage of sample records with arsenic concentrations greater than or equal to 4.0 µg/L (59 percent) and greater than or equal to 10.0 µg/L (43 percent). Evaluation of four major aquifer types (carbonate, crystalline, siliciclastic, and surficial) in Pennsylvania showed that all types had median arsenic concentrations less than 4.0 µg/L, and the highest arsenic concentration (490.0 µg/L) was in a siliciclastic aquifer. The siliciclastic and surficial aquifers had the highest percentage of sample records with arsenic concentrations greater than or equal to 4.0 µg/L and 10.0 µg/L. Elevated arsenic concentrations were associated with low pH (less than or equal to 4.0), high pH (greater than or equal to 8.0), or reducing conditions. For waters classified as anoxic (405 samples), 20 percent of sampled wells contained water with elevated concentrations of arsenic; for waters classified as oxic (1,530 samples) only 10 percent of sampled wells contained water with elevated arsenic concentrations. Nevertheless, regardless of the reduction

  4. Massive acute arsenic poisonings.

    PubMed

    Lech, Teresa; Trela, Franciszek

    2005-07-16

    Arsenic poisonings are still important in the field of toxicology, though they are not as frequent as about 20-30 years ago. In this paper, the arsenic concentrations in ante- and post-mortem materials, and also forensic and anatomo-pathological aspects in three cases of massive acute poisoning with arsenic(III) oxide (two of them with unexplained criminalistic background, in which arsenic was taken for amphetamine and one suicide), are presented. Ante-mortem blood and urine arsenic concentrations ranged from 2.3 to 6.7 microg/ml, respectively. Post-mortem tissue total arsenic concentrations were also detected in large concentrations. In case 3, the contents of the duodenum contained as much as 30.1% arsenic(III) oxide. The high concentrations of arsenic detected in blood and tissues in all presented cases are particularly noteworthy in that they are very rarely detected at these concentrations in fatal arsenic poisonings. PMID:15939162

  5. Geostatistical modelling of arsenic in drinking water wells and related toenail arsenic concentrations across Nova Scotia, Canada.

    PubMed

    Dummer, T J B; Yu, Z M; Nauta, L; Murimboh, J D; Parker, L

    2015-02-01

    Arsenic is a naturally occurring class 1 human carcinogen that is widespread in private drinking water wells throughout the province of Nova Scotia in Canada. In this paper we explore the spatial variation in toenail arsenic concentrations (arsenic body burden) in Nova Scotia. We describe the regional distribution of arsenic concentrations in private well water supplies in the province, and evaluate the geological and environmental features associated with higher levels of arsenic in well water. We develop geostatistical process models to predict high toenail arsenic concentrations and high well water arsenic concentrations, which have utility for studies where no direct measurements of arsenic body burden or arsenic exposure are available. 892 men and women who participated in the Atlantic Partnership for Tomorrow's Health Project provided both drinking water and toenail clipping samples. Information on socio-demographic, lifestyle and health factors was obtained with a set of standardized questionnaires. Anthropometric indices and arsenic concentrations in drinking water and toenails were measured. In addition, data on arsenic concentrations in 10,498 private wells were provided by the Nova Scotia Department of Environment. We utilised stepwise multivariable logistic regression modelling to develop separate statistical models to: a) predict high toenail arsenic concentrations (defined as toenail arsenic levels ≥0.12 μg g(-1)) and b) predict high well water arsenic concentrations (defined as well water arsenic levels ≥5.0 μg L(-1)). We found that the geological and environmental information that predicted well water arsenic concentrations can also be used to accurately predict toenail arsenic concentrations. We conclude that geological and environmental factors contributing to arsenic contamination in well water are the major contributing influences on arsenic body burden among Nova Scotia residents. Further studies are warranted to assess appropriate

  6. On concentration dependence of arsenic diffusivity in silicon

    NASA Astrophysics Data System (ADS)

    Velichko, O. I.

    2016-05-01

    An analysis of the equations used for modeling thermal arsenic diffusion in silicon has been carried out. It was shown that for arsenic diffusion governed by the vacancy-impurity pairs and the pairs formed due to interaction of impurity atoms with silicon self-interstitials in a neutral charge state, the doping process can be described by the Fick’s second law equation with a single effective diffusion coefficient which takes into account two impurity flows arising due to interaction of arsenic atoms with vacancies and silicon self-interstitials, respectively. Arsenic concentration profiles calculated with the use of the effective diffusivity agree well with experimental data if the maximal impurity concentration is near the intrinsic carrier concentration. On the other hand, for higher impurity concentrations a certain deviation in the local regions of arsenic distribution is observed. The difference from the experiment can occur due to the incorrect use of effective diffusivity for the description of two different impurity flows or due to the formation of nonuniform distributions of neutral vacancies and neutral self-interstitials in heavily doped silicon layers. We also suppose that the migration of nonequilibrium arsenic interstitial atoms makes a significant contribution to the formation of a low concentration region on thermal arsenic diffusion.

  7. Chronic arsenic exposure increases TGFalpha concentration in bladder urothelial cells of Mexican populations environmentally exposed to inorganic arsenic☆

    PubMed Central

    Valenzuela, Olga L.; Germolec, Dori R.; Borja-Aburto, Víctor H.; Contreras-Ruiz, José; García-Vargas, Gonzalo G.; Del Razo, Luz M.

    2009-01-01

    Inorganic arsenic (iAs) is a well-established carcinogen and human exposure has been associated with a variety of cancers including those of skin, lung, and bladder. High expression of transforming growth factor alpha (TGF-α) has associated with local relapses in early stages of urinary bladder cancer. iAs exposures are at least in part determined by the rate of formation and composition of iAs metabolites (MAsIII, MAsV, DMAsIII, DMAsV). This study examines the relationship between TGF-α concentration in exfoliated bladder urothelial cells (BUC) separated from urine and urinary arsenic species in 72 resident women (18-51 years old) from areas exposed to different concentrations of iAs in drinking water (2-378 ppb) in central Mexico. Urinary arsenic species, including trivalent methylated metabolites were measured by hydride generation atomic absorption spectrometry method. The concentration of TGF-α in BUC was measured using an ELISA assay. Results show a statistically significant positive correlation between TGF-α concentration in BUC and each of the six arsenic species present in urine. The multivariate linear regression analyses show that the increment of TGF-α levels in BUC was importantly associated with the presence of arsenic species after adjusting by age, and presence of urinary infection. People from areas with high arsenic exposure had a significantly higher TGF-α concentration in BUC than people from areas of low arsenic exposure (128.8 vs. 64.4 pg/mg protein; p<0.05). Notably, exfoliated cells isolated from individuals with skin lesions contained significantly greater amount of TGF-α than cells from individuals without skin lesions: 157.7 vs. 64.9 pg/mg protein (p=0.003). These results suggest that TGF-α in exfoliated BUC may serve as a susceptibility marker of adverse health effects on epithelial tissue in arsenic-endemic areas. PMID:17267001

  8. Arsenic Concentrations and Speciation in Shellfishes from Korea

    NASA Astrophysics Data System (ADS)

    Yoon, C.; Yoon, H.

    2005-12-01

    Speciation of arsenic has received significant attention over the past 20 years in both mechanistic and exposure assessment research. Because the toxicity of arsenic is related to its oxidation state and its chemical forms, the determination of the total arsenic contents in a sample is not adequate to allow its impact on living organisms to be estimated. The inorganic arsenic species, arsenite (As3+) and arsenate (As5+), have been classified as carcinogenic and the methylated forms, monomethyl arsonic acid (MMA) and dimethyl arsinic acid (DMA) have recently been identified as cancer promoters. The highly methylated compounds like as arsenobetaine (AsB) and arsenocholine (AsC) are considered to be nontoxic. Although organisms in marine environment contain high amounts of total arsenic (ppm level), it is not usually present as inorganic arsenic or simple methylated forms well known as one of the toxic species. Arsenobetaine is the dominant species in marine animals and arsenosugars are most abundant in marine algae. This study aims to clarify those arsenic species present in the whole body of eleven different shellfishes from Korea. And those arsenic species were separated and measured by characterization using high performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) coupled system. The separation of arsenic species was achieved on anion exchange column and cation exchange column using phosphate and pyridine eluent, respectively. The ultrasonic extraction was employed for extraction of arsenic from whole body of shellfishes. The method was validated by analyzing three certified reference materials (DORM-2, TORT-2, 1566b). Total arsenic concentrations ranged from 0.1 mg/kg dry mass to 21.7 mg/kg dry mass. Most marine shellfishes contained higher arsenobetaine and arsenocholine with the exception of two shellfishes living in river. The lower amounts of inorganic arsenic species were also found in the some sample extracts

  9. Anthropogenic influences on groundwater arsenic concentrations in Bangladesh

    NASA Astrophysics Data System (ADS)

    Neumann, Rebecca B.; Ashfaque, Khandaker N.; Badruzzaman, A. B. M.; Ashraf Ali, M.; Shoemaker, Julie K.; Harvey, Charles F.

    2010-01-01

    The origin of dissolved arsenic in the Ganges Delta has puzzled researchers ever since the report of widespread arsenic poisoning two decades ago. Today, microbially mediated oxidation of organic carbon is thought to drive the geochemical transformations that release arsenic from sediments, but the source of the organic carbon that fuels these processes remains controversial. At a typical site in Bangladesh, where groundwater-irrigated rice fields and constructed ponds are the main sources of groundwater recharge, we combine hydrologic and biogeochemical analyses to trace the origin of contaminated groundwater. Incubation experiments indicate that recharge from ponds contains biologically degradable organic carbon, whereas recharge from rice fields contains mainly recalcitrant organic carbon. Chemical and isotopic indicators as well as groundwater simulations suggest that recharge from ponds carries this degradable organic carbon into the shallow aquifer, and that groundwater flow, drawn by irrigation pumping, transports pond water to the depth where dissolved arsenic concentrations are greatest. Results also indicate that arsenic concentrations are low in groundwater originating from rice fields. Furthermore, solute composition in arsenic-contaminated water is consistent with that predicted using geochemical models of pond-water-aquifer-sediment interactions. We therefore suggest that the construction of ponds has influenced aquifer biogeochemistry, and that patterns of arsenic contamination in the shallow aquifer result from variations in the source of water, and the complex three-dimensional patterns of groundwater flow.

  10. Urine naloxone concentration at different phases of buprenorphine maintenance treatment.

    PubMed

    Heikman, Pertti; Häkkinen, Margareeta; Gergov, Merja; Ojanperä, Ilkka

    2014-03-01

    In spite of the benefits of buprenorphine-naloxone co-formulation (BNX) in opioid maintenance treatment, the naloxone component has not prevented parenteral use of BNX. Current laboratory methods are not sufficient to differentiate between therapeutic and illicit use of buprenorphine, and little is known about urine naloxone concentrations. Measurement of urine naloxone, together with buprenorphine and norbuprenorphine, might help to determine the naloxone source and administration route. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for this purpose. Naloxone, buprenorphine, and norbuprenorphine total concentrations were measured in urine samples from opioid-dependent patients before and during stable and unstable phases of maintenance treatment with BNX. The limit of quantification in urine was 1.0 µg/L for naloxone, buprenorphine and norbuprenorphine. Before treatment, all samples contained buprenorphine but the median naloxone concentration was 0 µg/L. During the maintenance treatment with BNX all urine samples were positive for naloxone, buprenorphine and norbuprenorphine. The naloxone concentration at a stable phase of treatment (median 60 µg/L, range 5-200 µg/L) was not different from the naloxone concentration at an unstable phase (70 µg/L, 10-1700 µg/L). Applying an upper limit of 200 µg/L to the sample, the median naloxone/buprenorphine ratio was higher in the high than in the low naloxone concentration group (0.9 vs 0.3, respectively). This study suggests that naloxone in urine can act as an indicator of compliance with BNX. Parenteral use of BNX was associated with a high naloxone/buprenorphine ratio. Negative naloxone with positive buprenorphine suggests the use/abuse of buprenorphine alone. PMID:23512803

  11. Distributional patterns of arsenic concentrations in contaminant plumes offer clues to the source of arsenic in groundwater at landfills

    USGS Publications Warehouse

    Harte, Philip T.

    2015-01-01

    The distributional pattern of dissolved arsenic concentrations from landfill plumes can provide clues to the source of arsenic contamination. Under simple idealized conditions, arsenic concentrations along flow paths in aquifers proximal to a landfill will decrease under anthropogenic sources but potentially increase under in situ sources. This paper presents several conceptual distributional patterns of arsenic in groundwater based on the arsenic source under idealized conditions. An example of advanced subsurface mapping of dissolved arsenic with geophysical surveys, chemical monitoring, and redox fingerprinting is presented for a landfill site in New Hampshire with a complex flow pattern. Tools to assist in the mapping of arsenic in groundwater ultimately provide information on the source of contamination. Once an understanding of the arsenic contamination is achieved, appropriate remedial strategies can then be formulated.

  12. Advances in understanding the urine-concentrating mechanism.

    PubMed

    Sands, Jeff M; Layton, Harold E

    2014-01-01

    The renal medulla produces concentrated urine through the generation of an osmotic gradient that progressively increases from the cortico-medullary boundary to the inner medullary tip. In the outer medulla, the osmolality gradient arises principally from vigorous active transport of NaCl, without accompanying water, from the thick ascending limbs of short- and long-looped nephrons. In the inner medulla, the source of the osmotic gradient has not been identified. Recently, there have been important advances in our understanding of key components of the urine-concentrating mechanism, including (a) better understanding of the regulation of water, urea, and sodium transport proteins; (b) better resolution of the anatomical relationships in the medulla; and (c) improvements in mathematical modeling of the urine-concentrating mechanism. Continued experimental investigation of signaling pathways regulating transepithelial transport, both in normal animals and in knockout mice, and incorporation of the resulting information into mathematical simulations may help to more fully elucidate the mechanism for concentrating urine in the inner medulla. PMID:24245944

  13. Fractionation of inorganic arsenic by adjusting hydrogen ion concentration.

    PubMed

    Oliveira, Andrea; Gonzalez, Mario Henrique; Queiroz, Helena Müller; Cadore, Solange

    2016-12-15

    The inorganic fraction of arsenic species, iAs=∑[As(III)+As(V)] present in fish samples can be quantified in the presence of other arsenic species also found in fishes, such as: monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and arsenobetaine (AsB). The toxic arsenic fraction was selected taking into account the dissociation constants of these arsenic species in different hydrogen ions concentration leading to the arsine formation from iAs compounds detected as As(III) by HG AAS. For thus, a microwave assisted extraction was carried out using HCl 1molL(-1) in order to maintain the integrity of the arsenic species in this mild extraction media. Recovery experiments were done for iAs fraction, in the presence of other arsenic species. The recovery values obtained for iAs fraction added were quantitative about 87-107% (for N=3, RSD⩽3%). The limit of detection (LOD), and the limit of quantification (LOQ), were 5μgkg(-1) and 16μgkg(-1) respectively. PMID:27451157

  14. Bisphenol A concentrations in maternal breast milk and infant urine

    PubMed Central

    Mendonca, K.; Hauser, R.; Calafat, A.M.; Arbuckle, T.E.; Duty, S.M.

    2013-01-01

    Purpose The present report describes the distribution of breast milk and urinary free and total bisphenol A (BPA) concentrations, from 27 post-partum women and their 31 infants, and explores the influence of age, sex, and nutritional source on infant BPA urinary concentration. Methods Both free (unconjugated) and total (free plus conjugated) BPA concentrations from women’s breast milk samples and infants’ urine samples were measured by online solid-phase extraction coupled to high-performance liquid chromatography–isotope dilution tandem mass spectrometry. Descriptive statistics and non-parametric tests of group comparisons were conducted. Results Total BPA was detected in 93% of urine samples in this healthy infant population aged 3–15 months who were without known environmental exposure to BPA (interquartile range [IQR]=1.2 – 4.4 μg/L). Similarly, 75% of the mothers’ breast milk samples had detectable concentrations of total BPA (IQR=0.4 – 1.4 μg/L). The magnitude and frequency of detection of free BPA in the children’s urine and the mothers’ breast milk were much lower than the total concentrations. Conclusions Total BPA was detected in 93% of this healthy infant population aged 3–15 months who are without known environmental exposure to BPA. Neither free nor total BPA urinary concentrations differed significantly by infant’s sex or by nutritional source (breast milk and/or formula) while age group was of borderline significance. There were no significant correlations between free or total BPA concentrations in mothers’ breast milk and their infants’ urine. PMID:23212895

  15. [Micelle-mediated extraction for concentrating conjugated bilirubin in urine].

    PubMed

    Matsudo, T; Saitoh, T; Matsubara, C

    2001-02-01

    An extraction method based on the phase separation of aqueous micellar solutions of n-octyl-beta-D-thioglucoside (OTG) was applied to the concentrating conjugated bilirubin in urine. The analyte in sample solutions could be efficiently concentrated into a small volume of surfactant-rich phase, while hydrophilic matrix components including urinary protein, ascorbic acid, and saccharide remained in the aqueous phase. The concentrated OTG negligibly affected the diazo reaction and the subsequent spectrophotometric detection. Conjugated bilirubin was successfully determined in the concentration range from 0.05 microgram/ml to 5 micrograms/ml with a 96-well microplate reader absorption spectrophotometer. PMID:11218735

  16. Evaluation of two new arsenic field test kits capable of detecting arsenic water concentrations close to 10 microg/L.

    PubMed

    Steinmaus, Craig M; George, Christine M; Kalman, David A; Smith, Allan H

    2006-05-15

    Millions of people worldwide are exposed to arsenic-contaminated drinking water. Arsenic field test kits may offer a cost-effective approach for measuring these exposures in the field, although the accuracy of some kits used in the past has been poor. In this study, arsenic concentrations were measured in 136 water sources in western Nevada using two relatively new arsenic test kits and compared to laboratory measurements using atomic fluorescence spectroscopy (AFS). Spearman's rank correlation coefficients comparing the Quick Arsenic and Hach EZ kits to laboratory measurements were 0.96 (p < 0.001) and 0.95 (p < 0.001), respectively. When analyzed in seven exposure categories (0-9, 10-19, 20-49, 50-99, 100-199, 200-499, and > or = 500 microg/L), test kit and AFS measurements were in the same category in 71% (Quick Arsenic) and 62% (Hach EZ) of samples, and within one category of each other in 99% (Quick Arsenic) and 97% (Hach EZ) of samples. Both kits identified all water samples with high arsenic concentrations (> 15 microg/L) as being above the United States Environmental Protection Agency's drinking water standard and the World Health Organization's guideline value for arsenic of 10 microg/L. These results suggestthatthese easily portable kits can be used to identify water sources with high arsenic concentrations and may provide an important tool for arsenic surveillance and remediation programs. PMID:16749706

  17. Screening of rice cultivars for grain arsenic concentration and speciation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, there has been growing interest in the concentration and speciation of arsenic in rice grain because of concerns with food quality and interest in minimizing any potential risk from dietary exposure. Our objective was to screen a range of rice varieties from the USDA world collection for ...

  18. Challenges for environmental epidemiology research: are biomarker concentrations altered by kidney function or urine concentration adjustment?

    PubMed

    Weaver, Virginia M; Kotchmar, Dennis J; Fadrowski, Jeffrey J; Silbergeld, Ellen K

    2016-01-01

    Biomonitoring has become a standard approach for exposure assessment in occupational and environmental epidemiology. The use of biological effect markers to identify early adverse changes in target organs has also become widely adopted. However, the potential for kidney function to affect biomarker levels in the body and the optimal approach to adjustment of biomarker concentrations in spot urine samples for hydration status are two important but underappreciated challenges associated with biomarker use. Several unexpected findings, such as positive associations between urine nephrotoxicant levels and estimated glomerular filtration rate (eGFR), have been reported recently in research using biomarkers. These and other findings, discussed herein, suggest an impact of kidney glomerular filtration or tubule processing on biomarker levels. This is more commonly raised in the context of decreased kidney filtration, traditionally referred to as reverse causality; however, recent data suggest that populations with normal kidney filtration may be affected as well. Misclassification bias would result if biomarkers reflect kidney function as well as either exposures or early biological effect outcomes. Furthermore, urine biomarker associations with eGFR that differ markedly by approach used to adjust for urine concentration have been reported. Associations between urine measures commonly used for this adjustment, such as urine creatinine, and specific research outcomes could alter observed biomarker associations with outcomes. Research recommendations to address the potential impact of kidney function and hydration status adjustment on biomarkers are provided, including a range of approaches to study design, exposure and outcome assessment, and adjustment for urine concentration. PMID:25736163

  19. Metformin improves urine concentration in rodents with nephrogenic diabetes insipidus

    PubMed Central

    Efe, Orhan; Klein, Janet D.; LaRocque, Lauren M.; Ren, Huiwen; Sands, Jeff M.

    2016-01-01

    Urine concentration is regulated by vasopressin. Congenital nephrogenic diabetes insipidus (NDI) is caused by vasopressin type 2 receptor (V2R) mutations. We studied whether metformin could improve urine concentration in rodent models of congenital NDI by stimulating AMPK. To block the V2R in rats, tolvaptan (10 mg/kg/d) was given by oral gavage with or without metformin (800 mg/ kg/d). Control rats received vehicle with or without metformin. Tamoxifen-induced V2R KO mice were given metformin (600 mg/kg) or vehicle twice daily. Urine osmolality in tolvaptan-treated rats (1,303 ± 126 mOsM) was restored to control levels by metformin (2,335 ± 273 mOsM) within 3 days and was sustained for up to 10 days. Metformin increased protein abundance of inner medullary urea transporter UT-A1 by 61% and aquaporin 2 (AQP2) by 44% in tolvaptan-treated rats, and immunohistochemistry showed increased membrane accumulation of AQP2 with acute and chronic AMPK stimulation. Outer medullary Na+-K+-2Cl− cotransporter 2 (NKCC2) abundance increased (117%) with AMPK stimulation in control rats but not in V2R-blocked rats. Metformin increased V2R KO mouse urine osmolality within 3 hours, and the increase persisted for up to 12 hours. Metformin increased AQP2 in the V2R KO mice similar to the tolvaptan-treated rats. These results indicate that AMPK activators, such as metformin, might provide a promising treatment for congenital NDI. PMID:27478876

  20. Determinants of Arsenic Metabolism: Blood Arsenic Metabolites, Plasma Folate, Cobalamin, and Homocysteine Concentrations in Maternal–Newborn Pairs

    PubMed Central

    Hall, Marni; Gamble, Mary; Slavkovich, Vesna; Liu, Xinhua; Levy, Diane; Cheng, Zhongqi; van Geen, Alexander; Yunus, Mahammad; Rahman, Mahfuzar; Pilsner, J. Richard; Graziano, Joseph

    2007-01-01

    Background In Bangladesh, tens of millions of people have been consuming waterborne arsenic for decades. The extent to which As is transported to the fetus during pregnancy has not been well characterized. Objectives We therefore conducted a study of 101 pregnant women who gave birth in Matlab, Bangladesh. Methods Maternal and cord blood pairs were collected and concentrations of total As were analyzed for 101 pairs, and As metabolites for 30 pairs. Maternal urinary As metabolites and plasma folate, cobalamin, and homocysteine levels in maternal cord pairs were also measured. Household tube well–water As concentrations exceeded the World Health Organization guideline of 10 μg/L in 38% of the cases. Results We observed strong associations between maternal and cord blood concentrations of total As (r = 0.93, p < 0.0001). Maternal and cord blood arsenic metabolites (n = 30) were also strongly correlated: in dimethylarsinate (DMA) (r = 0.94, p < 0.0001), monomethylarsonate (r = 0.80, p < 0.0001), arsenite (As+3) (r = 0.80, p < 0.0001), and arsenate (As+5) (r = 0.89, p < 0.0001). Maternal homocysteine was a strong predictor of %DMA in maternal urine, maternal blood, and cord blood (β = −6.2, p < 0.02; β = −10.9, p < 0.04; and β = −13.7, p < 0.04, respectively). Maternal folate was inversely associated with maternal blood As5+ (β = 0.56, p < 0.05), and maternal cobalamin was inversely associated with cord blood As5+ (β = −1.2, p < 0.01). Conclusions We conclude that exposure to all metabolites of inorganic As occurs in the prenatal period. PMID:17938743

  1. Arsenic concentrations, related environmental factors, and the predicted probability of elevated arsenic in groundwater in Pennsylvania

    USGS Publications Warehouse

    Gross, Eliza L.; Low, Dennis J.

    2013-01-01

    Logistic regression models were created to predict and map the probability of elevated arsenic concentrations in groundwater statewide in Pennsylvania and in three intrastate regions to further improve predictions for those three regions (glacial aquifer system, Gettysburg Basin, Newark Basin). Although the Pennsylvania and regional predictive models retained some different variables, they have common characteristics that can be grouped by (1) geologic and soils variables describing arsenic sources and mobilizers, (2) geochemical variables describing the geochemical environment of the groundwater, and (3) locally specific variables that are unique to each of the three regions studied and not applicable to statewide analysis. Maps of Pennsylvania and the three intrastate regions were produced that illustrate that areas most at risk are those with geology and soils capable of functioning as an arsenic source or mobilizer and geochemical groundwater conditions able to facilitate redox reactions. The models have limitations because they may not characterize areas that have localized controls on arsenic mobility. The probability maps associated with this report are intended for regional-scale use and may not be accurate for use at the field scale or when considering individual wells.

  2. Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice.

    PubMed

    Arao, Tomohito; Kawasaki, Akira; Baba, Koji; Mori, Shinsuke; Matsumoto, Shingo

    2009-12-15

    Rice consumption is a major source of cadmium and arsenic for the population of Asia. We investigated the effects of water management in rice paddy on levels of cadmium and arsenic in Japanese rice grains. Flooding increased arsenic concentrations in rice grains, whereas aerobic treatment increased the concentration of cadmium. Flooding for 3 weeks before and after heading was most effective in reducing grain cadmium concentrations, but this treatment increased the arsenic concentration considerably, whereas aerobic treatment during the same period was effective in reducing arsenic concentrations but increased the cadmium concentration markedly. Flooding treatment after heading was found to be more effective than flooding treatment before heading in reducing rice grain cadmium without a concomitant increase in total arsenic levels, although it increased inorganic arsenic levels. Concentrations of dimethylarsinic acid (DMA) in grain were very low under aerobic conditions but increased under flooded conditions. DMA accounted for 3-52% of the total arsenic concentration in grain grown in soil with a lower arsenic concentration and 10-80% in soil with a higher arsenic concentration. A possible explanation for the accumulation of DMA in rice grains is that DMA translocates from shoots/roots to the grains more readily than does inorganic arsenic. PMID:20000530

  3. Estimation of Arsenic Intake from Drinking Water and Food (Raw and Cooked) in a Rural Village of Northern Chile. Urine as a Biomarker of Recent Exposure

    PubMed Central

    Diaz, Oscar Pablo; Arcos, Rafael; Tapia, Yasna; Pastene, Rubén; Velez, Dínoraz; Devesa, Vicenta; Montoro, Rosa; Aguilera, Valeska; Becerra, Miriam

    2015-01-01

    The aim of this study was to estimate both the contribution of drinking water and food (raw and cooked) to the total (t-As) and inorganic (i-As) arsenic intake and the exposure of inhabitants of Socaire, a rural village in Chile´s Antofagasta Region, by using urine as biomarker. The i-As intake from food and water was estimated using samples collected between November 2008 and September 2009. A 24-hour dietary recall questionnaire was given to 20 participants. Drinking water, food (raw and cooked) and urine samples were collected directly from the homes where the interviewees lived. The percentage of i-As/t-As in the drinking water that contributed to the total intake was variable (26.8–92.9). Cereals and vegetables are the food groups that contain higher concentrations of i-As. All of the participants interviewed exceeded the reference intake FAO/OMS (149.8 µg∙i-As·day−1) by approximately nine times. The concentration of t-As in urine in each individual ranged from 78 to 459 ng·mL−1. Estimated As intake from drinking water and food was not associated with total urinary As concentration. The results show that both drinking water and food substantially contribute to i-As intake and an increased exposure risk to adult residents in contaminated areas. PMID:26006131

  4. Estimation of arsenic intake from drinking water and food (raw and cooked) in a rural village of northern Chile. Urine as a biomarker of recent exposure.

    PubMed

    Diaz, Oscar Pablo; Arcos, Rafael; Tapia, Yasna; Pastene, Rubén; Velez, Dínoraz; Devesa, Vicenta; Montoro, Rosa; Aguilera, Valeska; Becerra, Miriam

    2015-05-01

    The aim of this study was to estimate both the contribution of drinking water and food (raw and cooked) to the total (t-As) and inorganic (i-As) arsenic intake and the exposure of inhabitants of Socaire, a rural village in Chile´s Antofagasta Region, by using urine as biomarker. The i-As intake from food and water was estimated using samples collected between November 2008 and September 2009. A 24-hour dietary recall questionnaire was given to 20 participants. Drinking water, food (raw and cooked) and urine samples were collected directly from the homes where the interviewees lived. The percentage of i-As/t-As in the drinking water that contributed to the total intake was variable (26.8-92.9). Cereals and vegetables are the food groups that contain higher concentrations of i-As. All of the participants interviewed exceeded the reference intake FAO/OMS (149.8 µg∙i-As·day⁻¹) by approximately nine times. The concentration of t-As in urine in each individual ranged from 78 to 459 ng·mL⁻¹. Estimated As intake from drinking water and food was not associated with total urinary As concentration. The results show that both drinking water and food substantially contribute to i-As intake and an increased exposure risk to adult residents in contaminated areas. PMID:26006131

  5. The effects of urine concentration, and cushion centrifugation to remove urine, on the quality of cool-stored stallion sperm.

    PubMed

    Voge, Jared; Varner, Dickson D; Blanchard, Terry L; Meschini, Marika; Turner, Carly; Teague, Sheila R; Brinsko, Steven P; Love, Charles C

    2016-09-15

    Urine-contaminated stallion semen is a clinical problem due to a variety of causes. The effect of the level of urine contamination on the longevity of sperm quality has not been evaluated. The aim of this study was to determine the effects of urine concentration level (0%, 10%, 20%, 30%, and 40%) and cushioned centrifugation and resuspension of the sperm pellet in fresh extender, on measures of sperm quality, immediately after semen collection (T0), after 1 hour of storage at room temperature (T1), and after 24 hours of cooled storage (T24). In general, most sperm quality measures declined with increasing urine concentration starting at T0. Cushioned centrifugation (CC), but not simple dilution, generally maintained sperm quality at T24 as compared with T1. At T24, total sperm motility was higher in all urine-contaminated CC samples compared with uncentrifuged samples (P < 0.05); sperm viability was lower in CC than uncentrifuged at a urine concentration of 20%, but higher at 30% and 40% (P < 0.05); and DNA quality was decreased (higher % cells outside the main population) in all urine concentrations (P < 0.05). Immediate extension in semen extender, followed by cushioned centrifugation and resuspension of the sperm pellet in fresh extender, provided the best option for preserving sperm quality of urospermic semen. PMID:27349135

  6. HEALTH EFFECTS OF CHRONIC EXPOSURE TO ARSENIC VIA DRINKING WATER IN INNER MONGOLIA: IV. DISTRIBUTION OF ARSENIC CONCENTRATIONS IN WELLS

    EPA Science Inventory

    HEALTH EFFECTS OF CHRONIC EXPOSURE TO ARSENIC VIA DRINKING WATER IN INNER MONGOLIA:
    IV. DISTRIBUTION OF ARSENIC CONCENTRATIONS IN WELLS

    Zhixiong Ning, B.S., Zhiyi Liu,B.S., Shiying Zhang, B.S., Chenglong Ma, B.S., Inner Mongolia Ba Men Anti-epidemic Station, Michael Ri...

  7. Babies Fed Rice-Based Cereals Have Higher Arsenic Levels, Study Finds

    MedlinePlus

    ... html Babies Fed Rice-Based Cereals Have Higher Arsenic Levels, Study Finds To avoid potential harm, experts ... rice-based foods may have significantly higher "inorganic" arsenic concentrations in their urine than babies who never ...

  8. Mutagenicity studies with urine concentrates from coke plant workers

    SciTech Connect

    Moeller, M.; Dybing, E.

    1980-01-01

    Urine from coke plant workers, collected before and after work, were tested for the content of mutagenic substances in the Salmonella test system. Urine extracts from exposed smokers showed mutagenic activity, whereas urine from exposed nonsmokers did not. The mutagenicity of exposed smoker's urine was not significantly different from that of urine from nonexposed smokers. Mutagenicity of smokers' urine was only evident in the presence of a rat liver metabolic activation system. The addition of beta-glucuronidase did not enhance the mutagenic effect. The facts that coke plant workers are exposed to very high levels of polycyclic aromatic hydrocarbons (PAH) and that there is no observed enhanced mutagenicity of their urine indicate that the mutagenicity observed with urine from smokers is not due to conventional PAH.

  9. Concentration and chemical status of arsenic in the early placentas of arsenate-dosed hamsters

    SciTech Connect

    Hanlon, D.P.; Ferm, V.H.

    1987-04-01

    The authors determined the concentration and chemical status of arsenic in the placentas of hamsters following continuous exposure via the osmotic minipump to minimally and frankly teratogenic doses of arsenate. Close to 70% of the placental arsenic is bound to macromolecules, two-thirds of which is dialyzable. The remaining 30% of arsenic consists of low molecular weight species, predominantly inorganic arsenic. This mix is the same for minimally teratogenic and frankly teratogenic doses of arsenate.

  10. Arsenic

    MedlinePlus

    Arsenic is a natural element found in soil and minerals. Arsenic compounds are used to preserve wood, as pesticides, and in some industries. Arsenic can get into air, water, and the ground from wind- ...

  11. Arsenic

    MedlinePlus

    ... and minerals. Arsenic compounds are used to preserve wood, as pesticides, and in some industries. Arsenic can ... Breathing sawdust or burning smoke from arsenic-treated wood Living in an area with high levels of ...

  12. Arsenic Adsorption Equilibrium Concentration and Adsorption Rate of Activated Carbon Coated with Ferric-Aluminum Hydroxides

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Sugita, H.; Oguma, T.; Hara, J.; Takahashi, S.

    2015-12-01

    In some areas of developing countries, ground or well water contaminated with arsenic has been reluctantly used as drinking water. It is highly desirable that effective and inexpensive arsenic removal agents should be developed and provided to reduce the potential health risk. Previous studies demonstrated that activated carbon coated with ferric-aluminum hydroxides (Fe-Al-C) has high adsorptive potential for removal of arsenic. In this study, a series of experiments using Fe-Al-C were carried to discuss adsorption equilibrium time, adsorption equilibrium concentration and adsorption rate of arsenic for Fe-Al-C. Fe-Al-C used in this study was provided by Astec Co., Ltd. Powder reagent of disodium hydrogen arsenate heptahydrate was dissolved into ion-exchanged water. The solution was then further diluted with ion-exchanged water to be 1 and 10 mg/L as arsenic concentration. The pH of the solution was adjusted to be around 7 by adding HCl and/or NaOH. The solution was used as artificial arsenic contaminated water in two types of experiments (arsenic adsorption equilibrium and arsenic adsorption rate tests). The results of the arsenic equilibrium tests were showed that a time period of about 3 days to reach apparent adsorption equilibrium for arsenic. The apparent adsorption equilibrium concentration and adsorbed amount of arsenic on Fe-Al-C adsorbent could be estimated by application of various adsorption isotherms, but the distribution coefficient of arsenic between solid and liquid varies with experimental conditions such as initial concentration of arsenic and addition concentration of adsorbent. An adsorption rate equation that takes into account the reduction in the number of effective adsorption sites on the adsorbent caused by the arsenic adsorption reaction was derived based on the data obtained from the arsenic adsorption rate tests.

  13. Arsenic concentrations in Baltic Sea sediments close to chemical munitions dumpsites

    NASA Astrophysics Data System (ADS)

    Bełdowski, Jacek; Szubska, Marta; Emelyanov, Emelyan; Garnaga, Galina; Drzewińska, Anna; Bełdowska, Magdalena; Vanninen, Paula; Östin, Anders; Fabisiak, Jacek

    2016-06-01

    In addition to natural sources and land-originated pollution, the Baltic Sea has another anthropogenic source of arsenic in bottom sediments-arsenic-based Chemical Warfare Agents (CWA). To examine the potential usage of arsenic contents results for monitoring the leakage from chemical weapons, sediment samples were collected from officially reported and potential chemical weapon dumpsites located in the Baltic Sea, and total and inorganic arsenic concentrations were analyzed. Results showed an elevated arsenic content in dumpsite areas compared to reference areas. Correlations of arsenic with other metals and organic matter were studied to elucidate any unusual behavior of arsenic in the dumpsites. In the area of the Bornholm Deep, such behavior was observed for inorganic arsenic. It appears that in close vicinity of dumped munitions, the inorganic arsenic concentration of sediments is not correlated with either organic matter content or authigenic minerals formation, as is commonly observed elsewhere. Investigations on CWA concentrations, performed within the CHEMSEA (Chemical Munition Search and Assesment) project, allowed us to compare the results of arsenic concentrations with the occurrence of arsenic-containing CWA.

  14. Chronic Arsenic Exposure and Blood Glutathione and Glutathione Disulfide Concentrations in Bangladeshi Adults

    PubMed Central

    Hall, Megan N.; Niedzwiecki, Megan; Liu, Xinhua; Harper, Kristin N.; Alam, Shafiul; Slavkovich, Vesna; Ilievski, Vesna; Levy, Diane; Siddique, Abu B.; Parvez, Faruque; Mey, Jacob L.; van Geen, Alexander; Graziano, Joseph

    2013-01-01

    Background: In vitro and rodent studies have shown that arsenic (As) exposure can deplete glutathione (GSH) and induce oxidative stress. GSH is the primary intracellular antioxidant; it donates an electron to reactive oxygen species, thus producing glutathione disulfide (GSSG). Cysteine (Cys) and cystine (CySS) are the predominant thiol/disulfide redox couple found in human plasma. Arsenic, GSH, and Cys are linked in several ways: a) GSH is synthesized via the transsulfuration pathway, and Cys is the rate-limiting substrate; b) intermediates of the methionine cycle regulate both the transsulfuration pathway and As methylation; c) GSH serves as the electron donor for reduction of arsenate to arsenite; and d) As has a high affinity for sulfhydryl groups and therefore binds to GSH and Cys. Objectives: We tested the hypothesis that As exposure is associated with decreases in GSH and Cys and increases in GSSG and CySS (i.e., a more oxidized environment). Methods: For this cross-sectional study, the Folate and Oxidative Stress Study, we recruited a total of 378 participants from each of five water As concentration categories: < 10 (n = 76), 10–100 (n = 104), 101–200 (n = 86), 201–300 (n = 67), and > 300 µg/L (n = 45). Concentrations of GSH, GSSG, Cys, and CySS were measured using HPLC. Results: An interquartile range (IQR) increase in water As was negatively associated with blood GSH (mean change, –25.4 µmol/L; 95% CI: –45.3, –5.31) and plasma CySS (mean change, –3.00 µmol/L; 95% CI: –4.61, –1.40). We observed similar associations with urine and blood As. There were no significant associations between As exposure and blood GSSG or plasma Cys. Conclusions: The observed associations are consistent with the hypothesis that As may influence concentrations of GSH and other nonprotein sulfhydryls through binding and irreversible loss in bile and/or possibly in urine. Citation: Hall MN, Niedzwiecki M, Liu X, Harper KN, Alam S, Slavkovich V, Ilievski V, Levy

  15. Can sample treatments based on advanced oxidation processes assisted by high-intensity focused ultrasound be used for toxic arsenic determination in human urine by flow-injection hydride-generation atomic absorption spectrometry?

    PubMed

    Correia, A; Galesio, M; Santos, H; Rial-Otero, R; Lodeiro, C; Oehmen, A; Conceição, Antonio C L; Capelo, J L

    2007-05-15

    Two advanced oxidation processes (AOPs), based on high-intensity focused ultrasound (HIFU), namely, KMnO(4)/HCl/HIFU and H(2)O(2)/HCl/HIFU are studied and compared for the determination of toxic arsenic in human urine [As(III)+As(V)+MMA+DMA] by flow-injection hydride-generation atomic absorption spectrometry (FI-HG-AAS). The KMnO(4)/HCl/HIFU procedure was found to be adequate for organic matter degradation in human urine. l-cysteine (letra minuscula) was used for As reduction to the trivalent state. The new procedure was assessed with seven urines certified in different As species. Results revealed that with KMnO(4)/HCl/HIFU plus l-cysteine the toxic arsenic can be accurately measured in human urine whilst the H(2)O(2)/HCl/HIFU procedure underestimates toxic As. DMA and MMA degradation in urine were observed, due to the effects of the ultrasonic field. Recoveries for As(III), As(V), MMA and DMA were within the certified ranges. Arsenobetaine was not degraded by the AOPs. The new procedure adheres well to the principles of analytical minimalism: (i) low reagent consumption, (ii) low reagent concentration, (iii) low waste production and (iv) low amount of time required for sample preparation and analysis. PMID:19071711

  16. Impact of urine concentration adjustment method on associations between urine metals and estimated glomerular filtration rates (eGFR) in adolescents

    SciTech Connect

    Weaver, Virginia M.; Vargas, Gonzalo García; Silbergeld, Ellen K.; Rothenberg, Stephen J.; Fadrowski, Jeffrey J.; Rubio-Andrade, Marisela; Parsons, Patrick J.; Steuerwald, Amy J.; and others

    2014-07-15

    Positive associations between urine toxicant levels and measures of glomerular filtration rate (GFR) have been reported recently in a range of populations. The explanation for these associations, in a direction opposite that of traditional nephrotoxicity, is uncertain. Variation in associations by urine concentration adjustment approach has also been observed. Associations of urine cadmium, thallium and uranium in models of serum creatinine- and cystatin-C-based estimated GFR (eGFR) were examined using multiple linear regression in a cross-sectional study of adolescents residing near a lead smelter complex. Urine concentration adjustment approaches compared included urine creatinine, urine osmolality and no adjustment. Median age, blood lead and urine cadmium, thallium and uranium were 13.9 years, 4.0 μg/dL, 0.22, 0.27 and 0.04 g/g creatinine, respectively, in 512 adolescents. Urine cadmium and thallium were positively associated with serum creatinine-based eGFR only when urine creatinine was used to adjust for urine concentration (β coefficient=3.1 mL/min/1.73 m{sup 2}; 95% confidence interval=1.4, 4.8 per each doubling of urine cadmium). Weaker positive associations, also only with urine creatinine adjustment, were observed between these metals and serum cystatin-C-based eGFR and between urine uranium and serum creatinine-based eGFR. Additional research using non-creatinine-based methods of adjustment for urine concentration is necessary. - Highlights: • Positive associations between urine metals and creatinine-based eGFR are unexpected. • Optimal approach to urine concentration adjustment for urine biomarkers uncertain. • We compared urine concentration adjustment methods. • Positive associations observed only with urine creatinine adjustment. • Additional research using non-creatinine-based methods of adjustment needed.

  17. Human exposure to arsenic from drinking water in Vietnam.

    PubMed

    Agusa, Tetsuro; Trang, Pham Thi Kim; Lan, Vi Mai; Anh, Duong Hong; Tanabe, Shinsuke; Viet, Pham Hung; Berg, Michael

    2014-08-01

    Vietnam is an agricultural country with a population of about 88 million, with some 18 million inhabitants living in the Red River Delta in Northern Vietnam. The present study reports the chemical analyses of 68 water and 213 biological (human hair and urine) samples conducted to investigate arsenic contamination in tube well water and human arsenic exposure in four districts (Tu Liem, Dan Phuong, Ly Nhan, and Hoai Duc) in the Red River Delta. Arsenic concentrations in groundwater in these areas were in the range of <1 to 632 μg/L, with severe contamination found in the communities Ly Nhan, Hoai Duc, and Dan Phuong. Arsenic concentrations were markedly lowered in water treated with sand filters, except for groundwater from Hoai Duc. Human hair samples had arsenic levels in the range of 0.07-7.51 μg/g, and among residents exposed to arsenic levels ≥50 μg/L, 64% of them had hair arsenic concentrations higher than 1 μg/g, which is a level that can cause skin lesions. Urinary arsenic concentrations were 4-435 μg/g creatinine. Concentrations of arsenic in hair and urine increased significantly with increasing arsenic content in drinking water, indicating that drinking water is a significant source of arsenic exposure for these residents. The percentage of inorganic arsenic (IA) in urine decreased with age, whereas the opposite trend was observed for monomethylarsonic acid (MMA) in urine. Significant co-interactions of age and arsenic exposure status were also detected for concentrations of arsenic in hair and the sum of IA, MMA, and dimethylarsinic acid (DMA) in urine and %MMA. In summary, this study demonstrates that a considerable proportion of the Vietnamese population is exposed to arsenic levels of chronic toxicity, even if sand filters reduce exposure in many households. Health problems caused by arsenic ingestion through drinking water are increasingly reported in Vietnam. PMID:24262873

  18. Effect of chromated copper arsenate structures on adjacent soil arsenic concentrations.

    PubMed

    Patch, Steven C; Scheip, Katherine; Brooks, Billy

    2011-06-01

    Structures made of chromated copper arsenic (CCA) have been shown to leach arsenic into the surrounding soil. Soil cores were taken adjacent to six CCA decks at 0, 15, 60 and 300 cm from the deck at depths of 0-10, 10-20, and 20-30 cm, and were analyzed for soil arsenic concentrations. Median soil arsenic concentrations ranged from 1.8 μg/g at a depth of 10-20 cm and a distance of 300 cm to 34.5 μg/g at a depth of 0-10 cm and a distance of 30 cm. Soil arsenic concentrations taken at depths of 0-10 and 10-20 cm decreased as distance from the deck increased. Soil arsenic concentrations close to the deck were higher at lower soil depths and at homes with greater deck wipe arsenic concentrations. Age of deck and slope of land had significant effects on the differences in arsenic concentrations between samples taken at different distances when evaluated in models by themselves, but not in models adjusting for deck wipe concentrations. Size of deck and bulk density of soil did not have significant effects on soil arsenic concentrations. PMID:21505794

  19. Impact of urine concentration adjustment method on associations between urine metals and estimated glomerular filtration rates (eGFR) in adolescents☆

    PubMed Central

    Weaver, Virginia M.; Vargas, Gonzalo García; Silbergeld, Ellen K.; Rothenberg, Stephen J.; Fadrowski, Jeffrey J.; Rubio-Andrade, Marisela; Parsons, Patrick J.; Steuerwald, Amy J.; Navas-Acien, Ana; Guallar, Eliseo

    2014-01-01

    Positive associations between urine toxicant levels and measures of glomerular filtration rate (GFR) have been reported recently in a range of populations. The explanation for these associations, in a direction opposite that of traditional nephrotoxicity, is uncertain. Variation in associations by urine concentration adjustment approach has also been observed. Associations of urine cadmium, thallium and uranium in models of serum creatinine- and cystatin-C-based estimated GFR (eGFR) were examined using multiple linear regression in a cross-sectional study of adolescents residing near a lead smelter complex. Urine concentration adjustment approaches compared included urine creatinine, urine osmolality and no adjustment. Median age, blood lead and urine cadmium, thallium and uranium were 13.9 years, 4.0 μg/dL, 0.22, 0.27 and 0.04 g/g creatinine, respectively, in 512 adolescents. Urine cadmium and thallium were positively associated with serum creatinine-based eGFR only when urine creatinine was used to adjust for urine concentration (β coefficient=3.1 mL/min/1.73 m2; 95% confidence interval=1.4, 4.8 per each doubling of urine cadmium). Weaker positive associations, also only with urine creatinine adjustment, were observed between these metals and serum cystatin-C-based eGFR and between urine uranium and serum creatinine-based eGFR. Additional research using non-creatinine-based methods of adjustment for urine concentration is necessary. PMID:24815335

  20. Total grain-arsenic and arsenic-species concentrations in rice as impacted by genotype and water management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies have indicated that high soil arsenic (As) concentrations can result in decreased rice (Oryza sativa L.) grain yields and increased grain-As concentrations. Low As-concentration in rice grain is especially desirable for populations that rely upon rice as a staple food and live where ...

  1. Spectral reflectance as an indicator of foliar concentrations of arsenic in common sunflower (Helianthus annuus)

    NASA Astrophysics Data System (ADS)

    Gandy, Yuridia Patricia Peralta De

    Studies were conducted to investigate the use of spectral reflectance by foliage of common sunflower as a potential indicator of arsenic contamination of soil. Germination method was developed for sunflower seeds, and cohorts of sunflower seedlings in hydroponic tanks were established. The cohorts were exposed to 0 ppm, 5 ppm, 7.5 ppm, and 10 ppm treatments of As (V) and reflectance measurements of foliage were collected using a spectroradiometer during two experiments. Results demonstrated the feasibility of using spectral reflectance by foliage of common sunflower as a potential indicator of arsenic contamination. In both experiments, arsenic concentrations in leaf tissues were directly proportional to arsenic concentrations in hydroponic solutions in which such plants were grown. Although the effect(s) of arsenic accumulation had minimal impact on reflectance of visible wavelengths, the effects on NIR reflectance were substantial and resulted in a progressive decrease in reflectance as arsenic concentrations in foliage increased.

  2. Distribution of Microbial Arsenic Reduction, Oxidation and Extrusion Genes along a Wide Range of Environmental Arsenic Concentrations

    PubMed Central

    Escudero, Lorena V.; Casamayor, Emilio O.; Chong, Guillermo; Pedrós-Alió, Carles; Demergasso, Cecilia

    2013-01-01

    The presence of the arsenic oxidation, reduction, and extrusion genes arsC, arrA, aioA, and acr3 was explored in a range of natural environments in northern Chile, with arsenic concentrations spanning six orders of magnitude. A combination of primers from the literature and newly designed primers were used to explore the presence of the arsC gene, coding for the reduction of As (V) to As (III) in one of the most common detoxification mechanisms. Enterobacterial related arsC genes appeared only in the environments with the lowest As concentration, while Firmicutes-like genes were present throughout the range of As concentrations. The arrA gene, involved in anaerobic respiration using As (V) as electron acceptor, was found in all the systems studied. The As (III) oxidation gene aioA and the As (III) transport gene acr3 were tracked with two primer sets each and they were also found to be spread through the As concentration gradient. Sediment samples had a higher number of arsenic related genes than water samples. Considering the results of the bacterial community composition available for these samples, the higher microbial phylogenetic diversity of microbes inhabiting the sediments may explain the increased number of genetic resources found to cope with arsenic. Overall, the environmental distribution of arsenic related genes suggests that the occurrence of different ArsC families provides different degrees of protection against arsenic as previously described in laboratory strains, and that the glutaredoxin (Grx)-linked arsenate reductases related to Enterobacteria do not confer enough arsenic resistance to live above certain levels of As concentrations. PMID:24205341

  3. Measurement of the glucose concentration in human urine with optical refractometer

    NASA Astrophysics Data System (ADS)

    Wu, Rui-Yang; Hsu, Cheng-Chih; Meng, Ching-Tang; Cheng, Chih-Ching; Liao, Yu-Ching

    2015-07-01

    In this paper, a new type of human urine glucose measurement system is proposed. We measured the phase variation of human urine with/without glucose-urine mixture (to simulate diabetes mellitus). We were able to achieve high resolution with the proposed method. The relation curve between the phase difference and glucose concentration can be estimated, and the glucose concentration of a urine sample can be determined by using this relation curve. The proposed method showed that theoretical resolution is approximated of 1.47 mg/dl.

  4. Influence of groundwater recharge and well characteristics on dissolved arsenic concentrations in southeastern Michigan groundwater

    USGS Publications Warehouse

    Meliker, J.R.; Slotnick, M.J.; Avruskin, G.A.; Haack, S.K.; Nriagu, J.O.

    2009-01-01

    Arsenic concentrations exceeding 10 ??g/l, the United States maximum contaminant level and the World Health Organization guideline value, are frequently reported in groundwater from bedrock and unconsolidated aquifers of southeastern Michigan. Although arsenic-bearing minerals (including arsenian pyrite and oxide/hydroxide phases) have been identified in Marshall Sandstone bedrock of the Mississippian aquifer system and in tills of the unconsolidated aquifer system, mechanisms responsible for arsenic mobilization and subsequent transport in groundwater are equivocal. Recent evidence has begun to suggest that groundwater recharge and characteristics of well construction may affect arsenic mobilization and transport. Therefore, we investigated the relationship between dissolved arsenic concentrations, reported groundwater recharge rates, well construction characteristics, and geology in unconsolidated and bedrock aquifers. Results of multiple linear regression analyses indicate that arsenic contamination is more prevalent in bedrock wells that are cased in proximity to the bedrock-unconsolidated interface; no other factors were associated with arsenic contamination in water drawn from bedrock or unconsolidated aquifers. Conditions appropriate for arsenic mobilization may be found along the bedrock-unconsolidated interface, including changes in reduction/oxidation potential and enhanced biogeochemical activity because of differences between geologic strata. These results are valuable for understanding arsenic mobilization and guiding well construction practices in southeastern Michigan, and may also provide insights for other regions faced with groundwater arsenic contamination. ?? Springer-Verlag 2008.

  5. Dietary Sources of Methylated Arsenic Species in Urine of the United States Population, NHANES 2003–2010

    PubMed Central

    deCastro, B. Rey; Caldwell, Kathleen L.; Jones, Robert L.; Blount, Benjamin C.; Pan, Yi; Ward, Cynthia; Mortensen, Mary E.

    2014-01-01

    Background Arsenic is an ubiquitous element linked to carcinogenicity, neurotoxicity, as well as adverse respiratory, gastrointestinal, hepatic, and dermal health effects. Objective Identify dietary sources of speciated arsenic: monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA). Methods Age-stratified, sample-weighted regression of NHANES (National Health and Nutrition Examination Survey) 2003–2010 data (∼8,300 participants ≥6 years old) characterized the association between urinary arsenic species and the additional mass consumed of USDA-standardized food groups (24-hour dietary recall data), controlling for potential confounders. Results For all arsenic species, the rank-order of age strata for median urinary molar concentration was children 6–11 years > adults 20–84 years > adolescents 12–19 years, and for all age strata, the rank-order was DMA > MMA. Median urinary molar concentrations of methylated arsenic species ranged from 0.56 to 3.52 µmol/mol creatinine. Statistically significant increases in urinary arsenic species were associated with increased consumption of: fish (DMA); fruits (DMA, MMA); grain products (DMA, MMA); legumes, nuts, seeds (DMA); meat, poultry (DMA); rice (DMA, MMA); rice cakes/crackers (DMA, MMA); and sugars, sweets, beverages (MMA). And, for adults, rice beverage/milk (DMA, MMA). In addition, based on US (United States) median and 90th percentile consumption rates of each food group, exposure from the following food groups was highlighted: fish; fruits; grain products; legumes, nuts, seeds; meat, poultry; and sugars, sweets, beverages. Conclusions In a nationally representative sample of the US civilian, noninstitutionalized population, fish (adults), rice (children), and rice cakes/crackers (adolescents) had the largest associations with urinary DMA. For MMA, rice beverage/milk (adults) and rice cakes/crackers (children, adolescents) had the largest associations. PMID:25251890

  6. Certification of Total Arsenic in Blood and Urine Standard Reference Materials by Radiochemical Neutron Activation Analysis and Inductively Coupled Plasma - Mass Spectrometry

    PubMed Central

    Paul, Rick L.; Davis, W. Clay; Yu, Lee; Murphy, Karen E.; Guthrie, William F.; Leber, Dennis D.; Bryan, Colleen E.; Vetter, Thomas W.; Shakirova, Gulchekhra; Mitchell, Graylin; Kyle, David J.; Jarrett, Jeffery M.; Caldwell, Kathleen L.; Jones, Robert L.; Eckdahl, Steven; Wermers, Michelle; Maras, Melissa; Palmer, C. D.; Verostek, M.F.; Geraghty, C. M.; Steuerwald, Amy J.; Parsons, Patrick J.

    2015-01-01

    A newly developed procedure for determination of arsenic by radiochemical neutron activation analysis (RNAA) was used to measure arsenic at four levels in SRM 955c Toxic Elements in Caprine Blood and at two levels in SRM 2668 Toxic Elements in Frozen Human Urine for the purpose of providing mass concentration values for certification. Samples were freeze-dried prior to analysis followed by neutron irradiation for 3 h at a fluence rate of 1×1014cm−2s−1. After sample dissolution in perchloric and nitric acids, arsenic was separated from the matrix by extraction into zinc diethyldithiocarbamate in chloroform, and 76As quantified by gamma-ray spectroscopy. Differences in chemical yield and counting geometry between samples and standards were monitored by measuring the count rate of a 77As tracer added before sample dissolution. RNAA results were combined with inductively coupled plasma – mass spectrometry (ICP-MS) values from NIST and collaborating laboratories to provide certified values of (10.81 ± 0.54) μg/kg and (213.1 ± 0.73) μg/kg for SRM 2668 Levels I and II, and certified values of (21.66 ± 0.73) μg/kg, (52.7 ± 1.1) μg/kg, and (78.8 ± 4.9) μg/kg for SRM 955c Levels 2, 3, and 4 respectively. Because of discrepancies between values obtained by different methods for SRM 955c Level 1, an information value of < 5 μg/kg was assigned for this material. PMID:26300575

  7. Surface and Airborne Arsenic Concentrations in a Recreational Site near Las Vegas, Nevada, USA

    PubMed Central

    Goossens, Dirk

    2015-01-01

    Elevated concentrations of arsenic, up to 7058 μg g-1 in topsoil and bedrock, and more than 0.03 μg m-3 in air on a 2-week basis, were measured in the Nellis Dunes Recreation Area (NDRA), a very popular off-road area near Las Vegas, Nevada, USA. The elevated arsenic concentrations in the topsoil and bedrock are correlated to outcrops of yellow sandstone belonging to the Muddy Creek Formation (≈ 10 to 4 Ma) and to faults crossing the area. Mineralized fluids moved to the surface through the faults and deposited the arsenic. A technique was developed to calculate airborne arsenic concentrations from the arsenic content in the topsoil. The technique was tested by comparing calculated with measured concentrations at 34 locations in the NDRA, for 3 periods of 2 weeks each. We then applied it to calculate airborne arsenic concentrations for more than 500 locations all over the NDRA. The highest airborne arsenic concentrations occur over sand dunes and other zones with a surficial layer of aeolian sand. Ironically these areas show the lowest levels of arsenic in the topsoil. However, they are highly susceptible to wind erosion and emit very large amounts of sand and dust during episodes of strong winds, thereby also emitting much arsenic. Elsewhere in the NDRA, in areas not or only very slightly affected by wind erosion, airborne arsenic levels equal the background level for airborne arsenic in the USA, approximately 0.0004 μg m-3. The results of this study are important because the NDRA is visited by more than 300,000 people annually. PMID:25897667

  8. Arsenic Concentrations in Rice and Associated Health Risks Along the Upper Mekong Delta, Cambodia

    NASA Astrophysics Data System (ADS)

    Barragan, L.; Seyfferth, A.; Fendorf, S.

    2011-12-01

    The consumption of arsenic contaminated food, such as rice, can be a significant portion of daily arsenic exposure, even for populations already exposed through drinking water. While arsenic contamination of rice grains has been documented in parts of Southern Asia, (e.g. Bangladesh), little research has been conducted on arsenic contamination of Cambodian-grown rice. We collected rice plant samples at various locations within the upper Mekong River Delta near Phnom Penh, Cambodia, and we analyzed total arsenic concentrations in plant digests of grains, husk, and straw. In addition, we used CaCl2-, DTPA-, and oxalate-extractable arsenic to define plant-available soil pools. We found variability of arsenic concentration in the plants, with grain arsenic ranging from 0.046 to 0.214 μg g-1; other researchers have shown that concentrations higher than 0.1 μg g-1 could be a concern for human health. Although more extensive sampling is needed to assess the risk of arsenic exposure from rice consumption on a country-wide basis, our work clearly illustrates the risk within regions of the Mekong Delta.

  9. Arsenic pollution of agricultural soils by concentrated animal feeding operations (CAFOs).

    PubMed

    Liu, Xueping; Zhang, Wenfeng; Hu, Yuanan; Hu, Erdan; Xie, Xiande; Wang, Lingling; Cheng, Hefa

    2015-01-01

    Animal wastes from concentrated animal feeding operations (CAFOs) can cause soil arsenic pollution due to the widespread use of organoarsenic feed additives. This study investigated the arsenic pollution of surface soils in a typical CAFO zone, in comparison with that of agricultural soils in the Pearl River Delta, China. The mean soil arsenic contents in the CAFO zone were elevated compared to those in the local background and agricultural soils of the Pearl River Delta region. Chemical speciation analysis showed that the soils in the CAFO zone were clearly contaminated by the organoarsenic feed additive, p-arsanilic acid (ASA). Transformation of ASA to inorganic arsenic (arsenite and arsenate) in the surface soils was also observed. Although the potential ecological risk posed by the arsenic in the surface soils was relatively low in the CAFO zone, continuous discharge of organoarsenic feed additives could cause accumulation of arsenic and thus deserves significant attention. PMID:25036941

  10. Culturable associated-bacteria of the sponge Theonella swinhoei show tolerance to high arsenic concentrations

    PubMed Central

    Keren, Ray; Lavy, Adi; Mayzel, Boaz; Ilan, Micha

    2015-01-01

    Sponges are potent filter feeders and as such are exposed to high fluxes of toxic trace elements, which can accumulate in their body over time. Such is the case of the Red Sea sponge Theonella swinhoei, which has been shown to accumulate up to 8500 mg/Kg of the highly toxicelement arsenic. T. swinhoei is known to harbor a multitude of sponge-associated bacteria, so it is hypothesized that the associated-bacteria will be tolerant to high arsenic concentration. This study also investigates the fate of the arsenic accumulated in the sponge to test if the associated-bacteria have an important role in the arsenic accumulation process of their host, since bacteria are key players in the natural arsenic cycle. Separation of the sponge to sponge cells and bacteria enriched fractions showed that arsenic is accumulated by the bacteria. Sponge-associated, arsenic-tolerant bacteria were cultured in the presence of 5 mM of either arsenate or arsenite (equivalent to 6150 mg/Kg arsenic, dry weight). The 54 isolated bacteria were grouped to 15 operational taxonomic units (OTUs) and isolates belonging to 12 OTUs were assessed for tolerance to arsenate at increased concentrations up to 100 mM. Eight of the 12 OTUs tolerated an order of magnitude increase in the concentration of arsenate, and some exhibited external biomineralization of arsenic–magnesium salts. The biomineralization of this unique mineral was directly observed in bacteria for the first time. These results may provide an explanation for the ability of the sponge to accumulate considerable amounts of arsenic. Furthermore arsenic-mineralizing bacteria can potentially be used for the study of bioremediation, as arsenic toxicity affects millions of people worldwide. PMID:25762993

  11. Urinary concentrations and urine ex-vivo effect of mecillinam and sulphamethizole.

    PubMed

    Kerrn, M B; Frimodt-Møller, N; Espersen, F

    2004-01-01

    Healthy adult volunteers received 1 g of sulphamethizole orally (n = 10) and later 400 mg of pivmecillinam (274 mg of mecillinam) (n = 9). All urine was collected in defined periods over 24 h, and the drug concentrations in urine were determined. For sulphamethizole, the maximum urine concentration for seven subjects was reached in 0-3 h, and for the remaining three in 3-6 h. For mecillinam, eight of the nine subjects attained a maximum urine concentration in 0-3 h, after which the concentration declined rapidly for six subjects in 3-6 h. Strains of Escherichia coli with different MICs for sulphamethizole and mecillinam were exposed to collected urine for 2.5 h and 5 h. The results indicated that a sensitive E. coli population should be suppressed by sulphamethizole in urine for two-thirds of the time (with 1 g twice-daily) and by mecillinam in urine throughout the 24-h period (with 400 mg three times a day). There was a slight but significant correlation between the ex-vivo effect (Delta log10 CFU/mL) and the log10 concentration/MIC ratio after exposure to sulphamethizole for 5 h (r2 = 0.27, p < 0.0001), and a significant correlation between the variables with mecillinam (r2 = 0.66, p < 0.0001). PMID:14706087

  12. The void in using urine concentration to assess population fluid intake adequacy or hydration status.

    PubMed

    Cheuvront, Samuel N; Muñoz, Colleen X; Kenefick, Robert W

    2016-09-01

    Urine concentration can be used to assess fluid intake adequacy or to diagnose dehydration. However, too often urine concentration is used inappropriately to draw dubious conclusions that could have harmful health and economic consequences. Inappropriate uses of urine concentration relate primarily to convenience sampling (timing) and problems related to convenience sampling (misapplication of thresholds), but a conceptual problem also exists with using urine concentration in isolation. The purpose of this Perspective article is to briefly explain the problematic nature of current practices and to offer a possible solution to improve practice with minimal added complication. When urine is used exclusively to assess fluid intake adequacy and hydration status in adults, we propose that only when urine concentration is high (>850 mmol/kg) and urine excretion rate is low (<850 mL/24 h) should suspicion of inadequate drinking or impending dehydration be considered. Prospective tests of the 850 × 850 thresholds will provide supporting evidence and/or help refine the best thresholds for men and women, young and old. PMID:27465376

  13. Comparison of Arsenic Concentrations in Carcass and Viscera of Swim-up Rainbow Trout Exposed to Dietary and Waterborne Arsenic

    EPA Science Inventory

    Rainbow trout fry were exposed to arsenic in water only, diet only, or both diet and water in 28-d studies evaluating survival and growth. Diets consisted of Lumbriculus variegatus that were exposed to multiple concentrations of waterborne arsenate for 7d and then fed to test fi...

  14. Urine concentrations of oral salbutamol in samples collected after intense exercise in endurance athletes.

    PubMed

    Hostrup, Morten; Kalsen, Anders; Auchenberg, Michael; Rzeppa, Sebastian; Hemmersbach, Peter; Bangsbo, Jens; Backer, Vibeke

    2014-06-01

    Our objective was to investigate urine concentrations of 8 mg oral salbutamol in samples collected after intense exercise in endurance athletes. Nine male endurance athletes with a VO2max of 70.2 ± 5.9 mL/min/kg (mean ± SD) took part in the study. Two hours after administration of 8 mg oral salbutamol, subjects performed submaximal exercise for 15 min followed by two, 2-min exercise bouts at an intensity corresponding to 110% of VO2max and a bout to exhaustion at same intensity. Urine samples were collected 4, 8, and 12 h following administration of salbutamol. Samples were analyzed by the Norwegian World Anti-doping Agency (WADA) laboratory. Adjustment of urine concentrations of salbutamol to a urine specific gravity (USG) of 1.020 g/mL was compared with no adjustment according to WADA's technical documents. We observed greater (P = 0.01) urine concentrations of salbutamol 4 h after administration when samples were adjusted to a USG of 1.020 g/mL compared with no adjustment (3089 ± 911 vs. 1918 ± 1081 ng/mL). With the current urine decision limit of 1200 ng/mL for salbutamol on WADA's 2013 list of prohibited substances, fewer false negative urine samples were observed when adjusted to a USG of 1.020 g/mL compared with no adjustment. In conclusion, adjustment of urine samples to a USG of 1.020 g/mL decreases risk of false negative doping tests after administration of oral salbutamol. Adjusting urine samples for USG might be useful when evaluating urine concentrations of salbutamol in doping cases. PMID:24166762

  15. Silver nanoparticles promote osteogenic differentiation of human urine-derived stem cells at noncytotoxic concentrations

    PubMed Central

    Qin, Hui; Zhu, Chen; An, Zhiquan; Jiang, Yao; Zhao, Yaochao; Wang, Jiaxin; Liu, Xin; Hui, Bing; Zhang, Xianlong; Wang, Yang

    2014-01-01

    In tissue engineering, urine-derived stem cells are ideal seed cells and silver nanoparticles (AgNPs) are perfect antimicrobial agents. Due to a distinct lack of information on the effects of AgNPs on urine-derived stem cells, a study was conducted to evaluate the effects of silver ions and AgNPs upon the cytotoxicity and osteogenic differentiation of urine-derived stem cells. Initially, AgNPs or AgNO3 were exposed to urine-derived stem cells for 24 hours. Cytotoxicity was measured using the Cell Counting kit-8 (CCK-8) test. The effects of AgNPs or AgNO3 at the maximum safety concentration determined by the CCK-8 test on osteogenic differentiation of urine-derived stem cells were assessed by alkaline phosphatase activity, Alizarin Red S staining, and the quantitative reverse transcription polymerase chain reaction. Lastly, the effects of AgNPs or AgNO3 on “urine-derived stem cell actin cytoskeleton organization” and RhoA activity were assessed by rhodamine-phalloidin staining and Western blotting. Concentration-dependent toxicity was observed starting at an AgNO3 concentration of 2 μg/mL and at an AgNP concentration of 4 μg/mL. At these concentrations, AgNPs were observed to promote osteogenic differentiation of urine-derived stem cells, induce actin polymerization and increase cytoskeletal tension, and activate RhoA; AgNO3 had no such effects. In conclusion, AgNPs can promote osteogenic differentiation of urine-derived stem cells at a suitable concentration, independently of silver ions, and are suitable for incorporation into tissue-engineered scaffolds that utilize urine-derived stem cells as seed cells. PMID:24899804

  16. Evaluation of Postmortem Drug Concentrations in Bile Compared with Blood and Urine in Forensic Autopsy Cases.

    PubMed

    Tominaga, Mariko; Michiue, Tomomi; Oritani, Shigeki; Ishikawa, Takaki; Maeda, Hitoshi

    2016-06-01

    For drug screening and pharmaco-/toxicokinetic analysis, bile as a major drug excretion route in addition to urine may be used in forensic autopsy cases; however, there are limited published data on correlations between bile and blood or urine drug concentrations. The present study retrospectively investigated drug concentrations in bile, compared with blood and urine concentrations, reviewing forensic autopsy cases during 6 years (January 2009-December 2014). Drugs were analyzed using automated gas chromatography-mass spectrometry following solid-liquid phase extraction. Compared with peripheral blood concentrations, bile concentrations were higher for most drugs; however, caffeine concentrations were similar. Bile concentrations were mostly lower than urine concentrations for amphetamines, caffeine and methylephedrine, but were usually similar to or higher for other drugs. Significant correlations were detected between bile and peripheral blood concentrations for amphetamines, several cold remedies, phenobarbital, phenothiazine derivatives and diazepam, as well as between bile and urine concentrations for amphetamines, caffeine, diphenhydramine, phenobarbital and promethazine derivatives. These findings suggest that bile can provide supplemental data useful in routine forensic toxicology, for the spectrum of drugs mentioned above, as well as for investigating pharmaco-/toxicokinetics and postmortem redistribution when analyzed in combination with drug concentrations at other sites. PMID:27185819

  17. Uranium and thorium in urine of United States residents: Reference range concentrations

    SciTech Connect

    Ting, B.G.; Paschal, D.C.; Jarrett, J.M.; Pirkle, J.L.; Jackson, R.J.; Sampson, E.J.; Miller, D.T.; Caudill, S.P. )

    1999-07-01

    The authors measured uranium and thorium in urine of 500 US residents to establish reference range concentrations using a magnetic-sector inductively coupled argon plasma mass spectrometer (ICP-MS). They found uranium at detectable concentrations in 96.6% of the urine specimens and thorium in 39.6% of the specimens. The 95th percentile concentration for uranium was 34.5 ng/L (parts per trillion); concentrations ranged up to 4,080 ng/L. Thorium had a 95th percentile concentration of 3.09 ng/L; concentrations ranged up to 7.7 ng/L.

