Science.gov

Sample records for uropathogenic escherichia coli

  1. Vaginal Lactobacillus isolates inhibit uropathogenic Escherichia coli.

    PubMed

    Atassi, Fabrice; Brassart, Dominique; Grob, Philipp; Graf, Federico; Servin, Alain L

    2006-04-01

    The purpose of this study was to investigate the antibacterial activities of Lactobacillus jensenii KS119.1 and KS121.1, and Lactobacillus gasserii KS120.1 and KS124.3 strains isolated from the vaginal microflora of healthy women, against uropathogenic, diffusely adhering Afa/Dr Escherichia coli (Afa/Dr DAEC) strains IH11128 and 7372 involved in recurrent cystitis. We observed that some of the Lactobacillus isolates inhibited the growth and decreased the viability of E. coli IH11128 and 7372. In addition, we observed that adhering Lactobacillus strains inhibited adhesion of E. coli IH11128 onto HeLa cells, and inhibited internalization of E. coli IH11128 within HeLa cells. PMID:16553843

  2. Draft Genome Sequence of Uropathogenic Escherichia coli Strain NB8.

    PubMed

    Weng, Xing-Bei; Mi, Zu-Huang; Wang, Chun-Xin; Zhu, Jian-Ming

    2016-01-01

    Escherichia coli NB8 is a clinical pyelonephritis isolate. Here, we report the draft genome sequence of uropathogenic E. coli NB8, which contains drug resistance genes encoding resistance to beta-lactams, aminoglycosides, quinolones, macrolides, colistin, sulfonamide-trimethoprim, and tetracycline. NB8 infects the kidney and bladder, making it an important tool for studying E. coli pathogenesis. PMID:27609920

  3. Uropathogenic Escherichia coli-associated exotoxins

    PubMed Central

    Welch, Rodney A.

    2015-01-01

    Escherichia coli are a common cause of infectious disease outside of the gastrointestinal tract. Several independently evolved E. coli clades are common causes of urinary tract and blood stream infections. There is ample epidemiological and in vitro evidence that several different protein toxins common to many but not all of these strains are likely to aid the colonization and immune evasion ability of these bacteria. This review discusses our current knowledge and areas of ignorance concerning the contribution of the hemolysin, cytotoxic necrotizing factor-1 and the autotransporters, Sat, Pic and Vat to extraintestinal human disease. PMID:27337488

  4. Uropathogenic Escherichia coli-Associated Exotoxins.

    PubMed

    Welch, Rodney A

    2016-06-01

    Escherichia coli are a common cause of infectious disease outside of the gastrointestinal tract. Several independently evolved E. coli clades are common causes of urinary tract and bloodstream infections. There is ample epidemiological and in vitro evidence that several different protein toxins common to many, but not all, of these strains are likely to aid the colonization and immune-evasion ability of these bacteria. This review discusses our current knowledge and areas of ignorance concerning the contribution of the hemolysin; cytotoxic-necrotizing factor-1; and the autotransporters, Sat, Pic, and Vat, to extraintestinal human disease. PMID:27337488

  5. Uropathogenic Escherichia coli Epigenetically Manipulate Host Cell Death Pathways.

    PubMed

    Zhang, Zhengguo; Wang, Ming; Eisel, Florian; Tchatalbachev, Svetlin; Chakraborty, Trinad; Meinhardt, Andreas; Bhushan, Sudhanshu

    2016-04-01

    Urinary tract infections caused by uropathogenic Escherichia coli (UPEC) pathovars belong to the most frequent infections in human. It is well established that UPEC can subvert innate immune responses, but the role of UPEC in interfering with host cell death pathways is not known. Here, we show that UPEC abrogates activation of the host cell prosurvival protein kinase B signaling pathway, which results in the activation of mammalian forkhead box O (FOXO) transcription factors. Although FOXOs were localized in the nucleus and showed increased DNA-binding activity, no change in the expression levels of FOXO target genes were observed. UPEC can suppress BIM expression induced by LY249002, which results in attenuation of caspase 3 activation and blockage of apoptosis. Mechanistically, BIM expression appears to be epigenetically silenced by a decrease in histone 4 acetylation at the BIM promoter site. Taken together, these results suggest that UPEC can epigenetically silence BIM expression, a molecular switch that prevents apoptosis. PMID:26621912

  6. Biofilm and fluoroquinolone resistance of canine Escherichia coli uropathogenic isolates

    PubMed Central

    2014-01-01

    Background Escherichia coli is the most common uropathogen involved in urinary tract infection (UTI). Virulence of strains may differ, and may be enhanced by antimicrobial resistance and biofilm formation, resulting in increased morbidity and recurrent infections. The aim of this study was to evaluate the in vitro biofilm forming capacity of E. coli isolates from dogs with UTI, by using fluorescent in situ hybridization, and its association with virulence genes and antimicrobial resistance. Findings The proportion of biofilm-producing isolates significantly increased with the length of incubation time (P < 0.05). Biofilm production was significantly associated with fluoroquinolone resistance at all incubation time points and was independent of the media used (P < 0.05). Biofilm production was not associated with cnf1, hly, pap and sfa genes (P > 0.05), but was significantly associated with afa, aer and the β-lactamase genes (P < 0.05). Conclusions To the best of our knowledge, this is the first report showing significant association between biofilm production and fluoroquinolone resistance in E. coli isolates from dogs with UTI. Biofilm formation may contribute to UTI treatment failure in dogs, through the development of bacterial reservoirs inside bladder cells, allowing them to overcome host immune defenses and to establish recurrent infections. PMID:25099929

  7. Bacteriophages with the Ability to Degrade Uropathogenic Escherichia Coli Biofilms

    PubMed Central

    Chibeu, Andrew; Lingohr, Erika J.; Masson, Luke; Manges, Amee; Harel, Josée; Ackermann, Hans-W.; Kropinski, Andrew M.; Boerlin, Patrick

    2012-01-01

    Escherichia coli-associated urinary tract infections (UTIs) are among the most common bacterial infections in humans. UTIs are usually managed with antibiotic therapy, but over the years, antibiotic-resistant strains of uropathogenic E. coli (UPEC) have emerged. The formation of biofilms further complicates the treatment of these infections by making them resistant to killing by the host immune system as well as by antibiotics. This has encouraged research into therapy using bacteriophages (phages) as a supplement or substitute for antibiotics. In this study we characterized 253 UPEC in terms of their biofilm-forming capabilities, serotype, and antimicrobial resistance. Three phages were then isolated (vB_EcoP_ACG-C91, vB_EcoM_ACG-C40 and vB_EcoS_ACG-M12) which were able to lyse 80.5% of a subset (42) of the UPEC strains able to form biofilms. Correlation was established between phage sensitivity and specific serotypes of the UPEC strains. The phages’ genome sequences were determined and resulted in classification of vB_EcoP_ACG-C91 as a SP6likevirus, vB_EcoM_ACG-C40 as a T4likevirus and vB_EcoS_ACG-M12 as T1likevirus. We assessed the ability of the three phages to eradicate the established biofilm of one of the UPEC strains used in the study. All phages significantly reduced the biofilm within 2–12 h of incubation. PMID:22590682

  8. Bacteriophages with the ability to degrade uropathogenic Escherichia coli biofilms.

    PubMed

    Chibeu, Andrew; Lingohr, Erika J; Masson, Luke; Manges, Amee; Harel, Josée; Ackermann, Hans-W; Kropinski, Andrew M; Boerlin, Patrick

    2012-04-01

    Escherichia coli-associated urinary tract infections (UTIs) are among the most common bacterial infections in humans. UTIs are usually managed with antibiotic therapy, but over the years, antibiotic-resistant strains of uropathogenic E. coli (UPEC) have emerged. The formation of biofilms further complicates the treatment of these infections by making them resistant to killing by the host immune system as well as by antibiotics. This has encouraged research into therapy using bacteriophages (phages) as a supplement or substitute for antibiotics. In this study we characterized 253 UPEC in terms of their biofilm-forming capabilities, serotype, and antimicrobial resistance. Three phages were then isolated (vB_EcoP_ACG-C91, vB_EcoM_ACG-C40 and vB_EcoS_ACG-M12) which were able to lyse 80.5% of a subset (42) of the UPEC strains able to form biofilms. Correlation was established between phage sensitivity and specific serotypes of the UPEC strains. The phages' genome sequences were determined and resulted in classification of vB_EcoP_ACG-C91 as a SP6likevirus, vB_EcoM_ACG-C40 as a T4likevirus and vB_EcoS_ACG-M12 as T1likevirus. We assessed the ability of the three phages to eradicate the established biofilm of one of the UPEC strains used in the study. All phages significantly reduced the biofilm within 2-12 h of incubation. PMID:22590682

  9. Genomic islands of uropathogenic Escherichia coli contribute to virulence.

    PubMed

    Lloyd, Amanda L; Henderson, Tiffany A; Vigil, Patrick D; Mobley, Harry L T

    2009-06-01

    Uropathogenic Escherichia coli (UPEC) strain CFT073 contains 13 large genomic islands ranging in size from 32 kb to 123 kb. Eleven of these genomic islands were individually deleted from the genome, and nine isogenic mutants were tested for their ability to colonize the CBA/J mouse model of ascending urinary tract infection. Three genomic island mutants (Delta PAI-aspV, Delta PAI-metV, and Delta PAI-asnT) were significantly outcompeted by wild-type CFT073 in the bladders and/or kidneys following transurethral cochallenge (P coli strains but absent from E. coli K-12. We have shown that, in addition to encoding virulence genes, genomic islands contribute to the overall fitness of UPEC strain CFT073 in vivo. PMID:19329634

  10. Uropathogenic Escherichia coli causes fibrotic remodelling of the epididymis.

    PubMed

    Michel, Vera; Duan, Yonggang; Stoschek, Elke; Bhushan, Sudhanshu; Middendorff, Ralf; Young, Julia M; Loveland, Kate L; Kretser, David M De; Hedger, Mark P; Meinhardt, Andreas

    2016-09-01

    Despite antibiotic treatment, up to 40% of patients have impaired fertility after epididymitis due to serovars of Escherichia coli, a frequent pathogen. The reasons for infertility are unclear, but it may result from epididymal duct obstruction. To determine whether E. coli infection of the epididymis causes obstruction due to fibrosis, and to identify the key mediators, tissues from patients with epididymitis were assessed. Additionally, epididymitis was induced with uropathogenic E. coli (UPEC) or commensal serovars in wild-type and MyD88(-/-) mice, which are relatively unresponsive to bacterial pathogens. Epididymal organ cultures were treated with activin A and bacteria and their histology and levels of cytokines and fibrosis markers were analysed. Patients with epididymitis showed severe fibrosis of the epididymal duct. In mice, UPEC infection also caused fibrosis and ductal obstruction in the cauda epididymis. Levels of mRNA for fibrotic markers (α-smooth muscle actin, fibronectin) and cytokines (activin A, TNFα, IL-1α, IL-1β, IL-6) and total collagen levels were significantly elevated. This fibrotic response was blunted by the loss of MyD88. Activin A induced fibrosis in cultured epididymis, which was inhibited by the activin-binding protein follistatin. In summary, bacterial epididymitis causes fibrosis and obstruction. The milder tissue damage in Myd88(-/-) UPEC epididymitis highlights the importance of the host response to infection in causing epididymal damage. Elevated levels of activin A in vivo and fibrotic remodelling elicited by activin A in vitro indicate that this cytokine is a potential target for supplementary treatment to antibiotic therapy. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:27218225

  11. Forced Resurgence and Targeting of Intracellular Uropathogenic Escherichia coli Reservoirs

    PubMed Central

    Blango, Matthew G.; Ott, Elizabeth M.; Erman, Andreja; Veranic, Peter; Mulvey, Matthew A.

    2014-01-01

    Intracellular quiescent reservoirs of uropathogenic Escherichia coli (UPEC), which can seed the bladder mucosa during the acute phase of a urinary tract infection (UTI), are protected from antibiotic treatments and are extremely difficult to eliminate. These reservoirs are a potential source for recurrent UTIs that affect millions annually. Here, using murine infection models and the bladder cell exfoliant chitosan, we demonstrate that intracellular UPEC populations shift within the stratified layers of the urothelium during the course of a UTI. Following invasion of the terminally differentiated superficial layer of epithelial cells that line the bladder lumen, UPEC can multiply and disseminate, eventually establishing reservoirs within underlying immature host cells. If given access, UPEC can invade the superficial and immature bladder cells equally well. As infected immature host cells differentiate and migrate towards the apical surface of the bladder, UPEC can reinitiate growth and discharge into the bladder lumen. By inducing the exfoliation of the superficial layers of the urothelium, chitosan stimulates rapid regenerative processes and the reactivation and efflux of quiescent intracellular UPEC reservoirs. When combined with antibiotics, chitosan treatment significantly reduces bacterial loads within the bladder and may therefore be of therapeutic value to individuals with chronic, recurrent UTIs. PMID:24667805

  12. Hemolysin of uropathogenic Escherichia coli: A cloak or a dagger?

    PubMed

    Ristow, Laura C; Welch, Rodney A

    2016-03-01

    Hemolysin from uropathogenic Escherichia coli (UPEC) is a hemolytic and cytotoxic protein active against a broad range of species and cell types. Expression of hemolysin correlates with severity of infection, as up to 78% of UPEC isolates from pyelonephritis cases express hemolysin. Despite decades of research on hemolysin activity, the mechanism of intoxication and the function of hemolysin in UPEC infection remain elusive. Early in vitro research established the role of hemolysin as a lytic protein at high doses. It is hypothesized that hemolysin is secreted at sublytic doses in vivo and recent research has focused on understanding the more subtle effects of hemolysin both in vitro and in elegant infection models in vivo, including inoculation by micropuncture of individual kidney nephrons. As the field continues to evolve, comparisons of hemolysin function in isolates from a range of UTI infections will be important for delineating the role of this toxin. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale. PMID:26299820

  13. Ferritinophagy drives uropathogenic Escherichia coli persistence in bladder epithelial cells.

    PubMed

    Bauckman, Kyle A; Mysorekar, Indira U

    2016-05-01

    Autophagy is a cellular recycling pathway, which in many cases, protects host cells from infections by degrading pathogens. However, uropathogenic Escherichia coli (UPEC), the predominant cause of urinary tract infections (UTIs), persist within the urinary tract epithelium (urothelium) by forming reservoirs within autophagosomes. Iron is a critical nutrient for both host and pathogen, and regulation of iron availability is a key host defense against pathogens. Iron homeostasis depends on the shuttling of iron-bound ferritin to the lysosome for recycling, a process termed ferritinophagy (a form of selective autophagy). Here, we demonstrate for the first time that UPEC shuttles with ferritin-bound iron into the autophagosomal and lysosomal compartments within the urothelium. Iron overload in urothelial cells induces ferritinophagy in an NCOA4-dependent manner causing increased iron availability for UPEC, triggering bacterial overproliferation and host cell death. Addition of even moderate levels of iron is sufficient to increase and prolong bacterial burden. Furthermore, we show that lysosomal damage due to iron overload is the specific mechanism causing host cell death. Significantly, we demonstrate that host cell death and bacterial burden can be reversed by inhibition of autophagy or inhibition of iron-regulatory proteins, or chelation of iron. Together, our findings suggest that UPEC persist in host cells by taking advantage of ferritinophagy. Thus, modulation of iron levels in the bladder may provide a therapeutic avenue to controlling UPEC persistence, epithelial cell death, and recurrent UTIs. PMID:27002654

  14. Virulence and Fitness Determinants of Uropathogenic Escherichia coli

    PubMed Central

    Subashchandrabose, Sargurunathan; Mobley, Harry L T.

    2015-01-01

    Urinary tract infection (UTI) caused by uropathogenic Escherichia coli (UPEC) is a major global public health concern. Increasing antibiotic resistance found in clinical UPEC isolates underscores the immediate need for development of novel therapeutics against this pathogen. Better understanding of the fitness and virulence mechanisms that are integral to the pathogenesis of UTI will facilitate identification of novel strategies to prevent and treat infection with UPEC. Working towards that goal, the global UPEC research community has made great strides at unraveling various virulence and fitness genes. Here, we summarize major findings on virulence and fitness determinants that enable UPEC to successfully survive and colonize the urinary tract of mammalian hosts. Major sections of this chapter are devoted to the role of iron acquisition systems, metabolic pathways, fimbriae, flagella, toxins, biofilm formation, capsule, and strain-specific genes in the initiation and progression of UTIs. Transcriptomes of UPEC during experimental UTI in a murine model and naturally occurring UTI in women are compared to elucidate virulence mechanisms specifically involved in human UTI. Capitalizing on the advances in molecular pathogenesis research by translating these findings will help develop better clinical strategies for prevention and management of UTIs. PMID:26350328

  15. Biofilm and multidrug resistance in uropathogenic Escherichia coli

    PubMed Central

    Mittal, Seema; Sharma, Madhu; Chaudhary, Uma

    2015-01-01

    Context: Escherichia coli is known as causative agent of urinary tract infections (UTIs) tends to form microcolonies in mucosa lining of urinary bladder known as biofilm. These biofilms make the organism to resist the host immune response, more virulent and lead to the evolution of antibacterial drug resistance by enclosing them in an extracellular biochemical matrix. Aims: This study was done to know the association of various virulence factors and biofilm production in uropathogenic E. coli (UPEC) and antibiotic susceptibility pattern. Settings and design: This study was conducted in Pt. B.D. Sharma PGIMS, Rohtak, Haryana during a period of 1 year from January 2011 to December 2011. Methods and material: Biofilm was detected by microtiter plate (MTP) method, and various virulence factors like hemolysin, hemagglutination, gelatinase, siderophore production, serum resistance, and hydrophobicity were detected. The antibiotic susceptibility testing was done by modified Kirby-Bauer disk diffusion and the disk diffusion method was used to confirm the ESBL, AmpC, MBL production by the UPEC statistical analysis used: The data were analyzed by using SPSS version 17.0. A two-sided P-value of less than or equal to 0.05 was considered to be significant. Results: Biofilm production was found in 18 (13.5%) isolates, more commonly in females (two times). These isolates were found to be resistant to antibiotics common in use and were 100% MDR. Conclusions: Biofilm production makes the organism to be more resistant to antibiotics and virulent as compared to non-biofilm producers. PMID:25605466

  16. Virulence determinants of uropathogenic Escherichia coli and Proteus mirabilis.

    PubMed

    Mobley, H L; Island, M D; Massad, G

    1994-11-01

    The urinary tract is among the most common sites of bacterial infection and E. coli is by far the most common infecting agent. In patients with urinary catheters in place or structural abnormalities of the urinary tract, Proteus mirabilis is also a frequent isolate. To study virulence of these bacterial species, we have isolated the genes that encode putative virulence factors, constructed specific mutations within these genes, introduced the mutation back into the wild type strain by allelic exchange, and analyzed these mutants for virulence in appropriate in vitro and in vivo models. Specific virulence markers have been identified for strains that cause urinary tract infection. For E. coli, these include P fimbriae, S fimbriae, hemolysin, aerobactin, serum resistance, and a small group of O-serotypes. Redundant virulence factors must be present in these organisms as mutation of the most clearly identified epidemiological marker, P fimbriae, does not result in attenuation of a virulent strain. For P. mirabilis, urease appears to contribute most significantly to virulence. Fimbriae play a significant but more subtle role in colonization. Hemolysin, although potently cytotoxic to renal cells in vitro, does not appear to contribute significantly to the pathogenesis of ascending urinary tract infection. We can conclude that the pathogenesis of urinary tract infection and acute pyelonephritis caused by uropathogenic E. coli and P. mirabilis are multifactorial, as mutation of single genes rarely causes significant attenuation of virulence. PMID:7869662

  17. Prevalence and Persistence of Escherichia coli Strains with Uropathogenic Virulence Characteristics in Sewage Treatment Plants▿

    PubMed Central

    Anastasi, E. M.; Matthews, B.; Gundogdu, A.; Vollmerhausen, T. L.; Ramos, N. L.; Stratton, H.; Ahmed, W.; Katouli, M.

    2010-01-01

    We investigated the prevalence and persistence of Escherichia coli strains in four sewage treatment plants (STPs) in a subtropical region of Queensland, Australia. In all, 264 E. coli strains were typed using a high-resolution biochemical fingerprinting method and grouped into either a single or a common biochemical phenotype (S-BPT and C-BPT, respectively). These strains were also tested for their phylogenetic groups and 12 virulence genes associated with intestinal and extraintestinal E. coli strains. Comparison of BPTs at various treatment stages indicated that certain BPTs were found in two or all treatment stages. These BPTs constituted the highest proportion of E. coli strains in each STP and belonged mainly to phylogenetic group B2 and, to a lesser extent, group D. No virulence genes associated with intestinal E. coli were found among the strains, but 157 (59.5%) strains belonging to 14 C-BPTs carried one or more virulence genes associated with uropathogenic strains. Of these, 120 (76.4%) strains belonged to seven persistent C-BPTs and were found in all four STPs. Our results indicate that certain clonal groups of E. coli with virulence characteristics of uropathogenic strains can survive the treatment processes of STPs. These strains were common to all STPs and constituted the highest proportion of the strains in different treatment tanks of each STP. PMID:20622128

  18. P-fimbriated clones among uropathogenic Escherichia coli strains.

    PubMed Central

    Väisänen-Rhen, V; Elo, J; Väisänen, E; Siitonen, A; Orskov, I; Orskov, F; Svenson, S B; Mäkelä, P H; Korhonen, T K

    1984-01-01

    A total of 237 Escherichia coli strains isolated from the urine of patients with various forms of urinary tract infection or from feces of healthy children were analyzed for O group, possession of K1 capsule, type 1 fimbriae, P fimbriae, X adhesin, and production of hemolysin. Some of the strains were also analyzed for K and H antigens, outer membrane protein pattern, and plasmid content. P fimbriation, hemolysin production, and certain O groups were found to be significantly correlated with pyelonephritogenicity. Possession of type 1 fimbriae or of K1 capsule or plasmid content did not significantly correlate with virulence. Outer membrane protein patterns in 139 strains of the more common O groups were analyzed. Only one to three patterns, which varied between serotypes, were usually found within any one O group. Distinctive groups (clones) were found when the strains were grouped according to complete serotype, fimbriation, hemolysin production, and outer membrane protein pattern; also, the mean number of plasmids was typical of the strains in a given clone. Seven clones associated with pyelonephritis were found; together they accounted for 57% of the O serotypable strains from the pyelonephritis patients. The seven clones were P fimbriated but differed in their serotypes as follows: O1:K1:H7, O4:K12:H1, O4:K12:H5, O6:K2:H1, O16:K1:H6, or O18ac:K5:H7. All O1:K1:H7 strains observed fell into two clones according to the presence or absence of type 1 fimbriae and hemolysin production. One clone associated with cystitis was also found; this consisted of O6:K13:H1 strains lacking P fimbriae. Not a single representative of these eight clones was found among the fecal strains from the healthy children. They are proposed to represent virulent clones with special ability to cause human urinary tract infection. Images PMID:6140222

  19. In vitro activity of commercial probiotic Lactobacillus strains against uropathogenic Escherichia coli.

    PubMed

    Delley, Michèle; Bruttin, Anne; Richard, Michel; Affolter, Michael; Rezzonico, Enea; Brück, Wolfram M

    2015-07-01

    Urinary tract infection (UTI) is one of the most prevalent infections in humans. In ≥80% of cases, the etiologic agents are strains of uropathogenic Escherichia coli (UPEC), which commonly reside in the gastrointestinal tract. Lactobacilli have been shown to prevent UTI reoccurrence by restoring the urogenital microbiota when administered vaginally or orally. The goal of this study was to determine if commercial probiotic Lactobacillus spp. reduce or clear UPEC in vitro. Results show that it is likely that lactobacilli may, in addition to restoring a healthy urogenital microbiota through acidification of their environment, also displace adhering UPEC and cause a reduction of infection. PMID:26078118

  20. Modeling the inactivation of Escherichia coli 0157:H7 and uropathogenic E.coli in ground chicken by high pressure processing and thymol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disease causing Escherichia coli commonly found in meat and poultry include intestinal pathogenic E. coli (iPEC) as well as extraintestinal types such as the Uropathogenic E. coli (UPEC). In this study we compare the resistance of iPEC (O157:H7) to UPEC in chicken meat using High Pressure Processing...

  1. Genome of multidrug-resistant uropathogenic Escherichia coli strain NA114 from India.

    PubMed

    Avasthi, Tiruvayipati Suma; Kumar, Narender; Baddam, Ramani; Hussain, Arif; Nandanwar, Nishant; Jadhav, Savita; Ahmed, Niyaz

    2011-08-01

    Uropathogenic Escherichia coli (UPEC) causes serious infections in people at risk and has a significant environmental prevalence due to contamination by human and animal excreta. In developing countries, UPEC assumes importance in certain dwellings because of poor community/personal hygiene and exposure to contaminated water or soil. We report the complete genome sequence of E. coli strain NA114 from India, a UPEC strain with a multidrug resistance phenotype and the capacity to produce extended-spectrum beta-lactamase. The genome sequence and comparative genomics emanating from it will be significant in under-standing the genetic makeup of diverse UPEC strains and in boosting the development of new diagnostics/vaccines. PMID:21685291

  2. Crystal structure analysis of c4763, a uropathogenic Escherichia coli-specific protein.

    PubMed

    Kim, Hun; Choi, Jongkeun; Kim, Doyoun; Kim, Kyeong Kyu

    2015-08-01

    Urinary-tract infections (UTIs), which are some of the most common infectious diseases in humans, can cause sepsis and death without proper treatment. Therefore, it is necessary to understand their pathogenicity for proper diagnosis and therapeutics. Uropathogenic Escherichia coli, the major causative agents of UTIs, contain several genes that are absent in nonpathogenic strains and are therefore considered to be relevant to UTI pathogenicity. c4763 is one of the uropathogenic E. coli-specific proteins, but its function is unknown. To investigate the function of c4763 and its possible role in UTI pathogenicity, its crystal structure was determined at a resolution of 1.45 Å by a multiple-wavelength anomalous diffraction method. c4763 is a homodimer with 129 residues in one subunit that contains a GGCT-like domain with five α-helices and seven β-strands. c4763 shows structural similarity to the C-terminal domain of allophanate hydrolase from Kluyveromyces lactis, which is involved in the degradation of urea. These results suggest that c4763 might be involved in the utilization of urea, which is necessary for bacterial survival in the urinary tract. Further biochemical and physiological investigation will elucidate its functional relevance in UTIs. PMID:26249697

  3. Pathogenicity island sequences of pyelonephritogenic Escherichia coli CFT073 are associated with virulent uropathogenic strains.

    PubMed Central

    Kao, J S; Stucker, D M; Warren, J W; Mobley, H L

    1997-01-01

    Urinary tract infection is the most frequently diagnosed kidney and urologic disease, and Escherichia coli is by far the most common etiologic agent. Defined blocks of DNA termed pathogenicity islands have been found in uropathogenic strains to carry genes not generally found in fecal strains. We have identified one of these regions of DNA within the chromosome of the highly virulent E. coli CFT073, isolated from the blood and urine of a woman with acute pyelonephritis. This strain, which is cytotoxic for cultured renal cells and causes acute pyelonephritis in transurethrally infected CBA mice, contains two distinct copies of the pap operon and is hemolytic. One pap operon was localized on a cosmid clone which was used to identify three overlapping cosmid clones. By using restriction mapping, DNA hybridization, sequencing, and PCR amplification, a region of approximately 50 kb was found to be present in this uropathogenic strain and to have no corresponding sequences in E. coli K-12. This gene block also carries hemolysin genes hlyCABD. The pathogenicity island begins 7 bp downstream of dadX (catabolic alanine racemase; 26.55 min) and ends at a position in the K-12 genome 75 bp downstream of the metV tRNA gene (62.74 min); this suggests that a chromosomal rearrangement has occurred relative to the K-12 linkage map. The junctions of the pathogenicity island were verified by PCR amplification directly from the genomic DNA of strain CFT073. DNA sequencing within the boundaries of the junctions revealed genes not previously identified in E. coli or in some cases bearing no known homologs. When used as probes for DNA hybridization, these sequences were found significantly more often in strains associated with the clinical syndromes of cystitis (82%) and acute pyelonephritis (79%) than in fecal strains (19%; P < 0.001). PMID:9199454

  4. The RTX pore-forming toxin α-hemolysin of uropathogenic Escherichia coli: progress and perspectives

    PubMed Central

    Wiles, Travis J; Mulvey, Matthew A

    2013-01-01

    Members of the RTX family of protein toxins are functionally conserved among an assortment of bacterial pathogens. By disrupting host cell integrity through their pore-forming and cytolytic activities, this class of toxins allows pathogens to effectively tamper with normal host cell processes, promoting pathogenesis. Here, we focus on the biology of RTX toxins by describing salient properties of a prototype member, α-hemolysin, which is of ten encoded by strains of uropathogenic Escherichia coli. It has long been appreciated that RTX toxins can have distinct effects on host cells aside from outright lysis. Recently, advances in modeling and analysis of host–pathogen interactions have led to novel findings concerning the consequences of pore formation during host–pathogen interactions. We discuss current progress on longstanding questions concerning cell specificity and pore formation, new areas of investigation that involve toxin-mediated perturbations of host cell signaling cascades and perspectives on the future of RTX toxin investigation. PMID:23252494

  5. Escherichia coli Serotype O15:K52:H1 as a Uropathogenic Clone

    PubMed Central

    Prats, Guillem; Navarro, Ferran; Mirelis, Beatriz; Dalmau, David; Margall, Nuria; Coll, Pere; Stell, Adam; Johnson, James R.

    2000-01-01

    To clarify the clinical and bacteriological correlates of urinary-tract infection (UTI) due to Escherichia coli O15:K52:H1, during a 1-year surveillance period we prospectively screened all 1,871 significant E. coli urine isolates at the Hospital de la Santa Creu i Sant Pau, Barcelona, Spain, for this serotype and assessed the epidemiological features of community-acquired UTI due to E. coli O15:K52:H1 versus other E. coli serotypes. We also compared the 25 O15:K52:H1 UTI isolates from the present study with 22 O15:K52:H1 isolates from other, diverse geographic locales and with 23 standard control strains (8 strains from the ECOR reference collection and 15 strains of nonpathogenic O:K:H serotypes) with respect to multiple phenotypic and genotypic traits. Although E. coli O15:K52:H1 caused only 1.4% of community-acquired E. coli UTIs during the surveillance period, these UTIs were more likely to present as pyelonephritis and to occur in younger hosts, with similar risk factors, than were UTIs due to other E. coli serotypes. Irrespective of geographic origin, E. coli O15:K52:H1 strains exhibited a comparatively restricted repertoire of distinctive virulence factor profiles (typically, they were positive for papG allele II, papA allele F16, and aer and negative for sfa, afa, hly, and cnf1), biotypes, ribotypes, and amplotypes, consistent with a common clonal origin. In contrast, their antimicrobial resistance profiles were more extensive and more diverse than those of control strains. These findings indicate that E. coli O15:K52:H1 constitutes a broadly distributed and clinically significant uropathogenic clone with fluid antimicrobial resistance capabilities. PMID:10618088

  6. Characterization of a highly potent antimicrobial peptide microcin N from uropathogenic Escherichia coli.

    PubMed

    Kaur, Kamaljit; Tarassova, Oxana; Dangeti, Ramana Venkata; Azmi, Sarfuddin; Wishart, David; McMullen, Lynn; Stiles, Michael

    2016-06-01

    Microcin N is a low-molecular weight, highly active antimicrobial peptide produced by uropathogenic Escherichia coli In this study, the native peptide was expressed and purified from pGOB18 plasmid carrying E. coli in low yield. The pure peptide was characterized using mass spectrometry, N-terminal sequencing by Edman degradation as well as trypsin digestion. We found that the peptide is 74-residue long, cationic (+2 total charge), highly hydrophobic and consists of glycine as the first N-terminal residue. The minimum inhibitory concentration of the peptide against Salmonella enteritidis was found to be 150 nM. Evaluation of the solution conformation of the peptide using circular dichroism spectroscopy showed that the peptide is well folded in 40% trifluoroethanol with helical structure whereas the folded structure is lost in aqueous solution. To increase the yield of this potent peptide, we overexpressed GST-tagged microcin N using E. coli BL21. Recombinant GST-tagged microcin N was successfully expressed in E. coli BL21; however, the cleaved mature microcin N did not show activity against the indicator strain (S. enterica) most likely due to the extreme hydrophobic nature of the peptide. Efforts to produce active microcin N in large scale are discussed as this peptide has huge potential to be the next generation antimicrobial agent. PMID:27190283

  7. Relationship of biofilm formation and different virulence genes in uropathogenic Escherichia coli isolates from Northwest Iran

    PubMed Central

    Fattahi, Sargol; Kafil, Hossein Samadi; Nahai, Mohammad Reza; Asgharzadeh, Mohammad; Nori, Roghaya; Aghazadeh, Mohammad

    2015-01-01

    Background and objectives: The Escherichia coli (E. coli) bacterium is one of the main causative agents of urinary tract infections (UTI) worldwide. The ability of this bacterium to form biofilms on medical devices such as catheters plays an important role in the development of UTI. The aim of the present study was to investigate the possible relationship between virulence factors and biofilm formation of E. coli isolates responsible for urinary tract infection. Materials and methods: A total of 100 E. coli isolates isolated from patients with UTI were collected and characterized by routine bacteriological methods. In vitro biofilm formation by these isolates was determined using the 96-well microtiter-plate test, and the presence of fimA, papC, and hly virulence genes was examined by PCR assay. Data analysis was performed using SPSS 16.0 software. Results: From 100 E. coli isolates isolated from UTIs, 92% were shown to be biofilm positive. The genes papC, fimA, and hly were detected in 43%, 94% and 26% of isolates, respectively. Biofilm formation in isolates that expressed papC, fimA, and hly genes was 100%, 93%, and 100%, respectively. A significant relationship was found between presence of the papC gene and biofilm formation in E. coli isolates isolated from UTI (P<0.01), but there was no statistically significant correlation between presence of fimA and hly genes with biofilm formation (P<0.072, P<0.104). Conclusion: Results showed that fimA and hly genes do not seem to be necessary or sufficient for the production of biofilm in E. coli, but the presence of papC correlates with increased biofilm formation of urinary tract isolates. Overall, the presence of fimA, papC, and hly virulence genes coincides with in vitro biofilm formation in uropathogenic E. coli isolates. PMID:26213679

  8. Uropathogenic Escherichia coli strain CFT073 disrupts NLRP3 inflammasome activation.

    PubMed

    Waldhuber, Anna; Puthia, Manoj; Wieser, Andreas; Cirl, Christine; Dürr, Susanne; Neumann-Pfeifer, Silke; Albrecht, Simone; Römmler, Franziska; Müller, Tina; Zheng, Yunji; Schubert, Sören; Groß, Olaf; Svanborg, Catharina; Miethke, Thomas

    2016-07-01

    Successful bacterial pathogens produce an array of virulence factors that allow subversion of the immune system and persistence within the host. For example, uropathogenic Escherichia coli strains, such as CFT073, express Toll/IL-1 receptor-containing (TIR-containing) protein C (TcpC), which impairs TLR signaling, thereby suppressing innate immunity in the urinary tract and enhancing persistence in the kidneys. Here, we have reported that TcpC also reduces secretion of IL-1β by directly interacting with the NACHT leucin-rich repeat PYD protein 3 (NLRP3) inflammasome, which is crucial for recognition of pathogens within the cytosol. At a low MOI, IL-1β secretion was minimal in CFT073-infected macrophages; however, IL-1β release was markedly increased in macrophages infected with CFT073 lacking tcpC. Induction of IL-1β secretion by CFT073 and tcpC-deficient CFT073 required the NLRP3 inflammasome. TcpC attenuated activation of the NLRP3 inflammasome by binding both NLRP3 and caspase-1 and thereby preventing processing and activation of caspase-1. Moreover, in a murine urinary tract infection model, CFT073 infection rapidly induced expression of the NLRP3 inflammasome in the bladder mucosa; however, the presence of TcpC in WT CFT073 reduced IL-1β levels in the urine of infected mice. Together, these findings illustrate how uropathogenic E. coli use the multifunctional virulence factor TcpC to attenuate innate immune responses in the urinary tract. PMID:27214553

  9. Distribution of pathogenicity island markers in commensal and uropathogenic Escherichia coli isolates.

    PubMed

    Samei, Ali; Haghi, Fakhri; Zeighami, Habib

    2016-05-01

    Uropathogenic Escherichia coli (UPEC) isolates contain large genomic segments, termed pathogenicity islands (PAIs), that contribute to their virulence. A total of 150 UPEC and 50 commensal E. coli isolates from outpatients were investigated for antimicrobial susceptibility and the presence of eight PAI markers. One hundred ninety (95 %) isolates were resistant to one or more antimicrobial agents. The most frequent resistance found against amoxicillin (68 %), amoxicillin/clavulanic acid (55 %), aztreonam (50 %), trimethoprim/sulfamethoxazole (46 %) and tetracycline (43.5 %). Antimicrobial resistance among UPEC isolates was higher than that of commensals. PAI markers were detected in substantial percentage of commensal (88 %) and UPEC isolates (98.6 %) (P > 0.05). The most prevalent PAI marker among UPEC and commensal isolates was PAI IV536 (98.7 % UPEC vs. 84 % commensal). We found a high number of PAI markers such as PAI ICFT073, PAI IICFT073, PAI I536, PAI II536, PAI III536 and PAI IIJ96 significantly associated with UPEC. PAI III536 (21.3 %) and PAI IIJ96 (8 %) were detected only in the uropathogenic isolates. Several different combinations of PAIs were found among UPEC isolates. Comparison of PAIs among UPEC and commensal isolates showed that many UPEC isolates (79.3 %) carried two or more PAI markers, while 6 % of commensals had two PAI markers (P < 0.05). The most frequent combinations of PAI markers in UPEC isolates were PAI IV536 + PAI IICFT073 (18 %) and PAI IV536 + PAI ICFT073 + PAI IICFT073 (18 %). These results indicate that PAI markers are widespread among commensal and UPEC isolates and these commensal isolates may be reservoirs for transmission of these markers. PMID:26563230

  10. Innate immunity of surfactant proteins A and D in urinary tract infection with uropathogenic Escherichia coli

    PubMed Central

    Hu, Fengqi; Ding, Guohua; Zhang, Zhiyong; Gatto, Louis A.; Hawgood, Samuel; Poulain, Francis R.; Cooney, Robert N.; Wang, Guirong

    2015-01-01

    To investigate the effects of surfactant proteins A and D (SP-A, SP-D) in urinary tract infection (UTI), SP-A and SP-D double knockout (SP-A/D KO) and wild type (WT) C57BL/6 female mice were infected with uropathogenic Escherichia coli by intravesical inoculation. Compared with WT mice SP-A/D KO mice showed increased susceptibility to UTI as evidenced by higher bacterial CFU, more infiltrating neutrophils and severe pathological changes. Keratinocyte-derived chemokine increased in the kidney of WT mice but not in SP-A/D KO mice 24 h post-infection. Compared to control, level of IL-17 was elevated in the kidney of infected WT and SP-A/D KO mice and the level of IL-17 was higher in the infected SP-A/D KO mice than infected WT mice 24 and 48 h post-infection. Basal level of p38 MAPK phosphorylation in SP-A/D KO mice was higher compared to WT mice. Phosphorylated-p38 level was elevated in the kidney of WT mice post-infection but not in SP-A/D KO mice. Furthermore, in vitro growth of uropathogenic E. coli was inhibited by SP-A and SP-D. We conclude that SP-A and SP-D function as mediators of innate immunity by inhibiting bacterial growth and modulating renal inflammation in part by regulating p38 MAPK-related pathway in murine UTI. PMID:26511057

  11. Innate immunity of surfactant proteins A and D in urinary tract infection with uropathogenic Escherichia coli.

    PubMed

    Hu, Fengqi; Ding, Guohua; Zhang, Zhiyong; Gatto, Louis A; Hawgood, Samuel; Poulain, Francis R; Cooney, Robert N; Wang, Guirong

    2016-01-01

    To investigate the effects of surfactant proteins A and D (SP-A and SP-D, respectively) in urinary tract infection (UTI), SP-A and SP-D double knockout (SP-A/D KO) and wild type (WT) C57BL/6 female mice were infected with uropathogenic Escherichia coli by intravesical inoculation. Compared with WT mice SP-A/D KO mice showed increased susceptibility to UTI, as evidenced by higher bacterial CFU, more infiltrating neutrophils and severe pathological changes. Keratinocyte-derived chemokine increased in the kidney of WT mice but not in SP-A/D KO mice 24 h post-infection. Compared with control, the level of IL-17 was elevated in the kidney of infected WT and SP-A/D KO mice and the level of IL-17 was higher in the infected SP-A/D KO mice than in infected WT mice 24 and 48 h post-infection. The basal level of p38 MAPK phosphorylation in SP-A/D KO mice was higher than in WT mice. The phosphorylated p38 level was elevated in the kidney of WT mice post infection but not in SP-A/D KO mice. Furthermore, in vitro growth of uropathogenic E. coli was inhibited by SP-A and SP-D. We conclude that SP-A and SP-D function as mediators of innate immunity by inhibiting bacterial growth and modulating renal inflammation in part by regulating p38 MAPK-related pathway in murine UTI. PMID:26511057

  12. Tetracycline rapidly reaches all the constituent cells of uropathogenic Escherichia coli biofilms

    NASA Technical Reports Server (NTRS)

    Stone, G.; Wood, P.; Dixon, L.; Keyhan, M.; Matin, A.; Demain, A. L. (Principal Investigator)

    2002-01-01

    We have developed a method for visualizing Escherichia coli cells that are exposed to tetracycline in a biofilm, based on a previous report that liposomes containing the E. coli TetR(B) protein fluoresce when exposed to this antibiotic. By our method, cells devoid of TetR(B) also exhibited tetracycline-dependent fluorescence. At 50 microg of tetracycline ml(-1), planktonic cells of a uropathogenic E. coli (UPEC) strain developed maximal fluorescence after 7.5 to 10 min of exposure. A similar behavior was exhibited by cells in a 24- or 48-h UPEC biofilm, as examined by confocal laser microscopy, regardless of whether they lined empty spaces or occupied densely packed regions. Further, a comparison of phase-contrast and fluorescent images of corresponding biofilm zones showed that all the cells fluoresced. Thus, all the biofilm cells were exposed to tetracycline and there were no pockets within the biofilm where the antibiotic failed to reach. It also appeared unlikely that niches of reduced exposure to the antibiotic existed within the biofilms.

