Science.gov

Sample records for v-notch impact testing

  1. On impact testing of subsize Charpy V-notch type specimens

    SciTech Connect

    Mikhail, A.S.; Nanstad, R.K.

    1994-12-31

    The potential for using subsize specimens to determine the actual properties of reactor pressure vessel steels is receiving increasing attention for improved vessel condition monitoring that could be beneficial for light-water reactor plant-life extension. This potential is made conditional upon, on the one hand, by the possibility of cutting samples of small volume from the internal surface of the pressure vessel for determination of actual properties of the operating pressure vessel. The plant-life extension will require supplemental surveillance data that cannot be provided by the existing surveillance programs. Testing of subsize specimens manufactured from broken halves of previously tested surveillance Charpy V-notch (CVN) specimens offers an attractive means of extending existing surveillance programs. Using subsize CVN type specimens requires the establishment of a specimen geometry that is adequate to obtain a ductile-to-brittle transition curve similar to that obtained from full-size specimens. This requires the development of a correlation of transition temperature and upper-shelf toughness between subsize and full-size specimens. The present study was conducted under the Heavy-Section Steel Irradiation Program. Different published approaches to the use of subsize specimens were analyzed and five different geometries of subsize specimens were selected for testing and evaluation. The specimens were made from several types of pressure vessel steels with a wide range of yield strengths, transition temperatures, and upper-shelf energies (USEs). Effects of specimen dimensions, including depth, angle, and radius of notch have been studied. The correlation of transition temperature determined from different types of subsize specimens and the full-size specimen is presented. A new procedure for transforming data from subsize specimens was developed and is presented.

  2. Confocal microscopy?fracture reconstruction and finite element modeling characterization of local cleavage toughness in a ferritic/martensitic steel in subsized Charpy V-notch impact tests

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.; Odette, G. R.; Lucas, G. E.; Matsui, H.

    2000-12-01

    The confocal microscopy (CM)-fracture reconstruction (FR) method, coupled with scanning electron microscopy (SEM) fractography, was used to measure the critical notch deformation conditions at cleavage initiation for two subsized Charpy V-notch (CVN) specimen geometries of Japan ferritic/martensitic steel (JFMS). A new method was developed to permit FR of notched specimens. Three-dimensional finite element analysis (FEA) simulations of the notch and specimen deformation were used to estimate values of critical micro-cleavage fracture stress, σ ∗, and critical stressed area, A ∗. Since σ ∗-A ∗ is independent of size and geometry, it provides a fundamental local measure of cleavage toughness.

  3. Results of charpy V-notch impact testing of structural steel specimens irradiated at {approximately}30{degrees}C to 1 x 10{sup 16} neutrons/cm{sup 2} in a commercial reactor cavity

    SciTech Connect

    Iskander, S.K.; Stoller, R.E.

    1997-04-01

    A capsule containing Charpy V-notch (CVN) and mini-tensile specimens was irradiated at {approximately} 30{degrees}C ({approximately} 85{degrees}F) in the cavity of a commercial nuclear power plant to a fluence of 1 x 10{sup 16} neutrons/cm{sup 2} (> 1MeV). The capsule included six CVN impact specimens of archival High Flux Isotope Reactor A212 grade B ferritic steel and five CVN impact specimens of a well-studied A36 structural steel. This irradiation was part of the ongoing study of neutron-induced damage effects at the low temperature and flux experienced by reactor supports. The plant operators shut down the plant before the planned exposure was reached. The exposure of these specimens produced no significant irradiation-induced embrittlement. Of interest were the data on unirradiated specimens in the L-T orientation machined from a single plate of A36 structural steel, which is the same specification for the structural steel used in some reactor supports. The average CVN energy of five unirradiated specimens obtained from one region of the plate and tested at room temperature was {approximately} 99 J, while the energy of 11 unirradiated specimens from other locations of the same plate was 45 J, a difference of {approximately} 220%. The CVN impact energies for all 18 specimens ranged from a low of 32 J to a high of 111 J. Moreover, it appears that the University of Kansas CVN impact energy data of the unirradiated specimens at the 100-J level are shifted toward higher temperatures by about 20 K. The results were an example of the extent of scatter possible in CVN impact testing. Generic values for the CVN impact energy of A36 should be used with caution in critical applications.

  4. The evaluation of tempered martensite embrittlement in 4130 steel by instrumented charpy V-notch testing

    NASA Astrophysics Data System (ADS)

    Zia-Ebrahimi, F.; Krauss, G.

    1983-06-01

    Tempered martensite embrittlement (TME) was studied in vacuum-melted 4130 steel with either 0.002 or 0.02 wt pct P. TME was observed as a severe decrease in Charpy V-notch impact energy, from 46 ft-lb. at 200 °C to 35 ft-lb. at 300 °C in the low P alloy. The impact energy of the high P alloy was consistently lower than that of the low P alloy in all tempered conditions. Fracture was transgranular for all specimens; therefore, segregation of P to the prior austenitic grain boundaries was not a factor in the o°Currence of TME. Analysis of load-time curves obtained by instrumented Charpy testing revealed that the embrittlement is associated with a drop in the pre-maximum-load and post-unstable-fracture energies. In specimens tempered at 400 °C the deleterious effect of phosphorus on impact energy became pronounced, a result more consistent with classical temper embrittlement rather than TME. A constant decrease in pre-maximum-load energy due to phosphorus content was observed. The pre-maximum-load energy decreases with increasing tempering temperature in the range of 200 °C to 400 °C, a result explained by the change in work hardening rate. Carbon extraction replicas of polished and etched as-quenched specimens revealed the presence of Fe2MoC and/or Fe3C carbides retained after austenitizing. Ductile crack extension close to the notch root was related to the formation of fine micro voids at the retained carbides.

  5. Relationships between Charpy V-notch impact energy and fracture toughness. [PWR; BWR

    SciTech Connect

    Dougan, J.R.

    1982-03-01

    This report documents the investigation of correlations between Charpy V-notch impact energy and fracture toughness. Three distinct types of correlations were examined: (1) the Rolfe-Novak-Barsom upper-shelf correlation, (2) the hyperbolic tangent (tanh) correlation, and (3) the J-..delta..a correlation. The Rolfe-Novak-Barsom correlation is a straight line relationship between functions of the Charpy energy and the static initiation toughness, while the tanh correlation relates functions of the Charpy energy and either the static or the dynamic toughness through the use of statistically determined curve fits based on the tanh curve. The J-..delta..a correlation represents power law estimates of resistance curves in the upper-shelf temperature range.

  6. Preparation of reconstituted Charpy V-notch impact specimens for generating pressure vessel steel fracture toughness data

    SciTech Connect

    Perrin, J.S.; Fromm, E.O.; Server, W.L.; McConnell, P.E.

    1982-01-01

    The arc stud welding process has been adapted for use in producing reconstituted Charpy V-notch impact specimens. In this process, each half of a tested and fractured Charpy specimen is used as the central region of a reconstituted specimen. End tabs are joined to one half of a fractured specimen by a specially designed stud welding apparatus. SA533B-1 and SA508-2 unirradiated and irradiated pressure vessel steel specimens have been produced. Both conventional and precracked reconstituted specimen data have been produced. Both types of data have been shown to be in excellent agreement with original specimen data. The arc stud welding process can therefore be used to increase the amount of data obtainable from a limited number of specimens or to obtain Charpy data when full size specimens cannot otherwise be obtained.

  7. Effect of material rate sensitivity on failure modes in the Charpy V-notch test

    NASA Astrophysics Data System (ADS)

    Tvergaard, Viggo; Needleman, Alan

    FOR THE C HARPY V-notch test the influence of strain rate on competing failure mechanisms is analyzed numerically. The nucleation and growth of micro-voids is represented in terms of an elastic-viscoplastic constitutive model, which describes the mechanism of ductile fracture by void coalescence. Failure by cleavage is assumed to occur if the maximum principal tensile stress exceeds a certain critical value. Attention is focused on the temperature regime where the transition in fracture mode between cleavage and ductile rupture takes place. In the analyses the temperature is taken as constant and the effect of inertia is neglected, so that time dependence enters only through the material strain rate sensitivity. The material model is found to reproduce the experimentally observed change in failure mode from predominantly ductile fracture at low strain rates, to cleavage fracture at high strain rates. The numerical results show that in the transition regime, the porosity in the notch tip region plays a role in the fracture process even when failure occurs by cleavage. Once the transition of failure mode from cleavage to ductile rupture has occurred, the energy absorbed at low rates is greater than that absorbed at high rates.

  8. Use of forces from instrumented Charpy V-notch testing to determine crack-arrest toughness

    SciTech Connect

    Iskander, S.K.; Nanstad, R.K.; Sokolov, M.A.; McCabe, D.E.; Hutton, J.T.

    1996-06-01

    The objective of this investigation is an estimation of the crack-arrest toughness, particularly of irradiated materials, from voltage versus time output of an instrumented setup during a test on a Charpy V-notch (CVN) specimen. This voltage versus time trace (which can be converted to force versus displacement) displays events during fracture of the specimen. Various stages of the fracture process can be identified on the trace, including an arrest point indicating arrest of brittle fracture. The force at arrest, F{sub a}, versus test temperature, T, relationship is examined to explore possible relationships to other experimental measures of crack-arrest toughness such as the drop-weight nil-ductility temperature (NDT), or crack-arrest toughness, K{sub a}. For a wide range of weld and plate materials, the temperature at which F{sub a} = 2.45 kN correlates with NDT with a standard deviation, sigma, of about 11 K. Excluding the so-called low upper-shelf energy (USE) welds from the analysis resulted in F{sub a} = 4.12 kN and {sigma} = 6.6 K. The estimates of the correlation of the temperature for F{sub a} = 7.4 kN with the temperature at 100-MPa{radical}m level for a mean American Society of Mechanical Engineers (ASME) type K{sub Ia} curve through crack-arrest toughness values show that prediction of conservative values of K{sub a} are possible.

  9. The use of flattened specimens to measure the Charpy V-notch impact properties of thin-wall pipe

    SciTech Connect

    Williams, D.N.

    1989-12-01

    API Specification 5L, Supplemental Requirement SR5, 37th Edition, requires that Charpy V-notch (CVN) impact properties of pipe from which full size (0.394 {times} 0.394 inch) transverse specimens cannot be obtained, because of wall-thickness/pipe-diameter limitations, be measured with unflattened 2/3 size (0.263 {times} 0.394 inch) or 1/2-size (0.195 {times} 0.394) transverse specimens. Since the use of subsize specimens is known to introduce significant problems in measuring transition temperature interest has been expressed in the possibility of measuring CVN impact properties with flattened specimens to maximize specimen thickness, i.e., use full wall thickness, when subsize specimens are necessary. The present study was undertaken to examine the merit of this approach.

  10. Assessment of Ductile-to-Brittle Transition Behavior of Localized Microstructural Regions in a Friction-Stir Welded X80 Pipeline Steel with Miniaturized Charpy V-Notch Testing

    NASA Astrophysics Data System (ADS)

    Avila, Julian A.; Lucon, Enrico; Sowards, Jeffrey; Mei, Paulo Roberto; Ramirez, Antonio J.

    2016-04-01

    Friction-stir welding (FSW) is an alternative welding process for pipelines. This technology offers sound welds, good repeatability, and excellent mechanical properties. However, it is of paramount importance to determine the toughness of the welds at low temperatures in order to establish the limits of this technology. Ductile-to-brittle transition curves were generated in the present study by using a small-scale instrumented Charpy machine and miniaturized V-notch specimens (Kleinstprobe, KLST); notches were located in base metal, heat-affected, stirred, and hard zones within a FSW joint of API-5L X80 Pipeline Steel. Specimens were tested at temperatures between 77 K (-196 °C) and 298 K (25 °C). Based on the results obtained, the transition temperatures for the base material and heat-affected zone were below 173 K (-100 °C); conversely, for the stirred and hard zones, it was located around 213 K (-60 °C). Fracture surfaces were characterized and showed a ductile fracture mechanism at high impact energies and a mixture of ductile and brittle mechanisms at low impact energies.

  11. Assessment of Ductile-to-Brittle Transition Behavior of Localized Microstructural Regions in a Friction-Stir Welded X80 Pipeline Steel with Miniaturized Charpy V-Notch Testing

    NASA Astrophysics Data System (ADS)

    Avila, Julian A.; Lucon, Enrico; Sowards, Jeffrey; Mei, Paulo Roberto; Ramirez, Antonio J.

    2016-06-01

    Friction-stir welding (FSW) is an alternative welding process for pipelines. This technology offers sound welds, good repeatability, and excellent mechanical properties. However, it is of paramount importance to determine the toughness of the welds at low temperatures in order to establish the limits of this technology. Ductile-to-brittle transition curves were generated in the present study by using a small-scale instrumented Charpy machine and miniaturized V-notch specimens (Kleinstprobe, KLST); notches were located in base metal, heat-affected, stirred, and hard zones within a FSW joint of API-5L X80 Pipeline Steel. Specimens were tested at temperatures between 77 K (-196 °C) and 298 K (25 °C). Based on the results obtained, the transition temperatures for the base material and heat-affected zone were below 173 K (-100 °C); conversely, for the stirred and hard zones, it was located around 213 K (-60 °C). Fracture surfaces were characterized and showed a ductile fracture mechanism at high impact energies and a mixture of ductile and brittle mechanisms at low impact energies.

  12. Effects of oxidation on the impact energy of Hastelloy S and Hastelloy C-4 Charpy V-notch specimens heated in air at 600 to 800

    SciTech Connect

    Fullam, H.T.

    1981-01-01

    The /sup 90/SrF/sub 2/ heat source being developed at PNL utilizes a Hastelloy S or Hastelloy C-4 outer capsule having a 0.5-in.-thick wall to contain the Hastelloy C-276 inner capsule. The primary objective of the study was to demonstrate that the air oxidation of the outer capsule that could occur during heat-source service would not degrade the ductility and Charpy impact strength of the capsule below the licensing requirements given in Section 1.1. The /sup 90/SrF/sub 2/ heat source under development is intended for general-purpose use. Compatibility considerations limit the interface temperature between the /sup 90/SrF/sub 2/ and Hastelloy C-276 inner capsule to a maximum of 800/sup 0/C. The outer capsule surface temperature will be somewhat less than 800/sup 0/C, and depending on the service, may be substantially lower. The oxidation tests were therefore carried out at 600/sup 0/ to 800/sup 0/C for exposures up to 10,000h to cover the range of temperature the outer capsule might expect to encounter in service. The results showed that the oxidation of Hastelloy S and Hastelloy C-4 in air at 600/sup 0/ to 800/sup 0/C is very slow, and both alloys form adherent oxide layers that serve to protect the underlying metal. Subsurface attack of Hastelloy S and Hastelloy C-4 due to oxidation was greater than expected, considering the slow oxidation rates of the two alloys at 600/sup 0/ to 800/sup 0/C. Estimates of subsurface attack, determined from micrographs of the oxidized specimens, showed erratic results and it was impossible to assign any type of rate equation to the subsurface attack. A conservative estimate of long-term effects can be made using a linear extrapolation of the test results. There were no significant differences between the room-temperature Charpy impact energy of Hastelloy S and Hastelloy C-4 specimens oxidized in air at 600/sup 0/ to 800/sup 0/C and control specimens heated in vacuum.

  13. Crack initiation and arrest characteristics of 9% Ni steels with various Charpy v-notch energy valves

    SciTech Connect

    Nakano, Y.; Hirose, K.; Kamada, A.; Suzuki, S.

    1982-01-01

    Nine percent Ni steel, used in the construction of LNG tanks where brittle fracture can result in catastrophic damage, requires a high fracture toughness. The materials tested in this study for a steel with this property are quenched and temepred (QT), double normalized and tempered (NNT), and as rolled 9% Ni steel plates. The crack initiaton, propagation, and arrest charactristics of these plates at 103 K were studied with respect to the 2-mm V-Notch Charpy impact energy at 77 K. Among the results are 1) that the increase in the Charpy impact energy, mainly attained by reducing the sulfur content, improves the resistance to ductile crack initiation and propagation for the QT steels; 2) that the QT steels have larger crack opening displacement values than NNT and as-rolled steels even when the Charpy impact energy is the same; and 3) that all QT steels tested arrest the brittle crack that runs 350 mm in the starter section at a stress as large as 490 MPa. Chemcial composition table and test plots are given. Weldability is analyzed.

  14. Instrumented impact testing machine with reduced specimen oscillation effects

    NASA Astrophysics Data System (ADS)

    Rintamaa, R.; Ranka, K.; Wallin, K.; Ikonen, K.; Talja, H.; Kotilainen, H.; Sirkkola, E.

    1984-07-01

    A pendulum-type instrumented Charpy test apparatus based on inverted test geometry was developed. Geometry inversion reduces inertia load and specimen oscillation effects. Initial impact energy is double that of standard (300 J) impact testers, allowing the use of larger (10 x 20 x 110 mm) bend specimens than normal Charpy specimens. The rotation axis in the three point bending is nearly stationary, making COD-measurements possible. Inertia effects and specimen oscillations are compared with the conventional tester, and using an analytical finite element model for Charpy V-notch specimens. Better performance for the inverted geometry is reported.

  15. Application of computer techniques to charpy impact testing of irradiated pressure vessel steels

    SciTech Connect

    Landow, M.P.; Fromm, E.O.; Perrin, J.S.

    1982-09-01

    A Rockwell AIM 65 microcomputer has been modified to control a remote Charpy V-notch impact test machine. It controls not only handling and testing of the specimen but also transference and storage of instrumented Charpy test data. A system of electrical solenoid activated pneumatic cylinders and switches provides the interface between the computer and the test apparatus. A command language has been designated that allows the operator to command checkout, test procedure, and data storage via the computer. Automatic compliance with ASTM test procedures is built into the program.

  16. Effect of neutron irradiation on the dynamic fracture toughness behavior of the 12% Cr steel MANET-I investigated using subsize V-notch specimens

    NASA Astrophysics Data System (ADS)

    Wassilew, Christo; Ehrlich, Karl

    1992-09-01

    The effect of neutron irradiation on the dynamic fracture toughness behaviour of the 12% Cr steel MANET-I was investigated using DIN 50115-KLST, subsize, V-notch impact bend specimens (3 × 4 × 27 mm3). The microstructure of the steel was varied by employing different quenching and austenizing conditions. The specimens were irradiated in the HFR Petten at 300, 400, and 475°C to displacement damage levels as high as 5 dpaNRT. Experimental results are reported from an ongoing program aimed at determining the influence of irradiation-induced microstructural changes on the impact properties of MANET-I: the ductile-to-brittle transition temperature (DBTT), the relative fracture toughness, and the dynamic plane strain fracture toughness. Following irradiation a large increase in the DBTT and a remarkable decrease in the upper-shelf energy (USE) were observed. The changes in the properties depend strongly on the irradiation temperature. The DBTT and USE of the irradiated specimens also depend clearly on the initial microstructure of the material. The increase in DBTT and the decrease in USE are in general greater at 300 than at 400 and 475°C. Under proper conditions the instrumented impact test can be used to determine the dynamic plane strain fracture toughness K1d and the J-integral of unirradiated and irradiated materials.

  17. CALIBRATION OF A 90 DEGREE V-NOTCH WEIR USING PARAMETERS OTHER THAN UPSTREAM HEAD

    EPA Science Inventory

    Traditional calibration of 90 degrees V-Notch Weirs has involved the establishment of a head-discharge relationship where the head is measured upstream of weir drawdown effects. This parameter is often difficult to mesure in field weir installations. Two other parameters are prop...

  18. 46 CFR 54.05-16 - Production toughness testing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... successive tests between the weld metal and heat affected zone. Thus, approximately half of all weld production impact tests will be of weld metal and half of heat affected zone material. For the weld metal tests, the V-notch is to be centered between the fusion lines. For the heat affected zone tests,...

  19. 46 CFR 54.05-16 - Production toughness testing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... successive tests between the weld metal and heat affected zone. Thus, approximately half of all weld production impact tests will be of weld metal and half of heat affected zone material. For the weld metal tests, the V-notch is to be centered between the fusion lines. For the heat affected zone tests,...

  20. 46 CFR 54.05-17 - Weld toughness test acceptance criteria.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Weld toughness test acceptance criteria. 54.05-17 Section 54.05-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Toughness Tests § 54.05-17 Weld toughness test acceptance criteria. (a) For Charpy V-notch impact tests the energy absorbed in both...

  1. Low temperature impact toughness of the main gas pipeline steel after long-term degradation

    NASA Astrophysics Data System (ADS)

    Maruschak, Pavlo; Danyliuk, Iryna; Bishchak, Roman; Vuherer, Tomaž

    2014-12-01

    The correlation of microstructure, temperature and Charpy V-notch impact properties of a steel 17G1S pipeline steel was investigated in this study. Within the concept of physical mesomechanics, the dynamic failure of specimens is represented as a successive process of the loss of shear stability, which takes place at different structural/scale levels of the material. Characteristic stages are analyzed for various modes of failure, moreover, typical levels of loading and oscillation periods, etc. are determined. Relations between low temperature derived through this test, microstructures and Charpy (V-notch) toughness test results are also discussed in this paper.

  2. 46 CFR 54.05-15 - Weldment toughness tests-procedure qualifications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Weldment toughness tests-procedure qualifications. 54.05-15 Section 54.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Toughness Tests § 54.05-15 Weldment toughness tests—procedure qualifications. (a) Plate for which Charpy V-notch impact...

  3. Performance verification of impact machines for testing plastics

    SciTech Connect

    Siewert, T.A.; Vigliotti, D.P.; Dirling, L.B.; McCowan, C.N.

    1999-12-01

    Valid comparison of impact test energies reported by various organizations and over time depends on consistent performance of impact test machines. This paper investigates the influence of various specimen and test parameters on impact energies in the 1 J to 2 J range for both Charpy V-notch and Izod procedures, leading toward the identification of a suitable material for use in a program to verify machine performance. The authors investigated the influences on the absorbed energy of machine design, test material, specimen cross sectional area, and machine energy range. For comparison to published round robin data on common plastics, this study used some common metallic alloys, including those used in the international verification program for metals impact machines and in informal calibration programs of tensile machines. The alloys that were evaluated include AISI type 4340 steel, and five aluminum alloys: 2014-T6, 2024-T351, 2219-T87, 6061-T6, and 7075-T6. They found that certain metallic alloys have coefficients of variation comparable to those of the best plastics that are reported in the literature. Also, they found that the differences in absorbed energy between two designs of machines are smaller than the differences that can be attributed to the specimens alone.

  4. Effects of annealing time on the recovery of Charpy V-notch properties of irradiated high-copper weld metal

    SciTech Connect

    Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K.

    1994-12-31

    One of the options to mitigate the effects of irradiation on reactor pressure vessels is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. An important issue to be resolved is the effect on the toughness properties of reirradiating a vessel that has been annealed. This paper describes the annealing response of irradiated high-copper submerged-arc weld HSSI 73W. For this study, the weld has been annealed at 454 C (850 F) for lengths of time varying between 1 and 14 days. The Charpy V-notch 41-J (30-ft-lb) transition temperature (TT{sub 41J}) almost fully recovered for the longest period studied, but recovered to a lesser degree for the shorter periods. No significant recovery of the TT{sub 41J} was observed for a 7-day anneal at 343 C (650 F). At 454 C for the durations studied, the values of the upper-shelf impact energy of irradiated and annealed weld metal exceeded the values in the unirradiated condition. Similar behavior was observed after aging the unirradiated weld metal at 460 and 490 C for 1 week.

  5. Fracture behaviors of neutron-irradiated ferritic steels studied by the instrumented charpy impact test

    NASA Astrophysics Data System (ADS)

    Yoshida, H.; Miyata, K.; Narui, M.; Kayano, H.

    1989-12-01

    The instrumented Charpy impact test for quarter-size specimens was developed and applied to study fracture behavior of ferritic steels and a ferritic-martensitic steel (JFMS) before and after neutron irradiation. The load-deflection curves obtained for U- and V-notched specimens showed typical characteristics of fracture properties of these steels. The temperature dependence of the fracture energy ( Ef) and the failure deflection ( Df) clearly indicates ductile-brittle transition and the DBTT can be determined from the Ef and Df versus temperature curves. The V-notched specimens showed sharper transition at higher temperatures for the JFMS than the U-notched ones, where the former were sensitive to brittle fracture and the latter well demonstrated the behavior of crack propagation. For the ferritic steels the DBTTs showed low values at compositions containing approximate 8-10% Cr and the increase of the DBTT (Δ DBTT) due to irradiation also showed a similar tendency. The Δ DBTT appeared to be relatively larger for the JFMS than the ferritic steels.

  6. Toughness study of drillpipes by use of instrumented impact tests

    SciTech Connect

    Tumuluru, M.

    1987-09-01

    The toughness behavior of API Grades E and G pipe was studied by use of the instrumented impact test on Charpy V-notch specimens. This study was done at various locations in the pipes, including the upset, nonupset, and transition from upset to nonupset regions. The use of instrumented impact testing made it possible to distinguish the stage of crack initiation from that of propagation during the impact tests. The study revealed that the Grade E pipe possessed poor toughness as evidenced by the low energy values required to propagate the crack. The toughness behavior varied from upset to nonupset regions in the Grade E pipe. The Grade G pipe, on the other hand, exhibited superior toughness uniformly throughout its length as revealed by the high energy values required for crack propagation. Scanning electron microscope (SEM) and metallographic techniques were used to explain the fracture behavior of both types of pipe. The toughness of Grade E pipe, and therefore its tolerance to the presence of defects, can be improved by adopting a quench-and-temper heat treatment.

  7. Charpy V-notch properties and microstructures of narrow gap ferritic welds of a quenched and tempered steel plate

    SciTech Connect

    Powell, G.L.F.; Herfurth, G.

    1998-11-01

    Multipass welds of quenched and tempered 50-mm-thick steel plate have been deposited by a single wire narrow gap process using both gas metal arc welding (GMAW) and submerged arc welding (SAW). Of the five welds, two reported much lower Charpy V-notch (CVN) values when tested at {minus} 20 C. The CVN toughness did not correlate with either the welding process or whether the power source was pulsed or nonpulsed. The only difference in the ferritic microstructure between the two welds of low Charpy values and the three of high values was the percentage of acicular ferrite. There was no effect of the percentage of as-deposited reheated zones intersected by the Charpy notch or the microhardness of the intercellular-dendritic regions. In all welds, austenite was the microconstituent between the ferrite laths. The percentage of acicular ferrite correlated with the presence of MnO, TiO{sub 2}, {gamma} Al{sub 2}O{sub 3}, or MnO. Al{sub 2}O{sub 3} as the predominant crystalline compound in the oxide inclusions. In turn, the crystalline compound depended on the aluminum-to-titanium ratio in both the weld deposits and the oxide inclusions. In addition to the presence of less acicular ferrite, the two welds that showed lower Charpy values also reported more oxide inclusions greater than 1 {micro}m in diameter. The combination of more oxide inclusions greater than 1 {micro}m and less acicular ferrite is considered to be the explanation for the lower Charpy values.

  8. Impact Tests for Woods

    NASA Technical Reports Server (NTRS)

    1922-01-01

    Although it is well known that the strength of wood depends greatly upon the time the wood is under the load, little consideration has been given to this fact in testing materials for airplanes. Here, results are given of impact tests on clear, straight grained spruce. Transverse tests were conducted for comparison. Both Izod and Charpy impact tests were conducted. Results are given primarily in tabular and graphical form.

  9. Evaluation of Impact Properties to Forged 3CR Steel by Barkhausen Noise

    NASA Astrophysics Data System (ADS)

    Baek, Un Bong; Lee, Seok Cheol; Nahm, Seung Hoon; Nam, Young Hyun

    This paper reports that the Barkhausen noise method can be used to accurately characterize forged reactor vessels. The Charpy V-notch impact tests were conducted on the respective specimens with three different types of heat history. Various test results including fracture appearance transition temperature (FATT) were obtained. The Barkhausen noise voltage changed with heat treatment temperature (870 1000°C) and conditions (Tempered, PWHT). The fracture appearance transition temperature can be predicted using the Barkhausen noise voltage.

  10. Specimen size effects on ductile?brittle transition temperature in Charpy impact testing

    NASA Astrophysics Data System (ADS)

    Kurishita, H.; Yamamoto, T.; Narui, M.; Suwarno, H.; Yoshitake, T.; Yano, Y.; Yamazaki, M.; Matsui, H.

    2004-08-01

    One key issue for small specimen test techniques is to clarify specimen size effects on test results. In consideration of size effects on determining the ductile-to-brittle transition temperature (DBTT) in Charpy impact testing, a method to evaluate the plastic constraint loss for differently sized Charpy V-notch (CVN) specimens is proposed and applied to a ferritic-martensitic steel, 2WFK, developed by JNC. In the method, a constraint factor, α, that is an index of the plastic constraint is defined as α=σ ∗/σ y∗. Here, σ ∗ is the critical cleavage fracture stress which is a material constant and σ y∗ is the uniaxial yield stress at the DBTT at the strain rate generated in the Charpy impact test. The procedures for evaluating each of σ ∗ and σ y∗ are described and a result of σ ∗ and σ y∗, thus the value of α, is presented for different types of miniaturized and full-sized CVN specimens of 2WFK.

  11. Tensile testing and scanning electron microscope examination of Charpy impact specimens from the HFBR

    SciTech Connect

    Czajkowski, C.J.; Schuster, M.H.; Roberts, T.C.

    1990-01-01

    The Materials Technology Group of the Department of Nuclear Energy (DNE) at Brookhaven National Laboratory (BNL) has performed a fractographic examination of neutron irradiated and unirradiated Charpy V'' notch specimens which have been deformed to failure in a tensile testing apparatus. The evaluation was carried out using a scanning electron microscope (SEM) to evaluate the fracture mode. Photomicrographs were then evaluated to determine if ductile areas were present on the fracture surfaces of the specimens. The irradiated tensile tests (Charpy V'' notch configuration) showed minimum notch tensile strengths of 37.2 Ksi before failure. The unirradiated 6061 T-6 material exhibited a minimum notch tensile strength of 41.9 Ksi. 2 refs., 21 figs., 1 tab.

  12. Low temperature impact testing of welded structural wrought iron

    NASA Astrophysics Data System (ADS)

    Rogers, Zachary

    During the second half of the 19th century, structural wrought iron was commonly used in construction of bridges and other structures. Today, these remaining structures are still actively in use and may fall under the protection of historic preservation agencies. Continued use and protection leads to the need for inspection, maintenance, and repair of the wrought iron within these structures. Welding can be useful to achieve the appropriate repair, rehabilitation, or replacement of wrought iron members. There is currently very little published on modern welding techniques for historic wrought iron. There is also no pre-qualified method for this welding. The demand for welding in the repair of historic structural wrought iron has led to a line of research investigating shielded metal arc welding (SMAW) of historic wrought iron at the University of Colorado Denver. This prior research selected the weld type and other weld specifications to try and achieve a recognized specific welding procedure using modern SMAW technology and techniques. This thesis continues investigating SMAW of historic wrought iron. Specifically, this thesis addresses the toughness of these welds from analysis of the data collected from performing Charpy V-Notch (CVN) Impact Tests. Temperature was varied to observe the material response of the welds at low temperature. The wrought iron used in testing was from a historic vehicle bridge in Minnesota, USA. This area, and many other areas with wrought iron structures, can experience sustained or fluctuating temperatures far below freezing. Investigating the toughness of welds in historic wrought iron at these temperatures is necessary to fully understand material responses of the existing structures in need of maintenance and repair. It was shown that welded wrought iron is tougher and more ductile than non-welded wrought iron. In regards to toughness, welding is an acceptable repair method. Information on wrought iron, low temperature failure, welding, and impact testing is also presented in an effort to provide those writing codes and standards, designing, or working with historic structural wrought iron more data, analysis, and research based recommendations.

  13. Experimental study on the material dynamic fracture properties by Instrumented Charpy Impact test with single specimen method

    NASA Astrophysics Data System (ADS)

    Jian, F.; Fulian, D.; Chengzhong, W.

    2003-09-01

    With the determination of load-time curve recorded by Amsler/Roell RKP 450 Instrumented Charpy Impact test and based on the Newton's Second Law, Impact character of a single standard V-notch specimen of X70 pipeline steel under the low temperature -70 ^{circ}C was investigated by studying the impact energy distribution. It was revealed that maximum load point (Fm point) was not exact the dynamic crack initiation, which was detected somewhere prior and very close to Fm point by using Compliance Changing Rate method. This fact was also confirmed by Dynamic CTOD method. That is to say, Impact energy related to the Fm point (i.e. Em) consists not only the crack initiation energy Ei, but a small part of crack extension energy as well. Ratio of Ei/Em was found to be 0.90 just applicable to the material used here. Dynamic fracture toughness JJd was then estimated by modified Rice equation. Crack extension behavior and dynamic crack growth resistance curve (J-Δa) during stable crack propagation period was carefully analyzed by Key Curve method. Finally, methods for evaluating tearing module Tmat, and CTOD curve under the impact test were also briefly introduced in the paper.

  14. Small punch test evaluation of intergranular embrittlement of an alloy steel

    SciTech Connect

    Baik, J.M.; Buck, O.; Kameda, J.

    1983-12-01

    The ductile-brittle transition temperature in steel is commonly determined using Charpy V-notch impact specimens as specified by ASTM E23-81. In some specific cases, however, the use of this standardized test specimen may be impractical, if not impossible. For instance, it is well known that ferritic steels show a substantial degradation of the mechanical properties after long time exposure to an irradiation environment. Because of the increase in strength and the reduction in ductility due to neutron irradiation, the Charpy V-notch transition temperature is raised causing concern from a safety point of view. To study these radiation effects, a test specimen much smaller than the standard Charpy V-notch specimen would be extremely desirable for two reasons. First, to study neutron damage small specimens take less space within a reactor. Secondly, the damage achieved in simulation experiments, such as proton or electron accelerators, is limited to small penetration depths. Several efforts on the development of such a small test specimen, similar to that used to determine the ductility of sheet metal, as recommended by ASTM E643-78, have been described in the literature. The paper reports on correlations between small punch (SP) and Charpy V-notch (CVN) test results obtained on temper-embrittled NiCr steel. The ductile-brittle transition temperature (DBTT) with intergranular embrittlement being induced by grain boundary segregation of specific impurities was determined. The relation between test results discussed in terms of the micromechanisms of intergranular cracking. It is suggested that in radiation embrittlement investigations similar correlations may be obtained.

  15. Southern Impact Testing Alliance (SITA)

    NASA Technical Reports Server (NTRS)

    Hubbs, Whitney; Roebuck, Brian; Zwiener, Mark; Wells, Brian

    2009-01-01

    Efforts to form this Alliance began in 2008 to showcase the impact testing capabilities within the southern United States. Impact testing customers can utilize SITA partner capabilities to provide supporting data during all program phases-materials/component/ flight hardware design, development, and qualification. This approach would allow programs to reduce risk by providing low cost testing during early development to flush out possible problems before moving on to larger scale1 higher cost testing. Various SITA partners would participate in impact testing depending on program phase-materials characterization, component/subsystem characterization, full-scale system testing for qualification. SITA partners would collaborate with the customer to develop an integrated test approach during early program phases. Modeling and analysis validation can start with small-scale testing to ensure a level of confidence for the next step large or full-scale conclusive test shots. Impact Testing Facility (ITF) was established and began its research in spacecraft debris shielding in the early 1960's and played a malor role in the International Space Station debris shield development. As a result of return to flight testing after the loss of STS-107 (Columbia) MSFC ITF realized the need to expand their capabilities beyond meteoroid and space debris impact testing. MSFC partnered with the Department of Defense and academic institutions as collaborative efforts to gain and share knowledge that would benefit the Space Agency as well as the DoD. MSFC ITF current capabilities include: Hypervelocity impact testing, ballistic impact testing, and environmental impact testing.

  16. A simple procedure for synthesizing Charpy impact energy transition curves from limited test data

    SciTech Connect

    Rosenfeld, M.J.

    1996-12-31

    The importance of Charpy V-notch testing of pipe has been well established in the pipeline industry. Until now, it has been necessary to perform a number of tests in order to develop the toughness transition curve. A method is described which makes possible forecasting the full-scale toughness transition from a single subsize test datum to an acceptable degree of accuracy. This is potentially useful where historical test results or material samples available for testing are limited in quantity. Worked examples illustrating the use of the relationships are given.

  17. Bond Inspection by Impact Test

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Xiang, D.; Qin, Y.; Li, F.; Coulter, R. V.

    2010-02-01

    Kissing bond detection has been a challenging issue for NDE of bonded structures in aeronautical industry. A novel impact test technique for bond inspection has been developed, which shows great potential for kissing bond detection. The impact test employs a solenoid to produce impact forces in a bonded structure, and the induced elastic wave in the structure was picked up by an EMAT sensor, which located side by side with the solenoid. Both solenoid and EMAT sensor are integrated into a tap header that is mounted onto an automatic 2-D scanner to realize an automatic 2-D scanning. Multiple samples with artificial defects including kissing bonds and disbonds were used to test the impact test technique. The results show that those bond defects in the samples can be detected by the developed impact test technique. For comparison purpose, those samples were also tested with traditional ultrasonic C-scan.

  18. Impact strength of the uranium-6 weight percent niobium alloy between -198/sup 0/ and +200/sup 0/C

    SciTech Connect

    Anderson, R.C.

    1981-09-01

    A study was conducted to determine if a ductile-to-brittle transition wxisted for the uranium-6 wt % niobium (U-6Nb) alloy. Standard V-notched Charpy bars were made from both solution-quenched and solution-quenched and aged U-6Nb alloy and were tested between -198/sup 0/ and +200/sup 0/C. It was found that a sharp ductile-brittle transition does not exist for the alloy. A linear relationship existed between test temperature and impact strength, and the alloy retained a significant amount of impact strength even at very low temperatures. 9 figures.

  19. Research into fracture behavior of mild steel in crack-like notch impact test

    SciTech Connect

    Xiangqiao Yan; Weisheng Lei )

    1993-09-01

    Extensive researches have been done on the low-temperature brittleness of structural steels. The general features of the ductile/brittle transition in slow notch-bend are illustrated. It was demonstrated that at the temperature T[sub c][sup *], which has been named the characteristic transition temperature of low-temperature brittleness, the fracture load (P[sub t]) reaches a minimum value and the ductile/brittle transition occurs, i.e. the plastic deformation ([Delta][sub f]) becomes macroscopically measurable when test temperature is higher than T[sub c][sup *]. The primary studies also showed that the temperature T[sub c] is determined by the following equation: Q[sub max] [center dot][sigma][gamma](T[sub c][sup *]) [equals] S[infinity] where S[delta] is the characteristic cleavage stress, [sigma][sub y](T[sub c][sup *]) is the yield strength at T[sub c][sup *] and Q[sub max], the geometrical factor which is approximately equal to 1.96 for standard Charpy V - notch impact specimens (10 x 10 x 55mm) and 2.36 for specimens with a crack or a crack-like notch, respectively. This work was conducted to investigate whether the above mentioned critical condition for ductile/brittle transition at low strain rates is still valid in impact condition. The material used was a mild steel (16Mn) with 0.17wt percent carbon and 1.48wt percent manganese.

  20. Dynamic finite element analysis of precracked, notched and layered Charpy impact tests

    NASA Astrophysics Data System (ADS)

    McCoy, Jaime Heigle

    Finite element modeling of Charpy impact specimens was performed for fission reactor pressure vessel materials and fusion reactor first wall materials as follows: Dynamic finite element modeling of the fracture behavior of fatigue-precracked Charpy specimens and Charpy V-notch specimens made up of pressure vessel steels in both unirradiated and irradiated conditions was performed using ABAQUS Explicit. Predictions of the upper shelf energy of standard (full-size) Charpy specimens were calibrated using existing upper shelf energy data. Using a tensile fracture-strain based method for modeling crack extension and propagation, the calibrated material properties were used in standard and subsize Charpy V-notch models. It was found that the predicted upper shelf energies of standard and subsize specimens were in reasonable agreement with experimental data. Finite element modeling of crack extension under impact was also performed to study the suitability of layered composite structures in plasma facing and primary wall structures of fusion reactors. Dynamic crack extension and propagation are affected by the layer orientation, interfacial properties, and material properties of the layered structure. By making the proper choices in these variables, the energy at the crack tip can be dissipated in a larger volume of material or spent along the interface resulting in only partial fracture of the structure.

  1. Dynamic impact testing with servohydraulic testing machines

    NASA Astrophysics Data System (ADS)

    Bardenheier, R.; Rogers, G.

    2006-08-01

    The design concept of “Crashworthiness” requires the information on material behaviour under dynamic impact loading in order to describe and predict the crash behaviour of structures. Especially the transport related industries, like car, railway or aircraft industry, pursue the concept of lightweight design for a while now. The materials' maximum constraint during loading is pushed to permanently increasing figures. This means in terms of crashworthiness that the process of energy absorption in structures and the mechanical behaviour of materials must well understood and can be described appropriately by material models. In close cooperation with experts from various industries and research institutes Instron has developed throughout the past years a new family of servohydraulic testing machines specifically designed to cope with the dynamics of high rate testing. Main development steps are reflected versus their experimental necessities.

  2. Plane elasto-plastic analysis of v-notched plate under bending by boundary integral equation method. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Rzasnicki, W.

    1973-01-01

    A method of solution is presented, which, when applied to the elasto-plastic analysis of plates having a v-notch on one edge and subjected to pure bending, will produce stress and strain fields in much greater detail than presently available. Application of the boundary integral equation method results in two coupled Fredholm-type integral equations, subject to prescribed boundary conditions. These equations are replaced by a system of simultaneous algebraic equations and solved by a successive approximation method employing Prandtl-Reuss incremental plasticity relations. The method is first applied to number of elasto-static problems and the results compared with available solutions. Good agreement is obtained in all cases. The elasto-plastic analysis provides detailed stress and strain distributions for several cases of plates with various notch angles and notch depths. A strain hardening material is assumed and both plane strain and plane stress conditions are considered.

  3. AXAF hypervelocity impact test results

    NASA Technical Reports Server (NTRS)

    Frost, Cynthia L.; Rodriguez, Pedro I.

    1997-01-01

    Composite and honeycomb panels are commonly used for spacecraft structural components. The impact test results and analysis of six different composite and honeycomb combinations for use on the advanced X-ray astrophysics facility (AXAF) are reported. The AXAF consists of an X-ray telescope and the associated detecting devices attached to an octagonal spacecraft with an internal propulsion system. The spacecraft's structural panels and optical bench are made of two different graphite fiber reinforced polyimides or composite panels bonded to either side of an aluminum honeycomb. The instrument is required to have at least a 0.92 probability of no failure of any of the critical elements due to meteoroids and debris. In relation to the no-failure probability determination in its low earth orbit environment, hypervelocity impact testing was performed to determine the ballistic limit range and the extent of damage due to impact. The test results for a power and signal cable bundle located behind a panel are presented. Tests planned for a multilayer insulation (MLI) blanket and four types of cable bundles are discussed.

  4. Procedure improves line pipe Charpy test interpretation

    SciTech Connect

    Rosenfeld, M.J.

    1997-04-14

    The Charpy V-notch (CVN) impact test is a method of characterizing a line-pipe material`s notch toughness and resistance to fracture growth. Although CVN testing of line pipe material is routine, test results are sometimes misinterpreted because of specimen size and load rate on actual toughness transition behavior. These effects are readily accounted for by a simple mathematical procedure, offered here, which enables extrapolation of the full-scale transition curve from as little as a single subsize specimen test. This procedure is useful when the toughness transition curve is incomplete or nonexistent. Toughness data may be incomplete because the API 5L toughness test establishes minimum performance at a single temperature, which does not reveal the full transition curve. Toughness data may be nonexistent because the first requirements for toughness testing of line pipe appeared in the 16th Edition of API 5LX in 1969, and those requirements remain at the option of the purchaser today.

  5. Impact Toughness of an Isothermally Treated Zeron®100 SDSS

    NASA Astrophysics Data System (ADS)

    Calliari, Irene; Breda, Marco; Ramous, Emilio; Brunelli, Katya; Pizzo, Marco; Menapace, Cinzia

    2012-10-01

    The aim of the present study is to investigate the impact toughness of a UNS 32760 SDSS, in relation to the quantity of secondary phases precipitated after isothermal aging in the range of 850-950 °C and for different exposure times. The impact toughness has been investigated by means of instrumented impact testing, using Charpy V-notched specimens at room temperature. The impact testing results show that, for an amount of about 0.5% volume fraction of intermetallic phase, the impact toughness is reduced by over 50%. For volume fractions higher than 1.5-2%, the impact toughness is definitively compromised, and small entities of plastic deformations are enough to cause a prevailing brittle fracture mechanism. By increasing the precipitates' amounts, the fracture mechanism shows an ever more prominent brittle behavior until 6% volume fraction, exceeding which the ductile component is totally absent.

  6. High Pressure Quick Disconnect Particle Impact Tests

    NASA Technical Reports Server (NTRS)

    Rosales, Keisa R.; Stoltzfus, Joel M.

    2009-01-01

    NASA Johnson Space Center White Sands Test Facility (WSTF) performed particle impact testing to determine whether there is a particle impact ignition hazard in the quick disconnects (QDs) in the Environmental Control and Life Support System (ECLSS) on the International Space Station (ISS). Testing included standard supersonic and subsonic particle impact tests on 15-5 PH stainless steel, as well as tests performed on a QD simulator. This paper summarizes the particle impact tests completed at WSTF. Although there was an ignition in Test Series 4, it was determined the ignition was caused by the presence of a machining imperfection. The sum of all the test results indicates that there is no particle impact ignition hazard in the ISS ECLSS QDs. KEYWORDS: quick disconnect, high pressure, particle impact testing, stainless steel

  7. Charpy impact test results on five materials and NIST verification specimens using instrumented 2-mm and 8-mm strikers

    SciTech Connect

    Nanstad, R.K.; Sokolov, M.A.

    1995-04-01

    The Heavy-Section Steel Irradiation Program at Oak Ridge National Laboratory is involved in two cooperative projects, with international participants, both of which involve Charpy V-notch impact tests with instrumented strikers of 2mm and 8mm radii. Two heats of A 533 grade B class I pressure vessel steel and a low upper-shelf (LUS) submerged-arc (SA) weld were tested on the same Charpy machine, while one heat of a Russian Cr-Mo-V forging steel and a high upper-shelf (HUS) SA weld were tested on two different machines. The number of replicate tests at any one temperature ranged from 2 to 46 specimens. Prior to testing with each striker, verification specimens at the low, high, and super high energy levels from the National Institute of Standards and Technology (NIST) were tested. In the two series of verification tests, the tests with the 2mm striker met the requirements at the low and high energy levels but not at the super high energy. For one plate, the 2mm striker showed somewhat higher average absorbed energies than those for the 8-mm striker at all three test temperatures. For the second plate and the LUS weld, however, the 2mm striker showed somewhat lower energies at both test temperatures. For the Russian forging steel and the HUS weld, tests were conducted over a range of temperatures with tests at one laboratory using the 8mm striker and tests at a second laboratory using the 2mm striker. Lateral expansion was measured for all specimens and the results are compared with the absorbed energy results. The overall results showed generally good agreement (within one standard deviation) in energy measurements by the two strikers. Load-time traces from the instrumented strikers were also compared and used to estimate shear fracture percentage. Four different formulas from the European Structural Integrity Society draft standard for instrumented Charpy test are compared and a new formula is proposed for estimation of percent shear from the force-time trace.

  8. Effect of low temperatures on charpy impact toughness of austempered ductile irons

    NASA Astrophysics Data System (ADS)

    Riabov, Mikhail V.; Lerner, Yury S.; Fahmy, Mohammed F.

    2002-10-01

    Impact properties of standard American Society for Testing Materials (ASTM) grades of austempered ductile iron (ADI) were evaluated at subzero temperatures in unnotched and V-notched conditions and compared with ferritic and pearlitic grades of ductile irons (DIs). It was determined that there is a decrease in impact toughness for all ADI grades when there is a decrease in content of retained austenite and a decrease in test temperature, from room temperature (RT) to -60 °C. However, the difference in impact toughness values was not so noticeable for low retained austenite containing grade 5 ADI at both room and subzero temperatures as it was for ADI grade 1. Furthermore, the difference in impact toughness values of V-notched specimens of ADI grades 1 and 5 tested at -40 °C was minimal. The impact behaviors of ADI grade 5 and ferritic DI were found to be more stable than those of ADI grades 1, 2, 3, and 4 and pearlitic DI when the testing temperature was decreased. The impact toughness of ferritic DI was higher than that of ADI grades 1 and 2 at both -40 °C and -60 °C. The impact properties of ADI grades 4 and 5 were found to be higher than that of pearlitic DI at both -40 °C and -60 °C. The scanning electron microscopy (SEM) study of fracture surfaces revealed mixed ductile and quasicleavage rupture morphology types in all ADI samples tested at both -40 °C and -60 °C. With decreasing content of retained austenite and ductility, the number of quasicleavage facets increased from ADI grade 1-5. It was also found that fracture morphology of ADI did not experience significant changes when the testing temperature decreased. Evaluation of the bending angle was used to support impact-testing data. Designers and users of ADI castings may use the data developed in this research as a reference.

  9. A study of the fracture process and factors that control toughness variability in Charpy V-notch specimens

    NASA Astrophysics Data System (ADS)

    Bouchard, Real

    La presente etude a ete initiee pour developper une comprehension quantitative du processus de rupture avec les facteurs qui controlent la dispersion des mesures de tenacite lorsque des eprouvettes Charpy entaillees en V sont utilisees. Un grand nombre d'essais ont ete realises pour un acier C-Mn: eprouvettes Charpy testees sous impact, eprouvettes Charpy testees en flexion lente, eprouvettes axisymetriques entaillees et sollicitees en traction et essais de tenacite sur eprouvettes prefissurees. Base sur le concept de la statistique de Weibull, l'approche locale developpee par le groupe Beremin a ete utilisee pour decrire la probabilite de rupture par clivage en fonction de la contrainte appliquee aussi bien qu'en fonction de l'energie Charpy obtenue. Le calcul par elements finis a ete realise pour determiner la distribution de la deformation et des contraintes en pointe d'entaille et de fissure. La nouvelle approche introduite decrit bien les resultats experimentaux. Les points d'initiation du clivage ont ete identifies au MEB et par la suite, avec la technique de faisceau d'ions focalise, sectionnes, polis et examines. L'examen de la microstructure sous le point d'initiation revele clairement que le clivage s'initie par un mecanisme d'empilement de dislocations ou les dislocations sont arretees aux joints de grain, aux interfaces de perlite/ferrite ou de perlite qui agissent comme barrieres physiques.

  10. 30 CFR 7.46 - Impact test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Impact test. 7.46 Section 7.46 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.46 Impact test. (a) Test... individual cells. At the test temperature range of 65 °F -80 °F (18.3 °C-26.7 °C), apply a dynamic force...

  11. 30 CFR 7.46 - Impact test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Impact test. 7.46 Section 7.46 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.46 Impact test. (a) Test... individual cells. At the test temperature range of 65 °F -80 °F (18.3 °C-26.7 °C), apply a dynamic force...

  12. Hypervelocity impact testing of cables

    NASA Technical Reports Server (NTRS)

    Jex, D. W.; Adkinson, A. B.; English, J. E.; Linebaugh, C. E.

    1973-01-01

    The physics and electrical results obtained from simulated micrometeoroid testing of certain Skylab cables are presented. The test procedure, electrical circuits, test equipment, and cable types utilized are also explained.

  13. Light-weight radioisotope heater impact tests

    SciTech Connect

    Reimus, M.A.H.; Rinehart, G.H.; Herrera, A.

    1998-12-31

    The light-weight radioisotope heater unit (LWRHU) is a {sup 238}PuO{sub 2}-fueled heat source designed to provide one thermal watt in each of various locations on a spacecraft. Los Alamos National Laboratory designed, fabricated, and safety tested the LWRHU. The heat source consists of a hot-pressed {sup 238}PuO{sub 2} fuel pellet, a Pt-30Rh vented capsule, a pyrolytic graphite insulator, and a fineweave-pierced fabric graphite aeroshell assembly. To compare the performance of the LWRHUs fabricated for the Cassini mission with the performance of those fabricated for the Galileo mission, and to determine a failure threshold, two types of impact tests were conducted. A post-reentry impact test was performed on one of 180 flight-quality units produced for the Cassini mission and a series of sequential impact tests using simulant-fueled LWRHU capsules were conducted respectively. The results showed that deformation and fuel containment of the impacted Cassini LWRHU was similar to that of a previously tested Galileo LWRHU. Both units sustained minimal deformation of the aeroshell and fueled capsule; the fuel was entirely contained by the platinum capsule. Sequential impacting, in both end-on and side-on orientations, resulted in increased damage with each subsequent impact. Sequential impacting of the LWRHU appears to result in slightly greater damage than a single impact at the final impact velocity of 50 m/s.

  14. Water impact shock test system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The basic objective was to design, manufacture, and install a shock test system which, in part, would have the ability to subject test articles weighing up to 1,000 pounds to both half sine and/or full sine pulses having peak levels of up to 50 G's with half sine pulse durations of 100 milliseconds or full sine period duration of 200 milliseconds. The tolerances associated with the aforementioned pulses were +20% and -10% for the peak levels and plus or minus 10% for the pulse durations. The subject shock test system was to be capable of accepting test article sizes of up to 4 feet by 4 feet mounting surface by 4 feet in length.

  15. Impact Testing of Stainless Steel Materials

    SciTech Connect

    R. K. Blandford; D. K. Morton; T. E. Rahl; S. D. Snow

    2005-07-01

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates (10 to 200 per second) during accidental drop events. Mechanical characteristics of these materials under dynamic (impact) loads in the strain rate range of concern are not well documented. The goal of the work presented in this paper was to improve understanding of moderate strain rate phenomena on these materials. Utilizing a drop-weight impact test machine and relatively large test specimens (1/2-inch thick), initial test efforts focused on the tensile behavior of specific stainless steel materials during impact loading. Impact tests of 304L and 316L stainless steel test specimens at two different strain rates, 25 per second (304L and 316L material) and 50 per second (304L material) were performed for comparison to their quasi-static tensile test properties. Elevated strain rate stress-strain curves for the two materials were determined using the impact test machine and a “total impact energy” approach. This approach considered the deformation energy required to strain the specimens at a given strain rate. The material data developed was then utilized in analytical simulations to validate the final elevated stress-strain curves. The procedures used during testing and the results obtained are described in this paper.

  16. 30 CFR 7.46 - Impact test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.46 Impact test. (a) Test... at 122 °F (50 °C) for a period of 48 hours. (2) Mount the covers on a battery box of the same design with which the covers are to be approved, including any support blocks, with the battery...

  17. Dynamic fracture toughness and Charpy impact properties of an AISI 403 martensitic stainless steel

    NASA Astrophysics Data System (ADS)

    Sreenivasan, P. R.; Ray, S. K.; Mannan, S. L.; Rodriguez, P.

    1996-04-01

    Dynamic fracture toughness and Charpy impact properties of a normalised and tempered AISI 403 martensitic stainless steel obtained from instrumented impact tests are presented. Procedures for estimating dynamic fracture toughness ( KId) from the load-time traces obtained in instrumented tests of unprecracked Charpy V-notch (CVN) specimens are considered. The estimated KId values show reasonable agreement with those obtained from instrumented drop-weight and precracked Charpy tests. Also, except in the upper transition and uppershelf regions, the ASME KIR curve is generally conservative (i.e. gives lower KId values) when compared to the above KId estimates. The conservatism of the ASME KIR at the upper transition and uppershelf temperatures needs verification/validation. The lowest KId values estimated at the lower shelf temperatures for the above steel, namely, 33-42 MPa√m are in good agreement with the reported values of 35-50 MPa√m for the same steel in the literature.

  18. Fracture toughness and Charpy impact properties of several RAFMS before and after irradiation in HFIR

    NASA Astrophysics Data System (ADS)

    Sokolov, M. A.; Tanigawa, H.; Odette, G. R.; Shiba, K.; Klueh, R. L.

    2007-08-01

    As part of the development of candidate reduced-activation ferritic steels for fusion applications, several steels, namely F82H, 9Cr-2WVTa steels and F82H weld metal, are being investigated in the joint DOE-JAEA collaboration program. Within this program, three capsules containing a variety of specimen designs were irradiated at two design temperatures in the ORNL High Flux Isotope Reactor (HFIR). Two capsules, RB-11J and RB-12J, were irradiated in the HFIR removable beryllium positions with europium oxide (Eu 2O 3) thermal neutron shields in place. Specimens were irradiated up to 5 dpa. Capsule JP25 was irradiated in the HFIR target position to 20 dpa. The design temperatures were 300 °C and 500 °C. Precracked third-sized V-notch Charpy (3.3 × 3.3 × 25.4 mm) and 0.18 T DC(T) specimens were tested to determine transition and ductile shelf fracture toughness before and after irradiation. The master curve methodology was applied to evaluate the fracture toughness transition temperature, T0. Irradiation induced shifts of T0 and reductions of JQ were compared with Charpy V-notch impact properties. Fracture toughness and Charpy shifts were also compared to hardening results.

