Science.gov

Sample records for uv spectrophotometric method

  1. Validation of a UV spectrophotometric method for the determination of melatonine in solid dosage forms.

    PubMed

    Pérez, R F; Lemus, I G; Bocic, R V; Pérez, M V; García-Madrid, R

    2001-01-01

    The aim of the work described in this paper was to provide a fast, easy, inexpensive, precise, and accurate method for the determination of melatonine in solid pharmaceutical dosage forms. The developed method is based on a UV first-derivative spectrophotometric determination, which exhibits excellent linearity in aqueous solutions (r2 = 0.996) for analyte concentrations of 1.5-4.5 mg/dL within a pH range of 5-9. Neither excipients present in the formulation nor indole adulterants, such as tryptophan (up to 5%), interfere with the assay. A study of variation parameters showed that sonication temperature was the main factor for successful determination. At temperatures of <45 degrees C, the sample dissolved completely, and accurate spectrophotometric measurements were obtained. A study was conducted of all the parameters established by the United States Pharmacopeia, 23rd Rev., to validate an analytical method for a solid pharmaceutical form, i.e., linearity, range, accuracy, precision, and specificity. All the parameters were in accordance with the acceptance criteria of the Comité de Guías Oficiales de Validación de la Dirección General de Control de Insumos para la Salud de Méjico. In addition, robustness and content uniformity tests were performed to substantiate the usefulness of the method. PMID:11601453

  2. Validated UV-spectrophotometric method for the evaluation of the efficacy of makeup remover.

    PubMed

    Charoennit, P; Lourith, N

    2012-04-01

    A UV-spectrophotometric method for the analysis of makeup remover was developed and validated according to ICH guidelines. Three makeup removers for which the main ingredients consisted of vegetable oil (A), mineral oil and silicone (B) and mineral oil and water (C) were sampled in this study. Ethanol was the optimal solvent because it did not interfere with the maximum absorbance of the liquid foundation at 250 nm. The linearity was determined over a range of makeup concentrations from 0.540 to 1.412 mg mL⁻¹ (R² = 0.9977). The accuracy of this method was determined by analysing low, intermediate and high concentrations of the liquid foundation and gave 78.59-91.57% recoveries with a relative standard deviation of <2% (0.56-1.45%). This result demonstrates the validity and reliability of this method. The reproducibilities were 97.32 ± 1.79, 88.34 ± 2.69 and 95.63 ± 2.94 for preparations A, B and C respectively, which are within the acceptable limits set forth by the ASEAN analytical validation guidelines, which ensure the precision of the method under the same operating conditions over a short time interval and the inter-assay precision within the laboratory. The proposed method is therefore a simple, rapid, accurate, precise and inexpensive technique for the routine analysis of makeup remover efficacy. PMID:22243432

  3. UV Spectrophotometric Method for Estimation of Polypeptide-K in Bulk and Tablet Dosage Forms

    NASA Astrophysics Data System (ADS)

    Kaur, P.; Singh, S. Kumar; Gulati, M.; Vaidya, Y.

    2016-01-01

    An analytical method for estimation of polypeptide-k using UV spectrophotometry has been developed and validated for bulk as well as tablet dosage form. The developed method was validated for linearity, precision, accuracy, specificity, robustness, detection, and quantitation limits. The method has shown good linearity over the range from 100.0 to 300.0 μg/ml with a correlation coefficient of 0.9943. The percentage recovery of 99.88% showed that the method was highly accurate. The precision demonstrated relative standard deviation of less than 2.0%. The LOD and LOQ of the method were found to be 4.4 and 13.33, respectively. The study established that the proposed method is reliable, specific, reproducible, and cost-effective for the determination of polypeptide-k.

  4. Validation of UV spectrophotometric methods for the determination of dothiepin hydrochloride in pharmaceutical dosage form and stress degradation studies

    NASA Astrophysics Data System (ADS)

    Abdulrahman, Sameer A. M.; Basavaiah, K.; Cijo, M. X.; Vinay, K. B.

    2012-11-01

    Spectrophotometric methods have been developed for the determination of dothiepin hydrochloride (DOTH) in both pure and tablet dosage form and their limits of detection and quantification have been evaluated. The methods are based on the measurement of the absorbance of a DOTH solution either in 0.1 N HCl at 229 nm (method A) or in methanol at 231 nm (method B). Beer's law is obeyed over a concentration range of 1-16 μg/ml DOTH for both methods. Molar absorptivity values are calculated to be 2.48 × 104 and 2.42 × 104 l/(mol × cm) with Sandell sensitivity values of 0.0134 and 0.0137 μg/cm2 for methods A and B, respectively. The degradation behavior of DOTH was investigated under different stress conditions such as acid hydrolysis, alkaline hydrolysis, water hydrolysis, oxidation, dry heat treatment, and UV-degradation. The drug undergoes significant degradation under oxidative conditions only.

  5. Development and validation of a UV-spectrophotometric method for the determination of pheniramine maleate and its stability studies

    NASA Astrophysics Data System (ADS)

    Raghu, M. S.; Basavaiah, K.; Ramesh, P. J.; Abdulrahman, Sameer A. M.; Vinay, K. B.

    2012-03-01

    A sensitive, precise, and cost-effective UV-spectrophotometric method is described for the determination of pheniramine maleate (PAM) in bulk drug and tablets. The method is based on the measurement of absorbance of a PAM solution in 0.1 N HCl at 264 nm. As per the International Conference on Harmonization (ICH) guidelines, the method was validated for linearity, accuracy, precision, limits of detection (LOD) and quantification (LOQ), and robustness and ruggedness. A linear relationship between absorbance and concentration of PAM in the range of 2-40 μg/ml with a correlation coefficient (r) of 0.9998 was obtained. The LOD and LOQ values were found to be 0.18 and 0.39 μg/ml PAM, respectively. The precision of the method was satisfactory: the value of relative standard deviation (RSD) did not exceed 3.47%. The proposed method was applied successfully to the determination of PAM in tablets with good accuracy and precision. Percentages of the label claims ranged from 101.8 to 102.01% with the standard deviation (SD) from 0.64 to 0.72%. The accuracy of the method was further ascertained by recovery studies via a standard addition procedure. In addition, the forced degradation of PAM was conducted in accordance with the ICH guidelines. Acidic and basic hydrolysis, thermal stress, peroxide, and photolytic degradation were used to assess the stability-indicating power of the method. A substantial degradation was observed during oxidative and alkaline degradations. No degradation was observed under other stress conditions.

  6. Development and validation of reversed-phase column high-performance liquid chromatographic and first-derivative UV spectrophotometric methods for estimation of voriconazole in oral suspension powder.

    PubMed

    Prajapati, Arun M; Patel, Satish A; Patel, Natvarlal J; Patel, Dipti B; Patel, Sejal K

    2008-01-01

    This research paper describes validated reversed-phase high-performance column liquid chromatographic (RP-HPLC) and first-derivative UV spectrophotometric methods for the estimation of voriconazole (VOR) in oral suspension powder. The RP-HPLC separation was achieved on Phenomenex C18 column (250 x 4.6 mm id, 5 microm particle size) using water-acetonitrile (40 + 60, v/v; pH adjusted to 4.5 +/- 0.02 with acetic acid) as the mobile phase at a flow rate of 1.4 mL/min and ambient temperature. Quantification was achieved with photodiode array detection at 255 nm over the concentration range of 0.1-1 microg/mL with mean recovery of 99.49 +/- 0.83% for VOR by the RP-HPLC method. Quantification was achieved with UV detection at 266 nm over the concentration range of 8-20 microg/mL with mean recovery of 99.74 +/- 0.664% for VOR by the first-derivative UV spectrophotometric method. These methods are simple, precise, and sensitive, and they are applicable for the determination of VOR in oral suspension powder. PMID:18980120

  7. Chemometrics-Assisted UV Spectrophotometric and RP-HPLC Methods for the Simultaneous Determination of Tolperisone Hydrochloride and Diclofenac Sodium in their Combined Pharmaceutical Formulation

    PubMed Central

    Gohel, Nikunj Rameshbhai; Patel, Bhavin Kiritbhai; Parmar, Vijaykumar Kunvarji

    2013-01-01

    Chemometrics-assisted UV spectrophotometric and RP-HPLC methods are presented for the simultaneous determination of tolperisone hydrochloride (TOL) and diclofenac sodium (DIC) from their combined pharmaceutical dosage form. Chemometric methods are based on principal component regression and partial least-square regression models. Two sets of standard mixtures, calibration sets, and validation sets were prepared. Both models were optimized to quantify each drug in the mixture using the information included in the UV absorption spectra of the appropriate solution in the range 241–290 nm with the intervals λ = 1 nm at 50 wavelengths. The optimized models were successfully applied to the simultaneous determination of these drugs in synthetic mixture and pharmaceutical formulation. In addition, an HPLC method was developed using a reversed-phase C18 column at ambient temperature with a mobile phase consisting of methanol:acetonitrile:water (60:30:10 v/v/v), pH-adjusted to 3.0, with UV detection at 275 nm. The methods were validated in terms of linearity, accuracy, precision, sensitivity, specificity, and robustness in the range of 3–30 μg/mL for TOL and 1–10 μg/mL for DIC. The robustness of the HPLC method was tested using an experimental design approach. The developed HPLC method, and the PCR and PLS models were used to determine the amount of TOL and DIC in tablets. The data obtained from the PCR and PLS models were not significantly different from those obtained from the HPLC method at 95% confidence limit. PMID:24482768

  8. Development and Validation of a Novel Dual Wavelength UV-Spectrophotometric Method for the Simultaneous Estimation of Mycophenolate Mofetil and Prednisolone

    NASA Astrophysics Data System (ADS)

    Kaur, J.; Sharma, P. Kumar; Namdev, K. Kumar; Bala, I.; Verma, S.

    2014-07-01

    A dual wavelength UV-spectrophotometric method has been developed for the simultaneous estimation of mycophenolate mofetil and prednisolone. In this method two wavelengths were selected for the estimation of each drug in such a way that the difference in the absorbance was zero for the second drug on the respective wavelength for the first drug. This method was selected because of the overlapping of the absorbance maxima of the drugs. Prednisolone has equal absorbance value at wavelengths 235.11 and 261.33 nm; therefore, these two wavelengths were used to determine the concentration of mycophenolate mofetil in the combination. Similarly, 270.3 and 277.4 nm wavelengths were selected to determine the concentrations of prednisolone, where mycophenolate mofetil was observed with equal absorbance values. Regression analysis for the method shows good correlation in the concentration ranges 10-50 μg/ml for mycophenolate mofetil and 2-10 μg/ml for prednisolone. The method was validated using parameters provided as per ICH guidelines.

  9. Visible spectrophotometric method for amiodarone.

    PubMed

    Bosînceanu, Andreea; Popa, Graţiela; Tântaru, Gladiola; Popovici, Iuliana

    2012-01-01

    Amiodarone is an antiarrhythmic agent used for various types of tachyarrhythmia, both ventricular and supraventricular (atrial) arrhythmia. A spectrophotometric method for the assay of amiodarone was established. Based on the reduction of potassium ferricyanide in hydrochloric acid medium to potassium ferrocyanide forming a blue colored complex ferric ferrocyanide with Fe (III) ions. The compound was most stable in a mixture of ethylic alcohol and water (2:1, v/v) and it had an absorption maximum at 725 nm. The data were according to the Lambert-Beer Law in the concentration range of 0.5-5.0 microg/sample: correlation and coefficient R = 0.99977, R2 = 0.999541, slope of the line 0.12775, intercept 0.042077. The detection limit (DL) was 0.1032 microg/sample and the quantification limit (QL) 0.344 microg/ sample. PMID:23077917

  10. Simultaneous UV Spectrophotometric Estimation of Ambroxol Hydrochloride and Levocetirizine Dihydrochloride.

    PubMed

    Prabhu, S Lakshmana; Shirwaikar, A A; Shirwaikar, Annie; Kumar, C Dinesh; Kumar, G Aravind

    2008-01-01

    A novel, simple, sensitive and rapid spectrophotometric method has been developed for simultaneous estimation of ambroxol hydrochloride and levocetirizine dihydrochloride. The method involved solving simultaneous equations based on measurement of absorbance at two wavelengths 242 nm and 231 nm, the gamma max of ambroxol hydrochloride and levocetirizine dihydrochloride, respectively. Beer's law was obeyed in the concentration range 10-50 mug/ml and 8-24 mug/ml for ambroxol hydrochloride and levocetirizine dihydrochloride respectively. Results of the method were validated statistically and by recovery studies. PMID:20046721

  11. Simultaneous UV Spectrophotometric Estimation of Ambroxol Hydrochloride and Levocetirizine Dihydrochloride

    PubMed Central

    Prabhu, S. Lakshmana; Shirwaikar, A. A.; Shirwaikar, Annie; Kumar, C. Dinesh; Kumar, G. Aravind

    2008-01-01

    A novel, simple, sensitive and rapid spectrophotometric method has been developed for simultaneous estimation of ambroxol hydrochloride and levocetirizine dihydrochloride. The method involved solving simultaneous equations based on measurement of absorbance at two wavelengths 242 nm and 231 nm, the γ max of ambroxol hydrochloride and levocetirizine dihydrochloride, respectively. Beer's law was obeyed in the concentration range 10–50 μg/ml and 8–24 μg/ml for ambroxol hydrochloride and levocetirizine dihydrochloride respectively. Results of the method were validated statistically and by recovery studies. PMID:20046721

  12. Development and validation of an UV derivative spectrophotometric determination of Losartan potassium in tablets.

    PubMed

    Lastra, Olga C; Lemus, Igor G; Sánchez, Hugo J; Pérez, Renato F

    2003-09-19

    Development and validation of an analytical UV derivative spectrophotometric method to quantify Losartan potassium used as a single active principle in pharmaceutical forms were done. Pharmacopeias have not yet provided an official method for its quantification. A study was carried out of all the parameters established by USP XXIV to validate an analytical method for a solid pharmaceutical form, i.e. linearity, range, accuracy, precision and specificity. All these parameters were found in accordance with the acceptance criteria of Comité de Guías Oficiales de Validación de la Dirección General de Control de Insumos para la Salud de México. Based on the spectrophotometric characteristics of Losartan potassium, a signal at 234 nm of the first derivative spectrum (1D234) was found adequate for quantification. The linearity between signal 1D234 and concentration of Losartan potassium in the range of 4.00-6.00 mg l(-1) in aqueous solutions presents a square correlation coefficient (r2) of 0.9938. The mean recovery percentage was 100.7+/-1.1% and the precision expressed as relative standard deviation (R.S.D.) 0.88%. In addition, the proposed method is simple, easy to apply, low-cost, does not use polluting reagents and requires relatively inexpensive instruments. Then, it is a good alternative to existing methods for determining Losartan potassium in tablets provided that the pharmaceutical dosage form does not contain hydrochlorothiazide as second drug. PMID:12972082

  13. UV Spectrophotometric Simultaneous Determination of Paracetamol and Ibuprofen in Combined Tablets by Derivative and Wavelet Transforms

    PubMed Central

    Hoang, Vu Dang; Ly, Dong Thi Ha; Tho, Nguyen Huu; Minh Thi Nguyen, Hue

    2014-01-01

    The application of first-order derivative and wavelet transforms to UV spectra and ratio spectra was proposed for the simultaneous determination of ibuprofen and paracetamol in their combined tablets. A new hybrid approach on the combined use of first-order derivative and wavelet transforms to spectra was also discussed. In this application, DWT (sym6 and haar), CWT (mexh), and FWT were optimized to give the highest spectral recoveries. Calibration graphs in the linear concentration ranges of ibuprofen (12–32 mg/L) and paracetamol (20–40 mg/L) were obtained by measuring the amplitudes of the transformed signals. Our proposed spectrophotometric methods were statistically compared to HPLC in terms of precision and accuracy. PMID:24949492

  14. UV spectrophotometric simultaneous determination of paracetamol and ibuprofen in combined tablets by derivative and wavelet transforms.

    PubMed

    Hoang, Vu Dang; Ly, Dong Thi Ha; Tho, Nguyen Huu; Nguyen, Hue Minh Thi

    2014-01-01

    The application of first-order derivative and wavelet transforms to UV spectra and ratio spectra was proposed for the simultaneous determination of ibuprofen and paracetamol in their combined tablets. A new hybrid approach on the combined use of first-order derivative and wavelet transforms to spectra was also discussed. In this application, DWT (sym6 and haar), CWT (mexh), and FWT were optimized to give the highest spectral recoveries. Calibration graphs in the linear concentration ranges of ibuprofen (12-32 mg/L) and paracetamol (20-40 mg/L) were obtained by measuring the amplitudes of the transformed signals. Our proposed spectrophotometric methods were statistically compared to HPLC in terms of precision and accuracy. PMID:24949492

  15. Evaluation of Perrhenate Spectrophotometric Methods in Bicarbonate and Nitrate Media.

    PubMed

    Lenell, Brian A; Arai, Yuji

    2016-04-01

    2-pyridyl thiourea and methyl-2-pyridyl ketoxime based perrhenate, Re(VII), UV-vis spectrophotometric methods were evaluated in nitrate and bicarbonate solutions ranging from 0.001 M to 0.5 M. Standard curves at [Re]=2.5-50 mg L(-1) for the Re(IV)-thiourea and the Re ketoxime complexes were constructed at 405 nm and 490 nm, respectively. Detection of limits for N-(2-pyridyl) thiourea and methyl-2-pyridyl ketoxime methods in ultrapure water are 3.06 mg/L and 4.03 mg/L, respectively. Influences of NaHCO3 and NaNO3 concentration on absorbance spectra, absorptivity, and linearity were documented. For both methods, samples in ultrapure water and NaHCO3 have an R(2) value>0.99, indicating strong linear relationships. Statistical analysis supports that NaHCO3 does not affect linearity between standards for either method. NaNO3 causes major interference with the ketoxime method above 0.001 M NaNO3. Data provides information for practical use of Re spectrophotometric methods in environmental media that is high in bicarbonate and nitrate. PMID:26838460

  16. Comparative Study of RP-HPLC and UV Spectrophotometric Techniques for the Simultaneous Determination of Amoxicillin and Cloxacillin in Capsules

    PubMed Central

    Giang, Do T; Hoang, Vu D

    2010-01-01

    Reversed-phase HPLC and UV spectrophotometric techniques using water as solvent have been developed and validated for the simultaneous determination of amoxicillin and cloxacillin in capsules. For both techniques, the linearity range of 60.073x2013;140.0 µg/mL was studied. The spectrophotometric data show that non-derivative techniques, such as absorbance ratio and compensation, and ratio spectra first-order derivative could be successfully used for the co-assay of amoxicillin and cloxacillin. Based on the statistical comparison of spectrophotometric and chromatographic data, the interchangeability between HPLC and UV spectrophotometric techniques has been suggested for the routine analysis. PMID:21264124

  17. Development and validation of column high-performance liquid chromatographic and ultraviolet spectrophotometric methods for citalopram in tablets.

    PubMed

    Menegola, Júlia; Steppe, Martin; Schapoval, Elfrides E S

    2008-01-01

    Column high-performance liquid chromatographic (LC) and UV spectrophotometric methods for the quantitative determination of citalopram, a potent and selective serotonin reuptake inhibitor, in tablets were developed. The parameters linearity, precision, accuracy, specificity, robustness, limit of detection, and limit of quantitation were studied according to International Conference on Harmonization guidelines. Chromatography was carried out by the reversed-phase technique on an ACE C18 column with a mobile phase composed of 0.30% triethylamine solution-acetonitrile (55 + 45, v/v) adjusted to pH 6.6 with 10% ortho-phosphoric acid at a flow rate of 1.0 mL/min and 25 degrees C. The UV spectrophotometric method was performed at 239 nm. The linearity of the LC method was in the range of 10.00-70.00 microg/mL, and 2.50-17.50 microg/mL for the UV spectrophotometric method. The interday and intraday assay precision was < 1.5% (relative standard deviation) for the LC and UV spectrophotometric methods. The recoveries were in the range 100.70-101.35% for the LC method and 98.48-98.65% for the UV spectrophotometric method. Statistical analysis by Student's t-test showed no significant difference between the results obtained by the 2 methods. The proposed methods are highly sensitive, precise, and accurate and can be used for the reliable quantitation of citalopram in tablets. PMID:18376585

  18. Spectrophotometric and HPLC Methods for Simultaneous Estimation of Amlodipine Besilate, Losartan Potassium and Hydrochlorothiazide in Tablets

    PubMed Central

    Wankhede, S. B.; Raka, K. C.; Wadkar, S. B.; Chitlange, S. S.

    2010-01-01

    Two UV-spectrophotometric and one reverse phase high performance liquid chromatography methods have been developed for the simultaneous estimation of amlodipine besilate, losartan potassium and hydrochlorothiazide in tablet dosage form. The first UV spectrophotometric method was a determination using the simultaneous equation method at 236.5, 254 and 271 nm over the concentration range 5-25, 10-50 and 5-25 μg/ml for amlodipine besilate, losartan potassium and hydrochlorothiazide, respectively. The second UV method was a determination using the area under curve method at 231.5-241.5, 249-259 and 266-276 nm over the concentration range of 5-25, 5-25 and 10-50 μg/ml for amlodipine besilate, hydrochlorothiazide and losartan potassium, respectively. In reverse phase high performance liquid chromatography analysis is carried out using 0.025 M phosphate buffer (pH 3.7):acetonitrile (57:43 v/v) as the mobile phase and Kromasil C18 (4.6 mm i.d×250 mm) column as stationery phase with detection wavelength of 232 nm linearity was obtained in the concentration range of 2-14, 20-140 and 5-40 μg/ml for amlodipine besilate, losartan potassium and hydrochlorothiazide, respectively. Both UV-spectrophotometric and reverse phase high performance liquid chromatography methods were statistically validated and can be used for analysis of combined dose tablet formulation containing amlodipine besilate, losartan potassium and hydrochlorothiazide. PMID:20582208

  19. Simple spectrophotometric method for estimation of disodium edetate in topical gel formulations

    PubMed Central

    Kamboj, Sunil; Sharma, Deepak; Nair, Anroop B.; Kamboj, Suman; Sharma, Rakesh Kumar; Ali, Javed; Pramod, K; Ansari, S. H.

    2011-01-01

    A simple, sensitive, cost-effective and reproducible UV-spectrophotometric method has been developed and validated for the estimation of disodium edetate in topical gel formulations. Solution of disodium edetate reacts with ferric chloride to form complex in 0.1 N HCl giving λmax at 270 nm. Beer's law was obeyed in the concentration range of 5–50 μg/mL (r2= 0.9997). The limit of detection and limit of quantitation were found to be 1.190 and 3.608 μg/mL, respectively. The results show that the procedure is accurate, precise, and reproducible (relative standard deviation < 1%), while being simple and less time consuming. The study concluded that the UV-spectrophotometric method could be used for the quantification of disodium edetate in pure form as well as in pharmaceutical formulations. PMID:23781446

  20. Direct spectrophotometric method for analysis of food supplements containing synthetic polyhydroquinones

    NASA Astrophysics Data System (ADS)

    Vasilevsky, A. M.; Konoplev, G. A.; Stepanova, O. S.; Toropov, D. K.; Zagorsky, A. L.

    2016-04-01

    A novel direct spectrophotometric method for quantitative determination of Oxiphore® drug substance (synthetic polyhydroquinone complex) in food supplements is developed. Absorption spectra of Oxiphore® water solutions in the ultraviolet region are presented. Samples preparation procedures and mathematical methods of spectra post-analytical procession are discussed. Basic characteristics of the automatic CCD-based UV spectrophotometer and special software implementing the developed method are described. The results of the trials of the developed method and software are analyzed: the error of determination for Oxiphore® concentration in water solutions of the isolated substance and singlecomponent food supplements did not exceed 15% (average error was 7…10%).

  1. Versatile spectrophotometric method for the determination of silicon.

    PubMed

    Duce, F A; Yamamura, S S

    1970-02-01

    A versatile spectrophotometric method is described for the determination of microgram levels of silicon, as molybdenum blue. It combines the desirable features of existing spectrophotometric methods with three pretreatment procedures, namely (a) the removal of cations with a cation-exchange resin in the H(+)-form, (b) the conversion of all silicon species into the reactive monomer with an alkaline treatment, and (c) the decomposition of silicon fluoride with boric acid in the presence of cation-exchange resin. These pretreatments coupled with the colour development provide five procedures which are applicable to a wide variety of samples including natural and industrial waters and solutions of various nuclear reactor fuels and components. Provisions are included for the selective determination of total silicon. PMID:18960708

  2. Spectrophotometric method for the estimation of 6-aminopenicillanic acid.

    PubMed

    Shaikh, K; Talati, P G; Gang, D M

    1973-02-01

    A simple, rapid, and sensitive method is described whereby 6-aminopenicillanic acid can be spectrophotometrically determined in the presence of penicillins and their degradation products without prior separation. d-(+)-Glucosamine is used as reagent. The effect of such parameters as pH, temperature, and time of heating on the formation of the chromophore is described. The recommended range is from 25 to 250 mug of 6-aminopenicillanic acid. PMID:4364173

  3. Spectrophotometric method for hydroxymethylfurfural in honey.

    PubMed

    White, J W

    1979-05-01

    A new method is described for hydroxymethylfurfural (HMF) in honey; accuracy and precision are improved over the most used optical and chemical methods. With a clarified honey solution containing 0.1% sodium bisulfite as reference and a similar solution without bisulfite as sample, a difference spectrum is obtained which represents only the HMF in the sample, without the interfering absorption of the honey. The average recovery was 97.5% for 24 additions to honey of 0.8--40 mg HMF/100 g. Forty honey samples ranging from 0 to 40 mg/100 g were analyzed by 3 methods with the following average results: Winkler optical method, 7.25; Winkler chemical method, 4.83; and new bisulfite method, 5.05 mg HMF/100 g honey. Values by the latter 2 methods did not differ at the P = 0.05 significance level. PMID:479072

  4. UV spectrophotometric simultaneous determination of cefoperazone and sulbactam in pharmaceutical formulations by derivative, Fourier and wavelet transforms.

    PubMed

    Hoang, Vu Dang; Loan, Nguyen Thi; Tho, Vu Thi; Nguyen, Hue Minh Thi

    2014-01-01

    Signal processing methods based on the use of derivative, Fourier and wavelet transforms were proposed for the spectrophotometric simultaneous determination of cefoperazone and sulbactam in powders for injection. These transforms were successfully applied to UV spectra and ratio spectra to find suitable working wavelengths. Wavelet signal processing was proved to have distinct advantages (i.e. higher peak intensity obtained, additional smooth function and scaling factor process eliminated) over derivative and Fourier transforms. Especially, a better resolution of spectral overlapping bands was obtained by the use of double signal transform in the sequences such as (i) spectra pre-processed by Fractional Wavelet Transform and subsequently subjected to Continuous Wavelet Transform or Discrete Wavelet Transform, and (ii) derivative - wavelet transforms combined. Calibration graphs for cefoperazone and sulbactam were recorded for the range 10-35 mg/L. Good accuracy and precision were reported for all proposed methods by analyzing synthetic mixtures of cefoperazone and sulbactam. Furthermore, these methods were statistically comparable to RP-HPLC. PMID:24374557

  5. Validated spectrophotometric methods for determination of some oral hypoglycemic drugs.

    PubMed

    Farouk, M; Abdel-Satar, O; Abdel-Aziz, O; Shaaban, M

    2011-02-01

    Four accurate, precise, rapid, reproducible, and simple spectrophotometric methods were validated for determination of repaglinide (RPG), pioglitazone hydrochloride (PGL) and rosiglitazone maleate (RGL). The first two methods were based on the formation of a charge-transfer purple-colored complex of chloranilic acid with RPG and RGL with a molar absorptivity 1.23 × 103 and 8.67 × 102 l•mol-1•cm-1 and a Sandell's sensitivity of 0.367 and 0.412 μg•cm-2, respectively, and an ion-pair yellow-colored complex of bromophenol blue with RPG, PGL and RGL with molar absorptivity 8.86 × 103, 6.95 × 103, and 7.06 × 103 l•mol-1•cm-1, respectively, and a Sandell's sensitivity of 0.051 μg•cm-2 for all ion-pair complexes. The influence of different parameters on color formation was studied to determine optimum conditions for the visible spectrophotometric methods. The other spectrophotometric methods were adopted for demtermination of the studied drugs in the presence of their acid-, alkaline- and oxidative-degradates by computing derivative and pH-induced difference spectrophotometry, as stability-indicating techniques. All the proposed methods were validated according to the International Conference on Harmonization guidelines and successfully applied for determination of the studied drugs in pure form and in pharmaceutical preparations with good extraction recovery ranges between 98.7-101.4%, 98.2-101.3%, and 99.9-101.4% for RPG, PGL, and RGL, respectively. Results of relative standard deviations did not exceed 1.6%, indicating that the proposed methods having good repeatability and reproducibility. All the obtained results were statistically compared to the official method used for RPG analysis and the manufacturers methods used for PGL and RGL analysis, respectively, where no significant differences were found. PMID:22466095

  6. Extractive Spectrophotometric Method for the Determination of Tropicamide

    PubMed Central

    Shoaibi, ZA; Gouda, AA

    2012-01-01

    Two simple, rapid, and extractive spectrophotometric methods were developed for the determination of tropicamide (TPC). These methods are based on the formation of ionpair complexes between the basic nitrogen of the drug with bromocresol purple (BCP) and methyl orange (MO) in acidic buffer solution. The formed complexes were extracted with chloroform and measured at 408 and 427 nm using BCP and MO, respectively. Beer's law was obeyed in the range 1.0–16 μg ml–1 with correlation coefficient (n=6) ≥0.9991. The molar absorpitivity, Sandell sensitivity, detection, and quantification limits were also calculated. The composition of the ion pairs was found 1:1 by Job's method. The proposed methods have been applied successfully for the analysis of TPC in pure and in its eye drops. PMID:22523460

  7. Simple, Fast and Reliable Liquid Chromatographic and Spectrophotometric Methods for the Determination of Theophylline in Urine, Saliva and Plasma Samples

    PubMed Central

    Charehsaz, Mohammad; Gürbay, Aylin; Aydin, Ahmet; Şahin, Gönül

    2014-01-01

    In this study, a high-performance liquid chromatographic method (HPLC) and UV spectrophotometric method were developed, validated and applied for the determination of theophylline in biological fluids. Liquid- liquid extraction is performed for isolation of the drug and elimination of plasma and saliva interferences. Urine samples were applied without any extraction. The chromatographic separation was achieved on a C18 column by using 60:40 methanol:water as mobile phase under isocratic conditions at a flow rate of 0.75 mL/min with UV detection at 280 nm in HPLC method. UV spectrophotometric analysis was performed at 275 nm. The results of HPLC analysis were as follows: the limit of quantification: 1.1 µg/mL for urine, 1.9 µg/mL for saliva, 3.1 µg/mL for plasma; recovery: 94.85% for plasma, 100.45% for saliva, 101.39% for urine; intra-day precision: 0.22–2.33%, inter-day precision: 3.17-13.12%. Spectrophotometric analysis results were as follows: the limit of quantitation: 5.23 µg/mL for plasma, 8.7 µg/mL for urine; recovery: 98.27% for plasma, 95.25% for urine; intra-day precision: 2.37 – 3.00%, inter-day precision: 5.43-7.91%. It can be concluded that this validated HPLC method is easy, precise, accurate, sensitive and selective for determination of theophylline in biological samples. Also spectrophotometric analysis can be used where it can be applicable. PMID:25237338

  8. Spectrophotometric method for determination parts per million levels of cyclohexylamine in water.

    PubMed

    Kumbhar, A G; Narasimhan, S V; Mathur, P K

    1998-10-01

    UV-vis spectrophotometric method for the analysis of cyclohexylamine (CHA) in aqueous medium in the range of 0.3-20 ppm was developed by coupling CHA with sodium 1,2-naphthaquinone-4-sulphonate (NQS). At 470 nm a calibration slope of 0.028 OD ppm(-1) was observed. Minimum detection limit was 0.3 ppm with standard deviation of 0.1 ppm. Reagent concentration and solution pH for the analysis are optimised by studying its effect on absorbance at 470 nm. The method was applied to analyse CHA for evaluating the performance of ion exchange resin used in condensate purification plant (CPP) of power station where, CHA is used as all volatile treatment (AVT) reagent to inhibit steam generator (SG) corrosion. Structure of the adduct formed by coupling CHA with NQS is elucidated using NMR ((1)H and (13)C) and IR spectra, CHN analysis and mole ratio variation method. PMID:18967343

  9. Development of microwave assisted spectrophotometric method for the determination of glucose

    NASA Astrophysics Data System (ADS)

    Ali, Asif; Hussain, Zahid; Arain, Muhammad Balal; Shah, Nasrullah; Khan, Khalid Mohammad; Gulab, Hussain; Zada, Amir

    2016-01-01

    A spectrophotometric method was developed based on the microwave assisted synthesis of Maillard product. Various conditions of the reaction were optimized by varying the relative concentration of the reagents, operating temperature and volume of solutions used in the reaction in the microwave synthesizer. The absorbance of the microwave synthesized Maillard product was measured in the range of 360-740 nm using UV-Visible spectrophotometer. Based on the maximum absorbance, 370 nm was selected as the optimum wave length for further studies. The LOD and LOQ of glucose was found 3.08 μg mL- 1 and 9.33 μg mL- 1 with standard deviation of ± 0.05. The developed method was also applicable to urine sample.

  10. Development of microwave assisted spectrophotometric method for the determination of glucose.

    PubMed

    Ali, Asif; Hussain, Zahid; Arain, Muhammad Balal; Shah, Nasrullah; Khan, Khalid Mohammad; Gulab, Hussain; Zada, Amir

    2016-01-15

    A spectrophotometric method was developed based on the microwave assisted synthesis of Maillard product. Various conditions of the reaction were optimized by varying the relative concentration of the reagents, operating temperature and volume of solutions used in the reaction in the microwave synthesizer. The absorbance of the microwave synthesized Maillard product was measured in the range of 360-740 nm using UV-Visible spectrophotometer. Based on the maximum absorbance, 370 nm was selected as the optimum wave length for further studies. The LOD and LOQ of glucose was found 3.08 μg mL(-1) and 9.33 μg mL(-1) with standard deviation of ±0.05. The developed method was also applicable to urine sample. PMID:26342822

  11. Quantitative UV Spectrophotometric Analysis of Mixtures of Substituted C60 Fullerenes

    NASA Astrophysics Data System (ADS)

    Kuznetsov, S. I.; Yunusova, D. S.; Yumagulova, R. Kh.; Miftakhov, M. S.; Kolesov, S. V.; Spivak, S. I.; Kantor, O. G.

    2015-09-01

    We propose a method for quantitative processing of experimental UV spectrometry data for mixtures of substituted fullerenes, taking into account measurement uncertainties. The experimental data can be represented as a system of Bouguer-Lambert linear equations, including the extinction coefficients for individual substituted fullerenes and the optical densities at wavelengths of the selected absorption maxima for each substituted fullerene. In order to take into account experimental uncertainties, we propose reducing this system of linear algebraic equations to a linear programming problem. Our algorithm allows us to quantitatively determine the fullerene content and the content of substituted fullerene derivatives in the total mixture with uncertainty ≤20%.

  12. Spectrophotometric methods for the evaluation of acidity constants-I Numerical methods for single equilibria.

    PubMed

    Asuero, A G; Navas, M J; Jiminez-Trillo, J L

    1986-02-01

    The spectrophotometric methods applicable to the numerical evaluation of acidity constants of monobasic acids are briefly reviewed. The equations are presented in a form suitable for easy calculation with a programmable pocket calculator. The aim of this paper is to cover a gap in the education analytical literature. PMID:18964064

  13. Modeling systematic errors: polychromatic sources of Beer-Lambert deviations in HPLC/UV and nonchromatographic spectrophotometric assays.

    PubMed

    Galli, C

    2001-07-01

    It is well established that the use of polychromatic radiation in spectrophotometric assays leads to excursions from the Beer-Lambert limit. This Note models the resulting systematic error as a function of assay spectral width, slope of molecular extinction coefficient, and analyte concentration. The theoretical calculations are compared with recent experimental results; a parameter is introduced which can be used to estimate the magnitude of the systematic error in both chromatographic and nonchromatographic spectrophotometric assays. It is important to realize that the polychromatic radiation employed in common laboratory equipment can yield assay errors up to approximately 4%, even at absorption levels generally considered 'safe' (i.e. absorption <1). Thus careful consideration of instrumental spectral width, analyte concentration, and slope of molecular extinction coefficient is required to ensure robust analytical methods. PMID:11377063

  14. Validation of spectrophotometric method for lactulose assay in syrup preparation

    NASA Astrophysics Data System (ADS)

    Mahardhika, Andhika Bintang; Novelynda, Yoshella; Damayanti, Sophi

    2015-09-01

    Lactulose is a synthetic disaccharide widely used in food and pharmaceutical fields. In the pharmaceutical field, lactulose is used as osmotic laxative in a syrup dosage form. This research was aimed to validate the spectrophotometric method to determine the levels of lactulose in syrup preparation and the commercial sample. Lactulose is hydrolyzed by hydrochloric acid to form fructose and galactose. The fructose was reacted with resorcinol reagent, forming compounds that give absorption peak at 485 nm. Analytical methods was validated, hereafter lactulose content in syrup preparation were determined. The calibration curve was linear in the range of 30-100 μg/mL with a correlation coefficient (r) of 0.9996, coefficient of variance (Vxo) of 1.1 %, limit of detection of 2.32 μg/mL, and limit of quantitation of 7.04 μg/mL. The result of accuracy test for the lactulose assay in the syrup preparation showed recoveries of 96.6 to 100.8 %. Repeatability test of lactulose assay in standard solution of lactulose and sample preparation syrup showed the coefficient of variation (CV) of 0.75 % and 0.7 %. Intermediate precision (interday) test resulted in coefficient of variation 1.06 % on the first day, the second day by 0.99 %, and 0.95 % for the third day. This research gave a valid analysis method and levels of lactulose in syrup preparations of samples A, B, C were 101.6, 100.5, and 100.6 %, respectively.

  15. Dispersive liquid-liquid microextraction of thiram followed by microvolume UV-vis spectrophotometric determination.

    PubMed

    Rastegarzadeh, Saadat; Pourreza, Nahid; Larki, Arash

    2013-10-01

    A novel and simple method for the sensitive determination of trace amounts of fungicide thiram is developed by combination of dispersive liquid-liquid microextraction (DLLME) and microvolume UV-vis spectrophotometry. The method is based on the conversion of thiram to a yellow product in the presence of ethanolic potassium hydroxide and copper sulfate, and its extraction into CCL4 using DLLME technique. In this method the ethanol existing in ethanolic KOH plays as disperser solvent and a cloudy solution is formed by injection of only CCl4 as extractant solvent into sample solution. Under the optimum conditions, the calibration graph was linear over the range of 25-1000 ng mL(-1) of thiram with limit of detection of 11.5 ng mL(-1). The relative standard deviation (RSD) for 100 and 500 ng mL(-1) of thiram was 2.7 and 1.1% (n=8), respectively. The proposed method was successfully applied to determination of thiram in water and plant seed samples. PMID:23756257

  16. Dispersive liquid-liquid microextraction of thiram followed by microvolume UV-vis spectrophotometric determination

    NASA Astrophysics Data System (ADS)

    Rastegarzadeh, Saadat; Pourreza, Nahid; Larki, Arash

    2013-10-01

    A novel and simple method for the sensitive determination of trace amounts of fungicide thiram is developed by combination of dispersive liquid-liquid microextraction (DLLME) and microvolume UV-vis spectrophotometry. The method is based on the conversion of thiram to a yellow product in the presence of ethanolic potassium hydroxide and copper sulfate, and its extraction into CCL4 using DLLME technique. In this method the ethanol existing in ethanolic KOH plays as disperser solvent and a cloudy solution is formed by injection of only CCl4 as extractant solvent into sample solution. Under the optimum conditions, the calibration graph was linear over the range of 25-1000 ng mL-1 of thiram with limit of detection of 11.5 ng mL-1. The relative standard deviation (RSD) for 100 and 500 ng mL-1 of thiram was 2.7 and 1.1% (n = 8), respectively. The proposed method was successfully applied to determination of thiram in water and plant seed samples.

  17. Spectrophotometric method for the determination, validation, spectroscopic and thermal analysis of diphenhydramine in pharmaceutical preparation

    NASA Astrophysics Data System (ADS)

    Ulu, Sevgi Tatar; Elmali, Fikriye Tuncel

    2010-09-01

    A sensitive, simple and rapid spectrophotometric method was developed for the determination of diphenhydramine in pharmaceutical preparation. The method was based on the charge-transfer complex of the drug, as n-electron donor, with 2,3-dichloro-5,6-dicyano- p-benzoquinone (DDQ), as π-acceptor. The formation of this complex was also confirmed by UV-vis, FTIR and 1H NMR spectra techniques and thermal analysis. The proposed method was validated according to the ICH guidelines with respect to linearity, limit of detection, limit of quantification, accuracy, precision, recovery and robustness. The linearity range for concentrations of diphenhydramine was found to be 12.5-150 μg/mL with acceptable correlation coefficients. The detection and quantification limits were found to be 2.09 and 6.27 μg/mL, respectively. The proposed and references methods were applied to the determination of drug in syrup. This preparation were also analyzed with an reference method and statistical comparison by t- and F-tests revealed that there was no significant difference between the results of the two methods with respect to mean values and standard deviations at the 95% confidence level.

  18. Spectrophotometric method for the determination, validation, spectroscopic and thermal analysis of diphenhydramine in pharmaceutical preparation.

    PubMed

    Ulu, Sevgi Tatar; Elmali, Fikriye Tuncel

    2010-09-15

    A sensitive, simple and rapid spectrophotometric method was developed for the determination of diphenhydramine in pharmaceutical preparation. The method was based on the charge-transfer complex of the drug, as n-electron donor, with 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ), as pi-acceptor. The formation of this complex was also confirmed by UV-vis, FTIR and (1)H NMR spectra techniques and thermal analysis. The proposed method was validated according to the ICH guidelines with respect to linearity, limit of detection, limit of quantification, accuracy, precision, recovery and robustness. The linearity range for concentrations of diphenhydramine was found to be 12.5-150 microg/mL with acceptable correlation coefficients. The detection and quantification limits were found to be 2.09 and 6.27 microg/mL, respectively. The proposed and references methods were applied to the determination of drug in syrup. This preparation were also analyzed with an reference method and statistical comparison by t- and F-tests revealed that there was no significant difference between the results of the two methods with respect to mean values and standard deviations at the 95% confidence level. PMID:20621611

  19. Correlation of Two Anthocyanin Quantification Methods: HPLC and Spectrophotometric Methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pH differential method and HPLC are methods that are commonly used by researchers and the food industry for quantifying anthocyanins in a sample. This study was conducted to establish a relationship between the two analytical methods. Seven juice samples containing an array of different individu...

  20. Validation of different spectrophotometric methods for determination of vildagliptin and metformin in binary mixture

    NASA Astrophysics Data System (ADS)

    Abdel-Ghany, Maha F.; Abdel-Aziz, Omar; Ayad, Miriam F.; Tadros, Mariam M.

    New, simple, specific, accurate, precise and reproducible spectrophotometric methods have been developed and subsequently validated for determination of vildagliptin (VLG) and metformin (MET) in binary mixture. Zero order spectrophotometric method was the first method used for determination of MET in the range of 2-12 μg mL-1 by measuring the absorbance at 237.6 nm. The second method was derivative spectrophotometric technique; utilized for determination of MET at 247.4 nm, in the range of 1-12 μg mL-1. Derivative ratio spectrophotometric method was the third technique; used for determination of VLG in the range of 4-24 μg mL-1 at 265.8 nm. Fourth and fifth methods adopted for determination of VLG in the range of 4-24 μg mL-1; were ratio subtraction and mean centering spectrophotometric methods, respectively. All the results were statistically compared with the reported methods, using one-way analysis of variance (ANOVA). The developed methods were satisfactorily applied to analysis of the investigated drugs and proved to be specific and accurate for quality control of them in pharmaceutical dosage forms.

  1. Kinetic spectrophotometric method for the determination of silymarin in pharmaceutical formulations using potassium permanganate as oxidant.

    PubMed

    Rahman, N; Khan, N A; Azmi, S N H

    2004-02-01

    A new simple and sensitive kinetic spectrophotometric method for the determination of silymarin in pure form and in pharmaceutical formulations is described. The method is based on the oxidation of the drug with potassium permanganate at pH 7.0 +/- 0.2. The reaction is followed spectrophotometrically by measuring the decrease in the absorbance at 530 nm. The calibration graph is linear in the range of 18-50 microg x m(-1). The method has been successfully applied to the determination of silymarin in pharmaceutical formulations. Statistical comparison of the results with the reference method shows excellent agreement and indicates no significant difference in accuracy and precision. PMID:15025178

  2. Spectrophotometric and spectrofluorimetric methods for the determination of tranexamic acid in pharmaceutical formulation.

    PubMed

    El-Aroud, Khalifa Abulghasem; Abushoffa, Adel Mohamed; Abdellatef, Hisham Ezzat

    2007-03-01

    Two simple and sensitive spectrophotometric and fluorimetric methods for the determination of tranexamic acid in tablets are developed. The methods are based on condensation the primary amino group of tranexamic acid with acetyl acetone and formaldehyde producing a yellow coloured product, which is measured spectrophotometrically at 335 nm or fluorimetrically at 480 nm the colour was stable for at least 1 h. Beer's law was valid within a concentration rang of 0.05-2.0 microg ml-1 spectrophotometrically and 0.05-0.25 microg ml-1 fluorimetrically. All the variables were studied to optimize the reaction conditions. No interference was observed in the presence of common pharmaceutical excipints. The validity of both methods was tested by analyzing tranexamic acid in its pharmaceutical preparations. Good recoveries were obtained and the results were comparable with those obtained by standard method. PMID:17329872

  3. Five different spectrophotometric methods for determination of Amprolium hydrochloride and Ethopabate binary mixture

    NASA Astrophysics Data System (ADS)

    Hussein, Lobna A.; Magdy, N.; Abbas, Mahmoud M.

    2015-03-01

    Five simple, specific, accurate and precise UV-spectrophotometric methods are adopted for the simultaneous determination of Amprolium hydrochloride (AMP) and Ethopabate (ETH), a binary mixture with overlapping spectra, without preliminary separation. The first method is first derivative of the ratio spectra (1DD) for determination of AMP and ETH at 234.7 nm and 306.8 nm respectively with mean percentage recoveries 99.76 ± 0.907 and 100.29 ± 0.842 respectively. The second method is the mean centering of the ratio spectra for determination of AMP and ETH at 238.8 nm and 313 nm respectively with mean percentage recoveries 100.26 ± 1.018 and 99.94 ± 1.286 respectively. The third method is based on dual wavelength selection for determination of AMP and ETH at 235.3 nm & 308 nm and 244 nm & 268.4 nm respectively with mean percentage recoveries 99.30 ± 1.097 and 100.03 ± 1.065 respectively. The fourth method is ratio difference method for determination of AMP and ETH at 239 nm & 310 nm and 239 nm & 313 nm respectively with mean percentage recoveries 99.27 ± 0.892 and 100.40 ± 1.814 respectively. The fifth one is area under the curve (AUC) method where the areas between 235.6-243 nm and 268.3-275 nm are selected for determination of AMP and ETH with mean percentage recoveries 100.35 ± 1.031 and 100.39 ± 0.956 respectively. These methods are tested by analyzing synthetic mixtures of the two drugs and they are applied to their pharmaceutical veterinary preparation. Methods are validated according to the ICH guidelines and accuracy, precision and repeatability are found to be within the acceptable limit.

  4. Determination of Iodide, Iodate and Total Iodine in Natural Water Samples by HPLC with Amperometric and Spectrophotometric Detection, and Off-line UV Irradiation.

    PubMed

    Takeda, Akira; Tsukada, Hirofumi; Takaku, Yuichi; Satta, Naoya; Baba, Mitsuhisa; Shibata, Toshihiro; Hasegawa, Hidenao; Unno, Yusuke; Hisamatsu, Shun'ichi

    2016-01-01

    We developed a rapid, simple method for the iodine speciation analysis of water and applied it to natural water samples. Simultaneous determinations of I(-) and IO3(-) were achieved with an HPLC system with amperometric detection for I(-) and spectrophotometric detection after a postcolumn reaction for IO3(-). We determined the I(-) and IO3(-) concentrations in 20-μL water samples within 10 min. Total I concentrations in water samples were determined after the decomposition of organics by off-line UV irradiation for 30 min, followed by reduction to I(-). The analytical conditions were optimized by using test solutions rich in organic matter extracted from soils. We tested the new method with samples of groundwater, spring water, precipitation, soil percolate, stream water, and seawater as well as solutions extracted from soil. The method worked well, although the concentrations of some I species were below detection. This method is suitable for routine speciation analysis, which is important for studies of I behavior in the environment. PMID:27506709

  5. Determination of ethanol in wine by titrimetric and spectrophotometric dichromate methods: collaborative study.

    PubMed

    Pilone, G J

    1985-01-01

    A dichromate-spectrophotometric method for the determination of ethanol in wine was compared in a collaborative, matched pair study with the AOAC dichromate-titrimetric method, 11.008-11.011. Both methods require distillation of the sample into dichromate. The titrimetric method measures ethanol by titrating the excess dichromate with ferrous ammonium sulfate after conversion of ethanol to acetic acid; the spectrophotometric method directly measures the reduced dichromate formed after oxidation. In addition to comparing the 2 methods, the collaborative study also compared the use of 2 types of assemblies for obtaining the ethanol distillate: the Scott-type, which is used in 11.008-11.011, and the electric Kirk-type. Results of the collaborative study indicated that the repeatability and reproducibility of the official titrimetric method were generally far superior to those of the spectrophotometric method; therefore, adoption of the spectrophotometric method is not recommended. Comparison of titrimetric method results obtained using the 2 types of stills indicated that repeatability and reproducibility were somewhat better when Scott apparatus was used, but measurements using Kirk-type compared well in the range of ethanol concentrations found in table and fortified wines. The Kirk-type distillation apparatus has been adopted official first action as an alternative to Scott apparatus in the dichromate oxidation method for ethanol in wine, 11.008-11.011. PMID:3988696

  6. A simple Ultraviolet spectrophotometric method for the determination of etoricoxib in dosage formulations

    PubMed Central

    Singh, Shipra; Mishra, Amrita; Verma, Anurag; Ghosh, Ashoke K.; Mishra, Arun K.

    2012-01-01

    The present study was undertaken to develop a validated, rapid, simple, and low-cost ultraviolet (UV) spectrophotometric method for estimating Etoricoxib (ETX) in pharmaceutical formulations. The analysis was performed on λ max 233 nm using 0.1 M HCl as blank/diluent. The proposed method was validated on International Conference on Harmonization (ICH) guidelines including parameters as linearity, accuracy, precision, reproducibility, and specificity. The proposed method was also used to access the content of the ETX in two commercial brands of Indian market. Beer's law was obeyed in concentration range of 0.1–0.5 μg/ml, and the regression equation was Y = 0.418x + 0.018. The mean accuracy values for 0.1 μg/ml and 0.2 μg/ml concentration of ETX were found to be 99.76 ± 0.52% and 99.12 ± 0.84, respectively, and relative standard deviation (RSD) of interday and intraday was less than 2%. The developed method was suitable and specific to the analysis of ETX even in the presence of common excipients. The method was applied on two different marketed brands and ETX contents were 98.5 ± 0.56 and 99.33 ± 0.44, respectively, of labeled claim. The proposed method was validated as per ICH guidelines and statistically good results were obtained. This method can be employed for routine analysis of ETX in bulk and commercial formulations. PMID:23378945

  7. Synergistic enhancement effect of room temperature ionic liquids for cloud point extraction combined with UV-vis spectrophotometric determination nickel in environmental samples

    NASA Astrophysics Data System (ADS)

    Zeng, Chujie; Xu, Xili; Zhou, Neng; Lin, Yao

    A new method based on enhancement effect of room temperature ionic liquids for cloud point extraction trace amounts of nickel combined with UV-vis spectrophotometric determination was developed. Room temperature ionic liquids (RTILs) and diethyldithiocarbamate (DDTC) were used enhancement reagent and chelating reagent, respectively. The addition of room temperature ionic liquids leads to 3.0 times improvement in the determination of nickel. The nonionic surfactant Triton X-100 was used as the extractant. When the temperature of the system was higher than the cloud point of Triton X-100, Ni-DTC complex was extracted into Triton X-100 and separation of the analyte from the matrix was achieved. Some parameters that influenced cloud point extraction and subsequent determination were evaluated in detail, such as the concentrations of RTILs, DDTC and Triton X-100; pH of sample solution, as well as interferences. Under optimized conditions, an enrichment factor of 72 could be obtained, and the detection limit (LOD) for Ni was 0.5 ng mL-1. Relative standard deviations for five replicate determinations of the standard solution containing 50 ng mL-1 Ni was 3.9%. The proposed method was successfully applied to the determination of nickel in certified reference materials with satisfactory results.

  8. Novel spectrophotometric methods for simultaneous determination of timolol and dorzolamide in their binary mixture

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam Mahmoud; Hegazy, Maha A.; Rezk, Mamdouh R.; Omran, Yasmin Rostom

    Two smart and novel spectrophotometric methods namely; absorbance subtraction (AS) and amplitude modulation (AM) were developed and validated for the determination of a binary mixture of timolol maleate (TIM) and dorzolamide hydrochloride (DOR) in presence of benzalkonium chloride without prior separation, using unified regression equation. Additionally, simple, specific, accurate and precise spectrophotometric methods manipulating ratio spectra were developed and validated for simultaneous determination of the binary mixture namely; simultaneous ratio subtraction (SRS), ratio difference (RD), ratio subtraction (RS) coupled with extended ratio subtraction (EXRS), constant multiplication method (CM) and mean centering of ratio spectra (MCR). The proposed spectrophotometric procedures do not require any separation steps. Accuracy, precision and linearity ranges of the proposed methods were determined and the specificity was assessed by analyzing synthetic mixtures of both drugs. They were applied to their pharmaceutical formulation and the results obtained were statistically compared to that of a reported spectrophotometric method. The statistical comparison showed that there is no significant difference between the proposed methods and the reported one regarding both accuracy and precision.

  9. Novel spectrophotometric methods for simultaneous determination of timolol and dorzolamide in their binary mixture.

    PubMed

    Lotfy, Hayam Mahmoud; Hegazy, Maha A; Rezk, Mamdouh R; Omran, Yasmin Rostom

    2014-05-21

    Two smart and novel spectrophotometric methods namely; absorbance subtraction (AS) and amplitude modulation (AM) were developed and validated for the determination of a binary mixture of timolol maleate (TIM) and dorzolamide hydrochloride (DOR) in presence of benzalkonium chloride without prior separation, using unified regression equation. Additionally, simple, specific, accurate and precise spectrophotometric methods manipulating ratio spectra were developed and validated for simultaneous determination of the binary mixture namely; simultaneous ratio subtraction (SRS), ratio difference (RD), ratio subtraction (RS) coupled with extended ratio subtraction (EXRS), constant multiplication method (CM) and mean centering of ratio spectra (MCR). The proposed spectrophotometric procedures do not require any separation steps. Accuracy, precision and linearity ranges of the proposed methods were determined and the specificity was assessed by analyzing synthetic mixtures of both drugs. They were applied to their pharmaceutical formulation and the results obtained were statistically compared to that of a reported spectrophotometric method. The statistical comparison showed that there is no significant difference between the proposed methods and the reported one regarding both accuracy and precision. PMID:24607469

  10. Validated spectrophotometric methods for the estimation of moxifloxacin in bulk and pharmaceutical formulations

    NASA Astrophysics Data System (ADS)

    Motwani, Sanjay K.; Chopra, Shruti; Ahmad, Farhan J.; Khar, Roop K.

    2007-10-01

    New, simple, cost effective, accurate and reproducible UV-spectrophotometric methods were developed and validated for the estimation of moxifloxacin in bulk and pharmaceutical formulations. Moxifloxacin was estimated at 296 nm in 0.1N hydrochloric acid (pH 1.2) and at 289 nm in phosphate buffer (pH 7.4). Beer's law was obeyed in the concentration range of 1-12 μg ml -1 ( r2 = 0.9999) in hydrochloric acid and 1-14 μg ml -1 ( r2 = 0.9998) in the phosphate buffer medium. The apparent molar absorptivity and Sandell's sensitivity coefficient were found to be 4.63 × 10 4 l mol -1 cm -1 and 9.5 ng cm -2/0.001 A in hydrochloric acid; and 4.08 × 10 4 l mol -1 cm -1 and 10.8 ng cm -2/0.001 A in phosphate buffer media, respectively indicating the high sensitivity of the proposed methods. These methods were tested and validated for various parameters according to ICH guidelines. The detection and quantitation limits were found to be 0.0402, 0.1217 μg ml -1 in hydrochloric acid and 0.0384, 0.1163 μg ml -1 in phosphate buffer medium, respectively. The proposed methods were successfully applied for the determination of moxifloxacin in pharmaceutical formulations (tablets, i.v. infusions, eye drops and polymeric nanoparticles). The results demonstrated that the procedure is accurate, precise and reproducible (relative standard deviation <2%), while being simple, cheap and less time consuming and hence can be suitably applied for the estimation of moxifloxacin in different dosage forms and dissolution studies.

  11. Spectrophotometric and high performance liquid chromatographic methods for sensitive determination of bisphenol A

    NASA Astrophysics Data System (ADS)

    Zhuang, Yafeng; Zhou, Meng; Gu, Jia; Li, Xiangmei

    2014-03-01

    A new spectrophotometric method for the determination of trace amounts of bisphenol A based on a diazotization-coupling reaction was developed. In acidic solution, clenbuterol was first diazotized with sodium nitrite, then coupled with bisphenol A to from an azo-compound [I] in NH3-NH4Cl buffer, which shows a maximum absorption at 410 nm. The effects of the amount of sodium nitrite, diazo reaction time, the amount of clenbuterol, coupling reaction time and coupling reaction temperature have been examined. Under the optional conditions, the determination of the linear range of bisphenol A is 0.24-8.4 μg/mL, correlation coefficient is 0.9905 and detection limit of this method is 0.15 μg/mL. The spectrophotometric method is simple, rapid, high sensitivity with better accuracy. High performance liquid chromatography (HPLC) technique combined with this new spectrophotometric method has been also developed for the measurement of bisphenol A. The analysis was achieved on a C18 column using water and methanol as a mobile phase and the detection was done spectrophotometrically at 410 nm. These reported methods were applied to the determination of bisphenol A in hot water in contact with commercially available table-water bottle samples.

  12. Compatible validated spectrofluorimetric and spectrophotometric methods for determination of vildagliptin and saxagliptin by factorial design experiments.

    PubMed

    Abdel-Aziz, Omar; Ayad, Miriam F; Tadros, Mariam M

    2015-04-01

    Simple, selective and reproducible spectrofluorimetric and spectrophotometric methods have been developed for the determination of vildagliptin and saxagliptin in bulk and their pharmaceutical dosage forms. The first proposed spectrofluorimetric method is based on the dansylation reaction of the amino group of vildagliptin with dansyl chloride to form a highly fluorescent product. The formed product was measured spectrofluorimetrically at 455 nm after excitation at 345 nm. Beer's law was obeyed in a concentration range of 100-600 μg ml(-1). The second proposed spectrophotometric method is based on the charge transfer complex of saxagliptin with tetrachloro-1,4-benzoquinone (p-chloranil). The formed charge transfer complex was measured spectrophotometrically at 530 nm. Beer's law was obeyed in a concentration range of 100-850 μg ml(-1). The third proposed spectrophotometric method is based on the condensation reaction of the primary amino group of saxagliptin with formaldehyde and acetyl acetone to form a yellow colored product known as Hantzsch reaction, measured at 342.5 nm. Beer's law was obeyed in a concentration range of 50-300 μg ml(-1). All the variables were studied to optimize the reactions' conditions using factorial design. The developed methods were validated and proved to be specific and accurate for quality control of vildagliptin and saxagliptin in their pharmaceutical dosage forms. PMID:25613694

  13. Compatible validated spectrofluorimetric and spectrophotometric methods for determination of vildagliptin and saxagliptin by factorial design experiments

    NASA Astrophysics Data System (ADS)

    Abdel-Aziz, Omar; Ayad, Miriam F.; Tadros, Mariam M.

    2015-04-01

    Simple, selective and reproducible spectrofluorimetric and spectrophotometric methods have been developed for the determination of vildagliptin and saxagliptin in bulk and their pharmaceutical dosage forms. The first proposed spectrofluorimetric method is based on the dansylation reaction of the amino group of vildagliptin with dansyl chloride to form a highly fluorescent product. The formed product was measured spectrofluorimetrically at 455 nm after excitation at 345 nm. Beer's law was obeyed in a concentration range of 100-600 μg ml-1. The second proposed spectrophotometric method is based on the charge transfer complex of saxagliptin with tetrachloro-1,4-benzoquinone (p-chloranil). The formed charge transfer complex was measured spectrophotometrically at 530 nm. Beer's law was obeyed in a concentration range of 100-850 μg ml-1. The third proposed spectrophotometric method is based on the condensation reaction of the primary amino group of saxagliptin with formaldehyde and acetyl acetone to form a yellow colored product known as Hantzsch reaction, measured at 342.5 nm. Beer's law was obeyed in a concentration range of 50-300 μg ml-1. All the variables were studied to optimize the reactions' conditions using factorial design. The developed methods were validated and proved to be specific and accurate for quality control of vildagliptin and saxagliptin in their pharmaceutical dosage forms.

  14. Application of UV-Vis spectrophotometric process for the assessment of indoloacridines as free radical scavenger.

    PubMed

    Sridharan, Makuteswaran; Prasad, K J Rajendra; Madhumitha, G; Al-Dhabi, Naif Abdullah; Arasu, Mariadhas Valan

    2016-09-01

    A conventional approach has been used to synthesis Indole fused acridine, 4a-e. In this paper to achieve the target molecule, 4 the reaction was performed via two steps. In step 1, there was a reaction between Carbazolone, 1 and benzophenone, 2 to get dihydroindoloacridine, 3. In step 2, compound, 3 was treated with 5% Palladium/Carbon in the presence of diphenyl ether for 5h to give a dark brown product, 4. The column chromatography was used to purify final product, 4. All the synthesized compounds such as 3 and 4 were characterized by melting point, FTIR, (1)H NMR, and Mass spectra. Further to check the purity of the compounds it was subjected to CHN analyzer. The target molecules such as 3 and 4 were screened for antimicrobial studies against bacteria such as Bacillus subtilis (B. subtilis), Staphylococcus aureus (S. aureus), Klebsiella pneumonia (K. pneumonia), Salmonella typhi (S. typhi); and fungi like Aspergillus niger (A. niger), Aspergillus fumigatus (A. fumigatus). The obtained results clearly proves that the target molecules shown reasonable activity against K. pneumonia and A. niger. Further the compounds were screened for free radical scavenging activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH). The free radical scavenging property was performed using UV-Visible spectroscopy. The results were compared with the standard BHT (Butylated Hydroxy Toluene). Compounds, 4a and 4e were shown higher percentage of inhibition when compare to the standard. The result confirms that further research on indoloacridine will leads effective drug to the market. PMID:27491030

  15. Simultaneous Determination of Octinoxate, Oxybenzone, and Octocrylene in a Sunscreen Formulation Using Validated Spectrophotometric and Chemometric Methods.

    PubMed

    Abdel-Ghany, Maha F; Abdel-Aziz, Omar; Ayad, Miriam F; Mikawy, Neven N

    2015-01-01

    Accurate, reliable, and sensitive spectrophotometric and chemometric methods were developed for simultaneous determination of octinoxate (OMC), oxybenzone (OXY), and octocrylene (OCR) in a sunscreen formulation without prior separation steps, including derivative ratio spectra zero crossing (DRSZ), double divisor ratio spectra derivative (DDRD), mean centering ratio spectra (MCR), and partial least squares (PLS-2). With the DRSZ technique, the UV filters could be determined in the ranges of 0.5-13.0, 0.3-9.0, and 0.5-9.0 μg/mL at 265.2, 246.6, and 261.8 nm, respectively. By utilizing the DDRD technique, UV filters could be determined in the above ranges at 237.8, 241.0, and 254.2 nm, respectively. With the MCR technique, the UV filters could be determined in the above ranges at 381.7, 383.2, and 355.6 nm, respectively. The PLS-2 technique successfully quantified the examined UV filters in the ranges of 0.5-9.3, 0.3-7.1, and 0.5-6.9 μg/mL, respectively. All the methods were validated according to the International Conference on Harmonization guidelines and successfully applied to determine the UV filters in pure form, laboratory-prepared mixtures, and a sunscreen formulation. The obtained results were statistically compared with reference and reported methods of analysis for OXY, OMC, and OCR, and there were no significant differences with respect to accuracy and precision of the adopted techniques. PMID:26525239

  16. UV-visible microscope spectrophotometric polarization and dichroism with increased discrimination power in forensic analysis

    NASA Astrophysics Data System (ADS)

    Purcell, Dale Kevin

    Microanalysis of transfer (Trace) evidence is the application of a microscope and microscopical techniques for the collection, observation, documentation, examination, identification, and discrimination of micrometer sized particles or domains. Microscope spectrophotometry is the union of microscopy and spectroscopy for microanalysis. Analytical microspectroscopy is the science of studying the emission, reflection, transmission, and absorption of electromagnetic radiation to determine the structure or chemical composition of microscopic-size materials. Microscope spectrophotometry instrument designs have evolved from monochromatic illumination which transmitted through the microscope and sample and then is detected by a photometer detector (photomultiplier tube) to systems in which broad-band (white light) illumination falls incident upon a sample followed by a non-scanning grating spectrometer equipped with a solid-state multi-element detector. Most of these small modern spectrometers are configured with either silicon based charged-couple device detectors (200-950 nm) or InGaAs based diode array detectors (850-2300 nm) with computerized data acquisition and signal processing being common. A focus of this research was to evaluate the performance characteristics of various modern forensic (UV-Vis) microscope photometer systems as well as review early model instrumental designs. An important focus of this research was to efficiently measure ultraviolet-visible spectra of microscopically small specimens for classification, differentiation, and possibly individualization. The first stage of the project consisted of the preparation of microscope slides containing neutral density filter reference materials, molecular fluorescence reference materials, and dichroic reference materials. Upon completion of these standard slide preparations analysis began with measurements in order to evaluate figures of merit for comparison of the instruments investigated. The figures of

  17. Spectrophotometric methods for simultaneous determination of betamethasone valerate and fusidic acid in their binary mixture

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam Mahmoud; Salem, Hesham; Abdelkawy, Mohammad; Samir, Ahmed

    2015-04-01

    Five spectrophotometric methods were successfully developed and validated for the determination of betamethasone valerate and fusidic acid in their binary mixture. Those methods are isoabsorptive point method combined with the first derivative (ISO Point - D1) and the recently developed and well established methods namely ratio difference (RD) and constant center coupled with spectrum subtraction (CC) methods, in addition to derivative ratio (1DD) and mean centering of ratio spectra (MCR). New enrichment technique called spectrum addition technique was used instead of traditional spiking technique. The proposed spectrophotometric procedures do not require any separation steps. Accuracy, precision and linearity ranges of the proposed methods were determined and the specificity was assessed by analyzing synthetic mixtures of both drugs. They were applied to their pharmaceutical formulation and the results obtained were statistically compared to that of official methods. The statistical comparison showed that there is no significant difference between the proposed methods and the official ones regarding both accuracy and precision.

  18. Simultaneous determination of some cholesterol-lowering drugs in their binary mixture by novel spectrophotometric methods

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam Mahmoud; Hegazy, Maha Abdel Monem

    2013-09-01

    Four simple, specific, accurate and precise spectrophotometric methods manipulating ratio spectra were developed and validated for simultaneous determination of simvastatin (SM) and ezetimibe (EZ) namely; extended ratio subtraction (EXRSM), simultaneous ratio subtraction (SRSM), ratio difference (RDSM) and absorption factor (AFM). The proposed spectrophotometric procedures do not require any preliminary separation step. The accuracy, precision and linearity ranges of the proposed methods were determined, and the methods were validated and the specificity was assessed by analyzing synthetic mixtures containing the cited drugs. The four methods were applied for the determination of the cited drugs in tablets and the obtained results were statistically compared with each other and with those of a reported HPLC method. The comparison showed that there is no significant difference between the proposed methods and the reported method regarding both accuracy and precision.

  19. Novel ratio difference at coabsorptive point spectrophotometric method for determination of components with wide variation in their absorptivities.

    PubMed

    Saad, Ahmed S; Abo-Talib, Nisreen F; El-Ghobashy, Mohamed R

    2016-01-01

    Different methods have been introduced to enhance selectivity of UV-spectrophotometry thus enabling accurate determination of co-formulated components, however mixtures whose components exhibit wide variation in absorptivities has been an obstacle against application of UV-spectrophotometry. The developed ratio difference at coabsorptive point method (RDC) represents a simple effective solution for the mentioned problem, where the additive property of light absorbance enabled the consideration of the two components as multiples of the lower absorptivity component at certain wavelength (coabsorptive point), at which their total concentration multiples could be determined, whereas the other component was selectively determined by applying the ratio difference method in a single step. Mixture of perindopril arginine (PA) and amlodipine besylate (AM) figures that problem, where the low absorptivity of PA relative to AM hinders selective spectrophotometric determination of PA. The developed method successfully determined both components in the overlapped region of their spectra with accuracy 99.39±1.60 and 100.51±1.21, for PA and AM, respectively. The method was validated as per the USP guidelines and showed no significant difference upon statistical comparison with reported chromatographic method. PMID:26253440

  20. Novel ratio difference at coabsorptive point spectrophotometric method for determination of components with wide variation in their absorptivities

    NASA Astrophysics Data System (ADS)

    Saad, Ahmed S.; Abo-Talib, Nisreen F.; El-Ghobashy, Mohamed R.

    2016-01-01

    Different methods have been introduced to enhance selectivity of UV-spectrophotometry thus enabling accurate determination of co-formulated components, however mixtures whose components exhibit wide variation in absorptivities has been an obstacle against application of UV-spectrophotometry. The developed ratio difference at coabsorptive point method (RDC) represents a simple effective solution for the mentioned problem, where the additive property of light absorbance enabled the consideration of the two components as multiples of the lower absorptivity component at certain wavelength (coabsorptive point), at which their total concentration multiples could be determined, whereas the other component was selectively determined by applying the ratio difference method in a single step. Mixture of perindopril arginine (PA) and amlodipine besylate (AM) figures that problem, where the low absorptivity of PA relative to AM hinders selective spectrophotometric determination of PA. The developed method successfully determined both components in the overlapped region of their spectra with accuracy 99.39 ± 1.60 and 100.51 ± 1.21, for PA and AM, respectively. The method was validated as per the USP guidelines and showed no significant difference upon statistical comparison with reported chromatographic method.

  1. Validation of simultaneous volumetric and spectrophotometric methods for the determination of captopril in pharmaceutical formulations.

    PubMed

    Rahman, Nafisur; Singh, Manisha; Hoda, Nasrul

    2005-01-01

    Simple, sensitive and economical simultaneous volumetric and spectrophotometric methods for the determination of captopril have been developed. The methods were based on the reaction of captopril with potassium iodate in HCl medium. Amaranth was used as indicator to detect the end-point of the titration in aqueous layer. The iodine formed during the titration was extracted into CCl4 and subsequently determined spectrophotometrically at 510 nm. The Beer's law was obeyed in the concentration range of 120-520 microg ml-1. Rigorous statistical analyses were performed for the validation of the proposed methods. The proposed methods were successfully applied to the determination of captopril in dosage forms. Comparison of the means of the proposed procedures with those of reference methods using point and interval hypothesis tests showed no statistically significant difference. PMID:15927181

  2. AAS and spectrophotometric methods for the determination metoprolol tartrate in tablets

    NASA Astrophysics Data System (ADS)

    Alpdoğan, Güzin; Sungur, Sidika

    1999-11-01

    Sensitive and specific atomic adsorption spectroscopy (AAS) and spectrophotometric methods have been developed for the determination of beta adrenergic blocking drug, metoprolol tartrate.The method is based on the formation of Cu(II) dithiocarbamate complex by derivatization of the secondary amino group of metoprolol with CS 2 and CuCl 2 in the presence of ammonia.The copper-bis(dithiocarbamate) complex was extracted into chloroform and the concentration of metoprolol tartrate was determined directly by spectrophotometric and indirectly by AAS measurement of copper.The two methods developed were applied to the assay of metoprolol tartrate in commercial tablet formulations.The methods were compared statistically with each other and with the high performance liquid chromatography (HPLC) method of USPXXII using t- and F-tests.

  3. Kinetic spectrophotometric method for the determination of norfloxacin in pharmaceutical formulations.

    PubMed

    Rahman, Nafisur; Ahmad, Yasmin; Hejaz Azmi, Syed Najmul

    2004-03-01

    A simple and sensitive kinetic spectrophotometric method is described, based on the oxidation of norfloxacin with alkaline potassium permanganate. The reaction is followed spectrophotometrically by measuring the rate of change of absorbance at 603 nm. The initial rate and fixed time (at 3 min) methods are utilized for constructing the calibration graphs to determine the concentration of the drug. The calibration graphs are linear in the concentration ranges 2.0-20 microg ml(-1) and 1.0-20 microg ml(-1) using the initial rate and fixed time methods, respectively. The results are validated statistically and through recovery studies. The method has been successfully applied to the determination of norfloxacin in commercial dosage forms. Statistical comparison of the results with the reference method shows excellent agreement and indicates no significant difference in accuracy and precision. PMID:15018997

  4. Application of spectrophotometric, densitometric, and HPLC techniques as stability indicating methods for determination of Zaleplon in pharmaceutical preparations

    NASA Astrophysics Data System (ADS)

    Metwally, Fadia H.; Abdelkawy, M.; Abdelwahab, Nada S.

    2007-12-01

    Spectrophotometric, spectrodensitometric and HPLC are stability indicating methods described for determination of Zaleplon in pure and dosage forms. As Zaleplon is easily degradable, the proposed techniques in this manuscript are adopted for its determination in presence of its alkaline degradation product, namely N-[4-(3-cyano-pyrazolo[1,5a]pyridin-7-yl)-phenyl]- N-ethyl-acetamide. These approaches are successfully applied to quantify Zaleplon using the information included in the absorption spectra of appropriate solutions. The second derivative (D 2) spectrophotometric method, allows determination of Zaleplon without interference of its degradate at 235.2 nm using 0.01N HCl as a solvent with obedience to Beer's law over a concentration range of 1-10 μg ml -1 with mean percentage recovery 100.24 ± 0.86%. The first derivative of the ratio spectra ( 1DD) based on the simultaneous use of ( 1DD) and measurement at 241.8 nm using the same solvent and over the same concentration range as (D 2) spectrophotometric method, with mean percentage recovery 99.9 ± 1.07%. The spectrodensitometric analysis allows the separation and quantitation of Zaleplon from its degradate on silica gel plates using chloroform:acetone:ammonia solution (9:1:0.2 by volume) as a mobile phase. This method depends on quantitave densitometric evaluation of thin layer chromatogram of Zaleplon at 338 nm over a concentration range of 0.2-1 μg band -1, with mean percentage recovery 99.73 ± 1.35. Also a reversed-phase liquid chromatographic method using 5-C8 (22 cm × 4.6 mm i.d. 5 μm particle size) column was described and validated for quantitation of Zaleplon using acetonitrile:deionised water (35:65, v/v) as a mobile phase using Paracetamol as internal standard and a flow rate of 1.5 ml min -1 with UV detection of the effluent at 232 nm at ambient temperature over a concentration range of 2-20 μg ml -1 with mean percentage recovery 100.19 ± 1.15%. The insignificance difference of the proposed

  5. Two smart spectrophotometric methods for the simultaneous estimation of Simvastatin and Ezetimibe in combined dosage form

    NASA Astrophysics Data System (ADS)

    Magdy, Nancy; Ayad, Miriam F.

    2015-02-01

    Two simple, accurate, precise, sensitive and economic spectrophotometric methods were developed for the simultaneous determination of Simvastatin and Ezetimibe in fixed dose combination products without prior separation. The first method depends on a new chemometrics-assisted ratio spectra derivative method using moving window polynomial least square fitting method (Savitzky-Golay filters). The second method is based on a simple modification for the ratio subtraction method. The suggested methods were validated according to USP guidelines and can be applied for routine quality control testing.

  6. Effect of fungal mycelia on the HPLC-UV and UV-vis spectrophotometric assessment of mycelium-bound epoxide hydrolase using glycidyl phenyl ether.