  13. Avian P1 antigens inhibit agglutination mediated by P fimbriae of uropathogenic Escherichia coli.

    PubMed Central

    Johnson, J R; Swanson, J L; Neill, M A

    1992-01-01

    Whole egg white from pigeon, dove, and cockatiel eggs, as well as the ovomucoid fraction of pigeon egg white, exhibited strong P1 antigenic activities and inhibited agglutination of human P1 erythrocytes and of digalactoside-coated latex beads by P-fimbriated Escherichia coli strains. In contrast, chicken egg white exhibited only weak P1 antigenic activity and had little impact on P-fimbrial agglutination. These preparations did not affect hemagglutination by E. coli strains expressing mannose-resistant adhesins other than P fimbriae, i.e., Dr, F1845, and S adhesins. Human anti-P1 serum diminished the P-fimbrial inhibitory activities of pigeon egg white and pigeon ovomucoid. Pigeon ovomucoid was equipotent on a molar basis with globoside, and the pigeon, dove, and cockatiel egg white preparations were equipotent with each other in P-fimbrial inhibition. Incubation of p erythrocytes in whole egg whites or in pigeon ovomucoid did not render them agglutinable by P-fimbriated bacteria, whereas incubation in globoside did. These data demonstrate that whole egg whites (and their ovomucoid fraction) from members of the families Columbidae (pigeons and doves) and Psittacidae (parrots) specifically and potently inhibit P-fimbrial agglutination, probably by providing P1 antigen as a receptor for the P-fimbrial adhesin. Avian egg white preparations may facilitate adhesin characterization of wild-type uropathogenic strains and may useful in preventing upper urinary tract infections due to P-fimbriated E. coli. PMID:1346125

  14. High prevalence of multidrug-resistance uropathogenic Escherichia coli strains, Isfahan, Iran

    PubMed Central

    Dehbanipour, Razieh; Rastaghi, Sedighe; Sedighi, Mansour; Maleki, Nafiseh; Faghri, Jamshid

    2016-01-01

    Background and Objectives: Urinary tract infection (UTI) is one of the most frequent infectious diseases and can occur in all age groups. Escherichia coli is the main cause of this infection. Multiple resistances to antimicrobial agents are increasing quickly in E. coli isolates and may complicate therapeutic strategies for UTI. The aim of this study was to determine the antibiotic resistance pattern and the multidrug-resistance (MDR) phenotypes in uropathogenic E. coli (UPEC). Materials and Methods: A total of 135 UPEC isolates were collected from both outpatients (91 isolates) and inpatients (44 isolates) between September, 2012 and February, 2013. In order to determine the MDR among UPEC isolates, we have tested 15 antimicrobial agents and antibiotic susceptibility was done by Kirby-Bauer disk diffusion method. Results: The percentage of MDR isolates (resistant to at least three drug classes such as aminoglycosides, fluoroquinolones, penicillins, cephalosporins, or carbapenems) was 68% in the inpatients and 61% in the outpatients. Antibiotic resistance to ampicillin, ceftazidim, nalidixic acid, and trimethoprim/sulfamethoxazole were higher than 50%. Amikacin, nitrofurantoin, and gentamicin showed markedly greater activity (89.1%, 85.9%, and 82.4% sensitivity, respectively) than other antimicrobial agents. Resistance to meropenem did show either in outpatients or in inpatients. Interpretation and Conclusions: The high prevalence of drug resistance among UTI patients calls for continuous monitoring of the incidence of drug resistance for appropriate empiric selection of antibiotic therapy. Empirical treatment of UTIs should be relied on susceptibility patterns from local studies. PMID:27003964

  15. Identification of Type 3 Fimbriae in Uropathogenic Escherichia coli Reveals a Role in Biofilm Formation▿

    PubMed Central

    Ong, Cheryl-Lynn Y.; Ulett, Glen C.; Mabbett, Amanda N.; Beatson, Scott A.; Webb, Richard I.; Monaghan, Wayne; Nimmo, Graeme R.; Looke, David F.; McEwan, Alastair G.; Schembri, Mark A.

    2008-01-01

    Catheter-associated urinary tract infection (CAUTI) is the most common nosocomial infection in the United States. Uropathogenic Escherichia coli (UPEC), the most common cause of CAUTI, can form biofilms on indwelling catheters. Here, we identify and characterize novel factors that affect biofilm formation by UPEC strains that cause CAUTI. Sixty-five CAUTI UPEC isolates were characterized for phenotypic markers of urovirulence, including agglutination and biofilm formation. One isolate, E. coli MS2027, was uniquely proficient at biofilm growth despite the absence of adhesins known to promote this phenotype. Mini-Tn5 mutagenesis of E. coli MS2027 identified several mutants with altered biofilm growth. Mutants containing insertions in genes involved in O antigen synthesis (rmlC and manB) and capsule synthesis (kpsM) possessed enhanced biofilm phenotypes. Three independent mutants deficient in biofilm growth contained an insertion in a gene locus homologous to the type 3 chaperone-usher class fimbrial genes of Klebsiella pneumoniae. These type 3 fimbrial genes (mrkABCDF), which were located on a conjugative plasmid, were cloned from E. coli MS2027 and could complement the biofilm-deficient transconjugants when reintroduced on a plasmid. Primers targeting the mrkB chaperone-encoding gene revealed its presence in CAUTI strains of Citrobacter koseri, Citrobacter freundii, Klebsiella pneumoniae, and Klebsiella oxytoca. All of these mrkB-positive strains caused type 3 fimbria-specific agglutination of tannic acid-treated red blood cells. This is the first description of type 3 fimbriae in E. coli, C. koseri, and C. freundii. Our data suggest that type 3 fimbriae may contribute to biofilm formation by different gram-negative nosocomial pathogens. PMID:18055599

  16. Cranberry (Vaccinium macrocarpon) oligosaccharides decrease biofilm formation by uropathogenic Escherichia coli

    PubMed Central

    Sun, Jiadong; Marais, Jannie P. J.; Khoo, Christina; LaPlante, Kerry; Vejborg, Rebecca M.; Givskov, Michael; Tolker-Nielsen, Tim; Seeram, Navindra P.; Rowley, David C.

    2015-01-01

    The preventive effects of the American cranberry (Vaccinium macrocarpon) against urinary tract infections are supported by extensive studies which have primarily focused on its phenolic constituents. Herein, a phenolic-free carbohydrate fraction (designated cranf1b-F2) was purified from cranberry fruit using ion exchange and size exclusion chromatography. MALDI-TOF-MS analysis revealed that the cranf1b-F2 constituents are predominantly oligosaccharides possessing various degrees of polymerisation and further structural analysis (by GC-MS and NMR) revealed mainly xyloglucan and arabinan residues. In antimicrobial assays, cranf1b-F2 (at 1.25 mg/mL concentration) reduced biofilm production by the uropathogenic Escherichia coli CFT073 strain by over 50% but did not inhibit bacterial growth. Cranf1b-F2 (ranging from 0.625 - 10 mg/mL) also inhibited biofilm formation of the non-pathogenic E. coli MG1655 strain up to 60% in a concentration-dependent manner. These results suggest that cranberry oligosaccharides, in addition to its phenolic constituents, may play a role in its preventive effects against urinary tract infections. PMID:26613004

  17. Environmental phosphate differentially affects virulence phenotypes of uropathogenic Escherichia coli isolates causative of prostatitis.

    PubMed

    Grillo-Puertas, M; Martínez-Zamora, M G; Rintoul, M R; Soto, S M; Rapisarda, V A

    2015-01-01

    K-12 Escherichia coli cells grown in static media containing a critical phosphate (Pi) concentration ≥25 mM maintained a high polyphosphate (polyP) level in stationary phase, impairing biofilm formation, a phenomenon that is triggered by polyP degradation. Pi concentration in human urine fluctuates according to health state. Here, the influence of environmental Pi concentration on the occurrence of virulence traits in uropathogenic E. coli (UPEC) isolated from acute prostatitis patients was evaluated. After a first screening, 3 isolates were selected according to differential biofilm formation profiles depending on media Pi concentration. For each isolate, biofilm positive and negative conditions were established. Regardless of the isolate, biofilm formation capacity was accompanied with curli and cellulose production and expression of some key virulence factors associated with adhesion. When the selected isolates were grown in their non-biofilm-forming condition, low concentrations of nalidixic acid and ciprofloxacin induced biofilm formation. Interestingly, similar to laboratory strains, polyP degradation induced biofilm formation in the selected isolates. Data demonstrated the complexity of UPEC responses to environmental Pi and the importance of polyP metabolism in the virulence of clinical isolates. PMID:26083279

  18. YbcL of Uropathogenic Escherichia coli Suppresses Transepithelial Neutrophil Migration

    PubMed Central

    Lau, Megan E.; Loughman, Jennifer A.

    2012-01-01

    Uropathogenic Escherichia coli (UPEC) strains suppress the acute inflammatory response in the urinary tract to ensure access to the intracellular uroepithelial niche that supports the propagation of infection. Our understanding of this initial cross talk between host and pathogen is incomplete. Here we report the identification of a previously uncharacterized periplasmic protein, YbcL, encoded by UPEC that contributes to immune modulation in the urinary tract by suppressing acute neutrophil migration. In contrast to wild-type UPEC, an isogenic strain lacking ybcL expression (UTI89 ΔybcL) failed to suppress transepithelial polymorphonuclear leukocyte (PMN) migration in vitro, a defect complemented by expressing ybcL episomally. YbcL homologs are present in many E. coli genomes; expression of the YbcL variant encoded by nonpathogenic E. coli K-12 strain MG1655 (YbcLMG) failed to complement the UTI89 ΔybcL defect, whereas expression of the UPEC YbcL variant (YbcLUTI) in MG1655 conferred the capacity for suppressing PMN migration. This phenotypic difference was due to a single amino acid difference (V78T) between the two YbcL homologs, and a majority of clinical UPEC strains examined were found to encode the suppressive YbcL variant. Purified YbcLUTI protein suppressed PMN migration in response to live or killed MG1655, and YbcLUTI was detected in the supernatant during UPEC infection of bladder epithelial cells or PMNs. Lastly, early PMN influx to murine bladder tissue was augmented upon in vivo infection with UTI89 ΔybcL compared with wild-type UPEC. Our findings demonstrate a role for UPEC YbcL in suppression of the innate immune response during urinary tract infection. PMID:22966043

  19. Medicinal plants extracts affect virulence factors expression and biofilm formation by the uropathogenic Escherichia coli.

    PubMed

    Wojnicz, Dorota; Kucharska, Alicja Z; Sokół-Łętowska, Anna; Kicia, Marta; Tichaczek-Goska, Dorota

    2012-12-01

    Medicinal plants are an important source for the therapeutic remedies of various diseases including urinary tract infections. This prompted us to perform research in this area. We decided to focus on medicinal plants species used in urinary tract infections prevention. The aim of our study was to determine the influence of Betula pendula, Equisetum arvense, Herniaria glabra, Galium odoratum, Urtica dioica, and Vaccinium vitis-idaea extracts on bacterial survival and virulence factors involved in tissue colonization and biofilm formation of the uropathogenic Escherichia coli rods. Qualitative and quantitative analysis of plant extracts were performed. Antimicrobial assay relied on the estimation of the colony forming unit number. Hydrophobicity of cells was established by salt aggregation test. Using motility agar, the ability of bacteria to move was examined. The erythrocyte hemagglutination test was used for fimbriae P screening. Curli expression was determined using YESCA agar supplemented with congo red. Quantification of biofilm formation was carried out using a microtiter plate assay and a spectrophotometric method. The results of the study indicate significant differences between investigated extracts in their antimicrobial activities. The extracts of H. glabra and V. vitis-idaea showed the highest growth-inhibitory effects (p < 0.05). Surface hydrophobicity of autoaggregating E. coli strain changed after exposure to all plant extracts, except V. vitis-idaea (p > 0.05). The B. pendula and U. dioica extracts significantly reduced the motility of the E. coli rods (p < 0.05). All the extracts exhibited the anti-biofilm activity. PMID:22915095

  20. A High-resolution Typing Assay for Uropathogenic Escherichia coli Based on Fimbrial Diversity

    PubMed Central

    Ren, Yi; Palusiak, Agata; Wang, Wei; Wang, Yi; Li, Xiao; Wei, Huiting; Kong, Qingke; Rozalski, Antoni; Yao, Zhi; Wang, Quan

    2016-01-01

    Urinary tract infections (UTIs) are one of the most common bacterial infections in humans, causing cystitis, pyelonephritis, and renal failure. Uropathogenic Escherichia coli (UPEC) is the leading cause of UTIs. Accurate and rapid discrimination of UPEC lineages is useful for epidemiological surveillance. Fimbriae are necessary for the adherence of UPEC strains to host uroepithelia, and seem to be abundant and diverse in UPEC strains. By analyzing all the possible fimbrial operons in UPEC strains, we found that closely related strains had similar types of chaperone-usher fimbriae, and the diversity of fimbrial genes was higher than that of multilocus sequence typing (MLST) genes. A typing assay based on the polymorphism of four gene sequences (three fimbrial genes and one housekeeping gene) and the diversity of fimbriae present was developed. By comparison with the MLST, whole-genome sequence (WGS) and fumC/fimH typing methods, this was shown to be accurate and have high resolution, and it was also relatively inexpensive and easy to perform. The assay can supply more discriminatory information for UPEC lineages, and have the potential to be applied in epidemiological surveillance of UPEC isolates. PMID:27199951

  1. Histone Deacetylase 6 Regulates Bladder Architecture and Host Susceptibility to Uropathogenic Escherichia coli

    PubMed Central

    Lewis, Adam J.; Dhakal, Bijaya K.; Liu, Ting; Mulvey, Matthew A.

    2016-01-01

    Histone deacetylase 6 (HDAC6) is a non-canonical, mostly cytosolic histone deacetylase that has a variety of interacting partners and substrates. Previous work using cell-culture based assays coupled with pharmacological inhibitors and gene-silencing approaches indicated that HDAC6 promotes the actin- and microtubule-dependent invasion of host cells by uropathogenic Escherichia coli (UPEC). These facultative intracellular pathogens are the major cause of urinary tract infections. Here, we examined the involvement of HDAC6 in bladder colonization by UPEC using HDAC6 knockout mice. Though UPEC was unable to invade HDAC6−/− cells in culture, the bacteria had an enhanced ability to colonize the bladders of mice that lacked HDAC6. This effect was transient, and by six hours post-inoculation bacterial titers in the HDAC6−/− mice were reduced to levels seen in wild type control animals. Subsequent analyses revealed that the mutant mice had greater bladder volume capacity and fluid retention, along with much higher levels of acetylated α-tubulin. In addition, infiltrating neutrophils recovered from the HDAC6−/− bladder harbored significantly more viable bacteria than their wild type counterparts. Cumulatively, these changes may negate any inhibitory effects that the lack of HDAC6 has on UPEC entry into individual host cells, and suggest roles for HDAC6 in other urological disorders such as urinary retention. PMID:26907353

  2. Subinhibitory Concentrations of Allicin Decrease Uropathogenic Escherichia coli (UPEC) Biofilm Formation, Adhesion Ability, and Swimming Motility.

    PubMed

    Yang, Xiaolong; Sha, Kaihui; Xu, Guangya; Tian, Hanwen; Wang, Xiaoying; Chen, Shanze; Wang, Yi; Li, Jingyu; Chen, Junli; Huang, Ning

    2016-01-01

    Uropathogenic Escherichia coli (UPEC) biofilm formation enables the organism to avoid the host immune system, resist antibiotics, and provide a reservoir for persistent infection. Once the biofilm is established, eradication of the infection becomes difficult. Therefore, strategies against UPEC biofilm are urgently required. In this study, we investigated the effect of allicin, isolated from garlic essential oil, on UPEC CFT073 and J96 biofilm formation and dispersal, along with its effect on UPEC adhesion ability and swimming motility. Sub-inhibitory concentrations (sub-MICs) of allicin decreased UPEC biofilm formation and affected its architecture. Allicin was also capable of dispersing biofilm. Furthermore, allicin decreased the bacterial adhesion ability and swimming motility, which are important for biofilm formation. Real-time quantitative polymerase chain reaction (RT-qPCR) revealed that allicin decreased the expression of UPEC type 1 fimbriae adhesin gene fimH. Docking studies suggested that allicin was located within the binding pocket of heptyl α-d-mannopyrannoside in FimH and formed hydrogen bonds with Phe1 and Asn135. In addition, allicin decreased the expression of the two-component regulatory systems (TCSs) cognate response regulator gene uvrY and increased the expression of the RNA binding global regulatory protein gene csrA of UPEC CFT073, which is associated with UPEC biofilm. The findings suggest that sub-MICs of allicin are capable of affecting UPEC biofilm formation and dispersal, and decreasing UPEC adhesion ability and swimming motility. PMID:27367677

  3. Subinhibitory Concentrations of Allicin Decrease Uropathogenic Escherichia coli (UPEC) Biofilm Formation, Adhesion Ability, and Swimming Motility

    PubMed Central

    Yang, Xiaolong; Sha, Kaihui; Xu, Guangya; Tian, Hanwen; Wang, Xiaoying; Chen, Shanze; Wang, Yi; Li, Jingyu; Chen, Junli; Huang, Ning

    2016-01-01

    Uropathogenic Escherichia coli (UPEC) biofilm formation enables the organism to avoid the host immune system, resist antibiotics, and provide a reservoir for persistent infection. Once the biofilm is established, eradication of the infection becomes difficult. Therefore, strategies against UPEC biofilm are urgently required. In this study, we investigated the effect of allicin, isolated from garlic essential oil, on UPEC CFT073 and J96 biofilm formation and dispersal, along with its effect on UPEC adhesion ability and swimming motility. Sub-inhibitory concentrations (sub-MICs) of allicin decreased UPEC biofilm formation and affected its architecture. Allicin was also capable of dispersing biofilm. Furthermore, allicin decreased the bacterial adhesion ability and swimming motility, which are important for biofilm formation. Real-time quantitative polymerase chain reaction (RT-qPCR) revealed that allicin decreased the expression of UPEC type 1 fimbriae adhesin gene fimH. Docking studies suggested that allicin was located within the binding pocket of heptyl α-d-mannopyrannoside in FimH and formed hydrogen bonds with Phe1 and Asn135. In addition, allicin decreased the expression of the two-component regulatory systems (TCSs) cognate response regulator gene uvrY and increased the expression of the RNA binding global regulatory protein gene csrA of UPEC CFT073, which is associated with UPEC biofilm. The findings suggest that sub-MICs of allicin are capable of affecting UPEC biofilm formation and dispersal, and decreasing UPEC adhesion ability and swimming motility. PMID:27367677

  4. Waging War against Uropathogenic Escherichia coli: Winning Back the Urinary Tract▿

    PubMed Central

    Sivick, Kelsey E.; Mobley, Harry L. T.

    2010-01-01

    Urinary tract infection (UTI) caused by uropathogenic Escherichia coli (UPEC) is a substantial economic and societal burden—a formidable public health issue. Symptomatic UTI causes significant discomfort in infected patients, results in lost productivity, predisposes individuals to more serious infections, and usually necessitates antibiotic therapy. There is no licensed vaccine available for prevention of UTI in humans in the United States, likely due to the challenge of targeting a relatively heterogeneous group of pathogenic strains in a unique physiological niche. Despite significant advances in the understanding of UPEC biology, mechanistic details regarding the host response to UTI and full comprehension of genetic loci that influence susceptibility require additional work. Currently, there is an appreciation for the role of classic innate immune responses—from pattern receptor recognition to recruitment of phagocytic cells—that occur during UPEC-mediated UTI. There is, however, a clear disconnect regarding how factors involved in the innate immune response to UPEC stimulate acquired immunity that facilitates enhanced clearance upon reinfection. Unraveling the molecular details of this process is vital in the development of a successful vaccine for prevention of human UTI. Here, we survey the current understanding of host responses to UPEC-mediated UTI with an eye on molecular and cellular factors whose activity may be harnessed by a vaccine that stimulates lasting and sterilizing immunity. PMID:19917708

  5. Uropathogenic Escherichia coli virulence genes: invaluable approaches for designing DNA microarray probes

    PubMed Central

    Jahandeh, Nadia; Ranjbar, Reza; Behzadi, Elham

    2015-01-01

    Introduction The pathotypes of uropathogenic Escherichia coli (UPEC) cause different types of urinary tract infections (UTIs). The presence of a wide range of virulence genes in UPEC enables us to design appropriate DNA microarray probes. These probes, which are used in DNA microarray technology, provide us with an accurate and rapid diagnosis and definitive treatment in association with UTIs caused by UPEC pathotypes. The main goal of this article is to introduce the UPEC virulence genes as invaluable approaches for designing DNA microarray probes. Material and methods Main search engines such as Google Scholar and databases like NCBI were searched to find and study several original pieces of literature, review articles, and DNA gene sequences. In parallel with in silico studies, the experiences of the authors were helpful for selecting appropriate sources and writing this review article. Results There is a significant variety of virulence genes among UPEC strains. The DNA sequences of virulence genes are fabulous patterns for designing microarray probes. The location of virulence genes and their sequence lengths influence the quality of probes. Conclusions The use of selected virulence genes for designing microarray probes gives us a wide range of choices from which the best probe candidates can be chosen. DNA microarray technology provides us with an accurate, rapid, cost-effective, sensitive, and specific molecular diagnostic method which is facilitated by designing microarray probes. Via these tools, we are able to have an accurate diagnosis and a definitive treatment regarding UTIs caused by UPEC pathotypes. PMID:26855801

  6. Hepcidin as a Major Component of Renal Antibacterial Defenses against Uropathogenic Escherichia coli.

    PubMed

    Houamel, Dounia; Ducrot, Nicolas; Lefebvre, Thibaud; Daher, Raed; Moulouel, Boualem; Sari, Marie-Agnes; Letteron, Philippe; Lyoumi, Said; Millot, Sarah; Tourret, Jerome; Bouvet, Odile; Vaulont, Sophie; Vandewalle, Alain; Denamur, Erick; Puy, Hervé; Beaumont, Carole; Gouya, Laurent; Karim, Zoubida

    2016-03-01

    The iron-regulatory peptide hepcidin exhibits antimicrobial activity. Having previously shown hepcidin expression in the kidney, we addressed its role in urinary tract infection (UTI), which remains largely unknown. Experimental UTI was induced in wild-type (WT) and hepcidin-knockout (Hepc-/-) mice using the uropathogenic Escherichia coli CFT073 strain. Compared with infected WT mice, infected Hepc-/- mice showed a dramatic increase in renal bacterial load. Moreover, bacterial invasion was significantly dampened by the pretreatment of WT mice with hepcidin. Infected Hepc-/- mice exhibited decreased iron accumulation in the renal medulla and significant attenuation of the renal inflammatory response. Notably, we demonstrated in vitro bacteriostatic activity of hepcidin against CFT073. Furthermore, CFT073 repressed renal hepcidin, both in vivo and in cultured renal cells, and reduced phosphorylation of SMAD kinase in vivo, suggesting a bacterial strategy to escape the antimicrobial activities of hepcidin. In conclusion, we provide new mechanisms by which hepcidin contributes to renal host defense and suggest that targeting hepcidin offers a strategy to prevent bacterial invasion. PMID:26293821

  7. Human Milk Oligosaccharides Protect Bladder Epithelial Cells Against Uropathogenic Escherichia coli Invasion and Cytotoxicity

    PubMed Central

    Lin, Ann E.; Autran, Chloe A.; Espanola, Sophia D.; Bode, Lars; Nizet, Victor

    2014-01-01

    The invasive pathogen uropathogenic Escherichia coli (UPEC) is the primary cause of urinary tract infections (UTIs). Recurrent infection that can progress to life-threatening renal failure has remained as a serious global health concern in infants. UPEC adheres to and invades bladder epithelial cells to establish infection. Studies have detected the presence of human milk oligosaccharides (HMOs) in urine of breast-fed, but not formula-fed, neonates. We investigated the mechanisms HMOs deploy to elicit protection in human bladder epithelial cells infected with UPEC CFT073, a prototypic urosepsis-associated strain. We found a significant reduction in UPEC internalization into HMO-pretreated epithelial cells without observing any significant effect in UPEC binding to these cells. This event coincides with a rapid decrease in host cell cytotoxicity, recognized by LIVE/DEAD staining and cell detachment, but independent of caspase-mediated or mitochondrial-mediated programmed cell death pathways. Further investigation revealed HMOs, and particularly the sialic acid-containing fraction, reduced UPEC-mediated MAPK and NF-κB activation. Collectively, our results indicate that HMOs can protect bladder epithelial cells from deleterious cytotoxic and proinflammatory effects of UPEC infection, and may be one contributing mechanism underlying the epidemiological evidence of reduced UTI incidence in breast-fed infants. PMID:23990566

  8. High metabolic potential may contribute to the success of ST131 uropathogenic Escherichia coli.

    PubMed

    Gibreel, Tarek M; Dodgson, Andrew R; Cheesbrough, John; Bolton, Frederick J; Fox, Andrew J; Upton, Mathew

    2012-10-01

    Uropathogenic Escherichia coli (UPEC) is the predominant cause of urinary tract infection in both hospital and community settings. The recent emergence of multidrug-resistant clones like the O25b:H4-ST131 lineage represents a significant threat to health, and numerous studies have explored the virulence potential of these organisms. Members of the ST131 clone have been described as having variable carriage of key virulence factors, and it has been suggested that additional unidentified factors contribute to virulence. Here we demonstrated that ST131 isolates have high metabolic potential and biochemical profiles that distinguish them from isolates of many other sequence types (STs). A collection of 300 UPEC isolates recovered in 2007 and 2009 in the Northwest region of England were subjected to metabolic profiling using the Vitek2 Advanced Expert System (AES). Of the 47 tests carried out, 30 gave a positive result with at least one of the 300 isolates examined. ST131 isolates demonstrated significant association with eight tests, including those for peptidase, decarboxylase, and alkalinization activity. Metabolic activity also correlated with antibiotic susceptibility profiles, with resistant organisms displaying the highest metabolic potential. This is the first comprehensive study of metabolic potential in the ST131 lineage, and we suggest that high metabolic potential may have contributed to the fitness of members of the ST131 clone, which are able to exploit the available nutrients in both the intestinal and urinary tract environments. PMID:22814460

  9. A High-resolution Typing Assay for Uropathogenic Escherichia coli Based on Fimbrial Diversity.

    PubMed

    Ren, Yi; Palusiak, Agata; Wang, Wei; Wang, Yi; Li, Xiao; Wei, Huiting; Kong, Qingke; Rozalski, Antoni; Yao, Zhi; Wang, Quan

    2016-01-01

    Urinary tract infections (UTIs) are one of the most common bacterial infections in humans, causing cystitis, pyelonephritis, and renal failure. Uropathogenic Escherichia coli (UPEC) is the leading cause of UTIs. Accurate and rapid discrimination of UPEC lineages is useful for epidemiological surveillance. Fimbriae are necessary for the adherence of UPEC strains to host uroepithelia, and seem to be abundant and diverse in UPEC strains. By analyzing all the possible fimbrial operons in UPEC strains, we found that closely related strains had similar types of chaperone-usher fimbriae, and the diversity of fimbrial genes was higher than that of multilocus sequence typing (MLST) genes. A typing assay based on the polymorphism of four gene sequences (three fimbrial genes and one housekeeping gene) and the diversity of fimbriae present was developed. By comparison with the MLST, whole-genome sequence (WGS) and fumC/fimH typing methods, this was shown to be accurate and have high resolution, and it was also relatively inexpensive and easy to perform. The assay can supply more discriminatory information for UPEC lineages, and have the potential to be applied in epidemiological surveillance of UPEC isolates. PMID:27199951

  10. FNR Regulates Expression of Important Virulence Factors Contributing to Pathogenicity of Uropathogenic Escherichia coli

    PubMed Central

    Barbieri, Nicolle L.; Nicholson, Bryon; Hussein, Ashraf; Cai, Wentong; Wannemuehler, Yvonne M.; Dell'Anna, Giuseppe; Logue, Catherine M.; Horn, Fabiana; Nolan, Lisa K.

    2014-01-01

    Uropathogenic Escherichia coli (UPEC) is responsible for the majority of urinary tract infections (UTIs), which are some of the world's most common bacterial infections of humans. Here, we examined the role of FNR (fumarate and nitrate reduction), a well-known global regulator, in the pathogenesis of UPEC infections. We constructed an fnr deletion mutant of UPEC CFT073 and compared it to the wild type for changes in virulence, adherence, invasion, and expression of key virulence factors. Compared to the wild type, the fnr mutant was highly attenuated in the mouse model of human UTI and showed severe defects in adherence to and invasion of bladder and kidney epithelial cells. Our results showed that FNR regulates motility and multiple virulence factors, including expression of type I and P fimbriae, modulation of hemolysin expression, and expression of a novel pathogenicity island involved in α-ketoglutarate metabolism under anaerobic conditions. Our results demonstrate that FNR is a key global regulator of UPEC virulence and controls expression of important virulence factors that contribute to UPEC pathogenicity. PMID:25245807

  11. DamX Controls Reversible Cell Morphology Switching in Uropathogenic Escherichia coli

    PubMed Central

    Khandige, Surabhi; Asferg, Cecilie Antoinette; Rasmussen, Karina Juhl; Larsen, Martin Jakob; Overgaard, Martin

    2016-01-01

    ABSTRACT The ability to change cell morphology is an advantageous characteristic adopted by multiple pathogenic bacteria in order to evade host immune detection and assault during infection. Uropathogenic Escherichia coli (UPEC) exhibits such cellular dynamics and has been shown to transition through a series of distinct morphological phenotypes during a urinary tract infection. Here, we report the first systematic spatio-temporal gene expression analysis of the UPEC transition through these phenotypes by using a flow chamber-based in vitro infection model that simulates conditions in the bladder. This analysis revealed a novel association between the cell division gene damX and reversible UPEC filamentation. We demonstrate a lack of reversible bacterial filamentation in a damX deletion mutant in vitro and absence of a filamentous response by this mutant in a murine model of cystitis. While deletion of damX abrogated UPEC filamentation and secondary surface colonization in tissue culture and in mouse infections, transient overexpression of damX resulted in reversible UPEC filamentation. In this study, we identify a hitherto-unknown damX-mediated mechanism underlying UPEC morphotypical switching. Murine infection studies showed that DamX is essential for establishment of a robust urinary tract infection, thus emphasizing its role as a mediator of virulence. Our study demonstrates the value of an in vitro methodology, in which uroepithelium infection is closely simulated, when undertaking targeted investigations that are challenging to perform in animal infection models. PMID:27486187

  12. Identification of Anti-Persister Activity against Uropathogenic Escherichia coli from a Clinical Drug Library.

    PubMed

    Niu, Hongxia; Cui, Peng; Shi, Wanliang; Zhang, Shuo; Feng, Jie; Wang, Yong; Sullivan, David; Zhang, Wenhong; Zhu, Bingdong; Zhang, Ying

    2015-01-01

    Uropathogenic E. coli is a major cause of urinary tract infections (UTIs), but current antibiotics do not always effectively clear the persistent infection. To identify drugs that eliminate uropathogenic E. coli persisters, we screened a clinical drug library consisting of 1524 compounds using high throughput drug exposure assay in 96-well plates. Bacterial survival was assessed by growth on LB plates. We identified 14 drug candidates (tosufloxacin, colistin, sparfloxacin, moxifloxacin and gatifloxacin, enrofloxacin and sarafloxacin, octodrine, clofoctol, dibekacin, cephalosporin C, pazufloxacin, streptomycin and neomycin), which had high anti-persister activity. Among them, tosufloxacin and colistin had the highest anti-persister activity and could completely eradicate E. coli persisters in 3 days in vitro while the current UTI antibiotics failed to do so. Our findings may have implications for the development of a more effective treatment for UTIs. PMID:27025620

  13. MOLECULAR CHARACTERIZATION OF VIRULENCE AND ANTIMICROBIAL SUSCEPTIBILITY PROFILES OF UROPATHOGENIC ESCHERICHIA COLI FROM PATIENTS IN A TERTIARY HOSPITAL, SOUTHERN THAILAND.

    PubMed

    Themphachanal, Monchanok; Kongpheng, Suttiporn; Rattanachuay, Pattamarat; Khianngam, Saowapar; Singkhamanan, Kamonnut; Sukhumungoon, Pharanai

    2015-11-01

    Among uropathogens, uropathogenic Escherichia coli (UPEC) is the most common cause of urinary tract infection (UTI) worldwide, but clinical aspects due to this bacterial species is not fully understood in southern Thailand. Two hundred fifty-four UPEC isolates from patients admitted to Maharaj Nakhon Si Thammarat Hospital, southern Thailand were examined for crucial virulence genes, showing that 33.5% contained at least one of the virulence, genes tested. Genes encoding P fimbria, cytotoxic necrotizing factor-1 and α-hemolysin constituted the majority (15.8%) carried by UPEC isolates. Phylogenetic group classification revealed that 57.5% of UPEC belonged to group D. Antimicrobial susceptibility tests showed that 70.5% and 65.1% of the isolates were resistant to ciprofloxacin and norfloxacin, respectively. Moreover, 50.0% of UPEC were capable of producing extended spectrum beta-lactamases. These findings should be of benefit for more appropriate treatment of UTI patients in this region of Thailand. Keywords: uropathogenic Escherichia coli, antibiotics resistance, cnfl, hlyA, pap, Thailand PMID:26867360

  14. Temperature Control of Fimbriation Circuit Switch in Uropathogenic Escherichia coli: Quantitative Analysis via Automated Model Abstraction

    PubMed Central

    Kuwahara, Hiroyuki; Myers, Chris J.; Samoilov, Michael S.

    2010-01-01

    Uropathogenic Escherichia coli (UPEC) represent the predominant cause of urinary tract infections (UTIs). A key UPEC molecular virulence mechanism is type 1 fimbriae, whose expression is controlled by the orientation of an invertible chromosomal DNA element—the fim switch. Temperature has been shown to act as a major regulator of fim switching behavior and is overall an important indicator as well as functional feature of many urologic diseases, including UPEC host-pathogen interaction dynamics. Given this panoptic physiological role of temperature during UTI progression and notable empirical challenges to its direct in vivo studies, in silico modeling of corresponding biochemical and biophysical mechanisms essential to UPEC pathogenicity may significantly aid our understanding of the underlying disease processes. However, rigorous computational analysis of biological systems, such as fim switch temperature control circuit, has hereto presented a notoriously demanding problem due to both the substantial complexity of the gene regulatory networks involved as well as their often characteristically discrete and stochastic dynamics. To address these issues, we have developed an approach that enables automated multiscale abstraction of biological system descriptions based on reaction kinetics. Implemented as a computational tool, this method has allowed us to efficiently analyze the modular organization and behavior of the E. coli fimbriation switch circuit at different temperature settings, thus facilitating new insights into this mode of UPEC molecular virulence regulation. In particular, our results suggest that, with respect to its role in shutting down fimbriae expression, the primary function of FimB recombinase may be to effect a controlled down-regulation (rather than increase) of the ON-to-OFF fim switching rate via temperature-dependent suppression of competing dynamics mediated by recombinase FimE. Our computational analysis further implies that this down

  15. Interplay between pathogenicity island carriage, resistance profile and plasmid acquisition in uropathogenic Escherichia coli.

    PubMed

    Calhau, Vera; Domingues, Sara; Ribeiro, Graça; Mendonça, Nuno; Da Silva, Gabriela Jorge

    2015-08-01

    This study aimed to characterize the relationship between pathogenicity islands (PAIs), single virulence genes and resistance among uropathogenic Escherichia coli, evaluating the resistance plasmid carriage fitness cost related to PAIs. For 65 urinary E. coli, antimicrobial susceptibility and extended-spectrum β-lactamase production were determined with the Vitek 2 Advanced Expert system. Phylogroup determination, detection of PAIs and virulence genes papAH, papC, sfa/foc, afa/dra, iutA, kpsMII, cnf1, eaeA, hlyA, stx1 and stx2, plasmid replicon typing and screening for plasmidic resistance determinants qnr, aac(6')-Ib-cr, qepA and bla(CTX-M) were carried out by PCR. Conjugation was performed between a donor carrying IncF, IncK and bla(CTX-M-15), and receptors carrying one to six PAIs. The relative fitness of transconjugants was estimated by pairwise competition experiments. PAI IV(536) (68 %), gene iutA (57 %) and resistance to ampicillin were the most prevalent traits. PAI I(536), PAI II(536), PAI III(536) and PAI II(J96) were exclusively associated with susceptibility to amoxicillin/clavulanic acid, cefotaxime, ceftazidime, ciprofloxacin, gentamicin and trimethoprim/sulfamethoxazole, and were more prevalent in strains susceptible to ampicillin and cefalotin. PAI IV(536), PAI II(CFT073) and PAI I(CFT073) were more prevalent among isolates showing resistance to amoxicillin/clavulanic acid, cefalotin, cefotaxime, ceftazidime and gentamicin. An inverse relationship was observed between the number of plasmids and the number of PAIs carried. Transconjugants were obtained for receptors carrying three or fewer PAIs. The mean relative fitness rates of these transconjugants were 0.87 (two PAIs), 1.00 (one PAI) and 1.09 (three PAI). The interplay between resistance, PAI carriage and fitness cost of plasmid acquisition could be considered PAI specific, and not necessarily associated with the number of PAIs. PMID:26293926

  16. PafR, a Novel Transcription Regulator, Is Important for Pathogenesis in Uropathogenic Escherichia coli

    PubMed Central

    Baum, Mordechai; Watad, Mobarak; Smith, Sara N.; Alteri, Christopher J.; Gordon, Noa; Rosenshine, Ilan; Mobley, Harry L.

    2014-01-01

    The metV genomic island in the chromosome of uropathogenic Escherichia coli (UPEC) encodes a putative transcription factor and a sugar permease of the phosphotransferase system (PTS), which are predicted to compose a Bgl-like sensory system. The presence of these two genes, hereby termed pafR and pafP, respectively, has been previously shown to correlate with isolates causing clinical syndromes. We show here that deletion of both genes impairs the ability of the resulting mutant to infect the CBA/J mouse model of ascending urinary tract infection compared to that of the parent strain, CFT073. Expressing the two genes in trans in the two-gene knockout mutant complemented full virulence. Deletion of either gene individually generated the same phenotype as the double knockout, indicating that both pafR and pafP are important to pathogenesis. We screened numerous environmental conditions but failed to detect expression from the promoter that precedes the paf genes in vitro, suggesting that they are in vivo induced (ivi). Although PafR is shown here to be capable of functioning as a transcriptional antiterminator, its targets in the UPEC genome are not known. Using microarray analysis, we have shown that expression of PafR from a heterologous promoter in CFT073 affects expression of genes related to bacterial virulence, biofilm formation, and metabolism. Expression of PafR also inhibits biofilm formation and motility. Taken together, our results suggest that the paf genes are implicated in pathogenesis and that PafR controls virulence genes, in particular biofilm formation genes. PMID:25069986

  17. Functional Heterogeneity of the UpaH Autotransporter Protein from Uropathogenic Escherichia coli

    PubMed Central

    Allsopp, Luke P.; Beloin, Christophe; Moriel, Danilo Gomes; Totsika, Makrina; Ghigo, Jean-Marc

    2012-01-01

    Uropathogenic Escherichia coli (UPEC) is responsible for the majority of urinary tract infections (UTI). To cause a UTI, UPEC must adhere to the epithelial cells of the urinary tract and overcome the shear flow forces of urine. This function is mediated primarily by fimbrial adhesins, which mediate specific attachment to host cell receptors. Another group of adhesins that contributes to UPEC-mediated UTI is autotransporter (AT) proteins. AT proteins possess a range of virulence properties, such as adherence, aggregation, invasion, and biofilm formation. One recently characterized AT protein of UPEC is UpaH, a large adhesin-involved-in-diffuse-adherence (AIDA-I)-type AT protein that contributes to biofilm formation and bladder colonization. In this study we characterized a series of naturally occurring variants of UpaH. We demonstrate that extensive sequence variation exists within the passenger-encoding domain of UpaH variants from different UPEC strains. This sequence variation is associated with functional heterogeneity with respect to the ability of UpaH to mediate biofilm formation. In contrast, all of the UpaH variants examined retained a conserved ability to mediate binding to extracellular matrix (ECM) proteins. Bioinformatic analysis of the UpaH passenger domain identified a conserved region (UpaHCR) and a hydrophobic region (UpaHHR). Deletion of these domains reduced biofilm formation but not the binding to ECM proteins. Despite variation in the upaH sequence, the transcription of upaH was repressed by a conserved mechanism involving the global regulator H-NS, and mutation of the hns gene relieved this repression. Overall, our findings shed new light on the regulation and functions of the UpaH AT protein. PMID:22904291

  18. Pilicide ec240 Disrupts Virulence Circuits in Uropathogenic Escherichia coli

    PubMed Central

    Greene, Sarah E.; Pinkner, Jerome S.; Chorell, Erik; Dodson, Karen W.; Shaffer, Carrie L.; Conover, Matt S.; Livny, Jonathan; Hadjifrangiskou, Maria; Almqvist, Fredrik

    2014-01-01

    ABSTRACT Chaperone-usher pathway (CUP) pili are extracellular organelles produced by Gram-negative bacteria that mediate bacterial pathogenesis. Small-molecule inhibitors of CUP pili, termed pilicides, were rationally designed and shown to inhibit type 1 or P piliation. Here, we show that pilicide ec240 decreased the levels of type 1, P, and S piliation. Transcriptomic and proteomic analyses using the cystitis isolate UTI89 revealed that ec240 dysregulated CUP pili and decreased motility. Paradoxically, the transcript levels of P and S pilus genes were increased during growth in ec240, even though the level of P and S piliation decreased. In contrast, the most downregulated transcripts after growth in ec240 were from the type 1 pilus genes. Type 1 pilus expression is controlled by inversion of the fimS promoter element, which can oscillate between phase on and phase off orientations. ec240 induced the fimS phase off orientation, and this effect was necessary for the majority of ec240’s inhibition of type 1 piliation. ec240 increased levels of the transcriptional regulators SfaB and PapB, which were shown to induce the fimS promoter phase off orientation. Furthermore, the effect of ec240 on motility was abolished in the absence of the SfaB, PapB, SfaX, and PapX regulators. In contrast to the effects of ec240, deletion of the type 1 pilus operon led to increased S and P piliation and motility. Thus, ec240 dysregulated several uropathogenic Escherichia coli (UPEC) virulence factors through different mechanisms and independent of its effects on type 1 pilus biogenesis and may have potential as an antivirulence compound. PMID:25352623

  19. Molecular typing of uropathogenic Escherichia coli isolated from Korean children with urinary tract infection

    PubMed Central

    Yun, Ki Wook; Kim, Do Soo; Kim, Wonyong

    2015-01-01

    Purpose We investigated the molecular types of uropathogenic Escherichia coli (UPEC) by using conventional phylogrouping, multilocus sequence typing (MLST), and fimH genotyping. Methods Samples of patients younger than 18 years of age were collected from the Chung-Ang University Hospital over 2 years. Conventional phylogenetic grouping for UPEC strains was performed by polymerase chain reaction (PCR). Bacterial strain sequence types (STs) were classified on the basis of the results of partial sequencing of seven housekeeping genes. In addition, we analyzed nucleotide variations in a 424-base pair fragment of fimH, a major virulence factor in UPEC. Results Sixty-four UPEC isolates were analyzed in this study. Phylogenetic grouping revealed that group B2 was the most common type (n=54, 84%). We identified 16 distinctive STs using MLST. The most common STs were ST95 (35.9%), ST73 (15.6%), ST131 (12.5%), ST69 (7.8%), and ST14 (6.3%). Fourteen fimH allele types were identified, of which 11 had been previously reported, and the remaining three were identified in this study. f1 (n=28, 45.2%) was found to be the most common allele type, followed by f6 and f9 (n=7, 11.3% each). Comparative analysis of the results from the three different molecular typing techniques revealed that both MLST and fimH typing generated more discriminatory UPEC types than did PCR-based phylogrouping. Conclusion We characterized UPEC molecular types isolated from Korean children by MLST and fimH genotyping. fimH genotyping might serve as a useful molecular test for large epidemiologic studies of UPEC isolates. PMID:25729395

  20. sRNA-Mediated Regulation of P-Fimbriae Phase Variation in Uropathogenic Escherichia coli.