  18. Impaired arsenic metabolism in children during weaning

    SciTech Connect

    Faengstroem, Britta; Hamadani, Jena; Nermell, Barbro; Grander, Margaretha; Palm, Brita; Vahter, Marie

    2009-09-01

    Background: Methylation of inorganic arsenic (iAs) via one-carbon metabolism is a susceptibility factor for a range of arsenic-related health effects, but there is no data on the importance of arsenic metabolism for effects on child development. Aim: To elucidate the development of arsenic metabolism in early childhood. Methods: We measured iAs, methylarsonic acid (MA) and dimethylarsinic acid (DMA), the metabolites of iAs, in spot urine samples of 2400 children at 18 months of age. The children were born to women participating in a population-based longitudinal study of arsenic effects on pregnancy outcomes and child development, carried out in Matlab, a rural area in Bangladesh with a wide range of arsenic concentrations in drinking water. Arsenic metabolism was evaluated in relation to age, sex, anthropometry, socio-economic status and arsenic exposure. Results: Arsenic concentrations in child urine (median 34 {mu}g/L, range 2.4-940 {mu}g/L), adjusted to average specific gravity of 1.009 g/mL, were considerably higher than that measured at 3 months of age, but lower than that in maternal urine. Child urine contained on average 12% iAs, 9.4% MA and 78% DMA, which implies a marked change in metabolite pattern since infancy. In particular, there was a marked increase in urinary %MA, which has been associated with increased risk of health effects. Conclusion: The arsenic metabolite pattern in urine of children at 18 months of age in rural Bangladesh indicates a marked decrease in arsenic methylation efficiency during weaning.

  19. Assessment of arsenic concentration in stream water using neuro fuzzy networks with factor analysis.

    PubMed

    Chang, Fi-John; Chung, Chang-Han; Chen, Pin-An; Liu, Chen-Wuing; Coynel, Alexandra; Vachaud, Georges

    2014-10-01

    We propose a systematical approach to assessing arsenic concentration in a river through: important factor extraction by a nonlinear factor analysis; arsenic concentration estimation by the neuro-fuzzy network; and impact assessment of important factors on arsenic concentration by the membership degrees of the constructed neuro-fuzzy network. The arsenic-contaminated Huang Gang Creek in northern Taiwan is used as a study case. Results indicate that rainfall, nitrite nitrogen and temperature are important factors and the proposed estimation model (ANFIS(GT)) is superior to the two comparative models, in which 50% and 52% improvements in RMSE are made over ANFIS(CC) and ANFIS(all), respectively. Results reveal that arsenic concentration reaches the highest in an environment of lower temperature, higher nitrite nitrogen concentration and larger one-month antecedent rainfall; while it reaches the lowest in an environment of higher temperature, lower nitrite nitrogen concentration and smaller one-month antecedent rainfall. It is noted that these three selected factors are easy-to-collect. We demonstrate that the proposed methodology is a useful and effective methodology, which can be adapted to other similar settings to reliably model water quality based on parameters of interest and/or study areas of interest for universal usage. The proposed methodology gives a quick and reliable way to estimate arsenic concentration, which makes good contribution to water environment management. PMID:25046611

  20. Elevated formic acid concentrations in putrefied post-mortem blood and urine samples.

    PubMed

    Viinamäki, Jenni; Rasanen, Ilpo; Vuori, Erkki; Ojanperä, Ilkka

    2011-05-20

    Formic acid (FA) concentration was measured in post-mortem blood and urine samples as methyl formate using a headspace in-tube extraction gas-chromatography-mass-spectrometry method. A total of 113 cases were analyzed, each including a blood and urine sample fortified with 1% sodium fluoride. The cases were divided into three groups: regular (n=59), putrefied (n=30), and methanol-positive (n=22) cases. There was no evidence of ante-mortem methanol consumption in the regular and putrefied cases. In regular cases, the mean (and median) FA concentrations were 0.04 g/l (0.04 g/l) and 0.06 g/l (0.04 g/l) in blood and urine, respectively. In putrefied cases, the mean (and median) FA concentrations were substantially higher, 0.24 g/l (0.22 g/l) and 0.25 g/l (0.15 g/l) in blood and urine, respectively. In three putrefied cases, FA concentration in blood exceeded 0.5 g/l, a level associated with fatal methanol poisoning. Ten putrefied cases were reanalyzed after 3-4 months storage, and no significant changes in FA concentrations were seen. These observations suggest that FA was formed by putrefaction during the post-mortem period, not during sample storage when sodium fluoride was added as a preservative. In methanol-positive cases, the mean (and median) FA concentrations were 0.80 g/l (0.88 g/l) and 3.4 g/l (3.3 g/l) in blood and urine, respectively, and the concentrations ranged from 0.19 to 1.0 g/l in blood and from 1.7 to 5.6 g/l in urine. The mean (and median) methanol concentrations in methanol-positive cases were 3.0 g/l (3.0 g/l) and 4.4 g/l (4.7 g/l) in blood and in urine, respectively. The highest methanol concentrations were 6.0 g/l and 8.7 g/l in blood and urine, respectively. No ethyl alcohol was found in the methanol-positive blood samples. Poor correlation was shown between blood and urine concentrations of FA. Poor correlations were also shown, in both blood and urine, between methanol and FA concentrations. PMID:21112705

  1. Effects of low arsenic concentration exposure on freshwater fish in the presence of fluvial biofilms.

    PubMed

    Tuulaikhuu, Baigal-Amar; Bonet, Berta; Guasch, Helena

    2016-02-15

    Arsenic (As) is a highly toxic element and its carcinogenic effect on living organisms is well known. However, predicting real effects in the environment requires an ecological approach since toxicity is influenced by many environmental and biological factors. The purpose of this paper was to evaluate if environmentally-realistic arsenic exposure causes toxicity to fish. An experiment with four different treatments (control (C), biofilm (B), arsenic (+As) and biofilm with arsenic (B+As)) was conducted and each one included sediment to enhance environmental realism, allowing the testing of the interactive effects of biofilm and arsenic on the toxicity to fish. Average arsenic exposure to Eastern mosquitofish (Gambusia holbrooki) was 40.5 ± 7.5 μg/L for +As treatment and 34.4 ± 1.4 μg/L for B+As treatment for 56 days. Fish were affected directly and indirectly by this low arsenic concentration since exposure did not only affect fish but also the function of periphytic biofilms. Arsenic effects on the superoxide dismutase (SOD) and glutathione reductase (GR) activities in the liver of mosquitofish were ameliorated in the presence of biofilms at the beginning of exposure (day 9). Moreover, fish weight gaining was only affected in the treatment without biofilm. After longer exposure (56 days), effects of exposure were clearly seen. Fish showed a marked increase in the catalase (CAT) activity in the liver but the interactive influence of biofilms was not further observed since the arsenic-affected biofilm had lost its role in water purification. Our results highlight the interest and application of incorporating some of the complexity of natural systems in ecotoxicology and support the use of criterion continuous concentration (CCC) for arsenic lower than 150 μg/L and closer to the water quality criteria to protect aquatic life recommended by the Canadian government which is 5 μg As/L. PMID:26657392

  2. Assessing the Groundwater Concentrations and Geographical Distribution of Arsenic in Nepal

    NASA Astrophysics Data System (ADS)

    Ma, J.; Liu, F.

    2015-12-01

    Arsenic 33As, one of the major groundwater contaminants, occurs in both natural and anthropogenic forms. Arsenic inhibits cellular respiration and the production of ATP in human body. Prolonged intake of non-lethal quantities of arsenic can cause cancer and diseases in vital organs such as the heart, liver, skin, and kidney. Each year, millions of people in the rural areas of Bangladesh, India, and other developing countries in South Asia are exposed to arsenic-poisoned groundwater. According to the World Health Organization, arsenic levels in drinking water should not exceed 10 parts per billion; however, the levels of arsenic found in groundwater in the heavily contaminated regions are often more than ten times of the recommended limit. Nepal is one of these regions. In most of the rural areas in Nepal, there is no infrastructure to produce clean filtered water, and wells thus became the major source. However, most of these wells were dug without testing for groundwater safety, because the test commands resources that the rural communities do not have access to. This is also limited data published on Nepal's groundwater contaminant levels. The scarcity of information prohibits the international community from recognizing the severity of arsenic poisoning in Nepal and coming up with the most efficient measures to help. With this project, we will present a method to determine groundwater safety by analyzing geologic data and using remote sensing. The original source of arsenic is the arsenic-bearing minerals in the sediments. Some geological formations have higher arsenic levels than others due to their depositional environments. Therefore, by using existing geologic data from Nepal and countries with similar types of arsenic contamination, we hope to determine correlations between areas where there are reports of high concentrations of arsenic in groundwater to the environmental factors that may cause a particular concentration of arsenic. Furthermore, with deeper

  3. Effect of arsenic concentration on microbial iron reduction and arsenic speciation in an iron-rich freshwater sediment

    NASA Astrophysics Data System (ADS)

    Chow, Stephanie S.; Taillefert, Martial

    2009-10-01

    Depth profiles in the sediment porewaters of the Chattahoochee River (Georgia, USA) show that iron oxides scavenge arsenate in the water column and settle to the sediment-water interface (SWI) where they are reduced by iron-reducing bacteria. During their reduction, these particles seem to release arsenic to the porewaters in the form of arsenate only. Sediment slurry incubations were conducted to determine the effect of low concentrations of arsenic (⩽10 μM) on biogeochemical processes in these sediments. Experiments confirm that any arsenate (As(V)) added to these sediments is immediately adsorbed in oxic conditions and released in anoxic conditions during the microbial reduction of authigenic iron oxides. Incubations in the presence of ⩽1 μM As(V) reveal that arsenate is released but not concomitantly reduced during this process. Simultaneously, microbial iron reduction is enhanced significantly, spurring the simultaneous release of arsenate into porewaters and secondary formation of crystalline iron oxides. Above 1 μM As(V), however, the microbial reductive dissolution of iron oxides appears inhibited by arsenate, and arsenite is produced in excess in the porewaters. These incubations show that even low inputs of arsenic to riverine sediments may affect microbial processes, the stability of iron oxides and, indirectly, the cycling of arsenic. Possible mechanisms for such effects on iron reduction are proposed.

  4. Arsenic

    MedlinePlus

    ... mainly found in its less toxic organic form. Industrial processes Arsenic is used industrially as an alloying ... are also required to reduce occupational exposure from industrial processes. Education and community engagement are key factors ...

  5. Arsenic concentrations and bacterial contamination in a pilot shallow dugwell program in West Bengal, India.

    PubMed

    Hira-Smith, Meera M; Yuan, Yan; Savarimuthu, Xavier; Liaw, Jane; Hira, Alpana; Green, Cynthia; Hore, Timir; Chakraborty, Protap; von Ehrenstein, Ondine S; Smith, Allan H

    2007-01-01

    Project Well has developed a pilot self-supporting community-based mitigation program to provide arsenic-safe water to the villagers of North 24 Parganas, West Bengal, India. Shallow concrete dugwells, less than 25 feet deep, that tap into an unconfined aquifer are constructed following stipulated guidelines. The design differs from the traditional dugwell in two major ways: (i) there is a layer of coarse sand in the annular space enveloping the outer wall of the concrete cylinder; and (ii) handpumps are used for water extraction to reduce the potential for bacterial contamination. Monitoring programs for arsenic and coliform bacteria in selected dugwells have been completed. In summer, when the water levels were low, the arsenic concentrations were measured. In 11 wells, measured over three years, the average water arsenic concentration was 29 micro gL-1. Two dugwells had high concentrations of arsenic (average 152 micro gL-1 and 61 micro gL-1), but the remaining nine dugwells had an overall average of 11 micro gL-1. Seasonal variation was assessed in five wells with monthly measurements and there was a direct relationship between increases in arsenic concentrations and decreases in the volume of water in the dugwells in the dry summer season. To control bacterial contamination, sodium hypochlorite solution containing 5% chlorine was applied once a month. In 2005, fecal coliform was undetected in 65% (n = 13) of the dugwells but detected at high levels in 35% (n = 7) of the dugwells. The program clearly reduced exposure to arsenic, but we conclude that further study of increases in arsenic concentrations in the dry season are warranted, as well as assessment of ways to more effectively control bacterial contamination such as more frequent chlorination, perhaps with lower doses on each occasion. PMID:17129953

  6. Concentrations of arsenic, antimony, and boron in steam and steam condensate at The Geysers, California

    USGS Publications Warehouse

    Smith, C.L.; Ficklin, W.H.; Thompson, J.M.

    1987-01-01

    Studies at The Geysers Geothermal Field, California indicate that under some circumstances elements that are transported in the vapor phase can become enriched in the liquid phase. Waters from two condensate traps (steam traps) on steam lines at The Geysers are enriched with arsenic, antimony, and boron compared to the concentrations of these elements in coexisting steam. Concentrations of boron in condensate-trap waters were as high as 160 mg/L, arsenic as high as 35 mg/L, and antimony as high as 200 ??g/L. Enrichment of arsenic, antimony, and boron is at least partially controlled by the partitioning of these elements into the liquid phase, according to their vapor-liquid distribution coefficients, after they are transported in steam. Several of the elements that are most soluble in steam, including arsenic and antimony, are part of the trace-element suite that characterizes precious-metal epithermal ore deposits. ?? 1987.

  7. Peat formation concentrates arsenic within sediment deposits of the Mekong Delta

    NASA Astrophysics Data System (ADS)

    Stuckey, Jason W.; Schaefer, Michael V.; Kocar, Benjamin D.; Dittmar, Jessica; Pacheco, Juan Lezama; Benner, Shawn G.; Fendorf, Scott

    2015-01-01

    Mekong River Delta sediment bears arsenic that has been released to groundwater under anaerobic conditions over the past several thousand years. The oxidation state, speciation, and distribution of arsenic and the associated iron bearing phases are crucial determinants of As reactivity in sediments. Peat from buried mangrove swamps in particular may be an important host, source, or sink of arsenic in the Mekong Delta. The total concentration, speciation, and reactivity of arsenic and iron were examined in sediments in a Mekong Delta wetland by X-ray fluorescence spectrometry (XRF), X-ray absorption spectroscopy (XAS), and selective chemical extractions. Total solid-phase arsenic concentrations in a peat layer at a depth of 6 m below ground increased 10-fold relative to the overlying sediment. Extended X-ray absorption fine structure (EXAFS) spectroscopy revealed that arsenic in the peat was predominantly in the form of arsenian pyrite. Arsenic speciation in the peat was examined further at the micron-scale using μXRF and μX-ray absorption near-edge structure (XANES) spectroscopy coupled with principal component analysis. The multiple energy μXRF mapping and μXANES routine was repeated for both iron and sulfur phase analyses. Our μXRF/μXANES analyses confirm arsenic association with pyrite - a less reactive host phase than iron (hydr)oxides under anaerobic conditions. The arsenian pyrite likely formed upon deposition/formation of the peat in a past estuarine environment (∼5.5 ka BP), a process that is not expected under current geochemical conditions. Presently, arsenian pyrite is neither a detectable source nor a sink for aqueous arsenic in our sediment profile, and under present geochemical conditions represents a stable host of As under the reducing aquifer conditions of the Mekong Delta. Furthermore, organic carbon within the peat is unable to fuel Fe(III) reduction, as noted by the persistence of goethite which can be reduced microbially with the

  8. Arsenic Species in Drinking Water Wells in the USA with High Arsenic Concentrations

    EPA Science Inventory

    As part of the United States Environmental Protection Agency (USEPA) arsenic treatment demonstration program, 65 five well waters scattered across the US were speciated for As(III) and As(V). The speciation test data showed that most (60) well waters had one dominant species, but...

  9. Concentrations of Phthalate Metabolites in Milk, Urine, Saliva, and Serum of Lactating North Carolina Women

    PubMed Central

    Hines, Erin P.; Calafat, Antonia M.; Silva, Manori J.; Mendola, Pauline; Fenton, Suzanne E.

    2009-01-01

    Background Phthalates are ubiquitous in the environment, but concentrations in multiple media from breast-feeding U.S. women have not been evaluated. Objectives The objective of this study was to accurately measure and compare the concentrations of oxidative monoester phthalate metabolites in milk and surrogate fluids (serum, saliva, and urine) of 33 lactating North Carolina women. Methods We analyzed serum, saliva, urine, and milk for the oxidative phthalate metabolites mono(3-carboxypropyl) phthalate, mono(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono(2-ethyl-5-hydroxyhexyl) phthalate, and mono(2-ethyl-5-oxohexyl) phthalate using isotope-dilution high-performance liquid chromatography tandem mass spectroscopy. Because only urine lacks esterases, we analyzed it for the hydrolytic phthalate monoesters. Results We detected phthalate metabolites in few milk (< 10%) and saliva samples. MECPP was detected in > 80% of serum samples, but other metabolites were less common (3–22%). Seven of the 10 urinary metabolites were detectable in ≥ 85% of samples. Monoethyl phthalate had the highest mean concentration in urine. Metabolite concentrations differed by body fluid (urine > serum > milk and saliva). Questionnaire data suggest that frequent nail polish use, immunoglobulin A, and fasting serum glucose and triglyceride levels were increased among women with higher concentrations of urinary and/or serum phthalate metabolites; motor vehicle age was inversely correlated with certain urinary phthalate concentrations. Conclusions Our data suggest that phthalate metabolites are most frequently detected in urine of lactating women and are less often detected in serum, milk, or saliva. Urinary phthalate concentrations reflect maternal exposure and do not represent the concentrations of oxidative metabolites in other body fluids, especially milk. PMID:19165392

  10. Arsenic Species in Chicken Breast: Temporal Variations of Metabolites, Elimination Kinetics, and Residual Concentrations

    PubMed Central

    Liu, Qingqing; Peng, Hanyong; Lu, Xiufen; Zuidhof, Martin J.; Li, Xing-Fang; Le, X. Chris

    2016-01-01

    Background: Chicken meat has the highest per capita consumption among all meat types in North America. The practice of feeding 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone, Rox) to chickens lasted for more than 60 years. However, the fate of Rox and arsenic metabolites remaining in chicken are poorly understood. Objectives: We aimed to determine the elimination of Rox and metabolites from chickens and quantify the remaining arsenic species in chicken meat, providing necessary information for meaningful exposure assessment. Methods: We have conducted a 35-day feeding experiment involving 1,600 chickens, of which half were control and the other half were fed a Rox-supplemented diet for the first 28 days and then a Rox-free diet for the final 7 days. We quantified the concentrations of individual arsenic species in the breast meat of 229 chickens. Results: Rox, arsenobetaine, arsenite, monomethylarsonic acid, dimethylarsinic acid, and a new arsenic metabolite, were detected in breast meat from chickens fed Rox. The concentrations of arsenic species, except arsenobetaine, were significantly higher in the Rox-fed than in the control chickens. The half-lives of elimination of these arsenic species were 0.4–1 day. Seven days after termination of Rox feeding, the concentrations of arsenite (3.1 μg/kg), Rox (0.4 μg/kg), and a new arsenic metabolite (0.8 μg/kg) were significantly higher in the Rox-fed chickens than in the control. Conclusion: Feeding of Rox to chickens increased the concentrations of five arsenic species in breast meat. Although most arsenic species were excreted rapidly when the feeding of Rox stopped, arsenic species remaining in the Rox-fed chickens were higher than the background levels. Citation: Liu Q, Peng H, Lu X, Zuidhof MJ, Li XF, Le XC. 2016. Arsenic species in chicken breast: temporal variations of metabolites, elimination kinetics, and residual concentrations. Environ Health Perspect 124:1174–1181; http://dx.doi.org/10.1289/ehp

  11. Elevated Lung Cancer in Younger Adults and Low Concentrations of Arsenic in Water

    PubMed Central

    Steinmaus, Craig; Ferreccio, Catterina; Yuan, Yan; Acevedo, Johanna; González, Francisca; Perez, Liliana; Cortés, Sandra; Balmes, John R.; Liaw, Jane; Smith, Allan H.

    2014-01-01

    Arsenic concentrations greater than 100 µg/L in drinking water are a known cause of cancer, but the risks associated with lower concentrations are less well understood. The unusual geology and good information on past exposure found in northern Chile are key advantages for investigating the potential long-term effects of arsenic. We performed a case-control study of lung cancer from 2007 to 2010 in areas of northern Chile that had a wide range of arsenic concentrations in drinking water. Previously, we reported evidence of elevated cancer risks at arsenic concentrations greater than 100 µg/L. In the present study, we restricted analyses to the 92 cases and 288 population-based controls who were exposed to concentrations less than 100 µg/L. After adjustment for age, sex, and smoking behavior, these exposures from 40 or more years ago resulted in odds ratios for lung cancer of 1.00, 1.43 (90% confidence interval: 0.82, 2.52), and 2.01 (90% confidence interval: 1.14, 3.52) for increasing tertiles of arsenic exposure, respectively (P for trend = 0.02). Mean arsenic water concentrations in these tertiles were 6.5, 23.0, and 58.6 µg/L. For subjects younger than 65 years of age, the corresponding odds ratios were 1.00, 1.62 (90% confidence interval: 0.67, 3.90), and 3.41 (90% confidence interval: 1.51, 7.70). Adjustments for occupation, fruit and vegetable intake, and socioeconomic status had little impact on the results. These findings provide new evidence that arsenic water concentrations less than 100 µg/L are associated with higher risks of lung cancer. PMID:25371173

  12. Elevated lung cancer in younger adults and low concentrations of arsenic in water.

    PubMed

    Steinmaus, Craig; Ferreccio, Catterina; Yuan, Yan; Acevedo, Johanna; González, Francisca; Perez, Liliana; Cortés, Sandra; Balmes, John R; Liaw, Jane; Smith, Allan H

    2014-12-01

    Arsenic concentrations greater than 100 µg/L in drinking water are a known cause of cancer, but the risks associated with lower concentrations are less well understood. The unusual geology and good information on past exposure found in northern Chile are key advantages for investigating the potential long-term effects of arsenic. We performed a case-control study of lung cancer from 2007 to 2010 in areas of northern Chile that had a wide range of arsenic concentrations in drinking water. Previously, we reported evidence of elevated cancer risks at arsenic concentrations greater than 100 µg/L. In the present study, we restricted analyses to the 92 cases and 288 population-based controls who were exposed to concentrations less than 100 µg/L. After adjustment for age, sex, and smoking behavior, these exposures from 40 or more years ago resulted in odds ratios for lung cancer of 1.00, 1.43 (90% confidence interval: 0.82, 2.52), and 2.01 (90% confidence interval: 1.14, 3.52) for increasing tertiles of arsenic exposure, respectively (P for trend = 0.02). Mean arsenic water concentrations in these tertiles were 6.5, 23.0, and 58.6 µg/L. For subjects younger than 65 years of age, the corresponding odds ratios were 1.00, 1.62 (90% confidence interval: 0.67, 3.90), and 3.41 (90% confidence interval: 1.51, 7.70). Adjustments for occupation, fruit and vegetable intake, and socioeconomic status had little impact on the results. These findings provide new evidence that arsenic water concentrations less than 100 µg/L are associated with higher risks of lung cancer. PMID:25371173

  13. Effects of arsenic species and concentrations on arsenic accumulation by different fern species in a hydroponic system.

    PubMed

    Fayiga, A O; Ma, L Q; Santos, Jorge; Rathinasabapathi, B; Stamps, B; Littell, R C

    2005-01-01

    Two hydroponic experiments were conducted to evaluate factors affecting plant arsenic (As) hyperaccumulation. In the first experiment; two As hyperaccumulators (Pteris vittata and P. cretica mayii) were exposed to 1 and 10 mg L(-1) arsenite (AsIII) and monomethyl arsenic acid (MMA) for 4 wk. Total As concentrations in plants (fronds and roots) and solution were determined In the second experiment P. vittata and Nephrolepis exaltata (a non-As hyperaccumulator) were exposed to 5 mgL(-1) arsenate (AsV) and 20 mgL(-1) AsIIIfor 1 and 15 d. Total As and AsIII concentrations in plants were determined Compared to P. cretica mayii, P. vittata was more efficient in arsenic accumulation (1075-1666 vs. 249-627mg kg(-1) As in the fronds) partially because it is more efficient in As translocation. As translocation factor (As concentration ratio in fronds to roots) was 3.0-5.6 for P. vittata compared to 0.1 to 4.8 for P. cretica. Compared to N. exaltata, P. vittata was significantly more efficient in arsenic accumulation (38-542 vs. 4.8-71 mg kg(-1) As in thefronds) as well asAs translocation (1.3-5.6 vs. 0.2-0.5). In addition, P. vittata was much more efficient in As reduction from AsV to AsIII (83-84 vs. 13-24% AsIII in the fronds). Little As reduction occurred after 1-d exposure to AsV in both species indicates that As reduction was not instantaneous even in an As hyperaccumulator. Our data were consistent with the hypothesis that both As translocation and As reduction are important for plant As hyperaccumulation. PMID:16285413

  14. Concentrations of environmental phenols and parabens in milk, urine and serum of lactating North Carolina women.

    PubMed

    Hines, Erin P; Mendola, Pauline; von Ehrenstein, Ondine S; Ye, Xiaoyun; Calafat, Antonia M; Fenton, Suzanne E

    2015-07-01

    Phenols and parabens show some evidence for endocrine disruption in laboratory animals. The goal of the Methods Advancement for Milk Analysis (MAMA) Study was to develop or adapt methods to measure parabens (methyl, ethyl, butyl, propyl) and phenols (bisphenol A (BPA), 2,4- and 2,5-dichlorophenol, benzophenone-3, triclosan) in urine, milk and serum twice during lactation, to compare concentrations across matrices and with endogenous biomarkers among 34 North Carolina women. These non-persistent chemicals were detected in most urine samples (53-100%) and less frequently in milk or serum; concentrations differed by matrix. Although urinary parabens, triclosan and dichlorophenols concentrations correlated significantly at two time points, those of BPA and benzophenone-3 did not, suggesting considerable variability in those exposures. These pilot data suggest that nursing mothers are exposed to phenols and parabens; urine is the best measurement matrix; and correlations between chemical and endogenous immune-related biomarkers merit further investigation. PMID:25463527

  15. Concentrations of Environmental Phenols and Parabens in Milk, Urine and Serum of Lactating North Carolina Women

    PubMed Central

    Hines, Erin P.; Mendola, Pauline; vonEhrenstein, Ondine S.; Ye, Xiaoyun; Calafat, Antonia M.; Fenton, Suzanne E.

    2015-01-01

    Phenols and parabens show some evidence for endocrine disruption in laboratory animals. The goal of the Methods Advancement for Milk Analysis (MAMA) Study was to develop or adapt methods to measure parabens (methyl, ethyl, butyl, propyl) and phenols (bisphenol A (BPA), 2,4- and 2,5-dichlorophenol, benzophenone-3, triclosan) in urine, milk and serum twice during lactation, to compare concentrations across matrices and with endogenous biomarkers among 34 North Carolina women. These non-persistent chemicals were detected in most urine samples (53-100%) and less frequently in milk or serum; concentrations differed by matrix. Although urinary parabens, triclosan and dichlorophenols concentrations correlated significantly at two time points, those of BPA and benzophenone-3 did not, suggesting considerable variability in those exposures. These pilot data suggest that nursing mothers are exposed to phenols and parabens; urine is the best measurement matrix; and correlations between chemical and endogenous immune-related biomarkers merit further investigation. PMID:25463527

  16. Urine vanadium concentrations in workers overhauling an oil-fired boiler.

    PubMed

    Hauser, R; Elreedy, S; Ryan, P B; Christiani, D C

    1998-01-01

    Since fuel oil ash contains vanadium (V), the measurement of urinary levels of V may provide a biological marker in workers exposed to fuel oil ash. The usefulness of urine V samples as a biological monitoring tool ultimately depends on determining the appropriate time of sampling relative to when exposure occurs. Twenty boilermakers were studied during the overhaul of a large oil-fired boiler. A total of 117 urine samples were collected, 65 start-of-shift (S-O-S) and 52 end-of-shift (E-O-S) samples. Air V exposures were estimated with personal sampling devices and work history diaries. Air V concentrations ranged from 0.36 to 32.19 micrograms V/m3, with a mean +/- SD of 19.1 +/- 10.7, and a median of 18.5. On the first day of work on the overhaul, the V urine levels at the E-O-S (mean +/- SD were 1.53 +/- 0.53, median was 1.52 mg V/g creatinine) were significantly higher than those at the S-O-S (0.87 +/- 0.32, median was 0.83), P = 0.004. However, the V concentrations of the S-O-S urine samples on the last Monday of the study were not significantly different from the S-O-S urine levels on the previous Saturday, a time interval of about 38 hr between the end of exposure and sample collection. The Spearman correlation coefficient (r) between the S-O-S urine V and the workplace concentration of V dust during the previous day was r = 0.35. In summary, the results suggest a rapid initial clearance of V (elevating the E-O-S V concentration on the first day of work relative to the S-O-S concentration), followed by a slow clearance that is not complete 38 hr after the end of exposure, as evidenced by the Monday morning urine V concentrations. The Spearman correlations suggest that the S-O-S urine is preferred to the E-O-S urine for across-shift biological monitoring of V exposure. PMID:9408529

  17. Reduction of arsenic content in a complex galena concentrate by Acidithiobacillus ferrooxidans

    PubMed Central

    Makita, Mario; Esperón, Margarita; Pereyra, Benito; López, Alejandro; Orrantia, Erasmo

    2004-01-01

    Background Bioleaching is a process that has been used in the past in mineral pretreatment of refractory sulfides, mainly in the gold, copper and uranium benefit. This technology has been proved to be cheaper, more efficient and environmentally friendly than roasting and high pressure moisture heating processes. So far the most studied microorganism in bioleaching is Acidithiobacillus ferrooxidans. There are a few studies about the benefit of metals of low value through bioleaching. From all of these, there are almost no studies dealing with complex minerals containing arsenopyrite (FeAsS). Reduction and/or elimination of arsenic in these ores increase their value and allows the exploitation of a vast variety of minerals that today are being underexploited. Results Arsenopyrite was totally oxidized. The sum of arsenic remaining in solution and removed by sampling represents from 22 to 33% in weight (yield) of the original content in the mineral. The rest of the biooxidized arsenic form amorphous compounds that precipitate. Galena (PbS) was totally oxidized too, anglesite (PbSO4) formed is virtually insoluble and remains in the solids. The influence of seven factors in a batch process was studied. The maximum rate of arsenic dissolution in the concentrate was found using the following levels of factors: small surface area of particle exposure, low pulp density, injecting air and adding 9 K medium to the system. It was also found that ferric chloride and carbon dioxide decreased the arsenic dissolution rate. Bioleaching kinetic data of arsenic solubilization were used to estimate the dilution rate for a continuous culture. Calculated dilution rates were relatively small (0.088–0.103 day-1). Conclusion Proper conditions of solubilization of arsenic during bioleaching are key features to improve the percentage (22 to 33% in weight) of arsenic removal. Further studies are needed to determine other factors that influence specifically the solubilization of arsenic in

  18. Seasonal variation of arsenic concentration in well water in Lane County, Oregon

    SciTech Connect

    Nadakavukaren, J.J.; Ingermann, R.L.; Jeddeloh, G.; Falkowski, S.J.

    1984-09-01

    The United State Public Health Service has set a maximum limit for arsenic in public water supplies of 0.05 ppM (mg/l), and advises that continuous consumption of water exceeding this level is potentially hazardous. However, well and spring water exceeding this limit occurs in the U.S.S.R., Taiwan, Romania, New Zealand, and in areas of California, Nevada, Alaska and Oregon. One such area of Oregon, in Lane and Douglas Counties, overlies the Fisher formation, which consists predominantly of tuffaceous siltstone and volcaniclastic sediments. Apparently groundwater leaches arsenic from this material, and in this area, arsenic levels in well water range up to 2 p.p.m. The authors monitored the arsenic concentration in 14 Lane County wells over a 13 month period spanning 1975 and 1976. To the best of our knowledge, no studies of this type have been reported. This paper presents the results and recommendations from this study.

  19. The Role of Nitric Oxide in the Dysregulation of the Urine Concentration Mechanism in Diabetes Mellitus

    PubMed Central

    Cipriani, Penelope; Kim, Sunhye L.; Klein, Janet D.; Sim, Jae H.; von Bergen, Tobias N.; Blount, Mitsi A.

    2012-01-01

    Uncontrolled diabetes mellitus results in osmotic diuresis. Diabetic patients have lowered nitric oxide (NO) which may exacerbate polyuria. We examined how lack of NO affects the transporters involved in urine concentration in diabetic animals. Diabetes was induced in rats by streptozotocin. Control and diabetic rats were given L-NAME for 3 weeks. Urine osmolality, urine output, and expression of urea and water transporters and the Na-K-2Cl cotransporter were examined. Predictably, diabetic rats presented with polyuria (increased urine volume and decreased urine osmolality). Although metabolic parameters of control rats were unaffected by L-NAME, treated diabetic rats produced 30% less urine and osmolality was restored. UT-A1 and UT-A3 were significantly increased in diabetic rat inner medulla. While L-NAME treatment alone did not alter UT-A1 or UT-A3 abundance, absence of NO prevented the upregulation of both transporters in diabetic rats. Similarly, AQP2 and NKCC2 abundance was increased in diabetic animals however, expression of these transporters were unchanged by L-NAME treatment of diabetes. Increased expression of the concentrating transporters observed in diabetic rats provides a compensatory mechanism to decrease solute loss despite persistent glycosuria. Our studies found that although diabetic-induced glycosylation remained increased, total protein expression was decreased to control levels in diabetic rats treated with L-NAME. While the role of NO in urine concentration remains unclear, lowered NO associated with diabetes may be deleterious to the transporters’ response to the subsequent osmotic diuresis. PMID:22685437

  20. Triazolothienopyrimidine Inhibitors of Urea Transporter UT-B Reduce Urine Concentration

    PubMed Central

    Yao, Chenjuan; Anderson, Marc O.; Zhang, Jicheng; Yang, Baoxue; Phuan, Puay-Wah

    2012-01-01

    Urea transport (UT) proteins facilitate the concentration of urine by the kidney, suggesting that inhibition of these proteins could have therapeutic use as a diuretic strategy. We screened 100,000 compounds for UT-B inhibition using an optical assay based on the hypotonic lysis of acetamide-loaded mouse erythrocytes. We identified a class of triazolothienopyrimidine UT-B inhibitors; the most potent compound, UTBinh-14, fully and reversibly inhibited urea transport with IC50 values of 10 nM and 25 nM for human and mouse UT-B, respectively. UTBinh-14 competed with urea binding at an intracellular site on the UT-B protein. UTBinh-14 exhibited low toxicity and high selectivity for UT-B over UT-A isoforms. After intraperitoneal administration of UTBinh-14 in mice to achieve predicted therapeutic concentrations in the kidney, urine osmolality after administration of 1-deamino-8-D-arginine-vasopressin was approximately 700 mosm/kg H2O lower in UTBinh-14–treated mice than vehicle-treated mice. UTBinh-14 also increased urine output and reduced urine osmolality in mice given free access to water. UTBinh-14 did not reduce urine osmolality in UT-B knockout mice. In summary, these data provide proof of concept for the potential utility of UT inhibitors to reduce urinary concentration in high-vasopressin, fluid-retaining conditions. The diuretic mechanism of UT inhibitors may complement the action of conventional diuretics, which target sodium transport. PMID:22491419

  1. Short term effects of increasing dietary salt concentrations on urine composition in healthy cats.

    PubMed

    Paßlack, N; Burmeier, H; Brenten, T; Neumann, K; Zentek, J

    2014-09-01

    High dietary salt (NaCl) concentrations are assumed to be beneficial in preventing the formation of calcium oxalate (CaOx) uroliths in cats, since increased water intake and urine volume have been observed subsequent to intake. In human beings, dietary NaCl restriction is recommended for the prevention of CaOx urolith formation, since high NaCl intake is associated with increased urinary Ca excretion. The aim of the present study was to clarify the role of dietary NaCl in the formation of CaOx uroliths in cats. Eight cats received four diets that differed in Na and Cl concentrations (0.38-1.43% Na and 0.56-2.52% Cl dry matter, DM). Each feeding period consisted of a 21 day adaptation period, followed by a 7 day sampling period for urine collection. Higher dietary NaCl concentrations were associated with increased urine volume and renal Na excretion. Urinary Ca concentration was constant, but renal Ca excretion increased from 0.62 to 1.05 mg/kg bodyweight (BW)/day with higher dietary NaCl concentrations (P ≤ 0.05). Urinary oxalate (Ox), citrate, P and K concentrations decreased when NaCl intake was high (P ≤ 0.05), and urinary pH was low in all groups (6.33-6.45; P > 0.05). Relative supersaturation of CaOx in the urine was unaffected by dietary NaCl concentrations. In conclusion, the present study demonstrated several beneficial effects of high dietary NaCl intake over a relatively short time period. In particular, urinary Ca concentration remained unchanged because of increased urine volume. Decreased urinary Ox concentrations might help to prevent the formation of CaOx uroliths, but this should be verified in future studies in diseased or predisposed cats. PMID:24881513

  2. Bioaccessibility and excretion of arsenic in Niu Huang Jie Du Pian pills

    SciTech Connect

    Koch, Iris; Sylvester, Steven; Lai, Vivian W.-M.; Owen, Andrew; Reimer, Kenneth J. Cullen, William R.

    2007-08-01

    Traditional Chinese medicines (TCMs) often contain significant levels of potentially toxic elements, including arsenic. Niu Huang Jie Du Pian pills were analyzed to determine the concentration, bioaccessibility (arsenic fraction soluble in the human gastrointestinal system) and chemical form (speciation) of arsenic. Arsenic excretion in urine (including speciation) and facial hair were studied after a one-time ingestion. The pills contained arsenic in the form of realgar, and although the total arsenic that was present in a single pill was high (28 mg), the low bioaccessibility of this form of arsenic predicted that only 4% of it was available for absorption into the bloodstream (1 mg of arsenic per pill). The species of arsenic that were solubilized were inorganic arsenate (As(V)) and arsenite (As(III)) but DMAA and MMAA were detected in urine. Two urinary arsenic excretion peaks were observed: an initial peak several (4-8) hours after ingestion corresponding to the excretion of predominantly As(III), and a larger peak at 14 h corresponding predominantly to DMAA and MMAA. No methylated As(III) species were observed. Facial hair analysis revealed that arsenic concentrations did not increase significantly as a result of the ingestion. Arsenic is incompletely soluble under human gastrointestinal conditions, and is metabolized from the inorganic to organic forms found in urine. Bioaccessible arsenic is comparable to the quantity excreted. Facial hair as a bio-indicator should be further tested.

  3. Validity of Spatial Models of Arsenic Concentrations in Private Well Water

    PubMed Central

    Meliker, Jaymie R.; AvRuskin, Gillian A.; Slotnick, Melissa J.; Goovaerts, Pierre; Schottenfeld, David; Jacquez, Geoffrey M.; Nriagu, Jerome O.

    2008-01-01

    Objective Arsenic is a pervasive contaminant in underground aquifers worldwide, yet documentation of health effects associated with low-to-moderate concentrations (<100 μg/L) has been stymied by uncertainties in assessing long-term exposure. A critical component of assessing exposure to arsenic in drinking water is the development of models for predicting arsenic concentrations in private well water in the past; however, these models are seldom validated. The objective of this paper is to validate alternative spatial models of arsenic concentrations in private well water in southeastern Michigan. Methods From 1993−2002 the Michigan Department of Environmental Quality analyzed arsenic concentrations in water from 6,050 private wells. This dataset was used to develop several spatial models of arsenic concentrations in well water: proxy wells based on nearest neighbor relationships, averages across geographic regions, and geostatistically-derived estimates based on spatial correlation and geologic factors. Output from these models was validated using arsenic concentrations measured in 371 private wells from 2003−2006. Results The geostatisical model and nearest neighbor approach outperformed the models based on geographic averages. The geostatistical model produced the highest degree of correlation using continuous data (Pearson's r=0.61; Spearman's rank ρ=0.46) while the nearest neighbor approach produced the strongest correlation (κweighted=0.58) using an a priori categorization of arsenic concentrations (<5, 5−9.99, 10−19.99, ≥20 μg/L). When the maximum contaminant level was used as a cut-off in a two-category classification (<10, ≥10 μg/L), the nearest neighbor approach and geostatistical model had similar values for sensitivity (0.62−0.63), specificity (0.80), negative predictive value (0.85), positive predictive value (0.53), and percent agreement (75%). Discussion This validation study reveals that geostatistical modeling and nearest neighbor

  4. Arsenic concentrations and associated health risks in Laccaria mushrooms from Yunnan (SW China).

    PubMed

    Zhang, Ji; Li, Tao; Yang, Ya-Li; Liu, Hong-Gao; Wang, Yuan-Zhong

    2015-04-01

    Some species of Laccaria have been known to contain relatively high levels of arsenic in Europe and are used as edible mushrooms in the southwest China. One population of Laccaria proxima and one population of L. vinaceoavellanea as well as topsoil (0-10 cm) they grew on were collected from natural habitats of Yunnan (SW China), while other samples such as Laccaria mushroom samples without soil were purchased from four different local markets in Yunnan. Concentrations of arsenic were determined in fruit bodies of the mushrooms and in the soils by using atomic fluorescence spectrometry to assess potential health risks of these species. The mean arsenic concentrations in caps were 135, 14.1-143, 5.5 and 130-163 mg kg(-1) dry weight (dw) for Laccaria amethystina, Laccaria laccata, L. proxima and L. vinaceoavellanea, respectively. The mean value for bioconcentration factor of arsenic in caps of L. vinaceoavellanea was 29.1 for soil with arsenic content at 5.6 mg kg(-1) dw, which indicate that L. vinaceoavellanea is an accumulator for arsenic. Caps of L. amethystina, L. laccata and L. vinaceoavellanea consumed at a volume of 300 g fresh weight for a single meal in a week can yield an exposure amount of arsenic at 4.1, 0.42-4.3 and 3.9-4.9 mg, respectively. These values are higher than the limit dose for the intake of inorganic arsenic recommended by the Joint FAO/WHO Expert Committee on Food Additives. PMID:25534292

  5. A population study of urine glycerol concentrations in elite athletes competing in North America.

    PubMed

    Kelly, Brian N; Madsen, Myke; Sharpe, Ken; Nair, Vinod; Eichner, Daniel

    2013-01-01

    Glycerol is an endogenous substance that is on the World Anti-Doping Agency's list of prohibited threshold substances due to its potential use as a plasma volume expansion agent. The WADA has set the threshold for urine glycerol, including measurement uncertainty, at 1.3 mg/mL. Glycerol in circulation largely comes from metabolism of triglycerides in order to meet energy requirements and when the renal threshold is eclipsed, glycerol is excreted into urine. In part due to ethnic differences in postprandial triglyceride concentrations, we investigated urine glycerol concentrations in a population of elite athletes competing in North America and compared the results to those of athletes competing in Europe. 959 urine samples from elite athletes competing in North America collected for anti-doping purposes were analyzed for urine glycerol concentrations by a gas chromatography mass-spectrometry method. Samples were divided into groups according to: Timing (in- or out-of-competition), Class (strength, game, or endurance sports) and Gender. 333 (34.7%) samples had undetectable amounts of glycerol (<1 μg/mL). 861 (89.8%) of the samples had glycerol concentrations ≤20 μg/mL. The highest glycerol concentration observed was 652 μg/mL. Analysis of the data finds the effects of each category to be statistically significant. The largest estimate of the 99.9(th) percentile, from the in-competition, female, strength athlete samples, was 1813 μg/mL with a 95% confidence range from 774 to 4251 μg/mL. This suggests a conservative threshold of 4.3 mg/mL, which would result in a reasonable detection window for urine samples collected in-competition for all genders and sport classes. PMID:24353191

  6. Using DET and DGT probes (ferrihydrite and titanium dioxide) to investigate arsenic concentrations in soil porewater of an arsenic-contaminated paddy field in Bangladesh.

    PubMed

    Garnier, Jean-Marie; Garnier, Jérémie; Jézéquel, Didier; Angeletti, Bernard

    2015-12-01

    Arsenic concentration in the pore water of paddy fields (Csoln) irrigated with arsenic-rich groundwater is a key parameter in arsenic uptake by rice. Pore water extracts from cores and in situ deployment of DET and DGT probes were used to measure the arsenic concentration in the pore water. Ferrihydrite (Fe) and titanium dioxide (Ti) were used as DGT binding agents. Six sampling events during different growing stages of the rice, inducing different biogeochemical conditions, were performed in one rice field. A time series of DGT experiments allow the determination of an in situ arsenic diffusion coefficient in the diffusive gel (3.34×10(-6) cm(2) s(-1)) needed to calculate the so-called CDGT(Fe) and CDGT(Ti) concentrations. Over 3 days of a given sampling event and for cores sampled at intervals smaller than 50 cm, great variability in arsenic Csoln concentrations between vertical profiles was observed, with maxima of concentrations varying from 690 to 2800 μg L(-1). Comparisons between arsenic measured Csol and CDET and calculated CDGT(Fe) and CDGT(Ti) concentrations show either, in a few cases, roughly similar vertical profiles, or in other cases, significantly different profiles. An established iron oxyhydroxide precipitation in the DET gel may explain why measured arsenic CDET concentrations occasionally exceeded Csoln. The large spread in results suggests limitations to the use of DET and type of DGT probes used here for similarly representing the spatio-temporal variations of arsenic content in soil pore water in specific environmental such as paddy soils. PMID:26225738

  7. Correlations between cadmium concentration in urine and exposure variables

    NASA Astrophysics Data System (ADS)

    Schwarz, Elmar; Chutsch, Martina; Krause, Christian M.; Schulz, Christine; Thefeld, Wolfgang

    1993-03-01

    As part of the study 'UMWELT und GESUNDHEIT 1985/86', a representative samples of the population of the Federal Republic of Germany was examined for urinary Cd. A log-linear prediction model based on 2109 cases led to an explained variance portion of R2 equals .32. Strong associations were revealed between urinary cadmium and the smoking history and age of the subjects. This is evidence of the function urinary cadmium has as an indicator of the Cd body burden. However, there are also clear connections with physiological parameters (urinary creatinine and serum urea), which are taken to be a modification of Cd excretion by renal function. The association between urinary Cd and serum urea can also be interpreted as a cadmium-induced renal dysfunction. Urinary Cd concentrations tend to be lower in regions with low industrial nitrogen oxide emissions and high economic dynamics, as well as in non- urban residential structures.

  8. Caffeine renal clearance and urine caffeine concentrations during steady state dosing. Implications for monitoring caffeine intake during sports events.

    PubMed Central

    Birkett, D J; Miners, J O

    1991-01-01

    1. Relationships between the plasma and urine concentrations and clearances of caffeine over successive dosage intervals at steady-state were investigated in six healthy volunteers administered caffeine, 150 mg 8 hourly for 6 days. 2. There was marked inter-individual variability in the urine (15.9-fold range) and steady-state plasma (8.1-fold range) concentrations of caffeine. 3. Urine caffeine concentrations were similar to those in plasma, with mean ratios (plasma:urine) ranging from 1.10 to 1.74. There was a good correlation (r = 0.93, P less than 0.01) between caffeine urine and plasma concentrations. 4. There was a good correlation between caffeine renal clearance and urine flow rate (r = 0.89, P less than 0.01). Caffeine renal clearance was not significantly different from the product of fu and urine flow rate, where fu is the fraction of caffeine unbound in plasma. Urine caffeine concentration and urine flow rate were not correlated (r = 0.14, P greater than 0.05). 5. The results indicate that caffeine is reabsorbed from the renal tubule to equilibrium with unbound caffeine in plasma. 6. A regulatory urine caffeine concentration limit of 12 mg 1(-1) may be exceeded by some individuals with coffee intake in the range 3 to 6 cups per day. PMID:2049248

  9. Autism spectrum disorder prevalence and associations with air concentrations of lead, mercury, and arsenic.

    PubMed

    Dickerson, Aisha S; Rahbar, Mohammad H; Bakian, Amanda V; Bilder, Deborah A; Harrington, Rebecca A; Pettygrove, Sydney; Kirby, Russell S; Durkin, Maureen S; Han, Inkyu; Moyé, Lemuel A; Pearson, Deborah A; Wingate, Martha Slay; Zahorodny, Walter M

    2016-07-01

    Lead, mercury, and arsenic are neurotoxicants with known effects on neurodevelopment. Autism spectrum disorder (ASD) is a neurodevelopmental disorder apparent by early childhood. Using data on 4486 children with ASD residing in 2489 census tracts in five sites of the Centers for Disease Control and Prevention's Autism and Developmental Disabilities Monitoring (ADDM) Network, we used multi-level negative binomial models to investigate if ambient lead, mercury, and arsenic concentrations, as measured by the US Environmental Protection Agency National-Scale Air Toxics Assessment (EPA-NATA), were associated with ASD prevalence. In unadjusted analyses, ambient metal concentrations were negatively associated with ASD prevalence. After adjusting for confounding factors, tracts with air concentrations of lead in the highest quartile had significantly higher ASD prevalence than tracts with lead concentrations in the lowest quartile (prevalence ratio (PR) = 1.36; 95 '% CI: 1.18, 1.57). In addition, tracts with mercury concentrations above the 75th percentile (>1.7 ng/m(3)) and arsenic concentrations below the 75th percentile (≤0.13 ng/m(3)) had a significantly higher ASD prevalence (adjusted RR = 1.20; 95 % CI: 1.03, 1.40) compared to tracts with arsenic, lead, and mercury concentrations below the 75th percentile. Our results suggest a possible association between ambient lead concentrations and ASD prevalence and demonstrate that exposure to multiple metals may have synergistic effects on ASD prevalence. PMID:27301968

  10. Environmental arsenic exposure and serum matrix metalloproteinase-9

    PubMed Central

    Burgess, Jefferey L.; Kurzius-Spencer, Margaret; O’Rourke, Mary Kay; Littau, Sally R.; Roberge, Jason; Meza-Montenegro, Maria Mercedes; Gutiérrez-Millán, Luis Enrique; Harris, Robin B.

    2014-01-01

    The objective of this study was to evaluate the relationship between environmental arsenic exposure and serum matrix metalloproteinase (MMP)-9, a biomarker associated with cardiovascular disease and cancer. In a cross-sectional study of residents of Arizona, USA (n=215) and Sonora, Mexico (n=163), drinking water was assayed for total arsenic, and daily drinking water arsenic intake estimated. Urine was speciated for arsenic and concentrations were adjusted for specific gravity. Serum was analyzed for MMP-9 using ELISA. Mixed model linear regression was used to assess the relation among drinking water arsenic concentration, drinking water arsenic intake, urinary arsenic sum of species (the sum of arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid), and MMP-9, controlling for autocorrelation within households. Drinking water arsenic concentration and intake were positively associated with MMP-9, both in crude analysis and after adjustment for gender, country/ethnicity, age, body mass index, current smoking and diabetes. Urinary arsenic sum of species was positively associated with MMP-9 in multivariable analysis only. Using Akaike’s Information Criterion, arsenic concentration in drinking water provided a better fitting model of MMP-9, than either urinary arsenic or drinking water arsenic intake. In conclusion, arsenic exposure was positively associated with MMP-9 using all three exposure metrics evaluated. PMID:23232971

  11. Arsenic methylation capacity, body retention, and null genotypes of glutathione S-transferase M1 and T1 among current arsenic-exposed residents in Taiwan.

    PubMed

    Chiou, H Y; Hsueh, Y M; Hsieh, L L; Hsu, L I; Hsu, Y H; Hsieh, F I; Wei, M L; Chen, H C; Yang, H T; Leu, L C; Chu, T H; Chen-Wu, C; Yang, M H; Chen, C J

    1997-06-01

    In order to elucidate the relationships among arsenic methylation capacity, body retention, and genetic polymorphisms of glutathione S-transferase (GST) M1 and T1, a total of 115 study subjects were recruited from Lanyang Basin located on the northeast coast of Taiwan. Specimens of drinking water, blood, urine, hair and toenail were collected from each study subject. Urinary inorganic and methylated arsenic were speciated by high performance liquid chromatography combined with hydride-generation atomic absorption spectrometry. Arsenic concentration in hair and toenail were quantitated by atomic absorption spectrophotometry. The polymerase chain reaction was used to determine genetic polymorphisms of GST M1 and T1. Arsenic concentrations in urine, hair, and toenail of study subjects were positively correlated with arsenic levels in their drinking water. Percentages of various arsenic species in urine (mean +/- standard error (SE) were 11.8 +/- 1.0, 26.9 +/- 1.2 and 61.3 +/- 1.4, respectively, for inorganic arsenic, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA). Men and women had similar arsenic methylation capability. No associations were observed between arsenic methylation capability and arsenic content in either drinking water or urine. Ratios of arsenic contents in hair and toenail to urinary arsenic content (mean +/- standard error) were 6.2 +/- 0.7 and 16.5 +/- 1.7, respectively. Genetic polymorphisms of GST M1 and T1 were significantly associated with arsenic methylation. Subjects having the null genotype of GST M1 had an increased percentage of inorganic arsenic in urine, while those with null genotype of GST T1 had an elevated percentage of DMA in urine. Arsenic contents in hair and toenail were significantly correlated with the increase in arsenic concentrations of drinking water and urine, while no significant associations were observed between arsenic contents in hair and toenail and polymorphisms of GST M1 and T1. The relationship between

  12. Potential Pasture Nitrogen Concentrations and Uptake from Autumn or Spring Applied Cow Urine and DCD under Field Conditions.

    PubMed

    Moir, Jim; Cameron, Keith; Di, Hong

    2016-01-01

    Nitrogen (N) cycling and losses in grazed grassland are strongly driven by urine N deposition by grazing ruminants. The objective of this study was to quantify pasture N concentrations, yield and N uptake following autumn and spring deposition of cow urine and the effects of fine particle suspension (FPS) dicyandiamide (DCD). A field plot study was conducted on the Lincoln University dairy farm, Canterbury, New Zealand from May 2003 to May 2005. FPS DCD was applied to grazed pasture plots at 10 kg·ha(-1) in autumn and spring in addition to applied cow urine at a N loading rate of 1000 kg·N·ha(-1), with non-urine control plots. Pasture N ranged between 1.9 and 4.8% with higher concentrations from urine. Results indicated that urine consistently increased N concentrations for around 220 days post deposition (mid December/early summer) at which point concentrations dropped to background levels. In urine patches, pasture yield and annual N uptake were dramatically increased on average by 51% for autumn and 28% for spring applied urine, in both years, when DCD was applied. This field experiment provides strong evidence that annual pasture N uptake is more strongly influenced by high urine N deposition than pasture N concentrations. FPS DCD has the potential to result in very high N uptake in urine patches, even when they are autumn deposited. PMID:27304974

  13. Potential Pasture Nitrogen Concentrations and Uptake from Autumn or Spring Applied Cow Urine and DCD under Field Conditions

    PubMed Central

    Moir, Jim; Cameron, Keith; Di, Hong

    2016-01-01

    Nitrogen (N) cycling and losses in grazed grassland are strongly driven by urine N deposition by grazing ruminants. The objective of this study was to quantify pasture N concentrations, yield and N uptake following autumn and spring deposition of cow urine and the effects of fine particle suspension (FPS) dicyandiamide (DCD). A field plot study was conducted on the Lincoln University dairy farm, Canterbury, New Zealand from May 2003 to May 2005. FPS DCD was applied to grazed pasture plots at 10 kg·ha−1 in autumn and spring in addition to applied cow urine at a N loading rate of 1000 kg·N·ha−1, with non-urine control plots. Pasture N ranged between 1.9 and 4.8% with higher concentrations from urine. Results indicated that urine consistently increased N concentrations for around 220 days post deposition (mid December/early summer) at which point concentrations dropped to background levels. In urine patches, pasture yield and annual N uptake were dramatically increased on average by 51% for autumn and 28% for spring applied urine, in both years, when DCD was applied. This field experiment provides strong evidence that annual pasture N uptake is more strongly influenced by high urine N deposition than pasture N concentrations. FPS DCD has the potential to result in very high N uptake in urine patches, even when they are autumn deposited. PMID:27304974

  14. Weight dependence of arsenic concentration in the Arabian Sea tuna fish

    SciTech Connect

    Ashraf, M.; Jaffar, M.

    1988-02-01

    The objective of the present investigation was to estimate the arsenic concentration in the edible muscle of Thunnus thynnus and Thunnus toggel (hereafter called tuna and longtail tune) as they have great commercial value. These fish are widely available along the coastal line of Pakistan and are consumed abundantly in large bulk. Thus, it was felt justifiable on the basis of safety of human health that data, in the first instance, be obtained on arsenic concentration in tuna as a function of weight to check whether the metal distribution was species-specific or it depended on individual mode of development. The data, the first of the kind so far presented on the Arabian Sea tuna, would thus provide the required baseline quantitative information needed in future studies on the physiological processes regulating the distribution and uptake of arsenic by these and other species of fish common to the region.

  15. [Analysis of factors resulting in anomalous arsenic concentration in groundwaters of Shanyin, Shanxi province].

    PubMed

    Guo, Huaming; Wang, Yanxin; Li, Yongmin

    2003-07-01

    The chemical characteristics of groundwaters containing anomalous arsenic were summarized and the factors influencing arsenic enrichment in groundwater were discussed in this paper, based on chemical data of general compositions, trace elements and organic matters of sixty-six groundwaters and mineral analysis of thirty aquifer matrix. The main factors inducing anomalous arsenic in groundwaters included high pH (8.09), high concentrations of phosphate (0.71 mg/L) and organic matters (5.14 mg/L), and anoxic environment. High pH, high phosphate content and anoxic environment made against adsorption of As into aquifer which contains clay minerals. And high concentration of organic matters promoted the activity of As in groundwater system. These factors contribute to desorption and transportation of As in aquifers. PMID:14551958

  16. A cultural practice of drinking realgar wine leading to elevated urinary arsenic and its potential health risk.

    PubMed

    Zhang, Ying-Nan; Sun, Guo-Xin; Huang, Qing; Williams, Paul N; Zhu, Yong-Guan

    2011-07-01

    Toasting friends and family with realgar wines and painting children's foreheads and limbs with the leftover realgar/alcohol slurries is an important customary ritual during the Dragon Boat Festival (DBF); a Chinese national holiday and ancient feast day celebrated throughout Asia. Realgar is an arsenic sulfide mineral, and source of highly toxic inorganic arsenic. Despite the long history of realgar use during the DBF, associated risk to human health by arsenic ingestion or percutaneous adsorption is unknown. To address this urine samples were collected from a cohort of volunteers who were partaking in the DBF festivities. The total concentration of arsenic in the wine consumed was 70 mg L⁻¹ with all the arsenic found to be inorganic. Total arsenic concentrations in adult urine reached a maximum of ca. 550 μg L⁻¹ (mean 220.2 μg L⁻¹) after 16 h post-ingestion of realgar wine, while face painting caused arsenic levels in children's urine to soar to 100 μg L⁻¹ (mean 85.3 μg L⁻¹) 40 h after the initial paint application. The average concentration of inorganic arsenic in the urine of realgar wine drinkers on average doubled 16 h after drinking, although this was not permanent and levels subsided after 28 h. As would be expected in young children, the proportions of organic arsenic in the urine remained high throughout the 88-h monitoring period. However, even when arsenic concentrations in the urine peaked at 40 h after paint application, concentrations in the urine only declined slightly thereafter, suggesting pronounced longer term dermal accumulation and penetration of arsenic. Drinking wines blended with realgar or using realgar based paints on children does result in the significant absorption of arsenic and therefore presents a potentially serious and currently unquantified health risk. PMID:21450346

  17. Farnesoid X receptor (FXR) gene deficiency impairs urine concentration in mice.

    PubMed

    Zhang, Xiaoyan; Huang, Shizheng; Gao, Min; Liu, Jia; Jia, Xiao; Han, Qifei; Zheng, Senfeng; Miao, Yifei; Li, Shuo; Weng, Haoyu; Xia, Xuan; Du, Shengnan; Wu, Wanfu; Gustafsson, Jan-Åke; Guan, Youfei

    2014-02-11

    The farnesoid X receptor (FXR) is a ligand-activated transcription factor belonging to the nuclear receptor superfamily. FXR is mainly expressed in liver and small intestine, where it plays an important role in bile acid, lipid, and glucose metabolism. The kidney also has a high FXR expression level, with its physiological function unknown. Here we demonstrate that FXR is ubiquitously distributed in renal tubules. FXR agonist treatment significantly lowered urine volume and increased urine osmolality, whereas FXR knockout mice exhibited an impaired urine concentrating ability, which led to a polyuria phenotype. We further found that treatment of C57BL/6 mice with chenodeoxycholic acid, an FXR endogenous ligand, significantly up-regulated renal aquaporin 2 (AQP2) expression, whereas FXR gene deficiency markedly reduced AQP2 expression levels in the kidney. In vitro studies showed that the AQP2 gene promoter contained a putative FXR response element site, which can be bound and activated by FXR, resulting in a significant increase of AQP2 transcription in cultured primary inner medullary collecting duct cells. In conclusion, the present study demonstrates that FXR plays a critical role in the regulation of urine volume, and its activation increases urinary concentrating capacity mainly via up-regulating its target gene AQP2 expression in the collecting ducts. PMID:24464484

  18. Homicidal arsenic poisoning.

    PubMed

    Duncan, Andrew; Taylor, Andrew; Leese, Elizabeth; Allen, Sam; Morton, Jackie; McAdam, Julie

    2015-07-01

    The case of a 50-year-old man who died mysteriously after being admitted to hospital is reported. He had raised the possibility of being poisoned prior to his death. A Coroner's post-mortem did not reveal the cause of death but this was subsequently established by post-mortem trace element analysis of liver, urine, blood and hair all of which revealed very high arsenic concentrations. PMID:25344454

  19. Morphine and codeine concentrations in human urine following controlled poppy seeds administration of known opiate content.

    PubMed

    Smith, Michael L; Nichols, Daniel C; Underwood, Paula; Fuller, Zachary; Moser, Matthew A; LoDico, Charles; Gorelick, David A; Newmeyer, Matthew N; Concheiro, Marta; Huestis, Marilyn A

    2014-08-01

    Opiates are an important component for drug testing due to their high abuse potential. Proper urine opiate interpretation includes ruling out poppy seed ingestion; however, detailed elimination studies after controlled poppy seed administration with known morphine and codeine doses are not available. Therefore, we investigated urine opiate pharmacokinetics after controlled oral administration of uncooked poppy seeds with known morphine and codeine content. Participants were administered two 45 g oral poppy seed doses 8 h apart, each containing 15.7 mg morphine and 3mg codeine. Urine was collected ad libitum up to 32 h after the first dose. Specimens were analyzed with the Roche Opiates II immunoassay at 2000 and 300 μg/L cutoffs, and the ThermoFisher CEDIA(®) heroin metabolite (6-acetylmorphine, 6-AM) and Lin-Zhi 6-AM immunoassays with 10 μg/L cutoffs to determine if poppy seed ingestion could produce positive results in these heroin marker assays. In addition, all specimens were quantified for morphine and codeine by GC/MS. Participants (N=22) provided 391 urine specimens over 32 h following dosing; 26.6% and 83.4% were positive for morphine at 2000 and 300 μg/L GC/MS cutoffs, respectively. For the 19 subjects who completed the study, morphine concentrations ranged from <300 to 7522 μg/L with a median peak concentration of 5239 μg/L. The median first morphine-positive urine sample at 2000 μg/L cutoff concentration occurred at 6.6 h (1.2-12.1), with the last positive from 2.6 to 18 h after the second dose. No specimens were positive for codeine at a cutoff concentration of 2000 μg/L, but 20.2% exceeded 300 μg/L, with peak concentrations of 658 μg/L (284-1540). The Roche Opiates II immunoassay had efficiencies greater than 96% for the 2000 and 300 μg/L cutoffs. The CEDIA 6-AM immunoassay had a specificity of 91%, while the Lin-Zhi assay had no false positive results. These data provide valuable information for interpreting urine opiate results. PMID

  20. HIGH ARSENIC CONCENTRATIONS AND ENRICHED SULFUR AND OXYGEN ISOTOPES IN A FRACTURED-BEDROCK GROUND-WATER SYSTEM

    EPA Science Inventory

    Elevated arsenic concentrations are coincident with enriched sulfur and oxygen isotopes of sulfate in bedrock ground water within Kelly's Cove watershed, Northport, Maine, USA. Interpretation of the data is complicated by the lack of correlations between sulfate concentrations an...

  1. Multiple Sclerosis Incidence Associated with the Soil Lead and Arsenic Concentrations in Taiwan

    PubMed Central

    2013-01-01

    Background Few studies in the world have assessed the incidence of multiple sclerosis (MS) with soil heavy metal concentrations. We explored the association of soil heavy metal factors and the MS incidence in Taiwan. Methods There were 1240 new MS cases from the National Health Insurance Research Database and were verified with serious disabling disease certificates, 1997–2008. Soil heavy metal factors records included arsenic, mercury, cadmium, chromium, copper, nickel, lead and zinc in Taiwan from 1986 to 2002. Spatial regression was used to reveal the association of soil heavy metals and age- and gender-standardized incidence ratios for townships by controlling sunlight exposure hours, smoking prevalence and spatial autocorrelation. Results The lead (Pb) concentration in the soil positively correlated with the township incidence; on the other hand, the arsenic (As) concentration in soil negatively correlated with the township incidence and when found together controlled each other. The positive correlation of lead (Pb) predominated in males, whereas the negative correlation of arsenic (As) in soil predominated in females. Conclusions We conclude that exposure to lead (Pb) in soil positive associated with incidence of MS in Taiwan, especially in males. Exposure to arsenic (As) in soil negative associated with MS in Taiwan, especially in females. PMID:23799061

  2. Application of granular ferric hydroxides for removal elevated concentrations of arsenic from mine waters

    NASA Astrophysics Data System (ADS)

    Szlachta, Małgorzata; Włodarczyk, Paweł; Wójtowicz, Patryk

    2015-04-01

    Arsenic is naturally occurring element in the environment. Over three hundred minerals are known to contain some form of arsenic and among them arsenopyrite is the most common one. Arsenic-bearing minerals are frequently associated with ores containing mined metals such as copper, tin, nickel, lead, uranium, zinc, cobalt, platinum and gold. In the aquatic environment arsenic is typically present in inorganic forms, mainly in two oxidation states (+5, +3). As(III) is dominant in more reduced conditions, whereas As(V) is mostly present in an oxidizing environment. However, due to certain human activities the elevated arsenic levels in aquatic ecosystems are arising to a serious environmental problem. High arsenic concentrations found in surface and groundwaters, in some regions originate from mining activities and ore processing. Therefore, the major concern of mining industry is to maintain a good quality of effluents discharged in large volumes. This requires constant monitoring of effluents quality that guarantee the efficient protection of the receiving waters and reacting to possible negative impact of contamination on local communities. A number of proven technologies are available for arsenic removal from waters and wastewaters. In the presented work special attention is given to the adsorption method as a technically feasible, commonly applied and effective technique for the treatment of arsenic rich mine effluents. It is know that arsenic has a strong affinity towards iron rich materials. Thus, in this study the granular ferric hydroxides (CFH 12, provided by Kemira Oyj, Finland) was applied to remove As(III) and As(V) from aqueous solutions. The batch adsorption experiments were carried out to assess the efficiency of the tested Fe-based material under various operating parameters, including composition of treated water, solution pH and temperature. The results obtained from the fixed bed adsorption tests demonstrated the benefits of applying granular

  3. The Concentration Of Tritium In Urine And Internal Radiation Dose Estimation Of PTNBR Radiation Workers

    SciTech Connect

    Tjahaja, Poppy Intan; Sukmabuana, Putu; Aisyah, Neneng Nur

    2010-12-23

    The operation of Triga 2000 reactor in Nuclear Technology Center for Materials and Radiometry (PTNBR BATAN) normally produce tritium radionuclide which is the activation product of deuterium atom in reactor primary cooling water. According to previous monitoring, tritium was detected with the concentration of 8.236{+-}0.677 kBq/L and 1.704{+-}0.046 Bq/L in the primary cooling water and in reactor hall air, respectively. The tritium in reactor hall air chronically can be inhaled by the workers. In this research, tritium content in radiation workers' urine was determined to estimate the internal radiation doses received by the workers. About 50-100 mL of urine samples were collected from 48 PTNBR workers that is classified as 24 radiation workers and 24 administration staffs as a control. Urine samples of 25 mL were then prepared by active charcoal and KMnO{sub 4} addition and followed with complete distillation. The 2 mL of distillate was added with 13 mL scintillator, shaked vigorously and remained in cool and dark condition for about 24 hours. The tritium in the samples was then measured using liquid scintillation counter (LSC) for 1 hour. From the measurement results it was obtained that the tritium concentration in the urine of radiation workers were in the range of not detected and 5.191 Bq/mL, whereas in the administration staffs the concentration were between not detected and 4.607 Bq/mL. Internally radiation doses were calculated using the tritium concentration data, and it was found the averages about 0.602 {mu}Sv/year and 0.532 {mu}Sv/year for radiation workers and administration staffs, respectively. The doses received by the workers were lower than that of the permissible doses from tritium, i.e. 40 {mu}Sv/year.