  19. Permeability After Impact Testing of Composite Laminates

    NASA Technical Reports Server (NTRS)

    Nettles, A.T.; Munafo, Paul (Technical Monitor)

    2002-01-01

    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, an understanding of their permeance is needed. A foreign object impact event can cause a localized area of permeability (leakage) in a polymer matrix composite and it is the aim of this study to assess a method of quantifying permeability-after-impact results. A simple test apparatus is presented and variables that could affect the measured values of permeability-after-impact were assessed. Once it was determined that valid numbers were being measured, a fiber/resin system was impacted at various impact levels and the resulting permeability measured, first with a leak check solution (qualitative) then using the new apparatus (quantitative). The results showed that as the impact level increased, so did the measured leakage. As the pressure to the specimen was increased, the leak rate was seen to increase in a non-linear fashion for almost all of the specimens tested.

  20. Permeability After Impact Testing of Composite Laminates

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.

    2003-01-01

    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, an understanding of their permeance is needed. A foreign object impact event can cause a localized area of permeability (leakage) in a polymer matrix composite and it is the aim of this study to assess a method of quantifying permeability-after-impact results. A simple test apparatus is presented and variables that could affect the measured values of permeability-after-impact were assessed. Once it was determined that valid numbers were being measured, a fiber/resin system was impacted at various impact levels and the resulting permeability measured, first with a leak check solution (qualitative) then using the new apparatus (quantitative). The results showed that as the impact level increased, so did the measured leakage. As the pressure to the specimen was increased, the leak rate was seen to increase in a non-linear fashion for almost all of the specimens tested.

  1. Impact testing of textile composite materials

    NASA Technical Reports Server (NTRS)

    Portanova, Marc

    1995-01-01

    The objectives of this report were to evaluate the impact damage resistance and damage tolerance of a variety of textile composite materials. Static indentation and impact tests were performed on the stitched and unstitched uniweave composites constructed from AS4/3501-6 Carbon/Epoxy with a fiberglass yarn woven in to hold the fibers together while being stitched. Compression and tension were measured after the tests to determine the damage resistance, residual strength and the damage tolerance of the specimens.

  2. Hypervelocity impact testing of spacecraft optical sensors

    SciTech Connect

    1995-07-01

    Hypervelocity tests of spacecraft optical sensors were conducted to determine if the optical signature from an impact inside the optical sensor sunshade resembled signals that have been observed on-orbit. Impact tests were conducted in darkness and with the ejected debris illuminated. The tests were conducted at the Johnson Space Center Hypervelocity Impact Test Facility. The projectile masses and velocities that may be obtained at the facility are most representative of the hypervelocity particles thought to be responsible for a group of anomalous optical sensors responses that have been observed on-orbit. The projectiles are a few micrograms, slightly more massive than the microgram particles thought to be responsible for the signal source. The test velocities were typically 7.3 km/s, which are somewhat slower than typical space particles.

  3. Tests of the Giant Impact Hypothesis

    NASA Technical Reports Server (NTRS)

    Jones, J. H.

    1998-01-01

    The giant impact hypothesis has gained popularity as a means of explaining a volatile-depleted Moon that still has a chemical affinity to the Earth. As Taylor's Axiom decrees, the best models of lunar origin are testable, but this is difficult with the giant impact model. The energy associated with the impact would be sufficient to totally melt and partially vaporize the Earth. And this means that there should he no geological vestige of Barber times. Accordingly, it is important to devise tests that may be used to evaluate the giant impact hypothesis. Three such tests are discussed here. None of these is supportive of the giant impact model, but neither do they disprove it.

  4. The Negative Impact of Testing Writing Skills

    ERIC Educational Resources Information Center

    Thomas, Paul

    2004-01-01

    New writing components in standardized tests can have negative impact on classroom writing skills. Some of the steps that an educator should take in order to improve writing instruction when a standardized test fails to address the needs of the students and schools are described.

  5. FOD impact testing of composite fan blades

    NASA Technical Reports Server (NTRS)

    Johns, R. H.

    1974-01-01

    The results of impact tests on large, fiber composite fan blades for aircraft turbofan engine applications are discussed. Solid composite blades of two different sizes and designs were tested. Both graphite/epoxy and boron/epoxy were evaluated. In addition, a spar-shell blade design was tested that had a boron/epoxy shell bonded to a titanium spar. All blades were tested one at a time in a rotating arm rig to simulate engine operating conditions. Impacting media included small gravel, two inch diameter ice balls, gelatin and RTV foam-simulated birds, as well as starlings and pigeons. The results showed little difference in performance between the graphite and boron/epoxy blades. The results also indicate that composite blades may be able to tolerate ice ball and small bird impacts but need improvement to tolerate birds in the small duck and larger category.

  6. Impact testing on composite fan blades

    NASA Technical Reports Server (NTRS)

    Johns, R. H.

    1974-01-01

    The results of impact tests on large, fiber composite fan blades for aircraft turbofan engine applications are discussed. Solid composite blades of two different sizes and designs were tested. Both graphite/epoxy and boron/epoxy were evaluated. In addition, a spar-shell blade design was tested that had a boron/epoxy shell bonded to a titanium spar. All blades were tested one at a time in a rotating arm rig to simulate engine operating conditions. Impacting media included small gravel, two inch diameter ice balls, gelatin and RTV foam-simulated birds, as well as starlings and pigeons. The results showed little difference in performance between the graphite and boron/epoxy blades. The results also indicate that composite blades may be able to tolerate ice ball and small bird impacts but need improvement to tolerate birds in the small duck and larger category.

  7. FOD impact testing of composite fan blades

    NASA Technical Reports Server (NTRS)

    Johns, R. H.

    1974-01-01

    The results of impact tests on large, fiber composite fan blades for aircraft turbofan engine applications are discussed. Solid composite blades of two different sizes and designs were tested. Both graphite/epoxy and boron/epoxy were evaluated. In addition, a spar-shell blade design was tested that had a boron/epoxy shell bonded to a titanium spar. All blades were tested one at a time in a rotating arm rig to simulate engine operating conditions. Impacting media included small gravel, two inch diameter ice balls, gelatin, and RTV foam-simulated birds, as well as starlings and pigeons. The results showed little difference in performance between the graphite and boron/epoxy blades. The results also indicate that composite blades may be able to tolerate ice ball and small bird impacts but need improvement to tolerate birds in the small duck and larger category.

  8. Mechanical Impact Testing: A Statistical Measurement

    NASA Technical Reports Server (NTRS)

    Engel, Carl D.; Herald, Stephen D.; Davis, S. Eddie

    2005-01-01

    In the decades since the 1950s, when NASA first developed mechanical impact testing of materials, researchers have continued efforts to gain a better understanding of the chemical, mechanical, and thermodynamic nature of the phenomenon. The impact mechanism is a real combustion ignition mechanism that needs understanding in the design of an oxygen system. The use of test data from this test method has been questioned due to lack of a clear method of application of the data and variability found between tests, material batches, and facilities. This effort explores a large database that has accumulated over a number of years and explores its overall nature. Moreover, testing was performed to determine the statistical nature of the test procedure to help establish sample size guidelines for material characterization. The current method of determining a pass/fail criterion based on either light emission or sound report or material charring is questioned.

  9. Defense Waste Processing Facility canister impact testing

    SciTech Connect

    Olson, K.M.; Alzheimer, J.M.

    1989-09-01

    This report summarizes impact testing of seven Defense Waste Processing Facility (DWPF) high level waste canisters during FY 1988. Impact testing was conducted to demonstrate compliance of DWPF canisters with the drop test specification of the Waste Acceptance Preliminary Specification. The prototypical stainless steel canisters were filled with simulated waste to about 85% capacity at Savannah River Laboratory (SRL). They were received from SRL in April 1988. Each canister was approximately 300 cm (9 ft 10 in.) long, and 61 cm (2 ft) in diameter, and weighed about 2150 kg (4740 lb). Each canister was dropped twice from a height of 7 m (23 ft). The first drop was a vertical bottom impact where the bottom of the canister was oriented parallel to the impact pad. The second was a center-of-gravity-over-the-corner top impact. Procedures used to examine the canisters were the application and analysis of strain circles, helium leak testing, dye penetrant examination, and canister dimensional measurements. 39 refs., 39 figs., 11 tabs.

  10. Simulated void-box-capsule Charpy impact test results. Final report. Volume 5

    SciTech Connect

    Perrin, J.S.; McConnell, P.; Sheckherd, J.W.; Wullaert, R.A.

    1986-08-01

    The purpose of the program was to determine the effect of irradiation, if any, on the Charpy V-notch impact behavior of a series of materials at a relatively low fluence. The materials included two base metal and two weld metal conditions of A537-2 of direct relevance to neutron shield tanks. Also included were A36 and A516, materials used in support structures. Other materials included A540 and A508. A capsule containing HEDL neutron dosimeters and Fracture Control Corporation (FCC) Charpy impact specimens of each of the materials was irradiated at the Oak Ridge National Laboratory Pool Side Facility. The void box chamber containing the capsule flooded with water early in the irradiation period, resulting in actual fluence values far below the original low target fluence. Seven of the eight materials showed essentially no shift in the Charpy curves or drop in the upper shelf energy levels. One of the eight materials, the bulk weld material, showed an apparent increase in the transition temperature region of the curve to higher temperature, and a possible drop in the upper shelf energy level.

  11. Impact Landing Dynamics Facility Crash Test

    NASA Technical Reports Server (NTRS)

    1975-01-01

    By 1972 the Lunar Landing Research Facility was no longer in use for its original purpose. The 400-foot high structure was swiftly modified to allow engineers to study the dynamics of aircraft crashes. 'The Impact Dynamics Research Facility is used to conduct crash testing of full-scale aircraft under controlled conditions. The aircraft are swung by cables from an A-frame structure that is approximately 400 ft. long and 230 foot high. The impact runway can be modified to simulate other grand crash environments, such as packed dirt, to meet a specific test requirement.' 'In 1972, NASA and the FAA embarked on a cooperative effort to develop technology for improved crashworthiness and passenger survivability in general aviation aircraft with little or no increase in weight and acceptable cost. Since then, NASA has 'crashed' dozens of GA aircraft by using the lunar excursion module (LEM) facility originally built for the Apollo program.' This photograph shows Crash Test No. 7.

  12. Impact sensitivity test of liquid explosives

    NASA Astrophysics Data System (ADS)

    Tiutiaev, Andrei; Trebunskih, Valeri; Dolzhikov, Andrei; Zvereva, Irina

    2015-06-01

    The sensitivity of liquid explosive in the presence of gas bubbles increases many times as compared with the liquid without gas bubbles. If we consider that in the liquid as a result of convection, wave motion, shock, etc. gas bubbles are easily generated, the need to develop a method for determining sensitivity of liquid explosives to impact and a detailed study of the ignition explosives with bubbles is obvious. On a mathematical model of a single steam bubbles in the fluid theoretically considered the process of initiating explosive liquid systems to impact. For the experimental investigation, the well-known K-44 -II and the so-called appliance No. 1 were used. Instead of the metal cap in the standard method in this paper there was polyurethane foam cylindrical container with LHE, which is easily deforms by impact. A large number of tests with different liquid explosives were made. It was found that the test LHE to impact in appliance No. 1 with polyurethane foam to a large extent reflect the real mechanical sensitivity due to the small loss of impact energy on the deformation of the metal cap, as well as the best differentiation LHE sensitivity due to the higher resolution method .

  13. New impact sensitivity test of liquid explosives

    NASA Astrophysics Data System (ADS)

    Tiutiaev, Andrei; Trebunskih, Valeri

    The sensitivity of liquid explosive in the presence of gas bubbles increases many times as compared with the liquid without gas bubbles. Local hot spot in this case formed as a result of compression and heating of the gas inside the bubbles. If we consider that in the liquid as a result of convection, wave motion, shock, etc. gas bubbles are easily generated, the need to develop a method for determining sensitivity of liquid explosives to impact and a detailed study of the ignition explosives with bubbles is obvious. On a mathematical model of a single steam bubbles in the fluid theoretically considered the process of initiating explosive liquid systems to impact. For the experimental investigation, the well-known K-44 -II with the metal cap were used. Instead of the metal cap in the standard method in this paper there was polyurethane foam cylindrical container with LHE, which is easily deforms by impact. A large number of tests with different liquid explosives were made. It was found that the test LHE to impact with polyurethane foam to a large extent reflect the real mechanical sensitivity due to the small loss of impact energy on the deformation of the metal cap, as well as the best differentiation LHE sensitivity due to the higher resolution method . Results obtained in the samara state technical university.

  14. Effects of Notch Location on Heat-affected Zone Impact Properties of SA-516 Steels

    NASA Astrophysics Data System (ADS)

    Hong, Jaekeun; Park, Jihong; Kang, Chungyun

    In case of welding for pressure retaining parts on nuclear components, the verifications of heat affected zone (HAZ) impact properties are required according to application codes such as ASME Sec. III, RCC-M, KEPIC (Korea Electric Power Industry Code) MN, and JEA (Japan Electric Association) Code. Especially in case of Charpy V-notch tests of HAZ, the requirements of notch location and specimen direction have greatly impact on the reliability and consistency of the test results. For the establishment of newly adequate impact test requirements, the requirements about the HAZ impact tests of ASME Section III, RCC-M, KEPIC MN and JEA code were researched in this study. And also the HAZ impact test requirements about surveillance tests in nuclear reactor vessels were compared and investigated. For the effects of the notch location and specimen direction on the impact properties, SA-516 Gr.70 materials were investigated. The specimens were fabricated with using shielded metal-arc welding, and maximum heat inputs were controlled within the range of 16˜27 kJ/cm. Especially, this research showed the lateral expansion values and absorbed energies were not compatible and the impact test results were varied depending on notch location and specimen direction. Based on this study, newly adequate impact test requirements of HAZ were proposed.

  15. Impact Landing Dynamics Facility Crash Test

    NASA Technical Reports Server (NTRS)

    1975-01-01

    By 1972 the Lunar Landing Research Facility was no longer in use for its original purpose. The 400-foot high structure was swiftly modified to allow engineers to study the dynamics of aircraft crashes. The Impact Dynamics Research Facility is used to conduct crash testing of full- scale aircraft under controlled conditions. The aircraft are swung by cables from an A-frame structure that is approximately 400 ft. long and 230 foot high. The impact runway can be modified to simulate other grand crash environments, such as packed dirt, to meet a specific test requirement. In 1972, NASA and the FAA embarked on a cooperative effort to develop technology for improved crashworthiness and passenger survivability in general aviation aircraft with little or no increase in weight and cceptable cost. Since then, NASA has 'crashed' dozens of GA aircraft by using the lunar excursion module (LEM) facility originally built for the Apollo program.

  16. Testing SPH Against Experimental Laboratory Impact Results

    NASA Astrophysics Data System (ADS)

    Bruesch, L. S.; Asphaug, E.

    2002-09-01

    The smooth particle hydrodynamics (SPH) code is the leading technique for modeling meteoroid collisions into asteroids with realistic geologies and shapes (e.g. Asphaug et al., Icarus 1996, "Mechanical and geological effects of impact cratering on Ida"). However, it is important to test the code against results from laboratory impact experiments whenever they become available. Recently, Housen and Holsapple (Icarus 1999, "Scale effects in strength-dominated collisions of rocky asteroids") carried out a controlled set of laboratory experiments designed to examine the dependence of a body's strength on its size, and found an inverse relationship. We are currently running a set of numerical simulations to test the validity of the SPH code by reproducing the findings of these experiments. Our results will be reported at the meeting.

  17. 46 CFR 154.605 - Toughness test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Toughness test. 154.605 Section 154.605 Shipping COAST....605 Toughness test. (a) Each toughness test under §§ 154.610 through 154.625 must meet Subpart 54.05 of this chapter. (b) If subsize test specimens are used for the Charpy V-notch toughness test,...

  18. 46 CFR 154.605 - Toughness test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....605 Toughness test. (a) Each toughness test under §§ 154.610 through 154.625 must meet Subpart 54.05 of this chapter. (b) If subsize test specimens are used for the Charpy V-notch toughness test, the... 46 Shipping 5 2014-10-01 2014-10-01 false Toughness test. 154.605 Section 154.605 Shipping...

  19. 46 CFR 154.605 - Toughness test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....605 Toughness test. (a) Each toughness test under §§ 154.610 through 154.625 must meet Subpart 54.05 of this chapter. (b) If subsize test specimens are used for the Charpy V-notch toughness test, the... 46 Shipping 5 2013-10-01 2013-10-01 false Toughness test. 154.605 Section 154.605 Shipping...

  20. 46 CFR 154.605 - Toughness test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....605 Toughness test. (a) Each toughness test under §§ 154.610 through 154.625 must meet Subpart 54.05 of this chapter. (b) If subsize test specimens are used for the Charpy V-notch toughness test, the... 46 Shipping 5 2011-10-01 2011-10-01 false Toughness test. 154.605 Section 154.605 Shipping...

  1. Impact resistance and fracture toughness of vanadium-based microalloyed forging steel in the as-forged and Q and T conditions

    SciTech Connect

    Yang, L.; Fatemi, A.

    1996-01-01

    Microalloyed (MA) steels are a family of steels which are becoming an increasingly important economic alternative to the traditional quenched and tempered (Q and T) steels. Impact resistance and fracture toughness of vanadium-based MA forging steel, which is the most commonly produced MA steel, are investigated in this study. To compare the behavior with the Q and T steel, both the as-forged and the Q and T conditions are evaluated. Experimental results from Charpy V-notch impact and fracture toughness (K{sub R}-curve and J{sub IC}) tests are presented and discussed. Correlations between fracture resistance properties based on several proposed equations in the literature are also examined.

  2. The GISS sounding temperature impact test

    NASA Technical Reports Server (NTRS)

    Halem, M.; Ghil, M.; Atlas, R.; Susskind, J.; Quirk, W. J.

    1978-01-01

    The impact of DST 5 and DST 6 satellite sounding data on mid-range forecasting was studied. The GISS temperature sounding technique, the GISS time-continuous four-dimensional assimilation procedure based on optimal statistical analysis, the GISS forecast model, and the verification techniques developed, including impact on local precipitation forecasts are described. It is found that the impact of sounding data was substantial and beneficial for the winter test period, Jan. 29 - Feb. 21. 1976. Forecasts started from initial state obtained with the aid of satellite data showed a mean improvement of about 4 points in the 48 and 772 hours Sub 1 scores as verified over North America and Europe. This corresponds to an 8 to 12 hour forecast improvement in the forecast range at 48 hours. An automated local precipitation forecast model applied to 128 cities in the United States showed on an average 15% improvement when satellite data was used for numerical forecasts. The improvement was 75% in the midwest.

  3. Measurement Techniques for Hypervelocity Impact Test Fragments

    NASA Technical Reports Server (NTRS)

    Hill, Nicole E.

    2008-01-01

    The ability to classify the size and shape of individual orbital debris fragments provides a better understanding of the orbital debris environment as a whole. The characterization of breakup fragmentation debris has gradually evolved from a simplistic, spherical assumption towards that of describing debris in terms of size, material, and shape parameters. One of the goals of the NASA Orbital Debris Program Office is to develop high-accuracy techniques to measure these parameters and apply them to orbital debris observations. Measurement of the physical characteristics of debris resulting from groundbased, hypervelocity impact testing provides insight into the shapes and sizes of debris produced from potential impacts in orbit. Current techniques for measuring these ground-test fragments require determination of dimensions based upon visual judgment. This leads to reduced accuracy and provides little or no repeatability for the measurements. With the common goal of mitigating these error sources, allaying any misunderstandings, and moving forward in fragment shape determination, the NASA Orbital Debris Program Office recently began using a computerized measurement system. The goal of using these new techniques is to improve knowledge of the relation between commonly used dimensions and overall shape. The immediate objective is to scan a single fragment, measure its size and shape properties, and import the fragment into a program that renders a 3D model that adequately demonstrates how the object could appear in orbit. This information would then be used to aid optical methods in orbital debris shape determination. This paper provides a description of the measurement techniques used in this initiative and shows results of this work. The tradeoffs of the computerized methods are discussed, as well as the means of repeatability in the measurements of these fragments. This paper serves as a general description of methods for the measurement and shape analysis of orbital debris.

  4. Elemental Water Impact Test: Phase 1 20-Inch Hemisphere

    NASA Technical Reports Server (NTRS)

    Vassilakos, Gregory J.

    2015-01-01

    Spacecraft are being designed based on LS-DYNA simulations of water landing impacts. The Elemental Water Impact Test (EWIT) series was undertaken to assess the accuracy of LS-DYNA water impact simulations. Phase 1 of the EWIT series featured water impact tests of a 20-inch hemisphere dropped from heights of 5 feet and 10 feet. The hemisphere was outfitted with an accelerometer and three pressure gages. The focus of this report is the correlation of analytical models against test data.

  5. An Empirical Investigation of Impact Moderation in Test Construction.

    ERIC Educational Resources Information Center

    Stocking, Martha L.; Lawrence, Ida; Feigenbaum, Miriam; Jirele, Thomas; Lewis, Charles; Van Essen, Thomas

    2002-01-01

    Constructed four different kinds of test sections using three methods of test assembly that incorporate the goals of simultaneous moderation of the impact of gender, African American status, and Hispanic-American status, resulting in 10 test forms completed by at least 7,000 test takers per form. Discusses the effects of moderating impact in this…

  6. Development of an oxygen impact-testing method

    NASA Technical Reports Server (NTRS)

    Jamison, H. H.

    1971-01-01

    The development of a gaseous oxygen impact test method to aid in the selection of materials for high pressure oxygen systems is discussed. The objectives of the tests and the test equipment used are described. It is concluded that the impact test procedures are adequate for present purposes, but cannot be depended upon for establishing future standards.

  7. Micrometeorite Impact Test of Flex Solar Array Coupon

    NASA Technical Reports Server (NTRS)

    Wright, K. H.; Schneider, T. A.; Vaughn, J. A.; Hoang, B.; Wong, F.; Gardiner, G.

    2016-01-01

    Spacecraft with solar arrays operate throughout the near earth environment and are increasingly planned for outer planet missions. An often overlooked test condition for solar arrays that is applicable to these missions is micrometeorite impacts and possibly electrostatic discharge (ESD) events resulting from these impacts. The Marshall Space Flight Center (MSFC) is partnering with Space Systems/Loral, LLC (SSL) to examine the results of simulated micrometeorite impacts on the electrical performance of an advanced, lightweight flexible solar array design. The test is performed at NASA MSFC's Microlight Gas Gun Facility. The SSL-provided coupons consist of three strings, each string with two solar cells in series. Five impacts will be induced at various locations on a powered test coupon under different string voltage (0 volts - 150 volts) and string current (1.1 amperes - 1.65 amperes) conditions. The maximum specified test voltage and current represent margins of 1.5 times for both voltage and current. The test parameters are chosen to demonstrate new array design robustness to any ESD event caused by plasma plumes resulting from a simulated micrometeorite impact. A second unpowered coupon will undergo two impacts: one impact on the front side and one impact on the back side. Following the impact testing, the second coupon will be exposed to a thermal cycle test to determine possible damage propagation and further electrical degradation due to thermally-induced stress. The setup, checkout, and results from the impact testing are discussed. The challenges for impact testing include precise coupon alignment to control impact location; pressure management during the impact process; and measurement of the true transient electrical response during impact on the powered coupon. Results from pre- and post-test visual and electrical functional testing are also discussed.

  8. Advanced Crew Escape Suits (ACES): Particle Impact Test

    NASA Technical Reports Server (NTRS)

    Rosales, Keisa R.; Stoltzfus, Joel M.

    2009-01-01

    NASA Johnson Space Center (JSC) requested NASA JSC White Sands Test Facility to assist in determining the effects of impaired anodization on aluminum parts in advanced crew escape suits (ACES). Initial investigation indicated poor anodization could lead to an increased risk of particle impact ignition, and a lack of data was prevalent for particle impact of bare (unanodized) aluminum; therefore, particle impact tests were performed. A total of 179 subsonic and 60 supersonic tests were performed with no ignition of the aluminum targets. Based on the resulting test data, WSTF found no increased particle impact hazard was present in the ACES equipment.

  9. Impact Properties of Irradiated HT9 from the Fuel Duct of FFTF

    SciTech Connect

    Byun, Thak Sang; Maloy, S; Toloczko, M; Lewis, William Daniel

    2012-01-01

    This paper reports Charpy impact test data for the ACO-3 duct material (HT9) from the Fast Flux Test Facility (FFTF) and its archive material. Irradiation doses for the specimens were in the range of 3 148 dpa and irradiation temperatures in the range of 378 504 oC. The impact tests were performed for the small V-notched Charpy specimens with dimensions of 3 4 27 mm at an impact speed of 3.2 m/s in a 25J capacity machine. Irradiation lowered the upper-shelf energy (USE) and increased the transition temperatures significantly. The shift of transition temperatures was greater after relatively low temperature irradiation. The USE values were in the range of 5.5 6.7 J before irradiation and decreased to the range of 2 5 J after irradiation. Lower USEs were measured for lower irradiation temperatures and specimens with T-L orientation. For the irradiated specimens, the dose dependences of transition temperature and USE were not significant because of the radiation effect on impact behavior nearly saturated at the lowest dose of about 3 dpa. A comparison showed that the lateral expansion of specimens showed a linear correlation with absorbed impact energy, but with large scatter in the results. The size effect was also discussed to clarify the differences in the impact data of subsize and standard specimens.

  10. Reconstituted Charpy impact specimens. Final report

    SciTech Connect

    Perrin, J.S.; Wullaert, R.A.; McConnell, P.; Server, W.L.; Fromm, E.O.

    1982-12-01

    The arc stud welding process was used to produce new, full size Charpy V-notch impact specimens from halves of Charpy specimens which had been previously tested. The apparatus was developed such that it could be used not only for unirradiated specimens, but also so that it could be adapted for in-cell use to produce new reconstituted specimens of irradiated material. The materials studied are of interest in nuclear applications. They include A533B, A36, A516-80, submerged arc weld metal (A508 base metal), HY80, cast duplex stainless steel, irradiated A533B, and irradiated submerged arc weld metal (A508 base metal). Both unirradiated and irradiated specimens were successfully produced and subsequently impact tested. In general, there was excellent agreement when comparing the original curves to the subsequent curves generated with reconstituted specimens. This program has shown that the arc stud welding process is well suited for producing reconstituted specimens at a reasonable cost using either unirradiated or irradiated material.

  11. Negative Impacts of High-Stakes Testing

    ERIC Educational Resources Information Center

    Minarechová, Michaela

    2012-01-01

    High-stakes testing is not a new phenomenon in education. It has become part of the education system in many countries. These tests affect the school systems, teachers, students, politicians and parents, whether that is in a positive or negative sense. High-stakes testing is associated with concepts such as a school's accountability, funding…

  12. 16 CFR 1203.17 - Impact attenuation test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... instruments and equipment—(1) Measurement of impact attenuation. Impact attenuation is determined by measuring..., Motorcycle Helmets, 49 CFR 571.218 (S7.1.8). The center of gravity of the drop assembly shall lie within the...). (b) Test Procedure—(1) Instrument system check (precision and accuracy). The impact-attenuation...

  13. 16 CFR 1203.17 - Impact attenuation test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... instruments and equipment—(1) Measurement of impact attenuation. Impact attenuation is determined by measuring..., Motorcycle Helmets, 49 CFR 571.218 (S7.1.8). The center of gravity of the drop assembly shall lie within the...). (b) Test Procedure—(1) Instrument system check (precision and accuracy). The impact-attenuation...

  14. 16 CFR 1203.17 - Impact attenuation test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... instruments and equipment—(1) Measurement of impact attenuation. Impact attenuation is determined by measuring..., Motorcycle Helmets, 49 CFR 571.218 (S7.1.8). The center of gravity of the drop assembly shall lie within the...). (b) Test Procedure—(1) Instrument system check (precision and accuracy). The impact-attenuation...

  15. 16 CFR 1203.17 - Impact attenuation test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... instruments and equipment—(1) Measurement of impact attenuation. Impact attenuation is determined by measuring..., Motorcycle Helmets, 49 CFR 571.218 (S7.1.8). The center of gravity of the drop assembly shall lie within the...). (b) Test Procedure—(1) Instrument system check (precision and accuracy). The impact-attenuation...

  16. 16 CFR 1203.17 - Impact attenuation test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... instruments and equipment—(1) Measurement of impact attenuation. Impact attenuation is determined by measuring..., Motorcycle Helmets, 49 CFR 571.218 (S7.1.8). The center of gravity of the drop assembly shall lie within the...). (b) Test Procedure—(1) Instrument system check (precision and accuracy). The impact-attenuation...

  17. Particle impact tests. [simulation of micrometeoroid damage to orbiter surface

    NASA Technical Reports Server (NTRS)

    Komatsu, G. K.

    1978-01-01

    Particle impact tests were performed on three types of orbiter surface with a micrometeoroid facility. The test equipment electrostatically accelerated micron sized particles to high velocities simulating micrometeoroid impacts. Test particles were titanium diboride with typical velocities in the range 1 to 2.3 km x sec/1 and equivalent particle diameters in the range 4 to 16 microns. Impact angles to the material surface were 90, 60 and 30 degrees. The particle impact sites were located on the sample surfaces and craters were photographed with a magnification of 400X.

  18. 16 CFR Figure 9 to Part 1203 - Impact Test Apparatus

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Impact Test Apparatus 9 Figure 9 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 9 Figure 9 to Part 1203—Impact Test Apparatus...

  19. 16 CFR Figure 9 to Part 1203 - Impact Test Apparatus

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Impact Test Apparatus 9 Figure 9 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 9 Figure 9 to Part 1203—Impact Test Apparatus...

  20. 16 CFR 1203.11 - Marking the impact test line.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Marking the impact test line. 1203.11 Section 1203.11 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT... helmet to set the comfort or fit padding. (b) Draw the impact test line on the outer surface of...

  1. 16 CFR Figure 9 to Part 1203 - Impact Test Apparatus

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Impact Test Apparatus 9 Figure 9 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 9 Figure 9 to Part 1203—Impact Test Apparatus...

  2. 16 CFR Figure 9 to Part 1203 - Impact Test Apparatus

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Impact Test Apparatus 9 Figure 9 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 9 Figure 9 to Part 1203—Impact Test Apparatus...

  3. 16 CFR Figure 9 to Part 1203 - Impact Test Apparatus

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Impact Test Apparatus 9 Figure 9 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 9 Figure 9 to Part 1203Impact Test Apparatus...

  4. The Impact of Courts on Teacher Competence Testing.

    ERIC Educational Resources Information Center

    D'Costa, Ayres G.

    1993-01-01

    Discusses how legal issues impinge upon teacher competency testing, describing key legal provisions (antitrust protection, due process, equal protection, substantial adverse impact, and business necessity), and examining each one's impact on testing and teacher certification. Recommendations to help teacher educators ensure legal, credible, and…

  5. The Impact of EFL Testing on EFL Education in Korea

    ERIC Educational Resources Information Center

    Choi, Inn-Chull

    2008-01-01

    The present study provides an overview of the impact of standardized EFL tests on EFL education in Korea. To achieve this goal, the paper (1) presents the status quo of EFL testing in the Korean context, (2) explores the nature of the EFL tests prevalent in the EFL testing market, and (3) investigates the overwhelming washback effects of EFL tests…

  6. Preparation of calibrated test packages for particle impact noise detection

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A standard calibration method for any particle impact noise detection (PIND) test system used to detect loose particles responsible for failures in hybrid circuits was developed along with a procedure for preparing PIND standard test devices. Hybrid packages were seeded with a single gold ball, hermetically sealed, leak tested, and PIND tested. Conclusions are presented.

  7. Impact Testing for Materials Science at NASA - MSFC

    NASA Technical Reports Server (NTRS)

    Sikapizye, Mitch

    2010-01-01

    The Impact Testing Facility (ITF) at NASA - Marshall Space Flight Center is host to different types of guns used to study the effects of high velocity impacts. The testing facility has been and continues to be utilized for all NASA missions where impact testing is essential. The Facility has also performed tests for the Department of Defense, other corporations, as well as universities across the nation. Current capabilities provided by Marshall include ballistic guns, light gas guns, exploding wire gun, and the Hydrometeor Impact Gun. A new plasma gun has also been developed which would be able to propel particles at velocities of 20km/s. This report includes some of the guns used for impact testing at NASA Marshall and their capabilities.

  8. Assessment of the ISO impact damping test for wheelchair cushions.

    PubMed

    Sprigle, Stephen; Chung, Bummo; Meyer, Tobias

    2010-01-01

    The International Organization for Standardization (ISO) has published a test method that characterizes the ability of a wheelchair cushion to reduce impact loading. The objectives of this project were to improve the methodology described in the ISO standard, determine the repeatability of the accelerations resulting from the ISO test method and assess the test method's ability to distinguish the impact damping performance of different cushion designs. A small cohort of cushion was identified to reflect different material constructions and included flat elastic foam, flat viscoelastic foam, Roho High Profile, and Cloud. The ISO test method was deployed after changes to the equipment were made to better insure repeatable placement of the indenter onto the cushion. Three operators tested different cushions over two days. Acceleration of the indenter was collected and used to calculate acceleration magnitudes during indenter impact and rebound. The results of a Gage Repeatability & Reproducibility analysis indicated high reliability over operators and test days. Analysis of initial impact acceleration indicated that the test could distinguish between the different cushion designs. Ratios of successive impacts and rebounds were calculated and analyzed. Both showed high repeatability and could distinguish all cushion pairs except one. Assessment of this and previously collected data led to the suggestion that the ratio of impact accelerations should be reported rather than the rebound accelerations. In summary, with some slight but significant changes to the test rig, the ISO Impact Damping test method is a reliable means to characterize acceleration responses of wheelchair cushions. PMID:21306069

  9. NASA mechanical impact testing in high-pressure oxygen

    NASA Technical Reports Server (NTRS)

    Bryan, C. J.

    1983-01-01

    Three independently developed high-pressure gaseous oxygen mechanical impact testers have been used to evaluate materials for the Space Shuttle Program. A test program evaluating the performance of these test systems is described. The gaseous and liquid oxygen test procedures and equipment are considered along with the material selection procedures. The results of the NASA mechanical impact tester variability study are presented, including penetration function curves and curve parameters and equivalent energies and comparisons of high-pressure testers at ambient pressure and temperature, ambient temperature and 34 MPa, and cryogenic temperature and 34 MPa. Finally, a summary of NASA mechanical impact test data is presented.

  10. Impact of Testing on Hispanic Teacher Candidates.

    ERIC Educational Resources Information Center

    Zapata, Jesse T.

    1988-01-01

    This article examines the effect of the Pre-Professional Skills Test (P-PST) and the Examination for the Certification of Teachers in Texas (ExCET) on Hispanics and Blacks and the tests' implications for the future pool of minorities in preservice teacher education programs and in the teaching force. (JL)

  11. Laser notching ceramics for reliable fracture toughness testing

    SciTech Connect

    Barth, Holly D.; Elmer, John W.; Freeman, Dennis C.; Schaefer, Ronald D.; Derkach, Oleg; Gallegos, Gilbert F.

    2015-09-19

    A new method for notching ceramics was developed using a picosecond laser for fracture toughness testing of alumina samples. The test geometry incorporated a single-edge-V-notch that was notched using picosecond laser micromachining. This method has been used in the past for cutting ceramics, and is known to remove material with little to no thermal effect on the surrounding material matrix. This study showed that laser-assisted-machining for fracture toughness testing of ceramics was reliable, quick, and cost effective. In order to assess the laser notched single-edge-V-notch beam method, fracture toughness results were compared to results from other more traditional methods, specifically surface-crack in flexure and the chevron notch bend tests. Lastly, the results showed that picosecond laser notching produced precise notches in post-failure measurements, and that the measured fracture toughness results showed improved consistency compared to traditional fracture toughness methods.

  12. Laser notching ceramics for reliable fracture toughness testing

    DOE PAGESBeta

    Barth, Holly D.; Elmer, John W.; Freeman, Dennis C.; Schaefer, Ronald D.; Derkach, Oleg; Gallegos, Gilbert F.

    2015-09-19

    A new method for notching ceramics was developed using a picosecond laser for fracture toughness testing of alumina samples. The test geometry incorporated a single-edge-V-notch that was notched using picosecond laser micromachining. This method has been used in the past for cutting ceramics, and is known to remove material with little to no thermal effect on the surrounding material matrix. This study showed that laser-assisted-machining for fracture toughness testing of ceramics was reliable, quick, and cost effective. In order to assess the laser notched single-edge-V-notch beam method, fracture toughness results were compared to results from other more traditional methods, specificallymore » surface-crack in flexure and the chevron notch bend tests. Lastly, the results showed that picosecond laser notching produced precise notches in post-failure measurements, and that the measured fracture toughness results showed improved consistency compared to traditional fracture toughness methods.« less

  13. Study of the Impact Performance of Solder Joints by High-Velocity Impact Tests

    NASA Astrophysics Data System (ADS)

    Zhang, Ning; Shi, Yaowu; Guo, Fu; Yang, Fuqian

    2010-12-01

    The impact behavior of solder joints was studied using three different high-velocity impact tests: the U-notch Charpy impact test, the no-notch Charpy impact test, and a laboratory-designed drop test. The solder joints were made of five solder alloys, Sn-37Pb, Sn-3.8Ag-0.7Cu, Sn-2.0Ag-0.7Cu, Sn-1.0Ag-0.7Cu, and Sn-0.7Ag-0.7Cu (in wt.%), in which the traditional Cu/solder/Cu butt joint was used. All three impact tests gave the same trend of the impact behavior of the solder joints, with the Sn-37Pb joints having the highest impact resistance and the Sn-3.8Ag-0.7Cu joints having the lowest impact resistance. For the lead-free joints, the Sn-1.0Ag-0.7Cu joints had better impact resistance than the Sn-2.0Ag-0.7Cu joints, and the Sn-2.0Ag-0.7Cu joints better than the Sn-0.7Ag-0.7Cu joints. The impact behavior was correlated well to the fracture morphologies observed by scanning electron microscopy (SEM). Comparison of the three tests showed that the no-notch Charpy impact test is a promising method for evaluating the drop performance of solder joints.

  14. Light-weight radioisotope heater unit (LWRHU) impact tests

    SciTech Connect

    Reimus, M. A. H.; Rinehart, G. H.; Herrera, A.; Lopez, B.; Lynch, C.; Moniz, P.

    1998-01-15

    The light-weight radioisotope heater unit (LWRHU) is a {sup 238}PuO{sub 2}-fueled heat source designed to provide one thermal watt in each of various locations on a spacecraft. Los Alamos National Laboratory designed, fabricated, and safety tested the LWRHU. The heat source consists of a hot-pressed {sup 238}PuO{sub 2} fuel pellet, a Pt-30Rh vented capsule, a pyrolytic graphite insulator, and a fineweave-pierced fabric graphite aeroshell assembly. To compare the performance of the LWRHUs fabricated for the Cassini mission with the performance of those fabricated for the Galileo mission, and to determine a failure threshold, two types of impact tests were conducted. A post-reentry impact test was performed on one of 180 flight-quality units produced for the Cassini mission and a series of sequential impact tests using simulant-fueled LWRHU capsules were conducted respectively. The results showed that deformation and fuel containment of the impacted Cassini LWRHU was similar to that of a previously tested Galileo LWRHU. Both units sustained minimal deformation of the aeroshell and fueled capsule; the fuel was entirely contained by the platinum capsule. Sequential impacting, in both end-on and side-on orientations, resulted in increased damage with each subsequent impact. Sequential impacting of the LWRHU appears to result in slightly greater damage than a single impact at the final impact velocity of 50 m/s.

  15. Light-weight radioisotope heater unit (LWRHU) impact tests

    SciTech Connect

    Reimus, M.A.; Rinehart, G.H.; Herrera, A.; Lopez, B.; Lynch, C.; Moniz, P.

    1998-01-01

    The light-weight radioisotope heater unit (LWRHU) is a {sup 238}PuO{sub 2}-fueled heat source designed to provide one thermal watt in each of various locations on a spacecraft. Los Alamos National Laboratory designed, fabricated, and safety tested the LWRHU. The heat source consists of a hot-pressed {sup 238}PuO{sub 2} fuel pellet, a Pt-30Rh vented capsule, a pyrolytic graphite insulator, and a fineweave-pierced fabric graphite aeroshell assembly. To compare the performance of the LWRHUs fabricated for the Cassini mission with the performance of those fabricated for the Galileo mission, and to determine a failure threshold, two types of impact tests were conducted. A post-reentry impact test was performed on one of 180 flight-quality units produced for the Cassini mission and a series of sequential impact tests using simulant-fueled LWRHU capsules were conducted respectively. The results showed that deformation and fuel containment of the impacted Cassini LWRHU was similar to that of a previously tested Galileo LWRHU. Both units sustained minimal deformation of the aeroshell and fueled capsule; the fuel was entirely contained by the platinum capsule. Sequential impacting, in both end-on and side-on orientations, resulted in increased damage with each subsequent impact. Sequential impacting of the LWRHU appears to result in slightly greater damage than a single impact at the final impact velocity of 50 m/s. {copyright} {ital 1998 American Institute of Physics.}

  16. Light-weight radioisotope heater unit (LWRHU) impact tests

    NASA Astrophysics Data System (ADS)

    Reimus, M. A. H.; Rinehart, G. H.; Herrera, A.; Lopez, B.; Lynch, C.; Moniz, P.

    1998-01-01

    The light-weight radioisotope heater unit (LWRHU) is a 238PuO2-fueled heat source designed to provide one thermal watt in each of various locations on a spacecraft. Los Alamos National Laboratory designed, fabricated, and safety tested the LWRHU. The heat source consists of a hot-pressed 238PuO2 fuel pellet, a Pt-30Rh vented capsule, a pyrolytic graphite insulator, and a fineweave-pierced fabric graphite aeroshell assembly. To compare the performance of the LWRHUs fabricated for the Cassini mission with the performance of those fabricated for the Galileo mission, and to determine a failure threshold, two types of impact tests were conducted. A post-reentry impact test was performed on one of 180 flight-quality units produced for the Cassini mission and a series of sequential impact tests using simulant-fueled LWRHU capsules were conducted respectively. The results showed that deformation and fuel containment of the impacted Cassini LWRHU was similar to that of a previously tested Galileo LWRHU. Both units sustained minimal deformation of the aeroshell and fueled capsule; the fuel was entirely contained by the platinum capsule. Sequential impacting, in both end-on and side-on orientations, resulted in increased damage with each subsequent impact. Sequential impacting of the LWRHU appears to result in slightly greater damage than a single impact at the final impact velocity of 50 m/s.

  17. Micrometeorite Impact Test of Flex Solar Array Coupon

    NASA Technical Reports Server (NTRS)

    Wright, K. H.; Schneider, T. A.; Vaughn, J. A.; Hoang, B.; Wong, F.; Gardiner, G.

    2016-01-01

    Spacecraft with solar arrays operate throughout the near earth environment and are planned for outer planet missions. An often overlooked test condition for solar arrays that is applicable to these missions is micrometeoroid impacts and possibly electrostatic discharge (ESD) events resulting from these impacts. NASA Marshall Space Flight Center (MSFC) is partnering with Space Systems/Loral, LLC (SSL) to examine the results of simulated micrometeoroid impacts on the electrical performance of an advanced, lightweight flexible solar array design. The test is performed at MSFC's Micro Light Gas Gun Facility with SSL-provided coupons. Multiple impacts were induced at various locations on a powered test coupon under different string voltage (0V-150V) and string current (1.1A - 1.65A) conditions. The setup, checkout, and results from the impact testing are discussed.

  18. Numerical comparison between different strength after impact test procedures

    NASA Astrophysics Data System (ADS)

    Klaus, M.; Reimerdes, H. G.

    2010-06-01

    Different procedures are established to investigate the residual properties of sandwich panels after impact damage. Two used procedures for the testing of this properties are compression after impact (CAI) and 4-point bending. In this paper a numerical procedure is presented for a first prediction of the behaviour of pre-damaged sandwich specimens under different boundary conditions (or testing procedures). A sequence of impact experiments using a drop tower is performed to assess the damage tolerance of sandwich panels with aramid paper foldcores and CFRP skins. The tested impact energy range allowed to investigate a variety of damage scenarios from barely visible damages (BVID) to fibre fractures in all plies of the impacted face sheet. Additionally 4-point bending tests are performed with the panels previously damaged by impact loadings to assess the residual bending strength of these samples. The developed numerical procedure is used to reproduce these experiments (the impact as well as the 4-point bending tests). Also the same procedure is employed in an attempt to predict the behaviour of samples with the same build-up in simulated compression after impact tests.

  19. Impact of uncertainty on modeling and testing

    NASA Technical Reports Server (NTRS)

    Coleman, Hugh W.; Brown, Kendall K.

    1995-01-01

    A thorough understanding of the uncertainties associated with the modeling and testing of the Space Shuttle Main Engine (SSME) Engine will greatly aid decisions concerning hardware performance and future development efforts. This report will describe the determination of the uncertainties in the modeling and testing of the Space Shuttle Main Engine test program at the Technology Test Bed facility at Marshall Space Flight Center. Section 2 will present a summary of the uncertainty analysis methodology used and discuss the specific applications to the TTB SSME test program. Section 3 will discuss the application of the uncertainty analysis to the test program and the results obtained. Section 4 presents the results of the analysis of the SSME modeling effort from an uncertainty analysis point of view. The appendices at the end of the report contain a significant amount of information relative to the analysis, including discussions of venturi flowmeter data reduction and uncertainty propagation, bias uncertainty documentations, technical papers published, the computer code generated to determine the venturi uncertainties, and the venturi data and results used in the analysis.

  20. Land impact test of the Apollo Command Module at MSC

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Technicians and engineers gather to monitor a land impact test of the Apollo Command Module (Airframe 009) in a test area at Manned Spacecraft Center (MSC). In this view, the Command Module test vehicle is released from the tower to fall to the ground.

  1. Determining the Overall Impact of Interruptions during Online Testing

    ERIC Educational Resources Information Center

    Sinharay, Sandip; Wan, Ping; Whitaker, Mike; Kim, Dong-In; Zhang, Litong; Choi, Seung W.

    2014-01-01

    With an increase in the number of online tests, interruptions during testing due to unexpected technical issues seem unavoidable. For example, interruptions occurred during several recent state tests. When interruptions occur, it is important to determine the extent of their impact on the examinees' scores. There is a lack of research on this…

  2. Assessing Individual-Level Impact of Interruptions during Online Testing

    ERIC Educational Resources Information Center

    Sinharay, Sandip; Wan, Ping; Choi, Seung W.; Kim, Dong-In

    2015-01-01

    With an increase in the number of online tests, the number of interruptions during testing due to unexpected technical issues seems to be on the rise. For example, interruptions occurred during several recent state tests. When interruptions occur, it is important to determine the extent of their impact on the examinees' scores. Researchers such as…

  3. 30 CFR 7.46 - Impact test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... individual cells. At the test temperature range of 65 °F -80 °F (18.3 °C-26.7 °C), apply a dynamic force of... tabs which extend from the body of the filler caps. (3) Cracks in the cell cover, cells, or...

  4. Test Impact Revisited: Washback Effect Over Time.

    ERIC Educational Resources Information Center

    Shohamy, Elana; And Others

    1996-01-01

    Investigates the long-term effects of two national language tests in Israel, one in Arabic as a second language and one in English as a foreign language. The study employed questionnaires, interviews, and document analysis from teachers, students and language inspectors. Findings reveal that washback varies over time, owing to factors such as the…

  5. LLNL small-scale drop-hammer impact sensitivity test

    SciTech Connect

    Simpson, L.R.; Foltz, M.F.

    1995-01-01

    Small-scale safety testing of explosives and other energetic materials is done to determine their sensitivity to various stimuli including friction, static spark, and impact. This testing is typically done to discover potential handling problems for either newly synthesized materials of unknown behavior or materials that have been stored for long periods of time. This report describes the existing ``ERL Type 12 Drop Weight Impact Sensitivity Apparatus``, or ``Drop Hammer Machine``, and the methods used to determine the impact sensitivity of energetic materials, Also discussed are changes made to both the machine and methods since the inception of impact sensitivity testing at LLNL in 1956. The accumulated data for the materials tested in not listed here, the exception being the discussion of those specific materials (primary calibrants: PETN, RDX, Comp-B3,and TNT; secondary calibrants: K-6, RX-26-AF, and TATB) used to calibrate the machine.

  6. Fixture For Compression-After-Impact Tests Of Thin Specimens

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Hodge, Andrew J.; Lance, David G.

    1994-01-01

    Special fixture holds specimen of laminated composite material in 20-klb (89-kN) or larger load frame for compression-after-impact test. In preparation for test, specimen damaged by dropping weight on it at known kinetic energy. During test, specimen loaded in compression, and load measured, until specimen fails. Measurement data used to characterize compressive strength of specimen after impact important indicator of ability of structural components made of composite material to tolerate damage. Tests give more-realistic measures of tolerance to damage.

  7. Impact Testing of Orbiter Thermal Protection System Materials

    NASA Technical Reports Server (NTRS)

    Kerr, Justin

    2006-01-01

    This viewgraph presentation reviews the impact testing of the materials used in designing the shuttle orbiter thermal protection system (TPS). Pursuant to the Columbia Accident Investigation Board recommendations a testing program of the TPS system was instituted. This involved using various types of impactors in different sizes shot from various sizes and strengths guns to impact the TPS tiles and the Leading Edge Structural Subsystem (LESS). The observed damage is shown, and the resultant lessons learned are reviewed.

  8. A Comparison of Quasi-Static Indentation Testing to Low Velocity Impact Testing

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Douglas, Michael J.

    2001-01-01

    The need for a static test method for modeling low-velocity foreign object impact events to composites would prove to be very beneficial to researchers since much more data can be obtained from a static test than from an impact test. In order to examine if this is feasible, a series of static indentation and low velocity impact tests were carried out and compared. Square specimens of many sizes and thickness were utilized to cover the array of types of low velocity impact events. Laminates with a n/4 stacking sequence were employed since this is by the most common type of engineering laminate. Three distinct flexural rigidities under two different boundary conditions were tested in order to obtain damage due to large deflections, contact stresses and both to examine if the static indentation-impact comparisons are valid under the spectrum of damage modes that can be experienced. Comparisons between static indentation and low velocity impact tests were based on the maximum applied transverse load. The dependent parameters examined included dent depth, back surface crack length, delamination area and to a limited extent, load-deflection behavior. Results showed that no distinct differences could be seen between the static indentation tests and the low velocity impact tests, indicating that static indentation can be used to represent a low velocity impact event.

  9. Specimen size effects in Charpy impact testing

    SciTech Connect

    Alexander, D.J.; Klueh, R.L.

    1989-01-01

    Full-size , half-size, and third-size specimens from several different steels have been tested as part of an ongoing alloy development program. The smaller specimens permit more specimens to be made from small trail heats and are much more efficient for irradiation experiments. The results of several comparisons between the different specimen sizes have shown that the smaller specimens show qualitatively similar behavior to large specimens, although the upper-shelf energy level and ductile-to-ductile transition temperature are reduced. The upper-shelf energy levels from different specimen sizes can be compared by using a simple volume normalization method. The effect of specimen size and geometry on the ductile-to-ductile transition temperature is more difficult to predict, although the available data suggest a simple shift in the transition temperature due to specimen size changes.The relatively shallower notch used in smaller specimens alters the deformation pattern, and permits yielding to spread back to the notched surface as well as through to the back. This reduces the constraint and the peak stresses, and thus the initiation of cleavage is more difficult. A better understanding of the stress and strain distributions is needed. 19 refs., 3 figs., 3 tabs.

  10. Taylor impact tests and simulations of plastic bonded explosives

    NASA Astrophysics Data System (ADS)

    Clements, Brad E.; Thompson, Darla; Luscher, D. J.; DeLuca, Racci; Brown, Geoffrey

    2012-03-01

    Taylor impact tests were conducted on plastic bonded explosives PBX 9501 and PBXN-9 for impact velocities between 80 and 214 m/s. High-speed photography was used to image the impact event at a rate of one frame for every 25 μs. For early times, PBXN-9 showed large-deformation mushrooming of the explosive cylinders, followed by fragmentation by an amount proportional to the impact speed, was observed at all velocities. PBX 9501 appeared to be more brittle than PBXN-9, the latter demonstrated a more viscoelastic response. The post-shot fragments were collected and particle size distributions were obtained. The constitutive model ViscoSCRAM was then used to model the Taylor experiments using the finite element code ABAQUS. Prior to the Taylor simulations, ViscoSCRAM was parameterized for the two explosives using uniaxial stress-strain data. Simulating Taylor impact tests validates the model in situations undergoing extreme damage and fragmentation.

  11. Impact Testing and Simulation of Composite Airframe Structures

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Littell, Justin D.; Horta, Lucas G.; Annett, Martin S.; Fasanella, Edwin L.; Seal, Michael D., II

    2014-01-01

    Dynamic tests were performed at NASA Langley Research Center on composite airframe structural components of increasing complexity to evaluate their energy absorption behavior when subjected to impact loading. A second objective was to assess the capabilities of predicting the dynamic response of composite airframe structures, including damage initiation and progression, using a state-of-the-art nonlinear, explicit transient dynamic finite element code, LS-DYNA. The test specimens were extracted from a previously tested composite prototype fuselage section developed and manufactured by Sikorsky Aircraft Corporation under the US Army's Survivable Affordable Repairable Airframe Program (SARAP). Laminate characterization testing was conducted in tension and compression. In addition, dynamic impact tests were performed on several components, including I-beams, T-sections, and cruciform sections. Finally, tests were conducted on two full-scale components including a subfloor section and a framed fuselage section. These tests included a modal vibration and longitudinal impact test of the subfloor section and a quasi-static, modal vibration, and vertical drop test of the framed fuselage section. Most of the test articles were manufactured of graphite unidirectional tape composite with a thermoplastic resin system. However, the framed fuselage section was constructed primarily of a plain weave graphite fabric material with a thermoset resin system. Test data were collected from instrumentation such as accelerometers and strain gages and from full-field photogrammetry.

  12. Marshall Space Flight Center's Impact Testing Facility Capabilities

    NASA Technical Reports Server (NTRS)

    Finchum, Andy; Hubbs, Whitney; Evans, Steve

    2008-01-01

    Marshall Space Flight Center s (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility s unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.

  13. Impact Testing of Stainless Steel Material at Cold Temperatures

    SciTech Connect

    Spencer D. Snow; D. Keith Morton; Robert K. Blandford

    2008-07-01

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these base materials and their welds under dynamic loads in the strain rate range of concern are not well documented. However, a previous paper [1] reported on impact testing and analysis results performed at the Idaho National Laboratory using 304/304L and 316/316L stainless steel base material specimens at room and elevated temperatures. The goal of the work presented herein is to add recently completed impact tensile testing results at -20 degrees F conditions for dual-marked 304/304L and 316/316L stainless steel material specimens (hereafter referred to as 304L and 316L, respectively). Recently completed welded material impact testing at -20 degrees F, room, 300 degrees F, and 600 degrees F is also reported. Utilizing a drop-weight impact test machine and 1/4-inch to 1/2-inch thick dog-bone shaped test specimens, the impact tests achieved strain rates in the 4 to 40 per second range, depending upon the material temperature. Elevated true stress-strain curves for these materials reflecting varying strain rates and temperatures are presented herein.

  14. Fatigue Testing of Metallurgically-Bonded EBR-II Superheater Tubes

    SciTech Connect

    T.C. Totemeier; D.M. Wachs; D.L. Porter

    2008-05-01

    Fatigue crack growth and impact tests were performed on 2¼Cr-1Mo steel specimens machined from ex-service Experimental Breeder Reactor – II (EBR-II) superheater duplex tubes. The tubes had been metallurgically bonded with a 100 µm thick Ni layer; the specimens incorporated this bond layer. Impact tests were performed at temperatures from –50 to 400°C; cracks propagating from the V-notch were arrested by delamination at the bond layer for all tests with one exception at –50°C. Fatigue crack growth tests were performed at room temperature in air and at 400°C in air and humid Ar; cracks were grown at varied levels of constant ?K. In all conditions the presence of the Ni bond layer was found to result in a net retardation of growth as the crack passed through the layer. The mechanism of retardation was identified as a disruption of crack planarity and uniformity after passing through the porous bond layer. Full crack arrest was only observed in a single test performed at near-threshold ?K level (12 MPa?m) at 400°C. In this case the crack tip was blunted by oxidation of the base steel at the steel-nickel interface.