    PubMed

    Khandige, Surabhi; Kronborg, Tina; Uhlin, Bernt Eric; Møller-Jensen, Jakob

    2015-08-01

    Uropathogenic Escherichia coli (UPEC) are capable of occupying physiologically distinct intracellular and extracellular niches within the urinary tract. This feat requires the timely regulation of gene expression and small RNAs (sRNAs) are known to mediate such rapid adjustments in response to changing environmental cues. This study aimed to uncover sRNA-mediated gene regulation in the UPEC strain UTI89, during infection of bladder epithelial cells. Hfq is an RNA chaperone known to facilitate and stabilize sRNA and target mRNA interactions with bacterial cells. The co-immunoprecipitation and high throughput RNA sequencing of Hfq bound sRNAs performed in this study, revealed distinct sRNA profiles in UPEC in the extracellular and intracellular environments. Our findings emphasize the importance of studying regulatory sRNAs in a biologically relevant niche. This strategy also led to the discovery of a novel virulence-associated trans-acting sRNA-PapR. Deletion of papR was found to enhance adhesion of UTI89 to both bladder and kidney cell lines in a manner independent of type-1 fimbriae. We demonstrate PapR mediated posttranscriptional repression of the P-fimbriae phase regulator gene papI and postulate a role for such regulation in fimbrial cross-talk at the population level in UPEC. Our results further implicate the Leucine responsive protein (LRP) as a transcriptional activator regulating PapR expression. Our study reports, for the first time, a role for sRNAs in regulation of P-fimbriae phase variation and emphasizes the importance of studying pathogenesis-specific sRNAs within a relevant biological niche. PMID:26291711

  1. Characterization of a Dipartite Iron Uptake System from Uropathogenic Escherichia coli Strain F11*

    PubMed Central

    Koch, Doreen; Chan, Anson C. K.; Murphy, Michael E. P.; Lilie, Hauke; Grass, Gregor; Nies, Dietrich H.

    2011-01-01

    In the uropathogenic Escherichia coli strain F11, in silico genome analysis revealed the dicistronic iron uptake operon fetMP, which is under iron-regulated control mediated by the Fur regulator. The expression of fetMP in a mutant strain lacking known iron uptake systems improved growth under iron depletion and increased cellular iron accumulation. FetM is a member of the iron/lead transporter superfamily and is essential for iron uptake by the Fet system. FetP is a periplasmic protein that enhanced iron uptake by FetM. Recombinant FetP bound Cu(II) and the iron analog Mn(II) at distinct sites. The crystal structure of the FetP dimer reveals a copper site in each FetP subunit that adopts two conformations: CuA with a tetrahedral geometry composed of His44, Met90, His97, and His127, and CuB, a second degenerate octahedral geometry with the addition of Glu46. The copper ions of each site occupy distinct positions and are separated by ∼1.3 Å. Nearby, a putative additional Cu(I) binding site is proposed as an electron source that may function with CuA/CuB displacement to reduce Fe(III) for transport by FetM. Together, these data indicate that FetMP is an additional iron uptake system composed of a putative iron permease and an iron-scavenging and potentially iron-reducing periplasmic protein. PMID:21596746

  2. Uropathogenic Escherichia coli Releases Extracellular Vesicles That Are Associated with RNA

    PubMed Central

    Blenkiron, Cherie; Simonov, Denis; Muthukaruppan, Anita; Tsai, Peter; Dauros, Priscila; Green, Sasha; Hong, Jiwon; Print, Cristin G.

    2016-01-01

    Background Bacterium-to-host signalling during infection is a complex process involving proteins, lipids and other diffusible signals that manipulate host cell biology for pathogen survival. Bacteria also release membrane vesicles (MV) that can carry a cargo of effector molecules directly into host cells. Supported by recent publications, we hypothesised that these MVs also associate with RNA, which may be directly involved in the modulation of the host response to infection. Methods and Results Using the uropathogenic Escherichia coli (UPEC) strain 536, we have isolated MVs and found they carry a range of RNA species. Density gradient centrifugation further fractionated and characterised the MV preparation and confirmed that the isolated RNA was associated with the highest particle and protein containing fractions. Using a new approach, RNA-sequencing of libraries derived from three different ‘size’ RNA populations (<50nt, 50-200nt and 200nt+) isolated from MVs has enabled us to now report the first example of a complete bacterial MV-RNA profile. These data show that MVs carry rRNA, tRNAs, other small RNAs as well as full-length protein coding mRNAs. Confocal microscopy visualised the delivery of lipid labelled MVs into cultured bladder epithelial cells and showed their RNA cargo labelled with 5-EU (5-ethynyl uridine), was transported into the host cell cytoplasm and nucleus. MV RNA uptake by the cells was confirmed by droplet digital RT-PCR of csrC. It was estimated that 1% of MV RNA cargo is delivered into cultured cells. Conclusions These data add to the growing evidence of pathogenic bacterial MV being associated a wide range of RNAs. It further raises the plausibility for MV-RNA-mediated cross-kingdom communication whereby they influence host cell function during the infection process. PMID:27500956

  3. Epigenetic Influence of Dam Methylation on Gene Expression and Attachment in Uropathogenic Escherichia coli

    PubMed Central

    Stephenson, Stacy Ann-Marie; Brown, Paul D.

    2016-01-01

    Urinary tract infections (UTI) are among the most frequently encountered infections in clinical practice globally. Predominantly a burden among female adults and infants, UTIs primarily caused by uropathogenic Escherichia coli (UPEC) results in high morbidity and fiscal health strains. During pathogenesis, colonization of the urinary tract via fimbrial adhesion to mucosal cells is the most critical point in infection and has been linked to DNA methylation. Furthermore, with continuous exposure to antibiotics as the standard therapeutic strategy, UPEC has evolved to become highly adaptable in circumventing the effect of antimicrobial agents and host defenses. Hence, the need for alternative treatment strategies arises. Since differential DNA methylation is observed as a critical precursor to virulence in various pathogenic bacteria, this body of work sought to assess the influence of the DNA adenine methylase (dam) gene on gene expression and cellular adhesion in UPEC and its potential as a therapeutic target. To monitor the influence of dam on attachment and FQ resistance, selected UPEC dam mutants created via one-step allelic exchange were transformed with cloned qnrA and dam complement plasmid for comparative analysis of growth rate, antimicrobial susceptibility, biofilm formation, gene expression, and mammalian cell attachment. The absence of DNA methylation among dam mutants was apparent. Varying deficiencies in cell growth, antimicrobial resistance and biofilm formation, alongside low-level increases in gene expression (recA and papI), and adherence to HEK-293 and HTB-9 mammalian cells were also detected as a factor of SOS induction to result in increased mutability. Phenotypic characteristics of parental strains were restored in dam complement strains. Dam’s vital role in DNA methylation and gene expression in local UPEC isolates was confirmed. Similarly to dam-deficient Enterohemorrhagic E. coli (EHEC), these findings suggest unsuccessful therapeutic use

  4. [The comparison of antibiotic susceptibilities of uropathogenic Escherichia coli isolates in transition from CLSI to EUCAST].

    PubMed

    Süzük, Serap; Kaşkatepe, Banu; Avcıküçük, Havva; Aksaray, Sebahat; Başustaoğlu, Ahmet

    2015-10-01

    Determination of treatment protocols for infections according to antimicrobial susceptibility test (AST) results is are important for controlling the problem of antibiotic resistance. Two standards are widely used in the world. One of them is Clinical Laboratory Standards Institute (CLSI) standards used in Turkey for many years and the other is the European Committee on Antimicrobial Susceptibility Testing (EUCAST) standards which is used in European Union member countries and came into use in 2015 in Turkey. Since the EUCAST standards had higher clinical sensitivity limits particularly for gram-negative bacilli compared to CLSI (2009) standards, there will be some changes in antibiotic resistance profiles of Turkey with the use of EUCAST. CLSI has changed zone diameters after 2009 versions and the differences between the two standards were brought to a minimum level. Knowledge of local epidemiological data is important to determine empirical therapy which will be used in urinary tract infections (UTI). The aim of this study was to determine the differences of antibiotic susceptibility zone diameters based on our local epidemiological data among uropathogenic Escherichia coli isolates according to EUCAST 2014 and CLSI 2014 standards. A total of 298 E.coli strains isolated from urine samples as the cause of uncomplicated acute UTI agents, were included in the study. Isolates were identified by conventional methods and with BBL Crystal E/NF ID System (Becton Dickinson, USA). AST was performed with Kirby Bauer disk diffusion method and results were evaluated and interpreted according to the CLSI 2014 and EUCAST 2014 standards. According to the results, susceptibility rates of isolates against amikacin (100%) and trimethoprim-sulfamethoxazole (63.09%) were identical in both standards. However, statistically significant differences were observed between CLSI and EUCAST standards in terms of susceptibilities against gentamicin (91.95% and 84.56%, respectively; p= 0

  5. Sat, the Secreted Autotransporter Toxin of Uropathogenic Escherichia coli, Is a Vacuolating Cytotoxin for Bladder and Kidney Epithelial Cells

    PubMed Central

    Guyer, Debra M.; Radulovic, Suzana; Jones, Faye-Ellen; Mobley, Harry L. T.

    2002-01-01

    The secreted autotransporter toxin (Sat) of uropathogenic Escherichia coli exhibits cytopathic activity upon incubation with HEp-2 cells. We further investigated the effects of Sat on cell lines more relevant to the urinary tract, namely, those derived from bladder and kidney epithelium. Sat elicited elongation of cells and apparent loosening of cellular junctions upon incubation with Vero kidney cells. Additionally, incubation with Sat triggered significant vacuolation within the cytoplasm of both human bladder (CRL-1749) and kidney (CRL-1573) cell lines. This activity has been associated with only a few other known toxins. Following transurethral infection of CBA mice with a sat mutant, no reduction of CFU in urine, bladder, or kidney tissue was seen compared to that in mice infected with wild-type E. coli CFT073. However, significant histological changes were observed within the kidneys of mice infected with wild-type E. coli CFT073, including dissolution of the glomerular membrane and vacuolation of proximal tubule cells. Such damage was not observed in kidney sections of mice infected with a Sat-deficient mutant. These results indicate that Sat, a vacuolating cytotoxin expressed by uropathogenic E. coli CFT073, elicits defined damage to kidney epithelium during upper urinary tract infection and thus contributes to pathogenesis of urinary tract infection. PMID:12117966

  6. Pathotypic and Phylogenetic Study of Diarrheagenic Escherichia coli and Uropathogenic E. coli Using Multiplex Polymerase Chain Reaction

    PubMed Central

    Salmani, Hamzeh; Azarnezhad, Asaad; Fayazi, Mohammad Reza; Hosseini, Arshad

    2016-01-01

    Background: Acute diarrheal disease and urinary tract infection are leading causes of childhood morbidity and mortality in the developing world. Diarrheagenic Escherichia coli (DEC) has been identified as a major etiologic agent of diarrhea worldwide, and urinary tract infection (UTI) caused by uropathogenic Escherichia coli (UPEC) is one of the most common bacterial infections among human beings. Quick and precise detection of these bacteria help provide more effective intervention and management of infection. Objectives: In this study we present a precise and sensitive typing and phylogenetic study of UPEC and DEC using multiplex PCR in order to simplify and improve the intervention and management of diarrheal and UT infections. Materials and Methods: In total, 100 urinary tract infection samples (UTI) and 200 specimens from children with diarrhea, which had been diagnosed with E. coli as the underlying agent by differential diagnosis using MacConkey’s agar and biochemical study, were submitted for molecular detection. Pathotyping of E. coli pathotypes causing urinary tract infection and diarrhea were examined using a two set multiplex PCR, targeting six specific genes. Phylogenetic typing was done by targeting three genes, including ChuA, YjaA and TspE4C2. Results: Overall, 88% of DEC and 54% of UTI isolates were positive for one or more of the six genes encoding virulence factors. Prevalence of the genes encoding virulence factors for DEC were 62%, 25%, 24%, 13%, 7% and 5% for ST (ETEC), LT (ETEC), aggR (EAggEC), daaD (DAEC), invE (EIEC) and eae (EPEC), respectively; whereas, the prevalence rates for the UTI samples were 23%, 14%, 6%, 6% and 4% for aggR (EAggEC), LT (ETEC), daaD (DAEC), invE (EIEC) and ST (ETEC), respectively. No coding virulence factors were detected for eae (EPEC). Group B2 was the most prevalent phylogroup and ST was the most frequently detected pathotype in all phylogroups. Conclusions: ETEC and EAggEC were the most detected E. coli among

  7. Mechanisms of antibiotic resistance to enrofloxacin in uropathogenic Escherichia coli in dog

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli (E. coli) urinary tract infections (UTIs) are becoming a serious problem both for pets and humans (zoonosis) due to the close contact and to the increasing resistance to antibiotics. Canine E. coli represents a good experimental model useful to study this pathology. Moreover, as des...

  8. Inactivation of uropathogenic Escherichia coli in ground chicken meat using high pressure processing and gamma radiation, and in purge and chicken meat surfaces by ultraviolet light

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Uropathogenic Escherichia coli (UPEC) are common contaminants in meat and poultry. Nonthermal food safety intervention technologies used to improve safety and shelf-life of both human and pet foods can include high pressure processing (HPP), ionizing (gamma) radiation (GR), and ultraviolet light (UV...

  9. Identification of genes subject to positive selection in uropathogenic strains of Escherichia coli: A comparative genomics approach

    PubMed Central

    Chen, Swaine L.; Hung, Chia-Seui; Xu, Jian; Reigstad, Christopher S.; Magrini, Vincent; Sabo, Aniko; Blasiar, Darin; Bieri, Tamberlyn; Meyer, Rekha R.; Ozersky, Philip; Armstrong, Jon R.; Fulton, Robert S.; Latreille, J. Phillip; Spieth, John; Hooton, Thomas M.; Mardis, Elaine R.; Hultgren, Scott J.; Gordon, Jeffrey I.

    2006-01-01

    Escherichia coli is a model laboratory bacterium, a species that is widely distributed in the environment, as well as a mutualist and pathogen in its human hosts. As such, E. coli represents an attractive organism to study how environment impacts microbial genome structure and function. Uropathogenic E. coli (UPEC) must adapt to life in several microbial communities in the human body, and has a complex life cycle in the bladder when it causes acute or recurrent urinary tract infection (UTI). Several studies designed to identify virulence factors have focused on genes that are uniquely represented in UPEC strains, whereas the role of genes that are common to all E. coli has received much less attention. Here we describe the complete 5,065,741-bp genome sequence of a UPEC strain recovered from a patient with an acute bladder infection and compare it with six other finished E. coli genome sequences. We searched 3,470 ortholog sets for genes that are under positive selection only in UPEC strains. Our maximum likelihood-based analysis yielded 29 genes involved in various aspects of cell surface structure, DNA metabolism, nutrient acquisition, and UTI. These results were validated by resequencing a subset of the 29 genes in a panel of 50 urinary, periurethral, and rectal E. coli isolates from patients with UTI. These studies outline a computational approach that may be broadly applicable for studying strain-specific adaptation and pathogenesis in other bacteria. PMID:16585510

  10. Human Bladder Uroepithelial Cells Synergize with Monocytes to Promote IL-10 Synthesis and Other Cytokine Responses to Uropathogenic Escherichia coli

    PubMed Central

    Duell, Benjamin L.; Carey, Alison J.; Dando, Samantha J.; Schembri, Mark A.; Ulett, Glen C.

    2013-01-01

    Urinary tract infections are a major source of morbidity for women and the elderly, with Uropathogenic Escherichia coli (UPEC) being the most prevalent causative pathogen. Studies in recent years have defined a key anti-inflammatory role for Interleukin-10 (IL-10) in urinary tract infection mediated by UPEC and other uropathogens. We investigated the nature of the IL-10-producing interactions between UPEC and host cells by utilising a novel co-culture model that incorporated lymphocytes, mononuclear and uroepithelial cells in histotypic proportions. This co-culture model demonstrated synergistic IL-10 production effects between monocytes and uroepithelial cells following infection with UPEC. Membrane inserts were used to separate the monocyte and uroepithelial cell types during infection and revealed two synergistic IL-10 production effects based on contact-dependent and soluble interactions. Analysis of a comprehensive set of immunologically relevant biomarkers in monocyte-uroepithelial cell co-cultures highlighted that multiple cytokine, chemokine and signalling factors were also produced in a synergistic or antagonistic fashion. These results demonstrate that IL-10 responses to UPEC occur via multiple interactions between several cells types, implying a complex role for infection-related IL-10 during UTI. Development and application of the co-culture model described in this study is thus useful to define the degree of contact dependency of biomarker production to UPEC, and highlights the relevance of histotypic co-cultures in studying complex host-pathogen interactions. PMID:24155979

  11. Feline uropathogenic Escherichia coli from Great Britain and New Zealand have dissimilar virulence factor genotypes.

    PubMed

    Freitag, T; Squires, R A; Schmid, J; Elliott, J

    2005-03-20

    We investigated the prevalence of 30 known virulence factor genes (VFGs) in uropathogenic E. coli (UPEC) from two geographically distinct feline populations, using a PCR-based approach. E. coli isolates were also subjected to macrorestriction analysis to assess their phylogenetic relationships. VFG profiles differed considerably according to the geographic origin of the isolates, enabling discriminant analysis to correctly predict population membership for 15/15 NZ isolates and 18/22 UK isolates. The prevalence of gene markers for P-fimbriae (PapA, PapC, PapEF, and PapG III), colicin V (CvaC), increased serum survival factor (Iss), complement resistance factor (TraT), pathogenicity-associated island (MalX), iron-regulated siderophore receptor (IreA) and haemolysin (HlyD) differed significantly between UK and NZ isolates. Significant phylogenetic differences between the two populations were also identified, but VFG profiles could not be predicted on the basis of phylogenetic relationships. Consequently, a geographically uneven distribution of certain virulence genes, independent of phylogeny, is the likely cause of VFG differences between populations. We cannot rule out that subtle differences in patient disease status may have contributed to the dissimilarity of VFG profiles. PMID:15737476

  12. OCCURRENCE OF ANTIBIOTIC-RESISTANT UROPATHOGENIC ESCHERICHIA COLI CLONAL GROUP A IN WASTEWATER EFFLUENTS

    EPA Science Inventory

    Isolates of Escherichia coli belonging to clonal group A (CGA), a recently described disseminated cause of drug-resistant urinary tract infections in humans, were present in four of seven sewage effluents collected from geographically dispersed areas of the United States. ...

  13. Uropathogenic Escherichia coli Metabolite-Dependent Quiescence and Persistence May Explain Antibiotic Tolerance during Urinary Tract Infection

    PubMed Central

    Leatham-Jensen, Mary P.; Mokszycki, Matthew E.; Rowley, David C.; Deering, Robert; Camberg, Jodi L.; Sokurenko, Evgeni V.; Tchesnokova, Veronika L.; Frimodt-Møller, Jakob; Leth Nielsen, Karen; Sun, Gongqin

    2016-01-01

    ABSTRACT In the present study, it is shown that although Escherichia coli CFT073, a human uropathogenic (UPEC) strain, grows in liquid glucose M9 minimal medium, it fails to grow on glucose M9 minimal medium agar plates seeded with ≤106 CFU. The cells on glucose plates appear to be in a “quiescent” state that can be prevented by various combinations of lysine, methionine, and tyrosine. Moreover, the quiescent state is characteristic of ~80% of E. coli phylogenetic group B2 multilocus sequence type 73 strains, as well as 22.5% of randomly selected UPEC strains isolated from community-acquired urinary tract infections in Denmark. In addition, E. coli CFT073 quiescence is not limited to glucose but occurs on agar plates containing a number of other sugars and acetate as sole carbon sources. It is also shown that a number of E. coli CFT073 mini-Tn5 metabolic mutants (gnd, gdhA, pykF, sdhA, and zwf) are nonquiescent on glucose M9 minimal agar plates and that quiescence requires a complete oxidative tricarboxylic acid (TCA) cycle. In addition, evidence is presented that, although E. coli CFT073 quiescence and persistence in the presence of ampicillin are alike in that both require a complete oxidative TCA cycle and each can be prevented by amino acids, E. coli CFT073 quiescence occurs in the presence or absence of a functional rpoS gene, whereas maximal persistence requires a nonfunctional rpoS. Our results suggest that interventions targeting specific central metabolic pathways may mitigate UPEC infections by interfering with quiescence and persistence. IMPORTANCE Recurrent urinary tract infections (UTIs) affect 10 to 40% of women. In up to 77% of those cases, the recurrent infections are caused by the same uropathogenic E. coli (UPEC) strain that caused the initial infection. Upon infection of urothelial transitional cells in the bladder, UPEC appear to enter a nongrowing quiescent intracellular state that is thought to serve as a reservoir responsible

  14. Hyperbilirubinemia and urinary tract infection: the effect of indirect hyperbilirubinemia on the in vitro growth of uropathogen Escherichia coli in newborn urine.

    PubMed

    Firinci, Fatih; Soylu, Alper; Ozturk, Cengiz; Gulay, Zeynep; Demir, Belde K; Turkmen, Mehmet; Kavukcu, Salih

    2014-02-01

    High serum bilirubin is antioxidant and cytoprotective. We evaluated if urine samples of hyperbilirubinemic newborns impede uropathogenic Escherichia coli growth. Bag-urine samples of hyperbilirubinemic newborns (study group) were cultured at presentation and during remission. Urine sample were obtained only once from healthy newborns (control group). Escherichia coli [2 × 104 colony-forming unit (cfu)/mL] was inoculated into the sterile urine samples and colony counts were determined after 24 h. Bilirubin levels at presentation and remission were also recorded. Escherichia coli colony counts of the control versus study groups and of the presentation versus remission samples in the study group were compared. There were 13 study and 17 control cases. Escherichia coli colony counts were not different in the study group at presentation versus remission (5.4 ± 0.7 vs. 5.5 ± 0.8 log10, respectively; p = 0.659). Escherichia coli colony count of the control group (5.2 ± 0.6 log10) was also not different from the study group. In conclusion, the urine of hyperbilirubinemic newborns did not affect the growth rate of uropathogenic E. coli. PMID:24059809

  15. Temperature control of molecular circuit switch responsible for virulent phenotype expression in uropathogenic Escherichia coli

    NASA Astrophysics Data System (ADS)

    Samoilov, Michael

    2010-03-01

    The behavior and fate of biological organisms are to a large extent dictated by their environment, which can be often viewed as a collection of features and constraints governed by physics laws. Since biological systems comprise networks of molecular interactions, one such key physical property is temperature, whose variations directly affect the rates of biochemical reactions involved. For instance, temperature is known to control many gene regulatory circuits responsible for pathogenicity in bacteria. One such example is type 1 fimbriae (T1F) -- the foremost virulence factor in uropathogenic E. coli (UPEC), which accounts for 80-90% of all community-acquired urinary tract infections (UTIs). The expression of T1F is randomly `phase variable', i.e. individual cells switch between virulent/fimbriate and avirulent/afimbriate phenotypes, with rates regulated by temperature. Our computational investigation of this process, which is based on FimB/FimE recombinase-mediated inversion of fimS DNA element, offers new insights into its discrete-stochastic kinetics. In particular, it elucidates the logic of T1F control optimization to the host temperature and contributes further understanding toward the development of novel therapeutic approaches to UPEC-caused UTIs.

  16. Population structure and uropathogenic virulence-associated genes of faecal Escherichia coli from healthy young and elderly adults.

    PubMed

    Vollmerhausen, Tara L; Ramos, Nubia L; Gündogdu, Aycan; Robinson, Wayne; Brauner, Annelie; Katouli, Mohammad

    2011-05-01

    We investigated the population structures of faecal Escherichia coli in 30 healthy young adults (13 males and 17 females) aged between 20 and 45 years and 29 elderly adults (14 females and 15 males) aged between 65 and 77 years. In all, 1566 strains were typed with the PhPlate system and grouped into biochemical phenotypes (BPTs). Strains with shared BPTs were further typed using randomly amplified polymorphic DNA analysis. Forty-four per cent of the strains were shared between two or more age and gender groups. Elders had a significantly higher (P<0.001) number of BPTs (mean±standard error 3.3±0.27) than younger groups (1.82±0.27). Phylogenetic affiliation and virulence-associated genes (VAGs) of the strains showed that more than 80 % of the strains belonging to dominant types belonged to phylogroups B2 and D. Amongst dominant BPTs, phylogenetic group A was significantly associated with females (P<0.0001), and elders were more likely to carry group D (P<0.0124). Elderly males had a higher prevalence of VAGs than young males (P<0.0001) and young females (P<0.0005). We conclude that there is a lower prevalence of E. coli with uropathogenic properties in healthy young adults than in elders. PMID:21292854

  17. Mechanisms of antibiotic resistance to enrofloxacin in uropathogenic Escherichia coli in dog.

    PubMed

    Piras, Cristian; Soggiu, Alessio; Greco, Viviana; Martino, Piera Anna; Del Chierico, Federica; Putignani, Lorenza; Urbani, Andrea; Nally, Jarlath E; Bonizzi, Luigi; Roncada, Paola

    2015-09-01

    Escherichia coli (E. coli) urinary tract infections (UTIs) are becoming a serious problem both for pets and humans (zoonosis) due to the close contact and to the increasing resistance to antibiotics. This study has been performed in order to unravel the mechanism of induced enrofloxacin resistance in canine E. coli isolates that represent a good tool to study this pathology. The isolated E. coli has been induced with enrofloxacin and studied through 2D DIGE and shotgun MS. Discovered differentially expressed proteins are principally involved in antibiotic resistance and linked to oxidative stress response, to DNA protection and to membrane permeability. Moreover, since enrofloxacin is an inhibitor of DNA gyrase, the overexpression of DNA starvation/stationary phase protection protein (Dsp) could be a central point to discover the mechanism of this clone to counteract the effects of enrofloxacin. In parallel, the dramatic decrease of the synthesis of the outer membrane protein W, which represents one of the main gates for enrofloxacin entrance, could explain additional mechanism of E. coli defense against this antibiotic. All 2D DIGE and MS data have been deposited into the ProteomeXchange Consortium with identifier PXD002000 and DOI http://dx.doi.org/10.6019/PXD002000. This article is part of a Special Issue entitled: HUPO 2014. PMID:26066767

  18. Development of a fluorometric microplate antiadhesion assay using uropathogenic Escherichia coli and human uroepithelial cells.

    PubMed

    Kimble, Lindsey L; Mathison, Bridget D; Kaspar, Kerrie L; Khoo, Christina; Chew, Boon P

    2014-05-23

    A fluorometric microplate assay has been developed to determine Escherichia (E.) coli adhesion to uroepithelial cells (UEC). P-fimbriated E. coli were labeled with BacLight Green and preincubated 30 min with human urine or standard. Fluorescent-E. coli were added to UEC in mircoplates at a 400:1 ratio, incubated 1 h, and washed, and the fluorescence intensity was measured. Specific labeling and adherence were confirmed by flow cytometry. A myricetin (1) standard curve (0-30 μg/mL) was developed; the lower limit of detection was 0.1 μg/mL, and half-maximal inhibitory concentration was 0.88 μg/mL (intra- and interassay coefficients of variance were <10% and <15%, respectively). Vaccinium macrocarpon (cranberry) extracts, quercetin (2), and procyanidins B1 (3), B2 (4), and C1 (5) showed similar inhibition. Antiadhesion activity of urine samples from subjects (n = 12) consuming placebo or V. macrocarpon beverage determined using this assay was positively correlated (R(2) = 0.78; p < 0.01) with a radiolabeled-E. coli assay. PMID:24749980

  19. Emergence of uropathogenic extended-spectrum beta lactamases-producing Escherichia coli strains in the community.

    PubMed

    Marijan, Tatjana; Vranes, Jasmina; Bedenić, Branka; Mlinarić-Dzepina, Ana; Plecko, Vanda; Kalenić, Smilja

    2007-03-01

    The aim of this study was to determine the virulence characteristics and resistance pattern of the extended-spectrum/lactamases (ESBLs)-producing Escherichia coli strains isolated from urine of outpatients in the Zagreb region during a five-month period, and to compare them with the non ESBLs-producing E. coli strains isolated in the same period. Out of 2451 E. coli strains isolated from urine of nonhospitalized patients with significant bacteriuria, a total of 39 ESBLs-producing strains (1.59%) were detected by a double-disk diffusion technique and by the broth-dilution minimal inhibitory concentration reduction method. The 45 non ESBLs-producing strains were randomly chosen, and phenotype of the two groups of strains was characterized and compared. Serogroup O4, hemolysin production, expression of P- and type 1 fimbriae as well as resistance to gentamicin and amikacin were significantly more prevalent characteristics among the ESBLs-producing strains than among non ESBLs-producing strains (p < 0.01), while higher prevalence of trimethoprim-sulfamethoxazole resistance among ESBLs-producing strains was not statistically significant (p > 0.05). Chromosomal DNA analysis by pulsed-field gel electrophoresis exhibited a great genomic similarity among ESBLs-producing strains and revealed that those highly virulent and resistant E. coli strains isolated from urine of outpatients in the Zagreb region had a clonal propagation. PMID:17598406

  20. Histone Deacetylase 6 Regulates Bladder Architecture and Host Susceptibility to Uropathogenic Escherichia coli.

    PubMed

    Lewis, Adam J; Dhakal, Bijaya K; Liu, Ting; Mulvey, Matthew A

    2016-01-01

    Histone deacetylase 6 (HDAC6) is a non-canonical, mostly cytosolic histone deacetylase that has a variety of interacting partners and substrates. Previous work using cell-culture based assays coupled with pharmacological inhibitors and gene-silencing approaches indicated that HDAC6 promotes the actin- and microtubule-dependent invasion of host cells by uropathogenic Escherichia coli (UPEC). These facultative intracellular pathogens are the major cause of urinary tract infections. Here, we examined the involvement of HDAC6 in bladder colonization by UPEC using HDAC6 knockout mice. Though UPEC was unable to invade HDAC6(-/-) cells in culture, the bacteria had an enhanced ability to colonize the bladders of mice that lacked HDAC6. This effect was transient, and by six hours post-inoculation bacterial titers in the HDAC6(-/-) mice were reduced to levels seen in wild type control animals. Subsequent analyses revealed that the mutant mice had greater bladder volume capacity and fluid retention, along with much higher levels of acetylated a-tubulin. In addition, infiltrating neutrophils recovered from the HDAC6(-/-) bladder harbored significantly more viable bacteria than their wild type counterparts. Cumulatively, these changes may negate any inhibitory effects that the lack of HDAC6 has on UPEC entry into individual host cells, and suggest roles for HDAC6 in other urological disorders such as urinary retention. PMID:26907353

  1. Activation of endogenous anti-inflammatory mediator cyclic AMP attenuates acute pyelonephritis in mice induced by uropathogenic Escherichia coli.

    PubMed

    Wei, Yang; Li, Ke; Wang, Na; Cai, Gui-Dong; Zhang, Ting; Lin, Yan; Gui, Bao-Song; Liu, En-Qi; Li, Zong-Fang; Zhou, Wuding

    2015-02-01

    The pathogenesis of pyelonephritis caused by uropathogenic Escherichia coli (UPEC) is not well understood. Here, we show that besides UPEC virulence, the severity of the host innate immune response and invasion of renal epithelial cells are important pathogenic factors. Activation of endogenous anti-inflammatory mediator cAMP significantly attenuated acute pyelonephritis in mice induced by UPEC. Administration of forskolin (a potent elevator of intracellular cAMP) reduced kidney infection (ie, bacterial load, tissue destruction); this was associated with attenuated local inflammation, as evidenced by the reduction of renal production of proinflammatory mediators, renal infiltration of inflammatory cells, and renal myeloperoxidase activity. In primary cell culture systems, forskolin not only down-regulated UPEC-stimulated production of proinflammatory mediators by renal tubular epithelial cells and inflammatory cells (eg, monocyte/macrophages) but also reduced bacterial internalization by renal tubular epithelial cells. Our findings clearly indicate that activation of endogenous anti-inflammatory mediator cAMP is beneficial for controlling UPEC-mediated acute pyelonephritis in mice. The beneficial effect can be explained at least in part by limiting excessive inflammatory responses through acting on both renal tubular epithelial cells and inflammatory cells and by inhibiting bacteria invasion of renal tubular epithelial cells. PMID:25478807

  2. Activation of Endogenous Anti-Inflammatory Mediator Cyclic AMP Attenuates Acute Pyelonephritis in Mice Induced by Uropathogenic Escherichia coli

    PubMed Central

    Wei, Yang; Li, Ke; Wang, Na; Cai, Gui-Dong; Zhang, Ting; Lin, Yan; Gui, Bao-Song; Liu, En-Qi; Li, Zong-Fang; Zhou, Wuding

    2015-01-01

    The pathogenesis of pyelonephritis caused by uropathogenic Escherichia coli (UPEC) is not well understood. Here, we show that besides UPEC virulence, the severity of the host innate immune response and invasion of renal epithelial cells are important pathogenic factors. Activation of endogenous anti-inflammatory mediator cAMP significantly attenuated acute pyelonephritis in mice induced by UPEC. Administration of forskolin (a potent elevator of intracellular cAMP) reduced kidney infection (ie, bacterial load, tissue destruction); this was associated with attenuated local inflammation, as evidenced by the reduction of renal production of proinflammatory mediators, renal infiltration of inflammatory cells, and renal myeloperoxidase activity. In primary cell culture systems, forskolin not only down-regulated UPEC-stimulated production of proinflammatory mediators by renal tubular epithelial cells and inflammatory cells (eg, monocyte/macrophages) but also reduced bacterial internalization by renal tubular epithelial cells. Our findings clearly indicate that activation of endogenous anti-inflammatory mediator cAMP is beneficial for controlling UPEC-mediated acute pyelonephritis in mice. The beneficial effect can be explained at least in part by limiting excessive inflammatory responses through acting on both renal tubular epithelial cells and inflammatory cells and by inhibiting bacteria invasion of renal tubular epithelial cells. PMID:25478807

  3. Siderophore biosynthesis coordinately modulated the virulence-associated interactive metabolome of uropathogenic Escherichia coli and human urine.

    PubMed

    Su, Qiao; Guan, Tianbing; Lv, Haitao

    2016-01-01

    Uropathogenic Escherichia coli (UPEC) growth in women's bladders during urinary tract infection (UTI) incurs substantial chemical exchange, termed the "interactive metabolome", which primarily accounts for the metabolic costs (utilized metabolome) and metabolic donations (excreted metabolome) between UPEC and human urine. Here, we attempted to identify the individualized interactive metabolome between UPEC and human urine. We were able to distinguish UPEC from non-UPEC by employing a combination of metabolomics and genetics. Our results revealed that the interactive metabolome between UPEC and human urine was markedly different from that between non-UPEC and human urine, and that UPEC triggered much stronger perturbations in the interactive metabolome in human urine. Furthermore, siderophore biosynthesis coordinately modulated the individualized interactive metabolome, which we found to be a critical component of UPEC virulence. The individualized virulence-associated interactive metabolome contained 31 different metabolites and 17 central metabolic pathways that were annotated to host these different metabolites, including energetic metabolism, amino acid metabolism, and gut microbe metabolism. Changes in the activities of these pathways mechanistically pinpointed the virulent capability of siderophore biosynthesis. Together, our findings provide novel insights into UPEC virulence, and we propose that siderophores are potential targets for further discovery of drugs to treat UPEC-induced UTI. PMID:27076285

  4. Siderophore biosynthesis coordinately modulated the virulence-associated interactive metabolome of uropathogenic Escherichia coli and human urine

    PubMed Central

    Su, Qiao; Guan, Tianbing; Lv, Haitao

    2016-01-01

    Uropathogenic Escherichia coli (UPEC) growth in women’s bladders during urinary tract infection (UTI) incurs substantial chemical exchange, termed the “interactive metabolome”, which primarily accounts for the metabolic costs (utilized metabolome) and metabolic donations (excreted metabolome) between UPEC and human urine. Here, we attempted to identify the individualized interactive metabolome between UPEC and human urine. We were able to distinguish UPEC from non-UPEC by employing a combination of metabolomics and genetics. Our results revealed that the interactive metabolome between UPEC and human urine was markedly different from that between non-UPEC and human urine, and that UPEC triggered much stronger perturbations in the interactive metabolome in human urine. Furthermore, siderophore biosynthesis coordinately modulated the individualized interactive metabolome, which we found to be a critical component of UPEC virulence. The individualized virulence-associated interactive metabolome contained 31 different metabolites and 17 central metabolic pathways that were annotated to host these different metabolites, including energetic metabolism, amino acid metabolism, and gut microbe metabolism. Changes in the activities of these pathways mechanistically pinpointed the virulent capability of siderophore biosynthesis. Together, our findings provide novel insights into UPEC virulence, and we propose that siderophores are potential targets for further discovery of drugs to treat UPEC-induced UTI. PMID:27076285

  5. Fimbrial Profiles Predict Virulence of Uropathogenic Escherichia coli Strains: Contribution of Ygi and Yad Fimbriae▿

    PubMed Central

    Spurbeck, Rachel R.; Stapleton, Ann E.; Johnson, James R.; Walk, Seth T.; Hooton, Thomas M.; Mobley, Harry L. T.

    2011-01-01

    Escherichia coli, a cause of ∼90% of urinary tract infections (UTI), utilizes fimbrial adhesins to colonize the uroepithelium. Pyelonephritis isolate E. coli CFT073 carries 12 fimbrial operons, 5 of which have never been studied. Using multiplex PCR, the prevalence of these 12 and 3 additional fimbrial types was determined for a collection of 303 E. coli isolates (57 human commensal, 32 animal commensal, 54 asymptomatic bacteriuria, 45 complicated UTI, 38 uncomplicated cystitis, and 77 pyelonephritis). The number of fimbrial types per E. coli isolate was distributed bimodally: those with low (3.2 ± 1.1) and those with high (8.3 ± 1.3) numbers of fimbrial types (means ± standard errors of the means). The fimbrial genes ygiL, yadN, yfcV, and c2395 were significantly more prevalent among urine isolates than human commensal isolates. The effect of deletion of Ygi and Yad fimbrial operons on growth, motility, biofilm formation, adherence to immortalized human epithelial cells, and pathogenesis in the mouse model of UTI was examined. Yad fimbriae were necessary for wild-type levels of adherence to a bladder epithelial cell line and for biofilm formation. Deletion of these fimbrial genes increased motility. Ygi fimbriae were necessary for wild-type levels of adherence to a human embryonic kidney cell line, biofilm formation, and in vivo fitness in the urine and kidneys. Complementation of each fimbrial mutant restored wild-type levels of motility, biofilm formation, adherence and, for ygi, in vivo fitness. A double deletion strain, Δygi Δyad, was attenuated in the urine, bladder, and kidneys in the mouse model, demonstrating that these fimbriae contribute to uropathogenesis. PMID:21911462

  6. Quantification of filamentation by uropathogenic Escherichia coli during experimental bladder cell infection by using semi-automated image analysis.

    PubMed

    Klein, Kasper; Palarasah, Yaseelan; Kolmos, Hans Jørn; Møller-Jensen, Jakob; Andersen, Thomas Emil

    2015-02-01

    Several rod-shaped pathogens including Escherichia coli, Salmonella spp. and Klebsiella pneumonia are capable of adopting highly filamentous cell shapes under certain circumstances. This phenomenon occurs as a result of continued cell elongation during growth without the usual septation into single rod-shaped cells. Evidence has emerged over the past decade suggesting that this morphological transformation is controlled and reversible and provides selective advantages under certain growth conditions, such as during infection in humans. In order to identify the factors which induce filamentation of bacterial pathogens and study the advantages of bacterial morphological plasticity, methods are needed to accurately quantify changes in bacterial cell shape. In this study, we present a method for quantification of bacterial filamentation based on automatic detection and measurement of bacterial units in focus-stacked microscopy images. Used in combination with a flow-chamber based in vitro cystitis model, we study the factors involved in filament formation by uropathogenic E. coli (UPEC) during infection. The influence of substratum surface, intracellular proliferation and flow media on UPEC filamentation is evaluated. We show that reversible UPEC filamentation during cystitis is not dependent on intracellular infection, which previous studies have suggested. Instead, we find that filamentation can be induced by contact with surfaces, both biological and artificial. Lastly our data indicate that UPEC filamentation is induced by trace-amounts of specific components in urine, rather than being a generic stress-response to high urine salt concentrations. The study shows that the combined methodology is generally useful for investigation of bacterial morphological transitions during cell infection. PMID:25546841

  7. Partial Purification and Characterization of a Bacteriocin DT24 Produced by Probiotic Vaginal Lactobacillus brevis DT24 and Determination of its Anti-Uropathogenic Escherichia coli Potential.

    PubMed

    Trivedi, Disha; Jena, Prasant Kumar; Patel, Jignesh Kumar; Seshadri, Sriram

    2013-06-01

    The emergence of antibiotic resistance has increased the interest for finding new antimicrobials in the past decade. Probiotic Lactic acid bacteria producing antimicrobial proteins like bacteriocin can be excellent agents for development as novel therapeutic agents and complement to conventional antibiotic therapy. Uropathogenic Escherichia coli, most causative agent of Urinary tract infection, has developed resistance to various antibiotics. In the present investigation, antibacterial substance like bacteriocin (Bacteriocin DT24) produced by probiotic Lactobacillus brevis DT24 from vaginal sample of healthy Indian woman was partially purified and characterized. It was efficiently working against various pathogens, that is, Uropathogenic E. coli, Enterococcus faecium, Enterococcus faecalis and Staphylococcus aureus. The antimicrobial peptide was relatively heat resistant and also active over a broad range of pH 2-10. It has been partially purified by ammonium sulfate precipitation and gel filtration chromatography and checked on reverse-phase high-performance liquid chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of bacteriocin DT24 was approximately 7-kDa protein. The peptide is inactivated by proteolytic enzymes, trypsin and lipase but not when treated with catalase, α-amylase and pepsin. It showed bacteriostatic mode of action against uropathogenic E. coli. Such characteristics indicate that this bacteriocin-producing probiotic may be a potential candidate for alternative agents to control urinary tract infections and other pathogens. PMID:26782739

  8. In vitro selection of resistance to pradofloxacin and ciprofloxacin in canine uropathogenic Escherichia coli isolates.