  4. The Concentration Of Tritium In Urine And Internal Radiation Dose Estimation Of PTNBR Radiation Workers

    NASA Astrophysics Data System (ADS)

    Tjahaja, Poppy Intan; Sukmabuana, Putu; Aisyah, Neneng Nur

    2010-12-01

    The operation of Triga 2000 reactor in Nuclear Technology Center for Materials and Radiometry (PTNBR BATAN) normally produce tritium radionuclide which is the activation product of deuterium atom in reactor primary cooling water. According to previous monitoring, tritium was detected with the concentration of 8.236±0.677 kBq/L and 1.704±0.046 Bq/L in the primary cooling water and in reactor hall air, respectively. The tritium in reactor hall air chronically can be inhaled by the workers. In this research, tritium content in radiation workers' urine was determined to estimate the internal radiation doses received by the workers. About 50-100 mL of urine samples were collected from 48 PTNBR workers that is classified as 24 radiation workers and 24 administration staffs as a control. Urine samples of 25 mL were then prepared by active charcoal and KMnO4 addition and followed with complete distillation. The 2 mL of distillate was added with 13 mL scintillator, shaked vigorously and remained in cool and dark condition for about 24 hours. The tritium in the samples was then measured using liquid scintillation counter (LSC) for 1 hour. From the measurement results it was obtained that the tritium concentration in the urine of radiation workers were in the range of not detected and 5.191 Bq/mL, whereas in the administration staffs the concentration were between not detected and 4.607 Bq/mL. Internally radiation doses were calculated using the tritium concentration data, and it was found the averages about 0.602 μSv/year and 0.532 μSv/year for radiation workers and administration staffs, respectively. The doses received by the workers were lower than that of the permissible doses from tritium, i.e. 40 μSv/year.

  5. Assessment of arsenic concentrations in domestic well water, by town, in Maine 2005-09

    USGS Publications Warehouse

    Nielsen, M.G.; Lombard, P.J.; Schalk, L.F.

    2010-01-01

    exceeding 10, 50, 100, and 500 ug/L were calculated for the 174 towns with 20 or more sampled wells, and statewide maps were prepared for each of these categories. More than 25 percent of the sampled wells in 44 towns exceeded 10 ug/L. Many fewer towns had wells with samples that exceeded the 50, 100, or 500 ug/L categories. For 19 towns, more than 10 percent of the sampled wells had arsenic concentrations that exceeded 50 ug/L, and in 45 towns, 1 percent or more exceeded 100 ug/L. Of these, Surry in Hancock County had 120 wells tested, and 23 percent of those wells had arsenic concentrations that exceeded 100 ug/L, which is a much higher rate than for other towns. In only four towns (Danforth in Washington County, Surry and Blue Hill in Hancock County, and Woolwich in Sagadahoc County), 1 percent or more of the sampled wells had arsenic concentrations greater than 500 ug/L during 2005-09. The distribution of high arsenic concentrations in wells follows some geographic patterns, which are generally geologically controlled. There are clusters or belts of towns with high arsenic concentrations (> 50 ug/L), such as in southern coastal areas, the Kennebec County area, and towns along the central coastal part of Maine. In contrast, there are areas of the State with low arsenic concentrations, such as the northernmost towns, as well as towns in the western and west-central areas. There appear to be three distinct large-scale areas of high concentrations of arsenic in groundwater-one in southern coastal areas, one in central Kennebec County, and one in the town of Ellsworth (Hancock County) and the surrounding areas. In addition, several smaller clusters of isolated high concentrations of arsenic in groundwater exist. Earlier testing has identified other clusters of very high arsenic concentrations in groundwater in the towns of Northport, Buxton/Hollis, and Waldoboro, but those samples were collected before 2005 and did not factor in this analysis.

  6. Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate.

    PubMed

    Xu, Pei; Capito, Marissa; Cath, Tzahi Y

    2013-09-15

    Concentrate disposal and management is a considerable challenge for the implementation of desalination technologies, especially for inland applications where concentrate disposal options are limited. This study has focused on selective removal of arsenic and monovalent ions from brackish groundwater reverse osmosis (RO) concentrate for beneficial use and safe environmental disposal using in situ and pre-formed hydrous ferric oxides/hydroxides adsorption, and electrodialysis (ED) with monovalent permselective membranes. Coagulation with ferric salts is highly efficient at removing arsenic from RO concentrate to meet a drinking water standard of 10 μg/L. The chemical demand for ferric chloride however is much lower than ferric sulfate as coagulant. An alternative method using ferric sludge from surface water treatment plant is demonstrated as an efficient adsorbent to remove arsenic from RO concentrate, providing a promising low cost, "waste treat waste" approach. The monovalent permselective anion exchange membranes exhibit high selectivity in removing monovalent anions over di- and multi-valent anions. The transport of sulfate and phosphate through the anion exchange membranes was negligible over a broad range of electrical current density. However, the transport of divalent cations such as calcium and magnesium increases through monovalent permselective cation exchange membranes with increasing current density. Higher overall salt concentration reduction is achieved around limiting current density while higher normalized salt removal rate in terms of mass of salt per membrane area and applied energy is attained at lower current density because the energy unitization efficiency decreases at higher current density. PMID:23892312

  7. Rat subcutaneous tissue response to calcium silicate containing different arsenic concentrations

    PubMed Central

    MINOTTI, Paloma Gagliardi; ORDINOLA-ZAPATA, Ronald; MIDENA, Raquel Zanin; MARCIANO, Marina Angélica; CAVENAGO, Bruno Cavalini; BRAMANTE, Clovis Monteiro; GARCIA, Roberto Brandão; DUARTE, Marco Antonio Hungaro; de MORAES, Ivaldo Gomes

    2015-01-01

    Objective To evaluate the response of rat subcutaneous tissue in implanted polyethylene tubes that were filled with GMTA Angelus and Portland cements containing different arsenic concentrations. Material and Methods Atomic absorption spectrophotometry was utilized to obtain the values of the arsenic concentration in the materials. Thirty-six rats were divided into 3 groups of 12 animals for each experimental period. Each animal received two implants of polyethylene tubes filled with different test cements and the lateral of the tubes was used as a control group. After 15, 30 and 60 days of implantation, the animals were killed and the specimens were prepared for descriptive and morphometric analysis considering: inflammatory cells, collagen fibers, fibroblasts, blood vessels and other components. The results were analyzed utilizing the Kuskal-Wallis test and the Dunn´s Multiple test for comparison (p<0.05). Results The materials showed, according to atomic absorption spectrophotometry, the following doses of arsenic: GMTA Angelus: 5.01 mg/kg, WPC Irajazinho: 0.69 mg/kg, GPC Minetti: 18.46 mg/kg and GPC Votoran: 10.76 mg/kg. In a 60-day periods, all specimens displayed a neoformation of connective tissue with a structure of fibrocellular aspect (capsule). Control groups and MTA Angelus produced the lower amount of inflammatory reaction and GPC Minetti, the highest reaction. Conclusions There was no direct relationship between the concentration of arsenic present in the composition of the materials and the intensity of the inflammatory reactions. Higher values, as 18.46 mg/kg of arsenic in the cement, produce characteristics of severe inflammation reaction at the 60-day period. The best results were found in MTA angelus. PMID:25075671

  8. Subclinical arsenicosis in cattle in arsenic endemic area of West Bengal, India.

    PubMed

    Rana, Tanmoy; Bera, Asit Kumar; Das, Subhashree; Bhattacharya, Debasis; Pan, Diganta; Das, Subrata Kumar

    2014-05-01

    Arsenic is ubiquitously found metalloid that commonly contaminates drinking water and agricultural food. To minimise the ecotoxicological effect of arsenic in the environment, it is important to ameliorate the deleterious effects on human and animal health. We investigated the effects of arsenic on cattle by estimating arsenic concentration in biological samples of cattle that consumed contaminated drinking water and feedstuffs directly or indirectly. We have selected arsenic prone village that is Ghentugachi, Nadia district, West Bengal, India, along with arsenic safe control village, Akna in Hoogli district, West Bengal, India. It is found that arsenic is deposited highly in blood, urine and faeces. Agricultural field is contaminated through cattle urine, hair, faeces, cow dung cakes and farmyard manure. Bioconcentration factor and biotransfer factor are two important biomarkers to assess the subclinical toxicity in cattle, as they do not exhibit clinical manifestation like human beings. PMID:22903174

  9. Water management, rice varieties and mycorrhizal inoculation influence arsenic concentration and speciation in rice grains.

    PubMed

    Zhang, Xin; Wu, Songlin; Ren, Baihui; Chen, Baodong

    2016-05-01

    A pot experiment was carried out to investigate the effects of water management and mycorrhizal inoculation on arsenic (As) uptake by two rice varieties, the As-resistant BRRI dhan 47 (B47) and As-sensitive BRRI dhan 29 (B29). Grain As concentration of B47 plants was significantly lower than that of B29, and grain As concentration of B47 was higher under flooding conditions than that under aerobic conditions. In general, mycorrhizal inoculation (Rhizophagus irregularis) had no significant effect on grain As concentrations, but decreased the proportion of inorganic arsenic (iAs) in grains of B47. The proportion of dimethylarsinic acid (DMA) in the total grain As was dramatically higher under flooding conditions. Results demonstrate that rice variety selection and appropriate water management along with mycorrhizal inoculation could be practical countermeasures to As accumulation and toxicity in rice grains, thus reducing health risks of As exposure in rice diets. PMID:26585898

  10. Methamphetamine and amphetamine isomer concentrations in human urine following controlled Vicks VapoInhaler administration.

    PubMed

    Smith, Michael L; Nichols, Daniel C; Underwood, Paula; Fuller, Zachary; Moser, Matthew A; Flegel, Ron; Gorelick, David A; Newmeyer, Matthew N; Concheiro, Marta; Huestis, Marilyn A

    2014-10-01

    Legitimate use of legal intranasal decongestants containing l-methamphetamine may complicate interpretation of urine drug tests positive for amphetamines. Our study hypotheses were that commonly used immunoassays would produce no false-positive results and a recently developed enantiomer-specific gas chromatography-mass spectrometry (GC-MS) procedure would find no d-amphetamine or d-methamphetamine in urine following controlled Vicks VapoInhaler administration at manufacturer's recommended doses. To evaluate these hypotheses, 22 healthy adults were each administered one dose (two inhalations in each nostril) of a Vicks VapoInhaler every 2 h for 10 h on Day 1 (six doses), followed by a single dose on Day 2. Every urine specimen was collected as an individual void for 32 h after the first dose and assayed for d- and l-amphetamines specific isomers with a GC-MS method with >99% purity of R-(-)-α-methoxy-α-(trifluoromethyl)phenylacetyl derivatives and 10 µg/L lower limits of quantification. No d-methamphetamine or d-amphetamine was detected in any urine specimen by GC-MS. The median l-methamphetamine maximum concentration was 62.8 µg/L (range: 11.0-1,440). Only two subjects had detectable l-amphetamine, with maximum concentrations coinciding with l-methamphetamine peak levels, and always ≤ 4% of the parent's maximum. Three commercial immunoassays for amphetamines EMIT(®) II Plus, KIMS(®) II and DRI(®) had sensitivities, specificities and efficiencies of 100, 97.8, 97.8; 100, 99.6, 99.6 and 100, 100, 100%, respectively. The immunoassays had high efficiencies, but our first hypothesis was not affirmed. The EMIT(®) II Plus assay produced 2.2% false-positive results, requiring an enantiomer-specific confirmation. PMID:25217541

  11. Positive association between concentration of phthalate metabolites in urine and microparticles in adolescents and young adults.

    PubMed

    Lin, Chien-Yu; Hsieh, Chia-Jung; Lo, Shyh-Chyi; Chen, Pau-Chung; Torng, Pao-Ling; Hu, Anren; Sung, Fung-Chang; Su, Ta-Chen

    2016-01-01

    Di-(2-ethylhexyl) phthalate (DEHP) has been used worldwide in various products for many years. In vitro studies have shown that exposure to DEHP and its metabolite mono(2-ethylhexyl) phthalate (MEHP) induces endothelial cell apoptosis. Moreover, exposure to DEHP had been linked to cardiovascular risk factors and cardiovascular diseases in epidemiological studies. Circulating microparticles have been known to be indicators of vascular injury. However, whether DEHP or its metabolites are independently associated with microparticles in humans remains unknown. From 2006 to 2008, we recruited 793 subjects (12-30years) from a population-based sample to participate in this cardiovascular disease prevention examination. Each participant was subjected to interviews and biological sample collection to determine the relationship between concentrations of DEHP metabolites MEHP, mono(ethyl-5-hydroxyhexyl) phthalate, and mono(2-ethly-5-oxoheyl) phthalate in urine and concentrations of endothelial microparticles (CD62E and CD31+/CD42a-), platelet microparticles (CD62P and CD31+/CD42a+), and CD14 in serum. Multiple linear regression analysis revealed that an ln-unit increase in MEHP concentration in urine was positively associated with an increase in serum microparticle counts/μL of 0.132 (±0.016) in CD31+/CD42a- (endothelial apoptosis marker), 0.117 (±0.023) in CD31+/CD42a+ (platelet apoptosis marker), and 0.026 (±0.007) in CD14 (monocyte, macrophage, and neutrophil activation marker). There was no association between DEHP metabolite concentration and CD62E or CD62P. In conclusion, a higher MEHP concentration in urine was associated with an increase in endothelial and platelet microparticles in this cohort of adolescents and young adults. Further studies are warranted to clarify the causal relationship between exposure to DEHP and atherosclerosis. PMID:27104673

  12. A Cross-sectional Study of the Impact of Blood Selenium on Blood and Urinary Arsenic Concentrations in Bangladesh

    PubMed Central

    2013-01-01

    Background Arsenic can naturally occur in the groundwater without an anthropogenic source of contamination. In Bangladesh over 50 million people are exposed to naturally occurring arsenic concentrations exceeding the World Health Organization’s guideline of 10 μg/L. Selenium and arsenic have been shown to facilitate the excretion of each other in bile. Recent evidence suggests that selenium may play a role in arsenic elimination by forming a selenium-arsenic conjugate in the liver before excretion into the bile. Methods A cross-sectional study of 1601 adults and 287 children was conducted to assess the relationship between blood selenium and urinary and blood arsenic in a study population residing in a moderately arsenic-contaminated rural area in Bangladesh. Results The results of this study indicate a statistically significant inverse relationship between blood selenium and urinary arsenic concentrations in both adult and pediatric populations in rural Bangladesh after adjustment for age, sex, Body Mass Index, plasma folate and B12 (in children), and ever smoking and current betel nut use (in adults). In addition, there appears to be a statistically significant inverse relationship between blood selenium and blood arsenic in children. Conclusions Our results suggest that selenium is inversely associated with biomarkers of arsenic burden in both adults and children. These findings support the hypothesis that Se facilitates the biliary elimination of As, possibly via the putative formation of a Se-As conjugate using a glutathione complex. However, laboratory based studies are needed to provide further evidence to elucidate the presence of Se-As conjugate and its role in arsenic elimination in humans. PMID:23816141

  13. Urinary arsenic speciation and its correlation with 8-OHdG in Chinese residents exposed to arsenic through coal burning

    SciTech Connect

    Li, X.; Pi, J.B.; Li, B.; Xu, Y.Y.; Jin, Y.P.; Sun, G.F.

    2008-10-15

    In contrast to arsenicosis caused by consumption of water contaminated by naturally occurring inorganic arsenic, human exposure to this metalloid through coal burning has been rarely reported. In this study, arsenic speciation and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in urine were determined in the Chinese residents exposed to arsenic through coal burning in Guizhou, China, an epidemic area of chronic arsenic poisoning caused by coal burning. The urinary concentrations of inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and total arsenic (tAs) of high-arsenic exposed subjects were significantly higher than those of low-arsenic exposed residents. A biomarker of oxidative DNA damage, urinary 8-OHdG level was significantly higher in high-arsenic exposed subjects than that of low exposed. Significant positive correlations were found between 8-OHdG levels and concentrations of iAs, MMA, DMA and tAs, respectively. In addition, a significant negative correlation was observed between 8-OHdG levels and the secondary methylation ratio (DMA/(MMA + DMA)). The results suggest that chronic arsenic exposure through burning coal rich in arsenic is associated with oxidative DNA damages, and that secondary methylation capacity is potentially related to the susceptibility of individuals to oxidative DNA damage induced by arsenic exposure through coal burning in domestic living.

  14. Paired Serum and Urine Concentrations of Biomarkers of Diethyl Phthalate, Methyl Paraben, and Triclosan in Rats

    PubMed Central

    Teitelbaum, Susan L.; Li, Qian; Lambertini, Luca; Belpoggi, Fiorella; Manservisi, Fabiana; Falcioni, Laura; Bua, Luciano; Silva, Manori J.; Ye, Xiaoyun; Calafat, Antonia M.; Chen, Jia

    2015-01-01

    Background Exposure to environmental chemicals, including phthalates and phenols such as parabens and triclosan, is ubiquitous within the U.S. general population. Objective This proof-of-concept rodent study examined the relationship between oral doses of three widely used personal care product ingredients [diethyl phthalate (DEP), methyl paraben (MPB), and triclosan] and urine and serum concentrations of their respective biomarkers. Methods Using female Sprague-Dawley rats, we carried out two rounds of experiments with oral gavage doses selected in accordance with no observed adverse effect levels (NOAELs) derived from previous studies: 1,735 (DEP), 1,050 (MPB), 50 (triclosan) mg/kg/day. Administered doses ranged from 0.005 to 173 mg/kg/day, 10–100,000 times below the NOAEL for each chemical. Controls for the MPB and triclosan experiments were animals treated with olive oil (vehicle) only; controls for the DEP serum experiments were animals treated with the lowest doses of MPB and triclosan. Doses were administered for 5 days with five rats in each treatment group. Urine and blood serum, collected on the last day of exposure, were analyzed for biomarkers. Relationships between oral dose and biomarker concentrations were assessed using linear regression. Results Biomarkers were detected in all control urine samples at parts-per-billion levels, suggesting a low endemic environmental exposure to the three chemicals that could not be controlled even with all of the precautionary measures undertaken. Among the exposed animals, urinary concentrations of all three biomarkers were orders of magnitude higher than those in serum. A consistently positive linear relationship between oral dose and urinary concentration was observed (R2 > 0.80); this relationship was inconsistent in serum. Conclusions Our study highlights the importance of carefully considering the oral dose used in animal experiments and provides useful information in selecting doses for future studies

  15. Modeling spatial patterns in soil arsenic to estimate natural baseline concentrations.

    PubMed

    Venteris, Erik R; Basta, Nicholas T; Bigham, Jerry M; Rea, Ron

    2014-05-01

    Arsenic in soil is an important public health concern, but risk-based toxicity regulatory standards derived from laboratory studies should also consider concentrations measured away from obvious contamination (i.e., baseline concentrations that approximate natural background) to avoid unnecessary remediation burdens on society. We used soil and stream sediment samples from the USGS National Geochemical Survey to assess the spatial distribution of As over a 1.16 × 10 km area corresponding to the state of Ohio. Samples were collected at 348 soil and 144 stream sites at locations selected to minimize anthropogenic inputs. Total As was measured by sodium peroxide fusion with subsequent dissolution using concentrated HCl and analysis using hydride-generation atomic absorption spectrometry. Arsenic in the soil and streambed samples ranged from 2.0 to 45.6 mg kg. Sequential Gaussian simulation was used to map the expected concentration of As and its uncertainty. Five areas of elevated concentration, greater than the median of 10 mg kg, were identified, and relationships to geologic parent materials, glacial sedimentation, and soil conditions interpreted. Arsenic concentrations <4 mg kg were rare, >10 mg kg common, and >20 mg kg not unusual for the central and west central portions of Ohio. Concentrations typically exceeded the soil As human generic screening level of 0.39 mg kg, a value corresponding to an increase in cancer risk of 1 in 1,000,000 for soil ingestion. Such results call into question the utility of the USEPA and similarly low soil screening levels. The contrast between laboratory screens and concentrations occurring in nature argue for risk assessment on the basis of baseline concentrations. PMID:25602822

  16. [Environmental tobacco smoke--assessment of formaldehyde concentration in urine samples of exposed medicine students].

    PubMed

    Szumska, Magdalena; Damasiewicz-Bodzek, Aleksandra; Tyrpień-Golder, Krystyna

    2015-01-01

    Environmental Tobacco Smoke (ETS) is ranked as one of the factors of confirmed carcinogenicity to human. It consists of the mixture of smoke exhaled by the smoker as well as the sidestream smoke and contains many times higher concentrations of some toxic substances in comparison to the amount of toxic compounds inhaled by a smoker. From many years the issue of passive smoking has been the subject of many research and still not all of its aspects of affecting human health have been explored. Apart from the tobacco varieties, also diverse additives added during the process of tobacco manufacturing, including particularly carbohydrates, influence the composition of the environmental tobacco smoke. During smoking they can undergo many complex transformations, as a result of which toxic components of the environmental tobacco smoke are formed, carbonyl compounds in particular, like aldehydes. They are marked by a significant chemical reactivity which enables them to modify amino groups of proteins leading to the changes in their structure, biological functions and often antigenicity. Therefore their influence to the human body is the cause of numerous adverse health effects caused by the increase in free radical processes which can constitute to the source of these compounds. Well known representative of this group of xenobiotics is formaldehyde as a compound that reflects well the environmental exposure to carbonyl compounds. The considerable source of this compound is tobacco smoke. Therefore analysis of formaldehyde in body fluids is a valuable biomonitoring tool of exposure to it. The aim of this study was the evaluation of formaldehyde concentration in urine samples of medicine students exposed to ETS. The study material consisted of 149 urine samples of students from School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia. The concentration of formaldehyde in urine samples was determined by a spectrophotometric method using the

  17. Tissue distribution and urinary excretion of dimethylated arsenic and its metabolites in dimethylarsinic acid- or arsenate-treated rats

    SciTech Connect

    Adair, Blakely M.; Moore, Tanya; Conklin, Sean D.; Creed, John T.; Wolf, Douglas C.; Thomas, David J. . E-mail: thomas.david@epa.gov

    2007-07-15

    Adult female Fisher 344 rats received drinking water containing 0, 4, 40, 100, or 200 parts per million of dimethylarsinic acid or 100 parts per million of arsenate for 14 days. Urine was collected during the last 24 h of exposure. Tissues were then taken for analysis of dimethylated and trimethylated arsenicals; urines were analyzed for these arsenicals and their thiolated derivatives. In dimethylarsinic acid-treated rats, highest concentrations of dimethylated arsenic were found in blood. In lung, liver, and kidney, concentrations of dimethylated arsenic exceeded those of trimethylated species; in urinary bladder and urine, trimethylated arsenic predominated. Dimethylthioarsinic acid and trimethylarsine sulfide were present in urine of dimethylarsinic acid-treated rats. Concentrations of dimethylated arsenicals were similar in most tissues of dimethylarsinic acid- and arsenate-treated rats, including urinary bladder which is the target for dimethylarsinic acid-induced carcinogenesis in the rat. Mean concentration of dimethylated arsenic was significantly higher (P < 0.05) in urine of dimethylarsinic acid-treated rats than in arsenate-treated rats, suggesting a difference between treatment groups in the flux of dimethylated arsenic through urinary bladder. Concentrations of trimethylated arsenic concentrations were consistently higher in dimethylarsinic acid-treated rats than in arsenate-treated rats; these differences were significant (P < 0.05) in liver, urinary bladder, and urine. Concentrations of dimethylthioarsinic acid and trimethylarsine sulfide were higher in urine from dimethylarsinic acid-treated rats than from arsenate-treated rats. Dimethylarsinic acid is extensively metabolized in the rat, yielding significant concentrations of trimethylated species and of thiolated derivatives. One or more of these metabolites could be the species causing alterations of cellular function that lead to tumors in the urinary bladder.

  18. PBPK and population modelling to interpret urine cadmium concentrations of the French population

    SciTech Connect

    Béchaux, Camille; Bodin, Laurent; Clémençon, Stéphan; Crépet, Amélie

    2014-09-15

    As cadmium accumulates mainly in kidney, urinary concentrations are considered as relevant data to assess the risk related to cadmium. The French Nutrition and Health Survey (ENNS) recorded the concentration of cadmium in the urine of the French population. However, as with all biomonitoring data, it needs to be linked to external exposure for it to be interpreted in term of sources of exposure and for risk management purposes. The objective of this work is thus to interpret the cadmium biomonitoring data of the French population in terms of dietary and cigarette smoke exposures. Dietary and smoking habits recorded in the ENNS study were combined with contamination levels in food and cigarettes to assess individual exposures. A PBPK model was used in a Bayesian population model to link this external exposure with the measured urinary concentrations. In this model, the level of the past exposure was corrected thanks to a scaling function which account for a trend in the French dietary exposure. It resulted in a modelling which was able to explain the current urinary concentrations measured in the French population through current and past exposure levels. Risk related to cadmium exposure in the general French population was then assessed from external and internal critical values corresponding to kidney effects. The model was also applied to predict the possible urinary concentrations of the French population in 2030 assuming there will be no more changes in the exposures levels. This scenario leads to significantly lower concentrations and consequently lower related risk. - Highlights: • Interpretation of urine cadmium concentrations in France • PBPK and Bayesian population modelling of cadmium exposure • Assessment of the historic time-trend of the cadmium exposure in France • Risk assessment from current and future external and internal exposure.

  19. Spatial and Temporal Variations in Arsenic Exposure via Drinking-water in Northern Argentina

    PubMed Central

    Concha, Gabriela; Nermell, Barbro

    2006-01-01

    This study evaluated the spatial, temporal and inter-individual variations in exposure to arsenic via drinking-water in Northern Argentina, based on measurements of arsenic in water, urine, and hair. Arsenic concentrations in drinking-water varied markedly among locations, from <1 to about 200 μg/L. Over a 10-year period, water from the same source in San Antonio de los Cobres fluctuated within 140 and 220 μg/L, with no trend of decreasing concentration. Arsenic concentrations in women's urine (3–900 μg/L, specific weight 1.018 g/mL) highly correlated with concentrations in water on a group level, but showed marked variations between individuals. Arsenic concentrations in hair (range 20–1,500 μg/kg) rather poorly correlated with urinary arsenic, possibly due to external contamination. Thus, arsenic concentration in urine seems to be a better marker of individual arsenic exposure than concentrations in drinking-water and hair. PMID:17366773

  20. Relation of dietary inorganic arsenic to serum matrix metalloproteinase-9 (MMP-9) at different threshold concentrations of tap water arsenic.

    PubMed

    Kurzius-Spencer, Margaret; Harris, Robin B; Hartz, Vern; Roberge, Jason; Hsu, Chiu-Hsieh; O'Rourke, Mary Kay; Burgess, Jefferey L

    2016-09-01

    Arsenic (As) exposure is associated with cancer, lung and cardiovascular disease, yet the mechanisms involved are not clearly understood. Elevated matrix metalloproteinase-9 (MMP-9) levels are also associated with these diseases, as well as with exposure to water As. Our objective was to evaluate the effects of dietary components of inorganic As (iAs) intake on serum MMP-9 concentration at differing levels of tap water As. In a cross-sectional study of 214 adults, dietary iAs intake was estimated from 24-h dietary recall interviews using published iAs residue data; drinking and cooking water As intake from water samples and consumption data. Aggregate iAs intake (food plus water) was associated with elevated serum MMP-9 in mixed model regression, with and without adjustment for covariates. In models stratified by tap water As, aggregate intake was a significant positive predictor of serum MMP-9 in subjects exposed to water As≤10 μg/l. Inorganic As from food alone was associated with serum MMP-9 in subjects exposed to tap water As≤3 μg/l. Exposure to iAs from food and water combined, in areas where tap water As concentration is ≤10 μg/l, may contribute to As-induced changes in a biomarker associated with toxicity. PMID:25605447

  1. Relation of dietary inorganic arsenic to serum matrix metalloproteinase-9 (MMP-9) at different threshold concentrations of tap water arsenic

    PubMed Central

    Kurzius-Spencer, Margaret; Harris, Robin B.; Hartz, Vern; Roberge, Jason; Hsu, Chiu-Hsieh; O’Rourke, Mary Kay; Burgess, Jefferey L.

    2015-01-01

    Arsenic (As) exposure is associated with cancer, lung and cardiovascular disease, yet the mechanisms involved are not clearly understood. Elevated matrix metalloproteinase-9 (MMP-9) levels are also associated with these diseases, as well as with exposure to water As. Our objective was to evaluate the effects of dietary components of inorganic As (iAs) intake on serum MMP-9 concentration at differing levels of tap water As. In a cross-sectional study of 214 adults, dietary iAs intake was estimated from 24-h dietary recall interviews using published iAs residue data; drinking and cooking water As intake from water samples and consumption data. Aggregate iAs intake (food plus water) was associated with elevated serum MMP-9 in mixed model regression, with and without adjustment for covariates. In models stratified by tap water As, aggregate intake was a significant positive predictor of serum MMP-9 in subjects exposed to water As ≤10 μg/l. Inorganic As from food alone was associated with serum MMP-9 in subjects exposed to tap water As ≤3 μg/l. Exposure to iAs from food and water combined, in areas where tap water As concentration is ≤10 μg/l, may contribute to As-induced changes in a biomarker associated with toxicity. PMID:25605447

  2. Dietary and sociodemographic determinants of bisphenol A urine concentrations in pregnant women and children.

    PubMed

    Casas, Maribel; Valvi, Damaskini; Luque, Noelia; Ballesteros-Gomez, Ana; Carsin, Anne-Elie; Fernandez, Marieta F; Koch, Holger M; Mendez, Michelle A; Sunyer, Jordi; Rubio, Soledad; Vrijheid, Martine

    2013-06-01

    Bisphenol A (BPA) exposure during early life may have endocrine-disrupting effects, but the dietary and sociodemographic predictors of BPA exposure during pregnancy and childhood remain unclear. Our aim was to evaluate the correlations between, and sociodemographic and dietary predictors of, serial urinary BPA concentrations measured during pregnancy and childhood in a Spanish birth cohort study. BPA was measured in two spot urine samples collected from 479 women during the first and third trimester of pregnancy and in one urine sample from their 4-year old children (n=130). Average dietary intakes were reported in food frequency questionnaires during the first and third pregnancy trimester and at age 4years. Multivariate mixed models and linear regression models were used to estimate associations between sociodemographic and dietary factors and BPA concentrations. A small, but statistically significant correlation was found between serial maternal BPA concentrations measured during pregnancy (r=0.17). Pregnant women who were younger, less-educated, smoked, and who were exposed to second-hand tobacco smoke (SHS) had higher BPA concentrations than others. BPA concentrations were also higher in children exposed to SHS. High consumption of canned fish during pregnancy was associated with 21% [GM ratio=1.21; 95%CI 1.02, 1.44] and 25% [GM ratio=1.25; 95%CI 1.05, 1.49] higher urinary BPA concentrations in the first and third pregnancy trimester, respectively, compared to the lowest consumption group. This study suggests that canned fish may be a major source of BPA during pregnancy in Spain, a country of high canned fish consumption. Further evaluation of specific BPA exposure sources in the sociodemographic group of younger women who smoke, are exposed to SHS, and have a low educational level is needed. Studies identifying sources of exposure would benefit from repeat BPA measurements and questionnaires specifically focused on dietary and packaging sources. PMID

  3. Impact of enzymatic and alkaline hydrolysis on CBD concentration in urine.

    PubMed

    Bergamaschi, Mateus M; Barnes, Allan; Queiroz, Regina H C; Hurd, Yasmin L; Huestis, Marilyn A

    2013-05-01

    A sensitive and specific analytical method for cannabidiol (CBD) in urine was needed to define urinary CBD pharmacokinetics after controlled CBD administration, and to confirm compliance with CBD medications including Sativex-a cannabis plant extract containing 1:1 ∆(9)-tetrahydrocannabinol (THC) and CBD. Non-psychoactive CBD has a wide range of therapeutic applications and may also influence psychotropic smoked cannabis effects. Few methods exist for the quantification of CBD excretion in urine, and no data are available for phase II metabolism of CBD to CBD-glucuronide or CBD-sulfate. We optimized the hydrolysis of CBD-glucuronide and/or -sulfate, and developed and validated a GC-MS method for urinary CBD quantification. Solid-phase extraction isolated and concentrated analytes prior to GC-MS. Method validation included overnight hydrolysis (16 h) at 37 °C with 2,500 units β-glucuronidase from Red Abalone. Calibration curves were fit by linear least squares regression with 1/x (2) weighting with linear ranges (r(2) > 0.990) of 2.5-100 ng/mL for non-hydrolyzed CBD and 2.5-500 ng/mL for enzyme-hydrolyzed CBD. Bias was 88.7-105.3 %, imprecision 1.4-6.4 % CV and extraction efficiency 82.5-92.7 % (no hydrolysis) and 34.3-47.0 % (enzyme hydrolysis). Enzyme-hydrolyzed urine specimens exhibited more than a 250-fold CBD concentration increase compared to alkaline and non-hydrolyzed specimens. This method can be applied for urinary CBD quantification and further pharmacokinetics characterization following controlled CBD administration. PMID:23494274

  4. Prolonged exposure to arsenic in UK private water supplies: toenail, hair and drinking water concentrations.

    PubMed

    Middleton, D R S; Watts, M J; Hamilton, E M; Fletcher, T; Leonardi, G S; Close, R M; Exley, K S; Crabbe, H; Polya, D A

    2016-05-18

    Chronic exposure to arsenic (As) in drinking water is an established cause of cancer and other adverse health effects. Arsenic concentrations >10 μg L(-1) were previously measured in 5% of private water supplies (PWS) in Cornwall, UK. The present study investigated prolongued exposure to As by measuring biomarkers in hair and toenail samples from 212 volunteers and repeated measurements of As in drinking water from 127 households served by PWS. Strong positive Pearson correlations (rp = 0.95) indicated stability of water As concentrations over the time period investigated (up to 31 months). Drinking water As concentrations were positively correlated with toenail (rp = 0.53) and hair (rp = 0.38) As concentrations - indicative of prolonged exposure. Analysis of washing procedure solutions provided strong evidence of the effective removal of exogenous As from toenail samples. Significantly higher As concentrations were measured in hair samples from males and smokers and As concentrations in toenails were negatively associated with age. A positive association between seafood consumption and toenail As and a negative association between home-grown vegetable consumption and hair As was observed for volunteers exposed to <1 As μg L(-1) in drinking water. These findings have important implications regarding the interpretation of toenail and hair biomarkers. Substantial variation in biomarker As concentrations remained unaccounted for, with soil and dust exposure as possible explanations. PMID:27120003

  5. Excretion of arsenic (As) in urine of children, 7--11 years, exposed to elevated levels of As in the city water supply in Hermosillo, Sonora, Mexico

    SciTech Connect

    Wyatt, C.J.; Quiroga, V.L.; Acosta, R.T.O.; Mendez, R.O.

    1998-07-01

    Arsenic (As) is a common element in the environment with many industrial uses, but it also can be a contaminant in drinking water and present serious health concerns. Earlier studies on the quality of drinking water in the city of Hermosillo, Sonora, Mexico, showed high levels of As in water from wells located in the northern part of the city. Additionally a high positive correlation between the levels of Fluoride (F) and As in the same wells was found. Therefore, the objective of this study was to determine the excretion of As in children, 7--11 years of age, that had been exposed to elevated levels of As in their drinking water. Twenty-four-hour urine samples and a water sample taken directly in the home were collected from school age children living in two different areas with known high levels of As in their drinking water. A control group with normal levels of As in their water was also included.

  6. Concentrations of total and inorganic arsenic in fresh fish, mollusks, and crustaceans from the Gulf of Thailand.

    PubMed

    Ruangwises, Suthep; Ruangwises, Nongluck

    2011-03-01

    Concentrations of total and inorganic arsenic were determined in 120 samples of eight marine animals collected from the Gulf of Thailand between March and May 2008. Two species with the highest annual catch from each of four marine animal groups were analyzed: fish (Indo-Pacific mackerel and goldstripe sardine), bivalves (green mussel and blood cockle), cephalopods (pharaoh cuttlefish and Indian squid), and crustaceans (banana prawn and swimming crab). Concentrations of inorganic arsenic based on wet weight ranged from 0.012 μg/g in Indian squids to 0.603 μg/g in blood cockles. Average percentages of inorganic arsenic with respect to total arsenic ranged from 1.2% in banana prawns to 7.3% in blood cockles. Blood cockles also exhibited the highest levels of total arsenic (5.26 ± 2.01 μg/g) and inorganic arsenic (0.352 ± 0.148 μg/g). The levels of inorganic arsenic in the study samples were much lower than the Thai regulatory limit of 2 μg/g (wet wt) and hence are safe for human consumption. PMID:21375883

  7. Benzonphenone-type UV filters in urine of Chinese young adults: Concentration, source and exposure.

    PubMed

    Gao, Chong-Jing; Liu, Li-Yan; Ma, Wan-Li; Zhu, Ning-Zheng; Jiang, Ling; Li, Yi-Fan; Kannan, Kurunthachalam

    2015-08-01

    Benzophenone (BP)-type UV filters are commonly used in our daily life. 2-hydroxy-4-methoxy benzophenone (BP-3), 4-hydroxy benzophenone (4-HBP), 2,4-dihydroxy benzophenone (BP-1), 2,2',4,4'-tetrahydroxy benzophenone (BP-2) and 2,2'-dihydroxy-4-methoxy benzophenone (BP-8) were measured in urine samples from Chinese young adults. The results indicated that Chinese young adults were widely exposed to BP-3, BP-1, and 4-HBP, with the median concentrations of 0.55, 0.21, and 0.08 ng/mL, respectively. No significant difference was found between males and females, between urban and rural population. The correlations between urinary concentrations provided important indications for sources and metabolic pathways of target compounds. The estimated daily excretion doses of BP-3, 4-HBP, BP-1, BP-2 and BP-8 were 27.2, 2.24, 5.86, 0.76 and 0.30 ng/kg-bw/day, respectively. The ratio of exposure to excretion must be considered for the exposure assessment with chemicals based on urine measurement. This is the first nationwide study on BP-derivatives with young adults in China. PMID:25841211

  8. Osmolality urine test

    MedlinePlus

    ... and urine concentration. Osmolality is a more exact measurement of urine concentration than the urine specific gravity ... slightly among different laboratories. Some labs use different measurements or test different samples. Talk to your provider ...

  9. Resveratrol protects against arsenic trioxide-induced nephrotoxicity by facilitating arsenic metabolism and decreasing oxidative stress.

    PubMed

    Yu, Meiling; Xue, Jiangdong; Li, Yijing; Zhang, Weiqian; Ma, Dexing; Liu, Lian; Zhang, Zhigang

    2013-06-01

    Arsenic trioxide (As(2)O(3)) is an environmental toxicant and a potent antineoplastic agent. Exposure to arsenic causes renal cancer. Resveratrol is a well-known polyphenolic compound that is reported to reduce As(2)O(3)-induced cardiotoxicity. The present study aimed to investigate the effect of resveratrol on As(2)O(3)-induced nephrotoxicity and arsenic metabolism. Chinese Dragon-Li cats were injected with 1 mg/kg As(2)O(3) on alternate days; resveratrol (3 mg/kg) was administered via the forearm vein 1 h before the As(2)O(3) treatment. On the sixth day, the cats were killed to determine the histological renal damage, renal function, the accumulation of arsenic, and antioxidant activities in the kidney. Urine samples were taken for arsenic speciation. In the resveratrol + As(2)O(3)-treated group, activities of glutathione peroxidase, catalase, and superoxide dismutase, the ratio of reduced glutathione to oxidized glutathione, the total arsenic concentrations, and the percentage of methylated arsenic in urine were significantly increased. The concentrations of renal malondialdehyde, reactive oxygen species, 8-hydroxydeoxyguanosine, serum creatinine, blood urea nitrogen, and renal arsenic accumulation were significantly decreased and reduced renal morphologic injury was observed compared with the As(2)O(3)-treated group. These results demonstrate that resveratrol could significantly scavenge reactive oxygen species, inhibit As(2)O(3)-induced oxidative damage, and significantly attenuate the accumulation of arsenic in renal tissues by facilitating As(2)O(3) metabolism. These data suggest that use of resveratrol as postremission therapy for acute promyelocytic leukemia as well as adjunctive therapy in patients with exposure to arsenic may decrease arsenic nephrotoxicity. PMID:23471352

  10. Concentration of arsenic in water, sediments and fish species from naturally contaminated rivers.

    PubMed

    Rosso, Juan José; Schenone, Nahuel F; Pérez Carrera, Alejo; Fernández Cirelli, Alicia

    2013-04-01

    Arsenic (As) may occur in surface freshwater ecosystems as a consequence of both natural contamination and anthropogenic activities. In this paper, As concentrations in muscle samples of 10 fish species, sediments and surface water from three naturally contaminated rivers in a central region of Argentina are reported. The study area is one of the largest regions in the world with high As concentrations in groundwater. However, information of As in freshwater ecosystems and associated biota is scarce. An extensive spatial variability of As concentrations in water and sediments of sampled ecosystems was observed. Geochemical indices indicated that sediments ranged from mostly unpolluted to strongly polluted. The concentration of As in sediments averaged 6.58 μg/g ranging from 0.23 to 59.53 μg/g. Arsenic in sediments barely followed (r = 0.361; p = 0.118) the level of contamination of water. All rivers showed high concentrations of As in surface waters, ranging from 55 to 195 μg/L. The average concentration of As in fish was 1.76 μg/g. The level of contamination with As differed significantly between species. Moreover, the level of bioaccumulation of As in fish species related to the concentration of As in water and sediments also differed between species. Whilst some fish species seemed to be able to regulate the uptake of this metalloid, the concentration of As in the large catfish Rhamdia quelen mostly followed the concentration of As in abiotic compartments. The erratic pattern of As concentrations in fish and sediments regardless of the invariable high levels in surface waters suggests the existence of complex biogeochemical processes behind the distribution patterns of As in these naturally contaminated ecosystems. PMID:23179469

  11. Bacterial community succession during the enrichment of chemolithoautotrophic arsenite oxidizing bacteria at high arsenic concentrations.

    PubMed

    Le Nguyen, Ai; Sato, Akiko; Inoue, Daisuke; Sei, Kazunari; Soda, Satoshi; Ike, Michihiko

    2012-01-01

    To generate cost-effective technologies for the removal of arsenic from water, we developed an enrichment culture of chemolithoautotrophic arsenite oxidizing bacteria (CAOs) that could effectively oxidize widely ranging concentrations of As(III) to As(V). In addition, we attempted to elucidate the enrichment process and characterize the microbial composition of the enrichment culture. A CAOs enrichment culture capable of stably oxidizing As(lII) to As(V) was successfully constructed through repeated batch cultivation for more than 700 days, during which time the initial As(III) concentrations were increased in a stepwise manner from 1 to 10-12 mmol/L. As(III) oxidation activity of the enrichment culture gradually improved, and 10-12 mmol/L As(III) was almost completely oxidized within four days. Terminal restriction fragment length polymorphism analysis showed that the dominant bacteria in the enrichment culture varied drastically during the enrichment process depending on the As(III) concentration. Isolation and characterization of bacteria in the enrichment culture revealed that the presence of multiple CAOs with various As(III) oxidation abilities enabled the culture to adapt to a wide range of As(III) concentrations. The CAOs enrichment culture constructed here may be useful for pretreatment of water from which arsenic is being removed. PMID:23534210

  12. Arsenic Concentrations and Speciation in Blackwaters of the Great Dismal Swamp, Southeastern Virginia, USA

    NASA Astrophysics Data System (ADS)

    Batista, F.; Cutter, G. A.; Cutter, L. S.; Johannesson, K. H.

    2001-12-01

    Arsenic concentrations and speciation were measured in surface water samples collected from the Great Dismal Swamp in southeastern Virginia, USA using, selective hydride generation and atomic adsorption spectroscopy. Phosphate concentrations were also determined in these surface waters using the molybdate blue spectrophotometric method. Great Dismal Swamp waters are characterized as blackwaters, having high dissolved organic carbon (DOC) concentrations that range from 445 iM to 6304 iM, with a mean (n = 12) of 3282+/-2165 iM. pH ranged from 4.30 to 6.42, with a mean (n = 12) of 5.14+/-1.04. The inflow waters (Cypress and Pocosin Swamps) have higher pH's (mean of 6.32+/- 0.10 for n = 5) than waters from Lake Drummond and its immediate inflow and outflow ditches, where the mean pH (n = 7) is 4.30+/-0.04. Total arsenic concentrations in Great Dismal Swamp waters range from 2.18 nM up to 21.42 nM. Phosphate concentrations range from 0.18 iM to 1.42 iM, but are not correlated with arsenate concentrations (r 2 = 0.004). Arsenate typically predominates in oxic, surface waters. However, As(III) was detected at higher concentrations (1 - 17.72 nM, mean value of 8.00+/-5.80 nM for all samples, n = 10) in half of the samples from the lower part of the watershed (i.e., mainly in Lake Drummond and its outflow, the Feeder Ditch; mean of 12.89+/-2.89 nM, n = 5). No methylated species were detected in the selected samples analyzed for organoarsenical forms (monomethyl and dimethyl arsenicals) A strong correlation exists between dissolved As(III) concentrations and dissolved organic carbon concentrations (r2 = 0.88), and this correlation is significant at greater than the 99% confidence level. The high abundance of As(III) in comparison to both thermodynamic predictions, and other surface waters, suggests that either there is a strong anoxic source of this form, or that the high DOC concentrations stabilize it via complexation and slower rate of oxidation.

  13. Urinary arsenic speciation profile in ethnic group of the Atacama desert (Chile) exposed to variable arsenic levels in drinking water.

    PubMed

    Yáñez, Jorge; Mansilla, Héctor D; Santander, I Paola; Fierro, Vladimir; Cornejo, Lorena; Barnes, Ramón M; Amarasiriwardena, Dulasiri

    2015-01-01

    Ethnic groups from the Atacama Desert (known as Atacameños) have been exposed to natural arsenic pollution for over 5000 years. This work presents an integral study that characterizes arsenic species in water used for human consumption. It also describes the metabolism and arsenic elimination through urine in a chronically exposed population in northern Chile. In this region, water contained total arsenic concentrations up to 1250 μg L(-1), which was almost exclusively As(V). It is also important that this water was ingested directly from natural water sources without any treatment. The ingested arsenic was extensively methylated. In urine 93% of the arsenic was found as methylated arsenic species, such as monomethylarsonic acid [MMA(V)] and dimethylarsinic acid [DMA(V)]. The original ingested inorganic species [As(V)], represent less than 1% of the total urinary arsenic. Methylation activity among individuals can be assessed by measuring primary [inorganic As/methylated As] and secondary methylation [MMA/DMA] indexes. Both methylation indexes were 0.06, indicating a high biological converting capability of As(V) into MMA and then MMA into DMA, compared with the control population and other arsenic exposed populations previously reported. PMID:25438126

  14. Concentrations of nandrolone metabolites in urine after the therapeutic administration of an ophthalmic solution.

    PubMed

    Avois, Lidia; Mangin, Patrice; Saugy, Martial

    2007-05-01

    Nandrolone, an anabolic steroid, is used for the treatment of several diseases and is available in various pharmaceutical formulations. The most widely used pharmaceutical formulation is Deca-Durabolin, but other products, such as Keratyl eye drops solution, are also currently administered. Nandrolone is one of the most abused anabolic steroid in sports. Analyses for this anabolic steroid according to the World Anti-Doping Agency (WADA) protocol are based on the identification of the nandrolone two main urinary metabolites which, in humans, are glucuronides of 19-norandrosterone and 19-noretiocholanolone. A positive cut off limit of 2 ng/mL has been set by the anti-doping code for the first metabolite, 19-norandrosterone. In this preliminary study, an eye drops solution (Keratyl) containing a therapeutic dose of a nandrolone sodium sulphate was administered to several male volunteers during 3 days and urines were collected during 3 weeks. Surprisingly, contrary to all expectations, the urinary concentrations measured in urines reached 450 ng/mL and 70 ng/mL for norandrosterone and noretiocholanolone, respectively. Moreover, concentration levels near to 2 ng/mL were found, more than 2 weeks after the last administration, depending on individual metabolism. Inter-variability as well as intra-variability of nandrolone excretion kinetic, regarding this particular administration mode, were also evaluated. Quantification of nandrolone metabolites was performed by GC-MS. The method was previously validated in terms of specificity, precision, linearity, LOD, LOQ, robustness, accuracy and the expanded uncertainty was also evaluated. PMID:17391892

  15. Iodine Concentration in Breastmilk and Urine among Lactating Women of Bhaktapur, Nepal.

    PubMed

    Henjum, Sigrun; Kjellevold, Marian; Ulak, Manjeswori; Chandyo, Ram K; Shrestha, Prakash S; Frøyland, Livar; Strydom, Emmerentia E; Dhansay, Muhammad A; Strand, Tor A

    2016-01-01

    Adequate iodine concentration in breastmilk (BMIC) is essential for optimal neonatal thyroid hormone synthesis and neurological development in breastfed infants. For many decades, iodine deficiency has been a public health problem in Nepal. However, recently, excessive iodine intakes among Nepali infants have been reported. This study aimed to measure BMIC and urinary iodine concentration (UIC) among lactating women in a peri-urban area of Nepal. Iodine concentration was measured in spot urine (n = 485) and breastmilk samples (n = 291) of 500 randomly selected lactating women. The median (p25, p75) BMIC and median UIC were 250 (130, 370) µg/L and 230 (135-377) µg/L, respectively. Around 82% had BMIC > 100 µg/L, 61% had BMIC > 200 µg/L and 81% had UIC > 100 µg/L, 37% had >300 µg/L and 20% had >500 µg/L. In multiple linear regression models, time since birth (β 3.0, 95% CI (0.2, 5.0)) and UIC (β 1.0, 95% CI (0.1, 2.0)) were associated with BMIC, explaining 26% of the variance. A large proportion of the women had adequate BMIC and UIC; however, a subset had high iodine concentrations. These findings emphasize the importance of carefully monitoring iodine intake to minimize the risk of iodine excess and subsequently preventing transient iodine-induced hypothyroidism in breastfed infants. PMID:27136582

  16. Concentrations of phthalates and DINCH metabolites in pooled urine from Queensland, Australia.

    PubMed

    Gomez Ramos, M J; Heffernan, A L; Toms, L M L; Calafat, A M; Ye, X; Hobson, P; Broomhall, S; Mueller, J F

    2016-03-01

    Dialkyl phthalate esters (phthalates) are ubiquitous chemicals used extensively as plasticizers, solvents and adhesives in a range of industrial and consumer products. 1,2-Cyclohexane dicarboxylic acid, diisononyl ester (DINCH) is a phthalate alternative introduced due to a more favourable toxicological profile, but exposure is largely uncharacterised. The aim of this study was to provide the first assessment of exposure to phthalates and DINCH in the general Australian population. De-identified urine specimens stratified by age and sex were obtained from a community-based pathology laboratory and pooled (n=24 pools of 100). Concentrations of free and total species were measured using online solid phase extraction isotope dilution high performance liquid chromatography tandem mass spectrometry. Concentrations ranged from 2.4 to 71.9ng/mL for metabolites of di(2-ethylhexyl)phthalate, and from <0.5 to 775ng/mL for all other metabolites. Our data suggest that phthalate metabolites concentrations in Australia were at least two times higher than in the United States and Germany; and may be related to legislative differences among countries. DINCH metabolite concentrations were comparatively low and consistent with the limited data available. Ongoing biomonitoring among the general Australian population may help assess temporal trends in exposure and assess the effectiveness of actions aimed at reducing exposures. PMID:26760715

  17. Iodine Concentration in Breastmilk and Urine among Lactating Women of Bhaktapur, Nepal

    PubMed Central

    Henjum, Sigrun; Kjellevold, Marian; Ulak, Manjeswori; Chandyo, Ram K.; Shrestha, Prakash S.; Frøyland, Livar; Strydom, Emmerentia E.; Dhansay, Muhammad A.; Strand, Tor A.

    2016-01-01

    Adequate iodine concentration in breastmilk (BMIC) is essential for optimal neonatal thyroid hormone synthesis and neurological development in breastfed infants. For many decades, iodine deficiency has been a public health problem in Nepal. However, recently, excessive iodine intakes among Nepali infants have been reported. This study aimed to measure BMIC and urinary iodine concentration (UIC) among lactating women in a peri-urban area of Nepal. Iodine concentration was measured in spot urine (n = 485) and breastmilk samples (n = 291) of 500 randomly selected lactating women. The median (p25, p75) BMIC and median UIC were 250 (130, 370) µg/L and 230 (135–377) µg/L, respectively. Around 82% had BMIC > 100 µg/L, 61% had BMIC > 200 µg/L and 81% had UIC > 100 µg/L, 37% had >300 µg/L and 20% had >500 µg/L. In multiple linear regression models, time since birth (β 3.0, 95% CI (0.2, 5.0)) and UIC (β 1.0, 95% CI (0.1, 2.0)) were associated with BMIC, explaining 26% of the variance. A large proportion of the women had adequate BMIC and UIC; however, a subset had high iodine concentrations. These findings emphasize the importance of carefully monitoring iodine intake to minimize the risk of iodine excess and subsequently preventing transient iodine-induced hypothyroidism in breastfed infants. PMID:27136582

  18. Phthalate metabolites in urine of Chinese young adults: Concentration, profile, exposure and cumulative risk assessment.

    PubMed

    Gao, Chong-Jing; Liu, Li-Yan; Ma, Wan-Li; Ren, Nan-Qi; Guo, Ying; Zhu, Ning-Zheng; Jiang, Ling; Li, Yi-Fan; Kannan, Kurunthachalam

    2016-02-01

    Phthalates are widely used in consumer products. People are frequently exposed to phthalates due to their applications in daily life. In this study, 14 phthalate metabolites were analyzed in 108 urine samples collected from Chinese young adults using high-performance liquid chromatography-tandem mass spectrometry. The total concentrations of 14 phthalate metabolites ranged from 71.3 to 2670 ng/mL, with the geometric mean concentration of 306 ng/mL. mBP and miBP were the two most abundant compounds, accounting for 48% of the total concentrations. Principal component analysis suggested two major sources of phthalates: one dominated by the DEHP metabolites and one by the group of mCPP, mBP and miBP metabolites. The estimated daily intakes of DMP, DEP, DBP, DiBP and DEHP were 1.68, 2.14, 4.12, 3.52 and 1.26-2.98 μg/kg-bw/day, respectively. In a sensitivity analysis, urinary concentration and body weight were the most influential variables for human exposure estimation. Furthermore, cumulative risk for hazard quotient (HQ) and hazard index (HI) were evaluated. Nearly half of Chinese young adults had high HI values exceeding the safe threshold. This is the first study on the occurrence and human exposure to urinary phthalate metabolites with Chinese young adults. PMID:26575634

  19. Relationship Not Found Between Blood and Urine Concentrations and Body Mass Index in Humans With Apparently Adequate Boron Status.

    PubMed

    Koc, Fulya; Aysan, Erhan; Hasbahceci, Mustafa; Arpaci, Beyza; Gecer, Salih; Demirci, Selami; Sahin, Fikrettin

    2016-06-01

    The impact of boron on the development of obesity remains controversial in the analysis of experimental and clinical data. The objective of this study was to investigate the relationship between blood and urine boron concentrations and obesity in normal, overweight, obese, and morbidly obese subjects in different age groups. A total of 105 subjects were categorized into 12 groups based on body mass index and three different age levels: as young adult (18 to 34 years old), adult (35 to 54 years old), and older adult (greater than 55 years old). Age, gender, body mass index, and blood and urine boron concentrations were recorded for each subject. There were 50 women and 55 men, with a mean age of 44.63 ± 17.9 years. Blood and urine boron concentrations were similar among the groups (p = 0.510 and p = 0.228, respectively). However, a positive correlation between age and blood boron concentration (p = 0.001) was detected in contrast to the presence of a negative correlation between age and urine boron concentration (p = 0.027). Multiple linear regression analysis showed that there was no significant relationship between gender, age, and quantitative values of body mass index for each subject, and blood and urine boron concentrations. Although the relationship between boron and obesity has not been confirmed, changes of blood and urine boron concentrations with age may have some physiologic sequences to cause obesity. PMID:26458903

  20. Use of a pre-analysis osmolality normalisation method to correct for variable urine concentrations and for improved metabolomic analyses.

    PubMed

    Chetwynd, Andrew J; Abdul-Sada, Alaa; Holt, Stephen G; Hill, Elizabeth M

    2016-01-29

    Metabolomics analyses of urine have the potential to provide new information on the detection and progression of many disease processes. However, urine samples can vary significantly in total solute concentration and this presents a challenge to achieve high quality metabolomic datasets and the detection of biomarkers of disease or environmental exposures. This study investigated the efficacy of pre- and post-analysis normalisation methods to analyse metabolomic datasets obtained from neat and diluted urine samples from five individuals. Urine samples were extracted by solid phase extraction (SPE) prior to metabolomic analyses using a sensitive nanoflow/nanospray LC-MS technique and the data analysed by principal component analyses (PCA). Post-analysis normalisation of the datasets to either creatinine or osmolality concentration, or to mass spectrum total signal (MSTS), revealed that sample discrimination was driven by the dilution factor of urine rather than the individual providing the sample. Normalisation of urine samples to equal osmolality concentration prior to LC-MS analysis resulted in clustering of the PCA scores plot according to sample source and significant improvements in the number of peaks common to samples of all three dilutions from each individual. In addition, the ability to identify discriminating markers, using orthogonal partial least squared-discriminant analysis (OPLS-DA), was greatly improved when pre-analysis normalisation to osmolality was compared with post-analysis normalisation to osmolality and non-normalised datasets. Further improvements for peak area repeatability were observed in some samples when the pre-analysis normalisation to osmolality was combined with a post-analysis mass spectrum total useful signal (MSTUS) or MSTS normalisation. Future adoption of such normalisation methods may reduce the variability in metabolomics analyses due to differing urine concentrations and improve the discovery of discriminating metabolites

  1. Transference factors as a tool for the estimation of arsenic milk concentration.

    PubMed

    Pérez-Carrera, Alejo; Alvarez-Gonçalvez, Cristina V; Fernández-Cirelli, Alicia

    2016-08-01

    The Chaco Pampean Plain of central Argentina represents one of the largest regions with high levels of arsenic (As) in groundwater. The aim of this study was the assessment of a biotransference factor (BTF) as a tool for the estimation of As concentration in cow's milk from As drinking water concentration. Total As content in livestock drinking water, soil, forage, and milk was determined in farms located in an area of high As groundwater, in order to analyze the relation between As uptake and its transfer to milk. The concentrations of As in milk ranged from 0.5 to 8.0 μg/L. From the results obtained, drinking water may be considered the main source of exposure to As, and the biotransference factor for milk ranges from 1.5 × 10(-5) to 4.3 × 10(-4). Therefore, BTF provides a simple tool for the estimation of arsenic levels in milk through the As livestock drinking water content. PMID:27155835

  2. Assessing arsenic exposure in households using bottled water or point-of-use treatment systems to mitigate well water contamination.

    PubMed

    Smith, Andrew E; Lincoln, Rebecca A; Paulu, Chris; Simones, Thomas L; Caldwell, Kathleen L; Jones, Robert L; Backer, Lorraine C

    2016-02-15

    There is little published literature on the efficacy of strategies to reduce exposure to residential well water arsenic. The objectives of our study were to: 1) determine if water arsenic remained a significant exposure source in households using bottled water or point-of-use treatment systems; and 2) evaluate the major sources and routes of any remaining arsenic exposure. We conducted a cross-sectional study of 167 households in Maine using one of these two strategies to prevent exposure to arsenic. Most households included one adult and at least one child. Untreated well water arsenic concentrations ranged from <10 μg/L to 640 μg/L. Urine samples, water samples, daily diet and bathing diaries, and household dietary and water use habit surveys were collected. Generalized estimating equations were used to model the relationship between urinary arsenic and untreated well water arsenic concentration, while accounting for documented consumption of untreated water and dietary sources. If mitigation strategies were fully effective, there should be no relationship between urinary arsenic and well water arsenic. To the contrary, we found that untreated arsenic water concentration remained a significant (p ≤ 0.001) predictor of urinary arsenic levels. When untreated water arsenic concentrations were <40 μg/L, untreated water arsenic was no longer a significant predictor of urinary arsenic. Time spent bathing (alone or in combination with water arsenic concentration) was not associated with urinary arsenic. A predictive analysis of the average study participant suggested that when untreated water arsenic ranged from 100 to 500 μg/L, elimination of any untreated water use would result in an 8%-32% reduction in urinary arsenic for young children, and a 14%-59% reduction for adults. These results demonstrate the importance of complying with a point-of-use or bottled water exposure reduction strategy. However, there remained unexplained, water-related routes of exposure

  3. Chemical concentration measurement in blood serum and urine samples using liquid-core optical fiber Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Qi, Dahu; Berger, Andrew J.

    2007-04-01

    We report measurements of chemical concentrations in clinical blood serum and urine samples using liquid-core optical fiber (LCOF) Raman spectroscopy to increase the collected signal strength. Both Raman and absorption spectra were acquired in the near-infrared region using the LCOF geometry. Spectra of 71 blood serum and 61 urine samples were regressed via partial least squares against reference analyzer values. Significant correlation was found between predicted and reference concentrations for 13 chemicals. Using absorption data to normalize the LCOF enhancement made the results more accurate. The experimental geometry is well suited for high-volume and automated chemical analysis of clear biofluids.

  4. Concentration of lead, cadmium, mercury and arsenic in leg skeletal muscles of three species of wild birds.

    PubMed

    Gasparik, Jozef; Vladarova, Denisa; Capcarova, Marcela; Smehyl, Peter; Slamecka, Jaroslav; Garaj, Peter; Stawarz, Robert; Massanyi, Peter

    2010-01-01

    The aim of this study was to monitor accumulation of lead, cadmium, mercury and arsenic in leg skeletal muscle of some wild birds from selected areas of Slovakia and the correlations among the heavy metals. A total of 160 wild birds representing 3 species-Eurasian coot (Fulica atra) (n = 24), mallard (Anas platyrhynchos) (n = 68) and pheasant (Phasianus colchicus) (n = 68) were involved for analyses. Concentrations of heavy metals from samples were measured using atomic absorption spectrophotometry (AAS). Metal concentrations are expressed as mg/kg wet weight. The order of lead and arsenic concentrations in muscles of wild birds were as follows: mallard > pheasant > Eurasian coot; in the case of arsenic the differences were significant (P < 0.05). Muscle of Eurasian coot accumulated the highest concentration of cadmium and mercury followed by pheasant and the lowest in mallard, but differences were not significant (P > 0.05). Moderately negative correlations were noted in pheasant between cadmium and mercury (r = -0.39), and between mercury and arsenic (r = -0.45). Moderately negative correlation between cadmium and arsenic (r = -0.31) was found for Eurasian coot. PMID:20397088

  5. Reagent- and separation-free measurements of urine creatinine concentration using stamping surface enhanced Raman scattering (S-SERS)

    PubMed Central

    Li, Ming; Du, Yong; Zhao, Fusheng; Zeng, Jianbo; Mohan, Chandra; Shih, Wei-Chuan

    2015-01-01

    We report a novel reagent- and separation-free method for urine creatinine concentration measurement using stamping surface enhanced Raman scattering (S-SERS) technique with nanoporous gold disk (NPGD) plasmonic substrates, a label-free, multiplexed molecular sensing and imaging technique recently developed by us. The performance of this new technology is evaluated by the detection and quantification of creatinine spiked in three different liquids: creatinine in water, mixture of creatinine and urea in water, and creatinine in artificial urine within physiologically relevant concentration ranges. Moreover, the potential application of our method is demonstrated by creatinine concentration measurements in urine samples collected from a mouse model of nephritis. The limit of detection of creatinine was 13.2 nM (0.15 µg/dl) and 0.68 mg/dl in water and urine, respectively. Our method would provide an alternative tool for rapid, cost-effective, and reliable urine analysis for non-invasive diagnosis and monitoring of renal function. PMID:25798309

  6. Urine specific gravity test

    MedlinePlus

    Urine specific gravity is a laboratory test that shows the concentration of all chemical particles in the urine. ... changes to will tell the provider the specific gravity of your urine. The dipstick test gives only ...

  7. Biomonitoring for chromium and arsenic in timber treatment plant workers exposed to CCA wood Preservatives.

    PubMed

    Cocker, J; Morton, J; Warren, N; Wheeler, J P; Garrod, A N I

    2006-07-01

    This study reports a survey of occupational exposure to copper chrome arsenic (CCA) based wood preservatives during vacuum pressure timber impregnation. The survey involved biological monitoring based on analysis of chromium and arsenic in urine samples collected from UK workers. The aim of the study was to determine the extent of occupational exposure to arsenic and chromium in the UK timber treatment industry. The objectives were to collect and analyse urine samples from as many workers as possible, where CCA wood preservatives might be used, at 6 monthly intervals for 2 years. In addition, to investigate day-to-day variations in urinary excretion of chrome and arsenic by collecting and analysing three samples a week for 3 weeks in subsets of workers and controls (people not occupationally exposed). All urine samples were analysed for chromium and inorganic arsenic. To investigate any residual interference every sample was accompanied by a short questionnaire about recent consumption of seafood and smoking. The analytical methods for arsenic used a hydride generation technique to reduce interference from dietary sources of arsenic and also a technique that would measure total arsenic concentration in urine. The main findings show that workers exposed to CCA wood preservatives have concentrations of inorganic arsenic and chromium in urine that are significantly higher than those from non-occupationally exposed people but below biological monitoring guidance values that would indicate inhalation exposure at UK occupational exposure limits for chromium and arsenic. The effects of consumption of seafood on urinary arsenic were not significant using the hydride generation method for inorganic arsenic but were significant if 'total' arsenic was measured. The 'total' arsenic method could not distinguish CCA workers from controls and is clearly unsuitable for assessment of occupational exposure to arsenic. There was a significant increase in the urinary concentration of

  8. Inorganic arsenic exposure and type 2 diabetes mellitus in Mexico

    SciTech Connect

    Coronado-Gonzalez, Jose Antonio; Razo, Luz Maria del; Garcia-Vargas, Gonzalo; Sanmiguel-Salazar, Francisca; Escobedo-de la Pena, Jorge . E-mail: jorgeep@servidor.unam.mx

    2007-07-15

    Inorganic arsenic exposure in drinking water has been recently related to diabetes mellitus. To evaluate this relationship the authors conducted in 2003, a case-control study in an arseniasis-endemic region from Coahuila, a northern state of Mexico with a high incidence of diabetes. The present analysis includes 200 cases and 200 controls. Cases were obtained from a previous cross-sectional study conducted in that region. Diagnosis of diabetes was established following the American Diabetes Association criteria, with two fasting glucose values {>=}126 mg/100 ml ({>=}7.0 mmol/l) or a history of diabetes treated with insulin or oral hypoglycemic agents. The next subject studied, subsequent to the identification of a case in the cross-sectional study was taken as control. Inorganic arsenic exposure was measured through total arsenic concentrations in urine, measured by hydride-generation atomic absorption spectrophotometry. Subjects with intermediate total arsenic concentration in urine (63.5-104 {mu}g/g creatinine) had two-fold higher risk of having diabetes (odds ratio=2.16; 95% confidence interval: 1.23, 3.79), but the risk was almost three times greater in subjects with higher concentrations of total arsenic in urine (odds ratio=2.84; 95% confidence interval: 1.64, 4.92). This data provides additional evidence that inorganic arsenic exposure may be diabetogenic.