    PubMed

    Dolcet, Marta M; Torres, Mercè; Canela, Ramon

    2016-06-25

    The use of mycelia as biocatalysts has technical and economic advantages. However, there are several difficulties in obtaining accurate results in mycelium-catalysed reactions. Firstly, sample extraction, indispensable because of the presence of mycelia, can bring into the extract components with a similar structure to that of the analyte of interest; secondly, mycelia can influence the recovery of the analyte. We prepared calibration standards of 3-phenoxy-1,2-propanediol (PPD) in the pure solvent and in the presence of mycelia (spiked before or after extraction) from five fungi (Aspergillus niger, Aspergillus tubingensis, Penicillium aurantiogriseum, Penicillium sp. and Aspergillus terreus). The quantification of PPD was carried out by HPLC-UV and UV-vis spectrophotometry. The manuscript shows that the last method is as accurate as the HPLC method. However, the colorimetric method led to a higher data throughput, which allowed the study of more samples in a shorter time. Matrix effects were evaluated visually from the plotted calibration data and statistically by simultaneously comparing the intercept and slope of calibration curves performed with solvent, post-extraction spiked standards and pre-extraction spiked standards. Significant differences were found between the post- and pre-extraction spiked matrix-matched functions. Pre-extraction spiked matrix-matched functions based on A. tubingensis mycelia, selected as the reference, were validated and used to compensate for low recoveries. These validated functions were successfully applied to the quantification of PPD achieved during the hydrolysis of glycidyl phenyl ether by mycelium-bound epoxide hydrolases and equivalent hydrolysis yields were determined by HPLC-UV and UV-vis spectrophotometry. This study may serve as starting point to implement matrix effects evaluation when mycelium-bound epoxide hydrolases are studied. PMID:26902669

  7. Novel spectrophotometric method for detection and estimation of butanol in acetone-butanol-ethanol fermenter.

    PubMed

    Maiti, Sampa; Sarma, Saurabh Jyoti; Brar, Satinder Kaur; Bihan, Yann Le; Drogui, Patrick; Buelna, Gerardo; Verma, Mausam; Soccol, Carlos Ricardo

    2015-08-15

    A new, simple, rapid and selective spectrophotometric method has been developed for detection and estimation of butanol in fermentation broth. The red colored compound, produced during reduction of diquat-dibromide-monohydrate with 2-mercaptoethanol in aqueous solution at high pH (>13), becomes purple on phase transfer to butanol and gives distinct absorption at λ520nm. Estimation of butanol in the fermentation broth has been performed by salting out extraction (SOE) using saturated K3PO4 solution at high pH (>13) followed by absorbance measurement using diquat reagent. Compatibility and optimization of diquat reagent concentration for detection and estimation of butanol concentration in the fermentation broth range was verified by central composite design. A standard curve was constructed to estimate butanol in acetone-ethanol-butanol (ABE) mixture under optimized conditions. The spectrophotometric results for butanol estimation, was found to have 87.5% concordance with the data from gas chromatographic analysis. PMID:25966390

  8. A precise spectrophotometric method for measuring sodium dodecyl sulfate concentration.

    PubMed

    Rupprecht, Kevin R; Lang, Ewa Z; Gregory, Svetoslava D; Bergsma, Janet M; Rae, Tracey D; Fishpaugh, Jeffrey R

    2015-10-01

    Sodium dodecyl sulfate (SDS) is used to denature and solubilize proteins, especially membrane and other hydrophobic proteins. A quantitative method to determine the concentration of SDS using the dye Stains-All is known. However, this method lacks the accuracy and reproducibility necessary for use with protein solutions where SDS concentration is a critical factor, so we modified this method after examining multiple parameters (solvent, pH, buffers, and light exposure). The improved method is simple to implement, robust, accurate, and (most important) precise. PMID:26150094

  9. Novel two wavelength spectrophotometric methods for simultaneous determination of binary mixtures with severely overlapping spectra.

    PubMed

    Lotfy, Hayam M; Saleh, Sarah S; Hassan, Nagiba Y; Salem, Hesham

    2015-02-01

    This work presents the application of different spectrophotometric techniques based on two wavelengths for the determination of severely overlapped spectral components in a binary mixture without prior separation. Four novel spectrophotometric methods were developed namely: induced dual wavelength method (IDW), dual wavelength resolution technique (DWRT), advanced amplitude modulation method (AAM) and induced amplitude modulation method (IAM). The results of the novel methods were compared to that of three well-established methods which were: dual wavelength method (DW), Vierordt's method (VD) and bivariate method (BV). The developed methods were applied for the analysis of the binary mixture of hydrocortisone acetate (HCA) and fusidic acid (FSA) formulated as topical cream accompanied by the determination of methyl paraben and propyl paraben present as preservatives. The specificity of the novel methods was investigated by analyzing laboratory prepared mixtures and the combined dosage form. The methods were validated as per ICH guidelines where accuracy, repeatability, inter-day precision and robustness were found to be within the acceptable limits. The results obtained from the proposed methods were statistically compared with official ones where no significant difference was observed. No difference was observed between the obtained results when compared to the reported HPLC method, which proved that the developed methods could be alternative to HPLC techniques in quality control laboratories. PMID:25467671

  10. Novel two wavelength spectrophotometric methods for simultaneous determination of binary mixtures with severely overlapping spectra

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam M.; Saleh, Sarah S.; Hassan, Nagiba Y.; Salem, Hesham

    2015-02-01

    This work presents the application of different spectrophotometric techniques based on two wavelengths for the determination of severely overlapped spectral components in a binary mixture without prior separation. Four novel spectrophotometric methods were developed namely: induced dual wavelength method (IDW), dual wavelength resolution technique (DWRT), advanced amplitude modulation method (AAM) and induced amplitude modulation method (IAM). The results of the novel methods were compared to that of three well-established methods which were: dual wavelength method (DW), Vierordt's method (VD) and bivariate method (BV). The developed methods were applied for the analysis of the binary mixture of hydrocortisone acetate (HCA) and fusidic acid (FSA) formulated as topical cream accompanied by the determination of methyl paraben and propyl paraben present as preservatives. The specificity of the novel methods was investigated by analyzing laboratory prepared mixtures and the combined dosage form. The methods were validated as per ICH guidelines where accuracy, repeatability, inter-day precision and robustness were found to be within the acceptable limits. The results obtained from the proposed methods were statistically compared with official ones where no significant difference was observed. No difference was observed between the obtained results when compared to the reported HPLC method, which proved that the developed methods could be alternative to HPLC techniques in quality control laboratories.

  11. Resolution of overlapped spectra for the determination of ternary mixture using different and modified spectrophotometric methods

    NASA Astrophysics Data System (ADS)

    Moussa, Bahia Abbas; El-Zaher, Asmaa Ahmed; Mahrouse, Marianne Alphonse; Ahmed, Maha Said

    2016-08-01

    Four new spectrophotometric methods were developed, applied to resolve the overlapped spectra of a ternary mixture of [aliskiren hemifumarate (ALS)-amlodipine besylate (AM)-hydrochlorothiazide (HCT)] and to determine the three drugs in pure form and in combined dosage form. Method A depends on simultaneous determination of ALS, AM and HCT using principal component regression and partial least squares chemometric methods. In Method B, a modified isosbestic spectrophotometric method was applied for the determination of the total concentration of ALS and HCT by measuring the absorbance at 274.5 nm (isosbestic point, Aiso). On the other hand, the concentration of HCT in ternary mixture with ALS and AM could be calculated without interference using first derivative spectrophotometric method by measuring the amplitude at 279 nm (zero crossing of ALS and zero value of AM). Thus, the content of ALS was calculated by subtraction. Method C, double divisor first derivative ratio spectrophotometry (double divisor 1DD method), was based on that for the determination of one drug, the ratio spectra were obtained by dividing the absorption spectra of its different concentrations by the sum of the absorption spectra of the other two drugs as a double divisor. The first derivative of the obtained ratio spectra were then recorded using the appropriate smoothing factor. The amplitudes at 291 nm, 380 nm and 274.5 nm were selected for the determination of ALS, AM and HCT in their ternary mixture, respectively. Method D was based on mean centering of ratio spectra. The mean centered values at 287, 295.5 and 269 nm were recorded and used for the determination of ALS, AM and HCT, respectively. The developed methods were validated according to ICH guidelines and proved to be accurate, precise and selective. Satisfactory results were obtained by applying the proposed methods to the analysis of pharmaceutical dosage form.

  12. Resolution of overlapped spectra for the determination of ternary mixture using different and modified spectrophotometric methods.

    PubMed

    Moussa, Bahia Abbas; El-Zaher, Asmaa Ahmed; Mahrouse, Marianne Alphonse; Ahmed, Maha Said

    2016-08-01

    Four new spectrophotometric methods were developed, applied to resolve the overlapped spectra of a ternary mixture of [aliskiren hemifumarate (ALS)-amlodipine besylate (AM)-hydrochlorothiazide (HCT)] and to determine the three drugs in pure form and in combined dosage form. Method A depends on simultaneous determination of ALS, AM and HCT using principal component regression and partial least squares chemometric methods. In Method B, a modified isosbestic spectrophotometric method was applied for the determination of the total concentration of ALS and HCT by measuring the absorbance at 274.5nm (isosbestic point, Aiso). On the other hand, the concentration of HCT in ternary mixture with ALS and AM could be calculated without interference using first derivative spectrophotometric method by measuring the amplitude at 279nm (zero crossing of ALS and zero value of AM). Thus, the content of ALS was calculated by subtraction. Method C, double divisor first derivative ratio spectrophotometry (double divisor (1)DD method), was based on that for the determination of one drug, the ratio spectra were obtained by dividing the absorption spectra of its different concentrations by the sum of the absorption spectra of the other two drugs as a double divisor. The first derivative of the obtained ratio spectra were then recorded using the appropriate smoothing factor. The amplitudes at 291nm, 380nm and 274.5nm were selected for the determination of ALS, AM and HCT in their ternary mixture, respectively. Method D was based on mean centering of ratio spectra. The mean centered values at 287, 295.5 and 269nm were recorded and used for the determination of ALS, AM and HCT, respectively. The developed methods were validated according to ICH guidelines and proved to be accurate, precise and selective. Satisfactory results were obtained by applying the proposed methods to the analysis of pharmaceutical dosage form. PMID:27128521

  13. Validated univariate and multivariate spectrophotometric methods for the determination of pharmaceuticals mixture in complex wastewater.

    PubMed

    Riad, Safaa M; Salem, Hesham; Elbalkiny, Heba T; Khattab, Fatma I

    2015-04-01

    Five, accurate, precise, and sensitive univariate and multivariate spectrophotometric methods were developed for the simultaneous determination of a ternary mixture containing Trimethoprim (TMP), Sulphamethoxazole (SMZ) and Oxytetracycline (OTC) in waste water samples collected from different cites either production wastewater or livestock wastewater after their solid phase extraction using OASIS HLB cartridges. In univariate methods OTC was determined at its λmax 355.7 nm (0D), while (TMP) and (SMZ) were determined by three different univariate methods. Method (A) is based on successive spectrophotometric resolution technique (SSRT). The technique starts with the ratio subtraction method followed by ratio difference method for determination of TMP and SMZ. Method (B) is successive derivative ratio technique (SDR). Method (C) is mean centering of the ratio spectra (MCR). The developed multivariate methods are principle component regression (PCR) and partial least squares (PLS). The specificity of the developed methods is investigated by analyzing laboratory prepared mixtures containing different ratios of the three drugs. The obtained results are statistically compared with those obtained by the official methods, showing no significant difference with respect to accuracy and precision at p=0.05. PMID:25637816

  14. Validated univariate and multivariate spectrophotometric methods for the determination of pharmaceuticals mixture in complex wastewater

    NASA Astrophysics Data System (ADS)

    Riad, Safaa M.; Salem, Hesham; Elbalkiny, Heba T.; Khattab, Fatma I.

    2015-04-01

    Five, accurate, precise, and sensitive univariate and multivariate spectrophotometric methods were developed for the simultaneous determination of a ternary mixture containing Trimethoprim (TMP), Sulphamethoxazole (SMZ) and Oxytetracycline (OTC) in waste water samples collected from different cites either production wastewater or livestock wastewater after their solid phase extraction using OASIS HLB cartridges. In univariate methods OTC was determined at its λmax 355.7 nm (0D), while (TMP) and (SMZ) were determined by three different univariate methods. Method (A) is based on successive spectrophotometric resolution technique (SSRT). The technique starts with the ratio subtraction method followed by ratio difference method for determination of TMP and SMZ. Method (B) is successive derivative ratio technique (SDR). Method (C) is mean centering of the ratio spectra (MCR). The developed multivariate methods are principle component regression (PCR) and partial least squares (PLS). The specificity of the developed methods is investigated by analyzing laboratory prepared mixtures containing different ratios of the three drugs. The obtained results are statistically compared with those obtained by the official methods, showing no significant difference with respect to accuracy and precision at p = 0.05.

  15. Simultaneous determination of a binary mixture of pantoprazole sodium and itopride hydrochloride by four spectrophotometric methods

    NASA Astrophysics Data System (ADS)

    Ramadan, Nesrin K.; El-Ragehy, Nariman A.; Ragab, Mona T.; El-Zeany, Badr A.

    2015-02-01

    Four simple, sensitive, accurate and precise spectrophotometric methods were developed for the simultaneous determination of a binary mixture containing Pantoprazole Sodium Sesquihydrate (PAN) and Itopride Hydrochloride (ITH). Method (A) is the derivative ratio method (1DD), method (B) is the mean centering of ratio spectra method (MCR), method (C) is the ratio difference method (RD) and method (D) is the isoabsorptive point coupled with third derivative method (3D). Linear correlation was obtained in range 8-44 μg/mL for PAN by the four proposed methods, 8-40 μg/mL for ITH by methods A, B and C and 10-40 μg/mL for ITH by method D. The suggested methods were validated according to ICH guidelines. The obtained results were statistically compared with those obtained by the official and a reported method for PAN and ITH, respectively, showing no significant difference with respect to accuracy and precision.

  16. Optical methods for monitoring temperature in spectrophotometric analysers.

    PubMed

    O'Leary, T D; Badenoch, J L; Bais, R

    1983-05-01

    A procedure is described for monitoring the temperature in the reaction cuvettes of analytical systems that use photometers. The method employs the temperature-dependent change in absorbance of solutions of either 3,5-dinitrosalicylic acid or cresol red. The procedure is simple to perform and is especially useful in monitoring the temperature in instruments such as centrifugal analysers where the reaction cuvette is inaccessible. In some of the instruments studied, methodological changes were required to ensure that reactions were carried out at the selected temperature. PMID:6881899

  17. Study of the behaviour of various phenolic compounds in the 4-aminoantipyrine and ultraviolet-ratio spectrophotometric methods without and with distillation.

    PubMed

    Farino, J; Norwitz, G; Boyko, W J; Keliher, P N

    1981-09-01

    It is customary in industrial analysis in the determination of phenols by the 4-aminoantipyrine (4-AAP) and ultraviolet-ratio spectrophotometric methods to report the total of phenolic compounds as phenol. A study was therefore made of the behaviour of 36 representative phenolic compounds in the 4-AAP and UV-ratio methods, with and without distillation, to ascertain the apparent recoveries relative to that for phenol. The Fisher phenol analyser was used for the UV-ratio method, which depends upon the bathochromic shift (from about 270 to about 290 nm) usually obtained when the solution of the phenol is made alkaline. The apparent recoveries by the 4-AAP method both with and without distillation varied from 0 to 100%. The apparent recoveries by the UV-ratio method without distillation varied from 0 to 148%, and those with distillation varied from 0 to 110%. Sixteen of the compounds tested without distillation gave less than 10% recovery by the 4-AAP method and eleven gave less than 10% recovery by the UV-ratio method. The results after distillation indicated that several of the compounds did not distil completely. PMID:18962987

  18. Spectrophotometric methods for simultaneous determination of ternary mixture of amlodipine besylate, olmesartan medoxomil and hydrochlorothiazide

    NASA Astrophysics Data System (ADS)

    Merey, Hanan A.; Ramadan, Nesrin K.; Diab, Sherine S.; Moustafa, Azza A.

    Four, accurate, precise, and sensitive spectrophotometric methods are developed for the simultaneous determination of a ternary mixture containing amlodipine besylate (AM), olmesartan medoxomil (OL) and hydrochlorothiazide (HZ), where AM is determined at its λmax 364.6 nm (0D), while (OL) and (HZ) are determined by different methods. Method (A) depends on determining OL and HZ by measuring the second derivative of the ratio spectra (2DD) at 254.4 and 338.6 nm, respectively. Method (B) is first derivative of the double divisor ratio spectra (D-1DD) at 260.4 and 273.0 nm for OL and HZ, respectively. Method (C) based on successive spectrophotometric resolution technique (SSRT). The technique starts with the ratio subtraction method then measuring OL and HZ at their isoabsorptive point at 260.0 nm, while HZ is measured using the amplitude of first derivative at 335.2 nm. Method (D) is mean centering of the ratio spectra (MCR) at 252.0 nm and 220.0 nm for OL and HZ, respectively. The specificity of the developed methods is investigated by analyzing laboratory prepared mixtures containing different ratios of the three drugs and their combined dosage form. The obtained results are statistically compared with those obtained by the official or reported methods, showing no significant difference with respect to accuracy and precision at p = 0.05.

  19. Spectrophotometric methods for simultaneous determination of ternary mixture of amlodipine besylate, olmesartan medoxomil and hydrochlorothiazide.

    PubMed

    Merey, Hanan A; Ramadan, Nesrin K; Diab, Sherine S; Moustafa, Azza A

    2014-05-01

    Four, accurate, precise, and sensitive spectrophotometric methods are developed for the simultaneous determination of a ternary mixture containing amlodipine besylate (AM), olmesartan medoxomil (OL) and hydrochlorothiazide (HZ), where AM is determined at its λ(max) 364.6 nm ((0)D), while (OL) and (HZ) are determined by different methods. Method (A) depends on determining OL and HZ by measuring the second derivative of the ratio spectra ((2)DD) at 254.4 and 338.6 nm, respectively. Method (B) is first derivative of the double divisor ratio spectra (D-(1)DD) at 260.4 and 273.0 nm for OL and HZ, respectively. Method (C) based on successive spectrophotometric resolution technique (SSRT). The technique starts with the ratio subtraction method then measuring OL and HZ at their isoabsorptive point at 260.0 nm, while HZ is measured using the amplitude of first derivative at 335.2 nm. Method (D) is mean centering of the ratio spectra (MCR) at 252.0 nm and 220.0 nm for OL and HZ, respectively. The specificity of the developed methods is investigated by analyzing laboratory prepared mixtures containing different ratios of the three drugs and their combined dosage form. The obtained results are statistically compared with those obtained by the official or reported methods, showing no significant difference with respect to accuracy and precision at p=0.05. PMID:24534425

  20. Determination of gelation dose of poly(vinyl acetate) by a spectrophotometric method

    NASA Astrophysics Data System (ADS)

    Güven, Olgun; Yiǧit, Fatma

    The gelation point is an important property of polymers undergoing crosslinking when subjected to high energy radiation. This point is generally determined by viscometric and solubility methods or by mechanic measurements. When crosslinking and discoloration take place simultaneously, gelation doses can be determined spectrophotometrically. In this work it is demonstrated that the gelation dose of poly(vinyl acetate) can be determined by simply recording the u.v.-vis. spectra of the solutions of γ-irradiated polymer. The reliability of the method is verified by viscometric and solubility measurements.

  1. Determination of niobium in rocks by an isotope dilution spectrophotometric method

    USGS Publications Warehouse

    Greenland, L.P.; Campbell, E.Y.

    1970-01-01

    Rocks and minerals are fused with sodium peroxide in the presence of carrierfree 95Nb. The fusion cake is leached with water and the precipitate dissolved in hydrofluoric-sulfuric acid mixture. Niobium is extracted into methyl isobutyl ketone and further purified by ion exchange. The amount of niobium is determined spectrophotometrically with 4-(2-pyridylazo)-resorcinol, and the chemical yield of the separations determined by counting 95Nb. This procedure is faster and less sensitive to interferences than previously proposed methods for determining niobium in rocks.The high purity of the separated niobium makes the method applicable to nearly all matrices. ?? 1970.

  2. “Evaluation of sealing ability of MM-MTA, Endosequence, and biodentine as furcation repair materials: UV spectrophotometric analysis”

    PubMed Central

    Jeevani, Eppala; Jayaprakash, Thumu; Bolla, Nagesh; Vemuri, Sayesh; Sunil, Chukka Ram; Kalluru, Rama S

    2014-01-01

    Aim: To evaluate the sealing ability of MICRO-MEGA Mineral Trioxide Aggregate, Endosequence, Biodentine as furcation repair materials using a dye extraction leakage method. Materials and Methods: Forty mandibular molars were randomly divided according to the material used for perforation repair. Group I- (left unsealed) control, Group II-MICRO-MEGA Mineral Trioxide Aggregate, Group III - Endosequence, Group IV - Biodentine. All samples were subjected to orthograde and retrograde methylene blue dye challenge followed by dye extraction with 65% nitric acid. Samples were then analyzed using Ultra violet (UV) Visible Spectrophotometer. Results: Biodentine showed highest dye absorbance, whereas Endosequence showed lowest dye absorbance when compared with other repair materials. Conclusion: Within the limitations of this study, it was observed that Endosequence showed better sealing ability when compared with other root repair materials. PMID:25125846

  3. Sensitive extractive spectrophotometric methods for the determination of nortriptyline hydrochloride in pharmaceutical formulations.

    PubMed

    Misiuk, Wieslawa; Tykocka, Agnieszka

    2007-12-01

    Two simple, sensitive and rapid extractive spectrophotometric methods have been developed for the assay of the antidepressant drug nortriptyline (NOR) hydrochloride in pure form and in different dosage forms. The methods involve the formation of colored ion-pairs between the drug and the complex of niobium(V)-thiocyanate (Nb-SCN) or iron(III)-thiocyanate (Fe-SCN) followed by their extraction with butanol or a mixture of butanol and chloroform and quantitative determination at 360 nm and 490 nm, using Nb-SCN and Fe-SCN, respectively. The experimental conditions were optimized to obtain the maximum colour intensity. The methods permit the determination of nortriptyline over a concentration range of 15-100 microg/ml and 5-24 microg/ml with the detection limit of 0.84 microg/ml and 0.32 microg/ml, using Nb-SCN and Fe-SCN, respectively. The proposed methods are applicable for the assay of the investigated drug in different dosage forms and the results are in good agreement with those obtained by the official and HPLC methods. No interference was observed from common excipients present in pharmaceutical formulations. The proposed procedures were applied to determine the amount of nortriptyline hydrochloride as active ingredient in the presence of its degradation product, dibenzosuberone. The extractive spectrophotometric methods can also be used to determine the amount of nortriptyline hydrochloride in tablets after its solid phase extraction (SPE). PMID:18057736

  4. Development and Validation of Simultaneous Spectrophotometric Methods for Drotaverine Hydrochloride and Aceclofenac from Tablet Dosage Form

    PubMed Central

    Shah, S. A.; Shah, D. R.; Chauhan, R. S.; Jain, J. R.

    2011-01-01

    Two simple spectrophotometric methods have been developed for simultaneous estimation of drotaverine hydrochloride and aceclofenac from tablet dosage form. Method I is a simultaneous equation method (Vierodt's method), wavelengths selected are 306.5 and 276 nm. Method II is the absorbance ratio method (Q-Analysis), which employs 298.5 nm as λ1 and 276 nm as λ2 (λmax of AF) for formation of equations. Both the methods were found to be linear between the range of 8-32 μg/ml for drotaverine and 10-40 μg/ml for aceclofenac. The accuracy and precision were determined and found to comply with ICH guidelines. Both the methods showed good reproducibility and recovery with % RSD in the desired range. The methods were found to be rapid, specific, precise and accurate and can be successfully applied for the routine analysis of drotaverine and aceclofenac in their combined tablet dosage form. PMID:22457554

  5. Field determination of trace iron in fresh water samples by visual and spectrophotometric methods.

    PubMed

    Kawakubo, Susumu; Naito, Ayako; Fujihara, Asuka; Iwatsuki, Masaki

    2004-08-01

    Sensitive visual and micro spectrophotometric methods have been developed for field determination of trace iron in fresh water samples. For the visual method, a water sample (0.45-microm filtrate acidified to 0.1 M HCl) was placed in a glass vial and mixed with a reagent solution containing 1,10-phenanthroline, sodium thiocyanate and 0.1 M HCl. Iron was extracted as pink ferroin thiocyanate with 1 ml of 4-methy-2-pentanone. The sample up to 20 ml was added step-by-step, until the color of the extract was detected visually. Without any special instrument or color standard, iron down to 0.001 mg 1(-1) (0.025 microg) in a sample can be determined with an error of 20% in the field. For the micro spectrophotometric method, the extract for 20 ml of sample was separated by capillary suction in a column (micro pipette chip) with acrylic fibers. A part of the extract was pushed out into a micro cell for the absorbance measurement at 525 nm. The column was re-usable after washing with ethanol. This method had a detection limit of 0.001 mg 1(-1) and allowed determinations within an error of 5%. The proposed methods were applied to deionized-, tap-, river-, lake- and reservoir-water samples. PMID:15352504

  6. Quantification of Rifaximin in Tablets by Spectrophotometric Method Ecofriendly in Ultraviolet Region

    PubMed Central

    2016-01-01

    Rifaximin is an oral nonabsorbable antibiotic that acts locally in the gastrointestinal tract with minimal systemic adverse effects. It does not have spectrophotometric method ecofriendly in the ultraviolet region described in official compendiums and literature. The analytical techniques for determination of rifaximin reported in the literature require large amount of time to release results and are significantly onerous. Furthermore, they use toxic reagents both for the operator and environment and, therefore, cannot be considered environmentally friendly analytical techniques. The objective of this study was to develop and validate an ecofriendly spectrophotometric method in the ultraviolet region to quantify rifaximin in tablets. The method was validated, showing linearity, selectivity, precision, accuracy, and robustness. It was linear over the concentration range of 10–30 mg L−1 with correlation coefficients greater than 0.9999 and limits of detection and quantification of 1.39 and 4.22 mg L−1, respectively. The validated method is useful and applied for the routine quality control of rifaximin, since it is simple with inexpensive conditions and fast in the release of results, optimizes analysts and equipment, and uses environmentally friendly solvents, being considered a green method, which does not prejudice either the operator or the environment. PMID:27429835

  7. Optimization of a direct spectrophotometric method to investigate the kinetics and inhibition of sialidases

    PubMed Central

    2012-01-01

    Backgrounds Streptococcus pneumoniae expresses three distinct sialidases, NanA, NanB, and NanC, that are believed to be key virulence factors and thus, potential important drug targets. We previously reported that the three enzymes release different products from sialosides, but could share a common catalytic mechanism before the final step of product formation. However, the kinetic investigations of the three sialidases have not been systematically done thus far, due to the lack of an easy and steady measurement of sialidase reaction rate. Results In this work, we present further kinetic characterization of pneumococcal sialidases by using a direct spectrophotometric method with the chromogenic substrate p-nitrophenyl-N-acetylneuraminic acid (p-NP-Neu5Ac). Using our assay, the measured kinetic parameters of the three purified pneumococcal sialidase, NanA, NanB and NanC, were obtained and were in perfect agreement with the previously published data. The major advantage of this alternative method resides in the direct measurement of the released product, allowing to readily determine of initial reaction rates and record complete hydrolysis time courses. Conclusion We developed an accurate, fast and sensitive spectrophotometric method to investigate the kinetics of sialidase-catalyzed reactions. This fast, sensitive, inexpensive and accurate method could benefit the study of the kinetics and inhibition of sialidases in general. PMID:23031230

  8. Simultaneous determination of some anti-hypertensive drugs in their binary mixture by novel spectrophotometric methods

    NASA Astrophysics Data System (ADS)

    Fayez, Yasmin Mohammed

    2014-11-01

    Three simple, accurate and precise spectrophotometric methods manipulating ratio spectra were developed and validated for simultaneous determination of Irbesartan (IRB) and Hydrochlorothiazide (HCT) without prior separation namely; ratio subtraction coupled with constant multiplication (RS-CM), ratio difference (RD) and constant center (CC). The accuracy, precision and linearity ranges of the proposed methods were determined, and the methods were validated and the specificity was assessed by analyzing synthetic mixtures containing the cited drugs. The three methods were applied for the determination of the cited drugs in tablets and the obtained results were statistically compared with each other and with those of official methods. The comparison showed that there is no significant difference between the proposed methods and the official methods regarding both accuracy and precision.

  9. Spectrophotometric Methods for Simultaneous Determination of Amlodipine Besylate and Atenolol in Their Tablet Dosage Form.

    PubMed

    Lamie, Nesrine T

    2015-12-01

    Three simple, specific, accurate and precise spectrophotometric methods are developed for simultaneous determination of amlodipine besylate (AM) and atenolol (AT) in tablets. The first method is dual wavelength spectrophotometry (DW). The second method is ratio subtraction (RS) which depends on subtraction of the plateau values from the ratio spectrum, coupled to first derivative of ratio spectra (¹DD). The third method applies bivariate calibration method using 210 and 225 nm as an optimum pair of wavelength for amlodipine and atenolol. The calibration curves are linear over the concentration range of 4-40 µg · mL⁻¹ for both drugs. The specificity of the developed methods is investigated by analyzing laboratory prepared mixtures of the two drugs and their combined dosage form. The two methods are validated as per ICH guidelines and can be applied for routine quality control testing. PMID:26964246

  10. HPLC and chemometrics-assisted UV-spectroscopy methods for the simultaneous determination of ambroxol and doxycycline in capsule.

    PubMed

    Hadad, Ghada M; El-Gindy, Alaa; Mahmoud, Waleed M M

    2008-08-01

    High-performance liquid chromatography (HPLC) and multivariate spectrophotometric methods are described for the simultaneous determination of ambroxol hydrochloride (AM) and doxycycline (DX) in combined pharmaceutical capsules. The chromatographic separation was achieved on reversed-phase C(18) analytical column with a mobile phase consisting of a mixture of 20mM potassium dihydrogen phosphate, pH 6-acetonitrile in ratio of (1:1, v/v) and UV detection at 245 nm. Also, the resolution has been accomplished by using numerical spectrophotometric methods as classical least squares (CLS), principal component regression (PCR) and partial least squares (PLS-1) applied to the UV spectra of the mixture and graphical spectrophotometric method as first derivative of the ratio spectra ((1)DD) method. Analytical figures of merit (FOM), such as sensitivity, selectivity, analytical sensitivity, limit of quantitation and limit of detection were determined for CLS, PLS-1 and PCR methods. The proposed methods were validated and successfully applied for the analysis of pharmaceutical formulation and laboratory-prepared mixtures containing the two component combination. PMID:17931962

  11. HPLC and chemometrics-assisted UV-spectroscopy methods for the simultaneous determination of ambroxol and doxycycline in capsule

    NASA Astrophysics Data System (ADS)

    Hadad, Ghada M.; El-Gindy, Alaa; Mahmoud, Waleed M. M.

    2008-08-01

    High-performance liquid chromatography (HPLC) and multivariate spectrophotometric methods are described for the simultaneous determination of ambroxol hydrochloride (AM) and doxycycline (DX) in combined pharmaceutical capsules. The chromatographic separation was achieved on reversed-phase C 18 analytical column with a mobile phase consisting of a mixture of 20 mM potassium dihydrogen phosphate, pH 6-acetonitrile in ratio of (1:1, v/v) and UV detection at 245 nm. Also, the resolution has been accomplished by using numerical spectrophotometric methods as classical least squares (CLS), principal component regression (PCR) and partial least squares (PLS-1) applied to the UV spectra of the mixture and graphical spectrophotometric method as first derivative of the ratio spectra ( 1DD) method. Analytical figures of merit (FOM), such as sensitivity, selectivity, analytical sensitivity, limit of quantitation and limit of detection were determined for CLS, PLS-1 and PCR methods. The proposed methods were validated and successfully applied for the analysis of pharmaceutical formulation and laboratory-prepared mixtures containing the two component combination.

  12. Different Spectrophotometric and TLC-Densitometric Methods for Determination of Mesalazine in Presence of Its Two Toxic Impurities.

    PubMed

    Morcoss, Martha Moheb; Abdelwahab, Nada Sayed; Ali, Nouruddin Wagieh; Elsaady, Mohammed Taha

    2016-01-01

    Two selective spectrophotometric and TLC-densitometric methods were developed for determination of mesalazine (ME) and its two toxic impurities, 4-amino phenol (4AP) and salicylic acid (SA) without preliminary separation. The proposed methods are: ratio difference in the subtracted spectra (RDSS) {Method 1}, area under the curve (AUC) {Method 2} and TLC-densitometric {Method 3}. In method {1} combination of measuring the amplitude of the constant at 350 nm (using standard spectrum of 10 µg/mL ME as a divisor) and ratio difference in the subtracted ratio spectrum for determination of 4AP and SA using the ratio difference at 221.4 and 242.2 nm, 230 and 241.2 nm, respectively. In method {2} ME was determined by direct measuring the AUC in the wavelength range of 350-370 nm while the impurities could be determined by dividing their spectra by standard spectrum of 10 µg/mL ME then interference from ME was eliminated by subtracting the amplitude of the constant at 350 nm then multiplying by the divisor. AUC in the range of 220-230 and 235-245 nm was used for measuring concentrations of 4AP and SA. On the other hand, the third method {3} is TLC-densitometric method at which chromatographic separation was achieved using ethyl acetate-methanol-triethylamine (8.5 : 2 : 0.7, v/v/v) as a developing system with UV scanning at 230 nm. The validation of the proposed methods was performed according to International Conference on Harmonization (ICH) guidelines. No significant difference was found when these methods were compared to the reported one. PMID:27581631

  13. Development and Validation of Spectrophotometric, Atomic Absorption and Kinetic Methods for Determination of Moxifloxacin Hydrochloride

    PubMed Central

    Abdellaziz, Lobna M.; Hosny, Mervat M.

    2011-01-01

    Three simple spectrophotometric and atomic absorption spectrometric methods are developed and validated for the determination of moxifloxacin HCl in pure form and in pharmaceutical formulations. Method (A) is a kinetic method based on the oxidation of moxifloxacin HCl by Fe3+ ion in the presence of 1,10 o-phenanthroline (o-phen). Method (B) describes spectrophotometric procedures for determination of moxifloxacin HCl based on its ability to reduce Fe (III) to Fe (II), which was rapidly converted to the corresponding stable coloured complex after reacting with 2,2′ bipyridyl (bipy). The formation of the tris-complex formed in both methods (A) and (B) were carefully studied and their absorbance were measured at 510 and 520 nm respectively. Method (C) is based on the formation of ion- pair associated between the drug and bismuth (III) tetraiodide in acidic medium to form orange—red ion-pair associates. This associate can be quantitatively determined by three different procedures. The formed precipitate is either filtered off, dissolved in acetone and quantified spectrophotometrically at 462 nm (Procedure 1), or decomposed by hydrochloric acid, and the bismuth content is determined by direct atomic absorption spectrometric (Procedure 2). Also the residual unreacted metal complex in the filtrate is determined through its metal content using indirect atomic absorption spectrometric technique (procedure 3). All the proposed methods were validated according to the International Conference on Harmonization (ICH) guidelines, the three proposed methods permit the determination of moxifloxacin HCl in the range of (0.8–6, 0.8–4) for methods A and B, (16–96, 16–96 and 16–72) for procedures 1–3 in method C. The limits of detection and quantitation were calculated, the precision of the methods were satisfactory; the values of relative standard deviations did not exceed 2%. The proposed methods were successfully applied to determine the drug in its pharmaceutical

  14. A Simple Spectrophotometric Method for the Determination of Thiobarbituric Acid Reactive Substances in Fried Fast Foods.

    PubMed

    Zeb, Alam; Ullah, Fareed

    2016-01-01

    A simple and highly sensitive spectrophotometric method was developed for the determination of thiobarbituric acid reactive substances (TBARS) as a marker for lipid peroxidation in fried fast foods. The method uses the reaction of malondialdehyde (MDA) and TBA in the glacial acetic acid medium. The method was precise, sensitive, and highly reproducible for quantitative determination of TBARS. The precision of extractions and analytical procedure was very high as compared to the reported methods. The method was used to determine the TBARS contents in the fried fast foods such as Shami kebab, samosa, fried bread, and potato chips. Shami kebab, samosa, and potato chips have higher amount of TBARS in glacial acetic acid-water extraction system than their corresponding pure glacial acetic acid and vice versa in fried bread samples. The method can successfully be used for the determination of TBARS in other food matrices, especially in quality control of food industries. PMID:27123360

  15. A new spectrophotometric method for quantification of potassium solubilized by bacterial cultures.

    PubMed

    Rajawat, Mahendra Vikram Singh; Singh, Surender; Saxena, Anil Kumar

    2014-03-01

    A new spectrophotometric method was developed for the quantification of potassium in the culture broth supernatant of K-solubilizing bacteria. The standard curve of potassium with the new method, which is based on the measurement of cobalt, showed a regression coefficient (R2) of 0.998. The quantification values of potassium obtained with flame photometric method and the newly developed method showed a significant correlation (r) of 0.978. The new method depends on the precipitation of sodium cobaltinitrite with solubilized potassium in liquid medium as potassium sodium cobaltinitrite, which develops bluish green colour by the addition of conc. HCl. The intensity of developed colour can be recorded at 623 nm. This method involves less number of steps, is easy and time saving, and can be used for the reliable estimation of available potassium in culture broth supernatant of K-solubilizing bacteria. PMID:24669669

  16. A Simple Spectrophotometric Method for the Determination of Thiobarbituric Acid Reactive Substances in Fried Fast Foods

    PubMed Central

    Zeb, Alam; Ullah, Fareed

    2016-01-01

    A simple and highly sensitive spectrophotometric method was developed for the determination of thiobarbituric acid reactive substances (TBARS) as a marker for lipid peroxidation in fried fast foods. The method uses the reaction of malondialdehyde (MDA) and TBA in the glacial acetic acid medium. The method was precise, sensitive, and highly reproducible for quantitative determination of TBARS. The precision of extractions and analytical procedure was very high as compared to the reported methods. The method was used to determine the TBARS contents in the fried fast foods such as Shami kebab, samosa, fried bread, and potato chips. Shami kebab, samosa, and potato chips have higher amount of TBARS in glacial acetic acid-water extraction system than their corresponding pure glacial acetic acid and vice versa in fried bread samples. The method can successfully be used for the determination of TBARS in other food matrices, especially in quality control of food industries. PMID:27123360

  17. Novel spectrophotometric method for selective determination of compounds in ternary mixtures (dual wavelength in ratio spectra)

    NASA Astrophysics Data System (ADS)

    Saad, Ahmed S.

    2015-08-01

    A simple selective spectrophotometric method for determination of compounds in ternary mixture was developed by combining the resolution power of two well-known methods that are commonly used for binary mixtures; namely ratio difference method and dual wavelength. The new method (dual wavelength in ratio spectra) was successfully applied for the determination of a ternary mixture of betamethasone dipropionate (BM), clotrimazole (CT) and benzyl alcohol (BA) in pure powder form and in their pharmaceutical preparation. The difference in amplitudes (ΔP) in the ratio spectra at 252.0 and 258.0 nm (ΔP252.0-258.0nm) corresponds to BM, while ΔP266.8-255.4nm and ΔP254.2-243.5nm corresponds to CT and BA, respectively. The method was validated as per the USP 2005 guidelines. The developed method can be used in quality control laboratories for routine analysis of compounds in ternary mixtures.

  18. Three different spectrophotometric methods manipulating ratio spectra for determination of binary mixture of Amlodipine and Atorvastatin

    NASA Astrophysics Data System (ADS)

    Darwish, Hany W.; Hassan, Said A.; Salem, Maissa Y.; El-Zeiny, Badr A.

    2011-12-01

    Three simple, specific, accurate and precise spectrophotometric methods manipulating ratio spectra are developed for the simultaneous determination of Amlodipine besylate (AM) and Atorvastatin calcium (AT) in tablet dosage forms. The first method is first derivative of the ratio spectra ( 1DD), the second is ratio subtraction and the third is the method of mean centering of ratio spectra. The calibration curve is linear over the concentration range of 3-40 and 8-32 μg/ml for AM and AT, respectively. These methods are tested by analyzing synthetic mixtures of the above drugs and they are applied to commercial pharmaceutical preparation of the subjected drugs. Standard deviation is <1.5 in the assay of raw materials and tablets. Methods are validated as per ICH guidelines and accuracy, precision, repeatability and robustness are found to be within the acceptable limit.

  19. In Situ Spectrophotometric Determination of pH under Geologic CO2 Sequestration Conditions: Method Development and Application

    SciTech Connect

    Shao, Hongbo; Thompson, Christopher J.; Qafoku, Odeta; Cantrell, Kirk J.

    2013-02-25

    Injecting massive amounts of CO2 into deep geologic formations will cause a range of coupled thermal, hydrodynamic, mechanical, and chemical changes. A significant perturbation in water-saturated formations is the pH drop in the reservoir fluids due to CO2 dissolution. Knowing the pH under geological CO2 sequestration conditions is important for a better understanding of the short- and long-term risks associated with geological CO2 sequestration and will help in the design of sustainable sequestration projects. Most previous studies on CO2-rock-brine interactions have utilized thermodynamic modeling to estimate the pH. In this work, a spectrophotometric method was developed to determine the in-situ pH in CO2-H2O-NaCl systems in the presence and absence of reservoir rock by observing the spectra of a pH indicator, bromophenol blue, with a UV-visible spectrophotometer. Effects of temperature, pressure, and ionic strength on the pH measurement were evaluated. Measured pH values in CO2-H2O-NaCl systems were compared with several thermodynamic models. Results indicate that bromophenol blue can be used to accurately determine the pH of brine in contact with supercritical CO2 under geologic CO2 sequestration conditions.

  20. Room temperature solution studies of complexation between o-chloranil and a series of anilines by spectrophotometric method.

    PubMed

    Bhattacharya, S; Banerjee, M; Mukherjee, A K

    2001-10-01

    Electron donor-acceptor (EDA) complex formation between o-chloranil and a series of anilines has been studied in CCl4 medium. In all the cases, EDA complexes are formed instantaneously on mixing the donor and acceptor solutions. N,N-dimethylaniline and N,N-dimethyl-p-toluidine form stable EDA complexes with o-chloranil while the other complexes decay slowly into secondary products. The kinetics of all these reactions has been studied by UV-VIS absorption spectrophotometric method and the rate constants of the reactions and formation constants of the EDA complexes have been determined. The charge transfer (CT) transition energies of the complexes are found to change systematically with change in the number and position of the methyl groups in the donor molecules (methylanilines). From an analysis of this variation, the electron affinity of o-chloranil has been found to be 2.54 eV. A perturbational inductive effect Hückel parameter hMe has been found from this trend and the value obtained (-0.27) is very close to that (-0.3) obtained by Lepley (J. Am. Chem. Soc., 86 (1964) 2545) from a study of tetracyano ethylene (TCNE)-methylbenzene complexes. PMID:11767835

  1. Validated spectrophotometric methods for determination of sodium valproate based on charge transfer complexation reactions

    NASA Astrophysics Data System (ADS)

    Belal, Tarek S.; El-Kafrawy, Dina S.; Mahrous, Mohamed S.; Abdel-Khalek, Magdi M.; Abo-Gharam, Amira H.

    2016-02-01

    This work presents the development, validation and application of four simple and direct spectrophotometric methods for determination of sodium valproate (VP) through charge transfer complexation reactions. The first method is based on the reaction of the drug with p-chloranilic acid (p-CA) in acetone to give a purple colored product with maximum absorbance at 524 nm. The second method depends on the reaction of VP with dichlone (DC) in dimethylformamide forming a reddish orange product measured at 490 nm. The third method is based upon the interaction of VP and picric acid (PA) in chloroform resulting in the formation of a yellow complex measured at 415 nm. The fourth method involves the formation of a yellow complex peaking at 361 nm upon the reaction of the drug with iodine in chloroform. Experimental conditions affecting the color development were studied and optimized. Stoichiometry of the reactions was determined. The proposed spectrophotometric procedures were effectively validated with respect to linearity, ranges, precision, accuracy, specificity, robustness, detection and quantification limits. Calibration curves of the formed color products with p-CA, DC, PA and iodine showed good linear relationships over the concentration ranges 24-144, 40-200, 2-20 and 1-8 μg/mL respectively. The proposed methods were successfully applied to the assay of sodium valproate in tablets and oral solution dosage forms with good accuracy and precision. Assay results were statistically compared to a reference pharmacopoeial HPLC method where no significant differences were observed between the proposed methods and reference method.

  2. Validated spectrophotometric methods for determination of sodium valproate based on charge transfer complexation reactions.

    PubMed

    Belal, Tarek S; El-Kafrawy, Dina S; Mahrous, Mohamed S; Abdel-Khalek, Magdi M; Abo-Gharam, Amira H

    2016-02-15

    This work presents the development, validation and application of four simple and direct spectrophotometric methods for determination of sodium valproate (VP) through charge transfer complexation reactions. The first method is based on the reaction of the drug with p-chloranilic acid (p-CA) in acetone to give a purple colored product with maximum absorbance at 524nm. The second method depends on the reaction of VP with dichlone (DC) in dimethylformamide forming a reddish orange product measured at 490nm. The third method is based upon the interaction of VP and picric acid (PA) in chloroform resulting in the formation of a yellow complex measured at 415nm. The fourth method involves the formation of a yellow complex peaking at 361nm upon the reaction of the drug with iodine in chloroform. Experimental conditions affecting the color development were studied and optimized. Stoichiometry of the reactions was determined. The proposed spectrophotometric procedures were effectively validated with respect to linearity, ranges, precision, accuracy, specificity, robustness, detection and quantification limits. Calibration curves of the formed color products with p-CA, DC, PA and iodine showed good linear relationships over the concentration ranges 24-144, 40-200, 2-20 and 1-8μg/mL respectively. The proposed methods were successfully applied to the assay of sodium valproate in tablets and oral solution dosage forms with good accuracy and precision. Assay results were statistically compared to a reference pharmacopoeial HPLC method where no significant differences were observed between the proposed methods and reference method. PMID:26574649

  3. Kinetic spectrophotometric method for the determination of morphine in biological samples

    NASA Astrophysics Data System (ADS)

    Sheibani, A.; Shishehbore, M. Reza; Mirparizi, E.

    2010-10-01

    In this paper a simple, selective and inexpensive kinetic method was developed for the determination of morphine based on its inhibitory effect on the Janus green-bromate system in sulfuric acid media. The reaction was monitored spectrophotometrically at 618 nm by a fixed time method. The effect of different parameters such as concentration of reactants and temperature on the rate of reaction was investigated and optimum conditions were obtained. The calibration curve was linear in the concentration range 0.07-7.98 mg L -1 of morphine, and detection limit of the method was 3.0 × 10 -2 mg L -1. The relative standard deviation for five determinations of 3.74 mg L -1 of morphine was 0.57%. Finally, the proposed method was successfully applied to the determination of morphine in human urine and serum as real samples.

  4. Validated spectrophotometric methods for simultaneous determination of Omeprazole, Tinidazole and Doxycycline in their ternary mixture.

    PubMed

    Lotfy, Hayam M; Hegazy, Maha A; Mowaka, Shereen; Mohamed, Ekram Hany

    2016-01-15

    A comparative study of smart spectrophotometric techniques for the simultaneous determination of Omeprazole (OMP), Tinidazole (TIN) and Doxycycline (DOX) without prior separation steps is developed. These techniques consist of several consecutive steps utilizing zero/or ratio/or derivative spectra. The proposed techniques adopt nine simple different methods, namely direct spectrophotometry, dual wavelength, first derivative-zero crossing, amplitude factor, spectrum subtraction, ratio subtraction, derivative ratio-zero crossing, constant center, and successive derivative ratio method. The calibration graphs are linear over the concentration range of 1-20 μg/mL, 5-40 μg/mL and 2-30 μg/mL for OMP, TIN and DOX, respectively. These methods are tested by analyzing synthetic mixtures of the above drugs and successfully applied to commercial pharmaceutical preparation. The methods that are validated according to the ICH guidelines, accuracy, precision, and repeatability, were found to be within the acceptable limits. PMID:26322842

  5. Validated spectrophotometric methods for simultaneous determination of Omeprazole, Tinidazole and Doxycycline in their ternary mixture

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam M.; Hegazy, Maha A.; Mowaka, Shereen; Mohamed, Ekram Hany

    2016-01-01

    A comparative study of smart spectrophotometric techniques for the simultaneous determination of Omeprazole (OMP), Tinidazole (TIN) and Doxycycline (DOX) without prior separation steps is developed. These techniques consist of several consecutive steps utilizing zero/or ratio/or derivative spectra. The proposed techniques adopt nine simple different methods, namely direct spectrophotometry, dual wavelength, first derivative-zero crossing, amplitude factor, spectrum subtraction, ratio subtraction, derivative ratio-zero crossing, constant center, and successive derivative ratio method. The calibration graphs are linear over the concentration range of 1-20 μg/mL, 5-40 μg/mL and 2-30 μg/mL for OMP, TIN and DOX, respectively. These methods are tested by analyzing synthetic mixtures of the above drugs and successfully applied to commercial pharmaceutical preparation. The methods that are validated according to the ICH guidelines, accuracy, precision, and repeatability, were found to be within the acceptable limits.

  6. Determination of ametryn in sugarcane and ametryn-atrazine herbicide formulations using spectrophotometric method.

    PubMed

    Shah, Jasmin; Jan, M Rasul; Ara, Behisht; Shehzad, Farhat-Un-Nisa

    2012-06-01

    A sensitive spectrophotometric method has been developed for determination of ametryn in agricultural samples. The proposed method was based on reaction with pyridine and further coupling with sulfanilic acid to form a colored product. The absorbance was measured at 400 nm with a molar absorptivity of 2.1 x 10(5) L mol(-1) cm(-1). The method shows a linear range from 0.2-20 μg mL(-1) with limit of detection and limit of quantification 0.16 and 0.54 μg mL(-1), respectively. The method has been successfully applied to the determination of ametryn in sugarcane juice and commercial formulations after separation of ametryn from triazine herbicides based on solvent extraction. Recovery values were found to be in the range of 96.0 ± 0.2% to 98.4  ±  0.1%. PMID:21713463

  7. Synthesis of nanomagnetic fluids and their UV spectrophotometric response with aliphatic organic acids and 1st tier dendrimers

    NASA Astrophysics Data System (ADS)

    Pandya, Shivani R.; Singh, Man

    2016-04-01

    Synthesis of Magnetic nanoparticles were made using coprecipitation method on mixing Fe+3 and Fe+2 in 2:1 ratio with aqueous 8M NaOH which on heating at 90°C for 2 h has yielded 85% magnetic (Fe3O4) nanoparticles (MNPs), characterized by XRD, VSM, SEM, and HR-TEM. The formic acid (FA), oxalic acid (OA) and citric acid (CA), the series of aliphatic organic acids along with Trimesoyl 1, 3, 5 tridimethyl malonate (TTDMM), trimesoyl 1, 3, 5 tridiethyl malonate (TTDEM), trimesoyl 1, 3, 5 tridipropyl malonate (TTDPM), trimesoyl 1, 3, 5 tridibutyl malonate (TTDBM) and trimesoyl 1, 3, 5 tridihexyl malonate (TTDHM) 1st tier dendrimers were used separately for preparing nanomagnetic fluid. From 25 to 150 µM MNPs at an interval of 25 µM were dispersed in 150 µM of acids and dendrimers separately with DMSO. UV-VIS spectrophotometry showed a maximum MNPs dispersion with TTDMM against others and found to be most stable nanomagnetic fluid on account of capping type mechanism of acids.

  8. p Ka determinations of xanthene derivates in aqueous solutions by multivariate analysis applied to UV-Vis spectrophotometric data

    NASA Astrophysics Data System (ADS)

    Batistela, Vagner Roberto; Pellosi, Diogo Silva; de Souza, Franciane Dutra; da Costa, Willian Ferreira; de Oliveira Santin, Silvana Maria; de Souza, Vagner Roberto; Caetano, Wilker; de Oliveira, Hueder Paulo Moisés; Scarminio, Ieda Spacino; Hioka, Noboru

    2011-09-01

    Xanthenes form to an important class of dyes which are widely used. Most of them present three acid-base groups: two phenolic sites and one carboxylic site. Therefore, the p Ka determination and the attribution of each group to the corresponding p Ka value is a very important feature. Attempts to obtain reliable p Ka through the potentiometry titration and the electronic absorption spectrophotometry using the first and second orders derivative failed. Due to the close p Ka values allied to strong UV-Vis spectral overlap, multivariate analysis, a powerful chemometric method, is applied in this work. The determination was performed for eosin Y, erythrosin B, and bengal rose B, and also for other synthesized derivatives such as 2-(3,6-dihydroxy-9-acridinyl) benzoic acid, 2,4,5,7-tetranitrofluorescein, eosin methyl ester, and erythrosin methyl ester in water. These last two compounds (esters) permitted to attribute the p Ka of the phenolic group, which is not easily recognizable for some investigated dyes. Besides the p Ka determination, the chemometry allowed for estimating the electronic spectrum of some prevalent protolytic species and the substituents effects evaluation.

  9. Validated kinetic spectrophotometric method for the determination of metoprolol tartrate in pharmaceutical formulations.

    PubMed

    Rahman, Nafisur; Rahman, Habibur; Azmi, Syed Najmul Hejaz

    2005-08-01

    A kinetic spectrophotometric method has been described for the determination of metoprolol tartrate in pharmaceutical formulations. The method is based on reaction of the drug with alkaline potassium permanganate at 25+/-1 degrees C. The reaction is followed spectrophotometrically by measuring the change in absorbance at 610 nm as a function of time. The initial rate and fixed time (at 15.0 min) methods are utilized for constructing the calibration graphs to determine the concentration of the drug. Both the calibration graphs are linear in the concentration range of 1.46 x 10(-6)-8.76 x 10(-6) M (10.0-60.0 microg per 10 ml). The calibration data resulted in the linear regression equations of log (rate)=3.634+0.999 log C and A=6.300 x 10(-4)+6.491 x 10(-2) C for initial-rate and fixed time methods, respectively. The limits of quantitation for initial rate and fixed time methods are 0.04 and 0.10 microg ml(-1), respectively. The activation parameters such as E(a), DeltaH(double dagger), DeltaS(double dagger) and DeltaG(double dagger) are also evaluated for the reaction and found to be 90.73 kJ mol(-1), 88.20 kJ mol(-1), 84.54 J K(-1) mol(-1) and 63.01 kJ mol(-1), respectively. The results are validated statistically and through recovery studies. The method has been successfully applied to the determination of metoprolol tartrate in pharmaceutical formulations. Statistical comparison of the results with the reference method shows excellent agreement and indicates no significant difference in accuracy and precision. PMID:16079525

  10. Development and Validation of Stability-Indicating Derivative Spectrophotometric Methods for Determination of Dronedarone Hydrochloride

    NASA Astrophysics Data System (ADS)

    Chadha, R.; Bali, A.

    2016-05-01

    Rapid, sensitive, cost effective and reproducible stability-indicating derivative spectrophotometric methods have been developed for the estimation of dronedarone HCl employing peak-zero (P-0) and peak-peak (P-P) techniques, and their stability-indicating potential assessed in forced degraded solutions of the drug. The methods were validated with respect to linearity, accuracy, precision and robustness. Excellent linearity was observed in concentrations 2-40 μg/ml (r 2 = 0.9986). LOD and LOQ values for the proposed methods ranged from 0.42-0.46 μg/ml and 1.21-1.27 μg/ml, respectively, and excellent recovery of the drug was obtained in the tablet samples (99.70 ± 0.84%).

  11. Sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts

    SciTech Connect

    Paoletti, F.; Aldinucci, D.; Mocali, A.; Caparrini, A.

    1986-05-01

    Superoxide dismutase (EC 1.15.1.1) has been assayed by a spectrophotometric method based on the inhibition of a superoxide-driven NADH oxidation. The assay consists of a purely chemical reaction sequence which involves EDTA. Mn(II), mercaptoethanol, and molecular oxygen, requiring neither auxiliary enzymes nor sophisticated equipment. The method is very flexible and rapid and is applicable with high sensitivity to the determination of both pure and crude superoxide dismutase preparations. The decrease of the rate of NADH oxidation is a function of enzyme concentration, and saturation levels are attainable. Fifty percent inhibition, corresponding to one unit of the enzyme, is produced by approximately 15 ng of pure superoxide dismutase. Experiments on rat liver cytosol have shown the specificity of the method for superoxide dismutase. Moreover, common cellular components do not interfere with the measurement, except for hemoglobin when present at relatively high concentrations. The assay is performed at physiological pH and is unaffected by catalase.

  12. Development and Validation of Stability-Indicating Derivative Spectrophotometric Methods for Determination of Dronedarone Hydrochloride

    NASA Astrophysics Data System (ADS)

    Chadha, R.; Bali, A.

    2016-05-01

    Rapid, sensitive, cost effective and reproducible stability-indicating derivative spectrophotometric methods have been developed for the estimation of dronedarone HCl employing peak-zero (P-0) and peak-peak (P-P) techniques, and their stability-indicating potential assessed in forced degraded solutions of the drug. The methods were validated with respect to linearity, accuracy, precision and robustness. Excellent linearity was observed in concentrations 2-40 μg/ml ( r 2 = 0.9986). LOD and LOQ values for the proposed methods ranged from 0.42-0.46 μg/ml and 1.21-1.27 μg/ml, respectively, and excellent recovery of the drug was obtained in the tablet samples (99.70 ± 0.84%).

  13. Simultaneous quantitative determination of paracetamol and tramadol in tablet formulation using UV spectrophotometry and chemometric methods

    NASA Astrophysics Data System (ADS)

    Glavanović, Siniša; Glavanović, Marija; Tomišić, Vladislav

    2016-03-01

    The UV spectrophotometric methods for simultaneous quantitative determination of paracetamol and tramadol in paracetamol-tramadol tablets were developed. The spectrophotometric data obtained were processed by means of partial least squares (PLS) and genetic algorithm coupled with PLS (GA-PLS) methods in order to determine the content of active substances in the tablets. The results gained by chemometric processing of the spectroscopic data were statistically compared with those obtained by means of validated ultra-high performance liquid chromatographic (UHPLC) method. The accuracy and precision of data obtained by the developed chemometric models were verified by analysing the synthetic mixture of drugs, and by calculating recovery as well as relative standard error (RSE). A statistically good agreement was found between the amounts of paracetamol determined using PLS and GA-PLS algorithms, and that obtained by UHPLC analysis, whereas for tramadol GA-PLS results were proven to be more reliable compared to those of PLS. The simplest and the most accurate and precise models were constructed by using the PLS method for paracetamol (mean recovery 99.5%, RSE 0.89%) and the GA-PLS method for tramadol (mean recovery 99.4%, RSE 1.69%).

  14. Simultaneous quantitative determination of paracetamol and tramadol in tablet formulation using UV spectrophotometry and chemometric methods.

    PubMed

    Glavanović, Siniša; Glavanović, Marija; Tomišić, Vladislav

    2016-03-15

    The UV spectrophotometric methods for simultaneous quantitative determination of paracetamol and tramadol in paracetamol-tramadol tablets were developed. The spectrophotometric data obtained were processed by means of partial least squares (PLS) and genetic algorithm coupled with PLS (GA-PLS) methods in order to determine the content of active substances in the tablets. The results gained by chemometric processing of the spectroscopic data were statistically compared with those obtained by means of validated ultra-high performance liquid chromatographic (UHPLC) method. The accuracy and precision of data obtained by the developed chemometric models were verified by analysing the synthetic mixture of drugs, and by calculating recovery as well as relative standard error (RSE). A statistically good agreement was found between the amounts of paracetamol determined using PLS and GA-PLS algorithms, and that obtained by UHPLC analysis, whereas for tramadol GA-PLS results were proven to be more reliable compared to those of PLS. The simplest and the most accurate and precise models were constructed by using the PLS method for paracetamol (mean recovery 99.5%, RSE 0.89%) and the GA-PLS method for tramadol (mean recovery 99.4%, RSE 1.69%). PMID:26774813

  15. Comparison of HPLC, UV spectrophotometry and potentiometric titration methods for the determination of lumefantrine in pharmaceutical products.

    PubMed

    da Costa César, Isabela; Nogueira, Fernando Henrique Andrade; Pianetti, Gérson Antônio

    2008-09-10

    This paper describes the development and evaluation of a HPLC, UV spectrophotometry and potentiometric titration methods to quantify lumefantrine in raw materials and tablets. HPLC analyses were carried out using a Symmetry C(18) column and a mobile phase composed of methanol and 0.05% trifluoroacetic acid (80:20), with a flow rate of 1.0ml/min and UV detection at 335nm. For the spectrophotometric analyses, methanol was used as solvent and the wavelength of 335nm was selected for the detection. Non-aqueous titration of lumefantrine was carried out using perchloric acid as titrant and glacial acetic acid/acetic anhydride as solvent. The end point was potentiometrically determined. The three evaluated methods showed to be adequate to quantify lumefantrine in raw materials, while HPLC and UV methods presented the most reliable results for the analyses of tablets. PMID:18571353

  16. UV-Vis spectrophotometric studies of self-oxidation/dissociation of quaternary ammonium permanganates (QAP) - impact of solvent polarity

    NASA Astrophysics Data System (ADS)

    Bank, Suraj Prakash; Guru, Partha Sarathi; Dash, Sukalyan

    2015-05-01

    Self-oxidation/dissociation of some quaternary ammonium permanganates (QAPs), such as cetyltrimethylammonium permanganate (CTAP) and tetrabutylammonium permanganate (TBAP), have been studied spectrophotometrically in six different organic solvent media of different polarities wherein the compounds show good solubility and stability. The optical densities of the substrates at zero time (ODo) and first-order rate constants of dissociation (k1) have been determined from their successive scanning for 40 min. At comparable experimental conditions, absorption capabilities of the substrates are compared from the ODo values in various organic media; the stability of the solutions is compared from the successive scan spectra in those media. The ODo values and the k1 values have been plotted against some solvent parameters to understand their effects on the absorbance and reactivity of the QAPs. These data are also subjected to multiple regression analysis to explain the influence of various solvent parameters on the ion-pairing properties of the substrates, thus elucidating their effects on the process of self-oxidation/dissociation of the substrates.

  17. Kinetic spectrophotometric methods for the determination of artificial sweetener (sucralose) in tablets.

    PubMed

    Youssef, Rasha M; Korany, Mohamed A; Khamis, Essam F; Mahgoub, Hoda; Kamal, Miranda F

    2011-04-01

    Two simple and sensitive kinetic spectrophotometric methods for the determination of sucralose are described. The first method is based upon a kinetic investigation of the oxidation reaction of the drug with alkaline potassium permanganate at room temperature for a fixed time of 30 min. The absorbance of the green coloured manganate ions produced was measured at 610 nm. The second method is based on the reaction of sucralose with cerium (IV) ammonium sulfate in the presence of perchloric acid with the subsequent measurement of the excess unreacted cerium (IV) ammonium sulfate at 320 nm at a fixed time of 30 min in a thermostated water bath at 60 ± 1 °C. This principle is adopted to develop a kinetic method for sucralose determination. The absorbance concentration plots in both methods were rectilinear over the range 4-16 and 10-30 µg ml(-1) , for the first and second methods, respectively. The different experimental parameters affecting the development and stability of the colours were carefully studied and optimized. The determination of sucralose by rate constant method, fixed concentration method, and fixed-time method was also feasible with calibration equations obtained but the latter method was found to be more applicable. The two methods have been applied successfully to commercial tablets. PMID:21500365

  18. Simple, sensitive, selective and validated spectrophotometric methods for the estimation of a biomarker trigonelline from polyherbal gels

    NASA Astrophysics Data System (ADS)

    Chopra, Shruti; Motwani, Sanjay K.; Ahmad, Farhan J.; Khar, Roop K.

    2007-11-01

    Simple, accurate, reproducible, selective, sensitive and cost effective UV-spectrophotometric methods were developed and validated for the estimation of trigonelline in bulk and pharmaceutical formulations. Trigonelline was estimated at 265 nm in deionised water and at 264 nm in phosphate buffer (pH 4.5). Beer's law was obeyed in the concentration ranges of 1-20 μg mL -1 ( r2 = 0.9999) in deionised water and 1-24 μg mL -1 ( r2 = 0.9999) in the phosphate buffer medium. The apparent molar absorptivity and Sandell's sensitivity coefficient were found to be 4.04 × 10 3 L mol -1 cm -1 and 0.0422 μg cm -2/0.001A in deionised water; and 3.05 × 10 3 L mol -1 cm -1 and 0.0567 μg cm -2/0.001A in phosphate buffer media, respectively. These methods were tested and validated for various parameters according to ICH guidelines. The detection and quantitation limits were found to be 0.12 and 0.37 μg mL -1 in deionised water and 0.13 and 0.40 μg mL -1 in phosphate buffer medium, respectively. The proposed methods were successfully applied for the determination of trigonelline in pharmaceutical formulations (vaginal tablets and bioadhesive vaginal gels). The results demonstrated that the procedure is accurate, precise, specific and reproducible (percent relative standard deviation <2%), while being simple and less time consuming and hence can be suitably applied for the estimation of trigonelline in different dosage forms and dissolution studies.

  19. Comparative study of novel versus conventional two-wavelength spectrophotometric methods for analysis of spectrally overlapping binary mixture

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam M.; Hegazy, Maha A.; Rezk, Mamdouh R.; Omran, Yasmin Rostom

    2015-09-01

    Smart spectrophotometric methods have been applied and validated for the simultaneous determination of a binary mixture of chloramphenicol (CPL) and prednisolone acetate (PA) without preliminary separation. Two novel methods have been developed; the first method depends upon advanced absorbance subtraction (AAS), while the other method relies on advanced amplitude modulation (AAM); in addition to the well established dual wavelength (DW), ratio difference (RD) and constant center coupled with spectrum subtraction (CC-SS) methods. Accuracy, precision and linearity ranges of these methods were determined. Moreover, selectivity was assessed by analyzing synthetic mixtures of both drugs. The proposed methods were successfully applied to the assay of drugs in their pharmaceutical formulations. No interference was observed from common additives and the validity of the methods was tested. The obtained results have been statistically compared to that of official spectrophotometric methods to give a conclusion that there is no significant difference between the proposed methods and the official ones with respect to accuracy and precision.

  20. Kinetic spectrophotometric method for trace determination of thiocyanate based on its inhibitory effect

    NASA Astrophysics Data System (ADS)

    Naik, Radhey M.; Kumar, Basant; Asthana, Abhas

    2010-03-01

    A kinetic spectrophotometric method for the determination of thiocyanate, based on its inhibitory effect on silver(I) catalyzed substitution of cyanide ion, by phenylhydrazine in hexacyanoferrate(II) is described. Thiocyanate ions form strong complexes with silver(I) catalyst which is used as the basis for its determination at trace level. The progress of reaction was monitored, spectrophotometrically, at 488 nm ( λmax of [Fe(CN) 5PhNHNH 2] 3-, complex) under the optimum reaction conditions at: 2.5 × 10 -3 M [Fe(CN) 6] 4-, 1.0 × 10 -3 M [PhNHNH 2], 8.0 × 10 -7 M [Ag +], pH 2.8 ± 0.02, ionic strength ( μ) 0.02 M (KNO 3) and temperature 30 ± 0.1 °C. A linear relationship obtained between absorbance (measured at 488 nm at different times) and inhibitor concentration, under specified conditions, has been used for the determination of [thiocyanate] in the range of 0.8-8.0 × 10 -8 M with a detection limit of 2 × 10 -9 M. The standard deviation and percentage error have been calculated and reported with each datum. A most plausible mechanistic scheme has been proposed for the reaction. The values of equilibrium constants for complex formation between catalyst-inhibitor ( KCI), catalyst-substrate ( Ks) and Michaelis-Menten constant ( Km) have been computed from the kinetic data. The influence of possible interference by major cations and anions on the determination of thiocyanate and their limits has been investigated.

  1. Smart stability-indicating spectrophotometric methods for determination of binary mixtures without prior separation.

    PubMed

    El-Bardicy, Mohammad G; Lotfy, Hayam M; El-Sayed, Mohammad A; El-Tarras, Mohammad F

    2008-01-01

    Ratio subtraction and isosbestic point methods are 2 innovating spectrophotometric methods used to determine vincamine in the presence of its acid degradation product and a mixture of cinnarizine (CN) and nicergoline (NIC). Linear correlations were obtained in the concentration range from 8-40 microg/mL for vincamine (I), 6-22 microg/mL for CN (II), and 6-36 microg/mL for NIC (III), with mean accuracies 99.72 +/- 0.917% for I, 99.91 +/- 0.703% for II, and 99.58 +/- 0.847 and 99.83 +/- 1.039% for III. The ratio subtraction method was utilized for the analysis of laboratory-prepared mixtures containing different ratios of vincamine and its degradation product, and it was valid in the presence of up to 80% degradation product. CN and NIC in synthetic mixtures were analyzed by the 2 proposed methods with the total content of the mixture determined at their respective isosbestic points of 270.2 and 235.8 nm, and the content of CN was determined by the ratio subtraction method. The proposed method was validated and found to be suitable as a stability-indicating assay method for vincamine in pharmaceutical formulations. The standard addition technique was applied to validate the results and to ensure the specificity of the proposed methods. PMID:18476341

  2. Development and Validation of New Spectrophotometric Methods to Determine Enrofloxacin in Pharmaceuticals

    NASA Astrophysics Data System (ADS)

    Rajendraprasad, N.; Basavaiah, K.

    2015-07-01

    Four spectrophotometric methods, based on oxidation with cerium(IV), are investigated and developed to determine EFX in pure form and in dosage forms. The frst and second methods (Method A and method B) are direct, in which after the oxidation of EFX with cerium(IV) in acid medium, the absorbance of reduced and unreacted oxidant is measured at 275 and 320 nm, respectively. In the third (C) and fourth (D) methods after the reaction between EFX and oxidant is ensured to be completed the surplus oxidant is treated with either N-phenylanthranilic acid (NPA) or Alizarin Red S (ARS) dye and the absorbance of the oxidized NPA or ARS is measured at 440 or 420 nm. The methods showed good linearity over the concentration ranges of 0.5-5.0, 1.25-12.5, 10.0-100.0, and 6.0-60.0 μg/ml, for method A, B, C and D, respectively, with apparent molar absorptivity values of 4.42 × 10 4 , 8.7 × 10 3 , 9.31 × 10 2 , and 2.28 × 10 3 l/(mol· cm). The limits of detection (LOD), quantification (LOQ), and Sandell's sensitivity values and other validation results have also been reported. The proposed methods are successfully applied to determine EFX in pure form and in dosage forms.

  3. Kinetic spectrophotometric methods for the determination of dothiepin hydrochloride in bulk and in drug formulation.

    PubMed

    Taha, Elham A

    2003-08-01

    Two simple and sensitive kinetic methods for the determination of dothiepin hydrochloride are described. The first method is based on kinetic investigation of the oxidation reaction of the drug with alkaline potassium permanganate at room temperature for a fixed time of 25 min. The absorbance of the colored manganate ions is measured at 610 nm. The second method is based on the reaction of dothiepin hydrochloride with 4-chloro-7-nitrobenzofurazan (NBD-Cl) in the presence of 0.1 mol L(-1) sodium bicarbonate. Spectrophotometric measurement was achieved by recording the absorbance at 470 nm for a fixed time of 60 min. All variables affecting the development of the color were investigated and the conditions were optimized. Plots of absorbance against concentration in both procedures were rectilinear over the ranges 4-24 and 50-250 microg mL(-1), with mean recoveries 99.33+/-0.42 and 99.88+/-0.53, respectively. The proposed methods were successfully applied for the determination of dothiepin hydrochloride in bulk powder and in capsule dosage form. The results obtained were found to agree statistically with those given by the non-aqueous B.P. method. Furthermore the methods were validated according to USP guidelines and also assessed by applying the standard addition technique. The determination of dothiepin hydrochloride by the fixed concentration method is feasible with the calibration equations obtained, but the fixed time method proves to be more applicable. PMID:12856096

  4. Mean centering of double divisor ratio spectra, a novel spectrophotometric method for analysis of ternary mixtures.

    PubMed

    Hassan, Said A; Elzanfaly, Eman S; Salem, Maissa Y; El-Zeany, Badr A

    2016-01-15

    A novel spectrophotometric method was developed for determination of ternary mixtures without previous separation, showing significant advantages over conventional methods. The new method is based on mean centering of double divisor ratio spectra. The mathematical explanation of the procedure is illustrated. The method was evaluated by determination of model ternary mixture and by the determination of Amlodipine (AML), Aliskiren (ALI) and Hydrochlorothiazide (HCT) in laboratory prepared mixtures and in a commercial pharmaceutical preparation. For proper presentation of the advantages and applicability of the new method, a comparative study was established between the new mean centering of double divisor ratio spectra (MCDD) and two similar methods used for analysis of ternary mixtures, namely mean centering (MC) and double divisor of ratio spectra-derivative spectrophotometry (DDRS-DS). The method was also compared with a reported one for analysis of the pharmaceutical preparation. The method was validated according to the ICH guidelines and accuracy, precision, repeatability and robustness were found to be within the acceptable limits. PMID:26298680

  5. Mean centering of double divisor ratio spectra, a novel spectrophotometric method for analysis of ternary mixtures

    NASA Astrophysics Data System (ADS)

    Hassan, Said A.; Elzanfaly, Eman S.; Salem, Maissa Y.; El-Zeany, Badr A.

    2016-01-01

    A novel spectrophotometric method was developed for determination of ternary mixtures without previous separation, showing significant advantages over conventional methods. The new method is based on mean centering of double divisor ratio spectra. The mathematical explanation of the procedure is illustrated. The method was evaluated by determination of model ternary mixture and by the determination of Amlodipine (AML), Aliskiren (ALI) and Hydrochlorothiazide (HCT) in laboratory prepared mixtures and in a commercial pharmaceutical preparation. For proper presentation of the advantages and applicability of the new method, a comparative study was established between the new mean centering of double divisor ratio spectra (MCDD) and two similar methods used for analysis of ternary mixtures, namely mean centering (MC) and double divisor of ratio spectra-derivative spectrophotometry (DDRS-DS). The method was also compared with a reported one for analysis of the pharmaceutical preparation. The method was validated according to the ICH guidelines and accuracy, precision, repeatability and robustness were found to be within the acceptable limits.

  6. Validated spectrophotometric methods for simultaneous determination of troxerutin and carbazochrome in dosage form

    NASA Astrophysics Data System (ADS)

    Khattab, Fatma I.; Ramadan, Nesrin K.; Hegazy, Maha A.; Al-Ghobashy, Medhat A.; Ghoniem, Nermine S.

    2015-03-01

    Four simple, accurate, sensitive and precise spectrophotometric methods were developed and validated for simultaneous determination of Troxerutin (TXN) and Carbazochrome (CZM) in their bulk powders, laboratory prepared mixtures and pharmaceutical dosage forms. Method A is first derivative spectrophotometry (D1) where TXN and CZM were determined at 294 and 483.5 nm, respectively. Method B is first derivative of ratio spectra (DD1) where the peak amplitude at 248 for TXN and 439 nm for CZM were used for their determination. Method C is ratio subtraction (RS); in which TXN was determined at its λmax (352 nm) in the presence of CZM which was determined by D1 at 483.5 nm. While, method D is mean centering of the ratio spectra (MCR) in which the mean centered values at 300 nm and 340.0 nm were used for the two drugs in a respective order. The two compounds were simultaneously determined in the concentration ranges of 5.00-50.00 μg mL-1 and 0.5-10.0 μg mL-1 for TXN and CZM, respectively. The methods were validated according to the ICH guidelines and the results were statistically compared to the manufacturer's method.

  7. Measurement of trace manganese (II) by the catalytic kinetic spectrophotometric method

    NASA Astrophysics Data System (ADS)

    Ji, Hongwei; Sha, Yuanyuan; Xin, Huizhen; Qi, Yanxia

    2009-06-01

    A new kinetic spectrophotometric method is developed for the measurement of manganese (II) in water. The method is based on the catalytic effect of manganese (II) with the oxidation of weak acid brilliant blue dye (RAWL) by KIO4 using the Nitrilo triacetic acid (NTA) as an activation reagent. The optimum conditions obtained are 40 mgL-1 RAWL, 1×10-4molL-1 KIO4, 2×10-4 molL-1 Nitrilo triacetic acid (NTA), pH = 5.8, the reaction time of 3.00 min and the temperature of 20.0 °C. Under the optimum conditions, the proposed method allows the measurement of manganese (II) in a range of 0-50.0 ng mL-1 and with a detection limit of down to 0.158 ng mL-1. The recovery efficiency in measuring the standard manganese (II) solution is in a range of 98.5%-102%, and the RSD is in a range of 0.76%-1.25%. The new method has been successfully applied to the measurement of manganese (II) in both fresh water and seawater samples with satisfying results. Moreover, few cations and anions interfere with the measurement of manganese (II). Compared with other kinetic catalytic methods and instrumental methods, the proposed method shows fairly good selectivity and sensitivity, low cost, cheapness, low detection limit and rapidity. It can be applied on boats easily.

  8. Validated spectrophotometric and chromatographic methods for simultaneous determination of ketorolac tromethamine and phenylephrine hydrochloride.