    PubMed

    Liu, Xiaoqiang; Lazzaroni, Caterina; Aly, Sherine A; Thungrat, Kamoltip; Boothe, Dawn M

    2014-12-01

    This study explored and compared the mechanisms and selective concentration of resistance between a 3rd (pradofloxacin) and 2nd (ciprofloxacin) generation fluoroquinolone. Pradofloxacin- and ciprofloxacin-resistant mutants were selected by stepwise exposure of Escherichia coli (E. coli) to escalating concentrations of pradofloxacin and ciprofloxacin. The sequence of the quinolone resistance determining region (QRDR) and the transcriptional regulator soxS were analyzed, and efflux pump AcrAB-TolC activity was measured by quantitative real-time reverse transcription-PCR (qRT-PCR). First-step mutants reduced the fluoroquinolone sensitivity and one mutant bore a single substitution in gyrA. Four of six second-step mutants expressed ciprofloxacin resistance, and displayed additional mutations in gyrA and/or parC, while these mutants retained susceptibility to pradofloxacin. All the third-step mutants were fluoroquinolone resistant, and each expressed multidrug resistance (MDR) phenotypes. Further, they displayed resistance to all antibacterials tested except cefotaxime, ceftazidime and meropenem. The number of mutations in QRDR of gyrA and parC correlated with fluoroquinolone MICs. Mutations in parC were not common in pradofloxacin-associated mutants. Moreover, one second- and one third-step ciprofloxacin-associated mutants bore both mutations at position 12 (Ala12Ser) and 78 (Met78Leu) in the soxS gene, yet no mutations in the soxS gene were detected in the pradofloxacin-selected mutants. Altogether, these results demonstrated that resistance emerged relatively more rapidly in 2nd compared to 3rd generation fluoroquinolones. Point mutations in gyrA were a key mechanism of resistance to pradofloxacin, and overexpression of efflux pump gene acrB played a potential role in the emergence of MDR phenotypes identified in this study. PMID:25465666

  9. Bacterial Lysis Liberates the Neutrophil Migration Suppressor YbcL from the Periplasm of Uropathogenic Escherichia coli

    PubMed Central

    Lau, Megan E.; Danka, Elizabeth S.; Tiemann, Kristin M.

    2014-01-01

    Uropathogenic Escherichia coli (UPEC) modulates aspects of the innate immune response during urinary tract infection to facilitate bacterial invasion of the bladder epithelium, a requirement for the propagation of infection. For example, UPEC-encoded YbcL suppresses the traversal of bladder epithelia by neutrophils in both an in vitro model and an in vivo murine cystitis model. The suppressive activity of YbcL requires liberation from the bacterial periplasm, though the mechanism of release is undefined. Here we present findings on the site of action of YbcL and demonstrate a novel mode of secretion for a UPEC exoprotein. Suppression of neutrophil migration by purified YbcLUTI, encoded by cystitis isolate UTI89, required the presence of a uroepithelial layer; YbcLUTI did not inhibit neutrophil chemotaxis directly. YbcLUTI was released to a greater extent during UPEC infection of uroepithelial cells than during that of neutrophils. Release of YbcLUTI was maximal when UPEC and bladder epithelial cells were in close proximity. Established modes of secretion, including outer membrane vesicles, the type II secretion system, and the type IV pilus, were dispensable for YbcLUTI release from UPEC. Instead, YbcLUTI was liberated during bacterial death, which was augmented upon exposure to bladder epithelial cells, as confirmed by detection of bacterial cytoplasmic proteins and DNA in the supernatant and enumeration of bacteria with compromised membranes. As YbcLUTI acts on the uroepithelium to attenuate neutrophil migration, this mode of release may represent a type of altruistic cooperation within a UPEC population during colonization of the urinary tract. PMID:25183735

  10. Adhesive fiber stratification in uropathogenic Escherichia coli biofilms unveils oxygen-mediated control of type 1 pili.

    PubMed

    Floyd, Kyle A; Moore, Jessica L; Eberly, Allison R; Good, James A D; Shaffer, Carrie L; Zaver, Himesh; Almqvist, Fredrik; Skaar, Eric P; Caprioli, Richard M; Hadjifrangiskou, Maria

    2015-03-01

    Bacterial biofilms account for a significant number of hospital-acquired infections and complicate treatment options, because bacteria within biofilms are generally more tolerant to antibiotic treatment. This resilience is attributed to transient bacterial subpopulations that arise in response to variations in the microenvironment surrounding the biofilm. Here, we probed the spatial proteome of surface-associated single-species biofilms formed by uropathogenic Escherichia coli (UPEC), the major causative agent of community-acquired and catheter-associated urinary tract infections. We used matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) imaging mass spectrometry (IMS) to analyze the spatial proteome of intact biofilms in situ. MALDI-TOF IMS revealed protein species exhibiting distinct localizations within surface-associated UPEC biofilms, including two adhesive fibers critical for UPEC biofilm formation and virulence: type 1 pili (Fim) localized exclusively to the air-exposed region, while curli amyloid fibers localized to the air-liquid interface. Comparison of cells grown aerobically, fermentatively, or utilizing an alternative terminal electron acceptor showed that the phase-variable fim promoter switched to the "OFF" orientation under oxygen-deplete conditions, leading to marked reduction of type 1 pili on the bacterial cell surface. Conversely, S pili whose expression is inversely related to fim expression were up-regulated under anoxic conditions. Tethering the fim promoter in the "ON" orientation in anaerobically grown cells only restored type 1 pili production in the presence of an alternative terminal electron acceptor beyond oxygen. Together these data support the presence of at least two regulatory mechanisms controlling fim expression in response to oxygen availability and may contribute to the stratification of extracellular matrix components within the biofilm. MALDI IMS facilitated the discovery of these mechanisms, and we

  11. Urinary tract infection drives genome instability in uropathogenic Escherichia coli and necessitates translesion synthesis DNA polymerase IV for virulence

    PubMed Central

    Gawel, Damian

    2011-01-01

    Uropathogenic Escherichia coli (UPEC) produces ∼80% of community-acquired UTI, the second most common infection in humans. During UTI, UPEC has a complex life cycle, replicating and persisting in intracellular and extracellular niches. Host and environmental stresses may affect the integrity of the UPEC genome and threaten its viability. We determined how the host inflammatory response during UTI drives UPEC genome instability and evaluated the role of multiple factors of genome replication and repair for their roles in the maintenance of genome integrity and thus virulence during UTI. The urinary tract environment enhanced the mutation frequency of UPEC ∼100-fold relative to in vitro levels. Abrogation of inflammation through a host TLR4-signaling defect significantly reduced the mutation frequency, demonstrating in the importance of the host response as a driver of UPEC genome instability. Inflammation induces the bacterial SOS response, leading to the hypothesis that the UPEC SOS-inducible translesion synthesis (TLS) DNA polymerases would be key factors in UPEC genome instability during UTI. However, while the TLS DNA polymerases enhanced in vitro, they did not increase in vivo mutagenesis. Although it is not a source of enhanced mutagenesis in vivo, the TLS DNA polymerase IV was critical for the survival of UPEC during UTI during an active inflammatory assault. Overall, this study provides the first evidence of a TLS DNA polymerase being critical for UPEC survival during urinary tract infection and points to independent mechanisms for genome instability and the maintenance of genome replication of UPEC under host inflammatory stress. PMID:21597325

  12. Adhesive Fiber Stratification in Uropathogenic Escherichia coli Biofilms Unveils Oxygen-Mediated Control of Type 1 Pili

    PubMed Central

    Floyd, Kyle A.; Moore, Jessica L.; Eberly, Allison R.; Good, James A. D.; Shaffer, Carrie L.; Zaver, Himesh; Almqvist, Fredrik; Skaar, Eric P.; Caprioli, Richard M.; Hadjifrangiskou, Maria

    2015-01-01

    Bacterial biofilms account for a significant number of hospital-acquired infections and complicate treatment options, because bacteria within biofilms are generally more tolerant to antibiotic treatment. This resilience is attributed to transient bacterial subpopulations that arise in response to variations in the microenvironment surrounding the biofilm. Here, we probed the spatial proteome of surface-associated single-species biofilms formed by uropathogenic Escherichia coli (UPEC), the major causative agent of community-acquired and catheter-associated urinary tract infections. We used matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) imaging mass spectrometry (IMS) to analyze the spatial proteome of intact biofilms in situ. MALDI-TOF IMS revealed protein species exhibiting distinct localizations within surface-associated UPEC biofilms, including two adhesive fibers critical for UPEC biofilm formation and virulence: type 1 pili (Fim) localized exclusively to the air-exposed region, while curli amyloid fibers localized to the air-liquid interface. Comparison of cells grown aerobically, fermentatively, or utilizing an alternative terminal electron acceptor showed that the phase-variable fim promoter switched to the “OFF” orientation under oxygen-deplete conditions, leading to marked reduction of type 1 pili on the bacterial cell surface. Conversely, S pili whose expression is inversely related to fim expression were up-regulated under anoxic conditions. Tethering the fim promoter in the “ON” orientation in anaerobically grown cells only restored type 1 pili production in the presence of an alternative terminal electron acceptor beyond oxygen. Together these data support the presence of at least two regulatory mechanisms controlling fim expression in response to oxygen availability and may contribute to the stratification of extracellular matrix components within the biofilm. MALDI IMS facilitated the discovery of these mechanisms

  13. Phenotypic Assays to Determine Virulence Factors of Uropathogenic Escherichia coli (UPEC) Isolates and their Correlation with Antibiotic Resistance Pattern

    PubMed Central

    Tabasi, Mohsen; Asadi Karam, Mohammad Reza; Habibi, Mehri; Yekaninejad, Mir Saeed; Bouzari, Saeid

    2015-01-01

    Objectives Urinary tract infection caused by uropathogenic Escherichia coli (UPEC) strains is one of the most important infections in the world. UPEC encode widespread virulence factors closely related with pathogenesis of the bacteria. The purpose of this study was to evaluate the presence of different phenotypic virulence markers in UPEC isolates and determine their correlation with antibiotic resistance pattern. Methods UPEC isolates from patients with different clinical symptoms of UTI were collected and screened for biofilm and hemolysin production, mannose resistant, and mannose sensitive hemagglutination (MRHA and MSHA, respectively). In addition, antimicrobial resistance pattern and ESBL-producing isolates were recorded. Results Of the 156 UPEC isolates, biofilm and hemolysin formation was seen in 133 (85.3%) and 53 (34%) isolates, respectively. Moreover, 98 (62.8%) and 58 (37.2%) isolates showed the presence of Types 1 fimbriae (MSHA) and P fimbriae (MRHA), respectively. Our results also showed a relationship between biofilm formation in UPEC isolated from acute cystitis patients and recurrent UTI cases. Occurrence of UTI was dramatically correlated with the patients' profiles. We observed that the difference in antimicrobial susceptibilities of the biofilm and nonbiofilm former isolates was statistically significant. The UPEC isolates showed the highest resistance to ampicillin, tetracycline, amoxicillin, and cotrimoxazole. Moreover, 26.9% of isolates were ESBL producers. Conclusion This study indicated that there is a relationship between the phenotypic virulence traits of the UPEC isolates, patients' profiles, and antibiotic resistance. Detection of the phenotypic virulence factors could help to improve understanding of pathogenesis of UPEC isolates and better medical intervention. PMID:26473094

  14. A Comparative Analysis of the Mechanism of Toll-Like Receptor-Disruption by TIR-Containing Protein C from Uropathogenic Escherichia coli

    PubMed Central

    Waldhuber, Anna; Snyder, Greg A.; Römmler, Franziska; Cirl, Christine; Müller, Tina; Xiao, Tsan Sam; Svanborg, Catharina; Miethke, Thomas

    2016-01-01

    The TIR-containing protein C (TcpC) of uropathogenic Escherichia coli strains is a powerful virulence factor by impairing the signaling cascade of Toll-like receptors (TLRs). Several other bacterial pathogens like Salmonella, Yersinia, Staphylococcus aureus but also non-pathogens express similar proteins. We discuss here the pathogenic potential of TcpC and its interaction with TLRs and TLR-adapter proteins on the molecular level and compare its activity with the activity of other bacterial TIR-containing proteins. Finally, we analyze and compare the structure of bacterial TIR-domains with the TIR-domains of TLRs and TLR-adapters. PMID:26938564

  15. Cytotoxic Necrotizing Factor Type 1 of Uropathogenic Escherichia coli Kills Cultured Human Uroepithelial 5637 Cells by an Apoptotic Mechanism

    PubMed Central

    Mills, Melody; Meysick, Karen C.; O'Brien, Alison D.

    2000-01-01

    Pathogenic Escherichia coli associated with urinary tract infections (UTIs) in otherwise healthy individuals frequently produce cytotoxic necrotizing factor type 1 (CNF1), a member of the family of bacterial toxins that target the Rho family of small GTP-binding proteins. To gain insight into the function of CNF1 in the development of E. coli-mediated UTIs, we examined the effects of CNF1 intoxication on a panel of human cell lines derived from physiologically relevant sites (bladder, ureters, and kidneys). We identified one uroepithelial cell line that exhibited a distinctly different CNF1 intoxication phenotype from the prototypic one of multinucleation without cell death that is seen when HEp-2 or other epithelial cells are treated with CNF1. The 5637 bladder cell line detached from the growth surface within 72 h of CNF1 intoxication, a finding that suggested frank cytotoxicity. To determine the basis for the unexpected toxic effect of CNF1 on 5637 cells, we compared the degree of toxin binding, actin fiber formation, and Rho modification with those CNF1-induced events in HEp-2 cells. We found no apparent difference in the amount of CNF1 bound to 5637 cells and HEp-2 cells. Moreover, CNF1 modified Rho, in vivo and in vitro, in both cell types. In contrast, one of the classic responses to CNF1 in HEp-2 and other epithelial cell lines, the formation of actin stress fibers, was markedly absent in 5637 cells. Indeed, actin stress fiber induction by CNF1 did not occur in any of the other human bladder cell lines that we tested (J82, SV-HUC-1, or T24). Furthermore, the appearance of lamellipodia and filopodia in 5637 cells suggested that CNF1 activated the Cdc42 and Rac proteins. Finally, apoptosis was observed in CNF1-intoxicated 5637 cells. If our results with 5637 cells reflect the interaction of CNF1 with the transitional uroepithelium in the human bladder, then CNF1 may be involved in the exfoliative process that occurs in that organ after infection with

  16. Uropathogenic Escherichia coli Suppresses the Host Inflammatory Response via Pathogenicity Island Genes sisA and sisB▿

    PubMed Central

    Lloyd, Amanda L.; Smith, Sara N.; Eaton, Kathryn A.; Mobley, Harry L. T.

    2009-01-01

    Extraintestinal pathogenic Escherichia coli can successfully colonize the urinary tract of the immunocompetent host. In part, this is accomplished by dampening the host immune response. Indeed, the sisA and sisB genes (shiA-like inflammation suppressor genes A and B) of uropathogenic E. coli strain CFT073, homologs of the Shigella flexneri SHI-2 pathogenicity island gene shiA, suppress the host inflammatory response. A double deletion mutant (ΔsisA ΔsisB) resulted in a hyperinflammatory phenotype in an experimental model of ascending urinary tract infection. The ΔsisA ΔsisB mutant not only caused significantly more inflammatory foci in the kidneys of CBA/J mice (P = 0.0399), but these lesions were also histologically more severe (P = 0.0477) than lesions observed in mice infected with wild-type CFT073. This hyperinflammatory phenotype could be suppressed to wild-type levels by in vivo complementation of the ΔsisA ΔsisB mutant with either the sisA or sisB gene in trans. The ΔsisA ΔsisB mutant was outcompeted by wild-type CFT073 during cochallenge infection in the bladder (P = 0.0295) at 48 h postinoculation (hpi). However, during cochallenge infections, we reasoned that wild-type CFT073 could partially complement the ΔsisA ΔsisB mutant. Consistent with this, the most significant colonization defect of the ΔsisA ΔsisB mutant in vivo was observed during independent challenge relative to wild-type CFT073, with attenuation of the mutant observed in the bladder (P < 0.0001) and kidneys (P = 0.0003) at 6 hpi. By 24 and 48 hpi, the ΔsisA ΔsisB mutant was no longer significantly attenuated in the bladder or kidneys, suggesting that the sisA and sisB genes may be important for suppressing the host immune response during the initial stages of infection. PMID:19797063

  17. Full-Genome Sequence of Escherichia coli K-15KW01, a Uropathogenic E. coli B2 Sequence Type 127 Isolate Harboring a Chromosomally Carried blaCTX-M-15 Gene.

    PubMed

    Zurfluh, Katrin; Tasara, Taurai; Stephan, Roger

    2016-01-01

    We present here the full-genome sequence of Escherichia coli K-15KW01, an extended-spectrum-β-lactamase-producing uropathogenic strain. Assembly and annotation of the draft genome resulted in a 5,154,641-bp chromosome and revealed a chromosomally contained blaCTX-M-15 gene embedded at the right-hand extremity of an ISEcp1 element in a plasmid-like structure (36,907 bp). PMID:27587831

  18. Full-Genome Sequence of Escherichia coli K-15KW01, a Uropathogenic E. coli B2 Sequence Type 127 Isolate Harboring a Chromosomally Carried blaCTX-M-15 Gene

    PubMed Central

    Zurfluh, Katrin; Tasara, Taurai

    2016-01-01

    We present here the full-genome sequence of Escherichia coli K-15KW01, an extended-spectrum-β-lactamase-producing uropathogenic strain. Assembly and annotation of the draft genome resulted in a 5,154,641-bp chromosome and revealed a chromosomally contained blaCTX-M-15 gene embedded at the right-hand extremity of an ISEcp1 element in a plasmid-like structure (36,907 bp). PMID:27587831

  19. Modeling the Inactivation of Intestinal Pathogenic Escherichia coli O157:H7 and Uropathogenic E. coli in Ground Chicken by High Pressure Processing and Thymol

    PubMed Central

    Chien, Shih-Yung; Sheen, Shiowshuh; Sommers, Christopher H.; Sheen, Lee-Yan

    2016-01-01

    Disease causing Escherichia coli commonly found in meat and poultry include intestinal pathogenic E. coli (iPEC) as well as extraintestinal types such as the Uropathogenic E. coli (UPEC). In this study we compared the resistance of iPEC (O157:H7) to UPEC in chicken meat using High Pressure Processing (HPP) in with (the hurdle concept) and without thymol essential oil as a sensitizer. UPEC was found slightly more resistant than E. coli O157:H7 (iPEC O157:H7) at 450 and 500 MPa. A central composite experimental design was used to evaluate the effect of pressure (300–400 MPa), thymol concentration (100–200 ppm), and pressure-holding time (10–20 min) on the inactivation of iPEC O157:H7 and UPEC in ground chicken. The hurdle approach reduced the high pressure levels and thymol doses imposed on the food matrices and potentially decreased food quality damaged after treatment. The quadratic equations were developed to predict the impact (lethality) on iPEC O157:H7 (R2 = 0.94) and UPEC (R2 = 0.98), as well as dimensionless non-linear models [Pr > F (<0.0001)]. Both linear and non-linear models were validated with data obtained from separated experiment points. All models may predict the inactivation/lethality within the same order of accuracy. However, the dimensionless non-linear models showed potential applications with parameters outside the central composite design ranges. The results provide useful information of both iPEC O157:H7 and UPEC in regard to how they may survive HPP in the presence or absence of thymol. The models may further assist regulatory agencies and food industry to assess the potential risk of iPEC O157:H7 and UPEC in ground chicken. PMID:27379050

  20. Modeling the Inactivation of Intestinal Pathogenic Escherichia coli O157:H7 and Uropathogenic E. coli in Ground Chicken by High Pressure Processing and Thymol.

    PubMed

    Chien, Shih-Yung; Sheen, Shiowshuh; Sommers, Christopher H; Sheen, Lee-Yan

    2016-01-01

    Disease causing Escherichia coli commonly found in meat and poultry include intestinal pathogenic E. coli (iPEC) as well as extraintestinal types such as the Uropathogenic E. coli (UPEC). In this study we compared the resistance of iPEC (O157:H7) to UPEC in chicken meat using High Pressure Processing (HPP) in with (the hurdle concept) and without thymol essential oil as a sensitizer. UPEC was found slightly more resistant than E. coli O157:H7 (iPEC O157:H7) at 450 and 500 MPa. A central composite experimental design was used to evaluate the effect of pressure (300-400 MPa), thymol concentration (100-200 ppm), and pressure-holding time (10-20 min) on the inactivation of iPEC O157:H7 and UPEC in ground chicken. The hurdle approach reduced the high pressure levels and thymol doses imposed on the food matrices and potentially decreased food quality damaged after treatment. The quadratic equations were developed to predict the impact (lethality) on iPEC O157:H7 (R (2) = 0.94) and UPEC (R (2) = 0.98), as well as dimensionless non-linear models [Pr > F (<0.0001)]. Both linear and non-linear models were validated with data obtained from separated experiment points. All models may predict the inactivation/lethality within the same order of accuracy. However, the dimensionless non-linear models showed potential applications with parameters outside the central composite design ranges. The results provide useful information of both iPEC O157:H7 and UPEC in regard to how they may survive HPP in the presence or absence of thymol. The models may further assist regulatory agencies and food industry to assess the potential risk of iPEC O157:H7 and UPEC in ground chicken. PMID:27379050

  1. Phylogenetic Distribution of Virulence Genes Among ESBL-producing Uropathogenic Escherichia coli Isolated from Long-term Hospitalized Patients

    PubMed Central

    Zhao, Ruike; Shi, Jinfang; Shen, Yimin; Li, Yanmeng; Han, Qingzhen; Zhang, Xianfeng; Gu, Guohao

    2015-01-01

    Objectives The present study was aimed to investigate the antibiotic resistance, virulence potential and phylogenetic grouping of ESBL-producing uropathogenic Escherichia coli (EP-UPEC) isolated from long-term hospitalized patients. Materials and Methods EP-UPEC isolates from September 2013 to June 2014 at a tertiary care hospital of China were screened for ESBL-production by the double disk diffusion test. Isolates with ESBL-phenotype were further characterized by antibiotic resistance testing, PCR of different ESBL and virulence genes, and phylogenetic grouping. Results One hundred and twenty EP-UPEC were isolated from long-term hospitalized patients. All EP-UPEC isolates were resistant to Ampicillin, Cefazolin, Cefuroxime, Cefotaxime, Cefoperazone and Ceftriaxone, and the majority of EP-UPEC isolates were resistant to Piperacillin (82.5%), Ciprofloxacin (81.2%), Trimethoprim-Sulfamethoxazole (72.5%). The isolates showed the highest sensitivity against Imipenem (98.4%), Piperacillin/tazobactam (96.7%), Cefoperazone/sulbactam (91.7%), Amikacin (90.8%) and Cefepime (75.8%). Nine different ESBL genotype patterns were observed and CTX-M type was the most prevalent ESBL genotype (42.5%, 51/120). Majority of EP-UPEC isolates possess more than one ESBL genes. EP-UPEC isolates belonged mainly to phylogenetic group B2(36.7%) and D(35.0%). The prevalence of traT, ompT, iss, PAI, afa, fimH and papC were 75.8%, 63.3%, 63.3%, 60.8%, 40.8%, 19.2% and 6.7%, respectively. The number of virulence genes (VGs) detected was significantly higher in group B2 than in group A (ANOVA, p<0.001), group B1(ANOVA, p= 0.012) and D (ANOVA, p<0.001). Conclusions EP-UPEC strains showed multidrug resistance and co-resistance to other non β-lactam antibiotics. CTX-M was the most prevalent ESBL genotype and majority of EP-UPEC strains more than one ESBL genes. EP-UPEC strains belonged mainly to phylogenetic group B2 and D, and most of the virulence genes were more prevalent in group B2. PMID

  2. Impact of UV and Peracetic Acid Disinfection on the Prevalence of Virulence and Antimicrobial Resistance Genes in Uropathogenic Escherichia coli in Wastewater Effluents

    PubMed Central

    Biswal, Basanta Kumar; Khairallah, Ramzi; Bibi, Kareem; Mazza, Alberto; Gehr, Ronald; Masson, Luke

    2014-01-01

    Wastewater discharges may increase the populations of pathogens, including Escherichia coli, and of antimicrobial-resistant strains in receiving waters. This study investigated the impact of UV and peracetic acid (PAA) disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenic Escherichia coli (UPEC), the most abundant E. coli pathotype in municipal wastewaters. Laboratory disinfection experiments were conducted on wastewater treated by physicochemical, activated sludge, or biofiltration processes; 1,766 E. coli isolates were obtained for the evaluation. The target disinfection level was 200 CFU/100 ml, resulting in UV and PAA doses of 7 to 30 mJ/cm2 and 0.9 to 2.0 mg/liter, respectively. The proportions of UPECs were reduced in all samples after disinfection, with an average reduction by UV of 55% (range, 22% to 80%) and by PAA of 52% (range, 11% to 100%). Analysis of urovirulence genes revealed that the decline in the UPEC populations was not associated with any particular virulence factor. A positive association was found between the occurrence of urovirulence and antimicrobial resistance genes (ARGs). However, the changes in the prevalence of ARGs in potential UPECs were different following disinfection, i.e., UV appears to have had no effect, while PAA significantly reduced the ARG levels. Thus, this study showed that both UV and PAA disinfections reduced the proportion of UPECs and that PAA disinfection also reduced the proportion of antimicrobial resistance gene-carrying UPEC pathotypes in municipal wastewaters. PMID:24727265

  3. Uropathogenic Escherichia coli Modulates Immune Responses and Its Curli Fimbriae Interact with the Antimicrobial Peptide LL-37

    PubMed Central

    Kai-Larsen, Ylva; Lüthje, Petra; Chromek, Milan; Peters, Verena; Wang, Xiaoda; Holm, Åsa; Kádas, Lavinia; Hedlund, Kjell-Olof; Johansson, Jan; Chapman, Matthew R.; Jacobson, Stefan H.; Römling, Ute; Agerberth, Birgitta; Brauner, Annelie

    2010-01-01

    Bacterial growth in multicellular communities, or biofilms, offers many potential advantages over single-cell growth, including resistance to antimicrobial factors. Here we describe the interaction between the biofilm-promoting components curli fimbriae and cellulose of uropathogenic E. coli and the endogenous antimicrobial defense in the urinary tract. We also demonstrate the impact of this interplay on the pathogenesis of urinary tract infections. Our results suggest that curli and cellulose exhibit differential and complementary functions. Both of these biofilm components were expressed by a high proportion of clinical E. coli isolates. Curli promoted adherence to epithelial cells and resistance against the human antimicrobial peptide LL-37, but also increased the induction of the proinflammatory cytokine IL-8. Cellulose production, on the other hand, reduced immune induction and hence delayed bacterial elimination from the kidneys. Interestingly, LL-37 inhibited curli formation by preventing the polymerization of the major curli subunit, CsgA. Thus, even relatively low concentrations of LL-37 inhibited curli-mediated biofilm formation in vitro. Taken together, our data demonstrate that biofilm components are involved in the pathogenesis of urinary tract infections by E. coli and can be a target of local immune defense mechanisms. PMID:20661475

  4. F9 Fimbriae of Uropathogenic Escherichia coli Are Expressed at Low Temperature and Recognise Galβ1-3GlcNAc-Containing Glycans

    PubMed Central

    Wurpel, Daniël J.; Totsika, Makrina; Allsopp, Luke P.; Hartley-Tassell, Lauren E.; Day, Christopher J.; Peters, Kate M.; Sarkar, Sohinee; Ulett, Glen C.; Yang, Ji; Tiralongo, Joe; Strugnell, Richard A.; Jennings, Michael P.; Schembri, Mark A.

    2014-01-01

    Uropathogenic Escherichia coli (UPEC) is the leading causative agent of urinary tract infections (UTI) in the developed world. Among the major virulence factors of UPEC, surface expressed adhesins mediate attachment and tissue tropism. UPEC strains typically possess a range of adhesins, with type 1 fimbriae and P fimbriae of the chaperone-usher class the best characterised. We previously identified and characterised F9 as a new chaperone-usher fimbrial type that mediates biofilm formation. However, the regulation and specific role of F9 fimbriae remained to be determined in the context of wild-type clinical UPEC strains. In this study we have assessed the distribution and genetic context of the f9 operon among diverse E. coli lineages and pathotypes and demonstrated that f9 genes are significantly more conserved in a UPEC strain collection in comparison to the well-defined E. coli reference (ECOR) collection. In the prototypic UPEC strain CFT073, the global regulator protein H-NS was identified as a transcriptional repressor of f9 gene expression at 37°C through its ability to bind directly to the f9 promoter region. F9 fimbriae expression was demonstrated at 20°C, representing the first evidence of functional F9 fimbriae expression by wild-type E. coli. Finally, glycan array analysis demonstrated that F9 fimbriae recognise and bind to terminal Galβ1-3GlcNAc structures. PMID:24671091

  5. SDS-PAGE Analysis of the Outer Membrane Proteins of Uropathogenic Escherichia coli Isolated from Patients in Different Wards of Nemazee Hospital, Shiraz, Iran

    PubMed Central

    Dehghani, Behzad; Mottamedifar, Mohammad; Khoshkharam-Roodmajani, Hossein; Hassanzadeh, Amir; Zomorrodian, Kamyar; Rahimi, Amir

    2016-01-01

    Background: Outer membrane proteins (OMPs) constitute the main structure and about half of the cell wall of Gram-negative bacteria. The OMPs of Escherichia coli (E. coli) play an important role in its drug resistance. Previous studies have shown that the OMPs of E. coli enhance its pathogenic effects by helping the bacterium to evade the immune defense and promote its adsorption to host cells. We sought to compare E. coli isolates collected from different hospital wards and to perform a primary investigation of the association between the serotypes and profiles of their OMPs. We also aimed to detect the diversity of the E. coli isolates from the hospitalized patients. Methods: A total of 115 isolates of E. coli were collected from patients hospitalized in Nemazee Hospital, Shiraz, Iran. After biochemical and serological tests, OMPs were extracted by using glass beads and N-Lauroylsarcosine sodium. OMP typing was done by 10% SDS-PAGE and Coomassie brilliant blue staining. In terms of the number of protein bands, OMP-I was detected with 2 bands, OMP-α with 3 bands, and OMP-β with1 band. Results: Of the 115 isolates, 103 were OMP-I and 12 were OMP-α; none of the isolates belonged to OMP-β. Our statistical analyses showed a relationship between OMP patterns and other factors, including hospital wards and source of samples. Serotyping showed that the majority of the isolates were O128. Conclusion: Our results demonstrated some similarities between the OMP band patterns of the analyzed groups of E. coli. Of all the OMPs in the isolates from the hospitalized and outpatient department patients, OmpA and OmpC were the most prevalent proteins in the outer membrane of the studied uropathogenic E. coli. PMID:27582589

  6. In vivo mRNA profiling of uropathogenic Escherichia coli from diverse phylogroups reveals common and group-specific gene expression profiles.

    PubMed

    Bielecki, Piotr; Muthukumarasamy, Uthayakumar; Eckweiler, Denitsa; Bielecka, Agata; Pohl, Sarah; Schanz, Ansgar; Niemeyer, Ute; Oumeraci, Tonio; von Neuhoff, Nils; Ghigo, Jean-Marc; Häussler, Susanne

    2014-01-01

    mRNA profiling of pathogens during the course of human infections gives detailed information on the expression levels of relevant genes that drive pathogenicity and adaptation and at the same time allows for the delineation of phylogenetic relatedness of pathogens that cause specific diseases. In this study, we used mRNA sequencing to acquire information on the expression of Escherichia coli pathogenicity genes during urinary tract infections (UTI) in humans and to assign the UTI-associated E. coli isolates to different phylogenetic groups. Whereas the in vivo gene expression profiles of the majority of genes were conserved among 21 E. coli strains in the urine of elderly patients suffering from an acute UTI, the specific gene expression profiles of the flexible genomes was diverse and reflected phylogenetic relationships. Furthermore, genes transcribed in vivo relative to laboratory media included well-described virulence factors, small regulatory RNAs, as well as genes not previously linked to bacterial virulence. Knowledge on relevant transcriptional responses that drive pathogenicity and adaptation of isolates to the human host might lead to the introduction of a virulence typing strategy into clinical microbiology, potentially facilitating management and prevention of the disease. Importance: Urinary tract infections (UTI) are very common; at least half of all women experience UTI, most of which are caused by pathogenic Escherichia coli strains. In this study, we applied massive parallel cDNA sequencing (RNA-seq) to provide unbiased, deep, and accurate insight into the nature and the dimension of the uropathogenic E. coli gene expression profile during an acute UTI within the human host. This work was undertaken to identify key players in physiological adaptation processes and, hence, potential targets for new infection prevention and therapy interventions specifically aimed at sabotaging bacterial adaptation to the human host. PMID:25096872

  7. Multilocus Sequence Typing and Virulence Profiles in Uropathogenic Escherichia coli Isolated from Cats in the United States

    PubMed Central

    Liu, Xiaoqiang; Thungrat, Kamoltip; Boothe, Dawn M.

    2015-01-01

    The population structure, virulence, and antimicrobial resistance of uropathogenic E. coli (UPEC) from cats are rarely characterized. The aim of this study was to compare and characterize the UPEC isolated from cats in four geographic regions of USA in terms of their multilocus sequence typing (MLST), virulence profiles, clinical signs, antimicrobial resistance and phylogenetic grouping. The results showed that a total of 74 E. coli isolates were typed to 40 sequence types with 10 being novel. The most frequent phylogenetic group was B2 (n = 57). The most frequent sequence types were ST73 (n = 12) and ST83 (n = 6), ST73 was represented by four multidrug resistant (MDR) and eight non-multidrug resistant (SDR) isolates, and ST83 were significantly more likely to exhibit no drug resistant (NDR) isolates carrying the highest number of virulence genes. Additionally, MDR isolates were more diverse, and followed by SDR and NDR isolates in regards to the distribution of the STs. afa/draBC was the most prevalent among the 29 virulence-associated genes. Linking virulence profile and antimicrobial resistance, the majority of virulence-associated genes tested were more prevalent in NDR isolates, and followed by SDR and MDR isolates. Twenty (50%) MLST types in this study have previously been associated with human isolates, suggesting that these STs are potentially zoonotic. Our data enhanced the understanding of E. coli population structure and virulence association from cats. The diverse and various combinations of virulence-associated genes implied that the infection control may be challenging. PMID:26587840

  8. Multilocus Sequence Typing and Virulence Profiles in Uropathogenic Escherichia coli Isolated from Cats in the United States.

    PubMed

    Liu, Xiaoqiang; Thungrat, Kamoltip; Boothe, Dawn M

    2015-01-01

    The population structure, virulence, and antimicrobial resistance of uropathogenic E. coli (UPEC) from cats are rarely characterized. The aim of this study was to compare and characterize the UPEC isolated from cats in four geographic regions of USA in terms of their multilocus sequence typing (MLST), virulence profiles, clinical signs, antimicrobial resistance and phylogenetic grouping. The results showed that a total of 74 E. coli isolates were typed to 40 sequence types with 10 being novel. The most frequent phylogenetic group was B2 (n = 57). The most frequent sequence types were ST73 (n = 12) and ST83 (n = 6), ST73 was represented by four multidrug resistant (MDR) and eight non-multidrug resistant (SDR) isolates, and ST83 were significantly more likely to exhibit no drug resistant (NDR) isolates carrying the highest number of virulence genes. Additionally, MDR isolates were more diverse, and followed by SDR and NDR isolates in regards to the distribution of the STs. afa/draBC was the most prevalent among the 29 virulence-associated genes. Linking virulence profile and antimicrobial resistance, the majority of virulence-associated genes tested were more prevalent in NDR isolates, and followed by SDR and MDR isolates. Twenty (50%) MLST types in this study have previously been associated with human isolates, suggesting that these STs are potentially zoonotic. Our data enhanced the understanding of E. coli population structure and virulence association from cats. The diverse and various combinations of virulence-associated genes implied that the infection control may be challenging. PMID:26587840

  9. Role of Hypoxia Inducible Factor-1α (HIF-1α) in Innate Defense against Uropathogenic Escherichia coli Infection

    PubMed Central

    Lin, Ann E.; Beasley, Federico C.; Olson, Joshua; Keller, Nadia; Shalwitz, Robert A.; Hannan, Thomas J.; Hultgren, Scott J.; Nizet, Victor

    2015-01-01

    Uropathogenic E. coli (UPEC) is the primary cause of urinary tract infections (UTI) affecting approximately 150 million people worldwide. Here, we revealed the importance of transcriptional regulator hypoxia-inducible factor-1 α subunit (HIF-1α) in innate defense against UPEC-mediated UTI. The effects of AKB-4924, a HIF-1α stabilizing agent, were studied using human uroepithelial cells (5637) and a murine UTI model. UPEC adherence and invasion were significantly reduced in 5637 cells when HIF-1α protein was allowed to accumulate. Uroepithelial cells treated with AKB-4924 also experienced reduced cell death and exfoliation upon UPEC challenge. In vivo, fewer UPEC were recovered from the urine, bladders and kidneys of mice treated transurethrally with AKB-4924, whereas increased bacteria were recovered from bladders of mice with a HIF-1α deletion. Bladders and kidneys of AKB-4924 treated mice developed less inflammation as evidenced by decreased pro-inflammatory cytokine release and neutrophil activity. AKB-4924 impairs infection in uroepithelial cells and bladders, and could be correlated with enhanced production of nitric oxide and antimicrobial peptides cathelicidin and β-defensin-2. We conclude that HIF-1α transcriptional regulation plays a key role in defense of the urinary tract against UPEC infection, and that pharmacological HIF-1α boosting could be explored further as an adjunctive therapy strategy for serious or recurrent UTI. PMID:25927232

  10. Uropathogenic Escherichia coli (UPEC) induced antimicrobial gene expression in the male reproductive tract of rat: evaluation of the potential of Defensin 21 to limit infection.

    PubMed

    Biswas, B; Bhushan, S; Rajesh, A; Suraj, S K; Lu, Y; Meinhardt, A; Yenugu, S

    2015-03-01

    Escherichia coli (E. coli) is a common pathogen in epididymitis, which represents a prevalent entity in male reproductive tract infections (RTI). Although current treatment regimens using antibiotics are satisfactory, development of antimicrobial resistance by the pathogen represents a challenge in the management of RTI. Hence, identification of antimicrobial peptides as alternatives to antibiotics has gained importance. We demonstrate that in a rat epididymo-orchitis model induced with uropathogenic E. coli (UPEC) strain MTCC 729, the expression of defensins and defensin-like Spag11 genes are induced in the epididymis and testes. The induction of antimicrobial gene expression is paralleled by phosphorylation of the NF-kB subunit p65 and the inhibitor of NFkB (IkB-alpha), decreased levels of histone deacetylase 1 and increased methylation of Histone 3, indicating the role of classical Toll-like receptor mediated signaling and epigenetic regulation. Recombinant Defensin 21, when administered to UPEC-infected rats, substantially reduced the bacterial load in the epididymis and testis and proved to be more effective than gentamycin. The ability of Defensin 21 to limit RTI provides support that antibacterial proteins of the male reproductive tract may be used as potential alternatives to antibiotics in treatment of this disease. PMID:25675950

  11. Trade-Off between Iron Uptake and Protection against Oxidative Stress: Deletion of cueO Promotes Uropathogenic Escherichia coli Virulence in a Mouse Model of Urinary Tract Infection▿

    PubMed Central

    Tree, Jai J.; Ulett, Glen C.; Ong, Cheryl-Lynn Y.; Trott, Darren J.; McEwan, Alastair G.; Schembri, Mark A.

    2008-01-01

    The periplasmic multicopper oxidase (CueO) is involved in copper homeostasis and protection against oxidative stress. Here, we show that the deletion of cueO in uropathogenic Escherichia coli increases its colonization of the urinary tract despite its increased sensitivity to hydrogen peroxide. The cueO deletion mutant accumulated iron with increased efficiency compared to its parent strain; this may account for its advantage in the iron-limited environment of the urinary tract. PMID:18723628

  12. Detection of pap, sfa, afa, foc, and fim Adhesin-Encoding Operons in Uropathogenic Escherichia coli Isolates Collected From Patients With Urinary Tract Infection

    PubMed Central

    Rahdar, Masoud; Rashki, Ahmad; Miri, Hamid Reza; Rashki Ghalehnoo, Mehdi

    2015-01-01

    Background: Uropathogenic Escherichia coli (UPEC) with its virulence factors is the most prevalent cause of urinary tract infection (UTI). Objectives; This study aimed to determine the occurrence of fim, pap, sfa, and afa genes among 100 UPEC isolates collected from patients diagnosed with UTI. Materials and Methods A total of 100 UPEC isolates were obtained from urine samples of patients with UTI. The prevalence of 5 virulence genes encoding type 1 fimbriae (fimH), pili associated with pyelonephritis (pap), S and F1C fimbriae (sfa and foc) and afimbrial adhesins (afa) were determined through PCR method. We also investigated the phylogenetic background of all isolates. In addition, the distribution of adhesin-encoding operons between the phylogroups was assessed. Results: The prevalence of genes encoding for fimbrial adhesive systems was 95% for fim, 57% for pap, 16% for foc, and 81% for sfa. The operons encoding for afa afimbrial adhesins were identified in 12% of isolates. The various combinations of detected genes were designated as virulence patterns. The fim gene, which occurred in strains from all phylogenetic groups (A, B1, B2, and D) was evaluated and no significant differences were found among these groups. Conversely, significant differences were observed in relation to pap, afa, foc, and sfa operons. Conclusions: These results indicate that the PCR method is a powerful genotypic assay for the detection of adhesin-encoding operons. Thus, this assay can be recommended for clinical use to detect virulent urinary E. coli strains, as well as epidemiological studies. PMID:26464770

  13. Comprehensive mutagenesis of the fimS promoter regulatory switch reveals novel regulation of type 1 pili in uropathogenic Escherichia coli

    PubMed Central

    Zhang, Huibin; Susanto, Teodorus T.; Wan, Yue

    2016-01-01

    Type 1 pili (T1P) are major virulence factors for uropathogenic Escherichia coli (UPEC), which cause both acute and recurrent urinary tract infections. T1P expression therefore is of direct relevance for disease. T1P are phase variable (both piliated and nonpiliated bacteria exist in a clonal population) and are controlled by an invertible DNA switch (fimS), which contains the promoter for the fim operon encoding T1P. Inversion of fimS is stochastic but may be biased by environmental conditions and other signals that ultimately converge at fimS itself. Previous studies of fimS sequences important for T1P phase variation have focused on laboratory-adapted E. coli strains and have been limited in the number of mutations or by alteration of the fimS genomic context. We surmounted these limitations by using saturating genomic mutagenesis of fimS coupled with accurate sequencing to detect both mutations and phase status simultaneously. In addition to the sequences known to be important for biasing fimS inversion, our method also identifies a previously unknown pair of 5′ UTR inverted repeats that act by altering the relative fimA levels to control phase variation. Thus we have uncovered an additional layer of T1P regulation potentially impacting virulence and the coordinate expression of multiple pilus systems. PMID:27035967

  14. In vitro potency and efficacy favor later generation fluoroquinolones for treatment of canine and feline Escherichia coli uropathogens in the United States.