  9. High soil and groundwater arsenic levels induce high body arsenic loads, health risk and potential anemia for inhabitants of northeastern Iran.

    PubMed

    Taheri, Masumeh; Mehrzad, Jalil; Mahmudy Gharaie, Mohamad Hosein; Afshari, Reza; Dadsetan, Ahmad; Hami, Shakiba

    2016-04-01

    Arsenic bioavailability in rock, soil and water resources is notoriously hazardous. Geogenic arsenic enters the body and adversely affects many biochemical processes in animals and humans, posing risk to public health. Chelpu is located in NE Iran, where realgar, orpiment and pyrite mineralization is the source of arsenic in the macroenvironment. Using cluster random sampling strategy eight rocks, 23 soils, 12 drinking water resources, 36 human urine and hair samples and 15 adult sheep urine and wool samples in several large-scale herds in the area were randomly taken for quantification of arsenic in rock/soil/water, wool/hair/urine. Arsenic levels in rock/soil/water and wool/hair/urine were measured using inductively coupled plasma spectroscopy and atomic absorption spectrophotometry, respectively. While arsenic levels in rocks, soils and water resources hazardously ranged 9.40-25,873.3 mg kg(-1), 7.10-1448.80 mg kg(-1) and 12-606 μg L(-1), respectively, arsenic concentrations in humans' hair and urine and sheep's wool and urine varied from 0.37-1.37 μg g(-1) and 9-271.4 μg L(-1) and 0.3-3.11 μg g(-1) and 29.1-1015 μg L(-1), respectively. Local sheep and human were widely sick and slightly anemic. Hematological examination of the inhabitants revealed that geogenic arsenic could harm blood cells, potentially resulting in many other hematoimmunological disorders including cancer. The findings warn widespread exposure of animals and human in this agroecologically and geopolitically important region (i.e., its proximity with Afghanistan, Pakistan and Turkmenistan) and give a clue on how arsenic could induce infectious and non-infectious diseases in highly exposed human/animals. PMID:26100324

  10. Evaluation of Urine Aquaporin 1 and Perilipin 2 Concentrations as Biomarkers to Screen for Renal Cell Carcinoma

    PubMed Central

    Morrissey, Jeremiah J.; Mellnick, Vincent M.; Luo, Jinquin; Siegel, Marilyn J.; Figenshau, R. Sherburne; Bhayani, Sam; Kharasch, Evan D.

    2015-01-01

    IMPORTANCE Early detection of small asymptomatic kidney tumors presages better patient outcome. Incidental discovery of asymptomatic renal tumors by abdominal imaging is expensive and cannot reliably distinguish benign from malignant tumors. OBJECTIVE This investigation evaluated the clinical utility, sensitivity and specificity of urine aquaporin-1 (AQP1) and perilipin-2 (PLIN2) concentrations as unique noninvasive biomarkers to diagnose malignant clear cell or papillary renal cell carcinoma (RCC) in a screening paradigm. DESIGN, SETTING, AND PARTICIPANTS Urine samples were obtained from 720 patients undergoing routine abdominal CT (screening population), 80 healthy controls and 19 patients with pathologically confirmed RCC. Urine AQP1 and PLIN2 concentrations were measured by sensitive and specific ELISA and Western blot procedures, respectively. MAIN OUTCOMES AND MEASURES AQP1 and PLIN2 were measured prospectively in a screening paradigm in an otherwise asymptomatic population. The absence or presence of a renal mass and of RCC, were verified by abdominal computed tomography (CT) and by post-nephrectomy pathologic diagnosis, respectively. RESULTS Median urine AQP1 and PLIN2 concentrations in patients with known RCC were more than 12-fold higher (P<0.0001 each) than controls and the screening population. The area under the receiver operating characteristic curve for urine AQP1 and PLIN2 concentrations individually or in combination was ≥0.92, with ≥85% sensitivity and ≥87% specificity compared with control or screening patients. Three of the 720 screening patients had biomarker concentrations suggestive of RCC and were found to have an imaged renal mass by CT. Two patients, evaluated further, had RCC. CONCLUSIONS AND RELEVANCE These results demonstrate the clinical utility, specificity and sensitivity of urine AQP1 and PLIN2 to diagnose RCC. These novel tumor-specific proteins have high clinical validity and substantial potential as specific diagnostic and

  11. Arsenic in groundwater in six districts of West Bengal, India.

    PubMed

    Das, D; Samanta, G; Mandal, B K; Roy Chowdhury, T; Chanda, C R; Chowdhury, P P; Basu, G K; Chakraborti, D

    1996-03-01

    Arsenic in groundwater above the WHO maximum permissible limit of 0.05 mg l(-1) has been found in six districts of West Bengal covering an area of 34 000 km(2) with a population of 30 million. At present, 37 administrative blocks by the side of the River Ganga and adjoining areas are affected. Areas affected by arsenic contamination in groundwater are all located in the upper delta plain, and are mostly in the abandoned meander belt. More than 800 000 people from 312 villages/wards are drinking arsenic contaminated water and amongst them at least 175 000 people show arsenical skin lesions. Thousands of tube-well water in these six districts have been analysed for arsenic species. Hair, nails, scales, urine, liver tissue analyses show elevated concentrations of arsenic in people drinking arsenic-contaminated water for a longer period. The source of the arsenic is geological. Bore-hole sediment analyses show high arsenic concentrations in only few soil layers which is found to be associated with iron-pyrites. Various social problems arise due to arsenical skin lesions in these districts. Malnutrition, poor socio-economic conditions, illiteracy, food habits and intake of arsenic-contaminated water for many years have aggravated the arsenic toxicity. In all these districts, major water demands are met from groundwater and the geochemical reaction, caused by high withdrawal of water may be the cause of arsenic leaching from the source. If alternative water resources are not utilised, a good percentage of the 30 million people of these six districts may suffer from arsenic toxicity in the near future. PMID:24194364

  12. Intervention trial to assess arsenic exposure from food crops in Bangladesh.

    PubMed

    Ranmuthugala, Geetha; Milton, Abul H; Smith, Wayne T; Ng, Jack C; Sim, Malcolm; Dear, Keith; Caldwell, Bruce K

    2004-04-01

    The authors assessed the contribution of food irrigated with arsenic-contaminated water to human exposure to arsenic in Bangladesh. An intervention trial was conducted in a village in the Jessore District of Bangladesh, where irrigation water had been field-tested in March 2000 and was found to contain arsenic with concentrations ranging from 100 to 500 microg/l. In May 2000, a random sample of 63 households was selected from the village, and 1 eligible person from each household was recruited to the study and randomized to an intervention or control group. The intervention group received food purchased from a village where irrigation water was found to contain < 10 microg/l arsenic. The control group received food purchased from markets in the study village, where irrigation water was found to contain > 100 microg/l arsenic. Pre- and postintervention urine samples were collected for urinary arsenic speciation assays. Preintervention, the mean urinary total arsenic concentrations were 139.25 microg/l and 129.15 microg/l for the intervention and control groups, respectively. These concentrations did not change significantly following intervention. Arsenic concentrations in samples of selected raw and cooked foods from the low-contamination area did not contain less arsenic than samples from the high-contamination area. Further studies to investigate the arsenic content of food grown in areas with high and low arsenic contamination of irrigation water are recommended. PMID:16189994

  13. Concentration of lead, mercury, cadmium, aluminum, arsenic and manganese in umbilical cord blood of Jamaican newborns.

    PubMed

    Rahbar, Mohammad H; Samms-Vaughan, Maureen; Dickerson, Aisha S; Hessabi, Manouchehr; Bressler, Jan; Desai, Charlene Coore; Shakespeare-Pellington, Sydonnie; Reece, Jody-Ann; Morgan, Renee; Loveland, Katherine A; Grove, Megan L; Boerwinkle, Eric

    2015-05-01

    The objective of this study was to characterize the concentrations of lead, mercury, cadmium, aluminum, and manganese in umbilical cord blood of Jamaican newborns and to explore the possible association between concentrations of these elements and certain birth outcomes. Based on data from 100 pregnant mothers and their 100 newborns who were enrolled from Jamaica in 2011, the arithmetic mean (standard deviation) concentrations of cord blood lead, mercury, aluminum, and manganese were 0.8 (1.3 μg/dL), 4.4 (2.4 μg/L), 10.9 (9.2 μg/L), and 43.7 (17.7 μg/L), respectively. In univariable General Linear Models, the geometric mean cord blood aluminum concentration was higher for children whose mothers had completed their education up to high school compared to those whose mothers had any education beyond high school (12.2 μg/L vs. 6.4 μg/L; p < 0.01). After controlling for maternal education level and socio-economic status (through ownership of a family car), the cord blood lead concentration was significantly associated with head circumference (adjusted p < 0.01). Our results not only provide levels of arsenic and the aforementioned metals in cord blood that could serve as a reference for the Jamaican population, but also replicate previously reported significant associations between cord blood lead concentrations and head circumference at birth in other populations. PMID:25915835

  14. Concentration of Lead, Mercury, Cadmium, Aluminum, Arsenic and Manganese in Umbilical Cord Blood of Jamaican Newborns

    PubMed Central

    Rahbar, Mohammad H.; Samms-Vaughan, Maureen; Dickerson, Aisha S.; Hessabi, Manouchehr; Bressler, Jan; Coore Desai, Charlene; Shakespeare-Pellington, Sydonnie; Reece, Jody-Ann; Morgan, Renee; Loveland, Katherine A.; Grove, Megan L.; Boerwinkle, Eric

    2015-01-01

    The objective of this study was to characterize the concentrations of lead, mercury, cadmium, aluminum, and manganese in umbilical cord blood of Jamaican newborns and to explore the possible association between concentrations of these elements and certain birth outcomes. Based on data from 100 pregnant mothers and their 100 newborns who were enrolled from Jamaica in 2011, the arithmetic mean (standard deviation) concentrations of cord blood lead, mercury, aluminum, and manganese were 0.8 (1.3 μg/dL), 4.4 (2.4 μg/L), 10.9 (9.2 μg/L), and 43.7 (17.7 μg/L), respectively. In univariable General Linear Models, the geometric mean cord blood aluminum concentration was higher for children whose mothers had completed their education up to high school compared to those whose mothers had any education beyond high school (12.2 μg/L vs. 6.4 μg/L; p < 0.01). After controlling for maternal education level and socio-economic status (through ownership of a family car), the cord blood lead concentration was significantly associated with head circumference (adjusted p < 0.01). Our results not only provide levels of arsenic and the aforementioned metals in cord blood that could serve as a reference for the Jamaican population, but also replicate previously reported significant associations between cord blood lead concentrations and head circumference at birth in other populations. PMID:25915835

  15. Anomalously high arsenic concentration in a West Antarctic ice core and its relationship to copper mining in Chile

    NASA Astrophysics Data System (ADS)

    Schwanck, Franciele; Simões, Jefferson C.; Handley, Michael; Mayewski, Paul A.; Bernardo, Ronaldo T.; Aquino, Francisco E.

    2016-01-01

    Arsenic variability records are preserved in snow and ice cores and can be utilized to reconstruct air pollution history. The Mount Johns ice core (79°55‧S; 94°23‧W and 91.2 m depth) was collected from the West Antarctic Ice Sheet in the 2008/09 austral summer. Here, we report the As concentration variability as determined by 2137 samples from the upper 45 m of this core using ICP-SFMS (CCI, University of Maine, USA). The record covers approximately 125 years (1883-2008) showing a mean concentration of 4.32 pg g-1. The arsenic concentration in the core follows global copper mining evolution, particularly in Chile (the largest producer of Cu). From 1940 to 1990, copper-mining production increased along with arsenic concentrations in the MJ core, from 1.92 pg g-1 (before 1900) to 7.94 pg g-1 (1950). In the last two decades, environmental regulations for As emissions have been implemented, forcing smelters to treat their gases to conform to national and international environmental standards. In Chile, decontamination plants required by the government started operating from 1993 to 2000. Thereafter, Chilean copper production more than doubled while As emission levels declined, and the same reduction was observed in the Mount Johns ice core. After 1999, arsenic concentrations in our samples decreased to levels comparable to the period before 1900.

  16. ARSENIC URINARY METABOLITES: BIOMARKER STUDY

    EPA Science Inventory

    A population of adults and children with ranges of 10 to 300 g/l of arsenic in their drinking water will have their urine analyzed for total and speciated arsenic. A sample of 30 families will be selected based on tap water analyses for arsenic. This sample will comprise 50% adul...

  17. Variation in arsenic speciation and concentration in paddy rice related to dietary exposure.

    PubMed

    Williams, P N; Price, A H; Raab, A; Hossain, S A; Feldmann, J; Meharg, A A

    2005-08-01

    Ingestion of drinking water is not the only elevated source of arsenic to the diet in the Bengal Delta. Even at background levels, the arsenic in rice contributes considerably to arsenic ingestion in subsistence rice diets. We set out to survey As speciation in different rice varieties from different parts of the globe to understand the contribution of rice to arsenic exposure. Pot experiments were utilized to ascertain whether growing rice on As contaminated soil affected speciation and whether genetic variation accounted for uptake and speciation. USA long grain rice had the highest mean arsenic level in the grain at 0.26 microg As g(-1) (n = 7), and the highest grain arsenic value of the survey at 0.40 microg As g(-1). The mean arsenic level of Bangladeshi rice was 0.13 microg As g(-1) (n = 15). The main As species detected in the rice extract were AsIII, DMAV, and AsV. In European, Bangladeshi, and Indian rice 64 +/- 1% (n = 7), 80 +/- 3% (n = 11), and 81 +/- 4% (n = 15), respectively, of the recovered arsenic was found to be inorganic. In contrast, DMAV was the predominant species in rice from the USA, with only 42 +/- 5% (n = 12) of the arsenic being inorganic. Pot experiments show that the proportions of DMAV in the grain are significantly dependent on rice cultivar (p = 0.026) and that plant nutrient status is effected by arsenic exposure. PMID:16124284

  18. Respiratory effect related to exposure of different concentrations of arsenic in drinking water in West Bengal, India.

    PubMed

    Chattopadhyay, B P; Mukherjee, A K; Gangopadhyay, P K; Alam, J; Roychowdhury, A

    2010-04-01

    Arsenic toxicity due to drinking of arsenic contaminated water has been one of the worst environmental health hazards. High levels of arsenic have been reported in different natural water sources from West Bengal for more than two decades. Groundwater contamination by arsenic and its adverse effects on the health of a big population in nine districts of West Bengal have been reported. The problems found were mainly related to skin and respiratory, digestive, cardiovascular and nervous systems. The respiratory effects are largely confined to those who had the skin lesion. The present study was undertaken to evaluate the respiratory effects of exposure to different levels of arsenic in drinking water. The water samples were collected from different tube wells and wells in the study area. Analysis of arsenic was done by Atomic Absorption Spectrophotometer with hydride generation system. Based on the consumption of arsenic concentrations in drinking water the populations were divided into three categories, i.e., <=50 microg/L, >50 - <= 150 microg/L and >150 microg/L. Standard techniques of medical examination were applied to elicit signs and recorded in the pre-designed proforma. A written consent was taken from each subject for their voluntary participation in the study. 112 subjects were investigated. The respiratory effect was evaluated by measuring the pulmonary function test (PFT). Vital Capacity (VC) and Forced Vital Capacity (FVC) were measured by Spirovit-SP-10 (Schiller Health Care Pvt Ltd., Switzerland) and Peak Expiratory Flow Rate by Wrights Peak Flow Meter (Clement and Clarke, UK). The PFT values showed gradual decrement among the males following skin pigmentation, keratosis and arsenicosis. The respiratory function impairment among the male subjects found as restrictive type (26.41%), obstructive type (3.77%) and combined type (7.54%), whereas in females only the restrictive type of impairment (10.16%) was found. Restrictive type of impairments among the

  19. Airborne arsenic and urinary excretion of arsenic metabolites during boiler cleaning operations in a Slovak coal-fired power plant.

    PubMed Central

    Yager, J W; Hicks, J B; Fabianova, E

    1997-01-01

    Little information is available on the relationship between occupational exposure to inorganic arsenic in coal fly ash and urinary excretion of arsenic metabolites. This study ws undertaken in a coal-fired power plant in Slovakia during a routine maintenance outage. Arsenic was measured in the breathing zone of workers during 5 consecutive workdays, and urine samples were obtained for analysis of arsenic metabolites--inorganic arsenic (Asi), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA)--prior to the start of each shift. Results from a small number of cascade impactor air samples indicated that approximately 90% of total particle mass and arsenic was present in particle size fractions >/= 3.5 micron. The 8-hr time-weighted average (TWA) mean arsenic air concentration was 48.3 microg/m3 (range 0.17-375.2) and the mean sum of urinary arsenic (SigmaAs) metabolites was 16.9 microg As/g creatinine (range 2.6-50.8). For an 8-hr TWA of 10 microg/m3 arsenic from coal fly ash, the predicted mean concentration of the SigmaAs urinary metabolites was 13.2 microg As/G creatinine [95% confidence interval (CI), 10.1-16.3). Comparisons with previously published studies of exposure to arsenic trioxide vapors and dusts in copper smelters suggest that bioavailability of arsenic from airborne coal fly ash (as indicated by urinary excretion) is about one-third that seen in smelters and similar settings. Arsenic compound characteristics, matrix composition, and particle size distribution probably play major roles in determining actual uptake of airborne arsenic. Images Figure 1. A Figure 1. B Figure 2. PMID:9347899

  20. Airborne arsenic and urinary excretion of arsenic metabolites during boiler cleaning operations in a Slovak coal-fired power plant.

    PubMed

    Yager, J W; Hicks, J B; Fabianova, E

    1997-08-01

    Little information is available on the relationship between occupational exposure to inorganic arsenic in coal fly ash and urinary excretion of arsenic metabolites. This study ws undertaken in a coal-fired power plant in Slovakia during a routine maintenance outage. Arsenic was measured in the breathing zone of workers during 5 consecutive workdays, and urine samples were obtained for analysis of arsenic metabolites--inorganic arsenic (Asi), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA)--prior to the start of each shift. Results from a small number of cascade impactor air samples indicated that approximately 90% of total particle mass and arsenic was present in particle size fractions >/= 3.5 micron. The 8-hr time-weighted average (TWA) mean arsenic air concentration was 48.3 microg/m3 (range 0.17-375.2) and the mean sum of urinary arsenic (SigmaAs) metabolites was 16.9 microg As/g creatinine (range 2.6-50.8). For an 8-hr TWA of 10 microg/m3 arsenic from coal fly ash, the predicted mean concentration of the SigmaAs urinary metabolites was 13.2 microg As/G creatinine [95% confidence interval (CI), 10.1-16.3). Comparisons with previously published studies of exposure to arsenic trioxide vapors and dusts in copper smelters suggest that bioavailability of arsenic from airborne coal fly ash (as indicated by urinary excretion) is about one-third that seen in smelters and similar settings. Arsenic compound characteristics, matrix composition, and particle size distribution probably play major roles in determining actual uptake of airborne arsenic. PMID:9347899

  1. Arsenic, Iron, Lead, Manganese and Uranium Concentrations in Private Bedrock Wells in Southeastern New Hampshire, 2012-2013

    EPA Science Inventory

    Trace metals, such as arsenic, iron, lead, manganese, and uranium, in groundwater used for drinking have long been a concern because of the potential adverse effects on human health and the aesthetic or nuisance problems that some present. Moderate to high concentrations of the t...

  2. Arsenic is cytotoxic at micromolar concentration, but does not inhibit purified human DNA repair enzymes at less than millimolar concentrations

    SciTech Connect

    Su, Lin; Hu, Yu; Dunlop, B.

    1997-10-01

    Arsenic is a well-known human carcinogen, but not a mutagen. However it can act as a co-mutagen with UV and alkylating agents, and has been shown to inhibit DNA repair. The activities of several purified human enzymes involved in DNA repair have been tested in the presence of inorganic arsenite [As(III)] and arsenate [As(V)]. We have not found that both As(III) and As(V) stimulated the activity of DNA polymerase {beta} (pol {beta}), O{sup 6}methylguanine DNA methyltransferase (MGMT), and DNA ligase III. The activity of pol {beta} was increased up to 3.5-fold in the presence of 50 mM As (III), and 2-fold in the presence of 20 mM As(V). Inhibition of enzyme activity was only observed with concentrations of As(III) and As(V) higher than 100 mM. Terminal deoxynucleotidal transferase (TdT), an enzyme with homology to pol {beta}, is also stimulated 3-fold by 50 mM As(III). Unlike pol {beta} and TdT, MGMT was preferentially activated by millimolar As(V), rather than As(III). Similar concentrations of inorganic phosphate also increased the activity of MGMT. The activity of DNA ligase I was inhibited by 1 to 5 mM As(III). However, both DNA ligase I and DNA ligase III were significantly activated by As(V). In contrast to these results, human keratinocyte cells exhibit significant cytotoxicity when exposed to 10 {mu}M As(III) and 200 {mu}M AS(V). Cell survival was decreased by over 50% at these concentrations, as measured by neutral red uptake, LDH release, and MTT uptake. Interestingly, both As(III) and As(V) produced increased cell proliferation at submicromolar concentrations. These results suggest that arsenic compounds do not exert their toxic effects by direct inhibition of DNA repair enzymes, but by other mechanisms.

  3. Determination of inorganic arsenic species by flow injection hydride generation atomic absorption spectrometry with variable sodium tetrahydroborate concentrations*1

    NASA Astrophysics Data System (ADS)

    Sigrist, Mirna E.; Beldoménico, Horacio R.

    2004-07-01

    This work describes a study on the determination of inorganic arsenic species in ground water and synthetic experimental matrices, using a flow injection system with on-line hydride generation device coupled to an atomic absorption spectrometer with flame-heated quartz atomizer (FI HG AAS). Specific trivalent arsenic determination is based on the slow kinetics of As(V) on the hydride generation reaction using sufficiently low concentrations of sodium tetrahydroborate (NaBH 4) as reductant in highly acidic conditions (pH<0). Under these conditions, the efficiency of hydride generation from As(V) is much lower than that from As(III). The pentavalent form is determined by the difference between total inorganic arsenic and As(III). As(V) interferences were studied using As(III) solutions ranging from 0% to 50% of total inorganic As. The optimized NaBH 4 concentration was 0.035% (w/v). The detection limit was 1.4 μg l -1 As(III). As(V) interferences were 6% in the case of water samples with 6 μg l -1 As(III) in the presence of 54 μg l -1 As(V) (i.e. 10% As(III)). Interferences of methylated arsenic species (MMA and DMA) were evaluated. Speciation method was satisfactorily applied to 20 field arsenical water samples from Santa Fe, Argentina, with values ranging from 30 to 308 μg l -1 total As. We found from 0% to 36% As(III) in the 20 field samples. The developed methodology constitutes an economic, simple and reliable way to evaluate inorganic arsenic distribution in underground waters or similar systems with negligible or no content of organoarsenicals.

  4. Labile Organic Carbon in Recharge and its Impact on Groundwater Arsenic Concentrations in Bangladesh

    NASA Astrophysics Data System (ADS)

    Neumann, R. B.; Ashfaque, K. N.; Badruzzaman, A. M.; Ali, M.; Shoemaker, J. K.; Harvey, C. F.

    2009-12-01

    Researchers have puzzled over the origin of dissolved arsenic in the aquifers of the Ganges Delta since widespread arsenic poisoning from groundwater was publicized two decades ago. Previous work has concluded that biological oxidation of organic carbon drives geochemical transformations that mobilize arsenic from sediments; however, the source of the organic carbon that fuels these processes remains controversial. A combined hydrologic and biogeochemical analysis of a typical site in Bangladesh, where constructed ponds and groundwater-irrigated rice fields are the main sources of recharge, shows that only recharge through pond sediments provides the biologically degradable organic carbon that can drive arsenic mobilization. Numerical groundwater simulations as well as chemical and isotopic indicators suggest that contaminated groundwater originates from excavated ponds and that water originating from rice fields is low in arsenic. In fact, rice fields act as an arsenic sink. Irrigation moves arsenic-rich groundwater from the aquifers and deposits it on the rice fields. Most of the deposited arsenic does not return to the aquifers; it is sorbed by the field’s surface soil and bunds, and is swept away in the monsoon floods. The findings indicate that patterns of arsenic contamination in the shallow aquifer are due to recharge-source variation and complex three-dimensional flow.

  5. GLUTATHIONE MODULATES RECOMBINANT RAT ARSENIC (+3 OXIDATION STATE) METHYLTRANSFERASE-CATALYZED FORMATION OF TRIMETHYLARSINE OXIDE AND TRIMETHYLARSINE

    EPA Science Inventory


    Humans and other species enzymatically convert inorganic arsenic into methylated metabolites. Although the major metabolites are mono- and dimethylated arsenicals, trimethylated arsenicals have been detected in urine following exposure to inorganic arsenic. The AS3MT gene e...

  6. Arsenic Exposure From Drinking Water, Arsenic Methylation Capacity, and Carotid Intima-Media Thickness in Bangladesh

    PubMed Central

    Chen, Yu; Wu, Fen; Graziano, Joseph H.; Parvez, Faruque; Liu, Mengling; Paul, Rina Rani; Shaheen, Ishrat; Sarwar, Golam; Ahmed, Alauddin; Islam, Tariqul; Slavkovich, Vesna; Rundek, Tatjana; Demmer, Ryan T.; Desvarieux, Moise; Ahsan, Habibul

    2013-01-01

    We conducted a cross-sectional study to evaluate the interrelationships between past arsenic exposure, biomarkers specific for susceptibility to arsenic exposure, and carotid intima-media thickness (cIMT) in 959 subjects from the Health Effects of Arsenic Longitudinal Study in Bangladesh. We measured cIMT levels on average 7.2 years after baseline during 2010–2011. Arsenic exposure was measured in well water at baseline and in urine samples collected at baseline and during follow-up. Every 1-standard-deviation increase in urinary arsenic (357.9 µg/g creatinine) and well-water arsenic (102.0 µg/L) concentration was related to a 11.7-µm (95% confidence interval (CI): 1.8, 21.6) and 5.1-µm (95% CI: −0.2, 10.3) increase in cIMT, respectively. For every 10% increase in monomethylarsonic acid (MMA) percentage, there was an increase of 12.1 µm (95% CI: 0.4, 23.8) in cIMT. Among participants with a higher urinary MMA percentage, a higher ratio of urinary MMA to inorganic arsenic, and a lower ratio of dimethylarsinic acid to MMA, the association between well-water arsenic and cIMT was stronger. The findings indicate an effect of past long-term arsenic exposure on cIMT, which may be potentiated by suboptimal or incomplete arsenic methylation capacity. Future prospective studies are needed to confirm the association between arsenic methylation capacity and atherosclerosis-related outcomes. PMID:23788675

  7. Identifying new cannabis use with urine creatinine-normalized THCCOOH concentrations and time intervals between specimen collections.

    PubMed

    Smith, Michael L; Barnes, Allan J; Huestis, Marilyn A

    2009-05-01

    A previously recommended method for detecting new cannabis use with creatinine-normalized 11-nor-9-carboxy-Delta(9)-tetrahydrocannabinol (THCCOOH) urine concentrations in periodically collected specimens for treatment, workplace and judicial drug testing applications is refined by considering the time interval between urine collections. All urine specimens were collected from six less-than-daily cannabis users who smoked placebo, 1.75%, and 3.55% THC cigarettes in randomized order, each separated by one week. Ratios (n = 24,322) were calculated by dividing each creatinine-normalized THCCOOH concentration (U2) by that of a previously collected specimen (U1). Maximum, 95% limit, and median U2/U1 ratios with 15 and 6 ng THCCOOH/mL cutoff concentrations, with and without new use between specimens, were calculated for each 24-h interval after smoking up to 168 h and are included in tables. These ratios decreased with increasing interval between collections providing improved decision values for determining new cannabis use. For example, with a 15 ng THCCOOH/mL cutoff concentration and no new use between specimens, the maximum, 95% limit, and median U2/U1 ratios were 3.05, 1.59, and 0.686, respectively, when the collection interval was

  8. COMPLEMENTARY APPROACHES TO THE DETERMINATION OF ARSENIC SPECIES RELEVANT TO CONCENTRATED ANIMAL FEEDING OPERATIONS

    EPA Science Inventory

    Ion-exchange chromatography is the most often used analytical approach for arsenic

    speciation, due to the weak-acid nature of several of its species. However, no single

    technique can determine all potentially occurring arsenic species, especially in complex

    e...

  9. CONTAINMENT OF HIGHLY CONCENTRATED ARSENIC-LADEN SPENT REGENERANT ON THE INDIAN SUBCONTINENT

    EPA Science Inventory

    The Phase II EPA P3 project encompasses the following two activities in the Indian subcontinent: Continued installation of arsenic removal units in rural villages and extension of sustainable arsenic-laden waste disposal practices. For ten years, Lehigh University and Benga...

  10. Oxidation of the arsenic-rich concentrate at the Prebuz abandoned mine (Erzgebirge Mts., CZ): mineralogical evolution.

    PubMed

    Filippi, Michal

    2004-04-25

    Ore concentrate with up to 65 wt.% of arsenic (by-product of cassiterite extraction) exposed to climatic conditions was studied from the mineralogical point of view. Detailed sampling, X-ray diffraction analyses, energy-dispersive microanalysis (EDAX) and especially scanning electron microscopy (SEM) were applied to study the arsenopyrite-löllingite-concentrate weathering. The studied concentrate contains very small proportion (<5 vol.%) of gangue minerals such as quartz and feldspars; the oxidation of arsenopyrite and löllingite (and accessory pyrite) is thus practically not complicated by interference with additional minerals and elements. Arsenolite, scorodite, kaatialaite and native sulphur were found to be the main secondary phases originating by dissolution of arsenopyrite and löllingite. New secondary phases precipitate on the surface of the ore-concentrate body but also form cement among the grains of finely milled material. The following succession of secondary minerals was determined: arsenolite, scorodite+native sulphur and kaatialaite. Significant arsenic migration into the proximal environment was revealed: 2580 and 13,622 mgkg(-1) were the highest arsenic concentrations in two sections excavated at distances of 0.5 and 1.5 m from the concentrate body. PMID:15081754

  11. When are fetuses and young children most susceptible to soil metal concentrations of arsenic, lead and mercury?

    PubMed Central

    McDermott, Suzanne; Bao, Weichao; Aelion, C. Marjorie; Cai, Bo; Lawson, Andrew

    2012-01-01

    This study was designed to analyze when, during pregnancy and early childhood, the association between soil metal concentrations of arsenic (As), lead (Pb) and mercury (Hg) and the outcome of intellectual disability (ID) is statistically significant. Using cluster analysis, we identified ten areas of land that contained a cluster of ID and areas of average risk for ID. We analyzed soil for As, Pb, and Hg and estimated the soil metal concentration at the residential sites where the woman and children lived during pregnancy and early childhood using a Bayesian Kriging model. Arsenic concentrations were associated with ID during the first trimester of pregnancy and Hg was associated with ID early in pregnancy and the first two years of childhood. The covariates that remained in the final models were also temporally associated with ID. PMID:22749212

  12. Urinary inorganic arsenic concentrations and semen quality of male partners of subfertile couples in Tokyo.

    PubMed

    Oguri, Tomoko; Yoshinaga, Jun; Toshima, Hiroki; Mizumoto, Yoshifumi; Hatakeyama, Shota; Tokuoka, Susumu

    2016-01-01

    Inorganic arsenic (iAs) has been known as a testicular toxicant in experimental rodents. Possible association between iAs exposure and semen quality (semen volume, sperm concentration, and sperm motility) was explored in male partners of couples (n = 42) who visited a gynecology clinic in Tokyo for infertility consultation. Semen parameters were measured according to WHO guideline at the clinic, and urinary iAs and methylarsonic acid (MMA), and dimethylarsinic acid concentrations were determined by liquid chromatography-hydride generation-ICP mass spectrometry. Biological attributes, dietary habits, and exposure levels to other chemicals with known effects on semen parameters were taken into consideration as covariates. Multiple regression analyses and logistic regression analyses did not find iAs exposure as significant contributor to semen parameters. Lower exposure level of subjects (estimated to be 0.5 μg kg(-1) day(-1)) was considered a reason of the absence of adverse effects on semen parameters, which were seen in rodents dosed with 4-7.5 mg kg(-1). PMID:26865228

  13. Drying methods effects on nitrogen and energy concentrations in pig feces and urine, and poultry excreta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate estimation of digestibility coefficients are critical in nutrient balance and feed evaluation studies as errors that occur are often additive. However, there is no standard universal method for drying feces, urine, or excreta prior to laboratory analysis. The objective of this study was to ...

  14. Blood and urine responses to ingesting fluids of various salt and glucose concentrations. [to combat orthostatic intolerance

    NASA Technical Reports Server (NTRS)

    Frey, Mary A.; Riddle, Jeanne; Charles, John B.; Bungo, Michael W.

    1991-01-01

    To compensate for the reduced blood and fluid volumes that develop during weightlessness, the Space Shuttle crewmembers consume salt tablets and water equivalent to 1 l of normal saline, about 2 hrs before landing. This paper compares the effects on blood, urine, and cardiovascular variables of the ingestion of 1 l of normal (0.9 percent) saline with the effects of distilled water, 1 percent glucose, 0.74 percent saline with 1 percent glucose, 0.9 percent saline with 1 percent glucose, and 1.07 percent saline. It was found that the expansion of plasma volume and the concentration of urine were greater 4 hrs after ingestion of 1.07 percent saline solution than after ingestion of normal saline and that the solutions containig glucose did not enhance any variables as compared with normal saline.

  15. Evaluating a Mineralogical Control on Arsenic and Lead Concentrations in California Gold Mine Tailings

    NASA Astrophysics Data System (ADS)

    Neptune, C. K.; De Graff, J.

    2012-12-01

    Abandoned gold mining operations in California often host tailings piles, which are a source of various heavy metal contaminants including arsenic (As) and lead (Pb). Based on internal USDA Forest Service studies, it has been determined that some tailings are a concern due to high As and Pb while others are only a concern for high As. The research hypothesis is that this difference reflects a mineralogical control on the presence and concentration of As and Pb. This information would be valuable in the prioritization of mining sites for mitigation, as identifying whether both As and Pb are a concern or only As is key in determining the level of risk posed by the tailings. Ore from two mines (Bright Star and May-Lundy) in the Sierra Nevada provided a preliminary test of this hypothesis. Samples were collected from presumed ore found in proximity to mine adits or milling sites. A biased sampling method, based on the presence of clearly visible concentrations of metal sulfide minerals, served as a selection approach. Prior to lab processing, the samples were evaluated for their proportion of metal sulfide minerals to non-metallic minerals, to establish the range of variability at each mine site. A Gyral grinder was used to reduce samples to particles of less than 149 microns in size. The samples were then analyzed with a Niton XL3t model X-ray fluorescence (XRF) device for a one-minute interval. Based on this initial sampling, it is suggestive that the ratio of Pb/As, in the ore material reflects the concentration ratios within the tailings at the respective mine sites. This method assumes that a whole rock analysis is indicative of the proportion of As to Pb bearing minerals present.

  16. Modeling spatial patterns in soil arsenic to estimate natural baseline concentrations

    SciTech Connect

    Venteris, Erik R.; Basta, Nicolas T.; Bigham, Jerry M.; Rea, Ron

    2014-05-09

    ABSTRACT Arsenic in soil is an important public health concern. Toxicity guidelines and models based on laboratory studies (i.e., U.S. EPA’s Integrated Risk Information System) should consider natural soil As concentrations to avoid unnecessary remediation burdens on society. We used soil and stream sediment samples from the USGS National Geochemical Survey database to assess the spatial distribution of natural As in a 1.16E+5 km2 area. Samples were collected at 348 soil and 144 stream locations, providing approximately one sample for every 290 km2. Sample sites were selected to minimize the potential influence of anthropogenic inputs. Samples were processed using acid digestion of whole samples (concentrated HCl and ascorbic acid) and concentrations were measured using hydride-generation atomic absorption spectrometry. Soil As ranged from 2.0 to 45.6 mg kg-1. Geostatistical techniques were used to model and map the spatial variability of As. The mean and variance at unsampled locations were estimated using sequential Gaussian simulation. Five areas of elevated concentration (> the median of 10 mg kg-1) were identified and the relationships to geologic parent materials, glacial sedimentation patterns, and soil conditions interpreted. Our results showed As concentrations >10 mg kg-1 were common, and >20 mg kg-1 were not unusual for the central and west central portions of Ohio (USA). In contrast, concentrations <4 mg kg-1 were rare. Measured concentrations typically exceeded the soil As human generic screening levels of 0.39 mg/kg (1); the calculated value that corresponds to a cancer risk level of 1 in 1,000,000 for soil ingestion. Because the As content of Ohio soils is similar to many world soils, the USEPA generic soil screening level of 0.39 mg/kg is of little utility. A more useful and practical approach would be the uses of natural background levels. Regional soil As patterns based on geology and biogeochemistry and not political boundaries should be used

  17. Factors affecting paddy soil arsenic concentration in Bangladesh: prediction and uncertainty of geostatistical risk mapping.

    PubMed

    Ahmed, Zia U; Panaullah, Golam M; DeGloria, Stephen D; Duxbury, John M

    2011-12-15

    Knowledge of the spatial correlation of soil arsenic (As) concentrations with environmental variables is needed to assess the nature and extent of the risk of As contamination from irrigation water in Bangladesh. We analyzed 263 paired groundwater and paddy soil samples covering highland (HL) and medium highland-1 (MHL-1) land types for geostatistical mapping of soil As and delineation of As contaminated areas in Tala Upazilla, Satkhira district. We also collected 74 non-rice soil samples to assess the baseline concentration of soil As for this area. The mean soil As concentrations (mg/kg) for different land types under rice and non-rice crops were: rice-MHL-1 (21.2)>rice-HL (14.1)>non-rice-MHL-1 (11.9)>non-rice-HL (7.2). Multiple regression analyses showed that irrigation water As, Fe, land elevation and years of tubewell operation are the important factors affecting the concentrations of As in HL paddy soils. Only years of tubewell operation affected As concentration in the MHL-1 paddy soils. Quantitatively similar increases in soil As above the estimated baseline-As concentration were observed for rice soils on HL and MHL-1 after 6-8 years of groundwater irrigation, implying strong retention of As added in irrigation water in both land types. Application of single geostatistical methods with secondary variables such as regression kriging (RK) and ordinary co-kriging (OCK) gave little improvement in prediction of soil As over ordinary kriging (OK). Comparing single prediction methods, kriging within strata (KWS), the combination of RK for HL and OCK for MHL-1, gave more accurate soil As predictions and showed the lowest misclassification of declaring a location "contaminated" with respect to 14.8 mg As/kg, the highest value obtained for the baseline soil As concentration. Prediction of soil As buildup over time indicated that 75% or the soils cropped to rice would contain at least 30 mg/L As by the year 2020. PMID:22055452

  18. Concentrations of Inorganic Arsenic in Milled Rice from China and Associated Dietary Exposure Assessment.

    PubMed

    Huang, Yatao; Wang, Min; Mao, Xuefei; Qian, Yongzhong; Chen, Tianjin; Zhang, Ying

    2015-12-23

    Total arsenic (As) and inorganic As (Asi) in milled rice (n = 1653) collected from China were studied to evaluate the contamination level, distribution, and health risks. The mean concentrations of the total As and Asi were 116.5 and 90.9 μg/kg, respectively. There were significant differences (P < 0.01) between the 11 provinces, and 1.1% of samples exceeded the maximum contaminant level established by Chinese legislation. According to the exposure assessment method of probabilistic simulation, all values of the target hazard quotients (THQs) for chronic noncarcinogenic risks (skin lesions as the point of departure) were below 1, suggesting that the Chinese population will not encounter a significant noncarcinogenic risk. However, the mean values of margin of exposure (MOE) for lung cancer risks ranging from 3.86 to 8.54 were under 100 for all age groups and genders of the Chinese population; moreover, MOE values for some major rice-producing and -consuming countries, such as Japan, Thailand, Bangladesh, and the United States, were all also below 100. More attention should be paid to carcinogenic risks from rice Asi intake, and some control measures to reduce rice Asi intake should be taken. PMID:26641731

  19. A Direct Aqueous Derivatization GSMS Method for Determining Benzoylecgonine Concentrations in Human Urine.

    PubMed

    Chericoni, Silvio; Stefanelli, Fabio; Da Valle, Ylenia; Giusiani, Mario

    2015-09-01

    A sensitive and reliable method for extraction and quantification of benzoylecgonine (BZE) and cocaine (COC) in urine is presented. Propyl-chloroformate was used as derivatizing agent, and it was directly added to the urine sample: the propyl derivative and COC were then recovered by liquid-liquid extraction procedure. Gas chromatography-mass spectrometry was used to detect the analytes in selected ion monitoring mode. The method proved to be precise for BZE and COC both in term of intraday and interday analysis, with a coefficient of variation (CV)<6%. Limits of detection (LOD) were 2.7 ng/mL for BZE and 1.4 ng/mL for COC. The calibration curve showed a linear relationship for BZE and COC (r2>0.999 and >0.997, respectively) within the range investigated. The method, applied to thirty authentic samples, showed to be very simple, fast, and reliable, so it can be easily applied in routine analysis for the quantification of BZE and COC in urine samples. PMID:26300490

  20. Digital spatial data for predicted nitrate and arsenic concentrations in basin-fill aquifers of the Southwest Principal Aquifers study area

    USGS Publications Warehouse

    McKinney, Tim S.; Anning, David W.

    2012-01-01

    This product "Digital spatial data for predicted nitrate and arsenic concentrations in basin-fill aquifers of the Southwest Principal Aquifers study area" is a 1:250,000-scale vector spatial dataset developed as part of a regional Southwest Principal Aquifers (SWPA) study (Anning and others, 2012). The study examined the vulnerability of basin-fill aquifers in the southwestern United States to nitrate contamination and arsenic enrichment. Statistical models were developed by using the random forest classifier algorithm to predict concentrations of nitrate and arsenic across a model grid that represents local- and basin-scale measures of source, aquifer susceptibility, and geochemical conditions.

  1. Origin of high ammonium, arsenic and boron concentrations in the proximity of a mine: Natural vs. anthropogenic processes.

    PubMed

    Scheiber, Laura; Ayora, Carlos; Vázquez-Suñé, Enric; Cendón, Dioni I; Soler, Albert; Baquero, Juan Carlos

    2016-01-15

    High ammonium (NH4), arsenic (As) and boron (B) concentrations are found in aquifers worldwide and are often related to human activities. However, natural processes can also lead to groundwater quality problems. High NH4, As and B concentrations have been identified in the confined, deep portion of the Niebla-Posadas aquifer, which is near the Cobre Las Cruces (CLC) mining complex. The mine has implemented a Drainage and Reinjection System comprising two rings of wells around the open pit mine, were the internal ring drains and the external ring is used for water reinjection into the aquifer. Differentiating geogenic and anthropogenic sources and processes is therefore crucial to ensuring good management of groundwater in this sensitive area where groundwater is extensively used for agriculture, industry, mining and human supply. No NH4, As and B are found in the recharge area, but their concentrations increase with depth, salinity and residence time of water in the aquifer. The increased salinity down-flow is interpreted as the result of natural mixing between infiltrated meteoric water and the remains of connate waters (up to 8%) trapped within the pores. Ammonium and boron are interpreted as the result of marine solid organic matter degradation by the sulfate dissolved in the recharge water. The light δ(15)NNH4 values confirm that its origin is linked to marine organic matter. High arsenic concentrations in groundwater are interpreted as being derived from reductive dissolution of As-bearing goethite by dissolved organic matter. The lack of correlation between dissolved Fe and As is explained by the massive precipitation of siderite, which is abundantly found in the mineralization. Therefore, the presence of high arsenic, ammonium and boron concentrations is attributed to natural processes. Ammonium, arsenic, boron and salinity define three zones of groundwater quality: the first zone is close to the recharge area and contains water of sufficient quality for

  2. Associations between land cover categories, soil concentrations of arsenic, lead and barium, and population race/ethnicity and socioeconomic status.

    PubMed

    Davis, Harley T; Aelion, C Marjorie; Lawson, Andrew B; Cai, Bo; McDermott, Suzanne

    2014-08-15

    The potential of using land cover/use categories as a proxy for soil metal concentrations was examined by measuring associations between Anderson land cover category percentages and soil concentrations of As, Pb, and Ba in ten sampling areas. Land cover category and metal associations with ethnicity and socioeconomic status at the United States Census 2000 block and block group levels also were investigated. Arsenic and Pb were highest in urban locations; Ba was a function of geology. Consistent associations were observed between urban/built up land cover, and Pb and poverty. Land cover can be used as proxy for metal concentrations, although associations are metal-dependent. PMID:24914533

  3. [Concentrations of cadmium in blood and urine and their contents in the hair of children from Katowice Murcki].

    PubMed

    Błach-Legawiec, Izabela; Emich-Widera, Ewa; Bibrzycka, Aleksandra; Marszał, Elzbieta; Woś, Halina

    2002-01-01

    One of the leading positions on the world's list of harmful substances is taken by cadmium, which is a heavy metal. Cadmium (Cd) gets into the human body through either respiratory tract (cigarette smoke) or alimentary canal. The aim of the study was to 1) determine whether the concentrations of cadmium in blood and urine of children from Katowice Murcki--one of the cleanest districts of the town - as well as its contents in the hair of the children exceeds acceptable values and 2) to analyse the effect of chosen environmental factors (exposition to smoke, parents' education) on the amount of cadmium in these materials. The study comprised 48 children at the age from 9-11 years from Katowice Murcki, attending the same primary school. The findings were statistically analysed using Shapiro-Wilk and Wilcoxon test. Concentration of cadmium in the blood was 0.479 microg/l, in urine 0.840 microg/g creatinine and the average concentration in the hair constituted 0.23 microg/g drymass. Concentration of cadmium in the blood of 13 children (30.95%) exceeded acceptable 0.5 microg/l value, while in 10 children (23.25%) value in the urine was exceeded. It was lug/g creatinine. It has been shown that children who lived nearby motorway presented higher content of cadmium in the hair. Environmental factors such as: location of the road and intensity of traffic influence the content of cadmium in the human body. PMID:17474575

  4. Immunoelectrophoresis - urine

    MedlinePlus

    Immunoglobulin electrophoresis - urine; Gamma globulin electrophoresis - urine; Urine immunoglobulin electrophoresis; IEP - urine ... is used to measure the amounts of various immunoglobulins in urine. Most often, it is done after ...

  5. Secondhand smoke exposure and urine cotinine concentrations by occupation among Korean workers: results from the 2008 Korea National Survey for Environmental Pollutants in the Human Body.

    PubMed

    Lee, So Ryong; Lee, Chae Kwan; Im, Hosub; Yang, Wonho; Urm, Sang-Hwa; Yu, Seung-Do; Lee, Jin Heon; Suh, Chun Hui; Kim, Kun Hyung; Son, Byung Chul; Kim, Jeong Ho; Kim, Se Yeong; Lee, Soo Woong; Lee, Jong Tae

    2014-01-01

    This study aimed to estimate the status of secondhand smoke (SHS) exposure through urine cotinine analysis among nonsmoking workers in Korea and to analyze factors affecting urine cotinine concentrations. Data were based on "The 2008 Korea National Survey for Environmental Pollutants in the Human Body," a cross-sectional study of the National Institute of Environmental Research of Korea. We selected 1448 nonsmoking adult workers from 200 localities to participate in this survey. Urine cotinine concentrations were analyzed using a gas chromatograph-mass selective detector. We calculated separate covariate-adjusted geometric means for socio-demographic variables for males, females, and total subjects by analysis of covariance (ANCOVA). Statistical analyses were performed using SPSS version 18.0 (SPSS Inc., Chicago, Ill.). The prevalence of self-reported exposure to SHS was 36.9%. The geometric mean (95% confidence interval) of urine cotinine concentrations among all participants was 16.50 (14.48-18.80) μg/L. Gender, living area, education, and SHS exposure showed significant differences in urine cotinine concentrations. The urine cotinine concentrations of farmworkers and blue-collar workers such as skilled agricultural, forestry, and fishery workers, and elementary occupations were higher than those of white-collar workers such as clerical support workers, technicians, and associate professionals. Such a high proportion of the population having high urine cotinine levels indicates widespread exposure to SHS among nonsmoking workers in Korea. Furthermore, the urine cotinine levels among nonsmoking workers exposed to SHS varied by occupation. The measured urine cotinine concentration is suggested to be a valuable indication of SHS exposure in Korea. PMID:24219421

  6. Low concentration of arsenic could induce caspase-3 mediated head kidney macrophage apoptosis with JNK-p38 activation in Clarias batrachus

    SciTech Connect

    Datta, Soma; Mazumder, Shibnath; Ghosh, Debabrata; Dey, Saibal; Bhattacharya, Shelley

    2009-12-15

    We had earlier demonstrated that chronic exposure (30 days) to micro-molar concentration (0.50 muM) of arsenic induced head kidney macrophage (HKM) death in Clarias batrachus. The purpose of the present study is to characterize the nature of HKM death induced by arsenic and elucidate the signal transduction pathways involved in the process. Arsenic-induced HKM death was apoptotic in nature as evident from DNA gel, Annexin V-propidium iodide, Hoechst 33342 staining and TdT-mediated dUTP nick end labeling (TUNEL) assays. Inhibitor studies and immunoblot analyses further demonstrated that arsenic-induced HKM apoptosis involved activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase, a well-characterized caspase-3 substrate. Preincubation with antioxidants N-acetyl-cysteine or dimethyl sulfoxide significantly lowered reactive oxygen species (ROS) levels in arsenic-treated HKM and prevented caspase activation, malondialdehyde formation and HKM apoptosis. Arsenic induced membrane translocation of the NADPH oxidase subunit p47{sup phox}. Preincubation with apocynin and diphenyleneiodonium chloride, both selective inhibitors of NADPH oxidases, prevented p47{sup phox} translocation, ROS production and HKM death. Exposure of HKM to arsenic induced the activation of mitogen-activated protein kinase family (MAPK) proteins including c-Jun NH{sub 2}-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (p38). Preincubation of HKM with p38 inhibitor SB203580 and JNK inhibitor SP600125 protected the HKM against arsenic-induced apoptosis. We conclude that exposure to micro-molar concentration of arsenic induces ROS generation through the activation of NADPH oxidases, which in turn causes caspase-3 mediated HKM apoptosis. In addition, the study also indicates a role of p38-JNK pathway in arsenic-induced HKM apoptosis in C. batrachus.

  7. Arsenic hazards to humans, plants, and animals from gold mining

    USGS Publications Warehouse

    Eisler, R.

    2004-01-01

    Arsenic sources to the biosphere associated with gold mining include waste soil and rocks, residual water from ore concentrations, roasting of some types of gold-containing ores to remove sulfur and sulfur oxides, and bacterially-enhanced leaching. Arsenic concentrations near gold mining operations were elevated in abiotic materials and biota: maximum total arsenic concentrations measured were 560 ug/L in surface waters, 5.16 mg/L in sediment pore waters, 5.6 mg/kg dry weight (DW) in bird liver, 27 mg/kg DW in terrestrial grasses, 50 mg/kg DW in soils, 79 mg/kg DW in aquatic plants, 103 mg/kg DW in bird diets, 225 mg/kg DW in soft parts of bivalve molluscs, 324 mg/L in mine drainage waters, 625 mg/kg DW in aquatic insects, 7700 mg/kg DW in sediments, and 21,000 mg/kg DW in tailings. Single oral doses of arsenicals that were fatal to 50% of tested species ranged from 17 to 48 mg/kg body weight (BW) in birds and from 2.5 to 33 mg/kg BW in mammals. Susceptible species of mammals were adversely affected at chronic doses of 1 to 10 mg As/kg BW, or 50 mg As/kg diet. Sensitive aquatic species were damaged at water concentrations of 19 to 48 ug As/L, 120 mg As/kg diet, or tissue residues (in the case of freshwater fish) >1.3 mg/kg fresh weight. Adverse effects to crops and vegetation were recorded at 3 to 28 mg of water-soluble As/L (equivalent to about 25 to 85 mg total As/kg soil) and at atmospheric concentrations >3.9 ug As/m3. Gold miners had a number of arsenic-associated health problems including excess mortality from cancer of the lung, stomach, and respiratory tract. Miners and schoolchildren in the vicinity of gold mining activities had elevated urine arsenic of 25.7 ug/L (range 2.2-106.0 ug/L). Of the total population at this location, 20% showed elevated urine arsenic concentrations associated with future adverse health effects; arsenic-contaminated drinking water is the probable causative factor of elevated arsenic in urine. Proposed arsenic criteria to protect

  8. Comparison of urine toxic metals concentrations in athletes and in sedentary subjects living in the same area of Extremadura (Spain).

    PubMed

    Llerena, F; Maynar, M; Barrientos, G; Palomo, R; Robles, M C; Caballero, M J

    2012-08-01

    Cadmium (Cd), tungsten (W), tellurium (Te), beryllium (Be), and lead (Pb), are non-essential metals pervasive in the human environment. Studies on athletes during training periods compared to non-training control subjects, indicate increased loss of minerals through sweat and urine. The aim of this study was to compare the level of these trace elements, determined by inductively coupled plasma mass spectrometry (ICP-MS) in urine samples, between athletes and age-matched sedentary subjects living in the same geographical area, although anthropometric and cardiovascular measurements showed that athletes have significantly (P ≤ 0.001) lower BMI, body fat and heart rate, whereas the muscle and bone percentage was significantly (P ≤ 0.001) higher than in sedentary subjects. The validity of the methodology was checked by the biological certified reference material. Trace element analysis concentrations, expressed in μg/mg creatinine, of five toxic elements in urine from athletes (n = 21) versus sedentary subjects, (n = 26) were as follows: Cd (0.123 ± 0.075 vs. 0.069 ± 0.041, P ≤ 0.05); W (0.082 ± 0.053 vs. < limit of detection); Te (0.244 ± 0.193 vs. 0.066 ± 0.045, P ≤ 0.001), Be (0.536 ± 0.244 vs. 0.066 ± 0.035, P ≤ 0.001); Pb (0.938 ± 0.664 vs. 2.162 ± 1.444 P ≤ 0.001). With the exception of Pb, urine toxic metal concentrations from athletes were higher than from sedentary subjects. This fact suggests that physical activity counteracts, at least in part, the cumulative effect of toxic environment by increasing the urine excretion of toxic metals in trained people. PMID:22179857

  9. Airborne arsenic exposure and excretion of methylated arsenic compounds.

    PubMed Central

    Smith, T J; Crecelius, E A; Reading, J C

    1977-01-01

    First void urine samples were collected from copper smelter workers exposed to inorganic arsenic and from unexposed controls. Arsenic compounds (As (III), As (V), methylarsonic acid and dimethylarsinic acid) in these samples were analyzed by selective volatilization as arsines with determination of arsenic by plasma excitation emission spectrometry. On the day preceding the urine sample collection a breathing zone measurement was made of respirable arsenic particulates for each subject. It was found that all of the subjects, including the controls excreted arsenic primarily as methylated species. Approximately 50% of the total arsenic was excreted as dimethylarsinic acid and 20% as methylarsonic acid. Slight differences in the proportion of various arsenic compounds were observed with varying levels of inorganic arsenic exposure. Amounts of arsenic species were all closely correlated with each other and with exposure. Irrespirable particulate exposures were measured on a subset of high exposure workers. Irrespirable arsenic was found to be more closely correlated with excretion of arsenic compounds than was respirable arsenic. PMID:908318

  10. Urine specific gravity test

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003587.htm Urine specific gravity test To use the sharing features on this page, please enable JavaScript. Urine specific gravity is a laboratory test that shows the concentration ...

  11. Naturally dissolved arsenic concentrations in the Alpine/Mediterranean Var River watershed (France).

    PubMed

    Barats, Aurélie; Féraud, Gilbert; Potot, Cécile; Philippini, Violaine; Travi, Yves; Durrieu, Gaël; Dubar, Michel; Simler, Roland

    2014-03-01

    A detailed study on arsenic (As) in rocks and water from the Var River watershed was undertaken aiming at identifying (i) the origin and the distribution of As in this typical Alpine/Mediterranean basin, and (ii) As input into the Mediterranean Sea. Dissolved As concentrations in the Var River range from 0.1 to 4.5 μg⋅L(-1), due to high hydrological variability and the draining through different geological formations. In the upper part of the Var drainage basin, in the Tinée and the Vésubie valleys, high levels of dissolved As concentrations occur (up to 263 μg⋅L(-1)). The two main sources of As in rocks are the Hercynian metamorphic rocks and the Permian argilites. Highly heterogeneous distribution of As in waters draining through metamorphic rocks is probably related to ore deposits containing arsenopyrite. As, U, W and Mo concentrations in water and rocks correspond to the formation of As-rich ore deposits around Argentera granite by hydrothermal fluids deposited at the end of the Hercynian chain formation, which occurred about 300 My ago. In 2009, weekly monitoring was performed on the Var River (15 km upstream of the mouth), highlighting an average dissolved As concentration (<0.45 μm) of 2.7 ± 0.9 μg⋅L(-1), which is significantly higher than the world-average baseline for river water (0.83 μg⋅L(-1)). Taking the average annual discharge (49.4 m(3)⋅s(-1)) into account and the As levels in the dissolved phase and in deposits of the Var River, dissolved As input into the Mediterranean Sea would be 4. 2± 1.4 tons⋅year(-1) which represents 59% of the total As flux. This study also reveals a probable non-conservative As behaviour, i.e., possible transfer between aqueous and solid phases, during the mixing of the Var River with a tributary. PMID:24388820

  12. Regional estimation of groundwater arsenic concentrations through systematical dynamic-neural modeling

    NASA Astrophysics Data System (ADS)

    Chang, Fi-John; Chen, Pin-An; Liu, Chen-Wuing; Liao, Vivian Hsiu-Chuan; Liao, Chung-Min

    2013-08-01

    Arsenic (As) is an odorless semi-metal that occurs naturally in rock and soil, and As contamination in groundwater resources has become a serious threat to human health. Thus, assessing the spatial and temporal variability of As concentration is highly desirable, particularly in heavily As-contaminated areas. However, various difficulties may be encountered in the regional estimation of As concentration such as cost-intensive field monitoring, scarcity of field data, identification of important factors affecting As, over-fitting or poor estimation accuracy. This study develops a novel systematical dynamic-neural modeling (SDM) for effectively estimating regional As-contaminated water quality by using easily-measured water quality variables. To tackle the difficulties commonly encountered in regional estimation, the SDM comprises of a neural network and four statistical techniques: the Nonlinear Autoregressive with eXogenous input (NARX) network, Gamma test, cross-validation, Bayesian regularization method and indicator kriging (IK). For practical application, this study investigated a heavily As-contaminated area in Taiwan. The backpropagation neural network (BPNN) is adopted for comparison purpose. The results demonstrate that the NARX network (Root mean square error (RMSE): 95.11 μg l-1 for training; 106.13 μg l-1 for validation) outperforms the BPNN (RMSE: 121.54 μg l-1 for training; 143.37 μg l-1 for validation). The constructed SDM can provide reliable estimation (R2 > 0.89) of As concentration at ungauged sites based merely on three easily-measured water quality variables (Alk, Ca2+ and pH). In addition, risk maps under the threshold of the WHO drinking water standard (10 μg l-1) are derived by the IK to visually display the spatial and temporal variation of the As concentration in the whole study area at different time spans. The proposed SDM can be practically applied with satisfaction to the regional estimation in study areas of interest and the

  13. Relaxin concentrations in serum and urine of endangered and crazy mixed-up species.

    PubMed

    Steinetz, B; Lasano, S; de Haas van Dorsser, F; Glickman, S; Bergfelt, D; Santymire, R; Songsassen, N; Swanson, W

    2009-04-01

    The human population explosion has pushed many mammalian wildlife species to the brink of extinction. Conservationists are increasingly turning to captive breeding as a means of preserving the gene pool. We previously reported that serum immunoactive relaxin provided a reliable means of distinguishing between true and pseudopregnancy in domestic dogs, and this method has since been found to be a reliable indicator of true pregnancy in endangered Asian and African elephants and Sumatran rhinoceroses. Our canine relaxin radioimmunoassay (RIA) has now been adapted and validated to measure relaxin in the serum and urine of felids, including domestic and wild species. Moreover, a commercially available canine serum relaxin kit (Witness) Relaxin Kit; Synbiotics, San Diego, CA), has been adapted for reliable detection of relaxin in urine of some felid species. Our porcine relaxin RIA has also been utilized to investigate the role of relaxin in reproductive processes of the spotted hyena, a species in which the female fetuses are severely masculinized in utero. Indeed, this species might well now be extinct were it not for the timely secretion of relaxin to enable copulation and birth of young through the clitoris. Additional studies have suggested relaxin may be a useful marker of pregnancy in the northern fur seal and the maned wolf (the former species has been designated as "depleted" and the latter as "near threatened"). Given appropriate immunoassay reagents, relaxin determination in body fluids thus provides a powerful tool for conservationists and biologists investigating reproduction in a wide variety of endangered and exotic species. PMID:19416182

  14. The concentrations of arsenic and other toxic elements in Bangladesh's drinking water.

    PubMed Central

    Frisbie, Seth H; Ortega, Richard; Maynard, Donald M; Sarkar, Bibudhendra

    2002-01-01

    For drinking water, the people of Bangladesh used to rely on surface water, which was often contaminated with bacteria causing diarrhea, cholera, typhoid, and other life-threatening diseases. To reduce the incidences of these diseases, millions of tubewells were installed in Bangladesh since independence in 1971. This recent transition from surface water to groundwater has significantly reduced deaths from waterborne pathogens; however, new evidence suggests disease and death from arsenic (As) and other toxic elements in groundwater are affecting large areas of Bangladesh. In this evaluation, the areal and vertical distribution of As and 29 other inorganic chemicals in groundwater were determined throughout Bangladesh. This study of 30 analytes per sample and 112 samples suggests that the most significant health risk from drinking Bangladesh's tubewell water is chronic As poisoning. The As concentration ranged from < 0.0007 to 0.64 mg/L, with 48% of samples above the 0.01 mg/L World Health Organization drinking water guideline. Furthermore, this study reveals unsafe levels of manganese (Mn), lead (Pb), nickel (Ni), and chromium (Cr). Our survey also suggests that groundwater with unsafe levels of As, Mn, Pb, Ni, and Cr may extend beyond Bangladesh's border into the four adjacent and densely populated states in India. In addition to the health risks from individual toxins, possible multimetal synergistic and inhibitory effects are discussed. Antimony was detected in 98% of the samples from this study and magnifies the toxic effects of As. In contrast, Se and Zn were below our detection limits in large parts of Bangladesh and prevent the toxic effects of As. PMID:12417487

  15. Influence of compost application on arsenic uptake by beans (Phaseolus vulgaris L.), irrigated with arsenic-contaminated waters at four different concentrations

    NASA Astrophysics Data System (ADS)

    Caporale, A. G.; Pigna, M.; Sommella, A.; Cozzolino, V.; Violante, A.

    2012-04-01

    The presence of arsenic (As) in soils and/or groundwaters, used for agricultural purposes, causes a strong abiotic stress to the cultivated plants, which results in the reduction of biomasses and yields, and the abundance of non-tradable products. It is therefore desirable to identify and develop production techniques capable of limiting the mobility and phyto-availability of As in soil, through the stabilization of the metalloid on the more recalcitrant soil fractions. Incorporation of compost into soil for As immobilization offers various potential advantages over other methods such as low-cost, simple methodology and low environmental impact. We studied the influence of compost application on the mobility and phyto-availability of As in soil, the growth of the bean plants irrigated with As-contaminated waters and their own As uptake. Bean was selected as test plant, because this crop is grown in several As-contaminated areas and suffers As toxicity. Bean plants growth was significantly affected by As and compost treatments. Increasing As concentration in the irrigation water decreased markedly the dry biomass, as a consequence of As phytotoxicity. The influence of compost application on plants growth was also significant, indicating the ability of the compost to alleviate the As phytotoxicity. Arsenic caused a reduction of the photosynthesis rate. By increasing As concentration in irrigation water, in fact, bean leaves showed a decrease in both chlorophyll A and B concentrations in their own mesophylls. However, by increasing level of compost application there was an increase of both chlorophylls concentrations in bean leaves. Arsenic concentration in roots was higher than that in shoots and bean yield. Bean plants showed a typical behavior of the plants sensitive to As toxicity, which usually tend to limit the As translocation from roots to shoots and yield. A low As allocation in bean yield is desirable, because a high As content in edible part of the plants

  16. Dissolved sulfide in groundwater with elevated arsenic concentrations at Winthrop, Maine

    NASA Astrophysics Data System (ADS)

    He, Y.; Zheng, Y.; Zheng, Y.; Locke, D. C.; Simpson, J. H.; Stute, M.

    2001-12-01

    Although sulfur is a biogeochemically significant element because of its strong influence on and response to redox conditions, there are relatively few reliable data sets of trace levels of dissolved sulfide \\(less than1 uM \\) in groundwaters This circumstance results from the relatively high detection limit \\(˜ 1uM \\) of methylene blue colorimetry and the general lack of sensitive methods for field analysis. We were motivated to investigate trace levels of dissolved sulfide because highly insoluble sulfide precipitates of many elements such as As and Fe represent important removal pathways for these metals in reducing groundwaters. Using differential pulse cathodic stripping voltammetry \\(DPCSV\\) capable of detecting 4 nM of dissolved sulfide, we observed that at a site in Winthrop, Maine, groundwater sulfide concentrations ranged from less than 4 nM to ˜ 2000 nM for about a dozen multi-level observation wells under a landfill cap and less than 4 nM to ˜ 7300 nM from several nearby monitoring wells outside the landfill. Sulfide concentrations generally increased when oxygen reduction potential \\(ORP\\) values became more negative. Determination of sulfide should be carried out within 1 hr of sample collection. Samples taken by two methods, \\(1\\) PTFE syringes with luer-lock valves and \\(2\\) BOD bottles show a rapid decline of sulfide following sampling, with up to 90% and 60% losses, respectively, after 24 hrs of storage at 4 ° C. Despite the three orders of magnitude range of dissolved sulfide, arsenic and iron concentrations were all elevated in observational wells installed in a roughly 25 m by 20 m rectangle under the landfill cap, suggesting that As remains mobile under mildly sulfate-reducing conditions. In one well outside of the landfill area, with extremely negative ORP \\(-321 mV\\) and ˜ 7300 nM of dissolved sulfide, groundwater was very low in dissolved As, Fe, and sulfate, suggesting that precipitation of arsenopyrite could be a

  17. Arsenic and heavy metal concentrations in surface soils and vegetables of Feni district in Bangladesh.

    PubMed

    Karim, R A; Hossain, S M; Miah, M M H; Nehar, K; Mubin, M S H

    2008-10-01

    An investigation of various heavy metals including the arsenic (As) poisoning in soils and vegetables in five upazillas under Feni district of Bangladesh was performed by neutron activation technique using the neutron irradiation facilities of TRIGA MARK II research reactor at Bangladesh Atomic Energy Research Establishment (BAERE), Savar, Dhaka. A total of 30 samples (15 surface soils and 15 foodstuffs) were studied in five Upazillas namely as, Sonagazi, Dagan Bhuiya, Feni Sadar, Fulgazi and Parsuram of Feni district taking three samples of each kind from each upazilla. Samples of each kind together with the standard reference material (SRM) were irradiated in the same neutron flux and the gamma-rays of nuclides from the irradiated samples were assessed and screened for As, Br, U, Th, Cr, Sc, Fe, Zn and Co in soils and As, Br, Na, K, Cr, Sc, Fe, Zn and Co in vegetables (i.e; eddoe, taro, green papaya, plantain, potato, callaloo, bottle ground and carambola). The measurement of gamma-rays was carried out by means of a calibrated high resolution HPGe detector. The concentration of product nuclides containing in the irradiated samples was determined from the peak count-rates of prominent gamma-lines for the corresponding nuclides. Among all contaminants, only As, Zn and Cr for both samples were focused because of their higher values compared with the local as well as the world typical values. The present results revealed that the mean levels of As in Parsuram, Feni Sadar and Pulgazi upazillas are higher than the world typical value of 2 mg/kg. The mean values of Zn and Cr for all upazillas are higher than the world typical values 32 and 27.9 mg/kg, respectively. For the case of vegetables, the mean concentration of As is found only in Eddoe (5.33 ppm) and Taro (1.46 ppm) collected from Sonagazi and Feni Sadar upazilla; which are higher than the values in Samta (0.1 ppm for eddoe and 0.44 ppm for taro) under Jessore district of Bangladesh. The mean concentrations of

  18. Adaptation of a mixed culture of acidophiles for a tank biooxidation of refractory gold concentrates containing a high concentration of arsenic.

    PubMed

    Hong, Jeongsik; Silva, Rene A; Park, Jeonghyun; Lee, Eunseong; Park, Jayhyun; Kim, Hyunjung

    2016-05-01

    We adapted a mixed culture of acidophiles to high arsenic concentrations to confirm the possibility of achieving more than 70% biooxidation of refractory gold concentrates containing high arsenic (As) concentration. The biooxidation process was applied to refractory gold concentrates containing approximately 139.67 g/kg of total As in a stirred tank reactor using an adapted mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. The percentage of the biooxidation process was analyzed based on the total As removal efficiency. The As removal was monitored by inductively coupled plasma (ICP) analysis, conducted every 24 h. The results obtained with the adapted culture were compared with the percentage of biooxidation obtained with a non-adapted mixed culture of A. ferrooxidans and A. thiooxidans, and with their respective pure cultures. The percentages of biooxidation obtained during 358 h of reaction were 72.20%, 38.20%, 27.70%, and 11.45% for adapted culture, non-adapted culture, and pure cultures of A. thiooxidans and A. ferrooxidans, respectively. The adapted culture showed a peak maximum percentage of biooxidation of 77% at 120 h of reaction, confirming that it is possible to obtain biooxidation percentages over 70% in gold concentrates containing high As concentrations. PMID:26481159

  19. Cadmium blood and urine concentrations as measures of exposure: NHANES 1999–2010

    PubMed Central

    Adams, Scott V.; Newcomb, Polly A.