  15. Toughness characterization by small specimen test technique for HIPed joints of F82H steel aiming at first wall fabrication in fusion

    NASA Astrophysics Data System (ADS)

    Kishimoto, H.; Ono, T.; Sakasegawa, H.; Tanigawa, H.; Kohno, Y.; Kohyama, A.

    2013-09-01

    Reduced activation ferritic/martensitic steels (RAFMs), such as F82H steels, have been developed as candidates of structural materials for fusion. In the design of a fusion reactor, cooling channels are built in the first wall of the blanket. One large issue is to determine how to join rectangular tubes to thin panels to fabricate the first wall. Hot Isostatic Pressing (HIPing) is a solution to solve the issue. Because of the thin HIPed walls of the channels, the specimen size for inspection of HIPed interface is limited. In the present research, Small Specimen Test Techniques (SSTT) are screened for the destructive toughness investigation technique of HIPed F82H joints. 1/3 size Charpy V-notch impact (1/3 CVN) and small punch (SP) tests are employed for the present research. The toughness of the HIPed joints is strongly affected by various surface finishing of specimens treated previous to the HIPing. In the present research, several kinds of HIPed joints were surface finished by different methods and investigated by 1/3 CVN impact test. The HIPed F82H joints had different toughness ranging from 20% to 70% of the toughness of the F82H base metal. The SP test is also available for the investigation of toughness change by the HIPing. The sensitivity of 1/3 CVN impact test against toughness change was better than the SP test, it revealed that the SP test has some limitations.

  16. Impact testing of centrifugally cast canisters of simulated waste glass

    SciTech Connect

    Peterson, M.E.; Alzheimer, J.M.

    1984-10-01

    Four simulated high-level waste canisters supplied by EG and G Idaho, Inc. of Idaho Falls, Idaho, were subjected to impact tests at the Pacific Northwest Laboratory in Richland, Washington. The canister design was similar to the most recent Savannah River Laboratory (SRL) reference dewsign for the Defense Waste Processing Facility. Three of the canister bodies were fabricated out of a special cast alloy (the centrifugally cast equivalent of 304L stainless steel). These were nonradioactive versions of canisters that can be fabricated by recycling slightly contaminated stainless steel. A canister of wrought 304L stainless steel was also tested as a control. The canisters were filled with a borosilicate glass at SRL. The purpose of the test was to evaluate the effect of impacts on the canisters and provide input for a study to determine if slightly contaminated metal could be used for waste disposal canisters. Each canister was subjected to three impacts. The first was a vertical drop from 30 ft onto an unyielding surface with the bottom corner of the canister receiving the impact. The second was a horizontal drop from 40 in. onto a solid steel vertical cylinder (6 in. dia x 14 in. long) in a puncture test. The final drop was from 30 ft onto an unyielding surface with the fill nozzle and head receiving the impact. No rupturing of any of the canisters occurred as a result of the impacts. Strain circles were used to measure the surface strain in the impact areas. The maximum tensile strain experienced was 13% and the maximum compressive strain experienced was 16%. These measured strains were below the minimum strain required for failure, which is at least 30%. A helium leak test and liquid dye penetrant test were conducted on the weld regions of these canisters after the drop to evaluate the condition of the canister. No leaks were detected and no significant indications of cracks appeared. 2 references, 39 figures.

  17. Taylor impact tests on PBX composites: imaging and analysis

    NASA Astrophysics Data System (ADS)

    Graff Thompson, Daria; DeLuca, Racci; Archuleta, Jose; Brown, Geoff W.; Koby, Joseph

    2014-05-01

    A series of Taylor impact tests were performed on three plastic bonded explosive (PBX) formulations: PBX 9501, PBXN-9 and HPP (propellant). The first two formulations are HMX-based, and all three have been characterized quasi-statically in tension and compression. The Taylor impact tests use a 500 psi gas gun to launch PBX projectiles (approximately 30 grams, 16 mm diameter, 76 mm long), velocities as high as 215 m/s, at a steel anvil. Tests were performed remotely and no sign of ignition/reaction have been observed to date. Highspeed imaging was used to capture the impact of the specimen onto anvil surface. Side-view contour images have been analyzed using dynamic stress equations from the literature, and additionally, front-view images have been used to estimate a tensile strain failure criterion for initial specimen fracture. Post-test sieve analysis of specimen debris correlates fragmentation with projectile velocity, and these data show interesting differences between composites. Along with other quasi-static and dynamic measurements, Taylor impact images and fragmentation data provide a useful metric for the calibration or evaluation of intermediate-rate model predictions of PBX constituitive response and failure/fragmentation. Intermediate-rate tests involving other impact configurations are being considered.

  18. Impact Testing of Composites for Aircraft Engine Fan Cases

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Revilock, Duane M.; Binienda, Wieslaw K.; Nie, Walter Z.; Mackenzie, S. Ben; Todd, Kevin B.

    2001-01-01

    Before composite materials can be considered for use in the fan case of a commercial jet engine, the performance of a composite structure under blade-out loads needs to be demonstrated. The objective of this program is to develop an efficient test and analysis method for evaluating potential composite case concepts. Ballistic impact tests were performed on laminated glass/epoxy composites in order to identify potential failure modes and to provide data for analysis. Flat 7x7 in. panels were impacted with cylindrical titanium projectiles, and 15 in. diameter half-rings were impacted with wedge-shaped titanium projectiles. Composite failure involved local fiber fracture as well as tearing and delamination on a larger scale. A 36 in. diameter full-ring subcomponent was proposed for larger scale testing. Explicit, transient, finite element analyses were used to evaluate impact dynamics and subsequent global deformation for the proposed full-ring subcomponent test. Analyses on half-ring and quarter ring configurations indicated that less expensive smaller scale tests could be used to screen potential composite concepts when evaluation of local impact damage is the primary concern.

  19. Taylor Impact Tests on PBX Composites: Imaging and Analysis

    NASA Astrophysics Data System (ADS)

    Thompson, Darla; Deluca, Racci

    2013-06-01

    A series of Taylor impact tests were performed on three plastic bonded explosive (PBX) formulations: PBX 9501, PBXN-9 and HPP (propellant). The first two formulations are HMX-based, and all three have been characterized quasi-statically in tension and compression. The Taylor impact tests use a 500 psi gas gun to launch PBX projectiles (approximately 30 grams, 16 mm diameter, 76 mm long) at velocities as high as 215 m/s. Tests were performed remotely and no sign of ignition/reaction have been observed to date. High-speed imaging was used to capture the impact of the specimen onto the surface of a steel anvil. Side-view contour images have been analyzed using dynamic stress equations from the literature, and additionally, front-view images have been used to estimate a tensile strain failure criterion for initial specimen fracture. Post-test sieve analysis of specimen debris correlates fragmentation with projectile velocity, and these data show interesting differences between composites. Along with other quasi-static and dynamic measurements, these impact images and fragmentation data provide a useful metric for the calibration or evaluation of intermediate-rate model predictions of PBX constituitive response and failure/fragmentation. Intermediate-rate tests involving other impact configurations are being considered.

  20. The Impact of Personality and Test Conditions on Mathematical Test Performance

    ERIC Educational Resources Information Center

    Hayes, Heather; Embretson, Susan E.

    2013-01-01

    Online and on-demand tests are increasingly used in assessment. Although the main focus has been cheating and test security (e.g., Selwyn, 2008) the cross-setting equivalence of scores as a function of contrasting test conditions is also an issue that warrants attention. In this study, the impact of environmental and cognitive distractions, as

  1. The Impact of Personality and Test Conditions on Mathematical Test Performance

    ERIC Educational Resources Information Center

    Hayes, Heather; Embretson, Susan E.

    2013-01-01

    Online and on-demand tests are increasingly used in assessment. Although the main focus has been cheating and test security (e.g., Selwyn, 2008) the cross-setting equivalence of scores as a function of contrasting test conditions is also an issue that warrants attention. In this study, the impact of environmental and cognitive distractions, as…

  2. Microstructural characterization of Charpy-impact-tested nanostructured bainite

    SciTech Connect

    Tsai, Y.T.; Chang, H.T.; Huang, B.M.; Huang, C.Y.; Yang, J.R.

    2015-09-15

    In this work, a possible cause of the extraordinary low impact toughness of nanostructured bainite has been investigated. The microstructure of nanostructured bainite consisted chiefly of carbide-free bainitic ferrite with retained austenite films. X-ray diffractometry (XRD) measurement indicated that no retained austenite existed in the fractured surface of the Charpy-impact-tested specimens. Fractographs showed that cracks propagated mainly along bainitic ferrite platelet boundaries. The change in microstructure after impact loading was verified by transmission electron microscopy (TEM) observations, confirming that retained austenite was completely transformed to strain-induced martensite during the Charpy impact test. However, the zone affected by strained-induced martensite was found to be extremely shallow, only to a depth of several micrometers from the fracture surface. It is appropriately concluded that upon impact, as the crack forms and propagates, strain-induced martensitic transformation immediately occurs ahead of the advancing crack tip. The successive martensitic transformation profoundly facilitates the crack propagation, resulting in the extremely low impact toughness of nanostructured bainite. Retained austenite, in contrast to its well-known beneficial role, has a deteriorating effect on toughness during the course of Charpy impact. - Highlights: • The microstructure of nanostructured bainite consisted of nano-sized bainitic ferrite subunits with retained austenite films. • Special sample preparations for SEM, XRD and TEM were made, and the strain-affected structures have been explored. • Retained austenite films were found to transform into martensite after impact loading, as evidenced by XRD and TEM results. • The zone of strain-induced martensite was found to extend to only several micrometers from the fracture surface. • The poor Charpy impact toughness is associated with the fracture of martensite at a high strain rate during impact loading.

  3. Superior Charpy impact properties of ODS ferritic steel irradiated in JOYO

    NASA Astrophysics Data System (ADS)

    Kuwabara, T.; Kurishita, H.; Ukai, S.; Narui, M.; Mizuta, S.; Yamazaki, M.; Kayano, H.

    1998-10-01

    The effect of neutron irradiation on Charpy impact properties of an ODS ferritic steel developed by PNC was studied. The miniaturized Charpy V-notch (MCVN) specimens (1.5 × 1.5 × 20 mm) of two orientations (longitudinal, called 1DS-L, and transverse, 1DS-T) were irradiated to fluence levels of (0.3-3.8) × 10 26 n/m 2 ( E n > 0.1 MeV) between 646 and 845 K in JOYO. MCVN specimens before and after the irradiation were subjected to instrumented Charpy impact tests. The test results and fracture surface observations showed that in the unirradiated state the steel showed no ductile-to-brittle transition behavior until 153 K regardless of orientation and the upper shelf energy of the steel was as high as that of a high-strength ferritic steel without dispersed oxide. Such excellent impact properties were essentially maintained after the irradiation although an appreciable decrease in absorbed energy occurred by higher temperature irradiations at and above 793 K.

  4. Marshall Space Flight Center's Impact Testing Facility Capabilities

    NASA Technical Reports Server (NTRS)

    Evans, Steve; Finchum, Andy; Hubbs, Whitney; Gray, Perry

    2008-01-01

    Marshall Space Flight Center's (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California, The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility's unique capabilities were deemed a 'National Asset' by the DoD, The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Relocated test equipment was dated and in need of upgrade. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. Future ITF improvements will be focused on continued instrumentation and performance enhancements. These enhancements will allow further, more in-depth, characterization of rain drop demise characterization and evaluation of ice crystal impact. Performance enhancements also include increasing the upper velocity limit of the current environmental guns to allow direct environmental simulation for missile components. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.

  5. Effects of microstructure on inverse fracture occurring during drop-weight tear testing of high-toughness X70 pipeline steels

    NASA Astrophysics Data System (ADS)

    Hwang, Byoungchul; Kim, Yang Gon; Lee, Sunghak; Kim, Nack J.; Yoo, Jang Yong

    2005-02-01

    The effects of microstructure on inverse fracture occurring in the hammer-impacted region were analyzed after conducting a drop-weight tear test (DWTT) on high-toughness pipeline steels. Three kinds of steels were fabricated by varying the alloying elements, and their microstructures were varied by the rolling conditions. The pressed-notch (PN) or chevron-notch (CN) DWTT and Charpy V-notch (CVN) impact tests were conducted on the rolled steel specimens, and the results were discussed in comparison with the data obtained from CVN tests of prestrained specimens. In the hammer-impacted region of the DWTT specimens, abnormal inverse fracture having a cleavage fracture mode appeared, and the inverse fracture area correlated well with the upper-shelf energy (USE) obtained from the CVN test and with the grain size. The steel specimens having a higher USE or having coarse polygonal ferrite tended to have a larger inverse fracture area than those having a lower USE or having fine acicular ferrite. This was because steels having a higher impact absorption energy required higher energy for fracture initiation and propagation during the DWTT. These results were confirmed by the CVN data of prestrained steel specimens.

  6. Impact tests on rubber compression springs for airplane landing gears

    NASA Technical Reports Server (NTRS)

    Hohenemser, K

    1930-01-01

    The present report gives the results of tests which were made for the purpose of solving the problem of whether diagrams obtained from pressure tests could be conclusive for the determination of the safe impact coefficients. It is first established that the rubber rings adhere firmly to the compression surfaces during deformation. Suggestions are thus obtained for a constructive simplification of the rubber rings. The hysteresis phenomenon is ascribed to external and internal friction forces. A device for falling tests is then described with which the process of shock absorption with rubber rings was tested.

  7. Apparatus for Hot Impact Testing of Material Specimens

    NASA Technical Reports Server (NTRS)

    Pawlik, Ralph J.; Choi, Sung R.

    2006-01-01

    An apparatus for positioning and holding material specimens is a major subsystem of a system for impact testing of the specimens at temperatures up to 1,500 C. This apparatus and the rest of the system are designed especially for hot impact testing of advanced ceramics, composites, and coating materials. The apparatus includes a retaining fixture on a rotating stage on a vertically movable cross support driven by a linear actuator. These components are located below a furnace wherein the hot impact tests are performed (see Figure 1). In preparation for a test, a specimen is mounted on the retaining fixture, then the cross support is moved upward to raise the specimen, through an opening in the bottom of the furnace, to the test position inside the furnace. On one side of the furnace there is another, relatively small opening on a direct line to the specimen. Once the specimen has become heated to the test temperature, the test is performed by using an instrumented external pressurized-gas-driven gun to shoot a projectile through the side opening at the specimen.

  8. Hypervelocity Impact Testing of Nickel Hydrogen Battery Cells

    NASA Technical Reports Server (NTRS)

    Frate, David T.; Nahra, Henry K.

    1996-01-01

    Nickel-Hydrogen (Ni/H2) battery cells have been used on several satellites and are planned for use on the International Space Station. In January 1992, the NASA Lewis Research Center (LeRC) conducted hypervelocity impact testing on Ni/H2 cells to characterize their failure modes. The cell's outer construction was a 24 mil-thick Inconel 718 pressure vessel. A sheet of 1.27 cm thick honeycomb was placed in front of the battery cells during testing to simulate the on-orbit box enclosure. Testing was conducted at the NASA White Sands Test Facility (WSTF). The hypervelocity gun used was a 7.6 mm (0.30 caliber) two-stage light gas gun. Test were performed at speeds of 3, 6, and 7 km/sec using aluminum 2017 spherical particles of either 4.8 or 6.4 mm diameter as the projectile. The battery cells were electrically charged to about 75 percent of capacity, then back-filled with hydrogen gas to 900 psi simulating the full charge condition. High speed film at 10,000 frames/sec was taken of the impacts. Impacts in the dome area (top) and the electrode area (middle) of the battery cells were investigated. Five tests on battery cells were performed. The results revealed that in all of the test conditions investigated, the battery cells simply vented their hydrogen gas and some electrolyte, but did not burst or generate any large debris fragments.

  9. Hypervelocity Impact Test Results for a Metallic Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Karr, Katherine L.; Poteet, Carl C.; Blosser, Max L.

    2003-01-01

    Hypervelocity impact tests have been performed on specimens representing metallic thermal protection systems (TPS) developed at NASA Langley Research Center for use on next-generation reusable launch vehicles (RLV). The majority of the specimens tested consists of a foil gauge exterior honeycomb panel, composed of either Inconel 617 or Ti-6Al-4V, backed with 2.0 in. of fibrous insulation and a final Ti-6Al-4V foil layer. Other tested specimens include titanium multi-wall sandwich coupons as well as TPS using a second honeycomb sandwich in place of the foil backing. Hypervelocity impact tests were performed at the NASA Marshall Space Flight Center Orbital Debris Simulation Facility. An improved test fixture was designed and fabricated to hold specimens firmly in place during impact. Projectile diameter, honeycomb sandwich material, honeycomb sandwich facesheet thickness, and honeycomb core cell size were examined to determine the influence of TPS configuration on the level of protection provided to the substructure (crew, cabin, fuel tank, etc.) against micrometeoroid or orbit debris impacts. Pictures and descriptions of the damage to each specimen are included.

  10. Monitoring thermal impact resulting from solid rocket motor test operations

    NASA Technical Reports Server (NTRS)

    Davis, Bruce A.; Thurman, Charles; Carr, Hugh V.

    1990-01-01

    The use of remote sensing is discussed with respect to determining the thermal conditions and the immediate environmental effects of large-scale rocket propulsion tests. Data acquired during a test firing of a solid rocket motor are presented including thermal data and surface temperatures from before, during, and after the firing. Thermal impact directly behind the nozzle is assessed, temperature values within the plume are determined, and data are generated for use in an environmental monitoring system which can analyze and forecast impact. The airborne multispectral scanner and thermocouples behind the solid rocket motor discerned that radiant temperatures are higher than predictions indicate and that the testing affects 34 acres of ground. The results are of use in determining the design and area required for developing testing facilities for rocket motors.

  11. Impact Testing of a Stirling Converter's Linear Alternator

    NASA Technical Reports Server (NTRS)

    Suarez, Vicente J.; Goodnight, Thomas W.; Hughes, William O.; Samorezov, Sergey

    2002-01-01

    The U.S. Department of Energy (DOE), in conjunction with the NASA John H. Glenn Research Center and Stirling Technology Company, are currently developing a Stirling convertor for a Stirling Radioisotope Generator (SRG). NASA Headquarters and DOE have identified the SRG for potential use as an advanced spacecraft power system for future NASA deep-space and Mars surface missions. Low-level dynamic impact tests were conducted at NASA Glenn Research Center's Structural Dynamics Laboratory as part of the development of this technology. The purpose of this test was to identify dynamic structural characteristics of the Stirling Technology Demonstration Convertor (TDC). This paper addresses the test setup, procedure, and results of the impact testing conducted on the Stirling TDC in May 2001.

  12. Effect of aging on impact properties of ASTM A890 Grade 1C super duplex stainless steel

    SciTech Connect

    Martins, Marcelo Forti, Leonardo Rodrigues Nogueira

    2008-02-15

    Super duplex stainless steels in the solution annealed condition are thermodynamically metastable systems which, when exposed to heat, present a strong tendency to 'seek' the most favorable thermodynamic condition. The main purpose of this study was to characterize the microstructure of a super duplex stainless steel in the as cast and solution annealed conditions, and to determine the influence of aging heat treatments on its impact strength, based on Charpy impact tests applied to V-notched test specimens. The sigma phase was found to begin precipitating at heat treatment temperatures above 760 deg. C and to dissolve completely only above 1040 deg. C, with the highest peak concentration of this phase appearing at close to 850 deg. C. Heat treatments conducted at temperatures of 580 deg. C to 740 deg. C led to a reduction of the energy absorbed in the Charpy impact test in response to the precipitation of a particulate phase with particle sizes ranging from 0.5 {mu}m to 1.0 {mu}m, with a chromium and iron-rich chemical composition.

  13. Tensile and impact properties of V-4Cr-4Ti alloy heats 832665 and 832864.

    SciTech Connect

    Bray, T. S.; Tsai, H.; Nowicki, L. J.; Billone, M. C.; Smith, D. L.; Johnson, W. R.; Trester, P. W.

    1999-11-08

    Two large heats of V-4Cr-4Ti alloy were produced in the United States in the past few years. The first, 832665, was a 500 kg heat procured by the U.S. Department of Energy for basic fusion structural materials research. The second, 832864, was a 1300 kg heat procured by General Atomics for the DIII-D radiative divertor upgrade. Both heats were produced by Oremet-Wah Chang (previously Teledyne Wah Chang of Albany). Tensile properties up to 800 C and Charpy V-notch impact properties down to liquid nitrogen temperature were measured for both heats. The product forms tested for both heats were rolled sheets annealed at 1000 C for 1 h in vacuum. Testing results show the behavior of the two heats to be similar and the reduction of strengths with temperature to be insignificant up to at least 750 C. Ductility of both materials is good in the test temperature range. Impact properties for both heats are excellent--no brittle failures at temperatures above -150 C. Compared to the data for previous smaller laboratory heats of 15-50 kg, the results show that scale-up of vanadium alloy ingot production to sizes useful for reactor blanket design can be successfully achieved as long as reasonable process control is implemented.

  14. Large Field Photogrammetry Techniques in Aircraft and Spacecraft Impact Testing

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.

    2010-01-01

    The Landing and Impact Research Facility (LandIR) at NASA Langley Research Center is a 240 ft. high A-frame structure which is used for full-scale crash testing of aircraft and rotorcraft vehicles. Because the LandIR provides a unique capability to introduce impact velocities in the forward and vertical directions, it is also serving as the facility for landing tests on full-scale and sub-scale Orion spacecraft mass simulators. Recently, a three-dimensional photogrammetry system was acquired to assist with the gathering of vehicle flight data before, throughout and after the impact. This data provides the basis for the post-test analysis and data reduction. Experimental setups for pendulum swing tests on vehicles having both forward and vertical velocities can extend to 50 x 50 x 50 foot cubes, while weather, vehicle geometry, and other constraints make each experimental setup unique to each test. This paper will discuss the specific calibration techniques for large fields of views, camera and lens selection, data processing, as well as best practice techniques learned from using the large field of view photogrammetry on a multitude of crash and landing test scenarios unique to the LandIR.

  15. Influence of thermal conditioning media on Charpy specimen test temperature

    SciTech Connect

    Nanstad, R.K.; Swain, R.L.; Berggren, R.G.

    1989-01-01

    The Charpy V-notch (CVN) impact test is used extensively for determining the toughness of structural materials. Research programs in many technologies concerned with structural integrity perform such testing to obtain Charpy energy vs temperature curves. American Society for Testing and Materials Method E 23 includes rather strict requirements regarding determination and control of specimen test temperature. It specifies minimum soaking times dependent on the use of liquids or gases as the medium for thermally conditioning the specimen. The method also requires that impact of the specimen occur within 5 s removal from the conditioning medium. It does not, however, provide guidance regarding choice of conditioning media. This investigation was primarily conducted to investigate the changes in specimen temperature which occur when water is used for thermal conditioning. A standard CVN impact specimen of low-alloy steel was instrumented with surface-mounted and embedded thermocouples. Dependent on the media used, the specimen was heated or cooled to selected temperatures in the range {minus}100 to 100{degree}C using cold nitrogen gas, heated air, acetone and dry ice, methanol and dry ice, heated oil, or heated water. After temperature stabilization, the specimen was removed from the conditioning medium while the temperatures were recorded four times per second from all thermocouples using a data acquisition system and a computer. The results show that evaporative cooling causes significant changes in the specimen temperatures when water is used for conditioning. Conditioning in the other media did not result in such significant changes. The results demonstrate that, even within the guidelines of E 23, significant test temperature changes can occur which may substantially affect the Charpy impact test results if water is used for temperature conditioning. 7 refs., 11 figs.

  16. End-on radioisotope thermoelectric generator impact tests

    SciTech Connect

    Reimus, M.A.H.; Hhinckley, J.E.

    1997-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of [sup 238]Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). The modular GPHS design was developed to address both survivability during launch abort and return from orbit. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure.

  17. End-on radioisotope thermoelectric generator impact tests

    NASA Astrophysics Data System (ADS)

    Reimus, M. A. H.; Hinckley, J. E.

    1997-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of 238Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). The modular GPHS design was developed to address both survivability during launch abort and return from orbit. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure.

  18. Low velocity impact testing and nondestructive evaluation of transparent materials

    SciTech Connect

    Brennan, R. E.; Green, W. H.

    2011-06-23

    Advanced transparent materials are used in protective systems for enhancing the survivability of ground vehicles, air vehicles, and personnel in applications such as face shields, riot gear, and vehicle windows. Low velocity impact damage can limit visibility and compromise the structural integrity of a transparent system, increasing the likelihood of further damage or penetration from a high velocity impact strike. For this reason, it is critical to determine damage tolerance levels of transparent systems to indicate whether or not a component should be replaced. In this study, transparent laminate systems will be tested by comparing baseline conditions to experimentally controlled damage states. Destructive testing including air gun and sphere impact testing will be used to replicate low velocity impacts in the field. Characterization of the damaged state will include basic visual inspection as well as nondestructive techniques including cross-polarization, x-ray, and ultrasound. The combination of destructive testing and characterization of the resulting damage can help to establish a damage acceptance criterion for materials used in protective systems.

  19. Taylor Impact Tests and Simulations on PBX 9501

    NASA Astrophysics Data System (ADS)

    Clements, Brad; Thompson, Darla G.; Luscher, D. J.; Deluca, Racci

    2011-06-01

    Taylor impact tests have been conducted previously on plastic bonded explosives (PBXs) to characterize the stress state of these materials as they impact smooth and flat steel anvil surfaces at speeds of ~100m/s (i.e. Christopher, et al, 11th Detonation Symposium). In 2003, C. Liu and R. Ellis (unpublished, Los Alamos National Laboratory) performed Taylor tests on PBX 9501 up to speeds of 115 m/s, capturing impact images. In the work presented here, we have extended these tests to velocities of 200 m/s using a composite-lined gun barrel and no specimen sabot. Specimen images are used to validate the thermo-mechanical constitutive model ViscoSCRAM. ViscoSCRAM has been parameterized for PBX 9501 in uniaxial stress configurations. Simulating Taylor impact experiments tests the model in situations undergoing extreme damage. In addition, experimental variations to specimen confinement and friction are introduced in an attempt to establish ignition thresholds in this velocity regime.

  20. Hypervelocity impact tests on Space Shuttle Orbiter thermal protection material

    NASA Technical Reports Server (NTRS)

    Humes, D. H.

    1977-01-01

    Hypervelocity impact tests were conducted to simulate the damage that meteoroids will produce in the Shuttle Orbiter leading edge structural subsystem material. The nature and extent of the damage is reported and the probability of encountering meteoroids with sufficient energy to produce such damage is discussed.

  1. Analysis-test correlation of airbag impact for Mars landing

    SciTech Connect

    Salama, M.; Davis, G.; Kuo, C.P.

    1994-12-31

    The NASA Mars Pathfinder mission is intended to demonstrate key low cost technologies for use in future science missions to Mars. Among these technologies is the landing system. Upon entering in Martian atmosphere at about 7000 m/sec., the spacecraft will deploy a series of breaking devices (parachute and solid rockets) to slow down its speed to less than 20 m/sec. as it impacts with the Martian ground. To cushion science instruments form the landing impact, an airbag system is inflated to surround the lander approximately five seconds before impact. After multiple bounces, the lander/airbags comes to rest, the airbags are deflated and retracted, and the lander opens up its petals to allow a microrover to begin exploration. Of interest here, is the final landing phase. Specifically, this paper will focus on the methodology used to simulate the nonlinear dynamics of lander/airbags landing impact, and how this simulation correlates with initial tests.

  2. Sloshing roof impact tests of a rectangular tank

    SciTech Connect

    Minowa, C.; Ogawa, N.; Harada, I.; Ma, D.C.

    1994-06-01

    Some tanks have been damaged at the roofs due to sloshing impact caused by strong earthquakes. It is, therefore, necessary to consider the impact force in the aseismic design code for tank roofs. However, there are few studies on the earthquake responses of storage and process tank roofs. As a first step to investigate the effects of sloshing impact a series of the shaking table tests of a rectangular tank have been conducted at the National Research Institute for Earth Science and Disaster Prevention (NIED). The results of these shaking table tests are presented in the paper. The test tank is rectangular in shape having dimensions of 5 m {times} 3 m {times} 2 m length {times} width {times} height). The tank was constructed of glass-fiber reinforced plastic panels. Every panel had a flange on four edges, and each panel was connected by bolts along the flange. The test tank was set on the NIED shaking table (15 m by 15 m). Two types of liquid were used, water and a viscous liquid (water mixed with polymeric powders). The roof impact pressures and other quantities were measured. During the tests using the 400 pi El-Centro excitation, the roof deformation sensor steel beam was damaged. The response of side walls with different rigidity were measured in the wall bulging tests. The measured vibrations within the panel plates were larger than those in the panel flanges. The viscous liquid of 100 cp had little influence on wall bulging responses. However, the viscous effects on sloshing responses were observed in the sloshing tests. Approximate analyses of rectangular tanks, considering the influence of static water pressure, are also presented in this paper.

  3. Sloshing roof impact tests of a rectangular tank

    NASA Astrophysics Data System (ADS)

    Minowa, Chikahiro; Ogawa, Nobuyuki; Harada, Iki; Ma, David C.

    Some tanks have been damaged at the roofs due to sloshing impact caused by strong earthquakes. It is, therefore, necessary to consider the impact force in the aseismic design code for tank roofs. However, there are few studies on the earthquake responses of storage and process tank roofs. As a first step to investigate the effects of sloshing impact a series of the shaking table tests of a rectangular tank have been conducted at the National Research Institute for Earth Science and Disaster Prevention (NIED). The results of these shaking table tests are presented in the paper. The test tank is rectangular in shape having dimensions of 5 m x 3 m x 2 m (length x width x height). The tank was constructed of glass-fiber reinforced plastic panels. Every panel had a flange on four edges, and each panel was connected by bolts along the flange. The test tank was set on the NIED shaking table (15 m by 15 m). Two types of liquid were used, water and a viscous liquid (water mixed with polymeric powders). The roof impact pressures and other quantities were measured. During the tests using the 400 pi El-Centro excitation, the roof deformation sensor steel beam was damaged. The response of side walls with different rigidity were measured in the wall bulging tests. The measured vibrations within the panel plates were larger than those in the panel flanges. The viscous liquid of 100 cp had little influence on wall bulging responses. However, the viscous effects on sloshing responses were observed in the sloshing tests. Approximate analyses of rectangular tanks, considering the influence of static water pressure, are also presented in this paper.

  4. Phase transformation and impact properties in the experimentally simulated weld heat-affected zone of a reduced activation ferritic/martensitic steel

    NASA Astrophysics Data System (ADS)

    Moon, Joonoh; Lee, Chang-Hoon; Lee, Tae-Ho; Jang, Min-Ho; Park, Min-Gu; Han, Heung Nam

    2014-12-01

    In this work, the phase transformation and impact properties in the weld heat-affected zone (HAZ) of a reduced activation ferritic/martensitic (RAFM) steel are investigated. The HAZs were experimentally simulated using a Gleeble simulator. The base steel consisted of tempered martensite through normalizing at 1000 °C and tempering at 750 °C, while the HAZs consisted of martensite, δ-ferrite and a small volume of autotempered martensite. The impact properties using a Charpy V-notch impact test revealed that the HAZs showed poor impact properties due to the formation of martensite and δ-ferrite as compared with the base steel. In addition, the impact properties of the HAZs further deteriorated with an increase in the δ-ferrite fraction caused by increasing the peak temperature. The impact properties of the HAZs could be improved through the formation of tempered martensite after post weld heat treatment (PWHT), but they remained lower than that of the base steel because the δ-ferrite remained in the tempered HAZs.

  5. Impact Tensile Testing of Stainless Steels at Various Temperatures

    SciTech Connect

    D. K. Morton

    2008-03-01

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these base materials and their welds under dynamic loads in the strain rate range of concern (1 to 300 per second) are not well documented. However, research is being performed at the Idaho National Laboratory to quantify these characteristics. The work presented herein discusses tensile impact testing of dual-marked 304/304L and 316/316L stainless steel material specimens. Both base material and welded material specimens were tested at -20 oF, room temperature, 300 oF, and 600 oF conditions. Utilizing a drop weight impact test machine and 1/4-inch and 1/2-inch thick dog bone-shaped test specimens, a strain rate range of approximately 4 to 40 per second (depending on initial temperature conditions) was achieved. Factors were determined that reflect the amount of increased strain energy the material can absorb due to strain rate effects. Using the factors, elevated true stress-strain curves for these materials at various strain rates and temperatures were generated. By incorporating the strain rate elevated true stress-strain material curves into an inelastic finite element computer program as the defined material input, significant improvement in the accuracy of the computer analyses was attained. However, additional impact testing is necessary to achieve higher strain rates (up to 300 per second) before complete definition of strain rate effects can be made for accidental drop events and other similar energy-limited impulsive loads. This research approach, using impact testing and a total energy analysis methodology to quantify strain rate effects, can be applied to many other materials used in government and industry.

  6. Effective grain size and charpy impact properties of high-toughness X70 pipeline steels

    NASA Astrophysics Data System (ADS)

    Hwang, Byoungchul; Kim, Yang Gon; Lee, Sunghak; Kim, Young Min; Kim, Nack J.; Yoo, Jang Yong

    2005-08-01

    The correlation of microstructure and Charpy V-notch (CVN) impact properties of a high-toughness API X70 pipeline steel was investigated in this study. Six kinds of steel were fabricated by varying the hot-rolling conditions, and their microstructures, effective grain sizes, and CVN impact properties were analyzed. The CVN impact test results indicated that the steels rolled in the single-phase region had higher upper-shelf energies (USEs) and lower energy-transition temperatures (ETTs) than the steels rolled in the two-phase region because their microstructures were composed of acicular ferrite (AF) and fine polygonal ferrite (PF). The decreased ETT in the steels rolled in the single-phase region could be explained by the decrease in the overall effective grain size due to the presence of AF having a smaller effective grain size. On the other hand, the absorbed energy of the steels rolled in the two-phase region was considerably lower because a large amount of dislocations were generated inside PFs during rolling. It was further decreased when coarse martensite or cementite was formed during the cooling process.

  7. Hydrodynamic impact analysis and testing of an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Bird, Isabel

    Analysis and testing have been conducted to assess the feasibility of a small UAV that can be landed in the water and recovered for continued use. Water landings may be desirable in a number of situations, for example when testing UAVs outside of the territorial waters of the US to avoid violating FAA regulations. Water landings may also be desirable when conducting surveillance missions in marine environments. Although the goal in landing is to have the UAV lightly set down on the water, rough seas or gusty winds may result in a nose-in landing where the UAV essentially impacts the surface of the water. The tested UAV is a flying wing design constructed of expanded polypropylene foam wings with a hollowed out center-section for the avionics. Acceleration data was collected by means of LIS331 3-axis accelerometers positioned at five locations, including the wingtips. This allowed conclusions to be drawn with respect to the loads experienced on impact throughout the airframe. This data was also used to find loads corresponding to the maximum decelerations experienced during impact. These loads were input into a finite element analysis model of the wing spars to determine stress in the wing spars. Upon impact, the airframe experienced high-frequency oscillation. Surprisingly, peak accelerations at the wingtips were observed at up to 15g greater than corresponding accelerations at the center of the fuselage.

  8. Space Shuttle Main Engine Debris Testing Methodology and Impact Tolerances

    NASA Technical Reports Server (NTRS)

    Gradl, Paul R.; Stephens, Walter

    2005-01-01

    In the wake of the Space Shuttle Columbia disaster every effort is being made to determine the susceptibility of Space Shuttle elements to debris impacts. Ice and frost debris is formed around the aft heat shield closure of the orbiter and liquid hydrogen feedlines. This debris has been observed to liberate upon lift-off of the shuttle and presents potentially dangerous conditions to the Space Shuttle Main Engine. This paper describes the testing done to determine the impact tolerance of the Space Shuttle Main Engine nozzle coolant tubes to ice strikes originating from the launch pad or other parts of the shuttle.

  9. Program for impact testing of spar-shell fan blades, test report

    NASA Technical Reports Server (NTRS)

    Ravenhall, R.; Salemme, C. T.

    1978-01-01

    Six filament-wound, composite spar-shell fan blades were impact tested in a whirligig relative to foreign object damage resulting from ingestion of birds into the fan blades of a QCSEE-type engine. Four of the blades were tested by injecting a simulated two pound bird into the path of the rotating blade and two were tested by injecting a starling into the path of the blade.

  10. Hypervelocity Impact Test Facility: A gun for hire

    NASA Technical Reports Server (NTRS)

    Johnson, Calvin R.; Rose, M. F.; Hill, D. C.; Best, S.; Chaloupka, T.; Crawford, G.; Crumpler, M.; Stephens, B.

    1994-01-01

    An affordable technique has been developed to duplicate the types of impacts observed on spacecraft, including the Shuttle, by use of a certified Hypervelocity Impact Facility (HIF) which propels particulates using capacitor driven electric gun techniques. The fully operational facility provides a flux of particles in the 10-100 micron diameter range with a velocity distribution covering the space debris and interplanetary dust particle environment. HIF measurements of particle size, composition, impact angle and velocity distribution indicate that such parameters can be controlled in a specified, tailored test designed for or by the user. Unique diagnostics enable researchers to fully describe the impact for evaluating the 'targets' under full power or load. Users regularly evaluate space hardware, including solar cells, coatings, and materials, exposing selected portions of space-qualified items to a wide range of impact events and environmental conditions. Benefits include corroboration of data obtained from impact events, flight simulation of designs, accelerated aging of systems, and development of manufacturing techniques.

  11. High-pressure oxygen test evaluations. [impact tests/metals - space shuttles

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.; Key, C. F.

    1974-01-01

    The relevance of impact sensitivity testing to the development of the space shuttle main engine is discussed in the light of the special requirements for the engine. The background and history of the evolution of liquid and gaseous oxygen testing techniques and philosophy is discussed also. The parameters critical to reliable testing are treated in considerable detail, and test apparatus and procedures are described and discussed. Materials threshold sensitivity determination procedures are considered and a decision logic diagram for sensitivity threshold determination was plotted. Finally, high-pressure materials sensitivity test data are given for selected metallic and nonmetallic materials.

  12. Test plan. Task 5, subtask 5.2: Early on-orbit TPSdebris impact tests

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.

    1994-01-01

    The limitation of damage to, and survival of, the cryogenic tankage during the on-orbit stay despite potential impact of orbital debris, may be a significant discriminator in the RHCTS trade studies described in the TA-1 trade study plan (ref. RHCTS-TSP-1) dated July 29, 1994. The objective of this early phase of an overall debris impact test program is to provide the data to support assessment of the relative suitability of integral and non integral tanks.

  13. Radioisotope thermoelectric generator/thin fragment impact test

    SciTech Connect

    Reimus, M.A.H.; Hinckley, J.E.

    1998-12-31

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the convertor housing, failure of one fueled clad, and release of a small quantity of fuel.

  14. Radioisotope thermoelectric generator/thin fragment impact test

    NASA Astrophysics Data System (ADS)

    Reimus, M. A. H.; Hinckley, J. E.

    1998-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of 238Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel.

  15. Simulated hail impact testing of photovoltaic solar panels

    NASA Technical Reports Server (NTRS)

    Moore, D.; Wilson, A.; Ross, R.

    1978-01-01

    Techniques used to simulate and study the effect of hail on photovoltaic solar panels are described. Simulated hail stones (frozen ice spheres projected at terminal velocity) or steel balls were applied by air guns, gravity drop, or static loading. Tests with simulated hail and steel balls yielded different results. The impact strength of 10 commercially available flat-plate photovoltaic modules was tested. It was found that none of the six panel designs incorporating clear potting silicone material as the outermost layer remained undamaged by 1-in. simulated hailstones, while a photovoltaic module equipped with a 0.188-in.-thick acrylic cover sheet would be able to withstand the impact of a 2-in.-diameter hailstone.

  16. Charpy impact test results for low-activation ferritic alloys

    SciTech Connect

    Cannon, N.S.; Hu, W.L.; Gelles, D.S.

    1987-05-01

    The objective of this work is to evaluate the shift of the ductile to brittle transition temperature (DBTT) and the reduction of the upper shelf energy (USE) due to neutron irradiation of low activation ferritic alloys. Six low activation ferritic alloys have been tested following irradiation at 365/sup 0/C to 10 dpa and compared with control specimens in order to assess the effect of irradiation on Charpy impact properties.

  17. Quasi-static and impact tests of honeycomb

    NASA Astrophysics Data System (ADS)

    Gary, G.; Klepaczko, J. R.

    2006-08-01

    In this paper the quasi-static and instrumented compression impact testing of two kinds of aluminum-alloy honeycomb are reported. Those two types of honeycomb called Hard (H) and Soft (S) were tested. The specimens in cubical form of dimensions 60 mm × 60 mm × 120 mm were made with and without the front aluminum alloy plates (thickness 1.0 mm) cemented to the specimen two faces. The tests have been performed along the largest dimension that is 120 mm, which is parallel to the aluminum sheet profiles forming the honeycomb. A wide range of compression velocities from the quasi-static rate (V0 = 10 mm/min) to the highest impact velocity V6 = 120 m/s were applied. The total number of velocities applied, including the quasi-static loading, was six. Several series of tests were performed. The first two were carried out with the flat-ended strikers of specific masses, which were adequate to each impact velocity. In order to obtain an adequate displacement of crushing the condition of constant kinetic energy of a striker was assumed. In addition, conical strikers were applied with the cone angle 120circ. Application of the direct impact arrangement along with properly instrumented 9m long Hopkinson bar of Nylon with diameter 80 mm enabled for a wave dispersion analysis to be applied. The crushing force versus time could be exactly determined at the specimen-bar interface by application of an inverse technique along with the theory of visco-elastic wave propagation.

  18. Arcjet Testing of Micro-Meteoroid Impacted Thermal Protection Materials

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Munk, Michelle M.; Glaab, Louis J.

    2013-01-01

    There are several harsh space environments that could affect thermal protection systems and in turn pose risks to the atmospheric entry vehicles. These environments include micrometeoroid impact, extreme cold temperatures, and ionizing radiation during deep space cruise, all followed by atmospheric entry heating. To mitigate these risks, different thermal protection material samples were subjected to multiple tests, including hyper velocity impact, cold soak, irradiation, and arcjet testing, at various NASA facilities that simulated these environments. The materials included a variety of honeycomb packed ablative materials as well as carbon-based non-ablative thermal protection systems. The present paper describes the results of the multiple test campaign with a focus on arcjet testing of thermal protection materials. The tests showed promising results for ablative materials. However, the carbon-based non-ablative system presented some concerns regarding the potential risks to an entry vehicle. This study provides valuable information regarding the capability of various thermal protection materials to withstand harsh space environments, which is critical to sample return and planetary entry missions.

  19. West Valley Demonstration Project full-scale canister impact tests

    SciTech Connect

    Whittington, K.F.; Alzheimer, J.M.; Lutz, C.E.

    1995-09-01

    Five West Valley Nuclear Services (WVNS) high-level waste (HLW) canisters were impact tested during 1994 to demonstrate compliance with the drop test requirements of the Waste Acceptance Product Specifications. The specifications state that the canistered waste form must be able to survive a 7{minus}m (23 ft) drop unbreached. The 10-gauge (0.125 in. wall thickness) stainless steel canisters were approximately 85% filled with simulated vitrified waste and weighed about 2100 kg (4600 lb). Each canister was dropped vertically from a height of 7 m (23 ft) onto an essentially unyielding surface. The integrity of the canister was determined by the application and analysis of strain circles, dimensional measurements, and helium leak testing. The canisters were also visually inspected before and after the drop for physical damage. The results of the impact test verify that the canisters survived the 7{minus}m drops unbreached. Therefore, these results demonstrate that the reference canister meets the drop test specification of the Waste Acceptance Product Specification.

  20. A semiautomated computer-interactive dynamic impact testing system

    SciTech Connect

    Alexander, D.J.; Nanstad, R.K.; Corwin, W.R.; Hutton, J.T.

    1989-01-01

    A computer-assisted semiautomated system has been developed for testing a variety of specimen types under dynamic impact conditions. The primary use of this system is for the testing of Charpy specimens. Full-, half-, and third-size specimens have been tested, both in the lab and remotely in a hot cell for irradiated specimens. Specimens are loaded into a transfer device which moves the specimen into a chamber, where a hot air gun is used to heat the specimen, or cold nitrogen gas is used for cooling, as required. The specimen is then quickly transferred from the furnace to the anvils and then broken. This system incorporates an instrumented tup to determine the change in voltage during the fracture process. These data are analyzed by the computer system after the test is complete. The voltage-time trace is recorded with a digital oscilloscope, transferred to the computer, and analyzed. The analysis program incorporates several unique features. It interacts with the operator and identifies the maximum voltage during the test, the amount of rapid fracture during the test (if any), and the end of the fracture process. The program then calculates the area to maximum voltage and the total area under the voltage-time curve. The data acquisition and analysis part of the system can also be used to conduct other dynamic testing. Dynamic tear and precracked specimens can be tested with an instrumented tup and analyzed in a similar manner. 3 refs., 7 figs.

  1. Understanding the impact of genetic testing for inherited retinal dystrophy.

    PubMed

    Combs, Ryan; McAllister, Marion; Payne, Katherine; Lowndes, Jo; Devery, Sophie; Webster, Andrew R; Downes, Susan M; Moore, Anthony T; Ramsden, Simon; Black, Graeme; Hall, Georgina

    2013-11-01

    The capability of genetic technologies is expanding rapidly in the field of inherited eye disease. New genetic testing approaches will deliver a step change in the ability to diagnose and extend the possibility of targeted treatments. However, evidence is lacking about the benefits of genetic testing to support service planning. Here, we report qualitative data about retinal dystrophy families' experiences of genetic testing in United Kingdom. The data were part of a wider study examining genetic eye service provision. Twenty interviewees from families in which a causative mutation had been identified by a genetic eye clinic were recruited to the study. Fourteen interviewees had chosen to have a genetic test and five had not; one was uncertain. In-depth telephone interviews were conducted allowing a thorough exploration of interviewees' views and experiences of the benefits of genetic counselling and testing. Transcripts were analysed using thematic analysis. Both affected and unaffected interviewees expressed mainly positive views about genetic testing, highlighting benefits such as diagnostic confirmation, risk information, and better preparation for the future. Negative consequences included the burden of knowledge, moral dilemmas around reproduction, and potential impact on insurance. The offer of genetic testing was often taken up, but was felt unnecessary in some cases. Interviewees in the study reported many benefits, suggesting genetic testing should be available to this patient group. The benefits and risks identified will inform future evaluation of models of service delivery. This research was part of a wider study exploring experiences of families with retinal dystrophy. PMID:23403902

  2. Understanding the impact of genetic testing for inherited retinal dystrophy

    PubMed Central

    Combs, Ryan; McAllister, Marion; Payne, Katherine; Lowndes, Jo; Devery, Sophie; Webster, Andrew R; Downes, Susan M; Moore, Anthony T; Ramsden, Simon; Black, Graeme; Hall, Georgina

    2013-01-01

    The capability of genetic technologies is expanding rapidly in the field of inherited eye disease. New genetic testing approaches will deliver a step change in the ability to diagnose and extend the possibility of targeted treatments. However, evidence is lacking about the benefits of genetic testing to support service planning. Here, we report qualitative data about retinal dystrophy families' experiences of genetic testing in United Kingdom. The data were part of a wider study examining genetic eye service provision. Twenty interviewees from families in which a causative mutation had been identified by a genetic eye clinic were recruited to the study. Fourteen interviewees had chosen to have a genetic test and five had not; one was uncertain. In-depth telephone interviews were conducted allowing a thorough exploration of interviewees' views and experiences of the benefits of genetic counselling and testing. Transcripts were analysed using thematic analysis. Both affected and unaffected interviewees expressed mainly positive views about genetic testing, highlighting benefits such as diagnostic confirmation, risk information, and better preparation for the future. Negative consequences included the burden of knowledge, moral dilemmas around reproduction, and potential impact on insurance. The offer of genetic testing was often taken up, but was felt unnecessary in some cases. Interviewees in the study reported many benefits, suggesting genetic testing should be available to this patient group. The benefits and risks identified will inform future evaluation of models of service delivery. This research was part of a wider study exploring experiences of families with retinal dystrophy. PMID:23403902

  3. Sand Impact Tests of a Half-Scale Crew Module Boilerplate Test Article

    NASA Technical Reports Server (NTRS)

    Vassilakos, Gregory J.; Hardy, Robin C.

    2012-01-01

    Although the Orion Multi-Purpose Crew Vehicle (MPCV) is being designed primarily for water landings, a further investigation of launch abort scenarios reveals the possibility of an onshore landing at Kennedy Space Center (KSC). To gather data for correlation against simulations of beach landing impacts, a series of sand impact tests were conducted at NASA Langley Research Center (LaRC). Both vertical drop tests and swing tests with combined vertical and horizontal velocity were performed onto beds of common construction-grade sand using a geometrically scaled crew module boilerplate test article. The tests were simulated using the explicit, nonlinear, transient dynamic finite element code LS-DYNA. The material models for the sand utilized in the simulations were based on tests of sand specimens. Although the LSDYNA models provided reasonable predictions for peak accelerations, they were not always able to track the response through the duration of the impact. Further improvements to the material model used for the sand were identified based on results from the sand specimen tests.

  4. Compression-after-impact testing of thin composite materials

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Hodge, Andrew J.

    1991-01-01

    A new method has been devised to test composite specimens as thin as 8 plies and up to 7.6 cm in width for compression strength. This method utilizes a fixture incorporating the best features of the Celanese and IITRI fixtures combined with an antibuckling jig developed at the University of Dayton Research Institute. This new method uses up to 83 percent less material than the most commonly used compression-after-impact technique (which calls for a 48 ply test specimen) and can also be performed on smaller loading frames since a much smaller force is needed to fail the specimen. The thickness of the test specimen can be fabricated to exactly match production part thickness, thus yielding more meaningful results. CAI tests were performed on IM6/3501 carbon/epoxy utilizing this new method. To verify the design, a series of tests were performed in which undamaged specimens were tested using the new fixture and ASTM D 3410-87 (Celanese compression test) and the results compared. The new fixture works well and will be a valuable asset to MSFC's damage tolerance program.

  5. Shape Distribution of Fragments from Microsatellite Impact Tests

    NASA Technical Reports Server (NTRS)

    Liou, J.C.; Hanada, T.

    2009-01-01

    Fragment shape is an important factor for conducting reliable orbital debris damage assessments for critical space assets, such as the International Space Station. To date, seven microsatellite impact tests have been completed as part of an ongoing collaboration between Kyushu University and the NASA Orbital Debris Program Office. The target satellites ranged in size from 15 cm 15 cm 15 cm to 20 cm 20 cm 20 cm. Each target satellite was equipped with fully functional electronics, including circuits, battery, and transmitter. Solar panels and multi-layer insulation (MLI) were added to the target satellites of the last two tests. The impact tests were carried out with projectiles of different sizes and impact speeds. All fragments down to about 2 mm in size were collected and analyzed based on their three orthogonal dimensions, x, y, and z, where x is the longest dimension, y is the longest dimension in the plane perpendicular to x, and z is the longest dimension perpendicular to both x and y. Each fragment was also photographed and classified by shape and material composition. This data set serves as the basis of our effort to develop a fragment shape distribution. Two distinct groups can be observed in the x/y versus y/z distribution of the fragments. Objects in the first group typically have large x/y values. Many of them are needle-like objects originating from the fragmentation of carbon fiber reinforced plastic materials used to construct the satellites. Objects in the second group tend to have small x/y values, and many of them are box-like or plate-like objects, depending on their y/z values. Each group forms the corresponding peak in the x/y distribution. However, only one peak can be observed in the y/z distribution. These distributions and how they vary with size, material type, and impact parameters will be described in detail within the paper.

  6. Machine for development impact tests in sports seats and similar

    NASA Astrophysics Data System (ADS)

    Gonçalves, R. M.

    2015-10-01

    This paper describes the stages of development of a machine to perform impact tests in sport seats, seats for spectators and multiple seats. This includes reviews and recommendations for testing laboratories that have needs similar to the laboratory where unfolded this process.The machine was originally developed seeking to meet certain impact tests in accordance with the NBR15925 standards; 15878 and 16031. The process initially included the study of the rules and the election of the tests for which the machine could be developed and yet all reports and outcome of interaction with service providers and raw materials.For operating facility, it was necessary to set entirely the machine control, which included the concept of dialogue with operator, the design of the menu screens and the procedures for submission and registration of results. To ensure reliability in the process, the machine has been successfully calibrated according to the requirements of the Brazilian network of calibration.The criticism to this enterprise covers the technical and economic aspects involved and points out the main obstacles that were needed to overcome.

  7. Single and multiple impact ignition of new and aged high explosives in the Steven Impact Test

    SciTech Connect

    Chidester, S K; DePiero, A H; Garza, R G; Tarver, C M

    1999-06-01

    Threshold impact velocities for ignition of exothermic reaction were determined for several new and aged HMX-based solid high explosives using three types of projectiles in the Steven Test. Multiple impact threshold velocities were found to be approximately 10% lower in damaged charges that did not react in one or more prior impacts. Projectiles with protrusions that concentrate the friction work in a small volume of explosive reduced the threshold velocities by approximately 30%. Flat projectiles required nearly twice as high velocities for ignition as rounded projectiles. Blast overpressure gauges were used for both pristine and damaged charges to quantitatively measure reaction violence. Reactive flow calculations of single and multiple impacts with various projectiles suggest that the ignition rates double in damaged charges.

  8. Cycom 977-2 Composite Material: Impact Test Results

    NASA Technical Reports Server (NTRS)

    Engel, Carl D.; Herald, Stephen; Watkins, Casey

    2005-01-01

    The reaction frequency data from 13A testing by MSFC and WSTF appear well behaved for the sample number used by each and exhibit the same type of energy level dependency. The reaction frequency shift in energy level is unexplained at this time. All the 13A data suggest that only a small amount of material is consumed when reactions take place. At ambient pressure, most of not all reactions are quenched as indicated by the small mass loss. As test pressure is increased in LOX using 13B results. Cycom does not support initiation of reactions or propagations of reactions in GOX at 100 psis based on tests at MSFC and WSTF at 72 ft-lb impact energy. No batch effect was identified in LOX or GOX.

  9. Estimating the Impacts of Educational Interventions Using State Tests or Study-Administered Tests. NCEE 2012-4016

    ERIC Educational Resources Information Center

    Olsen, Robert B.; Unlu, Fatih; Price, Cristofer; Jaciw, Andrew P.

    2011-01-01

    This report examines the differences in impact estimates and standard errors that arise when these are derived using state achievement tests only (as pre-tests and post-tests), study-administered tests only, or some combination of state- and study-administered tests. State tests may yield different evaluation results relative to a test that is…

  10. Tensile and impact behavior of laminated composites based on ultrahigh carbon steel

    SciTech Connect

    Lee, S.

    1988-01-01

    The goal was to develop metal-laminated composites for high strength and high strength and high toughness and centered on three major objectives. The first one was to develop a laminated composite, based on ultrahigh carbon steel (UHCS), which can be selectively heat treated to achieve alternating hard UHCS and soft interleaf layers. The second was to maintain sharp and discrete interlayer boundaries in the UHCS laminated composite after selective heat treatment with no interdiffusion of carbon. The third was to achieve high notch-impact toughness in the selectively heat-treated laminated composite. Five laminated composites were investigated. They are UHCS/Fe-3%Si, UHCS/Hadfield manganese steel (HMS), UHCS/9%Ni-2%Si steel, UHCS/brass and UHCS/304 stainless steel (304ss). All five laminated composites were selectively heat treated to achieve the desired objective of alternating hard and soft layers. Charpy V-notch impact tests were performed on the first four laminates. Each laminate showed a lower ductile-to-brittle transition temperature (DBTT) than those obtained in the monolithic UHS and the monolithic interleaf material making up the laminate.