    PubMed

    Liu, Xiaoqiang; Boothe, Dawn M; Jin, Yaping; Thungrat, Kamoltip

    2013-02-01

    Information regarding in vitro activity of newer fluoroquinolones (FQs) is limited despite increasing resistance in canine or feline pathogenic Escherichia coli (E. coli). This study describes in vitro potency and efficacy toward E. coli of seven FQs grouped according to similarities in chemical structure: enrofloxacin, ciprofloxacin, orbifloxacin (first-group), levofloxacin, marbofloxacin (second-group) and pradofloxacin, moxifloxacin (third-group; latest S, S-pyrrolidino-piperidine at C-7). Potency measures included minimum inhibitory concentration (MIC) (geometric mean MIC, MIC(50), MIC(90)); and mutant prevention concentration (MPC) for FQ susceptible isolates only. In vitro efficacy measures included relative susceptibility (MIC(BP-S):MIC) or resistance (MIC:MIC(BP-R)) and mutant selection window (MSW) (MPC:MIC). For enrofloxacin susceptible isolates, mean MIC (μg/ml) was least for each third-group drug and ciprofloxacin and greatest for enrofloxacin and orbifloxacin (P = 0.006). For enrofloxacin susceptible isolates, MPC were below MIC:MIC(BP-R) and least for pradofloxacin (0.29 ± 0.16 μg/ml) and greatest for enrofloxacin (1.55 ± 0.55 μg/ml) (P = 0.006). MSW was least for pradofloxacin (55 ± 30) and greatest for ciprofloxacin (152 ± 76) (P = 0.0024). MIC(BP-S):MIC was greatest (P = 0.025) for pradofloxacin (190.1 ± 0.61) and least for enrofloxacin (23.53 ± 0.83). For FQ susceptible isolates, FQs MIC:MIC(BP-R) may serve as a surrogate for MPC. Because in vitro efficacy was greatest for pradofloxacin; it might be preferred for treatment of urinary tract infections (UTIs) associated with FQ susceptible E. coli uropathogens. PMID:23136054

  15. Emergence of co-production of plasmid-mediated AmpC beta-lactamase and ESBL in cefoxitin-resistant uropathogenic Escherichia coli.

    PubMed

    Ghosh, B; Mukherjee, M

    2016-09-01

    Plasmid-mediated AmpC (pAmpC) and ESBL co-production was detected in Escherichia coli a major etiologic agent of urinary tract infection. Isolates resistant to cefoxitin by CLSI methodology were tested for pAmpC beta-lactamase using phenylboronic acid and ESBLs by combined disk diffusion method. pAmpC/ESBL genes were characterized by PCR and sequencing. Transconjugation experiments were done to study the transfer of pAmpC and ESBL production from clinical isolates as donor to E. coli J53 AziR as recipient. Incompatibility groups of transmissible plasmids were classified by PCR-based replicon typing (PBRT). Among 148 urine culture positive isolates, E. coli was reported in 39.86 % (59/148), with 93.22 % (55/59) of cefoxitin resistance. pAmpC production was detected in 25, with varied distribution of blaCMY-2 and blaDHA-1type genes alone (n = 13 and 7 respectively) or in combination (n = 5). ESBL co-production was observed in 88 % (22/25) of pAmpC producing isolates with predominance of blaTEM (n = 20). Twenty-three transconjugants showed transmission of pAmpC-and ESBL-resistant genes with co-carriage of blaCMY-2 and blaTEM (n = 15) in plasmids of IncF type (n = 9) being predominant, followed by IncI1 (n = 4) and IncH1 (n = 2) in combination. All clinical isolates were clonally diverse. Resistance against different beta-lactams in uropathogenic E. coli has been an emerging concern in resource- poor countries such as India. Knowledge on the occurrence of AmpC beta-lactamases and ESBL amongst this pathogen and its transmission dynamics may aid in hospital infection control. PMID:27250633

  16. Functional Analysis of Antigen 43 in Uropathogenic Escherichia coli Reveals a Role in Long-Term Persistence in the Urinary Tract▿

    PubMed Central

    Ulett, Glen C.; Valle, Jaione; Beloin, Christophe; Sherlock, Orla; Ghigo, Jean-Marc; Schembri, Mark A.

    2007-01-01

    Escherichia coli is the primary cause of urinary tract infection (UTI) in the developed world. The major factors associated with the virulence of uropathogenic E. coli (UPEC) are fimbrial adhesins, which mediate specific attachment to host receptors and trigger innate host responses. Another group of adhesins is represented by the autotransporter subgroup of proteins. The best characterized of these proteins, antigen 43 (Ag43), is a self-recognizing adhesin that is associated with cell aggregation and biofilm formation in E. coli K-12. The sequenced genome of prototype UPEC strain CFT073 contains two variant Ag43-encoding genes located on pathogenicity islands. The biological significance of both of these genes and their role in UPEC pathogenesis have not been investigated previously. Here we performed a detailed molecular characterization analysis of Ag43a (c3655) and Ag43b (c1273) from UPEC CFT073. Expression of Ag43a and Ag43b in a K-12 background revealed that they possess different functional properties. Ag43a produced a strong aggregation phenotype and promoted significant biofilm growth. Deletion mutants and strains constitutively expressing Ag43a and Ag43b were also constructed using CFT073. When these mutants were analyzed in a mouse model of UTI, Ag43a (but not Ag43b) promoted long-term persistence in the urinary bladder. Our findings demonstrate that Ag43a contributes to UPEC disease pathogenesis and reveal that there are pathogenicity-adapted variants of Ag43 with distinct virulence-related functions. PMID:17420234

  17. Protein-based profiling of the immune response to uropathogenic Escherichia coli in adult patients immediately following hospital admission for acute cystitis.

    PubMed

    Sundac, Lana; Dando, Samantha J; Sullivan, Matthew J; Derrington, Petra; Gerrard, John; Ulett, Glen C

    2016-08-01

    Urinary tract infections (UTIs) caused by uropathogenic Escherichia coli (UPEC) are common infections in humans. Despite the substantial healthcare cost represented by these infections, the human immune response associated with the infection immediately following the onset of symptoms in patients remains largely undefined. We performed a prospective study aimed at defining the milieu of urinary cytokines in adult inpatients in the 24-48 h period immediately following hospital admission for acute cystitis due to UPEC. Urine samples, analyzed using 27-target multiplex protein assays, were used to generate immune profiles for patients and compared to age- and gender-matched healthy controls. The levels of multiple pro-inflammatory cytokines were significantly elevated in urine as a result of infection, an observation consistent with prior findings in murine models and clinical literature. We also identified significant responses for several novel factors not previously associated with the human response to UTI, including Interleukin (IL)-4, IL-7, IL-9, IL-17A, eotaxin, Granulocyte-macrophage colony-stimulating factor (GM-CSF) and several growth factors. These data establish crucial parallels between the human immune response to UPEC and murine model UTI studies, and emphasize the complex but poorly defined nature of the human immune response to UPEC, particularly in the immediate period following the onset of symptoms for acute cystitis. PMID:27354295

  18. Anti-Adhesive Activity of Cranberry Phenolic Compounds and Their Microbial-Derived Metabolites against Uropathogenic Escherichia coli in Bladder Epithelial Cell Cultures

    PubMed Central

    de Llano, Dolores González; Esteban-Fernández, Adelaida; Sánchez-Patán, Fernando; Martín-Álvarez, Pedro J.; Moreno-Arribas, Mª Victoria; Bartolomé, Begoña

    2015-01-01

    Cranberry consumption has shown prophylactic effects against urinary tract infections (UTI), although the mechanisms involved are not completely understood. In this paper, cranberry phenolic compounds and their potential microbial-derived metabolites (such as simple phenols and benzoic, phenylacetic and phenylpropionic acids) were tested for their capacity to inhibit the adherence of uropathogenic Escherichia coli (UPEC) ATCC®53503™ to T24 epithelial bladder cells. Catechol, benzoic acid, vanillic acid, phenylacetic acid and 3,4-dihydroxyphenylacetic acid showed anti-adhesive activity against UPEC in a concentration-dependent manner from 100–500 µM, whereas procyanidin A2, widely reported as an inhibitor of UPEC adherence on uroepithelium, was only statistically significant (p < 0.05) at 500 µM (51.3% inhibition). The results proved for the first time the anti-adhesive activity of some cranberry-derived phenolic metabolites against UPEC in vitro, suggesting that their presence in the urine could reduce bacterial colonization and progression of UTI. PMID:26023719

  19. Phenotypic Heterogeneity in Expression of the K1 Polysaccharide Capsule of Uropathogenic Escherichia coli and Downregulation of the Capsule Genes during Growth in Urine

    PubMed Central

    King, Jane E.; Aal Owaif, Hasan A.; Jia, Jia

    2015-01-01

    Uropathogenic Escherichia coli (UPEC) is the major causative agent of uncomplicated urinary tract infections (UTI). The K1 capsule on the surface of UPEC strains is a key virulence factor, and its expression may be important in the onset and progression of UTI. In order to understand capsule expression in more detail, we analyzed its expression in the UPEC strain UTI89 during growth in rich medium (LB medium) and urine and during infection of a bladder epithelial cell line. Comparison of capsule gene transcription using a chromosomal gfp reporter fusion showed a significant reduction in transcription during growth in urine compared to that during growth in LB medium. When examined at the single-cell level, following growth in both media, capsule gene expression appears to be heterogeneous, with two distinct green fluorescent protein (GFP)-expressing populations. Using anti-K1 antibody, we showed that this heterogeneity in gene expression results in two populations of encapsulated and unencapsulated cells. We demonstrated that the capsule hinders attachment to and invasion of epithelial cells and that the unencapsulated cells within the population preferentially adhere to and invade bladder epithelial cells. We found that once internalized, UTI89 starts to produce capsule to aid in its intracellular survival and spread. We propose that this observed phenotypic diversity in capsule expression is a fitness strategy used by the bacterium to deal with the constantly changing environment of the urinary tract. PMID:25870229

  20. Anti-Adhesive Activity of Cranberry Phenolic Compounds and Their Microbial-Derived Metabolites against Uropathogenic Escherichia coli in Bladder Epithelial Cell Cultures.

    PubMed

    de Llano, Dolores González; Esteban-Fernández, Adelaida; Sánchez-Patán, Fernando; Martínlvarez, Pedro J; Moreno-Arribas, Maria Victoria; Bartolomé, Begoña

    2015-01-01

    Cranberry consumption has shown prophylactic effects against urinary tract infections (UTI), although the mechanisms involved are not completely understood. In this paper, cranberry phenolic compounds and their potential microbial-derived metabolites (such as simple phenols and benzoic, phenylacetic and phenylpropionic acids) were tested for their capacity to inhibit the adherence of uropathogenic Escherichia coli (UPEC) ATCC®53503™ to T24 epithelial bladder cells. Catechol, benzoic acid, vanillic acid, phenylacetic acid and 3,4-dihydroxyphenylacetic acid showed anti-adhesive activity against UPEC in a concentration-dependent manner from 100-500 µM, whereas procyanidin A2, widely reported as an inhibitor of UPEC adherence on uroepithelium, was only statistically significant (p < 0.05) at 500 µM (51.3% inhibition). The results proved for the first time the anti-adhesive activity of some cranberry-derived phenolic metabolites against UPEC in vitro, suggesting that their presence in the urine could reduce bacterial colonization and progression of UTI. PMID:26023719

  1. Distribution of drb genes coding for Dr binding adhesins among uropathogenic and fecal Escherichia coli isolates and identification of new subtypes.

    PubMed Central

    Zhang, L; Foxman, B; Tallman, P; Cladera, E; Le Bouguenec, C; Marrs, C F

    1997-01-01

    The Dr family of related adherence structures, some fimbriated and others afimbriated, bind to decay-accelerating factor molecules on human cells. Dr is associated with recurring urinary tract infection (UTI), but the distribution of Dr subtypes among uropathogenic Escherichia coli causing UTI among otherwise healthy women has yet to be described. A total of 787 UTI and fecal E. coli isolates from college women were screened for the presence of Dr sequences (drb). Fifteen percent of UTI strains were drb positive, compared to 5% of fecal strains. The adhesin (E gene) subtype of each drb-positive strain was determined by type-specific PCR followed by restriction enzyme analysis. Among 78 drb-positive strains, we found 14 (18%) afaE1, 1 (1.3%) afaE2, 1 (1.3%) afaE3, 9 (12%) draE, 9 (12%) draE-afaE3 hybrid, 1 (1.3%) daaE, 32 (41%) afaE5, 4 (5.1%) F131 E gene-like, and 7 untypeable strains. All untypeable E genes were cloned and sequenced, revealing four additional new classes of E genes, including two similar to the previously identified nonfimbrial E series. While a great range of diversity exists among the E genes, restriction fragment length polymorphism analysis demonstrated that all of these drb operons share a highly conserved gene structure. The most common subtype, afaE5, occurred three times as often among UTI than fecal strains. Over half of the drb-positive strains and 80% of those positive for afaE5 have the same virulence signature (positive for aer, kpsMT, ompT, and fim), suggesting an association of this profile with UTI pathogenesis. PMID:9169726

  2. Inactivation of Uropathogenic Escherichia coli in Ground Chicken Meat Using High Pressure Processing and Gamma Radiation, and in Purge and Chicken Meat Surfaces by Ultraviolet Light

    PubMed Central

    Sommers, Christopher H.; Scullen, O. J.; Sheen, Shiowshuh

    2016-01-01

    Extraintestinal pathogenic Escherichia coli, including uropathogenic E. coli (UPEC), are common contaminants in poultry meat and may cause urinary tract infections after colonization of the gastrointestinal tract and transfer of contaminated feces to the urethra. Three non-thermal processing technologies used to improve the safety and shelf-life of both human and pet foods include high pressure processing (HPP), ionizing (gamma) radiation (GR), and ultraviolet light (UV-C). Multi-isolate cocktails of UPEC were inoculated into ground chicken which was then treated with HPP (4°C, 0–25 min) at 300, 400, or 500 MPa. HPP D10, the processing conditions needed to inactivate 1 log of UPEC, was 30.6, 8.37, and 4.43 min at 300, 400, and 500 MPa, respectively. When the UPEC was inoculated into ground chicken and gamma irradiated (4 and -20°C) the GR D10 were 0.28 and 0.36 kGy, respectively. The UV-C D10 of UPEC in chicken suspended in exudate and placed on stainless steel and plastic food contact surfaces ranged from 11.4 to 12.9 mJ/cm2. UV-C inactivated ca. 0.6 log of UPEC on chicken breast meat. These results indicate that existing non-thermal processing technologies such as HPP, GR, and UV-C can significantly reduce UPEC levels in poultry meat or exudate and provide safer poultry products for at-risk consumers. PMID:27148167

  3. Inactivation of Uropathogenic Escherichia coli in Ground Chicken Meat Using High Pressure Processing and Gamma Radiation, and in Purge and Chicken Meat Surfaces by Ultraviolet Light.

    PubMed

    Sommers, Christopher H; Scullen, O J; Sheen, Shiowshuh

    2016-01-01

    Extraintestinal pathogenic Escherichia coli, including uropathogenic E. coli (UPEC), are common contaminants in poultry meat and may cause urinary tract infections after colonization of the gastrointestinal tract and transfer of contaminated feces to the urethra. Three non-thermal processing technologies used to improve the safety and shelf-life of both human and pet foods include high pressure processing (HPP), ionizing (gamma) radiation (GR), and ultraviolet light (UV-C). Multi-isolate cocktails of UPEC were inoculated into ground chicken which was then treated with HPP (4°C, 0-25 min) at 300, 400, or 500 MPa. HPP D10, the processing conditions needed to inactivate 1 log of UPEC, was 30.6, 8.37, and 4.43 min at 300, 400, and 500 MPa, respectively. When the UPEC was inoculated into ground chicken and gamma irradiated (4 and -20°C) the GR D10 were 0.28 and 0.36 kGy, respectively. The UV-C D10 of UPEC in chicken suspended in exudate and placed on stainless steel and plastic food contact surfaces ranged from 11.4 to 12.9 mJ/cm(2). UV-C inactivated ca. 0.6 log of UPEC on chicken breast meat. These results indicate that existing non-thermal processing technologies such as HPP, GR, and UV-C can significantly reduce UPEC levels in poultry meat or exudate and provide safer poultry products for at-risk consumers. PMID:27148167

  4. Th1-Th17 cells contribute to the development of uropathogenic Escherichia coli-induced chronic pelvic pain.

    PubMed

    Quick, Marsha L; Wong, Larry; Mukherjee, Soumi; Done, Joseph D; Schaeffer, Anthony J; Thumbikat, Praveen

    2013-01-01

    The etiology of chronic prostatitis/chronic pelvic pain syndrome in men is unknown but may involve microbes and autoimmune mechanisms. We developed an infection model of chronic pelvic pain in NOD/ShiLtJ (NOD) mice with a clinical Escherichia coli isolate (CP-1) from a patient with chronic pelvic pain. We investigated pain mechanisms in NOD mice and compared it to C57BL/6 (B6) mice, a strain resistant to CP-1-induced pain. Adoptive transfer of CD4+ T cells, but not serum, from CP-1-infected NOD mice was sufficient to induce chronic pelvic pain. CD4+ T cells in CP-1-infected NOD mice expressed IFN-γ and IL-17A but not IL-4, consistent with a Th1/Th17 immune signature. Adoptive transfer of ex-vivo expanded IFN-γ or IL-17A-expressing cells was sufficient to induce pelvic pain in naïve NOD recipients. Pelvic pain was not abolished in NOD-IFN-γ-KO mice but was associated with an enhanced IL-17A immune response to CP1 infection. These findings demonstrate a novel role for Th1 and Th17-mediated adaptive immune mechanisms in chronic pelvic pain. PMID:23577183

  5. In silico design of fusion protein of FimH from uropathogenic Escherichia coli and MrpH from Proteus mirabilis against urinary tract infections

    PubMed Central

    Habibi, Mehri; Asadi Karam, Mohammad Reza; Bouzari, Saeid

    2015-01-01

    Background: Urinary tract infections (UTIs) caused by uropathogenic Escherichia coli (UPEC) and Proteus mirabilis are the most important pathogens causing UTIs. The FimH from type 1 pili of UPEC and the MrpH from P. mirabilis play critical roles in the UTI process and have presented as ideal vaccine candidates against UTIs. There is no effective vaccine against UTI and the development of an ideal UTI vaccine is required. Materials and Methods: In this study, we planned to design a novel fusion protein of FimH from UPEC and MrpH from P. mirabilis. For this purpose, we modeled fusion protein forms computationally using the Iterative Threading Assembly Refinement (I-TASSER) server and evaluated their interactions with toll-like receptor 4 (TLR4). The best fusion protein was constructed using overlap extension polymerase chain reaction (OE-PCR) and the biological activity of fusion was evaluated by the induction of interleukin-8 (IL-8) in the HT-29 cell line. Results: Our study indicated that based on the Protein Structure Analysis (ProSA)-web and the docking results, MrpH.FimH showed better results than did FimH.MrpH, and it was selected for construction. The results of bioassay on the HT-29 showed that FimH and MrpH.FimH induced significantly higher IL-8 responses than untreated cells or MrpH alone in the cell line tested. Conclusions: In the present study, we designed and constructed the novel fusion protein MrpH.FimH from UPEC and P. mirabilis based on in silico methods. Our bioassay results indicate that the MrpH.FimH fusion protein is active and capable of inducing immune responses. PMID:26605246

  6. Surfactant protein D inhibits adherence of uropathogenic Escherichia coli to the bladder epithelial cells and the bacterium-induced cytotoxicity: a possible function in urinary tract.

    PubMed

    Kurimura, Yuichiro; Nishitani, Chiaki; Ariki, Shigeru; Saito, Atsushi; Hasegawa, Yoshihiro; Takahashi, Motoko; Hashimoto, Jiro; Takahashi, Satoshi; Tsukamoto, Taiji; Kuroki, Yoshio

    2012-11-16

    The adherence of uropathogenic Escherichia coli (UPEC) to the host urothelial surface is the first step for establishing UPEC infection. Uroplakin Ia (UPIa), a glycoprotein expressed on bladder urothelium, serves as a receptor for FimH, a lectin located at bacterial pili, and their interaction initiates UPEC infection. Surfactant protein D (SP-D) is known to be expressed on mucosal surfaces in various tissues besides the lung. However, the functions of SP-D in the non-pulmonary tissues are poorly understood. The purposes of this study were to investigate the possible function of SP-D expressed in the bladder urothelium and the mechanisms by which SP-D functions. SP-D was expressed in human bladder mucosa, and its mRNA was increased in the bladder of the UPEC infection model in mice. SP-D directly bound to UPEC and strongly agglutinated them in a Ca(2+)-dependent manner. Co-incubation of SP-D with UPEC decreased the bacterial adherence to 5637 cells, the human bladder cell line, and the UPEC-induced cytotoxicity. In addition, preincubation of SP-D with 5637 cells resulted in the decreased adherence of UPEC to the cells and in a reduced number of cells injured by UPEC. SP-D directly bound to UPIa and competed with FimH for UPIa binding. Consistent with the in vitro data, the exogenous administration of SP-D inhibited UPEC adherence to the bladder and dampened UPEC-induced inflammation in mice. These results support the conclusion that SP-D can protect the bladder urothelium against UPEC infection and suggest a possible function of SP-D in urinary tract. PMID:23012359

  7. Resistance and virulence potential of uropathogenic Escherichia coli strains isolated from patients hospitalized in urology departments: a French prospective multicentre study.

    PubMed

    Lavigne, Jean-Philippe; Bruyère, Franck; Bernard, Louis; Combescure, Christophe; Ronco, Esthel; Lanotte, Philippe; Coloby, Patrick; Thibault, Michel; Cariou, Gérard; Desplaces, Nicole; Costa, Pierre; Sotto, Albert

    2016-06-01

    We characterized antibiotic resistance and virulence of uropathogenic Escherichia coli (UPEC) strains isolated from urinary tract infections (UTIs) in patients hospitalized in urology departments. A prospective multicentre study was initiated from March 2009 and lasted until February 2010 in French urology units. All patients with asymptomatic bacteriuria (ABU), acute cystitis, acute pyelonephritis or acute prostatitis in whom UPEC was detected were included. Antimicrobial resistance and virulence factors were compared among the different groups. To identify independent associations between virulence markers and the risk of UTI, we used a multivariate logistic regression. We included 210 patients (mean age: 65.8 years; 106 female). Episode of UTI was community acquired in 72.4 %. ABU was diagnosed in 67 cases (31.9 %), cystitis in 52 cases (24.7 %), pyelonephritis in 35 cases (16.7 %) and prostatitis in 56 cases (26.7 %). ABU was more frequent in patients with a urinary catheter (76.1 vs 23.9 %, P<0.001). The resistance rate was 7.6 and 24.8 % for cefotaxime and ciprofloxacin, respectively. UPEC isolated from infections belonged more frequently to phylotypes B2 and D (P =0.07). The papG allele II and papA, papC, papE, kpsMTII and iutA genes were significantly more frequent in infecting strains (P<0.05). In multivariate analysis, strains susceptible to ciprofloxacin were significantly associated with papG allele II (P=0.007), kpsMTK1 (P<0.001) and hlyA (P<0.001) compared with the ciprofloxacin-resistant strains. To the best of our knowledge, this is the first study evaluating the antibiotic resistance and virulence features of UPEC isolated from patients hospitalized in urology departments. High resistance rates were observed, notably for ciprofloxacin, highlighting the importance of a reinforced surveillance in this setting. PMID:26953145

  8. Transurethral instillation with fusion protein MrpH.FimH induces protective innate immune responses against uropathogenic Escherichia coli and Proteus mirabilis.

    PubMed

    Habibi, Mehri; Asadi Karam, Mohammad Reza; Bouzari, Saeid

    2016-06-01

    Urinary tract infections (UTIs) are among the most common infections in human. Innate immunity recognizes pathogen-associated molecular patterns (PAMPs) by Toll-like receptors (TLRs) to activate responses against pathogens. Recently, we demonstrated that MrpH.FimH fusion protein consisting of MrpH from Proteus mirabilis and FimH from Uropathogenic Escherichia coli (UPEC) results in the higher immunogenicity and protection, as compared with FimH and MrpH alone. In this study, we evaluated the innate immunity and adjuvant properties induced by fusion MrpH.FimH through in vitro and in vivo methods. FimH and MrpH.FimH were able to induce significantly higher IL-8 and IL-6 responses than untreated or MrpH alone in cell lines tested. The neutrophil count was significantly higher in the fusion group than other groups. After 6 h, IL-8 and IL-6 production reached a peak, with a significant decline at 24 h post-instillation in both bladder and kidney tissues. Mice instilled with the fusion and challenged with UPEC or P. mirabilis showed a significant decrease in the number of bacteria in bladder and kidney compared to control mice. The results of these studies demonstrate that the use of recombinant fusion protein encoding TLR-4 ligand represents an effective vaccination strategy that does not require the use of a commercial adjuvant. Furthermore, MrpH.FimH was presented as a promising vaccine candidate against UTIs caused by UPEC and P. mirabilis. PMID:26918627

  9. Escherichia Coli

    ERIC Educational Resources Information Center

    Goodsell, David S.

    2009-01-01

    Diverse biological data may be used to create illustrations of molecules in their cellular context. I describe the scientific results that support a recent textbook illustration of an "Escherichia coli cell". The image magnifies a portion of the bacterium at one million times, showing the location and form of individual macromolecules. Results…

  10. Ameliorating Effect of Ginseng on Epididymo-Orchitis Inducing Alterations in Sperm Quality and Spermatogenic Cells Apoptosis following Infection by Uropathogenic Escherichia coli in Rats

    PubMed Central

    Eskandari, Mehdi; Jani, Soghra; Kazemi, Mahsa; Zeighami, Habib; Yazdinezhad, Alireza; Mazloomi, Sahar; Shokri, Saeed

    2016-01-01

    Objective Epididymo-orchitis (EO) potentially results in reduced fertility in up to 60% of affected patients. The anti-inflammatory effects of Korean red ginseng (KRG) and its ability to act as an immunoenhancer in parallel with the beneficial effects of this ancient herbal medicine on the reproductive systems of animals and humans led us to evaluate its protective effects against acute EO. Materials and Methods This animal experimental study was conducted in the Department of Anatomical Sciences, Faculty of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran during 2013-2015. We divided 50 Wistar rats into five following groups (n=10 per group): i. Control-intact animals, ii. Vehicle-phosphate buffered saline (PBS) injection into the vas deferens, iii. KRG-an intraperitoneal (IP) injection of KRG, iv. EO-an injection of uropathogenic Escherichia coli (UPEC) strain M39 into the vas defer- ens, and v. EO/ KRG-injections of both UPEC strain M39 and KRG. The treatment lasted seven days. We then evaluated sperm parameters, number of germ cell layers, Johnson’s criteria, germ cell apoptosis, body weight and relative sex organs weight. Results Acute EO increased the relative weight of prostate and seminal vesicles (P≤0.05). It also reduced sperm quality such as total motility, sperm concentration (P≤0.01), and the percentage of normal sperm (P≤0.001). Moreover, acute EO decreased Miller’s (P≤0.05) and Johnsen’s scores and increased apoptotic indexes of spermatogenic cells (P≤0.001). KRG treatment decreased prostate weight gain (P≤0.05) and improved the percentage of sperm with normal morphology, total motility (P≤0.01), and progressive motility (P≤0.05). The apoptotic indexes of spermatogenic cells reduced (P≤0.001), whereas both Johnsen’s (P≤0.01) and Miller’s criteria increased in the KRG-treated EO testis (P≤0.05). Conclusion Consequently, KRG ameliorated the devastating effects of EO on the sperm retrieved from either

  11. Production of the Escherichia coli Common Pilus by Uropathogenic E. coli Is Associated with Adherence to HeLa and HTB-4 Cells and Invasion of Mouse Bladder Urothelium

    PubMed Central

    Carrillo-Casas, Erika Margarita; Durán, Laura; Zhang, Yushan; Hernández-Castro, Rigoberto; Puente, José L.; Daaka, Yehia; Girón, Jorge A.

    2014-01-01

    Uropathogenic Escherichia coli (UPEC) strains cause urinary tract infections and employ type 1 and P pili in colonization of the bladder and kidney, respectively. Most intestinal and extra-intestinal E. coli strains produce a pilus called E. coli common pilus (ECP) involved in cell adherence and biofilm formation. However, the contribution of ECP to the interaction of UPEC with uroepithelial cells remains to be elucidated. Here, we report that prototypic UPEC strains CFT073 and F11 mutated in the major pilin structural gene ecpA are significantly deficient in adherence to cultured HeLa (cervix) and HTB-4 (bladder) epithelial cells in vitro as compared to their parental strains. Complementation of the ecpA mutant restored adherence to wild-type levels. UPEC strains produce ECP upon growth in Luria-Bertani broth or DMEM tissue culture medium preferentially at 26°C, during incubation with cultured epithelial cells in vitro at 37°C, and upon colonization of mouse bladder urothelium ex vivo. ECP was demonstrated on and inside exfoliated bladder epithelial cells present in the urine of urinary tract infection patients. The ability of the CFT073 ecpA mutant to invade the mouse tissue was significantly reduced. The presence of ECP correlated with the architecture of the biofilms produced by UPEC strains on inert surfaces. These data suggest that ECP can potentially be produced in the bladder environment and contribute to the adhesive and invasive capabilities of UPEC during its interaction with the host bladder. We propose that along with other known adhesins, ECP plays a synergistic role in the multi-step infection of the urinary tract. PMID:25036370

  12. Comparison of the Anti-Adhesion Activity of Three Different Cranberry Extracts on Uropathogenic P-fimbriated Escherichia coli: a Randomized, Double-blind, Placebo Controlled, Ex Vivo, Acute Study.

    PubMed

    Howell, Amy; Souza, Dan; Roller, Marc; Fromentin, Emilie

    2015-07-01

    Research suggests that cranberry (Vaccinium macrocarpon) helps maintain urinary tract health. Bacterial adhesion to the uroepithelium is the initial step in the progression to development of a urinary tract infection. The bacterial anti-adhesion activity of cranberry proanthocyanidins (PACs) has been demonstrated in vitro. Three different cranberry extracts were developed containing a standardized level of 36 mg of PACs. This randomized, double-blind, placebo controlled, ex vivo, acute study was designed to compare the anti-adhesion activity exhibited by human urine following consumption of three different cranberry extracts on uropathogenic P-fimbriated Escherichia coli in healthy men and women. All three cranberry extracts significantly increased anti-adhesion activity in urine. from 6 to 12 hours after intake of a single dose standardized to deliver 36 mg of PACs (as measured by the BL-DMAC method), versus placebo. PMID:26411014

  13. S fimbriae of uropathogenic Escherichia coli bind to primary human renal proximal tubular epithelial cells but do not induce expression of intercellular adhesion molecule 1.

    PubMed Central

    Kreft, B; Placzek, M; Doehn, C; Hacker, J; Schmidt, G; Wasenauer, G; Daha, M R; van der Woude, F J; Sack, K

    1995-01-01

    We have recently reported an increase of expression of the intercellular adhesion molecule 1 by renal carcinoma cells in response to S fimbriae of Escherichia coli. Now we demonstrate that E. coli expressing S and P fimbriae strongly binds to human proximal tubular epithelial cells. However, in primary and simian virus 40-transfected renal tubular epithelial cells S fimbriae do not enhance the expression of intercellular adhesion molecule 1. PMID:7622256

  14. Molecular typing of uropathogenic E. coli strains by the ERIC-PCR method

    PubMed Central

    Ardakani, Maryam Afkhami; Ranjbar, Reza

    2016-01-01

    Introduction Escherichia coli (E. coli) is the most common cause of urinary infections in hospitals. The aim of this study was to evaluate the ERIC-PCR method for molecular typing of uropathogenic E. coli strains isolated from hospitalized patients. Methods In a cross sectional study, 98 E. coli samples were collected from urine samples taken from patients admitted to Baqiyatallah Hospital from June 2014 to January 2015. The disk agar diffusion method was used to determine antibiotic sensitivity. DNA proliferation based on repetitive intergenic consensus was used to classify the E. coli strains. The products of proliferation were electrophoresed on 1.5% agarose gel, and their dendrograms were drawn. The data were analyzed by online Insillico software. Results The method used in this research proliferated numerous bands (4–17 bands), ranging from 100 to 3000 base pairs. The detected strains were classified into six clusters (E1–E6) with 70% similarity between them. Conclusion In this study, uropathogenic E. coli strains belonged to different genotypic clusters. It was found that ERIC-PCR had good differentiation power for molecular typing of uropathogenic E. coli strains isolated from the patients in the study. PMID:27280007

  15. Characterization of Multidrug Resistant Extended-Spectrum Beta-Lactamase-Producing Escherichia coli among Uropathogens of Pediatrics in North of Iran.

    PubMed

    Rezai, Mohammad Sadegh; Salehifar, Ebrahim; Rafiei, Alireza; Langaee, Taimour; Rafati, Mohammadreza; Shafahi, Kheironesa; Eslami, Gohar

    2015-01-01

    Escherichia coli remains as one of the most important bacteria causing infections in pediatrics and producing extended-spectrum beta-lactamases (ESBLs) making them resistant to beta-lactam antibiotics. In this study we aimed to genotype ESBL-producing E. coli isolates from pediatric patients for ESBL genes and determine their association with antimicrobial resistance. One hundred of the E. coli isolates were initially considered ESBL producing based on their MIC results. These isolates were then tested by polymerase chain reaction (PCR) for the presence or absence of CTX, TEM, SHV, GES, and VEB beta-lactamase genes. About 30.5% of isolated E. coli was ESBL-producing strain. The TEM gene was the most prevalent (49%) followed by SHV (44%), CTX (28%), VEB (8%), and GES (0%) genes. The ESBL-producing E. coli isolates were susceptible to carbapenems (66%) and amikacin (58%) and showed high resistance to cefixime (99%), colistin (82%), and ciprofloxacin (76%). In conclusion, carbapenems were the most effective antibiotics against ESBl-producing E. coli in urinary tract infection in North of Iran. The most prevalent gene is the TEM-type, but the other resistant genes and their antimicrobial resistance are on the rise. PMID:26064896

  16. In Vivo mRNA Profiling of Uropathogenic Escherichia coli from Diverse Phylogroups Reveals Common and Group-Specific Gene Expression Profiles

    PubMed Central

    Bielecki, Piotr; Muthukumarasamy, Uthayakumar; Eckweiler, Denitsa; Bielecka, Agata; Pohl, Sarah; Schanz, Ansgar; Niemeyer, Ute; Oumeraci, Tonio; von Neuhoff, Nils; Ghigo, Jean-Marc

    2014-01-01

    ABSTRACT mRNA profiling of pathogens during the course of human infections gives detailed information on the expression levels of relevant genes that drive pathogenicity and adaptation and at the same time allows for the delineation of phylogenetic relatedness of pathogens that cause specific diseases. In this study, we used mRNA sequencing to acquire information on the expression of Escherichia coli pathogenicity genes during urinary tract infections (UTI) in humans and to assign the UTI-associated E. coli isolates to different phylogenetic groups. Whereas the in vivo gene expression profiles of the majority of genes were conserved among 21 E. coli strains in the urine of elderly patients suffering from an acute UTI, the specific gene expression profiles of the flexible genomes was diverse and reflected phylogenetic relationships. Furthermore, genes transcribed in vivo relative to laboratory media included well-described virulence factors, small regulatory RNAs, as well as genes not previously linked to bacterial virulence. Knowledge on relevant transcriptional responses that drive pathogenicity and adaptation of isolates to the human host might lead to the introduction of a virulence typing strategy into clinical microbiology, potentially facilitating management and prevention of the disease. PMID:25096872

  17. Characteristics and prevalence within serogroup O4 of a J96-like clonal group of uropathogenic Escherichia coli O4:H5 containing the class I and class III alleles of papG.

    PubMed Central

    Johnson, J R; Stapleton, A E; Russo, T A; Scheutz, F; Brown, J J; Maslow, J N

    1997-01-01

    The recent discovery of a geographically dispersed clonal group of Escherichia coli O4:H5 that includes prototypic uropathogenic strain J96 prompted us to determine the prevalence of J96-like strains within serogroup O4 and to further assess the characteristics of such strains. We used O:K:H;F serotyping, PCR-based genomic fingerprinting, pulsed-field gel electrophoresis (PFGE), multilocus enzyme electrophoresis (MLEE), and PCR detection of the three papG alleles and of the cytotoxic necrotizing factor 1 (cnf1) and aerobactin (aer) gene sequences to characterize the 15 O4 strains among 336 E. coli isolates from three clinical collections (187 from mixed-source bacteremia, 75 from urosepsis, and 74 from acute cystitis). J96-like strains constituted approximately half of the O4 strains, or 2% of the total population. In contrast to other O4 strains, the J96-like strains characteristically exhibited specific group III capsular antigens, the H5 flagellar and F13 fimbrial antigens, a distinctive PCR genomic fingerprint, the class III papG allele (plus, in 50% of strains, the enigmatic class I papG allele), and cnf1 but lacked aer. A subset of these strains was remarkably homogeneous with respect to all these characteristics and exhibited a distinctive PFGE fingerprint and MLEE pattern. These findings clarify the epidemiological relevance of J96 as a model extraintestinal pathogen, provide further evidence of the class I papG allele outside of strain J96, and offer insights into the evolution of E. coli serogroup O4. PMID:9169745

  18. Multiresistant Uropathogenic Escherichia coli from a Region in India Where Urinary Tract Infections Are Endemic: Genotypic and Phenotypic Characteristics of Sequence Type 131 Isolates of the CTX-M-15 Extended-Spectrum-β-Lactamase-Producing Lineage

    PubMed Central

    Hussain, Arif; Ewers, Christa; Nandanwar, Nishant; Guenther, Sebastian; Jadhav, Savita; Wieler, Lothar H.

    2012-01-01

    Escherichia coli sequence type 131 (O25b:H4), associated with the CTX-M-15 extended-spectrum beta-lactamases (ESBLs) and linked predominantly to the community-onset antimicrobial-resistant infections, has globally emerged as a public health concern. However, scant attention is given to the understanding of the molecular epidemiology of these strains in high-burden countries such as India. Of the 100 clinical E. coli isolates obtained by us from a setting where urinary tract infections are endemic, 16 ST131 E. coli isolates were identified by multilocus sequence typing (MLST). Further, genotyping and phenotyping methods were employed to characterize their virulence and drug resistance patterns. All the 16 ST131 isolates harbored the CTX-M-15 gene, and half of them also carried TEM-1; 11 of these were positive for blaOXA groups 1 and 12 for aac(6′)-Ib-cr. At least 12 isolates were refractory to four non-beta-lactam antibiotics: ciprofloxacin, gentamicin, sulfamethoxazole-trimethoprim, and tetracycline. Nine isolates carried the class 1 integron. Plasmid analysis indicated a large pool of up to six plasmids per strain with a mean of approximately three plasmids. Conjugation and PCR-based replicon typing (PBRT) revealed that the spread of resistance was associated with the FIA incompatibility group of plasmids. Pulsed-field gel electrophoresis (PFGE) and genotyping of the virulence genes showed a low level of diversity among these strains. The association of ESBL-encoding plasmid with virulence was demonstrated in transconjugants by serum assay. None of the 16 ST131 ESBL-producing E. coli strains were known to synthesize carbapenemase enzymes. In conclusion, our study reports a snapshot of the highly virulent/multiresistant clone ST131 of uropathogenic E. coli from India. This study suggests that the ST131 genotypes from this region are clonally evolved and are strongly associated with the CTX-M-15 enzyme, carry a high antibiotic resistance background, and have

  19. In Vivo Consumption of Cranberry Exerts ex Vivo Antiadhesive Activity against FimH-Dominated Uropathogenic Escherichia coli: A Combined in Vivo, ex Vivo, and in Vitro Study of an Extract from Vaccinium macrocarpon.

    PubMed

    Rafsanjany, Nasli; Senker, Jandirk; Brandt, Simone; Dobrindt, Ulrich; Hensel, Andreas

    2015-10-14

    For investigation of the molecular interaction of cranberry extract with adhesins of uropathogenic Escherichia coli (UPEC), urine from four volunteers consuming standardized cranberry extract (proanthocyanidin content = 1.24%) was analyzed within ex vivo experiments, indicating time-dependent significant inhibition of 40-50% of bacterial adhesion of UPEC strain NU14 to human T24 bladder cells. Under in vitro conditions a dose-dependent increase in bacterial adhesion was observed with proanthocyanidin-enriched cranberry Vaccinium macrocarpon extract (proanthocyanidin content = 21%). Confocal laser scanning microscopy and scanning electron microscopy proved that V.m. extract led to the formation of bacterial clusters on the outer plasma membrane of the host cells without subsequent internalization. This agglomerating activity was not observed when a PAC-depleted extract (V.m. extract(≠PAC)) was used, which showed significant inhibition of bacterial adhesion in cases where type 1 fimbriae dominated and mannose-sensitive UPEC strain NU14 was used. V.m. extract(≠PAC) had no inhibitory activity against P- and F1C-fimbriae dominated strain 2980. Quantitative gene expression analysis indicated that PAC-containing as well as PAC-depleted cranberry extracts increased the fimH expression in NU14 as part of a feedback mechanism after blocking FimH. For strain 2980 the PAC-containing extract led to up-regulation of P- and F1C-fimbriae, whereas the PAC-depleted extract had no influence on gene expression. V.m. and V.m. extract(≠PAC) did not influence biofilm and curli formation in UPEC strains NU14 and 2980. These data lead to the conclusion that also proanthocyanidin-free cranberry extracts exert antiadhesive activity by interaction with mannose-sensitive type 1 fimbriae of UPEC. PMID:26330108

  20. Escherichia coli (E. coli)

    MedlinePlus

    ... so you might hear about E. coli being found in drinking water, which are not themselves harmful, but indicate the ... at CDC Foodborne disease Travelers' Health: Safe Food & Water Healthy Swimming E. coli Infection & Farm ... Word file Microsoft Excel file Audio/Video file Apple ...

  1. Diarrheagenic Escherichia coli

    PubMed Central

    Nataro, James P.; Kaper, James B.