    2014-01-01

    Exposure to cadmium, a heavy metal present in cigarettes, can be assessed in both urine and blood. Few studies have compared the properties of concurrent measurements of urine cadmium (uCd) and blood cadmium (bCd) in relation to the duration and timing of a known exposure. In this study, bCd and uCd were modeled with data from the National Health and Nutrition Examination Survey (1999–2010). Adjusted geometric mean bCd and uCd were estimated from regression results. Each 1% higher geometric mean uCd was associated with 0.50% (95% CI: 0.47%–0.54%; R2=0.30) higher bCd. In male never-smokers, bCd was 69% (59%–81%) and uCd was 200%(166%–234%) higher at age ≥70y versus 20–29y. Ten pack-years (py) of smoking were associated with 13.7%(10.0%–17.4%) higher bCd and 16.8% (12.6%–21.1%) higher uCd in male smokers. The first year after smoking cessation was associated with 53% (48%–58%) lower bCd and 23%(14%–33%) lower uCd in representative males age 55y with 20py smoking. Smoking in the previous 5 days was associated with 55%(40%–71%) higher bCd and 7%(−3%–18%) higher uCd. Results were similar for women. uCd mainly measures long-term exposure and bCd recent exposure, but with noticeable overlap. Epidemiological studies should base the choice of uCd or bCd on the timing of cadmium exposure relevant to the disease under study. PMID:24002489

  20. Arsenic in Food

    MedlinePlus

    ... inorganic forms. The FDA has been measuring total arsenic concentrations in foods, including rice and juices, through its Total Diet Study program ... readily take up much arsenic from the ground, rice is different because it takes ... has high levels of less toxic organic arsenic. Do organic foods ...

  1. Association of arsenic concentration and speciation with straighthead disease in US produced rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent reports have indicated that rice when grown under anaerobic flooded field conditions can accumulate high levels of grain arsenic (As). This is a public health concern due to the high daily consumption of rice by some populations. The As-based herbicide (monosodium methanearsonate, MSMA) has ...

  2. SPECIATION OF ARSENIC IN EXPOSURE ASSESSMENT MATRICES

    EPA Science Inventory

    The speciaton of arsenic in water, food and urine are analytical capabilities which are an essential part in arsenic risk assessment. The cancer risk associated with arsenic has been the driving force in generating the analytical research in each of these matrices. This presentat...

  3. Porphyrins - urine

    MedlinePlus

    ... results may be due to: Liver cancer Hepatitis Lead poisoning Porphyria (several types) Alternative Names Urine uroporphyrin; Urine ... More Delta-ALA urine test Enzyme Hemoglobin Hepatitis Lead poisoning Liver cancer - hepatocellular carcinoma PBG urine test Porphyria ...

  4. 21 CFR 862.3120 - Arsenic test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Arsenic test system. 862.3120 Section 862.3120....3120 Arsenic test system. (a) Identification. An arsenic test system is a device intended to measure arsenic, a poisonous heavy metal, in urine, vomitus, stomach contents, nails, hair, and...

  5. 21 CFR 862.3120 - Arsenic test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Arsenic test system. 862.3120 Section 862.3120....3120 Arsenic test system. (a) Identification. An arsenic test system is a device intended to measure arsenic, a poisonous heavy metal, in urine, vomitus, stomach contents, nails, hair, and...

  6. 21 CFR 862.3120 - Arsenic test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Arsenic test system. 862.3120 Section 862.3120....3120 Arsenic test system. (a) Identification. An arsenic test system is a device intended to measure arsenic, a poisonous heavy metal, in urine, vomitus, stomach contents, nails, hair, and...

  7. 21 CFR 862.3120 - Arsenic test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Arsenic test system. 862.3120 Section 862.3120....3120 Arsenic test system. (a) Identification. An arsenic test system is a device intended to measure arsenic, a poisonous heavy metal, in urine, vomitus, stomach contents, nails, hair, and...

  8. 21 CFR 862.3120 - Arsenic test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Arsenic test system. 862.3120 Section 862.3120....3120 Arsenic test system. (a) Identification. An arsenic test system is a device intended to measure arsenic, a poisonous heavy metal, in urine, vomitus, stomach contents, nails, hair, and...

  9. Trichloroacetic acid in urine as biological exposure equivalent for low exposure concentrations of trichloroethene.

    PubMed

    Csanády, György A; Göen, Thomas; Klein, Dominik; Drexler, Hans; Filser, Johannes G

    2010-11-01

    A urinary trichloroacetic acid (TCA) concentration of 100 mg/l at the end of the last work shift (8 h/day, 5 days/week) of the week has been established in workers as exposure equivalent for the carcinogenic substance trichloroethene (EKA for TRI) at an exposure concentration of 50 ppm TRI. Due to the continuous reduction of atmospheric TRI concentrations during the last years, the quantitative relation given by the EKA for TRI is revised for exposures to low TRI concentrations. A physiological two-compartment model is presented by which the urinary TCA concentrations are calculated that result from inhaled TRI in humans. The model contains one compartment for trichloroethanol (TCE) and one for TCA. Inhaled TRI is metabolized to TCA and to TCE. The latter is in part further oxidized to TCA. Urinary elimination of TCA is modeled to obey first order kinetics. All required model parameters were taken form the literature. In order to evaluate the model performance on the urinary TCA excretion at low exposure concentrations, predicted urinary TCA concentrations were compared with data obtained in two volunteer studies and in one field study. The model was evaluated at exposure concentrations as low as 12.5 ppm TRI. It is demonstrated that the correlation described by the hitherto used EKA for TRI is also valid at low TRI concentrations. For TRI exposure concentrations of 0.6 and 6 ppm, the resulting urinary TCA concentrations at the end of the last work shift of a week are predicted to be 1.2 and 12 mg/l, respectively. PMID:20414643

  10. Incidence of oral cancer in relation to nickel and arsenic concentrations in farm soils of patients' residential areas in Taiwan

    PubMed Central

    2010-01-01

    Background To explore if exposures to specific heavy metals in the environment is a new risk factor of oral cancer, one of the fastest growing malignancies in Taiwan, in addition to the two established risk factors, cigarette smoking and betel quid chewing. Methods This is an observational study utilized the age-standardized incidence rates of oral cancer in the 316 townships and precincts of Taiwan, local prevalence rates of cigarette smoking and betel quid chewing, demographic factors, socio-economic conditions, and concentrations in farm soils of the eight kinds of heavy metal. Spatial regression and GIS (Geographic Information System) were used. The registration contained 22,083 patients, who were diagnosed with oral cancer between 1982 and 2002. The concentrations of metal in the soils were retrieved from a nation-wide survey in the 1980s. Results The incidence rate of oral cancer is geographically related to the concentrations of arsenic and nickel in the patients' residential areas, with the prevalence of cigarette smoking and betel quid chewing as controlled variables. Conclusions Beside the two established risk factors, cigarette smoking and betel quid chewing, arsenic and nickel in farm soils may be new risk factors for oral cancer. These two kinds of metal may involve in the development of oral cancer. Further studies are required to understand the pathways via which metal in the farm soils exerts its effects on human health. PMID:20152030

  11. Arsenic groundwater contamination in Middle Ganga Plain, Bihar, India: a future danger?

    PubMed Central

    Chakraborti, Dipankar; Mukherjee, Subhash C; Pati, Shyamapada; Sengupta, Mrinal K; Rahman, Mohammad M; Chowdhury, Uttam K; Lodh, Dilip; Chanda, Chitta R; Chakraborti, Anil K; Basu, Gautam K

    2003-01-01

    The pandemic of arsenic poisoning due to contaminated groundwater in West Bengal, India, and all of Bangladesh has been thought to be limited to the Ganges Delta (the Lower Ganga Plain), despite early survey reports of arsenic contamination in groundwater in the Union Territory of Chandigarh and its surroundings in the northwestern Upper Ganga Plain and recent findings in the Terai area of Nepal. Anecdotal reports of arsenical skin lesions in villagers led us to evaluate arsenic exposure and sequelae in the Semria Ojha Patti village in the Middle Ganga Plain, Bihar, where tube wells replaced dug wells about 20 years ago. Analyses of the arsenic content of 206 tube wells (95% of the total) showed that 56.8% exceeded arsenic concentrations of 50 micro g/L, with 19.9% > 300 micro g/L, the concentration predicting overt arsenical skin lesions. On medical examination of a self-selected sample of 550 (390 adults and 160 children), 13% of the adults and 6.3% of the children had typical skin lesions, an unusually high involvement for children, except in extreme exposures combined with malnutrition. The urine, hair, and nail concentrations of arsenic correlated significantly (r = 0.72-0.77) with drinking water arsenic concentrations up to 1,654 micro g/L. On neurologic examination, arsenic-typical neuropathy was diagnosed in 63% of the adults, a prevalence previously seen only in severe, subacute exposures. We also observed an apparent increase in fetal loss and premature delivery in the women with the highest concentrations of arsenic in their drinking water. The possibility of contaminated groundwater at other sites in the Middle and Upper Ganga Plain merits investigation. PMID:12842773

  12. Arsenic levels in immigrant children from countries at risk of consuming arsenic polluted water compared to children from Barcelona.

    PubMed

    Piñol, S; Sala, A; Guzman, C; Marcos, S; Joya, X; Puig, C; Velasco, M; Velez, D; Vall, O; Garcia-Algar, O

    2015-11-01

    Arsenic is a highly toxic element that pollutes groundwater, being a major environmental problem worldwide, especially in the Bengal Basin. About 40% of patients in our outpatient clinics come from those countries, and there is no published data about their arsenic exposure. This study compares arsenic exposure between immigrant and native children. A total of 114 children (57 natives, 57 immigrants), aged 2 months to 16 years, were recruited and sociodemographic and environmental exposure data were recorded. Total arsenic in urine, hair, and nails and arsenic-speciated compounds in urine were determined. We did not find significant differences in total and inorganic arsenic levels in urine and hair, but in organic arsenic monomethylarsenic acid (MMA) and dimethylarsinous acid (DMA) in urine and in total arsenic in nails. However, these values were not in the toxic range. There were significant differences between longer than 5 years exposure and less than 5 years exposure (consumption of water from tube wells), with respect to inorganic and organic MMA arsenic in urine and total arsenic in nails. There was partial correlation between the duration of exposure and inorganic arsenic levels in urine. Immigrant children have higher arsenic levels than native children, but they are not toxic. At present, there is no need for specific arsenic screening or follow-up in immigrant children recently arrived in Spain from exposure high-risk countries. PMID:26431705

  13. Assessment of Arsenic Exposure by Measurement of Urinary Speciated Inorganic Arsenic Metabolites in Workers in a Semiconductor Manufacturing Plant

    PubMed Central

    2013-01-01

    Objectives The purpose of this study was to evaluate the exposure to arsenic in preventive maintenance (PM) engineers in a semiconductor industry by detecting speciated inorganic arsenic metabolites in the urine. Methods The exposed group included 8 PM engineers from the clean process area and 13 PM engineers from the ion implantation process area; the non-exposed group consisted of 14 office workers from another company who were not occupationally exposed to arsenic. A spot urine specimen was collected from each participant for the detection and measurement of speciated inorganic arsenic metabolites. Metabolites were separated by high performance liquid chromatography-inductively coupled plasma spectrometry-mass spectrometry. Results Urinary arsenic metabolite concentrations were 1.73 g/L, 0.76 g/L, 3.45 g/L, 43.65 g/L, and 51.32 g/L for trivalent arsenic (As3+), pentavalent arsenic (As5+), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and total inorganic arsenic metabolites (As3+ + As5+ + MMA + DMA), respectively, in clean process PM engineers. In ion implantation process PM engineers, the concentrations were 1.74 g/L, 0.39 g/L, 3.08 g/L, 23.17 g/L, 28.92 g/L for As3+, As5+, MMA, DMA, and total inorganic arsenic metabolites, respectively. Levels of urinary As3+, As5+, MMA, and total inorganic arsenic metabolites in clean process PM engineers were significantly higher than that in the non-exposed group. Urinary As3+ and As5+ levels in ion implantation process PM engineers were significantly higher than that in non-exposed group. Conclusion Levels of urinary arsenic metabolites in PM engineers from the clean process and ion implantation process areas were higher than that in office workers. For a complete assessment of arsenic exposure in the semiconductor industry, further studies are needed. PMID:24472712

  14. Activation and deactivation of high concentration arsenic with some evidence of precipitation

    SciTech Connect

    Rousseau, P.M.; Griffin, P.B.; Plummer, J.D.; Carey, P.G.

    1992-12-29

    Using box-shaped profiles created by laser melt annealing, the authors investigate the kinetics of arsenic activation and deactivation. They find deactivation shows no history effects, which can be consistent either with clustering or precipitation for the cases considered. For activation, they notice it occurs on very short time scales, followed by a slower deactivation process. This is suggestive evidence that at least some precipitation occurs.

  15. Effect of cattle urine addition on the surface emissions and subsurface concentrations of greenhouse gases from a UK lowland peatland.

    NASA Astrophysics Data System (ADS)

    Boon, Alex; Robinson, Steve; Chadwick, David; Cardenas, Laura

    2014-05-01

    Grazing systems represent a substantial percentage of the global anthropogenic flux of nitrous oxide (N2O) as a result of nitrogen addition to the soil. Cattle urine has been shown to stimulate N2O production due to the dual effect of a large pool of readily available N and C and increased soil water content. Studies indicate that even short-term grazing can cause a significant increase in N2O emissions, particularly when combined with compaction and seasonal water-table rise. Peat soils have different physical and chemical characteristics to mineral soils including higher organic carbon content, higher porosity and greater variation in hydraulic properties due to swell and shrink. Peat soils have been shown to have increased N2O emissions with respect to mineral soils as a result of a combination of these factors, particularly when amended with fertilisers or livestock excreta. Many lowland peatland environments in the UK are under seasonal grazing management and cattle are increasingly being introduced to manage fen vegetation in lowland peatland. In this study, we simulated small urination events on a conservation area of UK peat grassland that is intensively grazed for a short period of time during autumn seasonal water-table rise. We measured subsurface and surface emissions of N2O, methane (CH4) and carbon dioxide (CO2) alongside soil physical and chemical changes to determine the key mechanisms of greenhouse gas production and transport. CO2emission peaked at 5200 mg CO2 m-2 d-1 directly after application from a background value of 905 mg CO2 m-2 d-1. CH4 flux decreased to -2000 μg CH4 m-2 d-1two days after application (control plots -580 μg CH4 m-2 d-1); however, net CH4 flux was positive from urine treated plots and negative from control plots. N2O emission peaked at 37 mg N2O m-2 d-1 12 days after application (1.08 mg N2O m-2 d-1 in control plots). Subsurface CH4 and N2O concentrations were higher in the urine treated plots than the controls. There was

  16. Urinary porphyrins as biomarkers for arsenic exposure among susceptible populations in Guizhou Province, China

    SciTech Connect

    Ng, J.C.; Wang, J.P.; Zheng, B.S.; Zhai, C.; Maddalena, R.; Liu, F.; Moore, M.R.

    2005-08-07

    Coal from some areas in Guizhou Province contains elevated levels of arsenic. This has caused arsenicosis in individuals who use arsenic-contaminated coal for the purposes of heating, cooking and drying of food in poorly ventilated dwellings. The population at risk has been estimated to be approximately 200,000 people. We analyzed the porphyrin excretion profile using a HPLC method in urine samples collected from 113 villagers who lived in Xing Ren district, a coal-borne arsenicosis endemic area and from 30 villagers from Xing Yi where arsenicosis is not prevalent. Urinary porphyrins were higher in the arsenic exposed group than those in the control group. The correlation between urinary arsenic and porphyrin concentrations demonstrated the effect of arsenic on heme biosynthesis resulting in increased porphyrin excretion. Both uroporphyrin and coproporphyrin III showed significant increases in the excretion profile of the younger age ({lt} 20 years) arsenic-exposed group, suggesting that porphyrins could be used as early warning biomarkers of chronic arsenic exposure in humans. Greater increases of urinary arsenic and porphyrins in women, children and older age groups who spend much of their time indoors suggest that they might be at a higher risk. Whether elevated porphyrins could predict adverse health effects associated with both cancer and non-cancer end-points in chronically arsenic-exposed populations need further investigation.

  17. Oxidative Damage in Lymphocytes of Copper Smelter Workers Correlated to Higher Levels of Excreted Arsenic

    PubMed Central

    Escobar, Jorge; Varela-Nallar, Lorena; Coddou, Claudio; Nelson, Pablo; Maisey, Kevin; Valdés, Daniel; Aspee, Alexis; Espinosa, Victoria; Rozas, Carlos; Montoya, Margarita; Mandiola, Cristian; Rodríguez, Felipe E.; Acuña-Castillo, Claudio; Escobar, Alejandro; Fernández, Ricardo; Diaz, Hernán; Sandoval, Mario; Imarai, Mónica; Rios, Miguel

    2010-01-01

    Arsenic has been associated with multiple harmful effects at the cellular level. Indirectly these defects could be related to impairment of the integrity of the immune system, in particular in lymphoid population. To characterize the effect of Arsenic on redox status on this population, copper smelter workers and arsenic unexposed donors were recruited for this study. We analyzed urine samples and lymphocyte enriched fractions from donors to determinate arsenic levels and lymphocyte proliferation. Moreover, we studied the presence of oxidative markers MDA, vitamin E and SOD activity in donor plasma. Here we demonstrated that in human beings exposed to high arsenic concentrations, lymphocyte MDA and arsenic urinary levels showed a positive correlation with SOD activity, and a negative correlation with vitamin E serum levels. Strikingly, lymphocytes from the arsenic exposed population respond to a polyclonal stimulator, phytohemaglutinin, with higher rates of thymidine incorporation than lymphocytes of a control population. As well, similar in vitro responses to arsenic were observed using a T cell line. Our results suggest that chronic human exposure to arsenic induces oxidative damage in lymphocytes and could be considered more relevant than evaluation of T cell surveillance. PMID:21253489

  18. Neurosensory effects of chronic human exposure to arsenic associated with body burden and environmental measures.

    PubMed

    Otto, D; Xia, Y; Li, Y; Wu, K; He, L; Telech, J; Hundell, H; Prah, J; Mumford, J; Wade, T

    2007-03-01

    Exposure to arsenic in drinking water is known to produce a variety of health problems, including peripheral neuropathy. Auditory, visual and somatosensory impairment have been reported in Mongolian farmers living in the Yellow River Valley, where drinking water is contaminated by arsenic. In the present study, sensory tests, including pinprick and vibration thresholds, were administered to 320 residents with well-water arsenic levels, ranging from non-detectable to 690 microg/L. Vibration thresholds in the second and fifth fingers of both hands were measured using a vibrothesiometer. Drinking water, urine and toenail samples were obtained to assess arsenic exposure and body burden. Regression analyses indicated significant associations of pinprick scores and vibration thresholds with all arsenic measures. Vibration thresholds were more strongly associated with urinary than water or nail arsenic measures, but odds ratios for decreased pinprick sensitivity were highest for the water arsenic measure. Results of the current study indicate neurosensory effects of arsenic exposure at concentrations well below the 1000 microg/L drinking water level specified by NRC, and suggest that non-carcinogenic end-points, such as vibration thresholds, are useful in the risk assessment of exposure to arsenic in drinking water. PMID:17439919

  19. Arsenic, Boron, and Fluoride Concentrations in Ground Water in and Near Diabase Intrusions, Newark Basin, Southeastern Pennsylvania

    USGS Publications Warehouse

    Senior, Lisa A.; Sloto, Ronald A.

    2006-01-01

    During an investigation in 2000 by the U.S. Environmental Protection Agency (USEPA) of possible contaminant releases from an industrial facility on Congo Road near Gilbertsville in Berks and Montgomery Counties, southeastern Pennsylvania, concentrations of arsenic and fluoride above USEPA drinking-water standards of 10 ?g/L and 4 mg/L, respectively, and of boron above the USEPA health advisory level of 600 ?g/L were measured in ground water in an area along the northwestern edge of the Newark Basin. In 2003, the USEPA requested technical assistance from the U.S. Geological Survey (USGS) to help identify sources of arsenic, boron, and fluoride in the ground water in the Congo Road area, which included possible anthropogenic releases and naturally occurring mineralization in the local bedrock aquifer, and to identify other areas in the Newark Basin of southeastern Pennsylvania with similarly elevated concentrations of these constituents. The USGS reviewed available data and collected additional ground-water samples in the Congo Road area and four similar hydrogeologic settings. The Newark Basin is the largest of the 13 major exposed Mesozoic rift basins that stretch from Nova Scotia to South Carolina. Rocks in the Newark Basin include Triassic through Jurassic-age sedimentary sequences of sandstones and shales that were intruded by diabase. Mineral deposits of hydrothermal origin are associated with alteration zones bordering intrusions of diabase and also occur as strata-bound replacement deposits of copper and zinc in sedimentary rocks. The USGS review of data available in 2003 showed that water from about 10 percent of wells throughout the Newark Basin of southeastern Pennsylvania had concentrations of arsenic greater than the USEPA maximum contaminant level (MCL) of 10 ?g/L; the highest reported arsenic concentration was at about 70 ?g/L. Few data on boron were available, and the highest reported boron concentration in well-water samples was 60 ?g/L in contrast

  20. Concentration distribution of the marijuana metabolite Delta9-tetrahydrocannabinol-9-carboxylic acid and the cocaine metabolite benzoylecgonine in the department of defense urine drug-testing program.

    PubMed

    Jemionek, John F; Copley, Curtis L; Smith, Michael L; Past, Marilyn R

    2008-01-01

    Urine drug testing has been employed for punitive purposes by the Department of Defense since December 1981 (Memorandum 62884, Deputy Secretary of Defense Frank C. Carlucci). Federal Workplace Drug Testing Programs were initiated in response to Executive Order 12564 issued on September 15, 1986, that required Drug-Free Federal Workplaces be established. In their respective programs, a positive urine drug test may be referred to a military court martial or to an administrative board. To address safety and insurance requirements, the testing of civilians has expanded beyond Federal Programs to include pre-employment and post-accident urine drug testing. During adjudication, an Expert Toxicologist may be asked to opine what can be discerned from the concentration of drug or drug metabolite found in the urine. Little can be opined with certainty from a positive urine drug test as to the amount of drug ingested, when the drug was ingested, and in most instances, whether the individual felt the effects of the drug, or was under the influence of the drug found in the urine. What may be useful to both the Expert and to the Trier-of-Facts is the frequency that a particular urine drug concentration is encountered in positive drug tests. The finding that 50% of all positive marijuana and cocaine urine metabolite concentrations in the military testing program over the three-year period of October 1, 2004 through September 30, 2007, are below a median value of 65 and 968 ng/mL, respectively, provide reference points. A median drug concentration combined with the percentile or frequency that a particular urine drug concentration occurs may provide evaluative information for a determination of the facts and the outcome of judicial or administrative proceedings. This may be especially useful to jurors when the concentration of marijuana or cocaine metabolite is perceptibly low. The information would also be applicable to medical review officers, medical examiners, drug treatment

  1. Arsenic pollution sources.

    PubMed

    Garelick, Hemda; Jones, Huw; Dybowska, Agnieszka; Valsami-Jones, Eugenia

    2008-01-01

    Arsenic is a widely dispersed element in the Earth's crust and exists at an average concentration of approximately 5 mg/kg. There are many possible routes of human exposure to arsenic from both natural and anthropogenic sources. Arsenic occurs as a constituent in more than 200 minerals, although it primarily exists as arsenopyrite and as a constituent in several other sulfide minerals. The introduction of arsenic into drinking water can occur as a result of its natural geological presence in local bedrock. Arsenic-containing bedrock formations of this sort are known in Bangladesh, West Bengal (India), and regions of China, and many cases of endemic contamination by arsenic with serious consequences to human health are known from these areas. Significant natural contamination of surface waters and soil can arise when arsenic-rich geothermal fluids come into contact with surface waters. When humans are implicated in causing or exacerbating arsenic pollution, the cause can almost always be traced to mining or mining-related activities. Arsenic exists in many oxidation states, with arsenic (III) and (V) being the most common forms. Similar to many metalloids, the prevalence of particular species of arsenic depends greatly on the pH and redox conditions of the matrix in which it exists. Speciation is also important in determining the toxicity of arsenic. Arsenic minerals exist in the environment principally as sulfides, oxides, and phosphates. In igneous rocks, only those of volcanic origin are implicated in high aqueous arsenic concentrations. Sedimentary rocks tend not to bear high arsenic loads, and common matrices such as sands and sandstones contain lower concentrations owing to the dominance of quartz and feldspars. Groundwater contamination by arsenic arises from sources of arsenopyrite, base metal sulfides, realgar and orpiment, arsenic-rich pyrite, and iron oxyhydroxide. Mechanisms by which arsenic is released from minerals are varied and are accounted for by

  2. Pathways of human exposure to arsenic in a community surrounding a copper smelter

    SciTech Connect

    Polissar, L.; Lowry-Coble, K.; Kalman, D.A.; Hughes, J.P.; van Belle, G.; Covert, D.S.; Burbacher, T.M.; Bolgiano, D.; Mottet, N.K. )

    1990-10-01

    Several studies have found elevated levels of urinary arsenic among residents living near a copper smelter in Tacoma, Washington. To assess pathways of exposure to arsenic from the smelter, biological and environmental samples were collected longitudinally from 121 households up to 8 miles from the smelter. The concentration of inorganic and methylated arsenic compounds in spot urine samples was used as the primary measure of exposure to environmental arsenic. Urinary concentration of arsenic dropped off to a constant background level within one-half mile of the smelter in contrast to environmental concentrations, which decreased more steadily with increasing distance. Among all age-sex-specific groups in all areas, only children ages 0-6 living within one-half mile of the smelter had elevated levels of arsenic in urine. A separate analysis of data for these children suggests that hand-to-mouth activity was the primary source of exposure. Inhalation of ambient air and resuspension of contaminated soil were not important sources of exposure for children or adults.

  3. A medical geology study of an arsenic-contaminated area in Kouhsorkh, NE Iran.

    PubMed

    Tabasi, Samira; Abedi, Arezoo

    2012-04-01

    High concentrations of arsenic were determined in sediments from the Kouhsorkh area, Khorasan province, NE Iran. The main rock formations in the area consist of Tertiary volcanic rocks as Tuffaceous sandstone, polymictic conglomerate and andesite. Furthermore, some As-Sb-Au mineralization occurred in this area. Concentrations of arsenic in sediments were determined to range between 4.2 and 268.2 ppm, exceeding US EPA (2004) limits. It seems that young volcanic activity is one of the most important factors for arsenic contamination in this area. The first stage of this medical geology study was done at 2 villages in the Kouhsorkh area in which the arsenic concentration in water is high. People in this residential area suffer from skin diseases including hyperpigmentation, hypopigmentation, keratosis on head, hands, and feet. The 24-h urine specimens were tested for arsenic, the level of total arsenic in urine were determined to range between 13.66 and 75.92 μg/l day, exceeding permissible limits from 5 to 40 μg/day. More systematic studies are needed to determine the link between As exposure and its related diseases. PMID:21960314

  4. The carcinogenicity of arsenic.

    PubMed Central

    Pershagen, G

    1981-01-01

    A carcinogenic role of inorganic arsenic has been suspected for nearly a century. Exposure to inorganic arsenic compounds occurs in some occupational groups, e.g., among smelter workers and workers engaged in the production and use of arsenic containing pesticides. Substantial exposure can also result from drinking water in certain areas and the use of some drugs. Tobacco and wine have had high As concentrations due to the use of arsenic containing pesticides. Inorganic arsenic compounds interfere with DNA repair mechanisms and an increased frequency of chromosomal aberrations have been observed among exposed workers and patients. Epidemiological data show that inorganic arsenic exposure can cause cancer of the lung and skin. The evidence of an etiologic role of arsenic for angiosarcoma of the liver is highly suggestive; however, the association between arsenic and cancer of other sites needs further investigation. No epidemiological data are available on exposure to organic arsenic compounds and cancer. Animal carcinogenicity studies involving exposure to various inorganic and organic arsenic compounds by different routes have been negative, with the possible exception of some preliminary data regarding lung cancer and leukemia. Some studies have indicated an increased mortality from lung cancer in populations living near point emission sources of arsenic into the air. The role of arsenic cannot be evaluated due to lack of exposure data. Epidemiological data suggest that the present WHO standard for drinking water (50 micrograms As/l.) provides only a small safety margin with regard to skin cancer. PMID:7023936

  5. Bisphenol A in Urine of Chinese Young Adults: Concentrations and Sources of Exposure.

    PubMed

    Gao, Chongjing; Liu, Liyan; Ma, Wanli; Zhu, Ningzheng; Jiang, Ling; Ren, Nanqi; Li, Yi-Fan; Kannan, Kurunthachalam

    2016-02-01

    Bisphenol A (BPA) is an endocrine disrupting environmental chemical. Urinary concentrations of BPA were measured in samples collected nationwide from Chinese young adults. The geometric mean urinary concentration of BPA in Chinese young adults was 2.23 ng/mL. The estimated daily exposure dose for BPA was 64.8 ng/kg bw/day. Contributions of various BPA sources to exposure in Chinese young adults were estimated. Dietary intake was the primary exposure pathway. The contribution of dietary intake, indoor dust, paper products and personal care products to BPA intake was 72.5 %, 0.74 %, 0.98 %, 0.22 % of the total exposure dose, respectively. This is the first study on the occurrence of BPA in young adults from most provinces and autonomous regions of China. The results can be used to establish a database for BPA exposure assessment for Chinese general population. PMID:26679324

  6. Plasma and urine diketopiperazine concentrations in normal adults ingesting large quantities of aspartame.

    PubMed

    Cho, E S; Coon, J D; Stegink, L D

    1987-07-01

    In aqueous solution, aspartame can cyclicize to form its corresponding diketopiperazine (3-carboxymethyl-6-benzyl-2,5-diketopiperazine; DKP) and methanol. We measured plasma and urinary concentrations of DKP in samples obtained from six normal adult subjects ingesting 2.2 mg DKP/kg body weight. The DKP was administered as part of a dose of 200 mg aspartame/kg body weight. DKP concentrations in plasma were below the detection limit (less than 1 microgram/ml) of the high-pressure liquid chromatographic method at each time interval after ingestion at which they were measured. Mean (+/- SD) total urinary DKP excreted during the first 24-hr period after dosing was 6.68 +/- 1.30 mg (4.83 +/- 0.23% of the ingested DKP dose). Approximately 44% of the total DKP excreted was excreted in the first 4 hr after dosing. PMID:3623338

  7. Spectrophotometric determination of arsenic by molybdenum blue method in zinc-lead concentrates and related smelter products after chloroform extraction of iodide complex.

    PubMed

    Rao, C S; Rajan, S C; Rao, N V

    1993-05-01

    The most popular and widely applied method for determination of arsenic in ore concentrates is by spectrophotometry of arsenomolybdic acid reduced to molybdenum blue. While applying this method, several authors have developed procedures which varied in the decomposition, separation of arsenic and in the final colour development. Data regarding interference from germanium is inadequate. The present paper describes a procedure, which combines the best features of the previous procedures and is simple, less time consuming and interference-free compared to earlier procedures. This method has been applied to zinc-lead concentrates and related smelter products. PMID:18965681

  8. A Family History of Diabetes Modifies the Association between Elevated Urine Albumin Concentration and Hyperglycemia in Nondiabetic Mexican Adolescents

    PubMed Central

    Jiménez-Corona, Aida; Ávila-Hermosillo, Antonio; Nelson, Robert G.; Ramírez-López, Guadalupe

    2015-01-01

    We examined the frequency of elevated urine albumin concentration (UAC) and its association with metabolic syndrome (MetS) and metabolic markers in 515 nondiabetic Mexican adolescents stratified by family history of diabetes (FHD). UAC was measured in a first morning urine sample and considered elevated when excretion was ≥20 mg/mL. MetS was defined using International Diabetes Federation criteria. Fasting insulin, insulin resistance, and lipids were evaluated. Multivariate logistic regression was performed. Elevated UAC was present in 12.4% and MetS was present in 8.9% of the adolescents. No association was found between elevated UAC and MetS. Among adolescents with FHD, 18.4% were overweight and 20.7% were obese, whereas, among those without a FHD, 15.9% were overweight and 7.5% were obese. Hyperglycemia was higher in those with elevated UAC than in those without (44.4% versus 5.1%, p = 0.003). Hyperglycemia (OR = 9.8, 95% CI 1.6–59.4) and number of MetS components (OR = 4.5, 95% CI 1.5–13.3) were independently associated with elevated UAC. Among female participants, abdominal obesity was associated with elevated UAC (OR = 4.5, 95% CI 1.2–16.9). Conclusion. Elevated UAC was associated neither with MetS nor with any metabolic markers in nondiabetic adolescents. However, FHD modified the association of elevated UAC with hyperglycemia and the number of MetS components. PMID:26347891

  9. Soluble (pro)renin receptor via β-catenin enhances urine concentration capability as a target of liver X receptor.

    PubMed

    Lu, Xiaohan; Wang, Fei; Xu, Chuanming; Soodvilai, Sunny; Peng, Kexin; Su, Jiahui; Zhao, Long; Yang, Kevin T; Feng, Yumei; Zhou, Shu-Feng; Gustafsson, Jan-Åke; Yang, Tianxin

    2016-03-29

    The extracellular domain of the (pro)renin receptor (PRR) is cleaved to produce a soluble (pro)renin receptor (sPRR) that is detected in biological fluid and elevated under certain pathological conditions. The present study was performed to define the antidiuretic action of sPRR and its potential interaction with liver X receptors (LXRs), which are known regulators of urine-concentrating capability. Water deprivation consistently elevated urinary sPRR excretion in mice and humans. A template-based algorithm for protein-protein interaction predicted the interaction between sPRR and frizzled-8 (FZD8), which subsequently was confirmed by coimmunoprecipitation. A recombinant histidine-tagged sPRR (sPRR-His) in the nanomolar range induced a remarkable increase in the abundance of renal aquaporin 2 (AQP2) protein in primary rat inner medullary collecting duct cells. The AQP2 up-regulation relied on sequential activation of FZD8-dependent β-catenin signaling and cAMP-PKA pathways. Inhibition of FZD8 or tankyrase in rats induced polyuria, polydipsia, and hyperosmotic urine. Administration of sPRR-His alleviated the symptoms of diabetes insipidus induced in mice by vasopressin 2 receptor antagonism. Administration of the LXR agonist TO901317 to C57/BL6 mice induced polyuria and suppressed renal AQP2 expression associated with reduced renal PRR expression and urinary sPRR excretion. Administration of sPRR-His reversed most of the effects of TO901317. In cultured collecting duct cells, TO901317 suppressed PRR protein expression, sPRR release, and PRR transcriptional activity. Overall we demonstrate, for the first time to our knowledge, that sPRR exerts antidiuretic action via FZD8-dependent stimulation of AQP2 expression and that inhibition of this pathway contributes to the pathogenesis of diabetes insipidus induced by LXR agonism. PMID:26984496

  10. Environmentally relevant concentration of arsenic trioxide and humic acid promoted tumor progression of human cervical cancer cells: In vivo and in vitro studies.

    PubMed

    Tsai, Min-Ling; Yen, Cheng-Chieh; Lu, Fung-Jou; Ting, Hung-Chih; Chang, Horng-Rong

    2016-09-01

    In a previous study, treatment at higher concentrations of arsenic trioxide or co-exposure to arsenic trioxide and humic acid was found to be inhibited cell growth of cervical cancer cells (SiHa cells) by reactive oxygen species generation. However, treatment at lower concentrations slightly increased cell viability. Here, we investigate the enhancement of progression effects of environmentally relevant concentration of humic acid and arsenic trioxide in SiHa cell lines in vitro and in vivo by measuring cell proliferation, migration, invasion, and the carcinogenesis-related protein (MMP-2, MMP-9, and VEGF-A) expressions. SiHa cells treated with low concentrations of humic acid and arsenic trioxide alone or in co-exposure significantly increased reactive oxygen species, glutathione levels, cell proliferation, scratch wound-healing activities, migration abilities, and MMP-2 expression as compared to the untreated control. In vivo the tumor volume of either single drug (humic acid or arsenic trioxide) or combined drug-treated group was significantly larger than that of the control for an additional 45 days after tumor cell injection on the back of NOD/SCID mice. Levels of MMP-2, MMP-9, and VEGF-A, also significantly increased compared to the control. Histopathologic effects of all tumor cells appeared round in cell shape with high mitosis, focal hyperkeratosis and epidermal hyperplasia in the skin, and some tumor growth in the muscle were observed. Our results may indicate that exposure to low concentrations of arsenic trioxide and humic acid is associated with the progression of cervical cancer. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1121-1132, 2016. PMID:25728215

  11. Analytical strategy for the determination of various arsenic species in landfill leachate containing high concentrations of chlorine and organic carbon by HPLC-ICPMS

    NASA Astrophysics Data System (ADS)

    Bae, J.; An, J.; Kim, J.; Jung, H.; Kim, K.; Yoon, C.; Yoon, H.

    2012-12-01

    As a variety of wastes containing arsenic are disposed of in landfills, such facilities can play a prominent role in disseminating arsenic sources to the environment. Since it is widely recognized that arsenic toxicity is highly dependent on its species, accurate determination of various arsenic species should be considered as one of the essential goals to properly account for the potential health risk of arsenic in human and the environment. The inductively coupled plasma mass spectrometry linked to high performance liquid chromatography (HPLC-ICPMS) is acknowledged as one of the most important tools for the trace analysis of metallic speciation because of its superior separation capability and detectability. However, the complexity of matrices can cause severe interferences in the analysis results, which is the problem often encountered with HPLC-ICPMS system. High concentration of organic carbon in a sample solution causes carbon build-up on the skimmer and sampling cone, which reduces analytical sensitivity and requires a high maintenance level for its cleaning. In addition, argon from the plasma and chlorine from the sample matrix may combine to form 40Ar35Cl, which has the same nominal mass to charge (m/z) ratio as arsenic. In this respect, analytical strategy for the determination of various arsenic species (e.g., inorganic arsenite and arsenate, monomethylarsonic acid, dimethylarsinic acid, dimethyldithioarsinic acid, and arsenobetaine) in landfill leachate containing high concentrations of chlorine and organic carbon was developed in the present study. Solid phase extraction disk (i.e., C18 disk), which does not significantly adsorb any target arsenic species, was used to remove organic carbon in sample solutions. In addition, helium (He) gas was injected into the collision reaction cell equipped in ICPMS to collapse 40Ar35Cl into individual 40Ar and 35Cl. Although He gas also decreased arsenic intensity by blocking 75As, its signal to noise ratio

  12. Urine odor

    MedlinePlus

    Urine odor refers to the smell from your urine. Urine odor varies. Most of the time, urine does not ... Most changes in urine odor are not a sign of disease and go away in time. Some foods and medicines, including vitamins, may affect your ...

  13. Metabolites of arsenic and increased DNA damage of p53 gene in arsenic plant workers

    SciTech Connect

    Wen Weihua; Wen Jinghua; Lu Lin; Liu Hua; Yang Jun; Cheng Huirong; Che Wangjun; Li Liang; Zhang Guanbei

    2011-07-01

    Recent studies have shown that monomethylarsonous acid is more cytotoxic and genotoxic than arsenate and arsenite, which may attribute to the increased levels of reactive oxygen species. In this study, we used hydride generation-atomic absorption spectrometry to determine three arsenic species in urine of workers who had been working in arsenic plants,and calculated primary and secondary methylation indexes. The damages of exon 5, 6, 8 of p53 gene were determined by the method developed by Sikorsky, et al. Results show that the concentrations of each urinary arsenic species,and damage indexes of exon 5 and 8 of p53 gene in the exposed population were significantly higher, but SMI was significantly lower than in the control group. The closely positive correlation between the damage index of exon 5 and PMI,MMA, DMA were found, but there was closely negative correlation between the damage index of exon 5 and SMI. Those findings suggested that DNA damage of exon 5 and 8 of p53 gene existed in the population occupationally exposed to arsenic. For exon 5, the important factors may include the model of arsenic metabolic transformation, the concentrations of MMA and DMA, and the MMA may be of great importance. - Research Highlights: > In our study, the mean SMI for workers came from arsenic plants is 4.06, so they may be in danger. > There are more MMA, there are more damage of exon 5 of p53 gene. > MMA and damage of exon 5 of p53 gene may be useful biomarkers to assess adverse health effects caused by arsenic.

  14. Isotope concentrations from 24-h urine and 3-h serum samples can be used to measure intestinal magnesium absorption in postmenopausal women.

    PubMed

    Hansen, Karen E; Nabak, Andrea C; Johnson, Rachael Erin; Marvdashti, Sheeva; Keuler, Nicholas S; Shafer, Martin M; Abrams, Steven A

    2014-04-01

    Studies suggest a link between magnesium status and osteoporosis. One barrier to more conclusive research on the potential relation is measuring intestinal magnesium absorption (MgA), which requires the use of stable isotopes and a ≥6-d stool or 3-d urine collection. We evaluated alternative methods of measuring MgA. We administered 2 stable magnesium isotopes to 15 postmenopausal women (cohort 1) aged 62 ± 8 y with a dietary magnesium intake of 345 ± 72 mg/d. Participants fasted from 1200 h to 0700 h and then consumed breakfast with ∼23 mg of oral ²⁶Mg and ∼11 mg of i.v. ²⁵Mg. We measured magnesium isotope concentrations in 72-h urine, spot urine (36, 48, 60, and 72 h), and spot serum (1, 3, and 5 h) samples collected after isotope dosing. We calculated MgA using the dose-corrected fraction of isotope concentrations from the 72-h urine collection. We validated new methods in 10 postmenopausal women (cohort 2) aged 59 ± 5 y with a dietary magnesium intake of 325 ± 122 mg/d. In cohort 1, MgA based on the 72-h urine collection was 0.28 ± 0.08. The 72-h MgA correlated most highly with 0-24 h urine MgA value alone (ρ = 0.95, P < 0.001) or the mean of the 0-24 h urine and the 3-h (ρ = 0.93, P < 0.001) or 5-h (ρ = 0.96, P < 0.001) serum MgA values. In cohort 2, Bland-Altman bias was lowest (-0.003, P = 0.82) using means of the 0-24 h urine and 3-h serum MgA values. We conclude that means of 0-24 h urine and 3-h serum MgA provide a reasonable estimate of 72-h MgA. However, if researchers seek to identify small changes in MgA, we recommend a 3-d urine or extended stool collection. PMID:24500940

  15. Isotope Concentrations from 24-h Urine and 3-h Serum Samples Can Be Used to Measure Intestinal Magnesium Absorption in Postmenopausal Women123

    PubMed Central

    Hansen, Karen E.; Nabak, Andrea C.; Johnson, Rachael Erin; Marvdashti, Sheeva; Keuler, Nicholas S.; Shafer, Martin M.; Abrams, Steven A.

    2014-01-01

    Studies suggest a link between magnesium status and osteoporosis. One barrier to more conclusive research on the potential relation is measuring intestinal magnesium absorption (MgA), which requires the use of stable isotopes and a ≥6-d stool or 3-d urine collection. We evaluated alternative methods of measuring MgA. We administered 2 stable magnesium isotopes to 15 postmenopausal women (cohort 1) aged 62 ± 8 y with a dietary magnesium intake of 345 ± 72 mg/d. Participants fasted from 1200 h to 0700 h and then consumed breakfast with ∼23 mg of oral 26Mg and ∼11 mg of i.v. 25Mg. We measured magnesium isotope concentrations in 72-h urine, spot urine (36, 48, 60, and 72 h), and spot serum (1, 3, and 5 h) samples collected after isotope dosing. We calculated MgA using the dose-corrected fraction of isotope concentrations from the 72-h urine collection. We validated new methods in 10 postmenopausal women (cohort 2) aged 59 ± 5 y with a dietary magnesium intake of 325 ± 122 mg/d. In cohort 1, MgA based on the 72-h urine collection was 0.28 ± 0.08. The 72-h MgA correlated most highly with 0–24 h urine MgA value alone (ρ = 0.95, P < 0.001) or the mean of the 0–24 h urine and the 3-h (ρ = 0.93, P < 0.001) or 5-h (ρ = 0.96, P < 0.001) serum MgA values. In cohort 2, Bland-Altman bias was lowest (−0.003, P = 0.82) using means of the 0–24 h urine and 3-h serum MgA values. We conclude that means of 0–24 h urine and 3-h serum MgA provide a reasonable estimate of 72-h MgA. However, if researchers seek to identify small changes in MgA, we recommend a 3-d urine or extended stool collection. This trial was registered at clinicaltrials.gov as NCT01593501. PMID:24500940

  16. Arsenic removal from water

    DOEpatents

    Moore, Robert C.; Anderson, D. Richard

    2007-07-24

    Methods for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical methods for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A method for continuous removal of arsenic from water is provided. Also provided is a method for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

  17. Urine culture

    MedlinePlus

    Culture and sensitivity - urine ... when urinating. You also may have a urine culture after you have been treated for an infection. ... when bacteria or yeast are found in the culture. This likely means that you have a urinary ...

  18. Optimal Soil Eh, pH, and Water Management for Simultaneously Minimizing Arsenic and Cadmium Concentrations in Rice Grains.

    PubMed

    Honma, Toshimitsu; Ohba, Hirotomo; Kaneko-Kadokura, Ayako; Makino, Tomoyuki; Nakamura, Ken; Katou, Hidetaka

    2016-04-19

    Arsenic (As) and cadmium (Cd) concentrations in rice grains are a human health concern. We conducted field experiments to investigate optimal conditions of Eh and pH in soil for simultaneously decreasing As and Cd accumulation in rice. Water managements in the experiments, which included continuous flooding and intermittent irrigation with different intervals after midseason drainage, exerted striking effects on the dissolved As and Cd concentrations in soil through changes in Eh, pH, and dissolved Fe(II) concentrations in the soil. Intermittent irrigation with three-day flooding and five-day drainage was found to be effective for simultaneously decreasing the accumulation of As and Cd in grain. The grain As and Cd concentrations were, respectively, linearly related to the average dissolved As and Cd concentrations during the 3 weeks after heading. We propose a new indicator for expressing the degree to which a decrease in the dissolved As or Cd concentration is compromised by the increase in the other. For minimizing the trade-off relationship between As and Cd in rice grains in the field investigated, water management strategies should target the realization of optimal soil Eh of -73 mV and pH of 6.2 during the 3 weeks after heading. PMID:26999020

  19. Arsenic methylation and lung and bladder cancer in a case-control study in northern Chile

    SciTech Connect

    Melak, Dawit; Ferreccio, Catterina; Kalman, David; Parra, Roxana; Acevedo, Johanna; Pérez, Liliana; Cortés, Sandra; Smith, Allan H.; Yuan, Yan; Liaw, Jane; Steinmaus, Craig

    2014-01-15

    In humans, ingested inorganic arsenic is metabolized to monomethylarsenic (MMA) then to dimethylarsenic (DMA), although this process is not complete in most people. The trivalent form of MMA is highly toxic in vitro and previous studies have identified associations between the proportion of urinary arsenic as MMA (%MMA) and several arsenic-related diseases. To date, however, relatively little is known about its role in lung cancer, the most common cause of arsenic-related death, or about its impacts on people drinking water with lower arsenic concentrations (e.g., < 200 μg/L). In this study, urinary arsenic metabolites were measured in 94 lung and 117 bladder cancer cases and 347 population-based controls from areas in northern Chile with a wide range of drinking water arsenic concentrations. Lung cancer odds ratios adjusted for age, sex, and smoking by increasing tertiles of %MMA were 1.00, 1.91 (95% confidence interval (CI), 0.99–3.67), and 3.26 (1.76–6.04) (p-trend < 0.001). Corresponding odds ratios for bladder cancer were 1.00, 1.81 (1.06–3.11), and 2.02 (1.15–3.54) (p-trend < 0.001). In analyses confined to subjects only with arsenic water concentrations < 200 μg/L (median = 60 μg/L), lung and bladder cancer odds ratios for subjects in the upper tertile of %MMA compared to subjects in the lower two tertiles were 2.48 (1.08–5.68) and 2.37 (1.01–5.57), respectively. Overall, these findings provide evidence that inter-individual differences in arsenic metabolism may be an important risk factor for arsenic-related lung cancer, and may play a role in cancer risks among people exposed to relatively low arsenic water concentrations. - Highlights: • Urine arsenic metabolites were measured in cancer cases and controls from Chile. • Higher urine %MMA values were associated with increased lung and bladder cancer. • %MMA-cancer associations were seen at drinking water arsenic levels < 200 μg/L.

  20. Specific histone modification responds to arsenic-induced oxidative stress.

    PubMed

    Ma, Lu; Li, Jun; Zhan, Zhengbao; Chen, Liping; Li, Daochuan; Bai, Qing; Gao, Chen; Li, Jie; Zeng, Xiaowen; He, Zhini; Wang, Shan; Xiao, Yongmei; Chen, Wen; Zhang, Aihua

    2016-07-01

    To explore whether specific histone modifications are associated with arsenic-induced oxidative damage, we recruited 138 arsenic-exposed and arsenicosis subjects from Jiaole Village, Xinren County of Guizhou province, China where the residents were exposed to arsenic from indoor coal burning. 77 villagers from Shang Batian Village that were not exposed to high arsenic coal served as the control group. The concentrations of urine and hair arsenic in the arsenic-exposure group were 2.4-fold and 2.1-fold (all P<0.001) higher, respectively, than those of the control group. Global histone modifications in human peripheral lymphocytes (PBLCs) were examined by ELISA. The results showed that altered global levels of H3K18ac, H3K9me2, and H3K36me3 correlated with both urinary and hair-arsenic levels of the subjects. Notably, H3K36me3 and H3K18ac modifications were associated with urinary 8-OHdG (H3K36me3: β=0.16; P=0.042, H3K18ac: β=-0.24; P=0.001). We also found that the modifications of H3K18ac and H3K36me3 were enriched in the promoters of oxidative stress response (OSR) genes in human embryonic kidney (HEK) cells and HaCaT cells, providing evidence that H3K18ac and H3K36me3 modifications mediate transcriptional regulation of OSR genes in response to NaAsO2 treatment. Particularly, we found that reduced H3K18ac modification correlated with suppressed expression of OSR genes in HEK cells with long term arsenic treatment and in PBLCs of all the subjects. Taken together, we reveal a critical role for specific histone modification in response to arsenic-induced oxidative damage. PMID:27068294

  1. Glutathione-S-transferase-omega [MMA(V) reductase] knockout mice: Enzyme and arsenic species concentrations in tissues after arsenate administration

    SciTech Connect

    Chowdhury, Uttam K.; Zakharyan, Robert A.; Hernandez, Alba; Avram, Mihaela D.; Kopplin, Michael J.; Aposhian, H. Vasken . E-mail: aposhian@u.arizona.edu

    2006-11-01

    Inorganic arsenic is a human carcinogen to which millions of people are exposed via their naturally contaminated drinking water. Its molecular mechanisms of carcinogenicity have remained an enigma, perhaps because arsenate is biochemically transformed to at least five other arsenic-containing metabolites. In the biotransformation of inorganic arsenic, GSTO1 catalyzes the reduction of arsenate, MMA(V), and DMA(V) to the more toxic + 3 arsenic species. MMA(V) reductase and human (hGSTO1-1) are identical proteins. The hypothesis that GST-Omega knockout mice biotransformed inorganic arsenic differently than wild-type mice has been tested. The livers of male knockout (KO) mice, in which 222 bp of Exon 3 of the GSTO1 gene were eliminated, were analyzed by PCR for mRNA. The level of transcripts of the GSTO1 gene in KO mice was 3.3-fold less than in DBA/1lacJ wild-type (WT) mice. The GSTO2 transcripts were about two-fold less in the KO mouse. When KO and WT mice were injected intramuscularly with Na arsenate (4.16 mg As/kg body weight); tissues removed at 0.5, 1, 2, 4, 8, and 12 h after arsenate injection; and the arsenic species measured by HPLC-ICP-MS, the results indicated that the highest concentration of the recently discovered and very toxic MMA(III), a key biotransformant, was in the kidneys of both KO and WT mice. The highest concentration of DMA(III) was in the urinary bladder tissue for both the KO and WT mice. The MMA(V) reducing activity of the liver cytosol of KO mice was only 20% of that found in wild-type mice. There appears to be another enzyme(s) other than GST-O able to reduce arsenic(V) species but to a lesser extent. This and other studies suggest that each step of the biotransformation of inorganic arsenic has an alternative enzyme to biotransform the arsenic substrate.

  2. Effects of Mn, Cu doping concentration to the properties of magnetic nanoparticles and arsenic adsorption capacity in wastewater

    NASA Astrophysics Data System (ADS)

    Thi, Tran Minh; Trang, Nguyen Thi Huyen; Van Anh, Nguyen Thi

    2015-06-01

    The research results of Fe3O4 and Mn, Cu doped Fe3O4 nanomaterials synthesized by a chemical method for As(III) wastewater treatment are presented in this paper. The X-ray diffraction patterns and transmission electron microscopy images showed that samples had the cubic spinel structure with the grain sizes were varied from 9.4 nm to 18.1 nm. The results of vibrating sample magnetometer measurements at room temperature showed that saturation magnetic moments of Fe1-xCuxFe2O4 and Fe1-xMnxFe2O4 samples decreased from 65.9 emu/g to 53.2 emu/g and 65.9 emu/g to 61.5 emu/g, respectively, with the increase of Cu, Mn concentrations from 0.0 to 0.15. The nitrogen adsorption-desorption isotherm of a typical Fe3O4 sample at 77 K was studied in order to investigate the surface and porous structure of nanoparticles by BET method. The specific surface area of Fe3O4 magnetic nanoparticles was calculated about of 100.2 m2/g. The pore size distribution of about 15-20 nm calculated by the BJH (Barrett, Joyner, and Halendar) method at a relative pressure P/P0 of about 1. Although the saturation magnetic moments of samples decreased when the increase of doping concentration, but the arsenic adsorption capacity of Cu doped Fe3O4 nanoparticles is better than that of Fe3O4 and Mn doped Fe3O4 nanoparticles in a solution with pH = 7. In the solution with a pH > 14, the arsenic adsorption of magnetic nanoparticles is insignificant.

  3. Oxidative DNA damage and repair in children exposed to low levels of arsenic in utero and during early childhood: Application of salivary and urinary biomarkers

    SciTech Connect

    Hinhumpatch, Pantip; Navasumrit, Panida; Chaisatra, Krittinee; Promvijit, Jeerawan; Mahidol, Chulabhorn; Ruchirawat, Mathuros

    2013-12-15

    The present study aimed to assess arsenic exposure and its effect on oxidative DNA damage and repair in young children exposed in utero and continued to live in arsenic-contaminated areas. To address the need for biological specimens that can be acquired with minimal discomfort to children, we used non-invasive urinary and salivary-based assays for assessing arsenic exposure and early biological effects that have potentially serious health implications. Levels of arsenic in nails showed the greatest magnitude of difference between exposed and control groups, followed by arsenic concentrations in saliva and urine. Arsenic levels in saliva showed significant positive correlations with other biomarkers of arsenic exposure, including arsenic accumulation in nails (r = 0.56, P < 0.001) and arsenic concentration in urine (r = 0.50, P < 0.05). Exposed children had a significant reduction in arsenic methylation capacity indicated by decreased primary methylation index and secondary methylation index in both urine and saliva samples. Levels of salivary 8-OHdG in exposed children were significantly higher (∼ 4-fold, P < 0.01), whereas levels of urinary 8-OHdG excretion and salivary hOGG1 expression were significantly lower in exposed children (∼ 3-fold, P < 0.05), suggesting a defect in hOGG1 that resulted in ineffective cleavage of 8-OHdG. Multiple regression analysis results showed that levels of inorganic arsenic (iAs) in saliva and urine had a significant positive association with salivary 8-OHdG and a significant negative association with salivary hOGG1 expression. - Highlights: • The effects of arsenic exposure in utero and through early childhood were studied. • Arsenic-exposed children had a reduction in arsenic methylation capacity. • Exposed children had more DNA damage, observed as elevated salivary 8-OHdG. • Lower salivary hOGG1 in exposed children indicated impairment of 8-OHdG repair. • Salivary and urinary 8-OHdG levels were discordant.

  4. Association between In Utero arsenic exposure, placental gene expression, and infant birth weight: a US birth cohort study

    PubMed Central

    2013-01-01

    Background Epidemiologic studies and animal models suggest that in utero arsenic exposure affects fetal health, with a negative association between maternal arsenic ingestion and infant birth weight often observed. However, the molecular mechanisms for this association remain elusive. In the present study, we aimed to increase our understanding of the impact of low-dose arsenic exposure on fetal health by identifying possible arsenic-associated fetal tissue biomarkers in a cohort of pregnant women exposed to arsenic at low levels. Methods Arsenic concentrations were determined from the urine samples of a cohort of 133 pregnant women from New Hampshire. Placental tissue samples collected from enrollees were homogenized and profiled for gene expression across a panel of candidate genes, including known arsenic regulated targets and genes involved in arsenic transport, metabolism, or disease susceptibility. Multivariable adjusted linear regression models were used to examine the relationship of candidate gene expression with arsenic exposure or with birth weight of the baby. Results Placental expression of the arsenic transporter AQP9 was positively associated with maternal urinary arsenic levels during pregnancy (coefficient estimate: 0.25; 95% confidence interval: 0.05 – 0.45). Placental expression of AQP9 related to expression of the phospholipase ENPP2 which was positively associated with infant birth weight (coefficient estimate: 0.28; 95% CI: 0.09 – 0.47). A structural equation model indicated that these genes may mediate arsenic’s effect on infant birth weight (coefficient estimate: -0.009; 95% confidence interval: -0.032 – -0.001; 10,000 replications for bootstrapping). Conclusions We identified the expression of AQP9 as a potential fetal biomarker for arsenic exposure. Further, we identified a positive association between the placental expression of phospholipase ENPP2 and infant birth weight. These findings suggest a path by which arsenic may affect

  5. Urinary excretion of arsenic following rice consumption.

    PubMed

    Meharg, A A; Williams, P N; Deacon, C M; Norton, G J; Hossain, M; Louhing, D; Marwa, E; Lawgalwi, Y; Taggart, M; Cascio, C; Haris, P

    2014-11-01

    Patterns of arsenic excretion were followed in a cohort (n = 6) eating a defined rice diet, 300 g per day d.wt. where arsenic speciation was characterized in cooked rice, following a period of abstinence from rice, and other high arsenic containing foods. A control group who did not consume rice were also monitored. The rice consumed in the study contained inorganic arsenic and dimethylarsinic acid (DMA) at a ratio of 1:1, yet the urine speciation was dominated by DMA (90%). At steady state (rice consumption/urinary excretion) ∼40% of rice derived arsenic was excreted via urine. By monitoring of each urine pass throughout the day it was observed that there was considerable variation (up to 13-fold) for an individual's total arsenic urine content, and that there was a time dependent variation in urinary total arsenic content. This calls into question the robustness of routinely used first pass/spot check urine sampling for arsenic analysis. PMID:25145278

  6. Arsenic concentrations in dust emissions from wind erosion and off-road vehicles in the Nellis Dunes Recreational Area, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Soukup, Deborah; Buck, Brenda; Goossens, Dirk; Ulery, April; McLaurin, Brett T.; Baron, Dirk; Teng, Yuanxin

    2012-08-01

    Field and laboratory experiments were performed in the Nellis Dunes Recreational Area near Las Vegas, NV, USA to evaluate arsenic concentrations associated with dust emissions from wind erosion and off-road vehicles. Soil samples were collected from 17 types of desert surfaces and five unpaved parking lot locations for analyses. The surface units are based on surficial characteristics that affect dust emissions. Arsenic concentrations were also measured in dust emitted from each surface unit using a Portable In Situ Wind Erosion Laboratory (PI-SWERL). Emissions were measured from ORV trails and undisturbed terrain. Concentrations of As in the soil and parking lot samples ranged from 3.49 to 83.02 μg g-1 and from 16.13 to 312 μg g-1 in the PI-SWERL samples. The lower concentrations in the soil samples are expected because of the larger particle sizes (<2 mm) as compared to the PI-SWERL samples (<10 and 10-60 μm). Soluble As in the PI-SWERL samples was as high as 14.7 μg g-1. In the Nellis Dunes area the emission rates for As for wind-induced emissions (wind erosion) are highest for the surfaces with significant amounts of sand. Surfaces rich in silt and clay, on the other hand, produce nearly no arsenic during wind erosion but can emit substantial arsenic concentrations when driven on by off-road vehicles. The elevated arsenic emissions from the Nellis Dunes area are of great concern because the site is located in the immediate vicinity of the city of Las Vegas, and utilized by over 300,000 visitors annually.

  7. The influence of exercise and dehydration on the urine concentrations of salbutamol after inhaled administration of 1600 µg salbutamol as a single dose in relation to doping analysis.

    PubMed

    Haase, Christoffer Bjerre; Backer, Vibeke; Kalsen, Anders; Rzeppa, Sebastian; Hemmersbach, Peter; Hostrup, Morten

    2016-07-01

    The present study investigated the influence of exercise and dehydration on the urine concentrations of salbutamol after inhalation of that maximal permitted (1600 µg) on the 2015 World Anti-Doping Agency (WADA) prohibited list. Thirteen healthy males participated in the study. Urine concentrations of salbutamol were measured during three conditions: exercise (EX), exercise+dehydration (EXD), and rest (R). Exercise consisted of 75 min cycling at 60% of VO2max and a 20-km time-trial. Fluid intake was 2300, 270, and 1100 mL during EX, EXD, and R, respectively. Urine samples of salbutamol were collected 0-24 h after drug administration. Adjustment of urine concentrations of salbutamol to a specific gravity (USG) of 1.020 g/mL was compared with no adjustment. The 2015 WADA decision limit (1200 ng/mL) for salbutamol was exceeded in 23, 31, and 10% of the urine samples during EX, EXD, and R, respectively, when unadjusted for USG. When adjusted for USG, the corresponding percentages fell to 21, 15, and 8%. During EXD, mean urine concentrations of salbutamol exceeded (1325±599 ng/mL) the decision limit 4 h after administration when unadjusted for USG. Serum salbutamol Cmax was lower (P<0.01) for R(3.0±0.7 ng/mL) than EX(3.8±0.8 ng/mL) and EXD(3.6±0.8 ng/mL). AUC was lower for R (14.1±2.8 ng/mL·∙h) than EX (16.9±2.9 ng/mL·∙h)(P<0.01) and EXD (16.1±3.2 ng/mL·∙h)(P<0.05). In conclusion, exercise and dehydration affect urine concentrations of salbutamol and increase the risk of Adverse Analytical Findings in samples collected after inhalation of that maximal permitted (1600 µg) for salbutamol. This should be taken into account when evaluating doping cases of salbutamol. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26044066

  8. Relaxin concentrations in serum and urine of endangered species: correlations with physiologic events and use as a marker of pregnancy.

    PubMed

    Steinetz, Bernard G; Brown, Janine L; Roth, Terri L; Czekala, Nancy

    2005-05-01

    Many mammalian species are facing extinction due to problems created by human encroachment, agriculture, pollution, and willful slaughter. Among those at risk are the Asian and African elephant, Sumatran rhinoceros, and giant panda. Conservation groups try to save species in the wild by preserving habitat and limiting animal-human conflicts, often with limited success. Another alternative is to preserve the extant gene pool through captive breeding as a hedge against extinction. Measurement of circulating reproductive hormones is impractical for most wildlife species; determination of urinary or fecal hormone metabolites provides a more viable approach. To aid breeding management, one important tool is the ability to diagnose and monitor pregnancy, especially in species with long gestations (e.g., rhinos over 15 mo and elephants over 20 mo). Unfortunately, measuring progestins often is not useful diagnostically, because concentrations are similar during at least part of the pregnancy and the nonpregnant luteal phase in some species (e.g., elephants, rhinoceroses, and giant pandas). As serum relaxin reliably distinguishes between pregnancy and pseudopregnancy in bitches, relaxin measurement might also provide a method for detecting a successful pregnancy in endangered species. Appropriate immunoassay reagents have enabled the estimation of relaxin concentrations in the serum of elephants and rhinos and the determination of pregnancy establishment and the outcome. Relaxin was also detected in panda serum and urine. However, the extreme variability of the time between observed mating and parturition and the confounding factors of delayed implantation, pseudopregnancy, and frequent fetal resorptions made it impossible to use the panda relaxin data as a specific marker of pregnancy. PMID:15956734

  9. Urine Metabolomics by 1H-NMR Spectroscopy Indicates Associations between Serum 3,5-T2 Concentrations and Intermediary Metabolism in Euthyroid Humans

    PubMed Central

    Pietzner, Maik; Homuth, Georg; Budde, Kathrin; Lehmphul, Ina; Völker, Uwe; Völzke, Henry; Nauck, Matthias; Köhrle, Josef; Friedrich, Nele

    2015-01-01

    Context 3,5-Diiodo-L-thyronine (3,5-T2) is a thyroid hormone metabolite which exhibited versatile effects in rodent models, including the prevention of insulin resistance or hepatic steatosis typically forced by a high-fat diet. With respect to euthyroid humans, we recently observed a putative link between serum 3,5-T2 and glucose but not lipid metabolism. Objective The aim of the present study was to widely screen the urine metabolome for associations with serum 3,5-T2 concentrations in healthy individuals. Study Design and Methods Urine metabolites of 715 euthyroid participants of the population-based Study of Health in Pomerania (SHIP-TREND) were analyzed by 1H-NMR spectroscopy. Multinomial logistic and multivariate linear regression models were used to detect associations between urine metabolites and serum 3,5-T2 concentrations. Results Serum 3,5-T2 concentrations were positively associated with urinary levels of trigonelline, pyroglutamate, acetone and hippurate. In detail, the odds for intermediate or suppressed serum 3,5-T2 concentrations doubled owing to a 1-standard deviation (SD) decrease in urine trigonelline levels, or increased by 29-50% in relation to a 1-SD decrease in urine pyroglutamate, acetone and hippurate levels. Conclusion Our findings in humans confirmed the metabolic effects of circulating 3,5-T2 on glucose and lipid metabolism, oxidative stress and enhanced drug metabolism as postulated before based on interventional pharmacological studies in rodents. Of note, 3,5-T2 exhibited a unique urinary metabolic profile distinct from previously published results for the classical thyroid hormones. PMID:26601079

  10. Plasma-aminothiols status and inverse correlation of total homocysteine with B-vitamins in arsenic exposed population of West Bengal, India.