  11. Impact of Laboratory Test Use Strategies in a Turkish Hospital

    PubMed Central

    Yılmaz, Fatma Meriç; Kahveci, Rabia; Aksoy, Altan; Özer Kucuk, Emine; Akın, Tezcan; Mathew, Joseph Lazar; Meads, Catherine; Zengin, Nurullah

    2016-01-01

    Objectives Eliminating unnecessary laboratory tests is a good way to reduce costs while maintain patient safety. The aim of this study was to define and process strategies to rationalize laboratory use in Ankara Numune Training and Research Hospital (ANH) and calculate potential savings in costs. Methods A collaborative plan was defined by hospital managers; joint meetings with ANHTA and laboratory professors were set; the joint committee invited relevant staff for input, and a laboratory efficiency committee was created. Literature was reviewed systematically to identify strategies used to improve laboratory efficiency. Strategies that would be applicable in local settings were identified for implementation, processed, and the impact on clinical use and costs assessed for 12 months. Results Laboratory use in ANH differed enormously among clinics. Major use was identified in internal medicine. The mean number of tests per patient was 15.8. Unnecessary testing for chloride, folic acid, free prostate specific antigen, hepatitis and HIV testing were observed. Test panel use was pinpointed as the main cause of overuse of the laboratory and the Hospital Information System test ordering page was reorganized. A significant decrease (between 12.6–85.0%) was observed for the tests that were taken to an alternative page on the computer screen. The one year study saving was equivalent to 371,183 US dollars. Conclusion Hospital-based committees including laboratory professionals and clinicians can define hospital based problems and led to a standardized approach to test use that can help clinicians reduce laboratory costs through appropriate use of laboratory tests. PMID:27077653

  12. The influence of copper precipitation and plastic deformation hardening on the impact-transition temperature of rolled structural steels

    NASA Astrophysics Data System (ADS)

    Aróztegui, Juan J.; Urcola, José J.; Fuentes, Manuel

    1989-09-01

    Commercial electric arc melted low-carbon steels, provided as I beams, were characterized both microstructurally and mechanically in the as-rolled, copper precipitation, and plastically pre-deformed conditions. Inclusion size distribution, ferrite grain size, pearlite volume fraction, precipitated volume fraction of copper, and size distribution of these precipitates were deter-mined by conventional quantitative optical and electron metallographic techniques. From the tensile tests conducted at a strain rate of 10-3 s-1 and impact Charpy V-notched tests carried out, stress/strain curves, yield stress, and impact-transition temperature were obtained. The spe-cific fractographic features of the fracture surfaces also were quantitatively characterized. The increases in yield stress and transition temperature experienced upon either aging or work hard-ening were related through empirical relationships. These dependences were analyzed semi-quantitatively by combining microscopic and macroscopic fracture criteria based on measured fundamental properties (fracture stress and yield stress) and observed fractographic parameters (crack nucleation distance and nuclei size). The rationale developed from these fracture criteria allows the semiquantitative prediction of the temperature transition shifts produced upon aging and work hardening. The values obtained are of the right order of magnitude.

  13. How Close Is Close Enough? Testing Nonexperimental Estimates of Impact against Experimental Estimates of Impact with Education Test Scores as Outcomes. Discussion Paper No. 1242-02

    ERIC Educational Resources Information Center

    Wilde, Elizabeth Ty; Hollister, Robinson

    2002-01-01

    In this study we test the performance of some nonexperimental estimators of impacts applied to an educational intervention--reduction in class size--where achievement test scores were the outcome. We compare the nonexperimental estimates of the impacts to "true impact" estimates provided by a random-assignment design used to assess the…

  14. How Close Is Close Enough? Testing Nonexperimental Estimates of Impact against Experimental Estimates of Impact with Education Test Scores as Outcomes. Discussion Paper.

    ERIC Educational Resources Information Center

    Wilde, Elizabeth Ty; Hollister, Robinson

    This study tested the performance of nonexperimental estimators of impacts applied to a class size reduction intervention with achievement test scores as the outcome. Nonexperimental estimates of impacts were compared to "true impact" estimates provided by a random-assignment design that assessed intervention effects. Data came from Project STAR,…

  15. Dynamic Open-Rotor Composite Shield Impact Test Report

    NASA Technical Reports Server (NTRS)

    Seng, Silvia; Frankenberger, Charles; Ruggeri, Charles R.; Revilock, Duane M.; Pereira, J. Michael; Carney, Kelly S.; Emmerling, William C.

    2015-01-01

    The Federal Aviation Administration (FAA) is working with the European Aviation Safety Agency to determine the certification base for proposed new engines that would not have a containment structure on large commercial aircraft. Equivalent safety to the current fleet is desired by the regulators, which means that loss of a single fan blade will not cause hazard to the aircraft. NASA Glenn and Naval Air Warfare Center (NAWC) China Lake collaborated with the FAA Aircraft Catastrophic Failure Prevention Program to design and test a shield that would protect the aircraft passengers and critical systems from a released blade that could impact the fuselage. This report documents the live-fire test from a full-scale rig at NAWC China Lake. NASA provided manpower and photogrammetry expertise to document the impact and damage to the shields. The test was successful: the blade was stopped from penetrating the shield, which validates the design analysis method and the parameters used in the analysis. Additional work is required to implement the shielding into the aircraft.

  16. Application of subsize specimens in nuclear plant life extension

    SciTech Connect

    Rosinski, S.T.; Kumar, A.S.; Cannon, S.C.; Hamilton, M.L.

    1991-12-31

    The US Department of Energy is sponsoring a research effort through Sandia National Laboratories and the University of Missour-Rolla to test a correlation for the upper shelf energy (USE) values obtained from the impact testing of subsize Charpy V-notch specimens to those obtained from the testing of full size samples. The program involves the impact testing of unirradiated and irradiated full, half, and third size Charpy V-notch specimens. To verify the applicability of the correlation on LWR materials unirradiated and irradiated full, half, and third size Charpy V-notch specimens of a commercial pressure vessel steel (ASTM A533 Grade B) will be tested. This paper will provide details of the program and present results obtained from the application of the developed correlation methodology to the impact testing of the unirradiated full, half, and third size A533 Grade B Charpy V-notch specimens.

  17. Application of subsize specimens in nuclear plant life extension

    SciTech Connect

    Rosinski, S.T. ); Kumar, A.S. ); Cannon, S.C. ); Hamilton, M.L. )

    1991-01-01

    The US Department of Energy is sponsoring a research effort through Sandia National Laboratories and the University of Missour-Rolla to test a correlation for the upper shelf energy (USE) values obtained from the impact testing of subsize Charpy V-notch specimens to those obtained from the testing of full size samples. The program involves the impact testing of unirradiated and irradiated full, half, and third size Charpy V-notch specimens. To verify the applicability of the correlation on LWR materials unirradiated and irradiated full, half, and third size Charpy V-notch specimens of a commercial pressure vessel steel (ASTM A533 Grade B) will be tested. This paper will provide details of the program and present results obtained from the application of the developed correlation methodology to the impact testing of the unirradiated full, half, and third size A533 Grade B Charpy V-notch specimens.

  18. Impact properties of irradiated HT9 from the fuel duct of FFTF

    SciTech Connect

    Byun, Thak Sang; Lewis, W. Daniel; Toloczko, Mychailo B.; Maloy, Stuart A.

    2012-02-01

    This paper reports Charpy impact test data for the ACO-3 duct material (HT9) from the Fast Flux Test Facility (FFTF) and its archive material. Irradiation doses for the specimens were in the range of 3– 148 dpa and irradiation temperatures in the range of 378–504 *C. The impact tests were performed for the small V-notched Charpy specimens with dimensions of 3 * 4 * 27 mm at an impact speed of 3.2 m/s in a 25 J capacity machine. Irradiation lowered the upper-shelf energy (USE) and increased the transition temperatures significantly. The shift of ductile–brittle transition temperatures (DDBTT) was greater after relatively low temperature irradiation. The USE values were in the range of 5.5–6.7 J before irradiation and decreased to the range of 2–5 J after irradiation. Lower USEs were measured for lower irradiation temperatures and specimens with T-L orientation. The dose dependences of transition temperature and USE were not significant because of the radiation effect on impact behavior nearly saturated at the lowest dose of about 3 dpa. A comparison showed that the lateral expansion of specimens showed a linear correlation with absorbed impact energy, but with large scatter in the results. Size effect was also discussed to clarify the differences in the impact property data from subsize and standard specimens as well as to provide a basis for comparison of data from different specimens. The USE and DDBTT data from different studies were compared.

  19. Impact properties of irradiated HT9 from the fuel duct of FFTF

    NASA Astrophysics Data System (ADS)

    Byun, Thak Sang; Daniel Lewis, W.; Toloczko, Mychailo B.; Maloy, Stuart A.

    2012-02-01

    This paper reports Charpy impact test data for the ACO-3 duct material (HT9) from the Fast Flux Test Facility (FFTF) and its archive material. Irradiation doses for the specimens were in the range of 3-148 dpa and irradiation temperatures in the range of 378-504 °C. The impact tests were performed for the small V-notched Charpy specimens with dimensions of 3 × 4 × 27 mm at an impact speed of 3.2 m/s in a 25 J capacity machine. Irradiation lowered the upper-shelf energy (USE) and increased the transition temperatures significantly. The shift of ductile-brittle transition temperatures (ΔDBTT) was greater after relatively low temperature irradiation. The USE values were in the range of 5.5-6.7 J before irradiation and decreased to the range of 2-5 J after irradiation. Lower USEs were measured for lower irradiation temperatures and specimens with T-L orientation. The dose dependences of transition temperature and USE were not significant because of the radiation effect on impact behavior nearly saturated at the lowest dose of about 3 dpa. A comparison showed that the lateral expansion of specimens showed a linear correlation with absorbed impact energy, but with large scatter in the results. Size effect was also discussed to clarify the differences in the impact property data from subsize and standard specimens as well as to provide a basis for comparison of data from different specimens. The USE and ΔDBTT data from different studies were compared.

  20. Dynamic Impact Analyses and Tests of Concrete Overpacks - 13638

    SciTech Connect

    Lee, Sanghoon; Cho, Sang-Soon; Kim, Ki-Young; Jeon, Je-Eon; Seo, Ki-Seog

    2013-07-01

    Concrete cask is an option for spent nuclear fuel interim storage which is prevailingly used in US. A concrete cask usually consists of metallic canister which confines the spent nuclear fuel and concrete overpack. When the overpack undergoes a severe missile impact which might be caused by a tornado or an aircraft crash, it should sustain acceptable level of structural integrity so that its radiation shielding capability and the retrievability of canister are maintained. Missile impact against a concrete overpack involves two damage modes, local damage and global damage. Local damage of concrete is usually evaluated by empirical formulas while the global damage is evaluated by finite element analysis. In many cases, those two damage modes are evaluated separately. In this research, a series of numerical simulations are performed using finite element analysis to evaluate the global damage of concrete overpack as well as its local damage under high speed missile impact. We consider two types of concrete overpack, one with steel in-cased concrete without reinforcement and the other with partially-confined reinforced concrete. The numerical simulation results are compared with test results and it is shown that appropriate modeling of material failure is crucial in this analysis and the results are highly dependent on the choice of failure parameters. (authors)

  1. Controlled Impact Demonstration instrumented test dummies installed in plane

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In this photograph are seen some of dummies in the passenger cabin of the B-720 aircraft. NASA Langley Research Center instrumented a large portion of the aircraft and the dummies for loads in a crashworthiness research program. In 1984 NASA Dryden Flight Research Facility and the Federal Aviation Adimistration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID). The test involved crashing a Boeing 720 aircraft with four JT3C-7 engines burning a mixture of standard fuel with an additive called Anti-misting Kerosene (AMK) designed to supress fire. In a typical aircraft crash, fuel spilled from ruptured fuel tanks forms a fine mist that can be ignited by a number of sources at the crash site. In 1984 the NASA Dryden Flight Research Facility (after 1994 a full-fledged Center again) and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID), to test crash a Boeing 720 aircraft using standard fuel with an additive designed to supress fire. The additive, FM-9, a high-molecular-weight long-chain polymer, when blended with Jet-A fuel had demonstrated the capability to inhibit ignition and flame propagation of the released fuel in simulated crash tests. This anti-misting kerosene (AMK) cannot be introduced directly into a gas turbine engine due to several possible problems such as clogging of filters. The AMK must be restored to almost Jet-A before being introduced into the engine for burning. This restoration is called 'degradation' and was accomplished on the B-720 using a device called a 'degrader.' Each of the four Pratt & Whitney JT3C-7 engines had a 'degrader' built and installed by General Electric (GE) to break down and return the AMK to near Jet-A quality. In addition to the AMK research the NASA Langley Research Center was involved in a structural loads measurement experiment, which included having instrumented dummies filling the seats in the passenger compartment. Before the final flight on December 1, 1984, more than four years of effort passed trying to set-up final impact conditions considered survivable by the FAA. During those years while 14 flights with crews were flown the following major efforts were underway: NASA Dryden developed the remote piloting techniques necessary for the B-720 to fly as a drone aircraft; General Electric installed and tested four degraders (one on each engine); and the FAA refined AMK (blending, testing, and fueling a full-size aircraft). The 15 flights had 15 takeoffs, 14 landings and a larger number of approaches to about 150 feet above the prepared crash site under remote control. These flight were used to introduce AMK one step at a time into some of the fuel tanks and engines while monitoring the performance of the engines. On the final flight (No. 15) with no crew, all fuel tanks were filled with a total of 76,000 pounds of AMK and the remotely-piloted aircraft landed on Rogers Dry Lakebed in an area prepared with posts to test the effectiveness of the AMK in a controlled impact. The CID, which some wags called the Crash in the Desert, was spectacular with a large fireball enveloping and burning the B-720 aircraft. From the standpoint of AMK the test was a major set-back, but for NASA Langley, the data collected on crashworthiness was deemed successful and just as important.

  2. Evaluating the initial impact of eliminating the retirement earnings test.

    PubMed

    Song, Jae G

    Under the retirement earnings test, Social Security benefits are reduced if earnings exceed specified amounts, although the benefit reduction is partly offset by future benefit increases. By imposing a tax on the earnings of beneficiaries, the earnings test provided a disincentive for them to supplement retirement income by working. The Senior Citizens Freedom to Work Act of 2000 eliminated the earnings test for Social Security beneficiaries who have reached the full retirement age. This article presents the first study of labor force activity (earnings and employment) among individuals aged 65-69 before and immediately after this sudden rule change. Drawing on Social Security administrative data, the author examines three widely expected reactions: increased return to work, increased hours worked, and accelerated applications for old-age benefits. The analysis finds that removing the retirement earnings test: Encouraged some workers to increase their earnings. The increases in earnings are large and significant among higher earners but are not statistically significant among lower earners. Had little effect on employment. Removing the earnings test appears to have had no immediate, significant effect on the employment rate of older workers. Employment of older people may be affected in the longer run, however. Slightly increased the pace of applications for benefits. Applications rose about 2 percent in the 65-69 age group in 2000. The overall acceleration will probably be small, however, because most individuals in this age group apply for benefits before reaching the full retirement age. Although the current analysis captures the effects of retaining older workers in the labor force, these initial results may not capture all the effects of eliminating the retirement earnings test, however, for two reasons. First, the analysis covers only a single year--the year the earnings test was eliminated. Since eliminating the earnings test may have had little effect on people who had already retired, its full effect may not be apparent for several years. Second, the analysis applies only to workers aged 65-69. Eliminating the earnings test for people above the full retirement age may also encourage younger workers to delay retirement and therefore increase their labor supply. Further analysis will therefore be required to determine the longer-run impact of eliminating the retirement earnings test. PMID:15218631

  3. Comparison of Autogenous and Alloplastic Cranioplasty Materials Following Impact Testing.

    PubMed

    Wallace, Robert D; Salt, Craig; Konofaos, Petros

    2015-07-01

    Alloplastic materials are often used when significant defects exist. Benefits include no donor site morbidity, relative ease of use, limitless supply, and predictable durability. Depending on the type of alloplast, limitations include a persistent risk of extrusion and infection. Of particular interest in relation to cranioplasties is the ability of the material to provide neuroprotection. The integrity and neuroprotective properties of autologous bone flaps, polymethylmethacrylate (PMMA), and high-density porous polyethylene (PP) were evaluated following impact testing. Three groups of New Zealand white rabbits (N = 4) underwent a cranioplasty with either a bone flap, PMMA, or PP. In the control group (N = 4), the animals had no cranioplasty. At the end of the eighth week, an impact was delivered to the center of each cranioplasty. At necropsy each cranium and brain was evaluated grossly and histologically. There was a statistical significant difference among groups for the severity of the hemorrhage (P = 0.022) and the grade of cranioplasty disruption (P = 0.0045). Autologous bone was found to be the weakest of the materials tested. In this group severe injury resulted at much lower energy levels than was observed in the control, PMMA, or PP groups. Both PMMA and PP were resistant to fracture and disruption. PMMA provided the greatest neuroprotection, followed by PP. Autologous bone provided the least protection with cranioplasty disruption and severe brain injury occurring in every patient. Brain injury patterns correlated with the degree of cranioplasty disruption regardless of the cranioplasty material. Regardless of the energy of impact, lack of dislodgement generally resulted in no obvious brain injury. PMID:26114508

  4. Irradiation effects on Charpy impact and tensile properties of low upper-shelf welds, HSSI series 2 and 3

    SciTech Connect

    Nanstad, R.K.; Berggren, R.G. )

    1991-08-01

    When reactor pressure vessel steels exhibit Charpy V-notch impact upper-shelf energy levels of less than 68 J (50 ft-lb), the requirements of Title 10, Code of Federal Regulations, Part 50, Appendix G, are not met. The regulations require, as an option, that a fracture mechanics analysis be performed that conservatively demonstrates adequate safety margins for continued operation. Under conditions where large prefracture crack-tip plastic zones are present, linear-elastic fracture mechanics concepts are not applicable, and the use of elastic-plastic fracture mechanics concepts has been recommended by the US Nuclear Regulatory Commission. A number of Babcock and Wilcox Company-fabricated reactor vessels in commercial pressurized water reactor plants include welds with both relatively low initial Charpy upper-shelf energies and high copper concentrations, which make them highly sensitive to neutron irradiation. As a result, the Charpy upper-shelf energies of many welds are expected to fall below 68 J (50 ft-lb) prior to reaching design life. The Heavy-Section Steel Irradiation Program conducted the Second and Third Irradiation Series to investigate the effects of irradiation on the ductile fracture toughness of seven commercially fabricated, low upper-shelf welds. This report represents analyses of the Charpy impact and tensile test data, including adjustments for irradiation temperature and fluence normalization, which make possible comparison of the irradiation sensitivity the different welds.

  5. Evaluation of test methods for dynamic toughness characterization of duplex stainless steel forgings

    SciTech Connect

    Natishan, M.E.; Tregoning, R.L.

    1995-12-31

    Ferralium is a dual-phase stainless steel which consists of roughly equal amounts of ferrite and austenite. Conventional Charpy V-notch impact tests were performed on specimens taken from several locations in three orientations from a forged Ferralium plate to quantify the materials dynamic fracture performance. The Charpy tests were compared with 2.54 cm thick (1T) single edge bend (SE(B)) specimens that were tested in a drop tower to measure dynamic fracture initiation toughness (K{sub Id}). SE(B) specimens were removed from three plate locations and tested in a single orientation. Charpy and K{sub Id} tests were performed over the entire fracture mode transition temperature range, but the bulk of testing was concentrated at a single temperature {minus}2 C to provide a statistically significant number of tests at a representative point in the ferritic fracture mode transition region. Charpy impact energy varied consistently with both orientation and location within the forged plate even though large scatter was present in the results. This large scatter precluded an accurate assessment of the materials fracture performance within the transition region. The scatter in the drop tower (SE(B)) results was much less and indicated that plate location had a minimal affect on performance. The reduced scatter in the SE(B) specimens is attributed to two factors. First, the microstructure of Ferralium, while macroscopically homogeneous, contains ferritic and austenitic phase sizes that approach the dimensions of the standard Charpy specimen. Second, the Charpy testing technique causes more variation than the standard SE(B) K{sub Id} tests within the transition region.

  6. Compression After Impact Testing of Sandwich Structures Using the Four Point Bend Test

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Gregory, Elizabeth; Jackson, Justin; Kenworthy, Devon

    2008-01-01

    For many composite laminated structures, the design is driven by data obtained from Compression after Impact (CAI) testing. There currently is no standard for CAI testing of sandwich structures although there is one for solid laminates of a certain thickness and lay-up configuration. Most sandwich CAI testing has followed the basic technique of this standard where the loaded ends are precision machined and placed between two platens and compressed until failure. If little or no damage is present during the compression tests, the loaded ends may need to be potted to prevent end brooming. By putting a sandwich beam in a four point bend configuration, the region between the inner supports is put under a compressive load and a sandwich laminate with damage can be tested in this manner without the need for precision machining. Also, specimens with no damage can be taken to failure so direct comparisons between damaged and undamaged strength can be made. Data is presented that demonstrates the four point bend CAI test and is compared with end loaded compression tests of the same sandwich structure.

  7. RTM370 Polyimide Braided Composites: Characterization and Impact Testing

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Revilock, Duane M.; Ruggeri, Charles R.; Criss, Jim M., Jr.; Mintz, Eric A.

    2013-01-01

    RTM370 imide oligomer based on 2,3,3',4'-biphenyl dianhydride (a-BPDA), 3,4'-oxydianiline (3,4'-ODA) and terminated with the 4-phenylethynylphthalic (PEPA) endcap has been shown to exhibit a low melt viscosity (10-30 poise) at 280 C with a pot-life of 1-2 h and a high cured glass transition temperature (Tg) of 370 C. RTM370 resin has been successfully fabricated into composites reinforced with T650-35 carbon fabrics by resin transfer molding (RTM). RTM370 composites display excellent mechanical properties up to 327 C (620 F), and outstanding property retention after aging at 288degC (550 F) for 1000 h, and under hot-wet conditions. In ballistic impact testing, RTM370 triaxial braided T650-35 carbon fiber composites exhibited enhanced energy absorption at 288 C (550 F) compared to ambient temperature.

  8. IMPROVED BAR IMPACT TESTS USING A PHOTONIC DOPPLER VELOCIMETER

    SciTech Connect

    Bless, S J; Tolman, J; Levinson, S; Nguyen, J

    2009-08-24

    Bar impact tests, using the techniques described elsewhere in this symposium, were used to measure compressive and tensile strengths of borosilicate glass, soda lime glass, and a glass ceramic. The glass ceramic was 25% crystalline spinel, furnished by Corning Inc. There are two measures of compressive strength: the peak stress that can be transmitted in unconfined compression, and the 'steady state' strength. For borosilicate glass and soda lime glass, these values were similar, being about 1.8 and 1.5 GPa, respectively. The glass ceramic (25% spinel) was almost 50% stronger. Tensile failure in the glass and glass ceramic takes places via surface flaws, and thus tensile strength is an extrinsic, as opposed to intrinsic property.

  9. IMPROVED BAR IMPACT TESTS USING A PHOTONIC DOPPLER VELOCIMETER

    SciTech Connect

    Bless, S. J.; Tolman, J.; Levinson, S.; Nguyen, J.

    2009-12-28

    Bar impact tests, using the techniques described elsewhere in this symposium, were used to measure compressive and tensile strengths of borosilicate glass, soda lime glass, and a glass ceramic. The glass ceramic was 25% crystalline spinel, furnished by Corning Inc. There are two measures of compressive strength: the peak stress that can be transmitted in unconfined compression, and the 'steady state' strength. For borosilicate glass and soda lime glass, these values were similar, being about 1.8 and 1.5 GPa, respectively. The glass ceramic (25% spinel) was almost 50% stronger. Tensile failure in the glass and glass ceramic takes places via surface flaws, and thus tensile strength is an extrinsic, as opposed to intrinsic property.

  10. Current status of small specimen technology in Charpy impact testing

    NASA Astrophysics Data System (ADS)

    Kurishita, H.; Kayano, H.; Narui, M.; Yamazaki, M.

    1994-09-01

    The current status of small-scale specimen technology in Charpy impact testing for ferritic steels is presented, with emphasis on the effect of the notch dimensions (notch depth, notch root radius and notch angle) on the upper shelf energy (USE) and ductile-to-brittle transition temperature (DBTT). The USE for miniaturized specimens, normalized by Bb2 or ( Bb{3}/{2} ( B is the specimen thickness, b the ligament size), is essentially independent of notch geometry and has a linear relationship with the USE of full size specimens, regardless of irradiation and alloy conditions. The DBTT of miniaturized specimens depends strongly on the notch dimensions; this dependence of the DBTT decreases as the DBTT of full size specimens increase due to neutron irradiation or thermal aging. These results may be useful in determining the USE and DBTT for full size specimens from those for miniaturized specimens.

  11. Effects of nonstandard heat treatment temperatures on tensile and Charpy impact properties of carbon-steel casting repair welds

    SciTech Connect

    Nanstad, R.K.; Goodwin, G.M.; Swindeman, M.J.

    1993-04-01

    This report discusses carbon steel castings which are used for a number of different components in nuclear power plants, including valve bodies and bonnets. Components are often repaired by welding processes, and both welded components and the repair welds are subjected to a variety of postweld heat treatments (PWHT) with temperatures as high as 899{degrees}C (1650{degrees}F), well above the normal 593 to 677{degrees}C (1100 to 1250{degrees}F) temperature range. The temperatures noted are above the A1 transformation temperature for the materials used for these components. A test program was conducted to investigate the potential effects of such ``nonstandard`` PWHTs on mechanical properties of carbon steel casting welds. Four weldments were fabricated, two each with the shielded-metal-arc (SMA) and flux-cored-arc (FCA) processes,with a high-carbon and low-carbon filler metal in each case. All four welds were sectioned and given simulated PWHTs at temperatures from 621 to 899{degrees}C (1150 to 1650{degrees}F) in increments of 56{degrees}C (100{degrees}F) and for times of 5, 10, 20, and 40 h at each temperature. Hardness, tensile, and Charpy V-notch (CVN) impact tests were conducted for the as-welded and heat-treated conditions.

  12. Impact of gene expression profiling tests on breast cancer outcomes.

    PubMed Central

    Marchionni, Luigi; Wilson, Renee F; Marinopoulos, Spyridon S; Wolff, Antonio C; Parmigiani, Giovanni; Bass, Eric B; Goodman, Steven N

    2007-01-01

    OBJECTIVES To assess the evidence that three marketed gene expression-based assays improve prognostic accuracy, treatment choice, and health outcomes in women diagnosed with early stage breast cancer. REVIEW METHODS We evaluated the evidence for three gene expression assays on the market; Oncotype DX, MammaPrint and the Breast Cancer Profiling (BCP or H/I ratio) test, and for gene expression signatures underlying the assays. We sought evidence on: analytic performance of tests, clinical validity (i.e., prognostic accuracy and discrimination), clinical utility (i.e., prediction of treatment benefit), harms, impact on clinical decision making and health care costs. RESULTS Few papers were found on the analytic validity of the Oncotype DX and MammaPrint tests, but these showed reasonable within-laboratory replicability. Pre-analytic issues related to sample storage and preparation may play a larger role than within-laboratory variation. For clinical validity, studies differed according to whether they examined the actual test that is currently being offered to patients or the underlying gene signature. Almost all of the Oncotype DX evidence was for the marketed test, the strongest validation study being from one arm of a randomized controlled trial (NSABP-14) with a clinically homogeneous population. This study showed that the test, added in a clinically meaningful manner to standard prognostic indices. The MammaPrint signature and test itself was examined in studies with clinically heterogeneous populations (e.g., mix of ER positivity and tamoxifen treatment) and showed a clinically relevant separation of patients into risk categories, but it was not clear exactly how many predictions would be shifted across decision thresholds if this were used in combination with traditional indices. The BCP test itself was examined in one study, and the signature was tested in a variety of formulations in several studies. One randomized controlled trial provided high quality retrospective evidence of the clinical utility of Oncotype DX to predict chemotherapy treatment benefit, but evidence for clinical utility was not found for MammaPrint or the H/I ratio. Three decision analyses examined the cost-effectiveness of breast cancer gene expression assays, and overall were inconclusive. CONCLUSIONS Oncotype DX is furthest along the validation pathway, with strong retrospective evidence that it predicts distant spread and chemotherapy benefit to a clinically relevant extent over standard predictors, in a well-defined clinical subgroup with clear treatment implications. The evidence for clinical implications of using MammaPrint was not as clear as with Oncotype DX, and the ability to predict chemotherapy benefit does not yet exist. The H/I ratio test requires further validation. For all tests, the relationship of predicted to observed risk in different populations still needs further study, as does their incremental contribution, optimal implementation, and relevance to patients on current therapies. PMID:18457476

  13. Results of crack-arrest tests on two irradiated high-copper welds

    SciTech Connect

    Iskander, S.K.; Corwin, W.R.; Nanstead, R.K. )

    1990-12-01

    The objective of this study was to determine the effect of neutron irradiation on the shift and shape of the lower-bound curve to crack-arrest data. Two submerged-arc welds with copper contents of 0.23 and 0.31 wt % were commercially fabricated in 220-mm-thick plate. Crack-arrest specimens fabricated from these welds were irradiated at a nominal temperature of 288{degree}C to an average fluence of 1.9 {times} 10{sup 19} neutrons/cm{sup 2} (>1 MeV). Evaluation of the results shows that the neutron-irradiation-induced crack-arrest toughness temperature shift is about the same as the Charpy V-notch impact temperature shift at the 41-J energy level. The shape of the lower-bound curves (for the range of test temperatures covered) did not seem to have been altered by irradiation compared to those of the ASME K{sub Ia} curve. 9 refs., 21 figs., 10 tabs.

  14. 49 CFR 572.166 - Knees and knee impact test procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Hybrid III Six-Year-Old Weighted Child Test Dummy § 572.166 Knees and knee impact test procedure. The knee assembly is assembled and tested as specified in 49 CFR 572.126 (Subpart N). ... 49 Transportation 7 2013-10-01 2013-10-01 false Knees and knee impact test procedure....

  15. 49 CFR 572.166 - Knees and knee impact test procedure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Hybrid III Six-Year-Old Weighted Child Test Dummy § 572.166 Knees and knee impact test procedure. The knee assembly is assembled and tested as specified in 49 CFR 572.126 (Subpart N). ... 49 Transportation 7 2012-10-01 2012-10-01 false Knees and knee impact test procedure....

  16. 49 CFR 572.166 - Knees and knee impact test procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Hybrid III Six-Year-Old Weighted Child Test Dummy § 572.166 Knees and knee impact test procedure. The knee assembly is assembled and tested as specified in 49 CFR 572.126 (Subpart N). ... 49 Transportation 7 2010-10-01 2010-10-01 false Knees and knee impact test procedure....

  17. 49 CFR 572.166 - Knees and knee impact test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Hybrid III Six-Year-Old Weighted Child Test Dummy § 572.166 Knees and knee impact test procedure. The knee assembly is assembled and tested as specified in 49 CFR 572.126 (Subpart N). ... 49 Transportation 7 2014-10-01 2014-10-01 false Knees and knee impact test procedure....

  18. 49 CFR 572.176 - Knees and knee impact test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Knees and knee impact test procedure. 572.176... Hybrid III 10-Year-Old Child Test Dummy (HIII-10C) § 572.176 Knees and knee impact test procedure. (a) The knee assembly for the purpose of this test is the part of the leg assembly shown in drawing...

  19. 49 CFR 572.166 - Knees and knee impact test procedure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Hybrid III Six-Year-Old Weighted Child Test Dummy § 572.166 Knees and knee impact test procedure. The knee assembly is assembled and tested as specified in 49 CFR 572.126 (Subpart N). ... 49 Transportation 7 2011-10-01 2011-10-01 false Knees and knee impact test procedure....

  20. 49 CFR 572.176 - Knees and knee impact test procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Knees and knee impact test procedure. 572.176... Hybrid III 10-Year-Old Child Test Dummy (HIII-10C) § 572.176 Knees and knee impact test procedure. (a) The knee assembly for the purpose of this test is the part of the leg assembly shown in drawing...

  1. Test Directions as a Critical Component of Test Design: Best Practices and the Impact of Examinee Characteristics

    ERIC Educational Resources Information Center

    Lakin, Joni M.

    2014-01-01

    The purpose of test directions is to familiarize examinees with a test so that they respond to items in the manner intended. However, changes in educational measurement as well as the U.S. student population present new challenges to test directions and increase the impact that differential familiarity could have on the validity of test score

  2. Test Directions as a Critical Component of Test Design: Best Practices and the Impact of Examinee Characteristics

    ERIC Educational Resources Information Center

    Lakin, Joni M.

    2014-01-01

    The purpose of test directions is to familiarize examinees with a test so that they respond to items in the manner intended. However, changes in educational measurement as well as the U.S. student population present new challenges to test directions and increase the impact that differential familiarity could have on the validity of test score…

  3. Patient and Family Impact of Pediatric Genitourinary Diagnostic Imaging Tests

    PubMed Central

    Nelson, Caleb P.; Chow, Jeanne S.; Rosoklija, Ilina; Ziniel, Sonja; Routh, Jonathan C.; Cilento, Barley G.

    2013-01-01

    Purpose The impact of diagnostic genito-urinary imaging (GUI) on patients and families is poorly understood. We study sought to measure patient and family reaction to commonly performed GUI studies, using a standardized measurement tool. Methods We surveyed families undergoing GUI (renal ultrasound (RUS), voiding cystourethrography (VCUG), radionuclide cystogram (RNC), static renal scintigraphy (DMSA), and diuretic renal scintigraphy (MAG3)), using a Likert-scaled 11-item survey to assess impact across four domains (pain, anxiety, time, satisfaction). Survey scores were analyzed using ANOVA and linear regression. Results 263 families were surveyed (61 RUS, 52 VCUG, 55 RNC, 47 MAG3, 48 DMSA). Mean age was 2.1 years. 45% were male. 77% were white. Patient age, gender, and prior GUI experience varied by study type. Study type was significantly associated with both total and weighted scores on the GUI survey (both p<0.0001). RUS was better and MAG3 was worse than VCUG, RNC, and DMSA, which did not differ from each other. Other factors associated with worse total scores included patient age 1–3 years (p<0.001) and non-white race (p=0.04). Gender, prior testing history, wait time, and parent education were not associated with total scores. In the multivariate model, RUS remained the best and MAG3 the worst (p<0.0001). Compared directly, DMSA and VCUG total scores did not differ (p=0.59). Conclusion There are significant differences among GUI studies regarding the patient/family experience, but there was no overall difference between DMSA and VCUG. These findings may be useful to aid decision-making when considering GUI for children. PMID:22910271

  4. Measurement of Satellite Impact Test Fragments for Modeling Orbital Debris

    NASA Technical Reports Server (NTRS)

    Hill, Nicole M.

    2009-01-01

    There are over 13,000 pieces of catalogued objects 10cm and larger in orbit around Earth [ODQN, January 2009, p12]. More than 6000 of these objects are fragments from explosions and collisions. As the earth-orbiting object count increases, debris-generating collisions in the future become a statistical inevitability. To aid in understanding this collision risk, the NASA Orbital Debris Program Office has developed computer models that calculate quantity and orbits of debris both currently in orbit and in future epochs. In order to create a reasonable computer model of the orbital debris environment, it is important to understand the mechanics of creation of debris as a result of a collision. The measurement of the physical characteristics of debris resulting from ground-based, hypervelocity impact testing aids in understanding the sizes and shapes of debris produced from potential impacts in orbit. To advance the accuracy of fragment shape/size determination, the NASA Orbital Debris Program Office recently implemented a computerized measurement system. The goal of this system is to improve knowledge and understanding of the relation between commonly used dimensions and overall shape. The technique developed involves scanning a single fragment with a hand-held laser device, measuring its size properties using a sophisticated software tool, and creating a three-dimensional computer model to demonstrate how the object might appear in orbit. This information is used to aid optical techniques in shape determination. This more automated and repeatable method provides higher accuracy in the size and shape determination of debris.

  5. High-Stakes Standardized Testing & Marginalized Youth: An Examination of the Impact on Those Who Fail

    ERIC Educational Resources Information Center

    Kearns, Laura-Lee

    2011-01-01

    This study examines the impact of high-stakes, large-scale, standardized literacy testing on youth who have failed the Ontario Secondary School Literacy Test. Interviews with youth indicate that the unintended impact of high-stakes testing is more problematic than policy makers and educators may realize. In contrast to literacy policy's aims to…

  6. 49 CFR 572.136 - Knees and knee impact test procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Knees and knee impact test procedure. 572.136... Hybrid III 5th Percentile Female Test Dummy, Alpha Version § 572.136 Knees and knee impact test procedure. (a) Knee assembly. The knee assembly (refer to §§ 572.130(a)(1)(v) and (vi)) for the purpose of...

  7. 49 CFR 572.126 - Knees and knee impact test procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Knees and knee impact test procedure. 572.126...-year-old Child Test Dummy, Beta Version § 572.126 Knees and knee impact test procedure. (a) Knee assembly. The knee assembly is part of the leg assembly (drawing 127-4000-1 and -2). (b) When the...

  8. 49 CFR 572.136 - Knees and knee impact test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Knees and knee impact test procedure. 572.136... Hybrid III 5th Percentile Female Test Dummy, Alpha Version § 572.136 Knees and knee impact test procedure. (a) Knee assembly. The knee assembly (refer to §§ 572.130(a)(1)(v) and (vi)) for the purpose of...

  9. 49 CFR 572.126 - Knees and knee impact test procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Knees and knee impact test procedure. 572.126...-year-old Child Test Dummy, Beta Version § 572.126 Knees and knee impact test procedure. (a) Knee assembly. The knee assembly is part of the leg assembly (drawing 127-4000-1 and -2). (b) When the...

  10. 49 CFR 572.126 - Knees and knee impact test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Knees and knee impact test procedure. 572.126...-year-old Child Test Dummy, Beta Version § 572.126 Knees and knee impact test procedure. (a) Knee assembly. The knee assembly is part of the leg assembly (drawing 127-4000-1 and -2). (b) When the...

  11. 49 CFR 572.136 - Knees and knee impact test procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Knees and knee impact test procedure. 572.136... Hybrid III 5th Percentile Female Test Dummy, Alpha Version § 572.136 Knees and knee impact test procedure. (a) Knee assembly. The knee assembly (refer to §§ 572.130(a)(1)(v) and (vi)) for the purpose of...

  12. Instrumented impact and residual tensile strength testing of eight-ply carbon eopoxy specimens

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.

    1990-01-01

    Instrumented drop weight impact testing was utilized to examine a puncture-type impact on thin carbon-epoxy coupons. Four different material systems with various eight-ply lay-up configurations were tested. Specimens were placed over a 10.3-mm diameter hole and impacted with a smaller tup (4.2-mm diameter) than those used in previous studies. Force-time plots as well as data on absorbed energy and residual tensile strength were gathered and examined. It was found that a critical impact energy level existed for each material tested, at which point tensile strength began to rapidly decrease with increasing impact energy.

  13. Instrumented impact testing of plastics and composite materials; Proceedings of the Symposium, Houston, TX, Mar. 11, 12, 1985

    SciTech Connect

    Kessler, S.L.; Adams, G.C.; Driscoll, S.B.; Ireland, D.R.

    1986-01-01

    Papers are presented on methodology for impact testing, impact testing for end-use applications, impact characterization of selected materials, partial impact testing and fatigue response of plastics, and fracture toughness. Attention is given to instrumented impact test data interpretation, digital filtering of impact data, impact measurements of low-pressure thermoplastic structural foam, variable-rate impact testing of polymeric materials, and prediction of end-use impact resistance of composites. Other topics include instrumented impact testing of aramid-reinforced composite materials, impact characterization of new composite materials, impact fatigue of polymers using an instrumented drop tower device, assessment of impact characteristics for incipient crack formation in polymeric materials, and analysis of force and energy measurements in impact testing.

  14. WIND TUNNEL TESTING AND COMPARISON OF THREE SALTATION IMPACT SENSORS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Saltation impact sensors are used to investigate the temporal and spatial fluctuations of saltation intensity over eroding surfaces. Three types of impact sensors have been used by various researchers; the Saltiphone, the Sensit, and the Safire. In spite of the wide-spread use of these devices by ...

  15. Progress in developing DBTT determinations from miniature disk bend tests

    NASA Astrophysics Data System (ADS)

    Kohse, G.; Ames, M.; Harling, O. K.

    1986-11-01

    Experiments to investigate the possibility of obtaining ductile-to-brittle transition temperature (DBTT) data using bend tests of 3 mm diameter disks are described. A disk specimen 0.40 mm thick with two V-shaped grooves, 0.10 mm deep at right angles to each other along diameters of the disk face, is found to be suitable. In high strain-rate bend testing of materials which exhibit a Charpy V-notch (CVN) DBTT, such specimens undergo a marked change in load/deflection behavior as temperature is lowered. The temperature at which this transition occurs is 145-178 K below the CVN 68 J (50 ft-1b) temperature for three materials tested. There is some evidence that the miniature test transition correlates more consistently with the temperature at which CVN energy reaches a low value such as 7 J. This test offers interesting possibilities for in-service monitoring of critical components such as reactor pressure vessels. Further testing to investigate more fully the relationship between the miniature test and Charpy V-notch results is required.

  16. Determination of anisotropy in impact toughness of aluminium alloy 2024 T3 plate

    NASA Astrophysics Data System (ADS)

    Siddiqui, M. H.; Hashmi, F.; Junaid, A.

    The research was aimed to quantify the existence of anisotropy in fracture toughness of aluminium alloy 2024 T3 plate (used in aircraft structural members). It was further needed to establish the direction in which the fracture toughness of aluminium alloy 2024 T3 plate is maximum and minimum. This could help ascertain the structural integrity of aircraft structural components; also while designing new components, the knowledge of variation in toughness with respect to direction helps in economizing dead weight of the aircraft. In this research, pursued at the College of Aeronautical Engineering, the anisotropy in toughness of aluminium alloy 2024 T3 plate was analysed using the Charpy V-notch impact toughness test. The effect of specimen orientation on the impact toughness values of the alloy was investigated and compared with known results to verify the reliability of the work and to ascertain the extent of anisotropy in fracture toughness of the said alloy. Charpy impact tests were carried out on ASTM E 23 standard specimens machined at a reference laboratory at room temperature (23° C +/- 2° C). Four different specimen orientations analysed for the purpose of this study were L-S, L-T, T-S and T-L directions. Subsequently, the results obtained at the research centre were then analysed and correlated with morphology of microstructure of the material to establish the reliability of the experimental results. Moreover, an analysis was also done to cater for the possible errors that could affect the fracture toughness values obtained from experimental results. It was concluded that the T-S orientation of the plate had maximum toughness, whereas, minimum toughness was observed in L-T direction.

  17. Hypervelocity Impact Testing of Space Station Freedom Solar Cells

    NASA Technical Reports Server (NTRS)

    Christie, Robert J.; Best, Steve R.; Myhre, Craig A.

    1994-01-01

    Solar array coupons designed for the Space Station Freedom electrical power system were subjected to hypervelocity impacts using the HYPER facility in the Space Power Institute at Auburn University and the Meteoroid/Orbital Debris Simulation Facility in the Materials and Processes Laboratory at the NASA Marshall Space Flight Center. At Auburn, the solar cells and array blanket materials received several hundred impacts from particles in the micron to 100 micron range with velocities typically ranging from 4.5 to 10.5 km/s. This fluence of particles greatly exceeds what the actual components will experience in low earth orbit. These impacts damaged less than one percent of total area of the solar cells and most of the damage was limited to the cover glass. There was no measurable loss of electrical performance. Impacts on the array blanket materials produced even less damage and the blanket materials proved to be an effective shield for the back surface of the solar cells. Using the light gas gun at MSFC, one cell of a four cell coupon was impacted by a 1/4 inch spherical aluminum projectile with a velocity of about 7 km/s. The impact created a neat hole about 3/8 inch in diameter. The cell and coupon were still functional after impact.

  18. A Study of the "toss Factor" in the Impact Testing of Cermets by the Izod Pendulum Test

    NASA Technical Reports Server (NTRS)

    Probst, H B; Mchenry, Howard T

    1957-01-01

    The test method presented shows that the "toss energy" contributed by the apparatus for brittle materials is negligible. The total toss energy is considered to consist of two components. (a) recovered stored elastic energy and (b) kinetic energy contributed directly by the apparatus. The results were verified by high-speed motion pictures of the test in operation. From these photographs, velocities of tossed specimens were obtained and toss energy computed. In addition, impact energies of some titanium carbide base cermets and high-temperature alloys, as measured by the low-capacity Izod pendulum test, compare well with impact energies measured by the NACA drop test.

  19. 16 CFR 1203.11 - Marking the impact test line.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (HPI), with the brow parallel to the basic plane. Place a 5-kg (11-lb) preload ballast on top of the... helmet coinciding with the intersection of the surface of the helmet with the impact line planes...

  20. Orion MPCV Water Landing Test at Hydro Impact Basin - Duration: 77 seconds.

    NASA Video Gallery

    This is the third Orion Multi-Purpose Crew Vehicle (MPCV) water landing test conducted at the Hydro Impact Basin at NASA Langley Research Center. This test represented the worst-case scenario for l...

  1. Exobiology: Laboratory tests of the impact related aspects of Panspermia

    NASA Astrophysics Data System (ADS)

    Burchell, M. J.; Shrine, N. R. G.; Bunch, A.; Zarnecki, J. C.

    The idea that life began elsewhere and then naturally migrated to the Earth is known as Panspermia. One such possibility is that life is carried on objects (meteorites, comets and dust) that arrive at the Earth. The life (bacteria) is then presumed to survive the sudden deceleration and impact, and then subsequently develop here on Earth. This step, the survivability of bacteria during the deceleration typical of an object arriving at Earth from space, is studied in this paper. To this end a two-stage light gas gun was used to fire projectiles coated with bacteria into a variety of targets at impact speeds of 3.8 to 4.9 km s-1. Targets used were rock, glass, metal and aerogel (density 100 kg m-3). Various techniques were used to search for bacteria that had transferred to the target material during the impact. These included taking cultures from the target crater and ejecta, and use of fluorescent dyes to mark sites of live bacteria. So far only one sample has shown a signal for bacteria surviving an impact. This was for bacteria cultured from the ejecta spalled from a rock surface during an impact. However, this result needs to be repeated before any firm claims can be made for bacteria surviving a hypervelocity impact event.

  2. Structural identification of short/middle span bridges by rapid impact testing: theory and verification

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Zhang, Q. Q.; Guo, S. L.; Xu, D. W.; Wu, Z. S.

    2015-06-01

    A structural strain flexibility identification method by processing the multiple-reference impact testing data is proposed. First, a kind of novel long-gauge fiber optic sensor is developed for structural macro-strain monitoring. Second, the multiple-reference impact testing technology is employed, during which both the impacting force and structural strain responses are measured. The impact testing technology has unique merit because it is able to extract exact structural frequency response functions (FRFs), while other test methods, for instance ambient tests, can only output the FRFs with scaled magnitudes. Most importantly, the originality of the article is that a method of identifying the structural strain flexibility characteristic from the impact test data has been proposed, which is useful for structural static strain prediction and capacity evaluation. Examples of a six meter simple supported beam and a multiple-span continuous beam bridge have successfully verified the effectiveness of the proposed method.

  3. Hybrid III anthropomorphic test device (ATD) response to head impacts and potential implications for athletic headgear testing.

    PubMed

    Bartsch, Adam; Benzel, Edward; Miele, Vincent; Morr, Douglas; Prakash, Vikas

    2012-09-01

    The Hybrid III 50th percentile male anthropomorphic test device (ATD) is the most widely used human impact testing surrogate and has historically been used in automotive or military testing. More recently, this ATD is finding use in applications evaluating athletic helmet protectivity, quantifying head impact dosage and estimating injury risk. But ATD head-neck response has not been quantified in omnidirectional athletic-type head impacts absent axial preload. It is probable that headgear injury reduction that can be quantified in a laboratory, including in American football, boxing, hockey, lacrosse and soccer, is related to a number of interrelated kinetic and kinematic factors, such as head center of gravity linear acceleration, head angular acceleration, head angular velocity, occipito-cervical mechanics and neck stiffness. Therefore, we characterized ATD head-neck dynamic response to direct head impacts in a series of front, oblique front and lateral head impacts. Key findings were: (1) impacts producing highest ATD resultant center of gravity linear acceleration resulted in the lowest resultant occipito-cervical spine bending moment/force. (2) Resultant ATD head angular velocity and angular acceleration did not appear coupled to impact direction at lower impact energy levels; these parameters were coupled at higher energy levels. (3) The ATD had progressively increasing occipito-cervical stiffness in extension, torsion and lateral bending, respectively. Because the ATD neck influenced head and neck impact dosage parameters, testing agencies, manufacturers and researchers should consider using the Hybrid III head form attached to a neck as a means to quantify head and neck injury risks as opposed to systems that do not utilize a neck. This heightened understanding of Hybrid III ATD head-neck response, and consideration of order of stiffest axes in the lateral, oblique and extension directions, respectively, should aid in the development of head and neck injury impact testing standards. PMID:22664692

  4. Tensile and impact properties of V-4Cr-4Ti alloy heats 832665 and 832864

    NASA Astrophysics Data System (ADS)

    Bray, T. S.; Tsai, H.; Nowicki, L. J.; Billone, M. C.; Smith, D. L.; Johnson, W. R.; Trester, P. W.

    2000-12-01

    Two large heats of V-4Cr-4Ti alloy were produced in the US in the past few years. The first, 832665, was a 500 kg heat procured by the US Department of Energy for basic fusion structural materials research. The second, 832864, was a 1300 kg heat procured by General Atomics for the DIII-D radiative divertor upgrade. Both heats were produced by Oremet-Wah Chang (previously Teledyne Wah Chang of Albany). Tensile properties up to 800°C and Charpy V-notch impact properties down to liquid nitrogen temperature were measured for both heats. The product forms tested for both heats were rolled sheets annealed at 1000°C for 1 h in vacuum. Testing results show the behavior of the two heats to be similar and the reduction of strengths with temperature to be insignificant up to at least 750°C. Ductility of both materials is good in the test temperature range. Impact properties for both heats are excellent - no brittle failures at temperatures above -150°C. Compared to the data for previous smaller laboratory heats of 15-50 kg, the results show that scale-up of vanadium alloy ingot production to sizes useful for reactor blanket design can be successfully achieved as long as reasonable process control is implemented (H. Tsai, et al., Fusion Materials Semiannual Progress Report for Period Ending 30th June 1998, DOE/ER-0313/24, p. 3; H. Tsai, et al., Fusion Materials Semiannual Progress Report for Period Ending 31st December 1998, DOE/ER-0313/25, p. 3).

  5. The Impact of Gender in Oral Proficiency Testing.

    ERIC Educational Resources Information Center

    O'Loughlin, Kieran

    2002-01-01

    Discusses the role of gender in speaking tests and suggests that in oral interviews it is possible that both interviewing and rating may be highly gendered processes. Audiotaped female and male test-takers who undertook practice IELTS interviews, one with a female interviewer and once with a male interviewer. Results from discourse and test score…

  6. Asteroid Impact and Deflection Assessment (AIDA) mission: science investigation of a binary system and mitigation test

    NASA Astrophysics Data System (ADS)

    Michel, P.; Cheng, A. F.; Küppers, M.

    2015-10-01

    The Asteroid Impact & Deflection Assessment (AIDA) mission will be the first space experiment to investigate a binary near-Earth asteroid (NEA) and to demonstrate asteroid impact hazard mitigation by using a kinetic impactor. AIDA is a joint ESA-NASA cooperative project, which includes the ESA Asteroid Impact Mission (AIM) rendezvous spacecraft and the NASA Double Asteroid Redirection Test (DART) mission. The primary goals of AIDA are (i) to investigate the binary NEA (65803) Didymos, (ii) to test our ability to impact its moon by an hypervelocity projectile in 2022 and (iii) to measure and characterize the impact deflection both from space with AIM and from ground based observatories.

  7. Soft Soil Impact Testing and Simulation of Aerospace Structures

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Kellas, Sotiris

    2008-01-01

    In June 2007, a 38-ft/s vertical drop test of a 5-ft-diameter, 5-ft-long composite fuselage section that was retrofitted with a novel composite honeycomb Deployable Energy Absorber (DEA) was conducted onto unpacked sand. This test was one of a series of tests to evaluate the multi-terrain capabilities of the DEA and to generate test data for model validation. During the test, the DEA crushed approximately 6-in. and left craters in the sand of depths ranging from 7.5- to 9-in. A finite element model of the fuselage section with DEA was developed for execution in LS-DYNA, a commercial nonlinear explicit transient dynamic code. Pre-test predictions were generated in which the sand was represented initially as a crushable foam material MAT_CRUSHABLE_FOAM (Mat 63). Following the drop test, a series of hemispherical penetrometer tests were conducted to assist in soil characterization. The penetrometer weighed 20-lb and was instrumented with a tri-axial accelerometer. Drop tests were performed at 16-ft/s and crater depths were measured. The penetrometer drop tests were simulated as a means for developing a more representative soil model based on a soil and foam material definition MAT_SOIL_AND FOAM (Mat 5) in LS-DYNA. The model of the fuselage with DEA was reexecuted using the updated soil model and test-analysis correlations are presented.

  8. Reinforced Carbon-Carbon Subcomponent Flat Plate Impact Testing for Space Shuttle Orbiter Return to Flight

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Brand, Jeremy H.; Pereira, J. Michael; Revilock, Duane M.

    2007-01-01

    Following the tragedy of the Space Shuttle Columbia on February 1, 2003, a major effort commenced to develop a better understanding of debris impacts and their effect on the Space Shuttle subsystems. An initiative to develop and validate physics-based computer models to predict damage from such impacts was a fundamental component of this effort. To develop the models it was necessary to physically characterize Reinforced Carbon-Carbon (RCC) and various debris materials which could potentially shed on ascent and impact the Orbiter RCC leading edges. The validated models enabled the launch system community to use the impact analysis software LS DYNA to predict damage by potential and actual impact events on the Orbiter leading edge and nose cap thermal protection systems. Validation of the material models was done through a three-level approach: fundamental tests to obtain independent static and dynamic material model properties of materials of interest, sub-component impact tests to provide highly controlled impact test data for the correlation and validation of the models, and full-scale impact tests to establish the final level of confidence for the analysis methodology. This paper discusses the second level subcomponent test program in detail and its application to the LS DYNA model validation process. The level two testing consisted of over one hundred impact tests in the NASA Glenn Research Center Ballistic Impact Lab on 6 by 6 in. and 6 by 12 in. flat plates of RCC and evaluated three types of debris projectiles: BX 265 External Tank foam, ice, and PDL 1034 External Tank foam. These impact tests helped determine the level of damage generated in the RCC flat plates by each projectile. The information obtained from this testing validated the LS DYNA damage prediction models and provided a certain level of confidence to begin performing analysis for full-size RCC test articles for returning NASA to flight with STS 114 and beyond.

  9. Materials Characterization Center meeting on impact testing of waste forms. Summary report

    SciTech Connect

    Merz, M.D.; Atteridge, D.; Dudder, G.

    1981-10-01

    A meeting was held on March 25-26, 1981 to discuss impact test methods for waste form materials to be used in nuclear waste repositories. The purpose of the meeting was to obtain guidance for the Materials Characterization Center (MCC) in preparing the MCC-10 Impact Test Method to be approved by the Materials Review Board. The meeting focused on two essential aspects of the test method, namely the mechanical process, or impact, used to effect rapid fracture of a waste form and the analysis technique(s) used to characterize particulates generated by the impact.

  10. Low velocity instrumented impact testing of four new damage tolerant carbon/epoxy composite systems

    NASA Technical Reports Server (NTRS)

    Lance, D. G.; Nettles, A. T.

    1990-01-01

    Low velocity drop weight instrumented impact testing was utilized to examine the damage resistance of four recently developed carbon fiber/epoxy resin systems. A fifth material, T300/934, for which a large data base exists, was also tested for comparison purposes. A 16-ply quasi-isotropic lay-up configuration was used for all the specimens. Force/absorbed energy-time plots were generated for each impact test. The specimens were cross-sectionally analyzed to record the damage corresponding to each impact energy level. Maximum force of impact versus impact energy plots were constructed to compare the various systems for impact damage resistance. Results show that the four new damage tolerant fiber/resin systems far outclassed the T300/934 material. The most damage tolerant material tested was the IM7/1962 fiber/resin system.

  11. 16 CFR Figure 1 to Subpart A of... - Glass Impact Test Structure

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Glass Impact Test Structure 1 Figure 1 to Subpart A of Part 1201 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT... 1 to Subpart A of Part 1201—Glass Impact Test Structure EC03OC91.004...

  12. 16 CFR Figure 1 to Subpart A of... - Glass Impact Test Structure

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Glass Impact Test Structure 1 Figure 1 to Subpart A of Part 1201 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT... 1 to Subpart A of Part 1201—Glass Impact Test Structure EC03OC91.004...

  13. 16 CFR Figure 1 to Subpart A of... - Glass Impact Test Structure

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Glass Impact Test Structure 1 Figure 1 to Subpart A of Part 1201 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT... 1 to Subpart A of Part 1201—Glass Impact Test Structure EC03OC91.004...

  14. 16 CFR Figure 1 to Subpart A of... - Glass Impact Test Structure

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Glass Impact Test Structure 1 Figure 1 to Subpart A of Part 1201 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT... 1 to Subpart A of Part 1201—Glass Impact Test Structure EC03OC91.004...

  15. 16 CFR Figure 1 to Subpart A of... - Glass Impact Test Structure

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Glass Impact Test Structure 1 Figure 1 to Subpart A of Part 1201 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT... 1 to Subpart A of Part 1201—Glass Impact Test Structure EC03OC91.004...