    PubMed

    Belal, T S; El-Kafrawy, D S; Mahrous, M S; Abdel-Khalek, M M; Abo-Gharam, A H

    2016-07-01

    This work describes five simple and reliable spectrophotometric and chromatographic methods for analysis of the binary mixture of ketorolac tromethamine (KTR) and phenylephrine hydrochloride (PHE). Method I is based on the use of conventional Amax and derivative spectrophotometry with the zero-crossing technique where KTR was determined using its Amax and (1)D amplitudes at 323 and 341nm respectively, while PHE was determined by measuring the (1)D amplitudes at 248.5nm. Method II involves the application of the ratio spectra derivative spectrophotometry. For KTR, 12μg/mL PHE was used as a divisor and the (1)DD amplitudes at 265nm were plotted against KTR concentrations; while - by using 4μg/mL KTR as divisor - the (1)DD amplitudes at 243.5nm were found proportional to PHE concentrations. Method III depends on ratio-difference measurement where the peak to trough amplitudes between 260 and 284nm were measured and correlated to KTR concentration. Similarly, the peak to trough amplitudes between 235 and 260nm in the PHE ratio spectra were recorded. For method IV, the two compounds were separated using Merck HPTLC sheets of silica gel 60 F254 and a mobile phase composed of chloroform/methanol/ammonia (70:30:2, by volume) followed by densitometric measurement of KTR and PHE spots at 320 and 278nm respectively. Method V depends on HPLC-DAD. Effective chromatographic separation was achieved using Zorbax eclipse plus C8 column (4.6×250mm, 5μm) with a mobile phase consisting of 0.05M o-phosphoric acid and acetonitrile (50:50, by volume) at a flow rate 1mL/min and detection at 313 and 274nm for KTR and PHE respectively. Analytical performance of the developed methods was statistically validated according to the ICH guidelines with respect to linearity, ranges, precision, accuracy, detection and quantification limits. The validated spectrophotometric and chromatographic methods were successfully applied to the simultaneous analysis of KTR and PHE in synthetic mixtures

  9. Optimization and validation of spectrophotometric methods for determination of finasteride in dosage and biological forms

    PubMed Central

    Amin, Alaa S.; Kassem, Mohammed A.

    2012-01-01

    Aim and Background: Three simple, accurate and sensitive spectrophotometric methods for the determination of finasteride in pure, dosage and biological forms, and in the presence of its oxidative degradates were developed. Materials and Methods: These methods are indirect, involve the addition of excess oxidant potassium permanganate for method A; cerric sulfate [Ce(SO4)2] for methods B; and N-bromosuccinimide (NBS) for method C of known concentration in acid medium to finasteride, and the determination of the unreacted oxidant by measurement of the decrease in absorbance of methylene blue for method A, chromotrope 2R for method B, and amaranth for method C at a suitable maximum wavelength, λmax: 663, 528, and 520 nm, for the three methods, respectively. The reaction conditions for each method were optimized. Results: Regression analysis of the Beer plots showed good correlation in the concentration ranges of 0.12–3.84 μg mL–1 for method A, and 0.12–3.28 μg mL–1 for method B and 0.14 – 3.56 μg mL–1 for method C. The apparent molar absorptivity, Sandell sensitivity, detection and quantification limits were evaluated. The stoichiometric ratio between the finasteride and the oxidant was estimated. The validity of the proposed methods was tested by analyzing dosage forms and biological samples containing finasteride with relative standard deviation ≤ 0.95. Conclusion: The proposed methods could successfully determine the studied drug with varying excess of its oxidative degradation products, with recovery between 99.0 and 101.4, 99.2 and 101.6, and 99.6 and 101.0% for methods A, B, and C, respectively. PMID:23781478

  10. Spectrophotometric evaluation of surface morphology dependent catalytic activity of biosynthesized silver and gold nanoparticles using UV-vis spectra: A comparative kinetic study

    NASA Astrophysics Data System (ADS)

    Ankamwar, Balaprasad; Kamble, Vaishali; Sur, Ujjal Kumar; Santra, Chittaranjan

    2016-03-01

    The development of eco-friendly and cost-effective synthetic protocol for the preparation of nanomaterials, especially metal nanoparticles is an emerging area of research in nanotechnology. These metal nanoparticles, especially silver can play a crucial role in various catalytic reactions. The biosynthesized silver nanoparticles described here was very stable up to 6 months and can be further exploited as an effective catalyst in the chemical reduction of 4-nitrophenol to 4-aminophenol. The silver nanoparticles were utilized as an efficient surface-enhanced Raman scattering (SERS) active substrate using Rhodamine 6G as Raman probe molecule. We have also carried out systematic comparative studies on the catalytic efficiency of both silver and gold nanoparticles using UV-vis spectra to monitor the above reaction spectrophotometrically. We find that the reaction follows pseudo-first order kinetics and the catalytic activity can be explained by a simple model based on Langmuir-Hinshelwood mechanism for heterogeneous catalysis. We also find that silver nanoparticles are more efficient as a catalyst compare to gold nanoparticles in the reduction of 4-nitrophenol to 4-aminophenol, which can be explained by the morphology of the nanoparticles as determined by transmission electron microscopy.

  11. Optimized and validated spectrophotometric methods for the determination of nicorandil in drug formulations and biological fluids.

    PubMed

    Rahman, Nafisur; Ahmad Khan, Nadeem; Hejaz Azmi, Syed Najmul

    2004-07-01

    Two simple, sensitive and economical spectrophotometric methods have been developed for the determination of nicorandil in drug formulations and biological fluids. Method A is based on the reaction of the drug with brucine-sulphanilic acid reagent in sulphuric acid medium producing a yellow-coloured product, which absorbs maximally at 410 nm. Method B depends on the formation of the intensely blue-coloured product which results due to the interaction of an electrophilic intermediate of 3-methyl-2-benzothiazolinone hydrazone hydrochloride (MBTH) with oxidized product of 4-(methyl amino) phenol sulphate (metol) in the presence of nicorandil as an oxidizing agent in sulphuric acid medium. The coloured product shows absorbance maximum at 560 nm. Under the optimized experimental conditions, Beer's law is obeyed in the concentration range of 2.5-35.0 and 0.40-2.2 microg ml(-1) for Methods A and B, respectively. Both the methods have been successfully applied to the determination of nicorandil in drug formulations and biological fluids. The results are validated statistically and through recovery studies. In order to establish the bias and the performance of the proposed methods, the point and interval hypothesis tests have been performed. The experimental true bias of all samples is smaller than +/-2%. PMID:15231427

  12. A kinetic spectrophotometric method for the determination of iron (III) in water samples

    NASA Astrophysics Data System (ADS)

    Ji, Hongwei; Xu, Jian; Xin, Huizhen; Yang, Xiaoman

    2008-05-01

    A new kinetic spectrophotometric method has been developed for the determination of iron (III). The method is based on the catalytic effect of iron (III) on the oxidation of weak acid brilliant blue dye (RAWL) by KIO4 in acid medium. The advantages of the proposed method are that it is sensitive, accurate, rapid, inexpensive, can be operated under room temperature and has a large determination concentration range compared to other techniques. The obtained optimum conditions are: pH 3.15, RAWL (200 mgL-1) 5.00 mL, Potassium periodate solution (0.01 molL-1) 0.30 mL, phenanthroline (0.02 molL-1) 1.00 mL, reaction temperature 25°C and reaction time 7 min. With this method iron could quantitively be determined in the range 0.00 0.02 mgL-1, the detection limit being 4.10 × 10-10 g mL-1. The relative standard deviations (RSD) in five replicate determinations for 3 µgL-1 and 5 µgL-1 iron (III) are 3.1% and 1.9%, respectively. The method has been applied to the determination of iron (III) in tap water samples and seawater samples (from the South China Sea), the recovery rates being 98.0% and 100.5%, respectively.

  13. Determination of rapid chlorination rate constants by a stopped-flow spectrophotometric competition kinetics method.

    PubMed

    Song, Dean; Liu, Huijuan; Qiang, Zhimin; Qu, Jiuhui

    2014-05-15

    Free chlorine is extensively used for water and wastewater disinfection nowadays. However, it still remains a big challenge to determine the rate constants of rapid chlorination reactions although competition kinetics and stopped-flow spectrophotometric (SFS) methods have been employed individually to investigate fast reaction kinetics. In this work, we proposed an SFS competition kinetics method to determine the rapid chlorination rate constants by using a common colorimetric reagent, N,N-diethyl-p-phenylenediamine (DPD), as a reference probe. A kinetic equation was first derived to estimate the reaction rate constant of DPD towards chlorine under a given pH and temperature condition. Then, on that basis, an SFS competition kinetics method was proposed to determine directly the chlorination rate constants of several representative compounds including tetracycline, ammonia, and four α-amino acids. Although Cl2O is more reactive than HOCl, its contribution to the overall chlorination kinetics of the test compounds could be neglected in this study. Finally, the developed method was validated through comparing the experimentally measured chlorination rate constants of the selected compounds with those obtained or calculated from literature and analyzing with Taft's correlation as well. This study demonstrates that the SFS competition kinetics method can measure the chlorination rate constants of a test compound rapidly and accurately. PMID:24602867

  14. A comparative study of smart spectrophotometric methods for simultaneous determination of sitagliptin phosphate and metformin hydrochloride in their binary mixture.

    PubMed

    Lotfy, Hayam M; Mohamed, Dalia; Mowaka, Shereen

    2015-10-01

    Simple, specific, accurate and precise spectrophotometric methods were developed and validated for the simultaneous determination of the oral antidiabetic drugs; sitagliptin phosphate (STG) and metformin hydrochloride (MET) in combined pharmaceutical formulations. Three methods were manipulating ratio spectra namely; ratio difference (RD), ratio subtraction (RS) and a novel approach of induced amplitude modulation (IAM) methods. The first two methods were used for determination of STG, while MET was directly determined by measuring its absorbance at λmax 232 nm. However, (IAM) was used for the simultaneous determination of both drugs. Moreover, another three methods were developed based on derivative spectroscopy followed by mathematical manipulation steps namely; amplitude factor (P-factor), amplitude subtraction (AS) and modified amplitude subtraction (MAS). In addition, in this work the novel sample enrichment technique named spectrum addition was adopted. The proposed spectrophotometric methods did not require any preliminary separation step. The accuracy, precision and linearity ranges of the proposed methods were determined. The selectivity of the developed methods was investigated by analyzing laboratory prepared mixtures of the drugs and their combined pharmaceutical formulations. Standard deviation values were less than 1.5 in the assay of raw materials and tablets. The obtained results were statistically compared to that of a reported spectrophotometric method. The statistical comparison showed that there was no significant difference between the proposed methods and the reported one regarding both accuracy and precision. PMID:25978011

  15. Spectrophotometric methods manipulating ratio spectra for simultaneous determination of binary mixtures with sever overlapping spectra: A comparative study

    NASA Astrophysics Data System (ADS)

    Moustafa, H.; Fayez, Y.

    2014-12-01

    Three simple, specific and accurate spectrophotometric methods manipulating ratio spectra were developed and validated for simultaneous determination of Rabeprazole sodium (RB) and Domperidone (DP) in their binary mixture without prior separation. Method A, is constant center spectrophotometric method (CC). Method B is a ratio difference spectrophotometric one (RD), while method C is a combined ratio isoabsorptive point-ratio difference method (RIRD). Linear correlations were obtained in range of 4-44 μg/mL for both Rabeprazole sodium and Domperidone. The mean percentage recoveries of RB were 99.69 ± 0.504 for method A, 99.83 ± 0.483 for (B) and 100.31 ± 0.499 for (C), respectively, and that of DP were 99.52 ± 0.474 for method A, 100.12 ± 0.505 for (B) and 100.16 ± 0.498 for (C), respectively. Specificity was investigated by analysis of laboratory prepared mixtures containing the cited drugs and their combined tablet dosage form. The obtained results were statistically compared with those obtained by the reported methods, showing no significant difference with respect to accuracy and precision. The three methods were validated as per ICH guidelines and can be applied for routine analysis in quality control laboratories.

  16. First order derivative spectrophotometric method for the determination of benidipine hydrochloride pharmaceutical preparations and forced degradation study

    NASA Astrophysics Data System (ADS)

    Karasaka, Ayça

    2015-06-01

    A simple and rapid first order derivative spectrophotometric method was developed for the determination of benidipine hydrochloride in pure form and pharmaceutical preparations. For the first derivative spectrophotometric method, the distances between two extremum values l (peak-to-peak amplitudes), 230.2/241.5 nm. The proposed method was validated according to the ICH guidelines with respect to linearity, limit of detection, limit of quantification, accuracy, precision (intra- and inter-day) and recovery were evaluated. The linearity of the method was in the range of 0.2-2.0 μg/mL. Limits of detection and quantification were 0.58 and 1.73 μg/mL, respectively. The proposed method was successfully applied to the analysis of pharmaceutical preparations. In addition, forced degradation studies were performed on the benidipine hydrochloride drag substance. The drug substance was exposed to the stress conditions of hydrolysis (acid and base).

  17. Spectrophotometric reaction rate method for the determination of osmium by its catalytic effect on the oxidation of gallocyanine by bromate.

    PubMed

    Ensafi, A A; Shamss-E-Sollari, E

    1994-10-01

    A simple kinetic spectrophotometric method was developed for the determination of osmium. The method is based on the catalytic effect of osmium as osmium tetroxide on the oxidation of gallocyanine by bromate at pH 7. The reaction is monitored spectrophotometrically by measuring the decreasing absorbance of gallocyanine at 620 nm by the fixed-time method. A detection limit of 0.01 ng/ml and linear calibration curve from 0.1 to 100 and from 100 to 1200 ng/ml Os(VIII) is reported. The relative standard deviation for 0.0100 microg/ml Os(VIII) is 0.8% (N = 10). The method is free from most interferences. Osmium in synthetic samples is determined by this method, with satisfactory results. PMID:18966116

  18. Simple spectrophotometric method for determination of melamine in liquid milks based on green Mannich reaction

    NASA Astrophysics Data System (ADS)

    Chansuvarn, Woravith; Panich, Sirirat; Imyim, Apichat

    2013-09-01

    A new and simple spectrophotometric method has been developed and validated for measuring the contamination of melamine in different milk products. The method is based upon measuring the absorption of the complex formed from melamine, 4-hydroxyacetophenone (Hap) and 1-pyrene carboxaldehyde (Pcd), which was adapted from the Mannich reaction. Quantitative analysis was done at a wavelength of 236 nm within a few minutes. The reaction was optimized by focusing on both obtaining high performance of the method and to concern the volatility and toxicity of used reagents. This method provided a linear dynamic range, limit of detection and limit of quantification of 0.100-3.78, 0.08 and 0.14 mg L-1, respectively. The relative standard deviation (RSD) was 3.6% (n = 10). The recoveries of melamine spiked liquid milk samples, with melamine concentrations of 0.63, 1.26, 1.89 and 2.52 mg L-1, were 87.7 ± 3.7%, 91.1 ± 8.8%, 89.2 ± 4.4% and 90.6 ± 3.6% (n = 3), respectively.

  19. Pregabalin and Tranexamic Acid Evaluation by Two Simple and Sensitive Spectrophotometric Methods

    PubMed Central

    Sher, Nawab; Fatima, Nasreen; Perveen, Shahnaz; Siddiqui, Farhan Ahmed; Wafa Sial, Alisha

    2015-01-01

    This paper demonstrates colorimetric visible spectrophotometric quantification methods for amino acid, namely, tranexamic acid and pregabalin. Both drugs contain the amino group, and when they are reacted with 2,4-dinitrophenol and 2,4,6-trinitrophenol, they give rise to yellow colored complexes showing absorption maximum at 418 nm and 425 nm, respectively, based on the Lewis acid base reaction. Detailed optimization process and stoichiometric studies were conducted along with investigation of thermodynamic features, that is, association constant and standard free energy changes. The method was linear over the concentration range of 0.02–200 µgmL−1 with correlation coefficient of more than 0.9990 in all of the cases. Limit of detection was in range from 0.0041 to 0.0094 µgmL−1 and limit of quantification was in the range from 0.0137 to 0.0302 µgmL−1. Excellent recovery in Placebo spiked samples indicated that there is no interference from common excipients. The analytical methods under proposal were successfully applied to determine tranexamic acid and pregabalin in commercial products. t-test and F ratio were evaluated without noticeable difference between the proposed and reference methods. PMID:25873964

  20. Spectrophotometric Method for Quantitative Determination of Cefixime in Bulk and Pharmaceutical Preparation Using Ferroin Complex

    NASA Astrophysics Data System (ADS)

    Naeem Khan, M.; Qayum, A.; Ur Rehman, U.; Gulab, H.; Idrees, M.

    2015-09-01

    A method was developed for the quantitative determination of cefixime in bulk and pharmaceutical preparations using ferroin complex. The method is based on the oxidation of the cefixime with Fe(III) in acidic medium. The formed Fe(II) reacts with 1,10-phenanthroline, and the ferroin complex is measured spectrophotometrically at 510 nm against reagent blank. Beer's law was obeyed in the concentration range 0.2-10 μg/ml with a good correlation of 0.993. The molar absorptivity was calculated and was found to be 1.375×105 L/mol × cm. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.030 and 0.101 μg/ml respectively. The proposed method has reproducibility with a relative standard deviation of 5.28% (n = 6). The developed method was validated statistically by performing a recoveries study and successfully applied for the determination of cefixime in bulk powder and pharmaceutical formulations without interferences from common excipients. Percent recoveries were found to range from 98.00 to 102.05% for the pure form and 97.83 to 102.50% for pharmaceutical preparations.

  1. Analysis of residual solvents in ampicillin powder by headspace spectrophotometric method.

    PubMed

    Farajzadeh, Mirali; Mardani, Alireza

    2002-02-01

    In this study a headspace spectrophotometric method is proposed for analysis of dichloromethane and isobutyl methyl keton (IBMK) residues in the ampicillin powder. Ampicillin is dissolved in 1 M NaOH in the vessel of an arsenic analyzer unit of an atomic absorption spectrophotometer. After 3-min stirring, the headspace has flowed by air into the flow-through cell and its absorbance is read at 196 nm, as emitted by a selenium hollow cathode lamp. The absorbance of the headspace is read in two cases (in the presence and absence of MnO4- ion). In the former case, the absorbance is only related to dichloromethane; in the latter, it is related to both solvents. By this method both solvents are determined in the ampicillin samples. The obtained results are compared with gas chromatography (GC) data. These results have good agreement. The proposed method is very rapid, selective and repeatable. Other solvents present, such as isopropyl alcohol, ethylacetate and triethylamine, are not interfering. PMID:11874121

  2. A sensitive spectrophotometric method for the determination of propranolol HCl based on oxidation bromination reactions.

    PubMed

    El-Didamony, Akram M

    2010-03-01

    Three new, simple, sensitive, rapid and economical spectrophotometric methods (A, B and C) have been developed for the determination of propranolol hydrochloride (PRO) in bulk drug and dosage forms. These methods are based on oxidation-bromination reaction of PRO by bromine, generated in situ by the action of acid on a bromate-bromide mixture, followed by determination of unreacted bromine by three different reaction schemes. In method A, the determination of the residual bromine is based on its ability to bleach the indigo carmine dye and by measuring the absorbance at 610 nm. The residual bromine (in method B), is treated with excess of iron(II) and the resulting iron(III) is complexed with thiocyanate and the absorbance is measured at 480 nm. Method C involves treating the unreacted bromine with a measured excess of iron(II) and the remaining iron(II) is complexed with 1,10-phenanthroline and the increase in absorbance is measured at 510 nm. In all three methods, the amount of bromine reacted corresponds to the drug content. The different experimental parameters affecting the development and stability of the colour are carefully studied and optimized. Beer's Law is valid within a concentration range of 1-13, 4-12 and 2-9 µg ml⁻¹ for methods A, B, and C, respectively. The molar absorptivity, Sandell's sensitivity, detection and quantification limits are calculated. Common excipients used as additives in pharmaceutical preparations do not interfere in the proposed methods. The proposed methods have been successfully applied to the determination of PRO in pharmaceutical preparations and the results were statistically compared with those of the official method by applying the Student's t-test and F-test. PMID:20878893

  3. A New Technique for Quantitative Determination of Dexamethasone in Pharmaceutical and Biological Samples Using Kinetic Spectrophotometric Method

    PubMed Central

    Akhoundi-Khalafi, Ali Mohammad; Shishehbore, Masoud Reza

    2015-01-01

    Dexamethasone is a type of steroidal medications that is prescribed in many cases. In this study, a new reaction system using kinetic spectrophotometric method for quantitative determination of dexamethasone is proposed. The method is based on the catalytic effect of dexamethasone on the oxidation of Orange G by bromate in acidic media. The change in absorbance as a criterion of the oxidation reaction progress was followed spectrophotometrically. To obtain the maximum sensitivity, the effective reaction variables were optimized. Under optimized experimental conditions, calibration graph was linear over the range 0.2–54.0 mg L−1. The calculated detection limit (3sb/m) was 0.14 mg L−1 for six replicate determinations of blank signal. The interfering effect of various species was also investigated. The present method was successfully applied for the determination of dexamethasone in pharmaceutical and biological samples satisfactorily. PMID:25737724

  4. Comparative study of spectrophotometric methods manipulating ratio spectra: An application on pharmaceutical binary mixture of cinnarizine and dimenhydrinate

    NASA Astrophysics Data System (ADS)

    Lamie, Nesrine T.

    2015-04-01

    Four simple, specific, accurate and precise spectrophotometric methods are developed and validated for simultaneous determination of cinnarizine (CIN) and dimenhydrinate (DIM) in a binary mixture with overlapping spectra, without preliminary separation. The first method is dual wavelength spectrophotometry (DW), the second is a ratio difference spectrophotometric one (RD) which measures the difference in amplitudes between 250 and 270 nm of ratio spectrum, the third one is novel constant center spectrophotometric method (CC) and the fourth method is mean centering of ratio spectra (MCR). The calibration curve is linear over the concentration range of 4-20 and 10-45 μg/ml for CIN and DIM, respectively. These methods are tested by analyzing synthetic mixtures of the above drugs and they are applied to commercial pharmaceutical preparation of the subjected drugs. The validity of results was assessed by applying standard addition technique. The results obtained were found to agree statistically with those obtained by a reported method, showing no significant difference with respect to accuracy and precision.

  5. Determination of lanthanide(III) ions by using a flotation-spectrophotometric method

    SciTech Connect

    Kang Jingwan; Zhang Xiaoling; Yang Huiling; Gao Jingzhang; Bai Guangbi )

    1990-01-01

    This paper reports the authors' attempt at determining Ln(III) ions by using a flotation-spectrophotometric method and their findings. When a ternary ion-association complex of Ln(III) coordinated by thiocyanate (SCN{sup {minus}}) and diantipyryl methane (DAM) is separated by a mixed solvent containing benzene and chloroform at pH 3.1 - 4.2, a third phase is observed between the aqueous and organic phases. The solid ternary complex can be dissolved in acetone that contains thenoyltrifluoroacetone (TTA). The individual Ln(III) ion can be determined by using the 4th derivative spectra directly. The equilibrium constant of the ternary composition ratio of Ln(III) to ligand is estimated by the equilibrium shift method. The mole ratio of Ln(III) to DAM and to SCN{sup {minus}} is 1:3 each. The composition of the ternary complex seems to be Ln(III):DAM:SCN{sup {minus}} = 1:3:3.

  6. Investigation on the interaction of Safranin T with anionic polyelectrolytes by spectrophotometric method

    NASA Astrophysics Data System (ADS)

    Fradj, Anouar Ben; Lafi, Ridha; Hamouda, Sofiane Ben; Gzara, Lassaad; Hamzaoui, Ahmed Hichem; Hafiane, Amor

    2014-10-01

    Understanding the role played by chemical additives such as NaCl salt, acid and Cetylpyridinium Chloride (CPC) surfactant on the interaction between dye and polyelectrolyte contributes to optimization of processes using polyelectrolytes in the removal of dye from aqueous solution. Herein we focus in the interaction between Safranin T, a cationic dye, with two anionic polyelectrolytes, poly(ammonium acrylate) and poly(acrylic acid) using spectrophotometric method and conductivity measurement. In aqueous solution, each of anionic polyelectrolytes forms a complex with the dye and induces a metachromasy indicated by the blue shift of the absorbance of the dye. The stoichiometry of complexes evaluated by the molar ratio method are 1:1 for Safranin T poly(ammonium acrylate) and 2:1 in the case of Safranin T poly(acrylic acid). The effect of additives on the stability of complexes has been studied by varying concentrations of the salt and the surfactant and pH of the solution. The thermodynamic parameters of interaction ΔG, ΔH and ΔS at different temperatures were evaluated to determine the stability constant of the complexes.

  7. Quantitative estimation of diacerein in bulk and in capsule formulation using hydrotropic solubilizing agents by UV-spectrophotometry and the first order derivative using the area under curve method

    PubMed Central

    Pandey, Ramchandra; Patil, Pravin O.; Patil, Manohar U.; Deshmukh, Prashant K.; Bari, Sanjay B.

    2012-01-01

    Purpose: This study was designed to develop and validate two simple, rapid, and economical UV-spectrophotometric and the first-order derivative methods using the area under curve method for estimation of diacerein in bulk and in capsule formulation. Materials and Methods: In this study, hydrotrophic solution of 8 M urea and 0.5 M potassium citrate were employed as the solubilizing agent to solubilize a poorly water-soluble drug, diacerein. In the UV-spectrophotometry method, two wavelengths 252.0 nm and 266.2 nm and in the first-order derivative spectrophotometric methods two wavelengths 259.4 nm and 274.2 nm in 8 M urea and two wavelengths 247.8 nm and 267.4 nm in the UV-spectrophotometry method and in the first-order derivative spectrophotometric methods two wavelengths 259.2 nm and 274.2 nm in 0.5 M potassium citrate were selected for determination of areas. Results: Hydrotrophic agents used did not interfere in spectrophotometric analysis of diacerein. Diacerein followed linearity in the concentration range of 2–12 μg/mL with a coefficient correlation of 0.999 for both methods. Conclusion: The amount of drugs estimated by both proposed methods are in good accord with label claim. The % RSD value in recovery, precision, and ruggedness studies are found to be less than 2 indicate that the method is accurate, precise, and rugged. PMID:23781470

  8. Simultaneous determination of thiocyanate and salicylate by a combined UV-spectrophotometric detection principal component artificial neural network.

    PubMed

    Karimi, Hajir; Ghaedi, Mehrorang

    2006-01-01

    A modified principle component artificial neural network (PC-ANN) model is developed for simultaneous determination of thiocyanate and salycilate concentration after passing through the bulk of a liquid membrane by tri-phenyl benzyl phosphonium chloride. All calibration, and test samples data were obtained using UV-Vis spectrophotometer. In this way, a modified PC-ANN consisting of three layers of nodes was trained by combination of Bayesian-Levenberg-Marquardt as training rule. Sigmoid and liner transfer functions were used in the hidden and output layers respectively to facilitate nonlinear calibration. The model could accurately estimate the concentration of components with acceptable precision and accuracy, for mixtures. The PC-ANN model exhibits a good ability for the simultaneous determination of the thiocyanate and salycilate in concentration range 0.5 x 10(-4) mol.l(-1) up to 5.0 x 10(-4) mol.l(-1) with Root Mean square error (2.22% and 2.20%, for thiocyanate and salycilate, respectively) and high correlation coefficients (R2= 0.998 or greater). Results obtained with modified trained PC-ANN were compared with stepwise linear regression (SMLR) model. Validation of the two models shows a better ability in estimation of the modified PC-ANN as compared with the SMLR model (MSRE given are 3.12%, 6.31%.). PMID:17217170

  9. Highly sensitive and selective spectrophotometric and spectrofluorimetric methods for the determination of ropinirole hydrochloride in tablets

    NASA Astrophysics Data System (ADS)

    Aydoğmuş, Zeynep

    2008-06-01

    Three sensitive, selective, accurate spectrophotometric and spectrofluorimetric methods have been developed for the determination of ropinirole hydrochloride in tablets. The first method was based on measuring the absorbance of drug solution in methanol at 250 nm. The Beer's law was obeyed in the concentration range 2.5-24 μg ml -1. The second method was based on the charge transfer reaction of drug, as n-electron donor with 7,7,8,8-tetracyanoquinodimethane (TCNQ), as π-acceptor in acetonitrile to give radical anions that are measured at 842 nm. The Beer's law was obeyed in the concentration range 0.6-8 μg ml -1. The third method was based on derivatization reaction with 4-chloro-7-nitrobenzofurazan (NBD-Cl) in borate buffer of pH 8.5 followed by measuring the fluorescence intensity at 525 nm with excitation at 464 nm in chloroform. Beer's law was obeyed in the concentration range 0.01-1.3 μg ml -1. The derivatization reaction product of drug with NBD-Cl was characterized by IR, 1H NMR and mass spectroscopy. The developed methods were validated. The following analytical parameters were investigated: the molar absorptivity ( ɛ), limit of detection (LOD, μg ml -1) and limit of quantitation (LOQ, μg ml -1), precision, accuracy, recovery, and Sandell's sensitivity. Selectivity was validated by subjecting stock solution of ropinirole to acidic, basic, oxidative, and thermal degradation. No interference was observed from common excipients present in formulations. The proposed methods were successfully applied for determination of drug in tablets. The results of these proposed methods were compared with each other statistically.

  10. Determination of trace vanadium (V) in seawater and fresh water by the catalytic kinetic spectrophotometric method

    NASA Astrophysics Data System (ADS)

    Ji, Hongwei; Sha, Yuanyuan; Xin, Huizhen; Li, Shuang

    2010-12-01

    A new kinetic spectrophotometric method has been developed for the determination of vanadium (V). The method is based on the catalytic effect of vanadium (V) on the oxidation of weak acid brilliant blue dye (RAWL) by KBrO3 using the citric acid as activation reagent. The obtained optimum conditions are: c (RAWL) = 1×10-4 molL-1, c (KBrO3) = 3×10-2 molL-1, c (citric acid) = 9×10-3 molL-1, pH = 2.50, the reaction time being 7.0 min and the temperature being 25.0°C. Under the optimum conditions, the proposed method allows the determination of vanadium (V) in the range of 0-70.0 ng mL-1 and the detection limit is down to 0.407 ng mL-1. For standard vanadium (V) solution determination, the recovery efficiency is in the range of 98.5%-102% and the RSD ranges from 0.76%-1.25%. Moreover, it is demonstrated that most cations and anions do not interfere with the determination of vanadium (V) under the analytical condition. The new method was successfully applied in the determination of vanadium (V) in fresh water and seawater samples with satisfactory results. Vanadium (V) in the seawater samples from Qingdao offshore was determined using the method and the distribution of vanadium (V) was mapped. Compared with other instrumental analytical methods, the proposed method shows good selectivity, sensitivity, simplicity, lower cost and rapidity. It can be employed on shipboard easily.

  11. Highly sensitive and selective spectrophotometric and spectrofluorimetric methods for the determination of ropinirole hydrochloride in tablets.

    PubMed

    Aydoğmuş, Zeynep

    2008-06-01

    Three sensitive, selective, accurate spectrophotometric and spectrofluorimetric methods have been developed for the determination of ropinirole hydrochloride in tablets. The first method was based on measuring the absorbance of drug solution in methanol at 250 nm. The Beer's law was obeyed in the concentration range 2.5-24 microg ml(-1). The second method was based on the charge transfer reaction of drug, as n-electron donor with 7,7,8,8-tetracyanoquinodimethane (TCNQ), as pi-acceptor in acetonitrile to give radical anions that are measured at 842 nm. The Beer's law was obeyed in the concentration range 0.6-8 microg ml(-1). The third method was based on derivatization reaction with 4-chloro-7-nitrobenzofurazan (NBD-Cl) in borate buffer of pH 8.5 followed by measuring the fluorescence intensity at 525 nm with excitation at 464 nm in chloroform. Beer's law was obeyed in the concentration range 0.01-1.3 microg ml(-1). The derivatization reaction product of drug with NBD-Cl was characterized by IR, 1H NMR and mass spectroscopy. The developed methods were validated. The following analytical parameters were investigated: the molar absorptivity (epsilon), limit of detection (LOD, microg ml(-1)) and limit of quantitation (LOQ, microg ml(-1)), precision, accuracy, recovery, and Sandell's sensitivity. Selectivity was validated by subjecting stock solution of ropinirole to acidic, basic, oxidative, and thermal degradation. No interference was observed from common excipients present in formulations. The proposed methods were successfully applied for determination of drug in tablets. The results of these proposed methods were compared with each other statistically. PMID:17719838

  12. Simultaneous determination of piracetam and vincamine by spectrophotometric and high-performance liquid chromatographic methods.

    PubMed

    El-Saharty, Yasser Shaker Ibrahim

    2008-01-01

    A mixture of piracetam and vincamine was determined by 3 different methods. The first was the determination of piracetam and vincamine using the ratio-spectra first-derivative (DD1) spectrophotometric technique at 209 and 293 nm in concentration ranges of 10-45 and 2-14 microg/mL with mean recoveries of 99.22 +/- 0.72 and 99.67 +/- 0.79%, respectively. The second method was based on the resolution of the 2 components by bivariate calibration depending on a mathematic algorithm that provides simplicity and rapidity. The method depended on quantitative evaluation of the absorbencies at 210 and 225 nm in concentration ranges of 5-45 and 2-14 microg/mL, with mean recoveries of 100.33 +/- 0.54 and 100.44 +/- 0.98% for piracetam and vincamine, respectively. The third method was reversed-phase liquid chromatography using 0.05 M potassium dihydrogen phosphate-methanol (50 + 50, v/v) as the mobile phase, with the pH adjusted to 3.5 with phosphoric acid. The eluent was monitored at 215 nm in concentration ranges of 5-100 and 2-200 microg/mL, with mean recoveries of 99.62 +/- 0.67 and 99.32 +/- 0.85% for piracetam and vincamine, respectively. The suggested procedures were checked using laboratory-prepared mixtures and were successfully applied for the analysis of their pharmaceutical preparation. The methods retained their accuracy and precision when applying the standard addition technique. The results obtained by applying the proposed methods were statistically analyzed and compared with those obtained by the manufacturer's method. PMID:18476342

  13. Novel spectrophotometric methods for simultaneous determination of Amlodipine, Valsartan and Hydrochlorothiazide in their ternary mixture

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam M.; Hegazy, Maha A.; Mowaka, Shereen; Mohamed, Ekram Hany

    2015-04-01

    This work represents a comparative study of two smart spectrophotometric techniques namely; successive resolution and progressive resolution for the simultaneous determination of ternary mixtures of Amlodipine (AML), Hydrochlorothiazide (HCT) and Valsartan (VAL) without prior separation steps. These techniques consist of several consecutive steps utilizing zero and/or ratio and/or derivative spectra. By applying successive spectrum subtraction coupled with constant multiplication method, the proposed drugs were obtained in their zero order absorption spectra and determined at their maxima 237.6 nm, 270.5 nm and 250 nm for AML, HCT and VAL, respectively; while by applying successive derivative subtraction they were obtained in their first derivative spectra and determined at P230.8-246, P261.4-278.2, P233.7-246.8 for AML, HCT and VAL respectively. While in the progressive resolution, the concentrations of the components were determined progressively from the same zero order absorption spectrum using absorbance subtraction coupled with absorptivity factor methods or from the same ratio spectrum using only one divisor via amplitude modulation method can be used for the determination of ternary mixtures using only one divisor where the concentrations of the components are determined progressively. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs. Moreover comparative study between spectrum addition technique as a novel enrichment technique and a well established one namely spiking technique was adopted for the analysis of pharmaceutical formulations containing low concentration of AML. The methods were validated as per ICH guidelines where accuracy, precision and specificity were found to be within their acceptable limits. The results obtained from the proposed methods were statistically compared with the reported one where no significant

  14. Novel spectrophotometric methods for simultaneous determination of Amlodipine, Valsartan and Hydrochlorothiazide in their ternary mixture.

    PubMed

    Lotfy, Hayam M; Hegazy, Maha A; Mowaka, Shereen; Mohamed, Ekram Hany

    2015-04-01

    This work represents a comparative study of two smart spectrophotometric techniques namely; successive resolution and progressive resolution for the simultaneous determination of ternary mixtures of Amlodipine (AML), Hydrochlorothiazide (HCT) and Valsartan (VAL) without prior separation steps. These techniques consist of several consecutive steps utilizing zero and/or ratio and/or derivative spectra. By applying successive spectrum subtraction coupled with constant multiplication method, the proposed drugs were obtained in their zero order absorption spectra and determined at their maxima 237.6 nm, 270.5 nm and 250 nm for AML, HCT and VAL, respectively; while by applying successive derivative subtraction they were obtained in their first derivative spectra and determined at P230.8-246, P261.4-278.2, P233.7-246.8 for AML, HCT and VAL respectively. While in the progressive resolution, the concentrations of the components were determined progressively from the same zero order absorption spectrum using absorbance subtraction coupled with absorptivity factor methods or from the same ratio spectrum using only one divisor via amplitude modulation method can be used for the determination of ternary mixtures using only one divisor where the concentrations of the components are determined progressively. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs. Moreover comparative study between spectrum addition technique as a novel enrichment technique and a well established one namely spiking technique was adopted for the analysis of pharmaceutical formulations containing low concentration of AML. The methods were validated as per ICH guidelines where accuracy, precision and specificity were found to be within their acceptable limits. The results obtained from the proposed methods were statistically compared with the reported one where no significant

  15. A selective spectrophotometric method for determination of rosoxacin antibiotic using sodium nitroprusside as a chromogenic reagent

    NASA Astrophysics Data System (ADS)

    Askal, Hassan F.; Refaat, Ibrahim H.; Darwish, Ibrahim A.; Marzouq, Mostafa A.

    2008-04-01

    A selective spectrophotometric method for the determination of rosoxacin (ROS), a 4-quinolone antimicrobial agent, has been developed and validated. The method was based on the reaction of ROS with alkaline sodium nitroprusside (SNP) reagent at room temperature forming a red colored chromogen measured at 455 nm. The conditions affecting the reaction (SNP concentration, pH, color-developing time, temperature, diluting solvent and chromogen stability time) were optimized. Under the optimum conditions, good linear relationship ( r = 0.9987) was obtained between the absorbance and the concentration of ROS in the range of 20-50 μg ml -1. The assay limits of detection and quantitation were 2.5 and 8.4 μg ml -1, respectively. The method was successfully applied to the analysis of bulk drug and laboratory-prepared tablets; the mean percentage recoveries were 100.1 ± 0.33 and 101.24 ± 1.28%, respectively. The results were compared favourably with those obtained by the reported method; no significant difference in the accuracy and precision as revealed by the accepted values of t- and F-tests, respectively. The robustness and ruggedness of the method was checked and satisfactory results were obtained. The proposed method was found to be highly selective for ROS among the fluoroquinolone antibiotics. The reaction mechanism was proposed and it proceeded in two steps; the formation of nitroferrocyanide by the action of sodium hydroxide alkalinity on SNP and the subsequent formation of the colored nitrosyl-ROS derivative by the attack at position 6 of ROS.

  16. Development of Simultaneous Derivative Spectrophotometric and HPLC Methods for Determination of 17-Beta-Estradiol and Drospirenone in Combined Dosage Form

    PubMed Central

    Aydoğmuş, Zeynep; Yılmaz, Ece Merve; Yörüsün, Sevgi; Akpınar, Samet

    2015-01-01

    Simple, rapid spectrophotometric, and reverse-phase high performance liquid chromatographic methods were developed for the concurrent analysis of 17-beta-estradiol (ESR) and drospirenone (DRS). The spectrophotometric method was based on the determination of first derivative spectra and determined ESR and DRS using the zero-crossing technique at 208 and 282 nm, respectively, in methanol. The linear range was 0.5–32.0 µg·mL−1 for DRS and 0.5–8.0 µg·mL−1 for EST. The limit of detection (LOD) values were 0.14 µg·mL−1 and 0.10 µg·mL−1 and limit of quantification (LOQ) values were 0.42 µg·mL−1 and 0.29 µg·mL−1 for ESR and DRS, respectively. The chromatographic method was based on the separation of both analytes on a C18 column with a mobile phase containing acetonitrile and water (70 : 30, v/v). Detection was performed with a UV-photodiode array detector at 279 nm. The linear range was 0.08–2.5 µg·mL−1 for DRS and 0.23–7.5 µg·mL−1 for EST. LOD values were 0.05 µg·mL−1 and 0.02 µg·mL−1 and LOQ values were 0.15 µg·mL−1 and 0.05 µg·mL−1 for ESR and DRS, respectively. These recommended methods have been applied for the simultaneous determination of ESR and DRS in their tablets. PMID:27347530

  17. Studies on Tinospora cordifolia monosugars and correlation analysis of uronic acids by spectrophotometric methods and GLC.

    PubMed

    Kumar, Vineet; Nagar, Shipra

    2014-01-01

    Cold water-soluble (CWSP) and hot water soluble polysaccharides (HWSP) from Tinospora cordifolia stems were isolated and purified in 2.99% and 1.99% yield respectively. Complete hydrolysis followed by paper chromatography and GLC analysis indicated the presence of L-rhamnose, L-arabinose, D-xylose, D-mannose, D-galactose and D-glucose in molar ratio of 0.857, 1.106, 0.727, 0.526, 0.708 and 95.763 in CWSP and 0.697, 0.777, 2.048, 0.777, 0.292 and 95.408 in HWSP. The uronic acid content in the polysaccharide has been studied extensively using assorted approaches. It was quantitatively estimated by GLC analysis and spectrophotometric methods using carbazole, m-hydroxydiphenyl and 3,5-dimethylphenol as colorimetric reagents. GLC analyses indicated galacturonic acid content of 3.06% and 5.16% in CWSP and HWSP respectively. Estimation of uronic acid using 3,5-dimethylphenol corroborated the above analysis. The study resulted in composition of constituent monosugars of CWSP and HWSP and co-relation analysis of uronic acid content, leading to an unambiguous structural analysis. PMID:24274509

  18. A novel approach in dispersive liquid-liquid microextraction based on the use of an auxiliary solvent for adjustment of density UV-VIS spectrophotometric and graphite furnace atomic absorption spectrometric determination of gold based on ion pair formation.

    PubMed

    Kocúrová, Lívia; Balogh, Ioseph S; Skrlíková, Jana; Posta, József; Andruch, Vasil

    2010-10-15

    This paper presents a novel approach to dispersive liquid-liquid microextraction (DLLME), based on the use of an auxiliary solvent for the adjustment of density. The procedure utilises a solvent system consisting of a dispersive solvent, an extraction solvent and an auxiliary solvent, which allows for the use of solvents having a density lower than that of water as an extraction solvent while preserving simple phase separation by centrifugation. The suggested approach could be an alternative to procedures described in the literature in recent months and which have been devoted to solving the same problem. The efficiency of the suggested approach is demonstrated through the determination of gold based on the formation of the ion pair [Au(CN)(2)](-) anion with Astra Phloxine (R) reagent and its extraction using the DLLME procedure with subsequent UV-VIS spectrophotometric and graphite furnace atomic absorption spectrometric detection. The optimum conditions were found to be: pH 3; 0.8 mmol L(-1) K(4)[Fe(CN)(6)]; 0.12 mmol L(-1) R; dispersive solvent, methanol; extraction solvent, toluene; auxiliary solvent, tetrachloromethane. The calibration plots were linear in the ranges 0.39-4.7 mg L(-1) and 0.5-39.4 μg L(-1) for UV-VIS and GFAAS detection, respectively; thus enables the application of the developed method in two ranges differing from one from another by three orders of magnitude. The presented approach can be applied to the development of DLLME procedures for the determination of other compounds extractable by organic solvents with a density lower than that of water. PMID:20875602

  19. Flow injection spectrophotometric method for chloride determination in natural waters using Hg(SCN)(2) immobilized in epoxy resin.

    PubMed

    Silva, Claudineia R; Vieira, Heberth J; Canaes, Larissa S; Nóbrega, Joaquim A; Fatibello-Filho, Orlando

    2005-02-28

    A flow injection (FI) spectrophotometric method was proposed for the determination of chloride ion in natural waters. The determination of chloride was carried out by reaction with Hg(SCN)(2) immobilized in an epoxy resin bead in a solid-phase reactor (SPR) and the thiocyanate ions released were determined spectrophotometrically at 480nm after complexing reaction with Fe(III). The analytical curve for chloride was linear in the concentration range from 5.6 x 10(-5) to 2.2 x 10(-4)moll(-1) with a detection limit of 1.4 x 10(-5)moll(-1). The relative standard deviation (R.S.D.) was 2.2% for a solution containing 2.2 x 10(-4)moll(-1) (n = 10). The simple manifold allows a routine analytical frequency of 100 determinations per hour. The main advantage of the developed method is the 400% reduction of the Hg waste solution generated when compared to conventional methods for chloride determination based on the same spectrophotometric reaction. PMID:18969896

  20. Determination of Trace Amounts of Lead Using the Flotation-spectrophotometric method

    PubMed Central

    Shiri, Sabah; Delpisheh, Ali; Haeri, Ali; Poornajaf, Abdolhossein; Golzadeh, Babak; Shiri, Sina

    2010-01-01

    The present study describes a simple and highly selective method for separation, preconcentration and spectrophotometric determination of extremely low concentrations of lead. It is based on flotation of a complex of Pb2+ ions and Alizarin yellow between aqueous and n-hexane interface at pH = 6. The proposed procedure is also applied for determination of lead in both tap water and prepared sea water samples. Beer’s Law was obeyed over the concentration range of 3.86 × 10−8 To 8.20 × 10−7 molL−1 (8–170 ngmL−1) with an apparent molar absorptivity of 1.33 × 106 molL−1 cm−1 for a 100 mL aliquot of the water sample. The detection limit (n = 10) was 8.7 × 10−9 molL−1 (1.0 ngmL−1) and the Relative standard deviation (R.S.D), (n = 10) for 7.2 × 10−7 molL−1 (150 ngmL−1) of Pb (II) was 4.36%. A notable advantage of the method is that the determination of Pb (II) is free from the interference of almost all cations and ions found in the environment and waste water samples. The determination of Pb (II) in tap and synthetic seawater samples was also carried out by the present method. The results were satisfactorily comparable so that the applicability of the proposed method was confirmed to the real samples. PMID:21234287

  1. Determination of Trace Amounts of Lead Using the Flotation-spectrophotometric method

    PubMed Central

    Shiri, Sabah; Delpisheh, Ali; Haeri, Ali; Poornajaf, Abdolhossein; Golzadeh, Babak; Shiri, Sina

    2011-01-01

    The present study describes a simple and highly selective method for separation, preconcentration and spectrophotometric determination of extremely low concentrations of lead. It is based on flotation of a complex of Pb2+ ions and Alizarin yellow between aqueous and n-hexane interface at pH = 6. The proposed procedure is also applied for determination of lead in both tap water and prepared sea water samples. Beer’s Law was obeyed over the concentration range of 3.86 × 10–8 To 8.20 × 10–7 molL−1 (8–170 ngmL−1) with an apparent molar absorptivity of 1.33 × 106 molL−1 cm−1 for a 100 mL aliquot of the water sample. The detection limit (n = 10) was 8.7 × 10–9 molL−1 (1.0 ngmL−1) and the Relative standard deviation (R.S.D), (n = 10) for 7.2 × 10–7 molL−1 (150 ngmL−1) of Pb (II) was 4.36%. A notable advantage of the method is that the determination of Pb (II) is free from the interference of almost all cations and ions found in the environment and waste water samples. The determination of Pb (II) in tap and synthetic seawater samples was also carried out by the present method. The results were satisfactorily comparable so that the applicability of the proposed method was confirmed to the real samples.

  2. Chromium speciation in environmental samples using a solid phase spectrophotometric method.

    PubMed

    Amin, Alaa S; Kassem, Mohammed A

    2012-10-01

    A solid phase extraction technique is proposed for preconcentration and speciation of chromium in natural waters using spectrophotometric analysis. The procedure is based on sorption of chromium(III) as 4-(2-benzothiazolylazo)2,2'-biphenyldiol complex on dextran-type anion-exchange gel (Sephadex DEAE A-25). After reduction of Cr(VI) by 0.5 ml of 96% concentrated H(2)SO(4) and ethanol, the system was applied to the total chromium. The concentration of Cr(VI) was calculated as the difference between the total Cr and the Cr(III) content. The influences of some analytical parameters such as: pH of the aqueous solution, amounts of 4-(2-benzothiazolylazo)2,2'-biphenyldiol (BTABD), and sample volumes were investigated. The absorbance of the gel, at 628 and 750 nm, packed in a 1.0 mm cell, is measured directly. The molar absorptivities were found to be 2.11×10(7) and 3.90×10(7) L mol(-1)cm(-1) for 500 and 1000 ml, respectively. Calibration is linear over the range 0.05-1.45 μg L(-1) with RSD of <1.85% (n=8.0). Using 35 mg exchanger, the detection and quantification limits were 13 and 44 ng L(-1) for 500 ml sample, whereas for 1000 ml sample were 8.0 and 27 ng L(-1), respectively. Increasing the sample volume can enhance the sensitivity. No considerable interferences have been observed from other investigated anions and cations on the chromium speciation. The proposed method was applied to the speciation of chromium in natural waters and total chromium preconcentration in microwave digested tobacco, coffee, tea, and soil samples. The results were simultaneously compared with those obtained using an ET AAS method, whereby the validity of the method has been tested. PMID:22766579

  3. Chromium speciation in environmental samples using a solid phase spectrophotometric method

    NASA Astrophysics Data System (ADS)

    Amin, Alaa S.; Kassem, Mohammed A.

    2012-10-01

    A solid phase extraction technique is proposed for preconcentration and speciation of chromium in natural waters using spectrophotometric analysis. The procedure is based on sorption of chromium(III) as 4-(2-benzothiazolylazo)2,2'-biphenyldiol complex on dextran-type anion-exchange gel (Sephadex DEAE A-25). After reduction of Cr(VI) by 0.5 ml of 96% concentrated H2SO4 and ethanol, the system was applied to the total chromium. The concentration of Cr(VI) was calculated as the difference between the total Cr and the Cr(III) content. The influences of some analytical parameters such as: pH of the aqueous solution, amounts of 4-(2-benzothiazolylazo)2,2'-biphenyldiol (BTABD), and sample volumes were investigated. The absorbance of the gel, at 628 and 750 nm, packed in a 1.0 mm cell, is measured directly. The molar absorptivities were found to be 2.11 × 107 and 3.90 × 107 L mol-1 cm-1 for 500 and 1000 ml, respectively. Calibration is linear over the range 0.05-1.45 μg L-1 with RSD of <1.85% (n = 8.0). Using 35 mg exchanger, the detection and quantification limits were 13 and 44 ng L-1 for 500 ml sample, whereas for 1000 ml sample were 8.0 and 27 ng L-1, respectively. Increasing the sample volume can enhance the sensitivity. No considerable interferences have been observed from other investigated anions and cations on the chromium speciation. The proposed method was applied to the speciation of chromium in natural waters and total chromium preconcentration in microwave digested tobacco, coffee, tea, and soil samples. The results were simultaneously compared with those obtained using an ET AAS method, whereby the validity of the method has been tested.

  4. Different spectrophotometric methods applied for the analysis of binary mixture of flucloxacillin and amoxicillin: A comparative study.

    PubMed

    Attia, Khalid A M; Nassar, Mohammed W I; El-Zeiny, Mohamed B; Serag, Ahmed

    2016-05-15

    Three different spectrophotometric methods were applied for the quantitative analysis of flucloxacillin and amoxicillin in their binary mixture, namely, ratio subtraction, absorbance subtraction and amplitude modulation. A comparative study was done listing the advantages and the disadvantages of each method. All the methods were validated according to the ICH guidelines and the obtained accuracy, precision and repeatability were found to be within the acceptable limits. The selectivity of the proposed methods was tested using laboratory prepared mixtures and assessed by applying the standard addition technique. So, they can be used for the routine analysis of flucloxacillin and amoxicillin in their binary mixtures. PMID:26950503

  5. Spectrophotometric Method for the Determination of Two Coformulated Drugs with Highly Different Concentrations. Application on Vildagliptin and Metformin Hydrochloride

    NASA Astrophysics Data System (ADS)

    Zaazaa, H. E.; Elzanfaly, E. S.; Soudi, A. T.; Salem, M. Y.

    2016-03-01

    A new smart simple validated spectrophotometric method was developed for the determination of two drugs one of which is in a very low concentration compared to the other. The method is based on spiking and dilution then simple mathematical manipulation of the absorbance spectra. This method was applied for the determination of a binary mixture of vildagliptin and metformin hydrochloride in the ratio 50:850 in laboratory prepared mixtures containing both drugs in this ratio and in pharmaceutical dosage form with good recoveries. The developed method was validated according to ICH guidelines and can be used for routine quality control testing.

  6. Different spectrophotometric methods applied for the analysis of binary mixture of flucloxacillin and amoxicillin: A comparative study

    NASA Astrophysics Data System (ADS)

    Attia, Khalid A. M.; Nassar, Mohammed W. I.; El-Zeiny, Mohamed B.; Serag, Ahmed

    2016-05-01

    Three different spectrophotometric methods were applied for the quantitative analysis of flucloxacillin and amoxicillin in their binary mixture, namely, ratio subtraction, absorbance subtraction and amplitude modulation. A comparative study was done listing the advantages and the disadvantages of each method. All the methods were validated according to the ICH guidelines and the obtained accuracy, precision and repeatability were found to be within the acceptable limits. The selectivity of the proposed methods was tested using laboratory prepared mixtures and assessed by applying the standard addition technique. So, they can be used for the routine analysis of flucloxacillin and amoxicillin in their binary mixtures.

  7. Simultaneous spectrophotometric determination of Celecoxib and Diacerein in bulk and capsule by absorption correction method and chemometric methods

    NASA Astrophysics Data System (ADS)

    Patel, N. S.; Nandurbarkar, V. P.; Patel, A. J.; Patel, S. G.

    Two methods, absorption correction and multivariate spectrophotometric methods were developed for simultaneous estimation of Celecoxib (CEL) and Diacerein (DIA) in combined dosage form. Absorption correction method involves direct estimation of DIA at wavelength 341 nm in which CEL has zero absorbance and shows no interference. For estimation of CEL, corrected absorbance was calculated at 253 nm due to the interference of DIA at this wavelength. Linearity was observed in the range of 6-22 μg mL-1 for CEL and 3-11 μg mL-1 for DIA. The method was validated as per ICH guidelines. Chemometric methods including classical least square (CLS), inverse least square (ILS), principal component regression (PCR) and partial least square (PLS) were studied for simultaneous determination of CEL and DIA in capsule using spectrophotometry. A set of 25 standard mixtures containing both drugs were prepared in range of 5-25 μg mL-1 for CEL and 3-15 μg mL-1 for DIA. Analytical figure of merit (FOM), such as sensitivity, selectivity, analytical sensitivity, limit of detection and limit of quantitation were determined for chemometric methods. The proposed methods were applied for determination of two components from combined dosage form.

  8. Selective kinetic spectrophotometric method for determination of gatifloxacin based on formation of its N-vinyl chlorobenzoquinone derivative

    NASA Astrophysics Data System (ADS)

    Darwish, Ibrahim A.; Sultan, Maha A.; Al-Arfaj, Hessa A.

    2010-01-01

    A selective and simple kinetic spectrophotometric has been developed, for the first time, for the determination of gatifloxacin (GAT) in its dosage forms. The method was based on the formation of a colored N-vinyl chlorobenzoquinone derivative of GAT by its reaction with 2,3,5,6-tetrachloro-1,4-benzoquinone in presence of acetaldehyde. The formation of the colored product was monitored spectrophotometrically by measuring the absorbances at 655 nm. The factors affecting the reaction were studied and optimized. The stoichiometry of the reaction was determined, and the reaction pathway was postulated. Under the optimized conditions, the initial rate and fixed time (at 5 min) methods were utilized for constructing the calibration graphs. The graphs were linear in the concentration ranges of 2-100 and 10-140 μg ml -1 with limits of detection of 0.84 and 3.5 μg ml -1 for the initial rate and fixed time methods, respectively. The analytical performance of both methods was fully validated, and the results were satisfactory. The proposed methods were successfully applied to the determination of GAT in its commercial dosage forms. The label claim percentages were 99.7-100.5 and 98.2-99.5% for the initial rate and fixed time methods, respectively. Statistical comparison of the results with those of the reference method showed excellent agreement and proved that there was no significant difference in the accuracy and precision between the reference and the proposed methods. The proposed methods are superior to all the previously reported spectrophotometric methods in terms of the procedure simplicity and assay selectivity.

  9. Derivative-ratio spectrophotometric method for the determination of ternary mixture of aspirin, paracetamol and salicylic acid

    NASA Astrophysics Data System (ADS)

    El-Yazbi, Fawzi A.; Hammud, Hassan H.; Assi, Sulaf A.

    2007-10-01

    A derivative spectrophotometric method was developed for the assay of a ternary mixture of aspirin (ASP), paracetamol (PAR) and salicylic acid (SAL). The method is based on the use of the first and second derivatives of the ratio spectra and measurement at zero-crossing wavelengths. The ratio spectra were obtained by dividing the absorption spectrum of the mixture by that of one of the components. The concentration of the other components are then determined from their respective calibration curves treated similarly. The described method was applied for the determination of these combinations in synthetic mixtures and dosage forms. The results obtained were accurate and precise.

  10. Comparative study of novel versus conventional two-wavelength spectrophotometric methods for analysis of spectrally overlapping binary mixture.

    PubMed

    Lotfy, Hayam M; Hegazy, Maha A; Rezk, Mamdouh R; Omran, Yasmin Rostom

    2015-09-01

    Smart spectrophotometric methods have been applied and validated for the simultaneous determination of a binary mixture of chloramphenicol (CPL) and prednisolone acetate (PA) without preliminary separation. Two novel methods have been developed; the first method depends upon advanced absorbance subtraction (AAS), while the other method relies on advanced amplitude modulation (AAM); in addition to the well established dual wavelength (DW), ratio difference (RD) and constant center coupled with spectrum subtraction (CC-SS) methods. Accuracy, precision and linearity ranges of these methods were determined. Moreover, selectivity was assessed by analyzing synthetic mixtures of both drugs. The proposed methods were successfully applied to the assay of drugs in their pharmaceutical formulations. No interference was observed from common additives and the validity of the methods was tested. The obtained results have been statistically compared to that of official spectrophotometric methods to give a conclusion that there is no significant difference between the proposed methods and the official ones with respect to accuracy and precision. PMID:25909908

  11. Development and validation of sensitive kinetic spectrophotometric method for the determination of moxifloxacin antibiotic in pure and commercial tablets

    NASA Astrophysics Data System (ADS)

    Ashour, Safwan; Bayram, Roula

    2015-04-01

    New, accurate, sensitive and reliable kinetic spectrophotometric method for the assay of moxifloxacin hydrochloride (MOXF) in pure form and pharmaceutical formulations has been developed. The method involves the oxidative coupling reaction of MOXF with 3-methyl-2-benzothiazolinone hydrazone hydrochloride monohydrate (MBTH) in the presence of Ce(IV) in an acidic medium to form colored product with lambda max at 623 and 660 nm. The reaction is followed spectrophotometrically by measuring the increase in absorbance at 623 nm as a function of time. The initial rate and fixed time methods were adopted for constructing the calibration curves. The linearity range was found to be 1.89-40.0 μg mL-1 for initial rate and fixed time methods. The limit of detection for initial rate and fixed time methods is 0.644 and 0.043 μg mL-1, respectively. Molar absorptivity for the method was found to be 0.89 × 104 L mol-1 cm-1. Statistical treatment of the experimental results indicates that the methods are precise and accurate. The proposed method has been applied successfully for the estimation of moxifloxacin hydrochloride in tablet dosage form with no interference from the excipients. The results are compared with the official method.

  12. A PLS-based extractive spectrophotometric method for simultaneous determination of carbamazepine and carbamazepine-10,11-epoxide in plasma and comparison with HPLC

    NASA Astrophysics Data System (ADS)

    Hemmateenejad, Bahram; Rezaei, Zahra; Khabnadideh, Soghra; Saffari, Maryam

    2007-11-01

    Carbamazepine (CBZ) undergoes enzyme biotransformation through epoxidation with the formation of its metabolite, carbamazepine-10,11-epoxide (CBZE). A simple chemometrics-assisted spectrophotometric method has been proposed for simultaneous determination of CBZ and CBZE in plasma. A liquid extraction procedure was operated to separate the analytes from plasma, and the UV absorbance spectra of the resultant solutions were subjected to partial least squares (PLS) regression. The optimum number of PLS latent variables was selected according to the PRESS values of leave-one-out cross-validation. A HPLC method was also employed for comparison. The respective mean recoveries for analysis of CBZ and CBZE in synthetic mixtures were 102.57 (±0.25)% and 103.00 (±0.09)% for PLS and 99.40 (±0.15)% and 102.20 (±0.02)%. The concentrations of CBZ and CBZE were also determined in five patients using the PLS and HPLC methods. The results showed that the data obtained by PLS were comparable with those obtained by HPLC method.

  13. Spectrophotometric Analysis of Caffeine.

    PubMed

    Ahmad Bhawani, Showkat; Fong, Sim Siong; Mohamad Ibrahim, Mohamad Nasir

    2015-01-01

    The nature of caffeine reveals that it is a bitter white crystalline alkaloid. It is a common ingredient in a variety of drinks (soft and energy drinks) and is also used in combination with various medicines. In order to maintain the optimum level of caffeine, various spectrophotometric methods have been developed. The monitoring of caffeine is very important aspect because of its consumption in higher doses that can lead to various physiological disorders. This paper incorporates various spectrophotometric methods used in the analysis of caffeine in various environmental samples such as pharmaceuticals, soft and energy drinks, tea, and coffee. A range of spectrophotometric methodologies including chemometric techniques and derivatization of spectra have been used to analyse the caffeine. PMID:26604926

  14. Spectrophotometric Analysis of Caffeine

    PubMed Central

    Ahmad Bhawani, Showkat; Fong, Sim Siong; Mohamad Ibrahim, Mohamad Nasir

    2015-01-01

    The nature of caffeine reveals that it is a bitter white crystalline alkaloid. It is a common ingredient in a variety of drinks (soft and energy drinks) and is also used in combination with various medicines. In order to maintain the optimum level of caffeine, various spectrophotometric methods have been developed. The monitoring of caffeine is very important aspect because of its consumption in higher doses that can lead to various physiological disorders. This paper incorporates various spectrophotometric methods used in the analysis of caffeine in various environmental samples such as pharmaceuticals, soft and energy drinks, tea, and coffee. A range of spectrophotometric methodologies including chemometric techniques and derivatization of spectra have been used to analyse the caffeine. PMID:26604926

  15. Net analyte signal standard addition method (NASSAM) as a novel spectrofluorimetric and spectrophotometric technique for simultaneous determination, application to assay of melatonin and pyridoxine

    NASA Astrophysics Data System (ADS)

    Asadpour-Zeynali, Karim; Bastami, Mohammad

    2010-02-01

    In this work a new modification of the standard addition method called "net analyte signal standard addition method (NASSAM)" is presented for the simultaneous spectrofluorimetric and spectrophotometric analysis. The proposed method combines the advantages of standard addition method with those of net analyte signal concept. The method can be applied for the determination of analyte in the presence of known interferents. The accuracy of the predictions against H-point standard addition method is not dependent on the shape of the analyte and interferent spectra. The method was successfully applied to simultaneous spectrofluorimetric and spectrophotometric determination of pyridoxine (PY) and melatonin (MT) in synthetic mixtures and in a pharmaceutical formulation.

  16. Is it possible to screen for milk or whey protein adulteration with melamine, urea and ammonium sulphate, combining Kjeldahl and classical spectrophotometric methods?

    PubMed

    Finete, Virgínia de Lourdes Mendes; Gouvêa, Marcos Martins; Marques, Flávia Ferreira de Carvalho; Netto, Annibal Duarte Pereira

    2013-12-15

    The Kjeldahl method and four classic spectrophotometric methods (Biuret, Lowry, Bradford and Markwell) were applied to evaluate the protein content of samples of UHT whole milk deliberately adulterated with melamine, ammonium sulphate or urea, which can be used to defraud milk protein and whey contents. Compared with the Kjeldahl method, the response of the spectrophotometric methods was unaffected by the addition of the nitrogen compounds to milk or whey. The methods of Bradford and Markwell were most robust and did not exhibit interference subject to composition. However, the simultaneous interpretation of results obtained using these methods with those obtained using the Kjeldahl method indicated the addition of nitrogen-rich compounds to milk and/or whey. Therefore, this work suggests a combination of results of Kjeldahl and spectrophotometric methods should be used to screen for milk adulteration by these compounds. PMID:23993532

  17. Validation of four different spectrophotometric methods for simultaneous determination of Domperidone and Ranitidine in bulk and pharmaceutical formulation.

    PubMed

    Abdel-Ghany, Maha F; Abdel-Aziz, Omar; Mohammed, Yomna Y

    2015-10-01

    Four simple, specific, accurate and precise spectrophotometric methods were developed and validated for simultaneous determination of Domperidone (DP) and Ranitidine Hydrochloride (RT) in bulk powder and pharmaceutical formulation. The first method was simultaneous ratio subtraction (SRS), the second was ratio subtraction (RS) coupled with zero order spectrophotometry (D(0)), the third was first derivative of the ratio spectra ((1)DD) and the fourth method was mean centering of ratio spectra (MCR). The calibration curve is linear over the concentration range of 0.5-5 and 1-45 μg mL(-1) for DP and RT, respectively. The proposed spectrophotometric methods can analyze both drugs without any prior separation steps. The selectivity of the adopted methods was tested by analyzing synthetic mixtures of the investigated drugs, also in their pharmaceutical formulation. The suggested methods were validated according to International Conference of Harmonization (ICH) guidelines and the results revealed that; they were precise and reproducible. All the obtained results were statistically compared with those of the reported method, where there was no significant difference. PMID:25942082

  18. Validation of four different spectrophotometric methods for simultaneous determination of Domperidone and Ranitidine in bulk and pharmaceutical formulation

    NASA Astrophysics Data System (ADS)

    Abdel-Ghany, Maha F.; Abdel-Aziz, Omar; Mohammed, Yomna Y.

    2015-10-01

    Four simple, specific, accurate and precise spectrophotometric methods were developed and validated for simultaneous determination of Domperidone (DP) and Ranitidine Hydrochloride (RT) in bulk powder and pharmaceutical formulation. The first method was simultaneous ratio subtraction (SRS), the second was ratio subtraction (RS) coupled with zero order spectrophotometry (D0), the third was first derivative of the ratio spectra (1DD) and the fourth method was mean centering of ratio spectra (MCR). The calibration curve is linear over the concentration range of 0.5-5 and 1-45 μg mL-1 for DP and RT, respectively. The proposed spectrophotometric methods can analyze both drugs without any prior separation steps. The selectivity of the adopted methods was tested by analyzing synthetic mixtures of the investigated drugs, also in their pharmaceutical formulation. The suggested methods were validated according to International Conference of Harmonization (ICH) guidelines and the results revealed that; they were precise and reproducible. All the obtained results were statistically compared with those of the reported method, where there was no significant difference.

  19. A new spectrophotometric method for determination of selenium in cosmetic and pharmaceutical preparations after preconcentration with cloud point extraction.

    PubMed

    Soruraddin, Mohammad Hosein; Heydari, Rouhollah; Puladvand, Morteza; Zahedi, Mir Mehdi

    2011-01-01

    A simple, rapid, and sensitive spectrophotometric method for the determination of trace amounts of selenium (IV) was described. In this method, all selenium spices reduced to selenium (IV) using 6 M HCl. Cloud point extraction was applied as a preconcentration method for spectrophotometric determination of selenium (IV) in aqueous solution. The proposed method is based on the complexation of Selenium (IV) with dithizone at pH < 1 in micellar medium (Triton X-100). After complexation with dithizone, the analyte was quantitatively extracted to the surfactant-rich phase by centrifugation and diluted to 5 mL with methanol. Since the absorption maxima of the complex (424 nm) and dithizone (434 nm) overlap, hence, the corrected absorbance, Acorr, was used to overcome the problem. With regard to the preconcentration, the tested parameters were the pH of the extraction, the concentration of the surfactant, the concentration of dithizone, and equilibration temperature and time. The detection limit is 4.4 ng mL(-1); the relative standard deviation for six replicate measurements is 2.18% for 50 ng mL(-1) of selenium. The procedure was applied successfully to the determination of selenium in two kinds of pharmaceutical samples. PMID:21647287

  20. A New Spectrophotometric Method for Determination of Selenium in Cosmetic and Pharmaceutical Preparations after Preconcentration with Cloud Point Extraction

    PubMed Central

    Soruraddin, Mohammad Hosein; Heydari, Rouhollah; Puladvand, Morteza; Zahedi, Mir Mehdi

    2011-01-01

    A simple, rapid, and sensitive spectrophotometric method for the determination of trace amounts of selenium (IV) was described. In this method, all selenium spices reduced to selenium (IV) using 6 M HCl. Cloud point extraction was applied as a preconcentration method for spectrophotometric determination of selenium (IV) in aqueous solution. The proposed method is based on the complexation of Selenium (IV) with dithizone at pH < 1 in micellar medium (Triton X-100). After complexation with dithizone, the analyte was quantitatively extracted to the surfactant-rich phase by centrifugation and diluted to 5 mL with methanol. Since the absorption maxima of the complex (424 nm) and dithizone (434 nm) overlap, hence, the corrected absorbance, Acorr, was used to overcome the problem. With regard to the preconcentration, the tested parameters were the pH of the extraction, the concentration of the surfactant, the concentration of dithizone, and equilibration temperature and time. The detection limit is 4.4 ng mL−1; the relative standard deviation for six replicate measurements is 2.18% for 50 ng mL−1 of selenium. The procedure was applied successfully to the determination of selenium in two kinds of pharmaceutical samples. PMID:21647287

  1. Generalized net analyte signal standard addition as a novel method for simultaneous determination: application in spectrophotometric determination of some pesticides.

    PubMed

    Asadpour-Zeynali, Karim; Saeb, Elhameh; Vallipour, Javad; Bamorowat, Mehdi

    2014-01-01

    Simultaneous spectrophotometric determination of three neonicotinoid insecticides (acetamiprid, imidacloprid, and thiamethoxam) by a novel method named generalized net analyte signal standard addition method (GNASSAM) in some binary and ternary synthetic mixtures was investigated. For this purpose, standard addition was performed using a single standard solution consisting of a mixture of standards of all analytes. Savings in time and amount of used materials are some of the advantages of this method. All determinations showed appropriate applicability of this method with less than 5% error. This method may be applied for linearly dependent data in the presence of known interferents. The GNASSAM combines the advantages of both the generalized standard addition method and net analyte signal; therefore, it may be a proper alternative for some other multivariate methods. PMID:24672886

  2. INVESTIGATION AND OPTIMIZATION OF TITRIMETRIC AND SPECTROPHOTOMETRIC METHODS FOR THE ASSAY OF FLUNARIZINE DIHYDROCHLORIDE USING IN SITU BROMINE.

    PubMed

    Prashanth, Kudige Nagaraj; Swamy, Nagaraju; Basavaiah, Kanakapura

    2016-01-01

    Three indirect methods for the assay of flunarizine dihydrochloride (FNH) in bulk drug and commercial formulation based on titrimetric and spectrophotometric techniques using bromate-bromide mixture are described. In titrimetry, a measured excess of bromate-bromide mixture is added to an acidified solution of FNH and the unreacted bromine is determined iodometrically (method A). Spectrophotometry involves the addition of a known excess of bromate-bromide mixture to FNH in acid medium followed by estimation of unreacted bromine by its reaction with excess iodide and the liberated iodine (I₃⁻) is either measured at 370 nm (method B) or liberated iodine reacted with starch followed by the measurement of the blue colored starch-iodide complex at 575 run (method C). Titrimetric method is applicable over the range 4.5-30.0 mg FNH (method A), and the reaction stoichiometry is found to be 1:2 (FNH:KBrO₃). The spectrophotometric methods are applicable over the concentration ranges 0.8-16.0 µg/mL and 0.4-8.0 µg/mL FNH for method B and method C, respectively. The molar absorptivities are calculated to be 2.83 x 10⁴ and 4.96 x 10⁴ L mol⁻¹cm⁻¹ for method B and method C, respectively, and the corresponding Sandell sensitivity values are 0.0168 and 0.0096 µg cm⁻². The proposed methods have been applied successfully for the determination of FNH in pure form and in its dosage form and the results were compared with those of a literature method by applying the Student's t-test and F-test. PMID:27008799

  3. Simultaneous spectrophotometric determination of paracetamol, ibuprofen and caffeine in pharmaceuticals by chemometric methods

    NASA Astrophysics Data System (ADS)

    Khoshayand, M. R.; Abdollahi, H.; Shariatpanahi, M.; Saadatfard, A.; Mohammadi, A.

    2008-08-01

    In this study, the simultaneous determination of paracetamol, ibuprofen and caffeine in pharmaceuticals by chemometric approaches using UV spectrophotometry has been reported as a simple alternative to using separate models for each component. Spectra of paracetamol, ibuprofen and caffeine were recorded at several concentrations within their linear ranges and were used to compute the calibration mixture between wavelengths 200 and 400 nm at an interval of 1 nm in methanol:0.1 HCl (3:1). Partial least squares regression (PLS), genetic algorithm coupled with PLS (GA-PLS), and principal component-artificial neural network (PC-ANN) were used for chemometric analysis of data and the parameters of the chemometric procedures were optimized. The analytical performances of these chemometric methods were characterized by relative prediction errors and recoveries (%) and were compared with each other. The GA-PLS shows superiority over other applied multivariate methods due to the wavelength selection in PLS calibration using a genetic algorithm without loss of prediction capacity. Although the components show an important degree of spectral overlap, they have been determined simultaneously and rapidly requiring no separation step. These three methods were successfully applied to pharmaceutical formulation, capsule, with no interference from excipients as indicated by the recovery study results. The proposed methods are simple and rapid and can be easily used in the quality control of drugs as alternative analysis tools.

  4. Spectrophotometric Estimation of Ethamsylate and Mefenamic Acid from a Binary Mixture by Dual Wavelength and Simultaneous Equation Methods

    PubMed Central

    Goyal, Anju; Singhvi, I.

    2008-01-01

    Two simple, accurate, economical and reproducible spectrophotometric methods for simultaneous estimation of two-component drug mixture of ethamsylate and mefenamic acid in combined tablet dosage form have been developed. The first developed method involves formation and solving of simultaneous equation using 287.6 nm and 313.2 nm as two wavelengths. Second developed method is based on two wavelength calculation. Two wavelengths selected for estimation of ethamsylate were 274.4 nm and 301.2 nm while that for mefenamic acid were 304.8 nm and 320.4 nm. Both the developed methods obey Beer's law in the concentration ranges employed for the respective methods. The results of analysis were validated statistically and by recovery studies. PMID:20390094

  5. Stability-indicating spectrophotometric methods for determination of the anticoagulant drug apixaban in the presence of its hydrolytic degradation product.

    PubMed

    Tantawy, Mahmoud A; El-Ragehy, Nariman A; Hassan, Nagiba Y; Abdelkawy, Mohamed

    2016-04-15

    Apixaban (a novel anticoagulant agent) was subjected to a stress stability study including acid, alkali, oxidative, photolytic, and thermal degradation. The drug was found to be only liable to acidic and alkaline hydrolysis. The degradation product was then isolated and identified by IR and GC-mass spectrometry. Four spectrophotometric methods, namely; first derivative (D(1)), derivative ratio (DR), ratio difference (RD) and mean centering of ratio spectra (MCR), have been suggested for the determination of apixaban in presence of its hydrolytic degradation product. The proposed methods do not require any preliminary separation step. The accuracy, precision and linearity ranges of the proposed methods were determined, and the methods were validated as per ICH guidelines and the specificity was assessed by analyzing synthetic mixtures containing different percentages of the degradation product with the drug. The developed methods were successfully applied for the determination of apixaban in bulk powder and its tablet dosage form. PMID:26824484

  6. Stability-indicating spectrophotometric methods for determination of the anticoagulant drug apixaban in the presence of its hydrolytic degradation product

    NASA Astrophysics Data System (ADS)

    Tantawy, Mahmoud A.; El-Ragehy, Nariman A.; Hassan, Nagiba Y.; Abdelkawy, Mohamed

    2016-04-01

    Apixaban (a novel anticoagulant agent) was subjected to a stress stability study including acid, alkali, oxidative, photolytic, and thermal degradation. The drug was found to be only liable to acidic and alkaline hydrolysis. The degradation product was then isolated and identified by IR and GC-mass spectrometry. Four spectrophotometric methods, namely; first derivative (D1), derivative ratio (DR), ratio difference (RD) and mean centering of ratio spectra (MCR), have been suggested for the determination of apixaban in presence of its hydrolytic degradation product. The proposed methods do not require any preliminary separation step. The accuracy, precision and linearity ranges of the proposed methods were determined, and the methods were validated as per ICH guidelines and the specificity was assessed by analyzing synthetic mixtures containing different percentages of the degradation product with the drug. The developed methods were successfully applied for the determination of apixaban in bulk powder and its tablet dosage form.