    PubMed

    Mukherjee, Ashit K; Manna, Sujoy K; Roy, Sanjit K; Chakraborty, Manisha; Das, Surajit; Naskar, Jnan P

    2016-09-18

    Chronic arsenic toxicity is a serious environmental health problem across the world. Bangladesh and India (particularly the state of West Bengal) are the worst affected countries with such problem. The present study reports plasma-aminothiols (p-aminothiols) like L-cysteine (L-Cys), cysteinyl glycine (Cys-gly), total homocysteine (t-Hcy) and glutathione (GSH) status, and the inverse relationship of t-Hcy with B-vitamins (B1, B6, B9 and B12) in arsenic exposed population of West Bengal, India. Reverse phase HPLC was used to measure p-aminothiols and serum B-vitamins in different arsenic exposed population. Arsenic in drinking water and urine were measured by flow injection analysis system - Atomic Absorption Spectrometry (FIAS-AAS) and Transversely heated graphite atomizer (THGA-AAS) techniques, respectively. Water arsenic exposure was >50 µg/L in 50% population, of which majority (33.58%) belong to the range of >50-500 µg/L and more than 8% were even >1000 µg/L. Urine arsenic (µg/g creatinine) levels increased with arsenic exposure. The variability among p-aminothiols was also observed with higher exposure to arsenic in drinking water. A significant difference between exposed and control population was noticed for plasma L-Cys. The difference of B-vitamins between the population exposed to <50 and >50 µg/L arsenic in drinking water was also found to be significant. B9 and B12 deficiency with increased consumption of arsenic in water corroborates the anemic conditions commonly observed among arsenic exposed population. The aminothiol status indicated oxidative stress in exposed population. This study demonstrated progressive increase in plasma t-Hcy as well as inverse relationships of serum B-vitamins with increased water arsenic concentration. PMID:27336853

  11. Assessment of in vivo Bioaccessibility of Arsenic in Dietary Rice by a Mass Balance Approach

    PubMed Central

    He, Yi; Zheng, Yan

    2010-01-01

    A pilot dietary experiment was conducted over ten days to evaluate whether a simple yet often under utilized approach of constructing mass balance of arsenic metabolites can be used to assess in vivo bioaccessibility of arsenic in cooked rice. Two volunteers were involved in this study. The quantity of drinking water, food and urine samples, together with arsenic concentration and speciation of these samples were monitored to construct a mass balance of arsenic intake and excretion. In the first five days, the two volunteers on a wheat diet had an average arsenic daily intake of 15.4 ± 2.6 µg and 9.6 ± 0.7 µg, respectively. In the next five days, these volunteers switched to a rice diet, increasing the average arsenic daily intake to 36.4 ± 2.8 µg and 34.1 ± 7.7 µg, respectively. Daily excretion of urinary arsenic, mostly as dimethylarsenic acid (DMA), doubled from 9.8 ± 0.3 µg to 21.0 ± 3.0 µg, and from 6.5 ± 0.8 µg to 11.6 ± 4.5 µg, respectively. The percentage of ingested arsenic excreted in urine remained constant at ~ 58% for one volunteer before and after the rice diet, and was ~ 69 % for another. Mass balance established during a controlled dietary experiment over 10 days is shown to be a useful approach to evaluate in vivo bioaccessibility and metabolism of arsenic uptake from diet and is applicable to study with more subjects. PMID:20071009

  12. Effect of oxalic acid treatment on sediment arsenic concentrations and lability under reducing conditions.

    PubMed

    Sun, Jing; Bostick, Benjamin C; Mailloux, Brian J; Ross, James M; Chillrud, Steven N

    2016-07-01

    Oxalic acid enhances arsenic (As) mobilization by dissolving As host minerals and competing for sorption sites. Oxalic acid amendments thus could potentially improve the efficiency of widely used pump-and-treat (P&T) remediation. This study investigates the effectiveness of oxalic acid on As mobilization from contaminated sediments with different As input sources and redox conditions, and examines whether residual sediment As after oxalic acid treatment can still be reductively mobilized. Batch extraction, column, and microcosm experiments were performed in the laboratory using sediments from the Dover Municipal Landfill and the Vineland Chemical Company Superfund sites. Oxalic acid mobilized As from both Dover and Vineland sediments, although the efficiency rates were different. The residual As in both Dover and Vineland sediments after oxalic acid treatment was less vulnerable to microbial reduction than before the treatment. Oxalic acid could thus improve the efficiency of P&T. X-ray absorption spectroscopy analysis indicated that the Vineland sediment samples still contained reactive Fe(III) minerals after oxalic acid treatment, and thus released more As into solution under reducing conditions than the treated Dover samples. Therefore, the efficacy of enhanced P&T must consider sediment Fe mineralogy when evaluating its overall potential for remediating groundwater As. PMID:26970042

  13. Pb, Cd, Se, As in blood and urine of children from high and low polluted districts of Saint-Petersburg. The elements concentrations and health of children

    NASA Astrophysics Data System (ADS)

    Lakovleva, E. M.; Ganeev, A. A.; Ivanenko, A. A.; Ivanenko, N. B.; Nosova, E.; Molodkina, E. V.; Kuzmenkov, M. A.

    2003-05-01

    At present time rapt attention is attended on child health. One of the main factors of child health is environmental condition and possibility of toxic elements consuniption by children from air, water, and food. The ain of our investigation is to detennine Pb, Cd, Se, As in blood and urine of children from high and low level polluted districts of St.-Petersburg. And then to estimate urine and blood toxic elements concentration correlation. ln order to examine large child groups it is necessary to use effective, express analycal methods. Wc chose Zeeman Modulation Polarization Atomic Absorption Spectrometry with High-Frequency Modulation as such a method. New technique Zeeman Modulation Polarization Atomic Absorption Spectrometry with High-Frequency Modulation allow io determine many etements directly (without additional compounds and reagents or with there minimum use) in blood, plasma and urine. Highcst spectrometry selectivity allows working with high background level. The matrix effects are reduced in great deal the aid of L'vov platform, sample pyrolysis and palladium modifier using. We present the results of our investigation the concentration of toxic éléments in blood and urine of children from high Polluted district is above permitted level.

  14. Arsenic Metabolism in Children Differs From That in Adults.

    PubMed

    Skröder Löveborn, Helena; Kippler, Maria; Lu, Ying; Ahmed, Sultan; Kuehnelt, Doris; Raqib, Rubhana; Vahter, Marie

    2016-07-01

    Arsenic toxicity in adults is associated with methylation efficiency, influenced by factors such as gender, genetics, and nutrition. The aim of this study was to evaluate influencing factors for arsenic metabolism in children. For 488 children (9 years), whose mothers participated in a study on arsenic exposure during pregnancy (nested into the MINIMat trial) in rural Bangladesh, we measured urinary concentrations of inorganic arsenic (iAs) and its metabolites methylarsonic acid (MMA) and dimethylarsinic acid (DMA) by HPLC-HG-ICPMS. Methylation efficiency was assessed by relative amounts (%) of the metabolites. We evaluated the impact of factors such as maternal urinary metabolite pattern, arsenic exposure, gender, socioeconomic status, season of sampling, and nutritional factors, including erythrocyte selenium (Ery-Se), and plasma folate and vitamin B12.Children had higher %DMA and lower %iAs in urine compared to their mothers, unrelated to their lower exposure [median urinary arsenic (U-As) 53 vs 78 µg/l]. Surprisingly, selenium status (Ery-Se) was strongly associated with children's arsenic methylation; an increase in Ery-Se from the 5-95th percentile was associated with: +1.8 percentage points (pp) for %iAs (P  =  .001), +1.4 pp for %MMA (P  =  .003), and -3.2 pp for %DMA (P  <  .001). Despite this, Ery-Se was positively associated with U-As (5-95th percentile: +41 µg/l, P  =  .026). As expected, plasma folate was inversely associated with %iAs (5-95th percentile: -1.9 pp, P  =  .001) and positively associated with %DMA (5-95th percentile: +2.2 pp, P  =  .008). Children methylated arsenic more efficiently than their mothers. Also influencing factors, mainly selenium and folate, differed. This warrants further research. PMID:27056082

  15. Arsenic Metabolism in Children Differs From That in Adults

    PubMed Central

    Skröder Löveborn, Helena; Lu, Ying; Ahmed, Sultan; Kuehnelt, Doris; Raqib, Rubhana; Vahter, Marie

    2016-01-01

    Arsenic toxicity in adults is associated with methylation efficiency, influenced by factors such as gender, genetics, and nutrition. The aim of this study was to evaluate influencing factors for arsenic metabolism in children. For 488 children (9 years), whose mothers participated in a study on arsenic exposure during pregnancy (nested into the MINIMat trial) in rural Bangladesh, we measured urinary concentrations of inorganic arsenic (iAs) and its metabolites methylarsonic acid (MMA) and dimethylarsinic acid (DMA) by HPLC-HG-ICPMS. Methylation efficiency was assessed by relative amounts (%) of the metabolites. We evaluated the impact of factors such as maternal urinary metabolite pattern, arsenic exposure, gender, socioeconomic status, season of sampling, and nutritional factors, including erythrocyte selenium (Ery-Se), and plasma folate and vitamin B12. Children had higher %DMA and lower %iAs in urine compared to their mothers, unrelated to their lower exposure [median urinary arsenic (U-As) 53 vs 78 µg/l]. Surprisingly, selenium status (Ery-Se) was strongly associated with children’s arsenic methylation; an increase in Ery-Se from the 5–95th percentile was associated with: +1.8 percentage points (pp) for %iAs (P  =  .001), +1.4 pp for %MMA (P  =  .003), and −3.2 pp for %DMA (P  <  .001). Despite this, Ery-Se was positively associated with U-As (5–95th percentile: +41 µg/l, P  =  .026). As expected, plasma folate was inversely associated with %iAs (5–95th percentile: −1.9 pp, P  =  .001) and positively associated with %DMA (5–95th percentile: +2.2 pp, P  =  .008). Children methylated arsenic more efficiently than their mothers. Also influencing factors, mainly selenium and folate, differed. This warrants further research. PMID:27056082

  16. Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh: prospective cohort study

    PubMed Central

    Graziano, Joseph H; Parvez, Faruque; Liu, Mengling; Slavkovich, Vesna; Kalra, Tara; Argos, Maria; Islam, Tariqul; Ahmed, Alauddin; Rakibuz-Zaman, Muhammad; Hasan, Rabiul; Sarwar, Golam; Levy, Diane; van Geen, Alexander

    2011-01-01

    Objective To evaluate the association between arsenic exposure and mortality from cardiovascular disease and to assess whether cigarette smoking influences the association. Design Prospective cohort study with arsenic exposure measured in drinking water from wells and urine. Setting General population in Araihazar, Bangladesh. Participants 11 746 men and women who provided urine samples in 2000 and were followed up for an average of 6.6 years. Main outcome measure Death from cardiovascular disease. Results 198 people died from diseases of circulatory system, accounting for 43% of total mortality in the population. The mortality rate for cardiovascular disease was 214.3 per 100 000 person years in people drinking water containing <12.0 µg/L arsenic, compared with 271.1 per 100 000 person years in people drinking water with ≥12.0 µg/L arsenic. There was a dose-response relation between exposure to arsenic in well water assessed at baseline and mortality from ischaemic heart disease and other heart disease; the hazard ratios in increasing quarters of arsenic concentration in well water (0.1-12.0, 12.1-62.0, 62.1-148.0, and 148.1-864.0 µg/L) were 1.00 (reference), 1.22 (0.65 to 2.32), 1.35 (0.71 to 2.57), and 1.92 (1.07 to 3.43) (P=0.0019 for trend), respectively, after adjustment for potential confounders including age, sex, smoking status, educational attainment, body mass index (BMI), and changes in urinary arsenic concentration since baseline. Similar associations were observed when baseline total urinary arsenic was used as the exposure variable and for mortality from ischaemic heart disease specifically. The data indicate a significant synergistic interaction between arsenic exposure and cigarette smoking in mortality from ischaemic heart disease and other heart disease. In particular, the hazard ratio for the joint effect of a moderate level of arsenic exposure (middle third of well arsenic concentration 25.3-114.0 µg/L, mean 63.5 µg/L) and

  17. The concentration and chemical speciation of arsenic in the Nanpan River, the upstream of the Pearl River, China.

    PubMed

    Yang, Silin; Zhao, Ning; Zhou, Dequn; Wei, Rong; Yang, Bin; Pan, Bo

    2016-04-01

    The concentration and chemical speciation of arsenic (As) in different environmental matrixes (water, sediment, agricultural soils, and non-agricultural soils) were investigated in the Nanpan River area, the upstream of Pearl River, China. The results did not show any obvious transport of As along the flow direction of the river (from upstream to downstream). Total As concentrations in sediment were significantly different from those in agricultural soil. According to the comparison to quality standards, the As in sediments of the studied area have potential ecological risks and a minority of the sampling sites of agricultural soils in the studied area were polluted with As. As speciations were analyzed using sequential extraction and the percentage of non-residual fraction in sediment predominated over residual fraction. We thus believe that As in the studied area was with low mobility and bioavailability in sediment, agricultural soils, and non-agricultural soils. However, the bioavailability and mobility of As in sediment were higher than in both agricultural and non-agricultural soils, and thus, special attention should be paid for the risk assessment of As in the river in future studies. PMID:26627697

  18. Arsenic, iron, lead, manganese, and uranium concentrations in private bedrock wells in southeastern New Hampshire, 2012-2013

    USGS Publications Warehouse

    Flanagan, Sarah M.; Belaval, Marcel; Ayotte, Joseph D.

    2014-01-01

    Trace metals, such as arsenic, iron, lead, manganese, and uranium, in groundwater used for drinking have long been a concern because of the potential adverse effects on human health and the aesthetic or nuisance problems that some present. Moderate to high concentrations of the trace metal arsenic have been identified in drinking water from groundwater sources in southeastern New Hampshire, a rapidly growing region of the State (Montgomery and others, 2003). During the past decade (2000–10), southeastern New Hampshire, which is composed of Hillsborough, Rockingham, and Strafford Counties, has grown in population by nearly 48,700 (or 6.4 percent) to 819,100. These three counties contain 62 percent of the State’s population but encompass only about 22 percent of the land area (New Hampshire Office of Energy and Planning, 2011). According to a 2005 water-use study (Hayes and Horn, 2009), about 39 percent of the population in these three counties in southeastern New Hampshire uses private wells as sources of drinking water, and these wells are not required by the State to be routinely tested for trace metals or other contaminants. Some trace metals have associated human-health benchmarks or nonhealth guidelines that have been established by the U.S. Environmental Protection Agency (EPA) to regulate public water supplies. The EPA has established a maximum contaminant level (MCL) of 10 micrograms per liter (μg/L) for arsenic (As) and a MCL of 30 μg/L for uranium (U) because of associated health risks (U.S. Environmental Protection Agency, 2012). Iron (Fe) and manganese (Mn) are essential for human health, but Mn at high doses may have adverse cognitive effects in children (Bouchard and others, 2011; Agency for Toxic Substances and Disease Registry, 2012); therefore, the EPA has issued a lifetime health advisory (LHA) of 300 μg/L for Mn. Recommended secondary maximum contaminant levels (SMCLs) for Fe (300 μg/L) and Mn (50 μg/L) were established primarily as

  19. Relationship between blood and urine concentrations of intact human chorionic gonadotropin and its free subunits in early pregnancy

    SciTech Connect

    Norman, R.J.; Menabawey, M.; Lowings, C.; Buck, R.H.; Chard, T.

    1987-04-01

    Paired blood and urine samples were obtained from patients between the sixth and 14th weeks of normal pregnancy. The levels of intact human chorionic gonadotropin (hCG), and of the free alpha and beta subunits, were measured by specific radioimmunoassays. There was a close association between blood and urine levels of intact hCG and of the alpha subunit of hCG, but no relation between the levels of beta subunit in these sites. These findings suggest that the use of beta subunit assays may give discrepant results according to the fluid examined. By contrast, measurement of intact hCG appears to give similar results in blood and urine.

  20. Use of an Acetyl Derivative to Improve GC-MS Determination of Norbuprenorphine in the Presence of High Concentrations of Buprenorphine in Urine.

    PubMed

    Gervais, Joel R; Hobbs, Gregory A

    2016-04-01

    Certain patients being treated with Suboxone™ or Subutex™ can exhibit very high buprenorphine and low norbuprenorphine concentrations in urine. Very high buprenorphine can interfere with buprenorphine-D4 used as an internal standard, causing errors in norbuprenorphine determination by gas chromatography-mass spectrometry (GC-MS). We used a modified method of Wu et al. to introduce norbuprenorphine-D3 as a separate internal standard for norbuprenorphine. This allowed us to accurately measure norbuprenorphine in neat urine specimens when buprenorphine is present in extremely high concentrations. Laboratories measuring buprenorphine and metabolite by GC-MS may face this problem if their clientele includes patients being treated with other medications that interfere with the cytochrome p450 CYP 3A4-mediated conversion of buprenorphine to norbuprenorphine. PMID:26811236

  1. SELENIUM and arsenic concentrations in platinum group minerals of placer origin from Borneo and Sierra Leone

    NASA Astrophysics Data System (ADS)

    Hattori, K. H.; Johanson, B.; Cabri, L. J.

    2003-04-01

    Laurite grains were examined from the type locality, Pontijn River, Tanah Laur, Borneo and from South Tambanio River, S.E. Borneo, and erlichmanite grains from Sierra Leone. The Borneo samples are associated with ophiolite (Alpine-type) ultramafic rocks and the Sierra Leone samples with the layered Freetown Igneous Complex. Laurite grains from Borneo are sub-rounded to spherical with pits and show conchoidal fractures. They contain rare inclusions of an exsolved chalcopyrite+ bornite+ pentlandite mixture. On the other hand, the erlichmanite grains from Sierra Leone are euhedral with minor smooth edges and contain abundant rounded inclusions of exsolved sulphides;(chalcopyrite +bornite) and (chalcopyrite+ pentlandite+ pyrrhotite). All grains examined are solid solutions of Ru and Os with minor to moderate Ir and Rh (mostly less than 1wt percent, and rarely over 5 wt percent). Arsenic contents vary from 0.4 to 1.3 wt percent and Se from 40 to 620 ppm and the two are correlated. Grains with less Se contain greater amounts of As; [As] = -55 x [Se]+ 16,000 (ppm). The evidence supports their presence at the S site, but the huge departure from 1:1 correlation is not understood. The laurite grains from Borneo are relatively homogeneous, showing rare zoning of Ru and Os. Ratios of S/Se show a narrow spread from 1600 to 2400, which are in the range for sulphides from the shallow, sub-arc mantle (Hattori et al., 2002). The data support their formation in the mantle and subsequent erosion after the obduction of the host ultramafic rocks. The laurite-erlichmanite from Sierra Leone show complicated internal zoning of Ru and Os, as shown pictorially previously (Hattori et al., 1991). The contents of Se and As systematically vary with Ru and Os. The Ru-rich parts (close to laurite composition) are enriched in Se and depleted in As. Furthermore; chalcopyrite inclusions contain even higher Se and lower As than the host laurite/erlichmanite. They show a narrow spread from 1650 to

  2. Genetic polymorphisms in glutathione S-transferase (GST) superfamily and arsenic metabolism in residents of the Red River Delta, Vietnam

    SciTech Connect

    Agusa, Tetsuro; Iwata, Hisato; Fujihara, Junko; Kunito, Takashi; Takeshita, Haruo; Tu Binh Minh; Pham Thi Kim Trang; Pham Hung Viet; Tanabe, Shinsuke

    2010-02-01

    To elucidate the role of genetic factors in arsenic metabolism, we investigated associations of genetic polymorphisms in the members of glutathione S-transferase (GST) superfamily with the arsenic concentrations in hair and urine, and urinary arsenic profile in residents in the Red River Delta, Vietnam. Genotyping was conducted for GST omega1 (GSTO1) Ala140Asp, Glu155del, Glu208Lys, Thr217Asn, and Ala236Val, GST omega2 (GSTO2) Asn142Asp, GST pi1 (GSTP1) Ile105Val, GST mu1 (GSTM1) wild/null, and GST theta1 (GSTT1) wild/null. There were no mutation alleles for GSTO1 Glu208Lys, Thr217Asn, and Ala236Val in this population. GSTO1 Glu155del hetero type showed higher urinary concentration of As{sup V} than the wild homo type. Higher percentage of DMA{sup V} in urine of GSTM1 wild type was observed compared with that of the null type. Strong correlations between GSTP1 Ile105Val and arsenic exposure level and profile were observed in this study. Especially, heterozygote of GSTP1 Ile105Val had a higher metabolic capacity from inorganic arsenic to monomethyl arsenic, while the opposite trend was observed for ability of metabolism from As{sup V} to As{sup III}. Furthermore, other factors including sex, age, body mass index, arsenic level in drinking water, and genotypes of As (+ 3 oxidation state) methyltransferase (AS3MT) were also significantly co-associated with arsenic level and profile in the Vietnamese. To our knowledge, this is the first study indicating the associations of genetic factors of GST superfamily with arsenic metabolism in a Vietnamese population.

  3. Architecture of vasa recta in the renal inner medulla of the desert rodent Dipodomys merriami: potential impact on the urine concentrating mechanism.

    PubMed

    Issaian, Tadeh; Urity, Vinoo B; Dantzler, William H; Pannabecker, Thomas L

    2012-10-01

    We hypothesize that the inner medulla of the kangaroo rat Dipodomys merriami, a desert rodent that concentrates its urine to over 6,000 mosmol/kg H(2)O, provides unique examples of architectural features necessary for production of highly concentrated urine. To investigate this architecture, inner medullary vascular segments in the outer inner medulla were assessed with immunofluorescence and digital reconstructions from tissue sections. Descending vasa recta (DVR) expressing the urea transporter UT-B and the water channel aquaporin 1 lie at the periphery of groups of collecting ducts (CDs) that coalesce in their descent through the inner medulla. Ascending vasa recta (AVR) lie inside and outside groups of CDs. DVR peel away from vascular bundles at a uniform rate as they descend the inner medulla, and feed into networks of AVR that are associated with organized clusters of CDs. These AVR form interstitial nodal spaces, with each space composed of a single CD, two AVR, and one or more ascending thin limbs or prebend segments, an architecture that may lead to solute compartmentation and fluid fluxes essential to the urine concentrating mechanism. Although we have identified several apparent differences, the tubulovascular architecture of the kangaroo rat inner medulla is remarkably similar to that of the Munich Wistar rat at the level of our analyses. More detailed studies are required for identifying interspecies functional differences. PMID:22914749

  4. Architecture of vasa recta in the renal inner medulla of the desert rodent Dipodomys merriami: potential impact on the urine concentrating mechanism

    PubMed Central

    Issaian, Tadeh; Urity, Vinoo B.; Dantzler, William H.

    2012-01-01

    We hypothesize that the inner medulla of the kangaroo rat Dipodomys merriami, a desert rodent that concentrates its urine to over 6,000 mosmol/kg H2O, provides unique examples of architectural features necessary for production of highly concentrated urine. To investigate this architecture, inner medullary vascular segments in the outer inner medulla were assessed with immunofluorescence and digital reconstructions from tissue sections. Descending vasa recta (DVR) expressing the urea transporter UT-B and the water channel aquaporin 1 lie at the periphery of groups of collecting ducts (CDs) that coalesce in their descent through the inner medulla. Ascending vasa recta (AVR) lie inside and outside groups of CDs. DVR peel away from vascular bundles at a uniform rate as they descend the inner medulla, and feed into networks of AVR that are associated with organized clusters of CDs. These AVR form interstitial nodal spaces, with each space composed of a single CD, two AVR, and one or more ascending thin limbs or prebend segments, an architecture that may lead to solute compartmentation and fluid fluxes essential to the urine concentrating mechanism. Although we have identified several apparent differences, the tubulovascular architecture of the kangaroo rat inner medulla is remarkably similar to that of the Munich Wistar rat at the level of our analyses. More detailed studies are required for identifying interspecies functional differences. PMID:22914749

  5. Concentration dependence and interfacial instabilities during ion beam annealing of arsenic-doped silicon

    SciTech Connect

    Priolo, F.; Rimini, E. ); Spinella, C. ); Ferla, G. )

    1990-01-01

    Ion beam induced epitaxy of amorphous Si layers onto {l angle}100{r angle} substrates has been investigated by varying the As concentration. At As concentrations below 4{times}10{sup 18}/cm{sup 3} no rate effect is observed. In the intermediate regime, between 4{times}10{sup 18}/cm{sup 3} and 2{times}10{sup 21}/cm{sup 3}, the growth rate increases linearly with the logarithm of As concentration and reaches a value about a factor of 2 higher than that of intrinsic Si. At concentrations above 2{times}10{sup 21}/cm{sup 3}, the epitaxy experiences a sudden, severe retardation. Finally, at a concentration of {similar to}6{times}10{sup 21}/cm{sup 3}, twins are observed to form.

  6. Investigating concentration distributions of arsenic, gold and antimony in grain-size fractions of gold ore using instrumental neutron activation analysis.

    PubMed

    Nyarku, M; Nyarko, B J B; Serfor-Armah, Y; Osae, S

    2010-02-01

    Instrumental neutron activation analysis (INAA) has been used to quantify concentrations of arsenic (As), gold (Au) and antimony (Sb) in grain-size fractions of a gold ore. The ore, which was taken from the Ahafo project site of Newmont Ghana Gold Ltd., was fractionated into 14 grain-size fractions using state-of-the-art analytical sieve machine. The minimum sieve mesh size used was 36mum and grains >2000mum were not considered for analysis. Result of the sieving was analysed with easysieve(R) software. The<36mum subfraction was found to be the optimum, hosting bulk of all three elements. Arsenic was found to be highly concentrated in<36-100mum size fractions and erratically distributed in from 150mum fraction and above. For gold, with the exception of the subfraction <36mum which had exceptionally high concentration, the element was found to be approximately equally distributed in all the size fractions but slightly "played out" in 150-400mum size fractions. Antimony occurrence in the sample was relatively high in <36mum size fraction followed by 600, 800, 400 and 36mum size fractions in that order. Gold content in the sample was comparatively far greater than arsenic and antimony; this is indicative of level of gold mineralization in the concession where the sample ore was taken. The concentration of gold in the composite sample was in the range 564-8420ppm as compared to 14.33-186.92ppm for arsenic and 1.09-9.48ppm for antimony. Elemental concentrations were correlated with each other and with grain-size fractions and the relationships between these descriptive parameters were established. PMID:19896855

  7. National contaminant biomonitoring program: concentrations of arsenic, cadmium, copper, lead, mercury, selenium, and zinc in U.S. Freshwater Fish, 1976–1984

    USGS Publications Warehouse

    Schmitt, Christopher J.; Brumbaugh, William G.

    1990-01-01

    From late 1984 to early 1985, the U.S. Fish and Wildlife Service collected a total of 315 composite samples of whole fish from 109 stations nationwide, which were analyzed for arsenic, cadmium, copper, lead, mercury, selenium, and zinc. Geometric mean, maximum, and 85th percentile concentrations (μg/g wet weight) for 1984 samples were as follows: arsenic-0.14, 1.5, 0.27; cadmium-0.03, 0.22, 0.05; copper-0.65, 23.1, 1.0; mercury-0.10, 0.37, 0.17; lead-0.11, 4.88, 0.22; selenium-0.42, 2.30, 0.73; and zinc-21.7, 118.4, 34.2. The mean concentrations of selenium and lead were significantly lower than in the previous NCBP collection (1980–81). Mean concentrations of arsenic and cadmium also declined significantly between 1976, when elemental contaminants in fish were first measured in the NCBP, and 1984. Of greatest significance, lead concentrations declined steadily from 1976 to 1984, suggesting that regulatory measures have successfully reduced the influx of lead to the aquatic environment.

  8. Arsenic in Bangladesh Groundwater: from Science to Mitigation

    NASA Astrophysics Data System (ADS)

    van Geen, A.; Ahmed, K. M.; Graziano, J. H.

    2004-12-01

    A large proportion of the populations of Bangladesh and other South Asian countries is at risk of contracting cancers and other debilitating diseases due to exposure to high concentrations of naturally occurring arsenic in groundwater supplied by millions of tube wells. Starting in January 2000, and in partnership with several Bangladeshi institutions, an interdisciplinary team of health, earth, and social scientists from Columbia University has focused its efforts to address this crisis on a 25 km2 region in Araihazar upazila, about 20 km northeast of Dhaka. The project started with the recording of the position and depth of ~6600 wells in the area, the collection of groundwater samples from these wells, and laboratory analyses for arsenic and a suite of other constituents. This was followed by the recruitment of 12,000 adult inhabitants of the area for a long-term cohort study of the effects of arsenic exposure, as well as cross-sectional studies of their children. This presentation will focus on (1) the extreme degree of spatial variability of arsenic concentrations in Bangladesh groundwater, (2) the notion that spatial variability hampers mitigation in the sense that it complicates predictions but also offers an opportunity for mitigation because many households live within walking or drilling distance of safe water, and (3) the implication of recent advances in our understanding of the mechanisms of arsenic mobilization for potential temporal changes in groundwater arsenic. In addition, (4) a unique data set documenting the response of 6500 households to 4 years of mitigation in Araihazar, supported by documented reductions in exposure to arsenic based on urine analyses, will be presented. The presentation will conclude with (5) a proposal for scaling up mitigation efforts to the rest of the country by targeting safe aquifers with information transmitted to the village level from a central data base using cellular phones.

  9. Immunoelectrophoresis - urine

    MedlinePlus

    ... in the urine can result from: Amyloidosis Leukemia Multiple myeloma Kidney disorders such as IgA nephropathy or IgM ... CLL) IgA nephropathy Immunoelectrophoresis - blood Macroglobulinemia of Waldenstrom Multiple myeloma Protein electrophoresis - urine Protein urine test Urinalysis Update ...

  10. Evaluation of 2 portable ion-selective electrode meters for determining whole blood, plasma, urine, milk, and abomasal fluid potassium concentrations in dairy cattle.

    PubMed

    Megahed, A A; Hiew, M W H; Grünberg, W; Constable, P D

    2016-09-01

    Two low-cost ion-selective electrode (ISE) handheld meters (CARDY C-131, LAQUAtwin B-731; Horiba Ltd., Albany, NY) have recently become available for measuring the potassium concentration ([K(+)]) in biological fluids. The primary objective of this study was to characterize the analytical performance of the ISE meters in measuring [K(+)] in bovine whole blood, plasma, urine, milk, and abomasal fluid. We completed 6 method comparison studies using 369 whole blood and plasma samples from 106 healthy periparturient Holstein-Friesian cows, 138 plasma samples from 27 periparturient Holstein-Friesian cows, 92 milk samples and 204 urine samples from 16 lactating Holstein-Friesian cows, and 94 abomasal fluid samples from 6 male Holstein-Friesian calves. Deming regression and Bland-Altman plots were used to characterize meter performance against reference methods (indirect ISE, Hitachi 911 and 917; inductively coupled plasma-optical emission spectroscopy). The CARDY ISE meter applied directly in plasma measured [K(+)] as being 7.3% lower than the indirect ISE reference method, consistent with the recommended adjustment of +7.5% when indirect ISE methods are used to analyze plasma. The LAQUAtwin ISE meter run in direct mode measured fat-free milk [K(+)] as being 3.6% lower than the indirect ISE reference method, consistent with a herd milk protein percentage of 3.4%. The LAQUAtwin ISE meter accurately measured abomasal fluid [K(+)] compared to the indirect ISE reference method. The LAQUAtwin ISE meter accurately measured urine [K(+)] compared to the indirect ISE reference method, but the median measured value for urine [K(+)] was 83% of the true value measured by inductively coupled plasma-optical emission spectroscopy. We conclude that the CARDY and LAQUAtwin ISE meters are practical, low-cost, rapid, accurate point-of-care instruments suitable for measuring [K(+)] in whole blood, plasma, milk, and abomasal fluid samples from cattle. Ion-selective electrode methodology is

  11. GHB Pharmacology and Toxicology: Acute Intoxication, Concentrations in Blood and Urine in Forensic Cases and Treatment of the Withdrawal Syndrome

    PubMed Central

    Busardò, Francesco P.; Jones, Alan W.

    2015-01-01

    The illicit recreational drug of abuse, γ-hydroxybutyrate (GHB) is a potent central nervous system depressant and is often encountered during forensic investigations of living and deceased persons. The sodium salt of GHB is registered as a therapeutic agent (Xyrem®), approved in some countries for the treatment of narcolepsy-associated cataplexy and (Alcover®) is an adjuvant medication for detoxification and withdrawal in alcoholics. Trace amounts of GHB are produced endogenously (0.5-1.0 mg/L) in various tissues, including the brain, where it functions as both a precursor and a metabolite of the major inhibitory neurotransmitter γ-aminobutyric acid (GABA). Available information indicates that GHB serves as a neurotransmitter or neuromodulator in the GABAergic system, especially via binding to the GABA-B receptor subtype. Although GHB is listed as a controlled substance in many countries abuse still continues, owing to the availability of precursor drugs, γ-butyrolactone (GBL) and 1,4-butanediol (BD), which are not regulated. After ingestion both GBL and BD are rapidly converted into GHB (t½ ~1 min). The Cmax occurs after 20-40 min and GHB is then eliminated from plasma with a half-life of 30-50 min. Only about 1-5% of the dose of GHB is recoverable in urine and the window of detection is relatively short (3-10 h). This calls for expeditious sampling when evidence of drug use and/or abuse is required in forensic casework. The recreational dose of GHB is not easy to estimate and a concentration in plasma of ~100 mg/L produces euphoria and disinhibition, whereas 500 mg/L might cause death from cardiorespiratory depression. Effective antidotes to reverse the sedative and intoxicating effects of GHB do not exist. The poisoned patients require supportive care, vital signs should be monitored and the airways kept clear in case of emesis. After prolonged regular use of GHB tolerance and dependence develop and abrupt cessation of drug use leads to unpleasant

  12. Effect of Arsenic Exposure during Pregnancy on Infant Development at 7 Months in Rural Matlab, Bangladesh

    PubMed Central

    Tofail, Fahmida; Vahter, Marie; Hamadani, Jena D.; Nermell, Barbro; Huda, Syed N.; Yunus, Mohammad; Rahman, Mahfuzar; Grantham-McGregor, Sally M.

    2009-01-01

    Background Exposure to arsenic-contaminated drinking water during pregnancy is associated with low birth weight and fetal loss, and there is concern that the infants’ development may be affected. Objective We assessed the effects of in utero arsenic exposure during pregnancy on infants’ problem-solving ability and motor development. Methods We conducted a large population-based study of nutritional supplementation with 4,436 pregnant women in Matlab, Bangladesh, an area of high-arsenic–contaminated tube wells. We measured arsenic concentration in spot urine specimens at 8 and 30 weeks of pregnancy. We assessed a subsample of 1,799 infants, born to these mothers, at 7 months of age on two problem-solving tests (PSTs), the motor scale of the Bayley Scales of Infant Development–II, and behavior ratings. Result Arsenic concentrations in maternal urine were high, with a median (interquartile range) of 81 μg/L (37–207 μg/L) at 8 weeks of gestation and of 84 μg/L (42–230 μg/L) at 30 weeks. Arsenic exposure was related to many poor socioeconomic conditions that also correlated with child development measures. Multiple regressions of children’s motor and PST scores and behavior ratings, controlling for socioeconomic background variables, age, and sex, showed no significant effect of urinary arsenic concentration on any developmental outcome. Conclusion We detected no significant effect of arsenic exposure during pregnancy on infant development. However, it is possible that other effects are as yet unmeasured or that effects will become apparent at a later age. PMID:19270801

  13. Low-level arsenic exposure: Nutritional and dietary predictors in first-grade Uruguayan children.

    PubMed

    Kordas, Katarzyna; Queirolo, Elena I; Mañay, Nelly; Peregalli, Fabiana; Hsiao, Pao Ying; Lu, Ying; Vahter, Marie

    2016-05-01

    Arsenic exposure in children is a public health concern but is understudied in relation to the predictors, and effects of low-level exposure. We examined the extent and dietary predictors of exposure to inorganic arsenic in 5-8 year old children from Montevideo, Uruguay. Children were recruited at school; 357 were enrolled, 328 collected morning urine samples, and 317 had two 24-h dietary recalls. Urinary arsenic metabolites, i.e. inorganic arsenic (iAs), methylarsonic acid (MMA), and dimethylarsinic acid (DMA), were measured using high-performance liquid chromatography with hydride generation and inductively coupled plasma mass spectrometry (HPLC-HG-ICP-MS), and the sum concentration (U-As) used for exposure assessment. Proportions of arsenic metabolites (%iAs, %MMA and %DMA) in urine were modelled in OLS regressions as functions of food groups, dietary patterns, nutrient intake, and nutritional status. Exposure to arsenic was low (median U-As: 9.9µg/L) and household water (water As: median 0.45µg/L) was not a major contributor to exposure. Children with higher consumption of rice had higher U-As but lower %iAs, %MMA, and higher %DMA. Children with higher meat consumption had lower %iAs and higher %DMA. Higher scores on "nutrient dense" dietary pattern were related to lower %iAs and %MMA, and higher %DMA. Higher intake of dietary folate was associated with lower %MMA and higher %DMA. Overweight children had lower %MMA and higher %DMA than normal-weight children. In summary, rice was an important predictor of exposure to inorganic arsenic and DMA. Higher meat and folate consumption, diet rich in green leafy and red-orange vegetables and eggs, and higher BMI contributed to higher arsenic methylation capacity. PMID:26828624

  14. Estimated Exposure to Arsenic in Breastfed and Formula-Fed Infants in a United States Cohort

    PubMed Central

    Carignan, Courtney C.; Jackson, Brian P.; Farzan, Shohreh F.; Gandolfi, A. Jay; Punshon, Tracy; Folt, Carol L.; Karagas, Margaret R.

    2015-01-01

    Background: Previous studies indicate that concentrations of arsenic in breast milk are relatively low even in areas with high drinking-water arsenic. However, it is uncertain whether breastfeeding leads to reduced infant exposure to arsenic in regions with lower arsenic concentrations. Objective: We estimated the relative contributions of breast milk and formula to arsenic exposure during early infancy in a U.S. population. Methods: We measured arsenic in home tap water (n = 874), urine from 6-week-old infants (n = 72), and breast milk from mothers (n = 9) enrolled in the New Hampshire Birth Cohort Study (NHBCS) using inductively coupled plasma mass spectrometry. Using data from a 3-day food diary, we compared urinary arsenic across infant feeding types and developed predictive exposure models to estimate daily arsenic intake from breast milk and formula. Results: Urinary arsenic concentrations were generally low (median, 0.17 μg/L; maximum, 2.9 μg/L) but 7.5 times higher for infants fed exclusively with formula than for infants fed exclusively with breast milk (β = 2.02; 95% CI: 1.21, 2.83; p < 0.0001, adjusted for specific gravity). Similarly, the median estimated daily arsenic intake by NHBCS infants was 5.5 times higher for formula-fed infants (0.22 μg/kg/day) than for breastfed infants (0.04 μg/kg/day). Given median arsenic concentrations measured in NHBCS tap water and previously published for formula powder, formula powder was estimated to account for ~ 70% of median exposure among formula-fed NHBCS infants. Conclusions: Our findings suggest that breastfed infants have lower arsenic exposure than formula-fed infants, and that both formula powder and drinking water can be sources of exposure for U.S. infants. Citation: Carignan CC, Cottingham KL, Jackson BP, Farzan SF, Gandolfi AJ, Punshon T, Folt CL, Karagas MR. 2015. Estimated exposure to arsenic in breastfed and formula-fed infants in a United States cohort. Environ Health Perspect 123:500–506;

  15. Multimedia exposures to arsenic and lead for children near an inactive mine tailings and smelter site.

    PubMed

    Loh, Miranda M; Sugeng, Anastasia; Lothrop, Nathan; Klimecki, Walter; Cox, Melissa; Wilkinson, Sarah T; Lu, Zhenqiang; Beamer, Paloma I

    2016-04-01

    Children living near contaminated mining waste areas may have high exposures to metals from the environment. This study investigates whether exposure to arsenic and lead is higher in children in a community near a legacy mine and smelter site in Arizona compared to children in other parts of the United States and the relationship of that exposure to the site. Arsenic and lead were measured in residential soil, house dust, tap water, urine, and toenail samples from 70 children in 34 households up to 7 miles from the site. Soil and house dust were sieved, digested, and analyzed via ICP-MS. Tap water and urine were analyzed without digestion, while toenails were washed, digested and analyzed. Blood lead was analyzed by an independent, certified laboratory. Spearman correlation coefficients were calculated between each environmental media and urine and toenails for arsenic and lead. Geometric mean arsenic (standard deviation) concentrations for each matrix were: 22.1 (2.59) ppm and 12.4 (2.27)ppm for soil and house dust (<63μm), 5.71 (6.55)ppb for tap water, 14.0 (2.01)μg/L for specific gravity-corrected total urinary arsenic, 0.543 (3.22)ppm for toenails. Soil and vacuumed dust lead concentrations were 16.9 (2.03)ppm and 21.6 (1.90) ppm. The majority of blood lead levels were below the limit of quantification. Arsenic and lead concentrations in soil and house dust decreased with distance from the site. Concentrations in soil, house dust, tap water, along with floor dust loading were significantly associated with toenail and urinary arsenic but not lead. Mixed models showed that soil and tap water best predicted urinary arsenic. In our study, despite being present in mine tailings at similar levels, internal lead exposure was not high, but arsenic exposure was of concern, particularly from soil and tap water. Naturally occurring sources may be an additional important contributor to exposures in certain legacy mining areas. PMID:26803211

  16. Arsenic behavior in newly drilled wells

    USGS Publications Warehouse

    Kim, M.-J.; Nriagu, J.; Haack, S.

    2003-01-01

    In the present paper, inorganic arsenic species and chemical parameters in groundwater were determined to investigate the factors related to the distribution of arsenic species and their dissolution from rock into groundwater. For the study, groundwater and core samples were taken at different depths of two newly drilled wells in Huron and Lapeer Counties, Michigan. Results show that total arsenic concentrations in the core samples varied, ranging from 0.8 to 70.7 mg/kg. Iron concentration in rock was about 1800 times higher than that of arsenic, and there was no correlation between arsenic and iron occurrences in the rock samples. Arsenic concentrations in groundwater ranged from <1 to 171 ??g/l. The arsenic concentration in groundwater depended on the amount of arsenic in aquifer rocks, and as well decreased with increasing depth. Over 90% of arsenic existed in the form of As(III), implying that the groundwater systems were in the reduced condition. The results such as high ferrous ion, low redox potential and low dissolved oxygen supported the observed arsenic species distribution. There was no noticeable difference in the total arsenic concentration and arsenic species ratio between unfiltered and filtered (0.45 ??m) waters, indicating that the particulate form of arsenic was negligible in the groundwater samples. There were correlations between water sampling depth and chemical parameters, and between arsenic concentration and chemical parameters, however, the trends were not always consistent in both wells. ?? 2003 Elsevier Science Ltd. All rights reserved.

  17. Associations between land cover/use categories and soil concentrations of arsenic, lead and barium, and population race/ethnicity and socioeconomic status

    PubMed Central

    Davis, Harley T.; Aelion, C. Marjorie; Lawson, Andrew B.; Cai, Bo; McDermott, Suzanne

    2015-01-01

    The potential of using land cover/use categories as a proxy for soil metal concentrations was examined by measuring associations between percentages of Anderson land cover categories with soil concentrations of As, Pb, and Ba in ten sampling areas. Land cover category and metal associations with ethnicity and socioeconomic status at the United States Census 2000 block and block group levels also were examined. Arsenic and Pb were highest in urban locations; Ba was a function of geology. Consistent associations were observed between urban/built up land cover, and Pb and poverty. Land cover can be used as proxy for metal concentrations, although associations are metal-dependent. PMID:24914533

  18. Lack of protein kinase C-α leads to impaired urine concentrating ability and decreased aquaporin-2 in angiotensin II-induced hypertension.

    PubMed

    Thai, Tiffany L; Blount, Mitsi A; Klein, Janet D; Sands, Jeff M

    2012-07-01

    Regulation of water and urea transport in the inner medullary collecting duct is essential for urine concentration. Aquaporin (AQP)2 water channels and urea transporter (UT)-A1 are inserted into the apical membrane upon phosphorylation of the channels to allow the transcellular movement of water and urea. Since ANG II activates PKC in many cell types, we tested the hypothesis that ANG II-induced regulation of water and urea transport is mediated by PKC. Osmotic minipumps delivered ANG II to wild-type (WT) or PKC-α(-/-) mice for 7 days. Inner medullas were harvested, and protein abundance was determined by immunoblot. ANG II increased systolic blood pressure to a similar degree in WT and PKC-α(-/-) mice. ANG II had no effect on the urine output of WT mice but increased that of PKC-α(-/-) mice. In accordance with observed differences in urine output, AQP2 abundance was unchanged in ANG II-treated WT animals but was decreased in PKC-α(-/-) mice. No change in membrane accumulation was seen. Phosphorylation of the cAMP-induced transcription factor CREB was decreased in PKC-α(-/-) mice in response to ANG II with no change in overall CREB abundance. ANG II did not alter the abundance of UT-A1 protein in WT or PKC-α(-/-) mice. Phosphorylation and overall abundance of tonicity-responsive enhancer-binding protein, a transcription factor that regulates UT-A1, were also unaltered by ANG II in either group. We conclude that PKC-α protects against ANG II-induced decreases in urine concentrating ability by maintaining AQP2 levels through CREB phosphorylation. PMID:22492943

  19. Ethyl glucuronide concentrations in oral fluid, blood, and urine after volunteers drank 0.5 and 1.0 g/kg doses of ethanol.

    PubMed

    Høiseth, Gudrun; Yttredal, Borghild; Karinen, Ritva; Gjerde, Hallvard; Mørland, Jørg; Christophersen, Asbjørg

    2010-01-01

    The aim of this study was to investigate the concentrations of ethyl glucuronide (EtG) in oral fluid, blood, and urine after healthy volunteers drank two doses of ethanol, 0.5 (n = 11) and 1.0 g/kg (n = 10), after an overnight fast. Samples of oral fluid, blood, and urine were collected before drinking started and at 1.5, 3.5, 5.5, 8.5, 11.5, and 24 h post-dosing. Following ingestion of low dose of ethanol, the Cmax for EtG was 0.36 mg/L (range 0.28-0.41 mg/L) in blood and 69.8 mg/L (range 47.1-96.5 mg/L) in urine. In oral fluid, the concentrations were < 1% of those in blood, and only three subjects exceeded the limit of quantification for EtG in oral fluid. After ingestion of the high dose of ethanol, the Cmax for EtG was 1.06 mg/L (range 0.8-1.22 mg/L) in blood, 159.9 mg/L (range 97.2-225.5 mg/L) in urine, and 0.032 mg/L (range 0.013-0.059 mg/L) in oral fluid. The median oral fluid/blood ratio was 0.029 (range 0.012-0.054) for EtG. The detection time for EtG was median 11.5 h (range 3.5-11.5 h) in oral fluid. According to this, the detection time for EtG in oral fluid is therefore only a few hours longer than for ethanol itself and represents limited additional value. PMID:20663284

  20. Concentrations of Arsenic, Cadmium, Copper, Lead, Selenium, and zinc in fish from the Mississippi River basin, 1995.

    PubMed

    Schmitt, Christopher J

    2004-01-01

    Fish were collected in late 1995 from 34 National Contaminant Biomonitoring Program (NCBP) stations and 12 National Water Quality Assessment Program (NAWQA) stations in the Mississippi River basin (MRB), and in late 1996 from a reference site in West Virginia. The NCBP sites represented key points (dams, tributaries, etc.) in the largest rivers of the MRB. The NAWQA sites were typically on smaller rivers and were selected to represent dominant land uses in their watersheds. The West Virginia site, which is in an Eastern U.S. watershed adjacent to the MRB, was selected to document elemental concentrations in fish used for other aspects of a larger study and to provide additional contemporaneous data on background elemental concentrations. At each site four samples, each comprising (nominally) 10 adult common carp (Cyprinus carpio, 'carp') or black bass (Micropterus spp., 'bass') of the same sex, were collected. The whole fish were composited by station, species, and gender for analysis of arsenic (As), lead (Pb), and selenium (Se) by atomic absorption spectroscopy and for cadmium (Cd), copper (Cu), and zinc (Zn) by inductively-coupled plasma emission spectroscopy. Concentrations of most of the elements examined were lower in both carp and bass from the reference site, a small impoundment located in a rural area, than from the NCBP and NAWQA sites on rivers and larger impoundments. In contrast, there were few overall differences between NCBP sites NAWQA sites. The 1995 results generally confirmed the continued weathering and re-distribution of these elemental contaminants in the MRB; concentrations declined or were unchanged from 1984-1986 to 1995 at most NCBP sites, thus continuing two-decade trends. Exceptions were Se at Station 77 (Arkansas R. at John Martin Reservoir, CO), where concentrations have been elevated historically and increased slightly (to 3.8-4.7 microg g-(1) in bass and carp); and Pb, Cd, and Zn at Station 67 (Allegheny R. at Natrona, PA), where

  1. Influence of geology on arsenic concentrations in ground and surface water in central Lesvos, Greece.

    PubMed

    Aloupi, Maria; Angelidis, Michael O; Gavriil, Apostolos M; Koulousaris, Michael; Varnavas, Soterios P

    2009-04-01

    The occurrence of As was studied in groundwater used for human consumption and irrigation, in stream water and sediments and in water from thermal springs in the drainage basin of Kalloni Gulf, island of Lesvos, Greece, in order to investigate the potential influence of the geothermal field of Polichnitos-Lisvori on the ground and surface water systems of the area. Total dissolved As varied in the range <0.7-88.3 microg L(-1) in groundwater, 41.1-90.7 microg L(-1) in thermal spring water and 0.4-13.2 microg L(-1) in stream water, whereas As concentrations in stream sediments varied between 2.0-21.9 mg kg(-1). Four out of 31 groundwater samples exceeded the EC standard of 10 microg L(-1). The survey revealed an enrichment in both surface and groundwater hydrological systems in the northern part of the area (average concentrations of As in groundwater, stream water and stream sediment: 8.0 microg L(-1), 8.8 microg L(-1) and 15.0 mg kg(-1) respectively), in association with the volcanic bedrocks, while lower As concentrations were found in the eastern part (average concentrations in groundwater, stream water and stream sediment: 2.9 microg L(-1), 1.7 microg L(-1) and 5.9 mg kg(-1) respectively), which is dominated by ophiolitic ultramafic formations. The variation of As levels between the different parts of the study area suggests that local geology exerts a determinant influence on As geochemical behaviour. On the other hand, the geothermal activity manifested in the area of Polichnitos-Lisvori does not affect the presence of As in groundwater and streams. PMID:18437513

  2. Urinary arsenic profiles reveal exposures to inorganic arsenic from private drinking water supplies in Cornwall, UK

    PubMed Central

    Middleton, D. R. S.; Watts, M. J.; Hamilton, E. M.; Ander, E. L.; Close, R. M.; Exley, K. S.; Crabbe, H.; Leonardi, G. S.; Fletcher, T.; Polya, D. A.

    2016-01-01

    Private water supplies (PWS) in Cornwall, South West England exceeded the current WHO guidance value and UK prescribed concentration or value (PCV) for arsenic of 10 μg/L in 5% of properties surveyed (n = 497). In this follow-up study, the first of its kind in the UK, volunteers (n = 207) from 127 households who used their PWS for drinking, provided urine and drinking water samples for total As determination by inductively coupled plasma mass spectrometry (ICP-MS) and urinary As speciation by high performance liquid chromatography ICP-MS (HPLC-ICP-MS). Arsenic concentrations exceeding 10 μg/L were found in the PWS of 10% of the volunteers. Unadjusted total urinary As concentrations were poorly correlated (Spearman’s ρ = 0.36 (P < 0.001)) with PWS As largely due to the use of spot urine samples and the dominance of arsenobetaine (AB) from seafood sources. However, the osmolality adjusted sum, U-AsIMM, of urinary inorganic As species, arsenite (AsIII) and arsenate (AsV), and their metabolites, methylarsonate (MA) and dimethylarsinate (DMA), was found to strongly correlate (Spearman’s ρ: 0.62 (P < 0.001)) with PWS As, indicating private water supplies as the dominant source of inorganic As exposure in the study population of PWS users. PMID:27156998

  3. Urinary arsenic profiles reveal exposures to inorganic arsenic from private drinking water supplies in Cornwall, UK

    NASA Astrophysics Data System (ADS)

    Middleton, D. R. S.; Watts, M. J.; Hamilton, E. M.; Ander, E. L.; Close, R. M.; Exley, K. S.; Crabbe, H.; Leonardi, G. S.; Fletcher, T.; Polya, D. A.

    2016-05-01

    Private water supplies (PWS) in Cornwall, South West England exceeded the current WHO guidance value and UK prescribed concentration or value (PCV) for arsenic of 10 μg/L in 5% of properties surveyed (n = 497). In this follow-up study, the first of its kind in the UK, volunteers (n = 207) from 127 households who used their PWS for drinking, provided urine and drinking water samples for total As determination by inductively coupled plasma mass spectrometry (ICP-MS) and urinary As speciation by high performance liquid chromatography ICP-MS (HPLC-ICP-MS). Arsenic concentrations exceeding 10 μg/L were found in the PWS of 10% of the volunteers. Unadjusted total urinary As concentrations were poorly correlated (Spearman’s ρ = 0.36 (P < 0.001)) with PWS As largely due to the use of spot urine samples and the dominance of arsenobetaine (AB) from seafood sources. However, the osmolality adjusted sum, U-AsIMM, of urinary inorganic As species, arsenite (AsIII) and arsenate (AsV), and their metabolites, methylarsonate (MA) and dimethylarsinate (DMA), was found to strongly correlate (Spearman’s ρ: 0.62 (P < 0.001)) with PWS As, indicating private water supplies as the dominant source of inorganic As exposure in the study population of PWS users.

  4. Urine Pretreat Injection System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    providing the proper concentration in the collected urine. To implement the solid tablet in a bag approach, a design concept was completed with prototype drawings of the complete urine pretreat prefilter assembly. A successful fabrication technique was developed for retaining the Oxone tablets in a fabric casing attached to the end of the existing Space Station Waste Collection System urine prefilter assembly. The final pretreat prefilter configuration held sufficient Oxone in a tablet form to allow normal scheduled daily (or twice daily) change out of the urine filter depending on the use rate of the Space Station urine collection system. The actual tests to prove the concept were conducted using the Urine Fan/Separator assembly that was originally used in the STS-52 Design Test Objective (DTO) urinal assembly. Other related tests were conducted to demonstrate the actual minimum ratio of Oxone to urine that will control microbial growth.

  5. Phytoremediation of arsenic contaminated soil by arsenic accumulators: a three year study.

    PubMed

    Raj, Anshita; Singh, Nandita

    2015-03-01

    To investigate whether phytoremediation can remove arsenic from the contaminated area, a study was conducted for three consecutive years to determine the efficiency of Pteris vittata, Adiantum capillus veneris, Christella dentata and Phragmites karka, on arsenic removal from the arsenic contaminated soil. Arsenic concentrations in the soil samples were analysed after harvesting in 2009, 2010 and 2011 at an interval of 6 months. Frond arsenic concentrations were also estimated in all the successive harvests. Fronds resulted in the greatest amount of arsenic removal. Root arsenic concentrations were analysed in the last harvest. Approximately 70 % of arsenic was removed by P. vittata which was recorded as the highest among the four plant species. However, 60 % of arsenic was removed by A. capillus veneris, 55.1 % by C. dentata and 56.1 % by P. karka of arsenic was removed from the contaminated soil in 3 years. PMID:25666567

  6. Excretion of arsenic (As) in urine of children, 7-11 years, exposed to elevated levels of As in the city water supply in Hermosillo, Sonora, México.

    PubMed

    Wyatt, C J; Lopez Quiroga, V; Olivas Acosta, R T; Olivia Méndez, R

    1998-07-01

    Arsenic (As) is a common element in the environment with many industrial uses, but it also can be a contaminant in drinking water and present serious health concerns. Earlier studies on the quality of drinking water in the city of Hermosillo, Sonora, México, showed high levels of As (> 0.05 ppm) in water from wells located in the northern part of the city. Additionally a high positive correlation between the levels of Fluoride (F) and As in the same wells was found. Therefore, the objective of this study was to determine the excretion of As in children, 7-11 years of age, that had been exposed to elevated levels of As in their drinking water. Twenty-four-hour urine samples and a water sample taken directly in the home were collected from school age children living in two different areas with known high levels of As in their drinking water. A control group with normal levels of As in their water was also included. As was determined by an atomic absorption-hydride generator, verified with the use of NBS certified standards (SRM 1643a and SRM 2670). None of the water samples exceeded the limit established for drinking water; however, there was a significant difference between the intake of As and the As in drinking water among the three areas of the study. Average As in water was 0.009 +/- 0.002 and 0.030 +/- 0.011 micrograms/ml between the control and high areas. Intake (in micrograms/day) was 15 +/- 3 and 54 +/- 18. In the group consuming water with high levels of As, 65% of the children exceeded the recommended dose of < 1 micrograms/kg/day (EPA, 1988). Several children in this study also had high levels of As in their urine. Even though As levels in the drinking water are within the norms, it appears that children exposed to high levels of As in their drinking water may have a health risk. PMID:9630441

  7. Association of oxidative stress with arsenic methylation in chronic arsenic-exposed children and adults

    SciTech Connect

    Xu Yuanyuan; Wang Yi; Zheng Quanmei; Li Xin; Li Bing; Jin Yaping; Sun Xiance; Sun Guifan

    2008-10-01

    Though oxidative stress is recognized as an important pathogenic mechanism of arsenic, and arsenic methylation capacity is suggested to be highly involved in arsenic-related diseases, the association of arsenic methylation capacity with arsenic-induced oxidative stress remains unclear. To explore oxidative stress and its association with arsenic methylation, cross-sectional studies were conducted among 208 high and 59 low arsenic-exposed subjects. Levels of urinary arsenic species [inorganic arsenic (iAs), monomethylated arsenic (MMA) and dimethylated arsenic (DMA)] were determined by hydride generation atomic absorption spectrometry. Proportions of urinary arsenic species, the first methylation ratio (FMR) and the secondary methylation ratio (SMR) were used as indicators for arsenic methylation capacity. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations were analyzed by enzyme-linked immunosorbent assay kits. Reduced glutathione (GSH) levels and superoxide dismutase (SOD) activity in whole blood were determined to reflect anti-oxidative status. The high arsenic-exposed children and adults were significantly increased in urinary 8-OHdG concentrations but decreased in blood GSH levels compared with the low exposed children and adults. In multiple linear regression models, blood GSH levels and urinary 8-OHdG concentrations of arsenic-exposed children and adults showed strong associations with the levels of urinary arsenic species. Arsenic-exposed subjects in the lower and the upper quartiles of proportions of urinary arsenic species, FMR or SMR were significantly different in urinary 8-OHdG, blood GSH and SOD. The associations of arsenic methylation capacity with 8-OHdG, GSH and SOD were also observed in multivariate regression analyses. These results may provide linkage between arsenic methylation capacity and oxidative stress in humans and suggest that adverse health effects induced by arsenic are related to arsenic methylation through oxidative stress.

  8. Evaluation of soil characteristics potentially affecting arsenic concentration in paddy rice (Oryza sativa L.).

    PubMed

    Bogdan, Katja; Schenk, Manfred K

    2009-10-01

    Paddy rice may contribute considerably to the human intake of As. The knowledge of soil characteristics affecting the As content of the rice plant enables the development of agricultural measures for controlling As uptake. During field surveys in 2004 and 2006, plant samples from 68 fields (Italy, Po-area) revealed markedly differing As concentration in polished rice. The soil factors total As(aqua regia), pH, grain size fractions, total C, plant available P(CAL), poorly crystalline Fe(oxal.) and plant available Si(Na-acetate) content that potentially affect As content of rice were determined. A multiple linear regression analysis showed a significant positive influence of the total As(aqua regia) and plant available P(CAL) content and a negative influence of the poorly crystalline Fe(oxal.) content of the soil on the As content in polished rice and rice straw. Si concentration in rice straw varied widely and was negatively related to As content in straw and polished rice. PMID:19482396

  9. Arsenic Speciation of Terrestrial Invertebrates

    SciTech Connect

    Moriarty, M.M.; Koch, I.; Gordon, R.A.; Reimer, K.J. ); )

    2009-07-01

    The distribution and chemical form (speciation) of arsenic in terrestrial food chains determines both the amount of arsenic available to higher organisms, and the toxicity of this metalloid in affected ecosystems. Invertebrates are part of complex terrestrial food webs. This paper provides arsenic concentrations and arsenic speciation profiles for eight orders of terrestrial invertebrates collected at three historical gold mine sites and one background site in Nova Scotia, Canada. Total arsenic concentrations, determined by inductively coupled plasma mass spectrometry (ICP-MS), were dependent upon the classification of invertebrate. Arsenic species were determined by high-performance liquid chromatography (HPLC) ICP-MS and X-ray absorption spectroscopy (XAS). Invertebrates were found by HPLC ICP-MS to contain predominantly arsenite and arsenate in methanol/water extracts, while XAS revealed that most arsenic is bound to sulfur in vivo. Examination of the spatial distribution of arsenic within an ant tissue highlighted the differences between exogenous and endogenous arsenic, as well as the extent to which arsenic is transformed upon ingestion. Similar arsenic speciation patterns for invertebrate groups were observed across sites. Trace amounts of arsenobetaine and arsenocholine were identified in slugs, ants, and spiders.

  10. Concentrations of isoflavones in plasma and urine of post-menopausal women chronically ingesting high quantities of soy isoflavones.

    PubMed

    Mathey, J; Lamothe, V; Coxam, V; Potier, M; Sauvant, P; Bennetau-Pelissero, C

    2006-06-01

    Soy food or food supplements based on soy containing isoflavones (Isos) are increasingly available in Western countries. However, the variability of Isos levels in urine and plasma in humans during chronic ingestion is poorly documented. Nevertheless, this is the way these compounds will most probably be used in the future, especially if the soy-based supplements market goes on increasing. Here, glycosilated Isos in an enriched extract of Prevastein equal to 100 mg of equivalent Isos aglycone was given daily to 27 post-menopausal women for 30 days and to 12 post-menopausal women for 60 days. Volunteers were given Prevastein in a cereal bar (25 mg Isos) and in a yoghurt (25 mg Isos) both at breakfast and dinner. Plasma samples were collected after overnight fasting. Urine samples were aliquots of a 24 h collection checked on volume and creatinin excretion levels. Genistein, daidzein and equol were measured at day 0 and every 15 days afterwards, using original specific ELISAs. Constant levels were reached from the 15th day. About 59.2% of the volunteers were significant equol producers in the first experiment and 58.3% in the second. A large variability in plasma and urine levels was observed among post-menopausal women consuming 100 mg Isos per day, although remaining relatively stable in each individual subject. This could partly account for the controversial effects of Isos recorded so far in clinical studies. So Isos plasma levels would have to be assayed during chronic exposures, and could help to better understand the large variability of the effects classically observed in clinical studies. ELISA techniques could be easily exported to analytical laboratories to help physicians and nutritionists with their prescriptions. PMID:16513315

  11. Solid-Phase Speciation of Arsenic As the Primary Control on Dissolved As Concentrations in a Glacial Aquifer System: Quantifying Speciation of Arsenic in Glacial Aquifer Solids with μXAS Mapping.

    NASA Astrophysics Data System (ADS)

    Nicholas, S. L.; Gowan, A. S.; Knaeble, A. R.; Erickson, M. L.; Woodruff, L. G.; Marcus, M.; Toner, B. M.

    2014-12-01

    Western Minnesota, USA, is a regional locus of drinking-water wells with high arsenic (As) (As>10µgL-1). Arsenic concentrations vary widely among neighboring wells with otherwise similar water chemistry [1,2]. As(III) should be the most mobile As species in Minnesota well waters (median Eh in As affected wells is -50mV). This As is geogenic, sourced from glacial deposits derived from Cretaceous sedimentary bedrock (dolostone, limestone, shale). Our hypothesis is that As speciation in the solid phase is the important factor controlling the introduction of As to groundwater—more significant in this region than absolute As concentrations or landscape variability. Our previous research used micro-X-ray absorption spectroscopy (µXAS) speciation mapping [3] on archived glacial tills (stored dry at room temperature in air). µXAS results from this material showed that As in a reduced chemical state within the till aquitard is spatially correlated with iron sulfide at the micron scale. Conversley, As in aquifer sediments was mainly oxidized As(V). At the aquifer-aquitard contact As was observed as a mixture of both reduced and oxidized forms. This suggests that the aquifer-aquitard contact is a geochemically active zone in which reduced As species present within glacial till are converted to As(V) through complex redox processes, and subsequently release into aquifer sediments. Our current research applies the same methods to describe As speciation in samples collected from fresh cores of glacial sediment and frozen under argon in the field. Preliminary results are similar to our previous work in that As is, in general, more reduced in aquitard sediments, and more oxidized at the contact and in aquifer sediments. Arsenic(III) was preserved as a minor consitutent in ambient archived cores but is a more significant constituent in fresh, anaerobically preserved cores. Results will be presented comparing anaerobic samples with ambient-air aliquots of the same sample to

  12. Efficacy of arsenic filtration by Kanchan arsenic filter in Nepal.

    PubMed

    Singh, Anjana; Smith, Linda S; Shrestha, Shreekrishna; Maden, Narendra

    2014-09-01

    Groundwater arsenic contamination has caused a significant public health burden in lowland regions of Nepal. For arsenic mitigation purposes, the Kanchan Arsenic Filter (KAF) was developed and validated for use in 2003 after pilot studies showed its effectiveness in removing arsenic. However, its efficacy in field conditions operating for a long period has been scarcely observed. In this study, we observe the efficacy of KAFs running over 6 months in highly arsenic-affected households in Nawalparasi district. We assessed pair-wise arsenic concentrations of 62 randomly selected household tubewells before filtration and after filtration via KAFs. Of 62 tubewells, 41 had influent arsenic concentration exceeding the Nepal drinking water quality standard value (50 μg/L). Of the 41 tubewells having unsafe arsenic levels, KAFs reduced arsenic concentration to the safe level for only 22 tubewells, an efficacy of 54%. In conclusion, we did not find significantly high efficacy of KAFs in reducing unsafe influent arsenic level to the safe level under the in situ field conditions. PMID:25252363

  13. Characterizing concentrations of diethylene glycol and suspected metabolites in human serum, urine, and cerebrospinal fluid samples from the Panama DEG mass poisoning

    PubMed Central

    SCHIER, J. G.; HUNT, D. R.; PERALA, A.; MCMARTIN, K. E.; BARTELS, M. J.; LEWIS, L. S.; MCGEEHIN, M. A.; FLANDERS, W. D.

    2015-01-01

    differences and associations were identified between case status and the following: 1) serum oxalic acid and serum HEAA (both OR = 14.6; 95% C I = 2.8 – 100.9); 2) serum diglycolic acid and urine diglycolic acid (both OR >999; exact p <0.0001); and 3) urinary glycolic acid (OR = 0.057; 95% C I = 0.001–0.55). Two CSF sample results were excluded and two from the same case were averaged, yielding eight samples from eight cases. Diglycolic acid was detected in seven (88%) of case CSF samples (median, 2.03 mcg/mL; range, urine) concentrations were identified among cases, which is consistent with animal data. Low urinary glycolic acid concentrations in cases may have been due to concurrent AKI. Although serum glycolic concentrations among cases may have initially increased, further metabolism to oxalic acid may have occurred thereby explaining the similar glycolic acid concentrations in cases and controls. The increased serum oxalic acid concentration results in cases versus controls are consistent with this hypothesis. Conclusion Diglycolic acid is associated with human DEG poisoning and may be a biomarker for poisoning. These findings add to animal data suggesting a possible role for traditional antidotal therapies. The detection of HEAA and diglycolic acid in the CSF of cases suggests a possible association with signs and symptoms of DEG-associated neurotoxicity. Further work characterizing the pathophysiology of DEG-associated neurotoxicity and the role of traditional toxic alcohol therapies such as fomepizole and hemodialysis is needed. PMID:24266434

  14. Immunofixation - urine

    MedlinePlus

    ... need to supply a clean-catch (midstream) urine sample. Clean the area around where urine leaves the body. Men or boys should wipe the head of the penis. Women or girls should wash the area between the lips of the vagina with soapy water and rinse well. Allow a small amount to ...

  15. Arsenic levels in Oregon waters.

    PubMed Central

    Stoner, J C; Whanger, P D; Weswig, P H

    1977-01-01

    The arsenic content of well water in certain areas of Oregon can range up to 30 to 40 times the U.S.P.H.S. Drinking Water Standard of 1962, where concentrations in excess of 50 ppb are grounds for rejection. The elevated arsenic levels in water are postulated to be due to volcanic deposits. Wells in central Lane County, Oregon, that are known to contain arsenic rich water are in an area underlain by a particular group of sedimentary and volcanic rocks, which geologists have named the Fischer formation. The arsenic levels in water from wells ranged from no detectable amounts to 2,000 ppb. In general the deeper wells contained higher arsenic water. The high arsenic waters are characterized by the small amounts of calcium and magnesium in relation to that of sodium, a high content of boron, and a high pH. Water from some hot springs in other areas of Oregon was found to range as high as 900 ppb arsenic. Arsenic blood levels ranged from 32 ppb for people living in areas where water is low in arsenic to 250 ppb for those living in areas where water is known to contain high levels of arsenic. Some health problems associated with consumption of arsenic-rich water are discussed. PMID:908291

  16. Factors Affecting Elevated Arsenic and Methyl Mercury Concentrations in Small Shield Lakes Surrounding Gold Mines near the Yellowknife, NT, (Canada) Region.

    PubMed

    Houben, Adam James; D'Onofrio, Rebecca; Kokelj, Steven V; Blais, Jules M

    2016-01-01

    Gold mines in the Yellowknife, NT, region--in particular, the Giant Mine--operated from 1949-99, releasing 237,000 tonnes of waste arsenic trioxide (As2O3) dust, among other compounds, from gold ore extraction and roasting processes. For the first time, we show the geospatial distribution of roaster-derived emissions of several chemical species beyond the mine property on otherwise undisturbed taiga shield lakes within a 25 km radius of the mine, 11 years after its closing. Additionally, we demonstrate that underlying bedrock is not a significant source for the elevated concentrations in overlying surface waters. Aquatic arsenic (As) concentrations are well above guidelines for drinking water (10 μg/L) and protection for aquatic life (5 μg/L), ranging up to 136 μg/L in lakes within 4 km from the mine, to 2.0 μg/L in lakes 24 km away. High conversion ratios of methyl mercury were shown in lakes near the roaster stack as well, with MeHg concentrations reaching 44% of total mercury. The risk of elevated exposures by these metals is significant, as many lakes used for recreation and fishing near the City of Yellowknife are within this radius of elevated As and methyl Hg concentrations. PMID:27050658

  17. Factors Affecting Elevated Arsenic and Methyl Mercury Concentrations in Small Shield Lakes Surrounding Gold Mines near the Yellowknife, NT, (Canada) Region

    PubMed Central

    Houben, Adam James; D’Onofrio, Rebecca; Kokelj, Steven V; Blais, Jules M

    2016-01-01

    Gold mines in the Yellowknife, NT, region—in particular, the Giant Mine—operated from 1949–99, releasing 237,000 tonnes of waste arsenic trioxide (As2O3) dust, among other compounds, from gold ore extraction and roasting processes. For the first time, we show the geospatial distribution of roaster-derived emissions of several chemical species beyond the mine property on otherwise undisturbed taiga shield lakes within a 25 km radius of the mine, 11 years after its closing. Additionally, we demonstrate that underlying bedrock is not a significant source for the elevated concentrations in overlying surface waters. Aquatic arsenic (As) concentrations are well above guidelines for drinking water (10 μg/L) and protection for aquatic life (5 μg/L), ranging up to 136 μg/L in lakes within 4 km from the mine, to 2.0 μg/L in lakes 24 km away. High conversion ratios of methyl mercury were shown in lakes near the roaster stack as well, with MeHg concentrations reaching 44% of total mercury. The risk of elevated exposures by these metals is significant, as many lakes used for recreation and fishing near the City of Yellowknife are within this radius of elevated As and methyl Hg concentrations. PMID:27050658

  18. Blackcurrant seed press residue increases tocopherol concentrations in serum and stool whilst biomarkers in stool and urine indicate increased oxidative stress in human subjects.