  16. Estimating Future Adverse Impact Using Selection Ratios and Group Differences in Test Score Means.

    ERIC Educational Resources Information Center

    Aamodt, Michael G.; And Others

    Estimating the validity of a test is only one concern for the human resources professional developing a personnel selection battery. An equally important concern is whether the test will result in adverse impact against a member of a protected class. It would be useful if the probability of adverse impact could be estimated prior to spending time

  17. Guidelines for Multiple Testing in Impact Evaluations of Educational Interventions. Final Report

    ERIC Educational Resources Information Center

    Schochet, Peter Z.

    2008-01-01

    Studies that examine the impacts of education interventions on key student, teacher, and school outcomes typically collect data on large samples and on many outcomes. In analyzing these data, researchers typically conduct multiple hypothesis tests to address key impact evaluation questions. Tests are conducted to assess intervention effects for

  18. Hypervelocity impact testing of non-metallic materials

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.

    1990-01-01

    A comparative analysis of impact damage in composite and ceramic specimens and in geometrically similar aluminum specimens is performed to determine the advantages and disadvantages of employing certain composite and ceramic materials in the design of structural wall systems for long-duration spacecraft. A similar analysis of the damage in single panel lexan and multi-plane glass windows shows that glass window systems are rather resilent under hypervelocity impact loadings. It is concluded that thin Kevlar 49, IM6/3501-6 graphite/epoxy, and alumina panels offer no advantage over equivalent aluminum 6061-T6 panels in reducing the penetration threat of hypervelocity projectiles.

  19. Satellite Test of Radiation Impact on Ramtron 512K FRAM

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Sayyah, Rana; Sims, W. Herb; Varnavas, Kosta A.; Ho, Fat D.

    2009-01-01

    The Memory Test Experiment is a space test of a ferroelectric memory device on a low Earth orbit satellite. The test consists of writing and reading data with a ferroelectric based memory device. Any errors are detected and are stored on board the satellite. The data is send to the ground through telemetry once a day. Analysis of the data can determine the kind of error that was found and will lead to a better understanding of the effects of space radiation on memory systems. The test will be one of the first flight demonstrations of ferroelectric memory in a near polar orbit which allows testing in a varied radiation environment. The memory devices being tested is a Ramtron Inc. 512K memory device. This paper details the goals and purpose of this experiment as well as the development process. The process for analyzing the data to gain the maximum understanding of the performance of the ferroelectric memory device is detailed.

  20. Hypervelocity Impact Testing of IM7/977-3 with Micro-Sized Particles

    NASA Technical Reports Server (NTRS)

    Smith, J. G.; Jegley, D. C.; Siochi, E. J.; Wells, B. K.

    2010-01-01

    Ground-based hypervelocity imapct testing was conducted on IM7/977-3 quasi-isotropic flat panels at normal incidence using micron-sized particles (i.e. less than or equal to 100 microns) of soda lime glass and olivine. Testing was performed at room temperature (RT) and 175 C with results from the 175 C test compared to those obtained at RT. Between 10 and 30 particles with velocities ranging from 5 to 13 km/s impacted each panel surface for each test temperature. Panels were ultrasonically scanned prior to and after impact testing to assess internal damage. Post-impact analysis included microscopic examination of the surface, determination of particle speed and location, and photomicroscopy for microcrack assessment. Internal damage was observed by ultrasonic inspection on panels impacted at 175 C, whereas damage for the RT impacted panels was confined to surface divets/craters as determined by microscopic analysis.

  1. Impact as a general cause of extinction: A feasibility test

    NASA Technical Reports Server (NTRS)

    Raup, David M.

    1988-01-01

    Large body impact has been implicated as the possible cause of several extinction events. This is entirely plausible if one accepts two propositions: (1) that impacts of large comets and asteroids produce environmental effects severe enough to cause significant species extinctions and (2) that the estimates of comet and asteroid flux for the Phanerozoic are approximately correct. A resonable next step is to investigate the possibility that impact could be a significant factor in the broader Phanerozoic extinction record, not limited merely to a few events of mass extinction. Monte Carlo simulation experiments based on existing flux estimates and reasonable predictions of the relationship between bolide diameter and extinction are discussed. The simulation results raise the serious possibility that large body impact may be a more pervasive factor in extinction than has been assumed heretofore. At the very least, the experiments show that the comet and asteroid flux estimates combined with a reasonable kill curve produces a reasonable extinction record, complete with occasional mass extinctions and the irregular, lower intensity extinctions commonly called background extinction.

  2. Testing Assumptions: The Impact of Two Study Abroad Program Models

    ERIC Educational Resources Information Center

    Norris, Emily Mohajeri; Dwyer, Mary M.

    2005-01-01

    There are many untested, long-held assumptions within the field of study abroad concerning the impact of program elements such as study duration, language of instruction, program models, and student housing choices. One assumption embraced within the field is that direct enrollment (or full immersion) programs are more effective at achieving a

  3. Impact of Educational Level on Performance on Auditory Processing Tests

    PubMed Central

    Murphy, Cristina F. B.; Rabelo, Camila M.; Silagi, Marcela L.; Mansur, Letícia L.; Schochat, Eliane

    2016-01-01

    Research has demonstrated that a higher level of education is associated with better performance on cognitive tests among middle-aged and elderly people. However, the effects of education on auditory processing skills have not yet been evaluated. Previous demonstrations of sensory-cognitive interactions in the aging process indicate the potential importance of this topic. Therefore, the primary purpose of this study was to investigate the performance of middle-aged and elderly people with different levels of formal education on auditory processing tests. A total of 177 adults with no evidence of cognitive, psychological or neurological conditions took part in the research. The participants completed a series of auditory assessments, including dichotic digit, frequency pattern and speech-in-noise tests. A working memory test was also performed to investigate the extent to which auditory processing and cognitive performance were associated. The results demonstrated positive but weak correlations between years of schooling and performance on all of the tests applied. The factor “years of schooling” was also one of the best predictors of frequency pattern and speech-in-noise test performance. Additionally, performance on the working memory, frequency pattern and dichotic digit tests was also correlated, suggesting that the influence of educational level on auditory processing performance might be associated with the cognitive demand of the auditory processing tests rather than auditory sensory aspects itself. Longitudinal research is required to investigate the causal relationship between educational level and auditory processing skills. PMID:27013958

  4. Reconsidering the Impact of High-Stakes Testing

    ERIC Educational Resources Information Center

    Braun, Henry

    2004-01-01

    Over the last fifteen years, many states have implemented high-stakes tests as part of an effort to strengthen accountability for schools, teachers, and students. Predictably, there has been vigorous disagreement regarding the contributions of such policies to increasing test scores and, more importantly, to improving student learning. A recent…

  5. Impact of Educational Level on Performance on Auditory Processing Tests.

    PubMed

    Murphy, Cristina F B; Rabelo, Camila M; Silagi, Marcela L; Mansur, Letícia L; Schochat, Eliane

    2016-01-01

    Research has demonstrated that a higher level of education is associated with better performance on cognitive tests among middle-aged and elderly people. However, the effects of education on auditory processing skills have not yet been evaluated. Previous demonstrations of sensory-cognitive interactions in the aging process indicate the potential importance of this topic. Therefore, the primary purpose of this study was to investigate the performance of middle-aged and elderly people with different levels of formal education on auditory processing tests. A total of 177 adults with no evidence of cognitive, psychological or neurological conditions took part in the research. The participants completed a series of auditory assessments, including dichotic digit, frequency pattern and speech-in-noise tests. A working memory test was also performed to investigate the extent to which auditory processing and cognitive performance were associated. The results demonstrated positive but weak correlations between years of schooling and performance on all of the tests applied. The factor "years of schooling" was also one of the best predictors of frequency pattern and speech-in-noise test performance. Additionally, performance on the working memory, frequency pattern and dichotic digit tests was also correlated, suggesting that the influence of educational level on auditory processing performance might be associated with the cognitive demand of the auditory processing tests rather than auditory sensory aspects itself. Longitudinal research is required to investigate the causal relationship between educational level and auditory processing skills. PMID:27013958

  6. The Impact of a National Test at the State Level.

    ERIC Educational Resources Information Center

    Pipho, Chris

    In recent months the idea of a single national test seems to have lost some of its momentum, while use of national standards to which voluntary regional or state tests would be indexed seems to have gained support. Nationally, there does not seem to be any organized attempt to fuse the national education goals into the state process beyond the…

  7. High Stakes Testing and Its Impact on Rural Schools.

    ERIC Educational Resources Information Center

    Hodges, V. Pauline

    2002-01-01

    The movement to standardization and high-stakes testing has been driven by ideological and political concerns and has adversely affected teaching/learning, democratic discourse, and educational equity. Rural schools are hit harder because of geographic isolation and insufficient staff and resources. Testing used for purposes other than measuring…

  8. The production of calibration specimens for impact testing of subsize Charpy specimens

    SciTech Connect

    Alexander, D.J.; Corwin, W.R.; Owings, T.D.

    1994-09-01

    Calibration specimens have been manufactured for checking the performance of a pendulum impact testing machine that has been configured for testing subsize specimens, both half-size (5.0 {times} 5.0 {times} 25.4 mm) and third-size (3.33 {times} 3.33 {times} 25.4 mm). Specimens were fabricated from quenched-and-tempered 4340 steel heat treated to produce different microstructures that would result in either high or low absorbed energy levels on testing. A large group of both half- and third-size specimens were tested at {minus}40{degrees}C. The results of the tests were analyzed for average value and standard deviation, and these values were used to establish calibration limits for the Charpy impact machine when testing subsize specimens. These average values plus or minus two standard deviations were set as the acceptable limits for the average of five tests for calibration of the impact testing machine.

  9. On the modeling of the Taylor cylinder impact test for orthotropic textured materials: Calculations and experiments

    SciTech Connect

    Maudlin, P.J.; Bingert, J.F.; House, J.W.

    1997-04-01

    Taylor impact tests using specimens cut from a rolled plate of Ta were conducted. The Ta was well-characterized in terms of flow stress and crystallographic texture. A piece-wise yield surface was interrogated from this orthotropic texture, and used in EPIC-95 3D simulations of the Taylor test. Good agreement was realized between the calculations and the post-test geometries in terms of major and minor side profiles and impact-interface footprints.

  10. IMPACT_S: Integrated Multiprogram Platform to Analyze and Combine Tests of Selection

    PubMed Central

    Vasconcelos, Vitor; Antunes, Agostinho

    2014-01-01

    Among the major goals of research in evolutionary biology are the identification of genes targeted by natural selection and understanding how various regimes of evolution affect the fitness of an organism. In particular, adaptive evolution enables organisms to adapt to changing ecological factors such as diet, temperature, habitat, predatory pressures and prey abundance. An integrative approach is crucial for the identification of non-synonymous mutations that introduce radical changes in protein biochemistry and thus in turn influence the structure and function of proteins. Performing such analyses manually is often a time-consuming process, due to the large number of statistical files generated from multiple approaches, especially when assessing numerous taxa and/or large datasets. We present IMPACT_S, an easy-to-use Graphical User Interface (GUI) software, which rapidly and effectively integrates, filters and combines results from three widely used programs for assessing the influence of selection: Codeml (PAML package), Datamonkey and TreeSAAP. It enables the identification and tabulation of sites detected by these programs as evolving under the influence of positive, neutral and/or negative selection in protein-coding genes. IMPACT_S further facilitates the automatic mapping of these sites onto the three-dimensional structures of proteins. Other useful tools incorporated in IMPACT_S include Jmol, Archaeopteryx, Gnuplot, PhyML, a built-in Swiss-Model interface and a PDB downloader. The relevance and functionality of IMPACT_S is shown through a case study on the toxicoferan-reptilian Cysteine-rich Secretory Proteins (CRiSPs). IMPACT_S is a platform-independent software released under GPLv3 license, freely available online from http://impact-s.sourceforge.net. PMID:25329307

  11. Testing and Resilience of the Impact Origin of the Moon

    NASA Technical Reports Server (NTRS)

    Righter, K.; Canup, R. M.

    2016-01-01

    The leading hypothesis for the origin of the Moon is the giant impact model, which grew out of the post-Apollo science community. The hypothesis was able to explain the high E-M system angular momentum, the small lunar core, and consistent with the idea that the early Moon melted substantially. The standard hypothesis requires that the Moon be made entirely from the impactor, strangely at odds with the nearly identical oxygen isotopic composition of the Earth and Moon, compositions that might be expected to be different if Moon came from a distinct impactor. Subsequent geochemical research has highlighted the similarity of both geochemical and isotopic composition of the Earth and Moon, and measured small but significant amounts of volatiles in lunar glassy materials, both of which are seemingly at odds with the standard giant impact model. Here we focus on key geochemical measurements and spacecraft observations that have prompted a healthy re-evaluation of the giant impact model, provide an overview of physical models that are either newly proposed or slightly revised from previous ideas, to explain the new datasets.

  12. Impact Testing of Aluminum 2024 and Titanium 6Al-4V for Material Model Development

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Revilock, Duane M.; Lerch, Bradley A.; Ruggeri, Charles R.

    2013-01-01

    One of the difficulties with developing and verifying accurate impact models is that parameters such as high strain rate material properties, failure modes, static properties, and impact test measurements are often obtained from a variety of different sources using different materials, with little control over consistency among the different sources. In addition there is often a lack of quantitative measurements in impact tests to which the models can be compared. To alleviate some of these problems, a project is underway to develop a consistent set of material property, impact test data and failure analysis for a variety of aircraft materials that can be used to develop improved impact failure and deformation models. This project is jointly funded by the NASA Glenn Research Center and the FAA William J. Hughes Technical Center. Unique features of this set of data are that all material property data and impact test data are obtained using identical material, the test methods and procedures are extensively documented and all of the raw data is available. Four parallel efforts are currently underway: Measurement of material deformation and failure response over a wide range of strain rates and temperatures and failure analysis of material property specimens and impact test articles conducted by The Ohio State University; development of improved numerical modeling techniques for deformation and failure conducted by The George Washington University; impact testing of flat panels and substructures conducted by NASA Glenn Research Center. This report describes impact testing which has been done on aluminum (Al) 2024 and titanium (Ti) 6Al-4vanadium (V) sheet and plate samples of different thicknesses and with different types of projectiles, one a regular cylinder and one with a more complex geometry incorporating features representative of a jet engine fan blade. Data from this testing will be used in validating material models developed under this program. The material tests and the material models developed in this program will be published in separate reports.

  13. The impact of GARCH on asymmetric unit root tests

    NASA Astrophysics Data System (ADS)

    Cook, Steven

    2006-09-01

    Using Monte Carlo simulation, threshold autoregressive (TAR) and momentum-threshold autoregressive (MTAR) asymmetric unit root tests are examined in the presence of generalised autoregressive conditional heteroskedasticity (GARCH). It is shown that TAR and MTAR unit root tests exhibit greater size distortion than the original (implicitly symmetric) Dickey-Fuller unit root test when applied to series exhibiting GARCH. Importantly, it is found that the use of consistent-threshold estimation increases the oversizing of the resulting asymmetric unit root test whether based upon the TAR or the MTAR model. The extent of oversizing of all tests considered is shown to be positively dependent upon the size of the volatility parameter of the GARCH model. The relevance of the simulation analysis conducted is supported by GARCH modelling of the term structure of US interest rates. The results of the current analysis indicate that if GARCH behaviour is suspected in economic or financial data, practitioners should interpret the results of asymmetric unit root tests with care to avoid drawing a spurious inference of stationarity. The paper concludes by suggesting future areas of research prompted by the present findings.

  14. Prognostic impact of stress testing in coronary artery disease

    SciTech Connect

    Severi, S.; Michelassi, C. )

    1991-05-01

    Observational data prospectively collected permit the examination of a complex set of decisions, including the decision not to perform any stress testing. Patients with or without previous myocardial infarction admitted for coronary evaluation and not submitted to any stress testing because of clinical reasons are at a higher risk for subsequent death. For prognostication, no test has been better validated than exercise electrocardiography: it can identify patients at low and high risk for future cardiac events among those without symptoms, with typical chest pain, and with previous myocardial infarction. In patients with triple-vessel disease, the results of exercise also allow those at low and high risk to be recognized. Both exercise radionuclide angiography and {sup 201}Tl scintigraphy (the latter in larger patient populations) have also demonstrated significant prognostic value on patients with or without previous myocardial infarction. Neither one has shown superiority to the other in prognostication. So far, they have been considered the only viable alternatives to exercise electrocardiography stress testing for diagnosis and prognostication. However, their costs limit their extensive application. Preliminary data suggest that intravenous dipyridamole echocardiography can be used for both diagnosis and prognostication of coronary artery disease; moreover, the prognostic information derived from dipyridamole echocardiography testing seems independent of and additive to that provided by exercise electrocardiography. Further prospective studies on larger patient populations are needed to better define the prognostic value of dipyridamole echocardiography testing.47 references.

  15. The role of the modified taylor impact test in dynamic material research

    NASA Astrophysics Data System (ADS)

    Bagusat, Frank; Rohr, Ingmar

    2015-09-01

    Dynamic material research with strain rates of more than 1000 1/s is experimentally very often done with a Split-Hopkinson Bar, Taylor impact tests or planar plate impact test investigations. At the Ernst-Mach-Institut (EMI), a variant of an inverted classical Taylor impact test is used by application of velocity interferometers of the VISAR type ("Modified Taylor Impact Test", MTT). The conduction of the experiments is similar to that of planar plate impact tests. The data reduction and derivation of dynamic material data can also be restricted to an analysis of the VISAR signal. Due to these properties, nearly each highly dynamic material characterization in our institute done by planar plate investigations is usually accompanied by MTT experiments. The extended possibilities and usefulness of a combined usage of these two highly dynamic characterization methods are explained. Recently, further developed MTT experiments with very small specimen sizes are presented. For the first time, Taylor impact and planar impact specimen can be used for which the load directions even in case of thin plate test material are identical and not perpendicular to each other. Consequences for testing construction elements are discussed.

  16. Impact resistance of current design composite fan blades tested under short-haul operating conditions

    NASA Technical Reports Server (NTRS)

    Steinhagen, C. A.; Salemme, C. T.

    1973-01-01

    Boron/epoxy and graphite/epoxy composite blades were impacted in a rotating whirligig facility with conditions closely simulating those which might be experienced by a STOL engine impacted with various foreign objects. The tip speed of the rotating blades was 800 feet per second. The blades were impacted with simulated birds, real birds, ice balls, and gravel. The results of composite blade impact tests were compared with a titanium blade tested under similar conditions. Neither composite material indicated a clear superiority over the other. Blades made from both composite materials showed more damage than the titanium blades.

  17. The evolution and impact of testing baghouse filter performance.

    PubMed

    Pham, Minh; Clark, Christina; Mckenna, John

    2012-08-01

    In 1995, the US. Environmental Protection Agency (EPA) initiated the Environmental Technology Verification (ETV) program for the purpose of generating both independent and credible performance verification of innovative technologies and helping to accelerate acceptance of these products into the marketplace to further benefit the environment and protect public health. The EPA has approved a testing protocol under this program to verify the performance of commercially available filtration products for pulse-jet baghouses in removingfine particulate matter (aerodynamic diameter<2.5 microm; PM2.5). This verification testing protocol was later used as a basis for the development of the American Society for Testing and Materials (ASTM) Method D6830-02 and the International Organization for Standardization (ISO) Method 11057. The South Coast Air Quality Management District (SCAQMD) in California and the EPA s Office of Air Quality Planning and Standards (OAQPS) highly encourage the use of ETV/ASTM-verified filtration media. This paper highlights the evolution of the standard test methods, the EPA's and SCAQMD's regulatory activities, the benefits of using verified filtration media, and the importance of including the filter performance testing in future consideration of baghouse permitting, baghouse operation and maintenance (O&M) plans, quality assurance/quality control (QA/QC), and bag monitoring plans. PMID:22916439

  18. Normalization of Impact Energy by Laminate Thickness for Compression After Impact Testing

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.; Hromisin, S. M.

    2013-01-01

    The amount of impact energy used to damage a composite laminate is a critical parameter when assessing residual strength properties. The compression after impact (CAI) strength of impacted laminates is dependent upon how thick the laminate is and this has traditionally been accounted for by normalizing (dividing) the impact energy by the laminate's thickness. However, when comparing CAI strength values for a given lay-up sequence and fiber/resin system, dividing the impact energy by the specimen thickness has been noted by the author to give higher CAI strength values for thicker laminates. A study was thus undertaken to assess the comparability of CAI strength data by normalizing the impact energy by the specimen thickness raised to a power to account for the higher strength of thicker laminates. One set of data from the literature and two generated in this study were analyzed by dividing the impact energy by the specimen thickness to the 1, 1.5, 2, and 2.5 powers. Results show that as laminate thickness and damage severity decreased, the value which the laminate thickness needs to be raised to in order to yield more comparable CAI data increases.

  19. Water impact laboratory and flight test results for the space shuttle solid rocket booster aft skirt

    NASA Technical Reports Server (NTRS)

    Kross, D. A.; Murphy, N. C.; Rawls, E. A.

    1984-01-01

    A series of water impact tests was conducted using full-scale segment representations of the Space Shuttle Solid Rocket Booster (SRB) aft skirt structure. The baseline reinforced structural design was tested as well as various alternative design concepts. A major portion of the test program consisted of evaluating foam as a load attenuation material. Applied pressures and response strains were measured for impact velocities from 40 feet per second (ft/s) to 110 ft/s. The structural configurations, test articles, test results, and flight results are described.

  20. Capabilities of the Impact Testing Facility at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Finchum, Andy; Nehls, Mary; Young, Whitney; Gray, Perry; Suggs, Bart; Lowrey, Nikki M.

    2011-01-01

    The test and analysis capabilities of the Impact Testing Facility at NASA's Marshall Space Flight Center are described. Nine different gun systems accommodate a wide range of projectile and target sizes and shapes at velocities from subsonic through hypersonic, to accomplish a broad range of ballistic and hypervelocity impact tests. These gun systems include ballistic and microballistic gas and powder guns, a two-stage light gas gun, and specialty guns for weather encounter studies. The ITF "rain gun" is the only hydrometeor impact gun known to be in existence in the United States that can provide single impact performance data with known raindrop sizes. Simulation of high velocity impact is available using the Smooth Particle Hydrodynamic Code. The Impact Testing Facility provides testing, custom test configuration design and fabrication, and analytical services for NASA, the Department of Defense, academic institutions, international space agencies, and private industry in a secure facility located at Marshall Space Flight Center, on the US Army's Redstone Arsenal in Huntsville, Alabama. This facility performs tests that are subject to International Traffic in Arms Regulations (ITAR) and DoD secret classified restrictions as well as proprietary and unrestricted tests for civil space agencies, academic institutions, and commercial aerospace and defense companies and their suppliers.

  1. Miniaturized Charpy test for reactor pressure vessel embrittlement characterization

    SciTech Connect

    Manahan, M.P. Sr.

    1999-10-01

    Modifications were made to a conventional Charpy machine to accommodate the miniaturized Charpy V-Notch (MCVN) specimens which were fabricated from an archived reactor pressure vessel (RPV) steel. Over 100 dynamic MCVN tests were performed and compared to the results from conventional Charpy V-Notch (CVN) tests to demonstrate the efficacy of the miniature specimen test. The optimized sidegrooved MCVN specimens exhibit transitional fracture behavior over essentially the same temperature range as the CVN specimens which indicates that the stress fields in the MCVN specimens reasonably simulate those of the CVN specimens and this fact has been observed in finite element calculations. This result demonstrates a significant breakthrough since it is now possible to measure the ductile-brittle transition temperature (DBTT) using miniature specimens with only small correction factors, and for some materials as in the present study, without the need for any correction factor at all. This development simplifies data interpretation and will facilitate future regulatory acceptance. The non-sidegrooved specimens yield energy-temperature data which is significantly shifted downward in temperature (non-conservative) as a result of the loss of constraint which accompanies size reduction.

  2. Elemental Water Impact Test: Phase 2 36-Inch Aluminum Tank Head

    NASA Technical Reports Server (NTRS)

    Vassilakos, Gregory J.

    2014-01-01

    Spacecraft are being designed based on LS-DYNA simulations of water landing impacts. The Elemental Water Impact Test (EWIT) series was undertaken to assess the accuracy of LS-DYNA water impact simulations. EWIT Phase 2 featured a 36-inch aluminum tank head. The tank head was outfitted with one accelerometer, twelve pressure transducers, three string potentiometers, and four strain gages. The tank head was dropped from heights of 1 foot and 2 feet. The focus of this report is the correlation of analytical models against test data. As a measure of prediction accuracy, peak responses from the baseline LS-DYNA model were compared to peak responses from the tests.

  3. The Impact of Variability of Item Parameter Estimators on Test Information Function

    ERIC Educational Resources Information Center

    Zhang, Jinming

    2012-01-01

    The impact of uncertainty about item parameters on test information functions is investigated. The information function of a test is one of the most important tools in item response theory (IRT). Inaccuracy in the estimation of test information can have substantial consequences on data analyses based on IRT. In this article, the major part (called

  4. Held Back: The Impact of Curricular and Pedagogical Factors on Tested Achievement in High School Mathematics

    ERIC Educational Resources Information Center

    Agvanian, Zara

    2013-01-01

    This study examined the impact of curricular factors and teaching practices on students' tested achievement in mathematics, explored the best predictors of the tested achievement, and examined differences in the tested achievement among student subgroups. The study utilized qualitative and quantitative methods and triangulated findings from…

  5. Light airplane crash tests at impact velocities of 13 and 27 m/sec

    NASA Technical Reports Server (NTRS)

    Alfaro-Bou, E.; Vaughan, V. L., Jr.

    1977-01-01

    Two similar general aviation airplanes were crash tested at the Langley impact dynamics research facility at velocities of 13 and 27 m/sec. Other flight parameters were held constant. The facility, instrumentation, tests specimens, and test method are briefly described. Structural damage and accelerometer data are discussed.

  6. The Impact of Variability of Item Parameter Estimators on Test Information Function

    ERIC Educational Resources Information Center

    Zhang, Jinming

    2012-01-01

    The impact of uncertainty about item parameters on test information functions is investigated. The information function of a test is one of the most important tools in item response theory (IRT). Inaccuracy in the estimation of test information can have substantial consequences on data analyses based on IRT. In this article, the major part (called…

  7. 49 CFR 572.136 - Knees and knee impact test procedure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Knees and knee impact test procedure. 572.136 Section 572.136 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES Hybrid III 5th Percentile Female Test...

  8. 49 CFR 572.176 - Knees and knee impact test procedure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Knees and knee impact test procedure. 572.176 Section 572.176 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES Hybrid III 10-Year-Old Child Test Dummy...

  9. 49 CFR 572.126 - Knees and knee impact test procedure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Knees and knee impact test procedure. 572.126 Section 572.126 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES Six-year-old Child Test Dummy, Beta Version...

  10. VALIDITY OF EFFLUENT AND AMBIENT TOXICITY TESTS FOR PREDICTING BIOLOGICAL IMPACT, BACK RIVER, BALTIMORE HARBOR, MARYLAND

    EPA Science Inventory

    The purpose for the study was to measure the toxicity of effluents discharged to an estuary using freshwater test species and compare the predictions with the receiving water biological impact. In addition, ambient tests were done in conjunction with salinity tolerance tests to c...

  11. The Impact of Settable Test Item Exposure Control Interface Format on Postsecondary Business Student Test Performance

    ERIC Educational Resources Information Center

    Truell, Allen D.; Zhao, Jensen J.; Alexander, Melody W.

    2005-01-01

    The purposes of this study were to determine if there is a significant difference in postsecondary business student scores and test completion time based on settable test item exposure control interface format, and to determine if there is a significant difference in student scores and test completion time based on settable test item exposure…

  12. SRB/FWC water impact: Flexible body loads test

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Two technical areas were examined: evaluation of potential correction methods for spurious case strain outputs from the pressure transducers during the NSWC tests; and assessing procedures for modifying either the excitation function or the response function to account for hydroelastic effects.

  13. Phenotype analysis impacts testing strategy in patients with Currarino syndrome.

    PubMed

    Cuturilo, G; Hodge, J C; Runke, C K; Thorland, E C; Al-Owain, M A; Ellison, J W; Babovic-Vuksanovic, D

    2016-01-01

    Currarino syndrome (OMIM 175450) presents with sacral, anorectal, and intraspinal anomalies and presacral meningocele or teratoma. Autosomal dominant loss-of-function mutations in the MNX1 gene cause nearly all familial and 30% of sporadic cases. Less frequently, a complex phenotype of Currarino syndrome can be caused by microdeletions of 7q containing MNX1. Here, we report one familial and three sporadic cases of Currarino syndrome. To determine the most efficient genetic testing approach for these patients, we have compared results from MNX1 sequencing, chromosomal microarray, and performed a literature search with analysis of genotype-phenotype correlation. Based on the relationship between the type of mutation (intragenic MNX1 mutations vs 7q microdeletion) and the presence of intellectual disability, growth retardation, facial dysmorphism, and associated malformations, we propose a testing algorithm. Patients with the classic Currarino triad of malformations but normal growth, intellect, and facial appearance should have MNX1 sequencing first, and only in the event of a normal result should the clinician proceed with chromosomal microarray testing. In contrast, if growth delay and/or facial dysmorphy and/or intellectual disability are present, chromosomal microarray should be the first method of choice for genetic testing. PMID:25691298

  14. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect

    Rudd, Armin; Bergey, Daniel

    2014-02-01

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  15. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect

    Rudd, A.; Bergey, D.

    2014-02-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  16. Permeability Testing of Impacted Composite Laminates for Use on Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.

    2001-01-01

    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, an understanding of their permeance is needed. A foreign object impact event can cause a localized area of permeability (leakage) in a polymer matrix composite, and it is the aim of this study to assess a method of quantifying permeability-after-impact results. A simple test apparatus is presented, and variables that could affect the measured values of permeability-after-impact were assessed. Once it was determined that valid numbers were being measured, a fiber/resin system was impacted at various impact levels and the resulting permeability measured, first with a leak check solution (qualitative) then using the new apparatus (quantitative). The results showed that as the impact level increased, so did the measured leakage. As the pressure to the specimen was increased, the leak rate was seen to increase in a nonlinear fashion for almost all the specimens tested.

  17. Cycom 977-2 Composite Material: Impact Test Results (workshop presentation)

    NASA Technical Reports Server (NTRS)

    Engle, Carl; Herald, Stephen; Watkins, Casey

    2005-01-01

    Contents include the following: Ambient (13A) tests of Cycom 977-2 impact characteristics by the Brucenton and statistical method at MSFC and WSTF. Repeat (13A) tests of tested Cycom from phase I at MSFC to expended testing statistical database. Conduct high-pressure tests (13B) in liquid oxygen (LOX) and GOX at MSFC and WSTF to determine Cycom reaction characteristics and batch effect. Conduct expended ambient (13A) LOX test at MSFC and high-pressure (13B) testing to determine pressure effects in LOX. Expend 13B GOX database.

  18. Ballistic Impact Testing of Aluminum 2024 and Titanium 6Al-4V for Material Model Development

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Revilock, Duane M.; Ruggeri, Charles R.; Emmerling, William C.; Altobelli, Donald J.

    2012-01-01

    An experimental program is underway to develop a consistent set of material property and impact test data, and failure analysis, for a variety of materials that can be used to develop improved impact failure and deformation models. Unique features of this set of data are that all material property information and impact test results are obtained using identical materials, the test methods and procedures are extensively documented and all of the raw data is available. This report describes ballistic impact testing which has been conducted on aluminum (Al) 2024 and titanium (Ti) 6Al-4vanadium (V) sheet and plate samples of different thicknesses and with different types of projectiles, one a regular cylinder and one with a more complex geometry incorporating features representative of a jet engine fan blade.

  19. Technical Methods Report: Guidelines for Multiple Testing in Impact Evaluations. NCEE 2008-4018

    ERIC Educational Resources Information Center

    Schochet, Peter Z.

    2008-01-01

    This report presents guidelines for addressing the multiple comparisons problem in impact evaluations in the education area. The problem occurs due to the large number of hypothesis tests that are typically conducted across outcomes and subgroups in these studies, which can lead to spurious statistically significant impact findings. The

  20. Impact of testing styles and testing methods on achievement in general chemistry

    NASA Astrophysics Data System (ADS)

    Howell, Byron Edward

    2001-12-01

    This research conducted at a community college located in Northeast Texas studied testing style and testing methods in relation to achievement in general chemistry. Data was collected and examined from 212 participants. Of these, 143 completed both the MBTI and PEPS surveys. This provided 71 subjects designated as Sensor (S) types for the final phase of the study. The subjects were divided into two groups by performance on the PEPS. One group consisted of subjects that indicated a preference to communicate (test) using a formal/pencil-paper test format (linguistic testing style) and the other subjects indicated a preference to communicate (test) using a hands-on/movement test format (tactile testing style). All subjects were administered both a linguistic and tactile pretest prior to treatment and both a linguistic and tactile posttest after treatment. The data was analyzed using a 2 x 2 ANOVA for significant effects at the p < 0.05 level of confidence. The results indicated a significant interaction effect between the student testing style and test methods. While not conclusive, this study does indicate that the type of testing done in general chemistry may be favoring students with certain types of communication preferences (testing styles). Therefore students with many of the worker characteristics desired by the chemical industry may not be successful in general chemistry and choose a different career path.

  1. Particle Impact Ignition Test Data on a Stainless Steel Hand Valve

    NASA Technical Reports Server (NTRS)

    Peralta, Stephen

    2010-01-01

    This slide presentation reviews the particle impact ignition test of a stainless steel hand valve. The impact of particles is a real fire hazard with stainless steel hand valves, however 100 mg of particulate can be tolerated. Since it is unlikely that 100 mg of stainless steel contaminant particles can be simultaneously released into this type of valve in the WSTF configuration, this is acceptable and within statistical confidence as demonstrated by testing.

  2. The Translational Research Impact Scale: Development, Construct Validity, and Reliability Testing

    PubMed Central

    Dembe, Allard E.; Lynch, Michele S.; Gugiu, P. Cristian; Jackson, Rebecca D.

    2014-01-01

    Increasing emphasis is being placed on measuring return on research investment and determining the true impacts of biomedical research for medical practice and population health. This article describes initial progress on development of a new standardized tool for identifying and measuring impacts across research sites. The Translational Research Impact Scale (TRIS) is intended to provide a systematic approach to assessing impact levels using a set of 72 impact indicators organized into three broad research impact domains and nine subdomains. A validation process was conducted with input from a panel of 31 experts in translational research, who met to define and standardize the measurement of research impacts using the TRIS. Testing was performed to estimate the reliability of the experts’ ratings. The reliability was found to be high (ranging from .75 to .94) in all of the domains and most of the subdomains. A weighting process was performed assigning item weights to the individual indicators, so that composite scores can be derived. PMID:24085789

  3. Accelerated 54{degree}C irradiated test of Shippingport neutron shield tank and HFIR vessel materials

    SciTech Connect

    Hawthorne, J.R.; Rosinski, S.T.

    1993-01-01

    Charpy V-notch specimens (ASTM Type A) and 5.74-mm diameter tension test specimens of the Shippingport Reactor Neutron Shield Tank (NST) (outer wall material) were irradiated together with Charpy V-notch specimens of the Oak Ridge National Laboratory (ORNI), High,, Flux Isotope Reactor (HFIR) vessel (shell material), to 5.07 {times} 10{sup 17} n/cm{sup 2}, E > 1 MeV. The irradiation was performed in the Ford Nuclear Reactor (FNR), a test reactor, at a controlled temperature of 54{degrees}C (130{degrees}F) selected to approximate the prior service temperatures of the cited reactor structures. Radiation-induced elevations in the Charpy 41-J transition temperature and the ambient temperature yield strength were small and independent of specimen test orientation (ASTM LT vs. TL). The observations are consistent with prior findings for the two materials (A 212-B plate) and other like materials irradiated at low temperature (< 200{degrees}C) to low fluence. The high radiation embrittlement sensitivity observed in HFIR vessel surveillance program tests was not found in the present accelerated irradiation test. Response to 288{degrees}C-168 h postirradiation annealing was explored for the NST material. Notch ductility recovery was found independent of specimen test orientation but dependent on the temperature within the transition region at which the specimens were tested.

  4. Accelerated 54[degree]C irradiated test of Shippingport neutron shield tank and HFIR vessel materials

    SciTech Connect

    Hawthorne, J.R. ); Rosinski, S.T. )

    1993-01-01

    Charpy V-notch specimens (ASTM Type A) and 5.74-mm diameter tension test specimens of the Shippingport Reactor Neutron Shield Tank (NST) (outer wall material) were irradiated together with Charpy V-notch specimens of the Oak Ridge National Laboratory (ORNI), High,, Flux Isotope Reactor (HFIR) vessel (shell material), to 5.07 [times] 10[sup 17] n/cm[sup 2], E > 1 MeV. The irradiation was performed in the Ford Nuclear Reactor (FNR), a test reactor, at a controlled temperature of 54[degrees]C (130[degrees]F) selected to approximate the prior service temperatures of the cited reactor structures. Radiation-induced elevations in the Charpy 41-J transition temperature and the ambient temperature yield strength were small and independent of specimen test orientation (ASTM LT vs. TL). The observations are consistent with prior findings for the two materials (A 212-B plate) and other like materials irradiated at low temperature (< 200[degrees]C) to low fluence. The high radiation embrittlement sensitivity observed in HFIR vessel surveillance program tests was not found in the present accelerated irradiation test. Response to 288[degrees]C-168 h postirradiation annealing was explored for the NST material. Notch ductility recovery was found independent of specimen test orientation but dependent on the temperature within the transition region at which the specimens were tested.

  5. Contact and artificial soil tests using earthworms to evaluate the impact of wastes in soil

    SciTech Connect

    Neuhauser, E.F.; Loehr, R.C.; Malecki, M.R.

    1986-01-01

    The study was designed to evaluate two methods using earthworms that can be used to estimate the biological impact of organic and inorganic compounds that may be in wastes applied to land for treatment and disposal. The two methods were the contact test and the artificial soil test. The contact test is 48-h test using an adult worm, a small glass vial, and filter paper to which the test chemical or waste is applied. The test is designed to provide close contact between the worm and a chemical, similar to the situation in soils. The method provides a rapid estimate of the relative toxicity of chemicals and industrial wastes.

  6. Impact of corrosion test container material in molten fluorides

    SciTech Connect

    Olson, Luke C.; Fuentes, Roderick E.; Martinez-Rodriguez, Michael J.; Ambrosek, James W.; Sridharan, Kumar; Anderson, Mark H.; Garcia-Diaz, Brenda L.; Gray, Joshua; Allen, Todd R.

    2015-10-15

    The effects of crucible material choice on alloy corrosion rates in immersion tests in molten LiF–NaF–KF (46.5–11.5-42 mol. %) salt held at 850 °C for 500 hrs are described. Four crucible materials were studied. Molten salt exposures of Incoloy-800H in graphite, Ni, Incoloy-800H, and pyrolytic boron nitride (PyBN) crucibles all led to weight-loss in the Incoloy-800H coupons. Alloy weight loss was ~30 times higher in the graphite and Ni crucibles in comparison to the Incoloy-800H and PyBN crucibles. It is hypothesized galvanic coupling between the alloy coupons and crucible materials contributed to the higher corrosion rates. Alloy salt immersion in graphite and Ni crucibles had similar weight-loss hypothesized to occur due to the rate limiting out diffusion of Cr in the alloys to the surface where it reacts with and dissolves into the molten salt, followed by the reduction of Cr from solution at the molten salt and graphite/Ni interfaces. As a result, both the graphite and the Ni crucibles provided sinks for the Cr, in the formation of a Ni–Cr alloy in the case of the Ni crucible, and Cr carbide in the case of the graphite crucible.

  7. Impact of corrosion test container material in molten fluorides

    DOE PAGESBeta

    Olson, Luke C.; Fuentes, Roderick E.; Martinez-Rodriguez, Michael J.; Ambrosek, James W.; Sridharan, Kumar; Anderson, Mark H.; Garcia-Diaz, Brenda L.; Gray, Joshua; Allen, Todd R.

    2015-10-15

    The effects of crucible material choice on alloy corrosion rates in immersion tests in molten LiF–NaF–KF (46.5–11.5-42 mol. %) salt held at 850 °C for 500 hrs are described. Four crucible materials were studied. Molten salt exposures of Incoloy-800H in graphite, Ni, Incoloy-800H, and pyrolytic boron nitride (PyBN) crucibles all led to weight-loss in the Incoloy-800H coupons. Alloy weight loss was ~30 times higher in the graphite and Ni crucibles in comparison to the Incoloy-800H and PyBN crucibles. It is hypothesized galvanic coupling between the alloy coupons and crucible materials contributed to the higher corrosion rates. Alloy salt immersion inmore » graphite and Ni crucibles had similar weight-loss hypothesized to occur due to the rate limiting out diffusion of Cr in the alloys to the surface where it reacts with and dissolves into the molten salt, followed by the reduction of Cr from solution at the molten salt and graphite/Ni interfaces. As a result, both the graphite and the Ni crucibles provided sinks for the Cr, in the formation of a Ni–Cr alloy in the case of the Ni crucible, and Cr carbide in the case of the graphite crucible.« less

  8. Multi-Terrain Impact Testing and Simulation of a Composite Energy Absorbing Fuselage Section

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Lyle, Karen H.; Sparks, Chad E.; Sareen, Ashish K.

    2007-01-01

    Comparisons of the impact performance of a 5-ft diameter crashworthy composite fuselage section were investigated for hard surface, soft soil, and water impacts. The fuselage concept, which was originally designed for impacts onto a hard surface only, consisted of a stiff upper cabin, load bearing floor, and an energy absorbing subfloor. Vertical drop tests were performed at 25-ft/s onto concrete, soft-soil, and water at NASA Langley Research Center. Comparisons of the peak acceleration values, pulse durations, and onset rates were evaluated for each test at specific locations on the fuselage. In addition to comparisons of the experimental results, dynamic finite element models were developed to simulate each impact condition. Once validated, these models can be used to evaluate the dynamic behavior of subfloor components for improved crash protection for hard surface, soft soil, and water impacts.

  9. Multi-Terrain Impact Testing and Simulation of a Composite Energy Absorbing Fuselage Section

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Lyle, Karen H.; Sparks, Chad E.; Sareen, Ashish K.

    2004-01-01

    Comparisons of the impact performance of a 5-ft diameter crashworthy composite fuselage section were investigated for hard surface, soft soil, and water impacts. The fuselage concept, which was originally designed for impacts onto a hard surface only, consisted of a stiff upper cabin, load bearing floor, and an energy absorbing subfloor. Vertical drop tests were performed at 25-ft/s onto concrete, soft-soil, and water at NASA Langley Research Center. Comparisons of the peak acceleration values, pulse durations, and onset rates were evaluated for each test at specific locations on the fuselage. In addition to comparisons of the experimental results, dynamic finite element models were developed to simulate each impact condition. Once validated, these models can be used to evaluate the dynamic behavior of subfloor components for improved crash protection for hard surface, soft soil, and water impacts.

  10. Technical basis for flawed cylinder test specification to assure adequate fracture resistance of ISO high strength steel cylinder

    SciTech Connect

    Rana, M.D.; Smith, J.H.; Tribolet, R.O.

    1996-12-01

    High pressure industrial gases (such as oxygen, nitrogen, argon, hydrogen, etc.) are stored and transported in portable cylinders. ISO TC58 SC3 has developed a draft specification 9809 for design and fabrication of high pressure cylinders with maximum tensile strength limitation of 1,100 N/mm{sup 2}. In order to extend the ISO 9809 rules for higher than 1,100 N/mm{sup 2} strength level cylinders, a working group WG14 was formed in 1989 to develop new rules to assure adequate fracture resistance. In 1994, WG14 recommended a simple, but unique flawed cylinder test method for design qualification of the cylinder and acceptance criteria to assure adequate fracture resistance. WG14 also recommended Charpy-V-Notch impact tests to control the required fracture resistance on production cylinders. This paper presents the technical basis that was employed in developing the flawed cylinder test method and acceptance criteria. The specification was developed for seamless steel cylinders having actual strength in the range of 1,100 to 1,400 N/mm{sup 2} and cylindrical section wall thickness in the range of 3mm to 10mm. Flawed cylinder tests were conducted on several hundred cylinders of varying sizes and strength levels. The specification requires to demonstrate LEAK-BEFORE-BREAK performance of the cylinder having flaw length equal to 1.6(O.D. {times} t{sub design}){sup 0.5} at failure pressure = (t{sub design}/t{sub actual}) {times} Design Pressure.

  11. Technical basis for flawed cylinder test specification to assure adequate fracture resistance of ISO high-strength steel cylinder

    SciTech Connect

    Rana, M.D.; Smith, J.H.; Tribolet, R.O.

    1997-11-01

    High-pressure industrial gases (such as oxygen, nitrogen, argon, hydrogen, etc.) are stored and transported in portable cylinders. ISO TC58 SC3 has developed a draft specification 9809 for design and fabrication of high-pressure cylinders with maximum tensile strength limitation of 1,100 N/mm{sup 2}. In order to extend the ISO 9809 rules for higher than 1,100 N/mm{sup 2} strength level cylinders, a working group WG14 was formed in 1989 to develop new rules to assure adequate fracture resistance. In 1994, WG14 recommended a simple, but unique flawed cylinder test method for design qualification of the cylinder and acceptance criteria to assure adequate fracture resistance. WG14 also recommended Charpy-V-notch impact tests to control the required fracture resistance on production cylinders. This paper presents the technical basis that was employed in developing the flawed cylinder test method and acceptance criteria. The specification was developed for seamless steel cylinders having actual strength in the range of 1,100 to 1,400 N/mm{sup 2} and cylindrical section wall thickness in the range of 3 to 10 mm. Flawed cylinder tests were conducted on several hundred cylinders of varying sizes and strength levels. The specification requires to demonstrate LEAK-BEFORE-BREAK performance of the cylinder having flaw length equal to 1.6 (o.d. {times} t{sub design}){sup 0.5} at failure pressure = (t{sub design}/t{sub actual}) x Design Pressure.

  12. Hybrid composite laminates reinforced with Kevlar/carbon/glass woven fabrics for ballistic impact testing.

    PubMed

    Randjbaran, Elias; Zahari, Rizal; Jalil, Nawal Aswan Abdul; Majid, Dayang Laila Abang Abdul

    2014-01-01

    Current study reported a facile method to investigate the effects of stacking sequence layers of hybrid composite materials on ballistic energy absorption by running the ballistic test at the high velocity ballistic impact conditions. The velocity and absorbed energy were accordingly calculated as well. The specimens were fabricated from Kevlar, carbon, and glass woven fabrics and resin and were experimentally investigated under impact conditions. All the specimens possessed equal mass, shape, and density; nevertheless, the layers were ordered in different stacking sequence. After running the ballistic test at the same conditions, the final velocities of the cylindrical AISI 4340 Steel pellet showed how much energy was absorbed by the samples. The energy absorption of each sample through the ballistic impact was calculated; accordingly, the proper ballistic impact resistance materials could be found by conducting the test. This paper can be further studied in order to characterise the material properties for the different layers. PMID:24955400

  13. Hybrid Composite Laminates Reinforced with Kevlar/Carbon/Glass Woven Fabrics for Ballistic Impact Testing

    PubMed Central

    Randjbaran, Elias; Zahari, Rizal; Abdul Jalil, Nawal Aswan; Abang Abdul Majid, Dayang Laila

    2014-01-01

    Current study reported a facile method to investigate the effects of stacking sequence layers of hybrid composite materials on ballistic energy absorption by running the ballistic test at the high velocity ballistic impact conditions. The velocity and absorbed energy were accordingly calculated as well. The specimens were fabricated from Kevlar, carbon, and glass woven fabrics and resin and were experimentally investigated under impact conditions. All the specimens possessed equal mass, shape, and density; nevertheless, the layers were ordered in different stacking sequence. After running the ballistic test at the same conditions, the final velocities of the cylindrical AISI 4340 Steel pellet showed how much energy was absorbed by the samples. The energy absorption of each sample through the ballistic impact was calculated; accordingly, the proper ballistic impact resistance materials could be found by conducting the test. This paper can be further studied in order to characterise the material properties for the different layers. PMID:24955400

  14. Testing nanoeffect onto model bacteria: Impact of speciation and genotypes.

    PubMed

    Gelabert, Alexandre; Sivry, Yann; Gobbi, Paola; Mansouri-Guilani, Nina; Menguy, Nicolas; Brayner, Roberta; Siron, Valerie; Benedetti, Marc Fabien; Ferrari, Roselyne

    2016-03-01

    The gram-negative bacteria Escherichia coli (E. coli) is a very useful prokaryotic model for testing the toxicity of ZnO nanoparticles (nano-ZnO). This toxicity is often linked to Zn(2+) released from nanoparticles in the culture medium, and nano-ZnO dissolution in different media is clearly established. Here, two model E. coli strains MG1655 and W3110 both descendant from the original K-12 showing slight differences in their genome were submitted to nano-ZnO or Zn(2+) in order 1 > to refine the nano-ZnO toxicity mechanisms to E. coli, and 2 > to investigate whether toxicity resulted from a real "nanoparticle" effect or from the release of Zn(2+) in solution. To do so, both strains were submitted to various concentrations (i.e., 0.1-1 mM) of nano-ZnO or Zn(2+) in Luria Bertani (LB) medium. These toxicity studies take into account the nano-ZnO solubility in the culture medium by specifically monitoring the Zn(2+) release in our experimental systems. In our experimental conditions, differences in tolerance to nano-ZnO or Zn(2+) between both strains were clearly evidenced. W3110 is generally more tolerant to metal than MG1655, the latter showing no real difference in its sensitivity to the two zinc added forms unlike W3110. The differences in behavior between both strains could be attributed to differences in the two genomes as a mutation named "amber" in W3110. Moreover, by using these two closely E. coli strains, a real "nano" effect is here clearly demonstrated providing a model to study the toxicity of ZnO nanoparticles. PMID:26593393

  15. The Power of Tests: The Impact of Language Tests on Teaching and Learning. NFLC Occasional Papers.

    ERIC Educational Resources Information Center

    Shohamy, Elana

    This paper is rooted in an expanded view of construct validity, whereby the role of testers does not end in the development phase of the language tests they employ. Rather, testers need to follow the uses of these tests and examine issues of utility, relevance, ethics, and interpretation. The studies reported here focused on three national…

  16. The Impact of Linking Distinct Achievement Test Scores on the Interpretation of Student Growth in Achievement

    ERIC Educational Resources Information Center

    Airola, Denise Tobin

    2011-01-01

    Changes to state tests impact the ability of State Education Agencies (SEAs) to monitor change in performance over time. The purpose of this study was to evaluate the Standardized Performance Growth Index (PGIz), a proposed statistical model for measuring change in student and school performance, across transitions in tests. The PGIz is a

  17. Magnetic system for the quality control of specimens for Charpy impact test

    NASA Astrophysics Data System (ADS)

    Martin, R. V.; Castanho, M. A. P.

    2015-10-01

    It was developed a non-destructive testing system based on magnetic methods for characterization of steel specimens, used in calibration of Charpy impact testing machines. The magnetic properties saturation, remanence, coercivity, and the hysteresis curves were used to create a "magnetic signature" of reference to ensure the value of energy absorbed by these standard specimens.

  18. The Impact of Intensive Reading Interventions on Student Standardized Test Scores

    ERIC Educational Resources Information Center

    Munoz, Carolyn Sue

    2010-01-01

    The purpose of this study was to identify the impact intensive reading instruction had for 28 students with learning disabilities at the middle school level on standardized tests. National Assessment of Education Progress testing indicates that across the United States, learning disabled students literacy skills are decreasing annually, and these…

  19. The Impact of Mandated Statewide Testing on Teachers' Classroom Assessment and Instructional Practices.

    ERIC Educational Resources Information Center

    McMillan, James H.; Myran, Steve; Workman, Daryl

    The impact of the new Virginia statewide Standards of Learning (SOL) testing program on classroom instructional and assessment practices was studied through surveys before and after implementation of the testing program. The sample represented responses from 570 secondary school teachers (of mathematics, social studies, English, and science) and…

  20. An Approach for Addressing the Multiple Testing Problem in Social Policy Impact Evaluations

    ERIC Educational Resources Information Center

    Schochet, Peter Z.

    2009-01-01

    In social policy evaluations, the multiple testing problem occurs due to the many hypothesis tests that are typically conducted across multiple outcomes and subgroups, which can lead to spurious impact findings. This article discusses a framework for addressing this problem that balances Types I and II errors. The framework involves specifying…

  1. An Exploration of the Impact of Accountability Testing on Teaching in Urban Elementary Classrooms

    ERIC Educational Resources Information Center

    Bisland, Beverly Milner

    2015-01-01

    This study explores accountability testing in the elementary schools of New York City with particular emphasis on the impact of a statewide social studies test on the value given to social studies instruction in comparison to other subjects. The attitudes of a group of elementary teachers are examined. Some of the teachers taught all subjects in…

  2. The Impact of Linking Distinct Achievement Test Scores on the Interpretation of Student Growth in Achievement

    ERIC Educational Resources Information Center

    Airola, Denise Tobin

    2011-01-01

    Changes to state tests impact the ability of State Education Agencies (SEAs) to monitor change in performance over time. The purpose of this study was to evaluate the Standardized Performance Growth Index (PGIz), a proposed statistical model for measuring change in student and school performance, across transitions in tests. The PGIz is a…

  3. The TOEFL Trump Card: An Investigation of Test Impact in an ESL Classroom

    ERIC Educational Resources Information Center

    Johnson, Karen E.; Jordan, Stefanie Rehn; Poehner, Matthew E.

    2005-01-01

    Much of the research on the effects of tests on foreign and second-language classrooms has examined the impact or washback effect that commercial/institutional language tests, such as the TOEFL, have on teachers' instructional practices (Hughes, 1998; Wall & Alderson, 1993). Using a case study methodology, this study uncovered the ways in which…

  4. Examining the Impact of Audio Presentation on Tests of Reading Comprehension

    ERIC Educational Resources Information Center

    Laitusis, Cara Cahalan

    2010-01-01

    This study examined the impact of a read-aloud accommodation on standardized test scores of reading comprehension at grades 4 and 8. Under a repeated measures design, students with and without reading-based learning disabilities took both a standard administration and a read-aloud administration of a reading comprehension test. Results show that

  5. Nondestructive Evaluation Tests Performed on Space Shuttle Leading- Edge Materials Subjected to Impact

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Martin, Richard E.; Bodis, James R.

    2005-01-01

    In support of the space shuttle Return To Flight efforts at the NASA Glenn Research Center, a series of nondestructive evaluation (NDE) tests were performed on reinforced carbon/carbon (RCC) composite panels subjected to ballistic foam impact. The impact tests were conducted to refine and verify analytical models of an external tank foam strike on the space shuttle leading edge. The NDE tests were conducted to quantify the size and location of the resulting damage zone as well as to identify hidden damage.

  6. Design of Spacecraft Missions to Test Kinetic Impact for Asteroid Deflection

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Hernandez, Sonia

    2012-01-01

    Earth has previously been struck with devastating force by near-Earth asteroids (NEAs) and will be struck again. Telescopic search programs aim to provide advance warning of such an impact, but no techniques or systems have yet been tested for deflecting an incoming NEA. To begin addressing this problem, we have analyzed the more than 8000 currently known NEAs to identify those that offer opportunities for safe and meaningful near-term tests of the proposed kinetic impact asteroid deflection technique. In this paper we present our methodology and results, including complete mission designs for the best kinetic impactor test mission opportunities.

  7. High-silicon 238PuO2 fuel characterization study: Half module impact tests

    NASA Astrophysics Data System (ADS)

    Reimus, Mary Ann H.

    1997-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of 238Pu decay to an array of thermoelectric elements. The modular GPHS design was developed to address both survivability during launch abort and return from orbit. Previous testing conducted in support of the Galileo and Ulysses missions documented the response of GPHSs to a variety of fragment-impact, aging, atmospheric reentry, and Earth-impact conditions. The evaluations documented in this report are part of an ongoing program to determine the effect of fuel impurities on the response of the heat source to conditions baselined during the Galileo/Ulysses test program. In the first two tests in this series, encapsulated GPHS fuel pellets containing high levels of silicon were aged, loaded into GPHS module halves, and impacted against steel plates. The results show no significant differences between the response of these capsules and the behavior of relatively low-silicon fuel pellets tested previously.