  7. Roles of reactive oxygen species in UVA-induced oxidation of 5,6-dihydroxyindole-2-carboxylic acid-melanin as studied by differential spectrophotometric method.

    PubMed

    Ito, Shosuke; Kikuta, Marina; Koike, Shota; Szewczyk, Grzegorz; Sarna, Michal; Zadlo, Andrzej; Sarna, Tadeusz; Wakamatsu, Kazumasa

    2016-05-01

    Eumelanin photoprotects pigmented tissues from ultraviolet (UV) damage. However, UVA-induced tanning seems to result from the photooxidation of preexisting melanin and does not contribute to photoprotection. We investigated the mechanism of UVA-induced degradation of 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-melanin taking advantage of its solubility in a neutral buffer and using a differential spectrophotometric method to detect subtle changes in its structure. Our methodology is suitable for examining the effects of various agents that interact with reactive oxygen species (ROS) to determine how ROS is involved in the UVA-induced oxidative modifications. The results show that UVA radiation induces the oxidation of DHICA to indole-5,6-quinone-2-carboxylic acid in eumelanin, which is then cleaved to form a photodegraded, pyrrolic moiety and finally to form free pyrrole-2,3,5-tricarboxylic acid. The possible involvement of superoxide radical and singlet oxygen in the oxidation was suggested. The generation and quenching of singlet oxygen by DHICA-melanin was confirmed by direct measurements of singlet oxygen phosphorescence. PMID:26920809

  8. Application and validation of superior spectrophotometric methods for simultaneous determination of ternary mixture used for hypertension management

    NASA Astrophysics Data System (ADS)

    Mohamed, Heba M.; Lamie, Nesrine T.

    2016-02-01

    Telmisartan (TL), Hydrochlorothiazide (HZ) and Amlodipine besylate (AM) are co-formulated together for hypertension management. Three smart, specific and precise spectrophotometric methods were applied and validated for simultaneous determination of the three cited drugs. Method A is the ratio isoabsorptive point and ratio difference in subtracted spectra (RIDSS) which is based on dividing the ternary mixture of the studied drugs by the spectrum of AM to get the division spectrum, from which concentration of AM can be obtained by measuring the amplitude values in the plateau region at 360 nm. Then the amplitude value of the plateau region was subtracted from the division spectrum and HZ concentration was obtained by measuring the difference in amplitude values at 278.5 and 306 nm (corresponding to zero difference of TL) while the total concentration of HZ and TL in the mixture was measured at their isoabsorptive point in the division spectrum at 278.5 nm (Aiso). TL concentration is then obtained by subtraction. Method B; double divisor ratio spectra derivative spectrophotometry (RS-DS) and method C; mean centering of ratio spectra (MCR) spectrophotometric methods. The proposed methods did not require any initial separation steps prior the analysis of the three drugs. A comparative study was done between the three methods regarding their; simplicity, sensitivity and limitations. Specificity was investigated by analyzing the synthetic mixtures containing different ratios of the three studied drugs and their tablets dosage form. Statistical comparison of the obtained results with those found by the official methods was done, differences were non-significant in regard to accuracy and precision. The three methods were validated in accordance with ICH guidelines and can be used for quality control laboratories for TL, HZ and AM.

  9. Stability indicating spectrophotometric and spectrodensitometric methods for the determination of diatrizoate sodium in presence of its degradation product

    NASA Astrophysics Data System (ADS)

    Abd El-Rahman, Mohamed K.; Riad, Safaa M.; Abdel Gawad, Sherif A.; Fawaz, Esraa M.; Shehata, Mostafa A.

    2015-02-01

    Three sensitive, selective, and precise stability indicating methods for the determination of the X-ray contrast agent, diatrizoate sodium (DTA), in the presence of its acidic degradation product (highly cytotoxic 3,5 diamino metabolite) and in pharmaceutical formulation were developed and validated. The first method is a first derivative (D1) spectrophotometric one, which allows the determination of DTA in the presence of its degradate at 231.2 nm (corresponding to zero crossing of the degradate) over a concentration range of 2-24 μg/mL with mean percentage recovery 99.95 ± 0.97%. The second method is the first derivative of the ratio spectra (DD1) by measuring the peak amplitude at 227 nm over the same concentration range as D1 spectrophotometric method, with mean percentage recovery 99.99 ± 1.15%. The third method is a TLC-densitometric one, where DTA was separated from its degradate on silica gel plates using chloroform:methanol:ammonium hydroxide (20:10:2 by volume) as a developing system. This method depends on quantitative densitometric evaluation of thin layer chromatogram of DTA at 238 nm over a concentration range of 4-20 μg/spot, with mean percentage recovery 99.88 ± 0.89%. The selectivity of the proposed methods was tested using laboratory-prepared mixtures. The proposed methods have been successfully applied to the analysis of DTA in pharmaceutical dosage forms without interference from other dosage form additives. The results were statistically compared with the official US pharmacopeial method. No significant difference for either accuracy or precision was observed.

  10. Application and validation of superior spectrophotometric methods for simultaneous determination of ternary mixture used for hypertension management.

    PubMed

    Mohamed, Heba M; Lamie, Nesrine T

    2016-02-15

    Telmisartan (TL), Hydrochlorothiazide (HZ) and Amlodipine besylate (AM) are co-formulated together for hypertension management. Three smart, specific and precise spectrophotometric methods were applied and validated for simultaneous determination of the three cited drugs. Method A is the ratio isoabsorptive point and ratio difference in subtracted spectra (RIDSS) which is based on dividing the ternary mixture of the studied drugs by the spectrum of AM to get the division spectrum, from which concentration of AM can be obtained by measuring the amplitude values in the plateau region at 360nm. Then the amplitude value of the plateau region was subtracted from the division spectrum and HZ concentration was obtained by measuring the difference in amplitude values at 278.5 and 306nm (corresponding to zero difference of TL) while the total concentration of HZ and TL in the mixture was measured at their isoabsorptive point in the division spectrum at 278.5nm (Aiso). TL concentration is then obtained by subtraction. Method B; double divisor ratio spectra derivative spectrophotometry (RS-DS) and method C; mean centering of ratio spectra (MCR) spectrophotometric methods. The proposed methods did not require any initial separation steps prior the analysis of the three drugs. A comparative study was done between the three methods regarding their; simplicity, sensitivity and limitations. Specificity was investigated by analyzing the synthetic mixtures containing different ratios of the three studied drugs and their tablets dosage form. Statistical comparison of the obtained results with those found by the official methods was done, differences were non-significant in regard to accuracy and precision. The three methods were validated in accordance with ICH guidelines and can be used for quality control laboratories for TL, HZ and AM. PMID:26590480

  11. [Application of HPLC-UV method for aripiprazole determination in serum].

    PubMed

    Synowiec, Anna; Gomółka, Ewa; Zyss, Tomasz; Zieba, Andrzej; Florek, Ewa; Piekoszewski, Wojciech

    2012-01-01

    Aripiprazole is a new drug applied in schizophrenia treatment. There are not strict indications for aripiprazole therapeutic drug monitoring. Despite, serum aripiprazole measuring would help control the drug doses effectiveness. The drug monitoring can eliminate overdosing, adverse effects and let control proper drug ingestion. The aim of the paper was to develop a simple method for aripiprazole determination in serum for therapeutic drug monitoring. High performance liquid chromatography with spectrophotometric detection (HPLC-UV) was used. Resolution was performed on LC-8 column; moving phase was solution 0,025M trimethylammonium buffer: acetonitrile (62:38). Isocratic flow was 1,2 ml/min; internal standard (IS) was promazine; monitored wavelength was lambda=214 nm. The validation parameters were: limits of linearity (LOL) 100-800 ng/ml, limit of detection (LOD) 10 ng/ml, limit of quantity (LOQ) 100 ng/ml. Coefficient of variation (CV) describing accuracy and precision didn't cross 10%. The method was useful for therapeutic drug monitoring in serum of patients treated with aripiprazole. PMID:23421079

  12. Fourth-order derivative spectrophotometric method for simultaneous determination of pseudoephedrine and naproxen in pharmaceutical dosage forms.

    PubMed

    Souri, Effat; Mosafer, Amir; Tehrani, Maliheh Barazandeh

    2016-01-01

    Combination dosage forms of naproxen sodium and pseudoephedrine hydrochloride are used for symptomatic treatment of cold and sinus disorders. In this study, fourth-order derivative spectrophotometric method was used for simultaneous determination of naproxen sodium and pseudoephedrine hydrochloride. The method was linear over the range of 2-28 μg/ml for pseudoephedrine hydrochloride and 4-200 μg/ml for naproxen sodium. The within-day and between-day coefficient of variation values were less than 5.8% and 2.5% for pseudoephedrine hydrochloride and naproxen sodium, respectively. The application of the proposed method for simultaneous determination of naproxen and pseudoephedrine in dosage forms was demonstrated without any special pretreatment. PMID:27168748

  13. Fourth-order derivative spectrophotometric method for simultaneous determination of pseudoephedrine and naproxen in pharmaceutical dosage forms

    PubMed Central

    Souri, Effat; Mosafer, Amir; Tehrani, Maliheh Barazandeh

    2016-01-01

    Combination dosage forms of naproxen sodium and pseudoephedrine hydrochloride are used for symptomatic treatment of cold and sinus disorders. In this study, fourth-order derivative spectrophotometric method was used for simultaneous determination of naproxen sodium and pseudoephedrine hydrochloride. The method was linear over the range of 2-28 μg/ml for pseudoephedrine hydrochloride and 4-200 μg/ml for naproxen sodium. The within-day and between-day coefficient of variation values were less than 5.8% and 2.5% for pseudoephedrine hydrochloride and naproxen sodium, respectively. The application of the proposed method for simultaneous determination of naproxen and pseudoephedrine in dosage forms was demonstrated without any special pretreatment. PMID:27168748

  14. Simultaneous spectrophotometric determination of chromium(VI) and iron (III) by H-point standard addition method

    NASA Astrophysics Data System (ADS)

    Larionova, E. V.; Bulygina, K. A.

    2016-02-01

    In this work the possibility of simultaneous spectrophotometric determination of chromium (VI) and iron (III) in alloys with help of the mixed organic reagent (diphenylcarbazide and 1,10-phenanthroline) is studied. We have applied H-point standard addition method to determine concentrations of chromium (VI) and iron (III) from the mixture. The pure signals of complexes of chromium (VI) with diphenylcarbazide and iron (III) with the 1,10-phenanthroline and their calibration plots are previously carried out. We established the possibility of simultaneous determination of chromium (VI) and iron (III) in the different concentration ranges by H-point standard addition method. Correctness of determination of concentration by means of the offered technique is proved by "added-found" method for a series of mixtures with different ratios of concentration of chromium (VI) and iron (III). It is founded that the error of determination of concentration doesn't exceed 33%.

  15. Derivative spectrophotometric method for simultaneous determination of zofenopril and fluvastatin in mixtures and pharmaceutical dosage forms

    NASA Astrophysics Data System (ADS)

    Stolarczyk, Mariusz; Maślanka, Anna; Apola, Anna; Rybak, Wojciech; Krzek, Jan

    2015-09-01

    Fast, accurate and precise method for the determination of zofenopril and fluvastatin was developed using spectrophotometry of the first (D1), second (D2), and third (D3) order derivatives in two-component mixtures and in pharmaceutical preparations. It was shown, that the developed method allows for the determination of the tested components in a direct manner, despite the apparent interference of the absorption spectra in the UV range. For quantitative determinations, "zero-crossing" method was chosen, appropriate wavelengths for zofenopril were: D1 λ = 270.85 nm, D2 λ = 286.38 nm, D3 λ = 253.90 nm. Fluvastatin was determined at wavelengths: D1 λ = 339.03 nm, D2 λ = 252.57 nm, D3 λ = 258.50 nm, respectively. The method was characterized by high sensitivity and accuracy, for zofenopril LOD was in the range of 0.19-0.87 μg mL-1, for fluvastatin 0.51-1.18 μg mL-1, depending on the class of derivative, and for zofenopril and fluvastatin LOQ was 0.57-2.64 μg mL-1 and 1.56-3.57 μg mL-1, respectively. The recovery of individual components was within the range of 100 ± 5%. For zofenopril, the linearity range was estimated between 7.65 μg mL-1 and 22.94 μg mL-1, and for fluvastatin between 5.60 μg mL-1 and 28.00 μg mL-1.

  16. A simple spectrophotometric method for determination of zirconium or hafnium in selected molybdenum-base alloys

    NASA Technical Reports Server (NTRS)

    Dupraw, W. A.

    1972-01-01

    A simple analytical procedure is described for accurately and precisely determining the zirconium or hafnium content of molybdenum-base alloys. The procedure is based on the reaction of the reagent Arsenazo III with zirconium or hafnium in strong hydrochloric acid solution. The colored complexes of zirconium or hafnium are formed in the presence of molybdenum. Titanium or rhenium in the alloy have no adverse effect on the zirconium or hafnium complex at the following levels in the selected aliquot: Mo, 10 mg; Re, 10 mg; Ti, 1 mg. The spectrophotometric measurement of the zirconium or hafnium complex is accomplished without prior separation with a relative standard deviation of 1.3 to 2.7 percent.

  17. Comparative in vivo study of the efficacy and tolerance of exfoliating agents using reflectance spectrophotometric methods.

    PubMed

    Rizza, Luisa; Frasca, Giuseppina; Bonina, Claudia; Puglia, Carmelo

    2010-01-01

    The aim of the present study was to compare the effectiveness and the safety of different topical agents (glycolic acid, mandelic acid, and grape juice acid mixture) in skin exfoliation by objective instrumental methods. To evaluate the exfoliating effects of these substances, a new experimental in vivo protocol based on DHA (dihydroxyacetone)-induced skin pigmentation was used. Skin acceptability towards acid application was investigated by the evaluation of skin erythema induced by topical application of these substances at increased concentrations. Furthermore, their photosensitizing effects were evaluated by determining the increase in sensitivity to UV-light exposure in cutaneous sites previously treated with acids. These in vivo evaluations were monitored by reflectance spectophotometry. From the results obtained, we observed the differing capacities of the tested acids to increase the rate of skin regeneration, with a significant reduction in the time required to obtain skin renewal. The study pointed out that glycolic acid (10% w/w) induced a faster skin exfoliation, a more intense erythema, and a higher photosensitizing effect in comparison with the mandelic acid and grape juice acid mixtures. Further evidence showed that the mandelic acid and grape juice acid mixtures were able to induce a slower and safer peeling action in comparison with glycolic acid. Finally, our results suggest that the methodologies and protocols used in this study may help in choosing the most appropriate topical agents for skin exfoliating treatments. PMID:20587353

  18. Methodes and apparature for precise measurements of solar UV radiation

    NASA Astrophysics Data System (ADS)

    Anevsky, S.; Ivanov, V.; Minaeva, O.; Morozov, O.; Sapritsky, V.

    2003-04-01

    the determination of coefficients of the angular corrections. The integral responsivety of one-channel radiometers was measured for the set of control UV sources with wide angular dimensions of the emitting area. The intercomparison of integral radiometers responcivety gave the information about the range of their linearity. The methods developed for the computer integral multichannel filters radiometer where applied for characterisation of the main parameters of lighting-illuminance and brightness distributions, pulsation and blinding coefficient, infrared irradiance. Simultaneously the eleven national norms and recomendations established the main characteristics of continuos and pulse UV radiation, methods of measurements, requirements for equipment and devices classification, uncertainties estimation methods. Further development of solar UV radiation efficiancy measurements is connected to determination of effective spectral coefficients for integral measurements on the base of spectroradiometrical primary standards. References [1] Sapritsky V., Metrologia, 32, 411--417, 1996. [2] Anevsky S., Vernyi A, Khromchenko V., Panasyuk V., Sapritsky V.: Nuclear Instruments &Methods in Physics Research, A 347, 373--576, 1994.

  19. A comparative study of novel spectrophotometric methods based on isosbestic points; application on a pharmaceutical ternary mixture

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam M.; Saleh, Sarah S.; Hassan, Nagiba Y.; Salem, Hesham

    This work represents the application of the isosbestic points present in different absorption spectra. Three novel spectrophotometric methods were developed, the first method is the absorption subtraction method (AS) utilizing the isosbestic point in zero-order absorption spectra; the second method is the amplitude modulation method (AM) utilizing the isosbestic point in ratio spectra; and third method is the amplitude summation method (A-Sum) utilizing the isosbestic point in derivative spectra. The three methods were applied for the analysis of the ternary mixture of chloramphenicol (CHL), dexamethasone sodium phosphate (DXM) and tetryzoline hydrochloride (TZH) in eye drops in the presence of benzalkonium chloride as a preservative. The components at the isosbestic point were determined using the corresponding unified regression equation at this point with no need for a complementary method. The obtained results were statistically compared to each other and to that of the developed PLS model. The specificity of the developed methods was investigated by analyzing laboratory prepared mixtures and the combined dosage form. The methods were validated as per ICH guidelines where accuracy, repeatability, inter-day precision and robustness were found to be within the acceptable limits. The results obtained from the proposed methods were statistically compared with official ones where no significant difference was observed.

  20. A comparative study of novel spectrophotometric methods based on isosbestic points; application on a pharmaceutical ternary mixture.

    PubMed

    Lotfy, Hayam M; Saleh, Sarah S; Hassan, Nagiba Y; Salem, Hesham

    2014-05-21

    This work represents the application of the isosbestic points present in different absorption spectra. Three novel spectrophotometric methods were developed, the first method is the absorption subtraction method (AS) utilizing the isosbestic point in zero-order absorption spectra; the second method is the amplitude modulation method (AM) utilizing the isosbestic point in ratio spectra; and third method is the amplitude summation method (A-Sum) utilizing the isosbestic point in derivative spectra. The three methods were applied for the analysis of the ternary mixture of chloramphenicol (CHL), dexamethasone sodium phosphate (DXM) and tetryzoline hydrochloride (TZH) in eye drops in the presence of benzalkonium chloride as a preservative. The components at the isosbestic point were determined using the corresponding unified regression equation at this point with no need for a complementary method. The obtained results were statistically compared to each other and to that of the developed PLS model. The specificity of the developed methods was investigated by analyzing laboratory prepared mixtures and the combined dosage form. The methods were validated as per ICH guidelines where accuracy, repeatability, inter-day precision and robustness were found to be within the acceptable limits. The results obtained from the proposed methods were statistically compared with official ones where no significant difference was observed. PMID:24589996

  1. Extraction-Spectrophotometric Method for Determination of Gallium(III) in the Form of Ion Associate with a Monotetrazolium Salt

    NASA Astrophysics Data System (ADS)

    Stojnova, K. T.; Divarov, V. V.; Racheva, P. V.; Lekova, V. D.

    2015-11-01

    The possibility of application of the ternary ion-association complex of gallium(III), 4-(2-pyridyl azo)resorcinol (PAR) and 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) for extraction-spectrophotometric determination of gallium(III) was studied. The liquid-liquid extraction system Ga(III)-PAR-TTC-H2O-CHCl3 was applied for this purpose. The effect of the foreign ions on the extraction was investigated. Based on the obtained results, a sensitive, relatively simple, and inexpensive method for determination of gallium(III) in a model mixture was developed, which can be implemented in industrial, biological, medical, and pharmaceutical samples.

  2. UV-vis spectrophotometric determination of trinitrotoluene (TNT) with trioctylmethylammonium chloride as ion pair assisted and disperser agent after dispersive liquid-liquid microextraction.

    PubMed

    Larki, Arash; Nasrabadi, Mehdi Rahimi; Pourreza, Nahid

    2015-06-01

    In the present study, a simple, fast and inexpensive method based on dispersive liquid-liquid microextraction (DLLME) prior to microvolume UV-vis spectrophotometry was developed for the preconcentration and determination of trinitrotoluene (TNT). The procedure is based on the color reaction of TNT in alkaline medium and extraction into CCl4 as an ion pair assisted by trioctylmethylammonium chloride, which also acts as a disperser agent. Experimental parameters affecting the DLLME method such as pH, concentration of sodium hydroxide, amount of trioctylmethylammonium chloride, type and volume of extraction solvent were investigated and optimized. Under the optimum conditions, the limit of detection (LOD) was 0.9ng/mL and the calibration curve was linear in the range of 3-200ng/mL. The relative standard deviation for 25 and 100ng/mL of TNT were 3.7% and 1.5% (n=6), respectively. The developed DLLME method was applied for the determination of TNT in different water and soil samples. PMID:25863701

  3. Spectrophotometric Estimation of Raltegravir Potassium in Tablets

    PubMed Central

    Kore, P. P.; Gamepatil, M. M.; Nimje, H. M.; Baheti, K. G.

    2014-01-01

    Ultra violet spectrophotometric estimation of the raltegravir potassium, an integrase inhibitor antiretroviral agent was estimated by Ultra violet absorption maxima method at λmax of 328 nm and UV area under curve method in the wave length range of 323-333 nm. The Beer's law obeyed in the concentration range of 3-55 μg/ml and correlation coefficients were found to be more than 0.996 for both methods. The results of the analysis were 100.58±0.99 and 99.69±0.59 by absorption maxima and area under curve method respectively. Both the methods were validated as per ICH guidelines. PMID:25593392

  4. Spectrophotometric probe

    DOEpatents

    Prather, W.S.; O'Rourke, P.E.

    1994-08-02

    A support structure is described bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe. 3 figs.

  5. Spectrophotometric probe

    DOEpatents

    Prather, William S.; O'Rourke, Patrick E.

    1994-01-01

    A support structure bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe.

  6. Simultaneous determination of mebeverine hydrochloride and chlordiazepoxide in their binary mixture using novel univariate spectrophotometric methods via different manipulation pathways

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam M.; Fayez, Yasmin M.; Michael, Adel M.; Nessim, Christine K.

    2016-02-01

    Smart, sensitive, simple and accurate spectrophotometric methods were developed and validated for the quantitative determination of a binary mixture of mebeverine hydrochloride (MVH) and chlordiazepoxide (CDZ) without prior separation steps via different manipulating pathways. These pathways were applied either on zero order absorption spectra namely, absorbance subtraction (AS) or based on the recovered zero order absorption spectra via a decoding technique namely, derivative transformation (DT) or via ratio spectra namely, ratio subtraction (RS) coupled with extended ratio subtraction (EXRS), spectrum subtraction (SS), constant multiplication (CM) and constant value (CV) methods. The manipulation steps applied on the ratio spectra are namely, ratio difference (RD) and amplitude modulation (AM) methods or applying a derivative to these ratio spectra namely, derivative ratio (DD1) or second derivative (D2). Finally, the pathway based on the ratio spectra of derivative spectra is namely, derivative subtraction (DS). The specificity of the developed methods was investigated by analyzing the laboratory mixtures and was successfully applied for their combined dosage form. The proposed methods were validated according to ICH guidelines. These methods exhibited linearity in the range of 2-28 μg/mL for mebeverine hydrochloride and 1-12 μg/mL for chlordiazepoxide. The obtained results were statistically compared with those of the official methods using Student t-test, F-test, and one way ANOVA, showing no significant difference with respect to accuracy and precision.

  7. A rapid and high-throughput microplate spectrophotometric method for field measurement of nitrate in seawater and freshwater

    PubMed Central

    Wu, Jiapeng; Hong, Yiguo; Guan, Fengjie; Wang, Yan; Tan, Yehui; Yue, Weizhong; Wu, Meilin; Bin, Liying; Wang, Jiaping; Wen, Jiali

    2016-01-01

    The well-known zinc-cadmium reduction method is frequently used for determination of nitrate. However, this method is seldom to be applied on field research of nitrate due to the long time consuming and large sample volume demand. Here, we reported a modified zinc-cadmium reduction method (MZCRM) for measurement of nitrate at natural-abundance level in both seawater and freshwater. The main improvements of MZCRM include using small volume disposable tubes for reaction, a vortex apparatus for shaking to increase reduction rate, and a microplate reader for high-throughput spectrophotometric measurements. Considering salt effect, two salinity sections (5~10 psu and 20~35 psu) were set up for more accurate determination of nitrate in low and high salinity condition respectively. Under optimized experimental conditions, the reduction rates were stabilized on 72% and 63% on the salinity of 5 and 20 psu respectively. The lowest detection limit for nitrate was 0.5 μM and was linear up to 100 μM (RSDs was 4.8%). Environmental samples assay demonstrated that MZCRM was well consistent with conventional zinc-cadmium reduction method. In total, this modified method improved accuracy and efficiency of operations greatly, and would be realized a rapid and high-throughput determination of nitrate in field analysis of nitrate with low cost. PMID:26832984

  8. A rapid and high-throughput microplate spectrophotometric method for field measurement of nitrate in seawater and freshwater

    NASA Astrophysics Data System (ADS)

    Wu, Jiapeng; Hong, Yiguo; Guan, Fengjie; Wang, Yan; Tan, Yehui; Yue, Weizhong; Wu, Meilin; Bin, Liying; Wang, Jiaping; Wen, Jiali

    2016-02-01

    The well-known zinc-cadmium reduction method is frequently used for determination of nitrate. However, this method is seldom to be applied on field research of nitrate due to the long time consuming and large sample volume demand. Here, we reported a modified zinc-cadmium reduction method (MZCRM) for measurement of nitrate at natural-abundance level in both seawater and freshwater. The main improvements of MZCRM include using small volume disposable tubes for reaction, a vortex apparatus for shaking to increase reduction rate, and a microplate reader for high-throughput spectrophotometric measurements. Considering salt effect, two salinity sections (5~10 psu and 20~35 psu) were set up for more accurate determination of nitrate in low and high salinity condition respectively. Under optimized experimental conditions, the reduction rates were stabilized on 72% and 63% on the salinity of 5 and 20 psu respectively. The lowest detection limit for nitrate was 0.5 μM and was linear up to 100 μM (RSDs was 4.8%). Environmental samples assay demonstrated that MZCRM was well consistent with conventional zinc-cadmium reduction method. In total, this modified method improved accuracy and efficiency of operations greatly, and would be realized a rapid and high-throughput determination of nitrate in field analysis of nitrate with low cost.

  9. Development and Validation of a Stability-indicating UV Spectroscopic Method for Candesartan in Bulk and Formulations.

    PubMed

    Pradhan, K K; Mishra, U S; Pattnaik, S; Panda, C K; Sahu, K C

    2011-11-01

    A simple, specific, accurate and stability-indicating UV- Spectrophotometric method was developed for the estimation of candesartan cilexitil, using a Shimadzu, model 1700 spectrophotometer and a mobile phase composed of methanol: water in the ratio of 9:1 at wave length (λ(max)) 254 nm. Linearity was established for candesartan in the range of 10-90 μg/ml. The percentage recovery of was found to be in the range of 99.76-100.79%. The drug was subjected to acid, alkali and neutral hydrolysis, oxidation, dry heat, UV light and photolytic degradation. Validation experiments performed to demonstrate system suitability, specificity, precision, linearity, accuracy, interday assay, intraday assay, robustness, ruggedness, LOD, and LOQ. While estimating the commercial formulation there was no interference of excipients and other additives. Hence this method can be used for routine determination of candesartan cilexetil in bulk and their pharmaceutical dosage forms. The proposed method for stability study shows that there was appreciable degradation found in stress condition of candesartan. PMID:23112408

  10. Evaluation of flow injection analysis method with spectrophotometric detection for the determination of atrazine in soil extracts.

    PubMed

    Martins, Elisandra C; Melo, Vander De F; Abate, Gilberto

    2016-09-01

    A method for determining atrazine in soil extracts was evaluated by flow injection analysis with spectrophotometric detection. The method is based on the reaction of atrazine with pyridine in an acid medium followed by the reaction with NaOH and sulfanilic acid. Several analytical conditions were previously studied and optimized. Under the best conditions of analysis, the limits of detection and quantification were 0.15 and 0.45 mg L(-1), respectively, for a linear response between 0.50 and 2.50 mg L(-1), and a sampling throughput of 21 determinations per hour. Using the standard addition method, the maximum relative standard deviation of 17% and recovery values between 80 and 100% were observed for three extracts from soil samples with different composition. The proposed method is simple, low-cost and easy to use, and can be employed for studies involving atrazine in soil samples or for screening of atrazine in soils. PMID:27192103

  11. Development of a Rapid Derivative Spectrophotometric Method for Simultaneous Determination of Acetaminophen, Diphenhydramine and Pseudoephedrine in Tablets

    PubMed Central

    Souri, Effat; Rahimi, Aghil; Shabani Ravari, Nazanin; Barazandeh Tehrani, Maliheh

    2015-01-01

    A mixture of acetaminophen, diphenhydramine hydrochloride and pseudoephedrine hydrochloride is used for the symptomatic treatment of common cold. In this study, a derivative spectrophotometric method based on zero-crossing technique was proposed for simultaneous determination of acetaminophen, diphenhydramine hydrochloride and pseudoephedrine hydrochloride. Determination of these drugs was performed using the 1D value of acetaminophen at 281.5 nm, 2D value of diphenhydramine hydrochloride at 226.0 nm and 4D value of pseudoephedrine hydrochloride at 218.0 nm. The analysis method was linear over the range of 5-50, 0.25-4, and 0.5-5 µg/mL for acetaminophen, diphenhydramine hydrochloride and pseudoephedrine hydrochloride, respectively. The within-day and between-day CV and error values for all three compounds were within an acceptable range (CV<2.2% and error<3%). The developed method was used for simultaneous determination of these drugs in pharmaceutical dosage forms and no interference from excipients was observed. PMID:25901150

  12. A bilogarithmic method for the spectrophotometric evaluation of stability constants of 1:1 weak complexes from mole ratio data.

    PubMed

    Boccio, Maravillas; Sayago, Ana; Asuero, Agustín G

    2006-08-01

    The absorbance changes that occur when the mole ratio of the components of ligand complex equilibria is varied while the concentration of one component is kept constant (mole ratio method) allow evaluating stability constants in favourable conditions. Values of the corresponding stability (association) constants are normally assigned on the basis of spectrophotometric analysis. Determination of stability constants can be performed by a number of linear procedures, but most of these, suffer from theoretical and practical drawbacks, e.g., linear transformation of the rectangular hyperbola type of binding constants, is valid only when one of the two species is present in a large excess. A rigorous treatment of the experimental mole ratio data for 1:1 weak complexes is carried out in this paper with the aim of eliminating some of the assumptions involved in the other methods usually applied for evaluating stability constants. Orthogonal regression is required in order to take into account the error in both axes. The method has been applied to literature data for the iron(III)-thiocyanate and nickel(II)-selenocyanate systems, as well as to a number of host-guest cyclodextrin complexes. PMID:16647826

  13. Sensitive spectrophotometric determination of Co(II) using dispersive liquid-liquid micro-extraction method in soil samples.

    PubMed

    Hasanpour, Foroozan; Hadadzadeh, Hassan; Taei, Masoumeh; Nekouei, Mohsen; Mozafari, Elmira

    2016-05-01

    Analytical performance of conventional spectrophotometer was developed by coupling of effective dispersive liquid-liquid micro-extraction method with spectrophotometric determination for ultra-trace determination of cobalt. The method was based on the formation of Co(II)-alpha-benzoin oxime complex and its extraction using a dispersive liquid-liquid micro-extraction technique. During the present work, several important variables such as pH, ligand concentration, amount and type of dispersive, and extracting solvent were optimized. It was found that the crucial factor for the Co(II)-alpha benzoin oxime complex formation is the pH of the alkaline alcoholic medium. Under the optimized condition, the calibration graph was linear in the ranges of 1.0-110 μg L(-1) with the detection limit (S/N = 3) of 0.5 μg L(-1). The preconcentration operation of 25 mL of sample gave enhancement factor of 75. The proposed method was applied for determination of Co(II) in soil samples. PMID:27040110

  14. Development of a rapid derivative spectrophotometric method for simultaneous determination of acetaminophen, diphenhydramine and pseudoephedrine in tablets.

    PubMed

    Souri, Effat; Rahimi, Aghil; Shabani Ravari, Nazanin; Barazandeh Tehrani, Maliheh

    2015-01-01

    A mixture of acetaminophen, diphenhydramine hydrochloride and pseudoephedrine hydrochloride is used for the symptomatic treatment of common cold. In this study, a derivative spectrophotometric method based on zero-crossing technique was proposed for simultaneous determination of acetaminophen, diphenhydramine hydrochloride and pseudoephedrine hydrochloride. Determination of these drugs was performed using the (1)D value of acetaminophen at 281.5 nm, (2)D value of diphenhydramine hydrochloride at 226.0 nm and (4)D value of pseudoephedrine hydrochloride at 218.0 nm. The analysis method was linear over the range of 5-50, 0.25-4, and 0.5-5 µg/mL for acetaminophen, diphenhydramine hydrochloride and pseudoephedrine hydrochloride, respectively. The within-day and between-day CV and error values for all three compounds were within an acceptable range (CV<2.2% and error<3%). The developed method was used for simultaneous determination of these drugs in pharmaceutical dosage forms and no interference from excipients was observed. PMID:25901150

  15. Spectrophotometric method for fast quantification of ascorbic acid and dehydroascorbic acid in simple matrix for kinetics measurements.

    PubMed

    Gómez Ruiz, Braulio; Roux, Stéphanie; Courtois, Francis; Bonazzi, Catherine

    2016-11-15

    A simple, rapid and reliable method was developed for quantifying ascorbic (AA) and dehydroascorbic (DHAA) acids and validated in 20mM malate buffer (pH 3.8). It consists in a spectrophotometric measurement of AA, either directly on the solution added with metaphosphoric acid or after reduction of DHAA into AA by dithiothreitol. This method was developed with real time measurement of reactions kinetics in bulk reactors in mind, and was checked in terms of linearity, limits of detection and quantification, fidelity and accuracy. The linearity was found satisfactory on the range of 0-6.95mM with limits of detection and quantification of 0.236mM and 0.467mM, respectively. The method was found acceptable in terms of fidelity and accuracy with a coefficient of variation for repeatability and reproducibility below 6% for AA and below 15% for DHAA, and with a recovery range of 97-102% for AA and 88-112% for DHAA. PMID:27283671

  16. Validated derivative and ratio derivative spectrophotometric methods for the simultaneous determination of levocetirizine dihydrochloride and ambroxol hydrochloride in pharmaceutical dosage form

    NASA Astrophysics Data System (ADS)

    Ali, Omnia I. M.; Ismail, Nahla S.; Elgohary, Rasha M.

    2016-01-01

    Three simple, precise, accurate and validated derivative spectrophotometric methods have been developed for the simultaneous determination of levocetirizine dihydrochloride (LCD) and ambroxol hydrochloride (ABH) in bulk powder and in pharmaceutical formulations. The first method is a first derivative spectrophotometric method (1D) using a zero-crossing technique of measurement at 210.4 nm for LCD and at 220.0 nm for ABH. The second method employs a second derivative spectrophotometry (2D) where the measurements were carried out at 242.0 and 224.4 nm for LCD and ABH, respectively. In the third method, the first derivative of the ratio spectra was calculated and the first derivative of the ratio amplitudes at 222.8 and 247.2 nm was selected for the determination of LCD and ABH, respectively. Calibration graphs were established in the ranges of 1.0-20.0 μg mL- 1 for LCD and 4.0-20.0 μg mL- 1 for ABH using derivative and ratio first derivative spectrophotometric methods with good correlation coefficients. The developed methods have been successfully applied to the simultaneous determination of both drugs in commercial tablet dosage form.

  17. Validated derivative and ratio derivative spectrophotometric methods for the simultaneous determination of levocetirizine dihydrochloride and ambroxol hydrochloride in pharmaceutical dosage form.

    PubMed

    Ali, Omnia I M; Ismail, Nahla S; Elgohary, Rasha M

    2016-01-15

    Three simple, precise, accurate and validated derivative spectrophotometric methods have been developed for the simultaneous determination of levocetirizine dihydrochloride (LCD) and ambroxol hydrochloride (ABH) in bulk powder and in pharmaceutical formulations. The first method is a first derivative spectrophotometric method ((1)D) using a zero-crossing technique of measurement at 210.4 nm for LCD and at 220.0 nm for ABH. The second method employs a second derivative spectrophotometry ((2)D) where the measurements were carried out at 242.0 and 224.4 nm for LCD and ABH, respectively. In the third method, the first derivative of the ratio spectra was calculated and the first derivative of the ratio amplitudes at 222.8 and 247.2 nm was selected for the determination of LCD and ABH, respectively. Calibration graphs were established in the ranges of 1.0-20.0 μg mL(-1) for LCD and 4.0-20.0 μg mL(-1) for ABH using derivative and ratio first derivative spectrophotometric methods with good correlation coefficients. The developed methods have been successfully applied to the simultaneous determination of both drugs in commercial tablet dosage form. PMID:26439526

  18. A comparative study of smart spectrophotometric methods for simultaneous determination of a skeletal muscle relaxant and an analgesic in combined dosage form

    NASA Astrophysics Data System (ADS)

    Salem, Hesham; Mohamed, Dalia

    2015-04-01

    Six simple, specific, accurate and precise spectrophotometric methods were developed and validated for the simultaneous determination of the analgesic drug; paracetamol (PARA) and the skeletal muscle relaxant; dantrolene sodium (DANT). Three methods are manipulating ratio spectra namely; ratio difference (RD), ratio subtraction (RS) and mean centering (MC). The other three methods are utilizing the isoabsorptive point either at zero order namely; absorbance ratio (AR) and absorbance subtraction (AS) or at ratio spectrum namely; amplitude modulation (AM). The proposed spectrophotometric procedures do not require any preliminary separation step. The accuracy, precision and linearity ranges of the proposed methods were determined. The selectivity of the developed methods was investigated by analyzing laboratory prepared mixtures of the drugs and their combined dosage form. Standard deviation values are less than 1.5 in the assay of raw materials and capsules. The obtained results were statistically compared with each other and with those of reported spectrophotometric ones. The comparison showed that there is no significant difference between the proposed methods and the reported methods regarding both accuracy and precision.

  19. Development and application of a shipboard method for spectrophotometric determination of trace dissolved manganese in estuarine and coastal waters

    NASA Astrophysics Data System (ADS)

    Feng, Sichao; Huang, Yongming; Yuan, Dongxing; Zhu, Yong; Zhou, Tingjin

    2015-01-01

    A shipboard method for the determination of trace dissolved manganese in estuarine and coastal waters was developed using a technique of reverse flow injection analysis, which adopted a 1-m liquid waveguide capillary cell and spectrophotometric detection of manganese derivation with 1-(2-pyridylazo)-2-naphthol (PAN). The design of dual-sample-carrier speeded up the sample throughput and eliminated the Schlieren effect. The salinity of estuarine and coastal waters caused a huge increase in the blank absorption value at the maximum absorption wavelength; therefore, a less sensitive detection wavelength was selected to achieve a low blank value while the method sensitivity was not significantly decreased. Method parameters were optimized. The salinity effect from estuarine and coastal waters was carefully investigated, and interference from iron was evaluated. The proposed method had high sensitivity with a detection limit of 3.0 nmol L-1 and a wide linear range of 10-1500 nmol L-1 for dissolved manganese in seawater (S=35). The analytical results of five water samples with different salinities obtained using the proposed method showed good agreement with those using a reference ICP-MS method. The sample throughput of the proposed method was 120 h-1, which was capable of obtaining high spatial and temporal resolution data in shipboard analysis. The proposed method had the advantages of convenient application in estuarine and coastal waters with different salinities, low detection limit, as well as high sample throughput. The proposed method was successfully applied to a 24 h on-line analysis and a shipboard underway analysis of dissolved manganese in the Jiulongjiang Estuary.

  20. Comparative study of three modified numerical spectrophotometric methods: An application on pharmaceutical ternary mixture of aspirin, atorvastatin and clopedogrel

    NASA Astrophysics Data System (ADS)

    Issa, Mahmoud Mohamed; Nejem, R.'afat Mahmoud; Shanab, Alaa Abu; Hegazy, Nahed Diab; Stefan-van Staden, Raluca-Ioana

    2014-07-01

    Three novel numerical methods were developed for the spectrophotometric multi-component analysis of capsules and synthetic mixtures of aspirin, atorvastatin and clopedogrel without any chemical separation. The subtraction method is based on the relationship between the difference in absorbance at four wavelengths and corresponding concentration of analyte. In this method, the linear determination ranges were 0.8-40 μg mL-1 aspirin, 0.8-30 μg mL-1 atorvastatin and 0.5-30 μg mL-1 clopedogrel. In the quotient method, 0.8-40 μg mL-1 aspirin, 0.8-30 μg mL-1 atorvastatin and 1.0-30 μg mL-1 clopedogrel were determine from spectral data at the wavelength pairs that show the same ratio of absorbance for other two species. Standard addition method was used for resolving ternary mixture of 1.0-40 μg mL-1 aspirin, 0.8-30 μg mL-1 atorvastatin and 2.0-30 μg mL-1 clopedogrel. The proposed methods were validated. The reproducibility and repeatability were found satisfactory which evidence was by low values of relative standard deviation (<2%). Recovery was found to be in the range (99.6-100.8%). By adopting these methods, the time taken for analysis was reduced as these methods involve very limited steps. The developed methods were applied for simultaneous analysis of aspirin, atorvastatin and clopedogrel in capsule dosage forms and results were in good concordance with alternative liquid chromatography.

  1. Spectrophotometric method for the assay of steroid 5α-reductase activity of rat liver and prostate microsomes.

    PubMed

    Iwai, Atsushi; Yoshimura, Teruki; Wada, Keiji; Watabe, Satoshi; Sakamoto, Yuki; Ito, Etsuro; Miura, Toshiaki

    2013-01-01

    A simple spectrophotometric method for the assay of steroid 5α-reductase (5α-SR) was developed in which 5α-dihydrotestosterone (5α-DHT) and 5α-androstane-3α,17β-diol (5α-diol), metabolites formed in the NADPH-dependent reduction of testosterone with enzyme sources of 5α-SR, were measured by enzymatic cycling using 3α-hydroxysteroid dehydrogenase in the presence of excess thionicotinamide-adenine dinucleotide (thio-NAD) and NADH. It was found that 5α-SR activity was proportional to the accumulated thio-NADH having an absorption maximum at 400 nm. Because of the high cycling rate (> 600 cycle per min) and no interference from testosterone, enzymatic cycling can determine the sum of 5α-DHT and 5α-diol at the picomole level without separation from excess testosterone. The present method was readily applicable to the assay of 5α-SR activity of rat liver and prostate microsomes as well as to the assay of inhibitory activity of finasteride, a synthetic inhibitor of 5α-SR. PMID:23574674

  2. Developing a new micro cloud point extraction method for simultaneous preconcentration and spectrophotometric determination of uranium and vanadium in brine.

    PubMed

    Ghasemi, Elham; Kaykhaii, Massoud

    2015-01-01

    A fast, simple, and economical method was developed for simultaneous spectrophotometric determination of uranium(VI) and vanadium(V) in water samples based on micro cloud point extraction (MCPE) at room temperature. This is the first report on the simultaneous extraction and determination of U(VI) and V(V). In this method, Triton X114 was employed as a non-ionic surfactant for the cloud point procedure and 4-(2-pyridylazo) resorcinol (PAR) was used as the chelating agent for both analytes. To reach the cloud point at room temperature, the MCPE procedure was carried out in brine. The factors influencing the extraction efficiency were investigated and optimized. Under the optimized condition, the linear calibration curve was found to be in the concentration range between 100 - 750 and 50 - 600 μg L(-1) for U(VI) and V(V), respectively, with a limit of detection of 17.03 μg L(-1) (U) and 5.51 μg L(-1) (V). Total analysis time including microextraction was less than 5 min. PMID:25958870

  3. Spectrophotometric and chemometric methods for determination of imipenem, ciprofloxacin hydrochloride, dexamethasone sodium phosphate, paracetamol and cilastatin sodium in human urine

    NASA Astrophysics Data System (ADS)

    El-Kosasy, A. M.; Abdel-Aziz, Omar; Magdy, N.; El Zahar, N. M.

    2016-03-01

    New accurate, sensitive and selective spectrophotometric and chemometric methods were developed and subsequently validated for determination of Imipenem (IMP), ciprofloxacin hydrochloride (CIPRO), dexamethasone sodium phosphate (DEX), paracetamol (PAR) and cilastatin sodium (CIL) in human urine. These methods include a new derivative ratio method, namely extended derivative ratio (EDR), principal component regression (PCR) and partial least-squares (PLS) methods. A novel EDR method was developed for the determination of these drugs, where each component in the mixture was determined by using a mixture of the other four components as divisor. Peak amplitudes were recorded at 293.0 nm, 284.0 nm, 276.0 nm, 257.0 nm and 221.0 nm within linear concentration ranges 3.00-45.00, 1.00-15.00, 4.00-40.00, 1.50-25.00 and 4.00-50.00 μg mL- 1 for IMP, CIPRO, DEX, PAR and CIL, respectively. PCR and PLS-2 models were established for simultaneous determination of the studied drugs in the range of 3.00-15.00, 1.00-13.00, 4.00-12.00, 1.50-9.50, and 4.00-12.00 μg mL- 1 for IMP, CIPRO, DEX, PAR and CIL, respectively, by using eighteen mixtures as calibration set and seven mixtures as validation set. The suggested methods were validated according to the International Conference of Harmonization (ICH) guidelines and the results revealed that they were accurate, precise and reproducible. The obtained results were statistically compared with those of the published methods and there was no significant difference.

  4. Validated selective spectrophotometric methods for the kinetic determination of desloratidine in tablets and in the presence of its parent drug.

    PubMed

    Derayea, S M Sayed

    2014-11-01

    Two novel selective validated methods have been developed for analysis of desloratidine (DSL) in its tablets formulation. Both were kinetic spectrophotometric methods, depend on the interaction of the secondary amino group in DSL with acetaldehyde to give N-vinylpiperidyl product. The formed N-vinylpiperidyl compound was reacted with 2,3,5,6-tetrachloro-1,4-benzoquinone (chloranil) to form colored N-vinylpiperidyl-substituted benzoquinone derivatives. The formed blue-colored derivative was measured at 672 nm. The reaction conditions were carefully studied and all factors were optimized. The molar ratio between the reactants was estimated and a suggested reaction mechanism was presented. The analysis was carried out using initial rate and fixed time (at 6 min) methods. The linear concentration ranges were 3-50 and 10 - 60 μg mL-1 with limits of detection of 3.2 and 2.2 μg mL-1 for the initial rate and fixed time methods, respectively. ICH guidelines were applied for analytical performance validation of the proposed methods. The presence of common excipients in the pharmaceutical formulation did not produce any significant interference, as well as from loratadine, which is the parent compound of DSL. Different commercially available tablets formulations containing were successfully analyzed, with, the percentage recovery ranging from 97.28-100.90 ± 0.7 2-1.41%. The obtained results were compared statistically with the reported method results. The proposed methods have similar accuracy and precision as the reported as indicated from the F- and t-test data. PMID:25362589

  5. Spectrophotometric and chemometric methods for determination of imipenem, ciprofloxacin hydrochloride, dexamethasone sodium phosphate, paracetamol and cilastatin sodium in human urine.

    PubMed

    El-Kosasy, A M; Abdel-Aziz, Omar; Magdy, N; El Zahar, N M

    2016-03-15

    New accurate, sensitive and selective spectrophotometric and chemometric methods were developed and subsequently validated for determination of Imipenem (IMP), ciprofloxacin hydrochloride (CIPRO), dexamethasone sodium phosphate (DEX), paracetamol (PAR) and cilastatin sodium (CIL) in human urine. These methods include a new derivative ratio method, namely extended derivative ratio (EDR), principal component regression (PCR) and partial least-squares (PLS) methods. A novel EDR method was developed for the determination of these drugs, where each component in the mixture was determined by using a mixture of the other four components as divisor. Peak amplitudes were recorded at 293.0 nm, 284.0 nm, 276.0 nm, 257.0 nm and 221.0 nm within linear concentration ranges 3.00-45.00, 1.00-15.00, 4.00-40.00, 1.50-25.00 and 4.00-50.00 μg mL(-1) for IMP, CIPRO, DEX, PAR and CIL, respectively. PCR and PLS-2 models were established for simultaneous determination of the studied drugs in the range of 3.00-15.00, 1.00-13.00, 4.00-12.00, 1.50-9.50, and 4.00-12.00 μg mL(-1) for IMP, CIPRO, DEX, PAR and CIL, respectively, by using eighteen mixtures as calibration set and seven mixtures as validation set. The suggested methods were validated according to the International Conference of Harmonization (ICH) guidelines and the results revealed that they were accurate, precise and reproducible. The obtained results were statistically compared with those of the published methods and there was no significant difference. PMID:26709018

  6. Spectrophotometric methods for the simultaneous analysis of meclezine hydrochloride and pyridoxine hydrochloride in bulk drug and pharmaceutical formulations.

    PubMed

    Arayne, M Saeed; Sultana, Najma; Siddiqui, Farhan Ahmed; Zuberi, M Hashim; Mirza, Agha Zeeshan

    2007-04-01

    Three new spectrophotometric procedures for the simultaneous determination of pyridoxine hydrochloride and meclezine hydrochloride are described. The first method depends on the application of simultaneous equation to resolve the interference due to spectral overlapping. The analytical signals were measured at 231 and 220 nm. Calibration graphs were established for 1 to 20 microGmL(-1) for pyridoxine hydrochloride and 0.5 to 10 microGmL(-1) for meclezine hydrochloride in binary mixture. In the second method, the determination of pyridoxine hydrochloride and meclezine hydrochloride was performed by measuring the absorbances at 290 and 235 nm in the simple absorbance spectra of their mixture. In third method a yellowish orange complex of pyridoxine hydrochloride was formed with ferric chloride, which absorbs in the visible region with lambda(max) at 445 nm. Calibration curve of complex formation range was conducted in between 20 to 250 microGmL(-1). These methods were validated with respect to accuracy, precision, linearity, limit of detection and quantification. Regression analysis of Beer's plot showed good correlation in a general concentration range of 1 to 20 microGml(-1) with correlation coefficient (r = 0.9999 and 0.9999; CV < 0.858) for pyridoxine hydrochloride, whereas meclezine hydrochloride concentration range 0.5 to 10 microGmL(-1) with correlation coefficient (r = 0.9998 and 0.9998; CV < 0.826). These methods can be readily applied, without any interference from the excipients. The suggested procedures were successfully applied to the determination of these compounds in synthetic mixtures and in pharmaceutical preparations, with high percentage of recovery, good accuracy and precision. PMID:17416572

  7. Spectrophotometric, difference spectroscopic, and high-performance liquid chromatographic methods for the determination of cefixime in pharmaceutical formulations.

    PubMed

    Shah, Paresh B; Pundarikakshudu, Kilambi

    2006-01-01

    Three simple and sensitive spectrophotometric, difference spectroscopic, and liquid chromatographic (LC) methods are described for the determination of cefixime. The first method is based on the oxidative coupling reaction of cefixime with 3-methyl-2-benzothiazolinon hydrazone HCI in presence of ferric chloride. The absorbance of reaction product was measured at the maximum absorbance wavelength (wavelength(max)), 630 nm. The difference spectroscopic method is based on the measurement of absorbance of cefixime at the absorbance maximum, 268 nm, and minimum, 237 nm. The measured value was the amplitude of maxima and minima between 2 equimolar solutions of the analyte in different chemical forms, which exhibited different spectral characteristics. The conditions were optimized, and Beer's law was obeyed for cefixime at 1 to 16 microg/mL and 10 to 50 microg/mL, respectively. The third method, high-performance LC, was developed for the determination of cefixime using 50 mM potassium dihydrogen phosphate (pH 3.0)-methanol (78 + 22, v/v) as the mobile phase and measuring the response at wavelength(max) 286 nm. The analysis was performed on a Lichrospher RPC18 column. The calibration curve was obtained for cefixime at 5 to 250 microg/mL, and the mean recovery was 99.71 +/- 0.01%. The methods were validated according to the guidelines of the U.S. Pharmacopoeia and also assessed by applying the standard addition technique. The results obtained in the analysis of dosage forms agreed well with the contents stated on the labels. PMID:16915834

  8. Fluorescence quenching and spectrophotometric methods for the determination of daunorubicin with meso-tera (4-sulphophenyl) porphyrin as probe.

    PubMed

    Tian, Jing; Liu, Shaopu; Liu, Zhongfang; Yang, Jidong; Zhu, Jinghui; Qiao, Man; Hu, Xiaoli

    2014-01-01

    In this work, a synthetic meso-tera (4-sulfophenyl) porphyrin (TPPS4) was used as a probe to determine daunorubicin (DNR) by fluorescence quenching and spectrophotometric methods. At pH 4.6 potassium acid phthalate-NaOH buffer solution, a 1:1 complex of DNR interacted with TPPS4 formed via the electrostatic attractions and hydrophobic interactions, thus resulted in TPPS4 fluorescence quenching and absorption spectra change. The maximum excitation wavelength (λex) and the maximum emission wavelength (λem) are 435 nm and 672 nm, respectively. The fluorescence quenching values (ΔF) are the good linear relationship to the concentration of DNR in the range of 0.8-6.0 mgL(-1). The method exhibits high sensitivity with the detection limit (3σ) being 27.0 ng mL(-1). Meanwhile, a decrease of absorbance is detected at 433 nm with the appearance of a new absorption peak at 420 nm. The optimum reaction conditions, influencing factors and the effect of coexisting substances have been investigated in our experiment. The results showed that the method had a good selectivity and could be applied to determine DNR in serum and urine samples. In addition, the combine ratio between DNR and TPPS4 was measured and the charge distribution before and after reaction was calculated by quantum chemistry calculation AM1 method. The type of fluorescence quenching was discussed by the absorption spectra change, Stern-Volmer plots and fluorescence lifetime determination. PMID:24177862

  9. Comparative analysis of radical scavenging and antioxidant activity of phenolic compounds present in everyday use spice plants by means of spectrophotometric and chromatographic methods.

    PubMed

    Stankevičius, Mantas; Akuņeca, Ieva; Jãkobsone, Ida; Maruška, Audrius

    2011-06-01

    Comparative analysis of radical scavenging and antioxidant activities of phenolic compounds present in everyday use spice plants was carried out by means of spectrophotometric and chromatographic methods. Six spice plant samples, namely onion (Allium cepa), parsley (Petroselinum crispum) roots and leaves, celery (Apium graveolens) roots and leaves and leaves of dill (Anethum graveolens) were analyzed. Total amount of phenolic compounds and radical scavenging activity (RSA) was the highest in celery leaves and dill extracts and was the lowest in celery roots. Comparing commonly used spectrophotometric analysis of 2,2-diphenyl-1-picrylhydrazyl (DPPH) RSA of extracts with the results obtained using reversed-phase chromatographic separation with on-line post-column radical scavenging reaction detection, good correlation was obtained (R(2)=0.848). Studies using HPLC system with electrochemical detector showed that bioactive phytochemicals can be separated and antioxidant activities of individual compounds evaluated without the need of a complex HPLC system with reaction detector. The results obtained using electrochemical detection correlate with the RSA assayed using spectrophotometric method (R(2)=0.893). PMID:21504067

  10. Multiwavelength spectrophotometric determination of acidity constants of some azo dyes.

    PubMed

    Shamsipur, Mojtaba; Maddah, Bozorgmehr; Hemmateenejad, Bahram; Rouhani, Shohreh; Haghbeen, Kamaladin; Alizadeh, Kamal

    2008-06-01

    A multiwavelength spectrophotometric titration method was applied to study the acidity constants of some azo dyes in water. The UV-vis absorption spectra of azo dye solutions were recorded in the course of their pH-metric titration with a standard base solution. The protolytic equilibrium constants, spectral profiles, concentration diagrams and also the number of components have been calculated. The quantitative effects of the substituents on the acidity of the studied azo dyes were investigated by the linear free energy relationship (LFER) using Hammet sigma constant (sigma) and field and resonance effects of Kamlet and Taft (f and Re, respectively). PMID:17719268

  11. Multiwavelength spectrophotometric determination of acidity constants of some azo dyes

    NASA Astrophysics Data System (ADS)

    Shamsipur, Mojtaba; Maddah, Bozorgmehr; Hemmateenejad, Bahram; Rouhani, Shohreh; Haghbeen, Kamaladin; Alizadeh, Kamal

    2008-06-01

    A multiwavelength spectrophotometric titration method was applied to study the acidity constants of some azo dyes in water. The UV-vis absorption spectra of azo dye solutions were recorded in the course of their pH-metric titration with a standard base solution. The protolytic equilibrium constants, spectral profiles, concentration diagrams and also the number of components have been calculated. The quantitative effects of the substituents on the acidity of the studied azo dyes were investigated by the linear free energy relationship (LFER) using Hammet sigma constant ( σ) and field and resonance effects of Kamlet and Taft ( f and ℜ, respectively).

  12. [Research into simultaneous spectrophotometric determination of components in cough syrup by principal component regression method].

    PubMed

    Zhang, Li-qing; Wu, Xiao-hua; Tang, Xi; Zhu, Xian-liang; Su, Wen-ting

    2002-06-01

    Principal component regression (PCR) method is used to analyse five components: acetaminophen, p-aminophenol, caffeine, chlorphenamine maleate and guaifenesin. The basic principle and the analytical step of the approach are described in detail. The computer program of LHG is based on VB language. The experimental result shows that the PCR method has no systematical error as compared to classical method. The experimental result shows that the average recovery of each component is all in the range from 96.43% to 107.14%. Each component obtains satisfactory result without any pre-separation. The approach is simple, rapid and suitable for the computer-aid analysis. PMID:12938324

  13. A combined spectrophotometric-AAS method for the analysis of trace metal, EDTA, and metal-EDTA mixture solutions in adsorption modeling experiments.

    PubMed

    Güçlü, K; Hugül, M; Demirci-Cekiç, S; Reşat; Apak

    2000-10-01

    The adsorption of free- and bound-metal ions (metal complexes) as well as of ligands onto various hydrous oxide type sorbents have been extensively modelled using EDTA as the model ligand. This type of modelling uses metal ion-EDTA mixture solutions containing stoichiometrically equivalent or excessive amounts of either constituent. Consequently, for mixture solutions equilibrated with the sorbent, the aim was to develop a suitable method for determining either metal complex+free ligand (MY(2-)+H(2)Y(2-)) or metal complex+free metal (MY(2-)+M(2+)) in the aqueous filtrate, the metal M being lead or cadmium. The conventional method of analyzing such filtrates is exchanging different metal-EDTA complexes with Fe(NO(3))(3) followed by HPLC using UV detection. The developed method utilizes Vis- and AA-spectrometry widespread in common laboratories, eliminating the need for HPLC and UV techniques that require higher operational cost, expertise and contaminant-free media. The developed procedure is based on the following analyses for the possible constituents of equilibrated solution (with the sorbent). All EDTA (free or bound, as H(2)Y(2-) or MY(2-)) species are converted into FeY(-) by adding Fe(NO(3))(3), and heating at 80 degrees C for 1 h. All metal (free or bound, as M(2+) or MY(2-)) species are determined by AAS. All unbound (free) Fe(3+) species are determined by the thiocyanate spectrophotometric method at 480 nm. Then 'EDTA-bound iron (III)' is defined as added Fe minus colorimetrically (thiocyanate method) found Fe, and 'AAS-found metal' (lead or cadmium) corresponds to M(2+) and/or MY(2-), depending on the analyzed solution. If EDTA-bound Fe(III) is greater than AAS-found metal, then one has a (MY(2-)+H(2)Y(2-)) mixture where AAS-found metal is (MY(2-)), and free EDTA, i.e. (H(2)Y(2-)), is calculated from the difference. If EDTA-bound Fe(III) is smaller than AAS-found metal, then one has a (M(2+)+ MY(2-)) mixture where EDTA-bound Fe(III) is (MY(2-)), and the

  14. The measurement of acetanilide in plasma by spectrophotometric and selected ion monitoring methods.

    PubMed

    Baty, J D; Playfer, J; Evans, D A; Lamb, J

    1977-08-01

    Plasma samples from volunteers who had received an oral dose of acetanilide have been analysed by gas chromatography mass spectrometry and ultraviolet absorption techniques. The gas chromatography mass spectrometry method involved extraction of the plasma and analysis of the acetanilide using selected ion monitoring with a deuterated internal standard. In the ultraviolet method the plasma was hydrolysed with acid to convert the acetanilide to aniline, and this compound was diazotized and coupled with N-1-naphthylethylene-diamine. The absorbance of the resulting complex was read at 550 nm. Acetanilide levels in plasma determined by the selected ion monitoring method were significantly lower than those measured by spectrophotometry. Pharmacokinetic data calculated from the results obtained using these two assays are very different and illustrate the need for an accurate and specific method of analysis. The major metabolites of acetanilide are shown not to interfere with these assays and the results suggest the possible presence of a new metabolite of acetanilide. PMID:912025

  15. A simple kinetic spectrophotometric method for the determination of isoxsuprine in dosage forms.

    PubMed

    El-Enany, N; Belal, F; Rizk, M

    2002-08-01

    A simple and sensitive kinetic method was developed for the determination of isoxsuprine in pharmaceutical preparations. The method is based upon a kinetic investigation of the oxidation reaction of the drug with alkaline potassium permanganate at room temperature for a fixed time of 30 min. The absorbance of the coloured manganate ion was measured at 610 nm. Alternatively, the decrease in the absorbance of potassium permanganate after addition of the drug was measured at 525 nm. The absorbance-concentration plots in both procedures were rectilinear over the range of 0.5-4 microg ml(-1) (r = 0.9998) with a minimum detectability of 0.05 microg ml (-1) (1.48 x 10(-7) M). The different experimental parameters affecting the development and stability of the colours were carefully studied and optimized. The determination of isoxsuprine by the fixed concentration and rate constant methods is also feasible with the calibration equations obtained but the fixed time method has been found to be more applicable. Both procedures were applied to the determination of isoxsuprine in formulations. The results obtained were in good agreement with those obtained using a reference method. The proposed method was also adopted to detect isoxsuprine in spiked human plasma at its therapeutic level of concentration (0.4 microg ml(-1)). A proposal of the reaction pathway was postulated. PMID:12361231

  16. A simple kinetic spectrophotometric method for the determination of oxamniquine in formulations and spiked biological fluids.

    PubMed

    Rizk, M; Belal, F; Ibrahim, F; Ahmed, S M; El-Enany, N M

    2000-08-15

    A simple and sensitive kinetic method for the determination of oxamniquine in pharmaceutical preparations and biological fluids was developed. The procedure is based upon a kinetic investigation of the oxidation reaction of the drug with alkaline potassium permanganate at room temperature for a fixed time of 20 min. The absorbance of the colored manganate ions was measured at 610 nm. Alternatively, the decrease in the absorbance of potassium permanganate after addition of the drug was measured at 525 nm. The absorbance concentration plots in both procedures were rectilinear over the range 0.5-4 microg ml(-1). The concentration of oxamniquine is calculated using the corresponding calibration equation for the fixed-time method. The determination of oxamniquine by fixed-concentration and rate-constant methods was feasible with the calibration equations obtained but the fixed time method had been found to be more applicable. Both procedures were applied to the determination of oxamniquine in formulations. The results obtained were in good agreement with those obtained using the official method. The fixed time method of 20 min was further applied to spiked human urine and plasma, the recoveries (%) were 100.94 +/- 0.57 and 98.07 +/- 0.88 for urine and plasma, respectively, at 610 nm, and 97.51 +/- 1.27 and 95.69 +/- 1.23 for urine and plasma, respectively, at 525 nm. PMID:10933544

  17. Competitive removal of hazardous dyes from aqueous solution by MIL-68(Al): Derivative spectrophotometric method and response surface methodology approach

    NASA Astrophysics Data System (ADS)

    Tehrani, Mahnaz Saghanejhad; Zare-Dorabei, Rouholah

    2016-05-01

    MIL-68(Al) as a metal-organic framework (MOF) was synthesized and characterized by different techniques such as SEM, BET, FTIR, and XRD analysis. This material was then applied for simulations removal of malachite green (MG) and methylene blue (MB) dyes from aqueous solutions using second order derivative spectrophotometric method (SODS) which was applied to resolve the overlap between the spectra of these dyes. The dependency of dyes removal efficiency in binary solutions was examined and optimized toward various parameters including initial dye concentration, pH of the solution, adsorbent dosage and ultrasonic contact time using central composite design (CCD) under response surface methodology (RSM) approach. The optimized experimental conditions were set as pH 7.78, contact time 5 min, initial MB concentration 22 mg L- 1, initial MG concentration 12 mg L- 1 and adsorbent dosage 0.0055 g. The equilibrium data was fitted to isotherm models such as Langmuir, Freundlich and Tempkin and the results revealed the suitability of the Langmuir model. The maximum adsorption capacity of 666.67 and 153.85 mg g- 1 was obtained for MB and MG removal respectively. Kinetics data fitting to pseudo-first order, pseudo-second order and Elovich models confirmed the applicability of pseudo-second order kinetic model for description of the mechanism and adsorption rate. Dye-loaded MIL-68(Al) can be easily regenerated using methanol and applied for three frequent sorption/desorption cycles with high performance. The impact of ionic strength on removal percentage of both dyes in binary mixture was studied by using NaCl and KCl soluble salts at different concentrations. According to our findings, only small dosage of the proposed MOF is considerably capable to remove large amounts of dyes at room temperature and in very short time that is a big advantage of MIL-68(Al) as a promising adsorbent for adsorptive removal processes.

  18. Competitive removal of hazardous dyes from aqueous solution by MIL-68(Al): Derivative spectrophotometric method and response surface methodology approach.

    PubMed

    Tehrani, Mahnaz Saghanejhad; Zare-Dorabei, Rouholah

    2016-05-01

    MIL-68(Al) as a metal-organic framework (MOF) was synthesized and characterized by different techniques such as SEM, BET, FTIR, and XRD analysis. This material was then applied for simulations removal of malachite green (MG) and methylene blue (MB) dyes from aqueous solutions using second order derivative spectrophotometric method (SODS) which was applied to resolve the overlap between the spectra of these dyes. The dependency of dyes removal efficiency in binary solutions was examined and optimized toward various parameters including initial dye concentration, pH of the solution, adsorbent dosage and ultrasonic contact time using central composite design (CCD) under response surface methodology (RSM) approach. The optimized experimental conditions were set as pH7.78, contact time 5min, initial MB concentration 22mgL(-1), initial MG concentration 12mgL(-1) and adsorbent dosage 0.0055g. The equilibrium data was fitted to isotherm models such as Langmuir, Freundlich and Tempkin and the results revealed the suitability of the Langmuir model. The maximum adsorption capacity of 666.67 and 153.85mgg(-1) was obtained for MB and MG removal respectively. Kinetics data fitting to pseudo-first order, pseudo-second order and Elovich models confirmed the applicability of pseudo-second order kinetic model for description of the mechanism and adsorption rate. Dye-loaded MIL-68(Al) can be easily regenerated using methanol and applied for three frequent sorption/desorption cycles with high performance. The impact of ionic strength on removal percentage of both dyes in binary mixture was studied by using NaCl and KCl soluble salts at different concentrations. According to our findings, only small dosage of the proposed MOF is considerably capable to remove large amounts of dyes at room temperature and in very short time that is a big advantage of MIL-68(Al) as a promising adsorbent for adsorptive removal processes. PMID:26890205

  19. Immunologic, spectrophotometric and nucleic acid based methods for the detection and quantification of airborne pollen

    PubMed Central

    Rittenour, William R.; Hamilton, Robert G.; Beezhold, Donald H.; Green, Brett J.

    2015-01-01

    Microscopic identification of pollen morphological phenotypes has been the traditional method used to identify and quantify pollen collected by air monitoring stations worldwide. Although this method has enabled a semi-standardized approach for the assessment of pollen exposure, limitations including labor intensiveness, required expertise, examiner bias, and the inability to differentiate species, genera, and in some cases families have limited data derived from the these stations. Recent advances in chemical, biochemical and molecular detection methods have provided standardized alternatives to this microscopic approach. In this review, we examine the applicability of alternative methodologies, in particular nucleic acid based assays involving the quantitative polymerase chain reaction, for the standardized detection of airborne pollen. PMID:22342607

  20. Liquid chromatography and chemometric-assisted spectrophotometric methods for the analysis of two multicomponent mixtures containing cough suppressant drugs.

    PubMed

    El-Gindy, Alaa; Emara, Samy; Mesbah, Mostafa K; Hadad, Ghada M

    2005-01-01

    Three methods were applied for the analysis of 2 multicomponent mixtures containing dextromethorphan hydrobromide, phenylephrine hydrochloride, chlorpheniramine maleate, methylparaben, and propylparaben, together with either sodium benzoate (Mix 1) or ephedrine hydrochloride and benzoic acid (Mix 2). In the first method, liquid chromatography was used for their simultaneous determination using an ODS column with a mobile phase consisting of acetonitrile-phosphate buffer, pH 2.7 (40 + 60, v/v), containing 5mM heptanesulfonic acid sodium salt and ultraviolet (UV) detection at 214 nm. Also, 2 chemometric methods, principal component regression, and partial least squares were used. For both chemometric calibrations, a concentration set of the mixture consisting of each compound in each mixture was prepared in distilled water. The absorbance data in the UV spectra were measured for the 76 or 71 wavelength points in the spectral region 210-240 or 210-224 nm considering the intervals of deltagamma = 0.4 or 0.2 nm for Mix 1 and Mix 2, respectively. The 2 chemometric methods did not require any separation step. These methods were successfully applied for the analysis of the 2 multicomponent combinations in synthetic mixtures and in commercial syrups, and the results were compared with each other. PMID:16152922

  1. Simultaneous spectrophotometric determination of four metals by two kinds of partial least squares methods

    NASA Astrophysics Data System (ADS)

    Gao, Ling; Ren, Shouxin

    2005-10-01

    Simultaneous determination of Ni(II), Cd(II), Cu(II) and Zn(II) was studied by two methods, kernel partial least squares (KPLS) and wavelet packet transform partial least squares (WPTPLS), with xylenol orange and cetyltrimethyl ammonium bromide as reagents in the medium pH = 9.22 borax-hydrochloric acid buffer solution. Two programs, PKPLS and PWPTPLS, were designed to perform the calculations. Data reduction was performed using kernel matrices and wavelet packet transform, respectively. In the KPLS method, the size of the kernel matrix is only dependent on the number of samples, thus the method was suitable for the data matrix with many wavelengths and fewer samples. Wavelet packet representations of signals provide a local time-frequency description, thus in the wavelet packet domain, the quality of the noise removal can be improved. In the WPTPLS by optimization, wavelet function and decomposition level were selected as Daubeches 12 and 5, respectively. Experimental results showed both methods to be successful even where there was severe overlap of spectra.

  2. A rapid spectrophotometric method to determine B-carotene content in Cucumis melo germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The compound B -carotene is the predominant carotenoid in cantaloupe. Because of its antioxidant properties and health benefits, B-carotene content in fruits and vegetables is of interest to the food industry. Current methods to assay B-carotene content in fruit are time consuming, expensive and u...

  3. Validated stability-indicating spectrophotometric methods for the determination of cefixime trihydrate in the presence of its acid and alkali degradation products.

    PubMed

    Mostafa, Nadia M; Abdel-Fattah, Laila; Weshahy, Soheir A; Hassan, Nagiba Y; Boltia, Shereen A

    2015-01-01

    Five simple, accurate, precise, and economical spectrophotometric methods have been developed for the determination of cefixime trihydrate (CFX) in the presence of its acid and alkali degradation products without prior separation. In the first method, second derivative (2D) and first derivative (1D) spectrophotometry was applied to the absorption spectra of CFX and its acid (2D) or alkali (1D) degradation products by measuring the amplitude at 289 and 308 nm, respectively. The second method was a first derivative (1DD) ratio spectrophotometric method where the peak amplitudes were measured at 311 nm in presence of the acid degradation product, and 273 and 306 nm in presence of its alkali degradation product. The third method was ratio subtraction spectrophotometry where the drug is determined at 286 nm in laboratory-prepared mixtures of CFX and its acid or alkali degradation product. The fourth method was based on dual wavelength analysis; two wavelengths were selected at which the absorbances of one component were the same, so wavelengths 209 and 252 nm were used to determine CFX in presence of its acid degradation product and 310 and 321 nm in presence of its alkali degradation product. The fifth method was bivariate spectrophotometric calibration based on four linear regression equations obtained at the wavelengths 231 and 290 nm, and 231 and 285 nm for the binary mixture of CFX with either its acid or alkali degradation product, respectively. The developed methods were successfully applied to the analysis of CFX in laboratory-prepared mixtures and pharmaceutical formulations with good recoveries, and their validation was carried out following the International Conference on Harmonization guidelines. The results obtained were statistically compared with each other and showed no significant difference with respect to accuracy and precision. PMID:25857876

  4. New validated liquid chromatographic and chemometrics-assisted UV spectroscopic methods for the determination of two multicomponent cough mixtures in syrup.

    PubMed

    Hadad, Ghada M; El-Gindy, Alaa; Mahmoud, Waleed M M

    2008-01-01

    Multivariate spectrophotometric calibration and liquid chromatographic (LC) methods were applied to the determination of 2 multicomponent mixtures containing diprophylline, guaiphenesin, methylparaben, and propylparaben (Mixture 1), or clobutinol, orciprenaline, saccharin sodium, and sodium benzoate (Mixture 2). For the multivariate spectrophotometric calibration methods, principal component regression (PCR) and partial least-squares regression (PLS-1), a calibration set of the mixtures consisting of the components of each mixture was prepared in 0.1 M HCl. Analytical figures of merit such as sensitivity, selectivity, limit of quantitation, and limit of detection were determined for both PLS-1 and PCR. The LC separation was achieved on a reversed-phase C18 analytical column by using isocratic elution with 20 mM potassium dihydrogen phosphate, pH 3.3-acetonitrile (55 + 45, v/v) as the mobile phase and UV detection at 260 and 220 nm for Mixture 1 and Mixture 2, respectively. The proposed methods were validated and successfully applied to the analysis of pharmaceutical formulations and laboratory-prepared mixtures containing the 2 multicomponent combinations. PMID:18376584

  5. The Spectrophotometric Method of Determining the Transmission of Solar Energy in Salt Gradient Solar Ponds

    NASA Technical Reports Server (NTRS)

    Giulianelli, J.

    1984-01-01

    In order to predict the thermal efficiency of a solar pond it is necessary to know total average solar energy reaching the storage layer. One method for determining this energy for water containing dissolved colored species is based upon spectral transmission measurements using a laboratory spectrophotometer. This method is examined and some of the theoretical ground work needed to discuss the measurement of transmission of light water. Results of in situ irradiance measurements from oceanography research are presented and the difficulties inherent in extrapolating laboratory data obtained with ten centimeter cells to real three dimensional pond situations is discussed. Particular emphasis is put on the need to account for molecular and particulate scattering in measurements done on low absorbing solutions. Despite these considerations it is expected that attenuation calculations based upon careful measurements using a dual beam spectrophotometer technique combined with known attenuation coefficients will be useful in solar pond modeling and monitoring for color buildup. Preliminary results using the CSM method are presented.

  6. Microdetermination of nitrogen in organic compounds by the sodium fusion-spectrophotometric method

    SciTech Connect

    Breda, E.J.

    1985-04-01

    In the absence of the preferred Dumas nitrogen apparatus or the more sophisticated nitrogen analyzers, a micro-Parr bomb can serve to determine microquantities of nitrogen in organic compounds. The sample or compound, either solid or nonaqueous liquid, is decomposed by fusing with metallic sodium in a sealed nickel bomb. The nitrogen is converted to sodium cyanide. The excess sodium is decomposed with absolute ethanol. The solution is adjusted to pH 7.1-7.2 with dilute hydrochloric acid and analyzed for cyanide by the Chloramine-T and mixed pyridine/pyrazolone reagent method. The absorbance of the blue color formed is measured with a spectrophotometer at 615 nm. The amount of cyanide found is converted to the equivalent nitrogen in the compound. The method is not as rapid as desired but it is handy, simple, and economical. As with any micro or semimicro method, this procedure is sensitive to technique. Compounds must contain carbon and be essentially free of moisture. 5 references, 1 table.

  7. Field Application of a Rapid Spectrophotometric Method for Determination of Persulfate in Soil

    PubMed Central

    Cunningham, Colin J.; Pitschi, Vanessa; Anderson, Peter; Barry, D. A.; Patterson, Colin; Peshkur, Tanya A.