    1998-01-01

    Escherichia coli is the predominant nonpathogenic facultative flora of the human intestine. Some E. coli strains, however, have developed the ability to cause disease of the gastrointestinal, urinary, or central nervous system in even the most robust human hosts. Diarrheagenic strains of E. coli can be divided into at least six different categories with corresponding distinct pathogenic schemes. Taken together, these organisms probably represent the most common cause of pediatric diarrhea worldwide. Several distinct clinical syndromes accompany infection with diarrheagenic E. coli categories, including traveler’s diarrhea (enterotoxigenic E. coli), hemorrhagic colitis and hemolytic-uremic syndrome (enterohemorrhagic E. coli), persistent diarrhea (enteroaggregative E. coli), and watery diarrhea of infants (enteropathogenic E. coli). This review discusses the current level of understanding of the pathogenesis of the diarrheagenic E. coli strains and describes how their pathogenic schemes underlie the clinical manifestations, diagnostic approach, and epidemiologic investigation of these important pathogens. PMID:9457432

  2. Pathogenic Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli, a member of the Enterobacteriaceae family, is a part of the normal flora of the intestinal tract of humans and a variety of animals. E. coli strains are classified on the basis of antigenic differences in two surface components (serotyping), the somatic antigen (O) of the lipopoly...

  3. PATHOGENIC ESCHERICHIA COLI

    EPA Science Inventory

    Escherichia coli is a bacterial species which inhabits the gastrointestinal tract of man and warm-blooded animals. Because of the ubiquity of this bacterium in the intestinal flora, it serves as an important indicator organism of fecal contamination. E. coli, aside from serving a...

  4. Pathogenic Escherichia coli.

    PubMed

    Kaper, James B; Nataro, James P; Mobley, Harry L

    2004-02-01

    Few microorganisms are as versatile as Escherichia coli. An important member of the normal intestinal microflora of humans and other mammals, E. coli has also been widely exploited as a cloning host in recombinant DNA technology. But E. coli is more than just a laboratory workhorse or harmless intestinal inhabitant; it can also be a highly versatile, and frequently deadly, pathogen. Several different E. coli strains cause diverse intestinal and extraintestinal diseases by means of virulence factors that affect a wide range of cellular processes. PMID:15040260

  5. Uropathogenic E.coli (UPEC) Infection Induces Proliferation through Enhancer of Zeste Homologue 2 (EZH2)

    PubMed Central

    Penna, Frank; Samiei, Alaleh Najdi; Sidler, Martin; Jiang, Jia-Xin; Ibrahim, Fadi; Tolg, Cornelia; Delgado-Olguin, Paul; Rosenblum, Norman; Bägli, Darius J.

    2016-01-01

    Host-pathogen interactions can induce epigenetic changes in the host directly, as well as indirectly through secreted factors. Previously, uropathogenic Escherichia coli (UPEC) was shown to increase DNA methyltransferase activity and expression, which was associated with methylation-dependent alterations in the urothelial expression of CDKN2A. Here, we showed that paracrine factors from infected cells alter expression of another epigenetic writer, EZH2, coordinate with proliferation. Urothelial cells were inoculated with UPEC, UPEC derivatives, or vehicle (mock infection) at low moi, washed, then maintained in media with Gentamycin. Urothelial conditioned media (CM) and extracellular vesicles (EV) were isolated after the inoculations and used to treat naïve urothelial cells. EZH2 increased with UPEC infection, inoculation-induced CM, and inoculation-induced EV vs. parallel stimulation derived from mock-inoculated urothelial cells. We found that infection also increased proliferation at one day post-infection, which was blocked by the EZH2 inhibitor UNC1999. Inhibition of demethylation at H3K27me3 had the opposite effect and augmented proliferation. CONCLUSION: Uropathogen-induced paracrine factors act epigenetically by altering expression of EZH2, which plays a key role in early host cell proliferative responses to infection. PMID:26964089

  6. Genetic recombination. [Escherichia coli

    SciTech Connect

    Stahl, F.W.

    1987-02-01

    The molecular pathways of gene recombination are explored and compared in studies of the model organisms, Escherichia coli and phase lambda. In the discussion of data from these studies it seems that recombination varies with the genetic idiosyncrasies of the organism and may also vary within a single organism.

  7. Recurrent Escherichia coli bacteremia.

    PubMed Central

    Maslow, J N; Mulligan, M E; Arbeit, R D

    1994-01-01

    Escherichia coli is the most common gram-negative organism associated with bacteremia. While recurrent E. coli urinary tract infections are well-described, recurrent E. coli bacteremia appears to be uncommon, with no episodes noted in multiple series of patients with gram-negative bacteremias. We report on 5 patients with recurrent bloodstream infections identified from a series of 163 patients with E. coli bacteremia. For each patient, the isolates from each episode were analyzed by pulsed-field gel electrophoresis (PFGE) and ribotyping and for the presence of E. coli virulence factors. For each of four patients, the index and recurrent episodes of bacteremia represented the same strain as defined by PFGE, and the strains were found to carry one or more virulence factors. The remaining patient, with two episodes of bloodstream infection separated by a 4-year interval, was infected with two isolates that did not carry any virulence factors and that were clonally related by ribotype analysis but differed by PFGE. All five patients had either a local host defense defect (three patients) or impaired systemic defenses (one patient) or both (one patient). Thus, recurrent E. coli bacteremia is likely to represent a multifactorial process that occurs in patients with impaired host defenses who are infected with virulent isolates. Images PMID:7910828

  8. Cytoprotective Effect of Lactobacillus crispatus CTV-05 against Uropathogenic E. coli

    PubMed Central

    Butler, Daniel S. C.; Silvestroni, Aurelio; Stapleton, Ann E.

    2016-01-01

    The vaginal flora consists of a subset of different lactic acid producing bacteria, typically creating a hostile environment for infecting pathogens. However, the flora can easily be disrupted, creating a favorable milieu for uropathogenic Escherichia coli (UPEC), making it possible to further infect the urinary system via the urethra. Probiotic use of different lactobacilli to restore the normal flora of the vagina has been proposed as a potential prophylactic treatment against urinary tract infections. This project evaluated the protective- and anti-inflammatory roles of the probiotic Lactobacillus crispatus strain CTV-05 in an in vitro system. The inflammatory response and the cytotoxic effect were studied by Enzyme-linked immunosorbent assays and by trypan blue exclusion of cells inoculated with L. crispatus CTV-05 and comparing it to non-infected controls and UPEC infected cells. L. crispatus CTV-05 showed no cytotoxicity to vaginal epithelial cells compared to non-infected controls and provided significant protection against UPEC infection (p < 0.05). Further more, L. crispatus CTV-05 did not create a pro-inflammatory response in vitro, with no significant increase of IL-1β or IL-6. These results demonstrate the protective effect of using L. crispatus CTV-05 as a probiotic treatment to reduce the risk of recurrent urinary tract infections.

  9. Measuring Escherichia coli Gene Expression during Human Urinary Tract Infections

    PubMed Central

    Mobley, Harry L. T.

    2016-01-01

    Extraintestinal Escherichia coli (E. coli) evolved by acquisition of pathogenicity islands, phage, plasmids, and DNA segments by horizontal gene transfer. Strains are heterogeneous but virulent uropathogenic isolates more often have specific fimbriae, toxins, and iron receptors than commensal strains. One may ask whether it is the virulence factors alone that are required to establish infection. While these virulence factors clearly contribute strongly to pathogenesis, bacteria must survive by metabolizing nutrients available to them. By constructing mutants in all major metabolic pathways and co-challenging mice transurethrally with each mutant and the wild type strain, we identified which major metabolic pathways are required to infect the urinary tract. We must also ask what else is E. coli doing in vivo? To answer this question, we examined the transcriptome of E. coli CFT073 in the murine model of urinary tract infection (UTI) as well as for E. coli strains collected and analyzed directly from the urine of patients attending either a urology clinic or a university health clinic for symptoms of UTI. Using microarrays and RNA-seq, we measured in vivo gene expression for these uropathogenic E. coli strains, identifying genes upregulated during murine and human UTI. Our findings allow us to propose a new definition of bacterial virulence. PMID:26784237

  10. Natural Genetic Transformation of Clinical Isolates of Escherichia coli in Urine and Water

    PubMed Central

    Woegerbauer, Markus; Jenni, Bernard; Thalhammer, Florian; Graninger, Wolfgang; Burgmann, Heinz

    2002-01-01

    Transfer of plasmid-borne antibiotic resistance genes in Escherichia coli wild-type strains is possible by transformation under naturally occurring conditions in oligotrophic, aquatic environments containing physiologic concentrations of calcium. In contrast, transformation is suppressed in nitrogen-rich body fluids like urine, a common habitat of uropathogenic strains. Current knowledge indicates that transformation of these E. coli wild-type strains is of no relevance for the acquisition of resistance in this clinically important environment. PMID:11772660

  11. Uropathogenic E. coli Promote a Paracellular Urothelial Barrier Defect Characterized by Altered Tight Junction Integrity, Epithelial Cell Sloughing and Cytokine Release

    PubMed Central

    Wood, M. W.; Breitschwerdt, E. B.; Nordone, S. K.; Linder, K. E.; Gookin, J. L.

    2013-01-01

    Summary The urinary bladder is a common site of bacterial infection with a majority of cases attributed to uropathogenic Escherichia coli. Sequels of urinary tract infections (UTIs) include the loss of urothelial barrier function and subsequent clinical morbidity secondary to the permeation of urine potassium, urea and ammonia into the subepithelium. To date there has been limited research describing the mechanism by which this urothelial permeability defect develops. The present study models acute uropathogenic E. coli infection in vitro using intact canine bladder mucosa mounted in Ussing chambers to determine whether infection induces primarily a transcellular or paracellular permeability defect. The Ussing chamber sustains tissue viability while physically separating submucosal and lumen influences, so this model is ideal for quantitative measurement of transepithelial electrical resistance (TER) to assess alterations of urothelial barrier function. Using this model, changes in both tissue ultrastructure and TER indicated that uropathogenic E. coli infection promotes a paracellular permeability defect associated with the failure of umbrella cell tight junction formation and umbrella cell sloughing. In addition, bacterial interaction with the urothelium promoted secretion of cytokines from the urinary bladder with bioactivity capable of modulating epithelial barrier function including tumour necrosis factor-α, interleukin (IL)-6 and IL-15. IL-15 secretion by the infected bladder mucosa is a novel finding and, because IL-15 plays key roles in reconstitution of tight junction function in damaged intestine, this study points to a potential role for IL-15 in UTI-induced urothelial injury. PMID:22014415

  12. Enterohemorrhagic Escherichia coli Adhesins.

    PubMed

    McWilliams, Brian D; Torres, Alfredo G

    2014-06-01

    Adhesins are a group of proteins in enterohemorrhagic Escherichia coli (EHEC) that are involved in the attachment or colonization of this pathogen to abiotic (plastic or steel) and biological surfaces, such as those found in bovine and human intestines. This review provides the most up-to-date information on these essential adhesion factors, summarizing important historical discoveries and analyzing the current and future state of this research. In doing so, the proteins intimin and Tir are discussed in depth, especially regarding their role in the development of attaching and effacing lesions and in EHEC virulence. Further, a series of fimbrial proteins (Lpf1, Lpf2, curli, ECP, F9, ELF, Sfp, HCP, and type 1 fimbria) are also described, emphasizing their various contributions to adherence and colonization of different surfaces and their potential use as genetic markers in detection and classification of different EHEC serotypes. This review also discusses the role of several autotransporter proteins (EhaA-D, EspP, Saa and Sab, and Cah), as well as other proteins associated with adherence, such as flagella, EibG, Iha, and OmpA. While these proteins have all been studied to varying degrees, all of the adhesins summarized in this article have been linked to different stages of the EHEC life cycle, making them good targets for the development of more effective diagnostics and therapeutics. PMID:26103974

  13. Emerging Enteropathogenic Escherichia coli Strains?

    PubMed Central

    Irino, Kinue; Girão, Dennys M.; Girão, Valéria B.C.; Guth, Beatriz E.C.; Vaz, Tânia M.I.; Moreira, Fabiana C.; Chinarelli, Silvia H.; Vieira, Mônica A.M.

    2004-01-01

    Escherichia coli strains of nonenteropathogenic serogroups carrying eae but lacking the enteropathogenic E. coli adherence factor plasmid and Shiga toxin DNA probe sequences were isolated from patients (children, adults, and AIDS patients) with and without diarrhea in Brazil. Although diverse in phenotype and genotype, some strains are potentially diarrheagenic. PMID:15504277

  14. Virulence Gene Regulation in Escherichia coli.

    PubMed

    Mellies, Jay L; Barron, Alex M S

    2006-01-01

    Escherichia colicauses three types of illnesses in humans: diarrhea, urinary tract infections, and meningitis in newborns. The acquisition of virulence-associated genes and the ability to properly regulate these, often horizontally transferred, loci distinguishes pathogens from the normally harmless commensal E. coli found within the human intestine. This review addresses our current understanding of virulence gene regulation in several important diarrhea-causing pathotypes, including enteropathogenic, enterohemorrhagic,enterotoxigenic, and enteroaggregativeE. coli-EPEC, EHEC, ETEC and EAEC, respectively. The intensely studied regulatory circuitry controlling virulence of uropathogenicE. coli, or UPEC, is also reviewed, as is that of MNEC, a common cause of meningitis in neonates. Specific topics covered include the regulation of initial attachment events necessary for infection, environmental cues affecting virulence gene expression, control of attaching and effacing lesionformation, and control of effector molecule expression and secretion via the type III secretion systems by EPEC and EHEC. How phage control virulence and the expression of the Stx toxins of EHEC, phase variation, quorum sensing, and posttranscriptional regulation of virulence determinants are also addressed. A number of important virulence regulators are described, including the AraC-like molecules PerA of EPEC, CfaR and Rns of ETEC, and AggR of EAEC;the Ler protein of EPEC and EHEC;RfaH of UPEC;and the H-NS molecule that acts to silence gene expression. The regulatory circuitry controlling virulence of these greatly varied E. colipathotypes is complex, but common themes offerinsight into the signals and regulators necessary forE. coli disease progression. PMID:26443571

  15. EXTRAINTESTINAL PATHOGENIC ESCHERICHIA COLI (EXPEC)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extraintestinal pathogenic Escherichia coli (ExPEC) possess virulence traits that allow them to invade, colonize, and induce disease in bodily sites outside of the gastrointestinal tract. Human diseases caused by ExPEC include urinary tract infections, neonatal meningitis, sepsis, pneumonia, surgic...

  16. Serogroups of Escherichia coli from drinking water.

    PubMed

    Ramteke, P W; Tewari, Suman

    2007-07-01

    Fifty seven isolates of thermotolerant E. coli were recovered from 188 drinking water sources, 45 (78.9%) were typable of which 15 (26.3%) were pathogenic serotypes. Pathogenic serogroup obtained were 04 (Uropathogenic E. coli, UPEC), 025 (Enterotoxigenic E. coli, ETEC), 086 (Enteropathogenic E. coli, EPEC), 0103 (Shiga-toxin producing E. coli, STEC), 0157 (Shiga-toxin producing E. coli, STEC), 08 (Enterotoxigenic E. coli, ETEC) and 0113 (Shiga-toxin producing E. coli, STEC). All the pathogenic serotypes showed resistance to bacitracin and multiple heavy metal ions. Resistance to streptomycin and cotrimazole was detected in two strains whereas resistance to cephaloridine, polymixin-B and ampicillin was detected in one strain each. Transfer of resistances to drugs and metallic ions was observed in 9 out of 12 strains studied. Resistances to bacitracin were transferred in all nine strains. Among heavy metals resistance to As(3+) followed by Cr(6+) were transferred more frequently. PMID:17057960

  17. Uropathogenic E. coli promote a paracellular urothelial barrier defect characterized by altered tight junction integrity, epithelial cell sloughing and cytokine release.

    PubMed

    Wood, M W; Breitschwerdt, E B; Nordone, S K; Linder, K E; Gookin, J L

    2012-07-01

    The urinary bladder is a common site of bacterial infection with a majority of cases attributed to uropathogenic Escherichia coli. Sequelae of urinary tract infections (UTIs) include the loss of urothelial barrier function and subsequent clinical morbidity secondary to the permeation of urine potassium, urea and ammonia into the subepithelium. To date there has been limited research describing the mechanism by which this urothelial permeability defect develops. The present study models acute uropathogenic E. coli infection in vitro using intact canine bladder mucosa mounted in Ussing chambers to determine whether infection induces primarily a transcellular or paracellular permeability defect. The Ussing chamber sustains tissue viability while physically separating submucosal and lumen influences, so this model is ideal for quantitative measurement of transepithelial electrical resistance (TER) to assess alterations of urothelial barrier function. Using this model, changes in both tissue ultrastructure and TER indicated that uropathogenic E. coli infection promotes a paracellular permeability defect associated with the failure of umbrella cell tight junction formation and umbrella cell sloughing. In addition, bacterial interaction with the urothelium promoted secretion of cytokines from the urinary bladder with bioactivity capable of modulating epithelial barrier function including tumour necrosis factor-α, interleukin (IL)-6 and IL-15. IL-15 secretion by the infected bladder mucosa is a novel finding and, because IL-15 plays key roles in reconstitution of tight junction function in damaged intestine, this study points to a potential role for IL-15 in UTI-induced urothelial injury. PMID:22014415

  18. Shiga Toxin Producing Escherichia coli.

    PubMed

    Bryan, Allen; Youngster, Ilan; McAdam, Alexander J

    2015-06-01

    Shiga toxin-producing Escherichia coli (STEC) is among the common causes of foodborne gastroenteritis. STEC is defined by the production of specific toxins, but within this pathotype there is a diverse group of organisms. This diversity has important consequences for understanding the pathogenesis of the organism, as well as for selecting the optimum strategy for diagnostic testing in the clinical laboratory. This review includes discussions of the mechanisms of pathogenesis, the range of manifestations of infection, and the several different methods of laboratory detection of Shiga toxin-producing E coli. PMID:26004641

  19. Genetic analysis of Escherichia coli urease genes: evidence for two distinct loci.

    PubMed

    Collins, C M; Falkow, S

    1990-12-01

    Studies with two uropathogenic urease-producing Escherichia coli strains, 1021 and 1440, indicated that the urease genes of each are distinct. Recombinant plasmids encoding urease activity from E. coli 1021 and 1440 differed in their restriction endonuclease cleavage sites and showed minimal DNA hybridization under stringent conditions. The polypeptides encoded by the DNA fragments containing the 1021 and 1440 urease loci differed in electrophoretic mobility under reducing conditions. Regulation of urease gene expression differed in the two ureolytic E. coli. The E. coli 1021 locus is probably chromosomally encoded and has DNA homology to Klebsiella, Citrobacter, Enterobacter, and Serratia species and to about one-half of the urease-producing E. coli tested. The E. coli 1440 locus is plasmid encoded; plasmids with DNA homology to the 1440 locus probe were found in urease-producing Salmonella spp., Providencia stuartii, and two E. coli isolates. In addition, the 1440 urease probe was homologous to Proteus mirabilis DNA. PMID:2174868

  20. Host-Pathogen Checkpoints and Population Bottlenecks in Persistent and Intracellular Uropathogenic E. coli Bladder Infection

    PubMed Central

    Hannan, Thomas J.; Totsika, Makrina; Mansfield, Kylie J.; Moore, Kate H.; Schembri, Mark A.; Hultgren, Scott J.

    2013-01-01

    Bladder infections affect millions of people yearly, and recurrent symptomatic infections (cystitis) are very common. The rapid increase in infections caused by multi-drug resistant uropathogens threatens to make recurrent cystitis an increasingly troubling public health concern. Uropathogenic E. coli (UPEC) cause the vast majority of bladder infections. Upon entry into the lower urinary tract, UPEC face obstacles to colonization that constitute population bottlenecks, reducing diversity and selecting for fit clones. A critical mucosal barrier to bladder infection is the epithelium (urothelium). UPEC bypass this barrier when they invade urothelial cells and form intracellular bacterial communities (IBCs), a process which requires type 1 pili. IBCs are transient in nature, occurring primarily during acute infection. Chronic bladder infection is common and can be either latent, in the form of the Quiescent Intracellular Reservoir (QIR), or active, in the form of asymptomatic bacteriuria (ASB/ABU) or chronic cystitis. In mice, the fate of bladder infection: QIR, ASB, or chronic cystitis, is determined within the first 24 hours of infection and constitutes a putative host-pathogen mucosal checkpoint that contributes to susceptibility to recurrent cystitis. Knowledge of these checkpoints and bottlenecks is critical for our understanding of bladder infection and efforts to devise novel therapeutic strategies. PMID:22404313

  1. Plasmid replicon typing of commensal and pathogenic Escherichia coli isolates.

    PubMed

    Johnson, Timothy J; Wannemuehler, Yvonne M; Johnson, Sara J; Logue, Catherine M; White, David G; Doetkott, Curt; Nolan, Lisa K

    2007-03-01

    Despite the critical role of plasmids in horizontal gene transfer, few studies have characterized plasmid relatedness among different bacterial populations. Recently, a multiplex PCR replicon typing protocol was developed for classification of plasmids occurring in members of the Enterobacteriaceae. Here, a simplified version of this replicon typing procedure which requires only three multiplex panels to identify 18 plasmid replicons is described. This method was used to screen 1,015 Escherichia coli isolates of avian, human, and poultry meat origin for plasmid replicon types. Additionally, the isolates were assessed for their content of several colicin-associated genes. Overall, a high degree of plasmid variability was observed, with 221 different profiles occurring among the 1,015 isolates examined. IncFIB plasmids were the most common type identified, regardless of the source type of E. coli. IncFIB plasmids occurred significantly more often in avian pathogenic E. coli (APEC) and retail poultry E. coli (RPEC) than in uropathogenic E. coli (UPEC) and avian and human fecal commensal E. coli isolates (AFEC and HFEC, respectively). APEC and RPEC were also significantly more likely than UPEC, HFEC, and AFEC to possess the colicin-associated genes cvaC, cbi, and/or cma in conjunction with one or more plasmid replicons. The results suggest that E. coli isolates contaminating retail poultry are notably similar to APEC with regard to plasmid profiles, with both generally containing multiple plasmid replicon types in conjunction with colicin-related genes. In contrast, UPEC and human and avian commensal E. coli isolates generally lack the plasmid replicons and colicin-related genes seen in APEC and RPEC, suggesting limited dissemination of such plasmids among these bacterial populations. PMID:17277222

  2. BarA-UvrY Two-Component System Regulates Virulence of Uropathogenic E. coli CFT073

    PubMed Central

    Palaniyandi, Senthilkumar; Mitra, Arindam; Herren, Christopher D.; Lockatell, C. Virginia; Johnson, David E.; Zhu, Xiaoping; Mukhopadhyay, Suman

    2012-01-01

    Uropathogenic Escherichia coli (UPEC), a member of extraintestinal pathogenic E. coli, cause ∼80% of community-acquired urinary tract infections (UTI) in humans. UPEC initiates its colonization in epithelial cells lining the urinary tract with a complicated life cycle, replicating and persisting in intracellular and extracellular niches. Consequently, UPEC causes cystitis and more severe form of pyelonephritis. To further understand the virulence characteristics of UPEC, we investigated the roles of BarA-UvrY two-component system (TCS) in regulating UPEC virulence. Our results showed that mutation of BarA-UvrY TCS significantly decreased the virulence of UPEC CFT073, as assessed by mouse urinary tract infection, chicken embryo killing assay, and cytotoxicity assay on human kidney and uroepithelial cell lines. Furthermore, mutation of either barA or uvrY gene reduced the production of hemolysin, lipopolysaccharide (LPS), proinflammatory cytokines (TNF-α and IL-6) and chemokine (IL-8). The virulence phenotype was restored similar to that of wild-type by complementation of either barA or uvrY gene in trans. In addition, we discussed a possible link between the BarA-UvrY TCS and CsrA in positively and negatively controlling virulence in UPEC. Overall, this study provides the evidences for BarA-UvrY TCS regulates the virulence of UPEC CFT073 and may point to mechanisms by which virulence regulations are observed in different ways may control the long-term survival of UPEC in the urinary tract. PMID:22363626

  3. SEROLOGICAL CROSS-REACTIONS BETWEEN ESCHERICHIA COLI 0157 AND OTHER SPECIES OF THE GENUS ESCHERICHIA

    EPA Science Inventory

    Escherichia hermannii, a sorbitol-negative species of the genus Escherichia, has been reported to be agglutinated by Escherichia coli 0157 and four sorbitol-negative species of the genus Escherichia: . hermannii (24 isolates), Escherichia fergusonii (12 isolates), Escherichia vul...

  4. Nonchemotactic Mutants of Escherichia coli

    PubMed Central

    Armstrong, John B.; Adler, Julius; Dahl, Margaret M.

    1967-01-01

    We have isolated 40 mutants of Escherichia coli which are nonchemotactic as judged by their failure to swarm on semisolid tryptone plates or to make bands in capillary tubes containing tryptone broth. All the mutants have normal flagella, a fact shown by their shape and reaction with antiflagella serum. All are fully motile under the microscope and all are sensitive to the phage chi. Unlike its parent, one of the mutants, studied in greater detail, failed to show chemotaxis toward oxygen, glucose, serine, threonine, or aspartic acid. The failure to exhibit chemotaxis does not result from a failure to use the chemicals. The swimming of this mutant was shown to be random. The growth rate was normal under several conditions, and the growth requirements were unchanged. Images PMID:5335897

  5. EcoR phylogenetic analysis and virulence genotyping of avian pathogenic Escherichia coli strains and Escherichia coli isolates from commercial chicken carcasses in southern Brazil.

    PubMed

    Kobayashi, Renata K T; Aquino, Ivani; Ferreira, Ana Lívia da S; Vidotto, Marilda C

    2011-05-01

    Escherichia coli strains designated as avian pathogenic E. coli (APEC) are responsible for avian colibacillosis, an acute and largely systemic disease that promotes significant economic losses in poultry industry worldwide because of mortality increase, medication costs, and condemnation of carcasses. APEC is a subgroup of extraintestinal pathogenic E. coli pathotype, which includes uropathogenic E. coli, neonatal meningitis E. coli, and septicemic E. coli. We isolated E. coli from commercial chicken carcasses in a Brazilian community and compared by polymerase chain reaction-defined phylogenetic group (A, B1, B2, or D) with APEC strains isolated from sick chickens from different poultry farms. A substantial number of strains assigned to phylogenetic E. coli reference collection group B2, which is known to harbor potent extraintestinal human and animal E. coli pathogens, were identified as APEC (26.0%) in both commercial chicken carcasses and retail poultry meat (retail poultry E. coli [RPEC]) (21.25%). The majority of RPEC were classified as group A (35%), whereas the majority of APEC were groups B1 (30.8) and A (27.6%). APEC and RPEC presented the genes pentaplex, iutA, hly, iron, ompT, and iss, but with different virulence profiles. The similarity between APEC and RPEC indicates RPEC as potentially pathogenic strains and supports a possible zoonotic risk for humans. PMID:21254888

  6. Peptidoglycan Hydrolases of Escherichia coli

    PubMed Central

    van Heijenoort, Jean

    2011-01-01

    Summary: The review summarizes the abundant information on the 35 identified peptidoglycan (PG) hydrolases of Escherichia coli classified into 12 distinct families, including mainly glycosidases, peptidases, and amidases. An attempt is also made to critically assess their functions in PG maturation, turnover, elongation, septation, and recycling as well as in cell autolysis. There is at least one hydrolytic activity for each bond linking PG components, and most hydrolase genes were identified. Few hydrolases appear to be individually essential. The crystal structures and reaction mechanisms of certain hydrolases having defined functions were investigated. However, our knowledge of the biochemical properties of most hydrolases still remains fragmentary, and that of their cellular functions remains elusive. Owing to redundancy, PG hydrolases far outnumber the enzymes of PG biosynthesis. The presence of the two sets of enzymes acting on the PG bonds raises the question of their functional correlations. It is difficult to understand why E. coli keeps such a large set of PG hydrolases. The subtle differences in substrate specificities between the isoenzymes of each family certainly reflect a variety of as-yet-unidentified physiological functions. Their study will be a far more difficult challenge than that of the steps of the PG biosynthesis pathway. PMID:22126997

  7. Uropathogenic E. coli Exploit CEA to Promote Colonization of the Urogenital Tract Mucosa.

    PubMed

    Muenzner, Petra; Kengmo Tchoupa, Arnaud; Klauser, Benedikt; Brunner, Thomas; Putze, Johannes; Dobrindt, Ulrich; Hauck, Christof R

    2016-05-01

    Attachment to the host mucosa is a key step in bacterial pathogenesis. On the apical surface of epithelial cells, members of the human carcinoembryonic antigen (CEA) family are abundant glycoproteins involved in cell-cell adhesion and modulation of cell signaling. Interestingly, several gram-negative bacterial pathogens target these receptors by specialized adhesins. The prototype of a CEACAM-binding pathogen, Neisseria gonorrhoeae, utilizes colony opacity associated (Opa) proteins to engage CEA, as well as the CEA-related cell adhesion molecules CEACAM1 and CEACAM6 on human epithelial cells. By heterologous expression of neisserial Opa proteins in non-pathogenic E. coli we find that the Opa protein-CEA interaction is sufficient to alter gene expression, to increase integrin activity and to promote matrix adhesion of infected cervical carcinoma cells and immortalized vaginal epithelial cells in vitro. These CEA-triggered events translate in suppression of exfoliation and improved colonization of the urogenital tract by Opa protein-expressing E. coli in CEA-transgenic compared to wildtype mice. Interestingly, uropathogenic E. coli expressing an unrelated CEACAM-binding protein of the Afa/Dr adhesin family recapitulate the in vitro and in vivo phenotype. In contrast, an isogenic strain lacking the CEACAM-binding adhesin shows reduced colonization and does not suppress epithelial exfoliation. These results demonstrate that engagement of human CEACAMs by distinct bacterial adhesins is sufficient to blunt exfoliation and to promote host infection. Our findings provide novel insight into mucosal colonization by a common UPEC pathotype and help to explain why human CEACAMs are a preferred epithelial target structure for diverse gram-negative bacteria to establish a foothold on the human mucosa. PMID:27171273

  8. Uropathogenic E. coli Exploit CEA to Promote Colonization of the Urogenital Tract Mucosa

    PubMed Central

    Muenzner, Petra; Kengmo Tchoupa, Arnaud; Klauser, Benedikt; Brunner, Thomas; Putze, Johannes; Dobrindt, Ulrich; Hauck, Christof R.

    2016-01-01

    Attachment to the host mucosa is a key step in bacterial pathogenesis. On the apical surface of epithelial cells, members of the human carcinoembryonic antigen (CEA) family are abundant glycoproteins involved in cell-cell adhesion and modulation of cell signaling. Interestingly, several gram-negative bacterial pathogens target these receptors by specialized adhesins. The prototype of a CEACAM-binding pathogen, Neisseria gonorrhoeae, utilizes colony opacity associated (Opa) proteins to engage CEA, as well as the CEA-related cell adhesion molecules CEACAM1 and CEACAM6 on human epithelial cells. By heterologous expression of neisserial Opa proteins in non-pathogenic E. coli we find that the Opa protein-CEA interaction is sufficient to alter gene expression, to increase integrin activity and to promote matrix adhesion of infected cervical carcinoma cells and immortalized vaginal epithelial cells in vitro. These CEA-triggered events translate in suppression of exfoliation and improved colonization of the urogenital tract by Opa protein-expressing E. coli in CEA-transgenic compared to wildtype mice. Interestingly, uropathogenic E. coli expressing an unrelated CEACAM-binding protein of the Afa/Dr adhesin family recapitulate the in vitro and in vivo phenotype. In contrast, an isogenic strain lacking the CEACAM-binding adhesin shows reduced colonization and does not suppress epithelial exfoliation. These results demonstrate that engagement of human CEACAMs by distinct bacterial adhesins is sufficient to blunt exfoliation and to promote host infection. Our findings provide novel insight into mucosal colonization by a common UPEC pathotype and help to explain why human CEACAMs are a preferred epithelial target structure for diverse gram-negative bacteria to establish a foothold on the human mucosa. PMID:27171273

  9. Effect of 2,4-Dichlorophenoxyacetic acid herbicide Escherichia coli growth, chemical, composition, and cellular envelope

    USGS Publications Warehouse

    Carr, R.S.; Biedenbach, J.M.; Hooten, R.L.

    2001-01-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) is a herbicide widely used in the world and mainly excreted by the renal route in exposed humans and animals. Herbicides can affect other nontarget organisms, such as Escherichia coli. We observed that a single exposure to 1 mM 2,4-D diminished growth and total protein content in all E. coli strains tested in vitro. In addition, successive exposures to 0.01 mM 2,4-D had a toxic effect decreasing growth up to early stationary phase. Uropathogenic E. coli adhere to epithelial cells mediated by fimbriae, adhesins, and hydrophobic properties. 2,4-D exposure of uropathogenic E. coli demonstrated altered hydrophobicity and fimbriation. Hydrophobicity index values obtained by partition in p-xylene/water were 300-420% higher in exposed cells than in control ones. Furthermore, values of hemagglutination titer, protein contents in fimbrial crude extract, and electron microscopy demonstrated a significant diminution of fimbriation in treated cells. Other envelope alterations could be detected, such as lipoperoxidation, evidenced by decreased polyunsaturated fatty acids and increased lipid degradation products (malonaldehyde), and motility diminution. These alterations decreased cell adherence to erythrocytes, indicating a diminished pathogenic capacity of the 2,4-D-exposed E. coli. ?? 2001 by John Wiley & Sons, Inc.

  10. Structure of Escherichia coli tryptophanase.

    PubMed

    Ku, Shao Yang; Yip, Patrick; Howell, P Lynne

    2006-07-01

    Pyridoxal 5'-phosphate (PLP) dependent tryptophanase has been isolated from Escherichia coli and its crystal structure has been determined. The structure shares the same fold with and has similar quaternary structure to Proteus vulgaris tryptophanase and tyrosine-phenol lyase, but is found in a closed conformation when compared with these two enzymes. The tryptophanase structure, solved in its apo form, does not have covalent PLP bound in the active site, but two sulfate ions. The sulfate ions occupy the phosphoryl-binding site of PLP and the binding site of the alpha-carboxyl of the natural substrate tryptophan. One of the sulfate ions makes extensive interactions with both the transferase and PLP-binding domains of the protein and appears to be responsible for holding the enzyme in its closed conformation. Based on the sulfate density and the structure of the P. vulgaris enzyme, PLP and the substrate tryptophan were modeled into the active site. The resulting model is consistent with the roles of Arg419 in orienting the substrate to PLP and acidifying the alpha-proton of the substrate for beta-elimination, Lys269 in the formation and decomposition of the PLP quinonoid intermediate, Arg230 in orienting the substrate-PLP intermediates in the optimal conformation for catalysis, and His463 and Tyr74 in determining substrate specificity and suggests that the closed conformation observed in the structure could be induced by substrate binding and that significant conformational changes occur during catalysis. A catalytic mechanism for tryptophanase is proposed. Since E. coli tryptophanase has resisted forming diffraction-quality crystals for many years, the molecular surface of tryptophanase has been analyzed in various crystal forms and it was rationalized that strong crystal contacts occur on the flat surface of the protein and that the size of crystal contact surface seems to correlate with the diffraction quality of the crystal. PMID:16790938

  11. Structure of Escherichia Coli Tryptophanase

    SciTech Connect

    Ku,S.; Yip, P.; Howell, P.

    2006-01-01

    Pyridoxal 5'-phosphate (PLP) dependent tryptophanase has been isolated from Escherichia coli and its crystal structure has been determined. The structure shares the same fold with and has similar quaternary structure to Proteus vulgaris tryptophanase and tyrosine-phenol lyase, but is found in a closed conformation when compared with these two enzymes. The tryptophanase structure, solved in its apo form, does not have covalent PLP bound in the active site, but two sulfate ions. The sulfate ions occupy the phosphoryl-binding site of PLP and the binding site of the {alpha}-carboxyl of the natural substrate tryptophan. One of the sulfate ions makes extensive interactions with both the transferase and PLP-binding domains of the protein and appears to be responsible for holding the enzyme in its closed conformation. Based on the sulfate density and the structure of the P. vulgaris enzyme, PLP and the substrate tryptophan were modeled into the active site. The resulting model is consistent with the roles of Arg419 in orienting the substrate to PLP and acidifying the {alpha}-proton of the substrate for {beta}-elimination, Lys269 in the formation and decomposition of the PLP quinonoid intermediate, Arg230 in orienting the substrate-PLP intermediates in the optimal conformation for catalysis, and His463 and Tyr74 in determining substrate specificity and suggests that the closed conformation observed in the structure could be induced by substrate binding and that significant conformational changes occur during catalysis. A catalytic mechanism for tryptophanase is proposed. Since E. coli tryptophanase has resisted forming diffraction-quality crystals for many years, the molecular surface of tryptophanase has been analyzed in various crystal forms and it was rationalized that strong crystal contacts occur on the flat surface of the protein and that the size of crystal contact surface seems to correlate with the diffraction quality of the crystal.

  12. Uropathogenic E. coli adhesin-induced host cell receptor conformational changes: implications in transmembrane signaling transduction

    PubMed Central

    Wang, Huaibin; Min, Guangwei; Glockshuber, Rudi; Sun, Tung-Tien; Kong, Xiang-Peng

    2009-01-01

    Urinary tract infection (UTI) is the second most common infectious disease, and is caused predominantly by type 1-fimbriated uropathogenic E. coli (UPEC). UPEC initiates infection by attaching to uroplakin Ia, its urothelial surface receptor, via the FimH adhesins capping the distal end of its fimbriae. Uroplakin Ia, together with uroplakins Ib, II and IIIa, forms a 16 nm receptor complex that is assembled into hexagonally packed two-dimensional crystals (urothelial plaques) covering >90% of the urothelial apical surface. Recent studies indicate that FimH is the invasin of UPEC as its attachment to the urothelial surface can induce cellular signaling events including calcium elevation and the phosphorylation of the uroplakin IIIa cytoplasmic tail, leading to cytoskeletal rearrangements and bacterial invasion. However, it remains unknown how the binding of FimH to the uroplakin receptor triggers a signal that can be transmitted through the highly impermeable urothelial apical membrane. We show here by cryo-electron microscopy that FimH-binding to the extracellular domain of UPIa induces global conformational changes in the entire uroplakin receptor complex, including a coordinated movement of the tightly bundled transmembrane helices. This movement of the transmembrane helix bundles can cause a corresponding lateral translocation of the uroplakin cytoplasmic tails, which can be sufficient to trigger downstream signaling events. Our results suggest a novel pathogen-induced transmembrane signal transduction mechanism that plays a key role in the initial stages of UPEC invasion and receptor-mediated bacterial invasion in general. PMID:19577575

  13. Dual ligand/receptor interactions activate urothelial defenses against uropathogenic E. coli

    PubMed Central

    Liu, Yan; Mémet, Sylvie; Saban, Ricardo; Kong, Xiangpeng; Aprikian, Pavel; Sokurenko, Evgeni; Sun, Tung-Tien; Wu, Xue-Ru

    2015-01-01

    During urinary tract infection (UTI), the second most common bacterial infection, dynamic interactions take place between uropathogenic E. coli (UPEC) and host urothelial cells. While significant strides have been made in the identification of the virulence factors of UPEC, our understanding of how the urothelial cells mobilize innate defenses against the invading UPEC remains rudimentary. Here we show that mouse urothelium responds to the adhesion of type 1-fimbriated UPEC by rapidly activating the canonical NF-κB selectively in terminally differentiated, superficial (umbrella) cells. This activation depends on a dual ligand/receptor system, one between FimH adhesin and uroplakin Ia and another between lipopolysaccharide and Toll-like receptor 4. When activated, all the nuclei (up to 11) of a multinucleated umbrella cell are affected, leading to significant amplification of proinflammatory signals. Intermediate and basal cells of the urothelium undergo NF-κB activation only if the umbrella cells are detached or if the UPEC persistently express type 1-fimbriae. Inhibition of NF-κB prevents the urothelium from clearing the intracellular bacterial communities, leading to prolonged bladder colonization by UPEC. Based on these data, we propose a model of dual ligand/receptor system in innate urothelial defenses against UPEC. PMID:26549759

  14. Succinate production in Escherichia coli

    PubMed Central

    Thakker, Chandresh; Martínez, Irene; San, Ka-Yiu; Bennett, George N.

    2012-01-01

    Succinate has been recognized as an important platform chemical that can be produced from biomass. While a number of organisms are capable of succinate production naturally, this review focuses on the engineering of Escherichia coli for production of the four-carbon dicarboxylic acid. Important features of a succinate production system are to achieve optimal balance of reducing equivalents generated by consumption of the feedstock, while maximizing the amount of carbon that is channeled to the product. Aerobic and anaerobic production strains have been developed and applied to production from glucose as well as other abundant carbon sources. Metabolic engineering methods and strain evolution have been used and supplemented by the recent application of systems biology and in silico modeling tools to construct optimal production strains. The metabolic capacity of the production strain, as well as the requirement for efficient recovery of succinate and the reliability of the performance under scale-up are important in the overall process. The costs of the overall biorefinery compatible process will determine the economical commercialization of succinate and its impact in larger chemical markets. PMID:21932253

  15. Dihydropteridine reductase from Escherichia coli.

    PubMed Central

    Vasudevan, S G; Shaw, D C; Armarego, W L

    1988-01-01

    A dihydropteridine reductase from Escherichia coli was purified to apparent homogeneity. It is a dimeric enzyme with identical subunits (Mr 27000) and a free N-terminal group. It can use NADH (Vmax./Km 3.36 s-1) and NADPH (Vmax./Km 1.07 s-1) when 6-methyldihydro-(6H)-pterin is the second substrate, as well as quinonoid dihydro-(6H)-biopterin (Vmax./Km 0.69 s-1), dihydro-(6H)-neopterin (Vmax./Km 0.58 s-1), dihydro-(6H)-monapterin 0.66 s-1), 6-methyldihydro-(6H)-pterin and cis-6,7-dimethyldihydro-(6H)-pterin (Vmax./Km 0.66 s-1) when NADH is the second substrate. The pure reductase has a yellow colour and contains bound FAD. The enzyme also has pterin-independent NADH and NADPH oxidoreductase activities when potassium ferricyanide is the electron acceptor. Images Fig. 2. PMID:3060113

  16. Escherichia coli survival in waters: Temperature dependence

    EPA Science Inventory

    Knowing the survival rates of water-borne Escherichia coli is important in evaluating microbial contamination and making appropriate management decisions. E. coli survival rates are dependent on temperature, a dependency that is routinely expressed using an analogue of the Q10 mo...

  17. Strategies for Protein Overproduction in Escherichia coli.

    ERIC Educational Resources Information Center

    Mott, John E.