    PubMed

    Helbig, Dorit; Wagner, Andreas; Glei, Michael; Basu, Samar; Schubert, Rainer; Jahreis, Gerhard

    2009-08-01

    Berry seeds are a tocopherol-rich by-product of fruit processing without specific commercial value. In a human intervention study, the physiological impact of blackcurrant seed press residue (PR) was tested. Thirty-six women (aged 24 +/- 3 years; twenty non-smokers, sixteen smokers) consumed 250 g bread/d containing 8% PR for a period of 4 weeks (period 3). Comparatively, a control bread without PR (250 g/d) was tested (period 2) and baseline data were obtained (period 1). Blood, stool and 24 h urine were collected during a 5 d standardised diet within each period. Tocopherol and Fe intakes were calculated from food intake. In serum, tocopherol concentration and Fe parameters were determined. In urine, oxidative stress markers 8-oxo-2'-deoxyguanosine, 8-iso-PGF2alpha and inflammatory response marker 15-keto-dihydro-PGF2alpha were analysed. Stool tocopherol concentration, genotoxicity of faecal water (comet assay) and antioxidant capacity of stool (aromatic hydroxylation of salicylic acid) were determined. Fe and total tocopherol intake, total tocopherol concentrations in serum and stool, and genotoxicity of faecal water increased with PR bread consumption (P < 0.05). The antioxidant capacity of stool decreased between baseline and intervention, expressed by increased formation of 2,3- and 2,5-dihydroxybenzoic acid in vitro (P < 0.05). In smokers, 8-oxo-2'-deoxyguanosine increased with PR consumption (P < 0.05). Prostane concentrations were unaffected by PR bread consumption. In summary, the intake of bread containing blackcurrant PR for 4 weeks increased serum and stool total tocopherol concentrations. However, various biomarkers indicated increased oxidative stress, suggesting that consumption of ground berry seed may not be of advantage. PMID:19302719

  19. Arsenic Methyltransferase

    EPA Science Inventory

    The metalloid arsenic enters the environment by natural processes (volcanic activity, weathering of rocks) and by human activity (mining, smelting, herbicides and pesticides). Although arsenic has been exploited for homicidal and suicidal purposes since antiquity, its significan...

  20. Evaluation of TGF-β1, CCL5/RANTES and sFas/Apo-1 urine concentration in children with ureteropelvic junction obstruction

    PubMed Central

    Niedzielski, Jerzy K.

    2013-01-01

    Introduction The aim of this study was to evaluate changes in expression of soluble biomarkers tumor factor growth-β1 (TGF-β1), CCL5/RANTES, and sFas/Apo-1 in the urine of patients undergoing ureteropyeloplasty for ureteropelvic junction (UPJ) obstruction. These factors are connected with different processes ongoing in the obstructive uropathy. If their urine concentrations correlate with AP diameter of the renal pelvis and differential function of the affected kidney, they can be helpful in making a decision on corrective surgery. Material and methods Creatinine, TGF-β1, CCL5/RANTES, and sFas/Apo-1 levels were measured in the urine from the bladder and renal pelvis of 45 patients undergoing ureteropyeloplasty and from bladders of 25 patients undergoing inguinal herniorrhaphy. Results Levels of examined biomarkers were higher in the renal pelvis and bladder of children with UPJ obstruction as compared to controls: TGF-β1 in older children and adolescents (p < 0.05), CCL5/RANTES in the youngest and older children (p < 0.05), and sFas/Apo-1 in all patients (p < 0.05). Twelve months after surgery their levels in the bladder decreased: TGF-β1 in younger and older children (p < 0.05), CCL5/RANTES in the youngest patients and adolescents (p < 0.05), and sFas/Apo-1 in the youngest and older children (p < 0.05). A significant decrease in the AP diameter of the renal pelvis post-operatively (32.09 mm vs. 18.72 mm) (p < 0.01) and significant improvement in renal function (36.94% vs. 42.76%) (p < 0.05) were observed in the examined group. Conclusions Mean TGF-β1, CCL5/RANTES, and sFas/Apo-1 urine levels are significantly increased in patients with UPJ and decreased 1 year after ureteropyeloplasty. Bladder concentrations of examined factors may be clinically useful markers of obstruction. PMID:24273575

  1. Methyl tert-butyl ether (MTBE) detected in abnormally high concentrations in postmortem blood and urine from two persons found dead inside a car containing a gasoline spill.

    PubMed

    Karinen, Ritva; Vindenes, Vigdis; Morild, Inge; Johnsen, Lene; Le Nygaard, Ilah; Christophersen, Asbjørg S

    2013-09-01

    Two deep frozen persons, a female and a male, were found dead in a car. There had been an explosive fire inside the car which had extinguished itself. On the floor inside the car were large pools of liquid which smelled of gasoline. The autopsy findings and routine toxicological analyses could not explain the cause of death. Carboxyhemoglobin levels in the blood samples were <10%. Analysis with a headspace gas chromatography revealed methyl tert-butyl ether (MTBE) concentrations of 185 mg/L (female victim) and 115 mg/L (male victim) in peripheral blood. The urine MTBE concentrations were 150 mg/L and 256 mg/L, respectively. MTBE is a synthetic chemical which is added to gasoline as a fuel oxygenate. Gasoline poisoning is likely to be the cause of the death in these two cases, and MTBE can be a suitable marker of gasoline exposure, when other volatile components have vaporized. PMID:23879346

  2. ARSENIC REMOVAL

    EPA Science Inventory

    Presentation covered five topics; arsenic chemistry, best available technology (BAT), surface water technology, ground water technology and case studies of arsenic removal. The discussion on arsenic chemistry focused on the need and method of speciation for AsIII and AsV. BAT me...

  3. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species.

    PubMed

    Norton, Gareth J; Adomako, Eureka E; Deacon, Claire M; Carey, Anne-Marie; Price, Adam H; Meharg, Andrew A

    2013-06-01

    Arsenic accumulation in rice grain has been identified as a major problem in some regions of Asia. A study was conducted to investigate the effect of increased organic matter in the soil on the release of arsenic into soil pore water and accumulation of arsenic species within rice grain. It was observed that high concentrations of soil arsenic and organic matter caused a reduction in plant growth and delayed flowering time. Total grain arsenic accumulation was higher in the plants grown in high soil arsenic in combination with high organic matter, with an increase in the percentage of organic arsenic species observed. The results indicate that the application of organic matter should be done with caution in paddy soils which have high soil arsenic, as this may lead to an increase in accumulation of arsenic within rice grains. Results also confirm that flooding conditions substantially increase grain arsenic. PMID:23466730

  4. A study of the influence on diabetes of free and conjugated bisphenol A concentrations in urine: Development of a simple microextraction procedure using gas chromatography-mass spectrometry.

    PubMed

    Pastor-Belda, Marta; Bastida, David; Campillo, Natalia; Pérez-Cárceles, María D; Motas, Miguel; Viñas, Pilar

    2016-09-10

    The association between bisphenol A (BPA) exposure and adult health status is examined by measuring the urinary BPA concentration using a miniaturized technique based on dispersive liquid-liquid microextraction (DLLME) in combination with gas chromatography-mass spectrometry (GC-MS). Both the free bioactive and the glucuronide conjugated forms of BPA were measured, the glucuronide form usually being predominant. The main analogs of BPA, including bisphenol Z (BPZ), bisphenol F (BPF) and biphenol (BP) were also determined. Several parameters affecting enzymatic hydrolysis, derivatization by in-situ acetylation and the DLLME stages were carefully optimized by means of multivariate designs. DLLME parameters were 2mL urine, 1mL acetone and 100μL chloroform, and hydrolysis was performed using β-glucuronidase and sulfatase at pH 5. No matrix effect was observed and quantification was carried out by aqueous calibration with a surrogate standard. Detection limits were in the range 0.01-0.04ngmL(-1). The intraday and interday precisions were lower than 11% in terms of relative standard deviation. Satisfactory values for all compounds were obtained in recovery studies (92-117%) at two concentration levels. Other bisphenols (BPF, BPZ and BP) were not detected in the urine samples, while BPA was the only bisphenol detected in the free form (creatinine adjusted) at concentration levels ranging from the detection limit to 15.9ngg(-1), and total BPA was detected at concentrations ranging from 0.46 to 24.5ngg(-1) levels. A comparison of the BPA content for both groups of patients revealed that slightly higher mean values were obtained for both free BPA and total BPA for diabetic patients, than for non-diabetic patients. However, a statistical comparison of the contents of BPA revealed that there were no significant differences. The procedure was validated using a certified reference material. PMID:27497306

  5. Urinary arsenic metabolism in a Western Chinese population exposed to high-dose inorganic arsenic in drinking water: Influence of ethnicity and genetic polymorphisms

    SciTech Connect

    Fu, Songbo; Wu, Jie; Li, Yuanyuan; Liu, Yan; Gao, Yanhui; Yao, Feifei; Qiu, Chuanying; Song, Li; Wu, Yu; Liao, Yongjian; Sun, Dianjun

    2014-01-01

    To investigate the differences in urinary arsenic metabolism patterns of individuals exposed to a high concentration of inorganic arsenic (iAs) in drinking water, an epidemiological investigation was conducted with 155 individuals living in a village where the arsenic concentration in the drinking water was 969 μg/L. Blood and urine samples were collected from 66 individuals including 51 cases with skin lesions and 15 controls without skin lesions. The results showed that monomethylated arsenic (MMA), the percentage of MMA (%MMA) and the ratio of MMA to iAs (MMA/iAs) were significantly increased in patients with skin lesions as compared to controls, while dimethylated arsenic (DMA), the percentage of DMA (%DMA) and the ratio of DMA to MMA (DMA/MMA) were significantly reduced. The percent DMA of individuals with the Ala/Asp genotype of glutathione S-transferase omega 1 (GSTO1) was significantly lower than those with Ala/Ala. The percent MMA of individuals with the A2B/A2B genotype of arsenic (+ 3 oxidation state) methyltransferase (AS3MT) was significantly lower than those with AB/A2B. The iAs and total arsenic (tAs) content in the urine of a Tibetan population were significantly higher than that of Han and Hui ethnicities, whereas MMA/iAs was significantly lower than that of Han and Hui ethnicities. Our results showed that when exposed to the same arsenic environment, different individuals exhibited different urinary arsenic metabolism patterns. Gender and ethnicity affect these differences and above polymorphisms may be effectors too. - Highlights: • We first survey a village with high iAs content in the drinking water (969 μg/L). • 90 villagers suffered typical skin lesions with a morbidity rate of 58%. • Cases exhibited higher %MMA and MMA/iAs, and lower %DMA and DMA/MMA than controls. • Gender and ethnicity affect the differences of iAs methylation metabolism levels. • GSTO1 and AS3MT gene polymorphisms may be factors too.

  6. Concentrations of arsenic, copper, cobalt, lead and zinc in cassava (Manihot esculenta Crantz) growing on uncontaminated and contaminated soils of the Zambian Copperbelt

    NASA Astrophysics Data System (ADS)

    Kříbek, B.; Majer, V.; Knésl, I.; Nyambe, I.; Mihaljevič, M.; Ettler, V.; Sracek, O.

    2014-11-01

    The concentrations of arsenic (As), copper (Cu), cobalt (Co), lead (Pb) and zinc (Zn) in washed leaves and washed and peeled tubers of cassava (Manihot esculenta Crantz, Euphorbiaceae) growing on uncontaminated and contaminated soils of the Zambian Copperbelt mining district have been analyzed. An enrichment index (EI) was used to distinguish between contaminated and uncontaminated areas. This index is based on the average ratio of the actual and median concentration of the given contaminants (As, Co, Cu, mercury (Hg), Pb and Zn) in topsoil. The concentrations of copper in cassava leaves growing on contaminated soils reach as much as 612 mg kg-1 Cu (total dry weight [dw]). Concentrations of copper in leaves of cassava growing on uncontaminated soils are much lower (up to 252 mg kg-1 Cu dw). The concentrations of Co (up to 78 mg kg-1 dw), As (up to 8 mg kg-1 dw) and Zn (up to 231 mg kg-1 dw) in leaves of cassava growing on contaminated soils are higher compared with uncontaminated areas, while the concentrations of lead do not differ significantly. The concentrations of analyzed chemical elements in the tubers of cassava are much lower than in its leaves with the exception of As. Even in strongly contaminated areas, the concentrations of copper in the leaves and tubers of cassava do not exceed the daily maximum tolerance limit of 0.5 mg kg-1/human body weight (HBW) established by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). The highest tolerable weekly ingestion of 0.025 mg kg-1/HBW for lead and the highest tolerable weekly ingestion of 0.015 mg kg-1/HBW for arsenic are exceeded predominantly in the vicinity of smelters. Therefore, the preliminary assessment of dietary exposure to metals through the consumption of uncooked cassava leaves and tubers has been identified as a moderate hazard to human health. Nevertheless, as the surfaces of leaves are strongly contaminated by metalliferous dust in the polluted areas, there is still a potential hazard

  7. Arsenic uptake and depuration by red crayfish, Procambarus clarkii, exposed to various concentrations of monosodium methanearsonate (MSMA) herbicide

    SciTech Connect

    Naqvi, S.M.; Flagge, C.T.; Hawkins, R.L. )

    1990-07-01

    Like many other heavy metals, arsenic is known to accumulate in the tissues of aquatic organisms including crayfish. One of the earliest reports on red crayfish, Procambarus clarkii, reported the bioaccumulation factor (BF) ratios for radioactive sodium methanearsonate to range from 80-480. Other heavy metals, i.e., Cr, Cd, Pb and Hg have also been reported to accumulate experimentally in P. clarkii tissues. This study was conducted to evaluate in the laboratory the bio-accumulative potential of As by the American red crayfish, Procambarus clarkii, which is abundant in Louisiana; and also to assess the level of arsenic present in the tissues of fieldcollected individuals. Total revenues from the sales of this crayfish exceeds $143 million annually.

  8. Calcium - urine

    MedlinePlus

    ... into the urine, which causes calcium kidney stones Sarcoidosis Taking too much calcium Too much production of ... Milk-alkali syndrome Proximal renal tubular acidosis Rickets Sarcoidosis Vitamin D Update Date 5/3/2015 Updated ...

  9. Frequent Urination

    MedlinePlus

    ... leader Partner Spotlight Become a partner World Prematurity Day Your support helps babies We are determined to ... very strong. After birth For the first few days after delivery, you may urinate even more often ...

  10. Urination Pain

    MedlinePlus

    ... Are Reading Upsetting News Reports? What to Say Vaccines: Which Ones & When? Smart School Lunches Emmy-Nominated Video "Cerebral Palsy: Shannon's Story" 5 Things to Know About Zika & Pregnancy First Aid: Urination ...

  11. Calcium - urine

    MedlinePlus

    ... best treatment for the most common type of kidney stone , which is made of calcium. This type of ... the kidneys into the urine, which causes calcium kidney stones Sarcoidosis Taking too much calcium Too much production ...

  12. Bilirubin - urine

    MedlinePlus

    ... or gallbladder Considerations Bilirubin can break down in light. That is why babies with jaundice are sometimes placed under blue fluorescent lamps. Alternative Names Conjugated bilirubin - urine; Direct bilirubin - ...

  13. Urine Preservative

    NASA Technical Reports Server (NTRS)

    Smith, Scott M. (Inventor); Nillen, Jeannie (Inventor)

    2001-01-01

    Disclosed is CPG, a combination of a chlorhexidine salt (such as chlorhexidine digluconate, chlorhexidine diacetate, or chlorhexidine dichloride) and n-propyl gallate that can be used at ambient temperatures as a urine preservative.

  14. Evaluation of arsenic speciation in rainbow trout and fathead minnows from dietary exposure

    EPA Science Inventory

    The concentration of total arsenic and various arsenic species were measured in food and fish tissue samples from two dietary arsenic exposures to juvenile fish. For arsenic speciation, samples were extracted with 10% MeOH and analyzed by HPLC/ICPMS. Total arsenic concentration...

  15. A modified LC-MS/MS method to simultaneously quantify glycerol and mannitol concentrations in human urine for doping control purposes.

    PubMed

    Dong, Ying; Yan, Kuan; Ma, Yanhua; Yang, Zhiyong; Zhao, Jun; Ding, Jinglin

    2016-06-01

    Glycerol and mannitol have the potential to act as plasma volume expanders and have been prohibited as masking agents by the World Anti-Doping Agency (WADA) accordingly. In this study, an improved strategy was developed and validated for the determination of urinary glycerol and mannitol levels simultaneously using a liquid chromatography/tandem mass spectrometry technique within 7min in an initial testing procedure. For confirmation, mannitol and all possible hexitols (allitol, altritol, galactitol, iditol and sorbitol) that can occur in human urine were baseline separated. This method made use of the derivatization of glycerol and mannitol by benzoyl chloride followed by analysis via LC-ESI-MS/MS with limited sample preparation. The limit of detection (LOD) for glycerol and mannitol was lower than 50ng/mL. The limit of quantitation (LOQ) for both substances was below 150ng/mL. The assay was linear from 0.15 to 1000μg/mL for glycerol and mannitol in human urine. The coefficients of variation of all inter- and intra-assay determinations at three concentration levels (0.5, 500, 900μg/mL) were better than 13% for glycerol and under 15% for mannitol. The method also afforded satisfactory results in terms of accuracy, derivatization yield, extraction recovery, matrix effect and specificity for both substances. PMID:27093496

  16. Biological responses of duckweed (Lemna minor L.) exposed to the inorganic arsenic species As(III) and As(V): effects of concentration and duration of exposure.

    PubMed

    Duman, Fatih; Ozturk, Fatma; Aydin, Zeki

    2010-06-01

    The accumulation of arsenic (As) and physiological responses of Lemna minor L. under different concentration (0, 1, 4, 16 and 64 microM) and duration (1, 2, 4 and 6 days) of two species As, NaAsO(2) and Na(2)HAsO(4).7H(2)O, were studied in hydroponics. The accumulation of both As species depended on As concentration and exposure duration. The highest accumulation of As was found as 17408 and 8674 microg g(-1), for plants exposed to 64 microM of As(III) and As(V), respectively, after 6 days. Two-way ANOVA analyses indicated that, for plants exposed to arsenite (As(III)), exposure duration had a greater effect than concentration on As accumulation. Conversely, exposure concentration had a greater effect on As accumulation in plants exposed to arsenate (As(V)). Arsenic exposure levels, approaching 16 microM for As(III) and 64 microM for As(V), did not significantly affect EC values. Beyond these exposure concentrations, EC values increased in a manner that depended on duration. Significant effect of As(III) on lipid peroxidation was observed at 1 microM application whereas, this effect started to be significant after an exposure to 16 microM As(V). For both As(III) and As(V), photosynthetic pigment levels slightly increased for the first day with respect to the control, followed by a gradual decline at higher concentrations and durations. An increase in protein content and enzyme activity was observed at moderate exposure conditions, followed by a decrease. Significant positive correlations were determined between accumulated As and ion leakage and lipid peroxidation. Negative correlations were found between accumulated As and total chlorophyll and protein content. Our results suggested that exposure duration and concentration had a strong synergetic effect on antioxidant enzyme activity. The findings of the present study may be useful when this plant is used as a phytoremediator in arsenic-polluted water. PMID:20221688

  17. Associations of estimated residential soil arsenic and lead concentrations and community-level environmental measures with mother-child health conditions in South Carolina

    PubMed Central

    Aelion, C. Marjorie; Davis, Harley T.; Lawson, Andrew B.; Cai, Bo; McDermott, Suzanne

    2015-01-01

    We undertook a community-level aggregate analysis in South Carolina, USA, to examine associations between mother-child conditions from a Medicaid cohort of pregnant women and their children using spatially interpolated arsenic (As) and lead (Pb) concentrations in three geographic case areas and a control area. Weeks of gestation at birth was significantly negatively correlated with higher estimated As (rs=−0.28, p=0.01) and Pb (rs=−0.26, p=0.02) concentrations in one case area. Higher estimated Pb concentrations were consistently positively associated with frequency of black mothers (all p<0.02) and negatively associated with frequency of white mothers (all p<0.01), suggesting a racial disparity with respect to Pb. PMID:22579118

  18. Ketones urine test

    MedlinePlus

    Ketone bodies - urine; Urine ketones; Ketoacidosis - urine ketones test; Diabetic ketoacidosis - urine ketones test ... Urine ketones are usually measured as a "spot test." This is available in a test kit that ...

  19. Urine 24-hour volume

    MedlinePlus

    ... in a day, such as: Creatinine Sodium Potassium Nitrogen Protein This test may also be done if ... disease Potassium urine test Sodium urine test Urea nitrogen urine test Urination - excessive amount Urine output - decreased ...

  20. Arsenic occurrence in New Hampshire drinking water

    SciTech Connect

    Peters, S.C.; Blum, J.D.; Klaue, B.; Karagas, M.R.

    1999-05-01

    Arsenic concentrations were measured in 992 drinking water samples collected from New Hampshire households using online hydride generation ICP-MS. These randomly selected household water samples contain much less arsenic than those voluntarily submitted for analysis to the New Hampshire Department of Environmental Services (NHDES). Extrapolation of the voluntarily submitted sample set to all New Hampshire residents significantly overestimates arsenic exposure. In randomly selected households, concentrations ranged from <0.0003 to 180 {micro}g/L, with water from domestic wells containing significantly more arsenic than water from municipal sources. Water samples from drilled bedrock wells had the highest arsenic concentrations, while samples from surficial wells had the lowest arsenic concentrations. The authors suggest that much of the groundwater arsenic in New Hampshire is derived from weathering of bedrock materials and not from anthropogenic contamination. The spatial distribution of elevated arsenic concentrations correlates with Late-Devonian Concord-type granitic bedrock. Field observations in the region exhibiting the highest groundwater arsenic concentrations revealed abundant pegmatite dikes associated with nearby granites. Analysis of rock digests indicates arsenic concentrations up to 60 mg/kg in pegmatites, with much lower values in surrounding schists and granites. Weak acid leaches show that approximately half of the total arsenic in the pegmatites is labile and therefore can be mobilized during rock-water interaction.

  1. Current status of arsenic exposure and social implication in the Mekong River basin of Cambodia.

    PubMed

    Phan, Kongkea; Kim, Kyoung-Woong; Huoy, Laingshun; Phan, Samrach; Se, Soknim; Capon, Anthony Guy; Hashim, Jamal Hisham

    2016-06-01

    To evaluate the current status of arsenic exposure in the Mekong River basin of Cambodia, field interview along with urine sample collection was conducted in the arsenic-affected area of Kandal Province, Cambodia. Urine samples were analyzed for total arsenic concentrations by inductively coupled plasma mass spectrometry. As a result, arsenicosis patients (n = 127) had As in urine (UAs) ranging from 3.76 to 373 µg L(-1) (mean = 78.7 ± 69.8 µg L(-1); median = 60.2 µg L(-1)). Asymptomatic villagers (n = 108) had UAs ranging from 5.93 to 312 µg L(-1) (mean = 73.0 ± 52.2 µg L(-1); median = 60.5 µg L(-1)). About 24.7 % of all participants had UAs greater than 100 µg L(-1) which indicated a recent arsenic exposure. A survey found that females and adults were more likely to be diagnosed with skin sign of arsenicosis than males and children, respectively. Education level, age, gender, groundwater drinking period, residence time in the village and amount of water drunk per day may influence the incidence of skin signs of arsenicosis. This study suggests that residents in Kandal study area are currently at risk of arsenic although some mitigation has been implemented. More commitment should be made to address this public health concern in rural Cambodia. PMID:26298061

  2. Arsenic Uptake by Muskmelon (Cucumis melo) Plants from Contaminated Water.

    PubMed

    Hettick, Bryan E; Cañas-Carrell, Jaclyn E; Martin, Kirt; French, Amanda D; Klein, David M

    2016-09-01

    Arsenic is a carcinogenic element that occurs naturally in the environment. High levels of arsenic are found in water in some parts of the world, including Texas. The aims of this study were to determine the distribution of arsenic in muskmelon (Cucumis melo) plants accumulated from arsenic spiked water and to observe effects on plant biomass. Plants were grown and irrigated using water spiked with variable concentrations of arsenic. Inductively coupled plasma mass spectrometry was used to quantify arsenic in different parts of the plant and fruit. Under all conditions tested in this study, the highest concentrations of arsenic were found in the leaves, soil, and roots. Arsenic in the water had no significant effect on plant biomass. Fruits analyzed in this study had arsenic concentrations of 101 μg/kg or less. Consuming these fruits would result in less arsenic exposure than drinking water at recommended levels. PMID:27460822

  3. Arsenic exposure, genetic susceptibility and leukocyte telomere length in an Italian young adult population.

    PubMed

    Borghini, Andrea; Faita, Francesca; Mercuri, Antonella; Minichilli, Fabrizio; Bustaffa, Elisa; Bianchi, Fabrizio; Andreassi, Maria Grazia

    2016-09-01

    Arsenic-induced health effects may be associated with critically shortened telomeres. However, few data are available on the effects of arsenic exposure on telomere length. The aim of this study was to investigate the effects of chronic arsenic exposure on leukocyte telomere length (LTL) as well as the contribution of common polymorphisms in genes implicated in arsenic metabolism (GSTT1 and GSTM1) and DNA repair (hOGG1 and XRCC1). A group of 241 healthy subjects was enrolled from four areas of Italy known to be affected by natural or anthropogenic arsenic pollution. Urine samples were tested for inorganic As (iAs), monomethylarsinic (MMA) and dimethylarsinic acid (DMA). LTL was evaluated by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Genotyping was carried out by PCR-RFLP on leukocyte DNA. In multiple linear regression analysis, LTL was significantly and inversely correlated with age (β = -0.231, P = 0.006) and showed a certain trend toward significance with iAs urinary concentration (log10 iAs, β = -0.106, P = 0.08). The genotype distribution showed significant associations between GSTT1 and the As concentration (log10 iAs, P = 0.01) and metabolite patterns (log10 DMA, P = 0.05) in the urine. However, GST genes did not interact with arsenic exposure in the modulation of LTL. Conversely, the combined presence of a higher level of iAs + MMA + DMA ≥ 19.3 μg/l (F = 6.0, P interaction = 0.01), Asi ≥ 3.86 (F = 3.9, P interaction = 0.04) μg/l, iAs + MMA + DMA ≥ 15 μg/l (F = 4.2, P interaction = 0.04) and hOGG1 Cys allele was associated with a significantly lower LTL. An interaction between XRCC1 Arg399Gln and arsenic exposure was also observed (all P interaction = 0.04). These findings suggest that telomere shortening may represent a mechanism that contributes to arsenic-related disease. The interaction of hOGG1 and XRCC1 DNA repair polymorphisms and exposure enhances telomeric DNA damage. Future studies are warranted to understand

  4. Arsenic, Cadmium, Lead, and Mercury in Sweat: A Systematic Review

    PubMed Central

    Sears, Margaret E.; Kerr, Kathleen J.; Bray, Riina I.

    2012-01-01

    Arsenic, cadmium, lead, and mercury exposures are ubiquitous. These toxic elements have no physiological benefits, engendering interest in minimizing body burden. The physiological process of sweating has long been regarded as “cleansing” and of low risk. Reports of toxicant levels in sweat were sought in Medline, Embase, Toxline, Biosis, and AMED as well as reference lists and grey literature, from inception to March 22, 2011. Of 122 records identified, 24 were included in evidence synthesis. Populations, and sweat collection methods and concentrations varied widely. In individuals with higher exposure or body burden, sweat generally exceeded plasma or urine concentrations, and dermal could match or surpass urinary daily excretion. Arsenic dermal excretion was severalfold higher in arsenic-exposed individuals than in unexposed controls. Cadmium was more concentrated in sweat than in blood plasma. Sweat lead was associated with high-molecular-weight molecules, and in an interventional study, levels were higher with endurance compared with intensive exercise. Mercury levels normalized with repeated saunas in a case report. Sweating deserves consideration for toxic element detoxification. Research including appropriately sized trials is needed to establish safe, effective therapeutic protocols. PMID:22505948

  5. Pink urine.

    PubMed

    Verhoeven, E; Capron, A; Hantson, P

    2014-11-01

    A 55-year-old man was admitted after a suspected hypnotic overdose of valerian extracts. In addition to altered consciousness, the first clinical symptoms included not only diffuse rash on the face, trunk, and limbs, but also an inspiratory dyspnea with a marked hypoxemia. A major laryngeal edema was noted during orotracheal intubation. After correction of hypoxemia, the patient became agitated and propofol was administered by continuous infusion. In addition, the patient passed pink urine staining the urine collection bag. The presence of an unidentified toxic substance was suspected. PMID:25233954

  6. The studying of washing of arsenic and sulfur from coals having different ranges of arsenic contents

    USGS Publications Warehouse

    Wang, M.; Song, D.; Zheng, B.; Finkelman, R.B.

    2008-01-01

    To study the effectiveness of washing in removal of arsenic and sulfur from coals with different ranges of arsenic concentration, coal was divided into three groups on the basis of arsenic content: 0-5.5 mg/kg, 5.5 mg/kg-8.00 mg/kg, and over 8.00 mg/kg. The result shows that the arsenic in coals with higher arsenic content occurs mainly in an inorganic state and can be relatively easily removed. Arsenic removal is very difficult and less complete when the arsenic content is lower than 5.5 mg/kg because most of this arsenic is in an organic state. There is no relationship between washing rate of total sulfur and arsenic content, but the relationship between the washing rate of total sulfur and percent of organic sulfur is very strong. ?? 2008 New York Academy of Sciences.

  7. The studying of washing of arsenic and sulfur from coals having different ranges of arsenic contents

    SciTech Connect

    Mingshi Wang; Dangyu Song; Baoshan Zheng; R.B. Finkelman

    2008-10-15

    To study the effectiveness of washing in removal of arsenic and sulfur from coals with different ranges of arsenic concentration, coal was divided into three groups on the basis of arsenic content: 0-5.5 mg/kg, 5.5 mg/kg-8.00 mg/kg, and over 8.00 mg/kg. The result shows that the arsenic in coals with higher arsenic content occurs mainly in an inorganic state and can be relatively easily removed. Arsenic removal is very difficult and less complete when the arsenic content is lower than 5.5 mg/kg because most of this arsenic is in an organic state. There is no relationship between washing rate of total sulfur and arsenic content, but the relationship between the washing rate of total sulfur and percent of organic sulfur is very strong.

  8. Digital spatial data for observed, predicted, and misclassification errors for observations in the training dataset for nitrate and arsenic concentrations in basin-fill aquifers in the Southwest Principal Aquifers study area

    USGS Publications Warehouse

    McKinney, Tim S.; Anning, David W.

    2012-01-01

    This product "Digital spatial data for observed, predicted, and misclassification errors for observations in the training dataset for nitrate and arsenic concentrations in basin-fill aquifers in the Southwest Principal Aquifers study area" is a 1:250,000-scale point spatial dataset developed as part of a regional Southwest Principal Aquifers (SWPA) study (Anning and others, 2012). The study examined the vulnerability of basin-fill aquifers in the southwestern United States to nitrate contamination and arsenic enrichment. Statistical models were developed by using the random forest classifier algorithm to predict concentrations of nitrate and arsenic across a model grid that represents local- and basin-scale measures of source, aquifer susceptibility, and geochemical conditions.

  9. [Activity of alanine aminopeptidase in blood and in urine of smoking and non-smoking smelters].

    PubMed

    Bizoń, Anna; Stasiak, Karolina; Milnerowicz, Halina

    2010-01-01

    The human body is constantly exposed to xenobiotics. This will include exogenous substances from environmental pollution such as heavy metals and lifestyle such as smoking, which may lead to impaired functioning of many organs. The liver and kidney are the critical organs in the case of a long-term occupational or environmental exposure to heavy metals and tobacco smoke. In diagnostics of liver and kidney damage useful are the methods which determine the activity of enzymes such as alanine aminopeptidase (AAP). AAP is a marker for early detection of acute kidney damage, and presence of AAP derive mainly from proximal tubular brush-border. Activity of AAP in urine allows to assess the damage resulting from the nephrotoxic exposure to heavy metals. In the serum AAP is mainly from hepatic. Activity of AAP may be useful to identify liver cancer. The investigation was shown, that AAP activity in the blood is used to detect hepatic cholestasis and congestive jaundice. The aim of present study was to assess the influence of occupational exposure of copper-foundry workers to heavy metals (arsenic, cadmium, lead) on activity of alanine aminopeptidase in blood and urine. The investigations were performed in blood and urine of 166 subjects: 101 male copper smelters and 65 non-exposed male subjects. The study protocol was approved by Local Bioethics Committee of Wroclaw Medical University (KB No: 469/2008). The data on smoking which had been obtained from a direct personal interview were verified by determination of serum cotinine concentrations. Biological material collected from the control group and smelters was divided into subgroups of nonsmokers and smokers. The concentrations of lead and cadmium were determined in whole blood, whilst the level of arsenic and cadmium were determined in urine using FAAS method (Flame Atomic Absorption Spectrometry) in the acetylate flame on the SOLAAR M6. The activity of AA was determined in blood and in urine. The results showed a 9-fold

  10. Direct Quantification of Rare Earth Elements Concentrations in Urine of Workers Manufacturing Cerium, Lanthanum Oxide Ultrafine and Nanoparticles by a Developed and Validated ICP-MS

    PubMed Central

    Li, Yan; Yu, Hua; Zheng, Siqian; Miao, Yang; Yin, Shi; Li, Peng; Bian, Ying

    2016-01-01

    Rare earth elements (REEs) have undergone a steady spread in several industrial, agriculture and medical applications. With the aim of exploring a sensitive and reliable indicator of estimating exposure level to REEs, a simple, accurate and specific ICP-MS method for simultaneous direct quantification of 15 REEs (89Y, 139La, 140Ce, 141Pr, 146Nd, 147Sm, 153Eu, 157Gd, 159Tb, 163Dy, 165Ho, 166Er, 169Tm, 172Yb and 175Lu) in human urine has been developed and validated. The method showed good linearity for all REEs in human urine in the concentrations ranging from 0.001–1.000 μg∙L−1 with r2 > 0.997. The limits of detection and quantification for this method were in the range of 0.009–0.010 μg∙L−1 and 0.029–0.037 μg∙L−1, the recoveries on spiked samples of the 15 REEs ranged from 93.3% to 103.0% and the relative percentage differences were less than 6.2% in duplicate samples, and the intra- and inter-day variations of the analysis were less than 1.28% and less than 0.85% for all REEs, respectively. The developed method was successfully applied to the determination of 15 REEs in 31 urine samples obtained from the control subjects and the workers engaged in work with manufacturing of ultrafine and nanoparticles containing cerium and lanthanum oxide. The results suggested that only the urinary levels of La (1.234 ± 0.626 μg∙L−1), Ce (1.492 ± 0.995 μg∙L−1), Nd (0.014 ± 0.009 μg∙L−1) and Gd (0.023 ± 0.010 μg∙L−1) among the exposed workers were significantly higher (p < 0.05) than the levels measured in the control subjects. From these, La and Ce were the primary components, and accounted for 88% of the total REEs. Lanthanum comprised 27% of the total REEs while Ce made up the majority of REE content at 61%. The remaining elements only made up 1% each, with the exception of Dy which was not detected. Comparison with the previously published data, the levels of urinary La and Ce in workers and the control subjects show a higher trend

  11. Direct Quantification of Rare Earth Elements Concentrations in Urine of Workers Manufacturing Cerium, Lanthanum Oxide Ultrafine and Nanoparticles by a Developed and Validated ICP-MS.

    PubMed

    Li, Yan; Yu, Hua; Zheng, Siqian; Miao, Yang; Yin, Shi; Li, Peng; Bian, Ying

    2016-03-01

    Rare earth elements (REEs) have undergone a steady spread in several industrial, agriculture and medical applications. With the aim of exploring a sensitive and reliable indicator of estimating exposure level to REEs, a simple, accurate and specific ICP-MS method for simultaneous direct quantification of 15 REEs ((89)Y, (139)La, (140)Ce, (141)Pr, (146)Nd, (147)Sm, (153)Eu, (157)Gd, (159)Tb, (163)Dy, (165)Ho, (166)Er, (169)Tm, (172)Yb and (175)Lu) in human urine has been developed and validated. The method showed good linearity for all REEs in human urine in the concentrations ranging from 0.001-1.000 μg ∙ L(-1) with r² > 0.997. The limits of detection and quantification for this method were in the range of 0.009-0.010 μg ∙ L(-1) and 0.029-0.037 μg ∙ L(-1), the recoveries on spiked samples of the 15 REEs ranged from 93.3% to 103.0% and the relative percentage differences were less than 6.2% in duplicate samples, and the intra- and inter-day variations of the analysis were less than 1.28% and less than 0.85% for all REEs, respectively. The developed method was successfully applied to the determination of 15 REEs in 31 urine samples obtained from the control subjects and the workers engaged in work with manufacturing of ultrafine and nanoparticles containing cerium and lanthanum oxide. The results suggested that only the urinary levels of La (1.234 ± 0.626 μg ∙ L(-1)), Ce (1.492 ± 0.995 μg ∙ L(-1)), Nd (0.014 ± 0.009 μg ∙ L(-1)) and Gd (0.023 ± 0.010 μg ∙ L(-1)) among the exposed workers were significantly higher (p < 0.05) than the levels measured in the control subjects. From these, La and Ce were the primary components, and accounted for 88% of the total REEs. Lanthanum comprised 27% of the total REEs while Ce made up the majority of REE content at 61%. The remaining elements only made up 1% each, with the exception of Dy which was not detected. Comparison with the previously published data, the levels of urinary La and Ce in workers and

  12. Urine culture - catheterized specimen

    MedlinePlus

    Culture - urine - catheterized specimen; Urine culture - catheterization; Catheterized urine specimen culture ... urinary tract infections may be found in the culture. This is called a contaminant. You may not ...

  13. Low-level environmental arsenic exposure correlates with unexplained male infertility risk.

    PubMed

    Wang, Xiaofei; Zhang, Jie; Xu, Weipan; Huang, Qingyu; Liu, Liangpo; Tian, Meiping; Xia, Yankai; Zhang, Weibing; Shen, Heqing

    2016-11-15

    Humans are exposed to arsenic via drinking water, dietary intake and inhaled particulates. Endemic chronic arsenic exposure related reproductive toxicity is well documented, but the effect of low-level general environmental arsenic exposure on unexplained male infertility (UMI) remains unclear. In this case-control study, we aimed to investigate the relationship between non-geogenic environmental arsenic exposure and UMI risk. One hundred and one infertile men with normal semen as cases and sixty one fertile men as controls were recruited. Five urinary arsenic species: pentavalent arsenate (Asi(V)), trivalent arsenite (Asi(III)), methylated to monomethylarsonic acid (MMA(V)), dimethylarsinic acid (DMA(V)), arsenobetaine (AsB) were quantitatively measured by liquid chromatography-inductively coupled plasma-mass spectrometry (LC-ICP-MS). To assess the semen quality, semen volume, sperm concentration, total motility, and progressive motility were measured. The nonparametric Mann-Whitney U test was used to compare the differences of arsenic species and index between the case and the control group; we observed that concentrations of Asi(V), AsB, MMA(V), DMA(V), total inorganic As and total As were significantly higher in the cases than the controls. The urine Asi(V) level increased more than twenty folds in case group. Moreover, higher redox index (Asi(V)/Asi(III)) and lower primary arsenic methylation index (PMI=MMA(V)/Asi) were observed for case group. Furthermore, through the logistic regression analysis, we observed that the urine Asi(V) level and PMI were most significantly associated with UMI risk among the observations. Specifically, in comparison to the first quartile, the subjects with higher Asi(V) levels were more likely to exhibit UMI with increasing adjusted odds ratios (AORs) (adjusted by age, body mass index, drinking status and smoking status) of 8.39 [95% confidence interval (CI), 2.59-27.17], 13.12 (95% CI, 3.44-50.12) and 36.51 (95% CI, 8

  14. A market basket survey of inorganic arsenic in food.

    PubMed

    Schoof, R A; Yost, L J; Eickhoff, J; Crecelius, E A; Cragin, D W; Meacher, D M; Menzel, D B

    1999-08-01

    Dietary arsenic intake estimates based on surveys of total arsenic concentrations appear to be dominated by intake of the relatively non-toxic, organic arsenic forms found in seafood. Concentrations of inorganic arsenic in food have not been not well characterized. Accurate dietary intake estimates for inorganic arsenic are needed to support studies of arsenic's status as an essential nutrient, and to establish background levels of exposure to inorganic arsenic. In the market basket survey reported here, 40 commodities anticipated to provide at least 90% of dietary inorganic arsenic intake were identified. Four samples of each commodity were collected. Total arsenic was analysed using an NaOH digestion and inductively coupled plasma-mass spectrometry. Separate aliquots were analysed for arsenic species using an HCl digestion and hydride atomic absorption spectroscopy. Consistent with earlier studies, total arsenic concentrations (all concentrations reported as elemental arsenic per tissue wet weight) were highest in the seafoods sampled (ranging from 160 ng/g in freshwater fish to 2360 ng/g in saltwater fish). In contrast, average inorganic arsenic in seafood ranged from less than 1 ng/g to 2 ng/g. The highest inorganic arsenic values were found in raw rice (74 ng/g), followed by flour (11 ng/g), grape juice (9 ng/g) and cooked spinach (6 ng/g). Thus, grains and produce are expected to be significant contributors to dietary inorganic arsenic intake. PMID:10506007

  15. Arsenic Contamination in Food-chain: Transfer of Arsenic into Food Materials through Groundwater Irrigation

    PubMed Central

    Joardar, J.C.; Parvin, S.; Correll, Ray; Naidu, Ravi

    2006-01-01

    Arsenic contamination in groundwater in Bangladesh has become an additional concern vis-à-vis its use for irrigation purposes. Even if arsenic-safe drinking-water is assured, the question of irrigating soils with arsenic-laden groundwater will continue for years to come. Immediate attention should be given to assess the possibility of accumulating arsenic in soils through irrigation-water and its subsequent entry into the food-chain through various food crops and fodders. With this possibility in mind, arsenic content of 2,500 water, soil and vegetable samples from arsenic-affected and arsenic-unaffected areas were analyzed during 1999–2004. Other sources of foods and fodders were also analyzed. Irrigating a rice field with groundwater containing 0.55 mg/L of arsenic with a water requirement of 1,000 mm results in an estimated addition of 5.5 kg of arsenic per ha per annum. Concentration of arsenic as high as 80 mg per kg of soil was found in an area receiving arsenic-contaminated irrigation. A comparison of results from affected and unaffected areas revealed that some commonly-grown vegetables, which would usually be suitable as good sources of nourishment, accumulate substantially-elevated amounts of arsenic. For example, more than 150 mg/kg of arsenic has been found to be accumulated in arum (kochu) vegetable. Implications of arsenic ingested in vegetables and other food materials are discussed in the paper. PMID:17366772

  16. A Dose-Response Study of Arsenic Exposure and Markers of Oxidative Damage in Bangladesh

    PubMed Central

    Harper, Kristin N.; Liu, Xinhua; Hall, Megan N.; Ilievski, Vesna; Oka, Julie; Calancie, Larissa; Slavkovich, Vesna; Levy, Diane; Siddique, Abu; Alam, Shafiul; Mey, Jacob L.; van Geen, Alexander; Graziano, Joseph H.; Gamble, Mary V.

    2014-01-01

    Objective To evaluate the dose-response relationship between arsenic exposure and markers of oxidative damage in Bangladeshi adults. Methods We recruited 378 participants drinking from wells assigned to five water arsenic exposure categories; the distribution of subjects was as follows: 1) <10 μg/L (n=76); 2) 10–100 μg/L (n=104); 3) 101–200 μg/L (n=86); 4) 201–300 μg/L (n=67); and 5) > 300 μg/L (n=45). Arsenic concentrations were measured in well water, as well as in urine and blood. Urinary 8-oxo-2’-deoxyguanosine (8-oxo-dG) and plasma protein carbonyls were measured to assess oxidative damage. Results None of our measures of arsenic exposure were significantly associated with protein carbonyl or 8-oxo-dG levels. Conclusions We found no evidence to support a significant relationship between chronic exposure to arsenic-contaminated drinking water and biomarkers of oxidative damage among Bangladeshi adults. PMID:24854259

  17. Polymorphisms in Genes Encoding Potential Mercury Transporters and Urine Mercury Concentrations in Populations Exposed to Mercury Vapor from Gold Mining

    PubMed Central

    Ameer, Shegufta; Bernaudat, Ludovic; Drasch, Gustav; Baeuml, Jennifer; Skerfving, Staffan; Bose-O’Reilly, Stephan; Broberg, Karin

    2012-01-01

    Background: Elemental mercury (Hg0) is widely used in small-scale gold mining. Persons working or living in mining areas have high urinary concentrations of Hg (U-Hg). Differences in genes encoding potential Hg-transporters may affect uptake and elimination of Hg. Objective: We aimed to identify single nucleotide polymorphisms (SNPs) in Hg-transporter genes that modify U-Hg. Methods: Men and women (1,017) from Indonesia, the Philippines, Tanzania, and Zimbabwe were classified either as controls (no Hg exposure from gold mining) or as having low (living in a gold-mining area) or high exposure (working as gold miners). U-Hg was analyzed by cold-vapor atomic absorption spectrometry. Eighteen SNPs in eight Hg-transporter genes were analyzed. Results: U-Hg concentrations were higher among ABCC2/MRP2 rs1885301 A–allele carriers than among GG homozygotes in all populations, though differences were not statistically significant in most cases. MRP2 SNPs showed particularly strong associations with U-Hg in the subgroup with highest exposure (miners in Zimbabwe), whereas rs1885301 A–allele carriers had higher U-Hg than GG homozygotes [geometric mean (GM): 36.4 µg/g creatinine vs. 21.9; p = 0.027], rs2273697 GG homozygotes had higher U-Hg than A–allele carriers (GM: 37.4 vs. 16.7; p = 0.001), and rs717620 A–allele carriers had higher U-Hg than GG homozygotes (GM: 83 vs. 28; p = 0.084). The SLC7A5/LAT1 rs33916661 GG genotype was associated with higher U-Hg in all populations (statistically significant for all Tanzanians combined). SNPs in SLC22A6/OAT1 (rs4149170) and SLC22A8/OAT3 (rs4149182) were associated with U-Hg mainly in the Tanzanian study groups. Conclusions: SNPs in putative Hg-transporter genes may influence U-Hg concentrations. PMID:23052037

  18. Urine - abnormal color

    MedlinePlus

    ... straw-yellow. Abnormally colored urine may be cloudy, dark, or blood-colored. Causes Abnormal urine color may ... red blood cells, or mucus in the urine. Dark brown but clear urine is a sign of ...

  19. First-Trimester Urine Concentrations of Phthalate Metabolites and Phenols and Placenta miRNA Expression in a Cohort of U.S. Women

    PubMed Central

    LaRocca, Jessica; Binder, Alexandra M.; McElrath, Thomas F.; Michels, Karin B.

    2015-01-01

    Background There is increasing concern that early-life exposure to endocrine-disrupting chemicals (EDCs) can influence the risk of disease development. Phthalates and phenols are two classes of suspected EDCs that are used in a variety of everyday consumer products, including plastics, epoxy resins, and cosmetics. In utero exposure to EDCs may affect disease propensity through epigenetic mechanisms. Objective The objective of this study was to determine whether prenatal exposure to multiple EDCs is associated with changes in miRNA expression of human placenta, and whether miRNA alterations are associated with birth outcomes. Methods Our study was restricted to a total of 179 women co-enrolled in the Harvard Epigenetic Birth Cohort and the Predictors of Preeclampsia Study. We analyzed associations between first-trimester urine concentrations of 8 phenols and 11 phthalate metabolites and expression of 29 candidate miRNAs in placenta by qRT-PCR. Results For three miRNAs—miR-142-3p, miR15a-5p, and miR-185—we detected associations between Σphthalates or Σphenols on expression levels (p < 0.05). By assessing gene ontology enrichment, we determined the potential mRNA targets of these microRNAs predicted in silico were associated with several biological pathways, including the regulation of protein serine/threonine kinase activity. Four gene ontology biological processes were enriched among genes significantly correlated with the expression of miRNAs associated with EDC burden. Conclusions Overall, these results suggest that prenatal phenol and phthalate exposure is associated with altered miRNA expression in placenta, suggesting a potential mechanism of EDC toxicity in humans. Citation LaRocca J, Binder AM, McElrath TF, Michels KB. 2016. First-trimester urine concentrations of phthalate metabolites and phenols and placenta miRNA expression in a cohort of U.S. women. Environ Health Perspect 124:380–387; http://dx.doi.org/10.1289/ehp.1408409 PMID:26090578

  20. Evaluation of Exposure to Arsenic in Residential Soil

    SciTech Connect

    Tsuji, Joyce S.; Van Kerkhove, Maria D.; Kaetzel, Rhonda; Scrafford, Carolyn; Mink, Pamela; Barraj, Leila M.; Crecelius, Eric A.; Goodman, Michael

    2005-12-01

    In response to concerns regarding arsenic in soil from a pesticide manufacturing plant, we conducted a biomonitoring study on children younger than 7 years of age, the age category of children most exposed to soil. Urine samples from 77 children (47% participation rate) were analyzed for total arsenic and arsenic species related to ingestion of inorganic arsenic. Older individuals also provided urine (n = 362) and toenail (n = 67) samples. Speciated urinary arsenic levels were similar between children (geometric mean, geometric SD, and range: 4.0, 2.2, and 0.89?17.7 ?g/L, respectively) and older participants (3.8, 1.9, 0.91?19.9 ?g/L) and consistent with unexposed populations. Toenail samples were < 1 mg/kg. Correlations between speciated urinary arsenic and arsenic in soil (r = 0.137, p = 0.39; n = 41) or house dust (r = 0.049, p = 0.73; n = 52) were not significant for children. Similarly, questionnaire responses indicating soil exposure were not associated with increased urinary arsenic levels. Relatively low soil arsenic exposure likely precluded quantification of arsenic exposure above background.

  1. Evaluation of Exposure to Arsenic in Residential Soil

    PubMed Central

    Tsuji, Joyce S.; Van Kerkhove, Maria D.; Kaetzel, Rhonda S.; Scrafford, Carolyn G.; Mink, Pamela J.; Barraj, Leila M.; Crecelius, Eric A.; Goodman, Michael

    2005-01-01

    In response to concerns regarding arsenic in soil from a pesticide manufacturing plant, we conducted a biomonitoring study on children younger than 7 years of age, the age category of children most exposed to soil. Urine samples from 77 children (47% participation rate) were analyzed for total arsenic and arsenic species related to ingestion of inorganic arsenic. Older individuals also provided urine (n = 362) and toenail (n = 67) samples. Speciated urinary arsenic levels were similar between children (geometric mean, geometric SD, and range: 4.0, 2.2, and 0.89–17.7 μg/L, respectively) and older participants (3.8, 1.9, 0.91–19.9 μg/L) and consistent with unexposed populations. Toenail samples were < 1 mg/kg. Correlations between speciated urinary arsenic and arsenic in soil (r = 0.137, p = 0.39; n = 41) or house dust (r = 0.049, p = 0.73; n = 52) were not significant for children. Similarly, questionnaire responses indicating soil exposure were not associated with increased urinary arsenic levels. Relatively low soil arsenic exposure likely precluded quantification of arsenic exposure above background. PMID:16330356

  2. Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption.

    PubMed

    Meharg, Andrew A; Rahman, Md Mazibur

    2003-01-15

    Arsenic contaminated groundwater is used extensively in Bangladesh to irrigate the staple food of the region, paddy rice (Oryza sativa L.). To determine if this irrigation has led to a buildup of arsenic levels in paddy fields, and the consequences for arsenic exposure through rice ingestion, a survey of arsenic levels in paddy soils and rice grain was undertaken. Survey of paddy soils throughout Bangladesh showed that arsenic levels were elevated in zones where arsenic in groundwater used for irrigation was high, and where these tube-wells have been in operation for the longest period of time. Regression of soil arsenic levels with tube-well age was significant. Arsenic levels reached 46 microg g(-1) dry weight in the most affected zone, compared to levels below l0 microg g(-1) in areas with low levels of arsenic in the groundwater. Arsenic levels in rice grain from an area of Bangladesh with low levels of arsenic in groundwaters and in paddy soils showed that levels were typical of other regions of the world. Modeling determined, even these typical grain arsenic levels contributed considerably to arsenic ingestion when drinking water contained the elevated quantity of 0.1 mg L(-1). Arsenic levels in rice can be further elevated in rice growing on arsenic contaminated soils, potentially greatly increasing arsenic exposure of the Bangladesh population. Rice grain grown in the regions where arsenic is building up in the soil had high arsenic concentrations, with three rice grain samples having levels above 1.7 microg g(-1). PMID:12564892

  3. Association between Concentrations of Metals in Urine and Adult Asthma: A Case-Control Study in Wuhan, China

    PubMed Central

    Huang, Xiji; Xie, Jungang; Cui, Xiuqing; Zhou, Yun; Wu, Xiaojie; Lu, Wei; Shen, Yan; Yuan, Jing; Chen, Weihong

    2016-01-01

    Background Several metals have been reported to be associated with childhood asthma. However, the results on relationships between metals and risk of childhood asthma are inconclusive, and the research on adult asthma in the Chinese general population is rare. Objectives To investigate potential associations between levels of urinary metals and adult asthma. Methods A case-control study of 551 adult asthma cases and 551 gender- and age-matched controls was conducted in Wuhan, China. Demographic information was obtained, and lung function was assessed. The urinary concentrations of 22 metals were measured by inductively coupled plasma mass spectrometry. Results After adjusting for other metalsand other covariates, urinary cadmium, molybdenum, chromium, copper, uranium and selenium were positively associated with asthma, with odds ratios (95% CI) of 1.69 (1.00, 2.85), 3.76 (2.30, 6.16), 4.89 (3.04, 7.89), 6.06 (3.27, 11.21), 6.99 (4.37, 11.19) and 9.17 (4.16, 20.21), respectively. By contrast, urinary lead, barium, iron, zinc, nickel, manganese and rubidium were negatively associated with asthma, with odds ratios (95% CI) of 0.48 (0.29, 0.80), 0.44 (0.27, 0.71), 0.41 (0.26, 0.64), 0.40 (0.24, 0.66), 0.30 (0.22, 0.41), 0.23 (0.14, 0.39) and 0.07 (0.03, 0.15), respectively. When comparing urinary metals in different subgroups of cases with those in matched controls, the associations of above 13 metals with asthma prevalence were nearly the same. Conclusions Our results suggested that asthma prevalence in the Chinese adults was positively associated with urinary chromium, chromium, selenium, molybdenum, cadmium, and uranium, and negatively associated with urinary manganese, iron, nickel, zinc, rubidium, barium and lead. Additional research with larger populations in different regions is required to support our findings. PMID:27191859

  4. Concentrations of Morphine and Codeine in Paired Oral Fluid and Urine Specimens Following Ingestion of a Poppy Seed Roll and Raw Poppy Seeds.

    PubMed

    Samano, Kimberly L; Clouette, Randal E; Rowland, Barbara J; Sample, R H Barry

    2015-10-01

    Interpretation of opiate drug test results can be challenging due to casual dietary consumption of poppy seeds, which may contain variable opiate content. Opiate concentrations in paired oral fluid (OF), collected with the Oral-Eze(®) Oral Fluid Collection System, and urine were analyzed after ingestion of poppy seeds from the same source, consumed raw or contained in a roll. In Part 1, 12 individuals consumed equal portions of a poppy seed roll. For Part 2, the same individuals consumed an equivalent quantity of raw poppy seeds, containing ∼3.2 mg of morphine and 0.6 mg of codeine. Specimens were analyzed both by enzyme immunoassay (opiates) and by GC-MS (morphine/codeine). Urinary morphine was between 155-1,408 (roll) and 294-4,213 ng/mL (raw), measured at 2, 4, 6 and 20 h post-ingestion. Urinary codeine concentrations between 140-194 (roll) and 121-664 ng/mL (raw) were observed up to 6 h post-ingestion. Following consumption of raw poppy seeds, OF specimens were positive, above LOQ, from 0.25 to 3.0 h with morphine ranging from 7 to 600 ng/mL and codeine from 8 to 112 ng/mL. After poppy seed roll consumption, morphine concentrations of 7-143 ng/mL were observed up to 1.5 h with codeine detected in only 5.5% of OF specimens and ranging from 8 to 28 ng/mL. Combined with the existing poppy seed literature, these results support previous findings and provide guidance for interpretation of OF opiate testing. PMID:26378141

  5. Concentrations of Morphine and Codeine in Paired Oral Fluid and Urine Specimens Following Ingestion of a Poppy Seed Roll and Raw Poppy Seeds

    PubMed Central

    Samano, Kimberly L.; Clouette, Randal E.; Rowland, Barbara J.; Sample, R.H. Barry

    2015-01-01

    Interpretation of opiate drug test results can be challenging due to casual dietary consumption of poppy seeds, which may contain variable opiate content. Opiate concentrations in paired oral fluid (OF), collected with the Oral-Eze® Oral Fluid Collection System, and urine were analyzed after ingestion of poppy seeds from the same source, consumed raw or contained in a roll. In Part 1, 12 individuals consumed equal portions of a poppy seed roll. For Part 2, the same individuals consumed an equivalent quantity of raw poppy seeds, containing ∼3.2 mg of morphine and 0.6 mg of codeine. Specimens were analyzed both by enzyme immunoassay (opiates) and by GC–MS (morphine/codeine). Urinary morphine was between 155–1,408 (roll) and 294–4,213 ng/mL (raw), measured at 2, 4, 6 and 20 h post-ingestion. Urinary codeine concentrations between 140–194 (roll) and 121–664 ng/mL (raw) were observed up to 6 h post-ingestion. Following consumption of raw poppy seeds, OF specimens were positive, above LOQ, from 0.25 to 3.0 h with morphine ranging from 7 to 600 ng/mL and codeine from 8 to 112 ng/mL. After poppy seed roll consumption, morphine concentrations of 7–143 ng/mL were observed up to 1.5 h with codeine detected in only 5.5% of OF specimens and ranging from 8 to 28 ng/mL. Combined with the existing poppy seed literature, these results support previous findings and provide guidance for interpretation of OF opiate testing. PMID:26378141

  6. Arsenic and Other Metals’ Presence in Biomarkers of Cambodians in Arsenic Contaminated Areas

    PubMed Central

    Chanpiwat, Penradee; Himeno, Seiichiro; Sthiannopkao, Suthipong

    2015-01-01

    Chemical analyses of metal (Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Mo, Ba, and Pb) concentrations in hair, nails, and urine of Cambodians in arsenic-contaminated areas who consumed groundwater daily showed elevated levels in these biomarkers for most metals of toxicological interest. The levels of metals in biomarkers corresponded to their levels in groundwater, especially for As, whose concentrations exceeded the WHO guidelines for drinking water. About 75.6% of hair samples from the population in this study contained As levels higher than the normal level in unexposed individuals (1 mg·kg−1). Most of the population (83.3%) showed As urinary levels exceeding the normal (<50 ng·mg−1). These results indicate the possibility of arsenicosis symptoms in residents of the areas studied. Among the three biomarkers tested, hair has shown to be a reliable indicator of metal exposures. The levels of As (r2 = 0.633), Ba (r2 = 0.646), Fe (r2 = 0.595), and Mo (r2 = 0.555) in hair were strongly positively associated with the levels of those metals in groundwater. In addition, significant weak correlations (p < 0.01) were found between levels of exposure to As and As concentrations in both nails (r2 = 0.544) and urine (r2 = 0.243). PMID:26569276

  7. Arsenic-induced bladder cancer in an animal model

    SciTech Connect

    Cohen, Samuel M. Ohnishi, Takamasa Arnold, Lora L. Le, X. Chris

    2007-08-01

    Dimethylarsinic acid (DMA{sup V}) is carcinogenic to the rat urinary bladder, but not in mice. The carcinogenic mode of action involves cytotoxicity followed by regenerative cell proliferation. Dietary DMA{sup V} does not produce urinary solids or significant alterations in urinary composition. The cytotoxicity is due to formation of a reactive metabolite, likely dimethylarsinous acid (DMA{sup III}), concentrated and excreted in the urine. Urinary concentrations of DMA{sup III} are dose-dependent, and the urinary concentrations are at cytotoxic levels based on in vitro studies. The no observed effect level (NOEL) in these rat dietary studies for detectable levels of DMA{sup III}, cytotoxicity, and proliferation is 2 ppm, with marginal changes at 10 ppm. The tumorigenic dose is 100 ppm. Recent investigations have demonstrated that arsenicals administered to the rat result in binding to a specific cysteine in the hemoglobin alpha chain as DMA{sup III}, regardless of the arsenical being administered. Monomethylarsonic acid (MMA{sup V}) is not carcinogenic in rats or mice. In short term experiments ({<=} 10 weeks), sodium arsenate in the drinking water induces significant cytotoxicity and regenerative proliferation. There is little evidence that the cytotoxicity produced following administration of arsenicals is caused by oxidative damage, as antioxidants show little inhibitory activity of the cytotoxicity of the various arsenicals either in vitro or in vivo. In summary, the mode of action for DMA{sup V}-induced bladder carcinogenesis in the rat involves generation of a reactive metabolite (DMA{sup III}) leading to cytotoxicity and regenerative proliferation, is a non-linear process, and likely involves a threshold. Extrapolation to human risk needs to take this into account along with the significant differences in toxicokinetics and toxicodynamics that occur between different species.

  8. Arsenic, Anaerobes, and Astrobiology

    NASA Astrophysics Data System (ADS)

    Stolz, J. F.; Oremland, R. S.; Switzer Blum, J.; Hoeft, S. E.; Baesman, S. M.; Bennett, S.; Miller, L. G.; Kulp, T. R.; Saltikov, C.

    2013-12-01

    Arsenic is an element best known for its highly poisonous nature, so it is not something one would associate with being a well-spring for life. Yet discoveries made over the past two decades have delineated that not only are some microbes resistant to arsenic, but that this element's primary redox states can be exploited to conserve energy and support prokaryotic growth ('arsenotrophy') in the absence of oxygen. Hence, arsenite [As(III)] can serve as an electron donor for chemo- or photo-autotrophy while arsenate [As(V)] will serve as an electron acceptor for chemo-heterotrophs and chemo-autotrophs. The phylogenetic diversity of these microbes is broad, encompassing many individual species from diverse taxonomic groups in the Domain Bacteria, with fewer representatives in the Domain Archaea. Speculation with regard to the evolutionary origins of the key functional genes in anaerobic arsenic transformations (arrA and arxA) and aerobic oxidation (aioB) has led to a disputation as to which gene and function is the most ancient and whether arsenic metabolism extended back into the Archaean. Regardless of its origin, robust arsenic metabolism has been documented in extreme environments that are rich in their arsenic content, such as hot springs and especially hypersaline soda lakes associated with volcanic regions. Searles Lake, CA is an extreme, salt-saturated end member where vigorous arsenic metabolism occurs, but there is no detectable sulfate-reduction or methanogenesis. The latter processes are too weak bio-energetically to survive as compared with arsenotrophy, and are also highly sensitive to the abundance of borate ions present in these locales. These observations have implications with respect to the search for microbial life elsewhere in the Solar System where volcanic-like processes have been operative. Hence, because of the likelihood of encountering dense brines in the regolith of Mars (formed by evapo-concentration) or beneath the ice layers of Europa

  9. Effects of recharge and discharge on delta2H and delta18O composition and chloride concentration of high arsenic/fluoride groundwater from the Datong Basin, northern China.

    PubMed

    Xie, Xianjun; Wang, Yanxin; Su, Chunli; Duan, Mengyu

    2013-02-01

    To better understand the effects of recharge and discharge on the hydrogeochemistry of high levels of arsenic (As) and fluoride (F) in groundwater, environmental isotopic composition (delta2H and delta18O) and chloride (Cl) concentrations were analyzed in 29 groundwater samples collected from the Datong Basin. High arsenic groundwater samples (As > 50 micog/L) were found to be enriched in lighter isotopic composition that ranged from -92 to -78 per thousand for deuterium (delta2H) and from -12.5 to -9.9 per thousand for oxygen-18 (delta18O). High F-containing groundwater (F > 1 mg/L) was relatively enriched in heavier isotopic composition and varied from -90 to -57 per thousand and from -12.2 to -6.7 per thousand for delta2H and delta18O, respectively. High chloride concentrations and delta18O values were primarily measured in groundwater samples from the northern and southwestern portions of the study area, indicating the effect of evaporation on groundwater. The observation of relatively homogenized and low delta18O values and chloride concentrations in groundwater samples from central part of the Datong Basin might be a result of fast recharge by irrigation returns, which suggests that irrigation using arsenic-contaminated groundwater affected the occurrence of high arsenic-containing groundwater in the basin. PMID:23472327

  10. A Phytoremediation Strategy for Arsenic

    SciTech Connect

    Meagher, Richard B.

    2005-06-01

    . Phytochelatins bind diverse thiol-reactive elements like As(III) and are synthesized from amino acids in a three-step enzymatic pathway utilizing three enzymes: ECS = gamma-glutamylcysteine synthetase; GS = GSH synthetase; and PS = phytochelatin synthase. We cloned each of the genes that encode these enzymes and used at least two different plant promoters to express them in transgenic Arabidopsis. We have shown that all three confer significant resistance to arsenic and allow rapid growth on a concentration of arsenic (300 micromolar) that kills wild-type seeds and plants.

  11. Arsenic removal by coagulation

    SciTech Connect

    Scott, K.N.; Green, J.F.; Do, H.D.; McLean, S.J.

    1995-04-01

    This study evaluated the removal of naturally occurring arsenic in a full-scale (106-mgd) conventional treatment plant. When the source water was treated with 3--10 mg/L of ferric chloride or 6, 10, or 20 mg/L of alum, arsenic removal was 81--96% (ferric chloride) and 23--71% (alum). Metal concentrations in the sludge produced during this study were below the state`s current hazardous waste levels at all coagulant dosages. No operational difficulties were encountered.

  12. Arsenic and Selenium

    NASA Astrophysics Data System (ADS)

    Plant, J. A.; Kinniburgh, D. G.; Smedley, P. L.; Fordyce, F. M.; Klinck, B. A.

    2003-12-01

    Arsenic (As) and selenium (Se) have become increasingly important in environmental geochemistry because of their significance to human health. Their concentrations vary markedly in the environment, partly in relation to geology and partly as a result of human activity. Some of the contamination evident today probably dates back to the first settled civilizations which used metals.Arsenic is in group 15 of the periodic table (Table 1) and is usually described as a metalloid. It has only one stable isotope, 75As. It can exist in the -III, -I, 0, III, and V oxidation states (Table 2).

  13. Health Effects of Chronic Arsenic Exposure

    PubMed Central

    Hong, Young-Seoub; Song, Ki-Hoon; Chung, Jin-Yong

    2014-01-01

    Arsenic is a unique element with distinct physical characteristics and toxicity whose importance in public health is well recognized. The toxicity of arsenic varies across its different forms. While the carcinogenicity of arsenic has been confirmed, the mechanisms behind the diseases occurring after acute or chronic exposure to arsenic are not well understood. Inorganic arsenic has been confirmed as a human carcinogen that can induce skin, lung, and bladder cancer. There are also reports of its significant association to liver, prostate, and bladder cancer. Recent studies have also suggested a relationship with diabetes, neurological effects, cardiac disorders, and reproductive organs, but further studies are required to confirm these associations. The majority of research to date has examined cancer incidence after a high exposure to high concentrations of arsenic. However, numerous studies have reported various health effects caused by chronic exposure to low concentrations of arsenic. An assessment of the health effects to arsenic exposure has never been performed in the South Korean population; thus, objective estimates of exposure levels are needed. Data should be collected on the biological exposure level for the total arsenic concentration, and individual arsenic concentration by species. In South Korea, we believe that biological exposure assessment should be the first step, followed by regular health effect assessments. PMID:25284195

  14. Fluoroquinolone levels in healthy dog urine following a 20-mg/kg oral dose of enrofloxacin exceed mutant prevention concentration targets against Escherichia coli isolated from canine urinary tract infections.