    2013-01-01

    Remediation of hydrocarbon contaminated soils can be performed both in situ and ex situ using chemical oxidants such as sodium persulfate. Standard methods for quantifying persulfate require either centrifugation or prolonged settling times. An optimized soil extraction procedure was developed for persulfate involving simple water extraction using a modified disposable syringe. This allows considerable saving of time and removes the need for centrifugation. The extraction time was reduced to only 5 min compared to 15 min for the standard approach. A comparison of the two approaches demonstrated that each provides comparable results. Comparisons were made using high (93 g kg−1 soil) and low (9.3 g kg−1 soil) additions of sodium persulfate to a petroleum hydrocarbon-contaminated soil, as well as sand spiked with diesel. Recoveries of 95±1% and 96±10% were observed with the higher application rate in the contaminated soil and spiked sand, respectively. Corresponding recoveries of 86±5% and 117±19% were measured for the lower application rate. Results were obtained in only 25 min and the method is well suited to batch analyses. In addition, it is suitable for application in a small field laboratory or even a mobile, vehicle-based system, as it requires minimal equipment and reagents. PMID:23776446

  8. Spectrophotometric determination of deacetylation degree of chitinous materials dissolved in phosphoric acid.

    PubMed

    Hsiao, Hsien-Yi; Tsai, Chih-Cheng; Chen, Suming; Hsieh, Bo-Chuan; Chen, Richie L C

    2004-10-20

    A simple spectrophotometric method is proposed for determining deacetylation degrees (DD) of chitinous materials using phosphoric acid as the UV-transparent solvent system. Calibrating by the extinction coefficients (A(210)) of D-glucosamine and N-acetyl-D-glucosamine, DD values (24-88%) were computed numerically. The results correlated well (R(2) = 0.9805, n = 50) with those obtained by solid-state (13)C NMR. Comparison of the results obtained by the proposed UV method and solid-state (13)C NMR. PMID:15490434

  9. Novel spectrophotometric determination of chloramphenicol and dexamethasone in the presence of non labeled interfering substances using univariate methods and multivariate regression model updating

    NASA Astrophysics Data System (ADS)

    Hegazy, Maha A.; Lotfy, Hayam M.; Rezk, Mamdouh R.; Omran, Yasmin Rostom

    2015-04-01

    Smart and novel spectrophotometric and chemometric methods have been developed and validated for the simultaneous determination of a binary mixture of chloramphenicol (CPL) and dexamethasone sodium phosphate (DSP) in presence of interfering substances without prior separation. The first method depends upon derivative subtraction coupled with constant multiplication. The second one is ratio difference method at optimum wavelengths which were selected after applying derivative transformation method via multiplying by a decoding spectrum in order to cancel the contribution of non labeled interfering substances. The third method relies on partial least squares with regression model updating. They are so simple that they do not require any preliminary separation steps. Accuracy, precision and linearity ranges of these methods were determined. Moreover, specificity was assessed by analyzing synthetic mixtures of both drugs. The proposed methods were successfully applied for analysis of both drugs in their pharmaceutical formulation. The obtained results have been statistically compared to that of an official spectrophotometric method to give a conclusion that there is no significant difference between the proposed methods and the official ones with respect to accuracy and precision.

  10. Estimation of menthol in Pan Masala samples by a spectrophotometric method.

    PubMed

    Kannan, A; Das, M; Khanna, S K

    1997-01-01

    Recently, the Prevention of Food Adulteration Act of India has fixed the level of menthol addition to Pan Masala at 0.1%, therefore good manufacturing practice (GMP) should be adopted so that the samples do not exceed 0.1% menthol (1 mg/g). The estimation of menthol in Pan Masala samples involves steam distillation followed by reaction with p-dimethyl amino benzaldehyde (DMAB) in acidic medium to give a red colour which is read at 550 nm. The sensitivity of this procedure is 75 micrograms menthol per g sample. Using this method, 130 branded and 53 non-branded samples of Pan Masala were analysed for menthol content. Almost 25% of branded samples contained less than 1 mg menthol per g while 75% of samples contained 1.1-6.5 mg menthol per g Pan Masala. Non-branded Pan Masala contained 1 mg menthol per g in only 7.6% of samples. However, 92% of samples contained 1.1-6.5 mg menthol per g, suggesting that the addition of menthol is relatively higher in non-branded Pan Masala samples than in branded ones. PMID:9205565

  11. A reliable method for spectrophotometric determination of glycine betaine in cell suspension and other systems.

    PubMed

    Valadez-Bustos, Ma Guadalupe; Aguado-Santacruz, Gerardo Armando; Tiessen-Favier, Axel; Robledo-Paz, Alejandrina; Muñoz-Orozco, Abel; Rascón-Cruz, Quintin; Santacruz-Varela, Amalio

    2016-04-01

    Glycine betaine is a quaternary ammonium compound that accumulates in a large variety of species in response to different types of stress. Glycine betaine counteracts adverse effects caused by abiotic factors, preventing the denaturation and inactivation of proteins. Thus, its determination is important, particularly for scientists focused on relating structural, biochemical, physiological, and/or molecular responses to plant water status. In the current work, we optimized the periodide technique for the determination of glycine betaine levels. This modification permitted large numbers of samples taken from a chlorophyllic cell line of the grass Bouteloua gracilis to be analyzed. Growth kinetics were assessed using the chlorophyllic suspension to determine glycine betaine levels in control (no stress) cells and cells osmotically stressed with 14 or 21% polyethylene glycol 8000. After glycine extraction, different wavelengths and reading times were evaluated in a spectrophotometer to determine the optimal quantification conditions for this osmolyte. Optimal results were obtained when readings were taken at a wavelength of 290 nm at 48 h after dissolving glycine betaine crystals in dichloroethane. We expect this modification to provide a simple, rapid, reliable, and cheap method for glycine betaine determination in plant samples and cell suspension cultures. PMID:26774956

  12. Spectrophotometric Method for Differentiation of Human Skin Melanoma. II. Diagnostic Characteristics

    NASA Astrophysics Data System (ADS)

    Petruk, V. G.; Ivanov, A. P.; Kvaternyuk, S. M.; Barunb, V. V.

    2016-05-01

    Experimental data on the spectral dependences of the optical diffuse reflection coefficient for skin from different people with melanoma or nevus are presented in the form of the probability density of the diffuse reflection coefficient for the corresponding pigmented lesions. We propose a noninvasive technique for differentiating between malignant and benign tumors, based on measuring the diffuse reflection coefficient for a specific patient and comparing the value obtained with a pre-set threshold. If the experimental result is below the threshold, then it is concluded that the person has melanoma; otherwise, no melanoma is present. As an example, we consider the wavelength 870 nm. We determine the risk of malignant transformation of a nevus (its transition to melanoma) for different measured diffuse reflection coefficients. We have studied the errors in the method, its operating characteristics and probability characteristics as the threshold diffuse reflection coefficient is varied. We find that the diagnostic confidence, sensitivity, specificity, and effectiveness (accuracy) parameters are maximum (>0.82) for a threshold of 0.45-0.47. The operating characteristics for the proposed technique exceed the corresponding parameters for other familiar optical approaches to melanoma diagnosis. Its distinguishing feature is operation at only one wavelength, and consequently implementation of the experimental technique is simplified and made less expensive.

  13. Accelerated UV Test Methods for Encapsulants of Photovoltaic Modules: Preprint

    SciTech Connect

    Kempe, M. D.

    2008-05-01

    This paper asserts that materials used for PV encapsulation must be evaluated for their ability to transmit light and to maintain mechanical integrity for extended periods of time under long term UV exposure.

  14. H-point standard addition method for simultaneous spectrophotometric determination of Co(II) and Ni(II) by 1-(2-pyridylazo)2-naphthol in micellar media.

    PubMed

    Afkhami, Abbas; Bahram, Morteza

    2004-01-01

    A very simple and selective spectrophotometric method for simultaneous determination of Co(II) and Ni(II) by 1-(2-pyridylazo) 2-naphthol (PAN), in micellar media, using H-point standard addition method (HPSAM) is described. The ligand and its metal complexes (Co(II)-PAN and Ni(II)-PAN) were made water-soluble by the neutral surfactant Triton X-100, and therefore, no extraction with organic solvents was required. Formation of both the complexes was complete within 10 min at pH 9 (adjusted by ammonia buffer). The linear range was 0.10-2.00 microg ml(-1) for Co(II) and 0.05-1.50 microg ml(-1) for Ni(II). The relative standard deviation (R.S.D.) for the simultaneous determination of 0.50 microg ml(-1) each of Co(II) and Ni(II) was 2.32 and 3.13%, respectively. Interference effects of common anions and cations were studied and the method was applied to simultaneous determination of Co(II) and Ni(II) in alloy samples. The method was compared with derivative spectrophotometric method. PMID:14670476

  15. A study of selective spectrophotometric methods for simultaneous determination of Itopride hydrochloride and Rabeprazole sodium binary mixture: Resolving sever overlapping spectra

    NASA Astrophysics Data System (ADS)

    Mohamed, Heba M.

    2015-02-01

    Itopride hydrochloride (IT) and Rabeprazole sodium (RB) are co-formulated together for the treatment of gastro-esophageal reflux disease. Three simple, specific and accurate spectrophotometric methods were applied and validated for simultaneous determination of Itopride hydrochloride (IT) and Rabeprazole sodium (RB) namely; constant center (CC), ratio difference (RD) and mean centering of ratio spectra (MCR) spectrophotometric methods. Linear correlations were obtained in range of 10-110 μg/μL for Itopride hydrochloride and 4-44 μg/mL for Rabeprazole sodium. No preliminary separation steps were required prior the analysis of the two drugs using the proposed methods. Specificity was investigated by analyzing the synthetic mixtures containing the two cited drugs and their capsules dosage form. The obtained results were statistically compared with those obtained by the reported method, no significant difference was obtained with respect to accuracy and precision. The three methods were validated in accordance with ICH guidelines and can be used for quality control laboratories for IT and RB.

  16. A comparative study between three stability indicating spectrophotometric methods for the determination of diatrizoate sodium in presence of its cytotoxic degradation product based on two-wavelength selection

    NASA Astrophysics Data System (ADS)

    Riad, Safaa M.; El-Rahman, Mohamed K. Abd; Fawaz, Esraa M.; Shehata, Mostafa A.

    2015-06-01

    Three sensitive, selective, and precise stability indicating spectrophotometric methods for the determination of the X-ray contrast agent, diatrizoate sodium (DTA) in the presence of its acidic degradation product (highly cytotoxic 3,5-diamino metabolite) and in pharmaceutical formulation, were developed and validated. The first method is ratio difference, the second one is the bivariate method, and the third one is the dual wavelength method. The calibration curves for the three proposed methods are linear over a concentration range of 2-24 μg/mL. The selectivity of the proposed methods was tested using laboratory prepared mixtures. The proposed methods have been successfully applied to the analysis of DTA in pharmaceutical dosage forms without interference from other dosage form additives. The results were statistically compared with the official US pharmacopeial method. No significant difference for either accuracy or precision was observed.

  17. Spectrophotometric Determination of Iron(II) and Cobalt(II) by Direct, Derivative, and Simultaneous Methods Using 2-Hydroxy-1-Naphthaldehyde-p-Hydroxybenzoichydrazone

    PubMed Central

    Devi, V. S. Anusuya; Reddy, V. Krishna

    2012-01-01

    Optimized and validated spectrophotometric methods have been proposed for the determination of iron and cobalt individually and simultaneously. 2-hydroxy-1-naphthaldehyde-p-hydroxybenzoichydrazone (HNAHBH) reacts with iron(II) and cobalt(II) to form reddish-brown and yellow-coloured [Fe(II)-HNAHBH] and [Co(II)-HNAHBH] complexes, respectively. The maximum absorbance of these complexes was found at 405 nm and 425 nm, respectively. For [Fe(II)-HNAHBH], Beer's law is obeyed over the concentration range of 0.055–1.373 μg mL−1 with a detection limit of 0.095 μg mL−1 and molar absorptivity ɛ, 5.6 × 104 L mol−1 cm−1. [Co(II)-HNAHBH] complex obeys Beer's law in 0.118–3.534 μg mL−1 range with a detection limit of 0.04 μg mL−1 and molar absorptivity, ɛ of 2.3 × 104 L mol−1 cm−1. Highly sensitive and selective first-, second- and third-order derivative methods are described for the determination of iron and cobalt. A simultaneous second-order derivative spectrophotometric method is proposed for the determination of these metals. All the proposed methods are successfully employed in the analysis of various biological, water, and alloy samples for the determination of iron and cobalt content. PMID:22505925

  18. New Spectrophotometric Method for Determining Nitrogen Dioxide in Air Using 2,2-azino-bis(3-ethyl benzothiazoline)-6-Sulfonic Acid-Diammonium Salt and Passive Sampling

    PubMed Central

    Salem, Alaa A.; Soliman, Ahmed A.; El-Haty, Ismail A.

    2011-01-01

    A new simple and highly sensitive spectrophotometric method for determining nitrogen dioxide in air was developed. The method is based on converting atmospheric nitrogen dioxide to nitrite ions within the IVL passive samplers used for samples collection. Acidifying nitrite ions with concentrated HCl produced the peroxynitrous acid oxidizing agent which was measured using 2, 2-azino-bis(3-ethyl benzothiazoline)-6-sulfonic acid-diammonium salt (ABTS) as reducing coloring agent. A parallel series of collected samples were measured for its nitrite content using a validated ion chromatographic method. The results obtained using both methods were compared in terms of their sensitivity and accuracy. Developed spectrophotometric method was shown to be one order of magnitude higher in sensitivity compared to the ion chromatographic method. Quantitation limits of 0.05 ppm and 0.55 μg/m3 were obtained for nitrite ion and nitrogen dioxid, respectively. Standard deviations in the ranges of 0.05–0.59 and 0.63–7.92 with averages of 0.27 and 3.11 were obtained for determining nitrite and nitrogen dioxide, respectively. Student-t test revealed t-values less than 6.93 and 4.40 for nitrite ions and nitrogen dioxide, respectively. These values indicated insignificant difference between the averages of the newly developed method and the values obtained by ion chromatography at 95% confidence level. Compared to continuous monitoring techniques, the newly developed method has shown simple, accurate, sensitive, inexpensive and reliable for long term monitoring of nitrogen dioxide in ambient air. PMID:21760708

  19. Development and validation of a rapid stability indicating HPLC-method using monolithic stationary phase and two spectrophotometric methods for determination of antihistaminic acrivastine in capsules

    NASA Astrophysics Data System (ADS)

    Gouda, Ayman A.; Hashem, Hisham; Jira, Thomas

    2014-09-01

    Simple, rapid and accurate high performance liquid chromatographic (HPLC) and spectrophotometric methods are described for determination of antihistaminic acrivastine in capsules. The first method (method A) is based on accurate, sensitive and stability indicating chromatographic separation method. Chromolith® Performance RP-18e column, a relatively new packing material consisting of monolithic rods of highly porous silica, was used as stationary phase applying isocratic binary mobile phase of ACN and 25 mM NaH2PO4 pH 4.0 in the ratio of 22.5:77.5 at flow rate of 5.0 mL/min and 40 °C. A diode array detector was used at 254 nm for detection. The elution time of acrivastine was found to be 2.080 ± 0.032. The second and third methods (methods B and C) are based on the oxidation of acrivastine with excess N-bromosuccinimide (NBS) and determination of the unconsumed NBS with, metol-sulphanilic acid (λmax: 520 nm) or amaranth dye (λmax: 530 nm). The reacted oxidant corresponds to the drug content. Beer’s law is obeyed over the concentration range 1.563-50, 2.0-20 and 1.0-10 μg mL-1 for methods A, B and C, respectively. The limits of detection and quantitation were 0.40, 0.292 and 0.113 μg mL-1 and 0.782, 0.973 and 0.376 μg mL-1 for methods A, B and C, respectively. The HPLC method was validated for system suitability, linearity, precision, limits of detection and quantitation, specificity, stability and robustness. Stability tests were done through exposure of the analyte solution for four different stress conditions and the results indicate no interference of degradants with HPLC-method. The proposed methods was favorably applied for determination of acrivastine in capsules formulation. Statistical comparison of the obtained results from the analysis of the studied drug to those of the reported method using t- and F-tests showed no significant difference between them.

  20. Development and validation of a rapid stability indicating HPLC-method using monolithic stationary phase and two spectrophotometric methods for determination of antihistaminic acrivastine in capsules.

    PubMed

    Gouda, Ayman A; Hashem, Hisham; Jira, Thomas

    2014-09-15

    Simple, rapid and accurate high performance liquid chromatographic (HPLC) and spectrophotometric methods are described for determination of antihistaminic acrivastine in capsules. The first method (method A) is based on accurate, sensitive and stability indicating chromatographic separation method. Chromolith® Performance RP-18e column, a relatively new packing material consisting of monolithic rods of highly porous silica, was used as stationary phase applying isocratic binary mobile phase of ACN and 25 mM NaH2PO4 pH 4.0 in the ratio of 22.5:77.5 at flow rate of 5.0 mL/min and 40°C. A diode array detector was used at 254 nm for detection. The elution time of acrivastine was found to be 2.080±0.032. The second and third methods (methods B and C) are based on the oxidation of acrivastine with excess N-bromosuccinimide (NBS) and determination of the unconsumed NBS with, metol-sulphanilic acid (λmax: 520 nm) or amaranth dye (λmax: 530 nm). The reacted oxidant corresponds to the drug content. Beer's law is obeyed over the concentration range 1.563-50, 2.0-20 and 1.0-10 μg mL(-1) for methods A, B and C, respectively. The limits of detection and quantitation were 0.40, 0.292 and 0.113 μg mL(-1) and 0.782, 0.973 and 0.376 μg mL(-1) for methods A, B and C, respectively. The HPLC method was validated for system suitability, linearity, precision, limits of detection and quantitation, specificity, stability and robustness. Stability tests were done through exposure of the analyte solution for four different stress conditions and the results indicate no interference of degradants with HPLC-method. The proposed methods was favorably applied for determination of acrivastine in capsules formulation. Statistical comparison of the obtained results from the analysis of the studied drug to those of the reported method using t- and F-tests showed no significant difference between them. PMID:24813276

  1. Development and validation of simultaneous spectrophotometric and TLC-spectrodensitometric methods for determination of beclomethasone dipropionate and salbutamol in combined dosage form

    NASA Astrophysics Data System (ADS)

    Samir, Ahmed; Lotfy, Hayam M.; Salem, Hesham; Abdelkawy, Mohammed

    2014-07-01

    Spectrophotometric and TLC-spectrodensitometric methods were developed and validated for the simultaneous determination of beclomethasone dipropionate (BEC) and salbutamol (SAL). The spectrophotometric methods include dual wavelength, ratio difference, constant center coupled with a novel method namely, spectrum subtraction and mean centering with mean percentage recoveries and RSD 99.72 ± 1.07 and 99.70 ± 1.12, 100.25 ± 1.12 and 99.89 ± 1.12, 99.66 ± 1.85 and 99.19 ± 1.32, 100.74 ± 1.26 and 101.06 ± 0.90 for BEC and SAL respectively. The TLC-spectrodensitometric method was based on separation of both drugs on TLC aluminum plates of silica gel 60 F254, using benzene: methanol: triethylamine (10:1.5:0.5 v/v/v) as a mobile phase, followed by densitometric measurements of their bands at 230 nm. The mean percentage recoveries and RSD were 99.07 ± 1.25 and 101.35 ± 1.50 for BEC and SAL respectively. The proposed methods were validated according to ICH guidelines and were applied for the simultaneous analysis of the cited drugs in synthetic mixtures and pharmaceutical preparation. The methods were found to be rapid, specific, precise and accurate and can be successfully applied for the routine analysis of BEC and SAL in their pharmaceutical formulation with no need for prior separation. The results obtained were statistically compared to each other and to that of the reported HPLC method. The statistical comparison showed that there is no significant difference regarding both accuracy and precision.

  2. Determination of the relative contribution of quercetin and its glucosides to the antioxidant capacity of onion by cyclic voltammetry and spectrophotometric methods.

    PubMed

    Zielinska, Danuta; Wiczkowski, Wieslaw; Piskula, Mariusz Konrad

    2008-05-28

    This paper describes the use of cyclic voltammetry (CV), spectrophotometric methods [Trolox equivalent antioxidant capacity (TEAC), peroxyl radical trapping capacity (PRTC), DPPH radical scavenging activity (RSA), and Folin-Ciocalteu reagent (FCR) reducing capacity], and photochemiluminescence (PCL) for the measurement of the antioxidant capacity of onion var. Sochaczewska and var. Szalotka. The antioxidant and reducing activity of the dominant onion flavonoids quercetin (Q), quercetin-3- O-beta-glucoside (Q3G), quercetin-4'- O-beta-glucoside (Q4'G), and quercetin-3,4'-di- O-beta-glucoside (Q3,4'G) were determined by spectrophotometric (TEAC and PRTC) and CV methods, respectively. The contribution of quercetin and its glucosides to the antioxidant capacity of onion was calculated in consequence of the qualitative and quantitative analysis of onion flavonoids by high-performance liquid chromatography-ultraviolet-mass spectrometry. The dominant forms of quercetin in the onion var. Sochaczewska and Szalotka included Q4'G (61 and 54%), Q3,4'G (37 and 44%), Q3G (1.4 and 1.1%), and free quercetin (1.1 and 0.7%), respectively. The CV experiment showed the highest reducing activity of Q while Q3G, Q4'G, and Q3,4'G exhibited about 68, 51, and 30% of the reducing power noted for Q. The order of the reducing activity of onion flavonoids was confirmed by their free radical scavenging activity and evaluated by TEAC and PRTC assays as follows: Q > Q3G > Q4'G > Q3,4'G. The Q4'G and Q3,4'G showed poor antioxidant activity under both applied spectrophotometric assays but still exhibited reducing activity based on CV experiments. The reducing capacity of onions determined by CV method was twice higher than the antioxidant capacity formed by water-soluble compounds (ACW) evaluated by PCL, and it was about 50% higher than PRTC and DPPH RSA results and the converted FCR reducing capacity. In contrast, the reducing capacity of onions determined by the CV method was 3-fold and about four

  3. Microwave-assisted of dispersive liquid-liquid microextraction and spectrophotometric determination of uranium after optimization based on Box-Behnken design and chemometrics methods

    NASA Astrophysics Data System (ADS)

    Niazi, Ali; Khorshidi, Neda; Ghaemmaghami, Pegah

    2015-01-01

    In this study an analytical procedure based on microwave-assisted dispersive liquid-liquid microextraction (MA-DLLME) and spectrophotometric coupled with chemometrics methods is proposed to determine uranium. In the proposed method, 4-(2-pyridylazo) resorcinol (PAR) is used as a chelating agent, and chloroform and ethanol are selected as extraction and dispersive solvent. The optimization strategy is carried out by using two level full factorial designs. Results of the two level full factorial design (24) based on an analysis of variance demonstrated that the pH, concentration of PAR, amount of dispersive and extraction solvents are statistically significant. Optimal condition for three variables: pH, concentration of PAR, amount of dispersive and extraction solvents are obtained by using Box-Behnken design. Under the optimum conditions, the calibration graphs are linear in the range of 20.0-350.0 ng mL-1 with detection limit of 6.7 ng mL-1 (3δB/slope) and the enrichment factor of this method for uranium reached at 135. The relative standard deviation (R.S.D.) is 1.64% (n = 7, c = 50 ng mL-1). The partial least squares (PLS) modeling was used for multivariate calibration of the spectrophotometric data. The orthogonal signal correction (OSC) was used for preprocessing of data matrices and the prediction results of model, with and without using OSC, were statistically compared. MA-DLLME-OSC-PLS method was presented for the first time in this study. The root mean squares error of prediction (RMSEP) for uranium determination using PLS and OSC-PLS models were 4.63 and 0.98, respectively. This procedure allows the determination of uranium synthesis and real samples such as waste water with good reliability of the determination.

  4. Microwave-assisted of dispersive liquid-liquid microextraction and spectrophotometric determination of uranium after optimization based on Box-Behnken design and chemometrics methods.

    PubMed

    Niazi, Ali; Khorshidi, Neda; Ghaemmaghami, Pegah

    2015-01-25

    In this study an analytical procedure based on microwave-assisted dispersive liquid-liquid microextraction (MA-DLLME) and spectrophotometric coupled with chemometrics methods is proposed to determine uranium. In the proposed method, 4-(2-pyridylazo) resorcinol (PAR) is used as a chelating agent, and chloroform and ethanol are selected as extraction and dispersive solvent. The optimization strategy is carried out by using two level full factorial designs. Results of the two level full factorial design (2(4)) based on an analysis of variance demonstrated that the pH, concentration of PAR, amount of dispersive and extraction solvents are statistically significant. Optimal condition for three variables: pH, concentration of PAR, amount of dispersive and extraction solvents are obtained by using Box-Behnken design. Under the optimum conditions, the calibration graphs are linear in the range of 20.0-350.0 ng mL(-1) with detection limit of 6.7 ng mL(-1) (3δB/slope) and the enrichment factor of this method for uranium reached at 135. The relative standard deviation (R.S.D.) is 1.64% (n=7, c=50 ng mL(-1)). The partial least squares (PLS) modeling was used for multivariate calibration of the spectrophotometric data. The orthogonal signal correction (OSC) was used for preprocessing of data matrices and the prediction results of model, with and without using OSC, were statistically compared. MA-DLLME-OSC-PLS method was presented for the first time in this study. The root mean squares error of prediction (RMSEP) for uranium determination using PLS and OSC-PLS models were 4.63 and 0.98, respectively. This procedure allows the determination of uranium synthesis and real samples such as waste water with good reliability of the determination. PMID:25062051

  5. Simultaneous Determination of 6-Mercaptopurine and its Oxidative Metabolites in Synthetic Solutions and Human Plasma using Spectrophotometric Multivariate Calibration Methods

    PubMed Central

    Sorouraddin, Mohammad-Hossein; Khani, Mohammad-Yaser; Amini, Kaveh; Naseri, Abdolhossein; Asgari, Davoud; Rashidi, Mohammad-Reza

    2011-01-01

    Introduction 6-Mercaptopurine (6MP) is an important chemotherapeutic drug in the conventional treatment of childhood acute lymphoblastic leukemia (ALL). It is catabolized to 6-thiouric acid (6TUA) through 8-hydroxo-6-mercaptopurine (8OH6MP) or 6-thioxanthine (6TX) intermediates. Methods High-performance liquid chromatography (HPLC) is usually used to determine the contents of therapeutic drugs, metabolites and other important biomedical analytes in biological samples. In the present study, the multivariate calibration methods, partial least squares (PLS-1) and principle component regression (PCR) have been developed and validated for the simultaneous determination of 6MP and its oxidative metabolites (6TUA, 8OH6MP and 6TX) without analyte separation in spiked human plasma. Mixtures of 6MP, 8-8OH6MP, 6TX and 6TUA have been resolved by PLS-1 and PCR to their UV spectra. Results Recoveries (%) obtained for 6MP, 8-8OH6MP, 6TX and 6TUA were 94.5-97.5, 96.6-103.3, 95.1-96.9 and 93.4-95.8, respectively, using PLS-1 and 96.7-101.3, 96.2-98.8, 95.8-103.3 and 94.3-106.1, respectively, using PCR. The NAS (Net analyte signal) concept was used to calculate multivariate analytical figures of merit such as limit of detection (LOD), selectivity and sensitivity. The limit of detections for 6MP, 8-8OH6MP, 6TX and 6TUA were calculated to be 0.734, 0.439, 0.797 and 0.482 μmol L-1, respectively, using PLS and 0.724, 0.418, 0783 and 0.535 μmol L-1, respectively, using PCR. HPLC was also applied as a validation method for simultaneous determination of these thiopurines in the synthetic solutions and human plasma. Conclusion Combination of spectroscopic techniques and chemometric methods (PLS and PCR) has provided a simple but powerful method for simultaneous analysis of multicomponent mixtures PMID:23678408

  6. Comparative study for determination of some polycyclic aromatic hydrocarbons ‘PAHs' by a new spectrophotometric method and multivariate calibration coupled with dispersive liquid-liquid extraction

    NASA Astrophysics Data System (ADS)

    Abdel-Aziz, Omar; El Kosasy, A. M.; El-Sayed Okeil, S. M.

    2014-12-01

    A modified dispersive liquid-liquid extraction (DLLE) procedure coupled with spectrophotometric techniques was adopted for simultaneous determination of naphthalene, anthracene, benzo(a)pyrene, alpha-naphthol and beta-naphthol in water samples. Two different methods were used, partial least-squares (PLS) method and a new derivative ratio method, namely extended derivative ratio (EDR). A PLS-2 model was established for simultaneous determination of the studied pollutants in methanol, by using twenty mixtures as calibration set and five mixtures as validation set. Also, in methanol a novel (EDR) method was developed for determination of the studied pollutants, where each component in the mixture of the five PAHs was determined by using a mixture of the other four components as divisor. Chemometric and EDR methods could be also adopted for determination of the studied PAH in water samples after transferring them from aqueous medium to the organic one by utilizing dispersive liquid-liquid extraction technique, where different parameters were investigated using a full factorial design. Both methods were compared and the proposed method was validated according to ICH guidelines and successfully applied to determine these PAHs simultaneously in spiked water samples, where satisfactory results were obtained. All the results obtained agreed with those of published methods, where no significant difference was observed.

  7. Development of an reliable analytical method for synergistic extractive spectrophotometric determination of cobalt(II) from alloys and nano composite samples by using chromogenic chelating ligand

    NASA Astrophysics Data System (ADS)

    Kamble, Ganesh S.; Ghare, Anita A.; Kolekar, Sanjay S.; Han, Sung H.; Anuse, Mansing A.

    2011-12-01

    A synergistic simple and selective spectrophotometric method was developed for the determination of cobalt(II) with 1-(2',4'-dinitro aminophenyl)-4,4,6-trimethyl-1,4-dihydropyrimidine-2-thiol [2',4'-dinitro APTPT] as a chromogenic reagent. The proposed method has been described on the basis of synergistic effective extraction of cobalt(II) in presence of pyridine at pH range 9.5-10.2, showed orange-red coloured ternary complex having molar ratio 1:2:2 (M:L:Py). The equilibrium time is 10 min for extraction of cobalt(III) from organic phase. The absorbance of coloured organic layer in chloroform is measured spectrophotometrically at 490 nm against reagent blank. The Beer's law was obeyed in the concentration range 2.5-15 μg mL -1 of cobalt(II) and optimum concentration range was 5-12.5 μg mL -1 of cobalt(II) and it was evaluated from Ringbom's plot. The molar absorptivity and Sandell's sensitivity of cobalt(II)-2',4'-dinitro APTPT-pyridine complex in chloroform are 1.109 × 10 3 L mol -1 cm -1 and 0.053 μg cm -2, respectively while molar absorptivity and Sandell's sensitivity of cobalt(II)-2',4'-dinitro APTPT complex in chloroform are 6.22 × 10 2 L mol -1 cm -1 and 0.096 μg cm -2, respectively. The composition of cobalt(II)-2',4'-dinitro APTPT-pyridine complex (1:2:2) was established by slope ratio method, mole ratio method and Job's method of continuous variation. The ternary complex was stable for more than 48 h. The interfering effects of various cations and anions were also studied, and use of suitable masking agents enhances the selectivity of the method. The method is successfully applied for the determination of cobalt(II) in binary, synthetic mixtures and real samples. A repetition of the method was checked by finding relative standard deviation (R.S.D.) for n = 5 which was 0.15%. The reliability of the method is confirmed by comparison of experimental results with atomic absorption spectrophotometer.

  8. Development of an reliable analytical method for synergistic extractive spectrophotometric determination of cobalt(II) from alloys and nano composite samples by using chromogenic chelating ligand.

    PubMed

    Kamble, Ganesh S; Ghare, Anita A; Kolekar, Sanjay S; Han, Sung H; Anuse, Mansing A

    2011-12-15

    A synergistic simple and selective spectrophotometric method was developed for the determination of cobalt(II) with 1-(2',4'-dinitro aminophenyl)-4,4,6-trimethyl-1,4-dihydropyrimidine-2-thiol [2',4'-dinitro APTPT] as a chromogenic reagent. The proposed method has been described on the basis of synergistic effective extraction of cobalt(II) in presence of pyridine at pH range 9.5-10.2, showed orange-red coloured ternary complex having molar ratio 1:2:2 (M:L:Py). The equilibrium time is 10 min for extraction of cobalt(III) from organic phase. The absorbance of coloured organic layer in chloroform is measured spectrophotometrically at 490 nm against reagent blank. The Beer's law was obeyed in the concentration range 2.5-15 μg mL(-1) of cobalt(II) and optimum concentration range was 5-12.5 μg mL(-1) of cobalt(II) and it was evaluated from Ringbom's plot. The molar absorptivity and Sandell's sensitivity of cobalt(II)-2',4'-dinitro APTPT-pyridine complex in chloroform are 1.109×10(3) L mol(-1) cm(-1) and 0.053 μg cm(-2), respectively while molar absorptivity and Sandell's sensitivity of cobalt(II)-2',4'-dinitro APTPT complex in chloroform are 6.22×10(2) L mol(-1) cm(-1) and 0.096 μg cm(-2), respectively. The composition of cobalt(II)-2',4'-dinitro APTPT-pyridine complex (1:2:2) was established by slope ratio method, mole ratio method and Job's method of continuous variation. The ternary complex was stable for more than 48 h. The interfering effects of various cations and anions were also studied, and use of suitable masking agents enhances the selectivity of the method. The method is successfully applied for the determination of cobalt(II) in binary, synthetic mixtures and real samples. A repetition of the method was checked by finding relative standard deviation (R.S.D.) for n=5 which was 0.15%. The reliability of the method is confirmed by comparison of experimental results with atomic absorption spectrophotometer. PMID:21978559

  9. Spectrophotometric determination of ethacridine lactate in infusion

    PubMed Central

    Jain, Pritam S.; Surana, S. J.

    2011-01-01

    Aim: A simple, rapid, selective, accurate, and precise UV spectrophotometric method has been developed for the estimation of ethacridine lactate from bulk and pharmaceutical formulation. Materials and Methods: Appropriate aliquot portions of stock standard solution of ethacridine lactate were transferred into five separate 10 ml volumetric flasks, and the volume was adjusted to the mark with double distilled water to obtain concentrations of 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2 μg/ml. The λmax of ethacridine lactate in double distill water was found to be 271 nm with an apparent molar absorptivity of 59.781 × 103 l/mol cm. The drug follows linearity in the concentration range 2–12 μg/ml with a correlation coefficient value of 0.998. Results: The proposed method was applied to pharmaceutical formulation and % amount of drug estimated 99.71% was found to be in good agreement with the label claim. The accuracy of the method was checked by recovery experiment performed at three different levels, i.e., 80%, 100%, and 120%. The % recovery was found to be in the range 99.26–100.25%. The low values of % RSD are indicative of the accuracy and reproducibility of the method. The precision of the method was studied as intraday, interday variations and repeatability. The % RSD value less than 2 indicates that the method is precise. Ruggedness of the proposed method was studied with the help of two analysts. Conclusion: The results indicated that the method could be used for the routine estimation of ethacridine lactate from tablet formulations. PMID:23781454

  10. Improved methods for adjusting the UV content of measurement instrument illumination for papermaking industry

    NASA Astrophysics Data System (ADS)

    Yang, Li

    2014-09-01

    Optical brightening agents (OBAs) or fluorescent whitening agents (FWAs) are often used additives in paper and board products as they improve both whiteness and brightness of the products. When printed, OBAs can even contribute to colour tone reproduction. Fluorescent emissions of OBAs depend on the UV content of the illuminant (light source). Adequate adjustment (control or adjustment) of UV content of measurement apparatus (e.g. spectrophotometer) is essential for accurate colour measurement and printing colour reproduction. We proposed a method to adjust the UV content against assigned spectra rather than, as adopted in current ISO standards, against single assigned values. Demonstrations of applying this method to the CIE standard illuminants used in papermaking and graphic industries, D65, C and D50 have been given. Thanks to the well-established traceability of reference standards (IRs), the UV contents of a spectrophotometer corresponding to the standard CIE illuminants have been achieved.

  11. Cisapride a green analytical reagent for rapid and sensitive determination of bromate in drinking water, bread and flour additives by oxidative coupling spectrophotometric methods

    NASA Astrophysics Data System (ADS)

    Al Okab, Riyad Ahmed

    2013-02-01

    Green analytical methods using Cisapride (CPE) as green analytical reagent was investigated in this work. Rapid, simple, and sensitive spectrophotometric methods for the determination of bromate in water sample, bread and flour additives were developed. The proposed methods based on the oxidative coupling between phenoxazine and Cisapride in the presence of bromate to form red colored product with max at 520 nm. Phenoxazine and Cisapride and its reaction products were found to be environmentally friendly under the optimum experimental condition. The method obeys beers law in concentration range 0.11-4.00 g ml-1 and molar absorptivity 1.41 × 104 L mol-1 cm-1. All variables have been optimized and the presented reaction sequences were applied to the analysis of bromate in water, bread and flour additive samples. The performance of these method was evaluated in terms of Student's t-test and variance ratio F-test to find out the significance of proposed methods over the reference method. The combination of pharmaceutical drugs reagents with low concentration create some unique green chemical analyses.

  12. Cisapride a green analytical reagent for rapid and sensitive determination of bromate in drinking water, bread and flour additives by oxidative coupling spectrophotometric methods.

    PubMed

    Al Okab, Riyad Ahmed

    2013-02-15

    Green analytical methods using Cisapride (CPE) as green analytical reagent was investigated in this work. Rapid, simple, and sensitive spectrophotometric methods for the determination of bromate in water sample, bread and flour additives were developed. The proposed methods based on the oxidative coupling between phenoxazine and Cisapride in the presence of bromate to form red colored product with max at 520 nm. Phenoxazine and Cisapride and its reaction products were found to be environmentally friendly under the optimum experimental condition. The method obeys beers law in concentration range 0.11-4.00 g ml(-1) and molar absorptivity 1.41 × 10(4) L mol(-1)cm(-1). All variables have been optimized and the presented reaction sequences were applied to the analysis of bromate in water, bread and flour additive samples. The performance of these method was evaluated in terms of Student's t-test and variance ratio F-test to find out the significance of proposed methods over the reference method. The combination of pharmaceutical drugs reagents with low concentration create some unique green chemical analyses. PMID:23261631

  13. Kinetic spectrophotometric H-point standard addition method for the simultaneous determination of diloxanide furoate and metronidazole in binary mixtures and biological fluids

    NASA Astrophysics Data System (ADS)

    Issa, Mahmoud Mohamed; Nejem, R.'afat Mahmoud; Shanab, Alaa Mohamed Abu; Shaat, Nahed Talab

    2013-10-01

    Simple, reliable, and sensitive kinetic spectrophotometric method has been developed for the simultaneous determination of diloxanide furoate and metronidazole using H-point standard addition method (HPSAM). The method is based on the oxidation rate difference of diloxanide and metronidazole by potassium permanganate in basic medium. A green color has been developed and measured at 610 nm. Different experimental parameters were carefully optimized. The limiting logarithmic and the initial-rate methods were adopted for the construction of the calibration curve of each individual reaction with potassium permanganate. Under the optimum conditions, Beer's law was obeyed in the range of 1.0-20.0 and 5.0-25.0 μg ml-1 for diloxanide furoate and metronidazole, respectively. The detection limits were 0.22 μg ml-1 for diloxanide furoate and 0.83 μg ml-1 for metronidazole. Correlation coefficients of the regression equations were greater than 0.9970 in all cases. The precision of the method was satisfactory; the maximum value of relative standard deviation did not exceed 1.06% (n = 5). The accuracy, expressed as recovery was between 99.4% and 101.4% with relative error of 0.12 and 0.14 for diloxanide furoate and metronidazole, respectively. The proposed method was successfully applied for the simultaneous determination of both drugs in pharmaceutical dosage forms and human urine samples and compared with alternative HPLC method.

  14. Spectrophotometric and reversed-phase high-performance liquid chromatographic methods for simultaneous determination of escitalopram oxalate and clonazepam in combined tablet dosage form.

    PubMed

    Gandhi, Santosh Vilashchand; Dhavale, Nilesh Dnyandev; Jadhav, Vijay Yeshawantrao; Sabnis, Shweta Sadanand

    2008-01-01

    Simple, accurate, precise, and sensitive ultraviolet spectrophotometric and reversed-phase high-performance liquid chromatographic (RP-HPLC) methods for simultaneous estimation of escitalopram oxalate (ESC) and clonazepam (CLO) in combined tablet dosage form have been developed and validated. The spectroscopic method employs an absorbance correction method using 238.6 and 308 nm as 2 wavelengths for estimation with methanol and water as solvents. Beer's law is obeyed in the concentration range of 10.0-50.0 and 0.5-3.0 micro/mL for ESC and CLO, respectively. The RP-HPLC method uses a Jasco HPLC system with HiQ SiL C18 column (250 x 4.6 mm id) acetonitrile-0.005 M tetrabutylammonium hydrogen sulfate (55 + 45, v/v) as the mobile phase, and satranidazole as an internal standard. The detection was carried out using an ultraviolet detector set at 287 nm. For the HPLC method, Beer's law is obeyed in the concentration range of 10.0-60.0 and 0.5-3.0 microg/mL for ESC and CLO, respectively. Both methods have been successfully applied for the analysis of the drugs in a pharmaceutical formulation. Results of analysis were validated statistically and by recovery studies. PMID:18376583

  15. Comparative Study of Novel Ratio Spectra and Isoabsorptive Point Based Spectrophotometric Methods: Application on a Binary Mixture of Ascorbic Acid and Rutin

    PubMed Central

    Darwish, Hany W.; Bakheit, Ahmed H.; Naguib, Ibrahim A.

    2016-01-01

    This paper presents novel methods for spectrophotometric determination of ascorbic acid (AA) in presence of rutin (RU) (coformulated drug) in their combined pharmaceutical formulation. The seven methods are ratio difference (RD), isoabsorptive_RD (Iso_RD), amplitude summation (A_Sum), isoabsorptive point, first derivative of the ratio spectra (1DD), mean centering (MCN), and ratio subtraction (RS). On the other hand, RU was determined directly by measuring the absorbance at 358 nm in addition to the two novel Iso_RD and A_Sum methods. The work introduced in this paper aims to compare these different methods, showing the advantages for each and making a comparison of analysis results. The calibration curve is linear over the concentration range of 4–50 μg/mL for AA and RU. The results show the high performance of proposed methods for the analysis of the binary mixture. The optimum assay conditions were established and the proposed methods were successfully applied for the assay of the two drugs in laboratory prepared mixtures and combined pharmaceutical tablets with excellent recoveries. No interference was observed from common pharmaceutical additives. PMID:26885440

  16. Development and validation of an high-performance liquid chromatographic, and a ultraviolet spectrophotometric method for determination of Ambroxol hydrochloride in pharmaceutical preparations.

    PubMed

    Muralidharan, Selvadurai; Kumar, Jaya Raja; Dhanara, Sokkalingam Arumugam

    2013-01-01

    A high-performance liquid chromatographic (HPLC) and ultraviolet (UV) methods were developed and validated for the quantitative determination of Ambroxol hydrochloride (AMH) in pharmaceutical dosage form. HPLC was carried out by reversed phase (RP) technique on an RP-18 column with a mobile phase composed of acetonitrile and water (pH 3.5 adjusted with orthophosphoric acid [60:40, v/v]). UV method was performed with the λmax at 250 nm. Both the methods showed good linearity, reproducibility, and precision. No spectral or chromatographic interferences from the tablet excipients were found in UV and HPLC. The method was successfully applied to commercial tablets. Validation parameters such as linearity, precision, accuracy, and specificity were determined. The HPLC Limit of detection (LOD) and Limit of quantification (LOQ) for Ambroxol were found to be 1 and 5 ng/ml, respectively. The UV LOD and LOQ for Ambroxol were found to be 1 and 4 μg/ml, respectively. The results were statistically compared using one-way analysis of variance. The proposed economical method could be applicable for routine analysis of AMH and monitoring of the quality of marketed drugs. PMID:23662284

  17. Development and validation of an high-performance liquid chromatographic, and a ultraviolet spectrophotometric method for determination of Ambroxol hydrochloride in pharmaceutical preparations

    PubMed Central

    Muralidharan, Selvadurai; Kumar, Jaya Raja; Dhanara, Sokkalingam Arumugam

    2013-01-01

    A high-performance liquid chromatographic (HPLC) and ultraviolet (UV) methods were developed and validated for the quantitative determination of Ambroxol hydrochloride (AMH) in pharmaceutical dosage form. HPLC was carried out by reversed phase (RP) technique on an RP-18 column with a mobile phase composed of acetonitrile and water (pH 3.5 adjusted with orthophosphoric acid [60:40, v/v]). UV method was performed with the λmax at 250 nm. Both the methods showed good linearity, reproducibility, and precision. No spectral or chromatographic interferences from the tablet excipients were found in UV and HPLC. The method was successfully applied to commercial tablets. Validation parameters such as linearity, precision, accuracy, and specificity were determined. The HPLC Limit of detection (LOD) and Limit of quantification (LOQ) for Ambroxol were found to be 1 and 5 ng/ml, respectively. The UV LOD and LOQ for Ambroxol were found to be 1 and 4 μg/ml, respectively. The results were statistically compared using one-way analysis of variance. The proposed economical method could be applicable for routine analysis of AMH and monitoring of the quality of marketed drugs. PMID:23662284

  18. Automatic flow analysis method to determine traces of Mn²⁺ in sea and drinking waters by a kinetic catalytic process using LWCC-spectrophotometric detection.

    PubMed

    Chaparro, Laura; Ferrer, Laura; Leal, Luz O; Cerdà, Víctor

    2016-02-01

    A new automatic kinetic catalytic method has been developed for the measurement of Mn(2+) in drinking and seawater samples. The method is based on the catalytic effect of Mn(2+) on the oxidation of tiron by hydrogen peroxide in presence of Pb(2+) as an activator. The optimum conditions were obtained at pH 10 with 0.019 mol L(-1) 2'2 bipyridyl, 0.005 mol L(-1) tiron and 0.38 mol L(-1) hydrogen peroxide. Flow system is based on multisyringe flow injection analysis (MSFIA) coupled with a lab-on-valve (LOV) device exploiting on line spectrophotometric detection by a Liquid Waveguide Capillary Cell (LWCC), 1m optical length and performed at 445 nm. Under the optimized conditions by a multivariate approach, the method allowed the measurement of Mn(2+) in a range of 0.03-35 µg L(-1) with a detection limit of 0.010 µg L(-1), attaining a repeatability of 1.4% RSD. The method was satisfactorily applied to the determination of Mn(2+) in environmental water samples. The reliability of method was also verified by determining the manganese content of the certified standard reference seawater sample, CASS-4. PMID:26653487

  19. Successive ratio subtraction coupled with constant multiplication spectrophotometric method for determination of hydroquinone in complex mixture with its degradation products, tretinoin and methyl paraben

    NASA Astrophysics Data System (ADS)

    Elghobashy, Mohamed R.; Bebawy, Lories I.; Shokry, Rafeek F.; Abbas, Samah S.

    2016-03-01

    A sensitive and selective stability-indicating successive ratio subtraction coupled with constant multiplication (SRS-CM) spectrophotometric method was studied and developed for the spectrum resolution of five component mixture without prior separation. The components were hydroquinone in combination with tretinoin, the polymer formed from hydroquinone alkali degradation, 1,4 benzoquinone and the preservative methyl paraben. The proposed method was used for their determination in their pure form and in pharmaceutical formulation. The zero order absorption spectra of hydroquinone, tretinoin, 1,4 benzoquinone and methyl paraben were determined at 293, 357.5, 245 and 255.2 nm, respectively. The calibration curves were linear over the concentration ranges of 4.00-46.00, 1.00-7.00, 0.60-5.20, and 1.00-7.00 μg mL- 1 for hydroquinone, tretinoin, 1,4 benzoquinone and methyl paraben, respectively. The pharmaceutical formulation was subjected to mild alkali condition and measured by this method resulting in the polymerization of hydroquinone and the formation of toxic 1,4 benzoquinone. The proposed method was validated according to ICH guidelines. The results obtained were statistically analyzed and compared with those obtained by applying the reported method.

  20. Successive ratio subtraction coupled with constant multiplication spectrophotometric method for determination of hydroquinone in complex mixture with its degradation products, tretinoin and methyl paraben.

    PubMed

    Elghobashy, Mohamed R; Bebawy, Lories I; Shokry, Rafeek F; Abbas, Samah S

    2016-03-15

    A sensitive and selective stability-indicating successive ratio subtraction coupled with constant multiplication (SRS-CM) spectrophotometric method was studied and developed for the spectrum resolution of five component mixture without prior separation. The components were hydroquinone in combination with tretinoin, the polymer formed from hydroquinone alkali degradation, 1,4 benzoquinone and the preservative methyl paraben. The proposed method was used for their determination in their pure form and in pharmaceutical formulation. The zero order absorption spectra of hydroquinone, tretinoin, 1,4 benzoquinone and methyl paraben were determined at 293, 357.5, 245 and 255.2nm, respectively. The calibration curves were linear over the concentration ranges of 4.00-46.00, 1.00-7.00, 0.60-5.20, and 1.00-7.00μgmL(-1) for hydroquinone, tretinoin, 1,4 benzoquinone and methyl paraben, respectively. The pharmaceutical formulation was subjected to mild alkali condition and measured by this method resulting in the polymerization of hydroquinone and the formation of toxic 1,4 benzoquinone. The proposed method was validated according to ICH guidelines. The results obtained were statistically analyzed and compared with those obtained by applying the reported method. PMID:26745510

  1. Extractive spectrophotometric methods for the determination of oxomemazine hydrochloride in bulk and pharmaceutical formulations using bromocresol green, bromocresol purple and bromophenol blue.

    PubMed

    El-Didamony, Akram M

    2005-04-01

    Three simple, sensitive and accurate spectrophotometric methods have been developed for the determination of oxomemazine hydrochloride in bulk and pharmaceutical formulations. These methods are based on the formation of yellow ion-pair complexes between the examined drug and bromocresol green (BCG), bromocresol purple (BCP), and bromophenol blue (BPB) as sulphophthalein dyes in acetate-HCl buffer of pH 3.6, 3.4, and 4.0, respectively. The formed complexes were extracted with dichloromethane and measured at 405 nm for all three systems. The best conditions of the reactions were studied and optimized. Beer's law was obeyed in the concentration ranges 2.0-12, 2.0-13, and 2.0-14 microg mL(-1) with molar absorptivities of 3.2 x 10(4), 3.7 x 10(4), and 3.1 x 10(4) L mol(-1) cm(-1) for the BCG, BCP, and BPB methods, respectively. Sandell's sensitivity, correlation coefficient, detection and quantification limits are also calculated. The proposed methods have been applied successfully for the analysis of the drug in pure form and in its dosage forms. No interference was observed from common pharmaceutical excipients. Statistical comparison of the results with those obtained by HPLC method shows excellent agreement and indicates no significant difference in accuracy and precision. PMID:15864789

  2. Determination of pK(a) of felodipine using UV-Visible spectroscopy.

    PubMed

    Pandey, M M; Jaipal, A; Kumar, A; Malik, R; Charde, S Y

    2013-11-01

    In the present study, for the first time, experimental pKa value of felodipine is reported. Dissociation constant, pKa, is one of the very important physicochemical properties of drugs. It is of paramount significance from the perspective of pharmaceutical analysis and dosage form design. The method used for the pKa determination of felodipine was essentially a UV-Visible spectrophotometric method. The spectrophotometric method for the pKa determination was opted by acknowledging the established fact that spectrophotometric determination of pKa produces most precise values. The pKa of felodipine was found to be 5.07. Furthermore, the ruggedness of the determined value is also validated in this study in order to produce exact pKa of the felodipine. PMID:23906645

  3. Determination of pKa of felodipine using UV-Visible spectroscopy

    NASA Astrophysics Data System (ADS)

    Pandey, M. M.; Jaipal, A.; Kumar, A.; Malik, R.; Charde, S. Y.

    2013-11-01

    In the present study, for the first time, experimental pKa value of felodipine is reported. Dissociation constant, pKa, is one of the very important physicochemical properties of drugs. It is of paramount significance from the perspective of pharmaceutical analysis and dosage form design. The method used for the pKa determination of felodipine was essentially a UV-Visible spectrophotometric method. The spectrophotometric method for the pKa determination was opted by acknowledging the established fact that spectrophotometric determination of pKa produces most precise values. The pKa of felodipine was found to be 5.07. Furthermore, the ruggedness of the determined value is also validated in this study in order to produce exact pKa of the felodipine.

  4. Development and validation of simple spectrophotometric and chemometric methods for simultaneous determination of empagliflozin and metformin: Applied to recently approved pharmaceutical formulation.

    PubMed

    Ayoub, Bassam M

    2016-11-01

    New univariate spectrophotometric method and multivariate chemometric approach were developed and compared for simultaneous determination of empagliflozin and metformin manipulating their zero order absorption spectra with application on their pharmaceutical preparation. Sample enrichment technique was used to increase concentration of empagliflozin after extraction from tablets to allow its simultaneous determination with metformin without prior separation. Validation parameters according to ICH guidelines were satisfactory over the concentration range of 2-12μgmL(-1) for both drugs using simultaneous equation with LOD values equal to 0.20μgmL(-1) and 0.19μgmL(-1), LOQ values equal to 0.59μgmL(-1) and 0.58μgmL(-1) for empagliflozin and metformin, respectively. While the optimum results for the chemometric approach using partial least squares method (PLS-2) were obtained using concentration range of 2-10μgmL(-1). The optimized validated methods are suitable for quality control laboratories enable fast and economic determination of the recently approved pharmaceutical combination Synjardy® tablets. PMID:27288963

  5. UV Multi-scatter Propagation Model of Point Probability Method

    NASA Astrophysics Data System (ADS)

    Lu, Bai; Zhensen, Wu; Haiying, Li

    Based on the multi-scatter propagation model of Monte Carlo, an improved geometric model is proposed. The model is ameliorated by using the point probability method. Comparison is made between the multiple scattering propagation models and the single-scatter propagation model in calculation time and relative error. The effect of complex weather, stumbling block and the transmitter and the receiver in different height are discussed. It is shown that although the single-scatter propagation model can be evaluated easily from standard numerical integration but this model cannot describe general non-line-of sight propagation problem. While the improved point probability multi-scatter Monte Carlo model may be used to more general case.

  6. A spectrophotometric transesterification-based assay for lipases in organic solvent.

    PubMed

    Goujard, L; Villeneuve, P; Barea, B; Lecomte, J; Pina, M; Claude, S; Le Petit, J; Ferré, E

    2009-02-01

    A new method to evaluate lipase activities in nonaqueous conditions using vinyl ester absorbance at ultraviolet (UV) wavelengths is described. The model reaction is the transesterification between vinyl stearate and pentanol in hexane at 30 degrees C or in decane at 50 degrees C. The conversion of vinyl stearate into pentyl stearate is monitored through decreasing UV absorbance at 200 nm. Six commercial lipases were tested with this method, and results were compared with gas chromatography (GC) quantification and a classical spectrophotometric method using p-nitrophenyl palmitate. Results from the new spectrophotometric assay are similar both to results from GC quantification (R(2)=0.999) and to results from p-nitrophenyl palmitate (R(2)=0.989). The proposed method is able to evaluate both high activity from immobilized lipases such as immobilized Candida antarctica B lipase (3060 +/- 350 U g(-1)) and low activity from crude enzymatic extracts such as Carica papaya dried latex (0.1 +/- 0.04 U g(-1)). The method has also been used to measure kinetic parameters of C. antarctica B lipase for vinyl stearate and the correlation between its synthesis activity and its concentration. The method has also proved to be effective in studying the acyl selectivity of a lipase by comparing its activities with increasing chain lengths of vinyl esters. PMID:19013125

  7. Spectrophotometric method for the determination of sorbic acid in various food samples with iron(III) and 2-thiobarbituric acid as reagents.

    PubMed

    Lau, O W; Luk, S F; Lam, R K

    1989-02-01

    A simple, rapid and accurate spectrophotometric method has been developed for the determination of sorbic acid in various food samples based on the oxidation of sorbic acid by iron(III) at 100 degrees C to malonaldehyde, which then reacts with 2-thiobarbituric acid to form a reddish brown product. The optimum experimental conditions for colour development have been assessed. Absorbance measurements were made at 529 nm in the presence of 0.4% m/V citric acid. The calibration graph was linear for 0-6 micrograms ml-1 of sorbic acid with a slope of 0.131 A micrograms-1 ml. The recoveries of sorbic acid at concentrations of 164-557 micrograms ml-1 ranged from 96 to 103%. The relative standard deviations of ten replicate determinations of sorbic acid in a synthetic cream soda sample spiked with 573 micrograms ml-1 of sorbic acid and in an onion juice sample containing 82 micrograms ml-1 of sorbic acid were 1.6 and 1.9%, respectively. Interferences from several common food additives can be minimised by extracting sorbic acid with diethyl ether and then back-extracting the acid with sodium hydrogen carbonate. The method has been applied successfully to the determination of sorbic acid in a wide range of food samples including beverages, cake, cake mate, garlic bread sprinkle, onion juice, oyster flavoured sauce and grenadine syrup. PMID:2712320

  8. REVIEW ARTICLE: Spectrophotometric applications of digital signal processing

    NASA Astrophysics Data System (ADS)

    Morawski, Roman Z.

    2006-09-01

    Spectrophotometry is more and more often the method of choice not only in analysis of (bio)chemical substances, but also in the identification of physical properties of various objects and their classification. The applications of spectrophotometry include such diversified tasks as monitoring of optical telecommunications links, assessment of eating quality of food, forensic classification of papers, biometric identification of individuals, detection of insect infestation of seeds and classification of textiles. In all those applications, large numbers of data, generated by spectrophotometers, are processed by various digital means in order to extract measurement information. The main objective of this paper is to review the state-of-the-art methodology for digital signal processing (DSP) when applied to data provided by spectrophotometric transducers and spectrophotometers. First, a general methodology of DSP applications in spectrophotometry, based on DSP-oriented models of spectrophotometric data, is outlined. Then, the most important classes of DSP methods for processing spectrophotometric data—the methods for DSP-aided calibration of spectrophotometric instrumentation, the methods for the estimation of spectra on the basis of spectrophotometric data, the methods for the estimation of spectrum-related measurands on the basis of spectrophotometric data—are presented. Finally, the methods for preprocessing and postprocessing of spectrophotometric data are overviewed. Throughout the review, the applications of DSP are illustrated with numerous examples related to broadly understood spectrophotometry.

  9. Comparison among the methods for hydrogen peroxide measurements to evaluate advanced oxidation processes: Application of a spectrophotometric method using copper(II) ion and 2,9-dimethyl-1,10-phenanthroline

    SciTech Connect

    Kosaka, Koji; Yamada, Harumi; Matsui, Saburo; Echigo, Shinya; Shishida, Kenichi

    1998-12-01

    Hydrogen peroxide (H{sub 2}O{sub 2}) in the range of several tens to several hundreds of micromoles per liter is usually added to the process water in advanced oxidation processes (AOPs). In this study, a spectrophotometric method using copper(II) ion and 2,9-dimethyl-1, 10-phenanthroline (DMP) for measuring H{sub 2}O{sub 2} concentration was compared with other methods [i.e., spectrophotometric methods using titanium oxalate and N,N-diethyl-p-phenylenediamine (DPD) and a fluorometric method using p-hydroxyphenyl acetic acid (POHPAA)]. Particular attention was paid to sensitivities and effects of coexisting substances. The most sensitive method was the fluorometric method, followed in order by DPD, DMP, and the titanium oxalate colorimetric method; their detection limits in 1-cm cells were 0.16, 0.77, 0.80, and 29 {micro}M, respectively. Therefore, the DMP method was found to be reasonably sensitive when applied to AOPs. In the DMP method, copper(II)-DMP complexes react with humic acid, and colored chemicals are produced. However, the slopes of the calibration curves of H{sub 2}O{sub 2} containing up to 10 mg of C L{sup {minus}1} from humic acid did not change significantly as compared to that in ultrapure water. The effect of chlorine on the DMP method was not observed up to at least 23 {micro}M (0.8 mg of Cl L{sup {minus}1}) of free chlorine, although the DPD and fluorometric methods are known to be interfered by chlorine. From this study, it was concluded that the DMP method is suitable to be used in AOPs.

  10. A simple spectrophotometric method for the determination of trace levels of molybdenum using N,N‧-bis(2-hydroxy-5-bromo-benzyl)1,2 diaminopropane

    NASA Astrophysics Data System (ADS)

    Kara, Derya; Karadaş, Cennet

    2015-08-01

    The present work describes a selective, rapid and economical spectrophotometric method for the determination of molybdenum using N,N‧-bis(2-hydroxy-5-bromo-benzyl)1,2 diaminopropane. Molybdenum(VI) reacts with N,N‧-bis(2-hydroxy-5-bromo-benzyl)1,2 diaminopropane to form a stable 1:1 yellow complex with an absorption maximum at 342 nm. The reaction is completed within 10 min and the absorbance of the molybdenum complex remains stable for at least 1 week at room temperature. The effective molar absorption coefficient at 342 nm was 9.6 × 103 L mol-1 cm-1. Under optimal conditions, the complex obeys Beer's law from 0 to 9.9 μg mL-1. The relative standard deviation was 0.08% (for 11 samples, each containing 6 μg mL-1 molybdenum). Under the optimum conditions, the detection limit (3σ) was 17.7 μg L-1 for molybdenum without any preconcentration. The precision was determined from 30 results obtained for 4.80 μg mL-1 Mo(VI); the mean value of a molybdenum(VI) was 4.83 μg ml-1 with a standard derivation of 0.002 μg ml-1 molybdenum(VI).

  11. Searching for triatomines. A new method for field search using UV light.

    PubMed

    Catalá, Silvia

    2010-10-01

    Detection of triatomine bugs within a house is essential for the estimation of Chagas disease transmission risk and for evaluating the success of insecticidal control attempts. Small residual populations could represent an important risk but are difficult to detect by time manual sampling. Faecal marks from triatomines are clearly detectable with an ultraviolet (UV) light on most of the materials frequently used in rural buildings. A new method for finding triatomines is proposed here, based on the unexplored property of faeces to fluoresce when exposed to UV light. PMID:20457119

  12. Nonylphenols degradation in the UV, UV/H₂O₂, O₃and UV/O₃processes - comparison of the methods and kinetic study.

    PubMed

    Felis, E; Miksch, K

    2015-01-01

    This paper describes the results of experiments on the decomposition of selected nonylphenols (NPs) in aqueous solutions using the UV, UV/H₂O₂, O₃and UV/O₃processes. The goal of the research was to determine the kinetic parameters of the above-mentioned processes, and to estimate their effectiveness. These substances were selected because of their ubiquitous occurrence in the aquatic environment, resistance to biodegradation and environmental significance. As a result of the experiments, the quantum yields of the 4-n-nonylphenol (4NP) and NP (technical mixture) photodegradation in aqueous solution were calculated to be 0.15 and 0.17, respectively. The values of the second-order rate constants of the investigated compounds with hydroxyl radical and NP with ozone were also determined. The estimated second-order rate constants of 4NP and NP with hydroxyl radicals were equal to 7.6 × 10⁸-1.3 × 10⁹ mol⁻¹ L s⁻¹. For NP, the determined rate constant with ozone was equal to 2.01 × 10⁶ mol⁻¹ L s⁻¹. The performed experiments showed that NP was slightly more susceptible to degradation by the UV radiation and hydroxyl radicals than 4NP. The study demonstrated also that the polychromatic UV-light alone and also in combination with selected oxidizers (i.e. hydrogen peroxide, ozone) may be successfully used for the removal of selected NPs from the aqueous medium. PMID:25714646

  13. A Simple HPLC-UV Method for the Determination of Glutathione in PC-12 Cells.

    PubMed

    Appala, Raju N; Chigurupati, Sridevi; Appala, Raju V V S S; Krishnan Selvarajan, Kesavanarayanan; Islam Mohammad, Jahidul

    2016-01-01

    A highly sensitive and simple HPLC-UV method was developed and validated for the assay of glutathione (GSH) in PC-12 cells. Glutathione is a major intracellular antioxidant having multiple biological effects, best known for its cytoprotective effects against cell damage from reactive oxygen species and toxic reactive metabolites and regulating the cellular redox homeostasis. Due to its own sulfhydryl (SH) group, GSH readily reacts with Ellman's reagent to form a stable dimer which allows for quantitative estimation of GSH in biological systems by UV detection. The separation was achieved using a C8 column with a mobile phase consisting of phosphate buffer adjusted to pH 2.5 (mobile phase A) and acetonitrile (mobile phase B), running in a segmented gradient manner at a flow rate of 0.8 mL/min, and UV detection was performed at 280 nm. The developed HPLC-UV method was validated with respect to precision, accuracy, robustness, and linearity within a range of 1-20 μg/mL. Limit of detection (LOD) and limit of quantification (LOQ) were 0.05 and 0.1 μg/mL, respectively. Furthermore, the method shows the applicability for monitoring the oxidative stress in PC-12 cells. PMID:27127683

  14. A Simple HPLC-UV Method for the Determination of Glutathione in PC-12 Cells

    PubMed Central

    Appala, Raju N.; Appala, Raju V. V. S. S.

    2016-01-01

    A highly sensitive and simple HPLC-UV method was developed and validated for the assay of glutathione (GSH) in PC-12 cells. Glutathione is a major intracellular antioxidant having multiple biological effects, best known for its cytoprotective effects against cell damage from reactive oxygen species and toxic reactive metabolites and regulating the cellular redox homeostasis. Due to its own sulfhydryl (SH) group, GSH readily reacts with Ellman's reagent to form a stable dimer which allows for quantitative estimation of GSH in biological systems by UV detection. The separation was achieved using a C8 column with a mobile phase consisting of phosphate buffer adjusted to pH 2.5 (mobile phase A) and acetonitrile (mobile phase B), running in a segmented gradient manner at a flow rate of 0.8 mL/min, and UV detection was performed at 280 nm. The developed HPLC-UV method was validated with respect to precision, accuracy, robustness, and linearity within a range of 1–20 μg/mL. Limit of detection (LOD) and limit of quantification (LOQ) were 0.05 and 0.1 μg/mL, respectively. Furthermore, the method shows the applicability for monitoring the oxidative stress in PC-12 cells. PMID:27127683

  15. Polymerization Evaluation by Spectrophotometric Measurements.

    ERIC Educational Resources Information Center

    Dunach, Jaume

    1985-01-01

    Discusses polymerization evaluation by spectrophotometric measurements by considering: (1) association degrees and molar absorptivities; (2) association degrees and equilibrium constants; and (3) absorbance and equilibrium constants. (JN)

  16. Spectrophotometric methods for the determination of benazepril hydrochloride in its single and multi-component dosage forms.

    PubMed

    El-Yazbi, F A; Abdine, H H; Shaalan, R A

    1999-06-01

    Three sensitive and accurate methods are presented for the determination of benazepril in its dosage forms. The first method uses derivative spectrophotometry to resolve the interference due to formulation matrix. The second method depends on the color formed by the reaction of the drug with bromocresol green (BCG). The third one utilizes the reaction of benazepril, after alkaline hydrolysis, with 3-methylbenzothialozone (MBTH) hydrazone where the produced color is measured at 593 nm. The latter method was extended to develop a stability-indicating method for this drug. Moreover, the derivative method was applied for the determination of benazepril in its combination with hydrochlorothiazide. The proposed methods were applied for the analysis of benazepril in the pure form and in tablets. The coefficient of variation was less than 2%. PMID:10704041

  17. A comparative study of validated spectrophotometric and TLC- spectrodensitometric methods for the determination of sodium cromoglicate and fluorometholone in ophthalmic solution.

    PubMed

    Saleh, Sarah S; Lotfy, Hayam M; Hassan, Nagiba Y; Elgizawy, Samia M

    2013-10-01

    The determination of sodium cromoglicate (SCG) and fluorometholone (FLU) in ophthalmic solution was developed by simple, sensitive and precise methods. Three spectrophotometric methods were applied: absorptivity factor (a-Factor method), absorption factor (AFM) and mean centering of ratio spectra (MCR). The linearity ranges of SCG were found to be (2.5-35 μg/mL) for (a-Factor method) and (MCR); while for (AFM), it was found to be (7.5-50 μg/mL). The linearity ranges of FLU were found to be (4-16 μg/mL) for (a-Factor method) and (AFM); while for (MCR), it was found to be (2-16 μg/mL). The mean percentage recoveries/RSD for SCG were found to be 100.31/0.90, 100.23/0.57 and 100.43/1.21; while for FLU, they were found to be 100.11/0.56, 99.97/0.35 and 99.94/0.88 using (a-Factor method), (AFM) and (MCR), respectively. A TLC-spectrodensitometric method was developed by separation of SCG and FLU on silica gel 60 F254 using chloroform:methanol:toluene:triethylamine in the ratio of (5:2:4:1 v/v/v/v) as developing system, followed by spectrodensitometric measurement of the bands at 241 nm. The linearity ranges and the mean percentage recoveries/RSD were found to be (0.4-4.4 μg/band), 100.24/1.44 and (0.2-1.6 μg/band), 99.95/1.50 for SCG and FLU, respectively. A comparative study was conducted between the proposed methods to discuss the advantage of each method. The suggested methods were validated in compliance with the ICH guidelines and were successfully applied for the determination of SCG and FLU in their laboratory prepared mixtures and commercial ophthalmic solution in the presence of benzalkonium chloride as a preservative. These methods could be an alternative to different HPLC techniques in quality control laboratories lacking the required facilities for those expensive techniques. PMID:24227962

  18. A comparative study of validated spectrophotometric and TLC- spectrodensitometric methods for the determination of sodium cromoglicate and fluorometholone in ophthalmic solution

    PubMed Central

    Saleh, Sarah S.; Lotfy, Hayam M.; Hassan, Nagiba Y.; Elgizawy, Samia M.

    2013-01-01

    The determination of sodium cromoglicate (SCG) and fluorometholone (FLU) in ophthalmic solution was developed by simple, sensitive and precise methods. Three spectrophotometric methods were applied: absorptivity factor (a-Factor method), absorption factor (AFM) and mean centering of ratio spectra (MCR). The linearity ranges of SCG were found to be (2.5–35 μg/mL) for (a-Factor method) and (MCR); while for (AFM), it was found to be (7.5–50 μg/mL). The linearity ranges of FLU were found to be (4–16 μg/mL) for (a-Factor method) and (AFM); while for (MCR), it was found to be (2–16 μg/mL). The mean percentage recoveries/RSD for SCG were found to be 100.31/0.90, 100.23/0.57 and 100.43/1.21; while for FLU, they were found to be 100.11/0.56, 99.97/0.35 and 99.94/0.88 using (a-Factor method), (AFM) and (MCR), respectively. A TLC-spectrodensitometric method was developed by separation of SCG and FLU on silica gel 60 F254 using chloroform:methanol:toluene:triethylamine in the ratio of (5:2:4:1 v/v/v/v) as developing system, followed by spectrodensitometric measurement of the bands at 241 nm. The linearity ranges and the mean percentage recoveries/RSD were found to be (0.4–4.4 μg/band), 100.24/1.44 and (0.2–1.6 μg/band), 99.95/1.50 for SCG and FLU, respectively. A comparative study was conducted between the proposed methods to discuss the advantage of each method. The suggested methods were validated in compliance with the ICH guidelines and were successfully applied for the determination of SCG and FLU in their laboratory prepared mixtures and commercial ophthalmic solution in the presence of benzalkonium chloride as a preservative. These methods could be an alternative to different HPLC techniques in quality control laboratories lacking the required facilities for those expensive techniques. PMID:24227962

  19. Extractive Spectrophotometric Methods for the Determination of Zolmitriptan in Bulk Drug and Pharmaceutical Formulation Using Bromocresol Green

    NASA Astrophysics Data System (ADS)

    Prashanth, K. N.; Swamy, N.; Basavaiah, K.

    2013-11-01

    Considering the basic property of zolmitriptan (ZMT) to generate ion-pairs with sulfonephthalein dyes two methods have been developed for its assay in bulk drug and dosage form. The first method (method A) is based on the formation of a colored ion-pair complex (1:1 drug:dye) of ZMT with bromocresol green (BCG) at pH 4.20 ± 0.01 and extraction of the complex into chloroform followed by measurement of the yellow ion-pair complex at 435 nm. In the second method (method B), the drug-dye ion-pair complex was treated with ethanolic potassium hydroxide in ethanolic medium and the resulting base form of the dye was measured at 630 nm. Beer's law was obeyed in the concentration range of 0.8-18.0 and 0.08-1.4 μg/ml for method A and B, respectively, and the corresponding molar absorptivity values were 1.50ṡ104 and 1.52ṡ105 l/(molṡcm). The Sandell sensitivity values were 0.0191 and 0.0019 μg/cm2 for method A and method B, respectively. The stoichiometry of the ion-pair complex formed between the drug and dye (1:1) was determined by Job's continuous variation method and the stability constant of the complex was also calculated. The proposed method was successfully extended to dosage form (tablets).

  20. A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry.

    PubMed

    Albalasmeh, Ammar A; Berhe, Asmeret Asefaw; Ghezzehei, Teamrat A

    2013-09-12

    A new UV spectrophotometry based method for determining the concentration and carbon content of carbohydrate solution was developed. This method depends on the inherent UV absorption potential of hydrolysis byproducts of carbohydrates formed by reaction with concentrated sulfuric acid (furfural derivatives). The proposed method is a major improvement over the widely used Phenol-Sulfuric Acid method developed by DuBois, Gilles, Hamilton, Rebers, and Smith (1956). In the old method, furfural is allowed to develop color by reaction with phenol and its concentration is detected by visible light absorption. Here we present a method that eliminates the coloration step and avoids the health and environmental hazards associated with phenol use. In addition, avoidance of this step was shown to improve measurement accuracy while significantly reducing waiting time prior to light absorption reading. The carbohydrates for which concentrations and carbon content can be reliably estimated with this new rapid Sulfuric Acid-UV technique include: monosaccharides, disaccharides and polysaccharides with very high molecular weight. PMID:23911443

  1. Kinetics and reaction pathways of formaldehyde degradation using the UV-fenton method.

    PubMed

    Liu, Xiangxuan; Liang, Jiantao; Wang, Xuanjun

    2011-05-01

    This study was based on the purpose of investigating the reaction rules of formaldehyde (HCHO) as an intermediate product in the degradation of many other organic wastewaters. The process conditions of UV-Fenton method for the degradation of the low concentrations of HCHO were studied in a batch photochemical reactor. The results showed that, when the original HCHO concentration was 30 mg/L, at an operating temperature of 23 degrees C, pH = 3, an H202 dosage of 68 mg/L, and an H2O2-to-Fe2+ mole ratio (H2O2:Fe2+) of 5, 91.89% of the HCHO was removed after 30 minutes. The degradation of HCHO in the UV-Fenton system was basically in accordance with the exponential decay. The kinetic study results showed that the reaction orders of HCHO, Fe2+, and H2O2 in the system were 1.054, 0.510, and 0.728, respectively, and the activation energy (Ea) was 9.85 kJ/mol. The comparison of UV/H2O2, Fenton, and UV-Fenton systems for the degradation of HCHO, and the results of iron catalyst tests showed that the mechanism of UV-Fenton on the degradation of HCHO was through a synergistic effect of Fe2+ and UV light to catalyze the decomposition of H2O2. The introduction of UV irradiation to the Fenton system largely increased the degradation rate of HCHO, mainly as a result of the accelerating effect on the formation of the Fe2+/Fe3+ cycle. The reaction products were analyzed by gas chromatography-mass spectrometry and a chemical oxygen demand (COD) analyzer. The effluent gases also were analyzed by gas chromatography. Based on those results, the reaction pathways of HCHO in the UV-Fenton system were proposed. The qualitative and quantitative analysis of the reaction products and the COD showed that the main intermediate product of the reaction was formic acid, and the further oxidation of it was the rate-limiting step for the degradation of HCHO. PMID:21657193

  2. Rapid determination of lipid peroxidation using a novel pyridoxamine-participating ferrous oxidation-sulfosalicylic acid spectrophotometric method.

    PubMed

    Chen, Jingnan; Cai, Danqian; Zhang, Yu

    2016-11-15

    A novel method is developed to rapidly analyze lipid peroxidation in edible oils and fatty foods at room temperature, which is called the pyridoxamine-participating ferrous oxidation-sulfosalicylic acid (PFOS) method. The PFOS method evaluates the lipid peroxide value colorimetrically via detecting the pyridoxamine-mediated pigment produced by 5-sulfosalicylic acid and Fe(3+) at 500nm, while the latter is converted from Fe(2+) in the presence of lipid peroxides. The optimized formulation was ethanol (70%, v/v), Fe(2+) (4mmol/L), 5-sulfosalicylic acid (40mmol/L) and pyridoxamine (18mmol/L). The limit of quantitation is 0.087mmol Fe(3+)/L with acceptable reproducibility. In addition, current method has a significant linear correlation with both conventional thiobarbituric acid (R(2)=0.9999) and ferric thiocyanate assays (R(2)=0.9675). This method offers a rapid technique for evaluating lipid peroxidation without heating and sophisticated instrumental procedures. Besides, current method provides a new option to evaluate the lipid peroxidation state and improve the reproducibility of ferrous-oxidation. PMID:27283678

  3. Spectrophotometric determination of metronidazole and secnidazole in pharmaceutical preparations.

    PubMed

    Saffaj, T; Charrouf, M; Abourriche, A; Abboud, Y; Bennamara, A; Berrada, M

    2004-10-01

    A rapid and sensitive spectrophotometric method is proposed for determination of metronidazole and secnidazole. The method depends on the reduction of metronidazole and secnidazole molecule with zinc dust and hydrochloric acid flowed by diazotization and coupling with 8-quinolinol to give red colored chromogens easily measured spectrophotometrically which has lambda(max) = 500 nm. The experimental conditions were optimized and Berr's law was obeyed over the applicable concentration ranges both techniques were applied successfully to a wide variety of pharmaceutical preparations. PMID:15474063

  4. Chemometric-assisted spectrophotometric methods and high performance liquid chromatography for simultaneous determination of seven β-blockers in their pharmaceutical products: A comparative study

    NASA Astrophysics Data System (ADS)

    Abdel Hameed, Eman A.; Abdel Salam, Randa A.; Hadad, Ghada M.