    1984-01-01

    Examines heterologous expression in Escherichia coli and the role of regulatory sequences which control gene expression at transcription resulting in abundant production of messenger RNA and regulatory sequences in mRNA which promote efficient translation. Also examines the role of E. coli cells in stabilizing mRNA and protein that is…

  18. A draft genome of Escherichia coli sequence type 127 strain 2009-46

    PubMed Central

    2014-01-01

    Background Escherichia coli are a frequent cause of urinary tract infections (UTI) and are thought to have a foodborne origin. E. coli with sequence type 127 (ST127) are emerging pathogens increasingly implicated as a cause of urinary tract infections (UTI) globally. A ST127 isolate (2009-46) resistant to ampicillin and trimethoprim was recovered from the urine of a 56 year old patient with a UTI from a hospital in Sydney, Australia and was characterised here. Results We sequenced the genome of Escherichia coli 2009-46 using the Illumina Nextera XT and MiSeq technologies. Assembly of the sequence data reconstructed a 5.14 Mbp genome in 89 scaffolds with an N50 of 161 kbp. The genome has extensive similarity to other sequenced uropathogenic E. coli genomes, but also has several genes that are potentially related to virulence and pathogenicity that are not present in the reference E. coli strain. Conclusion E. coli 2009-46 is a multiple antibiotic resistant, phylogroup B2 isolate recovered from a patient with a UTI. This is the first description of a drug resistant E. coli ST127 in Australia. PMID:25197321

  19. Clinical implications of enteroadherent Escherichia coli.

    PubMed

    Arenas-Hernández, Margarita M P; Martínez-Laguna, Ygnacio; Torres, Alfredo G

    2012-10-01

    Pathogenic Escherichia coli that colonize the small intestine primarily cause gastrointestinal illness in infants and travelers. The main categories of pathogenic E. coli that colonize the epithelial lining of the small intestine are enterotoxigenic E. coli, enteropathogenic E. coli, and enteroaggregative E. coli. These organisms accomplish their pathogenic process by a complex, coordinated multistage strategy, including nonintimate adherence mediated by various adhesins. These so called "enteroadherent E. coli" categories subsequently produce toxins or effector proteins that are either secreted to the milieu or injected to the host cell. Finally, destruction of the intestinal microvilli results from the intimate adherence or the toxic effect exerted over the epithelia, resulting in water secretion and diarrhea. In this review, we summarize the current state of knowledge regarding these enteroadherent E. coli strains and the present clinical understanding of how these organisms colonize the human intestine and cause disease. PMID:22798032

  20. Clinical Implications of Enteroadherent Escherichia coli

    PubMed Central

    Arenas-Hernández, Margarita M.P.; Martínez-Laguna, Ygnacio; Torres, Alfredo G.

    2012-01-01

    Pathogenic Escherichia coli that colonize the small intestine primarily cause gastrointestinal illness in infants and travelers. The main categories of pathogenic E. coli that colonize the epithelial lining of the small intestine are enterotoxigenic E. coli enteropathogenic E. coli and enteroaggregative E. coli. These organisms accomplish their pathogenic process by a complex, coordinated multistage strategy, including non-intimate adherence mediated by various adhesins. These so called “enteroadherent E. coli ” categories subsequently produced toxins or effector proteins that are either secreted to the milieu or injected to the host cell. Finally, destruction of the intestinal microvilli results from the intimate adherence or the toxic effect exerted over the epithelia, resulting in water secretion and diarrhea. In this review, we summarize the current state of knowledge regarding these enteroadherent E. coli strains and the present clinical understanding of how these organisms colonize the human intestine and cause disease. PMID:22798032

  1. Infection strategies of enteric pathogenic Escherichia coli

    PubMed Central

    Clements, Abigail; Young, Joanna C.; Constantinou, Nicholas; Frankel, Gad

    2012-01-01

    Enteric Escherichia coli (E. coli) are both natural flora of humans and important pathogens causing significant morbidity and mortality worldwide. Traditionally enteric E. coli have been divided into 6 pathotypes, with further pathotypes often proposed. In this review we suggest expansion of the enteric E. coli into 8 pathotypes to include the emerging pathotypes of adherent invasive E. coli (AIEC) and Shiga-toxin producing enteroaggregative E. coli (STEAEC). The molecular mechanisms that allow enteric E. coli to colonize and cause disease in the human host are examined and for two of the pathotypes that express a type 3 secretion system (T3SS) we discuss the complex interplay between translocated effectors and manipulation of host cell signaling pathways that occurs during infection. PMID:22555463

  2. Galleria mellonella Infection Model Demonstrates High Lethality of ST69 and ST127 Uropathogenic E. coli

    PubMed Central

    Alghoribi, Majed F.; Gibreel, Tarek M.; Dodgson, Andrew R.; Beatson, Scott A.; Upton, Mathew

    2014-01-01

    Galleria mellonella larvae are an alternative in vivo model for investigating bacterial pathogenicity. Here, we examined the pathogenicity of 71 isolates from five leading uropathogenic E. coli (UPEC) lineages using G. mellonella larvae. Larvae were challenged with a range of inoculum doses to determine the 50% lethal dose (LD50) and for analysis of survival outcome using Kaplan-Meier plots. Virulence was correlated with carriage of a panel of 29 virulence factors (VF). Larvae inoculated with ST69 and ST127 isolates (104 colony-forming units/larvae) showed significantly higher mortality rates than those infected with ST73, ST95 and ST131 isolates, killing 50% of the larvae within 24 hours. Interestingly, ST131 isolates were the least virulent. We observed that ST127 isolates are significantly associated with a higher VF-score than isolates of all other STs tested (P≤0.0001), including ST69 (P<0.02), but one ST127 isolate (strain EC18) was avirulent. Comparative genomic analyses with virulent ST127 strains revealed an IS1 mediated deletion in the O-antigen cluster in strain EC18, which is likely to explain the lack of virulence in the larvae infection model. Virulence in the larvae was not correlated with serotype or phylogenetic group. This study illustrates that G. mellonella are an excellent tool for investigation of the virulence of UPEC strains. The findings also support our suggestion that the incidence of ST127 strains should be monitored, as these isolates have not yet been widely reported, but they clearly have a pathogenic potential greater than that of more widely recognised clones, including ST73, ST95 or ST131. PMID:25061819

  3. Early Severe Inflammatory Responses to Uropathogenic E. coli Predispose to Chronic and Recurrent Urinary Tract Infection

    PubMed Central

    Hannan, Thomas J.; Mysorekar, Indira U.; Hung, Chia S.; Isaacson-Schmid, Megan L.; Hultgren, Scott J.

    2010-01-01

    Chronic infections are an increasing problem due to the aging population and the increase in antibiotic resistant organisms. Therefore, understanding the host-pathogen interactions that result in chronic infection is of great importance. Here, we investigate the molecular basis of chronic bacterial cystitis. We establish that introduction of uropathogenic E. coli (UPEC) into the bladders of C3H mice results in two distinct disease outcomes: resolution of acute infection or development of chronic cystitis lasting months. The incidence of chronic cystitis is both host strain and infectious dose-dependent. Further, development of chronic cystitis is preceded by biomarkers of local and systemic acute inflammation at 24 hours post-infection, including severe pyuria and bladder inflammation with mucosal injury, and a distinct serum cytokine signature consisting of elevated IL-5, IL-6, G-CSF, and the IL-8 analog KC. Mice deficient in TLR4 signaling or lymphocytes lack these innate responses and are resistant, to varying degrees, to developing chronic cystitis. Treatment of C3H mice with the glucocorticoid anti-inflammatory drug dexamethasone prior to UPEC infection also suppresses the development of chronic cystitis. Finally, individuals with a history of chronic cystitis, lasting at least 14 days, are significantly more susceptible to redeveloping severe, chronic cystitis upon bacterial challenge. Thus, we have discovered that the development of chronic cystitis in C3H mice by UPEC is facilitated by severe acute inflammatory responses early in infection, which subsequently are predisposing to recurrent cystitis, an insidious problem in women. Overall, these results have significant implications for our understanding of how early host-pathogen interactions at the mucosal surface determines the fate of disease. PMID:20811584

  4. Adherence to Hospital Antibiotic Policy for Treatment of Escherichia coli ESBL in Urine

    PubMed Central

    Prakash, K. Gnana; Deshpande, Shreeram A.; Aravazhi, Anbu N.

    2016-01-01

    Introduction Escherichia coli are the most common uropathogen worldwide accounting for 80% of the Urinary Tract Infections (UTIs). Nosocomial infections caused by Multi-drug resistant Gram negative bacteria expressing Extended Spectrum β Lactamase enzyme, pose a serious therapeutic challenge to clinicians due to limited therapeutic options. Stringent adherence to Hospital Antibiotic Policy in treating Urinary Escherichia coli ESBLs is a borne necessity. Aim A clinical audit was undertaken in the form of a cross-sectional study to evaluate the compliance on appropriate antibiotic prescription and strict adherence to Hospital Antibiotic Policy for therapeutic management of the patients infected with urinary Escherichia coli ESBL producers. Materials and Methods A cross-sectional medical audit on adherence to treatment of Escherichia coli ESBL producers from in-patients diagnosed to have urinary tract infections for a duration of 7 months was conducted as a prospective study. Clinical data, culture and sensitivity reports of the patient diagnosed with urinary Escherichia coli ESBLs were compared with the treatment chart to ensure strict adherence to hospital antibiotic policy for appropriate therapy by physicians. Data were analysed using IBM SPSS version 20 software. Results The incidence of uncomplicated cystitis, pyelonephritis and complicated pyelonephritis cases were 65.24% (107 out of 164), 20.7% (34 out of 164) and 14.02% (23 out of 164) respectively. Resistance to individual fluoroquinolones like norfloxacin, ciprofloxacin and ofloxacin were found to be 60%, 59% and 47.5% respectively. As per hospital antibiotic policy, fluoroquinolones were prescribed in only 23% of the patients for the treatment of urinary Escherichia coli ESBLs. Conclusion Irrational utilization of antibiotics and non-adherence to antibiotic policy could have been the significant risk factors for drug resistance. Optimized antibiotic use, Microbiology laboratory support and periodic

  5. Characterization of Escherichia coli Isolates from Hospital Inpatients or Outpatients with Urinary Tract Infection

    PubMed Central

    Toval, Francisco; Köhler, Christian-Daniel; Vogel, Ulrich; Wagenlehner, Florian; Mellmann, Alexander; Fruth, Angelika; Schmidt, M. Alexander; Karch, Helge; Bielaszewska, Martina

    2014-01-01

    Uropathogenic Escherichia coli (UPEC) is the most common cause of community- and hospital-acquired urinary tract infections (UTIs). Isolates from uncomplicated community-acquired UTIs express a variety of virulence traits that promote the efficient colonization of the urinary tract. In contrast, nosocomial UTIs can be caused by E. coli strains that differ in their virulence traits from the community-acquired UTI isolates. UPEC virulence markers are used to distinguish these facultative extraintestinal pathogens, which belong to the intestinal flora of many healthy individuals, from intestinal pathogenic E. coli (IPEC). IPEC is a diarrheagenic pathogen with a characteristic virulence gene set that is absent in UPEC. Here, we characterized 265 isolates from patients with UTIs during inpatient or outpatient treatment at a hospital regarding their phylogenies and IPEC or UPEC virulence traits. Interestingly, 28 of these isolates (10.6%) carried typical IPEC virulence genes that are characteristic of enteroaggregative E. coli (EAEC), Shiga toxin-producing E. coli (STEC), and atypical enteropathogenic E. coli (aEPEC), although IPEC is not considered a uropathogen. Twenty-three isolates harbored the astA gene coding for the EAEC heat-stable enterotoxin 1 (EAST1), and most of them carried virulence genes that are characteristic of UPEC and/or EAEC. Our results indicate that UPEC isolates from hospital patients differ from archetypal community-acquired isolates from uncomplicated UTIs by their spectrum of virulence traits. They represent a diverse group, including EAEC, as well as other IPEC pathotypes, which in addition contain typical UPEC virulence genes. The combination of typical extraintestinal pathogenic E. coli (ExPEC) and IPEC virulence determinants in some isolates demonstrates the marked genome plasticity of E. coli and calls for a reevaluation of the strict pathotype classification of EAEC. PMID:24478469

  6. Virulence factors in Escherichia coli urinary tract infection.

    PubMed Central

    Johnson, J R

    1991-01-01

    Uropathogenic strains of Escherichia coli are characterized by the expression of distinctive bacterial properties, products, or structures referred to as virulence factors because they help the organism overcome host defenses and colonize or invade the urinary tract. Virulence factors of recognized importance in the pathogenesis of urinary tract infection (UTI) include adhesins (P fimbriae, certain other mannose-resistant adhesins, and type 1 fimbriae), the aerobactin system, hemolysin, K capsule, and resistance to serum killing. This review summarizes the virtual explosion of information regarding the epidemiology, biochemistry, mechanisms of action, and genetic basis of these urovirulence factors that has occurred in the past decade and identifies areas in need of further study. Virulence factor expression is more common among certain genetically related groups of E. coli which constitute virulent clones within the larger E. coli population. In general, the more virulence factors a strain expresses, the more severe an infection it is able to cause. Certain virulence factors specifically favor the development of pyelonephritis, others favor cystitis, and others favor asymptomatic bacteriuria. The currently defined virulence factors clearly contribute to the virulence of wild-type strains but are usually insufficient in themselves to transform an avirulent organism into a pathogen, demonstrating that other as-yet-undefined virulence properties await discovery. Virulence factor testing is a useful epidemiological and research tool but as yet has no defined clinical role. Immunological and biochemical anti-virulence factor interventions are effective in animal models of UTI and hold promise for the prevention of UTI in humans. Images PMID:1672263

  7. Fosfomycin Resistance in Escherichia coli, Pennsylvania, USA

    PubMed Central

    Alrowais, Hind; McElheny, Christi L.; Spychala, Caressa N.; Sastry, Sangeeta; Guo, Qinglan; Butt, Adeel A.

    2015-01-01

    Fosfomycin resistance in Escherichia coli is rare in the United States. An extended-spectrum β-lactamase–producing E. coli clinical strain identified in Pennsylvania, USA, showed high-level fosfomycin resistance caused by the fosA3 gene. The IncFII plasmid carrying this gene had a structure similar to those found in China, where fosfomycin resistance is commonly described. PMID:26488485

  8. Multidrug resistance and extended-spectrum β-lactamases genes among Escherichia coli from patients with urinary tract infections in Northwestern Libya

    PubMed Central

    Abujnah, Abubaker A.; Zorgani, Abdulaziz; Sabri, Mohamed A. M.; El-Mohammady, Hanan; Khalek, Rania A.; Ghenghesh, Khalifa S.

    2015-01-01

    Introduction Multidrug resistance (MDR) and emergence of extended-spectrum β-lactamases (ESBLs) that mediate resistance to β-lactam drugs among Escherichia coli and other uropathogens have been reported worldwide. However, there is little information on the detection of ESBLs genes in E. coli from patients with urinary tract infections (UTIs) in the Arab countries using polymerase chain reaction (PCR), and in Libya such information is lacking. Methods All patients attending Zawiya Teaching Hospital in Zawiya city between November 2012 and June 2013 suspected of having UTIs and from whom midstream urine samples were taken as part of the clinical workup were included in this prospective study. Samples were examined for uropathogens by standard bacteriological procedures. VITEK-2 automated microbiology system was used to identify the isolated uropathogens and determine the susceptibility of E. coli and Klebsiella spp. isolates to antimicrobials. In addition, phenotypically ESBLs-positive E. coli isolates were tested for ESBLs genes by PCR. Results The present study enrolled 1,790 patients with UTIs. Uropathogens were found in 371 (20.7%) urine specimens examined. Mixed pathogens were detected in two specimens with 373 total pathogens isolated. E. coli and Klebsiella spp. were the predominant uropathogens at 55.8% (208/373) and 18.5% (69/373), respectively. Other pathogens were detected in 25.7% (96/373) of urine samples. Of the E. coli and Klebsiella spp. tested, 69.2 and 100% were resistant to ampicillin, 6.7 and 33.3% to ceftriaxone, and 23.1 and 17.4% to ciprofloxacin, respectively. MDR (resistance to ≥3 antimicrobial groups) was found in 69 (33.2%) of E. coli and in 29 (42%) of Klebsiella spp. isolates. ESBLs were detected phenotypically in 14 (6.7%) of E. coli and in 15 (21.7%) of Klebsiella spp. isolates. Thirteen out of the 14 phenotypically ESBL-positive E. coli were positive for ESBL genes by PCR. bla TEM gene was detected in seven isolates, bla OXA gene

  9. Escherichia Coli--Key to Modern Genetics.

    ERIC Educational Resources Information Center

    Bregegere, Francois

    1982-01-01

    Mid-nineteenth century work by Mendel on plant hybrids and by Pasteur on fermentation gave birth by way of bacterial genetics to modern-day molecular biology. The bacterium Escherichia Coli has occupied a key position in genetic studies leading from early gene identification with DNA to current genetic engineering using recombinant DNA technology.…

  10. Detection of O antigens in Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipopolysaccharide on the surface of Escherichia coli constitute the O antigens, which are important virulence factors that are targets of both the innate and adaptive immune system and play a major role in host-pathogen interactions. O antigens that are responsible for antigenic specificity of the ...

  11. Escherichia coli and Sudden Infant Death Syndrome

    PubMed Central

    Bettelheim, Karl A.; Goldwater, Paul N.

    2015-01-01

    This review examines the association of strains of Escherichia coli with sudden infant death syndrome (SIDS) and the possible role these bacteria play in this enigmatic condition. The review addresses evidence for E. coli in SIDS infants, potential sources of E. coli in the environment, colonization by commensal and pathogenic strains, the variety of currently accepted pathotypes, and how these pathotypes could compromise intestinal integrity and induce inflammation. Both intestinal and extraintestinal pathotypes are compared in relation to the apparent liability in which virulence traits can be gained or lost by strains of E. coli. The way in which E. coli infections fit with current views on infant sleeping position and other SIDS risk factors is highlighted. PMID:26191064

  12. Pathogenic Escherichia coli found in sewage treatment plants and environmental waters.

    PubMed

    Anastasi, E M; Matthews, B; Stratton, H M; Katouli, M

    2012-08-01

    We previously demonstrated that some Escherichia coli strains with uropathogenic properties survived treatment stages of sewage treatment plants (STPs), suggesting that they may be released into the environment. We investigated the presence of such strains in the surrounding environmental waters of four STPs from which these persistent strains were isolated. In all, 264 E. coli isolates were collected from 129 receiving water sites in a 20-km radius surrounding STPs. We also included 93 E. coli strains collected from 18 animal species for comparison. Isolates were typed using a high-resolution biochemical fingerprinting method (the PhPlate system), and grouped into common (C) types. One hundred forty-seven (56%) environmental isolates were identical to strains found in STPs' final effluents. Of these, 140 (95%) carried virulence genes (VGs) associated with intestinal pathogenic E. coli (IPEC) or uropathogenic E. coli (UPEC) and were found in a variety of sites within areas sampled. Of the remaining 117 environmental strains not identical to STP strains, 105 belonged to 18 C types and 102 of them carried VGs found among IPEC or UPEC strains. These strains belonged mainly to phylogenetic groups A (A0 and A1) and B1 and to a lesser extent B2(2), B2(3), D1, and D2. Eight of 18 environmental C types, comprising 50 isolates, were also identical to bird strains. The presence of a high percentage of environmental E. coli in waters near STPs carrying VGs associated with IPEC and UPEC suggests that they may have derived from STP effluents and other nonpoint sources. PMID:22660714

  13. Pathogenic Escherichia coli Found in Sewage Treatment Plants and Environmental Waters

    PubMed Central

    Anastasi, E. M.; Matthews, B.; Stratton, H. M.

    2012-01-01

    We previously demonstrated that some Escherichia coli strains with uropathogenic properties survived treatment stages of sewage treatment plants (STPs), suggesting that they may be released into the environment. We investigated the presence of such strains in the surrounding environmental waters of four STPs from which these persistent strains were isolated. In all, 264 E. coli isolates were collected from 129 receiving water sites in a 20-km radius surrounding STPs. We also included 93 E. coli strains collected from 18 animal species for comparison. Isolates were typed using a high-resolution biochemical fingerprinting method (the PhPlate system), and grouped into common (C) types. One hundred forty-seven (56%) environmental isolates were identical to strains found in STPs' final effluents. Of these, 140 (95%) carried virulence genes (VGs) associated with intestinal pathogenic E. coli (IPEC) or uropathogenic E. coli (UPEC) and were found in a variety of sites within areas sampled. Of the remaining 117 environmental strains not identical to STP strains, 105 belonged to 18 C types and 102 of them carried VGs found among IPEC or UPEC strains. These strains belonged mainly to phylogenetic groups A (A0 and A1) and B1 and to a lesser extent B22, B23, D1, and D2. Eight of 18 environmental C types, comprising 50 isolates, were also identical to bird strains. The presence of a high percentage of environmental E. coli in waters near STPs carrying VGs associated with IPEC and UPEC suggests that they may have derived from STP effluents and other nonpoint sources. PMID:22660714

  14. Zoonotic Potential of Escherichia coli Isolates from Retail Chicken Meat Products and Eggs

    PubMed Central

    Mitchell, Natalie M.; Johnson, James R.; Johnston, Brian; Curtiss, Roy

    2014-01-01

    Chicken products are suspected as a source of extraintestinal pathogenic Escherichia coli (ExPEC), which causes diseases in humans. The zoonotic risk to humans from chicken-source E. coli is not fully elucidated. To clarify the zoonotic risk posed by ExPEC in chicken products and to fill existing knowledge gaps regarding ExPEC zoonosis, we evaluated the prevalence of ExPEC on shell eggs and compared virulence-associated phenotypes between ExPEC and non-ExPEC isolates from both chicken meat and eggs. The prevalence of ExPEC among egg-source isolates was low, i.e., 5/108 (4.7%). Based on combined genotypic and phenotypic screening results, multiple human and avian pathotypes were represented among the chicken-source ExPEC isolates, including avian-pathogenic E. coli (APEC), uropathogenic E. coli (UPEC), neonatal meningitis E. coli (NMEC), and sepsis-associated E. coli (SEPEC), as well as an undefined ExPEC group, which included isolates with fewer virulence factors than the APEC, UPEC, and NMEC isolates. These findings document a substantial prevalence of human-pathogenic ExPEC-associated genes and phenotypes among E. coli isolates from retail chicken products and identify key virulence traits that could be used for screening. PMID:25480753

  15. Zoonotic potential of Escherichia coli isolates from retail chicken meat products and eggs.

    PubMed

    Mitchell, Natalie M; Johnson, James R; Johnston, Brian; Curtiss, Roy; Mellata, Melha

    2015-02-01

    Chicken products are suspected as a source of extraintestinal pathogenic Escherichia coli (ExPEC), which causes diseases in humans. The zoonotic risk to humans from chicken-source E. coli is not fully elucidated. To clarify the zoonotic risk posed by ExPEC in chicken products and to fill existing knowledge gaps regarding ExPEC zoonosis, we evaluated the prevalence of ExPEC on shell eggs and compared virulence-associated phenotypes between ExPEC and non-ExPEC isolates from both chicken meat and eggs. The prevalence of ExPEC among egg-source isolates was low, i.e., 5/108 (4.7%). Based on combined genotypic and phenotypic screening results, multiple human and avian pathotypes were represented among the chicken-source ExPEC isolates, including avian-pathogenic E. coli (APEC), uropathogenic E. coli (UPEC), neonatal meningitis E. coli (NMEC), and sepsis-associated E. coli (SEPEC), as well as an undefined ExPEC group, which included isolates with fewer virulence factors than the APEC, UPEC, and NMEC isolates. These findings document a substantial prevalence of human-pathogenic ExPEC-associated genes and phenotypes among E. coli isolates from retail chicken products and identify key virulence traits that could be used for screening. PMID:25480753

  16. Heteropathogenic virulence and phylogeny reveal phased pathogenic metamorphosis in Escherichia coli O2:H6

    PubMed Central

    Bielaszewska, Martina; Schiller, Roswitha; Lammers, Lydia; Bauwens, Andreas; Fruth, Angelika; Middendorf, Barbara; Schmidt, M Alexander; Tarr, Phillip I; Dobrindt, Ulrich; Karch, Helge; Mellmann, Alexander

    2014-01-01

    Extraintestinal pathogenic and intestinal pathogenic (diarrheagenic) Escherichia coli differ phylogenetically and by virulence profiles. Classic theory teaches simple linear descent in this species, where non-pathogens acquire virulence traits and emerge as pathogens. However, diarrheagenic Shiga toxin-producing E. coli (STEC) O2:H6 not only possess and express virulence factors associated with diarrheagenic and uropathogenic E. coli but also cause diarrhea and urinary tract infections. These organisms are phylogenetically positioned between members of an intestinal pathogenic group (STEC) and extraintestinal pathogenic E. coli. STEC O2:H6 is, therefore, a ‘heteropathogen,’ and the first such hybrid virulent E. coli identified. The phylogeny of these E. coli and the repertoire of virulence traits they possess compel consideration of an alternate view of pathogen emergence, whereby one pathogroup of E. coli undergoes phased metamorphosis into another. By understanding the evolutionary mechanisms of bacterial pathogens, rational strategies for counteracting their detrimental effects on humans can be developed. Subject Categories Microbiology, Virology & Host Pathogen Interaction PMID:24413188

  17. Mechanism of Sperm Immobilization by Escherichia coli

    PubMed Central

    Prabha, Vijay; Sandhu, Ravneet; Kaur, Siftjit; Kaur, Kiranjeet; Sarwal, Abha; Mavuduru, Ravimohan S.; Singh, Shravan Kumar

    2010-01-01

    Aim. To explore the influence of Escherichia coli on the motility of human spermatozoa and its possible mechanism. Methods. Highly motile preparations of spermatozoa from normozoospermic patients were coincubated with Escherichia coli for 4 hours. At 1, 2 and 4 hours of incubation, sperm motility was determined. The factor responsible for sperm immobilization without agglutination was isolated and purified from filtrates. Results. This report confirms the immobilization of spermatozoa by E. coli and demonstrates sperm immobilization factor (SIF) excreted by E. coli. Further this factor was purified by ammonium sulfate precipitation, gel permeation chromatography, and ion-exchange chromatography. Purified SIF (56 kDa) caused instant immobilization without agglutination of human spermatozoa at 800 μg/mL and death at 2.1 mg/mL. Spermatozoa incubated with SIF revealed multiple and profound alterations involving all superficial structures of spermatozoa as observed by scanning electron microscopy. Conclusion. In conclusion, these results have shown immobilization of spermatozoa by E. coli and demonstrate a factor (SIF) produced and secreted by E. coli which causes variable structural damage as probable morphological correlates of immobilization. PMID:20379358

  18. Inhibition of biofilm development of uropathogens by curcumin - an anti-quorum sensing agent from Curcuma longa.

    PubMed

    Packiavathy, Issac Abraham Sybiya Vasantha; Priya, Selvam; Pandian, Shunmugiah Karutha; Ravi, Arumugam Veera

    2014-04-01

    Urinary tract infection is caused primarily by the quorum sensing (QS)-dependent biofilm forming ability of uropathogens. In the present investigation, an anti-quorum sensing (anti-QS) agent curcumin from Curcuma longa (turmeric) was shown to inhibit the biofilm formation of uropathogens, such as Escherichia coli, Pseudomonas aeruginosa PAO1, Proteus mirabilis and Serratia marcescens, possibly by interfering with their QS systems. The antibiofilm potential of curcumin on uropathogens as well as its efficacy in disturbing the mature biofilms was examined under light microscope and confocal laser scanning microscope. The treatment with curcumin was also found to attenuate the QS-dependent factors, such as exopolysaccharide production, alginate production, swimming and swarming motility of uropathogens. Furthermore, it was documented that curcumin enhanced the susceptibility of a marker strain and uropathogens to conventional antibiotics. PMID:24262582

  19. Inhibition and Reversal of Microbial Attachment by an Antibody with Parasteric Activity against the FimH Adhesin of Uropathogenic E. coli

    PubMed Central

    Friend, Della; Jalan, Aachal; Gupta, Shivani; Interlandi, Gianluca; Liu, Yan; Tchesnokova, Veronika; Rodriguez, Victoria B.; Sumida, John P.; Strong, Roland K.; Wu, Xue-Ru; Thomas, Wendy E.; Sokurenko, Evgeni V.

    2015-01-01

    Attachment proteins from the surface of eukaryotic cells, bacteria and viruses are critical receptors in cell adhesion or signaling and are primary targets for the development of vaccines and therapeutic antibodies. It is proposed that the ligand-binding pocket in receptor proteins can shift between inactive and active conformations with weak and strong ligand-binding capability, respectively. Here, using monoclonal antibodies against a vaccine target protein - fimbrial adhesin FimH of uropathogenic Escherichia coli, we demonstrate that unusually strong receptor inhibition can be achieved by antibody that binds within the binding pocket and displaces the ligand in a non-competitive way. The non-competitive antibody binds to a loop that interacts with the ligand in the active conformation of the pocket but is shifted away from ligand in the inactive conformation. We refer to this as a parasteric inhibition, where the inhibitor binds adjacent to the ligand in the binding pocket. We showed that the receptor-blocking mechanism of parasteric antibody differs from that of orthosteric inhibition, where the inhibitor replaces the ligand or allosteric inhibition where the inhibitor binds at a site distant from the ligand, and is very potent in blocking bacterial adhesion, dissolving surface-adherent biofilms and protecting mice from urinary bladder infection. PMID:25974133

  20. An electrochemical immunosensor for efficient detection of uropathogenic E. coli based on thionine dye immobilized chitosan/functionalized-MWCNT modified electrode.

    PubMed

    Gayathri, Chandran Hema; Mayuri, Pinapeddavari; Sankaran, Krishnan; Kumar, Annamalai Senthil

    2016-08-15

    Uropathogenic Escherichia coli (UPEC) is the major cause of 150 million Urinary Tract Infections (UTI) reported annually world-wide. High prevalence of multi-drug-resistance makes it dangerous and difficult to cure. Therefore simple, quick and early diagnostic tools are essential for effective treatment and control. We report an electrochemical immunosensor based on thionine dye (Th) immobilized on functionalized-multiwalled carbon nanotube+chitosan composite coated on glassy carbon electrode (GCE/f-MWCNT-Chit@Th) for quick and sensitive detection of UPEC in aqueous solution. This immunosensor was constructed by sequential immobilization of UPEC, bovine serum albumin, primary antibody and Horse Radish Peroxidase (HRP) tagged secondary antibody on the surface of GCE/f-MWCNT-Chit@Th. When analyzed using 2.5mM of hydrogen peroxide reduction reaction using cyclic voltammetry in phosphate buffer, pH 7.0, the immunosensor showed excellent linearity in a range of 10(2)-10(9)cfu of UPEC mL(-1) with a current sensitivity of 7.162μA {log(cfumL(-1))}(-1). The specificity of this immunosensor was tested using other UTI and non-UTI bacteria, Staphylococcus, Klebsiella, Proteus and Shigella. The clinical applicability of the immunosensor was also successfully tested directly in UPEC spiked urine samples (simulated sample). PMID:27040944

  1. Anti-Adhesion Activity of A2-type Proanthocyanidins (a Cranberry Major Component) on Uropathogenic E. coli and P. mirabilis Strains

    PubMed Central

    Nicolosi, Daria; Tempera, Gianna; Genovese, Carlo; Furneri, Pio M.

    2014-01-01

    Urinary tract infections (UTIs) are relatively common in women and may be classified as uncomplicated or complicated, depending upon the urinary tract anatomy and physiology. Acute uncomplicated cystitis (AUC) occurs when urinary pathogens from the bowel or vagina colonize the periurethral mucosa and reach the bladder. The vast majority of episodes in healthy women involving the same bacterial strain that caused the initial infection are thought to be reinfections. About 90% of AUC are caused by uropathogenic Escherichia coli (UPEC), but Proteus mirabilis also plays an important role. Several studies support the importance of cranberry (Vaccinium macrocarpon) proanthocyanidins in preventing adhesion of P-fimbriated UPEC to uroepithelial cells. In this study, we evaluated the in vitro anti-adhesion activity of A2-linked proanthocyanidins from cranberry on a UPEC and Proteus mirabilis strains and their possible influence on urease activity of the latter. A significant reduction of UPEC adhesion (up to 75%) on the HT1376 cell line was observed vs. control. For the strains of P. mirabilis there was also a reduction of adhesion (up to 75%) compared to controls, as well as a reduction in motility and urease activity. These results suggest that A2-type cranberry proanthocyanidins could aid in maintaining urinary tract health. PMID:27025740

  2. Anti-Adhesion Activity of A2-type Proanthocyanidins (a Cranberry Major Component) on Uropathogenic E. coli and P. mirabilis Strains.

    PubMed

    Nicolosi, Daria; Tempera, Gianna; Genovese, Carlo; Furneri, Pio M

    2014-01-01

    Urinary tract infections (UTIs) are relatively common in women and may be classified as uncomplicated or complicated, depending upon the urinary tract anatomy and physiology. Acute uncomplicated cystitis (AUC) occurs when urinary pathogens from the bowel or vagina colonize the periurethral mucosa and reach the bladder. The vast majority of episodes in healthy women involving the same bacterial strain that caused the initial infection are thought to be reinfections. About 90% of AUC are caused by uropathogenic Escherichia coli (UPEC), but Proteus mirabilis also plays an important role. Several studies support the importance of cranberry (Vaccinium macrocarpon) proanthocyanidins in preventing adhesion of P-fimbriated UPEC to uroepithelial cells. In this study, we evaluated the in vitro anti-adhesion activity of A2-linked proanthocyanidins from cranberry on a UPEC and Proteus mirabilis strains and their possible influence on urease activity of the latter. A significant reduction of UPEC adhesion (up to 75%) on the HT1376 cell line was observed vs. control. For the strains of P. mirabilis there was also a reduction of adhesion (up to 75%) compared to controls, as well as a reduction in motility and urease activity. These results suggest that A2-type cranberry proanthocyanidins could aid in maintaining urinary tract health. PMID:27025740

  3. Diagnosisand Investigation of Diarrheagenic Escherichia coli.

    PubMed

    Nataro, J P; Martinez, J

    1998-01-01

    Although most Escherichia coli are harmless commensals of the human intestine, certain specific, highly-adapted E. coli strains are capable of causing urinary tract, systemic or enteric/diarrheagenic infection. Diarrheagenic E coli are divided into six distinct categories, or pathotypes, each with a distinct pathogenic scheme (Table 1). Combined, diarrheagenic E coli have emerged as perhaps the most important enteric pathogens of man. In the developing world, the E coli categories account for more cases of gastroenteiltis among infants than any other cause (1) In addition, E coli are also the most common cause of traveller's diarrhea, which afflicts more than one million travellers to the developing world annually (1). Enterohemorrhagic E coli (EHEC) are the cause of hemolytic uremic syndrome (HUS), which has become a major foodborne threat in many parts of the developed world (2). Table 1 Categories of Diarrheagenic E. coli Category Toxins Invasion Virulence plasmid Adhesin Clinical syndrome ETEC LT, ST - Many CFA/I, CFA/II, CFA/IV, others Watery diarrhea EPEC - + 60 MDa Bundle-forming pilus Watery diarrhea of infants EHEC SLT-1, SLT-2 - 60 MDa( a ) Intimin, Fimbriae( a ) Hemorrhagic colitis, HUS EAEC EAST1( a ) ? 65 MDa( a ) AAF/I, AAF/I Watery, persistent diarrhea EIEC EIET( a ) +++ 140 MDa Ipa's(?) Watery diarrhea, dysentery DAEC ? ? ? F1845( a ) Watery diarrhea ( a )Role in pathogenesis unproven. PMID:21390758

  4. Escherichia coli in retail processed food.

    PubMed Central

    Pinegar, J. A.; Cooke, E. M.

    1985-01-01

    Four thousand two hundred and forty six samples of retail processed food were examined for the presence of Escherichia coli. Overall 12% of samples contained this organism, cakes and confectionery being more frequently contaminated (28%) than meat and meat based products (9%). Contamination was more frequent in the summer months than in the colder weather and 27% of the contaminated foods contained greater than 10(3) E. coli/g. E. coli from meat and meat based products were more commonly resistant to one or more antibiotics (14%) than were confectionery strains (1%). The significance of these findings in relation to the E. coli population of the human bowel is discussed. PMID:3894508

  5. Escherichia coli in retail processed food.

    PubMed

    Pinegar, J A; Cooke, E M

    1985-08-01

    Four thousand two hundred and forty six samples of retail processed food were examined for the presence of Escherichia coli. Overall 12% of samples contained this organism, cakes and confectionery being more frequently contaminated (28%) than meat and meat based products (9%). Contamination was more frequent in the summer months than in the colder weather and 27% of the contaminated foods contained greater than 10(3) E. coli/g. E. coli from meat and meat based products were more commonly resistant to one or more antibiotics (14%) than were confectionery strains (1%). The significance of these findings in relation to the E. coli population of the human bowel is discussed. PMID:3894508

  6. Escherichia coli bacteriuria and contraceptive method.

    PubMed

    Hooton, T M; Hillier, S; Johnson, C; Roberts, P L; Stamm, W E

    1991-01-01

    We evaluated the effects of contraceptive method on the occurrence of bacteriuria and vaginal colonization with Escherichia coli in 104 women who were evaluated prior to having sexual intercourse, the morning after intercourse, and 24 hours later. After intercourse, the prevalence of E coli bacteriuria increased slightly in oral contraceptive users but dramatically in both foam and condom users and diaphragm-spermicide users. Twenty-four hours later, the prevalence of bacteriuria remained significantly elevated only in the latter two groups. Similarly, vaginal colonization with E coli was more dramatic and persistent in users of diaphragm-spermicide and foam and condoms. Vaginal colonization with Candida species, enterococci, and staphylococci also increased significantly in diaphragm-spermicide users after intercourse. We conclude that use of the diaphragm with spermicidal jelly or use of a spermicidal foam with a condom markedly alters normal vaginal flora and strongly predisposes users to the development of vaginal colonization and bacteriuria with E coli. PMID:1859519

  7. Adhesion behaviors of Escherichia coli on hydroxyapatite.

    PubMed

    Kamitakahara, Masanobu; Takahashi, Shohei; Yokoi, Taishi; Inoue, Chihiro; Ioku, Koji

    2016-04-01

    Optimum design of support materials for microorganisms is required for the construction of bioreactors. However, the effects of support materials on microorganisms are still unclear. In this study, we investigated the adhesion behavior of Escherichia coli (E. coli) on hydroxyapatite (HA), polyurethane (PU), poly(vinyl chloride) (PVC), and carbon (Carbon) to obtain basic knowledge for the design of support materials. The total metabolic activity and number of E. coli adhering on the samples followed the order of HA ≈ Carbon>PVC>PU. On the other hand, the water contact angle of the pellet surfaces followed the order of HAcoli. The results implied that HA has a potential as a support material for microorganisms used in bioreactors. PMID:26838837

  8. FTIR nanobiosensors for Escherichia coli detection

    PubMed Central

    Greppi, Gianfranco; Marongiu, Maria Laura; Roggero, Pier Paolo; Ravindranath, Sandeep P; Mauer, Lisa J; Schibeci, Nicoletta; Perria, Francesco; Piccinini, Massimo; Innocenzi, Plinio; Irudayaraj, Joseph

    2012-01-01

    Summary Infections due to enterohaemorrhagic E. coli (Escherichia coli) have a low incidence but can have severe and sometimes fatal health consequences, and thus represent some of the most serious diseases due to the contamination of water and food. New, fast and simple devices that monitor these pathogens are necessary to improve the safety of our food supply chain. In this work we report on mesoporous titania thin-film substrates as sensors to detect E. coli O157:H7. Titania films treated with APTES ((3-aminopropyl)triethoxysilane) and GA (glutaraldehyde) were functionalized with specific antibodies and the absorption properties monitored. The film-based biosensors showed a detection limit for E. coli of 1 × 102 CFU/mL, constituting a simple and selective method for the effective screening of water samples. PMID:23019542

  9. Serogroups and virulence genotypes of Escherichia coli isolated from patients with sepsis.

    PubMed

    Ananias, M; Yano, T

    2008-10-01

    Sixty strains of Escherichia coli, isolated by hemoculture, from septicemic Brazilian patients were evaluated to determine their serogroup and invasivity to Vero cells. All 60 patients died within 2 days of hospitalization. Furthermore, the molecular study of the following extraintestinal pathogenic E. coli-associated virulence factor (VF) genes was performed by PCR: i) adhesins: type 1 fimbria (fimH), S fimbria (sfaD/E), P fimbria (papC and papG alleles) and afimbrial adhesin (afaB/C); ii) capsule K1/K5 (kpsMTII); iii) siderophores: aerobactin (iucD), yersiniabactin (fyuA) and salmochelin (iroN); iv) toxins hemolysin (hlyA), necrotizing cytotoxic factor type 1 (cnf1) and secreted autotransporter toxin (sat); v) miscellaneous: brain microvascular endothelial cells invasion (ibeA), serum resistance (traT), colicin V (cvaC) and specific uropathogenic protein (usp). Our results showed that isolates are able to invade Vero cells (96.6%), differing from previous research on uropathogenic E. coli (UPEC). The O serogroups associated with UPEC were prevalent in 60% of strains vs 11.7% of other serogroups. The PCR results showed a conserved virulence subgroup profile and a prevalence above 75% for fimH, fyuA, kpsMTII and iucD, and between 35-65% for papC, papG, sat, iroN, usp and traT. The evasion from the immunological system of the host and also iron uptake are essential for the survival of extraintestinal pathogenic E. coli strains. Interestingly, among our isolates, a low prevalence of VF genes appeared. Therefore, the present study contributes to the identification of a bacterial profile for sepsis-associated E. coli. PMID:19030710

  10. Large plasmids of avian Escherichia coli isolates.

    PubMed

    Doetkott, D M; Nolan, L K; Giddings, C W; Berryhill, D L

    1996-01-01

    The plasmid DNA of 30 Escherichia coli isolates from chickens was extracted and examined using techniques designed to isolate large plasmids. This plasmid DNA was examined for the presence of certain known virulence-related genes including cvaC, traT, and some aerobactin-related sequences. Seventeen of the 30 isolates contained from one to four plasmids greater than 50 kb in size. Eleven of these 17 strains possessed plasmids greater than 100 kb in size. Therefore, E. coli isolates of chickens frequently contain large plasmids, and many of these plasmids are likely to contain virulence-related sequences. PMID:8980827

  11. Production of antibody fragments in Escherichia coli.

    PubMed

    Katsuda, Tomohisa; Sonoda, Hiroyuki; Kumada, Yoichi; Yamaji, Hideki

    2012-01-01

    Escherichia coli is a host widely used in the industrial production of recombinant proteins. However, the expression of heterologous proteins in E. coli often encounters the formation of inclusion bodies, which are insoluble and nonfunctional protein aggregates. For the successful production of antibody fragments, which includes single-chain variable fragments (scFvs), we describe here the modification of linker, signal, and Shine-Dalgarno (SD) sequences, the coexpression of cytoplasmic and periplasmic chaperones, and a method for fed-batch cultivation with exponential feed. PMID:22907360

  12. Hydrogen production by recombinant Escherichia coli strains

    PubMed Central

    Maeda, Toshinari; Sanchez‐Torres, Viviana; Wood, Thomas K.