  8. Impact of Acoustic Standing Waves on Structural Responses: Reverberant Acoustic Testing (RAT) vs. Direct Field Acoustic Testing (DFAT)

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu

    2012-01-01

    Loudspeakers have been used for acoustic qualification of spacecraft, reflectors, solar panels, and other acoustically responsive structures for more than a decade. Limited measurements from some of the recent speaker tests used to qualify flight hardware have indicated significant spatial variation of the acoustic field within the test volume. Also structural responses have been reported to differ when similar tests were performed using reverberant chambers. To address the impact of non-uniform acoustic field on structural responses, a series of acoustic tests were performed using a flat panel and a 3-ft cylinder exposed to the field controlled by speakers and repeated in a reverberant chamber. The speaker testing was performed using multi-input-single-output (MISO) and multi-input-multi-output (MIMO) control schemes with and without the test articles. In this paper the spatial variation of the acoustic field due to acoustic standing waves and their impacts on the structural responses in RAT and DFAT (both using MISO and MIMO controls for DFAT) are discussed in some detail.

  9. Adult headform impact tests of three Japanese child bicycle helmets into a vehicle.

    PubMed

    Mizuno, Koji; Ito, Daisuke; Yoshida, Ryoichi; Masuda, Hiroyuki; Okada, Hiroshi; Nomura, Mitsunori; Fujii, Chikayo

    2014-12-01

    The head is the body region that most frequently incurs fatal and serious injuries of cyclists in collisions against vehicles. Many research studies investigated helmet effectiveness in preventing head injuries using accident data. In this study, the impact attenuation characteristics of three Japanese child bicycle helmets were examined experimentally in impact tests into a concrete surface and a vehicle. A pedestrian adult headform with and without a Japanese child bicycle helmet was dropped onto a concrete surface and then propelled into a vehicle at 35 km/h in various locations such as the bonnet, roof header, windshield and A-pillar. Accelerations were measured and head injury criterion (HIC) calculated. In the drop tests using the adult headform onto a concrete surface from the height of 1.5m, the HIC for a headform without a child helmet was 6325, and was reduced by around 80% when a child helmet was fitted to the headform. In the impact tests, where the headform was fired into the vehicle at 35 km/h at various locations on a car, the computed acceleration based HIC varied depending on the vehicle impact locations. The HIC was reduced by 10-38% for impacts headforms with a child helmet when the impact was onto a bonnet-top and roof header although the HIC was already less than 1000 in impacts with the headform without a child helmet. Similarly, for impacts into the windshield (where a cyclist's head is most frequently impacted), the HIC using the adult headform without a child helmet was 122; whereas when the adult headform was used with a child helmet, a higher HIC value of more than 850 was recorded. But again, the HIC values are below 1000. In impacts into the A-pillar, the HIC was 4816 for a headform without a child helmet and was reduced by 18-38% for a headform with a child helmet depending on the type of Japanese child helmet used. The tests demonstrated that Japanese child helmets are effective in reducing accelerations and HIC in a drop test using an adult headform onto a relatively rigid hard surface, i.e., simulating a road surface or concrete path. However, when the impact tests are into softer surfaces, the child helmet's capacity to decrease accelerations is accordingly reduced. Impacts into the windshield, while below the critical HIC value of 1000, indicated higher HIC values for a headform with a child helmet compared to an adult headform without a child helmet. The unpredictable nature of the results indicates further research work is required to assess how representative the stiffness of an adult headform is when compared to an actual head. PMID:25290036

  10. Impact testing of the H1224A shipping/storage container

    SciTech Connect

    Harding, D.C.; Bobbe, J.G.; Stenberg, D.R.; Arviso, M.

    1994-05-01

    H1224A weapons containers have been used for years by the Department of Energy and Department of Defense to transport and store W78 warhead midsections. Although designed to protect these midsections only in low-energy handling drop and impact accidents, a recent transportation risk assessment effort has identified a need to evaluate the container`s ability to protect weapons in higher-energy environments. Four impact tests were performed on H1224A containers with W78 Mod 6c mass mockup midsections inside, onto an essentially unyielding target. Dynamic acceleration and strain levels were recorded during the side-on and end-on impacts, each at 12.2 m/s (40 ft/s) and 38.1 m/s (125 ft/s). Measured peak accelerations experienced by the midsections during lower velocity impacts ranged from 250 to 600 Gs for the end-on impact and 350 to 600 Gs for the side-on impact. Measured peak accelerations of the midsections during the higher velocity impacts ranged from 3,000 to 10,000 Gs for the end-on impact and 8,000 to 10,000 Gs for the side-on impact. Deformations in the H1224A container ranged from minimal to severe buckling and weld tearing. At higher impact velocities, the H1224A container may not provide significant energy absorption for the re-entry vehicle midsection but can provide some confinement of potentially damaged components.

  11. Recent progress in subsized charpy specimen testing for fusion reactor materials development

    SciTech Connect

    Lucas, G.E.; Odette, G.R.; Sheckherd, J.W.; Krishnadev, M.R.

    1986-01-01

    The current approach to developing structural materials for fusion reactors requires a heavy reliance on the use of small irradiation specimens largely because of limitations in available irradiation volumes. The miniature Charpy-V-notch specimen (MCVN) is one of several techniques currently under development. It has particular potential application in addressing problems associated with fracture mode transition in ferritic/martensitic steels. The authors have previously reported a technique for testing MCVNs that are one-third the size in all dimensions of a standard Charpy-V-notch (CVN) specimen. This involves an instrumented drop tower and a computerized data acquisition/processing system. We have now tested a variety of ferritic steels using MCVN specimens and compared the data to CVN data obtained by ourselves or others. These materials include A302B correlation monitor material, A508 forgings, Ht-9, a high-copper A533B weld, and an A710 copper-bearing steel heat-treated to four conditions. These heat treatments result in age hardening by copper precipitation and correspond to underaged, peak-hardened, and overaged conditions. The MCVN test appears to provide data that are both qualitatively and quantitatively similar to CVN data. The most promising approach to applying MCVN tests, in our opinion, is to extract fundamental property data. Even so, there are a number of differences between MCVN and CVN tests that remain to be sorted out.

  12. Impact Testing and Analysis of Composites for Aircraft Engine Fan Cases

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Revilock, Duane M.; Binienda, Wieslaw K.; Nie, Walter Z.; Mackenzie, S. Ben; Todd, Kevin B.

    2002-01-01

    The fan case in a jet engine is a heavy structure because of its size and because of the requirement that it contain a blade released during engine operation. Composite materials offer the potential for reducing the weight of the case. Efficient design, test, and analysis methods are needed to efficiently evaluate the large number of potential composite materials and design concepts. The type of damage expected in a composite case under blade-out conditions was evaluated using a subscale test in which a glass/epoxy composite half-ring target was impacted with a wedge-shaped titanium projectile. Fiber shearing occurred near points of contact between the projectile and target. Delamination and tearing occurred on a larger scale. These damage modes were reproduced in a simpler test in which flat glass/epoxy composites were impacted with a blunt cylindrical projectile. A surface layer of ceramic eliminated fiber shear fracture but did not reduce delamination. Tests on 3D woven carbon/epoxy composites indicated that transverse reinforcement is effective in reducing delamination. A 91 cm (36 in.) diameter full-ring sub-component was proposed for larger scale testing of these and other composite concepts. Explicit, transient, finite element analyses indicated that a full-ring test is needed to simulate complete impact dynamics, but simpler tests using smaller ring sections are adequate when evaluation of initial impact damage is the primary concern.

  13. MoSi2-Base Hybrid Composite Passed Engine Test

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Hebsur, Mohan

    1998-01-01

    The intermetallics compound molybdenum disilicide (MoSi2) is an attractive high-temperature structural material for advanced engine applications. It has excellent oxidation resistance, a high melting point, relatively low density, and high thermal conductivity, and it is easily machined. Past research'at the NASA Lewis Research Center has resulted in the development of a hybrid composite consisting of a MoSi2 matrix reinforced with silicon nitride (Si3N4) Particulate and silicon carbide (SiC) fibers. This composite has demonstrated attractive strength, toughness, thermal fatigue, and oxidation resistance, including resistance to "pest" oxidation. These properties attracted the interest of the Office of Naval Research and Pratt & Whitney, and a joint NASA/Navy/Pratt & Whitney effort was developed to continue to mature the MoSi2 Composite technology. A turbine blade outer air seal, which was part of the Integrated High Performance Turbine Engine Technology (IHPTET) program, was chosen as a first component on which to focus. The first tasks of the materials development effort were to develop improved processing methods to reduce costs and to use fine-diameter fibers that enable the manufacturing of complex shapes. Tape-casting methods were developed to fully infiltrate the fine SiC fibers with matrix powders. The resulting composites were hot pressed to 100-percent density. Composites with cross-plied fiber architectures with 30 vol. % hi-nicalon SiC fibers and 30 vol. % nitride particles are now made routinely and demonstrate a good balance of properties. The next task entailed the measurement of a wide variety of mechanical properties to confirm the suitability of this composite in engines. In particular, participants in this effort demonstrated that composites made with Hi-Nicalon fibers had strength and toughness properties equal to or better than those of the composites made with the large-diameter fibers that had been used previously. Another critically important property measured was impact resistance. Aircraft engine components require sufficient toughness to resist manufacturing defects, assembly damage, stress concentrations at notches, and foreign object damage. Engine company designers indicated that impact resistance would have to be measured before they would seriously consider these types of composites. The Charpy V-notch test was chosen to assess impact resistance, and both monolithic and composite versions Of MOSi2 were tested from -300 to 1400 C. The results (see the following graphs) show that nitride-particulate-reinforced MoSi2 exhibited impact resistance higher than that of many monolithic ceramics and intermetallics, and that the fiber-reinforced composites had even higher values, approaching that of cast superalloys.

  14. Determine ISS Soyuz Orbital Module Ballistic Limits for Steel Projectiles Hypervelocity Impact Testing

    NASA Technical Reports Server (NTRS)

    Lyons, Frankel

    2013-01-01

    A new orbital debris environment model (ORDEM 3.0) defines the density distribution of the debris environment in terms of the fraction of debris that are low-density (plastic), medium-density (aluminum) or high-density (steel) particles. This hypervelocity impact (HVI) program focused on assessing ballistic limits (BLs) for steel projectiles impacting the enhanced Soyuz Orbital Module (OM) micrometeoroid and orbital debris (MMOD) shield configuration. The ballistic limit was defined as the projectile size on the threshold of failure of the OM pressure shell as a function of impact speeds and angle. The enhanced OM shield configuration was first introduced with Soyuz 30S (launched in May 2012) to improve the MMOD protection of Soyuz vehicles docked to the International Space Station (ISS). This test program provides HVI data on U.S. materials similar in composition and density to the Russian materials for the enhanced Soyuz OM shield configuration of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz OM penetration risk assessments. The objective of this hypervelocity impact test program was to determine the ballistic limit particle size for 440C stainless steel spherical projectiles on the Soyuz OM shielding at several impact conditions (velocity and angle combinations). This test report was prepared by NASA-JSC/ HVIT, upon completion of tests.

  15. Supplemental final environmental impact statement for advanced solid rocket motor testing at Stennis Space Center

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Since the Final Environmental Impact Statement (FEIS) and Record of Decision on the FEIS describing the potential impacts to human health and the environment associated with the program, three factors have caused NASA to initiate additional studies regarding these issues. These factors are: (1) The U.S. Army Corps of Engineers and the Environmental Protection Agency (EPA) agreed to use the same comprehensive procedures to identify and delineate wetlands; (2) EPA has given NASA further guidance on how best to simulate the exhaust plume from the Advanced Solid Rocket Motor (ASRM) testing through computer modeling, enabling more realistic analysis of emission impacts; and (3) public concerns have been raised concerning short and long term impacts on human health and the environment from ASRM testing.

  16. Guidelines for conducting impact tests on shipping packages for radioactive material

    SciTech Connect

    Mok, G.C.; Carlson, R.W.; Lu, S.C.; Fischer, L.E.

    1995-09-01

    Federal regulation (10 CFR Part 71) specifies a number of impact conditions (free-drop, penetration, and puncture), under which a package for the transport of radioactive materials must be tested or evaluated to demonstrate compliance with the regulation. This report is a comprehensive guide to the planning and execution of these impact tests. The report identifies the required considerations for both the design, pre-, and post-test inspections of the test model and the measurement, recording, analysis, and reporting of the test data. The report also presents reasons for the requirements, identifies the major difficulties in meeting these requirements, and suggests possible methods to overcome the difficulties. Discussed in substantial detail is the use of scale models and instrumented measurements.

  17. Simulated Waste Testing Of Glycolate Impacts On The 2H-Evaporator System

    SciTech Connect

    Martino, C. J.

    2013-08-13

    Glycolic acid is being studied as a total or partial replacement for formic acid in the Defense Waste Processing Facility (DWPF) feed preparation process. After implementation, the recycle stream from DWPF back to the high-level waste tank farm will contain soluble sodium glycolate. Most of the potential impacts of glycolate in the tank farm were addressed via a literature review, but several outstanding issues remained. This report documents the non-radioactive simulant tests impacts of glycolate on storage and evaporation of Savannah River Site high-level waste. The testing for which non-radioactive simulants could be used involved the following: the partitioning of glycolate into the evaporator condensate, the impacts of glycolate on metal solubility, and the impacts of glycolate on the formation and dissolution of sodium aluminosilicate scale within the evaporator. The following are among the conclusions from this work: Evaporator condensate did not contain appreciable amounts of glycolate anion. Of all tests, the highest glycolate concentration in the evaporator condensate was 0.38 mg/L. A significant portion of the tests had glycolate concentration in the condensate at less than the limit of quantification (0.1 mg/L). At ambient conditions, evaporator testing did not show significant effects of glycolate on the soluble components in the evaporator concentrates. Testing with sodalite solids and silicon containing solutions did not show significant effects of glycolate on sodium aluminosilicate formation or dissolution.

  18. Testing and numerical modeling of hypervelocity impact damaged Space Station multilayer insulation

    NASA Technical Reports Server (NTRS)

    Rule, William K.

    1992-01-01

    Results are presented of experiments measuring the degradation of the insulating capabilities of the multilayer insulation (MLI) of the Space Station Freedom, when subjected to hypervelocity impact damage. A simple numerical model was developed for use in an engineering design environment for quick assessment of thermal effect of the impact. The model was validated using results from thermal vacuum tests on MLI with simulated damage. The numerical model results agreed with experimental data.

  19. Evaluating the Impact of Test Accommodations on Test Scores of LEP Students & Non-LEP Students.

    ERIC Educational Resources Information Center

    Hafner, Anne L.

    Using a quasi-experimental analysis of variance (ANOVA) design, this project examined the effects of the use of accommodations with students of limited English proficiency (LEP) and non-LEP students and whether the use of accommodations affected the validity of test score interpretations. Major accommodations examined were extra time, and extra…

  20. Railgun Application for High Energy Impact Testing of Nano-Reinforced Kevlar-Based Composite Materials

    NASA Astrophysics Data System (ADS)

    Micheli, D.; Vricella, A.; Pastore, R.; Morles, R. B.; Marchetti, M.

    2013-08-01

    An advanced electromagnetic accelerator, called railgun, has been assembled and tuned in order to perform high energy impact test on layered structures. Different types of layered composite materials have been manufactured and characterized in terms of energy absorbing capability upon impact of metallic bullets fired at high velocity. The composite materials under testing are manufactured by integrating several layers of Kevlar fabric and carbon fiber ply within a polymeric matrix reinforced by carbon nanotubes at 1% of weight percentage. The experimental results show that the railgun-device is a good candidate to perform impact testing of materials in the space debris energy range, and that carbon nanotubes may enhance, when suitably coupled to the composite's matrix, the excellent antiballistic properties of the Kevlar fabrics.

  1. Mechanical impact tests of materials in oxygen effects of contamination. [Teflon, stainless steel, and aluminum

    NASA Technical Reports Server (NTRS)

    Ordin, P. M.

    1980-01-01

    The effect of contaminants on the mechanical impact sensitivity of Teflon, stainless steel, and aluminum in a high-pressure oxygen environment was investigated. Uncontaminated Teflon did not ignite under the test conditions. The liquid contaminants - cutting oil, motor lubricating oil, and toolmaker dye - caused Teflon to ignite. Raising the temperature lowered the impact energy required for ignition. Stainless steel was insensitive to ignition under the test conditions with the contaminants used. Aluminum appeared to react without contaminants under certain test conditions; however, contamination with cutting oil, motor lubricating oil, and toolmakers dye increased the sensitivity of aluminum to mechanical impact. The grit contaminants silicon dioxide and copper powder did not conclusively affect the sensitivity of aluminum.

  2. NASA Marshall Impact Testing Facility Capabilities Applicable to Lunar Dust Work

    NASA Technical Reports Server (NTRS)

    Evans, Steven W.; Finchum, Andy; Hubbs, Whitney; Eskridge, Richard; Martin, Jim

    2008-01-01

    The Impact Testing Facility at Marshall Space Flight Center has several guns that would be of use in studying impact phenomena with respect to lunar dust. These include both ballistic guns, using compressed gas and powder charges, and hypervelocity guns, either light gas guns or an exploding wire gun. In addition, a plasma drag accelerator expected to reach 20 km/s for small particles is under development. Velocity determination and impact event recording are done using ultra-high-speed cameras. Simulation analysis is also available using the SPHC hydrocode.

  3. Dynamic Finite Element Predictions for Mars Sample Return Cellular Impact Test #4

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Billings, Marcus D.

    2001-01-01

    The nonlinear finite element program MSC.Dytran was used to predict the impact pulse for (he drop test of an energy absorbing cellular structure. This pre-test simulation was performed to aid in the design of an energy absorbing concept for a highly reliable passive Earth Entry Vehicle (EEV) that will directly impact the Earth without a parachute. In addition, a goal of the simulation was to bound the acceleration pulse produced and delivered to the simulated space cargo container. EEV's are designed to return materials from asteroids, comets, or planets for laboratory analysis on Earth. The EEV concept uses an energy absorbing cellular structure designed to contain and limit the acceleration of space exploration samples during Earth impact. The spherical shaped cellular structure is composed of solid hexagonal and pentagonal foam-filled cells with hybrid graphite-epoxy/Kevlar cell walls. Space samples fit inside a smaller sphere at the enter of the EEV's cellular structure. The material models and failure criteria were varied to determine their effect on the resulting acceleration pulse. Pre-test analytical predictions using MSC.Dytran were compared with the test results obtained from impact test #4 using bungee accelerator located at the NASA Langley Research Center Impact Dynamics Research Facility. The material model used to represent the foam and the proper failure criteria for the cell walls were critical in predicting the impact loads of the cellular structure. It was determined that a FOAMI model for the foam and a 20% failure strain criteria for the cell walls gave an accurate prediction of the acceleration pulse for drop test #4.

  4. 46 CFR 54.05-20 - Impact test properties for service of 0 °F and below.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Impact test properties for service of 0 °F and below. 54.05-20 Section 54.05-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Toughness Tests § 54.05-20 Impact test properties for service of 0 °F and below. (a) Test energy. The impact energies...

  5. Quasi-Uniform High Speed Foam Crush Testing Using a Guided Drop Mass Impact

    NASA Technical Reports Server (NTRS)

    Jones, Lisa E. (Technical Monitor); Kellas, Sotiris

    2004-01-01

    A relatively simple method for measuring the dynamic crush response of foam materials at various loading rates is described. The method utilizes a drop mass impact configuration with mass and impact velocity selected such that the crush speed remains approximately uniform during the entire sample crushing event. Instrumentation, data acquisition, and data processing techniques are presented, and limitations of the test method are discussed. The objective of the test method is to produce input data for dynamic finite element modeling involving crash and energy absorption characteristics of foam materials.

  6. Impact Analyses and Tests of Metal Cask Considering Aircraft Engine Crash - 12308

    SciTech Connect

    Lee, Sanghoon; Choi, Woo-Seok; Kim, Ki-Young; Jeon, Je-Eon; Seo, Ki-Seog

    2012-07-01

    The structural integrity of a dual purpose metal cask currently under development by the Korea Radioactive Waste Management Cooperation (KRMC) is evaluated through analyses and tests under a high-speed missile impact considering the targeted aircraft crash conditions. The impact conditions were carefully chosen through a survey on accident cases and recommendations from the literature. The missile impact velocity was set at 150 m/s, and two impact orientations were considered. A simplified missile simulating a commercial aircraft engine is designed from an impact load history curve provided in the literature. In the analyses, the focus is on the evaluation of the containment boundary integrity of the metal cask. The analyses results are compared with the results of tests using a 1/3 scale model. The results show very good agreements, and the procedure and methodology adopted in the structural analyses are validated. While the integrity of the cask is maintained in one evaluation where the missile impacts the top side of the free standing cask, the containment boundary is breached in another case in which the missile impacts the center of the cask lid in a perpendicular orientation. A safety assessment using a numerical simulation of an aircraft engine crash into spent nuclear fuel storage systems is performed. A commercially available explicit finite element code is utilized for the dynamic simulation, and the strain rate effect is included in the modeling of the materials used in the target system and missile. The simulation results show very good agreement with the test results. It is noted that this is the first test considering an aircraft crash in Korea. (authors)

  7. Ecological impacts of invasive alien species along temperature gradients: testing the role of environmental matching.

    PubMed

    Iacarella, Josephine C; Dick, Jaimie T A; Alexander, Mhairi E; Ricciardi, Anthony

    2015-04-01

    Invasive alien species (IAS) can cause substantive ecological impacts, and the role of temperature in mediating these impacts may become increasingly significant in a changing climate. Habitat conditions and physiological optima offer predictive information for IAS impacts in novel environments. Here, using meta-analysis and laboratory experiments, we tested the hypothesis that the impacts of IAS in the field are inversely correlated with the difference in their ambient and optimal temperatures. A meta-analysis of 29 studies of consumptive impacts of IAS in inland waters revealed that the impacts of fishes and crustaceans are higher at temperatures that more closely match their thermal growth optima. In particular, the maximum impact potential was constrained by increased differences between ambient and optimal temperatures, as indicated by the steeper slope of a quantile regression on the upper 25th percentile of impact data compared to that of a weighted linear regression on all data with measured variances. We complemented this study with an experimental analysis of the functional response (the relationship between predation rate and prey supply) of two invasive predators (freshwater mysid shrimp, Hemimysis anomala and Mysis diluviana) across. relevant temperature gradients; both of these species have previously been found to exert strong community-level impacts that are corroborated by their functional responses to different prey items. The functional response experiments showed that maximum feeding rates of H. anomala and M. diluviana have distinct peaks near their respective thermal optima. Although variation in impacts may be caused by numerous abiotic or biotic habitat characteristics, both our analyses point to temperature as a key mediator of IAS impact levels in inland waters and suggest that IAS management should prioritize habitats in the invaded range that more closely match the thermal optima of targeted invaders. PMID:26214916

  8. Toughness requirements for pipeline integrity

    SciTech Connect

    Denys, R.M.

    1995-12-31

    Experimental results of large scale (curved wide plate) tests on thin wall pipelines (thickness < 12.7 mm) have been compared with small scale (Charpy V notch impact and CTOD) test results. The result of the comparisons show that (a) the Charpy V notch impact test can be used to predict plastic collapse by pipe metal yielding of pipelines containing surface breaking root cracks and (b) the CTOD test should not be used as a basis for designing thin wall pipelines against brittle fracture. The assessment has further demonstrated that the effect of weld metal yield strength on the required minimum CVN or CTOD is an important factor.

  9. Modeling the Impact of Test Anxiety and Test Familiarity on the Criterion-Related Validity of Cognitive Ability Tests

    ERIC Educational Resources Information Center

    Reeve, Charlie L.; Heggestad, Eric D.; Lievens, Filip

    2009-01-01

    The assessment of cognitive abilities, whether it is for purposes of basic research or applied decision making, is potentially susceptible to both facilitating and debilitating influences. However, relatively little research has examined the degree to which these factors might moderate the criterion-related validity of cognitive ability tests. To…

  10. A unified theory of impact crises and mass extinctions: quantitative tests.

    PubMed

    Rampino, M R; Haggerty, B M; Pagano, T C

    1997-05-30

    Several quantitative tests of a general hypothesis linking impacts of large asteroids and comets with mass extinctions of life are possible based on astronomical data, impact dynamics, and geological information. The waiting times of large-body impacts on the Earth derived from the flux of Earth-crossing asteroids and comets, and the estimated size of impacts capable of causing, large-scale environmental disasters, predict the impacts of objects > or = 5 km in diameter (> or = 10(7) Mt TNT equivalent) could be sufficient to explain the record of approximately 25 extinction pulses in the last 540 Myr, with the 5 recorded major mass extinctions related to impacts of the largest objects of > or = 10 km in diameter (> or = 10(8) Mt events). Smaller impacts (approximately 10(6) Mt), with significant regional environmental effects, could be responsible for the lesser boundaries in the geologic record. Tests of the "kill curve" relationship for impact-induced extinctions based on new data on extinction intensities, and several well-dated large impact craters, also suggest that major mass extinctions require large impacts, and that a step in the kill curve may exist at impacts that produce craters of approximately 100 km diameter, smaller impacts being capable of only relatively weak extinction pulses. Single impact craters less than approximately 60 km in diameter should not be associated with detectable global extinction pulses (although they may explain stage and zone boundaries marked by lesser faunal turnover), but multiple impacts in that size range may produce significant stepped extinction pulses. Statistical tests of the last occurrences of species at mass-extinction boundaries are generally consistent with predictions for abrupt or stepped extinctions, and several boundaries are known to show "catastrophic" signatures of environmental disasters and biomass crash, impoverished postextinction fauna and flora dominated by stress-tolerant and opportunistic species, and gradual ecological recovery and radiation of new taxa. Isotopic and other geochemical signatures are also generally consistent with the expected after-effects of catastrophic impacts. Seven of the recognized extinction pulses seem to be associated with concurrent (in some cases multiple) stratigraphic impact markers (e.g., layers with high iridium, shocked minerals, microtektites), and/or large, dated impact craters. Other less well-studied crisis intervals show elevated iridium, but well below that of the K/T spike, which might be explained by low-Ir impactors, ejecta blowoff, or sedimentary reworking and dilution of impact signatures. The best explanation for a possible periodic component of approximately 30 Myr in mass extinctions and clusters of impacts is the pulselike modulation of the comet flux associated with the solar system's periodic passage through the plane of the Milky Way Galaxy. The quantitative agreement between paleontologic and astronomical data suggests an important underlying unification of the processes involved. PMID:11543121

  11. A small-scale test for fiber release from carbon composites. [pyrolysis and impact

    NASA Technical Reports Server (NTRS)

    Gilwee, W. J., Jr.; Fish, R. H.

    1980-01-01

    A test method was developed to determine relative fiber loss from pyrolyzed composites with different resins and fiber construction. Eleven composites consisting of woven and unwoven carbon fiber reinforcement and different resins were subjected to the burn and impact test device. The composites made with undirectional tape had higher fiber loss than those with woven fabric. Also, the fiber loss was inversely proportional to the char yield of the resin.

  12. Dynamic Finite Element Predictions for Mars Sample Return Cellular Impact Test #4

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Billings, Marcus D.

    2001-01-01

    The nonlinear, transient dynamic finite element code, MSC.Dytran, was used to simulate an impact test of an energy absorbing Earth Entry Vehicle (EEV) that will impact without a parachute. EEVOs are designed to return materials from asteroids, comets, or planets for laboratory analysis on Earth. The EEV concept uses an energy absorbing cellular structure designed to contain and limit the acceleration of space exploration samples during Earth impact. The spherical shaped cellular structure is composed of solid hexagonal and pentagonal foam-filled cells with hybrid graphite-epoxy/Kevlar cell walls. Space samples fit inside a smaller sphere at the center of the EEVOs cellular structure. Pre-test analytical predictions were compared with the test results from a bungee accelerator. The model used to represent the foam and the proper failure criteria for the cell walls were critical in predicting the impact loads of the cellular structure. It was determined that a FOAM1 model for the foam and a 20% failure strain criteria for the cell walls gave an accurate prediction of the acceleration pulse for cellular impact.

  13. Impact Test and Simulation of Energy Absorbing Concepts for Earth Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Billings, Marcus D.; Fasanella, Edwin L.; Kellas, Sotiris

    2001-01-01

    Nonlinear dynamic finite element simulations have been performed to aid in the design of an energy absorbing concept for a highly reliable passive Earth Entry Vehicle (EEV) that will directly impact the Earth without a parachute. EEV's are designed to return materials from asteroids, comets, or planets for laboratory analysis on Earth. The EEV concept uses an energy absorbing cellular structure designed to contain and limit the acceleration of space exploration samples during Earth impact. The spherical shaped cellular structure is composed of solid hexagonal and pentagonal foam-filled cells with hybrid graphite- epoxy/Kevlar cell walls. Space samples fit inside a smaller sphere at the center of the EEV's cellular structure. Comparisons of analytical predictions using MSC,Dytran with test results obtained from impact tests performed at NASA Langley Research Center were made for three impact velocities ranging from 32 to 40 m/s. Acceleration and deformation results compared well with the test results. These finite element models will be useful for parametric studies of off-nominal impact conditions.

  14. Integrated assessment of pedestrian head impact protection in testing secondary safety and autonomous emergency braking.

    PubMed

    Searson, D J; Anderson, R W G; Hutchinson, T P

    2014-02-01

    Pedestrian impact testing is used to provide information to the public about the relative level of protection provided by different vehicles to a struck pedestrian. Autonomous Emergency Braking (AEB) is a relatively new technology that aims to reduce the impact speed of such crashes. It is expected that vehicles with AEB will pose less harm to pedestrians, and that the benefit will come about through reductions in the number of collisions and a change in the severity of impacts that will still occur. In this paper, an integration of the assessment of AEB performance and impact performance is proposed based on average injury risk. Average injury risk is calculated using the result of an impact test and a previously published distribution of real world crash speeds. A second published speed distribution is used that accounts for the effects of AEB, and reduced average risks are implied. This principle allows the effects of AEB systems and secondary safety performance to be integrated into a single measure of safety. The results are used to examine the effect of AEB on Euro NCAP and ANCAP assessments using previously published results on the likely effect of AEB. The results show that, given certain assumptions about AEB performance, the addition of AEB is approximately the equivalent of increasing Euro NCAP test performance by one band, which corresponds to an increase in the score of 25% of the maximum. PMID:24246294

  15. Putting social impact assessment to the test as a method for implementing responsible tourism practice

    SciTech Connect

    McCombes, Lucy; Vanclay, Frank; Evers, Yvette

    2015-11-15

    The discourse on the social impacts of tourism needs to shift from the current descriptive critique of tourism to considering what can be done in actual practice to embed the management of tourism's social impacts into the existing planning, product development and operational processes of tourism businesses. A pragmatic approach for designing research methodologies, social management systems and initial actions, which is shaped by the real world operational constraints and existing systems used in the tourism industry, is needed. Our pilot study with a small Bulgarian travel company put social impact assessment (SIA) to the test to see if it could provide this desired approach and assist in implementing responsible tourism development practice, especially in small tourism businesses. Our findings showed that our adapted SIA method has value as a practical method for embedding a responsible tourism approach. While there were some challenges, SIA proved to be effective in assisting the staff of our test case tourism business to better understand their social impacts on their local communities and to identify actions to take. - Highlights: • Pragmatic approach is needed for the responsible management of social impacts of tourism. • Our adapted Social impact Assessment (SIA) method has value as a practical method. • SIA can be embedded into tourism businesses existing ‘ways of doing things’. • We identified challenges and ways to improve our method to better suit small tourism business context.

  16. Impact Foam Testing for Multi-Mission Earth Entry Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Glaab, Louis J.; Agrawal, Paul; Hawbaker, James

    2013-01-01

    Multi-Mission Earth Entry Vehicles (MMEEVs) are blunt-body vehicles designed with the purpose of transporting payloads from outer space to the surface of the Earth. To achieve high-reliability and minimum weight, MMEEVs avoid use of limited-reliability systems, such as parachutes and retro-rockets, instead using built-in impact attenuators to absorb energy remaining at impact to meet landing loads requirements. The Multi-Mission Systems Analysis for Planetary Entry (M-SAPE) parametric design tool is used to facilitate the design of MMEEVs and develop the trade space. Testing was conducted to characterize the material properties of several candidate impact foam attenuators to enhance M-SAPE analysis. In the current effort, two different Rohacell foams were tested to determine their thermal conductivity in support of MMEEV design applications. These applications include thermal insulation during atmospheric entry, impact attenuation, and post-impact thermal insulation in support of thermal soak analysis. Results indicate that for these closed-cell foams, the effect of impact is limited on thermal conductivity due to the venting of the virgin material gas and subsequent ambient air replacement. Results also indicate that the effect of foam temperature is significant compared to data suggested by manufacturer's specifications.

  17. Investigation and Comparison between New Satellite Impact Test Results and NASA Standard Breakup Model

    NASA Technical Reports Server (NTRS)

    Sakuraba, K.; Tsuruda, Y.; Hanada, T.; Liou, J.-C.; Akahoshi, Y.

    2007-01-01

    This paper summarizes two new satellite impact tests conducted in order to investigate on the outcome of low- and hyper-velocity impacts on two identical target satellites. The first experiment was performed at a low velocity of 1.5 km/s using a 40-gram aluminum alloy sphere, whereas the second experiment was performed at a hyper-velocity of 4.4 km/s using a 4-gram aluminum alloy sphere by two-stage light gas gun in Kyushu Institute of Technology. To date, approximately 1,500 fragments from each impact test have been collected for detailed analysis. Each piece was analyzed based on the method used in the NASA Standard Breakup Model 2000 revision. The detailed analysis will conclude: 1) the similarity in mass distribution of fragments between low and hyper-velocity impacts encourages the development of a general-purpose distribution model applicable for a wide impact velocity range, and 2) the difference in area-to-mass ratio distribution between the impact experiments and the NASA standard breakup model suggests to describe the area-to-mass ratio by a bi-normal distribution.

  18. Charpy impact testing using miniature specimens and its application to the study of irradiation behavior of low-activation ferritic steels

    NASA Astrophysics Data System (ADS)

    Kayano, H.; Kurishita, H.; Kimura, A.; Narui, M.; Yamazaki, M.; Suzuki, Y.

    1991-03-01

    The effectiveness of mini-size Charpy V-notch specimens with a 1.5 or 1.0 mm square cross section in measuring the ductile brittle transition temperature (DBTT) and upper shelf energy (USE) compared with full-size specimens is evaluated for a ferritic steel. It is shown that the data from the mini-size specimens can be used to estimate the DBTT and USE for full-size specimens when the measured absorbed energy-temperature curves are normalized by appropriate parameters. The result is applied to the study of neutron irradiation embrittlement of low-activation ferritic steels.

  19. Monitoring the impact of the electronic medical record on the quality of laboratory test ordering practices.

    PubMed

    Georgiou, Andrew; Vecellio, Elia; Toouli, George; Eigenstetter, Alex; Li, Ling; Wilson, Roger; Westbrook, Johanna I

    2013-01-01

    The aim of this study was to examine the impact of the Electronic Medical Record (EMR) on the quality of laboratory test orders made by clinicians. The study assessed the type and frequency of pre-analytical laboratory test order errors that were associated with the EMR across three hospitals and one pathology service. This involved a retrospective audit of the laboratory error logs for the period 1 March 2010 to 9 October 2011. Test order problems associated with the EMR occurred at a total rate of 1.34 per 1000 test order episodes across the three hospitals. In the majority of cases these errors were caused by the inappropriate use of the EMR system by clinicians. The errors resulted in increased data entry time for laboratory staff in the Central Specimen Reception area and led to a median increase of 181 minutes in test turnaround times for those test orders. The study highlights the importance of monitoring and comparing the impact of EMR systems in different locations over time in order to identify (and act upon) factors that can adversely impact on the effectiveness of pathology laboratory processes. PMID:23823285

  20. The impact of cognitive testing on the welfare of group housed primates.

    PubMed

    Whitehouse, Jamie; Micheletta, Jérôme; Powell, Lauren E; Bordier, Celia; Waller, Bridget M

    2013-01-01

    Providing cognitive challenges to zoo-housed animals may provide enriching effects and subsequently enhance their welfare. Primates may benefit most from such challenges as they often face complex problems in their natural environment and can be observed to seek problem solving opportunities in captivity. However, the extent to which welfare benefits can be achieved through programmes developed primarily for cognitive research is unknown. We tested the impact of voluntary participation cognitive testing on the welfare of a socially housed group of crested macaques (Macaca nigra) at the Macaque Study Centre (Marwell Zoo). First, we compared the rate of self-directed and social behaviours on testing and non-testing days, and between conditions within testing days. Minimal differences in behaviour were found when comparing testing and non-testing days, suggesting that there was no negative impact on welfare as a result of cognitive testing. Lipsmacking behaviours were found to increase and aggressive interaction was found to decrease in the group as a result of testing. Second, social network analysis was used to assess the effect of testing on associations and interactions between individuals. The social networks showed that testing subjects increased their association with others during testing days. One interpretation of this finding could be that providing socially housed primates with an opportunity for individuals to separate from the group for short periods could help mimic natural patterns of sub-group formation and reunion in captivity. The findings suggest, therefore, that the welfare of captive primates can be improved through the use of cognitive testing in zoo environments. PMID:24223146

  1. A Comparison of Quasi-Static Indentation and Drop-Weight Impact Testing on Carbon/Epoxy Laminates

    NASA Technical Reports Server (NTRS)

    Prabhakaran, R.; Douglas, Michael J.

    2000-01-01

    This project was initiated to investigate the damage tolerance of polymer matrix composites (PMC). After a low velocity impact-such as the ones that can occur during manufacturing or service there is usually very little visual damage. There are two possible methods to simulate foreign object impact on PMC: static indentation and drop weight impact. A static method for modeling low velocity foreign object impact events for composites can prove to be very beneficial to researchers since much more data can be obtained from a static test than from an impact test. In order to examine if this is feasible, a series of static indentation and low velocity impact tests were performed and compared. Square specimens of different sizes and thicknesses were tested to cover a wide array of low velocity impact events. Laminates with a 45 degree stacking sequence were used since this is a common type of engineering laminate. Three distinct flexural rigidities under two different boundary conditions were tested in order to obtain damage due to large deflections. Comparisons between static indentation and low velocity impact tests were based on the maximum applied transverse load. The dependent parameters examined were dent depth, back surface crack length, delamination area, and load-deflection behavior. Results showed that no distinct differences could be seen between the static indentation tests and the low velocity impact tests, indicating that static indentation tests can be used to simulate low velocity impact events.

  2. Damage Development in Rod-on-Rod Impact Test on 1100 Pure Aluminum

    NASA Astrophysics Data System (ADS)

    Iannitti, Gianluca; Bonora, Nicola; Bourne, Neil; Ruggiero, Andrew; Testa, Gabriel

    2015-06-01

    Stress triaxiality plays a major role in the nucleation and growth of ductile damage in metals and alloys. Although, the mechanisms responsible for ductile failure are the same at low and high strain rate, in impact dynamics the time resolved stress triaxiality and plastic strain accumulation at the material point establish the condition for ductile failure to occur. In this work, ductile damage development in 1100 commercially pure aluminum was investigated by means of rod-on-rod (ROR) impact tests. Based on numerical simulations, using a CDM model that accounts for the role of pressure on damage parameters and stochastic variability of such parameters, the impact velocity for no damage, incipient and fully developed damage were estimated. ROR tests at selected velocities were performed and damage distribution and extent was investigated by sectioning of soft recovered samples. Comparison between numerical simulations and experimental results is presented and discussed.

  3. Inspection of Impact Damage in Honeycomb Composite by Espi, Thermography and Ultrasonic Testing

    NASA Astrophysics Data System (ADS)

    Choi, Manyong; Park, Jeonghak; Kim, Wontae; Kang, Kisoo

    Honeycomb composites are now fairly widely used in civilian and military aircraft structures. Common defects found in these materials are delaminations by impact damage and their presence will lead to structural weaknesses which could lead failure of the airframe structures. It is important to develop effective non-destructive testing procedures to identify these defects and increase the safety of aircraft travel. This paper describes the detection technique of impact damage defect using thermography and ESPI. The results obtained with the two techniques are compared with ultrasonic C-scan testing. The investigation shows that both imaging NDT methods are able to identify the presence of artificial defect and impact damage. The adoption of the thermography allowed significant advantages in inspection condition, and gives smaller error in quantitative estimation of defects.

  4. Laboratory wind tunnel testing of three commonly used saltation impact sensors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Electronic sensors that record individual impacts from saltating particles are used with increasing frequency in wind erosion field studies. Little is known about the limitations of these instruments or comparability of data collected with them. We tested the three most commonly used Saltation Imp...

  5. A unique facility for V/STOL aircraft hover testing. [Langley Impact Dynamics Research Facility

    NASA Technical Reports Server (NTRS)

    Culpepper, R. G.; Murphy, R. D.; Gillespie, E. A.; Lane, A. G.

    1979-01-01

    The Langley Impact Dynamics Research Facility (IDRF) was modified to obtain static force and moment data and to allow assessment of aircraft handling qualities during dynamic tethered hover flight. Test probe procedures were also established. Static lift and control measurements obtained are presented along with results of limited dynamic tethered hover flight.

  6. The Overall Impact of Testing on Medical Student Learning: Quantitative Estimation of Consequential Validity

    ERIC Educational Resources Information Center

    Kreiter, Clarence D.; Green, Joseph; Lenoch, Susan; Saiki, Takuya

    2013-01-01

    Given medical education's longstanding emphasis on assessment, it seems prudent to evaluate whether our current research and development focus on testing makes sense. Since any intervention within medical education must ultimately be evaluated based upon its impact on student learning, this report seeks to provide a quantitative accounting of…

  7. The Impact of the 2004 Hurricanes on Florida Comprehensive Assessment Test Scores: Implications for School Counselors

    ERIC Educational Resources Information Center

    Baggerly, Jennifer; Ferretti, Larissa K.

    2008-01-01

    What is the impact of natural disasters on students' statewide assessment scores? To answer this question, Florida Comprehensive Assessment Test (FCAT) scores of 55,881 students in grades 4 through 10 were analyzed to determine if there were significant decreases after the 2004 hurricanes. Results reveal that there was statistical but no practical…

  8. Thoracic response to high-rate blunt impacts using an advanced testing platform.

    PubMed

    Wickwire, Alexis C; Merkle, Andrew C; Carneal, Catherine M; Pauson, Jeffrey M

    2012-01-01

    ehind Armor Blunt Trauma (BABT) is a persistent concern for both the military and civil law enforcement. Although personal protective equipment (PPE), including soft and hard body armor, mitigates penetrating injuries from ballistic threats, the impact generates a backface deformation which creates a high-rate blunt impact to the body and potential internal injury (i.e., BABT). A critical need exists to understand the mechanics of the human response and subsequently evaluate the efficacy of current and proposed PPE in mitigating BABT injury risk. Current human surrogate test platforms lack anatomical fidelity or instrumentation for capturing the dynamic transfer of energy during the event. Therefore, we have developed and tested a Human Surrogate Torso Model (HSTM) composed of biosimulants representing soft tissues and skeleton of the human torso. A matrix of pressure transducers were embedded in the soft tissue and a custom displacement sensor was mounted to the skeletal structure to measure sternum displacement. A series of non-penetrating, high energy ballistic tests were performed with the HSTM. Results indicate that both sternum displacement and internal localized pressure are sensitive to impact energy and location. These data provide a spatial and temporal comparison to the current standard (static clay measurements) and a method for evaluating the applicability of thoracic injury metrics, including the Viscous Criterion, for BABT. The HSTM provides an advanced, biomechanically relevant test platform for determining the thoracic response to dynamic loading events due to non-penetrating ballistic impacts. PMID:22846323

  9. The Impact of the 2004 Hurricanes on Florida Comprehensive Assessment Test Scores: Implications for School Counselors

    ERIC Educational Resources Information Center

    Baggerly, Jennifer; Ferretti, Larissa K.

    2008-01-01

    What is the impact of natural disasters on students' statewide assessment scores? To answer this question, Florida Comprehensive Assessment Test (FCAT) scores of 55,881 students in grades 4 through 10 were analyzed to determine if there were significant decreases after the 2004 hurricanes. Results reveal that there was statistical but no practical

  10. A low cost method of testing compression-after-impact strength of composite laminates

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.

    1991-01-01

    A method was devised to test the compression strength of composite laminate specimens that are much thinner and wider than other tests require. The specimen can be up to 7.62 cm (3 in) wide and as thin as 1.02 mm (.04 in). The best features of the Illinois Institute of Technology Research Institute (IITRI) fixture are combined with an antibuckling jig developed and used at the University of Dayton Research Institute to obtain a method of compression testing thin, wide test coupons on any 20 kip (or larger) loading frame. Up to 83 pct. less composite material is needed for the test coupons compared to the most commonly used compression-after-impact (CAI) tests, which calls for 48 ply thick (approx. 6.12 mm) test coupons. Another advantage of the new method is that composite coupons of the exact lay-up and thickness of production parts can be tested for CAI strength, thus yielding more meaningful results. This new method was used to compression test 8 and 16 ply laminates of T300/934 carbon/epoxy. These results were compared to those obtained using ASTM standard D 3410-87 (Celanese compression test). CAI testing was performed on IM6/3501-6, IM7/SP500 and IM7/F3900. The new test method and associated fixture work well and is a valuable asset to MSFC's damage tolerance program.

  11. Variations in Charpy impact data evaluated by a round-robin testing program -- A summary

    SciTech Connect

    Lowe, A.L. Jr.

    1996-12-31

    A round-robin type test program was designed to quantify some of the variables associated with Charpy impact test data. Each participant tested pre-machined specimens at each of six designated test temperatures. The data were evaluated using several techniques normally used to determine transition region temperatures and upper-shelf energies. These data were interpreted statistically to determine mean values and standard deviations. Variations in data appear to be more a factor of the specimen location within the material than related to test temperature. The variations in the data between the different testing participants were within the limits commonly observed. The expected erosion determining the 30 and 50 ft-lb transition temperatures and the upper-shelf energies were found to be independent of the evaluation technique used.

  12. A Unified Theory of Impact Crises and Mass Extinctions: Quantitative Tests

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.; Haggerty, Bruce M.; Pagano, Thomas C.

    1997-01-01

    Several quantitative tests of a general hypothesis linking impacts of large asteroids and comets with mass extinctions of life are possible based on astronomical data, impact dynamics, and geological information. The waiting of large-body impacts on the Earth derive from the flux of Earth-crossing asteroids and comets, and the estimated size of impacts capable of causing large-scale environmental disasters, predict that impacts of objects greater than or equal to 5 km in diameter (greater than or equal to 10 (exp 7) Mt TNT equivalent) could be sufficient to explain the record of approximately 25 extinction pulses in the last 540 Myr, with the 5 recorded major mass extinctions related to impacts of the largest objects of greater than or equal to 10 km in diameter (greater than or equal to 10(exp 8) Mt Events). Smaller impacts (approximately 10 (exp 6) Mt), with significant regional environmental effects, could be responsible for the lesser boundaries in the geologic record.

  13. Low amplitude impact testing and analysis of pristine and aged solid high explosives

    SciTech Connect

    Chidester, S K; Garza, R; Tarver, C M

    1998-08-17

    The critical impact velocities of 60.1 mm diameter blunt steel projectiles required for ignition of exothermic chemical reaction were determined for heavily confined charges of new and aged (15-30 years) solid HMX-based high explosives. The explosives in order of decreasing impact sensitivity were: PBX 9404; LX-lo; LX-14; PBX 9501; and LX-04. Embedded pressure gauges measured the interior pressure histories. Stockpile aged LX-04 and PBX 9501 from dismantled units were tested and compared to freshly pressed charges. The understanding of explosive aging on impact ignition and other hazards must improve as systems are being deployed longer than their initial estimated lifetimes. The charges that did not react on the first impact were subjected to multiple impacts. While the violence of reaction increased with impact velocity, it remained much lower than that produced by an intentional detonation. Ignition and Growth reactive flow models were developed to predict HMX-based explosive impact sensitivity in other geometries and scenarios.

  14. Asteroid Impact and Deflection Assessment mission: the Double Asteroid Redirection Test (DART)

    NASA Astrophysics Data System (ADS)

    Cheng, A.; Michel, P.

    2015-10-01

    The Asteroid Impact & Deflection Assessment (AIDA) mission will be the first space experiment to demonstrate asteroid impact hazard mitigation by using a kinetic impactor. AIDA is a joint ESA-NASA cooperative project, which includes the ESA Asteroid Impact Mission (AIM) rendezvous spacecraft and the NASA Double Asteroid Redirection Test (DART) mission. The AIDA target is the near-Earth binary asteroid 65803 Didymos, which will make an unusually close approach to Earth in October, 2022. The ~300-kg DART spacecraft is designed to impact the Didymos secondary at 6.5 km/s and demonstrate the ability to modify its trajectory through momentum transfer. The primary goals of AIDA are (i) to investigate the binary near-Earth asteroid (65803) Didymos, (ii) to demonstrate asteroid deflection by kinetic impact and to characterize the deflection. The primary DART objectives are to demonstrate a hypervelocity impact on the Didymos moon and to determine the resulting deflection from ground-based observatories. The DART impact on the Didymos secondary will cause a measurable change in the orbital period of the binary.

  15. Alignment errors strongly impact likelihood-based tests for comparing topologies.

    PubMed

    Levy Karin, Eli; Susko, Edward; Pupko, Tal

    2014-11-01

    Estimating phylogenetic trees from sequence data is an extremely challenging and important statistical task. Within the maximum-likelihood paradigm, the best tree is a point estimate. To determine how strongly the data support such an evolutionary scenario, a hypothesis testing methodology is required. To this end, the Kishino-Hasegawa (KH) test was developed to determine whether one topology is significantly more supported by the sequence data than another one. This test and its derivatives are widely used in phylogenetics and phylogenomics. Here, we show that the KH test is biased in the presence of alignment error and can lead to erroneous conclusions. Using simulations we demonstrated that due to alignment errors the KH test often rejects one of the competing topologies, even though both topologies are equally supported by the data. Specifically, we show that the KH test favors the guide tree used to align the analyzed sequences. Further, branch length optimization renders the test too conservative. We propose two possible corrections for these biases. First, we evaluated the impact of removing unreliable alignment columns and found out that it decreases the bias at the cost of substantially reducing the test's power. Second, we developed a parametric test that entirely abolishes the biases without data filtering. This test incorporates the alignment construction step into the test's hypothesis, thus removing the above guide tree effect. We extend this methodology for the case of multiple-topology comparisons and demonstrate the applicability of the new methodology on an exemplary data set. PMID:25085999

  16. Elemental Water Impact Test: Phase 3 Plunge Depth of a 36-Inch Aluminum Tank Head

    NASA Technical Reports Server (NTRS)

    Vassilakos, Gregory J.

    2014-01-01

    Spacecraft are being designed based on LS-DYNA water landing simulations. The Elemental Water Impact Test (EWIT) series was undertaken to assess the accuracy of LS-DYNA water impact simulations. Phase 3 featured a composite tank head that was tested at a range of heights to verify the ability to predict structural failure of composites. To support planning for Phase 3, a test series was conducted with an aluminum tank head dropped from heights of 2, 6, 10, and 12 feet to verify that the test article would not impact the bottom of the test pool. This report focuses on the comparisons of the measured plunge depths to LS-DYNA predictions. The results for the tank head model demonstrated the following. 1. LS-DYNA provides accurate predictions for peak accelerations. 2. LS-DYNA consistently under-predicts plunge depth. An allowance of at least 20% should be added to the LS-DYNA predictions. 3. The LS-DYNA predictions for plunge depth are relatively insensitive to the fluid-structure coupling stiffness.

  17. Impact Testing of Stainless Steel Material at Room and Elevated Temperatures

    SciTech Connect

    Dana K. Morton; Spencer D. Snow; Tom E. Rahl; Robert K. Blandford

    2007-07-01

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these base materials and their welds under dynamic loads in the strain rate range of concern are not well documented. However, three previous papers [1, 2, 3] reported on impact testing and analysis results performed at the Idaho National Laboratory using 304/304L and 316/316L stainless steel base material specimens that began the investigation of these characteristics. The goal of the work presented herein is to add the results of additional tensile impact testing for 304/304L and 316/316L stainless steel material specimens. Utilizing a drop-weight impact test machine and 1/4-inch to 1/2-inch thick dog-bone shaped test specimens, additional tests achieved target strain rates of 5, 10, and 22 per second at room temperature, 300, and 600 degrees Fahrenheit. Elevated true stress-strain curves for these materials at each designated strain rate and temperature are presented herein.

  18. Simulation of an Impact Test of the All-Composite Lear Fan Aircraft

    NASA Technical Reports Server (NTRS)

    Stockwell, Alan E.; Jones, Lisa E. (Technical Monitor)

    2002-01-01

    An MSC.Dytran model of an all-composite Lear Fan aircraft fuselage was developed to simulate an impact test conducted at the NASA Langley Research Center Impact Dynamics Research Facility (IDRF). The test was the second of two Lear Fan impact tests. The purpose of the second test was to evaluate the performance of retrofitted composite energy-absorbing floor beams. A computerized photogrammetric survey was performed to provide airframe geometric coordinates, and over 5000 points were processed and imported into MSC.Patran via an IGES file. MSC.Patran was then used to develop the curves and surfaces and to mesh the finite element model. A model of the energy-absorbing floor beams was developed separately and then integrated into the Lear Fan model. Structural responses of components such as the wings were compared with experimental data or previously published analytical data wherever possible. Comparisons with experimental results were used to guide structural model modifications to improve the simulation performance. This process was based largely on qualitative (video and still camera images and post-test inspections) rather than quantitative results due to the relatively few accelerometers attached to the structure.

  19. LX-04 VIOLENCE MEASUREMENTS- STEVEN TESTS IMPACTED BY PROJECTILES SHOT FROM A HOWITZER GUN

    SciTech Connect

    Chidester, S K; Vandersall, K S; Switzer, L L; Tarver, C M

    2005-07-18

    Characterization of the reaction violence of LX-04 explosive (85% HMX and 15% Viton A by weight) was obtained from Steven Impact Tests performed above the reaction initiation threshold. A 155 mm Howitzer propellant driven gas gun was used to accelerate the Steven Test projectiles in the range of approximately 170-300 m/s to react (ignite) the LX-04 explosive. Blast overpressure gauges, acoustic microphones, and high-speed photography characterized the level of high explosive reaction violence. A detonation in this velocity range was not observed and when comparing these results (and the Susan test results) with that of other HMX based explosives, LX-04 has a more gradual reaction violence slope as the impact velocity increases. The high binder content (15%) of the LX-04 explosive is believed to be the key factor to the lower level of violence.

  20. Test and Analysis of Foam Impacting a 6x6 Inch RCC Flat Panel

    NASA Technical Reports Server (NTRS)

    Lessard, Wendy B.

    2006-01-01

    This report presents the testing and analyses of a foam projectile impacting onto thirteen 6x6 inch flat panels at a 90 degrees incidence angle. The panels tested in this investigation were fabricated of Reinforced-Carbon-Carbon material and were used to aid in the validation of an existing material model, MAT58. The computational analyses were performed using LS-DYNA, which is a physics-based, nonlinear, transient, finite element code used for analyzing material responses subjected to high impact forces and other dynamic conditions. The test results were used to validate LS-DYNA predictions and to determine the threshold of damage generated by the MAT58 cumulative damage material model. The threshold of damage parameter represents any external or internal visible RCC damage detectable by nondestructive evaluation techniques.

  1. LX-04 Violence Measurements-Steven Tests Impacted by Projectiles Shot from a Howitzer Gun

    NASA Astrophysics Data System (ADS)

    Chidester, Steven K.; Vandersall, Kevin S.; Switzer, Lori L.; Tarver, Craig M.

    2006-07-01

    Characterization of the reaction violence of LX-04 explosive (85% HMX and 15% Viton A by weight) was obtained from Steven Impact Tests performed above the reaction initiation threshold. A 155 mm Howitzer propellant driven gas gun was used to accelerate the Steven Test projectiles in the range of approximately 170-300 m/s to react (ignite) the LX-04 explosive. Blast overpressure gauges, acoustic microphones, and high-speed photography characterized the level of high explosive reaction violence. A detonation in this velocity range was not observed and when comparing these results (and the Susan test results) with that of other HMX based explosives, LX-04 has a more gradual reaction violence slope as the impact velocity increases. The high binder content (15%) of the LX-04 explosive is believed to be the key factor to the lower level of violence.

  2. Dust Impact Monitor (DIM) onboard Rosetta/Philae: Tests with ice particles as comet analog materials

    NASA Astrophysics Data System (ADS)

    Flandes, Alberto; Krüger, Harald; Loose, Alexander; Albin, Thomas; Arnold, Walter

    2014-09-01

    In 2014 the European Space Agency's spacecraft Rosetta will encounter the short-period comet 67P/Churyumov-Gerasimenko. Rosetta carries the lander spacecraft Philae on board which will attempt to land on the comet's nucleus. Amongst Philae's instruments, the Dust Impact Monitor (DIM) using piezoelectric sensors is aimed at measuring the physical properties (size and impact speed) of the millimetric and submillimetric dust and ice particles that move near the surface of comet 67P. Given that DIM has three orthogonal sensor sides (with about 70 cm2) total area), it will also be able to collect dynamical data, like an estimation of the particle flux in three dimension, that will help to derive daily and secular variations in the surface activity. We show the results of a series of calibration experiments with the goal to extend the performance tests of DIM. We tested DIM under particle impacts of densities similar to and larger than that of water ice (0.92-7.80 g/cm3) and at speeds from 0.3 to 1.9 m/s. Then, we performed experiments with spherical water ice particles between -40 °C and -20 °C. Finally, we measured the coefficient of restitution (COR) of the impacting particles. These data show that there is a loss mechanism in the impact which is caused by plastic deformation in the contact zones of both the impinging particle and the PZT sensor.