    2015-04-01

    Chemometric-assisted spectrophotometric methods and high performance liquid chromatography (HPLC) were developed for the simultaneous determination of the seven most commonly prescribed β-blockers (atenolol, sotalol, metoprolol, bisoprolol, propranolol, carvedilol and nebivolol). Principal component regression PCR, partial least square PLS and PLS with previous wavelength selection by genetic algorithm (GA-PLS) were used for chemometric analysis of spectral data of these drugs. The compositions of the mixtures used in the calibration set were varied to cover the linearity ranges 0.7-10 μg ml-1 for AT, 1-15 μg ml-1 for ST, 1-15 μg ml-1 for MT, 0.3-5 μg ml-1 for BS, 0.1-3 μg ml-1 for PR, 0.1-3 μg ml-1 for CV and 0.7-5 μg ml-1 for NB. The analytical performances of these chemometric methods were characterized by relative prediction errors and were compared with each other. GA-PLS showed superiority over the other applied multivariate methods due to the wavelength selection. A new gradient HPLC method had been developed using statistical experimental design. Optimum conditions of separation were determined with the aid of central composite design. The developed HPLC method was found to be linear in the range of 0.2-20 μg ml-1 for AT, 0.2-20 μg ml-1 for ST, 0.1-15 μg ml-1 for MT, 0.1-15 μg ml-1 for BS, 0.1-13 μg ml-1 for PR, 0.1-13 μg ml-1 for CV and 0.4-20 μg ml-1 for NB. No significant difference between the results of the proposed GA-PLS and HPLC methods with respect to accuracy and precision. The proposed analytical methods did not show any interference of the excipients when applied to pharmaceutical products.

  5. Stability indicating HPLC-UV method for determination of dapoxetine HCl in pharmaceutical product.

    PubMed

    Liew, Kai Bin; Peh, Kok Khiang

    2014-01-01

    A stability-indicating HPLC-UV method for the determination of dapoxetine hydrochloride in solution and pharmaceutical product was developed. The mobile phase was composed of acetonitrile and 0.2 M ammonium acetate buffer at 50 : 50 ratio. The chromatographic parameters, theoretical plates (N), tailing factor (T), capacity factor (k') and peak asymmetry factor (As) were calculated. Stress degradation studies, namely, acid, alkali, oxidation, heat and UV light, were performed. The analyte was eluted at 5.8 min using gradient system at a flow rate of 1.5 mL/min. The theoretical plates count was > 2000, tailing factor < 1.54, capacity factor > 5.38 and peak asymmetry factor was < 1.10. The method was linear from 1 to 40 microg/mL with a correlation coefficient of 0.9994. The intraday precision and accuracy values were 0.14-1.54% and 0.63-1.83%, respectively. On the other hand, the interday precision and accuracy results were 0.49-1.83% and 1.15-1.85%, respectively. The drug solution was stable at ambient room temperature (26 degrees C) for 48 h. Dapoxetine HCI was found susceptible to oxidation and degraded slightly under acid and alkali conditions but was stable under UV light and heat. No interference from tablet excipiets and degradation products was found. Hence, the method can be employed as a stability-indicating method for the determination of dapoxetine HCl in pharmaceutical products. PMID:25265818

  6. General Subject 1. Report to ICUMSA on the determination of commercial alpha-amylase activity by a spectrophotometric method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A report is given on a new industrial method for the determination of the activity or strength of commercial alpha-amylase at a sugarcane factory or refinery, as well as a recommendation. At the present time, the activities or strengths of commercial alpha-amylases cannot be directly compared becau...

  7. A new spectrophotometric method for determination of EDTA in water using its complex with Mn(III).

    PubMed

    Andrade, Carlos Eduardo O; Oliveira, André F; Neves, Antônio A; Queiroz, Maria Eliana L R

    2016-11-01

    EDTA is an important ligand used in many industrial products as well as in agriculture, where it is employed to assist in phytoextraction procedures and the absorption of nutrients by plants. Due to its intensive use and recalcitrance, it is now considered an emerging pollutant in water, so there is great interest in techniques suitable for its monitoring. This work proposes a method based on formation of the Mn(III)-EDTA complex after oxidation of the Mn(II)-EDTA complex by PbO2 immobilized on cyanoacrylate spheres. A design of experiments (DOE) based on the Doehlert matrix was used to determine the optimum conditions of the method, and the influence of the variables was evaluated using a multiple linear regression (MLR) model. The optimized method presented a linear response in the range from 0.77 to 100.0μmolL(-1), with analytical sensitivity of 7.7×10(3)Lmol(-1), a coefficient of determination of 0.999, and a limit of detection of 0.23μmolL(-1). The method was applied using samples fortified at different concentration levels, and the recoveries achieved were between 97.0 and 104.9%. PMID:27305647

  8. Simultaneous spectrophotometric and mechanical property characterization of skin

    NASA Astrophysics Data System (ADS)

    Bunegin, Leonid; Moore, Jeffery B.

    2006-02-01

    Both reflectance spectroscopy and the determination Young's Modulus of skin have shown promise for identifying skin pathology. At present, these determinations are carried out using separate methodologies. This study demonstrates a new technology combining digital UV/VIS reflectance spectroscopy and vacuum aspiration for simultaneously determining the reflectance spectrum and mechanical properties of human skin tissue. A small hand held prototype device incorporating fiber-optic light guides into a vacuum channel was calibrated using various elastic materials subjected to increments of stress by vacuum from 0 to 25 in Hg. The intensity of a UV/VIS light beam reflected from the material at each vacuum increment was compared to the resulting material strain. The reflected beam was also spectrophotometrically analyzed. Skin types were similarly evaluated comparing normal and scar tissue and skin of various ages and coloration. An exponential relationship between reflected beam intensity and the amount of strain resulting from vacuum increments was observed. Young's Modulus (calculated from Aoki et. al equation) and spectra from normal skin and scar tissue were in agreement with previously published observations. Age related decreases in skin elasticity were also demonstrated. In the reflectance spectra, oxy and deoxy-hemoglobin absorbance bands were detected, becoming significantly enhanced at increased levels of vacuum. Melanin absorbance was also easily detected and appeared to correlate with skin coloration. Since superficial skin pathologies have characteristic spectroscopic and mechanical properties, this technique may provide a promising new approach for rapid, non-invasive method for the evaluation of skin lesions.

  9. Development and validation of a novel, simple, and accurate spectrophotometric method for the determination of lead in human serum.

    PubMed

    Shayesteh, Tavakol Heidari; Khajavi, Farzad; Khosroshahi, Abolfazl Ghafuri; Mahjub, Reza

    2016-01-01

    The determination of blood lead levels is the most useful indicator of the determination of the amount of lead that is absorbed by the human body. Various methods, like atomic absorption spectroscopy (AAS), have already been used for the detection of lead in biological fluid, but most of these methods are based on complicated, expensive, and highly instructed instruments. In this study, a simple and accurate spectroscopic method for the determination of lead has been developed and applied for the investigation of lead concentration in biological samples. In this study, a silica gel column was used to extract lead and eliminate interfering agents in human serum samples. The column was washed with deionized water. The pH was adjusted to the value of 8.2 using phosphate buffer, and then tartrate and cyanide solutions were added as masking agents. The lead content was extracted into the organic phase containing dithizone as a complexion reagent and the dithizone-Pb(II) complex was formed and approved by visible spectrophotometry at 538 nm. The recovery was found to be 84.6 %. In order to validate the method, a calibration curve involving the use of various concentration levels was calculated and proven to be linear in the range of 0.01-1.5 μg/ml, with an R (2) regression coefficient of 0.9968 by statistical analysis of linear model validation. The largest error % values were found to be -5.80 and +11.6 % for intra-day and inter-day measurements, respectively. The largest RSD % values were calculated to be 6.54 and 12.32 % for intra-day and inter-day measurements, respectively. Further, the limit of detection (LOD) was calculated to be 0.002 μg/ml. The developed method was applied to determine the lead content in the human serum of voluntary miners, and it has been proven that there is no statistically significant difference between the data provided from this novel method and the data obtained from previously studied AAS. PMID:26631397

  10. Capillary electrophoresis method with UV-detection for analysis of free amino acids concentrations in food.

    PubMed

    Omar, Mei Musa Ali; Elbashir, Abdalla Ahmed; Schmitz, Oliver J

    2017-01-01

    Simple and inexpensive capillary electrophoresis with UV-detection method (CE-UV) was optimized and validated for determination of six amino acids namely (alanine, asparagine, glutamine, proline, serine and valine) for Sudanese food. Amino acids in the samples were derivatized with 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl) prior to CE-UV analysis. Labeling reaction conditions (100mM borate buffer at pH 8.5, labeling reaction time 60min, temperature 70°C and NBD-Cl concentration 40mM) were systematically investigated. The optimal conditions for the separation were 100mM borate buffer at pH 9.7 and detected at 475nm. The method was validated in terms of linearity, limit of detection (LOD), limit of quantification (LOQ), precision (repeatability) (RSD%) and accuracy (recovery). Good linearity was achieved for all amino acids (r(2)>0.9981) in the concentration range of 2.5-40mg/L. The LODs in the range of 0.32-0.56mg/L were obtained. Recoveries of amino acids ranging from 85% to 108%, (n=3) were obtained. The validated method was successfully applied for the determination of amino acids for Sudanese food samples. PMID:27507479

  11. A Simple and Selective Spectrophotometric Method for the Determination of Trace Gold in Real, Environmental, Biological, Geological and Soil Samples Using Bis (Salicylaldehyde) Orthophenylenediamine

    PubMed Central

    Soomro, Rubina; Ahmed, M. Jamaluddin; Memon, Najma; Khan, Humaira

    2008-01-01

    A simple high sensitive, selective, and rapid spectrophotometric method for the determination of trace gold based on the rapid reaction of gold(III) with bis(salicylaldehyde)orthophenylenediamine (BSOPD) in aqueous and micellar media has been developed. BSOPD reacts with gold(III) in slightly acidic solution to form a 1:1 brownish-yellow complex, which has an maximum absorption peak at 490 nm in both aqueous and micellar media. The most remarkable point of this method is that the molar absorptivities of the gold-BSOPD complex form in the presence of the nonionic TritonX-100 surfactant are almost a 10 times higher than the value observed in the aqueous solution, resulting in an increase in the sensitivity and selectivity of the method. The apparent molar absorptivities were found to be 2.3 × 104 L mol−1 cm−1 and 2.5 × 105 L mol−1 cm−1 in aqueous and micellar media, respectively. The reaction is instantaneous and the maximum absorbance was obtained after 10 min at 490 nm and remains constant for over 24 h at room temperature. The linear calibration graphs were obtained for 0.1–30 mg L−1 and 0.01–30 mg L−1 of gold(III) in aqueous and surfactant media, respectively. The interference from over 50 cations, anions and complexing agents has been studied at 1 mg L−1 of Au(III); most metal ions can be tolerated in considerable amounts in aqueous micellar solutions. The Sandell’s sensitivity, the limit of detection and relative standard deviation (n = 9) were found to be 5 ng cm−2, 1 ng mL−1 and 2%, respectively in aqueous micellar solutions. Its sensitivity and selectivity are remarkably higher than that of other reagents in the literature. The proposed method was successfully used in the determination of gold in several standard reference materials (alloys and steels), environmental water samples (potable and polluted), and biological samples (blood and urine), geological, soil and complex synthetic mixtures. The results obtained agree well with

  12. Facile method for liquid-exfoliated graphene size prediction by UV-visible spectroscopy

    NASA Astrophysics Data System (ADS)

    Ismail, Zulhelmi; Yusoh, Kamal

    2016-07-01

    In this work, an application of UV spectroscopy for facile prediction of liquid -exfoliated graphene size is discussed. Dynamic light scattering method was used to estimate the graphene flake size ( whilst UV spectroscopy measurement was carried out for extinction coefficient value (ɛ) determination. It was found that the value of (ɛ) decreased gradually as the graphene size was further reduced after intense sonication time (7h). This observation showed the influence of sonication time on electronic structure of graphene. A mathematical equation was derived from log-log graph for correlation between () and (ɛ) value. Both values can be expressed in a single equation as ( = (3.4 × 10-2) ɛ1.2).

  13. Detection of ibuprofen and ciprofloxacin by solid-phase extraction and UV/Vis spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Zhengwei; Jiang, Jia Qian

    2012-07-01

    A simple and economic solid-phase extraction coupled with UV/Vis spectrophotometric method is described for the analysis of ibuprofen and ciprofloxacin. Following solid-phase extraction from model wastewater samples containing standard ibuprofen or ciprofloxacin, elutes were analyzed by a UV/Vis spectrophotometer at 225 nm for ibuprofen and 280 nm for ciprofloxacin. The assay was linear for both compounds with good coefficients of correlation. This method shows good recoveries for both compounds with 101.0 ± 9.8% for ibuprofen and 99.4 ± 11.8% ciprofloxacin.

  14. A facile method for the assessment of DNA damage induced by UV-activated nanomaterials

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yuka; Zinchenko, Anatoly A.; Murata, Shizuaki

    2011-07-01

    Fluorescent microscopy observation of gene-size DNA (T4 phage DNA or λ phage DNA) was used to assess DNA damage induced by UV irradiation in the presence of nanomaterials, such as QDs (quantum dots: CdSe/ZnS semiconductor nanoparticles), the water-soluble fullerene derivative C60(OH)n (n = 6-12) and titanium oxide nanoparticles of 25 nm in diameter. The magnitude of DNA damage could be simply evaluated based on the degree of shortening of the stretched DNA image. This method showed that DNA damage was amplified by the action of QDs under irradiation by C-band (λmax = 254 nm) or B-band (λmax = 303 nm) UV. Smaller QDs that emitted higher-energy fluorescence (λemmax = 565 nm) induced more severe damage than medium- and larger-size QDs that emitted longer-wavelength fluorescence (λemmax = 605 and 705 nm, respectively). The fullerene derivative and TiO2 nanoparticles caused DNA damage even under irradiation by A-band UV (λmax = 365 nm) and showed more severe DNA damage than QDs under similar conditions.

  15. UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method.

    PubMed

    Fang, F; Futter, J; Markwitz, A; Kennedy, J

    2009-06-17

    The UV and humidity sensing properties of ZnO nanorods prepared by arc discharge have been studied. Scanning electron microscopy and photoluminescence spectroscopy were carried out to analyze the morphology and optical properties of the as-synthesized ZnO nanorods. Proton induced x-ray emission was used to probe the impurities in the ZnO nanorods. A large quantity of high purity ZnO nanorod structures were obtained with lengths of 0.5-1 microm. The diameters of the as-synthesized ZnO nanorods were found to be between 40 and 400 nm. The nanorods interlace with each other, forming 3D networks which make them suitable for sensing application. The addition of a polymeric film-forming agent (BASF LUVISKOL VA 64) improved the conductivity, as it facilitates the construction of conducting networks. Ultrasonication helped to separate the ZnO nanorods and disperse them evenly through the polymeric agent. Improved photoconductivity was measured for a ZnO nanorod sensor annealed in air at 200 degrees C for 30 min. The ZnO nanorod sensors showed a UV-sensitive photoconduction, where the photocurrent increased by nearly four orders of magnitude from 2.7 x 10(-10) to 1.0 x 10(-6) A at 18 V under 340 nm UV illumination. High humidity sensitivity and good stability were also measured. The resistance of the ZnO nanorod sensor decreased almost linearly with increasing relative humidity (RH). The resistance of the ZnO nanorods changed by approximately five orders of magnitude from 4.35 x 10(11) Omega in dry air (7% RH) to about 4.95 x 10(6) Omega in 95% RH air. It is experimentally demonstrated that ZnO nanorods obtained by the arc discharge method show excellent performance and promise for applications in both UV and humidity sensors. PMID:19468159

  16. Spectrophotometric and electrical studies of charge-transfer complexes of sodium flucloxacillin with π-acceptors

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; El-Didamony, Akram M.

    2006-11-01

    The present study is interested to develop a simple, rapid and accurate spectrophotometric method for determination of sodium flucloxacillin (fluc) in pure form and pharmaceutical formulations. The charge-transfer (CT) interactions between sodium flucloxacillin as electron donor and chloranilic acid (CLA), dichloroquinone 4-chloroimide (DCQ), 2,3-dichloro-5,6-dicyano- p-benzoquinone (DDQ) and 7,7,8,8 tetracyano- p-quinodimethane (TCNQ), as π-electron acceptors have been investigated spectrophotometrically. Different variables affecting the reaction were studied and optimized. Under the optimum conditions, linear relationships with good correlation coefficients (0.9979-0.9995) were found between the absorbance and the concentration of the drug in the range 16-880 μg ml -1. The proposed methods were applied successfully to the determination of the examined drug either in pure or pharmaceutical dosage forms with good accuracy and precision. The formation of the CT-complexes and the sites of interaction were confirmed by elemental analysis CHN, UV-vis, IR, 1H NMR and mass spectra techniques. Based on Job's method of continuous variation plots, the obtained results indicate the formation of 1:1 charge-transfer complexes with the general formula [(fluc)(acceptor)]. Statistical analysis of the obtained results showed no significant difference between the proposed method and official method.

  17. Spectrophotometric and electrical studies of charge-transfer complexes of sodium flucloxacillin with pi-acceptors.

    PubMed

    Refat, Moamen S; El-Didamony, Akram M

    2006-11-01

    The present study is interested to develop a simple, rapid and accurate spectrophotometric method for determination of sodium flucloxacillin (fluc) in pure form and pharmaceutical formulations. The charge-transfer (CT) interactions between sodium flucloxacillin as electron donor and chloranilic acid (CLA), dichloroquinone 4-chloroimide (DCQ), 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) and 7,7,8,8 tetracyano-p-quinodimethane (TCNQ), as pi-electron acceptors have been investigated spectrophotometrically. Different variables affecting the reaction were studied and optimized. Under the optimum conditions, linear relationships with good correlation coefficients (0.9979-0.9995) were found between the absorbance and the concentration of the drug in the range 16-880 microg ml(-1). The proposed methods were applied successfully to the determination of the examined drug either in pure or pharmaceutical dosage forms with good accuracy and precision. The formation of the CT-complexes and the sites of interaction were confirmed by elemental analysis CHN, UV-vis, IR, (1)H NMR and mass spectra techniques. Based on Job's method of continuous variation plots, the obtained results indicate the formation of 1:1 charge-transfer complexes with the general formula [(fluc)(acceptor)]. Statistical analysis of the obtained results showed no significant difference between the proposed method and official method. PMID:16527531

  18. A new method for quantitative determination of two uronic acids by CZE with direct UV detection.

    PubMed

    Xia, Yong-gang; Liang, Jun; Yang, Bing-you; Wang, Qiu-hong; Kuang, Hai-xue

    2011-09-01

    A new method using capillary zone electrophoresis was developed for the rapid quantification of two common uronic acids, galacturonic acid and glucuronic acid, based on utilization of an alkaline background electrolyte with reversed electroosmotic flow (EOF) within 16 min. The method relies on in-capillary reaction and direct UV detection at the wavelength 270 nm. The optimum electrolyte solution was prepared of 130 mm sodium hydroxide, 36 mm disodium hydrogen phosphate dihydrate and 0.5 mm cetyltrimethylammonium bromide. EOF was reversed to detect uronic acids and to improve the separation of neutral sugars. The established method was validated and the results showed good linearity, high precision and satisfactory sensitivity. The newly developed method was successfully applied to analyze galacturonic acid and glucuronic acid content in Forsythia suspensa polysaccharides. The method is fast since only sample hydrolysis and dilution are required in the sample preparation. PMID:21154888

  19. Spectrophotometric Investigations of Macrolide Antibiotics: A Brief Review

    PubMed Central

    Keskar, Mrudul R; Jugade, Ravin M

    2015-01-01

    Macrolides, one of the most commonly used class of antibiotics, are a group of drugs produced by Streptomyces species. They belong to the polyketide class of natural products. Their activity is due to the presence of a large macrolide lactone ring with deoxy sugar moieties. They are protein synthesis inhibitors and broad-spectrum antibiotics, active against both gram-positive and gram-negative bacteria. Different analytical techniques have been reported for the determination of macrolides such as chromatographic methods, flow injection methods, spectrofluorometric methods, spectrophotometric methods, and capillary electrophoresis methods. Among these methods, spectrophotometric methods are sensitive and cost effective for the analysis of various antibiotics in pharmaceutical formulations as well as biological samples. This article reviews different spectrophotometric methods for the determination of macrolide antibiotics. PMID:26609215

  20. Catalytic spectrophotometric determination of iodine in coal by pyrohydrolysis decomposition.

    PubMed

    Wu, Daishe; Deng, Haiwen; Wang, Wuyi; Xiao, Huayun

    2007-10-10

    A method for the determination of iodine in coal using pyrohydrolysis for sample decomposition was proposed. A pyrohydrolysis apparatus system was constructed, and the procedure was designed to burn and hydrolyse coal steadily and completely. The parameters of pyrohydrolysis were optimized through the orthogonal experimental design. Iodine in the absorption solution was evaluated by the catalytic spectrophotometric method, and the absorbance at 420 nm was measured by a double-beam UV-visible spectrophotometer. The limit of detection and quantification of the proposed method were 0.09 microg g(-1) and 0.29 microg g(-1), respectively. After analysing some Chinese soil reference materials (SRMs), a reasonable agreement was found between the measured values and the certified values. The accuracy of this approach was confirmed by the analysis of eight coals spiked with SRMs with an indexed recovery from 94.97 to 109.56%, whose mean value was 102.58%. Six repeated tests were conducted for eight coal samples, including high sulfur coal and high fluorine coal. A good repeatability was obtained with a relative standard deviation value from 2.88 to 9.52%, averaging 5.87%. With such benefits as simplicity, precision, accuracy and economy, this approach can meet the requirements of the limits of detection and quantification for analysing iodine in coal, and hence it is highly suitable for routine analysis. PMID:17920390

  1. Determination of protolytic equilibria for methyl 3-azido-6-iodo-2,3,6-trideoxy-α- D- arabino-hexopyranoside by ab initio and spectrophotometric methods

    NASA Astrophysics Data System (ADS)

    Dąbrowska, Aleksandra; Makowski, Mariusz; Jacewicz, Dagmara; Chylewska, Agnieszka; Chmurzyński, Lech

    2008-12-01

    UV absorption spectra of methyl 3-azido-6-iodo-2,3,6-trideoxy-α- D- arabino-hexopyranoside were recorded over a wide pH range. On this basis, a relationship between absorbance and pH was plotted, from which deprotonation equilibrium constants of this compound were determined. Further, quantum-mechanical calculations were performed at the ab initio level both in the gas phase by using the Restricted Hartree Fock (RHF), Møller-Plesset (MP2) methods and under consideration of solvation effects within the Polarizable Continuum Model (PCM), which enabled location of preferred protonation and deprotonation centers of this compound. The results provided the basis for discussion of the influence of substituents in the sugar ring on protolytic equilibria occurring in aqueous solutions of 3-azido-2,3-dideoxy sugars.

  2. Dissolved organic carbon interferences in UV nitrate measurements and possible mitigation methods

    NASA Astrophysics Data System (ADS)

    Thomas, R. G.; Foster, C. R.; Cohen, M. J.; Martin, J. B.; Delfino, J. J.

    2010-12-01

    .50, and 1.00 mg/L NO3. Each DOC dilution and standard was measured for 5 minutes. At concentrations above 10 mg/L, the error associated with the measurements was > 15%. Below that concentration the error was 5%. Analysis of the spectral data of this experiment and from the study site indicate that significant attenuation at UV wavelengths causes most of the loss of the nitrate signal and error. It is thus critical that the DOC be removed or deactivated as part of the in situ UV-based nitrate analysis. While this attenuation could be overcome by shortening the path length of the light beam, a shortened pathlength would also reduce sensitivity. To remove the DOC interference, we have constructed a UV photoreactor by winding 7 m of PTFE tubing around a quartz tube. The assembly was wrapped in reflective aluminum foil. A low-pressure UV lamp (10 Watts output, 95% emitted at the mercury resonance wavelength of 254 nm) was placed inside the quartz tube. This method should mitigate interferences caused by DOC. The extent of mitigation is currently being determined and will be described in the presentation.

  3. Enhancing prediction power of chemometric models through manipulation of the fed spectrophotometric data: A comparative study.

    PubMed

    Saad, Ahmed S; Hamdy, Abdallah M; Salama, Fathy M; Abdelkawy, Mohamed

    2016-10-01

    Effect of data manipulation in preprocessing step proceeding construction of chemometric models was assessed. The same set of UV spectral data was used for construction of PLS and PCR models directly and after mathematically manipulation as per well known first and second derivatives of the absorption spectra, ratio spectra and first and second derivatives of the ratio spectra spectrophotometric methods, meanwhile the optimal working wavelength ranges were carefully selected for each model and the models were constructed. Unexpectedly, number of latent variables used for models' construction varied among the different methods. The prediction power of the different models was compared using a validation set of 8 mixtures prepared as per the multilevel multifactor design and results were statistically compared using two-way ANOVA test. Root mean squares error of prediction (RMSEP) was used for further comparison of the predictability among different constructed models. Although no significant difference was found between results obtained using Partial Least Squares (PLS) and Principal Component Regression (PCR) models, however, discrepancies among results was found to be attributed to the variation in the discrimination power of adopted spectrophotometric methods on spectral data. PMID:27235828

  4. Comparison of a spectrophotometric microdilution method with RPMI-2% glucose with the National Committee for Clinical Laboratory Standards reference macrodilution method M27-P for in vitro susceptibility testing of amphotericin B, flucytosine, and fluconazole against Candida albicans.

    PubMed Central

    Rodríguez-Tudela, J L; Berenguer, J; Martínez-Suárez, J V; Sanchez, R

    1996-01-01

    The National Committee for Clinical Laboratory Standards has proposed a reference broth macrodilution method for in vitro antifungal susceptibility testing of yeasts (the M27-P method). This method is cumbersome and time-consuming and includes MIC endpoint determination by visual and subjective inspection of growth inhibition after 48 h of incubation. An alternative microdilution procedure was compared with the M27-P method for determination of the amphotericin B, flucytosine, and fluconazole susceptibilities of 8 American Type Culture Collection strains (6 of them were quality control or reference strains) and 50 clinical isolates of candida albicans. This microdilution method uses as culture medium RPMI 1640 supplemented with 18 g of glucose per liter (RPMI-2% glucose). Preparation of drugs, basal medium, and inocula was done by following the recommendations of the National Committee for Clinical Laboratory Standards. The MIC endpoint was calculated objectively from the turbidimetric data read at 24 h. Increased growth of C. albicans in RPMI-2% glucose and its spectrophotometric reading allowed for the rapid (24 h) and objective calculation of MIC endpoints compared with previous microdilution methods with standard RPMI 1640. Nevertheless, good agreement was shown between the M27-P method and this microdilution test. The MICs obtained for the quality control or reference strains by the microdilution method were in the ranges published for those strains. For clinical isolates, the percentages of agreement were 100% for amphotericin B and fluconazole and 98.1% for flucytosine. These data suggest that this microdilution method may serve as a less subjective and more rapid alternative to the M27-P method for antifungal susceptibility testing of yeasts. PMID:8878570

  5. A simple spectrophotometric method for the determination of phosphate in soil, detergents, water, bone and food samples through the formation of phosphomolybdate complex followed by its reduction with thiourea

    NASA Astrophysics Data System (ADS)

    Shyla, B.; Mahadevaiah; Nagendrappa, G.

    2011-01-01

    A simple spectrophotometric method is developed here for the determination of phosphate present in the samples of soil, detergents, water, bone and food based on the formation of phosphomolybdate complex with the added molybdate followed by the reduction of the complex with thiourea in aqueous sulfuric acid medium. The system obeys Beer's law at 840 nm in the phosphate concentration range, 0.5-10.0 μg/ml. Molar absorptivity, correlation coefficient and Sandell's sensitivity values are found to be 1.712 mol -1 cm -1, 0.9769 and 0.0555 μg cm -2 respectively. For a comparison of the results determined from the developed method, phosphate present in the same set of samples is determined separately following an official method. The results of the developed method are agreeing well with those of the official phosphomolybdate method.

  6. Quantification of protein concentration using UV absorbance and Coomassie dyes.

    PubMed

    Noble, James E

    2014-01-01

    The measurement of a solubilized protein concentration in solution is an important assay in biochemistry research and development labs for applications ranging from enzymatic studies to providing data for biopharmaceutical lot release. Spectrophotometric protein quantification assays are methods that use UV and visible spectroscopy to rapidly determine the concentration of protein, relative to a standard, or using an assigned extinction coefficient. Where multiple samples need measurement, and/or the sample volume and concentration is limited, preparations of the Coomassie dye commonly known as the Bradford assay can be used. PMID:24423263

  7. UV-vis absorption spectroscopy and multivariate analysis as a method to discriminate tequila

    NASA Astrophysics Data System (ADS)

    Barbosa-García, O.; Ramos-Ortíz, G.; Maldonado, J. L.; Pichardo-Molina, J. L.; Meneses-Nava, M. A.; Landgrave, J. E. A.; Cervantes-Martínez, J.

    2007-01-01

    Based on the UV-vis absorption spectra of commercially bottled tequilas, and with the aid of multivariate analysis, it is proved that different brands of white tequila can be identified from such spectra, and that 100% agave and mixed tequilas can be discriminated as well. Our study was done with 60 tequilas, 58 of them purchased at liquor stores in various Mexican cities, and two directly acquired from a distillery. All the tequilas were of the "white" type, that is, no aged spirits were considered. For the purposes of discrimination and quality control of tequilas, the spectroscopic method that we present here offers an attractive alternative to the traditional methods, like gas chromatography, which is expensive and time-consuming.

  8. A method for optimizing the cosine response of solar UV diffusers

    NASA Astrophysics Data System (ADS)

    Pulli, Tomi; Kärhä, Petri; Ikonen, Erkki

    2013-07-01

    Instruments measuring global solar ultraviolet (UV) irradiance at the surface of the Earth need to collect radiation from the entire hemisphere. Entrance optics with angular response as close as possible to the ideal cosine response are necessary to perform these measurements accurately. Typically, the cosine response is obtained using a transmitting diffuser. We have developed an efficient method based on a Monte Carlo algorithm to simulate radiation transport in the solar UV diffuser assembly. The algorithm takes into account propagation, absorption, and scattering of the radiation inside the diffuser material. The effects of the inner sidewalls of the diffuser housing, the shadow ring, and the protective weather dome are also accounted for. The software implementation of the algorithm is highly optimized: a simulation of 109 photons takes approximately 10 to 15 min to complete on a typical high-end PC. The results of the simulations agree well with the measured angular responses, indicating that the algorithm can be used to guide the diffuser design process. Cost savings can be obtained when simulations are carried out before diffuser fabrication as compared to a purely trial-and-error-based diffuser optimization. The algorithm was used to optimize two types of detectors, one with a planar diffuser and the other with a spherically shaped diffuser. The integrated cosine errors—which indicate the relative measurement error caused by the nonideal angular response under isotropic sky radiance—of these two detectors were calculated to be f2=1.4% and 0.66%, respectively.

  9. A novel method to calculate solar UV exposure relevant to vitamin D production in humans.

    PubMed

    Seckmeyer, Gunther; Schrempf, Michael; Wieczorek, Anna; Riechelmann, Stefan; Graw, Kathrin; Seckmeyer, Stefan; Zankl, Maria

    2013-01-01

    We present a novel method to calculate vitamin D3 -weighted exposure by integrating the incident solar spectral radiance over all relevant parts of the human body. Earlier investigations are based on the irradiance on surfaces, whereas our calculated exposure of a voxel model of a human takes into account the complex geometry of the radiation field. Assuming that sufficient vitamin D3 (1000 international units) can be produced within the human body in one minute for a completely uncovered body in vertical posture in summer at midlatitudes (e.g. Rome, June 21, noon, UV index of 10), we calculate the exposure times needed in other situations or seasons to gain enough vitamin D3 . Our calculations show that the UV index is not a good indicator for the exposure which depends on the orientation of the body (e.g. vertical (standing) or horizontal (lying down) posture). Without clothing the exposure is dominated by diffuse sky radiation and it is nearly irrelevant how the body in vertical posture is oriented toward the sun. At the winter solstice (December 21, noon, cloudy) at least in central Europe sufficient vitamin D3 cannot be obtained with realistic clothing, even if the exposure were extended to all daylight hours. PMID:23517086

  10. UV differential optical absorption method for measuring sulfur content in coal

    NASA Astrophysics Data System (ADS)

    Song, Feihu; Xu, Chuanlong; Wang, Shimin

    2012-02-01

    Determining the sulfur content in coal rapidly and accurately can provide a technical basis for the enterprises and the environmental administration departments. A novel method for measuring the sulfur content in coal based on UV differential optical absorption is presented in this paper. However, compared with the applications in atmosphere monitoring, the UV differential optical absorption spectroscopy (DOAS) for the sulfur content measurement in coal has the problems that the concentration range of SO2 in the flue gas is wider and the optical path-length of the gas cell is shorter. To solve these problems, an improved DOAS algorithm based on a finite impulse response (FIR) filter and a nonlinear compensation technique is proposed. An experimental measurement system based on the modified DOAS is designed and established. The standard SO2 gas and five kinds of standard coals are experimentally tested. Theoretical and experimental results show that the lower detection limit of the system is better than 0.014%, and the repeatability of the measurement system fairly meets the national standard of China. The system has advantages of low maintenance and shorter measurement duration (4 min).

  11. Simultaneous spectrophotometric determination of trace amounts of uranium, thorium, and zirconium using the partial least squares method after their preconcentration by alpha-benzoin oxime modified Amberlite XAD-2000 resin.

    PubMed

    Ghasemi, Jahan B; Zolfonoun, E

    2010-01-15

    A new solid phase extraction method for separation and preconcentration of trace amounts of uranium, thorium, and zirconium in water samples is proposed. The procedure is based on the adsorption of U(VI), Th(IV) and Zr(IV) ions on a column of Amberlite XAD-2000 resin loaded with alpha-benzoin oxime prior to their simultaneous spectrophotometric determination with Arsenazo III using orthogonal signal correction partial least squares method. The enrichment factor for preconcentration of uranium, thorium, and zirconium was found to be 100. The detection limits for U(VI), Th(IV) and Zr(IV) were 0.50, 0.54, and 0.48microgL(-1), respectively. The precision of the method, evaluated as the relative standard deviation obtained by analyzing a series of 10 replicates, was below 4% for all elements. The practical applicability of the developed sorbent was examined using synthetic seawater, natural waters and ceramic samples. PMID:20006073

  12. Antioxidant components of Viburnum opulus L. determined by on-line HPLC-UV-ABTS radical scavenging and LC-UV-ESI-MS methods.

    PubMed

    Karaçelik, Ayça Aktaş; Küçük, Murat; İskefiyeli, Zeynep; Aydemir, Sezgin; De Smet, Seppe; Miserez, Bram; Sandra, Patrick

    2015-05-15

    Antioxidant activity of the juice and seed and skin extracts prepared with methanol, acetonitrile, and water of Viburnum opulus L. grown in Eastern Black Sea Region were studied with an on-line HPLC-ABTS method and off-line antioxidant methods, among which a linear positive correlation was observed. The fruit extracts were analysed with the HPLC-UV method optimised with 14 standard phenolics. Identification of the phenolic components in the juice was made using an HPLC-UV-ESI-MS method. Nineteen phenolic compounds in juice were identified by comparing the retention times and mass spectra with those of the standards and the phenolics reported in the literature. The major peaks in the juice belonged to coumaroyl-quinic acid, chlorogenic acid, procyanidin B2, and procyanidin trimer. Quite different antioxidant composition profiles were obtained from the extracts with the solvents of different polarities. The antioxidant activities of the seed extracts were higher than those of the skin extracts in general. PMID:25577058

  13. Retrieval of Aerosol information from UV measurement by using optimal estimation method

    NASA Astrophysics Data System (ADS)

    KIM, M.; Kim, J.; Jeong, U.; Kim, W. V.; Kim, S. K.; Lee, S. D.; Moon, K. J.

    2014-12-01

    An algorithm to retrieve aerosol optical depth (AOD), single scattering albedo (SSA), and aerosol loading height is developed for GEMS (Geostationary Environment Monitoring Spectrometer) measurement. The GEMS is planned to be launched in geostationary orbit in 2018, and employs hyper-spectral imaging with 0.6 nm resolution to observe solar backscatter radiation in the UV and Visible range. In the UV range, the low surface contribution to the backscattered radiation and strong interaction between aerosol absorption and molecular scattering can be advantageous in retrieving aerosol information such as AOD and SSA [Torres et al., 2007; Torres et al., 2013; Ahn et al., 2014]. However, the large contribution of atmospheric scattering results in the increase of the sensitivity of the backward radiance to aerosol loading height. Thus, the assumption of aerosol loading height becomes important issue to obtain accurate result. Accordingly, this study focused on the simultaneous retrieval of aerosol loading height with AOD and SSA by utilizing the optimal estimation method. For the RTM simulation, the aerosol optical properties were analyzed from AERONET inversion data (level 2.0) at 46 AERONET sites over ASIA. Also, 2-channel inversion method is applied to estimate a priori value of the aerosol information to solve the Lavenberg Marquardt equation. The GEMS aerosol algorithm is tested with OMI level-1B dataset, a provisional data for GEMS measurement, and the result is compared with OMI standard aerosol product and AERONET values. The retrieved AOD and SSA show reasonable distribution compared with OMI products, and are well correlated with the value measured from AERONET. However, retrieval uncertainty in aerosol loading height is relatively larger than other results.

  14. Spectral absorbance of benthic cladoceran carapaces as a new method for inferring past UV exposure of aquatic biota

    NASA Astrophysics Data System (ADS)

    Nevalainen, Liisa; Rautio, Milla

    2014-01-01

    We developed a method for measuring fossil cladoceran (Branchiopoda) carapace absorbance to infer past ultraviolet radiation (UV) exposure in lakes. This was done under the presumptions that cladocerans synthesize photoprotective compounds, of which melanin is the main UV-absorbing pigment, to their exoskeletons and melanin is preserved in sedimentary cladoceran remains. We extracted large-sized cladoceran (benthic Alona spp.) carapaces from subsections of sediment cores from two environmentally divergent lakes; a humic boreal forest lake in eastern Finland (past 1500 years) and a clear-water mountain lake in the Austrian Alps (past 300 years). We measured the absorbance of extracted carapaces with a spectrophotometer under visible light and UV wavelengths using an adapter, which was designed to hold the microfossils. When compared to the spectrum of synthetic melanin, the shapes of absorbance spectra at the 700-280 nm range suggested that the fossil carapaces contained melanin. The carapace absorbance under UV throughout the sediment cores was significantly higher in the clear-water alpine lake than in the humic boreal lake reflecting differences in the general underwater UV and optical environments between the sites. In addition, carapace absorbance was significantly higher during the Little Ice Age (LIA) than during pre- or post-LIA periods in both lakes. In the alpine lake, this was most likely a response to increased underwater UV induced by reduced primary production and more transparent water column during the cold summers of LIA, whereas reduced input of carbon compounds from the catchment through elongated permafrost and ice-cover periods likely induced higher water transparency in the boreal lake during this cold climate phase. We conclude that fossil melanin provides a good estimation of past underwater UV exposure in lakes with large cladoceran carapaces preserved in sediments and that the method introduced here is easy and cost- and time

  15. The Rigorous Evaluation of Spectrophotometric Data to Obtain an Equilibrium Constant.

    ERIC Educational Resources Information Center

    Long, John R.; Drago, Russell S.

    1982-01-01

    Most students do not know how to determine the equilibrium constant and estimate the error in it from spectrophotometric data that contain experimental errors. This "dry-lab" experiment describes a method that may be used to determine the "best-fit" value of the 1:1 equilibrium constant to spectrophotometric data. (Author/JN)

  16. Dual enzyme mimicry exhibited by ITO nanocubes and their application in spectrophotometric and electrochemical sensing.

    PubMed

    Aneesh, K; Vusa, Chiranjeevi Srinivasa Rao; Berchmans, Sheela

    2016-06-20

    The dual enzyme mimicry (peroxidase/catalase-like activities) exhibited by ITO nanocubes (ITO NCs) was investigated by spectrophotometric and electrochemical methods. The peroxidase mimic was successfully applied for the electrochemical detection of H2O2 and spectrophotometric biosensing of glucose. Further, the detection could be extended to the detection of glucose in real samples. PMID:27285844

  17. [Method validation according to ISO 15189 and SH GTA 04: application for the extraction of DNA and its quantitative evaluation by a spectrophotometric assay].

    PubMed

    Harlé, Alexandre; Lion, Maëva; Husson, Marie; Dubois, Cindy; Merlin, Jean-Louis

    2013-01-01

    According to the French legislation on medical biology (January 16th, 2010), all biological laboratories must be accredited according to ISO 15189 for at least 50% of their activities before the end of 2016. The extraction of DNA from a sample of interest, whether solid or liquid is one of the critical steps in molecular biology and specifically in somatic or constitutional genetic. The extracted DNA must meet a number of criteria such quality and also be in sufficient concentration to allow molecular biology assays such as the detection of somatic mutations. This paper describes the validation of the extraction and purification of DNA using chromatographic column extraction and quantitative determination by spectrophotometric assay, according to ISO 15189 and the accreditation technical guide in Human Health SH-GTA-04. PMID:24113450

  18. Validation of a UV Spectrometric Method for the Assay of Tolfenamic Acid in Organic Solvents

    PubMed Central

    Ahmed, Sofia; Mustaan, Nafeesa; Sheraz, Muhammad Ali; Nabi, Syeda Ayesha Ahmed un; Ahmad, Iqbal

    2015-01-01

    The present study has been carried out to validate a UV spectrometric method for the assay of tolfenamic acid (TA) in organic solvents. TA is insoluble in water; therefore, a total of thirteen commonly used organic solvents have been selected in which the drug is soluble. Fresh stock solutions of TA in each solvent in a concentration of 1 × 10−4 M (2.62 mg%) were prepared for the assay. The method has been validated according to the guideline of International Conference on Harmonization and parameters like linearity, range, accuracy, precision, sensitivity, and robustness have been studied. Although the method was found to be efficient for the determination of TA in all solvents on the basis of statistical data 1-octanol, followed by ethanol and methanol, was found to be comparatively better than the other studied solvents. No change in the stock solution stability of TA has been observed in each solvent for 24 hours stored either at room (25 ± 1°C) or at refrigerated temperature (2–8°C). A shift in the absorption maxima has been observed for TA in various solvents indicating drug-solvent interactions. The studied method is simple, rapid, economical, accurate, and precise for the assay of TA in different organic solvents. PMID:26783497

  19. HPLC-UV method validation for the identification and quantification of bioactive amines in commercial eggs.

    PubMed

    de Figueiredo, Tadeu Chaves; de Assis, Débora Cristina Sampaio; Menezes, Liliane Denize Miranda; da Silva, Guilherme Resende; Lanza, Isabela Pereira; Heneine, Luiz Guilherme Dias; Cançado, Silvana de Vasconcelos

    2015-09-01

    A quantitative and confirmatory high-performance liquid chromatography with ultraviolet detection (HPLC-UV) method for the determination of bioactive amines in the albumen and yolk of commercial eggs was developed, optimized and validated by analyte extraction with trichloroacetic acid and pre-column derivatization with dansyl chloride. Phenylethylamine, putrescine, cadaverine, histamine, tyramine, spermidine and spermine standards were used to evaluate the following performance parameters: limit of detection (LoD), limit of quantification (LoQ), selectivity, linearity, precision, recovery and ruggedness. The LoD of the method was defined from 0.2 to 0.3 mg kg(-1) for the yolk matrix and from 0.2 to 0.4 mg kg(-1) for the albumen matrix; the LoQ was from 0.7 to 1.0 mg kg(-1) for the yolk matrix and from 0.7 to 1.1 mg kg(-1) for the albumen matrix. The validated method exhibited excellent selectivity and separation of all amines with coefficients of determination higher than 0.99. The obtained recovery values were from 90.5% to 108.3%, and the relative standard deviation (RSD) was lower than 10% under repeatability conditions for the studied analytes. The performance parameters show the validated method to be adequate for the determination of bioactive amines in egg albumen and yolk. PMID:26003718

  20. A UHPLC-UV Method to Quantify Skin Deposition and Transdermal Permeation of Tizanidine Hydrochloride.

    PubMed

    Del Río-Sancho, Sergio; Merino, Virginia; López-Castellano, Alicia; Kalia, Yogeshvar N

    2016-05-01

    Tizanidine hydrochloride is an α2-adrenergic agonist used for the symptomatic relief of spasticity associated with multiple sclerosis or with spinal cord injury or disease. The objective of this study was to develop an isocratic, robust and sensitive ultra-high performance liquid chromatography method using UV detection for use in a project to develop a transdermal therapeutic system to deliver tizanidine across the skin. Isocratic separation was achieved using a C18column and a mobile phase comprising a 80:20 mixture of 0.004% trifluoroacetic acid in water and MeCN (pH* 3.2) at a flow rate of 0.2 mL min(-1) Tizanidine eluted at 1.499 min and the total run time was 2 min. The method was specific, robust and the response was accurate, precise and linear from 17.4 to 290 ng mL(-1) In contrast to existing methods, the method developed here was validated over a concentration range so as to include the low concentrations frequently observed in transdermal permeation studies and in samples extracted from the cutaneous matrix. Its suitability for use in transdermal permeation studies was subsequently tested and confirmed in preliminary experiments using porcine skinin vitro. PMID:26892401

  1. A new method for the absolute radiance calibration for UV-vis measurements of scattered sunlight

    NASA Astrophysics Data System (ADS)

    Wagner, T.; Beirle, S.; Dörner, S.; Penning de Vries, M.; Remmers, J.; Rozanov, A.; Shaiganfar, R.

    2015-10-01

    Absolute radiometric calibrations are important for measurements of the atmospheric spectral radiance. Such measurements can be used to determine actinic fluxes, the properties of aerosols and clouds, and the shortwave energy budget. Conventional calibration methods in the laboratory are based on calibrated light sources and reflectors and are expensive, time consuming and subject to relatively large uncertainties. Also, the calibrated instruments might change during transport from the laboratory to the measurement sites. Here we present a new calibration method for UV-vis instruments that measure the spectrally resolved sky radiance, for example zenith sky differential optical absorption spectroscopy (DOAS) instruments or multi-axis (MAX)-DOAS instruments. Our method is based on the comparison of the solar zenith angle dependence of the measured zenith sky radiance with radiative transfer simulations. For the application of our method, clear-sky measurements during periods with almost constant aerosol optical depth are needed. The radiative transfer simulations have to take polarisation into account. We show that the calibration results are almost independent from the knowledge of the aerosol optical properties and surface albedo, which causes a rather small uncertainty of about < 7 %. For wavelengths below about 330 nm it is essential that the ozone column density during the measurements be constant and known.

  2. Highly sensitive catalytic spectrophotometric determination of ruthenium

    NASA Astrophysics Data System (ADS)

    Naik, Radhey M.; Srivastava, Abhishek; Prasad, Surendra

    2008-01-01

    A new and highly sensitive catalytic kinetic method (CKM) for the determination of ruthenium(III) has been established based on its catalytic effect on the oxidation of L-phenylalanine ( L-Pheala) by KMnO 4 in highly alkaline medium. The reaction has been followed spectrophotometrically by measuring the decrease in the absorbance at 526 nm. The proposed CKM is based on the fixed time procedure under optimum reaction conditions. It relies on the linear relationship where the change in the absorbance (Δ At) versus added Ru(III) amounts in the range of 0.101-2.526 ng ml -1 is plotted. Under the optimum conditions, the sensitivity of the proposed method, i.e. the limit of detection corresponding to 5 min is 0.08 ng ml -1, and decreases with increased time of analysis. The method is featured with good accuracy and reproducibility for ruthenium(III) determination. The ruthenium(III) has also been determined in presence of several interfering and non-interfering cations, anions and polyaminocarboxylates. No foreign ions interfered in the determination ruthenium(III) up to 20-fold higher concentration of foreign ions. In addition to standard solutions analysis, this method was successfully applied for the quantitative determination of ruthenium(III) in drinking water samples. The method is highly sensitive, selective and very stable. A review of recently published catalytic spectrophotometric methods for the determination of ruthenium(III) has also been presented for comparison.

  3. Reactions of Flavonoids with o-Quinones Interfere with the Spectrophotometric Assay of Tyrosinase Activity.

    PubMed

    Gąsowska-Bajger, Beata; Wojtasek, Hubert

    2016-07-01

    Flavonoids are important food components with antioxidant properties and many of them have been described as tyrosinase inhibitors. Oxidation of quercetin, kaempferol, morin, catechin, and naringenin by mushroom tyrosinase and their influence on the oxidation of l-dopa and l-tyrosine was studied. Reaction rates measured spectrophotometrically and by oxygen consumption differed substantially. All tested flavonoids reacted with 4-tert-butyl-o-benzoquinone and/or 4-methyl-o-benzoquinone, although at different rates. These reactions generated products whose UV-vis spectra either overlapped or did not overlap with the spectrum of dopachrome. They therefore strongly influence the kinetic analysis performed by measuring the absorbance at 475 nm during oxidation of l-dopa or l-tyrosine generating false inhibition or activation effects. This method is therefore inappropriate for monitoring the activity of this enzyme in the presence of flavonoids and other compounds possessing strong nucleophilic or reducing groups. PMID:27341415

  4. Determination of Febuxostat in Human Plasma Using RP-LC-UV Method.

    PubMed

    Younes, Kareem M; El-Kady, Ehab F; Elzanfaly, Eman S

    2016-07-01

    A simple and sensitive bioanalytical high-performance liquid chromatographic method with ultraviolet detection was developed and validated for the quantification of febuxostat (FEB) in human plasma. Ketoprofen was used as an internal standard. The analytes were extracted from human plasma samples by precipitation with acetonitrile. The reconstituted samples were chromatographed on C18 Bondapack 10 µm, 250 × 4.6 mm, Waters Column (Ireland) by using a mixture of acetonitrile and 0.5% aqueous phosphoric acid (pH 3) (52 : 48, v/v) as the mobile phase. The chromatographic separation was isocratically performed at room temperature at a flow rate of 1.0 mL/min with UV detection at 315 nm. The method exhibited a linear dynamic range over 0.05-5.00 µg/mL FEB in human plasma. The lower limit of quantification was 0.05 µg/mL. The results of the intra- and interday precision and accuracy studies were within the acceptable limits. The validated method was successfully applied for the determination of FEB in human plasma samples for application in bioequivalence studies. PMID:27068934

  5. Spectrophotometric determination of benazepril in tablets.

    PubMed

    Belal, F; Al-Zaagi, I A; Abounassif, M A

    2000-01-01

    A simple and sensitive spectrophotometric method has been developed for the determination of benazepril HCl in pharmaceutical formulations. The method is based on the reaction of the drug with potassium permanganate in the presence of sodium hydroxide to produce a bluish-green colored species measurable at 609.4 nm. The absorbance-concentration plot is linear over the range 1-8 microg ml(-1) with minimum detectability of 0.1 microg ml(-1) (2.17 x 10(-7) M). The molar absorptivity was 4.07 x 10(4) l mol(-1) cm(-1) with correlation coefficient (n = 6) of 0.9991. The different experimental parameters affecting the development and stability of the color were studied carefully and optimized. The proposed method was applied successfully to the determination of benazepril in its dosage forms, the percentage recoveries +/- SD (n = 9) were 99.79 +/- 1.40 and 100.50 +/- 1.48 for tablets containing 10 and 20 mg, respectively. The results obtained were in good agreement with those obtained using a reference spectrophotometric method. The proposed method could be applied to the determination of benazepril in presence of the co-formulated drug, hydrochlorothiazide. A proposal of the reaction pathway was presented. PMID:11204742

  6. Fluorescent methods in the study of UV-induced changes in structural and functional state of human blood lymphocytes.

    PubMed

    Artyukhov, V G; Putintseva, O V; Vdovina, V A; Pashkov, M V; Vasilenko, D V

    2012-10-01

    Structural and functional state of human blood lymphocytes after exposure to UV light (240-390 nm) in doses of 151-1359 J/m(2) was studied by methods of laser flow cytofluorometry, indirect immunofluorescence, and fluorescent probes. Using a combination of these methods, we have showed that UV light in the specified doses induced changes in the surface phenotype of T cells: stimulation or suppression of the expression of antigen-recognizing receptor complex molecules (CD3, CD4, and CD8 markers) and their redistribution on the surface of immunocompetent cells (capping effect) with the formation of receptor clusters of various types. PMID:23113315

  7. Quality assurance of solar spectral UV-measurements: methods and use of the SHICrivm software tool

    NASA Astrophysics Data System (ADS)

    Williams, J. E.; den Outer, P. N.; Slaper, H.

    2003-04-01

    Ground-based UV-irradiance measurements are crucial for determining the long-term changes and trends in biologically and/or photo-chemically relevant solar UV-radiation reaching the Earth's surface. Such changes in UV-radiation levels have probably occurred and/or are expected due to ozone depletion and climate change. In order to analyse UV-irradiation levels in relation to atmospheric parameters and to facilitate an assessment of the European UV-climate a European database (EUVDatabase) has been set up within the EDUCE-project (EC-contract EVK2-CT-1999-00028). High quality UV-data-sets from across the continent are assessable from the EUVDatabase (http://uv.fmi.fi/uvdb/). An accurate analysis of the UV-climate and long term changes therein requires quality assurance of the spectral data. The SHICrivm software tool (http://www.rivm.nl/shicrivm) is developed to analyse several quality aspects of measured UV-spectra. The SHICrivm tool is applied to over one million spectra from the EUVDatabase and detects for each measured spectrum: the accuracy of the wavelength calibration from 290 up to 500 nm, the lowest detectable irradiance level, the occurrence of non-natural spikes in spectra, deviations in spectral shape, and identifies possible irradiance scale errors in the UV-range. In addition the SHIC-package can be used to correct wavelength scale errors and non-natural spectral spikes. A deconvolution and convolution algorithm is included to improve the comparibility of spectra obtained with different instruments, and to allow a fully comparable analysis of biologically weighted UV-dose for instruments with various spectral characteristics. Within the context of the EDUCE-project data from over 20 UV-monitoring stations are retrieved from the database and a quality assessment is performed using the SHIC-tool. The quality parameters are presented by means of a simple scheme of coloured quality flags. Spectra that meet the WMO-criteria for spectral measurements are

  8. Spectrophotometric determination of azathioprine in pharmaceutical formulations.

    PubMed

    Lakshmi, C S; Reddy, M N

    1998-12-01

    Four simple and sensitive visible spectrophotometric methods (A-D) have been described for the assay of azathioprine (ATP) either in pure form or in pharmaceutical formulations. Methods A and B are based on the oxidation of ATP with excess N-bromosuccinimide (NBS) or chloramine-T (CAT) and determining the consumed NBS or CAT with a decrease in colour intensity of celestine blue (CB) (method A) or gallocyanine (GC) (method B), respectively. Methods C and D are based on the diazotisation of reduced azathioprine (RATP) with excess nitrous acid and estimating either the consumed nitrous acid (HNO(2)) with cresyl fast violet acetate (CFVA) (method C) or by coupling reaction of the diazonium salt formed with N-1-naphthyl ethylene diamine dihydrochloride (NED) (method D). All of the variables have been optimized and the reactions presented. The concentration measurements are reproducible within a relative standard deviation of 1.0%. Recoveries are 99.2-100.3%. PMID:18967434

  9. Low-level luminescence as a method of detecting the UV influence on biological systems

    NASA Astrophysics Data System (ADS)

    Mei, Wei-Ping; Popp, Fritz A.

    1995-02-01

    It is well known that low-level luminescence is correlated to many physiological and biological parameters, e.g. cell cycle, temperature, oxidation- and UV-stress. We report some new approaches on low-level luminescence measurements and UV influence on different biological systems. One example concerns yeast cultures, which show an increasing intensity of luminescence after UV-treatment with a maximum after 1.5 h. Investigations on normal human fibroblasts and keratinocytes display different longtime kinetics: The former show no changes of the luminescence in time, the latter an increase that reaches the maximum after 9 h. The time-dependent spectral measurement on xeroderma pigmentosum after UV-treatment displays a time-shift of the action-spectra shifting the maximum from 400 nm to 420 nm in 12 h. Some results on neutrophils reveals spectral UV influence on respiratory burst and the cellular repair system. The results on human skin display spectral changes of low-level luminescence after UV-treatment. These results provide a useful tool of analyzing UV influence on human skin.

  10. Spectrophotometric Procedure for Fast Reactor Advanced Coolant Manufacture Control

    NASA Astrophysics Data System (ADS)

    Andrienko, O. S.; Egorov, N. B.; Zherin, I. I.; Indyk, D. V.

    2016-01-01

    The paper describes a spectrophotometric procedure for fast reactor advanced coolant manufacture control. The molar absorption coefficient of dimethyllead dibromide with dithizone was defined as equal to 68864 ± 795 l·mole-1·cm-1, limit of detection as equal to 0.583 · 10-6 g/ml. The spectrophotometric procedure application range was found to be equal to 37.88 - 196.3 g. of dimethyllead dibromide in the sample. The procedure was used within the framework of the development of the method of synthesis of the advanced coolant for fast reactors.

  11. Advances in analytical methods and occurrence of organic UV-filters in the environment--A review.

    PubMed

    Ramos, Sara; Homem, Vera; Alves, Arminda; Santos, Lúcia

    2015-09-01

    UV-filters are a group of compounds designed mainly to protect skin against UVA and UVB radiation, but they are also included in plastics, furniture, etc., to protect products from light damage. Their massive use in sunscreens for skin protection has been increasing due to the awareness of the chronic and acute effects of UV radiation. Some organic UV-filters have raised significant concerns in the past few years for their continuous usage, persistent input and potential threat to ecological environment and human health. UV-filters end up in wastewater and because wastewater treatment plants are not efficient in removing them, lipophilic compounds tend to sorb onto sludge and hydrophilics end up in river water, contaminating the existing biota. To better understand the risk associated with UV-filters in the environment a thorough review regarding their physicochemical properties, toxicity and environmental degradation, analytical methods and their occurrence was conducted. Higher UV-filter concentrations were found in rivers, reaching 0.3mg/L for the most studied family, the benzophenone derivatives. Concentrations in the ng to μg/L range were also detected for the p-aminobenzoic acid, cinnamate, crylene and benzoyl methane derivatives in lake and sea water. Although at lower levels (few ng/L), UV-filters were also found in tap and groundwater. Swimming pool water is also a sink for UV-filters and its chlorine by-products, at the μg/L range, highlighting the benzophenone and benzimidazole derivatives. Soils and sediments are not frequently studied, but concentrations in the μg/L range have already been found especially for the benzophenone and crylene derivatives. Aquatic biota is frequently studied and UV-filters are found in the ng/g-dw range with higher values for fish and mussels. It has been concluded that more information regarding UV-filter degradation studies both in water and sediments is necessary and environmental occurrences should be monitored more

  12. Chemometrics-assisted spectrophotometric methods for simultaneous determination and complexation study of Fe(III), Al(III) and V(V) with morin in micellar media.

    PubMed

    Ghavami, Raoof; Najafi, Amir; Hemmateenejad, Bahram

    2008-09-01

    Evolutionary factor analysis (EFA) and rank annihilation factor analysis (RAFA) were applied to resolve the two-way equilibrium spectrophotometric data belonging to the complexes of Fe(III), Al(III) and V(V) with morin (3,5,7,20,40-penta hydroxy flavone) as chelating agent in triton X-100 micellar media. Then, partial least square regression combined with genetic algorithm for wavelength selection (GA-PLS) was used for simultaneous determination of the metal ions. The parameters controlling behavior of the system were investigated and optimum conditions were selected. The predictive abilities of partial least squares regression (PLS) and genetic algorithm-partial least squares regression (GA-PLS) were examined in simultaneous determination of ternary mixtures of metal ions over the concentration range of 17.0-170.0ngml(-1), 25.0-180.0ngml(-1) and 40.0-325.0ngml(-1) for Fe(III), Al(III) and V(V), respectively. The relative standard errors for prediction of the ions in synthetic mixtures were lower than 5% and the mean recoveries in the tap water spiked samples were 104.2 and 101.7% for PLS and GA-PLS, respectively. PMID:18055249

  13. Coumarins in horse chestnut flowers: isolation and quantification by UPLC method.

    PubMed

    Dudek-Makuch, Marlena; Matławska, Irena

    2013-01-01

    The coumarins: scopoletin, esculetin and fraxetin were isolated from the flowers of horse chestnut (Aesculus hippocastanum L., Hippocastanaceae) and identified by spectrophotometric methods (UV, 1H, 13C NMR, ESI-MS). Their content, determined using the Ultra Performance Liquid Chromatography (UPLC), was 0.41, 0.13 and 0.05%, respectively. PMID:23757942

  14. FTIR assay method for UV inactive drug carisoprodol and identification of degradants by RP-HPLC and ESI-MS.

    PubMed

    Acharya, Pratap Chandra; Vasi, Ruqaiya; Suares, Divya

    2016-09-01

    A new method of analysis has been developed for UV inactive drug carisoprodol using FTIR spectroscopy. These methods were validated for various parameters according to ICH guidelines. The proposed method has also been successfully applied for the determination of the drug concentration in a tablet formulation. The method proved to be accurate (mean percentage recovery between 95 and 105%), precise and reproducible (relative standard deviation<2%), while being simple, economical and less time consuming than other methods and can be used for routine estimation of carisoprodol in the pharmaceutical industry. The developed method also implicates its utility for other UV inactive substances. The stability of the drug under various stress conditions was studied and the drug was found to be particularly susceptible to alkaline hydrolysis. Degradation products of the alkaline hydrolysis were detected by RP-HPLC and tentatively identified by ESI-MS. PMID:27398631

  15. Combined cloud point-solid phase extraction by dispersion of TiO₂ nanoparticles in micellar media followed by semi-microvolume UV-vis spectrophotometric detection of zinc.

    PubMed

    Pourreza, Nahid; Naghdi, Tina

    2014-10-01

    A new approach is presented in this paper by using dispersed TiO2 nanoparticles (TiO2-NPs) in a combined cloud point and solid phase extraction for the efficient preconcentration and determination of Zn(2+) in various samples. In this method Zn(2+) ions are adsorbed on TiO2-NPs and transferred into surfactant rich phase. Subsequently the Zn(2+) ions are desorbed from TiO2-NPs by a dithizone solution via forming a color complex which could be detected colorimetrically. The influence of chemical variables such as pH of the sample solution, electrolyte, amount of TiO2-NPs, type and volume of the eluent on the extraction system was studied. The calibration graph was linear in the range of 0.5-90.0 µg L(-1) of Zn(2+) (r=0.9996). An enrichment factor of 80 was achieved and the limit of detection for Zn(2+) was 0.33 µg L(-1). The relative standard deviation (RSD) for eight replicate measurements of 10 µg L(-1) and 60 µg L(-1) of Zn(2+) was 1.8% and 1.5% respectively. The proposed method was successfully applied to the quantitative determination of Zn(2+) in tap water, powder milk and Zinc sulfate tablet with satisfactory results. PMID:25059144

  16. Photochemical Synthesis of Complex Carbazoles: Evaluation of Electronic Effects in Both UV- and Visible-Light Methods in Continuous Flow.

    PubMed

    Hernandez-Perez, Augusto C; Caron, Antoine; Collins, Shawn K

    2015-11-01

    An evaluation of both a visible-light- and UV-light-mediated synthesis of carbazoles from various triarylamines with differing electronic properties under continuous-flow conditions has been conducted. In general, triarylamines bearing electron-rich groups tend to produce higher yields than triarylamines possessing electron-withdrawing groups. The incorporation of nitrogen-based heterocycles, as well as halogen-containing arenes in carbazole skeletons, was well tolerated, and often synthetically useful complementarity was observed between the UV-light and visible-light (photoredox) methods. PMID:26395034

  17. Assessment of isoflavone aglycones variability in soy food supplements using a validated HPLC-UV method

    PubMed Central

    UIFĂLEAN, ALINA; FARCAŞ, ANCA; ILIEŞ, MARIA; HEGHEŞ, SIMONA CODRUŢA; IONESCU, CORINA; IUGA, CRISTINA ADELA

    2015-01-01

    Background and aims Soy supplements are often recommended in the management of menopause symptoms. The declared content of soy supplements is commonly expressed as total isoflavones per dosage form. Given that soy isoflavones have different estrogenic potencies, pharmacokinetics and metabolism, the aim of this study was to evaluate the total isoflavone content and the aglycone profile of seven soy supplements and one soy seed extract. Label accuracy was assessed, in relation to the precise content and the recommended posology for estimating whether the optimal dose is achieved for alleviating menopause symptoms. Methods A high performance liquid chromatography method was developed for evaluating the aglycone content (genistein, daidzein, glycitein). After extraction and acidic hydrolysis, the aglycones were separated on a C18 column, using 0.1% acetic acid and acetonitrile as mobile phases. The flow rate was 1.5mL min−1 and the UV detector wavelength was set at 260nm. A linear relationship was found in the range 5–80μg mL−1. The method was validated using the accuracy profile methodology. Results The total isoflavone content ranged from 6.07 to 41.68mg dosage form−1. Various aglycone profiles were obtained for each supplement which can result in a different estrogenic activity, bioavailability and finally, in a different efficiency in alleviating menopause symptoms. In most clinical trials where soy isoflavones were evaluated, little attention was paid to determining the exact aglycone profile of the employed soy extracts. Conclusions As clinical outcomes continue to be controversial, this study highlights the need of standardization in genistein, rather than total isoflavones and labeling accuracy for soy supplements. PMID:26609272

  18. [Determination of human serum galactosyltransferase using a kinetic spectrophotometric technic].

    PubMed

    Gauduchon, P; Baumann, J J; Bar, E; Le Talaër, J Y

    1985-01-01

    A kinetic spectrophotometric method in which galactose transfer is coupled to the production of NADH, has been adapted to the assay of galactosyltransferase activity in human serum. Under the described conditions, the rate of NADH production is linear with regard to enzyme concentration, and directly depends upon the various biochemical factors which control galactosyltransferase activity. PMID:3924359

  19. Determination of Cephalexin Monohydrate in Pharmaceutical Dosage Form by Stability-Indicating RP-UFLC and UV Spectroscopic Methods

    PubMed Central

    Panda, Sagar Suman; Ravi Kumar, Bera V. V.; Dash, Rabisankar; Mohanta, Ganeswar

    2013-01-01

    An ultra-fast liquid chromatographic method and two UV spectroscopic methods were developed for the determination of cephalexin monohydrate in pharmaceutical dosage forms. Isocratic separation was performed on an Enable C18G column (250 mm × 4.6 mm i.d., 5 μm) using methanol:0.01 M TBAHS (50:50, v/v) as the mobile phase at a flow rate of 1.0 ml/min. The PDA detection wavelength was set at 254 nm. The UV spectroscopic method was performed at 261 nm and at 256–266 nm for the AUC method using a phosphate buffer (pH=5.5). The linearity was observed over a concentration range of 1.0–120 μg/ml for UFLC and both of the UV spectroscopic methods (correlation coefficient=0.999). The developed methods were validated according to ICH guidelines. The relative standard deviation values for the intraday and interday precision studies were < 2%, and the accuracy was > 99% for all of the three methods. The developed methods were used successfully for the determination of cephalexin in dry syrup formulation. PMID:24482771

  20. A simple and sensitive spectrophotometric method for the determination of trace amounts of nitrite in environmental and biological samples using 4-amino-5-hydroxynaphthalene-2,7-disulphonic acid monosodium salt

    NASA Astrophysics Data System (ADS)

    Nagaraja, Padmarajaiah; Al-Tayar, Naef Ghllab S.; Shivakumar, Anantharaman; Shrestha, Ashwine K.; Gowda, Avinash K.

    2010-05-01

    A very simple, sensitive, fairly selective and rapid spectrophotometric method for the determination of trace amounts of nitrite has been described. This method is based on the diazotized intramolecular coupling of electrophilic diazonium cation with the phenolic group of 4-amino-5-hydroxynaphthalene-2,7-disulphonic acid monosodium salt (AHNDMS) in a phosphate buffer solution of pH 7.5. The cyclic product has a purple color with maximum absorbance at 560 nm and is stable for 6 h. Optimum reaction conditions and other important analytical parameters for the maximum color development were established. Beer's law was found to obey for nitrite in the concentration range of 0.1-1.6 μg ml -1 with molar absorptivity of 2.6 × 10 4 l mol -1 cm -1 and Sandell's sensitivity of 0.0075 μg ml -1. The effect of interfering ions on the determination is described. The recommended method was applied for the determination of nitrite in different water, soil and human saliva samples. The performance of the recommended method was evaluated in terms of Student's t-test and variance ratio F-test, which indicated the significance of proposed method over the reference method.

  1. Spectrophotometric Estimation of Azithromycin in Tablets

    PubMed Central

    Jayanna, B. K.; Nagendrappa, G.; Arunkumar; Gowda, N.

    2012-01-01

    The present manuscript describes a simple, sensitive, accurate, precise and economical visible spectrophotometric method for the estimation of azithromycin from tablet formulation. The method is based on the reduction of potassium permanganate in alkaline medium with azithromycin. The measurement of decrease in absorbance of potassium permanganate at 547 nm was done, as it decolourises upon reduction by azithromycin. The method was used to determine between 2 and 20 μg/ml of azithromycin in the final measured solution. There is no interference from the ingredients commonly found in azithromycin tablets with this method. The results for the determination of azithromycin in tablets were in good agreement with the labelled quantities and related analytical parameters are calculated. PMID:23626394

  2. Spectrophotometric estimation of azithromycin in tablets.

    PubMed

    Jayanna, B K; Nagendrappa, G; Arunkumar; Gowda, N

    2012-07-01

    The present manuscript describes a simple, sensitive, accurate, precise and economical visible spectrophotometric method for the estimation of azithromycin from tablet formulation. The method is based on the reduction of potassium permanganate in alkaline medium with azithromycin. The measurement of decrease in absorbance of potassium permanganate at 547 nm was done, as it decolourises upon reduction by azithromycin. The method was used to determine between 2 and 20 μg/ml of azithromycin in the final measured solution. There is no interference from the ingredients commonly found in azithromycin tablets with this method. The results for the determination of azithromycin in tablets were in good agreement with the labelled quantities and related analytical parameters are calculated. PMID:23626394

  3. The detection of food soils and cells on stainless steel using industrial methods: UV illumination and ATP bioluminescence.

    PubMed

    Whitehead, Kathryn A; Smith, Lindsay A; Verran, Joanna

    2008-09-30

    Open food contact surfaces were subjected to organic soiling to provide a source for transfer of microbial cells. Rapid industrial methods used for the detection of residual cells and soil e.g. ATP (adenosine triphosphate) bioluminescence and an ultraviolet (UV) light detection method were assessed for their ability to detect organic soils, or organic soil-cell mix on surfaces. A range of soils (complex [meat extract, fish extract, cottage cheese extract]; oils [cholesterol, fish oil, mixed fatty acids]; proteins [bovine serum albumin, fish peptones casein]; carbohydrates [glycogen, starch, lactose]); was used. Under UV, oily soils, mixed fatty acids, cholesterol and casein were detected at low concentrations, with detection levels ranging from 1% to 0.001% for different substances. Glycogen was the most difficult substance to detect at lower concentrations. Using UV wavelength bands (lambda) of 330-380 nm, 510-560 nm and 590-650 nm, wavelength bands of 330-380 nm, illuminated most of the soils well, whilst the wavelength band of 510-560 nm illuminated the fish extract, cholesterol and fatty acids; the 590-650 nm wavelength band illuminated the lactose. Soils at all concentrations were detected by the ATP bioluminescence method; the complex soils gave the highest readings. When complex soils were combined with Listeria monocytogenes Scott A or a non-pathogenic Escherichia coli O157:H7, ATP measurements increased by 1-2 logs. For UV illumination, the L. monocytogenes and cheese combination was the most intensely illuminated, with E. coli and meat the least. UV illumination is a simple well established method for detecting food soil, with little change in findings when microorganisms are included. Performance can be enhanced in certain circumstances by altering the wavelength. ATP bioluminescence is a proven system for hygienic assessment being especially useful in the presence of microorganisms rather than organic soil alone. PMID:18678428

  4. Optimisation of UV irradiation as a binding site conserving method for crosslinking collagen-based scaffolds.

    PubMed

    Davidenko, Natalia; Bax, Daniel V; Schuster, Carlos F; Farndale, Richard W; Hamaia, Samir W; Best, Serena M; Cameron, Ruth E

    2016-01-01

    Short wavelength (λ = 254 nm) UV irradiation was evaluated over a range of intensities (0.06 to 0.96 J/cm(2)) as a means of cross-linking collagen- and gelatin-based scaffolds, to tailor their material characteristics whilst retaining biological functionality. Zero-link carbodiimide treatments are commonly applied to collagen-based materials, forming cross-links from carboxylate anions (for example the acidic E of GFOGER) that are an essential part of integrin binding sites on collagen. Cross-linking these amino acids therefore disrupts the bioactivity of collagen. In contrast, UV irradiation forms bonds from less important aromatic tyrosine and phenylalanine residues. We therefore hypothesised that UV cross-linking would not compromise collagen cell reactivity. Here, highly porous (~99 %) isotropic, collagen-based scaffolds were produced via ice-templating. A series of scaffolds (pore diameters ranging from 130-260 μm) with ascending stability in water was made from gelatin, two different sources of collagen I, or blends of these materials. Glucose, known to aid UV crosslinking of collagen, was added to some lower-stability formulations. These scaffolds were exposed to different doses of UV irradiation, and the scaffold morphology, dissolution stability in water, resistance to compression and cell reactivity was assessed. Stabilisation in aqueous media varied with both the nature of the collagen-based material employed and the UV intensity. Scaffolds made from the most stable materials showed the greatest stability after irradiation, although the levels of cross-linking in all cases were relatively low. Scaffolds made from pure collagen from the two different sources showed different optimum levels of irradiation, suggesting altered balance between stabilisation from cross-linking and destabilisation from denaturation. The introduction of glucose into the scaffold enhanced the efficacy of UV cross-linking. Finally, as hypothesized, cell attachment, spreading and

  5. Novel spectrophotometric determination of flumethasone pivalate and clioquinol in their binary mixture and pharmaceutical formulation

    NASA Astrophysics Data System (ADS)

    Abdel-Aleem, Eglal A.; Hegazy, Maha A.; Sayed, Nour W.; Abdelkawy, M.; Abdelfatah, Rehab M.

    2015-02-01

    This work is concerned with development and validation of three simple, specific, accurate and precise spectrophotometric methods for determination of flumethasone pivalate (FP) and clioquinol (CL) in their binary mixture and ear drops. Method A is a ratio subtraction spectrophotometric one (RSM). Method B is a ratio difference spectrophotometric one (RDSM), while method C is a mean center spectrophotometric one (MCR). The calibration curves are linear over the concentration range of 3-45 μg/mL for FP, and 2-25 μg/mL for CL. The specificity of the developed methods was assessed by analyzing different laboratory prepared mixtures of the FP and CL. The three methods were validated as per ICH guidelines; accuracy, precision and repeatability are found to be within the acceptable limits.

  6. UV-Visible Spectroscopic Method and Models for Assessment and Monitoring of Harmful Algal Blooms

    NASA Technical Reports Server (NTRS)

    Mitchell, B. Greg

    2000-01-01

    The development of an enhanced predictive and early warning capability for the occurrence and impact of harmful algal blooms (HABs) would be of great benefit to coastal communities. A critical issue for early detection and monitoring of HABs is the need to detect harmful algal species within a mixed-species phytoplankton assemblage. Possession of UV-absorbing compounds called mycosporine-like amino acids (MAAs) may be one factor that allows HAB species to out-compete their phytoplankton neighbors. Possession of MAAs, which we believe can be inferred from strong UV-absorption signals in phytoplankton absorption coefficients, can be used as a flag for potential HAB outbreak. The goal of this project was to develop a solar simulating UV-visible incubator to grow HAB dinoflagellates, to begin MAA analysis of samples collected on global cruises, and to carry out initial experiments on HAB dinoflagellate species in pure culture. Our scientific objectives are to quantify MAA production and spectral induction mechanisms in HAB species, to characterize spectral absorption of MAAs, and to define the ecological benefit of MAAs (i.e. photoprotection). Data collected on cruises to the global oceans will be used to parameterize phytoplankton absorption in the UV region, and this parameterization could be incorporated into existing models of seawater optical properties in the UV spectral region. Data collected in this project were used for graduate fellowship applications by Elizabeth Frame. She has been awarded an EPA STAR fellowship to continue the work initiated by this project.