    PubMed

    Daniels, J B; Tracy, G; Irom, S J; Lakritz, J

    2014-04-01

    A 3-day course of oral enrofloxacin is effective for treating uncomplicated urinary tract infection (UTI) in dogs when administered 20 mg/kg Q24H. However, emergence of fluoroquinolone-resistant mutants of uropathogens is a concern. Urine concentrations of enrofloxacin and ciprofloxacin were measured in six healthy dogs following dose of enrofloxacin 20 mg/kg. Mutant prevention concentrations of Escherichia coli isolated from canine UTI were also determined against ciprofloxacin. Urine AUC(24)/MPC ratios considering ciprofloxacin concentrations ranged 3819-7767, indicating that selection of resistant E. coli mutants in dogs with uncomplicated UTIs is unlikely in the bladder given that an AUC(24)/MPC = 39 is considered to be protective against mutant selection for ciprofloxacin. However, additional studies are required to evaluate the effects of this enrofloxacin treatment protocol on bacteria that colonize anatomic sites where fluoroquinolones achieve lower concentrations compared to the urinary bladder. PMID:23859001

  15. Arsenic uptake by Lemna minor in hydroponic system.

    PubMed

    Goswami, Chandrima; Majumder, Arunabha; Misra, Amal Kanti; Bandyopadhyay, Kaushik

    2014-01-01

    Arsenic is hazardous and causes several ill effects on human beings. Phytoremediation is the use of aquatic plants for the removal of toxic pollutants from external media. In the present research work, the removal efficiency as well as the arsenic uptake capacity of duckweed Lemna minor has been studied. Arsenic concentration in water samples and plant biomass were determined by AAS. The relative growth factor of Lemna minor was determined. The duckweed had potential to remove as well as uptake arsenic from the aqueous medium. Maximum removal of more than 70% arsenic was achieved atinitial concentration of 0.5 mg/1 arsenic on 15th day of experimental period of 22 days. Removal percentage was found to decrease with the increase in initial concentration. From BCF value, Lemna minor was found to be a hyperaccumulator of arsenic at initial concentration of 0.5 mg/L, such that accumulation decreased with increase in initial arsenic concentration. PMID:24933913

  16. Roadside detection of impairment under the influence of ketamine--evaluation of ketamine impairment symptoms with reference to its concentration in oral fluid and urine.

    PubMed

    Cheng, Wing-Chi; Ng, Kin-Man; Chan, Ka-Keung; Mok, Vincent King-Kuen; Cheung, Ben Kin-Leung

    2007-07-20

    Although there are many roadside testing devices available for the screening of abused drugs, none of them can be used for the detection of ketamine, a popular abused drug in Hong Kong. In connection to local drug driving legislation, effective roadside detection of ketamine in suspected drug-impaired drivers has to be established. According to the drug evaluation and classification program (DEC), ketamine is classified in the phencyclidine (PCP) category. However, no study has been performed regarding the signs and symptoms exhibited by users under the influence of ketamine. In a study to develop a protocol for effective roadside detection of drug-impaired drivers, 62 volunteers exiting from discos were assessed using field impairment tests (FIT) that included measurements of three vital signs (i.e. body temperature, pulse rate and blood pressure), three eye examinations [pupil size, lack of convergence (LOC) and horizontal gaze nystagmus (HGN)] and four divided attention tests (Romberg, one-leg stand, finger-to-nose and walk-and-turn tests). Subsequent laboratory analysis of oral fluid and urine samples from the participants revealed the presence of common abused drugs in both the urine and oral fluid samples of 55 subjects. The remaining 7 subjects with no drug in their oral fluid samples were used as drug-free subjects. In addition, 10 volunteers from the laboratory who were regarded as drug-free subjects were also assessed using the same FIT. Among the 62 volunteers, 39 of them were detected with ketamine in their oral fluid. Of these ketamine users, 21 of them (54%) with only ketamine found in their oral fluid samples while the rest (18 subjects) of them had other drugs (i.e. MA, MDMA, benzodiazepines and/or THC) in addition to ketamine. Of the 21 ketamine-only users, 15 of them (71%) were successfully identified by FIT. It was found that when salivary ketamine concentrations were greater than 300 ng/mL, signs of impairment became evident, with over 90

  17. Penicillin concentrations in serum, milk, and urine following intramuscular and subcutaneous administration of increasing doses of procaine penicillin G in lactating dairy cows.

    PubMed Central

    Dubreuil, P; Daigneault, J; Couture, Y; Guay, P; Landry, D

    2001-01-01

    Eight healthy, non-pregnant, crossbred Holstein dairy cows (557-682 kg) within their first 3 months of lactation (13-21.5 kg of milk/day) were used. Cows were kept in tie stalls for the whole experiment. The 8 cows were randomly assigned to 2 (IM and SC) 4 x 4 balanced Latin square design experiments. Doses of procaine penicillin G (PPG) (300000 IU/mL) in each square were 7000, 14000, 21000 and 28000 IU/kg and were injected IM or SC once daily for 5 consecutive days. Volumes of PPG per site of injection never exceeded 20 mL. Blood was collected to determine the Cmax, Tmax, and AUC; urine and milk were also taken to measure the persistence of PPG in these fluids. Results show that serum Cmax and Tmax were only slightly affected by increasing the doses or the route of administration, whereas the AUC was linearly increased in relation to the dose injected in both modes of injection. In the urine, Cmax varied from 160 to 388 IU/mL and Tmax from 72-120 h during 5 consecutive days of PPG injection. A dose effect in Cmax was observed only for the IM route of administration and no variation (P > 0.05) was found between the IM and SC routes. Milk Cmax concentrations were only increased by the dose regimen in the IM group. At doses of 21000 and 28000 IU/kg, the IM group had a higher (P > 0.05) Cmax when compared with the SC groups. Milk PPG residues were not detectable over 96 h following the last IM injection, independently of the dose injected. However milk PPG residues were detected for up to 132 h following the last SC injection. These results show that when PPG is injected IM once daily in volumes not exceeding 20 mL/site at doses as high as 28000 IU/kg, the withdrawal period should be at least 96 h. Therefore, in the present model, there was no advantage to inject PPG by SC route to improve PPG kinetic parameters as the AUC, Cmax, or Tmax. PMID:11480523

  18. Arsenic: The Silent Killer

    SciTech Connect

    Foster, Andrea

    2006-02-28

    Andrea Foster uses x-rays to determine the forms of potentially toxic elements in environmentally-important matrices such as water, sediments, plants, and microorganisms. In this free public lecture, Foster will discuss her research on arsenic, which is called the silent killer because dissolved in water, it is colorless, odorless, and tasteless, yet consumption of relatively small doses of this element in its most toxic forms can cause rapid and violent death. Arsenic is a well-known poison, and has been used as such since ancient times. Less well known is the fact that much lower doses of the element, consumed over years, can lead to a variety of skin and internal cancers that can also be fatal. Currently, what has been called the largest mass poisoning in history is occurring in Bangladesh, where most people are by necessity drinking ground water that is contaminated with arsenic far in excess of the maximum amounts determined to be safe by the World Health Organization. This presentation will review the long and complicated history with arsenic, describe how x-rays have helped explain the high yet spatially variable arsenic concentrations in Bangladesh, discuss the ways in which land use in Bangladesh may be exacerbating the problem, and summarize the impact of this silent killer on drinking water systems worldwide.

  19. Arsenics as bioenergetic substrates.

    PubMed

    van Lis, Robert; Nitschke, Wolfgang; Duval, Simon; Schoepp-Cothenet, Barbara

    2013-02-01

    Although at low concentrations, arsenic commonly occurs naturally as a local geological constituent. Whereas both arsenate and arsenite are strongly toxic to life, a number of prokaryotes use these compounds as electron acceptors or donors, respectively, for bioenergetic purposes via respiratory arsenate reductase, arsenite oxidase and alternative arsenite oxidase. The recent burst in discovered arsenite oxidizing and arsenate respiring microbes suggests the arsenic bioenergetic metabolisms to be anything but exotic. The first goal of the present review is to bring to light the widespread distribution and diversity of these metabolizing pathways. The second goal is to present an evolutionary analysis of these diverse energetic pathways. Taking into account not only the available data on the arsenic metabolizing enzymes and their phylogenetical relatives but also the palaeogeochemical records, we propose a crucial role of arsenite oxidation via arsenite oxidase in primordial life. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems. PMID:22982475

  20. XRF analysis of arsenic uptaking in mice organs and tissues

    NASA Astrophysics Data System (ADS)

    Sánchez, Héctor J.; Pérez, Carlos; Pérez, Roberto D.

    1997-04-01

    In this work, an investigation on the levels of uptaken arsenic in different organs and tissues of mice was carried out. Mice were given water, doped with 100 μg/ml of As 2O 3, during a period of a week. The Energy Dispersive X-Ray Fluorescence (EDXRF) technique was used for the measurements; the external standard (calibration curve) and the internal standard (addition) methods were used to obtain concentrations. These methods were used in order to minimize matrix effects (which in many cases are complex and prone to errors) and to allow an easy calculation of As concentrations. The average concentrations obtained here were: 3.9 μg/g for liver, 13 μg/g for pre-stomach, 21 μg/g for esophagus, 2.9 μg/ml for blood, and 42 μg/ml for urine.

  1. COMPARISON OF THE URINARY METABOLITES OF RATS, MICE, AND HUMANS AFTER ORAL ARSENIC EXPOSURE FOCUSING ON THIOARSENICALS

    EPA Science Inventory

    Urinary metabolites of arsenic are useful as biomarkers of exposure because ingested arsenic is excreted primarily in urine1. Complete urinary arsenic speciation can provide insight into possible metabolic pathways as well as potential exposure sources. The pattern of excreted me...

  2. Glutathione Modulates Recominant Rat Arsenic (+3 Oxidation State) Methyltransferase-Catalyzed Formation of Trimethylarsine Oxide and Trimethylarsine

    EPA Science Inventory

    Humans and other species enzymatically convert inorganic arsenic (iAs) into methylated metabolites. Although the major metabolites are mono- and dimethylated arsenicals, trimethylated arsenicals have been detected in urine following exposure to iAs. The AS3MT gene encodes an ars...

  3. Profile of urinary arsenic metabolites during pregnancy.

    PubMed Central

    Hopenhayn, Claudia; Huang, Bin; Christian, Jay; Peralta, Cecilia; Ferreccio, Catterina; Atallah, Raja; Kalman, David

    2003-01-01

    Chronic exposure to inorganic arsenic (In-As) from drinking water is associated with different health effects, including skin, lung, bladder, and kidney cancer as well as vascular and possibly reproductive effects. In-As is metabolized through the process of methylation, resulting in the production and excretion of methylated species, mainly monomethylarsenate (MMA) and dimethylarsenate (DMA). Because a large percentage of the dose is excreted in urine, the distribution of urinary In-As, MMA, and DMA is considered a useful indicator of methylation patterns in human populations. Several factors affect these patterns, including sex and exposure level. In this study, we investigated the profile of urinary In-As, MMA, and DMA of pregnant women. Periodic urine samples were collected from early to late pregnancy among 29 pregnant women living in Antofagasta, Chile, who drank tap water containing 40 micro g/L In-As. The total urinary arsenic across four sampling periods increased with increasing weeks of gestation, from an initial mean value of 36.1 to a final value of 54.3 micro g/L. This increase was mainly due to an increase in DMA, resulting in lower percentages of In-As and MMA and a higher percentage of DMA. Our findings indicate that among women exposed to moderate arsenic from drinking water during pregnancy, changes occur in the pattern of urinary arsenic excretion and metabolite distribution. The toxicologic significance of this is not clear, given recent evidence suggesting that intermediate methylated species may be highly toxic. Nevertheless, this study suggests that arsenic metabolism changes throughout the course of pregnancy, which in turn may have toxicologic effects on the developing fetus. Key words: arsenic, arsenic metabolism, arsenic methylation, Chile, pregnancy, urinary arsenic. PMID:14644662

  4. The Human Urine Metabolome

    PubMed Central

    Bouatra, Souhaila; Aziat, Farid; Mandal, Rupasri; Guo, An Chi; Wilson, Michael R.; Knox, Craig; Bjorndahl, Trent C.; Krishnamurthy, Ramanarayan; Saleem, Fozia; Liu, Philip; Dame, Zerihun T.; Poelzer, Jenna; Huynh, Jessica; Yallou, Faizath S.; Psychogios, Nick; Dong, Edison; Bogumil, Ralf; Roehring, Cornelia; Wishart, David S.

    2013-01-01

    the complete set of 2651 confirmed human urine metabolite species, their structures (3079 in total), concentrations, related literature references and links to their known disease associations are freely available at http://www.urinemetabolome.ca. PMID:24023812

  5. System for removal of arsenic from water

    DOEpatents

    Moore, Robert C.; Anderson, D. Richard

    2004-11-23

    Systems for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical systems for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A system for continuous removal of arsenic from water is provided. Also provided is a system for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

  6. Arsenic for the fool: an exponential connection.

    PubMed

    Dani, Sergio U

    2010-03-15

    Anthropogenic arsenic is insidiously building up together with natural arsenic to a level unprecedented in the history of mankind. Arsenopyrite (FeAsS) is the principal ore of arsenic and gold in hard rock mines; it is formed by a coupled substitution of sulphur by arsenic in the structure of pyrite (FeS(2)) - nicknamed "fool's gold". Other important sources of anthropogenic arsenic are fossil fuels such as coal and oil. Here I report on the first indication that the environmental concentration of total arsenic in topsoils - in the 7-18ppm range - is exponentially related to the prevalence and mortality of Alzheimer's disease and other dementias in European countries. This evidence defies the imputed absence of verified cases of human morbidity or mortality resulting from exposure to low-level arsenic in topsoils. PMID:20123147

  7. Arsenic and cadmium exposure in children living near a smelter complex in San Luis Potosi, Mexico

    SciTech Connect

    Diaz-Barriga, F.; Santos, M.A.; Mejia, J.J.; Batres, L.; Yanez, L.; Carrizales, L.; Vera, E.; del Razo, L.M.; Cebrian, M.E. )

    1993-08-01

    The main purpose of this study was to assess environmental contamination by arsenic and cadmium in a smelter community (San Luis Potosi City, Mexico) and its possible contribution to an increased body burden of these elements in children. Arsenic and cadmium were found in the environment (air, soil, and household dust, and tap water) as well as in the urine and hair from children. The study was undertaken in three zones: Morales, an urban area close to the smelter complex; Graciano, an urban area 7 km away from the complex; and Mexquitic, a small rural town 25 km away. The environmental study showed that Morales is the most contaminated of the zones studied. The range of arsenic levels in soil (117-1396 ppm), dust (515-2625 ppm), and air (0.13-1.45 micrograms/m3) in the exposed area (Morales) was higher than those in the control areas. Cadmium concentrations were also higher in Morales. Estimates of the arsenic ingestion rate in Morales (1.0-19.8 micrograms/kg/day) were equal to or higher than the reference dose of 1 microgram/kg/day calculated by the Environmental Protection Agency. The range of arsenic levels in urine (69-594 micrograms/g creatinine) and hair (1.4-57.3 micrograms/g) and that of cadmium in hair (0.25-3.5 micrograms/g) indicated that environmental exposure has resulted in an increased body burden of these elements in children, suggesting that children living in Morales are at high risk of suffering adverse health effects if exposure continues.

  8. Determination of arsenic compounds in earthworms

    SciTech Connect

    Geiszinger, A.; Goessler, W.; Kuehnelt, D.; Kosmus, W.; Francesconi, K.

    1998-08-01

    Earthworms and soil collected from six sites in Styria, Austria, were investigated for total arsenic concentrations by ICP-MS and for arsenic compounds by HPLC-ICP-MS. Total arsenic concentrations ranged from 3.2 to 17.9 mg/kg dry weight in the worms and from 5.0 to 79.7 mg/kg dry weight in the soil samples. There was no strict correlation between the total arsenic concentrations in the worms and soil. Arsenic compounds were extracted from soil and a freeze-dried earthworm sample with a methanol/water mixture (9:1, v/v). The extracts were evaporated to dryness, redissolved in water, and chromatographed on an anion- and a cation-exchange column. Arsenic compounds were identified by comparison of the retention times with known standards. Only traces of arsenic acid could be extracted from the soil with the methanol/water (9:1, v/v) mixture. The major arsenic compounds detected in the extracts of the earthworms were arsenous acid and arsenic acid. Arsenobetaine was present as a minor constituent, and traces of dimethylarsinic acid were also detected. Two dimethylarsinoyltribosides were also identified in the extracts by co-chromatography with standard compounds. This is the first report of the presence of dimethylarsinoylribosides in a terrestrial organism. Two other minor arsenic species were present in the extract, but their retention times did not match with the retention times of the available standards.

  9. Arsenic chemistry in soils and sediments

    SciTech Connect

    Fendorf, S.; Nico, P.; Kocar, B.D.; Masue, Y.; Tufano, K.J.

    2009-10-15

    Arsenic is a naturally occurring trace element that poses a threat to human and ecosystem health, particularly when incorporated into food or water supplies. The greatest risk imposed by arsenic to human health results from contamination of drinking water, for which the World Health Organization recommends a maximum limit of 10 {micro}g L{sup -1}. Continued ingestion of drinking water having hazardous levels of arsenic can lead to arsenicosis and cancers of the bladder, skin, lungs and kidneys. Unfortunately, arsenic tainted drinking waters are a global threat and presently having a devastating impact on human health within Asia. Nearly 100 million people, for example, are presently consuming drinking water having arsenic concentrations exceeding the World Health Organization's recommended limit (Ahmed et al., 2006). Arsenic contamination of the environment often results from human activities such as mining or pesticide application, but recently natural sources of arsenic have demonstrated a devastating impact on water quality. Arsenic becomes problematic from a health perspective principally when it partitions into the aqueous rather than the solid phase. Dissolved concentrations, and the resulting mobility, of arsenic within soils and sediments are the combined result of biogeochemical processes linked to hydrologic factors. Processes favoring the partitioning of As into the aqueous phase, potentially leading to hazardous concentrations, vary extensively but can broadly be grouped into four categories: (1) ion displacement, (2) desorption (or limited sorption) at pH values > 8.5, (3) reduction of arsenate to arsenite, and (4) mineral dissolution, particularly reductive dissolution of Fe and Mn (hydr)oxides. Although various processes may liberate arsenic from solids, a transition from aerobic to anaerobic conditions, and commensurate arsenic and iron/manganese reduction, appears to be a dominant, but not exclusive, means by which high concentrations of dissolved

  10. An oral cathepsin K inhibitor ONO-5334 inhibits N-terminal and C-terminal collagen crosslinks in serum and urine at similar plasma concentrations in postmenopausal women.

    PubMed

    Tanaka, Makoto; Hashimoto, Yoshitaka; Hasegawa, Chihiro

    2015-12-01

    Relationships between the plasma concentration of a cathepsin K inhibitor (ONO-5334) and inhibition of bone resorption markers N-telopeptide of type I collagen (NTX) and C-telopeptide of type I collagen (CTX) in serum and urinary NTX/creatinine and CTX/creatinine were examined in 10 postmenopausal women. The subjects received slow-release tablets of 100mg ONO-5534 under fasted or fed conditions in a study with a crossover design. Inhibition of serum NTX and CTX levels and plasma concentrations of ONO-5334 were monitored at 0, 24, 48 and 168 h after dosing. Changes in urinary NTX/creatinine and CTX/creatinine levels in second morning urine were evaluated on 0, 1, 2 and 7 days after dosing. Data were analyzed using sigmoid maximal drug effect (Emax) models. The maximal inhibition, estimated Emax values, were -31.8% for serum NTX, -53.1% for serum CTX, -67.2% for urinary NTX/creatinine, and -95.2% for urinary CTX/creatinine. The estimated half maximal effective plasma concentrations (EC50) of ONO-5334 and confidence intervals were 1.79 (1.01 to 3.16) ng/mL for serum NTX, 2.07 (1.63 to 2.62) ng/mL for serum CTX, 1.85 (1.30 to 2.61) ng/mL for urinary NTX/creatinine, and 1.98 (0.94 to 3.76) ng/mL for urinary CTX/creatinine. EC50 values for the four crosslinks did not significantly differ, as indicated by the overlapping 95% confidence intervals. The highest signal-to-noise ratio was achieved with serum CTX, and was 2-fold higher than that on serum NTX. Inhibition for serum NTX and CTX, and urinary NTX/creatinine and CTX/creatinine by ONO-5334 were all correlated with correlation coefficients ranging from 0.55 to 0.80. In conclusion, data of ONO-5334 slow-releasing tablets in postmenopausal women were well fitted in Emax model. In all measured telopeptides, the maximal inhibition was obtained at urinary CTX/creatinine level, but serum CTX had the highest signal-to-noise ratio. Inhibition for all measured telopeptides by ONO-5334 were all correlated. The estimated half

  11. Mass Flux Measurements of Arsenic in Groundwater (Battelle Conference)

    EPA Science Inventory

    Concentration trends of arsenic are typically used to evaluate the performance of remediation efforts designed to mitigate arsenic contamination in groundwater. A complementary approach would be to track changes in mass flux of the contaminant through the subsurface, for exampl...

  12. Enhanced coagulation for arsenic removal

    SciTech Connect

    Cheng, R.C.; Liang, S.; Wang, H.C.; Beuhler, M.D. )

    1994-09-01

    The possible use of enhanced coagulation for arsenic removal was examined at the facilities of a California utility in 1992 and 1993. The tests were conducted at bench, pilot, and demonstration scales, with two source waters. Alum and ferric chloride, with cationic polymer, were investigated at various influence arsenic concentrations. The investigators concluded that for the source waters tested, enhanced coagulation could be effective for arsenic removal and that less ferric chloride than alum, on a weight basis, is needed to achieve the same removal.

  13. Tracer test with As(V) under variable redox conditions controlling arsenic transport in the presence of elevated ferrous iron concentrations.

    PubMed

    Höhn, R; Isenbeck-Schröter, M; Kent, D B; Davis, J A; Jakobsen, R; Jann, S; Niedan, V; Scholz, C; Stadler, S; Tretner, A

    2006-11-20

    To study transport and reactions of arsenic under field conditions, a small-scale tracer test was performed in an anoxic, iron-reducing zone of a sandy aquifer at the USGS research site on Cape Cod, Massachusetts, USA. For four weeks, a stream of groundwater with added As(V) (6.7 muM) and bromide (1.6 mM), was injected in order to observe the reduction of As(V) to As(III). Breakthrough of bromide (Br(-)), As(V), and As(III) as well as additional parameters characterizing the geochemical conditions was observed at various locations downstream of the injection well over a period of 104 days. After a short lag period, nitrate and dissolved oxygen from the injectate oxidized ferrous iron and As(V) became bound to the freshly formed hydrous iron oxides. Approximately one week after terminating the injection, anoxic conditions had been reestablished and increases in As(III) concentrations were observed within 1 m of the injection. During the observation period, As(III) and As(V) were transported to a distance of 4.5 m downgradient indicating significant retardation by sorption processes for both species. Sediment assays as well as elevated concentrations of hydrogen reflected the presence of As(V) reducing microorganisms. Thus, microbial As(V) reduction was thought to be one major process driving the release of As(III) during the tracer test in the Cape Cod aquifer. PMID:16945450

  14. Nature and reactivity of layered double hydroxides formed by coprecipitating Mg, Al and As(V): Effect of arsenic concentration, pH, and aging.

    PubMed

    Sommella, Alessia; Caporale, Antonio G; Denecke, Melissa A; Mangold, Stefan; Pigna, Massimo; Santoro, Anna; Terzano, Roberto; Violante, Antonio

    2015-12-30

    Arsenic (As) co-precipitation is one of the major processes controlling As solubility in soils and waters. When As is co-precipitated with Al and Mg, the possible formation of layered double hydroxides (LDHs) and other nanocomposites can stabilize As in their structures thus making this toxic element less available. We investigated the nature and reactivity of Mg-Al-arsenate [As(V)] co-precipitated LDHs formed in solution affected by As concentration, pH, and aging. At the beginning of the co-precipitation process, poorly crystalline LDH and non-crystalline Al(Mg)-oxides form. Prolonged aging of the samples promotes crystallization of LDHs, evidenced by an increase in As K XANES intensities and XRD peak intensities. During aging Al- and/or Mg-oxides are likely transformed by dissolution/re-precipitation processes into more crystalline but still defective LDHs. Surface area, chemical composition, reactivity of the precipitates, and anion exchange properties of As(V) in the co-precipitates are influenced by pH, aging, and As concentration. This study demonstrates that (i) As(V) retards or inhibits the formation and transformation of LDHs and (ii) more As(V) is removed from solution if co-precipitated with Mg and Al than by sorption onto well crystallized LDHs. PMID:26241870

  15. Urinal Dynamics

    NASA Astrophysics Data System (ADS)

    Hurd, Randy; Hacking, Kip; Haymore, Benjamin; Truscott, Tadd; Splash Lab Team

    2013-11-01

    In response to harsh and repeated criticisms from our mothers and several failed relationships with women, we present the splash dynamics of a simulated human male urine stream impacting rigid and free surfaces. Our study aims to reduce undesired splashing that may result from lavatory usage. Experiments are performed at a pressure and flow rate that would be expected from healthy male subjects. For a rigid surface, the effects of stream breakup and surface impact angle on lateral and vertical droplet ejection distances are measured using high-speed photography and image processing. For free surface impact, the effects of velocity and fluid depth on droplet ejection distances are measured. Guided by our results, techniques for splash reduction are proposed.

  16. Repeated surveillance of exposure to cadmium, manganese, and arsenic in school-age children living in rural, urban, and nonferrous smelter areas in Belgium

    SciTech Connect

    Buchet, J.P.; Roels, H.; Lauwerys, R.; Bruaux, P.; Claeys-Thoreau, F.; Lafontaine, A.; Verduyn, G.

    1980-06-01

    The intensity of exposure to Cd, As, Mn in groups of school-age children living around a lead smelter was assessed. By comparison, groups of children living in an urban and a rural area were also examined. The metal content of blood, urine, hand-rinsing, air, dust, and dirt collected in the school-playground was compared. The urinary excretion of cadmium in children living around the lead smelter is greater than in those living in the urban and in the rural area. In the latter there seems to exist a time-dependent trend in the renal accumulation of cadmium. This suggests that the overall pollution of the environment by cadmium in Belgium is progressively increasing. In the smelter area, both the oral and pulmonary routes play a role in the children's exposure to cadmium. Their relative contribution to the amount of cadmium absorbed appears similar. The concentration of arsenic in urine of children living around the smelter is significantly higher than that of rural children. Speciation of the chemical forms of arsenic in urine indicates that the difference is not due to different dietary habits of the children examined but to different intensity of exposure to inorganic arsenic. The amount of arsenic on the hand of children living at less than 1 km from the smelter (anti X = 17.6 ..mu..g As/hand) was more than 10 times that found in children living at 2.5 km from the plant (anti X = 1.5 ..mu..g As/hand) whereas that found in children living in urban and rural areas was below 0.2 ..mu..g As/hand. The arsenic concentration of dust and dirt collected in the school-playground in the different areas follows the same trend.

  17. Global Atmospheric Transport and Source-Receptor Relationships for Arsenic.

    PubMed

    Wai, Ka-Ming; Wu, Shiliang; Li, Xueling; Jaffe, Daniel A; Perry, Kevin D

    2016-04-01

    Arsenic and many of its compounds are toxic pollutants in the global environment. They can be transported long distances in the atmosphere before depositing to the surface, but the global source-receptor relationships between various regions have not yet been assessed. We develop the first global model for atmospheric arsenic to better understand and quantify its intercontinental transport. Our model reproduces the observed arsenic concentrations in surface air over various sites around the world. Arsenic emissions from Asia and South America are found to be the dominant sources for atmospheric arsenic in the Northern and Southern Hemispheres, respectively. Asian emissions are found to contribute 39% and 38% of the total arsenic deposition over the Arctic and Northern America, respectively. Another 14% of the arsenic deposition to the Arctic region is attributed to European emissions. Our results indicate that the reduction of anthropogenic arsenic emissions in Asia and South America can significantly reduce arsenic pollution not only locally but also globally. PMID:26906891

  18. Urination - difficulty with flow

    MedlinePlus

    ... at night? Has the force of your urine flow decreased? Do you have dribbling or leaking urine? ... conditions or surgeries that could affect your urine flow? What medicines do you take? Tests that may ...

  19. The relationship between body iron stores and blood and urine cadmium concentrations in US never-smoking, non-pregnant women aged 20-49 years

    SciTech Connect

    Gallagher, Carolyn M.; Chen, John J.; Kovach, John S.

    2011-07-15

    Background: Cadmium is a ubiquitous environmental pollutant associated with increased risk of leading causes of mortality and morbidity in women, including breast cancer and osteoporosis. Iron deficiency increases absorption of dietary cadmium, rendering women, who tend to have lower iron stores than men, more susceptible to cadmium uptake. We used body iron, a measure that incorporates both serum ferritin and soluble transferrin receptor, as recommended by the World Health Organization, to evaluate the relationships between iron status and urine and blood cadmium. Methods: Serum ferritin, soluble transferrin receptor, urine and blood cadmium values in never-smoking, non-pregnant, non-lactating, non-menopausal women aged 20-49 years (n=599) were obtained from the 2003-2008 National Health and Nutrition Examination Surveys. Body iron was calculated from serum ferritin and soluble transferrin receptor, and iron deficiency defined as body iron <0 mg/kg. Robust linear regression was used to evaluate the relationships between body iron and blood and urine cadmium, adjusted for age, race, poverty, body mass index, and parity. Results: Per incremental (mg/kg) increase in body iron, urine cadmium decreased by 0.003 {mu}g/g creatinine and blood cadmium decreased by 0.014 {mu}g/L. Iron deficiency was associated with 0.044 {mu}g/g creatinine greater urine cadmium (95% CI=0.020, 0.069) and 0.162 {mu}g/L greater blood cadmium (95% CI=0.132, 0.193). Conclusions: Iron deficiency is a risk factor for increased blood and urine cadmium among never-smoking, pre-menopausal, non-pregnant US women, independent of age, race, poverty, body mass index and parity. Expanding programs to detect and correct iron deficiency among non-pregnant women merits consideration as a potential means to reduce the risk of cadmium associated diseases. - Highlights: {yields} Body iron was calculated from serum ferritin and soluble transferrin receptor. {yields} Body iron was inversely associated with blood

  20. Arsenic groundwater contamination and its health effects in Patna district (capital of Bihar) in the middle Ganga plain, India.

    PubMed

    Chakraborti, Dipankar; Rahman, Mohammad Mahmudur; Ahamed, Sad; Dutta, Rathindra Nath; Pati, Shyamapada; Mukherjee, Subhash Chandra

    2016-06-01

    We investigated the extent and severity of groundwater arsenic (As) contamination in five blocks in Patna district, Bihar, India along with As in biological samples and its health effects such as dermatological, neurological and obstetric outcome in some villages. We collected 1365 hand tube-well water samples and analyzed for As by the flow injection hydride generation atomic absorption spectrometer (FI-HG-AAS). We found 61% and 44% of the tube-wells had As above 10 and 50 μg/l, respectively, with maximum concentration of 1466 μg/l. Our medical team examined 712 villagers and registered 69 (9.7%) with arsenical skin lesions. Arsenical skin lesions were also observed in 9 children of 312 screened. We analyzed 176 biological samples (hair, nail and urine). Out of these, 69 people had arsenical skin lesions and rest without skin lesions. We found 100% of the biological samples had As above the normal levels (concentrations of As in hair, nail and urine of unexposed individuals usually ranges from 20 to 200 μg/kg, 20-500 μg/kg and <100 μg/l, respectively), indicating many people are sub-clinically affected. Arsenical neuropathy was observed in 40.5% of 37 arsenicosis patients with 73.3% prevalence for predominant sensory neuropathy and 26.7% for sensor-motor. Among patients, different clinical and electrophysiological neurological features and abnormal quantitative sensory perception thresholds were also noted. The study also found that As exposed women with severe skin lesions had adversely affected their pregnancies. People including children in the affected areas are in danger. To combat As situation in affected areas, villagers urgently need (a) provision of As-safe water for drinking and cooking, (b) awareness about the danger of As toxicity, and (c) nutritious food. PMID:27011321

  1. Validation of Bayesian kriging of arsenic, chromium, lead and mercury surface soil concentrations based on internode sampling

    PubMed Central

    Aelion, C.M.; Davis, H.T.; Liu, Y.; Lawson, A.B.; McDermott, S.

    2009-01-01

    Bayesian kriging is a useful tool for estimating spatial distributions of metals; however, estimates are generally only verified statistically. In this study surface soil samples were collected on a uniform grid and analyzed for As, Cr, Pb, and Hg. The data were interpolated at individual locations by Bayesian kriging. Estimates were validated using a leave-one-out cross validation (LOOCV) statistical method which compared the measured and LOOCV predicted values. Validation also was carried out using additional field sampling of soil metal concentrations at points between original sampling locations, which were compared to kriging prediction distributions. LOOCV results suggest that Bayesian kriging was a good predictor of metal concentrations. When measured internode metal concentrations and estimated kriged values were compared, the measured values were located within the 5th – 95th percentile prediction distributions in over half of the internode locations. Estimated and measured internode concentrations were most similar for As and Pb. Kriged estimates did not compare as well to measured values for concentrations below the analytical minimum detection limit, or for internode samples that were very close to the original sampling node. Despite inherent variability in metal concentrations in soils, the kriged estimates were validated statistically and by in situ measurement. PMID:19603658

  2. Inverse association between toenail arsenic and body mass index in a population of welders.

    PubMed

    Grashow, Rachel; Zhang, Jinming; Fang, Shona C; Weisskopf, Marc G; Christiani, David C; Kile, Molly L; Cavallari, Jennifer M

    2014-05-01

    Recent data show that arsenic may play a role in obesity-related diseases. However, urinary arsenic studies report an inverse association between arsenic level and body mass index (BMI). We explored whether toenail arsenic, a long-term exposure measure, was associated with BMI in 74 welders with known arsenic exposure. BMI showed significant inverse associations with toenail arsenic (p=0.01), which persisted in models adjusted for demographics, diet and work history. It is unclear whether low arsenic biomarker concentrations in high BMI subjects truly reflect lower exposures, or instead reflect internal or metabolic changes that alter arsenic metabolism and tissue deposition. PMID:24721130

  3. Inverse association between toenail arsenic and body mass index in a population of welders

    PubMed Central

    Grashow, Rachel; Zhang, Jinming; Fang, Shona C.; Weisskopf, Marc G.; Christiani, David C.; Kile, Molly L.; Cavallari, Jennifer M.

    2014-01-01

    Recent data show that arsenic may play a role in obesity-related diseases. However, urinary arsenic studies report an inverse association between arsenic level and body mass index (BMI). We explored whether toenail arsenic, a long-term exposure measure, was associated with BMI in 74 welders with known arsenic exposure. BMI showed significant inverse associations with toenail arsenic (p=0.01), which persisted in models adjusted for demographics, diet and work history. It is unclear whether low arsenic biomarker concentrations in high BMI subjects truly reflect lower exposures, or instead reflect internal or metabolic changes that alter arsenic metabolism and tissue deposition. PMID:24721130

  4. Maternal exposure to metals--concentrations and predictors of exposure.

    PubMed

    Callan, A C; Hinwood, A L; Ramalingam, M; Boyce, M; Heyworth, J; McCafferty, P; Odland, J Ø

    2013-10-01

    A variety of metals are important for biological function but have also been shown to impact health at elevated concentrations, whereas others have no known biological function. Pregnant women are a vulnerable population and measures to reduce exposure in this group are important. We undertook a study of maternal exposure to the metals, aluminium, arsenic, copper, cobalt, chromium, lithium, manganese, nickel, selenium, tin, uranium and zinc in 173 participants across Western Australia. Each participant provided a whole blood and urine sample, as well as drinking water, residential soil and dust samples and completed a questionnaire. In general the concentrations of metals in all samples were low with the notable exception of uranium (blood U mean 0.07 µg/L, range <0.01-0.25 µg/L; urinary U mean 0.018 µg/g creatinine, range <0.01-0.199 µg/g creatinine). Factors that influenced biological concentrations were consumption of fish which increased urinary arsenic concentrations, hobbies (including mechanics and welding) which increased blood manganese concentrations and iron/folic acid supplement use which was associated with decreased concentrations of aluminium and nickel in urine and manganese in blood. Environmental concentrations of aluminium, copper and lithium were found to influence biological concentrations, but this was not the case for other environmental metals concentrations. Further work is underway to explore the influence of diet on biological metals concentrations in more detail. The high concentrations of uranium require further investigation. PMID:23896418

  5. Arsenic and ultraviolet radiation exposure: melanoma in a New Mexico non-Hispanic white population.

    PubMed

    Yager, Janice W; Erdei, Esther; Myers, Orrin; Siegel, Malcolm; Berwick, Marianne

    2016-06-01

    Cases of cutaneous melanoma and controls were enrolled in a New Mexico population-based study; subjects were administered questionnaires concerning ultraviolet (UV) and inorganic arsenic (iAs) exposure. Historical iAs exposure was estimated. UV exposure estimates were also derived using geospatial methods. Drinking water samples were collected for iAs analysis. Blood samples were collected for DNA repair (Comet) and DNA repair gene polymorphism assays. Arsenic concentrations were determined in urine and toenail samples. UV exposures during the previous 90 days did not vary significantly between cases and controls. Mean (±SD) current home iAs drinking water was not significantly different for cases and controls [3.98 μg/L (±3.67) vs. 3.47 μg/L (±2.40)]. iAs exposure showed no effect on DNA repair or association with melanoma. Results did not corroborate a previously reported association between toenail As and melanoma risk. Arsenic biomarkers in urine and toenail were highly significantly correlated with iAs in drinking water. A UV-DNA repair interaction for UV exposure over the previous 7-90 days was shown; cases had higher DNA damage than controls at low UV values. This novel finding suggests that melanoma cases may be more sensitive to low-level UV exposure than are controls. A UV-APEX1 interaction was shown. Subjects with the homozygous rare APEX1 DNA repair gene allele had a higher risk of early melanoma diagnosis at low UV exposure compared with those with the homozygous wild type or the heterozygote. Notably, a UV-arsenic interaction on inhibition of DNA repair was not observed at iAs drinking water concentrations below 10 ppb (μg/L). PMID:26445994

  6. Arsenic in the human food chain, biotransformation and toxicology--Review focusing on seafood arsenic.

    PubMed

    Molin, Marianne; Ulven, Stine Marie; Meltzer, Helle Margrete; Alexander, Jan

    2015-01-01

    Fish and seafood are main contributors of arsenic (As) in the diet. The dominating arsenical is the organoarsenical arsenobetaine (AB), found particularly in finfish. Algae, blue mussels and other filter feeders contain less AB, but more arsenosugars and relatively more inorganic arsenic (iAs), whereas fatty fish contain more arsenolipids. Other compounds present in smaller amounts in seafood include trimethylarsine oxide (TMAO), trimethylarsoniopropionate (TMAP), dimethylarsenate (DMA), methylarsenate (MA) and sulfur-containing arsenicals. The toxic and carcinogenic arsenical iAs is biotransformed in humans and excreted in urine as the carcinogens dimethylarsinate (DMA) and methylarsonate (MA), producing reactive intermediates in the process. Less is known about the biotransformation of organoarsenicals, but new insight indicates that bioconversion of arsenosugars and arsenolipids in seafood results in urinary excretion of DMA, possibly also producing reactive trivalent arsenic intermediates. Recent findings also indicate that the pre-systematic metabolism by colon microbiota play an important role for human metabolism of arsenicals. Processing of seafood may also result in transformation of arsenicals. PMID:25666158

  7. Arsenic concentrations in paddy soil and rice and health implications for major rice-growing regions of Cambodia.

    PubMed

    Seyfferth, Angelia L; McCurdy, Sarah; Schaefer, Michael V; Fendorf, Scott

    2014-05-01

    Despite the global importance of As in rice, research has primarily focused on Bangladesh, India, China, and the United States with limited attention given to other countries. Owing to both indigenous As within the soil and the possible increases arising from the onset of irrigation with groundwater, an assessment of As in rice within Cambodia is needed, which offers a "base-case" comparison against sediments of similar origin that comprise rice paddy soils where As-contaminated water is used for irrigation (e.g., Bangladesh). Here, we evaluated the As content of rice from five provinces (Kandal, Prey Veng, Battambang, Banteay Meanchey, and Kampong Thom) in the rice-growing regions of Cambodia and coupled that data to soil-chemical factors based on extractions of paddy soil collected and processed under anoxic conditions. At total soil As concentrations ranging 0.8 to 18 μg g(-1), total grain As concentrations averaged 0.2 μg g(-1) and ranged from 0.1 to 0.37 with Banteay Meanchey rice having significantly higher values than Prey Veng rice. Overall, soil-extractable concentrations of As, Fe, P, and Si and total As were poor predictors of grain As concentrations. While biogeochemical factors leading to reduction of As(V)-bearing Fe(III) oxides are likely most important for predicting plant-available As, husk and straw As concentrations were the most significant predictors of grain-As levels among our measured parameters. PMID:24712677

  8. Effect of Arsenic on Growth, Arsenic Uptake, Distribution of Nutrient Elements and Thiols in Seedlings of Wrightia arborea (Dennst.) Mabb.

    PubMed

    Kumar, Dharmendra; Singh, Vijay Pratap; Tripathi, Durgesh Kumar; Prasad, Sheo Mohan; Chauhan, Devendra Kumar

    2015-01-01

    Hydroponic experiments were conducted to investigate the effect of arsenic on seedlings of Wrightia arborea and Holoptelea integrifolia. Results revealed that W. arborea could tolerate much higher arsenic concentration than H. integrifolia. Therefore, further investigations were focused on W. arborea using higher arsenic concentrations (0.2-2.0 mM). Seedlings of W. arborea accumulated about 312-2147 and 1048-5688 mg/kg dry weight of arsenic in shoots and roots, respectively, following treatments with 0.2-1.5 mM of arsenic without exhibiting arsenic toxicity signs. However, arsenic at 2.0 mM caused decline in growth. Macronutrients content such as Ca, S (except at 2.0 mM), and K (only in root) increased while Mg, P, and K (shoot) decreased by arsenic treatments. However, the content of micronutrients was enhanced under arsenic treatments. Non-protein thiols (NP-SH) showed positive correlations with arsenic doses up to 0.2-1.5 mM but at 2.0 mM there was a decline in NP-SH thus suggesting important role of NP-SH in imparting arsenic tolerance. This study demonstrated that W. arborea that could tolerate arsenic concentrations up to 0.2-1.5 mM may be useful in arsenic phytoremediation programs. PMID:25237723

  9. Urine Bag as a Modern Day Matula

    PubMed Central

    Viswanathan, Stalin

    2013-01-01

    Since time immemorial uroscopic analysis has been a staple of diagnostic medicine. It received prominence during the middle ages with the introduction of the matula. Urinary discoloration is generally due to changes in urochrome concentration associated with the presence of other endogenous or exogenous pigments. Observation of urine colors has received less attention due to the advances made in urinalysis. A gamut of urine colors can be seen in urine bags of hospitalized patients that may give clue to presence of infections, medications, poisons, and hemolysis. Although worrisome to the patient, urine discoloration is mostly benign and resolves with removal of the offending agent. Twelve urine bags with discolored urine (and their predisposing causes) have been shown as examples. Urine colors (blue-green, yellow, orange, pink, red, brown, black, white, and purple) and their etiologies have been reviewed following a literature search in these databases: Pubmed, EBSCO, Science Direct, Proquest, Google Scholar, Springer, and Ovid. PMID:24959539

  10. Isotope concentrations from 24-h urine and 3-h serum samples can be used to measure intestinal magnesium absorption in postmenopausal women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies suggest a link between magnesium status and osteoporosis. One barrier to more conclusive research on the potential relation is measuring intestinal magnesium absorption (MgA), which requires the use of stable isotopes and a >/= 6-d stool or 3-d urine collection. We evaluated alternative meth...

  11. A surrogate analyte-based LC-MS/MS method for the determination of γ-hydroxybutyrate (GHB) in human urine and variation of endogenous urinary concentrations of GHB.

    PubMed

    Kang, Soyoung; Oh, Seung Min; Chung, Kyu Hyuck; Lee, Sooyeun

    2014-09-01

    γ-Hydroxybutyrate (GHB) is a drug of abuse with a strong anesthetic effect; however, proving its ingestion through the quantification of GHB in biological specimens is not straightforward due to the endogenous presence of GHB in human blood, urine, saliva, etc. In the present study, a surrogate analyte approach was applied to accurate quantitative determination of GHB in human urine using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in order to overcome this issue. For this, (2)H6-GHB and (13)C2-dl-3-hydroxybutyrate were used as a surrogate standard and as an internal standard, respectively, and parallelism between the surrogate analyte approach and standard addition was investigated at the initial step. The validation results proved the method to be selective, accurate, and precise, with acceptable linearity within calibration ranges (0.1-1μg/ml). The limit of detection and the limit of quantification of (2)H6-GHB were 0.05 and 0.1μg/ml, respectively. No significant variations were observed among urine matrices from different sources. The stability of (2)H6-GHB was satisfactory under sample storage and in-process conditions. However, in vitro production of endogenous GHB was observed when the urine sample was kept under the in-process condition for 4h and under the storage conditions of 4 and -20°C. In order to facilitate the practical interpretation of urinary GHB, endogenous GHB was accurately measured in urine samples from 79 healthy volunteers using the surrogate analyte-based LC-MS/MS method developed in the present study. The unadjusted and creatinine-adjusted GHB concentrations in 74 urine samples with quantitative results ranged from 0.09 to 1.8μg/ml and from 4.5 to 530μg/mmol creatinine, respectively. No significant correlation was observed between the unadjusted and creatinine-adjusted GHB concentrations. The urinary endogenous GHB concentrations were affected by gender and age while they were not significantly influenced by habitual

  12. Arsenic removal from drinking water during coagulation

    SciTech Connect

    Hering, J.G.; Chen, P.Y.; Wilkie, J.A.; Elimelech, M.

    1997-08-01

    The efficiency of arsenic removal from source waters and artificial freshwaters during coagulation with ferric chloride and alum was examined in bench-scale studies. Arsenic(V) removal by either ferric chloride or alum was relatively insensitive to variations in source water composition below pH 8. At pH 8 and 9, the efficiency of arsenic(V) removal by ferric chloride was decreased in the presence of natural organic matter. The pH range for arsenic(V) removal with alum was more restricted than with ferric chloride. For source waters spiked with 20 {micro}g/L arsenic(V), final dissolved arsenic(V) concentrations in the product water of less than 2 {micro}g/L were achieved with both coagulants at neutral pH. Removal of arsenic(III) from source waters by ferric chloride was both less efficient and more strongly influenced by source water composition than removal of arsenic(V). The presence of sulfate (at pH 4 and 5) and natural organic matter (at pH 4 through 9) adversely affected the efficiency of arsenic(III) removal by ferric chloride. Arsenic(III) could not be removed from source waters by coagulation with alum.

  13. NHEXAS PHASE I REGION 5 STUDY--METALS IN URINE ANALYTICAL RESULTS

    EPA Science Inventory

    This data set includes analytical results for measurements of metals in 600 urine samples. For some chemicals, particularly arsenic, urine provides the best information about the relationship between exposure and body burden. Two samples were collected from each participant on da...

  14. Desorption of arsenic from drinking water distribution system solids.

    PubMed

    Copeland, Rachel C; Lytle, Darren A; Dionysious, Dionysios D

    2007-04-01

    Previous work has shown that arsenic can accumulate in drinking water distribution system (DWDS) solids (Lytle et al., 2004) when arsenic is present in the water. The release of arsenic back into the water through particulate transport and/or chemical release (e.g. desorption, dissolution) could result in elevated arsenic levels at the consumers' tap. The primary objective of this work was to examine the impact of pH and orthophosphate on the chemical release (i.e. desorption) of arsenic from nine DWDS solids collected from utilities located in the Midwest. Arsenic release comparisons were based on the examination of arsenic and other water quality parameters in leach water after contact with the solids over the course of 168~hours. Results showed that arsenic was released from solids and suggested that arsenic release was a result of desorption rather than dissolution. Arsenic release generally increased with increasing initial arsenic concentration in the solid and increasing pH levels (in the test range of 7 to 9). Finally, orthophosphate (3 and 5 mg PO(4)/L) increased arsenic release at all pH values examined. Based on the study results, utilities with measurable levels of arsenic present in their water should be aware that some water quality changes can cause arsenic release in the DWDS potentially resulting in elevated levels at the consumer's tap. PMID:17033727

  15. Impact of local recharge on arsenic concentrations in shallow aquifers inferred from the electromagnetic conductivity of soils in Araihazar, Bangladesh

    NASA Astrophysics Data System (ADS)

    Aziz, Z.; van Geen, A.; Stute, M.; Versteeg, R.; Horneman, A.; Zheng, Y.; Goodbred, S.; Steckler, M.; Weinman, B.; Gavrieli, I.; Hoque, M. A.; Shamsudduha, M.; Ahmed, K. M.

    2008-07-01

    The high-degree of spatial variability of dissolved As levels in shallow aquifers of the Bengal Basin has been well documented but the underlying mechanisms remain poorly understood. We compare here As concentrations measured in groundwater pumped from 4700 wells <22 m (75 ft) deep across a 25 km2 area of Bangladesh with variations in the nature of surface soils inferred from 18,500 measurements of frequency domain electromagnetic induction. A set of 14 hand auger cores recovered from the same area indicate that a combination of grain size and the conductivity of soil water dominate the electromagnetic signal. The relationship between pairs of individual EM conductivity and dissolved As measurements within a distance of 50 m is significant but highly scattered (r2 = 0.12; n = 614). Concentrations of As tend to be lower in shallow aquifers underlying sandy soils and higher below finer-grained and high conductivity soils. Variations in EM conductivity account for nearly half the variance of the rate of increase of As concentration with depth, however, when the data are averaged over a distance of 50 m (r2 = 0.50; n = 145). The association is interpreted as an indication that groundwater recharge through permeable sandy soils prevents As concentrations from rising in shallow reducing groundwater.

  16. Broiler Litter Management Practices: Effects on Phosphorus, Copper, Zinc, Manganese and Arsenic Concentrations in Maryland Coastal Plain Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to assess the long-term effects of broiler litter applications on soil P and metal (Cu, Zn, Mn and As) concentrations in Chesapeake Bay watershed Costal Plain soils. Soil samples were collected from 10 farms having over 40 years of broiler production and from wood...

  17. [Arsenic as an environmental problem].

    PubMed

    Jensen, K

    2000-12-01

    Chronic exposure to arsenic through drinking water is known in different continents. Arsenic compounds from disintegrating rock may be solubilized after reduction by organic material, and harmful concentrations of arsenic may be found in surface water as well as in water from drilled wells. Because of well drilling since the sixties in the Ganges delta numerous millions of people have been exposed to toxic amounts, and hundreds of thousands demonstrate signs of chronic poisoning. A changed water technology and chemical precipitation of arsenic in the drinking water can reduce the size of the problem, but the late sequelae i.e. malignant disease are incalculable. Indications for antidotal treatment of exposed individuals have not yet been outlined. PMID:11188053

  18. Arsenic removal by ferric chloride

    SciTech Connect

    Hering, J.G.; Chen, P.Y.; Wilkie, J.A.; Elimelech, M.; Liang, S.

    1996-04-01

    Bench-scale studies were conducted in model freshwater systems to investigate how various parameters affected arsenic removal during coagulation with ferric chloride and arsenic adsorption onto preformed hydrous ferric oxide. Parameters included arsenic oxidation state and initial concentration, coagulant dosage or adsorbent concentration, pH, and the presence of co-occurring inorganic solutes. Comparison of coagulation and adsorption experiments and of experimental results with predictions based on surface complexation modeling demonstrated that adsorption is an important (though not the sole) mechanism governing arsenic removal during coagulation. Under comparable conditions, better removal was observed with arsenic(V) [As(V)] than with arsenic(III) [As(III)] in both coagulation and adsorption experiments. Below neutral pH values, As(III) removal-adsorption was significantly decreased in the presence of sulfate, whereas only a slight decrease in As(V) removal-adsorption was observed. At high pH, removal-adsorption of As(V) was increased in the presence of calcium. Removal of As(V) during coagulation with ferric chloride is both more efficient and less sensitive than that of As(III) to variations in source water composition.

  19. Associations between the polymorphisms of GSTT1, GSTM1 and methylation of arsenic in the residents exposed to low-level arsenic in drinking water in China.

    PubMed

    Yang, Jinyou; Yan, Li; Zhang, Min; Wang, Yijun; Wang, Chun; Xiang, Quanyong

    2015-07-01

    We carry out a study to analyze the relation between polymorphisms of GSTT1, GSTM1 and the capacity of arsenic methylation in a human population exposed to arsenic in drinking water. 230 randomly chose subjects were divided into four subgroups based on the arsenic levels, and then the associations between the polymorphisms of GSTT1, GSTM1 and methylation of arsenic were investigated. The levels of inorganic arsenic (iAs), monomethylated arsenic (MMA), dimethylated arsenic (DMA) and total arsenic (TAs) in urine were higher in males than that in females. Moreover, the levels of iAs and TAs in urine in the subjects with genotype of GSTM1(+) were significantly higher than those with GSTM1(-); the level of DMA in the subjects with GSTT1(+) and GSTM1(+) were higher than those with GSTT1(-) and GSTM1(-), although it is not statistically significant. Secondary methylation index (SMI) was significantly higher in the subjects with genotype of GSTT1(+) than those with GSTT1(-). The levels of TAs in urine, together with the genotypes of GSTT1/GSTM1 were associated with the levels of MMA and DMA. Our results suggested that the polymorphisms of GSTT1 and GSTM1 were associated with the methylation of arsenic, especially the levels of DMA and SMI. PMID:25876999

  20. Urine Protein and Urine Protein to Creatinine Ratio

    MedlinePlus

    ... limited. Home Visit Global Sites Search Help? Urine Protein and Urine Protein to Creatinine Ratio Share this page: Was this page helpful? Also known as: 24-Hour Urine Protein; Urine Total Protein; Urine Protein to Creatinine Ratio; ...

  1. TRACE ANALYSIS OF ARSENIC BY COLORIMETRY, ATOMIC ABSORPTION, AND POLAROGRAPHY

    EPA Science Inventory

    A differential pulse polarographic method was developed for determining total arsenic concentrations in water samples from ash ponds at steam-electric generating plants. After digestion of the sample and isolation of arsenic by solvent extraction, the peak current for arsenic is ...

  2. Groundwater arsenic contamination in Bangladesh-21 Years of research.

    PubMed

    Chakraborti, Dipankar; Rahman, Mohammad Mahmudur; Mukherjee, Amitava; Alauddin, Mohammad; Hassan, Manzurul; Dutta, Rathindra Nath; Pati, Shymapada; Mukherjee, Subhash Chandra; Roy, Shibtosh; Quamruzzman, Quazi; Rahman, Mahmuder; Morshed, Salim; Islam, Tanzima; Sorif, Shaharir; Selim, Md; Islam, Md Razaul; Hossain, Md Monower

    2015-01-01

    Department of Public Health Engineering (DPHE), Bangladesh first identified their groundwater arsenic contamination in 1993. But before the international arsenic conference in Dhaka in February 1998, the problem was not widely accepted. Even in the international arsenic conference in West-Bengal, India in February, 1995, representatives of international agencies in Bangladesh and Bangladesh government attended the conference but they denied the groundwater arsenic contamination in Bangladesh. School of Environmental Studies (SOES), Jadavpur University, Kolkata, India first identified arsenic patient in Bangladesh in 1992 and informed WHO, UNICEF of Bangladesh and Govt. of Bangladesh from April 1994 to August 1995. British Geological Survey (BGS) dug hand tube-wells in Bangladesh in 1980s and early 1990s but they did not test the water for arsenic. Again BGS came back to Bangladesh in 1992 to assess the quality of the water of the tube-wells they installed but they still did not test for arsenic when groundwater arsenic contamination and its health effects in West Bengal in Bengal delta was already published in WHO Bulletin in 1988. From December 1996, SOES in collaboration with Dhaka Community Hospital (DCH), Bangladesh started analyzing hand tube-wells for arsenic from all 64 districts in four geomorphologic regions of Bangladesh. So far over 54,000 tube-well water samples had been analyzed by flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS). From SOES water analysis data at present we could assess status of arsenic groundwater contamination in four geo-morphological regions of Bangladesh and location of possible arsenic safe groundwater. SOES and DCH also made some preliminary work with their medical team to identify patients suffering from arsenic related diseases. SOES further analyzed few thousands biological samples (hair, nail, urine and skin scales) and foodstuffs for arsenic to know arsenic body burden and people sub

  3. XAS Studies of Arsenic in the Environment

    SciTech Connect

    Charnock, J. M.; Polya, D. A.; Gault, A. G.; Morgan, A. J.

    2007-02-02

    Arsenic is present in low concentrations in much of the Earth's crust and changes in its speciation are vital to understanding its transport and toxicity in the environment. We have used X-ray absorption spectroscopy to investigate the coordination sites of arsenic in a wide variety of samples, including soil and earthworm tissues from arsenic-contaminated land, and human hair and nail samples from people exposed to arsenic in Cambodia. Our results confirm the effectiveness of using X-ray absorption near edge structure (XANES) and X-ray absorption fine structure (EXAFS) spectroscopy to determine speciation changes in environmental samples.

  4. Arsenic in the soils of Zimapán, Mexico.

    PubMed

    Ongley, Lois K; Sherman, Leslie; Armienta, Aurora; Concilio, Amy; Salinas, Carrie Ferguson

    2007-02-01

    Arsenic concentrations of 73 soil samples collected in the semi-arid Zimapán Valley range from 4 to 14 700 mg As kg(-1). Soil arsenic concentrations decrease with distance from mines and tailings and slag heaps and exceed 400 mg kg(-1) only within 500 m of these arsenic sources. Soil arsenic concentrations correlate positively with Cu, Pb, and Zn concentrations, suggesting a strong association with ore minerals known to exist in the region. Some As was associated with Fe and Mn oxyhydroxides, this association is less for contaminated than for uncontaminated samples. Very little As was found in the mobile water-soluble or exchangeable fractions. The soils are not arsenic contaminated at depths greater than 100 cm below the surface. Although much of the arsenic in the soils is associated with relatively immobile solid phases, this represents a long-term source of arsenic to the environment. PMID:16872728

  5. Arsenic concentrations in soils and sediments of the southern Pampean Plain, within Claromecó River Basin (Argentina)

    NASA Astrophysics Data System (ADS)

    Sosa, N. N.; Datta, S.; Zarate, M.

    2015-12-01

    The Pampean plain is an extensive flatland covering ~1000000 km2 of central and northern Argentina. The region, dominated by Neogene and quaternary volcanoclastic loess and loess-like deposits, shows one of the highest groundwater As concentrations of the world which cause serious problems to human health. The oxidising and high pH conditions of the Pampean groundwater leads to the dissolution of volcanic glass and Fe oxy-hydroxides and the release of As to water. Variation of As content related to lithogenic factors is evident from our study in Claromecó River Basin (Southern Pampean plain): the Mio-Pliocene fluvial facies (MPFF) show low As content (2.6mg/kg) compared to the Late Pleistocene fluvial facies (11.6mg/kg; LPFF). Furthermore, the pedogenic calcrete and the paleosols developed in fluvial facies present significantly different As content: 3.9 mg/Kg in MPFF pedogenic calcrete and 16.5 mg/Kg in LPFF paleosols. Modern soils show the highest As content, especially in the illuvial horizons (23.3 mg/Kg) controlled by grain size and clay mineralogy constituents. Preliminary results demonstrate a sedimentological control embarking differences in As concentrations. These differences are probably attributed to a major hydraulic gradient during the MPFF, which is reflected in grain size and in fluvial structures, which probably was followed by washed out sediments. A geomorphological control was observed through an increase of As concentrations from the interfluves (MPFF) to the valleys (LPFF) as well as from the upper to the lower basin zone within the LPFF. Pedogenic calcrete and paleosols developed in MPFF and LPFF respectively reflect the different geomorphological conditions showing high As content in LPFF paleosols (attributed to Fe oxy-hydroxides). This study relates mineralogy and sedimentological environment to groundwater, surface water from wetlands to understand the hydrochemical processes in controlling As within the Claromecó basin.

  6. Arsenic, inorganic

    Integrated Risk Information System (IRIS)

    Arsenic , inorganic ; CASRN 7440 - 38 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  7. Arsenic Species in the Ground Water

    EPA Science Inventory

    Abstract Arsenic concentrations in ground varies widely and regionally across the United States and exists as oxyanions having two oxidation states: As(+III) and As(+V). As(V) is effectively removed by most arsenic treatment processes whereas uncharged As(III) is poorly removed...

  8. Arsenic Redistribution Between Sediments and Water Near a Highly Contaminated Source

    SciTech Connect

    Keimowitz,A.; Zheng, Y.; Chillrud, S.; Mailloux, B.; Bok Jung, H.; Stute, M.; Simpson, H.

    2005-01-01

    Mechanisms controlling arsenic partitioning between sediment, groundwater, porewaters, and surface waters were investigated at the Vineland Chemical Company Superfund site in southern New Jersey. Extensive inorganic and organic arsenic contamination at this site (historical total arsenic >10 000 {micro}g L{sup -1} or >130 {micro}M in groundwater) has spread downstream to the Blackwater Branch, Maurice River, and Union Lake. Stream discharge was measured in the Blackwater Branch, and water samples and sediment cores were obtained from both the stream and the lake. Porewaters and sediments were analyzed for arsenic speciation as well as total arsenic, iron, manganese, and sulfur, and they indicate that geochemical processes controlling mobility of arsenic were different in these two locations. Arsenic partitioning in the Blackwater Branch was consistent with arsenic primarily being controlled by sulfur, whereas in Union Lake, the data were consistent with arsenic being controlled largely by iron. Stream discharge and arsenic concentrations indicate that despite large-scale groundwater extraction and treatment, >99% of arsenic transport away from the site results from continued discharge of high arsenic groundwater to the stream, rather than remobilization of arsenic in stream sediments. Changing redox conditions would be expected to change arsenic retention on sediments. In sulfur-controlled stream sediments, more oxic conditions could oxidize arsenic-bearing sulfide minerals, thereby releasing arsenic to porewaters and streamwaters; in iron-controlled lake sediments, more reducing conditions could release arsenic from sediments via reductive dissolution of arsenic-bearing iron oxides.

  9. Arsenic redistribution between sediments and water near a highly contaminated source.

    PubMed

    Keimowitz, Alison R; Zheng, Yan; Chillrud, Steven N; Mailloux, Brian; Jung, Hun Bok; Stute, Martin; Simpson, H James

    2005-11-15

    Mechanisms controlling arsenic partitioning between sediment, groundwater, porewaters, and surface waters were investigated at the Vineland Chemical Company Superfund site in southern New Jersey. Extensive inorganic and organic arsenic contamination at this site (historical total arsenic > 10 000 microg L(-1) or > 130 microM in groundwater) has spread downstream to the Blackwater Branch, Maurice River, and Union Lake. Stream discharge was measured in the Blackwater Branch, and water samples and sediment cores were obtained from both the stream and the lake. Porewaters and sediments were analyzed for arsenic speciation as well as total arsenic, iron, manganese, and sulfur, and they indicate that geochemical processes controlling mobility of arsenic were different in these two locations. Arsenic partitioning in the Blackwater Branch was consistent with arsenic primarily being controlled by sulfur, whereas in Union Lake, the data were consistent with arsenic being controlled largely by iron. Stream discharge and arsenic concentrations indicate that despite large-scale groundwater extraction and treatment, > 99% of arsenic transport away from the site results from continued discharge of high arsenic groundwater to the stream, rather than remobilization of arsenic in stream sediments. Changing redox conditions would be expected to change arsenic retention on sediments. In sulfur-controlled stream sediments, more oxic conditions could oxidize arsenic-bearing sulfide minerals, thereby releasing arsenic to porewaters and streamwaters; in iron-controlled lake sediments, more reducing conditions could release arsenic from sediments via reductive dissolution of arsenic-bearing iron oxides. PMID:16329197

  10. Arsenic and cadmium exposure in children living near a smelter complex in San Luis Potosí, Mexico.

    PubMed

    Díaz-Barriga, F; Santos, M A; Mejía, J J; Batres, L; Yáñez, L; Carrizales, L; Vera, E; del Razo, L M; Cebrián, M E

    1993-08-01

    The main purpose of this study was to assess environmental contamination by arsenic and cadmium in a smelter community (San Luis Potosí City, México) and its possible contribution to an increased body burden of these elements in children. Arsenic and cadmium were found in the environment (air, soil, and household dust, and tap water) as well as in the urine and hair from children. The study was undertaken in three zones: Morales, an urban area close to the smelter complex; Graciano, an urban area 7 km away from the complex; and Mexquitic, a small rural town 25 km away. The environmental study showed that Morales is the most contaminated of the zones studied. The range of arsenic levels in soil (117-1396 ppm), dust (515-2625 ppm), and air (0.13-1.45 micrograms/m3) in the exposed area (Morales) was higher than those in the control areas. Cadmium concentrations were also higher in Morales. Estimates of the arsenic ingestion rate in Morales (1.0-19.8 micrograms/kg/day) were equal to or higher than the reference dose of 1 microgram/kg/day calculated by the Environmental Protection Agency. The range of arsenic levels in urine (69-594 micrograms/g creatinine) and hair (1.4-57.3 micrograms/g) and that of cadmium in hair (0.25-3.5 micrograms/g) indicated that environmental exposure has resulted in an increased body burden of these elements in children, suggesting that children living in Morales are at high risk of suffering adverse health effects if exposure continues. PMID:8344231

  11. Life and death with arsenic

    PubMed Central

    Rosen, Barry P.; Ajees, A. Abdul; McDermott, Timothy R.

    2013-01-01

    Arsenic and phosphorus are group 15 elements with similar chemical properties. Is it possible that arsenate could replace phosphate in some of the chemicals that are required for life? Phosphate esters are ubiquitous in biomolecules and are essential for life, from the sugar phosphates of intermediary metabolism to ATP to phospholipids to the phosphate backbone of DNA and RNA. Some enzymes that form phosphate esters catalyze the formation of arsenate esters. Arsenate esters hydrolyze very rapidly in aqueous solution, which makes it improbable that phosphorous could be completely replaced with arsenic to support life. Studies of bacterial growth at high arsenic:phosphorus ratios demonstrate that relatively high arsenic concentrations can be tolerated, and that arsenic can become involved in vital functions in the cell, though likely much less efficiently than phosphorus. Recently Wolfe-Simon et al. [1] reported the isolation of a microorganism that they maintain uses arsenic in place of phosphorus for growth. Here, we examine and evaluate their data and conclusions. PMID:21387349

  12. Comparison of arsenic concentrations in simultaneously-collected groundwater and aquifer particles from Bangladesh, India, Vietnam, and Nepal

    PubMed Central

    van Geen, A.; Radloff, K.; Aziz, Z.; Cheng, Z.; Huq, M.R.; Ahmed, K.M.; Weinman, B.; Goodbred, S.; Jung, H.B.; Zheng, Y.; Berg, M.; Trang, P.T.K.; Charlet, L.; Metral, J.; Tisserand, D.; Guillot, S.; Chakraborty, S.; Gajurel, A.P.; Upreti, B.N.

    2008-01-01

    One of the reasons the processes resulting in As release to groundwater in southern Asia remain poorly understood is the high degree of spatial variability of physical and chemical properties in shallow aquifers. In an attempt to overcome this difficulty, a simple device that collects groundwater and sediment as a slurry from precisely the same interval was developed in Bangladesh. Recently published results from Bangladesh and India relying on the needle-sampler are augmented here with new data from 37 intervals of grey aquifer material of likely Holocene age in Vietnam and Nepal. A total of 145 samples of filtered groundwater ranging in depth from 3 to 36 m that were analyzed for As (1–1000 μg/L), Fe (0.01–40 mg/L), Mn (0.2–4 mg/L) and S (0.04–14 mg/L) are compared. The P-extractable (0.01–36 mg/kg) and HCl-extractable As (0.04–36 mg/kg) content of the particulate phase was determined in the same suite of samples, in addition to Fe(II)/Fe ratios (0.2–1.0) in the acid-leachable fraction of the particulate phase. Needle-sampler data from Bangladesh indicated a relationship between dissolved As in groundwater and P-extractable As in the particulate phase that was interpreted as an indication of adsorptive equilibrium, under sufficiently reducing conditions, across 3 orders of magnitude in concentrations according to a distribution coefficient of 4 mL/g. The more recent observations from India, Vietnam and Nepal show groundwater As concentrations that are often an order of magnitude lower at a given level of P-extractable As compared to Bangladesh, even if only the subset of particularly reducing intervals characterized by leachable Fe(II)/Fe >0.5 and dissolved Fe >0.2 mg/L are considered. Without attempting to explain why As appears to be particularly mobile in reducing aquifers of Bangladesh compared to the other regions, the consequences of increasing the distribution coefficient for As between the particulate and dissolved phase to 40 mL/g for the

  13. Arsenic and lead concentrations in the Pond Creek and Fire Clay coal beds, eastern Kentucky coal field

    USGS Publications Warehouse

    Hower, J.C.; Robertson, J.D.; Wong, A.S.; Eble, C.F.; Ruppert, L.F.

    1997-01-01

    The Middle Pennsylvanian Breathitt Formation (Westphalian B) Pond Creek and Fire Clay coal beds are the 2 largest producing coal beds in eastern Kentucky. Single channel samples from 22 localities in the Pond Creek coal bed were obtained from active coal mines in Pike and Martin Countries, Kentucky, and a total of 18 Fire Clay coal bed channel samples were collected from localities in the central portion of the coal field. The overall objective of this study was to investigate the concentration and distribution of potentially hazard