  3. Screening Tests for Enhanced Shielding Against Hypervelocity Particle Impacts for Future Unmanned Spacecraft

    NASA Astrophysics Data System (ADS)

    Putzar, Robin; Hupfer, Jan; Aridon, Gwenaelle; Gergonne, Bernard; David, Matthieu; Bourke, Paul; Cougnet, Claude

    2013-08-01

    Protection of components of unmanned spacecraft against particle impacts is typically provided by the spacecraft's structure together with the intrinsic protection capabilities of the components themselves. Thus to increase the survivability of future spacecraft, one option is to enhance the protection already provided using enhanced materials and additional shielding. As part of the EU funded FP7 research project ReVuS ("Reducing the Vulnerability of Space systems"), the configurations of equipment typically found on board unmanned spacecraft were identified. For each of those configurations, potential solutions have been identified which enhance the robustness against particle impacts. The solutions are broken down into a number of shielding components that include e.g. additional protective layers made from aluminum, Kevlar, Nextel, stainless steel mesh and ceramics. To evaluate the characteristics and performances of these shielding components, a number of screening hypervelocity impact tests were performed. During these tests, representative configurations have been subjected to impacts of aluminum spheres of 3 mm and 5 mm diameter at a nominal impact velocity of 7 km/s. This paper describes the targets and presents and compares the results.

  4. ACTUAL WASTE TESTING OF GYCOLATE IMPACTS ON THE SRS TANK FARM

    SciTech Connect

    Martino, C.

    2014-05-28

    Glycolic acid is being studied as a replacement for formic acid in the Defense Waste Processing Facility (DWPF) feed preparation process. After implementation, the recycle stream from DWPF back to the high-level waste Tank Farm will contain soluble sodium glycolate. Most of the potential impacts of glycolate in the Tank Farm were addressed via a literature review and simulant testing, but several outstanding issues remained. This report documents the actual-waste tests to determine the impacts of glycolate on storage and evaporation of Savannah River Site high-level waste. The objectives of this study are to address the following:  Determine the extent to which sludge constituents (Pu, U, Fe, etc.) dissolve (the solubility of sludge constituents) in the glycolate-containing 2H-evaporator feed.  Determine the impact of glycolate on the sorption of fissile (Pu, U, etc.) components onto sodium aluminosilicate solids. The first objective was accomplished through actual-waste testing using Tank 43H and 38H supernatant and Tank 51H sludge at Tank Farm storage conditions. The second objective was accomplished by contacting actual 2H-evaporator scale with the products from the testing for the first objective. There is no anticipated impact of up to 10 g/L of glycolate in DWPF recycle to the Tank Farm on tank waste component solubilities as investigated in this test. Most components were not influenced by glycolate during solubility tests, including major components such as aluminum, sodium, and most salt anions. There was potentially a slight increase in soluble iron with added glycolate, but the soluble iron concentration remained so low (on the order of 10 mg/L) as to not impact the iron to fissile ratio in sludge. Uranium and plutonium appear to have been supersaturated in 2H-evaporator feed solution mixture used for this testing. As a result, there was a reduction of soluble uranium and plutonium as a function of time. The change in soluble uranium concentration was independent of added glycolate concentration. The change in soluble plutonium content was dependent on the added glycolate concentration, with higher levels of glycolate (5 g/L and 10 g/L) appearing to suppress the plutonium solubility. The inclusion of glycolate did not change the dissolution of or sorption onto actual-waste 2H-evaporator pot scale to an extent that will impact Tank Farm storage and concentration. The effects that were noted involved dissolution of components from evaporator scale and precipitation of components onto evaporator scale that were independent of the level of added glycolate.

  5. Impact of introducing near patient testing for standard investigations in general practice.

    PubMed Central

    Rink, E; Hilton, S; Szczepura, A; Fletcher, J; Sibbald, B; Davies, C; Freeling, P; Stilwell, J

    1993-01-01

    OBJECTIVE--To assess the clinical and economic impact of surgery based near patient testing in general practice for six commonly used biochemical and bacteriological tests. DESIGN--After four months' monitoring, equipment for two bacteriological and four biochemical tests was introduced without cost into 12 practices using a crossover design. Structured request forms were used to monitor laboratory investigations. SETTING--12 general practices in west midlands and south west Thames with list sizes above 9000. MAIN OUTCOME MEASURES--Investigation rates per 1000 consultations. Changes from baseline rates. Reasons for requesting investigations and provisional diagnoses. Cost per test and sensitivity of costs to rate of use. RESULTS--Investigation rates for the six tests rose by 16.5% (from 78.6/1000 consultations to 91.6/1000) when equipment was available in the surgery and reverted to baseline rates when it was withdrawn. The average weekly number of tests when equipment was available ranged from 0.5 to 10.5 (mean 9.0). Cholesterol tests were used as an addition to laboratory testing, usually for screening. Midstream urine analysis was often done in the surgery instead of in the laboratory, although 30% of samples were tested by both methods. Doctors' reasons for investigation and conditions tested were largely unaffected by availability of surgery tests. Costs for surgery tests were higher for all tests except midstream urine. CONCLUSIONS--Availability of surgery based testing increased the number of tests performed. It was cost effective only for midstream urine analysis. PMID:8219952

  6. Rapid impact testing for quantitative assessment of large populations of bridges

    NASA Astrophysics Data System (ADS)

    Zhou, Yun; Prader, John; DeVitis, John; Deal, Adrienne; Zhang, Jian; Moon, Franklin; Aktan, A. Emin

    2011-04-01

    Although the widely acknowledged shortcomings of visual inspection have fueled significant advances in the areas of non-destructive evaluation and structural health monitoring (SHM) over the last several decades, the actual practice of bridge assessment has remained largely unchanged. The authors believe the lack of adoption, especially of SHM technologies, is related to the 'single structure' scenarios that drive most research. To overcome this, the authors have developed a concept for a rapid single-input, multiple-output (SIMO) impact testing device that will be capable of capturing modal parameters and estimating flexibility/deflection basins of common highway bridges during routine inspections. The device is composed of a trailer-mounted impact source (capable of delivering a 50 kip impact) and retractable sensor arms, and will be controlled by an automated data acquisition, processing and modal parameter estimation software. The research presented in this paper covers (a) the theoretical basis for SISO, SIMO and MIMO impact testing to estimate flexibility, (b) proof of concept numerical studies using a finite element model, and (c) a pilot implementation on an operating highway bridge. Results indicate that the proposed approach can estimate modal flexibility within a few percent of static flexibility; however, the estimated modal flexibility matrix is only reliable for the substructures associated with the various SIMO tests. To overcome this shortcoming, a modal 'stitching' approach for substructure integration to estimate the full Eigen vector matrix is developed, and preliminary results of these methods are also presented.

  7. Assessing transportation infrastructure impacts on rangelands: test of a standard rangeland assessment protocol

    USGS Publications Warehouse

    Duniway, Michael C.; Herrick, Jeffrey E.; Pyke, David A.; Toledo, David

    2010-01-01

    Linear disturbances associated with on- and off-road vehicle use on rangelands has increased dramatically throughout the world in recent decades. This increase is due to a variety of factors including increased availability of all-terrain vehicles, infrastructure development (oil, gas, renewable energy, and ex-urban), and recreational activities. In addition to the direct impacts of road development, the presence and use of roads may alter resilience of adjoining areas through indirect effects such as altered site hydrologic and eolian processes, invasive seed dispersal, and sediment transport. There are few standardized methods for assessing impacts of transportation-related land-use activities on soils and vegetation in arid and semi-arid rangelands. Interpreting Indicators of Rangeland Health (IIRH) is an internationally accepted qualitative assessment that is applied widely to rangelands. We tested the sensitivity of IIRH to impacts of roads, trails, and pipelines on adjacent lands by surveying plots at three distances from these linear disturbances. We performed tests at 16 randomly selected sites in each of three ecosystems (Northern High Plains, Colorado Plateau, and Chihuahuan Desert) for a total of 208 evaluation plots. We also evaluated the repeatability of IIRH when applied to road-related disturbance gradients. Finally, we tested extent of correlations between IIRH plot attribute departure classes and trends in a suite of quantitative indicators. Results indicated that the IIRH technique is sensitive to direct and indirect impacts of transportation activities with greater departure from reference condition near disturbances than far from disturbances. Trends in degradation of ecological processes detected with qualitative assessments were highly correlated with quantitative data. Qualitative and quantitative assessments employed in this study can be used to assess impacts of transportation features at the plot scale. Through integration with remote sensing technologies, these methods could also potentially be used to assess cumulative impacts of transportation networks at the landscape scale.

  8. Charpy impact test results for low activation ferritic alloys irradiated to 30 dpa

    SciTech Connect

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S.

    1996-04-01

    Miniature specimens of six low activation ferritic alloys have been impact field tested following irradiation at 370{degrees}C to 30 dpa. Comparison of the results with those of control specimens and specimens irradiated to 10 dpa indicates that degradation in the impact behavior appears to have saturated by {approx}10 dpa in at least four of these alloys. The 7.5Cr-2W alloy referred to as GA3X appears most promising for further consideration as a candidate structural material in fusion reactor applications, although the 9Cr-1V alloy may also warrant further investigation.

  9. Low amplitude impact of PBX 9501: Modified Steven spigot gun tests

    SciTech Connect

    Idar, D.J.; Lucht, R.A.; Straight, J.W.

    1998-12-01

    Low-velocity mechanical impact and subsequent high explosive (HE) reaction are of concern in credible accident scenarios involving the handling, transport, and storage of nuclear weapons. Using modified Steven spigot gun tests, the authors have investigated the high-explosive violent-reaction (HEVR) potential of PBX 9501 to low-amplitude insult. Reliable modeling predictions require that one identify the relevant parameters and behavioral responses that are key to the reaction mechanism(s) in PBX 9501. Additional efforts have been targeted at identifying relevant differences in the response between baseline and stockpile-aged PBX 9501 to low-velocity impacts.

  10. Impact Testing on Reinforced Carbon-Carbon Flat Panels with Ice Projectiles for the Space Shuttle Return to Flight Program

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Revilock, Duane M.; Pereira, Michael J.; Lyle, Karen H.

    2009-01-01

    Following the tragedy of the Orbiter Columbia (STS-107) on February 1, 2003, a major effort commenced to develop a better understanding of debris impacts and their effect on the space shuttle subsystems. An initiative to develop and validate physics-based computer models to predict damage from such impacts was a fundamental component of this effort. To develop the models it was necessary to physically characterize reinforced carbon-carbon (RCC) along with ice and foam debris materials, which could shed on ascent and impact the orbiter RCC leading edges. The validated models enabled the launch system community to use the impact analysis software LS-DYNA (Livermore Software Technology Corp.) to predict damage by potential and actual impact events on the orbiter leading edge and nose cap thermal protection systems. Validation of the material models was done through a three-level approach: Level 1--fundamental tests to obtain independent static and dynamic constitutive model properties of materials of interest, Level 2--subcomponent impact tests to provide highly controlled impact test data for the correlation and validation of the models, and Level 3--full-scale orbiter leading-edge impact tests to establish the final level of confidence for the analysis methodology. This report discusses the Level 2 test program conducted in the NASA Glenn Research Center (GRC) Ballistic Impact Laboratory with ice projectile impact tests on flat RCC panels, and presents the data observed. The Level 2 testing consisted of 54 impact tests in the NASA GRC Ballistic Impact Laboratory on 6- by 6-in. and 6- by 12-in. flat plates of RCC and evaluated three types of debris projectiles: Single-crystal, polycrystal, and "soft" ice. These impact tests helped determine the level of damage generated in the RCC flat plates by each projectile and validated the use of the ice and RCC models for use in LS-DYNA.

  11. Hypervelocity impact testing of the Space Station utility distribution system carrier

    NASA Technical Reports Server (NTRS)

    Lazaroff, Scott

    1993-01-01

    A two-phase, joint JSC and McDonnell Douglas Aerospace-Huntington Beach hypervelocity impact (HVI) test program was initiated to develop an improved understanding of how meteoroid and orbital debris (M/OD) impacts affect the Space Station Freedom (SSF) avionic and fluid lines routed in the Utility Distribution System (UDS) carrier. This report documents the first phase of the test program which covers nonpowered avionic line segment and pressurized fluid line segment HVI testing. From these tests, a better estimation of avionic line failures is approximately 15 failures per year and could very well drop to around 1 or 2 avionic line failures per year (depending upon the results of the second phase testing of the powered avionic line at White Sands). For the fluid lines, the initial McDonnell Douglas analysis calculated 1 to 2 line failures over a 30 year period. The data obtained from these tests indicate the number of predicted fluid line failures increased slightly to as many as 3 in the first 10 years and up to 15 for the entire 30 year life of SSF.

  12. HIV Tests And New Diagnoses Declined After California Budget Cuts, But Reallocating Funds Helped Reduce Impact

    PubMed Central

    Leibowitz, Arleen A.; Brynes, Karen; Wynn, Adriane; Farrell, Kevin

    2014-01-01

    Historically, California supplemented federal funding of HIV prevention and testing so that Californians with HIV could become aware of their infection and access lifesaving treatment. However, budget deficits in 2009 led the state to eliminate its supplemental funding for HIV prevention. We analyzed the impact of California’s HIV resource allocation change between 2009 and 2011 (state fiscal years). We found that HIV tests declined from 66,629 to 53,760 (19 percent) in local health jurisdictions with high HIV burden. In low-burden jurisdictions, HIV tests declined from 20,302 to 2,116 (90 percent). New HIV/AIDS diagnoses fell from 2,434 in 2009 to 2,235 in 2011 (calendar years) in high-burden jurisdictions and from 346 to 327 in low-burden ones. California’s budget crunch prompted state and local programs to redirect remaining HIV funds from risk reduction education to testing activities. Thus, the impact of the budget cuts on HIV tests and new HIV diagnoses was smaller than might have been expected given the size of the cuts. As California’s fiscal outlook improves, we recommend that the state restore supplemental funding for HIV prevention and testing. PMID:24590939

  13. Enhancements in Magnesium Die Casting Impact Properties

    SciTech Connect

    David Schwam; John F. Wallace; Yulong Zhu; Srinath Viswanathan; Shafik Iskander

    2000-06-30

    The need to produce lighter components in transportation equipment is the main driver in the increasing demand for magnesium castings. In many automotive applications, components can be made of magnesium or aluminum. While being lighter, often times the magnesium parts have lower impact and fatigue properties than the aluminum. The main objective of this study was to identify potential improvements in the impact resistance of magnesium alloys. The most common magnesium alloys in automotive applications are AZ91D, AM50 and AM60. Accordingly, these alloys were selected as the main candidates for the study. Experimental quantities of these alloys were melted in an electrical furnace under a protective atmosphere comprising sulfur hexafluoride, carbon dioxide and dry air. The alloys were cast both in a permanent mold and in a UBE 315 Ton squeeze caster. Extensive evaluation of tensile, impact and fatigue properties was conducted at CWRU on permanent mold and squeeze cast test bars of AZ91, AM60 and AM50. Ultimate tensile strength values between 20ksi and 30ksi were obtained. The respective elongations varied between 25 and 115. the Charpy V-notch impact strength varied between 1.6 ft-lb and 5 ft-lb depending on the alloy and processing conditions. Preliminary bending fatigue evaluation indicates a fatigue limit of 11-12 ksi for AM50 and AM60. This is about 0.4 of the UTS, typical for these alloys. The microstructures of the cast specimens were investigated with optical and scanning electron microscopy. Concomitantly, a study of the fracture toughness in AM60 was conducted at ORNL as part of the study. The results are in line with values published in the literature and are representative of current state of the art in casting magnesium alloys. The experimental results confirm the strong relationship between aluminum content of the alloys and the mechanical properties, in particular the impact strength and the elongation. As the aluminum content increases from about 5% in AM50 to over 9% in AZ91, more of the intermetallic Mg17Al12 is formed in the microstructure. For instance, for 15 increase in the aluminum content from AM50 to AM60, the volume fraction of eutectic present in the microstructure increases by 35%! Eventually, the brittle Mg17Al12 compound forms an interconnected network that reduces ductility and impact resistance. The lower aluminum in AM50 and AM60 are therefore a desirable feature in applications that call for higher impact resistance. Further improvement in impact resistance depends on the processing condition of the casting. Sound castings without porosity and impurities will have better mechanical properties. Since magnesium oxidizes readily, good melting and metal transfer practices are essential. The liquid metal has to be protected from oxidation at all times and entrainment of oxide films in the casting needs to be prevented. In this regard, there is evidence that us of vacuum to evacuate air from the die casting cavity can improve the quality of the castings. Fast cooling rates, leading to smaller grain size are beneficial and promote superior mechanical properties. Micro-segregation and banding are two additional defect types often encountered in magnesium alloys, in particular in AZ91D. While difficult to eliminate, segregation can be minimized by careful thermal management of the dies and the shot sleeve. A major source of segregation is the premature solidification in the shot sleeve. The primary solid dendrites are carried into the casting and form a heterogeneous structure. Furthermore, during the shot, segregation banding can occur. The remedies for this kind of defects include a hotter shot sleeve, use of insulating coatings on the shot sleeve and a short lag time between pouring into the shot sleeve and the shot.

  14. Impact of presymptomatic genetic testing on young adults: a systematic review.

    PubMed

    Godino, Lea; Turchetti, Daniela; Jackson, Leigh; Hennessy, Catherine; Skirton, Heather

    2016-04-01

    Presymptomatic and predictive genetic testing should involve a considered choice, which is particularly true when testing is undertaken in early adulthood. Young adults are at a key life stage as they may be developing a career, forming partnerships and potentially becoming parents: presymptomatic testing may affect many facets of their future lives. The aim of this integrative systematic review was to assess factors that influence young adults' or adolescents' choices to have a presymptomatic genetic test and the emotional impact of those choices. Peer-reviewed papers published between January 1993 and December 2014 were searched using eight databases. Of 3373 studies identified, 29 were reviewed in full text: 11 met the inclusion criteria. Thematic analysis was used to identify five major themes: period befeore testing, experience of genetic counselling, parental involvement in decision-making, impact of test result communication, and living with genetic risk. Many participants grew up with little or no information concerning their genetic risk. The experience of genetic counselling was either reported as an opportunity for discussing problems or associated with feelings of disempowerment. Emotional outcomes of disclosure did not directly correlate with test results: some mutation carriers were relieved to know their status, however, the knowledge they may have passed on the mutation to their children was a common concern. Parents appeared to have exerted pressure on their children during the decision-making process about testing and risk reduction surgery. Health professionals should take into account all these issues to effectively assist young adults in making decisions about presymptomatic genetic testing. PMID:26173961

  15. Threshold Studies on TNT, Composition B, and C-4 Explosives Using the Steven Impact Test

    SciTech Connect

    Vandersall, K S; Switzer, L L; Garcia, F

    2005-09-26

    Steven Impact Tests were performed at low velocity on the explosives TNT, Comp B, and C-4 in attempts to obtain a threshold for reaction. A 76 mm helium driven gas gun was used to accelerate the Steven Test projectiles up to approximately 200 m/s in attempts to react (ignite) the explosive samples. Blast overpressure gauges, acoustic microphones, standard video and high-speed photography were used to characterize the level of any high explosive reaction violence. No bulk reactions were observed in the TNT, Composition B, or C-4 explosive samples impacted up to velocities in the range of 190-200 m/s. This work will outline the experimental details and discuss the lack of reaction when compared to the reaction thresholds of other common explosives.

  16. Preliminary burn and impact tests of hybrid polymeric composites. [preventing graphite fiber release

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.; Brewer, W. D.

    1978-01-01

    Free graphite fibers released into the environment from resin matrix composite components, as a result of fire and/or explosion, pose a potential hazard to electrical equipment. An approach to prevent the fibers from becoming airborne is to use hybrid composite materials which retain the fibers at the burn site. Test results are presented for three hybrid composites that were exposed to a simulation of an aircraft fire and explosion. The hybrid systems consisted of 16 plies of graphite-epoxy with two plies of Kevlar-, S-glass-, or boron-epoxy on each face. Two different test environments were used. In one environment, specimens were heated by convection only, and then impacted by a falling mass. In the other environment, specimens were heated by convection and by radiation, but were not impacted. The convective heat flux was about 100-120 kW/m in both environments and the radiative flux was about 110 kW/sq m.

  17. Experimental and Modeling Studies of Crush, Puncture, and Perforation Scenarios in the Steven Impact Test

    SciTech Connect

    Vandersall, K S; Chidester, S K; Forbes, J W; Garcia, F; Greenwood, D W; Switzer, L L; Tarver, C M

    2002-06-28

    The Steven test and associated modeling has greatly increased the fundamental knowledge of practical predictions of impact safety hazards for confined and unconfined explosive charges. Building on a database of initial work, experimental and modeling studies of crush, puncture, and perforation scenarios were investigated using the Steven impact test. The descriptions of crush, puncture, and perforation arose from safety scenarios represented by projectile designs that ''crush'' the energetic material or either ''puncture'' with a pinpoint nose or ''perforate'' the front cover with a transportation hook. As desired, these scenarios offer different aspects of the known mechanisms that control ignition: friction, shear and strain. Studies of aged and previously damaged HMX-based high explosives included the use of embedded carbon foil and carbon resistor gauges, high-speed cameras, and blast wave gauges to determine the pressure histories, time required for an explosive reaction, and the relative violence of those reactions, respectively. Various ignition processes were modeled as the initial reaction rate expression in the Ignition and Growth reaction rate equations. Good agreement with measured threshold velocities, pressure histories, and times to reaction was calculated for LX-04 impacted by several projectile geometries using a compression dependent ignition term and an elastic-plastic model with a reasonable yield strength for impact strain rates.

  18. Comparison of fracture toughness and Charpy impact properties recovery by thermal annealing of irradiated reactor pressure vessel steels

    SciTech Connect

    Sokolov, M.A.; McCabe, D.E.; Iskander, S.K.; Nanstad, R.K.

    1995-12-01

    The objective of this investigation was to study the effects of thermal annealing on the recovery of the transition region toughness of reactor pressure vessel steels. The toughness was measured by Charpy V-notch impact energy and fracture initiation toughness, K{sub Jc}. The materials were A 533 grade B class 1 plate and a commercial reactor vessel submerged-arc weld irradiated at 288{degrees}C to neutron fluences of 1.0 to 2.5 {times} 101{degrees} neutrons/cm{sup 2} (> 1 MeV). The irradiated materials were annealed at 343 and 454{degrees}C for 1 week. The recently developed Weibull statistic/master curve approach was applied to analyze fracture toughness properties of unirradiated, irradiated, and irradiated/annealed pressure vessel steels. The effects of irradiation or annealing were determined by the shift in temperature of the Charpy V-notch curve at 41 J and the fracture toughness curve at 100 MPa{radical}m. After annealing at 454{degrees}C, the residual shifts in fracture toughness are approximately the same as the residual Charpy shifts. The differences observed in these residual shifts after annealing are approximately the same as differences in the radiation-induced shifts.

  19. Constitutive behavior, texture and damage evolution in BCC metal using taylor impact test.

    SciTech Connect

    Trujillo, C. P.; Gray, G. T. , III; Chen, S. R.; Chavez, R. L.

    2004-01-01

    To capture the evolution of anisotropy in textured metals under high rate conditions, we developed a method that enables us to digitally resolve this event. Using a Taylor Anvil Test Facility, we dynamically deformed unalloyed Ta, while capturing real time digital images of the radial flow at the impact surface. We measured the elliptical footprint and plotted its eccentricity (ratio of major to minor diameters) versus real time. The current engineering strength constitutive models allow for an initial texture, but they cannot accurately predict the texture evolution during deformation. This test will allow us to track anisotropy to better validate our constitutive models.

  20. Normalizing and scaling of data to derive human response corridors from impact tests.

    PubMed

    Yoganandan, Narayan; Arun, Mike W J; Pintar, Frank A

    2014-06-01

    It is well known that variability is inherent in any biological experiment. Human cadavers (Post-Mortem Human Subjects, PMHS) are routinely used to determine responses to impact loading for crashworthiness applications including civilian (motor vehicle) and military environments. It is important to transform measured variables from PMHS tests (accelerations, forces and deflections) to a standard or reference population, termed normalization. The transformation process should account for inter-specimen variations with some underlying assumptions used during normalization. Scaling is a process by which normalized responses are converted from one standard to another (example, mid-size adult male to large-male and small-size female adults, and to pediatric populations). These responses are used to derive corridors to assess the biofidelity of anthropomorphic test devices (crash dummies) used to predict injury in impact environments and design injury mitigating devices. This survey examines the pros and cons of different approaches for obtaining normalized and scaled responses and corridors used in biomechanical studies for over four decades. Specifically, the equal-stress equal-velocity and impulse-momentum methods along with their variations are discussed in this review. Methods ranging from subjective to quasi-static loading to different approaches are discussed for deriving temporal mean and plus minus one standard deviation human corridors of time-varying fundamental responses and cross variables (e.g., force-deflection). The survey offers some insights into the potential efficacy of these approaches with examples from recent impact tests and concludes with recommendations for future studies. The importance of considering various parameters during the experimental design of human impact tests is stressed. PMID:24726322

  1. THRESHOLD STUDIES ON TNT, COMPOSITION B, C-4, AND ANFO EXPLOSIVES USING THE STEVEN IMPACT TEST

    SciTech Connect

    Vandersall, K S; Switzer, L L; Garcia, F

    2006-06-20

    Steven Impact Tests were performed at low velocity on the explosives TNT (trinitrotolulene), Composition B (63% RDX, 36% TNT, and 1% wax by weight), C-4 (91% RDX, 5.3% Di (2-ethylhexyl) sebacate, 2.1% Polyisobutylene, and 1.6% motor oil by weight) and ANFO (94% ammonium Nitrate with 6% Fuel Oil) in attempts to obtain a threshold for reaction. A 76 mm helium driven gas gun was used to accelerate the Steven Test projectiles up to approximately 200 m/s in attempts to react (ignite) the explosive samples. Blast overpressure gauges, acoustic microphones, standard video and high-speed photography were used to characterize the level of any high explosive reaction violence. No bulk reactions were observed in the TNT, Composition B, C-4 or ANFO explosive samples impacted up to velocities in the range of 190-200 m/s. This work will outline the experimental details and discuss the lack of reaction when compared to the reaction thresholds of other common explosives. These results will also be compared to that of the Susan Test and reaction thresholds observed in the common small-scale safety tests such as the drop hammer and friction tests in hopes of drawing a correlation.

  2. Space Shuttle solid rocket booster initial water impact loads and dynamics - Analysis, tests, and flight experience

    NASA Technical Reports Server (NTRS)

    Kross, D. A.; Kiefling, L. A.; Murphy, N. C.; Rawls, E. A.

    1983-01-01

    A series of scale model tests, finite element dynamic response analyses and full scale segment tests have been performed for purposes of developing design criteria for the initial water impact loading conditions applied to the internal stiffener rings located in the aft skirt portion of the Space Shuttle Solid Rocket Booster (SRB). In addition, flight experience has yielded information relative to structural reinforcement requirements. This paper discusses the test and analysis methods and summarizes significant results. It is noted that, although scale model test data are valuable for identifying trends, they have shortcomings concerning definition of full scale design loads criteria. Also, the frequently used static equivalent loads definition approach is not applicable for this type impact loading condition applied to an aft skirt type structure. Various types of ring structural fixes, including the addition of selected types of foam, are presented as well as associated full scale segment test results. Depending on the type and contour shape of the foam, reductions on applied pressures and peak measured strains over 50 percent are noted.

  3. Lap Shear and Impact Testing of Ochre and Beeswax in Experimental Middle Stone Age Compound Adhesives

    PubMed Central

    2016-01-01

    The production of compound adhesives using disparate ingredients is seen as some of the best evidence of advanced cognition outside of the use of symbolism. Previous field and laboratory testing of adhesives has shown the complexities involved in creating an effective Middle Stone Age glue using Acacia gum. However, it is currently unclear how efficient different adhesive recipes are, how much specific ingredients influence their performance, and how difficult it may have been for those ingredients to be combined to maximum effect. We conducted a series of laboratory-based lap shear and impact tests, following modern adhesion testing standards, to determine the efficacy of compound adhesives, with particular regard to the ingredient ratios. We tested rosin (colophony) and gum adhesives, containing additives of beeswax and ochre in varying ratios. During both lap shear and impact tests compound rosin adhesives performed better than single component rosin adhesives, and pure acacia gum was the strongest. The large difference in performance between each base adhesive and the significant changes in performance that occur due to relatively small changes in ingredient ratios lend further support to the notion that high levels of skill and knowledge were required to consistently produce the most effective adhesives. PMID:26983080

  4. Statistical variations in impact resistance of steel fiber-reinforced concrete subjected to drop weight test

    SciTech Connect

    Nataraja, M.C.; Dhang, N.; Gupta, A.P.

    1999-07-01

    The variation in impact resistance of steel fiber-reinforced concrete and plain concrete as determined from a drop weight test is reported. The observed coefficients of variation are about 57 and 46% for first-crack resistance and the ultimate resistance in the case of fiber concrete and the corresponding values for plain concrete are 54 and 51%, respectively. The goodness-of-fit test indicated poor fitness of the impact-resistance test results produced in this study to normal distribution at 95% level of confidence for both fiber-reinforced and plain concrete. However, the percentage increase in number of blows from first crack to failure for both fiber-reinforced concrete and as well as plain concrete fit to normal distribution as indicated by the goodness-of-fit test. The coefficient of variation in percentage increase in the number of blows beyond first crack for fiber-reinforced concrete and plain concrete is 51.9 and 43.1%, respectively. Minimum number of tests required to reliably measure the properties of the material can be suggested based on the observed levels of variation.

  5. Lap Shear and Impact Testing of Ochre and Beeswax in Experimental Middle Stone Age Compound Adhesives.

    PubMed

    Kozowyk, P R B; Langejans, G H J; Poulis, J A

    2016-01-01

    The production of compound adhesives using disparate ingredients is seen as some of the best evidence of advanced cognition outside of the use of symbolism. Previous field and laboratory testing of adhesives has shown the complexities involved in creating an effective Middle Stone Age glue using Acacia gum. However, it is currently unclear how efficient different adhesive recipes are, how much specific ingredients influence their performance, and how difficult it may have been for those ingredients to be combined to maximum effect. We conducted a series of laboratory-based lap shear and impact tests, following modern adhesion testing standards, to determine the efficacy of compound adhesives, with particular regard to the ingredient ratios. We tested rosin (colophony) and gum adhesives, containing additives of beeswax and ochre in varying ratios. During both lap shear and impact tests compound rosin adhesives performed better than single component rosin adhesives, and pure acacia gum was the strongest. The large difference in performance between each base adhesive and the significant changes in performance that occur due to relatively small changes in ingredient ratios lend further support to the notion that high levels of skill and knowledge were required to consistently produce the most effective adhesives. PMID:26983080

  6. Accountability and Teacher Practice: Investigating the Impact of a New State Test and the Timing of State Test Adoption on Teacher Time Use

    ERIC Educational Resources Information Center

    Cocke, Erin F.; Buckley, Jack; Scott, Marc A.

    2011-01-01

    There is much debate over the impact of high stakes testing as well as a growing body of research focused on both the intended and unintended consequences of these tests. One claim of both the popular media and education researchers is that high stakes tests have led to curricular narrowing--the idea that school time is increasingly allocated to…

  7. Design and Analysis of Tooth Impact Test Rig for Spur Gear

    NASA Astrophysics Data System (ADS)

    Ghazali, Wafiuddin Bin Md; Aziz, Ismail Ali Bin Abdul; Daing Idris, Daing Mohamad Nafiz Bin; Ismail, Nurazima Binti; Sofian, Azizul Helmi Bin

    2016-02-01

    This paper is about the design and analysis of a prototype of tooth impact test rig for spur gear. The test rig was fabricated and analysis was conducted to study its’ limitation and capabilities. The design of the rig is analysed to ensure that there will be no problem occurring during the test and reliable data can be obtained. From the result of the analysis, the maximum amount of load that can be applied, the factor of safety of the machine, the stresses on the test rig parts were determined. This is important in the design consideration of the test rig. The materials used for the fabrication of the test rig were also discussed and analysed. MSC Nastran Patran software was used to analyse the model, which was designed by using SolidWorks 2014 software. Based from the results, there were limitations found from the initial design and the test rig design needs to be improved in order for the test rig to operate properly.

  8. Compaction comparison testing using a modified impact soil tester and nuclear density gauge

    SciTech Connect

    Erchul, R.A.

    1999-07-01

    The purpose of this paper is to compare test results of a modified Impact Soil Tester (IST) on compacted soil with data obtained from the same soil using a nuclear density gauge at the US Army Corp of Engineer's Buena Vista Flood Wall project in Buena Vista, Virginia. The tests were run during construction of the earth flood wall during the summer of 1996. This comparison testing demonstrated the credibility of the procedure developed for the IST as a compacting testing device. The comparison data was obtained on a variety of soils ranging from silty sands to clays. The Flood Wall comparison compaction data for 90% Standard Proctor shows that the results of the IST as modified are consistent with the nuclear density gauge 89% of the time for all types of soil tested. However, if the soils are more cohesive than the results are consistent with the nuclear density gauge 97% of the time. In addition these comparison tests are in general agreement with comparison compaction testing using the same testing techniques and methods of compacted backfill in utility trenches conducted earlier for the Public Works Department, Chesterfield County, Virginia.

  9. Explaining the black-white gap in cognitive test scores: Toward a theory of adverse impact.

    PubMed

    Cottrell, Jonathan M; Newman, Daniel A; Roisman, Glenn I

    2015-11-01

    In understanding the causes of adverse impact, a key parameter is the Black-White difference in cognitive test scores. To advance theory on why Black-White cognitive ability/knowledge test score gaps exist, and on how these gaps develop over time, the current article proposes an inductive explanatory model derived from past empirical findings. According to this theoretical model, Black-White group mean differences in cognitive test scores arise from the following racially disparate conditions: family income, maternal education, maternal verbal ability/knowledge, learning materials in the home, parenting factors (maternal sensitivity, maternal warmth and acceptance, and safe physical environment), child birth order, and child birth weight. Results from a 5-wave longitudinal growth model estimated on children in the NICHD Study of Early Child Care and Youth Development from ages 4 through 15 years show significant Black-White cognitive test score gaps throughout early development that did not grow significantly over time (i.e., significant intercept differences, but not slope differences). Importantly, the racially disparate conditions listed above can account for the relation between race and cognitive test scores. We propose a parsimonious 3-Step Model that explains how cognitive test score gaps arise, in which race relates to maternal disadvantage, which in turn relates to parenting factors, which in turn relate to cognitive test scores. This model and results offer to fill a need for theory on the etiology of the Black-White ethnic group gap in cognitive test scores, and attempt to address a missing link in the theory of adverse impact. PMID:25867168

  10. An investigation on impacts of scheduling configurations on Mississippi biology subject area testing

    NASA Astrophysics Data System (ADS)

    Marchette, Frances Lenora

    The purpose of this mixed modal study was to compare the results of Biology Subject Area mean scores of students on a 4 x 4 block schedule, A/B block schedule, and traditional year-long schedule for 1A to 5A size schools. This study also reviewed the data to determine if minority or gender issues might influence the test results. Interviews with administrators and teachers were conducted about the type of schedule configuration they use and the influence that the schedule has on student academic performance on the Biology Subject Area Test. Additionally, this research further explored whether schedule configurations allow sufficient time for students to construct knowledge. This study is important to schools, teachers, and administrators because it can assist them in considering the impacts that different types of class schedules have on student performance and if ethnic or gender issues are influencing testing results. This study used the causal-comparative method for the quantitative portion of the study and constant comparative method for the qualitative portion to explore the relationship of school schedules on student academic achievement on the Mississippi Biology Subject Area Test. The aggregate means of selected student scores indicate that the Mississippi Biology Subject Area Test as a measure of student performance reveals no significant difference on student achievement for the three school schedule configurations. The data were adjusted for initial differences of gender, minority, and school size on the three schedule configurations. The results suggest that schools may employ various schedule configurations and expect student performance on the Mississippi Biology Subject Area Test to be unaffected. However, many areas of concern were identified in the interviews that might impact on school learning environments. These concerns relate to effective classroom management, the active involvement of students in learning, the adequacy of teacher education programs and the stress of testing on everyone involved in high-stakes testing.

  11. Water Impact Test and Simulation of a Composite Energy Absorbing Fuselage Section

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Sparks, Chad; Sareen, Ashish

    2003-01-01

    In March 2002, a 25-ft/s vertical drop test of a composite fuselage section was conducted onto water. The purpose of the test was to obtain experimental data characterizing the structural response of the fuselage section during water impact for comparison with two previous drop tests that were performed onto a rigid surface and soft soil. For the drop test, the fuselage section was configured with ten 100-lb. lead masses, five per side, that were attached to seat rails mounted to the floor. The fuselage section was raised to a height of 10-ft. and dropped vertically into a 15-ft. diameter pool filled to a depth of 3.5-ft. with water. Approximately 70 channels of data were collected during the drop test at a 10-kHz sampling rate. The test data were used to validate crash simulations of the water impact that were developed using the nonlinear, explicit transient dynamic codes, MSC.Dytran and LS-DYNA. The fuselage structure was modeled using shell and solid elements with a Lagrangian mesh, and the water was modeled with both Eulerian and Lagrangian techniques. The fluid-structure interactions were executed using the fast general coupling in MSC.Dytran and the Arbitrary Lagrange-Euler (ALE) coupling in LS-DYNA. Additionally, the smooth particle hydrodynamics (SPH) meshless Lagrangian technique was used in LS-DYNA to represent the fluid. The simulation results were correlated with the test data to validate the modeling approach. Additional simulation studies were performed to determine how changes in mesh density, mesh uniformity, fluid viscosity, and failure strain influence the test-analysis correlation.

  12. Hypervelocity impact testing above 10 km/s of advanced orbital debris shields

    SciTech Connect

    Christiansen, E.L.; Crews, J.L.; Kerr, J.H.; Chhabildas, L.C.

    1996-05-01

    NASA has developed enhanced performance shields to improve the protection of spacecraft from orbital debris and meteoroid impacts. One of these enhanced shields includes a blanket of Nextel{trademark} ceramic fabric and Kevlar{trademark} high strength fabric that is positioned midway between an aluminum bumper and the spacecraft pressure wall. As part of the evaluation of this new shielding technology, impact data above 10 km/sec has been obtained by NASA Johnson Space Center (JSC) from the Sandia National Laboratories HVL ({open_quotes}hypervelocity launcher{close_quotes}) and the Southwest Research Institute inhibited shaped charge launcher (ISCL). The HVL launches flyer-plates in the velocity range of 10 to 15 km/s while the ISCL launches hollow cylinders at {approximately}11.5km/s. The {gt}10km/s experiments are complemented by hydrocode analysis and light-gas gun testing at the JSC Hypervelocity Impact Test Facility (HIT-F) to assess the effects of projectile shape on shield performance. Results from the testing and analysis indicate that the Nextel{trademark}/Kevlar{trademark} shield provides superior protection performance compared to an all-aluminum shield alternative. {copyright} {ital 1996 American Institute of Physics.}

  13. Risk assessment test for lead bioaccessibility to waterfowl in mine-impacted soils

    USGS Publications Warehouse

    Furman, O.; Strawn, D.G.; Heinz, G.H.; Williams, B.

    2006-01-01

    Due to variations in soil physicochemical properties, species physiology, and contaminant speciation, Pb toxicity is difficult to evaluate without conducting in vivo dose-response studies. Such tests, however, are expensive and time consuming, making them impractical to use in assessment and management of contaminated environments. One possible alternative is to develop a physiologically based extraction test (PBET) that can be used to measure relative bioaccessibility. We developed and correlated a PBET designed to measure the bioaccessibility of Pb to waterfowl (W-PBET) in mine-impacted soils located in the Coeur d'Alene River Basin, Idaho. The W-PBET was also used to evaluate the impact of P amendments on Pb bioavailability. The W-PBET results were correlated to waterfowl-tissue Pb levels from a mallard duck [Anas platyrhynchos (L.)] feeding study. The W-PBET Pb concentrations were significantly less in the P-amended soils than in the unamended soils. Results from this study show that the W-PBET can be used to assess relative changes in Pb bioaccessibility to waterfowl in these mine-impacted soils, and therefore will be a valuable test to help manage and remediate contaminated soils.

  14. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    SciTech Connect

    Kiefel, Denis E-mail: Rainer.Stoessel@airbus.com; Stoessel, Rainer E-mail: Rainer.Stoessel@airbus.com; Grosse, Christian

    2015-03-31

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented.

  15. The overall impact of testing on medical student learning: quantitative estimation of consequential validity.

    PubMed

    Kreiter, Clarence D; Green, Joseph; Lenoch, Susan; Saiki, Takuya

    2013-10-01

    Given medical education's longstanding emphasis on assessment, it seems prudent to evaluate whether our current research and development focus on testing makes sense. Since any intervention within medical education must ultimately be evaluated based upon its impact on student learning, this report seeks to provide a quantitative accounting of the learning gains attained through educational assessments. To approach this question, we estimate achieved learning within a medical school environment that optimally utilizes educational assessments. We compare this estimate to learning that might be expected in a medical school that employs no educational assessments. Effect sizes are used to estimate testing's total impact on learning by summarizing three effects; the direct effect, the indirect effect, and the selection effect. The literature is far from complete, but the available evidence strongly suggests that each of these effects is large and the net cumulative impact on learning in medical education is over two standard deviations. While additional evidence is required, the current literature shows that testing within medical education makes a strong positive contribution to learning. PMID:22886140

  16. Uniform Foam Crush Testing for Multi-Mission Earth Entry Vehicle Impact Attenuation

    NASA Technical Reports Server (NTRS)

    Patterson, Byron W.; Glaab, Louis J.

    2012-01-01

    Multi-Mission Earth Entry Vehicles (MMEEVs) are blunt-body vehicles designed with the purpose of transporting payloads from outer space to the surface of the Earth. To achieve high-reliability and minimum weight, MMEEVs avoid use of limited-reliability systems, such as parachutes and retro-rockets, instead using built-in impact attenuators to absorb energy remaining at impact to meet landing loads requirements. The Multi-Mission Systems Analysis for Planetary Entry (M-SAPE) parametric design tool is used to facilitate the design of MMEEVs and develop the trade space. Testing was conducted to characterize the material properties of several candidate impact foam attenuators to enhance M-SAPE analysis. In the current effort, four different Rohacell foams are tested at three different, uniform, strain rates (approximately 0.17, approximately 100, approximately 13,600%/s). The primary data analysis method uses a global data smoothing technique in the frequency domain to remove noise and system natural frequencies. The results from the data indicate that the filter and smoothing technique are successful in identifying the foam crush event and removing aberrations. The effect of strain rate increases with increasing foam density. The 71-WF-HT foam may support Mars Sample Return requirements. Several recommendations to improve the drop tower test technique are identified.

  17. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    NASA Astrophysics Data System (ADS)

    Kiefel, Denis; Stoessel, Rainer; Grosse, Christian

    2015-03-01

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented.

  18. An 810 ft/sec soil impact test of a 2-foot diameter model nuclear reactor containment system

    NASA Technical Reports Server (NTRS)

    Puthoff, R. L.

    1972-01-01

    A soil impact test was conducted on a 880-pound 2-foot diameter sphere model. The impact area consisted of back filled desert earth and rock. The impact generated a crater 5 feet in diameter by 5 feet deep. It buried itself a total of 15 feet - as measured to the bottom of the model. After impact the containment vessel was pressure checked. No leaks were detected nor cracks observed.

  19. The WRAIR projectile concussive impact model of mild traumatic brain injury: re-design, testing and preclinical validation.

    PubMed

    Leung, Lai Yee; Larimore, Zachary; Holmes, Larry; Cartagena, Casandra; Mountney, Andrea; Deng-Bryant, Ying; Schmid, Kara; Shear, Deborah; Tortella, Frank

    2014-08-01

    The WRAIR projectile concussive impact (PCI) model was developed for preclinical study of concussion. It represents a truly non-invasive closed-head injury caused by a blunt impact. The original design, however, has several drawbacks that limit the manipulation of injury parameters. The present study describes engineering advancements made to the PCI injury model including helmet material testing, projectile impact energy/head kinematics and impact location. Material testing indicated that among the tested materials, 'fiber-glass/carbon' had the lowest elastic modulus and yield stress for providing an relative high percentage of load transfer from the projectile impact, resulting in significant hippocampal astrocyte activation. Impact energy testing of small projectiles, ranging in shape and size, showed the steel sphere produced the highest impact energy and the most consistent impact characteristics. Additional tests confirmed the steel sphere produced linear and rotational motions on the rat's head while remaining within a range that meets the criteria for mTBI. Finally, impact location testing results showed that PCI targeted at the temporoparietal surface of the rat head produced the most prominent gait abnormalities. Using the parameters defined above, pilot studies were conducted to provide initial validation of the PCI model demonstrating quantifiable and significant increases in righting reflex recovery time, axonal damage and astrocyte activation following single and multiple concussions. PMID:24756867

  20. A discussion of the impact of US chemical regulation legislation on the field of toxicity testing.

    PubMed

    Sullivan, Kristie; Beck, Nancy; Sandusky, Chad; Willett, Catherine

    2011-09-01

    Proposals for revising the principal United States law governing industrial chemicals, the Toxic Substances Control Act, have been under consideration in the US Congress for the past several years, and some version of such legislation may be passed in the near future. Concurrently, a desire to move away from current testing methods for ethical, scientific, and practical reasons has led to multi-million dollar investments in in vitro and computational toxicology methods and programs. Legislative language has the potential to endorse this transition and facilitate its fruition, or conversely enshrine in vivo testing methods for the foreseeable future. New legislation also has the potential to substantially increase the numbers of animals used in toxicity tests in the near term. However, there are a number of policies that, used effectively, can reduce the overall number of animals used in new toxicity tests. We present recent legislative proposals in the context of current testing programs and discuss their potential impacts on animal use, test method innovation, and achievement of desired legislative objectives. Discussions like these are essential to judiciously select policies that reduce the use of animals in toxicity testing and protect human health and the environment. PMID:21624455

  1. Quantifying the impact of future Sandage-Loeb test data on dark energy constraints

    SciTech Connect

    Geng, Jia-Jia; Zhang, Jing-Fei; Zhang, Xin E-mail: jfzhang@mail.neu.edu.cn

    2014-07-01

    The Sandage-Loeb (SL) test is a unique method to probe dark energy in the ''redshift desert'' of 2∼test data impact on the dark energy constraints. To avoid the potential inconsistency in data, we use the best-fitting model based on the other geometric measurements as the fiducial model to produce 30 mock SL test data. The 10-yr, 20-yr, and 30-yr observations of SL test are analyzed and compared in detail. We show that compared to the current combined data of type Ia supernovae, baryon acoustic oscillation, cosmic microwave background, and Hubble constant, the 30-yr observation of SL test could improve the constraint on Ω{sub m} by about 80% and the constraint on w by about 25%. Furthermore, the SL test can also improve the measurement of the possible direct interaction between dark energy and dark matter. We show that the SL test 30-yr data could improve the constraint on γ by about 30% and 10% for the Q = γHρ{sub c} and Q = γHρ{sub de} models, respectively.

  2. Impact dynamics research facility for full-scale aircraft crash testing

    NASA Technical Reports Server (NTRS)

    Vaughan, V. L. J.; Alfaro-Bou, E.

    1976-01-01

    An impact dynamics research facility (IDRF) was developed to crash test full-scale general aviation aircraft under free-flight test conditions. The aircraft are crashed into the impact surface as free bodies; a pendulum swing method is used to obtain desired flight paths and velocities. Flight paths up to -60 deg and aircraft velocities along the flight paths up to about 27.0 m/s can be obtained with a combination of swing-cable lengths and release heights made available by a large gantry. Seven twin engine, 2721-kg aircraft were successfully crash tested at the facility, and all systems functioned properly. Acquisition of data from signals generated by accelerometers on board the aircraft and from external and onboard camera coverage was successful in spite of the amount of damage which occurred during each crash. Test parameters at the IDRF are controllable with flight path angles accurate within 8 percent, aircraft velocity accurate within 6 percent, pitch angles accurate to 4.25 deg, and roll and yaw angles acceptable under wind velocities up to 4.5 m/s.

  3. Suited and Unsuited Hybrid III Impact Testing and Finite Element Model Characterization

    NASA Technical Reports Server (NTRS)

    Lawrence, C.; Somers, J. T.; Baldwin, M. A.; Wells, J. A.; Newby, N.; Currie, N. J.

    2016-01-01

    NASA spacecraft design requirements for occupant protection are a combination of the Brinkley Dynamic Response Criteria and injury assessment reference values (IARV) extracted from anthropomorphic test devices (ATD). For the ATD IARVs, the requirements specify the use of the 5th percentile female Hybrid III and the 95th percentile male Hybrid III. Each of these ATDs is required to be fitted with an articulating pelvis (also known as the aerospace pelvis) and a straight spine. The articulating pelvis is necessary for the ATD to fit into spacecraft seats, while the straight spine is required as injury metrics for vertical accelerations are better defined for this configuration. Sled testing of the Hybrid III 5th Percentile Female Anthropomorphic Test Device (ATD) was performed at Wright-Patterson Air Force Base (WAPFB). Two 5th Percentile ATDs were tested, the Air Force Research Lab (AFRL) and NASA owned Hybrid III ATDs with aerospace pelvises. Testing was also conducted with a NASA-owned 95th Percentile Male Hybrid III with aerospace pelvis at WPAFB. Testing was performed using an Orion seat prototype provided by Johnson Space Center (JSC). A 5-point harness comprised of 2 inch webbing was also provided by JSC. For suited runs, a small and extra-large Advanced Crew Escape System (ACES) suit and helmet were also provided by JSC. Impact vectors were combined frontal/spinal and rear/lateral. Some pure spinal and rear axis testing was also performed for model validation. Peak accelerations ranged between 15 and 20-g. This range was targeted because the ATD responses fell close to the IARV defined in the Human-Systems Integration Requirements (HSIR) document. Rise times varied between 70 and 110 ms to assess differences in ATD responses and model correlation for different impact energies. The purpose of the test series was to evaluate the Hybrid III ATD models in Orion-specific landing orientations both with and without a spacesuit. The results of these tests were used by the NASA Engineering and Safety Center (NESC) to validate the finite element model (FEM) of the Hybrid III 5th Percentile Female ATD. Physical test data was compared to analytical predictions from simulations, and modelling uncertainty factors have been determined for each injury metric. Additionally, the test data has been used to further improve the FEM, particularly in the areas of the ATD preload, harness, and suit and helmet effects.

  4. Flight test experience and controlled impact of a large, four-engine, remotely piloted airplane

    NASA Technical Reports Server (NTRS)

    Kempel, R. W.; Horton, T. W.

    1985-01-01

    A controlled impact demonstration (CID) program using a large, four engine, remotely piloted transport airplane was conducted. Closed loop primary flight control was performed from a ground based cockpit and digital computer in conjunction with an up/down telemetry link. Uplink commands were received aboard the airplane and transferred through uplink interface systems to a highly modified Bendix PB-20D autopilot. Both proportional and discrete commands were generated by the ground pilot. Prior to flight tests, extensive simulation was conducted during the development of ground based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems. However, manned flight tests were the primary method of verification and validation of control law concepts developed from simulation. The design, development, and flight testing of control laws and the systems required to accomplish the remotely piloted mission are discussed.

  5. Point-of-Care Hemoglobin A1c Testing: A Budget Impact Analysis

    PubMed Central

    Chadee, A; Blackhouse, G; Goeree, R

    2014-01-01

    Background The increasing prevalence of diabetes in Ontario means that there will be growing demand for hemoglobin A1c (HbA1c) testing to monitor glycemic control as part of managing this chronic disease. Testing HbA1c where patients receive their diabetes care may improve system efficiency if the results from point-of-care HbA1c testing are comparable to those from laboratory HbA1c measurements. Objectives To estimate the budget impact of point-of-care HbA1c testing to replace laboratory HbA1c measurement for monitoring glycemic control in patients with diabetes in 2013/2014. Review Methods This analysis compared the average testing cost of 3 point-of-care HbA1c devices licensed by Health Canada and available on the market in Canada (Bayer's A1cNow+, Siemens's DCA Vantage, and Bio Rad's In2it), with that of the laboratory HbA1c reference method. The cost difference between point-of-care HbA1c testing and laboratory HbA1c measurement was calculated. Costs and the corresponding range of net impact were estimated in sensitivity analyses. Results The total annual costs of laboratory HbA1c measurement and point-of-care HbA1c testing for 2013/2014 were $91.5 million and $86.8 million, respectively. Replacing all laboratory HbA1c measurements with point-of-care HbA1c testing would save approximately $4.7 million over the next year. Savings could be realized by the health care system at each level that point-of-care HbA1c testing is substituted for laboratory HbA1c measurement. If physician fees were excluded from the analysis, the health care system would incur a net impact from using point-of-care HbA1c testing instead of laboratory A1c measurement. Limitations Point-of-care HbA1c technology is already in use in the Ontario health care system, but the current uptake is unclear. Knowing the adoption rate and market share of point-of-care HbA1c technology would allow for a more accurate estimate of budget impact. Conclusions Replacing laboratory HbA1c measurement with point-of-care HbA1c testing or using point-of-care HbA1c testing in combination with laboratory HbA1c measurement to monitor glycemic control in patients with diabetes could have saved the province $1,175,620 to $4,702,481 in 2013/2014. PMID:26316923

  6. Testing, Modeling and System Impact of Metabolic Heat Regenerated Temperature Swing Adsorption

    NASA Technical Reports Server (NTRS)

    Lacomini, Christine S.; Powers, Aaron; Lewis, Matthew; Linrud, Christopher; Waguespack, Glenn; Conger, Bruce; Paul, Heather L.

    2008-01-01

    Metabolic heat regenerated temperature swing adsorption (MTSA) technology is being developed for removal and rejection of carbon dioxide (CO2) and heat from a portable life support system (PLSS) to the Martian environment. Previously, hardware was built and tested to demonstrate using heat from simulated, dry ventilation loop gas to affect the temperature swing required to regenerate an adsorbent used for CO2 removal. New testing has been performed using a moist, simulated ventilation loop gas to demonstrate the effects of water condensing and freezing in the heat exchanger during adsorbent regeneration. In addition, thermal models of the adsorbent during regeneration were modified and calibrated with test data to capture the effect of the CO2 heat of desorption. Finally, MTSA impact on PLSS design was evaluated by performing thermal balances assuming a specific PLSS architecture. Results using NASA s Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT), a PLSS system evaluation tool, are presented.

  7. Force reconstruction for impact tests of an energy-absorbing nose

    SciTech Connect

    Bateman, V.I.; Garne, T.G.; McCall, D.M.

    1990-01-01

    Delivery of a bomb into hard targets at speeds of up to 120 fps required the design of an energy-absorbing nose. The purpose of the nose is to decelerate the projectile and, by absorbing the kinetic energy with deformation, protect the projectile's internal components from high-level (shock) decelerations. A structural simulation of the projectile was designed to test the dynamic deformation characteristics of the energy-absorbing nose. The simulated projectile was instrumented with eight accelerometers mounted with a shock isolation technique. The dynamic force as a function of nose deformation was the desired result from the impact tests because it provides the designer with a performance criterion for the nose design. The dynamic force was obtained by combining the accelerations using the Sum of Weighted Accelerations Technique (SWAT). Results from two field tests are presented. 12 refs., 8 figs.

  8. Crushable structure performance determined from reconstructed dynamic forces during impact tests

    SciTech Connect

    Bateman, V.I.

    1995-01-01

    A force reconstruction technique has been used to assess the dynamic performance of a crushable structure (a bomb nose) in both the axial (90{degrees}) and slapdown (30{degrees}) impact conditions. The dynamic force characteristics for the nose design, determined from these test results, have been used to write a dynamic force specification for a new nose design that will replace the old nose. The dynamic forces are reconstructed from measured acceleration responses with the Sum of Weighted Accelerations Technique (SWAT) developed at Sandia National Laboratories. Axial characterizations for the old nose are presented from tests at two SNL facilities: a rocket rail launcher facility and an 18-Inch horizontal actuator facility. The characterizations for the old nose are compared to the characterizations for two new nose designs. Slapdown characterizations for the old nose are presented. Incorporation of the test results into a dynamic force specification is discussed.