  7. Single dose pharmacokinetics of atorvastatin oral formulations using a simple HPLC-UV method.

    PubMed

    Sohail, Muhammad; Ahmad, Mahmood; Minhas, Muhammad Usman

    2016-07-01

    The study was aimed to assess pharmacokinetics of atorvastatin (40 mg) in healthy fasted human subjects by a simple and inexpensive high performance liquid chromatography. Experimental design of the study was a randomized, two way, two periods, crossover study (single dose in fasted conditions). Eighteen (18) healthy male volunteers were enrolled according to FDA guidelines. The plasma samples were assayed using an isocratic High Performance Liquid Chromatography (HPLC) system of Agilent technologies USA consisted of an isocratic pump with column of Thermo Electron Corporation USA (ODS hypersil C(18) 4.6 mm x 250 mm), a UV-visible detector set at λ(max) 237 nm. Maximum plasma concentrations (C(max)) of atorvastatin (Mean ± SEM) for the reference product (A) found to be 13.739±0.210ng/ml & 13.374±0.145ng/ml for test product (B). T(max) values (Mean±SEM) of atorvastatin were 1.222 ±0.060 hours and 1.167±0.057 hours for reference and test products, respectively. The values of AUC(0-oo) (Mean ± SEM) for the reference (A) and test product (B) were 73.955 ± 1.715ng.h/ml and 77.773 ± 1.858ng. h/ml, respectively. Other pharmacokinetic parameters of both products were also determined. A statistical non-significant difference between pharmacokinetic parameters has been found and both brands of atorvastatin showed the same rate and extent of absorption in healthy fasted human volunteers after single dose. A simple and cost effective HPLC method was developed and applied. PMID:27393428

  8. Spectrophotometric estimation of risperidone in tablets.

    PubMed

    Jayanna, B K; Devaraj, T D; Roopa, K P; Nagendrappa, G; Kumar, H R Arun; Gowda, N

    2014-09-01

    A simple, rapid and highly sensitive spectrophotometric method is developed for the determination of risperidone in tablet formulation. The method is based on the oxidation of drug using potassium permanganate in alkaline medium and excess potassium permanganate oxidizes 1,10-phenanthroline Fe(II). The measurement of decrease in absorbance of 1,10-phenanthroline Fe (II) was done at 415 nm. The beer's law is obeyed in the concentration range of 5.0 to 40.0 μg/ml and molar absorptivity is found to be 7.3932 × 10(4) l/mol/cm. The proposed method is well suited for the pharmaceutical formulations. PMID:25425761

  9. Two Methods for Retrieving UV Index for All Cloud Conditions from Sky Imager Products or Total SW Radiation Measurements

    SciTech Connect

    Badosa, Jordi; Calbo, J.; McKenzie, R. L.; Liley, Ben; Gonzalez, J. A.; Forgan, B. W.; Long, Charles N.

    2014-07-01

    In the present study, we assess the cloud effects on UV Index (UVI) and total solar radiation (TR) as a function of cloud cover estimations and sunny conditions (from sky imaging products) as well as of solar zenith angle (SZA). These analyses are undertaken for a southern-hemisphere mid-latitude site where a 10-years dataset is available. It is confirmed that clouds reduce TR more than UV, in particular for obscured Sun conditions, low cloud fraction (< 60%) and large SZA (> 60º). Similarly, clouds enhance TR more than UV, mainly for visible Sun conditions, large cloud fraction and large SZA. Two methods to estimate UVI are developed: 1) from sky imaging cloud cover and sunny conditions, and 2) from TR measurements. Both methods may be used in practical operational applications, although Method 2 shows overall the best performance, since TR allows accounting for cloud optical properties. The mean absolute differences of Method 2 estimations with respect to measured values are 0.17 UVI units (for 1-minute data) and 0.79 Standard Erythemal Dose (SED) units (for daily integrations). Method 1 shows less accurate results but it is still suitable to estimate UVI: mean absolute differences are 0.37 UVI units and 1.6 SED.

  10. Study of UV Cu + Ne – CuBr laser lifetime by statistical methods

    SciTech Connect

    Iliev, I P; Gocheva-Ilieva, S G

    2013-11-30

    On the basis of a large amount of experimental data, statistical investigation of the average lifetime of a UV Cu + Ne – CuBr laser depending on ten input physical laser parameters is carried out. It is found that only three of the parameters have a substantial influence on the laser lifetime. Physical analysis and interpretation of the results are provided. (lasers)

  11. [Removal of triclosan with the method of UV/ClO2 and its degradation products].

    PubMed

    Li, Yu-Ying; He, Wen-Long; Li, Qing-Song; Jin, Wei-Wei; Chen, Guo-Yuan; Li, Guo-Xin

    2015-02-01

    The UV/ClO2 process for triclosan ( TCS) removal was studied. The influences of several factors such as the initial pH, dose of ClO2, initial concentration of TCS and humic acid( HA) on TCS degradation in the UV/ClO2 combined process were discussed. The results showed that the UV/ClO2 process could effectively remove TCS and had a synergistic effect. When the light intensity was 6.5 μW x Cm(-2), the dose of ClO2 was 0. 5 mg x L(-1) and the concentration of TCS was 300 μg x L(-1), when UV and ClO2 were applied alone, the TCS removal rates within 1 min were only 5.23% and 84.93% respectively. The removal rate reached up to 99.13% after 1 min degradation using the UV/ClO2 combined process. In test conditions ( pH 6-9), the removal rate increased from 99.4% to 99. 63% with the increase of pH. Increasing dose of CIO2 could promote TCS removal. When the dose of ClO2 was 0.5-1.5 mg x L(-1), the removal rate was increased from 98.1% to 99.89%. The initial concentration of TCS was negatively correlated with the removal rate. When the initial concentration increased from 100 - 500 μg x L(-1), the removal rate of TCS was decreased from 99.98% to 94.39%. Low concentration of humic acid was beneficial to the removal of TCS, and high concentration of it had the opposite effect. Degradation products of TCS were investigated by GC/MS. Degradation of TCS by the processes of UV, ClO2 and UV/ClO2 also indicated that the main degradation products of the TCS were 2, 4-dichlorophenol (2,4-DCP), 2,7-dichlorodibenzo-p-dioxin (2,7-DCDD), etc. PMID:26031077

  12. A Spectrophotometric Study of the Permanganate-Oxalate Reaction: An Analytical Laboratory Experiment

    ERIC Educational Resources Information Center

    Kalbus, Gene E.; Lieu, Van T.; Kalbus, Lee H.

    2004-01-01

    The spectrophotometric method assists in the study of potassium permanganate-oxalate reaction. Basic analytical techniques and rules are implemented in the experiment, which can also include the examination of other compounds oxidized by permanganate.

  13. Kinetic spectrophotometric determination of famotidine in commercial dosage forms.

    PubMed

    Rahman, Nafisur; Kashif, Mohammad

    2003-06-01

    A simple kinetic spectrophotometric method is described for the determination of famotidine. The method is based on the oxidation of the drug with alkaline potassium permanganate. The reaction is followed spectrometrically by measuring the rate of change of the absorbance at 610 nm. The initial-rate and fixed-time (at 12 min) methods are adopted for determining the drug concentration. The calibration graphs are linear in the ranges of 2-10 microg mL(-1) and 1-8 microg mL(-1) using the initial-rate and fixed-time methods, respectively. The method has been applied to the determination of famotidine in tablet formulations. The obtained results are compared statistically with those given by a reference spectrophotometric method. PMID:12834233

  14. [Spectrophotometric evaluation of N-acetyl-beta-glucosaminidase in urine].

    PubMed

    Potere, C; Di Cosmo, C; Riario-Sforza, G; Di Silverio, F; Albertazzi, A; Cappelli, P

    1982-01-01

    A spectrophotometric method for the assay of N-Acetyl-beta-Glucosaminidase activity in human undiluted urines is described. The application of this method is recommended for its sensitivity (2,6 X 10(-4)M) and its rapid performance, because it represents a good alternative to current methods and essentially to the fluorimetric technique with which it has a significant statistical correlation. Estimates of normal individuals aged between 1-70 years are reported. PMID:7168631

  15. A new method of chlorophenols decomposition based on UV-irradiation by XeBr-excilamp and their subsequent biodegradation

    NASA Astrophysics Data System (ADS)

    Sosnin, E. A.; Matafonova, G. G.; Batoev, V. B.; Christofi, N.

    2008-01-01

    The combined decomposition method of chlorophenols (CP) is offered. The method is based on photolysis of CP through XeBr-excilamp UV irradiation at 283 nm in a flow photoreactor with subsequent treatment of photolysis products by microorganism-destructor B. cereus isolated from an aeration pond of Baikal pulp-and-paper mill. At initial concentration of CP of 20 mg/l the polluted solutions can be utilized directly by means of biological treatment using B. cereus under aerobic conditions. However, if the initial CP concentration is higher than 20 mg/l, the polluted solutions are low biodegradable. It is shown, that the combined treatment is most effective method in this case. At initial CP concentration of 50 mg/l and higher it is suggested to use the deep preliminary UV-treatment with the purpose of removal 80-90 % of initial CP. It is revealed, that 4-CP is relatively persistent compound for B. cereus, easily decomposed by UV-radiation of XeBr-excilamp. As a result of subsequent biological treatment during 10 days the utilization of basic CP photoproducts is obtained. Experimentally, the preliminary UV-processing time was essentially less than that found earlier by E. Tamer, Z. Hamid, Aly A. (Chemosphere, 2006), where the half-life periods of initial CP were from 2.2 to 54 hours at the same value of initial concentration of CP. Correspondingly, the total CP decomposition process was accompanied by high power inputs. It is suggested to use mentioned above method for effective CP decomposition at high concentration values.

  16. Spectrophotometric Determination of Certain Benzimidazole Proton Pump Inhibitors

    PubMed Central

    Syed, A. A.; Syeda, Ayesha

    2008-01-01

    Spectrophotometric method for the determination of certain proton pump inhibitors belonging to the benzimidazole class of compounds has been developed. The method is based on the reaction of omeprazole, lansoprazole, pantoprazole, rabeprazole and esomeprazole with iron (III) and subsequent reaction with ferricyanide under neutral condition which yields Prussian blue product with maximum absorption at 720–730 nm. The commonly encountered excipients and additives that often accompany pharmaceutical preparations did not interfere with the determination. The method was applied for the determination of omeprazole, lansoprazole, pantoprazole, rabeprazole and esomeprazole in pharmaceutical preparations and no difference was found statistically. Thus, the spectrophotometric method can be applied as inexpensive, rapid, easy, accurate and precise method for the routine analysis of the five proton pump inhibitors in pharmaceutical preparations. PMID:20046782

  17. Stability indicating HPLC-UV method for detection of curcumin in Curcuma longa extract and emulsion formulation.

    PubMed

    Syed, Haroon Khalid; Liew, Kai Bin; Loh, Gabriel Onn Kit; Peh, Kok Khiang

    2015-03-01

    A stability-indicating HPLC-UV method for the determination of curcumin in Curcuma longa extract and emulsion was developed. The system suitability parameters, theoretical plates (N), tailing factor (T), capacity factor (K'), height equivalent of a theoretical plate (H) and resolution (Rs) were calculated. Stress degradation studies (acid, base, oxidation, heat and UV light) of curcumin were performed in emulsion. It was found that N>6500, T<1.1, K' was 2.68-3.75, HETP about 37 and Rs was 1.8. The method was linear from 2 to 200 μg/mL with a correlation coefficient of 0.9998. The intra-day precision and accuracy for curcumin were ⩽0.87% and ⩽2.0%, while the inter-day precision and accuracy values were ⩽2.1% and ⩽-1.92. Curcumin degraded in emulsion under acid, alkali and UV light. In conclusion, the stability-indicating method could be employed to determine curcumin in bulk and emulsions. PMID:25306352

  18. Apparatus and method for treating pollutants in a gas using hydrogen peroxide and UV light

    NASA Technical Reports Server (NTRS)

    Cooper, Charles David (Inventor); Clausen, Christian Anthony (Inventor)

    2005-01-01

    An apparatus for treating pollutants in a gas may include a source of hydrogen peroxide, and a treatment injector for creating and injecting dissociated hydrogen peroxide into the flow of gas. The treatment injector may further include an injector housing having an inlet, an outlet, and a hollow interior extending therebetween. The inlet may be connected in fluid communication with the source of hydrogen peroxide so that hydrogen peroxide flows through the hollow interior and toward the outlet. At least one ultraviolet (UV) lamp may be positioned within the hollow interior of the injector housing. The at least one UV lamp may dissociate the hydrogen peroxide flowing through the tube. The dissociated hydrogen peroxide may be injected into the flow of gas from the outlet for treating pollutants, such as nitrogen oxides.

  19. APPARATUS AND METHOD FOR TREATING POLLUTANTS IN A GAS USING HYDROGEN PEROXIDE AND UV LIGHT

    NASA Technical Reports Server (NTRS)

    Cooper, Charles David (Inventor); Clauseu, christian Anthony (Inventor)

    2005-01-01

    An apparatus for treating pollutants in a gas may include a source of hydrogen peroxide, and a treatment injector for creating and injecting dissociated hydrogen peroxide into the flow of gas. The treatment injector may further include an injector housing having an inlet, an outlet, and a hollow interior extending there between. The inlet may be connected in fluid communication with the source of hydrogen peroxide so that hydrogen peroxide flows through the hollow interior and toward the outlet. At least one ultraviolet (UV) lamp may be positioned within the hollow interior of the injector housing. The at least one UV lamp may dissociate the hydrogen peroxide flowing through the tube. The dissociated hydrogen peroxide may be injected into the flow of gas from the outlet for treating pollutants, such as nitrogen oxides.

  20. UV-visible spectroscopy method for screening the chemical stability of potential antioxidants for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Banham, Dustin; Ye, Siyu; Knights, Shanna; Stewart, S. Michael; Wilson, Mahlon; Garzon, Fernando

    2015-05-01

    A novel method based on UV-visible spectroscopy is reported for screening the chemical stability of potential antioxidant additives for proton exchange membrane fuel cells, and the chemical stabilities of three CeOx samples of varying crystallite sizes (6, 13, or 25 nm) are examined. The chemical stabilities predicted by this new screening method are compared to in-situ membrane electrode assembly (MEA) accelerated stress testing, with the results confirming that this rapid and inexpensive method can be used to accurately predict performance impacts of antioxidants.

  1. A continuous spectrophotometric assay that distinguishes between phospholipase A1 and A2 activities[S

    PubMed Central

    El Alaoui, Meddy; Soulère, Laurent; Noiriel, Alexandre; Popowycz, Florence; Khatib, Abdallah; Queneau, Yves; Abousalham, Abdelkarim

    2016-01-01

    A new spectrophotometric assay was developed to measure, continuously and specifically, phospholipase A1 (PLA1) or phospholipase A2 (PLA2) activities using synthetic glycerophosphatidylcholines (PCs) containing α-eleostearic acid, either at the sn-1 position [1-α-eleostearoyl-2-octadecyl-rac-glycero-3-phosphocholine (EOPC)] or at the sn-2 position [1-octadecyl-2-α-eleostearoyl-rac-glycero-3-phosphocholine (OEPC)]. The substrates were coated onto the wells of microtiter plates. A nonhydrolyzable ether bond, with a non-UV-absorbing alkyl chain, was introduced at the other sn position to prevent acyl chain migration during lipolysis. Upon enzyme action, α-eleostearic acid is liberated and then solubilized into the micellar phase. The PLA1 or PLA2 activity was measured by the increase in absorbance at 272 nm due to the transition of α-eleostearic acid from the adsorbed to the soluble state. EOPC and OEPC differentiate, with excellent accuracy, between PLA1 and PLA2 activity. Lecitase®, guinea pig pancreatic lipase-related protein 2 (known to be a PLA1 enzyme), bee venom PLA2, and porcine pancreatic PLA2 were all used to validate the assay. Compared with current assays used for continuously measuring PLA1 or PLA2 activities and/or their inhibitors, the development of this sensitive enzymatic method, using coated PC substrate analogs to natural lipids and based on the UV spectroscopic properties of α-eleostearic acid, is a significant improvement. PMID:27194811

  2. A continuous spectrophotometric assay that distinguishes between phospholipase A1 and A2 activities.

    PubMed

    El Alaoui, Meddy; Soulère, Laurent; Noiriel, Alexandre; Popowycz, Florence; Khatib, Abdallah; Queneau, Yves; Abousalham, Abdelkarim

    2016-08-01

    A new spectrophotometric assay was developed to measure, continuously and specifically, phospholipase A1 (PLA1) or phospholipase A2 (PLA2) activities using synthetic glycerophosphatidylcholines (PCs) containing α-eleostearic acid, either at the sn-1 position [1-α-eleostearoyl-2-octadecyl-rac-glycero-3-phosphocholine (EOPC)] or at the sn-2 position [1-octadecyl-2-α-eleostearoyl-rac-glycero-3-phosphocholine (OEPC)]. The substrates were coated onto the wells of microtiter plates. A nonhydrolyzable ether bond, with a non-UV-absorbing alkyl chain, was introduced at the other sn position to prevent acyl chain migration during lipolysis. Upon enzyme action, α-eleostearic acid is liberated and then solubilized into the micellar phase. The PLA1 or PLA2 activity was measured by the increase in absorbance at 272 nm due to the transition of α-eleostearic acid from the adsorbed to the soluble state. EOPC and OEPC differentiate, with excellent accuracy, between PLA1 and PLA2 activity. Lecitase(®), guinea pig pancreatic lipase-related protein 2 (known to be a PLA1 enzyme), bee venom PLA2, and porcine pancreatic PLA2 were all used to validate the assay. Compared with current assays used for continuously measuring PLA1 or PLA2 activities and/or their inhibitors, the development of this sensitive enzymatic method, using coated PC substrate analogs to natural lipids and based on the UV spectroscopic properties of α-eleostearic acid, is a significant improvement. PMID:27194811

  3. Screening of conditions controlling spectrophotometric sequential injection analysis

    PubMed Central

    2011-01-01

    Background Despite its potential benefits over univariate, chemometrics is rarely utilized for optimizing sequential injection analysis (SIA) methods. Specifically, in previous vis-spectrophotometric SIA methods, chemometrically optimized conditions were confined within flow rate and reagent concentrations while other conditions were ignored. Results The current manuscript reports, for the first time, a comprehensive screening of conditions controlling vis-spectrophotometric SIA. A new diclofenac assay method was adopted. The method was based on oxidizing diclofenac by permanganate (a major reagent) with sulfuric acid (a minor reagent). The reaction produced a spectrophotometrically detectable diclofenac form. The 26 full-factorial design was utilized to study the effect of volumes of reagents and sample, in addition to flow rate and concentrations of reagents. The main effects and all interaction order effects on method performance, i.e. namely sensitivity, rapidity and reagent consumption, were determined. The method was validated and applied to pharmaceutical formulations (tablets, injection and gel). Conclusions Despite 64 experiments those conducted in the current study were cumbersome, the results obtained would reduce effort and time when developing similar SIA methods in the future. It is recommended to critically optimize effective and interacting conditions using other such optimization tools as fractional-factorial design, response surface and simplex, rather than full-factorial design that used at an initial optimization stage. In vis-spectrophotometric SIA methods those involve developing reactions with two reagents (major and minor), conditions affecting method performance are in the following order: sample volume > flow rate ≈ major reagent concentration >> major reagent volume ≈ minor reagent concentration >> minor reagent volume. PMID:21333024

  4. Capillary electrophoresis with UV detection and mass spectrometry in method development for profiling metabolites of steroid hormone metabolism.

    PubMed

    Sirén, Heli; Seppänen-Laakso, Tuulikki; Oresic, Matej

    2008-08-15

    The aim of this study was to develop a method for comprehensive profiling of metabolites involved in mammalian steroid metabolism. The study was performed using the partial filling micellar electrokinetic chromatography (PF-MEKC) technique for determination of endogenous low-hydrophilic steroids. The detection techniques in capillary electrophoresis were UV absorption and electrospray mass spectrometry (ESI-MS). Thirteen steroids were included in the method development, and the selected were metabolites involved in major pathways of steroid biosynthesis. Although only eight of them could be separated and detected with UV, they could be identified by ESI-MS using selected ion monitoring (SIM) technique. Tandem MS spectra were also collected. UV detection was more sensitive than MS due to better separation of compounds and the selective signal sensitivity. The lowest limits of detection were 10-100 ng/mL for cortisone, corticosterone, hydrocortisone and testosterone. The other steroids could be detected at 500-1000 ng/mL. The identification of cortisone, corticosterone, hydrocortisone, estrogen and testosterone were made in patient urine samples and their concentrations were 1-40 microg/L. PMID:18585986

  5. Method 415.3, Rev. 1.2: Determination of Total Organic Carbon and Specific UV Absorbance at 254 nm in Source Water and Drinking Water

    EPA Science Inventory

    This method provides procedures for the determination of total organic carbon (TOC), dissolved organic carbon (DOC), and UV absorption at 254 nm (UVA) in source waters and drinking waters. The DOC and UVA determinations are used in the calculation of the Specific UV Absorbance (S...

  6. Green synthesis of silver/montmorillonite/chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Yunus, Wan Md Zin Wan; Rustaiyan, Abdolhossein; Ibrahim, Nor Azowa; Zargar, Mohsen; Abdollahi, Yadollah

    2010-01-01

    In this study, silver nanoparticles (Ag-NPs) were synthesized using a green physical synthetic route into the lamellar space of montmorillonite (MMT)/chitosan (Cts) utilizing the ultraviolet (UV) irradiation reduction method in the absence of any reducing agent or heat treatment. Cts, MMT, and AgNO3 were used as the natural polymeric stabilizer, solid support, and silver precursor, respectively. The properties of Ag/MMT/Cts bionanocomposites (BNCs) were studied as the function of UV irradiation times. UV irradiation disintegrated the Ag-NPs into smaller sizes until a relatively stable size and size distribution were achieved. Meanwhile, the crystalline structure and d-spacing of the MMT interlayer, average size and size distribution, surface morphology, elemental signal peaks, functional groups, and surface plasmon resonance of Ag/MMT/Cts BNCs were determined by powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, Fourier transform infrared, and UV-visible spectroscopy. The antibacterial activity of Ag-NPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria (ie, Escherichia coli) by the disk diffusion method on Muller–Hinton Agar at different sizes of Ag-NPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biologic research and biomedical applications, such as surgical devices and drug delivery vehicles. PMID:21116328

  7. Kinetic spectrophotometric determination of nizatidine and ranitidine in pharmaceutical preparations.

    PubMed

    Hassan, E M; Belal, F

    2002-01-01

    A new simple and sensitive kinetic spectrophotometric method is described for analysis of nizatidine (I) and ranitidine (II). The method involves the reaction of the drugs with alkaline potassium permanganate, whereby a green color peaking at 610 nm is produced. The reaction is monitored spectrophotometrically by measuring the rate of change of absorbance of the resulting manganate species at 610 nm. Calibration graphs are linear over the concentration range 0.8-4.0 microg/ml and the precision (% RSD 1.80, 1.53 for I and II, respectively) is quite acceptable. The method is satisfactorily applied for direct analysis of pharmaceutical preparations containing I and II. A proposal of the reaction pathway is postulated. PMID:11682208

  8. Stability-Indicating HPLC-UV Method for Vitamin D3 Determination in Solutions, Nutritional Supplements and Pharmaceuticals.

    PubMed

    Temova, Žane; Roškar, Robert

    2016-08-01

    A simple and fast high-performance liquid chromatography method with UV detection for determination of vitamin D3 in stability studies as well as in solutions, nutritional supplements and pharmaceuticals was developed. Successful separation of vitamin D3 from its degradation products was achieved on a Gemini C18 100 × 3.0 mm column using a mixture of acetonitrile and water (99:1, v/v) as а mobile phase. The method was successfully validated according to the ICH guidelines. The described reversed-phase HPLC method is favorable compared with other published HPLC-UV methods because of its stability-indicating nature, short run time (3.3 min) and wide analytical range with outstanding linearity, accuracy and precision. The method was further applied for quantification of vitamin D3 in selected liquid and solid nutritional supplements and prescription medicines, confirming its suitability for routine analysis. Degradation products, formed under stress conditions (hydrolysis, oxidation, photolysis and thermal degradation), were additionally elucidated by suitable equipment (LC-DAD-MS) to confirm the stability-indicating nature of the developed method. PMID:27048642

  9. Interlaboratory comparison of an analytical method for the determination of semduramicin in poultry feed at the authorized level using high-performance liquid chromatography coupled to postcolumn derivatization and spectrophotometric detection.

    PubMed

    González de la Huebra, María José; Vincent, Ursula; Serano, Federica; von Holst, Christoph

    2012-01-01

    The performance characteristics of a method based on HPLC with postcolumn derivatization and spectrophotometric detection for the quantification of semduramicin in poultry feedingstuffs have been determined via a collaborative study. Semduramicin is a feed additive that is authorized for fattening chickens within the European Union at a minimum and maximum content of 20 and 25 mg/kg in feedingstuffs, respectively. The target concentration of semduramicin in the test samples ranged from 11.5 to 45.0 mg/kg. The study has been conducted with two different types of test material, namely, feedingstuff samples that have been previously ground in our laboratory and pelleted feedingstuffs. In the latter case, the laboratories participating in the study had to grind the samples prior to analysis. The obtained RSD for repeatability (RSD(r)) ranged from 2 to 10% for the ground materials, and from 2 and 7% for the pelleted materials. The RSD for reproducibility (RSDR) varied between 11 and 16% for the ground materials, and between 12 and 15% for the pelleted materials. These data indicated that grinding as an additional step in the analytical procedure did not influence the precision profile of the method. In addition, the HorRat values for all test materials were below or equal to 1.5, thus demonstrating that the obtained precision data were acceptable for the purpose of the method. Furthermore, an estimation of trueness based on statistical treatment of the results reported from the laboratories for spiked samples revealed acceptable mean recovery values of 88 +/- 4%. Based on the obtained performance profile, the method can be considered fully validated and transferable to control laboratories to be used within the framework of official control. PMID:22468342

  10. [Research on structure and UV curing behaviors of novel cardanol-based unsaturated resins using FTIR spectrum analysis method].

    PubMed

    Li, Shou-Hai; Yang, Xue-Juan; Li, Mei; Huang, Kun; Xia, Jian-Ling

    2013-10-01

    Two dissimilar cardanol-based unsaturated resin monomers were prepared via simple ring-opening and etherification reaction by utilizing the reactivity between phenolic hydroxyl and epoxy group with the aid of cardanol as raw material. The transformations of different groups were characterized using Fourier transform infrared (FTIR) during the synthesis process, the resin monomers' structure was further analyzed using the 1H-nuclear magnetic resonance (1H-NMR) and gel permeation chromatography (GPC), and the UV curing behaviors of resin monomers were studied by means of FTIR method. In addition, the thermal stability of UV cured resin monomers were also tested by thermogravimetric analysis (TGA). The molecular structure analysis demonstrated that these two target products were successfully synthesized. UV curing behaviors analysis showed that the prepared cardanol-based unsaturated resin monomers could reach ultimate curing level within 30 s. TGA results showed that the molecular structure and the content of double bond had critical influence on their thermal stability. The main initial thermal decomposition temperature of these two cured resin monomers was all above 350 degrees C. PMID:24409711

  11. An Albedo-Ice Regression Method for Determining Ice Water Content of Polar Mesospheric Clouds from UV Observations

    NASA Astrophysics Data System (ADS)

    Thomas, G. E.; Bardeen, C.; Benze, S.

    2014-12-01

    Simulations of Polar Mesospheric Cloud (PMC) brightness and ice water content (IWC) are used to develop a simple robust method for IWC retrieval from UV satellite observations. We compare model simulations of IWC with retrievals from the UV Cloud Imaging and Particle Size (CIPS) experiment on board the satellite mission Aeronomy for Ice in the Mesosphere (AIM). This instrument remotely senses scattered brightness related to the vertically-integrated ice content. Simulations from the Whole Atmosphere Community Climate Model (WACCM), a chemistry climate model, is combined with a sectional microphysics model based on the Community Aerosol and Radiation Model for Atmospheres (CARMA). The model calculates high-resolution three-dimensional size distributions of ice particles. The internal variability is due to geographic and temporal variation of temperature and dynamics, water vapor, and meteoric dust. We examine all simulations from a single model day (we chose northern summer solstice) which contains several thousand model clouds. Accurate vertical integrations of the albedo and IWC are obtained. The ice size distributions are thus based on physical principles, rather than artificial analytic distributions that are often used in retrieval algorithms from observations. Treating the model clouds as noise-free data, we apply the CIPS algorithm to retrieve cloud particle size and IWC. The inherent "errors" in the retrievals are thus estimated. The linear dependence of IWC on albedo makes possible a method to derive IWC, called the Albedo-Ice regression method, or AIR. This method potentially unifies the variety of data from various UV experiments, with the advantages of (1) removing scattering-angle bias from cloud brightness measurements,(2) providing a physically-useful parameter (IWC),(3) deriving IWC even for faint clouds of small average particle sizes, and (4) estimating the statistical uncertainty as a random error, which bypasses the need to derive particle size.

  12. RP-HPLC and Spectrophotometric Estimation of Ambroxol Hydrochloride and Cetirizine Hydrochloride in Combined Dosage Form.

    PubMed

    Bhatia, Neela M; Ganbavale, S K; Bhatia, M S; More, H N; Kokil, S U

    2008-09-01

    Rapid, precise, accurate, specific and sensitive reverse phase liquid chromatographic and absorbance ratio spectrophotometric methods have been developed for the simultaneous analysis of ambroxol hydrochloride and cetirizine hydrochloride in their tablet formulation. The chromatographic methods were standardized using a HIQ SIL-C(18) column (250×4.6 mm i.d., 10 μm particle size) with UV detection at 229 nm and mobile phase consisting of methanol-acetonitrile-water (40:40:20, v/v/v). Ambroxol hydrochloride and cetirizine hydrochloride have absorbance maxima at 243 nm and 229 nm, respectively. The isoabsorptive wavelength for both the drugs was 236 nm. For absorbance ratio method developed, wavelengths selected were 243 nm and 236 nm. The proposed methods were successfully applied to the determination of ambroxol hydrochloride and cetirizine hydrochloride in tablets, with high percentage of recovery, good accuracy and acceptable precision. Different analytical performance parameters such as linearity, precision, accuracy, limit of detection, limit of quantitation and robustness were determined according to International Conference on Harmonization ICH Q2B guidelines. Results of analysis of the developed method were compared by performing ANOVA. PMID:21394256

  13. Selective and sensitive spectrophotometric method for the determination of trace amounts of zirconium in environmental and biological samples using 4-chloro-N-(2,6-dimethylphenyl)-2-hydroxy-5-sulfamoylbenzamide

    NASA Astrophysics Data System (ADS)

    Al-Kady, Ahmed S.

    2012-11-01

    A simple, selective and sensitive spectrophotometric method for the determination of trace amounts of Zr(IV) in aqueous samples was performed, based on complexation reaction between Zr(IV) and 4-chloro-N-(2,6-dimethylphenyl)-2-hydroxy-5-sulfamoylbenzamide (xipamide). The important analytical parameters and their effects on the reported system were investigated. Zr(IV) react with xipamide in the ratio 1:1 in the pH range 8 to form a complex with an absorption maximum 333 nm. The apparent stability constant (log βn) and the free energy change (ΔG∗) of formation of the complex was calculated using the results of mole ratio and continuous variation methods. Beer's law was obeyed in the concentration range 0.2-3.6 μg/mL. For more accurate analysis, Ringbom optimum concentration range was found from 0.3 to 3.5 μg/mL. The molar absorptivity, Sandell sensitivity, detection and quantification limits were also calculated. Taking a constant concentration of Zr(IV) and determining its concentration in the presence of large number of foreign ions tested the effect of foreign ions. The practical applicability of the elaborated method was examined using for determination of mentioned ion in water samples, biological, plant leaves and soil samples where excellent agreements between reported and obtained results were achieved. The relative standard deviation (n = 6) were 0.195%. The precision and accuracy of the results were comparable via F and t test at the 95% confidence level.

  14. A simple HPLC-UV method for the simultaneous quantification of gefitinib and erlotinib in human plasma.

    PubMed

    Faivre, Lionel; Gomo, Charline; Mir, Olivier; Taieb, Fabrice; Schoemann-Thomas, Audrey; Ropert, Stanislas; Vidal, Michel; Dusser, Daniel; Dauphin, Alain; Goldwasser, Francois; Blanchet, Benoit

    2011-08-01

    Gefitinib and erlotinib are two oral tyrosine kinase inhibitors (TKI) approved for the treatment of advanced non-small cell lung cancer (NSCLC). Published methods for simultaneous analysis of erlotinib and gefitinib in plasma are exclusively based on mass spectrometry. The purpose of this study was to develop a simple and sensitive HPLC-UV method to simultaneously quantify these two TKI in plasma. Following liquid-liquid extraction, gefitinib, erlotinib and sorafenib (internal standard), were separated with gradient elution (on a C8+ Satisfaction(®) using a mobile phase of acetonitrile/20mM ammonium acetate pH 4.5). Samples were eluted at a flow rate of 0.4 ml/min throughout the 15-min run. Dual UV wavelength mode was used, with gefitinib and erlotinib monitored at 331 nm, and sorafenib at 249 nm. The calibration was linear in the range 20-1000 ng/ml and 80-4000 ng/ml for gefitinib and erlotinib, respectively. Inter- and intra-day imprecision were less than 7.2% and 7.6% for gefitinib and erlotinib, respectively. This analytical method was successfully applied to assess the steady state plasma exposure to these TKI in NSCLC patients. This simple, sensitive, accurate and cost-effective method can be used in routine clinical practice to monitor gefitinib or erlotinib concentrations in plasma from NSCLC patients. PMID:21737360

  15. High throughput UV method for the estimation of thermodynamic solubility and the determination of the solubility in biorelevant media.

    PubMed

    Bard, Bruno; Martel, Sophie; Carrupt, Pierre-Alain

    2008-03-01

    The growing interest for high quality solubility data in the early stages of drug discovery suggested a detailed optimization of experimental conditions for a 96-well HTS UV method in order to obtain solubility values close to thermodynamic solubility measured by shake-flask method. Results have shown that solubility data obtained by the HTS approach were highly dependent on shaking intensity and incubation times due to the formation of supersaturated solutions resulting from the dilution of DMSO stock solutions in aqueous buffer. Thus, careful experimental set-up was developed to improve the quality and the reproducibility of the HTS method. Moreover, the early qualitative prediction of bioavailability and absorption of orally administered drugs require more and more biorelevant solubility values in drug discovery programs. Thus, the optimized HTS method was also adapted to measure solubility directly in FaSSIF and FeSSIF media. The versatile HTS UV approach presented in this paper provides a unique and reliable way to determine solubility in various experimental conditions. PMID:18207706

  16. Adverse Effects of UV-B Radiation on Plants Growing at Schirmacher Oasis, East Antarctica

    PubMed Central

    Singh, Jaswant; Singh, Rudra P.

    2014-01-01

    This study aimed to assess the impacts of ultraviolet-B (UV-B) radiation over a 28-day period on the levels of pigments of Umbilicaria aprina and Bryum argenteum growing in field. The depletion of stratospheric ozone is most prominent over Antarctica, which receives more UV-B radiation than most other parts of the planet. Although UV-B radiation adversely affects all flora, Antarctic plants are better equipped to survive the damaging effects of UV-B owing to defenses provided by UV-B absorbing compounds and other screening pigments. The UV-B radiations and daily average ozone values were measured by sun photometer and the photosynthetic pigments were analyzed by the standard spectrophotometric methods of exposed and unexposed selected plants. The daily average atmospheric ozone values were recorded from 5 January to 2 February 2008. The maximum daily average for ozone (310.7 Dobson Units (DU)) was recorded on 10 January 2008. On that day, average UV-B spectral irradiances were 0.016, 0.071, and 0.186 W m-2 at wavelengths of 305, 312, and 320 nm, respectively. The minimum daily average ozone value (278.6 DU) was recorded on 31 January 2008. On that day, average UV-B spectral irradiances were 0.018, 0.085, and 0.210 W m-2 at wavelengths of 305, 312, and 320 nm, respectively. Our results concludes that following prolonged UV-B exposure, total chlorophyll levels decreased gradually in both species, whereas levels of UV-B absorbing compounds, phenolics, and carotenoids gradually increased. PMID:24748743

  17. Adverse Effects of UV-B Radiation on Plants Growing at Schirmacher Oasis, East Antarctica.

    PubMed

    Singh, Jaswant; Singh, Rudra P

    2014-01-01

    This study aimed to assess the impacts of ultraviolet-B (UV-B) radiation over a 28-day period on the levels of pigments of Umbilicaria aprina and Bryum argenteum growing in field. The depletion of stratospheric ozone is most prominent over Antarctica, which receives more UV-B radiation than most other parts of the planet. Although UV-B radiation adversely affects all flora, Antarctic plants are better equipped to survive the damaging effects of UV-B owing to defenses provided by UV-B absorbing compounds and other screening pigments. The UV-B radiations and daily average ozone values were measured by sun photometer and the photosynthetic pigments were analyzed by the standard spectrophotometric methods of exposed and unexposed selected plants. The daily average atmospheric ozone values were recorded from 5 January to 2 February 2008. The maximum daily average for ozone (310.7 Dobson Units (DU)) was recorded on 10 January 2008. On that day, average UV-B spectral irradiances were 0.016, 0.071, and 0.186 W m(-2) at wavelengths of 305, 312, and 320 nm, respectively. The minimum daily average ozone value (278.6 DU) was recorded on 31 January 2008. On that day, average UV-B spectral irradiances were 0.018, 0.085, and 0.210 W m(-2) at wavelengths of 305, 312, and 320 nm, respectively. Our results concludes that following prolonged UV-B exposure, total chlorophyll levels decreased gradually in both species, whereas levels of UV-B absorbing compounds, phenolics, and carotenoids gradually increased. PMID:24748743

  18. Knowledge of outdoor workers on the effects of natural UV radiation and methods of protection against exposure.

    PubMed

    Hault, K; Rönsch, H; Beissert, S; Knuschke, P; Bauer, A

    2016-04-01

    The most important but influenceable risk factor in the development of skin cancer is the unprotected exposure to solar ultraviolet (UV) radiation. In order to assure adequate and effective protection against UV exposure, a level of knowledge about solar radiation and its effects is required. The objective of this study was to assess the knowledge of workers in outdoor professions on the effects of natural UV radiation and methods of protection against exposure. Forty outdoor workers were given a standardized questionnaire designed to ascertain their level of knowledge. The majority of participants knew exposure to solar radiation can be detrimental depending on exposure time. Eighty-three percentage recognized that people working regularly in an outdoor environment may be at risk due to high exposure. Long-sleeved clothing plus headgear and sunscreen containing sun-protecting substances were deemed adequate methods of protection by 83% and 85% respectively. Seventy percentage of the outdoor workers were familiar with the definition of the sun protection factor (SPF), yet only 25% correctly identified the amount of sunscreen needed to achieve the SPF as indicated on the product. A mere 8% of participants knew that symptoms of a sunburn first became apparent 3 h after sun exposure and only 18% were able to accurately gauge the amount of time they could spend in the sun before developing one. Although 30% had heard of the ultraviolet index (UVI), only 13% understood that protecting your skin using additional measures is recommended as of UVI 3. Overall, 30% of the outdoor workers thought themselves sufficiently protected against the harmful effects of the sun. While the participants of this study had a basic fundamental understanding of the effects of solar radiation and methods of protection against exposure, there remains an urgent need for further clarification across all demographic groups. PMID:26995021

  19. A new, fast and accurate spectrophotometric method for the determination of the optical constants of arbitrary absorptance thin films from a single transmittance curve: application to dielectric materials

    NASA Astrophysics Data System (ADS)

    Desforges, Jean; Deschamps, Clément; Gauvin, Serge

    2015-08-01

    The determination of the complex refractive index of thin films usually requires the highest accuracy. In this paper, we report on a new and accurate method based on a spectral rectifying process of a single transmittance curve. The agreements with simulated and real experimental data show the helpfulness of the method. The case of materials having arbitrary absorption bands at midpoint in spectral range, such as pigments in guest-host polymers, is also encompassed by this method.

  20. In-situ spectrophotometric probe

    DOEpatents

    Prather, William S.

    1992-01-01

    A spectrophotometric probe for in situ absorption spectra measurements comprising a first optical fiber carrying light from a remote light source, a second optical fiber carrying light to a remote spectrophotometer, the proximal ends of the first and second optical fibers parallel and coterminal, a planoconvex lens to collimate light from the first optical fiber, a reflecting grid positioned a short distance from the lens to reflect the collimated light back to the lens for focussing on the second optical fiber. The lens is positioned with the convex side toward the optical fibers. A substrate for absorbing analyte or an analyte and reagent mixture may be positioned between the lens and the reflecting grid.

  1. In-situ spectrophotometric probe

    DOEpatents

    Prather, W.S.

    1992-12-15

    A spectrophotometric probe is described for in situ absorption spectra measurements comprising a first optical fiber carrying light from a remote light source, a second optical fiber carrying light to a remote spectrophotometer, the proximal ends of the first and second optical fibers parallel and co-terminal, a planoconvex lens to collimate light from the first optical fiber, a reflecting grid positioned a short distance from the lens to reflect the collimated light back to the lens for focusing on the second optical fiber. The lens is positioned with the convex side toward the optical fibers. A substrate for absorbing analyte or an analyte and reagent mixture may be positioned between the lens and the reflecting grid. 5 figs.

  2. Defects in UV-vis-NIR reflectance spectra as method for forgery detections in writing documents

    NASA Astrophysics Data System (ADS)

    Somma, F.; Aloe, P.; Schirripa Spagnolo, G.

    2010-11-01

    Documents have taken up a very important place in our society. Frauds committed in connection with documents are not at all uncommon, and, in fact, represent a very large domain of the forensic science called "questioned documents". In the field of forensic examination of questioned documents, the legitimacy of an ink entry is often an essential question. A common type of forgery consists in materially altering an existing writing or adding a new writing. These changes can be characterized by means of optical spectroscopy. The aim of this work is to perform the UV-vis-NIR reflectance spectrophotometry to analyze a range of blue and black commercial ballpoint pens, in order to investigate the discriminating abilities of the different inks found on the same document.

  3. INSTRUMENTS AND METHODS OF INVESTIGATION: Excilamps: efficient sources of spontaneous UV and VUV radiation

    NASA Astrophysics Data System (ADS)

    Lomaev, Mikhail I.; Skakun, V. S.; Sosnin, E. A.; Tarasenko, Viktor F.; Shitts, D. V.; Erofeev, M. V.

    2003-02-01

    The results of research into high-power, high-efficiency noble-gas-halide excilamps using glow, capacitive, and barrier discharges for the excitation sources are presented. The maximum radiation powers and minimum consumption are achieved with glow discharge lamps. An excilamp with an average radiation power of 1.6 kW on KrCl* molecules (λ = 222 nm) and 1.1 kW on XeCl* molecules (λ = 308 nm) is developed, whose energy conversion efficiency exceeds 10%. The use of an electrodeless capacitive discharge leads to sealed off excilamps with a simple emitter design, which have a power of 1 to 10 W and a service life of about 2500 h and more. Barrier-discharge excilamps possess both high energy parameters (> 100 W m-1) and a long service life. Excilamps can find wide practical applications as new powerful sources of UV and VUV radiation.

  4. A method to generate surface UV radiation maps over Europe using GOME, Meteosat, and ancillary geophysical data

    NASA Astrophysics Data System (ADS)

    Verdebout, Jean

    2000-02-01

    This paper presents a method for generating surface ultraviolet (UV) radiation maps over Europe, with a spatial resolution of 0.05°, and potentially on a half-hour basis. The UV irradiance is obtained by interpolation in a look-up table (LUT), the entries of which are solar zenith angle, total column ozone amount, cloud liquid water thickness, near-surface horizontal visibility, surface elevation, and UV albedo. Both satellite (Meteosat, GOME) and nonsatellite (synoptic observations, meteorological model results, digital elevation model) data are exploited to assign values to the influencing factors. With the help of another LUT simulating the visible signal, Meteosat data are processed to retrieve the cloud liquid water thickness. The radiative transfer calculations are performed with the UVspec code. A preliminary step consists in generating an effective surface Meteosat albedo map from a series of 10 consecutive days. In this process the well-known difficulty of distinguishing clouds from snow-covered surfaces is encountered. An attempt is made to partially resolve the ambiguity by using the Meteosat infrared channel and modeled snow cover data. After additional empirical cloud filtering, the effective albedo map is used as a baseline to estimate the cloud liquid water thickness. The UV surface albedo is assigned uniform values for land and sea/ocean, except in the presence of snow. In this case it is given a value proportional to the Meteosat effective albedo. The total column ozone is extracted from the level 3 GOME products. The aerosol optical thickness is mapped by gridding the daily measurements performed by ˜1000 ground stations. The digital elevation model is the GTOPO30 data set from the U.S. Geological Survey. European wide UV dose rate maps are presented for one day in April 1997, and the influence of the various factors is illustrated. A daily integrated dose map was also generated using 27 Meteosat acquisitions at half-hour intervals on the same

  5. Development of an immunoaffinity chromatography and HPLC-UV method for determination of 16 sulfonamides in feed.

    PubMed

    Kim, Ho Jin; Jeong, Min Hee; Park, Hye Jin; Kim, Won Chan; Kim, Jang Eok

    2016-04-01

    A novel and simple method for detecting 16 sulfonamides (SAs) in animal feed using high performance liquid chromatography equipped with a photo-diode array detector (HPLC/PDA) and immunoaffinity chromatography was developed. The chromatographic peaks of the 16 SAs were successfully identified by comparing their retention times and UV spectra with reference standards. Method validation was performed with linearity, sensitivity, selectivity, accuracy and precision. The limits of detection (LODs) for the instrument used to study sulfonamides ranged from 14.1 to 45.0 μg/kg, and the limits of quantification (LOQs) ranged from 46.9 to 150.0 μg/kg. Average recoveries of the 16 SAs ranged from 78.2% to 105.2%. Method replication resulted in intraday and interday peak area variation of <5.5%. The developed method was specific and reliable and is suited for the routine analysis of SAs in animal feed. PMID:26593600

  6. Determination of Acyclovir in Human Plasma Samples by HPLC Method with UV Detection: Application to Single-Dose Pharmacokinetic Study

    PubMed Central

    Zendelovska, Dragica; Simeska, Suzana; Atanasovska, Emilija; Georgievska, Kalina; Kikerkov, Igor; Labachevski, Nikola; Jakovski, Krume; Balkanov, Trajan

    2015-01-01

    BACKGROUND: The aim of this study is estimation of pharmacokinetic parameters: Cmax, tmax, t1/2, AUC0-t and AUC0-∞ with the two-way analysis of variance, single observation (ANOVA) for two preparations containing acyclovir. OBJECTIVE: In order to evaluate pharmacokinetic study of acyclovir, method for quantitative determination of acyclovir in human plasma should be simple, rapid and reproducible. Therefore, the method is developed, validated and applied for analysis of acyclovir in plasma samples obtained from healthy volunteers. MATERIAL AND METHODS: High performance liquid chromatographic (HPLC) method with UV-detection for the determination of acyclovir in human plasma is presented. This method involves protein precipitation with 20 % (V/V) perchloric acid. The chromatographic separation was accomplished on a reversed phase C8 column with a mobile phase composed of 0.1 % (V/V) triethylamine in water (pH 2.5). No internal standard is required. UV detection was set at 255 nm. The method was successfully applied for the evaluation of pharmacokinetic profiles of acyclovir tablets in 24 healthy volunteers. RESULTS: The validation results shows that proposed method is rugged, precise (RSDs for intra- and inter-day precision ranged from 1.02 to 8.37 %) and accurate (relative errors are less than 6.66 %). The calibration curve was linear in the concentration range of 0.1-2.0 µg/ml and the limit of quantification was 0.1 µg/ml. The Cmax, tmax and AUCs for the two products were not statistically different (p>0.05), suggesting that the plasma profiles generated by Zovirax were comparable to those produced by acyclovir manufactured by Jaka 80 company. CONCLUSION: Good precision, accuracy, simplicity, sensitivity and shorter time of analysis of the method makes it particularly useful for processing of multiple samples in a limited period of time for pharmacokinetic study of acyclovir. PMID:27275193

  7. Quantitation of Synthetic Cannabinoids in Plant Materials Using High Performance Liquid Chromatography with UV Detection (Validated Method).

    PubMed

    Ciolino, Laura A

    2015-09-01

    Plant based products laced with synthetic cannabinoids have become popular substances of abuse over the last decade. Quantitative analysis for synthetic cannabinoid content in the laced materials is necessary for health hazard assessments addressing overall exposure and toxicity when the products are smoked. A validated, broadly applicable HPLC-UV method for the determination of synthetic cannabinoids in plant materials is presented, using acetonitrile extraction and separation on a commercial phenylhexyl stationary phase. UV detection provides excellent sensitivity with limits of quantitation (LOQs) less than 10 μg/g for many cannabinoids. The method was validated for several structural classes (dibenzopyrans, cyclohexylphenols, naphthoylindoles, benzoylindoles, phenylacetylindoles, tetramethylcyclopropylindoles) based on spike recovery experiments in multiple plant materials over a wide cannabinoid contents range (0.1-81 mg/g). Average recovery across 32 cannabinoids was 94% for marshmallow leaf, 95% for damiana leaf, and 92% for mullein leaf. The method was applied to a series of case-related products with determined amounts ranging from 0.2 to >100 mg/g. PMID:26175160

  8. Spectrophotometric determination of arsenic by molybdenum blue method in zinc-lead concentrates and related smelter products after chloroform extraction of iodide complex.

    PubMed

    Rao, C S; Rajan, S C; Rao, N V

    1993-05-01

    The most popular and widely applied method for determination of arsenic in ore concentrates is by spectrophotometry of arsenomolybdic acid reduced to molybdenum blue. While applying this method, several authors have developed procedures which varied in the decomposition, separation of arsenic and in the final colour development. Data regarding interference from germanium is inadequate. The present paper describes a procedure, which combines the best features of the previous procedures and is simple, less time consuming and interference-free compared to earlier procedures. This method has been applied to zinc-lead concentrates and related smelter products. PMID:18965681

  9. Simple HPLC-UV method for the quantification of metformin in human plasma with one step protein precipitation.

    PubMed

    Chhetri, Himal Paudel; Thapa, Panna; Van Schepdael, Ann

    2014-11-01

    This study presents the optimization of a simple HPLC-UV method for the determination of metformin in human plasma. Ion pair separation followed by UV detection was performed on deproteinized human plasma samples. The separation was carried out on a Discovery Reversed Phase C-18 column (250 × 4.6 mm, 5 μm) with UV detection at 233 nm. The mobile phase contained 34% acetonitrile and 66% aqueous phase. Aqueous phase contained 10 mM KH2PO4 and 10 mM sodium lauryl sulfate. Aqueous phase pH was adjusted to 5.2. The mobile phase was run isocratically. The flow rate of the mobile phase was maintained at 1.3 ml/min. The linearity of the calibration curve was obtained in the concentration range of 0.125-2.5 μg/ml and coefficient of determination (R (2)) was found to be 0.9951. The lowest limit of quantification and detection was 125 and 62 ng/ml respectively. No endogenous substances were found to interfere with the peaks of drug and internal standard. The intra-day and inter-day coefficient of variations was 6.97% or less for all the selected concentrations. The relative errors at all the studied concentrations were 5.60% or less. This method is time efficient and samples are easy to prepare with minimum dilution. So, it can be applied for monitoring metformin in human plasma. PMID:25473337

  10. Hybrid hard- and soft-modeling of spectrophotometric data for monitoring of ciprofloxacin and its main photodegradation products at different pH values.

    PubMed

    Razuc, Mariela; Garrido, Mariano; Caro, Yamile S; Teglia, Carla M; Goicoechea, Héctor C; Fernández Band, Beatriz S

    2013-04-01

    A simple and fast on line spectrophotometric method combined with a hybrid hard-soft modeling multivariate curve resolution (HS-MCR) was proposed for the monitoring of photodegradation reaction of ciprofloxacin under UV radiation. The studied conditions attempt to emulate the effect of sunlight on these antibiotics that could be eventually present in the environment. The continuous flow system made it possible to study the ciprofloxacin degradation at different pH values almost at real time, avoiding errors that could arise from typical batch monitoring of the reaction. On the base of a concentration profiles obtained by previous pure soft-modeling approach, reaction pathways have been proposed for the parent compound and its photoproducts at different pH values. These kinetic models were used as a constraint in the HS-MCR analysis. The kinetic profiles and the corresponding pure response profile (UV-Vis spectra) of ciprofloxacin and its main degradation products were recovered after the application of HS-MCR analysis to the spectra recorded throughout the reaction. The observed behavior showed a good agreement with the photodegradation studies reported in the bibliography. Accordingly, the photodegradation reaction was studied by high performance liquid chromatography coupled with UV-Vis diode array detector (HPLC-DAD). The spectra recorded during the chromatographic analysis present a good correlation with the ones recovered by UV-Vis/HS-MCR method. PMID:23376269

  11. Hybrid hard- and soft-modeling of spectrophotometric data for monitoring of ciprofloxacin and its main photodegradation products at different pH values

    NASA Astrophysics Data System (ADS)

    Razuc, Mariela; Garrido, Mariano; Caro, Yamile S.; Teglia, Carla M.; Goicoechea, Héctor C.; Fernández Band, Beatriz S.

    2013-04-01

    A simple and fast on line spectrophotometric method combined with a hybrid hard-soft modeling multivariate curve resolution (HS-MCR) was proposed for the monitoring of photodegradation reaction of ciprofloxacin under UV radiation. The studied conditions attempt to emulate the effect of sunlight on these antibiotics that could be eventually present in the environment. The continuous flow system made it possible to study the ciprofloxacin degradation at different pH values almost at real time, avoiding errors that could arise from typical batch monitoring of the reaction. On the base of a concentration profiles obtained by previous pure soft-modeling approach, reaction pathways have been proposed for the parent compound and its photoproducts at different pH values. These kinetic models were used as a constraint in the HS-MCR analysis. The kinetic profiles and the corresponding pure response profile (UV-Vis spectra) of ciprofloxacin and its main degradation products were recovered after the application of HS-MCR analysis to the spectra recorded throughout the reaction. The observed behavior showed a good agreement with the photodegradation studies reported in the bibliography. Accordingly, the photodegradation reaction was studied by high performance liquid chromatography coupled with UV-Vis diode array detector (HPLC-DAD). The spectra recorded during the chromatographic analysis present a good correlation with the ones recovered by UV-Vis/HS-MCR method.

  12. Development of a reliable analytical method for the precise extractive spectrophotometric determination of osmium(VIII) with 2-nitrobenzaldehydethiocarbohydrazone: Analysis of alloys and real sample.

    PubMed

    Zanje, Sunil B; Kokare, Arjun N; Suryavanshi, Vishal J; Waghmode, Duryodhan P; Joshi, Sunil S; Anuse, Mansing A

    2016-12-01

    The proposed method demonstrates that the osmium(VIII) forms complex with 2-NBATCH from 0.8molL(-1) HCl at room temperature. The complex formed was extracted in 10mL of chloroform with a 5min equilibration time. The absorbance of the red colored complex was measured at 440nm against the reagent blank. The Beer's law was obeyed in the range of 5-25μgmL(-1), the optimum concentration range was 10-20μgmL(-1) of osmium(VIII) as evaluated by Ringbom's plot. Molar absorptivity and Sandell's sensitivity of osmium(VIII)-2NBATCH complex in chloroform is 8.94×10(3)Lmol(-1)cm(-1) and 0.021μgcm(-2), respectively. The composition of osmium(VIII)-2NBATCH complex was 1:2 investigated from Job's method of continuous variation, Mole ratio method and slope ratio method. The interference of diverse ions was studied and masking agents were used wherever necessary. The present method was successfully applied for determination of osmium(VIII) from binary, ternary and synthetic mixtures corresponding to alloys and real samples. The validity of the method was confirmed by finding the relative standard deviation for five determinations which was 0.29%. PMID:27380306

  13. Explaining Space-Weathering Effects on UV-Vis-NIR Spectra with Light-Scattering Methods

    NASA Astrophysics Data System (ADS)

    Penttilä, Antti; Väisänen, Timo; Martikainen, Julia; Kohout, Tomas; Muinonen, Karri

    2015-11-01

    Space-weathering (SW) introduces changes to the asteroid reflectance spectra. In silicate minerals, SW is known to darken the spectra and reduce the silicate absorption band depths. In olivine, the neutral slope in Vis and NIR wavelengths is becoming positive [1]. In pyroxene, the positive slope over the 1 µm absorption band is decreasing, and the negative slope over the 2 µm band is increasing towards positive values with increasing SW [2].The SW process generates small nanophase iron (npFe0) inclusions in the surface layers of mineral grains. The inclusions are some tens of nm in size. This mechanism has been linked to the Moon and to a certain extent also to the silicate-rich S-complex asteroids.We offer two simple explanations from light-scattering theory to explain the SW effects on the spectral slope. First, the npFe0 will introduce a posititive general slope (reddening) to the spectra. The npFe0 inclusions (~10 nm) are in the Rayleigh domain with the wavelength λ in the UV-Vis-NIR range. Their absorption cross-section follows approximately the 1/λ-relation from the Rayleigh theory. Absorption is more efficient in the UV than in the NIR wavelengths, therefore the spectra are reddening.Second, the effect of npFe0 absorption is more efficient for originally brighter reflectance values. Explanation combines the effective medium theory and the exponential attenuation in the medium. When adding a small amount of highly absorbing npFe0, the effective absorption coefficient k will increase approximately the same Δk for the typical values of silicates. This change will increase more effectively the exponential attenuation if the original k was very small, and thus the reflectance high. Therefore, both positive and negative spectral slopes will approach zero with SW.We conclude that the SW will introduce a general reddening, and neutralize local slopes. This is verified using the SIRIS code [3], which combines geometric optics with small internal diffuse

  14. Ultraviolet spectrophotometric determination of tantalum with pyrogallol

    USGS Publications Warehouse

    Dinnin, J.I.

    1953-01-01

    In a search for a more rapid method for the determination of tantalum in rocks and minerals, an intensive study was made of the tantalum-pyrogallol reaction recommended by Platanov and Krivoshlikov, and a better modified spectrophotometric procedure is given. The improved method consists in measuring the absorbancy of the tantalum-pyrogallol complex at 325 m?? in 4N hydrochloric acid and a fixed concentration (0.0175M) of ammonium oxalate. Beer's law is followed for the concentration range up to 40 ?? per ml. Sensitivity in terms of molar absorbancy index is 4775. Most interferences are additive in character and readily correctable. Separations or major corrections are required in the presence of significant amounts of molybdenum, tungsten, antimony, and uranium. The method has been successfully applied to three ores previously analyzed by gravimetric techniques. The method affords greater speed, sensitivity, and reproducibility in the determination of tantalum in rocks and minerals. A more reliable technique for preparing standard solutions of tantalum has been developed.

  15. Electromembrane extraction and spectrophotometric determination of As(V) in water samples.

    PubMed

    Kamyabi, Mohammad Ali; Aghaei, Ali

    2016-12-01

    In this study, for the first time electromembrane extraction (EME) was used as a highly efficient sample pre-treatment method for the UV-VIS spectrophotometric determination of As(V) in water samples. The influences of experimental parameters during EME were investigated and optimized using one-variable-at-a-time methodology as follows: organic solvent: 1-octanol+2.5% (V/V) di-(2-ethylhexyl) phosphate, applied voltage: 70V, extraction time: 15min, pH of acceptor: 13, stirring rate: 750rpm. The method allowed the determination of As(V) in the range of 5-300ngmL(-1). The relative standard deviation was found to be within the range of 3.4-7.6%. The limit of detection, corresponding to a signal to noise ratio of three, was 1.5ngmL(-1). The proposed method was finally applied to the determination of As(V) in water samples and relative recoveries ranging from 95 to 102% were obtained. PMID:27374507

  16. FIA-Spectrophotometric Method for Determination of Nitrite in Meat Products: An Experiment Exploring Color Reduction of an Azo-Compound

    ERIC Educational Resources Information Center

    Penteado, Jose C.; Angnes, Lucio; Masini, Jorge C.; Oliveira, Paulo C. C.

    2005-01-01

    This article describes the reaction between nitrite and safranine O. This sensitive reaction is based on the disappearance of color of the reddish-orange azo dye, allowing the determination of nitrite at the mg mL-1 level. A factorial optimization of parameters was carried out and the method was applied for the quantification of nitrite in…

  17. General Subject 2. Report to ICUMSA on the determination of carry-over alpha-amylase activity in white and refined sugars by a spectrophotometric method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A report is given on a new industrial method for the determination of carry-over alpha-amylase activity in raw and refined sugars, as well as a recommendation. In recent years, there has been increased concern over carry-over activity of mostly high temperature (HT) and very high temperature (VHT) s...

  18. Amperometric Enzyme Sensor to Check the Total Antioxidant Capacity of Several Mixed Berries. Comparison with Two Other Spectrophotometric and Fluorimetric Methods

    PubMed Central

    Tomassetti, Mauro; Serone, Maruschka; Angeloni, Riccardo; Campanella, Luigi; Mazzone, Elisa

    2015-01-01

    The aim of this research was to test the correctness of response of a superoxide dismutase amperometric biosensor used for the purpose of measuring and ranking the total antioxidant capacity of several systematically analysed mixed berries. Several methods are described in the literature for determining antioxidant capacity, each culminating in the construction of an antioxidant capacity scale and each using its own unit of measurement. It was therefore endeavoured to correlate and compare the results obtained using the present amperometric biosensor method with those resulting from two other different methods for determining the total antioxidant capacity selected from among those more frequently cited in the literature. The purpose was to establish a methodological approach consisting in the simultaneous application of different methods that it would be possible to use to obtain an accurate estimation of the total antioxidant capacity of different mixed berries and the food products containing them. Testing was therefore extended to also cover jams, yoghurts and juices containing mixed berries. PMID:25654720

  19. UV-vis spectra as an alternative to the Lowry method for quantify hair damage induced by surfactants.

    PubMed

    Pires-Oliveira, Rafael; Joekes, Inés

    2014-11-01

    It is well known that long term use of shampoo causes damage to human hair. Although the Lowry method has been widely used to quantify hair damage, it is unsuitable to determine this in the presence of some surfactants and there is no other method proposed in literature. In this work, a different method is used to investigate and compare the hair damage induced by four types of surfactants (including three commercial-grade surfactants) and water. Hair samples were immersed in aqueous solution of surfactants under conditions that resemble a shower (38 °C, constant shaking). These solutions become colored with time of contact with hair and its UV-vis spectra were recorded. For comparison, the amount of extracted proteins from hair by sodium dodecyl sulfate (SDS) and by water were estimated by the Lowry method. Additionally, non-pigmented vs. pigmented hair and also sepia melanin were used to understand the washing solution color and their spectra. The results presented herein show that hair degradation is mostly caused by the extraction of proteins, cuticle fragments and melanin granules from hair fiber. It was found that the intensity of solution color varies with the charge density of the surfactants. Furthermore, the intensity of solution color can be correlated to the amount of proteins quantified by the Lowry method as well as to the degree of hair damage. UV-vis spectrum of hair washing solutions is a simple and straightforward method to quantify and compare hair damages induced by different commercial surfactants. PMID:25277290

  20. On-line in-syringe magnetic stirring assisted dispersive liquid-liquid microextraction HPLC--UV method for UV filters determination using 1-hexyl-3-methylimidazolium hexafluorophosphate as extractant.

    PubMed

    Suárez, Ruth; Clavijo, Sabrina; Avivar, Jessica; Cerdà, Víctor

    2016-02-01

    An environmental friendly and fully automated method using in-syringe magnetic stirring assisted dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography has been developed for the determination of UV filters in environmental water samples. The main "green" features on this method are the use of an ionic liquid as extracting solvent, avoiding the use of chlorinated solvents, and the on-line microextraction, preconcentration, separation and detection minimizing the use of reagents and so the waste generation. After sample treatment, 20 µL of the organic droplet was injected onto the HPLC-UV system. Various parameters affecting the extraction efficiency were studied using multivariate optimization approach, including the quantity of extraction and dispersive solvents, extraction and sedimentation time, ionic strength and pH. Under optimized conditions, limits of detection were within the range of 0.08-12 µg/L, for 3.5 mL sample volume. Linearity ranges were up to 500 µg/L for the UV-filters studied. Furthermore, enrichment factors ranging from 11 to 23 folds were obtained. Intra- and inter-assay precisions were 6% and 8%, respectively. Finally, the proposed method was successfully applied to determine UV filters in surface seawater and swimming pool samples attaining satisfactory recoveries over the range of 89-114% and 86-107%, respectively. PMID:26653488

  1. New spectrophotometric methods for the determinations of hydrogen sulfide present in the samples of lake water, industrial effluents, tender coconut, sugarcane juice and egg

    NASA Astrophysics Data System (ADS)

    Shyla, B.; Nagendrappa, G.

    2012-10-01

    The new methods are working on the principle that iron(III) is reduced to iron(II) by hydrogen sulfide, catechol and p-toluidine the system 1/hydrogen sulfide the system 2, in acidic medium followed by the reduced iron forming complex with 1,10-phenanthroline with λmax 510 nm. The other two methods are based on redox reactions between electrolytically generated manganese(III) sulfate taken in excess and hydrogen sulfide followed by the unreacted oxidant oxidizing diphenylamine λmax 570 the system 3/barium diphenylamine sulphonate λmax 540 nm, the system 4. The increase/decrease in the color intensity of the dye products of the systems 1 and 2 or 3 and 4 are proportional to the concentration of hydrogen sulfide with its quantification range 0.035-1.40 μg ml-1/0.14-1.40 μg ml-1.

  2. Kinetic spectrophotometric determination of Fe(II) in the presence of Fe(III) by H-point standard addition method in mixed micellar medium.

    PubMed

    Hasani, Masoumeh; Rezaei, Alireza; Abdollahi, Hamid

    2007-11-01

    The H-point standard addition method was applied to kinetic data for simultaneous determination of Fe(II) and Fe(III) or selective determination of Fe(II) in the presence of Fe(III). The method is based on the difference in the rate of complex formation between iron in two different oxidation states and methylthymol blue (MTB) at pH 3.5 in mixed cetyltrimethylammonium bromide (CTAB) and Triton X-100 micellar medium. Fe(II) can be determined in the range 0.25-2.5 microg ml(-1) with satisfactory accuracy and precision in the presence of excess Fe(III) and other metal ions that rapidly form complexes with MTB under working condition. The proposed method was successfully applied to the simultaneous determination of Fe(II) and Fe(III) or selective determination of Fe(II) in the presence of Fe(III) in spiked real environmental and synthetic samples with complex composition. PMID:17329160

  3. Simultaneous multicomponent spectrophotometric monitoring of methyl and propyl parabens using multivariate statistical methods after their preconcentration by robust ionic liquid-based dispersive liquid-liquid microextraction

    NASA Astrophysics Data System (ADS)

    Khani, Rouhollah; Ghasemi, Jahan B.; Shemirani, Farzaneh

    2014-03-01

    A powerful and efficient signal-preprocessing technique that combines local and multiscale properties of the wavelet prism with the global filtering capability of orthogonal signal correction (OSC) is applied for pretreatment of spectroscopic data of parabens as model compounds after their preconcentration by robust ionic liquid-based dispersive liquid-liquid microextraction method (IL-DLLME). In the proposed technique, a mixture of a water-immiscible ionic liquid (as extraction solvent) [Hmim][PF6] and disperser solvent is injected into an aqueous sample solution containing one of the IL's ions, NaPF6, as extraction solvent and common ion source. After preconcentration, the absorbance of the extracted compounds was measured in the wavelength range of 200-700 nm. The wavelet orthogonal signal correction with partial least squares (WOSC-PLS) method was then applied for simultaneous determination of each individual compound. Effective parameters, such as amount of IL, volume of the disperser solvent and amount of NaPF6, were inspected by central composite design to identify the most important parameters and their interactions. The effect of pH on the sensitivity and selectivity was studied according to the net analyte signal (NAS) for each component. Under optimum conditions, enrichment factors of the studied compounds were 75 for methyl paraben (MP) and 71 for propyl paraben (PP). Limits of detection for MP and PP were 4.2 and 4.8 ng mL-1, respectively. The root mean square errors of prediction for MP and PP were 0.1046 and 0.1275 μg mL-1, respectively. The practical applicability of the developed method was examined using hygienic, cosmetic, pharmaceutical and natural water samples.

  4. Simultaneous multicomponent spectrophotometric monitoring of methyl and propyl parabens using multivariate statistical methods after their preconcentration by robust ionic liquid-based dispersive liquid-liquid microextraction.

    PubMed

    Khani, Rouhollah; Ghasemi, Jahan B; Shemirani, Farzaneh

    2014-03-25

    A powerful and efficient signal-preprocessing technique that combines local and multiscale properties of the wavelet prism with the global filtering capability of orthogonal signal correction (OSC) is applied for pretreatment of spectroscopic data of parabens as model compounds after their preconcentration by robust ionic liquid-based dispersive liquid-liquid microextraction method (IL-DLLME). In the proposed technique, a mixture of a water-immiscible ionic liquid (as extraction solvent) [Hmim][PF6] and disperser solvent is injected into an aqueous sample solution containing one of the IL's ions, NaPF6, as extraction solvent and common ion source. After preconcentration, the absorbance of the extracted compounds was measured in the wavelength range of 200-700 nm. The wavelet orthogonal signal correction with partial least squares (WOSC-PLS) method was then applied for simultaneous determination of each individual compound. Effective parameters, such as amount of IL, volume of the disperser solvent and amount of NaPF6, were inspected by central composite design to identify the most important parameters and their interactions. The effect of pH on the sensitivity and selectivity was studied according to the net analyte signal (NAS) for each component. Under optimum conditions, enrichment factors of the studied compounds were 75 for methyl paraben (MP) and 71 for propyl paraben (PP). Limits of detection for MP and PP were 4.2 and 4.8 ng mL(-)(1), respectively. The root mean square errors of prediction for MP and PP were 0.1046 and 0.1275 μg mL(-)(1), respectively. The practical applicability of the developed method was examined using hygienic, cosmetic, pharmaceutical and natural water samples. PMID:24317257

  5. Spectrophotometric Analysis of Pigments: A Critical Assessment of a High-Throughput Method for Analysis of Algal Pigment Mixtures by Spectral Deconvolution

    PubMed Central

    Thrane, Jan-Erik; Kyle, Marcia; Striebel, Maren; Haande, Sigrid; Grung, Merete; Rohrlack, Thomas; Andersen, Tom

    2015-01-01

    The Gauss-peak spectra (GPS) method represents individual pigment spectra as weighted sums of Gaussian functions, and uses these to model absorbance spectra of phytoplankton pigment mixtures. We here present several improvements for this type of methodology, including adaptation to plate reader technology and efficient model fitting by open source software. We use a one-step modeling of both pigment absorption and background attenuation with non-negative least squares, following a one-time instrument-specific calibration. The fitted background is shown to be higher than a solvent blank, with features reflecting contributions from both scatter and non-pigment absorption. We assessed pigment aliasing due to absorption spectra similarity by Monte Carlo simulation, and used this information to select a robust set of identifiable pigments that are also expected to be common in natural samples. To test the method’s performance, we analyzed absorbance spectra of pigment extracts from sediment cores, 75 natural lake samples, and four phytoplankton cultures, and compared the estimated pigment concentrations with concentrations obtained using high performance liquid chromatography (HPLC). The deviance between observed and fitted spectra was generally very low, indicating that measured spectra could successfully be reconstructed as weighted sums of pigment and background components. Concentrations of total chlorophylls and total carotenoids could accurately be estimated for both sediment and lake samples, but individual pigment concentrations (especially carotenoids) proved difficult to resolve due to similarity between their absorbance spectra. In general, our modified-GPS method provides an improvement of the GPS method that is a fast, inexpensive, and high-throughput alternative for screening of pigment composition in samples of phytoplankton material. PMID:26359659

  6. Quality assessment of the saffron samples using second-order spectrophotometric data assisted by three-way chemometric methods via quantitative analysis of synthetic colorants in adulterated saffron

    NASA Astrophysics Data System (ADS)

    Masoum, Saeed; Gholami, Ali; Hemmesi, Marjan; Abbasi, Saleheh

    2015-09-01

    Saffron is a valuable culinary spice that can be used not only for dyes and cooking, but also for many medical purposes. Due to its high price and restriction of its production, various fraud manners in its production have been growing. Addition of synthetic colorants to saffron is the most common way for adulteration. In this work, chemometric methods are proposed to resolve the three-dimensional absorbance spectra-pH data for simultaneous determination of the two colorants Tartrazin and Sunset yellow, in adulterated saffron. The rank deficiency in the concentration mode impaired the system. Therefore, to extirpate the ambiguity, which results from rank deficiency, three-way variation array V was generated by subtracting the first pH spectrum from each spectrum at each pH. This allows the extraction of extent reaction profile and mixture reaction spectral profiles, as well as the relative concentrations of the analytes.

  7. Quality assessment of the saffron samples using second-order spectrophotometric data assisted by three-way chemometric methods via quantitative analysis of synthetic colorants in adulterated saffron.

    PubMed

    Masoum, Saeed; Gholami, Ali; Hemmesi, Marjan; Abbasi, Saleheh

    2015-09-01

    Saffron is a valuable culinary spice that can be used not only for dyes and cooking, but also for many medical purposes. Due to its high price and restriction of its production, various fraud manners in its production have been growing. Addition of synthetic colorants to saffron is the most common way for adulteration. In this work, chemometric methods are proposed to resolve the three-dimensional absorbance spectra-pH data for simultaneous determination of the two colorants Tartrazin and Sunset yellow, in adulterated saffron. The rank deficiency in the concentration mode impaired the system. Therefore, to extirpate the ambiguity, which results from rank deficiency, three-way variation array V was generated by subtracting the first pH spectrum from each spectrum at each pH. This allows the extraction of extent reaction profile and mixture reaction spectral profiles, as well as the relative concentrations of the analytes. PMID:25919327

  8. Simultaneous spectrophotometric determination of Fe(III) and Al(III) using orthogonal signal correction-partial least squares calibration method after solidified floating organic drop microextraction.

    PubMed

    Rohani Moghadam, Masoud; Haji Shabani, Ali Mohammad; Dadfarnia, Shayessteh

    2015-01-25

    A solidified floating organic drop microextraction (SFODME) procedure was developed for the simultaneous extraction and preconcentration of Fe(III) and Al(III) from water samples. The method was based on the formation of cationic complexes between Fe(III) and Al(III) and 3,5,7,2',4'-pentahydroxyflavone (morin) which were extracted into 1-undecanol as ion pairs with perchlorate ions. The absorbance of the extracted complexes was then measured in the wavelength range of 300-450 nm. Finally, the concentration of each metal ion was determined by the use of the orthogonal signal correction-partial least squares (OSC-PLS) calibration method. Several experimental parameters that may be affected on the extraction process such as the type and volume of extraction solvent, pH of the aqueous solution, morin and perchlorate concentration and extraction time were optimized. Under the optimum conditions, Fe(III) and Al(III) were determined in the ranges of 0.83-27.00 μg L(-1) (R(2)=0.9985) and 1.00-32.00 μg L(-1) (R(2)=0.9979) of Fe(III) and Al(III), respectively. The relative standard deviations (n=6) at 12.80 μg L(-1) of Fe(III) and 17.00 μg L(-)(1) of Al(III) were 3.2% and 3.5%, respectively. An enhancement factors of 102 and 96 were obtained for Fe(III) and Al(III) ions, respectively. The procedure was successfully applied to determination of iron and aluminum in steam and water samples of thermal power plant; and the accuracy was assessed through the recovery experiments and independent analysis by electrothermal atomic absorption spectroscopy (ETAAS). PMID:25168229

  9. Simultaneous spectrophotometric determination of Fe(III) and Al(III) using orthogonal signal correction-partial least squares calibration method after solidified floating organic drop microextraction

    NASA Astrophysics Data System (ADS)

    Rohani Moghadam, Masoud; Haji Shabani, Ali Mohammad; Dadfarnia, Shayessteh

    2015-01-01

    A solidified floating organic drop microextraction (SFODME) procedure was developed for the simultaneous extraction and preconcentration of Fe(III) and Al(III) from water samples. The method was based on the formation of cationic complexes between Fe(III) and Al(III) and 3,5,7,2‧,4‧-pentahydroxyflavone (morin) which were extracted into 1-undecanol as ion pairs with perchlorate ions. The absorbance of the extracted complexes was then measured in the wavelength range of 300-450 nm. Finally, the concentration of each metal ion was determined by the use of the orthogonal signal correction-partial least squares (OSC-PLS) calibration method. Several experimental parameters that may be affected on the extraction process such as the type and volume of extraction solvent, pH of the aqueous solution, morin and perchlorate concentration and extraction time were optimized. Under the optimum conditions, Fe(III) and Al(III) were determined in the ranges of 0.83-27.00 μg L-1 (R2 = 0.9985) and 1.00-32.00 μg L-1 (R2 = 0.9979) of Fe(III) and Al(III), respectively. The relative standard deviations (n = 6) at 12.80 μg L-1 of Fe(III) and 17.00 μg L-1 of Al(III) were 3.2% and 3.5%, respectively. An enhancement factors of 102 and 96 were obtained for Fe(III) and Al(III) ions, respectively. The procedure was successfully applied to determination of iron and aluminum in steam and water samples of thermal power plant; and the accuracy was assessed through the recovery experiments and independent analysis by electrothermal atomic absorption spectroscopy (ETAAS).