    2012-01-01

    Summary The production of hydrogen via microbial biotechnology is an active field of research. Given its ease of manipulation, the best‐studied bacterium Escherichia coli has become a workhorse for enhanced hydrogen production through metabolic engineering, heterologous gene expression, adaptive evolution, and protein engineering. Herein, the utility of E. coli strains to produce hydrogen, via native hydrogenases or heterologous ones, is reviewed. In addition, potential strategies for increasing hydrogen production are outlined and whole‐cell systems and cell‐free systems are compared. PMID:21895995

  13. Escherichia coli and Enterococcus faecalis are able to incorporate and enhance a pre-formed Gardnerella vaginalis biofilm.

    PubMed

    Castro, Joana; Machado, Daniela; Cerca, Nuno

    2016-04-01

    Gardnerella vaginalis is the most frequent microorganism found in bacterial vaginosis (BV), while Escherichia coli and Enterococcus faecalis are amongst the most frequent pathogens found in urinary tract infections (UTIs). This study aimed to evaluate possible interactions between UTIs pathogens and G. vaginalis using an in vitro dual-species biofilm model. Our results showed that dual-species biofilms reached significantly higher bacterial concentration than monospecies biofilms. Moreover, visualization of dual-populations species in the biofilms, using the epifluorescence microscopy, revealed that all of the urogenital pathogens coexisted with G. vaginalis. In conclusion, our work demonstrates that uropathogens can incorporate into mature BV biofilms. PMID:26782142

  14. A Survey for Escherichia coli Virulence Factors in Asymptomatic Free-Ranging Parrots

    PubMed Central

    Becker Saidenberg, André; Robaldo Guedes, Neiva Maria; Fernandes Seixas, Gláucia Helena; da Costa Allgayer, Mariangela; Pacífico de Assis, Erica; Fabio Silveira, Luis; Anne Melville, Priscilla; Benites, Nilson Roberti

    2012-01-01

    Parrots in captivity are frequently affected by Escherichia coli (E. coli) infections. The objective of this study was to collect information on the carrier state for E. coli pathotypes in asymptomatic free-ranging parrots. Cloacal swabs were collected from nestlings of Hyacinth, Lear's macaws and Blue-fronted Amazon parrots and tested by polymerase chain reaction (PCR) for virulence factors commonly found in enteropathogenic, avian pathogenic, and uropathogenic E. coli strains. In total, 44 samples were cultured and E. coli isolates were yielded, from which DNA was extracted and processed by PCR. Genes commonly found in APEC isolates from Blue-fronted Amazon parrots and Hyacinth macaws were expressed in 14 of these 44 samples. One atypical EPEC isolate was obtained from a sample from Lear's macaw. The most commonly found gene was the increased serum survival (iss) gene. This is the first report, that describes such pathotypes in asymptomatic free-living parrots. The findings of this study suggest the presence of a stable host/parasite relationship at the time of the sampling brings a new understanding to the role that E. coli plays in captive and wild parrots. Such information can be used to improve husbandry protocols as well as help conservation efforts of free-living populations. PMID:23738135

  15. A Survey for Escherichia coli Virulence Factors in Asymptomatic Free-Ranging Parrots.

    PubMed

    Becker Saidenberg, André; Robaldo Guedes, Neiva Maria; Fernandes Seixas, Gláucia Helena; da Costa Allgayer, Mariangela; Pacífico de Assis, Erica; Fabio Silveira, Luis; Anne Melville, Priscilla; Benites, Nilson Roberti

    2012-01-01

    Parrots in captivity are frequently affected by Escherichia coli (E. coli) infections. The objective of this study was to collect information on the carrier state for E. coli pathotypes in asymptomatic free-ranging parrots. Cloacal swabs were collected from nestlings of Hyacinth, Lear's macaws and Blue-fronted Amazon parrots and tested by polymerase chain reaction (PCR) for virulence factors commonly found in enteropathogenic, avian pathogenic, and uropathogenic E. coli strains. In total, 44 samples were cultured and E. coli isolates were yielded, from which DNA was extracted and processed by PCR. Genes commonly found in APEC isolates from Blue-fronted Amazon parrots and Hyacinth macaws were expressed in 14 of these 44 samples. One atypical EPEC isolate was obtained from a sample from Lear's macaw. The most commonly found gene was the increased serum survival (iss) gene. This is the first report, that describes such pathotypes in asymptomatic free-living parrots. The findings of this study suggest the presence of a stable host/parasite relationship at the time of the sampling brings a new understanding to the role that E. coli plays in captive and wild parrots. Such information can be used to improve husbandry protocols as well as help conservation efforts of free-living populations. PMID:23738135

  16. Novel compound for identifying Escherichia coli.

    PubMed Central

    Watkins, W D; Rippey, S R; Clavet, C R; Kelley-Reitz, D J; Burkhardt, W

    1988-01-01

    A new chromogenic compound, 5-bromo-4-chloro-3-indoxyl-beta-D-glucuronide, was found to be useful for the rapid, specific, differential identification of Escherichia coli in the sanitary analysis of shellfish and wastewater. Of 1,025 presumptively positive colonies (blue) and 583 presumptively negative colonies (nonblue), only 1% false-negative and 5% false-positive results were found. PMID:3046494

  17. Shiga toxin-producing Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In United States, it is estimated that non-O157 Shiga toxin-producing Escherichia coli (STEC) cause more illnesses than STEC O157:H7, and the majority of cases of non-O157 STEC infections is due to serogroups O26, O45, O103, O111, O121, and O145, referred to as the top six non-O157 STEC. The diseas...

  18. Draft genome sequence of Escherichia coli LCT-EC106.

    PubMed

    Li, Tianzhi; Pu, Fei; Yang, Rentao; Fang, Xiangqun; Wang, Junfeng; Guo, Yinghua; Chang, De; Su, Longxiang; Guo, Na; Jiang, Xuege; Zhao, Jiao; Liu, Changting

    2012-08-01

    Escherichia coli is a Gram-negative, rod-shaped bacterium that is commonly found in the intestine of warm-blooded organisms. Most E. coli strains are harmless, but some serotypes can cause serious food poisoning in humans. Here, we present the complete genome sequence of Escherichia coli LCT-EC106, which was isolated from CGMCC 1.2385. PMID:22843582

  19. Prevalence and antibiogram profiling of Escherichia coli pathotypes isolated from the Kat River and the Fort Beaufort abstraction water.

    PubMed

    Nontongana, Nolonwabo; Sibanda, Timothy; Ngwenya, Elvis; Okoh, Anthony I

    2014-08-01

    Escherichia coli is a widespread bacterium encompassing a variety of strains, ranging from highly pathogenic strains, causing worldwide outbreaks of severe diseases to avirulent, well characterized safe laboratory strains. This study evaluated the prevalence and antibiogram profiles of E. coli pathotypes isolated from the Kat River and Fort Beaufort abstraction water. A total of 171 out of 278 confirmed E. coli isolates were positive for at least one pathogenic determinant and these included enteropathogenic E. coli (6%), enterotoxigenic E. coli (47%), uropathogenic E. coli (2%), neonatal meningitis E. coli (5%), diffusely adherent E. coli (1%) and enterohaemorrhagic E. coli (1%). Interestingly, enteroinvasive and enteroaggregative E. coli were not detected. The phenotypic antibiogram profiles of the isolates revealed that all were resistant to penicillin G, while 98% and 38% of the pathotypes were resistant to ampicillin and trimethoprim-sulphamethoxazole, respectively. About 8% of the isolates were resistant to streptomycin. More than half of the isolates exhibited multiple antibiotic resistance with 44% being resistant to three antibiotics and 8% resistant to four antibiotics. We conclude that the Kat River is a reservoir of potentially virulent antibiotic resistant E. coli strains that can cause serious health risks to humans who drink raw water from this river, or in the case that consumption of treated drinking water coincides with failed drinking water processes. PMID:25119699

  20. Prevalence and Antibiogram Profiling of Escherichia coli Pathotypes Isolated from the Kat River and the Fort Beaufort Abstraction Water

    PubMed Central

    Nontongana, Nolonwabo; Sibanda, Timothy; Ngwenya, Elvis; Okoh, Anthony I.

    2014-01-01

    Escherichia coli is a widespread bacterium encompassing a variety of strains, ranging from highly pathogenic strains, causing worldwide outbreaks of severe diseases to avirulent, well characterized safe laboratory strains. This study evaluated the prevalence and antibiogram profiles of E. coli pathotypes isolated from the Kat River and Fort Beaufort abstraction water. A total of 171 out of 278 confirmed E. coli isolates were positive for at least one pathogenic determinant and these included enteropathogenic E. coli (6%), enterotoxigenic E. coli (47%), uropathogenic E. coli (2%), neonatal meningitis E. coli (5%), diffusely adherent E. coli (1%) and enterohaemorrhagic E. coli (1%). Interestingly, enteroinvasive and enteroaggregative E. coli were not detected. The phenotypic antibiogram profiles of the isolates revealed that all were resistant to penicillin G, while 98% and 38% of the pathotypes were resistant to ampicillin and trimethoprim-sulphamethoxazole, respectively. About 8% of the isolates were resistant to streptomycin. More than half of the isolates exhibited multiple antibiotic resistance with 44% being resistant to three antibiotics and 8% resistant to four antibiotics. We conclude that the Kat River is a reservoir of potentially virulent antibiotic resistant E. coli strains that can cause serious health risks to humans who drink raw water from this river, or in the case that consumption of treated drinking water coincides with failed drinking water processes. PMID:25119699

  1. Natural plasmid transformation in Escherichia coli.

    PubMed

    Tsen, Suh-Der; Fang, Suh-Sen; Chen, Mei-Jye; Chien, Jun-Yi; Lee, Chih-Chun; Tsen, Darwin Han-Lin

    2002-01-01

    Although Escherichia coli does not have a natural transformation process, strains of E. coli can incorporate extracellular plasmids into cytoplasm 'naturally' at low frequencies. A standard method was developed in which stationary phase cells were concentrated, mixed with plasmids, and then plated on agar plates with nutrients which allowed cells to grow. Transformed cells could then be selected by harvesting cells and plating again on selective agar plates. Competence developed in the lag phase, but disappeared during exponential growth. As more plasmids were added to the cell suspension, the number of transformants increased, eventually reaching a plateau. Supercoiled monomeric or linear concatemeric DNA could transform cells, while linear monomeric DNA could not. Plasmid transformation was not related to conjugation and was recA-independent. Most of the E. coli strains surveyed had this process. All tested plasmids, except pACYC184, could transform E. coli. Insertion of a DNA fragment containing the ampicillin resistance gene into pACYC184 made the plasmid transformable. By inserting random 20-base-pair oligonucleotides into pACYC184 and selecting for transformable plasmids, a most frequent sequence was identified. This sequence resembled the bacterial interspersed medium repetitive sequence of E. coli, suggesting the existence of a recognition sequence. We conclude that plasmid natural transformation exists in E. coli. PMID:12065899

  2. Systems Metabolic Engineering of Escherichia coli.

    PubMed

    Choi, Kyeong Rok; Shin, Jae Ho; Cho, Jae Sung; Yang, Dongsoo; Lee, Sang Yup

    2016-05-01

    Systems metabolic engineering, which recently emerged as metabolic engineering integrated with systems biology, synthetic biology, and evolutionary engineering, allows engineering of microorganisms on a systemic level for the production of valuable chemicals far beyond its native capabilities. Here, we review the strategies for systems metabolic engineering and particularly its applications in Escherichia coli. First, we cover the various tools developed for genetic manipulation in E. coli to increase the production titers of desired chemicals. Next, we detail the strategies for systems metabolic engineering in E. coli, covering the engineering of the native metabolism, the expansion of metabolism with synthetic pathways, and the process engineering aspects undertaken to achieve higher production titers of desired chemicals. Finally, we examine a couple of notable products as case studies produced in E. coli strains developed by systems metabolic engineering. The large portfolio of chemical products successfully produced by engineered E. coli listed here demonstrates the sheer capacity of what can be envisioned and achieved with respect to microbial production of chemicals. Systems metabolic engineering is no longer in its infancy; it is now widely employed and is also positioned to further embrace next-generation interdisciplinary principles and innovation for its upgrade. Systems metabolic engineering will play increasingly important roles in developing industrial strains including E. coli that are capable of efficiently producing natural and nonnatural chemicals and materials from renewable nonfood biomass. PMID:27223822

  3. Mechanisms of Emerging Diarrheagenic Escherichia coli Infection.

    PubMed

    Khan, Mohammed A.; Steiner, Ted S.

    2002-04-01

    Diarrheagenic Escherichia coli organisms are major causes of morbidity and mortality worldwide. Although most strains of E. coli are harmless commensals, a few types have emerged that are capable of disrupting the normal physiology of the human gut, producing illness ranging from watery diarrhea to fatal hemorrhagic colitis. Diarrheagenic E. coli cause infection by a variety of complex mechanisms, some of which are incompletely understood. These include adherence, elaboration of toxigenic mediators, invasion of the intestinal mucosa, and transportation of bacterial proteins into the host cells. Specific components of the host-microbial interaction that cause damage have been identified, increasing our understanding of the mechanisms of diarrhea. This article reviews some of the recent findings about the pathogenesis and infectious processes involved in three emerging pathotypes of this fascinating gram-negative bacterium. PMID:11927041

  4. Molecular mechanisms of Escherichia coli pathogenicity.

    PubMed

    Croxen, Matthew A; Finlay, B Brett

    2010-01-01

    Escherichia coli is a remarkable and diverse organism. This normally harmless commensal needs only to acquire a combination of mobile genetic elements to become a highly adapted pathogen capable of causing a range of diseases, from gastroenteritis to extraintestinal infections of the urinary tract, bloodstream and central nervous system. The worldwide burden of these diseases is staggering, with hundreds of millions of people affected annually. Eight E. coli pathovars have been well characterized, and each uses a large arsenal of virulence factors to subvert host cellular functions to potentiate its virulence. In this Review, we focus on the recent advances in our understanding of the different pathogenic mechanisms that are used by various E. coli pathovars and how they cause disease in humans. PMID:19966814

  5. Thymineless Death in Escherichia coli: Strain Specificity

    PubMed Central

    Cummings, Donald J.; Mondale, Lee

    1967-01-01

    Thymineless death of various ultraviolet (UV)-sensitive strains of Escherichia coli B and K-12 was investigated. It was found that E. coli B, Bs−12, K-12 rec-21, and possibly K-12 Lon−, all sensitive to UV, were also sensitive to thymine starvation. However, other UV-sensitive strains of E. coli were found to display the typical resistant-type kinetics of thymineless death. The correlation of these results with various other cellular processes suggested that the filament-forming ability of the bacteria might be involved in the mechanism of thymineless death. It was apparent from the present results that capacity for host-cell reactivation, recombination ability, thymine dimer excision, and probably induction of a defective prophage had little to do with determining sensitivity to thymine deprivation. Images PMID:5337772

  6. Action of sodium deoxycholate on Escherichia coli

    SciTech Connect

    D'Mello, A.; Yotis, W.W.

    1987-08-01

    Sodium deoxycholate is used in a number of bacteriological media for the isolation and classification of gram-negative bacteria from food and the environment. Initial experiments to study the effect of deoxycholate on the growth parameters of Escherichia coli showed an increase in the lag time constant and generation time and a decrease in the growth rate constant total cell yield of this microorganisms. Cell fractionation studies indicated that sodium deoxycholate at levels used in bacteriological media interferes with the incorporation of (U-/sup 14/C)glucose into the cold-trichloroacetic acid-soluble, ethanol-soluble, and trypsin-soluble cellular fractions of E. coli. Finally, sodium deoxycholate interfered with the flagellation and motility of Proteus mirabilis and E. coli. It would appear then that further improvement of the deoxycholate medium may be in order.

  7. Prodigiosin - A Multifaceted Escherichia coli Antimicrobial Agent.

    PubMed

    Danevčič, Tjaša; Borić Vezjak, Maja; Zorec, Maša; Stopar, David

    2016-01-01

    Despite a considerable interest in prodigiosin, the mechanism of its antibacterial activity is still poorly understood. In this work, Escherichia coli cells were treated with prodigiosin to determine its antimicrobial effect on bacterial physiology. The effect of prodigiosin was concentration dependent. In prodigiosin treated cells above MIC value no significant DNA damage or cytoplasmic membrane disintegration was observed. The outer membrane, however, becomes leaky. Cells had severely decreased respiration activity. In prodigiosin treated cells protein and RNA synthesis were inhibited, cells were elongated but could not divide. Pre-treatment with prodigiosin improved E. coli survival rate in media containing ampicillin, kanamycin and erythromycin but not phleomycin. The results suggest that prodigiosin acts as a bacteriostatic agent in E. coli cells. If prodigiosin was diluted, cells resumed growth. The results indicate that prodigiosin has distinct mode of antibacterial action in different bacteria. PMID:27612193

  8. Interaction between Escherichia coli and lunar fines

    NASA Technical Reports Server (NTRS)

    Johansson, K. R.

    1983-01-01

    A sample of mature lunar fines (10084.151) was solubilized to a high degree (about 17 percent) by the chelating agent salicylic acid (0.01. M). The neutralized (pH adjusted to 7.0) leachate was found to inhibit the growth of Escherichia coli (ATCC 259922) in a minimial mineral salts glucose medium; however, the inhibition was somewhat less than that caused by neutralized salicylic acid alone. The presence of lunar fines in the minimal medium was highly stimulatory to growth of E. coli following an early inhibitory response. The bacterium survived less well in the lunar leachate than in distilled water, no doubt because of the salicylate. It was concluded that the sample of lunar soil tested has nutritional value to E. coli and that certain products of fermentation helped to solubilize the lunar soil.

  9. Biodegradation of Aromatic Compounds by Escherichia coli

    PubMed Central

    Díaz, Eduardo; Ferrández, Abel; Prieto, María A.; García, José L.

    2001-01-01

    Although Escherichia coli has long been recognized as the best-understood living organism, little was known about its abilities to use aromatic compounds as sole carbon and energy sources. This review gives an extensive overview of the current knowledge of the catabolism of aromatic compounds by E. coli. After giving a general overview of the aromatic compounds that E. coli strains encounter and mineralize in the different habitats that they colonize, we provide an up-to-date status report on the genes and proteins involved in the catabolism of such compounds, namely, several aromatic acids (phenylacetic acid, 3- and 4-hydroxyphenylacetic acid, phenylpropionic acid, 3-hydroxyphenylpropionic acid, and 3-hydroxycinnamic acid) and amines (phenylethylamine, tyramine, and dopamine). Other enzymatic activities acting on aromatic compounds in E. coli are also reviewed and evaluated. The review also reflects the present impact of genomic research and how the analysis of the whole E. coli genome reveals novel aromatic catabolic functions. Moreover, evolutionary considerations derived from sequence comparisons between the aromatic catabolic clusters of E. coli and homologous clusters from an increasing number of bacteria are also discussed. The recent progress in the understanding of the fundamentals that govern the degradation of aromatic compounds in E. coli makes this bacterium a very useful model system to decipher biochemical, genetic, evolutionary, and ecological aspects of the catabolism of such compounds. In the last part of the review, we discuss strategies and concepts to metabolically engineer E. coli to suit specific needs for biodegradation and biotransformation of aromatics and we provide several examples based on selected studies. Finally, conclusions derived from this review may serve as a lead for future research and applications. PMID:11729263

  10. Preventing urinary tract infection: progress toward an effective Escherichia coli vaccine

    PubMed Central

    Brumbaugh, Ariel R; Mobley, Harry LT

    2012-01-01

    Uncomplicated urinary tract infections (UTIs) are common, with nearly half of all women experiencing at least one UTI in their lifetime. This high frequency of infection results in huge annual economic costs, decreased workforce productivity and high patient morbidity. At least 80% of these infections are caused by uropathogenic Escherichia coli (UPEC). UPEC can reside side by side with commensal strains in the gastrointestinal tract and gain access to the bladder via colonization of the urethra. Antibiotics represent the current standard treatment for UTI; however, even after treatment, patients frequently suffer from recurrent infection with the same or different strains. In addition, successful long-term treatment has been complicated by a rise in both the number of antibiotic-resistant strains and the prevalence of antibiotic-resistance mechanisms. As a result, preventative approaches to UTI, such as vaccination, have been sought. This review summarizes recent advances in UPEC vaccine development and outlines future directions for the field. PMID:22873125

  11. COMPARATIVE RESISTANCE OF ESCHERICHIA COLI AND ENTEROCOCCI TO CHLORINATION

    EPA Science Inventory

    Pure cultures of Escherichia coli and Enterococcus faecium were inactivated by free chlorine and monochloramine. ndigenous E. coli and enterococci in wastewater effluents were also inactivated. elective bacteriological media specifically designed for the enumeration of the target...

  12. Profiling of Escherichia coli Chromosome database.

    PubMed

    Yamazaki, Yukiko; Niki, Hironori; Kato, Jun-ichi

    2008-01-01

    The Profiling of Escherichia coli Chromosome (PEC) database (http://www.shigen.nig.ac.jp/ecoli/pec/) is designed to allow E. coli researchers to efficiently access information from functional genomics studies. The database contains two principal types of data: gene essentiality and a large collection of E. coli genetic research resources. The essentiality data are based on data compilation from published single-gene essentiality studies and on cell growth studies of large-deletion mutants. Using the circular and linear viewers for both whole genomes and the minimal genome, users can not only gain an overview of the genome structure but also retrieve information on contigs, gene products, mutants, deletions, and so forth. In particular, genome-wide exhaustive mutants are an essential resource for studying E. coli gene functions. Although the genomic database was constructed independently from the genetic resources database, users may seamlessly access both types of data. In addition to these data, the PEC database also provides a summary of homologous genes of other bacterial genomes and of protein structure information, with a comprehensive interface. The PEC is thus a convenient and useful platform for contemporary E. coli researchers. PMID:18392982

  13. Logarithmic Sensing in Escherichia coli Bacterial Chemotaxis

    PubMed Central

    Kalinin, Yevgeniy V.; Jiang, Lili; Tu, Yuhai; Wu, Mingming

    2009-01-01

    We studied the response of swimming Escherichia coli (E. coli) bacteria in a comprehensive set of well-controlled chemical concentration gradients using a newly developed microfluidic device and cell tracking imaging technique. In parallel, we carried out a multi-scale theoretical modeling of bacterial chemotaxis taking into account the relevant internal signaling pathway dynamics, and predicted bacterial chemotactic responses at the cellular level. By measuring the E. coli cell density profiles across the microfluidic channel at various spatial gradients of ligand concentration grad[L] and the average ligand concentration [L]¯near the peak chemotactic response region, we demonstrated unambiguously in both experiments and model simulation that the mean chemotactic drift velocity of E. coli cells increased monotonically with grad [L]/[L]¯ or ∼grad(log[L])—that is E. coli cells sense the spatial gradient of the logarithmic ligand concentration. The exact range of the log-sensing regime was determined. The agreements between the experiments and the multi-scale model simulation verify the validity of the theoretical model, and revealed that the key microscopic mechanism for logarithmic sensing in bacterial chemotaxis is the adaptation kinetics, in contrast to explanations based directly on ligand occupancy. PMID:19289068

  14. Prevalence of autotransporters in Escherichia coli: what is the impact of phylogeny and pathotype?

    PubMed

    Zude, Ingmar; Leimbach, Andreas; Dobrindt, Ulrich

    2014-05-01

    Autotransporter (AT) proteins are widespread surface-exposed or secreted factors in Escherichia coli. Several ATs have been correlated with pathogenesis or specific phylogenetic lineages. Therefore, an application as biomarkers for individual extraintestinal pathogenic E.coli (ExPEC) or intestinal pathogenic E.coli (IPEC) has been proposed. To put this assumption on a solid foundation, we analyzed 111 publicly available E. coli genome sequences and screened them bioinformatically for the presence of 18 ATs. We determined the highest AT prevalence per strain in phylogroup B2 isolates and showed that AT distribution correlates rather with phylogenetic lineages than with pathotypes. Although a strict dependence between AT prevalence and pathotype was not observed, EspP, EhaA, and EhaG cluster with IPEC of phylogroup B1 and E, respectively, whereas UpaH is predominantly present in ExPEC of phylogroup B2. Furthermore, PicU, SepA, UpaB, UpaI, and UpaJ were associated with phylogroup B2. We detected UpaI and its positional ortholog EhaC in 93% of the E.coli strains tested. This AT variant is thus the most prevalent in E.coli irrespective of pathotype or phylogenetic background. Compared with the ATs UpaB, UpaC, and UpaJ of uropathogenic E.coli strain 536, UpaI had redundant functions, contributing to autoaggregation, biofilm formation, and binding to extracellular matrix proteins. The functional redundancy and wide distribution of ATs among pathogenic and non-pathogenic E.coli indicates that ATs cannot generally be regarded as specific biomarkers and virulence factors. Our results demonstrate that phylogeny has a bigger impact on the distribution of AT variants in E.coli than initially thought, especially in ExPEC. PMID:24239047

  15. ELECTROPHORETIC MOBILITIES OF ESCHERICHIA COLI 0157:H7 AND WILD-TYPE ESCHERICHIA COLI STRAINS

    EPA Science Inventory

    The electrophoretic mobility (EPM) of a number of human-virulent and "wild-type" Escherichia coli strains in phosphate buffered water was measured. The impact of pH, ionic strength, cation type (valence) and concentration, and bacterial strain on the EPM was investigated. Resul...

  16. Escherichia coli uropathogenesis in vitro: invasion, cellular escape, and secondary infection analyzed in a human bladder cell infection model.

    PubMed

    Andersen, Thomas E; Khandige, Surabhi; Madelung, Michelle; Brewer, Jonathan; Kolmos, Hans J; Møller-Jensen, Jakob

    2012-05-01

    Uropathogenic Escherichia coli (UPEC) strains are capable of invading bladder epithelial cells (BECs) on the bladder luminal surface. Based primarily on studies in mouse models, invasion is proposed to trigger an intracellular uropathogenic cascade involving intracellular bacterial proliferation followed by escape of elongated, filamentous bacteria from colonized BECs. UPEC filaments on the mouse bladder epithelium are able to revert to rod-shaped bacteria, which are believed to invade neighboring cells to initiate new rounds of intracellular colonization. So far, however, these late-stage infection events have not been replicated in vitro. We have established an in vitro model of human bladder cell infection by the use of a flow chamber (FC)-based culture system, which allows investigation of steps subsequent to initial invasion. Short-term bacterial colonization on the FC-BEC layer led to intracellular colonization. Exposing invaded BECs to a flow of urine, i.e., establishing conditions similar to those faced by UPEC reemerging on the bladder luminal surface, led to outgrowth of filamentous bacteria similar to what has been reported to occur in mice. These filaments were capable of reverting to rods that could invade other BECs. Hence, under growth conditions established to resemble those present in vivo, the elements of the proposed uropathogenic cascade were inducible in a human BEC model system. Here, we describe the model and show how these characteristics are reproduced in vitro. PMID:22354025

  17. Comparison of host response mechanisms evoked by extended spectrum beta lactamase (ESBL)- and non-ESBL-producing uropathogenic E. coli

    PubMed Central

    2013-01-01

    Background Infections caused by extended spectrum beta-lactamases (ESBL)-producing bacteria have been emerging worldwide and the majority of ESBL-producing E. coli strains are isolated from patients with urinary tracts infections. The purpose of this study was to compare the host-response mechanisms in human polymorphonucleated leukocytes (PMN) and renal epithelial cells when stimulated by ESBL- or non-ESBL-producing uropathogenic E. coli (UPEC) isolates. The host-pathogen interaction of these ESBL-producing strains in the urinary tract is not well studied. Results The ability of ESBL strains to evoke ROS-production from PMN cells was significantly higher than that of the non-ESBL strains. The growth of ESBL strains was slightly suppressed in the presence of PMN compared to non-ESBL strains after 30 min and 2 h, but the opposite was observed after 5 and 6 h. The number of migrating PMN was significantly higher in response to ESBL strains compared to non-ESBL strains. Stimulation of A498 cells with ESBL strains elicited lower production of IL-6 and IL-8 compared to non-ESBL strains. Conclusion Significant differences in host-response mechanisms were identified when host cells were stimulated by ESBL- or non-ESBL producing strains. The obtained results on the early interactions of ESBL-producing strains with the host immune system may provide valuable information for management of these infections. PMID:24059789

  18. Cyanide degradation by an Escherichia coli strain.

    PubMed

    Figueira, M M; Ciminelli, V S; de Andrade, M C; Linardi, V R

    1996-05-01

    Chemical formation of a glucose-cyanide complex was necessary for metabolic degradation of cyanide at concentrations up to 50.0 mg/L by a strain of Escherichia coli isolated from gold extraction circuit liquids. Ammonia accumulating during the culture log phase as the sole nitrogen by-product was further utilized for bacterial growth. Washed (intact) cells, harvested at different periods of bacterial growth on cyanide, consumed oxygen in presence of cyanide. These findings suggest that metabolism of cyanide involved a dioxygenase enzyme that converted cyanide directly to ammonia, without the formation of cyanate. PMID:8640610

  19. Escherichia coli growth under modeled reduced gravity

    NASA Technical Reports Server (NTRS)

    Baker, Paul W.; Meyer, Michelle L.; Leff, Laura G.

    2004-01-01

    Bacteria exhibit varying responses to modeled reduced gravity that can be simulated by clino-rotation. When Escherichia coli was subjected to different rotation speeds during clino-rotation, significant differences between modeled reduced gravity and normal gravity controls were observed only at higher speeds (30-50 rpm). There was no apparent affect of removing samples on the results obtained. When E. coli was grown in minimal medium (at 40 rpm), cell size was not affected by modeled reduced gravity and there were few differences in cell numbers. However, in higher nutrient conditions (i.e., dilute nutrient broth), total cell numbers were higher and cells were smaller under reduced gravity compared to normal gravity controls. Overall, the responses to modeled reduced gravity varied with nutrient conditions; larger surface to volume ratios may help compensate for the zone of nutrient depletion around the cells under modeled reduced gravity.

  20. Enterotoxigenic Escherichia coli: Orchestrated host engagement.

    PubMed

    Fleckenstein, James M; Munson, George M; Rasko, David A

    2013-01-01

    The enterotoxigenic Escherichia coli are a pervasive cause of serious diarrheal illness in developing countries. Presently, there is no vaccine to prevent these infections, and many features of the basic pathogenesis of these organisms remain poorly understood. Until very recently most pathogenesis studies had focused almost exclusively on a small subset of known "classical" virulence genes, namely fimbrial colonization factors and the heat-labile (LT) and heat stable (ST) enterotoxins. However, recent investigations of pathogen-host interactions reveal a surprisingly complex and intricately orchestrated engagement involving the interplay of classical and "novel" virulence genes, as well as participation of genes highly conserved in the E. coli species. These studies may inform further rational approaches to vaccine development for these important pathogens. PMID:23892244

  1. Engineering the Escherichia coli Fermentative Metabolism

    NASA Astrophysics Data System (ADS)

    Orencio-Trejo, M.; Utrilla, J.; Fernández-Sandoval, M. T.; Huerta-Beristain, G.; Gosset, G.; Martinez, A.

    Fermentative metabolism constitutes a fundamental cellular capacity for industrial biocatalysis. Escherichia coli is an important microorganism in the field of metabolic engineering for its well-known molecular characteristics and its rapid growth. It can adapt to different growth conditions and is able to grow in the presence or absence of oxygen. Through the use of metabolic pathway engineering and bioprocessing techniques, it is possible to explore the fundamental cellular properties and to exploit its capacity to be applied as industrial biocatalysts to produce a wide array of chemicals. The objective of this chapter is to review the metabolic engineering efforts carried out with E. coli by manipulating the central carbon metabolism and fermentative pathways to obtain strains that produce metabolites with high titers, such as ethanol, alanine, lactate and succinate.

  2. Gas signatures from Escherichia coli and Escherichia coli-inoculated human whole blood

    PubMed Central

    2013-01-01

    Background The gaseous headspace above naïve Escherichia Coli (E. coli) cultures and whole human blood inoculated with E. coli were collected and analyzed for the presence of trace gases that may have the potential to be used as novel, non-invasive markers of infectious disease. Methods The naïve E. coli culture, LB broth, and human whole blood or E. coli inoculated whole blood were incubated in hermetically sealable glass bioreactors at 37°C for 24 hrs. LB broth and whole human blood were used as controls for background volatile organic compounds (VOCs). The headspace gases were collected after incubation and analyzed using a gas chromatographic system with multiple column/detector combinations. Results Six VOCs were observed to be produced by E. coli-infected whole blood while there existed nearly zero to relatively negligible amounts of these gases in the whole blood alone, LB broth, or E. coli-inoculated LB broth. These VOCs included dimethyl sulfide (DMS), carbon disulfide (CS2), ethanol, acetaldehyde, methyl butanoate, and an unidentified gas S. In contrast, there were several VOCs significantly elevated in the headspace above the E. coli in LB broth, but not present in the E. coli/blood mixture. These VOCs included dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS), methyl propanoate, 1-propanol, methylcyclohexane, and unidentified gases R2 and Q. Conclusions This study demonstrates 1) that cultivated E. coli in LB broth produce distinct gas profiles, 2) for the first time, the ability to modify E. coli-specific gas profiles by the addition of whole human blood, and 3) that E. coli-human whole blood interactions present different gas emission profiles that have the potential to be used as non-invasive volatile biomarkers of E. coli infection. PMID:23842518

  3. Escherichia coli as a bioreporter in ecotoxicology.

    PubMed

    Robbens, Johan; Dardenne, Freddy; Devriese, Lisa; De Coen, Wim; Blust, Ronny

    2010-11-01

    Ecotoxicological assessment relies to a large extent on the information gathered with surrogate species and the extrapolation of test results across species and different levels of biological organisation. Bacteria have long been used as a bioreporter for genotoxic testing and general toxicity. Today, it is clear that bacteria have the potential for screening of other toxicological endpoints. Escherichia coli has been studied for years; in-depth knowledge of its biochemistry and genetics makes it the most proficient prokaryote for the development of new toxicological assays. Several assays have been designed with E. coli as a bioreporter, and the recent trend to develop novel, better advanced reporters makes bioreporter development one of the most dynamic in ecotoxicology. Based on in-depth knowledge of E. coli, new assays are being developed or existing ones redesigned, thanks to the availability of new reporter genes and new or improved substrates. The technological evolution towards easier and more sensitive detection of different gene products is another important aspect. Often, this requires the redesign of the bacterium to make it compatible with the novel measuring tests. Recent advances in surface chemistry and nanoelectronics open the perspective for advanced reporter based on novel measuring platforms and with an online potential. In this article, we will discuss the use of E. coli-based bioreporters in ecotoxicological applications as well as some innovative sensors awaited for the future. PMID:20803141

  4. Transport proteins promoting Escherichia coli pathogenesis

    PubMed Central

    Tang, Fengyi; Saier, Milton H.

    2014-01-01

    Escherichia coli is a genetically diverse species infecting hundreds of millions of people worldwide annually. We examined seven well-characterized E. coli pathogens causing urinary tract infections, gastroenteritis, pyelonephritis and haemorrhagic colitis. Their transport proteins were identified and compared with each other and a non-pathogenic E. coli K12 strain to identify transport proteins related to pathogenesis. Each pathogen possesses a unique set of protein secretion systems for export to the cell surface or for injecting effector proteins into host cells. Pathogens have increased numbers of iron siderophore receptors and ABC iron uptake transporters, but the numbers and types of low-affinity secondary iron carriers were uniform in all strains. The presence of outer membrane iron complex receptors and high-affinity ABC iron uptake systems correlated, suggesting co-evolution. Each pathovar encodes a different set of pore-forming toxins and virulence-related outer membrane proteins lacking in K12. Intracellular pathogens proved to have a characteristically distinctive set of nutrient uptake porters, different from those of extracellular pathogens. The results presented in this report provide information about transport systems relevant to various types of E. coli pathogenesis that can be exploited in future basic and applied studies. PMID:24747185

  5. Bacterial invasion augments epithelial cytokine responses to Escherichia coli through a lipopolysaccharide-dependent mechanism.

    PubMed

    Schilling, J D; Mulvey, M A; Vincent, C D; Lorenz, R G; Hultgren, S J

    2001-01-15

    One mechanism of initiating innate host defenses against uropathogenic Escherichia coli (UPEC) is the production of cytokines by bladder epithelial cells; however, the means by which these cells recognize bacterial pathogens is poorly understood. Type 1 pili, expressed by the majority of UPEC, have been shown to have a critical role in inducing the expression of IL-6 in bladder epithelial cells after exposure to E. coli. In this study, we demonstrate that type 1 pili are not sufficient to activate IL-6 production by bladder epithelial cells. Instead, it was shown that bacterial invasion mediated by type 1 pili augments bladder epithelial responses to E. coli via an LPS-dependent mechanism, leading to the production of IL-6. RNA transcripts for the LPSR Toll-like receptor 4 (TLR4) was detected in cultured bladder epithelial cells. The in vivo role of TLR4 was assessed using C3H/HeJ mice, which express a dominant negative form of TLR4. After infection with UPEC, C3H/HeJ mice have large foci of intracellular bacteria that persist within the bladder epithelium in the absence of any notable inflammatory response. These results indicate that LPS is required for bacterial invasion to enhance host responses to E. coli within the bladder. PMID:11145696

  6. Microarray long oligo probe designing for Escherichia coli: an in-silico DNA marker extraction

    PubMed Central

    Behzadi, Payam; Najafi, Ali; Behzadi, Elham

    2016-01-01

    Introduction Urinary tract infections are predominant diseases which may be caused by different pathogenic microorganisms, particularly Escherichia coli (E.coli). DNA microarray technology is an accurate, rapid, sensitive, and specific diagnostic tool which may lead to definite diagnosis and treatment of several infectious diseases. DNA microarray is a multi-process method in which probe designing plays an important. Therefore, the authors of the present study have tried to design a range of effective and proper long oligo microarray probes for detection and identification of different strains of pathogenic E.coli and in particular, uropathogenic E.coli (UPEC). Material and methods E.coli O26 H11 11368 uid41021 was selected as the standard strain for probe designing. This strain encompasses the largest nucleotide sequence and the most number of genes among other pathogenic strains of E.coli. For performing this in silico survey, NCBI database, GReview Server, PanSeq Server, Oligoanalyzer tool, and AlleleID 7.7 were used to design accurate, appropriate, effective, and flexible long oligo microarray probes. Moreover, the genome of E.coli and its closely related microorganisms were compared. Results In this study, 15 long oligo microarray probes were designed for detecting and identifying different strains of E.coli such as UPEC. These probes possessed the best physico-chemical characteristics. The functional and structural properties of the designed probes were recognized by practical tools and softwares. Conclusions The use of reliable advanced technologies and methodologies for probe designing guarentees the high quality of microarray probes and makes DNA microarray technology more flexible and an effective diagnostic technique. PMID:27123336

  7. Discrepancies in the enumeration of Escherichia coli.

    PubMed

    Ray, B; Speck, M L

    1973-04-01

    Stationary-phase cells of Escherichia coli were enumerated by the pour plate method on Trypticase soy agar containing 0.3% yeast extract (TSYA), violet red-bile agar, and desoxycholate-lactose agar, and by the most-probable-number method in Brilliant Green-bile broth and lauryl sulfate broth. Maximum counts were assumed to be those on TSYA. In general, numbers detected were lower with the selective solid media and higher with the selective liquid media. Inhibitory effects, especially on selective solid media varied with the strains of E. coli. The lower detection on selective solid media was partly due to the stress induced in some cells by the temperature of the melted media used in the pour plate method. These cells apparently failed to repair and form colonies in the selective media. Improved detection on the selective solid media was achieved by using 1% nonfat milk solids, 1% peptone, or 1% MgSO(4).7H(2)O in the dilution blanks. Higher detection on selective agar media was effected by surface plating or by surface-overlay plating of the cells. The surface-overlay method appeared to be superior for the direct enumeration of E. coli in foods. PMID:4572980

  8. Role of Escherichia coli in Biofuel Production.

    PubMed

    Koppolu, Veerendra; Vasigala, Veneela Kr

    2016-01-01

    Increased energy consumption coupled with depleting petroleum reserves and increased greenhouse gas emissions have renewed our interest in generating fuels from renewable energy sources via microbial fermentation. Central to this problem is the choice of microorganism that catalyzes the production of fuels at high volumetric productivity and yield from cheap and abundantly available renewable energy sources. Microorganisms that are metabolically engineered to redirect renewable carbon sources into desired fuel products are contemplated as best choices to obtain high volumetric productivity and yield. Considering the availability of vast knowledge in genomic and metabolic fronts, Escherichia coli is regarded as a primary choice for the production of biofuels. Here, we reviewed the microbial production of liquid biofuels that have the potential to be used either alone or in combination with the present-day fuels. We specifically highlighted the metabolic engineering and synthetic biology approaches used to improve the production of biofuels from E. coli over the past few years. We also discussed the challenges that still exist for the biofuel production from E. coli and their possible solutions. PMID:27441002

  9. [Population genomic researches of Escherichia coli].

    PubMed

    Wu, Y R; Yang, R F; Cui, Y J

    2016-06-01

    Population genomics, an interdiscipline of genomics and population genetics, is booming in recent years with the rapid growth number of deciphered genomes and revolutionizes the understanding of bacterial population diversity and evolution dynamics. It also largely improves the prevention and control of infectious disease through providing more accurate genotyping and source-tracing results and more comprehensive characteristics of emerging pathogens. In this review, taking one of the best characterized bacteria, Escherichia coli, as model, we reviewed the phylogenetic relationship across its five major populations (designated A, B1, B2, D and E); and summarized researches on molecular mutation rate, selection signals, and patterns of adaptive evolution. We also described the application of population genomics in responding against large-scale outbreaks of E. coli O157:H7 and E. coli O104:H4. These results indicated that, although being a novel discipline, population genomics has played an important role in deciphering bacterial population structures, exploring evolutionary patterns and combating emerging infectious diseases. PMID:27256740

  10. Escherichia coli biofilm: development and therapeutic strategies.

    PubMed

    Sharma, G; Sharma, S; Sharma, P; Chandola, D; Dang, S; Gupta, S; Gabrani, R

    2016-08-01

    Escherichia coli biofilm consists of a bacterial colony embedded in a matrix of extracellular polymeric substances (EPS) which protects the microbes from adverse environmental conditions and results in infection. Besides being the major causative agent for recurrent urinary tract infections, E. coli biofilm is also responsible for indwelling medical device-related infectivity. The cell-to-cell communication within the biofilm occurs due to quorum sensors that can modulate the key biochemical players enabling the bacteria to proliferate and intensify the resultant infections. The diversity in structural components of biofilm gets compounded due to the development of antibiotic resistance, hampering its eradication. Conventionally used antimicrobial agents have a restricted range of cellular targets and limited efficacy on biofilms. This emphasizes the need to explore the alternate therapeuticals like anti-adhesion compounds, phytochemicals, nanomaterials for effective drug delivery to restrict the growth of biofilm. The current review focuses on various aspects of E. coli biofilm development and the possible therapeutic approaches for prevention and treatment of biofilm-related infections. PMID:26811181