  10. Sensitive and rapid HPLC-UV method with back-extraction step for the determination of sildenafil in human plasma.

    PubMed

    Al-Hroub, Hamza; Alkhawaja, Bayan; Alkhawaja, Eman; Arafat, Tawfiq

    2016-01-15

    In this work we provided a selective, sensitive and rapid HPLC-UV method for quantification of sildenafil in human plasma. We have adopted a simple liquid-liquid extraction procedure followed a back-extraction in 5% perchloric acid solution. Chromatographic separation was achieved on a BDS C-18Column (150mm×4.6mm, 5μm) using a mobile phase consisted 63% water, 37% acetonitrile and 0.1% triethylamine (pH 7.7). The analysis was detected at 230nm. The achieved lower limit of quantification was 2.00ng/ml. The method showed linear calibration curve over the range of 2.00-200ng/ml. Intra- and inter day precision (CV%) were less than 6.80 and 5.19%, respectively. Whilst intra- and inter day accuracy% were ranged between (98.3 and 105%) and (99.4 and 103%), respectively. Tests confirmed the stability of sildenafil in plasma at room temperature for 24h, during three freeze-thaw cycles, after 24h in autosampler at 10°C and after 60 days in plasma at -30°C. The recovery of sildenafil was greater than 78.4%. The described simple UV method achieved very low limit of quantification and by using simple and inexpensive extraction procedure, complete separation was obtained within short run time. Having demonstrated the validity and novelty of our method, thus it is applicable for the clinical and pharmacokinetic studies of sildenafil in human volunteers especially in laboratories in countries where cost of modern techniques and instrumentation is prohibitive. PMID:26688342

  11. Development of a non-thermal accelerated pulsed UV photolysis assisted digestion method for fresh and dried food samples

    NASA Astrophysics Data System (ADS)

    Solís, C.; Lagunas-Solar, M. C.; Perley, B. P.; Piña, C.; Aguilar, L. F.; Flocchini, R. G.

    2002-04-01

    A simple, fast digestion procedure for fresh and dried foods, using high-power pulsed UV photolysis in the presence of hydrogen peroxide, is being developed. The homogenized food samples were mixed with H 2O 2 or with a mixture of H 2O 2 and HNO 3, and irradiated for short times with a 248-nm UV excimer laser. After centrifugation, a clear, colorless solution was obtained and aliquots were deposited on Teflon filters for XRF and/or PIXE analyses. Standard reference materials (NIST Peach Leaves; Typical Diet) were also analyzed to compare recoveries and detection limits. Improvements in detection limits were observed, but a few trace elements (<1 ppm) were not reproducibly detected (Fe, Sr). This method proved to be practical for the accelerated digestion of food samples and preparing analytes in short-time intervals. In combination with PIXE and XRF, it allows high-sensitivity multi-elemental analyses for screening the nutritional elements and for food safety purposes regarding the potential presence of toxic elements. Further development to optimize and validate this procedure for a broader range of analytes is in progress.

  12. Studying the denaturation of bovine serum albumin by a novel approach of difference-UV analysis.

    PubMed

    Nikolaidis, Athanasios; Moschakis, Thomas

    2017-01-15

    A novel approach in the analysis of difference-UV spectrophotometric data for determining the heat denaturation degree of bovine serum albumin (BSA) was assessed. Five different parameters of difference-UV spectra were obtained by subtracting spectra of unheated and denatured protein solutions at different temperature-time combinations. BSA was found to exhibit a maximum degree of heat denaturation of about 17% compared to the complete unfolding caused by 6M guanidine hydrochloride. This low degree of heat denaturation is probably caused by the aggregation of the initially unfolded protein molecules. The kinetic analysis exhibited discontinuities in the Arrhenius plots, distinguishing the unfolding and aggregation phases of the denaturation process, whereas such a discrimination could not be obtained by differential scanning calorimetry analyses. The proposed method is accurate, fast, simple and sensitive enough to detect changes in the protein heat denaturation even at short temperature-time intervals. PMID:27542472

  13. Variable path length spectrophotometric probe

    DOEpatents

    O'Rourke, Patrick E.; McCarty, Jerry E.; Haggard, Ricky A.

    1992-01-01

    A compact, variable pathlength, fiber optic probe for spectrophotometric measurements of fluids in situ. The probe comprises a probe body with a shaft having a polished end penetrating one side of the probe, a pair of optic fibers, parallel and coterminous, entering the probe opposite the reflecting shaft, and a collimating lens to direct light from one of the fibers to the reflecting surface of the shaft and to direct the reflected light to the second optic fiber. The probe body has an inlet and an outlet port to allow the liquid to enter the probe body and pass between the lens and the reflecting surface of the shaft. A linear stepper motor is connected to the shaft to cause the shaft to advance toward or away from the lens in increments so that absorption measurements can be made at each of the incremental steps. The shaft is sealed to the probe body by a bellows seal to allow freedom of movement of the shaft and yet avoid leakage from the interior of the probe.

  14. New 1,2,4-triazole-based azo-azomethine dye. Part III: Synthesis, characterization, thermal property, spectrophotometric and computational studies

    NASA Astrophysics Data System (ADS)

    Erfantalab, Malihe; Khanmohammadi, Hamid

    A new 1,2,4-triazole-based azo-azomethine compound, H2L, has been prepared by condensation reaction of 1-(3-formyl-4-hydroxyphenylazo)-4-ethylbenzene with prepared triazole-based diamine. The structure of H2L was characterized by using FT-IR, UV-Vis and 1H NMR spectroscopic methods as well as elemental analysis. Hard model chemometrics method has been used to determine the formation constants of zinc(II), copper(II), nickel(II) and cobalt(II) complexes of H2L in DMSO by UV-Vis spectrophotometric method. Solvatochromic behavior of the dye has been also investigated in some organic solvents with different polarities. Thermal properties of the prepared dye was examined by thermogravimetric analysis. Results indicated that the framework of the dye was stable up to 245 °C. Furthermore,1H chemical shifts and UV-Vis of H2L were studied by the gauge independent atomic orbital (GIAO), continuous set of gauge transformations (CSGT) and time-dependent density functional theory (TD-DFT) methods respectively at the level of density functional theory using B3LYP/6-311+G(d) basis sets in DMSO. The computational data are in reasonably good agreement with the experimental data.

  15. New 1,2,4-triazole-based azo-azomethine dye. Part III: Synthesis, characterization, thermal property, spectrophotometric and computational studies.

    PubMed

    Erfantalab, Malihe; Khanmohammadi, Hamid

    2014-05-01

    A new 1,2,4-triazole-based azo-azomethine compound, H2L, has been prepared by condensation reaction of 1-(3-formyl-4-hydroxyphenylazo)-4-ethylbenzene with prepared triazole-based diamine. The structure of H2L was characterized by using FT-IR, UV-Vis and (1)H NMR spectroscopic methods as well as elemental analysis. Hard model chemometrics method has been used to determine the formation constants of zinc(II), copper(II), nickel(II) and cobalt(II) complexes of H2L in DMSO by UV-Vis spectrophotometric method. Solvatochromic behavior of the dye has been also investigated in some organic solvents with different polarities. Thermal properties of the prepared dye was examined by thermogravimetric analysis. Results indicated that the framework of the dye was stable up to 245 °C. Furthermore,(1)H chemical shifts and UV-Vis of H2L were studied by the gauge independent atomic orbital (GIAO), continuous set of gauge transformations (CSGT) and time-dependent density functional theory (TD-DFT) methods respectively at the level of density functional theory using B3LYP/6-311+G(d) basis sets in DMSO. The computational data are in reasonably good agreement with the experimental data. PMID:24577255

  16. Quantification of 4'-geranyloxyferulic acid (GOFA) in honey samples of different origin by validated RP-HPLC-UV method.

    PubMed

    Genovese, Salvatore; Taddeo, Vito Alessandro; Fiorito, Serena; Epifano, Francesco

    2016-01-01

    Natural honey has been employed as a nutraceutical agent with benefits and therapeutic promises for humans for many centuries. It has been largely used as food and medicine by all generations, traditions, and civilizations, both ancient and modern. Several chemicals having beneficial effects for human health have been reported as components of natural honey and these include sugars, organic acids, aminoacids, minerals, and vitamins. Also some important phytochemicals have been described and these comprise tannins, flavonoids, terpenes, saponins, and alkaloids. In this note it is described the successful application of a RP HPLC-UV-vis method for the separation and quantification of 4'-geranyloxyferulic acid (GOFA) in four honey samples of different origin. Concentration values showed a great variation between the four samples tested, being chestnut honey the one richest in GOFA (7.87 mg/g). The findings described herein represent the first example reported in the literature of the characterization of an oxyprenylated phenylpropanoid in honey. PMID:26421962

  17. [A Method for Determination of Migratable Fluorescent Whitening Agents in Paper Products by Dual-Wavelength UV Spectroscopy].

    PubMed

    Zhang, Shu-xin; Chai, Xin-sheng; Tian, Ying-xin; Chen, Run-quan

    2015-07-01

    The current national standard method GB/T 27741-2011, i.e., "quantitative determination of migratable fluorescent whitening agents-UV spectroscopy", overestimates the migratable fluorescent whitening agents (FWA) in the paper based products because of the spectral interference of the leached lignin from the cellulose fibers. To minimize such interference, a spectroscopic method based on dual-wavelength (305 and 348 nm) measurement was proposed. It was observed that the dual-wavelength spectroscopy can effectively subtract the spectral absorption contributed by the leached lignin in the extraction medium, thus more accurately determination of migratable FWA can be performed. The results showed that the present method has a relative standard deviation of 2.17%, the quantitative detection limit of 16.9 mg x kg(-1), and recovery of 98%-103%. Compared with the current alternative standard-HPLC method, the present method possesses advantages of low operation and maintenance costs, simple, and practical in application. Therefore, it is more suitable for the rapid determination of migratable FWA in the product quality control in the production process and sample examination in the commercial market. PMID:26717753

  18. Simultaneous determination of rivanol and mifepristone in human plasma by a HPLC-UV method with solid-phase extraction.

    PubMed

    Guo, Zhiyong; Wei, Danyi; Yin, Gengxin; Wang, Sui; Zhao, Shasha; Chu, Yun; Zhai, Jinxia

    2007-09-01

    A HPLC method with UV detection was developed and validated for the simultaneous determination of rivanol and mifepristone in human plasma. Norethisterone was used as the internal standard. Separation was performed by a C18 reversed-phase column maintained at 20 degrees C. The mobile phase was a mixture of methanol-acetonitrile-0.05% sodium dodecylsulfonate in a 0.05 M phosphate buffer with the pH adjusted to 3.0 (30:30:40, v/v/v) at a flow rate of 0.8 ml/min. Dual wavelength mode was used, with mifepristone monitored at UV 302 nm, while rivanol and norethisterone at 272 nm. A reliable biological sample pre-treatment procedure by means of solid-phase extraction was used, which allowed to obtain good extraction efficiency (>93%) for both of the analytes and the internal standard. The calibration curves were both linear with the correlation coefficient r equal to 0.9999. For rivanol, the assay gave CV% values for precision always lower than 7.8% and mean accuracy values higher than 95.3%. As to mifepristone, precision was always lower than 10.1% and mean accuracy values were higher than 93.8%. The limit of detection for the assay of rivanol and mifepristone was 1.1 and 3 ng/ml, respectively. The method is simple, sensitive and accurate, and allow for simultaneous determination of nanogram levels of rivanol and mifepristone in human plasma. It could be applied to assess the plasma level of rivanol and mifepristone in women undergoing polypharmacy with the two drugs. PMID:17689304

  19. Kinetic spectrophotometric determination of tramadol hydrochloride in pharmaceutical formulation.

    PubMed

    Abdellatef, Hisham E

    2002-07-31

    Two simple and sensitive kinetic methods for the determination of tramadol hydrochloride are described. The first method is based upon a kinetic investigation of the oxidation reaction of the drug with alkaline potassium permanganate at room temperature for a fixed time at 20 min. The absorbance of the colored manganate ions was measured at 610 nm. The second method is based on the reaction of tramadol hydrochloride with 4-chloro-7-nitrobenzofurazan (NBD-Cl) in presence of 0.1 M sodium bicarbonate. The spectrophotometric measurements were recorded by measuring the absorbance at 467 nm, at fixed time at 25 min on thermostated water bath at 90+/-1 degrees C. All variables affecting the development of the colour have been investigated and the conditions were optimised. The absorbance concentration plots in both methods were rectilinear over the range 5-25 and 50-250 microg ml(-1), for the first and second methods, respectively. The two methods have been applied successfully to commercial capsule and ampoule dosage form. The results obtained are compared statistically with those given by the reference spectrophotometric method. The determination of tramadol hydrochloride by the fixed concentration and rate constant methods is feasible with the calibration equations obtained, but the fixed time method proves to be more applicable. PMID:12093516

  20. Evaluation and Comparison of Chemiluminescence and UV Photometric Methods for Measuring Ozone Concentrations in Ambient Air

    EPA Science Inventory

    The current Federal Reference Method (FRM) for measuring concentrations of ozone in ambient air is based on the dry, gas-phase, chemiluminescence reaction between ethylene (C2H4) and any ozone (O3) that may be p...

  1. DEVELOP NEW TOTAL ORGANIC CARBON/SPECIFIC UV ABSORBANCE METHOD WITH EXPANDED QUALITY CONTROL

    EPA Science Inventory

    The purpose of this project is to provide a total organic carbon (TOC)/specific ultraviolet absorbance (SUVA) method that will be used by the Office of Ground Water and Drinking Water (OGWDW) to support monitoring requirements of the Stage 2 Disinfectant/Disinfection By-products ...

  2. A validated LC/UV method for the determination of four adulterating drugs in herbal slimming capsules.

    PubMed

    Russo, Giacomo; Barbato, Francesco; Grumetto, Lucia

    2016-01-01

    A simple LC/UV method for the simultaneous identification and quantification of Fluoxetine, Tiratricol, Benfluorex and Pseudoephedrine in slimming formulation is proposed. The method demonstrated effective in the analyses of herbal mixtures marketed in Italy as slimming capsules. Sixteen different herbal mixtures, selected among the most frequently compounded in Italian pharmacies, were tested as matrices. HPLC analyses were performed in a gradient mode on a C18 stationary phase The method was validated for accuracy, precision, linearity and selectivity. The limits of detection (LOD) were 3.4 μg/mL for Pseudoephedrine, 1.1 μg/mL for Triac, 0.9 μg/mL for Fluoxetine, and 0.8 μg/mL for Benfluorex. Repeatability and intermediate precision, expressed as percent of relative standard deviation, ranged from 3 to 7 and from 7 to 12, respectively. Given these limits, the developed method is proposed for the simple and cost effective screening of herbal products illegally adulterated with these four drugs known to enhance slimming effects. PMID:26454104

  3. Development of new UV-vis spectroscopic microwave-assisted method for determination of glucose in pharmaceutical samples.

    PubMed

    Mabood, Fazal; Hussain, Z; Haq, H; Arian, M B; Boqué, R; Khan, K M; Hussain, K; Jabeen, F; Hussain, J; Ahmed, M; Alharasi, A; Naureen, Z; Hussain, H; Khan, A; Perveen, S

    2016-01-15

    A new UV-Visible spectroscopic method assisted with microwave for the determination of glucose in pharmaceutical formulations was developed. In this study glucose solutions were oxidized by ammonium molybdate in the presence of microwave energy and reacted with aniline to produce a colored solution. Optimum conditions of the reaction including wavelength, temperature, and pH of the medium and relative concentration ratio of the reactants were investigated. It was found that the optimal wavelength for the reaction is 610 nm, the optimal reaction time is 80s, the optimal reaction temperature is 160°C, the optimal reaction pH is 4, and the optimal concentration ratio aniline/ammonium molybdate solution was found to be 1:1. The limits of detection and quantification of the method are 0.82 and 2.75 ppm for glucose solution, respectively. The use of microwaves improved the speed of the method while the use of aniline improved the sensitivity of the method by shifting the wavelength. PMID:26312738

  4. A new method for the absolute radiance calibration for UV/vis measurements of scattered sun light

    NASA Astrophysics Data System (ADS)

    Wagner, T.; Beirle, S.; Dörner, S.; Penning de Vries, M.; Remmers, J.; Rozanov, A.; Shaiganfar, R.

    2015-05-01

    Absolute radiometric calibrations are important for measurements of the atmospheric spectral radiance. Such measurements can be used to determine actinic fluxes, the properties of aerosols and clouds and the short wave energy budget. Conventional calibration methods in the laboratory are based on calibrated light sources and reflectors and are expensive, time consuming and subject to relatively large uncertainties. Also, the calibrated instruments might change during transport from the laboratory to the measurement sites. Here we present a new calibration method for UV/vis instruments that measure the spectrally resolved sky radiance, like for example zenith sky Differential Optical Absorption Spectroscopy (DOAS-) instruments or Multi-AXis (MAX-) DOAS instruments. Our method is based on the comparison of the solar zenith angle dependence of the measured zenith sky radiance with radiative transfer simulations. For the application of our method clear sky measurements during periods with almost constant aerosol optical depth are needed. The radiative transfer simulations have to take polarisation into account. We show that the calibration results are almost independent from the knowledge of the aerosol optical properties and surface albedo, which causes a rather small uncertainty of about <7%. For wavelengths below about 330 nm it is essential that the ozone column density during the measurements is constant and known.

  5. Development of new UV-vis spectroscopic microwave-assisted method for determination of glucose in pharmaceutical samples

    NASA Astrophysics Data System (ADS)

    Mabood, Fazal; Hussain, Z.; Haq, H.; Arian, M. B.; Boqué, R.; Khan, K. M.; Hussain, K.; Jabeen, F.; Hussain, J.; Ahmed, M.; Alharasi, A.; Naureen, Z.; Hussain, H.; Khan, A.; Perveen, S.

    2016-01-01

    A new UV-Visible spectroscopic method assisted with microwave for the determination of glucose in pharmaceutical formulations was developed. In this study glucose solutions were oxidized by ammonium molybdate in the presence of microwave energy and reacted with aniline to produce a colored solution. Optimum conditions of the reaction including wavelength, temperature, and pH of the medium and relative concentration ratio of the reactants were investigated. It was found that the optimal wavelength for the reaction is 610 nm, the optimal reaction time is 80 s, the optimal reaction temperature is 160 °C, the optimal reaction pH is 4, and the optimal concentration ratio aniline/ammonium molybdate solution was found to be 1:1. The limits of detection and quantification of the method are 0.82 and 2.75 ppm for glucose solution, respectively. The use of microwaves improved the speed of the method while the use of aniline improved the sensitivity of the method by shifting the wavelength.

  6. Spectrophotometric determination of sparfloxacin in pharmaceutical formulations and urine samples

    NASA Astrophysics Data System (ADS)

    Jan, M. R.; Shah, J.; Inayatullah

    2010-07-01

    A simple and sensitive spectrophotometric method has been developed for the determination of sparfloxacin in bulk and pharmaceutical formulations, and in artificial urine. Sparfloxacin was oxidized into a red colored product using ammonium monovanadate in acidic media. The proposed method was successfully applied to the determination of sparfloxacin in different pharmaceutical formulations (tablets) and in a spiked urine sample. The influence of commonly used excipients on the determination of sparfloxacin was studied. Percentage recoveries in the range of 98.0 ± 0.14 % to 100.0 ± 0.20 % were obtained. The observed data have been evaluated statistically which showed high accuracy and precision.

  7. Spectrophotometric analysis of aqueous mixtures of some chromium (III) complexes. Thesis

    NASA Technical Reports Server (NTRS)

    Stevens, G.

    1983-01-01

    Several methods of determining the relative concentrations of Cr(H2O)5C1(+2) and Cr(H2O)6(+3) are described. The three methods studied are curved resolving methods, used in evaluating spectrophotometric results, mixture results, used in verifying curve resolving techniques, and chromium analysis.

  8. Determination of metrafenone in vegetables by matrix solid-phase dispersion and HPLC-UV method.

    PubMed

    Li, Jianjun; Li, Yangyang; Xu, Dongliang; Zhang, Jingyu; Wang, Yuxi; Luo, Chao

    2017-01-01

    A simple method for determination of metrafenone in vegetables by matrix solid-phase dispersion (MSPD) and HPLC was developed. All vegetable samples were extracted with dichloromethane, and then the extracts were directly separated on a reversed-phase column with isocratic elution without a cleanup step. The linearity of metrafenone was good with the concentration between 0.005 and 5mg/kg, and the limit of detection (LOD) of the metrafenone was 0.002mg/kg. The recoveries ranged from 86.5% to 104.8% with the relative standard deviations (RSDs) in the range of 2.1-7.9% (n=6). The results indicated that the method was simple, rapid, highly sensitive and suitable for the determination of metrafenone in vegetables. PMID:27507450

  9. A method of atmospheric density measurements during Shuttle entry using UV laser Rayleigh scattering

    NASA Technical Reports Server (NTRS)

    Mckenzie, Robert L.

    1987-01-01

    A detailed study is described of the performance capabilities and the hardware requirements for a method in which ambient density is measured along the Space Shuttle flight path using on-board optical instrumentation. The technique relies on Rayleigh scattering of light from a pulsed, ultraviolet, ArF excimer laser operating at a wavelength of 193 nm. The method is shown to be capable of providing direct measurements of ambient density with an uncertainty of less than 1 percent and with a spatial resolution of 1 km, over an altitude range from 50 to 90 km. In addition, extensions of this concept are discussed that allow measurements of the shock wave location and the density profile within the shock layer. Two approaches are identified that appear to be feasible, in which the same laser system is used for the extended measurements as that required for the ambient density measurements.

  10. Determination of Ciprofloxacin in Pharmaceutical Formulations Using HPLC Method with UV Detection.

    PubMed

    Scherer, R; Pereira, Jessica; Firme, Juliete; Lemos, Mariana; Lemos, Mayara

    2014-01-01

    A simple, specific, accurate and rapid reversed phase high performance liquid chromatographic method was validated for the determination of the content of ciprofloxacin in three pharmaceuticals forms: generic, similar and compounded. The results of the validation showed that the method was highly efficient for quantification of ciprofloxacin in the matrices evaluated. The recovery rates were between 97.4 to 104.3 %, and the relative standard deviations were lower than 5 % for repeatability, and lower than 5.15 % for intermediate precision. The limits of detection, quantification and practical, were 0.11, 0.35 and 1.56 μg/ml, respectively. All compounded samples were approved with in the quality control; however, one generic and one similar sample presented above allowed level. PMID:25593388

  11. A LC/UV/Vis method for determination of cyanocobalamin in multivitamin dietary supplements with on-line sample clean-up

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A HPLC-UV method using a two-column strategy with a switching valve for on-line sample clean-up was developed for the determination of cyanocobalamin (CN-CBL-vitamin B12, in dietary supplements. The method uses two columns, an Agilent Zorbax C8 (150 mm x 4.6 mm, 5 um particle) reversed-phase column...

  12. Quantitative determination of triperpene saponins and alkenated-phenolics from Labisia pumila using LC-UV/ELSD method and confirmation by LC-ESI-TOF

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study describes the first analytical method for the determination of saponins and alkenated-phenolics from the leaves, leaves/stems and roots of Labisia pumila using a HPLC-UV-ELSD method. The separation was achieved using a reversed phase column, PDA and ELS detection, and a water/acetonitrile...

  13. Quantitative determination of triterpene saponins and alkenated-phenolics from Labisia pumila using LC-UV/ELSD method and confirmation by LC-ESI-TOF

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study describes the first analytical method for the determination of saponins and alkenated-phenolics from the leaves, leaves/stems and roots of Labisia pumila using a HPLC-UV-ELSD method. The separation was achieved using a reversed phase column, PDA and ELS detection, and a water/acetonitrile...

  14. Validated HPLC-UV method for determination of naproxen in human plasma with proven selectivity against ibuprofen and paracetamol.

    PubMed

    Filist, Monika; Szlaska, Iwona; Kaza, Michał; Pawiński, Tomasz

    2016-06-01

    Estimating the influence of interfering compounds present in the biological matrix on the determination of an analyte is one of the most important tasks during bioanalytical method development and validation. Interferences from endogenous components and, if necessary, from major metabolites as well as possible co-administered medications should be evaluated during a selectivity test. This paper describes a simple, rapid and cost-effective HPLC-UV method for the determination of naproxen in human plasma in the presence of two other analgesics, ibuprofen and paracetamol. Sample preparation is based on a simple liquid-liquid extraction procedure with a short, 5 s mixing time. Fenoprofen, which is characterized by a similar structure and properties to naproxen, was first used as the internal standard. The calibration curve is linear in the concentration range of 0.5-80.0 µg/mL, which is suitable for pharmacokinetic studies following a single 220 mg oral dose of naproxen sodium. The method was fully validated according to international guidelines and was successfully applied in a bioequivalence study in humans. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26458096

  15. Development and validation of a selective HPLC-UV method for thymol determination in skin permeation experiments.

    PubMed

    Angelo, Tamara; Pires, Felipe Q; Gelfuso, Guilherme M; da Silva, Joyce K R; Gratieri, Tais; Cunha-Filho, Marcílio S S

    2016-06-01

    Thymol is a natural monoterpene, whose antioxidant and antimicrobial properties suggest a potential use in topical formulations. A simple, precise and selective HPLC method for thymol determination in skin penetration studies was developed and validated in this paper. Separation was achieved with a RP-C18 column, mobile phase comprised of acetonitrile:water (35:65v/v), flow rate of 1.5mL/min, oven temperature at 40°C, injection volume of 30μL and UV detection at 278nm. The validation procedure certified the method was selective for thymol determination even when extracted from skin matrix extracts. It was also linear in a range from 0.5 to 15.0μg/mL, robust, precise and accurate, with recovery rates from the skin layers higher than 90%. Limits of detection and quantification were 0.05 and 0.14μg/mL, respectively. The method showed, therefore, to be adequate for use in further skin permeation studies employing thymol topical formulations. PMID:27085016

  16. Simultaneous Determination of Six Active Compounds in Yixin Badiranjibuya Granules, a Traditional Chinese Medicine, by RP-HPLC-UV Method

    PubMed Central

    Yu, Ning; He, ChenHui; Awuti, Gulistan; Zeng, Cheng; Xing, JianGuo; Huang, Wei

    2015-01-01

    In this study, a sensitive, precise, and accurate HPLC-UV method was developed and validated to simultaneously determine the six analytes (luteolin-7-O-β-D-glucuronide, apigenin-7-O-β-D-glucuronide, diosmetin-7-O-β-D-glucuronide, acacetin-7-O-β-D-glucuronide, tilianin, and rosmarinic acid) in Yixin Badiranjibuya Granules, in which five analytes (i.e., luteolin-7-O-β-D-glucuronide, apigenin-7-O-β-D-glucuronide, diosmetin-7-O-β-D-glucuronide, acacetin-7-O-β-D-glucuronide, and rosmarinic acid) were determined for the first time in Yixin Badiranjibuya Granules, the content of tilianin in Yixin Badiranjibuya Granules was reported in other literatures, and the content of tilianin in our work was higher than that of the literature reports. The quality of 11 batch samples from four different manufacturers was evaluated using the proposed determination method. The contents of the six analytes were largely different among samples from various manufacturers. Therefore, this determination method can provide a scientific basis for quality evaluation and control of Yixin Badiranjibuya Granules. PMID:26587308

  17. Study of Methods for Producing a Tunable UV Laser for Spectroscopy at 243nm.

    NASA Astrophysics Data System (ADS)

    Khademian, Ali; Shiner, David

    2002-05-01

    We are beginning an experiment to precisely measure the 1S to 2S interval in atomic tritium. A narrow bandwidth tunable source of several mW at 243nm is required. We seek methods that are less expensive and cumbersome than traditional dye or Ti Sapphire lasers. An all solid state approach has been demonstrated [Zimmermann, Vuletic, Hemmerich and Hansch, Appl. Phys. Lett. 66 p2318, 1995] using a MOPA semiconductor laser with two resonant doubling cavities using KNbO3 and BBO. We study this approach but with possible improvements using PPLN as an alternative to KNbO3 and using CLBO for doubling 486nm as an alternative to BBO. Other IR laser sources are also considered. The current status of our investigations will be presented

  18. A validated method for the determination of traces of UV filters in fish using LC-MS/MS.

    PubMed

    Meinerling, Maria; Daniels, Marion

    2006-11-01

    An analytical method for the determination of UV filter substances in fish tissue has been developed and validated using benzophenone-3, 3-(4-methylbenzylidene)-camphor, 2-ethylhexyl-2-cyano-3,3-diphenyl-2-propenoate and 2-ethylhexyl 3-(methoxyphenyl)-2-propenoate as target analytes. The fish fillets were homogenised and extracted by Soxhlet extraction. The extracts were run through a clean-up process including gel permeation chromatography followed by solid-phase extraction. Quantification of the compounds was performed using liquid chromatography with tandem mass spectrometric detection. Blank fish as well as spiked blank fish were analysed to validate the analytical method. The analytical method developed has the multiple advantages of enabling separation, simultaneous identification and quantification of each of the four selected compounds in a single run. Contamination of blank samples and abnormally high concentrations in spiked samples were avoided by taking extensive precautions during the fish preparation procedure. The method was validated in accordance with internationally accepted criteria, such as specificity, accuracy and repeatability. The combination of LC with tandem mass spectrometry ensures a high level of specificity. The accuracy of the method was reported as the mean recovery rate for the analytes in the sample matrix. Mean recoveries were in the range 86-108%. The precision is expressed as the relative standard deviation, and in all but one of the cases was 20% or below. The accuracy of the method allows residue analyses to be performed on biological matrices at ng/g levels. The determined limit of quantification for each analyte was 8 ng/g fish. For all spiking levels > or =8 ng/g, relative standard deviations were < or = 20%. PMID:17072605

  19. A validated UV-HPLC method for determination of chlorogenic acid in Lepidogrammitis drymoglossoides (Baker) Ching, Polypodiaceae

    PubMed Central

    Wen, Jiagen; Kang, Liqun; Liu, Huan; Xiao, Yiyun; Zhang, Xiuzhen; Chen, Yuxiang

    2012-01-01

    Background: Lepidogrammitis drymoglossoides (Baker) Ching (L. drymoglossoides), a member of the Polypodiaceae family, was used in the treatment of numerous diseases. However, none of the potential ingredients and the quality control methods concerning this plant medicine was pronounced. Objective: To identify chlorogenic acid (CGA) from L. drymoglossoides and develop a high performance liquid chromatography (HPLC) assay of CGA. Materials and Methods: UV, TLC, and HPLC were utilized to identify the phytochemicals of L. drymoglossoides and determine the CGA content, respectively. The HPLC conditions were as following: a Phenomenex Luna C18 (2) (250 × 4.6 mm i.d.; 5 μm particle size; 100 Å pore size) column; the mobile phase of the mixture of acetonitrile and 0.5% aqueous phosphoric acid (11.5:88.5 v/v); the flow rate of 1.0 mL/min and determination wavelength of 327 nm. Results: The proposed HPLC method has been developed and validated. The calibration curve was y = 28328x + 16610 (R2 = 0.9997). The intra-day and inter-day precision and intermediate precision were validated with the RSD less than 5%. The mean recovery rate of the method ranged from 95% to 104%, with the RSD less than 5%. The LOD and LQD values were 0.049 and 0.132 mg/L, respectively. The content of CGA in L. drymoglossoides approximately reached 0.24% (v/v) by the proposed extraction and determination methods. Conclusion: The assay method was simple, convenient, and accurate to the quantification of CGA and can be used for the quality control of the herb. PMID:22923952

  20. Kinetic spectrophotometric determination of certain cephalosporins in pharmaceutical formulations.

    PubMed

    Omar, Mahmoud A; Abdelmageed, Osama H; Attia, Tamer Z

    2009-01-01

    A simple, reliable, and sensitive kinetic spectrophotometric method was developed for determination of eight cephalosporin antibiotics, namely, Cefotaxime sodium, Cephapirin sodium, Cephradine dihydrate, Cephalexin monohydrate, Ceftazidime pentahydrate, Cefazoline sodium, Ceftriaxone sodium, and Cefuroxime sodium. The method depends on oxidation of each of studied drugs with alkaline potassium permanganate. The reaction is followed spectrophotometrically by measuring the rate of change of absorbance at 610 nm. The initial rate and fixed time (at 3 minutes) methods are utilized for construction of calibration graphs to determine the concentration of the studied drugs. The calibration graphs are linear in the concentration ranges 5-15 mug mL(-1) and 5-25 mug mL(-1) using the initial rate and fixed time methods, respectively. The results are validated statistically and checked through recovery studies. The method has been successfully applied for the determination of the studied cephalosporins in commercial dosage forms. Statistical comparisons of the results with the reference methods show the excellent agreement and indicate no significant difference in accuracy and precision. PMID:20140078

  1. Multi-state extrapolation of UV/Vis absorption spectra with QM/QM hybrid methods

    NASA Astrophysics Data System (ADS)

    Ren, Sijin; Caricato, Marco

    2016-05-01

    In this work, we present a simple approach to simulate absorption spectra from hybrid QM/QM calculations. The goal is to obtain reliable spectra for compounds that are too large to be treated efficiently at a high level of theory. The present approach is based on the extrapolation of the entire absorption spectrum obtained by individual subcalculations. Our program locates the main spectral features in each subcalculation, e.g., band peaks and shoulders, and fits them to Gaussian functions. Each Gaussian is then extrapolated with a formula similar to that of ONIOM (Our own N-layered Integrated molecular Orbital molecular Mechanics). However, information about individual excitations is not necessary so that difficult state-matching across subcalculations is avoided. This multi-state extrapolation thus requires relatively low implementation effort while affording maximum flexibility in the choice of methods to be combined in the hybrid approach. The test calculations show the efficacy and robustness of this methodology in reproducing the spectrum computed for the entire molecule at a high level of theory.

  2. Multi-state extrapolation of UV/Vis absorption spectra with QM/QM hybrid methods.

    PubMed

    Ren, Sijin; Caricato, Marco

    2016-05-14

    In this work, we present a simple approach to simulate absorption spectra from hybrid QM/QM calculations. The goal is to obtain reliable spectra for compounds that are too large to be treated efficiently at a high level of theory. The present approach is based on the extrapolation of the entire absorption spectrum obtained by individual subcalculations. Our program locates the main spectral features in each subcalculation, e.g., band peaks and shoulders, and fits them to Gaussian functions. Each Gaussian is then extrapolated with a formula similar to that of ONIOM (Our own N-layered Integrated molecular Orbital molecular Mechanics). However, information about individual excitations is not necessary so that difficult state-matching across subcalculations is avoided. This multi-state extrapolation thus requires relatively low implementation effort while affording maximum flexibility in the choice of methods to be combined in the hybrid approach. The test calculations show the efficacy and robustness of this methodology in reproducing the spectrum computed for the entire molecule at a high level of theory. PMID:27179466

  3. A Simple, Fast, Low Cost, HPLC/UV Validated Method for Determination of Flutamide: Application to Protein Binding Studies

    PubMed Central

    Esmaeilzadeh, Sara; Valizadeh, Hadi; Zakeri-Milani, Parvin

    2016-01-01

    Purpose: The main goal of this study was development of a reverse phase high performance liquid chromatography (RP-HPLC) method for flutamide quantitation which is applicable to protein binding studies. Methods: Ultrafilteration method was used for protein binding study of flutamide. For sample analysis, flutamide was extracted by a simple and low cost extraction method using diethyl ether and then was determined by HPLC/UV. Acetanilide was used as an internal standard. The chromatographic system consisted of a reversed-phase C8 column with C8 pre-column, and the mobile phase of a mixture of 29% (v/v) methanol, 38% (v/v) acetonitrile and 33% (v/v) potassium dihydrogen phosphate buffer (50 mM) with pH adjusted to 3.2. Results: Acetanilide and flutamide were eluted at 1.8 and 2.9 min, respectively. The linearity of method was confirmed in the range of 62.5-16000 ng/ml (r2 > 0.99). The limit of quantification was shown to be 62.5 ng/ml. Precision and accuracy ranges found to be (0.2-1.4%, 90-105%) and (0.2-5.3 %, 86.7-98.5 %) respectively. Acetanilide and flutamide capacity factor values of 1.35 and 2.87, tailing factor values of 1.24 and 1.07 and resolution values of 1.8 and 3.22 were obtained in accordance with ICH guidelines. Conclusion: Based on the obtained results a rapid, precise, accurate, sensitive and cost-effective analysis procedure was proposed for quantitative determination of flutamide. PMID:27478788

  4. Development and validation of an LC-UV method for the determination of sulfonamides in animal feeds.

    PubMed

    Kumar, P; Companyó, R

    2012-05-01

    A simple LC-UV method was developed for the determination of residues of eight sulfonamides (sulfachloropyridazine, sulfadiazine, sulfadimidine, sulfadoxine, sulfamethoxypyridazine, sulfaquinoxaline, sulfamethoxazole, and sulfadimethoxine) in six types of animal feed. C18, Oasis HLB, Plexa and Plexa PCX stationary phases were assessed for the clean-up step and the latter was chosen as it showed greater efficiency in the clean-up of interferences. Feed samples spiked with sulfonamides at 2 mg/kg were used to assess the trueness (recovery %) and precision of the method. Mean recovery values ranged from 47% to 66%, intra-day precision (RSD %) from 4% to 15% and inter-day precision (RSD %) from 7% to 18% in pig feed. Recoveries and intra-day precisions were also evaluated in rabbit, hen, cow, chicken and piglet feed matrices. Calibration curves with standards prepared in mobile phase and matrix-matched calibration curves were compared and the matrix effects were ascertained. The limits of detection and quantification in the feeds ranged from 74 to 265 µg/kg and from 265 to 868 µg/kg, respectively. PMID:21671426

  5. A NEW METHOD FOR CLASSIFYING FLARES OF UV Ceti TYPE STARS: DIFFERENCES BETWEEN SLOW AND FAST FLARES

    SciTech Connect

    Dal, H. A.; Evren, S.

    2010-08-15

    In this study, a new method is presented to classify flares derived from the photoelectric photometry of UV Ceti type stars. This method is based on statistical analyses using an independent samples t-test. The data used in analyses were obtained from four flare stars observed between 2004 and 2007. The total number of flares obtained in the observations of AD Leo, EV Lac, EQ Peg, and V1054 Oph is 321 in the standard Johnson U band. As a result flares can be separated into two types, slow and fast, depending on the ratio of flare decay time to flare rise time. The ratio is below 3.5 for all slow flares, while it is above 3.5 for all fast flares. Also, according to the independent samples t-test, there is a difference of about 157 s between equivalent durations of slow and fast flares. In addition, there are significant differences between amplitudes and rise times of slow and fast flares.

  6. A New Method for Classifying Flares of UV Ceti Type Stars: Differences Between Slow and Fast Flares

    NASA Astrophysics Data System (ADS)

    Dal, H. A.; Evren, S.

    2010-08-01

    In this study, a new method is presented to classify flares derived from the photoelectric photometry of UV Ceti type stars. This method is based on statistical analyses using an independent samples t-test. The data used in analyses were obtained from four flare stars observed between 2004 and 2007. The total number of flares obtained in the observations of AD Leo, EV Lac, EQ Peg, and V1054 Oph is 321 in the standard Johnson U band. As a result flares can be separated into two types, slow and fast, depending on the ratio of flare decay time to flare rise time. The ratio is below 3.5 for all slow flares, while it is above 3.5 for all fast flares. Also, according to the independent samples t-test, there is a difference of about 157 s between equivalent durations of slow and fast flares. In addition, there are significant differences between amplitudes and rise times of slow and fast flares.

  7. Miniaturized and direct spectrophotometric multi-sample analysis of trace metals in natural waters.

    PubMed

    Albendín, Gemma; López-López, José A; Pinto, Juan J

    2016-03-15

    Trends in the analysis of trace metals in natural waters are mainly based on the development of sample treatment methods to isolate and pre-concentrate the metal from the matrix in a simpler extract for further instrumental analysis. However, direct analysis is often possible using more accessible techniques such as spectrophotometry. In this case a proper ligand is required to form a complex that absorbs radiation in the ultraviolet-visible (UV-Vis) spectrum. In this sense, the hydrazone derivative, di-2-pyridylketone benzoylhydrazone (dPKBH), forms complexes with copper (Cu) and vanadium (V) that absorb light at 370 and 395 nm, respectively. Although spectrophotometric methods are considered as time- and reagent-consuming, this work focused on its miniaturization by reducing the volume of sample as well as time and cost of analysis. In both methods, a micro-amount of sample is placed into a microplate reader with a capacity for 96 samples, which can be analyzed in times ranging from 5 to 10 min. The proposed methods have been optimized using a Box-Behnken design of experiments. For Cu determination, concentration of phosphate buffer solution at pH 8.33, masking agents (ammonium fluoride and sodium citrate), and dPKBH were optimized. For V analysis, sample (pH 4.5) was obtained using acetic acid/sodium acetate buffer, and masking agents were ammonium fluoride and 1,2-cyclohexanediaminetetraacetic acid. Under optimal conditions, both methods were applied to the analysis of certified reference materials TMDA-62 (lake water), LGC-6016 (estuarine water), and LGC-6019 (river water). In all cases, results proved the accuracy of the method. PMID:26723494

  8. Spectrophotometric determination of nitrite and nitrate using phosphomolybdenum blue complex.

    PubMed

    Zatar, N A; Abu-Eid, M A; Eid, A F

    1999-11-15

    A method for spectrophotometric determination of nitrite and nitrate is described. This method is based on the reduction of phosphomolybdic acid to phosphomolybdenum blue complex by sodium sulfide. The obtained phosphomolybdenum blue complex is oxidized by the addition of nitrite and this causes a reduction in intensity of the blue color. The absolute decrease in the absorbance of the blue color or the rate of its decrease is found to be directly proportional to the amount of nitrite added. The absorbance of the phosphomolybdenum blue complex is monitored spectrophotometrically at 814 nm and related to the concentration of nitrite present. The effect of different factors such as acidity, stability of the complex, time, temperature, phosphate concentration, molybdenum concentration, sodium sulfide concentration and the tolerance amount of other ions have been reported. Maximum absorbance is at 814 nm. The range of linearity using the conventional method is 0.5-2.0 ppm with molar absorptivity of 1.1 x 10(4) l mol(-1) cm(-1). and a relative standard deviation of 2.6% for five measurements. The range of linearity using the reaction rate method is 0.2-3.6 ppm with a relative standard deviation of 2.4% for five measurements. The method is applied for determination of nitrite and nitrate in water, meat products and vegetables. PMID:18967772

  9. Dual-wavelength method and optoelectronic sensor for online monitoring of the efficiency of dialysis treatment

    NASA Astrophysics Data System (ADS)

    Vasilevsky, A. M.; Konoplev, G. A.; Stepanova, O. S.; Zemchenkov, A. Yu; Gerasimchuk, R. P.; Frorip, A.

    2015-11-01

    The absorption spectra of effluent dialysate in the ultraviolet region were investigated. A novel dual-wavelength spectrophotometric method for uric acid determination in effluent dialysate and an optoelectronic sensor based on UV LED were developed. Clinical trials of the proposed sensor were carried out in the dialysis unit of St. Petersburg Mariinsky Hospital. The relative error of measurement for the concentration of uric acid does not exceed 10%.

  10. Validation of HPLC-UV method for determination of minor glycosides contained in Stevia rebaudiana Bertoni leaves.

    PubMed

    Aranda-González, Irma; Moguel-Ordoñez, Yolanda; Betancur-Ancona, David

    2015-05-01

    Leaves of Stevia rebaudiana contain glycosides with sweetness and biological activity. However besides the major glycosides, there are other glycosides within extracts that may contribute to its activity, and therefore it is important to quantify them. In this work, an isocratic HPLC method was validated for determination of dulcoside A, steviolbioside, rebaudioside C and rebaudioside B. An HPLC method was performed using a C18 column (250 × 4.6 mm, particle size 5 µm) and a UV detector set at 210 nm. The mobile phase consisted of a 32:68 (v/v) mixture of acetonitrile and sodium phosphate buffer (10 mmol/L, pH 2.6), set to a flow rate of 1.0 mL/min. The calculated parameters were: sensitivity, linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy and precision. The calibration curves were linear over the working range 25-150 µg/mL, with coefficient of correlation of ≥0.99 and coefficient of determination of ≥0.98. The LOD was 5.68-8.81 µg/mL, while the LOQ was 17.21-26.69 µg/mL. The percentage recoveries of fortified samples were 100 ± 10% and precision, relative standard deviation, was <10%. The method validation showed accuracy, linearity and precision; therefore this method can be applied for quantitative analysis of minor steviol glycosides in S. rebaudiana leaves. PMID:25296637

  11. Spectrophotometric determination of silicon tetrahydride in the air of workplace.

    PubMed

    Gu, Na-li; Shi, Ting-ming; Zhang, Zhi-hong; Shao, Sheng-wen; Jing, Tao; Chen, Wei-hong

    2015-04-01

    A new, simple and sensitive method was developed for the determination of silicon tetrahydride in the air of workplace in this study. The alkaline resin-based spherical activated carbon was used to collect sample of silicon tetrahydride at workplace. Silicon tetrahydride was then desorbed from active carbon in 100°C hot water. After reacting with ammonium molybdate, oxalic acid and 1,2,4-trichlorobenzene alpha-naphthol amino sulfonic acid under acid condition, silicon tetrahydride was transformed into silicon molybdenum blue. The absorbance of silicon molybdenum blue was quantitatively measured at the wavelength of 680 nm. The results showed that the average sampling efficiency and desorption efficiency were 97.53% and 94.94%, respectively by this method. Detection limits were 0.054 μg/mL for the spectrophotometric method and 0.14 mg/m(3) for the determination of silicon tetrahydride in the air of workplace (sampling volume was 7.5 L). The conversion rate of silicon tetrahydride gradually decreased when storage time of samples was extended. The descent rate of sample was less than 10% when the sample was sealed for 7 days in the room temperature. It was concluded that this spectrophotometric method can be successfully used to determine silicon tetrahydride in the worksites. PMID:25877350

  12. Quantification of dissolved organic carbon at very low levels in natural ice samples by a UV-induced oxidation method.

    PubMed

    Preunkert, S; Legrand, M; Stricker, P; Bulat, S; Alekhina, I; Petit, J R; Hoffmann, H; May, B; Jourdain, B

    2011-01-15

    The study of chemical impurities trapped in solid precipitation and accumulated in polar ice sheets and high-elevation, midlatitude cold glaciers over the last several hundreds of years provides a unique way to reconstruct our changing atmosphere from the preindustrial era to the present day. Numerous ice core studies of inorganic species have already evaluated the effects of growing anthropogenic emissions of SO(2) or NO(x) on the chemical composition of the atmosphere in various regions of the world. While it was recently shown that organic species dominate the atmospheric aerosol mass, the contribution of anthropogenic emissions to their budget remains poorly understood. The study of organics in ice is at the infancy stage, and it still is difficult to draw a consistent picture of the organic content of polar ice from sparse available data. A UV oxidation method and IR quantification of CO(2) was optimized to obtain measurements of dissolved organic carbon content as low as a few ppbC. Stringent working conditions were defined to prevent contamination during the cleaning of ice. Measurements in various ice cores corresponding to preindustrial times revealed dissolved organic carbon content of less than 10 ppbC in Antarctica and up to 75 ppbC in alpine ice. PMID:21142062

  13. Liquid chromatography-UV diode-array detection method for multi-residue determination of macrolide antibiotics in sheep's milk.

    PubMed

    García-Mayor, M A; Garcinuño, R M; Fernández-Hernando, P; Durand-Alegría, J S

    2006-07-28

    A rapid, simple and sensitive liquid chromatography-UV diode-array detection method was developed for the simultaneous determination of seven macrolides (erythromycin, oleandomycin, roxithromycin, josamycin, spiramycin, tylosin and ivermectin) in sheep's milk. The column, mobile phase, temperature and flow rate were optimised to provide the best resolution of these analytes. The extraction of the antibiotic residues involves the treatment of protein-free samples with a combination of concentrated sodium hydroxide and ethyl acetate. Necessary defatting is achieved by alkaline hydrolysis. The recovery of each antibiotic was between 55% and 77%, with relative standard deviations ranging from 1% to 6.5%. The limit of quantification was 72.4 microg/kg for ivermectin, 48.3 microg/kg for roxithromycin, and 24.1 microg/kg for erythromycin, oleandomycin, spiramycin, josamycin and tylosin. The procedure was successfully used in the multi-residue determination of these macrolides at levels below the maximum concentrations legally allowed in milk samples. PMID:16682049

  14. [Rapid method for determination of furfural and 5-hydroxymethyl furfural in pre-extraction stream of biomass using UV spectroscopy].

    PubMed

    Zhang, Cui; Chai, Xin-sheng; Luo, Xiao-lin; Fu, Shi-yu; Zhan, Huai-yu

    2010-01-01

    The present paper reports a rapid method for the determination of furfural (F) and 5-hydroxymethyl furfural (HMF) in pre-extraction liquors of lignocellulosic biomass based on UV spectroscopy. In a concentrated acetic acid medium, F and HMF have an isosbestic point at 276 nm. It was found that the acidic soluble lignin in the pre-extraction sample is the major interference species in the F and HMF spectroscopic quantification However, only acidic soluble lignins have the absorption at the wavelengths above 325 nm. Based on the absorption of the acidic soluble lignins at 325 nm, their absorptions at either F or HMF absorbed wavelengths can be determined. Thus, with a simple triple-wavelength technique, both F and HMF in the pre-extraction liquors of lignocellulosic biomass can be quantified based on the spectroscopic measurement at the isosbestic point wavelength (276 nm), maximum absorption wavelength of F (272 nm) and the acid soluble lignin absorbed wavelength (325 nm). The present method does not require the hazardous organic compounds (such as phenolic compounds etc.) acting as a color reagent in the experiment. It is not only simple and rapid, but also has a good measurement precision and accuracy, with the relative standard deviations of 3.02% and 2.72%, and recoveries of 95%-107% and 96%-101%, respectively, in the F and HMF quantification. The present method is suitable for use in the research on pre-extraction hemicellulose of the lignocellulosic biomass in bio-refinery area in order to achieve a high selective sugar conversion. PMID:20302124

  15. Quantitative determination of curcuminoids from the Roots of Curcuma longa, Curcuma species and dietary supplements using an UPLC-UV-MS method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A simple, fast UPLC-UV-MS method was developed for the determination of curcuminoids from roots of Curcuma longa L., Curcuma species (C. zedoaria, C. phaecaulis, C. wenyujin and C. kwangsiensis) and dietary supplements claiming to contain C. longa. The total content of curcuminoids (curcumin, desmet...

  16. Simultaneous determination of the absolute configuration of twelve monosaccharide enantiomers from natural products in a single injection by UPLC-UV/MS method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In natural product chemistry, it is often crucial to determine sugar composition as well as the absolute configuration of each monosaccharide in glycosides. An ultra-performance liquid chromatography method using both photodiode array (PDA) and mass spectrometry detectors (UPLC-UV/MS) was developed....

  17. A simplified 96-well method for the estimation of phenolic acids and antioxidant activity from eggplant pulp extracts using UV spectral scan data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eggplant fruit is ranked amongst the top ten vegetables in terms of oxygen radical absorbance capacity due to its high phenolic acid content. The main objective of this study was to determine if a simple UV spectral analysis method can be used as a screening tool to estimate the amount of phenolic ...

  18. InfraRed Standards Used for Spectrophotometric Calibration - Application to the Medium Resolution Spectrometer of {MIRI}

    NASA Astrophysics Data System (ADS)

    Decin, L.; Bauwens, E.; Blommaert, J. A. D. L.

    2007-04-01

    One of the main ingredients in establishing the relation between input signal and output flux from a spectrometer, is the accurate determination of the {spectrophotometric calibration}. In case of spectrometers onboard satellites, the accuracy of this part of the calibration pedigree is ultimately linked to the reliability of the candidate calibrators as being fiducial. In this contribution, we deal with the spectrophotometric calibration of {infrared} spectrometers in the 2-200 μm wavelength range. We outline a general selection procedure to arrive at a set of fiducial IR calibrators, and apply the method to the Medium Resolution Spectrometer of MIRI which will be onboard the James Webb Space Telescope.

  19. Assessment of repeatability of composition of perfumed waters by high-performance liquid chromatography combined with numerical data analysis based on cluster analysis (HPLC UV/VIS - CA).

    PubMed

    Ruzik, L; Obarski, N; Papierz, A; Mojski, M

    2015-06-01

    High-performance liquid chromatography (HPLC) with UV/VIS spectrophotometric detection combined with the chemometric method of cluster analysis (CA) was used for the assessment of repeatability of composition of nine types of perfumed waters. In addition, the chromatographic method of separating components of the perfume waters under analysis was subjected to an optimization procedure. The chromatograms thus obtained were used as sources of data for the chemometric method of cluster analysis (CA). The result was a classification of a set comprising 39 perfumed water samples with a similar composition at a specified level of probability (level of agglomeration). A comparison of the classification with the manufacturer's declarations reveals a good degree of consistency and demonstrates similarity between samples in different classes. A combination of the chromatographic method with cluster analysis (HPLC UV/VIS - CA) makes it possible to quickly assess the repeatability of composition of perfumed waters at selected levels of probability. PMID:25533703

  20. A Peroxidase-linked Spectrophotometric Assay for the Detection of Monoamine Oxidase Inhibitors.

    PubMed

    Zhi, Kangkang; Yang, Zhongduo; Sheng, Jie; Shu, Zongmei; Shi, Yin

    2016-01-01

    To develop a new more accurate spectrophotometric method for detecting monoamine oxidase inhibitors from plant extracts, a series of amine substrates were selected and their ability to be oxidized by monoamine oxidase was evaluated by the HPLC method and a new substrate was used to develop a peroxidase-linked spectrophotometric assay. 4-(Trifluoromethyl) benzylamine (11) was proved to be an excellent substrate for peroxidase-linked spectrophotometric assay. Therefore, a new peroxidase-linked spectrophotometric assay was set up. The principle of the method is that the MAO converts 11 into aldehyde, ammonia and hydrogen peroxide. In the presence of peroxidase, the hydrogen peroxide will oxidize 4-aminoantipyrine into oxidised 4-aminoantipyrine which can condense with vanillic acid to give a red quinoneimine dye. The production of the quinoneimine dye was detected at 490 nm by a microplate reader. The ⊿OD value between the blank group and blank negative control group in this new method is twice as much as that in Holt's method, which enables the procedure to be more accurate and avoids the produce of false positive results. The new method will be helpful for researchers to screening monoamine oxidase inhibitors from deep-color plant extracts. PMID:27610153

  1. A Peroxidase-linked Spectrophotometric Assay for the Detection of Monoamine Oxidase Inhibitors

    PubMed Central

    Zhi, Kangkang; Yang, Zhongduo; Sheng, Jie; Shu, Zongmei; Shi, Yin

    2016-01-01

    To develop a new more accurate spectrophotometric method for detecting monoamine oxidase inhibitors from plant extracts, a series of amine substrates were selected and their ability to be oxidized by monoamine oxidase was evaluated by the HPLC method and a new substrate was used to develop a peroxidase-linked spectrophotometric assay. 4-(Trifluoromethyl) benzylamine (11) was proved to be an excellent substrate for peroxidase-linked spectrophotometric assay. Therefore, a new peroxidase-linked spectrophotometric assay was set up. The principle of the method is that the MAO converts 11 into aldehyde, ammonia and hydrogen peroxide. In the presence of peroxidase, the hydrogen peroxide will oxidize 4-aminoantipyrine into oxidised 4-aminoantipyrine which can condense with vanillic acid to give a red quinoneimine dye. The production of the quinoneimine dye was detected at 490 nm by a microplate reader. The ⊿OD value between the blank group and blank negative control group in this new method is twice as much as that in Holt’s method, which enables the procedure to be more accurate and avoids the produce of false positive results. The new method will be helpful for researchers to screening monoamine oxidase inhibitors from deep-color plant extracts. PMID:27610153

  2. Development of a Simple RP-HPLC-UV Method for Determination of Azithromycin in Bulk and Pharmaceutical Dosage forms as an Alternative to the USP Method

    PubMed Central

    Ghari, Tayebeh; Kobarfard, Farzad; Mortazavi, Seyed Alireza

    2013-01-01

    The present study was designed to develop a simple, validated liquid chromatographic method for the analysis of azithromycin in bulk and pharmaceutical dosage forms using ultraviolet detector. The best stationary phase was determined as C18 column, 5 μm, 250 mm × 4.6 mm. Mobile phase was optimized to obtain a fast and selective separation of the drug. Flow rate was 1.5 mL/min, Wavelength was set at 210 nm and the volume of each injection was 500 μL. An isocratic methanol/buffer mobile phase at the ratio of 90:10 v/v gave the best separation and resolution. The proposed method was accurate, precise, sensitive, and linear over a wide range of concentration of azithromycin. The developed method has the advantage of using UV detector compared to the USP method in which electrochemical detector has been used. The validated method was successfully applied to the determination of azithromycin in bulk and pharmaceutical dosage forms. PMID:24250672

  3. Spectrophotometric and HPLC determination of secnidazole in pharmaceutical tablets.

    PubMed

    El Wallily, A F; Abdine, H H; Razak, O A; Zamel, S

    2000-07-01

    Simple and accurate spectrophotometric and HPLC methods were developed for the determination of secnidazole in tablets dosage form. The first spectrophotometric method depends on the reduction of secnidazole molecule with zinc dust and hydrochloric acid followed by condensation with either p-dimethylaminobenzaldehyde or anisaldehyde to give colored chromogens having absorbance at 494 and 398 nm, respectively. The second method was based on the reaction of the drug with sodium nitroprusside in the presence or absence of hydroxylammonium hydrochloride. The formed colored chromogens were measured at 584 and 508 nm, respectively. The experimental conditions were optimized and Beer's law was obeyed over the applicable concentration ranges. The application of HPLC procedures depended on using either a conventional or microbore reverse-phase (C18) column along with mobile phases consisting of water and methanol (30:70), at pH of 3.5. Both techniques were applied successfully for the analysis of secnidazole in tablets form. The results obtained from both procedures were statistically compared using the Student's-t and F-variance ratio tests. PMID:10857557

  4. Accurate quantification of astaxanthin from Haematococcus crude extract spectrophotometrically

    NASA Astrophysics Data System (ADS)

    Li, Yeguang; Miao, Fengping; Geng, Yahong; Lu, Dayan; Zhang, Chengwu; Zeng, Mingtao

    2012-07-01

    The influence of alkali on astaxanthin and the optimal working wave length for measurement of astaxanthin from Haematococcus crude extract were investigated, and a spectrophotometric method for precise quantification of the astaxanthin based on the method of Boussiba et al. was established. According to Boussiba's method, alkali treatment destroys chlorophyll. However, we found that: 1) carotenoid content declined for about 25% in Haematococcus fresh cysts and up to 30% in dry powder of Haematococcus broken cysts after alkali treatment; and 2) dimethyl sulfoxide (DMSO)-extracted chlorophyll of green Haematococcus bares little absorption at 520-550 nm. Interestingly, a good linear relationship existed between absorbance at 530 nm and astaxanthin content, while an unknown interference at 540-550 nm was detected in our study. Therefore, with 530 nm as working wavelength, the alkali treatment to destroy chlorophyll was not necessary and the influence of chlorophyll, other carotenoids, and the unknown interference could be avoided. The astaxanthin contents of two samples were measured at 492 nm and 530 nm; the measured values at 530 nm were 2.617 g/100 g and 1.811 g/100 g. When compared with the measured values at 492 nm, the measured values at 530 nm decreased by 6.93% and 11.96%, respectively. The measured values at 530 nm are closer to the true astaxanthin contents in the samples. The data show that 530 nm is the most suitable wave length for spectrophotometric determination to the astaxanthin in Haematococcus crude extract.

  5. Comparison of LC-UV and LC-MS methods for simultaneous determination of teriflunomide, dimethyl fumarate and fampridine in human plasma: application to rat pharmacokinetic study.

    PubMed

    Suneetha, A; Raja, Rajeswari K

    2016-09-01

    This study describes a comparison between LC-UV and LC-MS method for the simultaneous analyses of a few disease-modifying agents of multiple sclerosis. Quantitative determination of fampridine (FAM), teriflunomide (TFM) and dimethyl fumarate (DMF) was performed in human plasma with the recovery values in the range of 85-115%. A reversed-phase high-performance liquid chromatography (HPLC) with UV as well as MS detection is used. The method utilizes an XBridge C18 silica column and a gradient elution with mobile phase consisting of ammonium formate and acetonitrile at a flow rate of 0.5 mL min(-1) . The method adequately resolves FAM, TFM and DMF within a run time of 15 min. Owing to low molecular weights, the estimation of DMF and FAM is more versatile in UV than MS detection. With LC-UV, the detection limits of FAM, TFM and DMF were 0.1, 0.05, 0.05 μg and the quantification limit for all the analytes was 1 μg. With LC-MS, the detection and quantification limits for all of the analytes were 1 and 5 ng, respectively. The two techniques were completely validated and shown to be reproducible and sensitive. They were applied to a pharmacokinetic study in rats by a single oral dose. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26849839

  6. A versatile method for analysis of saliva, plasma and urine for total thiols using HPLC with UV detection.

    PubMed

    Stachniuk, Justyna; Kubalczyk, Paweł; Furmaniak, Paulina; Głowacki, Rafał

    2016-08-01

    A simple and rapid HPLC method using 2-chloro-1-methyllepidinium tetrafluoroborate (CMLT) as a derivatization reagent was developed for simultaneous determination of homocysteine (Hcy), glutathione (GSH), γ-glutamylcysteine (γ-GluCys), cysteinylglycine (CysGly), N-acetylcysteine (NACys) and cysteine (Cys) in human saliva, plasma and urine. Separation of the analytes was achieved in just 7min using an HPLC, followed by UV detection at 355nm. Chromatographic separation was accomplished on Aeris PEPTIDE XB-C18 (150mm×4.6mm, 3.6µm) column from Phenomenex with a gradient elution: 0-4.0min, 7-30% B; 4.0-5.5min, 30-7% B; 5.5-7.5min, 7% B; (A: B, v/v); (A) 0.5% CH3COOH and (B) EtOH. Mobile phase was delivered at a flow rate 1.0mLmin(-1). Linearity in detector response for total thiols was observed over the range of 0.1-20μmolL(-1) for Hcy, GSH and γ-GluCys, 0.25-50μmolL(-1) for NACys and CysGly and 5-300 for Cys. The LOQ values for Hcy, GSH, γ-GluCys, NACys, CysGly and Cys were 0.05, 0.05, 0.10, 0.06, 0.12 and 0.08μmolL(-1), respectively. The method was successfully implemented to analysis of the samples donated by 15 apparently healthy volunteers and 10 patients. PMID:27216658

  7. Spectrophotometric total reducing sugars assay based on cupric reduction.

    PubMed

    Başkan, Kevser Sözgen; Tütem, Esma; Akyüz, Esin; Özen, Seda; Apak, Reşat

    2016-01-15

    As the concentration of reducing sugars (RS) is controlled by European legislation for certain specific food and beverages, a simple and sensitive spectrophotometric method for the determination of RS in various food products is proposed. The method is based on the reduction of Cu(II) to Cu(I) with reducing sugars in alkaline medium in the presence of 2,9-dimethyl-1,10-phenanthroline (neocuproine: Nc), followed by the formation of a colored Cu(I)-Nc charge-transfer complex. All simple sugars tested had the linear regression equations with almost equal slope values. The proposed method was successfully applied to fresh apple juice, commercial fruit juices, milk, honey and onion juice. Interference effect of phenolic compounds in plant samples was eliminated by a solid phase extraction (SPE) clean-up process. The method was proven to have higher sensitivity and precision than the widely used dinitrosalicylic acid (DNS) colorimetric method. PMID:26592591

  8. Kinetic spectrophotometric determination of ciprofloxacin in a pharmaceutical preparation.

    PubMed

    Aslan, Serap Saglik; Demir, Betul

    2010-01-01

    Two kinetic spectrophotometric methods were developed for determination of ciprofloxacin (CIP) in a pharmaceutical preparation. The methods are based on oxidation of CIP with potassium permanganate in alkaline media and measurement of the enhancement in the absorbance of manganate ion at 603 nm by spectrophotometry. The calibration graphs were constructed using the initial rate and fixed time methods. The linearity range for concentrations of CIP was found to be 4.0-20.0 microg/mL. The RSD values for intraday and interday precision were 0.05-0.50 and 0.07-0.63%, respectively. The procedures were applied successfully for determination of CIP in commercial tablets. The results compared well with those from a reference HPLC method. The proposed methods can be recommended for routine analysis of CIP in QC laboratories. PMID:20480897

  9. A continuous spectrophotometric assay and nonlinear kinetic analysis of methionine γ-lyase catalysis.

    PubMed

    Foo, Timothy C; Terentis, Andrew C; Venkatachalam, Kallidaikurichi V

    2016-08-15

    In this article, we present a new, easy-to-implement assay for methionine γ-lyase (MGL)-catalyzed γ-elimination reactions of l-methionine and its analogues that produce α-ketobutyrate (α-KB) as product. The assay employs ultraviolet-visible (UV-Vis) spectrophotometry to continuously monitor the rate of formation of α-KB by its absorbance at 315 nm. We also employ a nonlinear data analysis method that obviates the need for an "initial slope" determination, which can introduce errors when the progress curves are nonlinear. The spectrophotometric assay is validated through product analysis by (1)H NMR (nuclear magnetic resonance), which showed that under the conditions of study l-methionine (l-met) and l-methionine sulfone (l-met sulfone) substrates were converted to α-KB product with greater than 99% yield. Using this assay method, we determined for the first time the Michaelis-Menten parameters for a recombinant form of MGL from Porphyromonas gingivalis, obtaining respective kcat and Km values of 328 ± 8 min(-1) and 1.2 ± 0.1 mM for l-met γ-elimination and 2048 ± 59 min(-1) and 38 ± 2 mM for l-met sulfone γ-elimination reactions. We envisage that this assay method will be useful for determining the activity of MGL γ-elimination reactions that produce α-KB as the end product. PMID:27235171

  10. Polarographic and spectrophotometric determination of Nifuroxazide in pharmaceuticals. II. Determination of Nifuroxazide in suspensions.

    PubMed

    Szumińska, E; Cisak, A

    1990-01-01

    The properties of Ercefuryl suspensions which contain Nifuroxazide as active constituent were studied by spectrophotometry and polarography. On this basis two analytical methods for determination of Nifuroxazide content in suspensions were devised: one polarographic, based on the electrochemical reduction of the nitro-group, and a spectrophotometric, based on the absorbance measurements at 373 nm. PMID:12959248

  11. Spectrophotometric technique quantitatively determines NaMBT inhibitor in ethylene glycol-water solutions

    NASA Technical Reports Server (NTRS)

    Garrard, G. G.

    1967-01-01

    Spectrophotometric method, using a ratio-recording ultraviolet-absorption spectrophotometer, permits analysis of NaMBT in ethylene glycol-water solutions with high accuracy. It reduces analysis time, requires smaller samples, and is able to detect extremely small concentrations of mercaptobenzothiazole.

  12. Spectrophotometric Determination of Total Sulfite in White Wine Samples Using Crude Extracts from Flowers

    NASA Astrophysics Data System (ADS)

    Flora Barbosa Soares, Márlon Herbert; Ramos, Luiz Antonio; Tadeu Gomes Cavalheiro, Éder

    2002-09-01

    A didactic spectrophotometric method for determining the sulfite content in white wine samples is proposed. It is based upon a discoloring reaction between flower anthocyanins and the sulfite in basic media. Students' results obtained from iodometric data agreed well with results obtained by the proposed procedure. The use of natural dyes attracted students' interest, enhancing the learning process.

  13. A platform analytical quality by design (AQbD) approach for multiple UHPLC-UV and UHPLC-MS methods development for protein analysis.

    PubMed

    Kochling, Jianmei; Wu, Wei; Hua, Yimin; Guan, Qian; Castaneda-Merced, Juan

    2016-06-01

    A platform analytical quality by design approach for methods development is presented in this paper. This approach is not limited just to method development following the same logical Analytical quality by design (AQbD) process, it is also exploited across a range of applications in methods development with commonality in equipment and procedures. As demonstrated by the development process of 3 methods, the systematic approach strategy offers a thorough understanding of the method scientific strength. The knowledge gained from the UHPLC-UV peptide mapping method can be easily transferred to the UHPLC-MS oxidation method and the UHPLC-UV C-terminal heterogeneity methods of the same protein. In addition, the platform AQbD method development strategy ensures method robustness is built in during development. In early phases, a good method can generate reliable data for product development allowing confident decision making. Methods generated following the AQbD approach have great potential for avoiding extensive post-approval analytical method change. While in the commercial phase, high quality data ensures timely data release, reduced regulatory risk, and lowered lab operational cost. Moreover, large, reliable database and knowledge gained during AQbD method development provide strong justifications during regulatory filling for the selection of important parameters or parameter change needs for method validation, and help to justify for removal of unnecessary tests used for product specifications. PMID:27017571

  14. Comparative study on the selectivity of various spectrophotometric techniques for the determination of binary mixture of fenbendazole and rafoxanide.

    PubMed

    Saad, Ahmed S; Attia, Ali K; Alaraki, Manal S; Elzanfaly, Eman S

    2015-11-01

    Five different spectrophotometric methods were applied for simultaneous determination of fenbendazole and rafoxanide in their binary mixture; namely first derivative, derivative ratio, ratio difference, dual wavelength and H-point standard addition spectrophotometric methods. Different factors affecting each of the applied spectrophotometric methods were studied and the selectivity of the applied methods was compared. The applied methods were validated as per the ICH guidelines and good accuracy; specificity and precision were proven within the concentration range of 5-50 μg/mL for both drugs. Statistical analysis using one-way ANOVA proved no significant differences among the proposed methods for the determination of the two drugs. The proposed methods successfully determined both drugs in laboratory prepared and commercially available binary mixtures, and were found applicable for the routine analysis in quality control laboratories. PMID:26093118

  15. An online aerosol retrieval algorithm using OMI near-UV observations based on the optimal estimation method

    NASA Astrophysics Data System (ADS)

    Jeong, U.; Kim, J.; Ahn, C.; Torres, O.; Liu, X.; Bhartia, P. K.; Spurr, R. J. D.; Haffner, D.; Chance, K.; Holben, B. N.

    2015-06-01

    An online version of the OMI (Ozone Monitoring Instrument) near-ultraviolet (UV) aerosol retrieval algorithm was developed to retrieve aerosol optical thickness (AOT) and single scattering albedo (SSA) based on the optimal estimation (OE) method. Instead of using the traditional look-up tables for radiative transfer calculations, it performs online radiative transfer calculations with the Vector Linearized Discrete Ordinate Radiative Transfer (VLIDORT) model to eliminate interpolation errors and improve stability. The OE-based algorithm has the merit of providing useful estimates of uncertainties simultaneously with the inversion products. The measurements and inversion products of the Distributed Regional Aerosol Gridded Observation Network campaign in Northeast Asia (DRAGON NE-Asia 2012) were used to validate the retrieved AOT and SSA. The retrieved AOT and SSA at 388 nm have a correlation with the Aerosol Robotic Network (AERONET) products that is comparable to or better than the correlation with the operational product during the campaign. The estimated retrieval noise and smoothing error perform well in representing the envelope curve of actual biases of AOT at 388 nm between the retrieved AOT and AERONET measurements. The forward model parameter errors were analyzed separately for both AOT and SSA retrievals. The surface albedo at 388 nm, the imaginary part of the refractive index at 354 nm, and the number fine mode fraction (FMF) were found to be the most important parameters affecting the retrieval accuracy of AOT, while FMF was the most important parameter for the SSA retrieval. The additional information provided with the retrievals, including the estimated error and degrees of freedom, is expected to be valuable for future studies.

  16. An effective method of UV-oxidation of dissolved organic carbon in natural waters for radiocarbon analysis by accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Xue, Yuejun; Ge, Tiantian; Wang, Xuchen

    2015-12-01

    Radiocarbon (14C) measurement of dissolved organic carbon (DOC) is a very powerful tool to study the sources, transformation and cycling of carbon in the ocean. The technique, however, remains great challenges for complete and successful oxidation of sufficient DOC with low blanks for high precision carbon isotopic ratio analysis, largely due to the overwhelming proportion of salts and low DOC concentrations in the ocean. In this paper, we report an effective UV-Oxidation method for oxidizing DOC in natural waters for radiocarbon analysis by accelerator mass spectrometry (AMS). The UV-oxidation system and method show 95%±4% oxidation efficiency and high reproducibility for DOC in both river and seawater samples. The blanks associated with the method was also low (about 3 µg C) that is critical for 14C analysis. As a great advantage of the method, multiple water samples can be oxidized at the same time so it reduces the sample processing time substantially compared with other UV-oxidation method currently being used in other laboratories. We have used the system and method for 14C studies of DOC in rivers, estuaries, and oceanic environments and have received promise results.

  17. Ambient formic acid in southern California air: A comparison of two methods, Fourier transform infrared spectroscopy and alkaline trap-liquid chromatography with UV detection

    SciTech Connect

    Grosjean, D. ); Tuazon, E.C. ); Fujita, E. )

    1990-01-01

    Formic acid is an ubiquitous component of urban smog. Sources of formic acid in urban air include direct emissions from vehicles and in situ reaction of ozone with olefins. Ambient levels of formic acid in southern California air were first measured some 15 years ago by Hanst et al. using long-path Fourier transform infrared spectroscopy (FTIR). All subsequent studies of formic acid in the Los Angeles area have involved the use of two methods, either FTIR or collection on alkaline traps followed by gas chromatography, ion chromatography, or liquid chromatography analysis with UV detection, ATLC-UV. The Carbon Species Methods Comparison Study (CSMCS), a multilaboratory air quality study carried out in August 1986 at a southern California smog receptor site, provided an opportunity for direct field comparison of the FTIR and alkaline trap methods. The results of the comparison are presented in this brief report.

  18. Spectrophotometric evolution of Nova Delphini 2013

    NASA Astrophysics Data System (ADS)

    Tarasova, T. N.; Shakhovskoi, D. N.

    2013-09-01

    We continue spectrophotometric observations with the 2.6 m telescope of CrAO (the first results were reported in our previous telegram ATel5291). We carried out observations on August 19 and on September 1 with low resolution spectrograph (R=1000) in the wavelength interval 3300-7575A and on August 20 with high resolution echelle spectrograph (R=33000) in the wavelength interval 4300-7200A.

  19. Spectrophotometric determination of fluorine in silicate rocks

    USGS Publications Warehouse

    Peck, L.C.; Smith, V.C.

    1964-01-01

    The rock powder is sintered with a sodium carbonate flux containing zinc oxide and magnesium carbonate, the sinter-cake leached with water and the resulting solution filtered. Fluorine is separated from the acidified filtrate by steam distillation and determined spectrophotometrically by means of a zirconium-SPADNS reagent. If a multiple-unit distillation apparatus is used, 12 determinations can be completed per man-day. ?? 1964.

  20. Creating NIST-traceable Spectrophotometric Standard Stars

    NASA Astrophysics Data System (ADS)

    McGraw, John T.; Zimmer, P. C.; Stubbs, C. W.; Fraser, G. T.; Lykke, K. R.; Brown, S. W.; Woodward, J. T.; Smith, A. W.

    2010-01-01

    Though spectrophotometric standard stars enable or support thousands of astrophysical observations: 1. Fundamental calibration of stars to international standards has not been done since 1975 2. The astronomical community's fundamental standard star, Vega, is unique in that it has a debris disk and is rotating pole-on at near breakup velocity making it anything but a single-temperature, uniform surface brightness source 3. NIST has created spectrophotometric standard sources and detectors that provide sub-1% relative uncertainties allowing throughput calibration from 400nm - 1100nm 4. We have built an objective spectrometer to make standardized observations and a "clear air” lidar capable of providing sub-1% extinction measurements to correct for atmospheric extinction, the most significant systematic error in standardization. These new capabilities for directly measuring and correcting for atmospheric transmission and calibrating telescope throughput enable creation of a new generation of fundamentally calibrated standard stars. The astronomical community will certainly benefit from a new network of fundamental spectrophotometric standard stars calibrated to NIST irradiance standards. We describe the techniques and technologies required to compare optical stellar spectra to NIST calibrated detectors, and the atmospheric measurements required to correct accurately for atmospheric extinction. We discuss observations of candidate standards with V ≤ 5.5 selected from an input catalog of approximately 500 northern hemisphere stars. This project is supported by NIST Grant 60NANB9D9121 and AFRL Grant FA9451-08-C-0267.