  9. Demographic and health surveys indicate limited impact of condoms and HIV testing in four African countries.

    PubMed

    Hearst, Norman; Ruark, Allison; Hudes, Esther Sid; Goldsmith, Jennifer; Green, Edward C

    2013-03-01

    Condom promotion and HIV testing for the general population have been major components of HIV prevention efforts in sub-Saharan Africa's high prevalence HIV epidemics, although little evidence documents their public health impact. Recent enhancements to the large, population-based demographic and health surveys (DHS) and AIDS information surveys (AIS) allow use of these data to assess the population-wide impact of these strategies. We analysed the latest DHS and AIS data from four sub-Saharan African countries with high prevalence, heterosexually transmitted HIV epidemics (Côte d'Ivoire, Swaziland, Tanzania and Zambia; N = 48 298) to answer two questions: 1) Are men and women who use condoms less likely to be HIV-infected than those who do not?; and 2) Are men and women who report knowing their HIV status more likely to use condoms than those who do not? Consistent condom use was associated with lower HIV infection rates for Swazi men but with higher HIV infection rates for women in Tanzania and Zambia; it made no significant difference in the other five sex/country subgroups analysed. Inconsistent condom use was not significantly associated with HIV status in any subgroup. Knowing one's HIV status was consistently associated with higher rates of condom use only among married people who were HIV-positive, even though condom use in this group remained relatively low. Effects of knowing one's HIV status among other subgroups varied. These results suggest that condoms have had little population-wide impact for HIV/AIDS prevention in these four countries. HIV testing appears to be associated with increased condom use mainly among people in stable partnerships who test positive. HIV testing and condom promotion may be more effective when targeted to specific groups where there is evidence of benefit rather than to general populations. PMID:25871306

  10. Laminated Windshield Breakage Modelling in the Context of Headform Impact Homologation Tests

    NASA Astrophysics Data System (ADS)

    Kosiński, P.; Osiński, J.

    2015-02-01

    The purpose of modelling a laminated windshield using the FEM is to provide a critical look on the way the adult headform impact tests are conducted in the process of motor vehicle certification. The main aim of the study is to modify the design of a laminated windshield in the context of a vehicle collision with vulnerable road users. The initial phase of the work was to develop a model of the adult headform impactor. The validation consisted in conducting a series of FEM analyses of the impactor certification testing according to the Regulation (EC) 631/2009. Next, the impact of the headform model on a windshield was analysed. The FEM model of laminated glass is composed of two outer layers of glass and an inner layer of polyvinyl butyral. FEM analyses of the impaction were performed at five points of the windshield characterised by various dynamic responses of the impactor and various patterns of glass cracking. In modelling the layers of glass, the Abaqus environment "brittle cracking" model was used. The following material models of PVB resin were considered: elastic, elastic-plastic, hyperelastic, and low-density foam. Furthermore, the influence of the mesh type on the process of glass cracking in a laminated windshield was analysed.

  11. Threshold Studies of Heated HMX-Based Energetic Material Targets Using the Steven Impact Test

    SciTech Connect

    Switzer, L L; Vandersall, K S; Chidester, S K; Greenwood, D W; Tarver, C M

    2003-07-01

    Impact tests performed at low velocity on heated energetic material samples are of interest when considering the situation of energetic materials involved in a fire. To determine heated reaction thresholds, Steven Test targets containing PBX 9404 or LX-04 samples heated to the range of 150-170 C were impacted at velocities up to 150 m/s by two different projectile head geometries. Comparing these measured thresholds to ambient temperature thresholds revealed that the heated LX-04 thresholds were considerably higher than ambient, whereas the heated PBX 9404 thresholds were only slightly higher than the ambient temperature thresholds. The violence of reaction level of the PBX 9404 was considerably higher than that of the LX-04 as measured with four overpressure gauges. The varying results in these samples with different HMX/binder configurations indicate that friction plays a dominant role in reaction ignition during impact. This work outlines the experimental details, compares the thresholds and violence levels of the heated and ambient temperature experiments, and discusses the dominant mechanisms of the measured thresholds.

  12. Hypervelocity impact testing of advanced materials and structures for micrometeoroid and orbital debris shielding

    NASA Astrophysics Data System (ADS)

    Ryan, Shannon; Christiansen, Eric L.

    2013-02-01

    A series of 66 hypervelocity impact experiments have been performed to assess the potential of various materials (aluminium, titanium, copper, stainless steel, nickel, nickel/chromium, reticulated vitreous carbon, silver, ceramic, aramid, ceramic glass, and carbon fibre) and structures (monolithic plates, open-cell foam, flexible fabrics, rigid meshes) for micrometeoroid and orbital debris (MMOD) shielding. Arranged in various single-, double-, and triple-bumper configurations, screening tests were performed with 0.3175 cm diameter Al2017-T4 spherical projectiles at nominally 6.8 km/s and normal incidence. The top performing shields were identified through target damage assessments and their respective weight. The top performing candidate shield at the screening test condition was found to be a double-bumper configuration with a 0.25 mm thick Al3003 outer bumper, 6.35 mm thick 40 PPI aluminium foam inner bumper, and 1.016 mm thick Al2024-T3 rear wall (equal spacing between bumpers and rear wall). In general, double-bumper candidates with aluminium plate outer bumpers and foam inner bumpers were consistently found to be amongst the top performers. For this impact condition, potential weight savings of at least 47% over conventional all-aluminium Whipple shields are possible by utilizing the investigated materials and structures. The results of this study identify materials and structures of interest for further, more in-depth, impact investigations.

  13. Experimental and numerical analysis of Izod impact test of cortical bone tissue

    NASA Astrophysics Data System (ADS)

    Abdel-Wahab, A. A.; Silberschmidt, V. V.

    2012-05-01

    Bones can only sustain loads until a certain limit, beyond which they fail. Usually, the reasons for bone fracture are traumatic falls, sports injuries, and engagement in transport or industrial accidents. A proper treatment of bones and prevention of their fracture can be supported by in-depth understanding of deformation and fracture behavior of this tissue in such dynamic events. In this paper, a combination of experimental and numerical analysis was carried out in order to comprehend the fracture behavior of cortical bone tissue. Experimental tests were performed to study the transient dynamic behavior of cortical bone tissue under impact bending loading. The variability of absorbed energy for different cortex positions and notch depths was studied using Izod impact tests. Also, Extended Finite-Element Method implemented into the commercial finite-element software Abaqus was used to simulate the crack initiation and growth processes in a cantilever beam of cortical bone exposed to impact loading using the Izod loading scheme. The simulation results show a good agreement with the experimental data.

  14. Tests to evaluate the ecological impact of treated ballast water on three Chinese marine species

    NASA Astrophysics Data System (ADS)

    Zhang, Yanan; Wang, Zixi; Cai, Leiming; Cai, Xiang; Sun, Wenjun; Ma, Liqing

    2014-09-01

    Ballast water has been a topic of concern for some time because of its potential to introduce invasive species to new habitats. To comply with the International Convention for the Control and Management of Ships' Ballast Water and Sediments, members of the International Maritime Organization (IMO) must equip their ships with on-board treatment systems to eliminate organism release with ballast water. There are many challenges associated with the implementation of this IMO guideline, one of which is the selection of species for testing the ecological impacts of the treated ballast water. In the United States, ballast water toxicity test methods have been defined by the United States Environmental Protection Agency. However, the test methods had not been finalized in China until the toxicity test methods for ballast water were established in 2008. The Chinese methods have been based on species from three trophic levels: Skeletonema costatum, Neomysis awatschensis, and Ctenogobius gymnauchen. All three species live in broad estuarine and open sea areas of China; they are sensitive to reference toxicants and acclimatize easily to different conditions. In this paper, the biological characteristics, test processes and statistical analysis methods are presented for the three species. Results indicate that the methods for evaluating these three organisms can be included in the ecological toxicity tests for treated ballast water in China.

  15. Development of small punch testing technique and its application to evaluation of mechanical properties degradation

    SciTech Connect

    Kameda, J.

    1993-10-01

    The present paper summarizes a small punch (SP) testing technique developed and its application to mechanical properties characterization. It has been clearly shown on ferritic alloys that the SP test was evaluate the intergranular embrittling potency of segregated solute, such as P, Sn and Sb causing temper embrittlement, and the effects of neutron irradiation and post-irradiation annealing, giving rise to changes in the hardness and intergranular solute segregation, on the fracture properties in terms of the ductile-brittle transition temperature (DBTT). A linear relation of the DBTT determined by the SP test to that by Charpy V-notched tests has been theoretically and experimentally established. In Al alloy substrates coated with amorphous and overlaying ceramics, moreover, the global and local fracture properties were well characterized by the SP test together with acoustic emission techniques.

  16. Development of small punch testing technique and its application to evaluation of mechanical properties degradation

    NASA Astrophysics Data System (ADS)

    Kameda, J.

    The present paper summarizes a small punch (SP) testing technique developed and its application to mechanical properties characterization. It has been clearly shown on ferritic alloys that the SP test was evaluate the intergranular embrittling potency of segregated solute, such as P, Sn and Sb causing temper embrittlement, and the effects of neutron irradiation and post-irradiation annealing, giving rise to changes in the hardness and intergranular solute segregation, on the fracture properties in terms of the ductile-brittle transition temperature (DBTT). A linear relation of the DBTT determined by the SP test to that by Charpy V-notched tests has been theoretically and experimentally established. In Al alloy substrates coated with amorphous and overlaying ceramics, moreover, the global and local fracture properties were well characterized by the SP test together with acoustic emission techniques.

  17. The influence of oxygen on the impact toughness and microstructure of steel weld metal

    SciTech Connect

    Sato, Yoshihiro; Kuwana, Takeshi; Maie, Tsuyoshi

    1995-12-31

    A steel plate was welded in a low oxygen potential welding atmosphere. The weld metal obtained is classified in two groups on the oxygen content, very low oxygen content (less than 0.002 mass %) weld metal and relatively high oxygen content (over 0.015 mass%) weld metal. The effect of oxygen in steel weld metal on the Charpy v-notch impact values and the microstructure is investigated and discussed. Very low oxygen content steel weld metal shows superior impact toughness at 273 K as well as the well-known ``optimum oxygen`` containing steel weld metal. The very low oxygen weld metal has relatively large amounts of grain boundary ferrite and side plate ferrite microstructure, instead of upper bainite compared with the relatively high oxygen content weld metal.

  18. Test and Analysis Correlation of Form Impact onto Space Shuttle Wing Leading Edge RCC Panel 8

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Lyle, Karen H.; Gabrys, Jonathan; Melis, Matthew; Carney, Kelly

    2004-01-01

    Soon after the Columbia Accident Investigation Board (CAIB) began their study of the space shuttle Columbia accident, "physics-based" analyses using LS-DYNA were applied to characterize the expected damage to the Reinforced Carbon-Carbon (RCC) leading edge from high-speed foam impacts. Forensic evidence quickly led CAIB investigators to concentrate on the left wing leading edge RCC panels. This paper will concentrate on the test of the left-wing RCC panel 8 conducted at Southwest Research Institute (SwRI) and the correlation with an LS-DYNA analysis. The successful correlation of the LS-DYNA model has resulted in the use of LS-DYNA as a predictive tool for characterizing the threshold of damage for impacts of various debris such as foam, ice, and ablators onto the RCC leading edge for shuttle return-to-flight.

  19. A Gas-Actuated Projectile Launcher for High-Energy Impact Testing of Structures

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Jaunky, Navin; Lawson, Robin E.; Knight, Norman F., Jr.; Lyle, Karen H.

    1999-01-01

    A gas-act,uated penetration device has been developed for high-energy impact testing of structures. The high-energy impact. t,estiiig is for experimental simulation of uncontained engine failures. The non-linear transient finite element, code LS-DYNA3D has been used in the numerical simula.tions of a titanium rectangular blade with a.n aluminum target, plate. Threshold velocities for different combinations of pitch and yaw angles of the impactor were obtained for the impactor-target, t8est configuration in the numerica.1 simulations. Complet,e penet,ration of the target plate was also simulat,ed numerically. Finally, limited comparison of analytical and experimental results is presented for complete penetration of the target by the impactor.

  20. Verification of maximum impact force for interim storage cask for the Fast Flux Testing Facility

    SciTech Connect

    Chen, W.W.; Chang, S.J.

    1996-06-01

    The objective of this paper is to perform an impact analysis of the Interim Storage Cask (ISC) of the Fast Flux Test Facility (FFTF) for a 4-ft end drop. The ISC is a concrete cask used to store spent nuclear fuels. The analysis is to justify the impact force calculated by General Atomics (General Atomics, 1994) using the ILMOD computer code. ILMOD determines the maximum force developed by the concrete crushing which occurs when the drop energy has been absorbed. The maximum force, multiplied by the dynamic load factor (DLF), was used to determine the maximum g-level on the cask during a 4-ft end drop accident onto the heavily reinforced FFTF Reactor Service Building`s concrete surface. For the analysis, this surface was assumed to be unyielding and the cask absorbed all the drop energy. This conservative assumption simplified the modeling used to qualify the cask`s structural integrity for this accident condition.

  1. A 640 foot per second impact test of a two foot diameter model nuclear reactor containment system without fracture

    NASA Technical Reports Server (NTRS)

    Puthoff, R. L.

    1971-01-01

    An impact test was conducted on an 1142 pound 2 foot diameter sphere model. The purpose of this test was to determine the feasibility of containing the fission products of a mobile reactor in an impact. The model simulated the reactor core, energy absorbing gamma shielding, neutron shielding and the containment vessel. It was impacted against an 18,000 pound reinforced concrete block. The model was significantly deformed and the concrete block demolished. No leaks were detected nor cracks observed in the model after impact.

  2. LX-04 Violence Measurments: Steven Tests Impacted By Projectiles Shot From A Howitzer Gun

    NASA Astrophysics Data System (ADS)

    Chidester, Steven K.

    2005-07-01

    Characterization of the reaction violence of LX-04 explosive (85% HMX and 15% Viton by weight) was obtained from Steven Impact Tests performed above the reaction initiation threshold. A 155 mm Howitzer propellant driven gas gun was used to accelerate the Steven Test projectiles in the range of approximately 150-300 m/s to react (ignite) the LX-04 explosive. Blast overpressure gauges, acoustic microphones, and high-speed photography characterized the level of high explosive reaction violence. A detonation in this velocity range was not observed and when comparing these results (and the Susan test results) with that of other HMX based explosives, LX-04 has a more gradual reaction violence slope as the impact velocity increases. The high binder content (15%) of the LX-04 explosive is believed to be the key factor to the lower level of violence. This work was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

  3. High-Rate Material Modeling and Validation Using the Taylor Cylinder Impact Test

    SciTech Connect

    Maudlin, P.J.; Gray, G.T. III; Cady, C.M.; Kaschner, G.C.

    1998-10-21

    Taylor Cylinder impact testing is used to validate anisotropic elastoplastic constitutive modeling by comparing polycrystal simulated yield surface shapes (topography) to measured shapes from post-test Taylor impact specimens and quasistatic compression specimens. Measured yield surface shapes are extracted from the experimental post-test geometries using classical r-value definitions modified for arbitrary stress state and specimen orientation. Rolled tantalum (body-centered-cubic metal) plate and clock-rolled zirconium (hexagonal-close-packed metal) plate are both investigated. The results indicate that an assumption of topography invariance with respect to strain-rate is justifiable for tantalum. However, a strong sensitivity of topography with respect to strain-rate for zirconium was observed, implying that some accounting for a deformation mechanism rate-dependence associated with lower-symmetry materials should be included in the constitutive modeling. Discussion of the importance of this topography rate-dependence and texture evolution in formulating constitutive models appropriate for FEM applications is provided.

  4. Pressure scaled water impact test of a 12.5 inch diameter model of the Space Shuttle solid rocket booster

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A total of 59 tail first drops were made. Model entry conditions simulated full scale vertical velocities of approximately 75 to 110 ft/sec with horizontal velocities up to 45 ft/sec and impact angles to + or - 10 deg. These tests were conducted at scaled atmospheric pressures (1.26 psia or 65 mm.Hg). The model, test program, test facility, test equipment, instrumentation system, data reduction procedures, and test results are described.

  5. Design of Spacecraft Missions to Test Kinetic Impact for Asteroid Deflection

    NASA Technical Reports Server (NTRS)

    Hernandez, Sonia; Barbee, Brent W.

    2011-01-01

    There are currently over 8,000 known near-Earth asteroids (NEAs), and more are being discovered on a continual basis. More than 1,200 of these are classified as Potentially Hazardous Asteroids (PHAs) because their Minimum Orbit Intersection Distance (MOID) with Earth's orbit is <= 0.05 AU and their estimated diameters are >= 150 m. To date, 178 Earth impact structures have been discovered, indicating that our planet has previously been struck with devastating force by NEAs and will be struck again. Such collisions are aperiodic events and can occur at any time. A variety of techniques have been proposed to defend our planet from NEA impacts by deflecting the incoming asteroid. However, none of these techniques have been tested. Unless rigorous testing is conducted to produce reliable asteroid deflection systems, we will be forced to deploy completely untested -- and therefore unreliable -- deflection missions when a sizable asteroid on a collision course with Earth is discovered. Such missions will have a high probability of failure. We propose to address this problem with a campaign of deflection technology test missions deployed to harmless NEAs. The objective of these missions is to safely evaluate and refine the mission concepts and asteroid deflection system designs. Our current research focuses on the kinetic impactor, one of the simplest proposed asteroid deflection techniques in which a spacecraft is sent to collide with an asteroid at high relative velocity. By deploying test missions in the near future, we can characterize the performance of this deflection technique and resolve any problems inherent to its execution before needing to rely upon it during a true emergency. In this paper we present the methodology and results of our survey, including lists of NEAs for which safe and effective kinetic impactor test missions may be conducted within the next decade. Full mission designs are also presented for the NEAs which offer the best mission opportunities.

  6. Retrospective evaluation of the impact of functional immunotoxicity testing on pesticide hazard identification and risk assessment.

    PubMed

    Gehen, Sean C; Blacker, Ann M; Boverhof, Darrell R; Hanley, Thomas R; Hastings, Charles E; Ladics, Gregory S; Lu, Haitian; O'Neal, Fredrick O

    2014-05-01

    Conduct of a T-cell-dependent antibody response (TDAR) assay in rodents according to Environmental Protection Agency (EPA) Test Guideline OPPTS 870.7800 is now required for chemical pesticide active ingredients registered in the United States. To assess potential regulatory impact, a retrospective analysis was developed using TDAR tests conducted on 78 pesticide chemicals from 46 separate chemical classes. The objective of the retrospective analysis was to examine the frequency of positive responses and determine the potential for the TDAR to yield lower endpoints than those utilized to calculate reference doses (RfDs). A reduction in the TDAR response was observed at only the high-dose level in five studies, while it was unaltered in the remaining studies. Importantly, for all 78 pesticide chemicals, the TDAR no-observed-adverse-effect levels (TDAR NOAELs) were greater than the NOAELS currently in use as risk assessment endpoints. The TDAR NOAELs were higher than the current EPA-selected endpoints for the chronic RfD, short-term, intermediate and long-term exposure scenarios by 3-27,000, 3-1,688, 3-1,688 and 4.9-1,688 times, respectively. Based on this analysis, conduct of the TDAR assay had minimal impact on hazard identification and did not impact human health risk assessments for the pesticides included in this evaluation. These data strongly support employment of alternative approaches including initial weight-of-evidence analysis for immunotoxic potential prior to conducting functional immunotoxicity testing for pesticide active ingredients. PMID:24601769

  7. Assessing the Impact of Testing Aids on Post-Secondary Student Performance: A Meta-Analytic Investigation

    ERIC Educational Resources Information Center

    Larwin, Karen H.; Gorman, Jennifer; Larwin, David A.

    2013-01-01

    Testing aids, including student-prepared testing aids (a.k.a., cheat sheets or crib notes) and open-textbook exams, are common practice in post-secondary assessment. There is a considerable amount of published research that discusses and investigates the impact of these testing aids. However, the findings of this research are contradictory and…

  8. Assessing the Impact of Testing Aids on Post-Secondary Student Performance: A Meta-Analytic Investigation

    ERIC Educational Resources Information Center

    Larwin, Karen H.; Gorman, Jennifer; Larwin, David A.

    2013-01-01

    Testing aids, including student-prepared testing aids (a.k.a., cheat sheets or crib notes) and open-textbook exams, are common practice in post-secondary assessment. There is a considerable amount of published research that discusses and investigates the impact of these testing aids. However, the findings of this research are contradictory and

  9. Testing the impact on natural risks' awareness of visual communication through an exhibition

    NASA Astrophysics Data System (ADS)

    Charrière, Marie; Bogaard, Thom; Junier, Sandra; Malet, Jean-Philippe; Mostert, Erik

    2014-05-01

    The need to communicate about natural disasters in order to improve the awareness of communities at risk is not a matter for debate anymore. However, communication can be implemented using different media and tools, and their effectiveness may be difficult to grasp. Current research on the topic is usually focused on assessing whether communication practices meet users' needs, whereas impact assessment is mostly left out. It can be explained by difficulties arising from (1) the definition of the impact to measure, i.e. awareness, and the appropriate indicators to measure it and its variations, and (2) the implementation of a research design that allows assessing these impacts without bias. This research aims at both developing a methodology to measure risk awareness and to use it for testing the effectiveness of visual communication. The testing was conducted in the Ubaye Valley in France, an alpine area affected by multiple hazards, from December 2013 to mid-February 2014. The setting consisted of an exhibition in the public library of the main town, Barcelonnette. The main natural hazards of the study case (i.e. landslides, avalanches, flooding, debris flows and earthquakes), as well as structural and non-structural measures were presented to the general public using local examples of hazards events and mitigation. Various visualization tools were used: videos, Google earth map, interactive timeline, objects, mock-ups, technical devices as well as posters with pictures, drawings and graphs. In order to assess the effects of the exhibition on risk awareness, several groups of children and adults were submitted to a research design, consisting of 1) a pre-test, 2) the visit of the exhibition and 3) a post-test similar to the pre-test. Close-ended questions addressed the awareness indicators according to the literature, i.e. worry level, previous experiences with natural hazards events, exposure to awareness raising, ability to mitigate/respond/prepare, attitude to risk and demographics. In addition, the post-test included several satisfaction questions concerning the visual tools displayed in the exhibition. A statistical analysis of the changes between the pre- and post- tests allows to verify whether the exhibition has an impact on risk awareness or not. In order to deduce the attractiveness of each visual tool independently, the visitors' paths are tracked using RFID (Radio Frequency Identification) technique, from which their time spent around certain visuals can be assessed. These results also help to analyze the changes in risk awareness measured by the pre-test/post-test design. Direct observation of visitors' reactions and behaviors completed the methodology. This research hence helps to assess which visual tools are more suitable to communicate such topics not only to a community as a whole, but also to its sub-categories (e.g. adults vs. children, people with experience of natural disasters vs. people without). Moreover, it provides methodological improvements concerning effectiveness research in the field of risk communication. The first results of this research will be presented and discussed.

  10. Analytical impact models and experimental test validation for the Columbia shuttle wing leading edge panels.

    SciTech Connect

    Lu, Wei-Yang; Metzinger, Kurt Evan; Gwinn, Kenneth West; Antoun, Bonnie R.; Korellis, John S.

    2004-10-01

    This paper describes the analyses and the experimental mechanics program to support the National Aeronautics and Space Administration (NASA) investigation of the Shuttle Columbia accident. A synergism of the analysis and experimental effort is required to insure that the final analysis is valid - the experimental program provides both the material behavior and a basis for validation, while the analysis is required to insure the experimental effort provides behavior in the correct loading regime. Preliminary scoping calculations of foam impact onto the Shuttle Columbia's wing leading edge determined if enough energy was available to damage the leading edge panel. These analyses also determined the strain-rate regimes for various materials to provide the material test conditions. Experimental testing of the reinforced carbon-carbon wing panels then proceeded to provide the material behavior in a variety of configurations and strain-rates for flown or conditioned samples of the material. After determination of the important failure mechanisms of the material, validation experiments were designed to provide a basis of comparison for the analytical effort. Using this basis, the final analyses were used for test configuration, instrumentation location, and calibration definition in support of full-scale testing of the panels in June 2003. These tests subsequently confirmed the accident cause.

  11. Impact on Participation and Autonomy: Test of Validity and Reliability for Older Persons

    PubMed Central

    Hammar, Isabelle Ottenvall; Ekelund, Christina; Wilhelmson, Katarina; Eklund, Kajsa

    2014-01-01

    In research and healthcare it is important to measure older persons’ self-determination in order to improve their possibilities to decide for themselves in daily life. The questionnaire Impact on Participation and Autonomy (IPA) assesses self-determination, but is not constructed for older persons. The aim of this study was to examine the validity and reliability of the IPA-S questionnaire for persons aged 70 years and older. The study was performed in two steps; first a validity test of the Swedish version of the questionnaire, IPA-S, followed by a reliability test-retest of an adjusted version. The validity was tested with focus groups and individual interviews on persons aged 77-88 years, and the reliability on persons aged 70-99 years. The validity test result showed that IPA-S is valid for older persons but it was too extensive and the phrasing of the items needed adjustments. The reliability test-retest on the adjusted questionnaire, IPA- Older persons (IPA-O), showed that 15 of 22 items had high agreement. IPA-O can be used to measure older persons’ self-determination in their care and rehabilitation.

  12. Oblique Loading in Post Mortem Human Surrogates from Vehicle Lateral Impact Tests using Chestbands.

    PubMed

    Yoganandan, Narayan; Humm, John R; Pintar, Frank A; Arun, Mike W J; Rhule, Heather; Rudd, Rodney; Craig, Matthew

    2015-11-01

    While numerous studies have been conducted to determine side impact responses of Post Mortem Human Surrogates (PMHS) using sled and other equipment, experiments using the biological surrogate in modern full-scale vehicles are not available. The present study investigated the presence of oblique loading in moving deformable barrier and pole tests. Threepoint belt restrained PMHS were positioned in the left front and left rear seats in the former and left front seat in the latter condition and tested according to consumer testing protocols. Three chestbands were used in each specimen (upper, middle and lower thorax). Accelerometers were secured to the skull, shoulder, upper, middle and lower thoracic vertebrae, sternum, and sacrum. Chestband signals were processed to determine magnitudes and angulations of peak deflections. The magnitude and timing of various signal peaks are given. Vehicle accelerations, door velocities, and seat belt loads are also given. Analysis of deformation contours, peak deflections, and angulations indicated that the left rear seated specimen were exposed to anterior oblique loading while left front specimens in both tests sustained essentially pure lateral loading to the torso. These data can be used to validate human body computational models. The occurrence of oblique loading in full-scale testing, hitherto unrecognized, may serve to stimulate the exploration of its role in injuries to the thorax and lower extremities in modern vehicles. It may be important to continue research in this area because injury metrics have a lower threshold for angled loading. PMID:26660738

  13. Closure Report for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2009-06-01

    Corrective Action Unit (CAU) 107 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Low Impact Soil Sites' and consists of the following 15 Corrective Action Sites (CASs), located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site: CAS 01-23-02, Atmospheric Test Site - High Alt; CAS 02-23-02, Contaminated Areas (2); CAS 02-23-03, Contaminated Berm; CAS 02-23-10, Gourd-Amber Contamination Area; CAS 02-23-11, Sappho Contamination Area; CAS 02-23-12, Scuttle Contamination Area; CAS 03-23-24, Seaweed B Contamination Area; CAS 03-23-27, Adze Contamination Area; CAS 03-23-28, Manzanas Contamination Area; CAS 03-23-29, Truchas-Chamisal Contamination Area; CAS 04-23-02, Atmospheric Test Site T4-a; CAS 05-23-06, Atmospheric Test Site; CAS 09-23-06, Mound of Contaminated Soil; CAS 10-23-04, Atmospheric Test Site M-10; and CAS 18-23-02, U-18d Crater (Sulky). Closure activities were conducted from February through April 2009 according to the FFACO (1996; as amended February 2008) and Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 107 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2009). The corrective action alternatives included No Further Action and Closure in Place with Administrative Controls. Closure activities are summarized.

  14. HIV testing and counselling in Estonian prisons, 2012 to 2013: aims, processes and impacts.

    PubMed

    Kivimets, K; Uuskula, A

    2014-01-01

    We present data from an observational cohort study on human immunodeficiency virus (HIV) prevention and control measures in prisons in Estonia to assess the potential for HIV transmission in this setting. HIV testing and retesting data from the Estonian prison health department were used to estimate HIV prevalence and incidence in prison. Since 2002, voluntary HIV counselling and testing has routinely been offered to all prisoners and has been part of the new prisoners health check. At the end of 2012, there were 3,289 prisoners in Estonia, including 170 women: 28.5% were drug users and 15.6% were infected with HIV. Of the HIV-positive inmates, 8.3% were newly diagnosed on prison entry. In 2012, 4,387 HIV tests (including retests) were performed in Estonian prisons. Among 1,756 initially HIV-negative prisoners who were in prison for more than one year and therefore tested for HIV twice within 12 months (at entry and annual testing), one new HIV infection was detected, an incidence of 0.067 per 100 person-years (95% confidence interval (CI): 0.025–5.572). This analysis indicates low risk of HIV transmission in Estonian prisons. Implementation of HIV management interventions could impact positively on the health of prisoners and the communities to which they return. PMID:25443037

  15. Test of a geometric model for the modification stage of simple impact crater development

    NASA Astrophysics Data System (ADS)

    Grieve, R. A. F.; Garvin, J. B.; Coderre, J. M.; Rupert, J.

    1989-06-01

    This paper presents a geometric model describing the geometry of the transient cavity of an impact crater and the subsequent collapse of its walls to form a crater filled by an interior breccia lens. The model is tested by comparing the volume of slump material calculated from known dimensional parameters with the volume of the breccia lens estimated on the basis of observational data. Results obtained from the model were found to be consistent with observational data, particularly in view of the highly sensitive nature of the model to input parameters.

  16. Impact Analysis and Testing of Harmonic of Electrified Railway on Energy Metering

    NASA Astrophysics Data System (ADS)

    Hu, Wenpin; Duan, Xiaobo; Li, Quan; Zhang, Lei

    This paper analyzed the characteristics of electrified railway power supply combine of the status quo on electrified railway power supply and energy metering. According to the metering principle of the electrical energy meter, this essay theoretically analyzed the impact of harmonic of electrified railway on energy metering. By comparing the analytical laboratory and field test data, the adverse influence of harmonics generated by electrified railway power supply on energy metering is studied and come to a conclusion that the electrified railway user is less metered the power while the linear user is more metered.

  17. On the impact bending test technique for high-strength pipe steels

    NASA Astrophysics Data System (ADS)

    Arsenkin, A. M.; Odesskii, P. D.; Shabalov, I. P.; Likhachev, M. V.

    2015-10-01

    It is shown that the impact toughness (KCV-40 = 250 J/cm2) accepted for pipe steels of strength class K65 (σy ≥ 550 MPa) intended for large-diameter gas line pipes is ineffective to classify steels in fracture strength. The results obtained upon testing of specimens with a fatigue crack and additional sharp lateral grooves seem to be more effective. In energy consumption, a macrorelief with splits is found to be intermediate between ductile fracture and crystalline brittle fracture. A split formation mechanism is considered and a scheme is proposed for split formation.

  18. The Impact of Escape Alternative Position Change in Multiple-Choice Test on the Psychometric Properties of a Test and Its Items Parameters

    ERIC Educational Resources Information Center

    Hamadneh, Iyad Mohammed

    2015-01-01

    This study aimed at investigating the impact changing of escape alternative position in multiple-choice test on the psychometric properties of a test and it's items parameters (difficulty, discrimination & guessing), and estimation of examinee ability. To achieve the study objectives, a 4-alternative multiple choice type achievement test…

  19. Side Impact Response Corridors for the Rigid Flat-Wall and Offset-Wall Side Impact Tests of NHTSA Using the ISO Method of Corridor Development.

    PubMed

    Irwin, Annette L; Sutterfield, Aleta; Hsu, Timothy P; Kim, Agnes; Mertz, Harold J; Rouhana, Stephen W; Scherer, Risa

    2005-11-01

    The purpose of this paper is to compare the biofidelity rating schemes of ISO/TR9790 and the NHTSA Bio Rank System. This paper describes the development of new impact response corridors being proposed for ISO/TR9790 from the results of a recent series of side-impact sled tests. The response data were analyzed by methods consistent with ISO/TR9790, including normalization by impulse-momentum analysis and the elimination of subjects that sustained six or more rib fractures. Unlike ISO/TR9790, this paper proposes the elimination of the data from tests in which the timing and the sequence of loading of the individual impact plates were inconsistent compared to other tests conducted with the same impact wall configuration. As a result of differences in the analysis methods, data selection criteria, and the method of corridor construction, the impact response corridors proposed here are different from those developed by NHTSA, despite the fact that both sets of corridors were developed from the same series of sled tests. Responses of the ES-2 and ES-2re side impact dummies are compared to both sets of corridors. The response corridors developed in this paper are proposed as an addition to and not a replacement for those given in the 1999 revision of ISO/TR9790. PMID:17096284

  20. The interpretation of Charpy impact test data using hyper-logistic fitting functions

    SciTech Connect

    Helm, J.L.

    1996-12-31

    The hyperbolic tangent function is used almost exclusively for computer assisted curve fitting of Charpy impact test data. Unfortunately, there is no physical basis to justify the use of this function and it cannot be generalized to test data that exhibits asymmetry. Using simple physical arguments, a semi-empirical model is derived and identified as a special case of the so called hyper-logistic equation. Although one solution of this equation is the hyperbolic tangent, other more physically interpretable solutions are provided. From the mathematics of the family of functions derived from the hyper-logistic equation, several useful generalizations are made such that asymmetric and wavy Charpy data can be physically interpreted.

  1. Evaluation of effect of hydrogen on toughness of Zircaloy-2 by instrumented drop weight impact testing

    NASA Astrophysics Data System (ADS)

    Viswanathan, U. K.; Singh, R. N.; Basak, C. B.; Anantharaman, S.; Sahoo, K. C.

    2006-05-01

    Hydride-assisted degradation in fracture toughness of Zircaloy-2 was evaluated by carrying out instrumented drop-weight tests on curved Charpy specimens fabricated from virgin pressure tube. Samples were charged to 60 ppm and 225 ppm hydrogen. Ductile-to-brittle-transition behaviour was exhibited by as-received and hydrided samples. The onset of ductile-to-brittle-transition was at about 130 °C for hydrided samples, irrespective of their hydrogen content. Dynamic fracture toughness ( KID) was estimated based on linear elastic fracture mechanics (LEFM) approach. For fractures occurring after general yielding, the fracture toughness was derived based on equivalent energy criterion. Results are supplemented with fractography. This simple procedure of impact testing appears to be promising for monitoring service-induced degradation in fracture toughness of pressure tubes.

  2. Validating Material Modelling of OFHC Copper Using Dynamic Tensile Extrusion (DTE) Test at Different Impact Velocity

    NASA Astrophysics Data System (ADS)

    Bonora, Nicola; Testa, Gabriel; Ruggiero, Andrew; Iannitti, Gianluca; Hörnqvist, Magnus; Mortazavi, Nooshin

    2015-06-01

    In the Dynamic Tensile Extrusion (DTE) test, the material is subjected to very large strain, high strain rate and elevated temperature. Numerical simulation, validated comparing with measurements obtained on soft-recovered extruded fragments, can be used to probe material response under such extreme conditions and to assess constitutive models. In this work, the results of a parametric investigation on the simulation of DTE test of annealed OFHC copper - at impact velocity ranging from 350 up to 420 m/s - using phenomenological and physically based models (Johnson-Cook, Zerilli-Armstrong and Rusinek-Klepaczko), are presented. Preliminary simulation of microstructure evolution was performed using crystal plasticity package CPFEM, providing, as input, the strain history obtained with FEM at selected locations along the extruded fragments. Results were compared with EBSD investigation.

  3. A protocol system for testing biohazardous materials in an impact biomechanics research facility.

    PubMed

    Duma, S M; Rudd, R W; Crandall, J R

    1999-01-01

    This article presents a protocol system, comprised of a review process and a series of checklists, that was developed for testing cadaveric tissue in an impact biomechanics research facility. The use of cadaveric tissue may expose personnel to bloodborne pathogens including HIV and hepatitis B, which have been shown to remain virulent in a cadaver for several weeks after death. To minimize exposure risks, the protocol system presented emphasizes initial blood screening to keep infectious tissue from entering the laboratory, and adopts universal precautions to prevent exposure by treating all tissue as though it were infected. All lab employees must read, sign, and demonstrate proficiency in the protocol. Well-developed test procedures for the handling of biohazardous materials along with an annual individual protocol review have proven effective for the past 6 years in minimizing exposure risks. PMID:10529993

  4. Summary and evaluation of low-velocity impact tests of solid steel billet onto concrete pads

    SciTech Connect

    Witte, M.C.; Hovingh, W.J.; Mok, G.C.; Murty, S.S.; Chen, T.F.; Fischer, L.E.

    1998-02-01

    Spent fuel storage casks intended for use at independent spent fuel storage installations are evaluated during the application and review process for low-velocity impacts representative of possible handling accidents. In the past, the analyses involved in these evaluations have assumed that the casks dropped or tipped onto an unyielding surface - a conservative and simplifying assumption. Since 10 CFR Part 72, the regulation imposed by the Nuclear Regulatory Commission (NRC), does not require this assumption, applicants are currently seeking a more realistic model for the analyses to predict the effect of a cask dropping onto a reinforced concrete pad, including energy absorbing aspects such as cracking and flexure. To develop data suitable for benchmarking these analyses, the NRC has conducted several series of drop-test studies of a solid steel billet and of a near-full-scale empty cask. This report contains a summary and evaluation of all steel billet testing conducted by Sandia National Laboratories and Lawrence Livermore National Laboratory. A series of finite element analyses of the billet testing is described and benchmarked against the test data. A method to apply the benchmarked finite element model of the soil and concrete pad to an analysis of a full-size storage cask is provided. In addition, an application to a {open_quotes}generic{close_quotes} full-size cask is presented for side and end drops, and tipover events. The primary purpose of this report is to provide applicants for an NRC license under 10 CFR Part 72 with a method for evaluating storage casks for low-velocity impact conditions.

  5. HE friction sensitivity oblique impact sensitivity of explosives the skid test & half-inch gap sensitivity test. Quarterly report, April 1970--June 1970

    SciTech Connect

    Van Velkinburgh, J.H.

    1997-09-01

    Oblique impact tests were performed on RX-04-DS and on the extrusion cast explosive RX-08-AZ. Partial reactions were observed on RX-04-DS at 5.0{prime}, 45{degrees} and at 1.25{prime}, 14{degrees}; no reactions were observed with RX-08-AZ in the severest of tests. Vertical drop tests were performed on 6 inch-diameter hemispheres of LX-04-1. Results are tabulated. A series of accelerometer instrumented oblique impact tests were performed to obtain normal and rotational acceleration versus time. Half-inch gap test series were performed on RX-08-AZ. No experimental work with the friction test apparatus was done this period.

  6. Design and testing of miniaturized plasma sensor for measuring hypervelocity impact plasmas

    SciTech Connect

    Goel, A. Tarantino, P. M.; Lauben, D. S.; Close, S.

    2015-04-15

    An increasingly notable component of the space environment pertains to the impact of meteoroids and orbital debris on spacecraft and the resulting mechanical and electrical damages. Traveling at speeds of tens of km/s, when these particles, collectively referred to as hypervelocity particles, impact a satellite, they vaporize, ionize, and produce a radially expanding plasma that can generate electrically harmful radio frequency emission or serve as a trigger for electrostatic discharge. In order to measure the flux, composition, energy distribution, and temperature of ions and electrons in this plasma, a miniaturized plasma sensor has been developed for carrying out in-situ measurements in space. The sensor comprises an array of electrostatic analyzer wells split into 16 different channels, catering to different species and energy ranges in the plasma. We present results from numerical simulation based optimization of sensor geometry. A novel approach of fabricating the sensor using printed circuit boards is implemented. We also describe the test setup used for calibrating the sensor and show results demonstrating the energy band pass characteristics of the sensor. In addition to the hypervelocity impact plasmas, the plasma sensor developed can also be used to carry out measurements of ionospheric plasma, diagnostics of plasma propulsion systems, and in other space physics experiments.

  7. Design and testing of miniaturized plasma sensor for measuring hypervelocity impact plasmas

    NASA Astrophysics Data System (ADS)

    Goel, A.; Tarantino, P. M.; Lauben, D. S.; Close, S.

    2015-04-01

    An increasingly notable component of the space environment pertains to the impact of meteoroids and orbital debris on spacecraft and the resulting mechanical and electrical damages. Traveling at speeds of tens of km/s, when these particles, collectively referred to as hypervelocity particles, impact a satellite, they vaporize, ionize, and produce a radially expanding plasma that can generate electrically harmful radio frequency emission or serve as a trigger for electrostatic discharge. In order to measure the flux, composition, energy distribution, and temperature of ions and electrons in this plasma, a miniaturized plasma sensor has been developed for carrying out in-situ measurements in space. The sensor comprises an array of electrostatic analyzer wells split into 16 different channels, catering to different species and energy ranges in the plasma. We present results from numerical simulation based optimization of sensor geometry. A novel approach of fabricating the sensor using printed circuit boards is implemented. We also describe the test setup used for calibrating the sensor and show results demonstrating the energy band pass characteristics of the sensor. In addition to the hypervelocity impact plasmas, the plasma sensor developed can also be used to carry out measurements of ionospheric plasma, diagnostics of plasma propulsion systems, and in other space physics experiments.

  8. Stress transmission through Ti-Ni alloy, titanium and stainless steel in impact compression test.

    PubMed

    Yoneyama, T; Doi, H; Kobayashi, E; Hamanaka, H; Tanabe, Y; Bonfield, W

    2000-06-01

    Impact stress transmission of Ti-Ni alloy was evaluated for biomedical stress shielding. Transformation temperatures of the alloy were investigated by means of DSC. An impact compression test was carried out with use of split-Hopkinson pressure-bar technique with cylindrical specimens of Ti-Ni alloy, titanium and stainless steel. As a result, the transmitted pulse through Ti-Ni alloy was considerably depressed as compared with those through titanium and stainless steel. The initial stress reduction was large through Ti-Ni alloy and titanium, but the stress reduction through Ti-Ni alloy was more continuous than titanium. The maximum value in the stress difference between incident and transmitted pulses through Ti-Ni alloy or titanium was higher than that through stainless steel, while the stress reduction in the maximum stress through Ti-Ni alloy was statistically larger than that through titanium or stainless steel. Ti-Ni alloy transmitted less impact stress than titanium or stainless steel, which suggested that the loading stress to adjacent tissues could be decreased with use of Ti-Ni alloy as a component material in an implant system. PMID:15348013

  9. Design and testing of miniaturized plasma sensor for measuring hypervelocity impact plasmas.

    PubMed

    Goel, A; Tarantino, P M; Lauben, D S; Close, S

    2015-04-01

    An increasingly notable component of the space environment pertains to the impact of meteoroids and orbital debris on spacecraft and the resulting mechanical and electrical damages. Traveling at speeds of tens of km/s, when these particles, collectively referred to as hypervelocity particles, impact a satellite, they vaporize, ionize, and produce a radially expanding plasma that can generate electrically harmful radio frequency emission or serve as a trigger for electrostatic discharge. In order to measure the flux, composition, energy distribution, and temperature of ions and electrons in this plasma, a miniaturized plasma sensor has been developed for carrying out in-situ measurements in space. The sensor comprises an array of electrostatic analyzer wells split into 16 different channels, catering to different species and energy ranges in the plasma. We present results from numerical simulation based optimization of sensor geometry. A novel approach of fabricating the sensor using printed circuit boards is implemented. We also describe the test setup used for calibrating the sensor and show results demonstrating the energy band pass characteristics of the sensor. In addition to the hypervelocity impact plasmas, the plasma sensor developed can also be used to carry out measurements of ionospheric plasma, diagnostics of plasma propulsion systems, and in other space physics experiments. PMID:25933852

  10. Safety Issues in the Nuclear Electric Propulsion Space Test Environmental Impact Statement

    NASA Astrophysics Data System (ADS)

    Glover, William A.

    1994-07-01

    The National Environmental Policy Act (NEPA), requires Federal agencies to prepare environmental impact statements (EIS) for actions which might have a significant impact on the human environment. Launching a nuclear reactor into Earth orbit is such an action. Although the normal operations of the space nuclear reactor may have a minimal effect on the human environment, launch accidents, criticality accidents, and inadvertent reentry of the reactor into the biosphere could have significant environmental impacts. Thus, an EIS must examine the proposed action and reasonable alternatives to allow the decdision makers to make better environmentally informed decisions. The issues related to reactor safety are of particular interest to both the public and to agency decision makers and, therefore, tend to be the most visible and controversial aspects of the EIS. The EIS also represents the major opportunity for direct public involvement in the decision-making process. This paper discusses the approach to nuclear reactor safety issues in the Nuclear Electric Propulsion Space Test EIS, which will examine the environmental issues related to the proposed launching of the Topaz II reactor.

  11. How Well Does the Latest Anthropomorphic Test Device Mimic Human Impact Responses?

    NASA Technical Reports Server (NTRS)

    Newby, N.; Somers, J. T.; Caldwell, E.; Gernhardt, M.

    2014-01-01

    One of the goals of the NASA Occupant Protection Group is to understand the human tolerance to dynamic loading. This knowledge has to come through indirect approaches such as existing human response databases, anthropometric test devices (ATD), animal testing, post-mortem human subjects, and models. This study investigated the biofidelity of the National Highway Traffic Safety Administration's ATD named the THOR (test device for human occupant restraint). If THOR responds comparably to humans, then it could potentially be used as a human surrogate to help validate space vehicle requirements for occupant protection. The THOR responses to frontal and spinal impacts (ranging from 8 to 12 G with rise times of 40, 70, and 100 ms) were measured and compared to human volunteer responses (95 trials in frontal and 58 in spinal) previously collected by the U. S. Air Force on the same horizontal impact accelerator. The impact acceleration profiles tested are within the expected range of multi-purpose crew vehicle (MPCV) landing dynamics. A correlation score was calculated for each THOR to human comparison using CORA (CORrelation and Analysis) software. A two-parameter beta distribution model fit was obtained for each dependent variable using maximum likelihood estimation. For frontal impacts, the THOR head x-acceleration peak response correlated with the human response at 8 and 10-G 100 ms but not 10-G 70 ms. The phase lagged the human response. Head z-acceleration was not correlated. Chest x-acceleration was in phase, had a higher peak response, and was well correlated with lighter subjects (Cora = 0.8 for 46 kg vs. Cora = 0.4 for 126 kg). Head x-displacement had a leading phase. Several subjects responded with the same peak displacement but the mean of the group was lower. The shoulder x-displacement was in phase but had higher peaks than the human response. For spinal impacts, the THOR head x-acceleration was not well correlated. Head and chest z-acceleration was in phase but had a higher peak response. Chest z-acceleration was highly correlated with heavier subjects at lower G pulses (Cora = 0.86 for 125 kg at 8 G). The human response was variable in shoulder z-displacement but the THOR was in phase and was comparable to the mean peak response. Head xand z-displacement was in phase but had higher peaks. Seat pan forces were well correlated, were in phase, but had a larger peak response than most subjects. The THOR does not respond to frontal and spinal impacts exactly the same way that a human does. Some responses are well matched and others are not. Understanding the strengths and weaknesses of this ATD is an important first step in determining its usefulness in occupant protection at NASA

  12. Frequency of Testing for Dyslipidemia: A Systematic Review and Budget Impact Analysis

    PubMed Central

    2014-01-01

    Background Current Canadian guidelines recommend annual screening for hyperlipidemia in people with a Framingham risk score (FRS) of greater than 5%. In those with a FRS of less than 5%, lipid screening is recommended every 3 to 5 years. Objectives We aimed to determine the most cost-effective frequency of lipid profile testing in adults with different levels of cardiovascular risk based on published literature, to determine current frequency of lipid screening in Ontario, and to calculate the cost of aligning current with recommended frequencies. Methods We systematically searched for studies (from 2000 to 2012) evaluating the cost-effectiveness of lipid profile testing frequency in adults. Using the Canadian Community Health Survey and linked health administrative databases, we calculated the FRS for each survey respondent on every day from 2005 to 2011. Average current frequency of lipid testing was calculated according to the total number of patient days spent in each FRS category and the number of lipid tests occurring on those days. Extrapolating these outcomes to the Ontario population, we estimated the expected budget impact of aligning current rates of lipid testing with rates recommended by the Canadian Cardiovascular Society (CCS) guidelines. Results No studies evaluated the cost-effectiveness of lipid monitoring frequency. Our database analysis revealed that people in the very low risk group are tested an average of once every 4.4 years, those in the low risk group are tested once every 2 years, those in the intermediate risk group are tested every 1.4 years, and those in the highest risk group are tested annually. If we compare these rates to those recommended by the CCS guidelines, an additional 3.6 million tests would be needed to achieve recommended rates of lipid testing. At a cost of $14.48 per test, the expected cost to the province would be $52.2 million. Limitations The results were analysed in aggregate, leading to the potential for ecological fallacy. In addition, because data pertaining to drug prescriptions in Ontario are only available for people over 65 years of age, the analysis did not account for the influence of statin treatment on the frequency of lipid testing. Conclusions Our findings show that there is currently no evidence to inform the optimal frequency of lipid testing. People in Ontario at low-low, low, intermediate, and high risk are being tested once every 4.4, 1.9, 1.4, and 1.0 times per year, respectively. According to the CCS guidelines, this represents under-testing in the low and intermediate groups. Achieving the recommended rates of testing would cost approximately $52.2 million. Given the large cost of implementing such a change and the uncertainty on which CCS guidelines are based, it would be prudent to await the results of further research before making such a large investment. PMID:26316921

  13. Internally damped, self-arresting vertical drop-weight impact test apparatus

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R. (Inventor); Prasad, Chunchu B. (Inventor); Waters, Jr., William A. (Inventor); Stockum, Robert W. (Inventor); Walter, Manfred A. (Inventor)

    1996-01-01

    A vertical dropped-weight impact test machine has a dropped-weight barrel vertically supported on upper and lower support brackets. The dropped-weight barrel is chambered to receive a dropped-weight assembly having a latch pin at its upper end, a damping unit in the middle, and a tup at its lower end. The tup is adapted for gathering data during impact testing. The latch pin releasably engages a latch pin coupling assembly. The latch pin coupling assembly is attached to a winch via a halyard for raising and lowering the dropped-weight assembly. The lower end of the dropped-weight barrel is provided with a bounce-back arresting mechanism which is activated by the descending passage of the dropped-weight assembly. After striking the specimen, the dropped-weight assembly rebounds vertically and is caught by the bounce-back arresting mechanism. The damping unit of the dropped-weight assembly serves to dissipate energy from the rebounding dropped-weight assembly and prevents the dropped-weight assembly from rebounding from the self-arresting mechanism.

  14. Internally damped, self-arresting vertical drop-weight impact test apparatus

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R. (Inventor); Prasad, Chunchu B. (Inventor); Waters, Jr., William A. (Inventor); Stockum, Robert W. (Inventor); Water, Manfred A. (Inventor)

    1995-01-01

    A vertical dropped-weight impact test machine has a dropped-weight barrel vertically supported on upper and lower support brackets. The dropped-weight barrel is chambered to receive a dropped-weight assembly having a latch pin at its upper end, a damping unit in the middle, and a tup at its lower end. The tup is adapted for gathering data during impact testing. The latch pin releasably engages a latch pin coupling assembly. The latch pin coupling assembly is attached to a winch via a halyard for raising and lowering the dropped-weight assembly. The lower end of the dropped-weight barrel is provided with a bounce-back arresting mechanism which is activated by the descending passage of the dropped-weight assembly. After striking the specimen, the dropped-weight assembly rebounds vertically and is caught by the bounce-back arresting mechanism. The damping unit of the dropped-weight assembly serves to dissipate energy from the rebounding dropped-weight assembly and prevents the dropped-weight assembly from rebounding from the self-arresting mechanism.

  15. Charpy impact tests on martensitic/ferritic steels after irradiation in SINQ target-3

    NASA Astrophysics Data System (ADS)

    Dai, Yong; Marmy, Pierre

    2005-08-01

    Charpy impact tests were performed on martensitic/ferritic (MF) steels T91, F82H, Optifer-V and Optimax-A/-C irradiated in SINQ Target-3 up to 7.5 dpa and 500 appm He in a temperature range of 120-195 °C. Results demonstrate that for all the four kinds of steels, the ductile-to-brittle transition temperature (DBTT) increases with irradiation dose. The difference in the DBTT shifts (ΔDBTT) of the different steels is not significant after irradiation in the SINQ target. The ΔDBTT data from the previous small punch (Δ DBTT SP) and the present Charpy impact (ΔDBTT CVN) tests can be correlated with the expression: Δ DBTT SP = 0.4ΔDBTT CVN. All the ΔDBTT data fall into a linear band when they are plotted versus helium concentration. The results indicate that helium effects on the embrittlement of MF steels are significant, particularly at higher concentrations. It suggests that MF steels may not be very suitable for applications at low temperatures in spallation irradiation environments where helium production is high.

  16. Quasi-static characterisation and impact testing of auxetic foam for sports safety applications

    NASA Astrophysics Data System (ADS)

    Duncan, Olly; Foster, Leon; Senior, Terry; Alderson, Andrew; Allen, Tom

    2016-05-01

    This study compared low strain rate material properties and impact force attenuation of auxetic foam and the conventional open-cell polyurethane counterpart. This furthers our knowledge with regards to how best to apply these highly conformable and breathable auxetic foams to protective sports equipment. Cubes of auxetic foam measuring 150 × 150 × 150 mm were fabricated using a thermo–mechanical conversion process. Quasi-static compression confirmed the converted foam to be auxetic, prior to being sliced into 20 mm thick cuboid samples for further testing. Density, Poisson’s ratio and the stress–strain curve were all found to be dependent on the position of each cuboid from within the cube. Impact tests with a hemispherical drop hammer were performed for energies up to 6 J, on foams covered with a polypropylene sheet between 1 and 2 mm thick. Auxetic samples reduced peak force by ∼10 times in comparison to the conventional foam. This work has shown further potential for auxetic foam to be applied to protective equipment, while identifying that improved fabrication methods are required.

  17. Simulating the Response of a Composite Honeycomb Energy Absorber. Part 2; Full-Scale Impact Testing

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Annett, Martin S.; Jackson, Karen E.; Polanco, Michael A.

    2012-01-01

    NASA has sponsored research to evaluate an externally deployable composite honeycomb designed to attenuate loads in the event of a helicopter crash. The concept, designated the Deployable Energy Absorber (DEA), is an expandable Kevlar(Registered TradeMark) honeycomb. The DEA has a flexible hinge that allows the honeycomb to be stowed collapsed until needed during an emergency. Evaluation of the DEA began with material characterization of the Kevlar(Registered TradeMark)-129 fabric/epoxy, and ended with a full-scale crash test of a retrofitted MD-500 helicopter. During each evaluation phase, finite element models of the test articles were developed and simulations were performed using the dynamic finite element code, LS-DYNA(Registered TradeMark). The paper will focus on simulations of two full-scale impact tests involving the DEA, a mass-simulator and a full-scale crash of an instrumented MD-500 helicopter. Isotropic (MAT24) and composite (MAT58) material models, which were assigned to DEA shell elements, were compared. Based on simulations results, the MAT58 model showed better agreement with test.

  18. Testing the Impact of a Pre-Instructional Digital Game on Middle-Grade Students' Understanding of Photosynthesis

    ERIC Educational Resources Information Center

    Culp, Katherine McMillan; Martin, Wendy; Clements, Margaret; Lewis Presser, Ashley

    2015-01-01

    Rigorous studies of the impact of digital games on student learning remain relatively rare, as do studies of games as supports for learning difficult, core curricular concepts in the context of normal classroom practices. This study uses a blocked, cluster randomized controlled trial design to test the impact of a digital game, played as homework

  19. Testing the Impact of a Pre-Instructional Digital Game on Middle-Grade Students' Understanding of Photosynthesis

    ERIC Educational Resources Information Center

    Culp, Katherine McMillan; Martin, Wendy; Clements, Margaret; Lewis Presser, Ashley

    2015-01-01

    Rigorous studies of the impact of digital games on student learning remain relatively rare, as do studies of games as supports for learning difficult, core curricular concepts in the context of normal classroom practices. This study uses a blocked, cluster randomized controlled trial design to test the impact of a digital game, played as homework…

  20. Evaluating the Impact of Guessing and Its Interactions with Other Test Characteristics on Confidence Interval Procedures for Coefficient Alpha

    ERIC Educational Resources Information Center

    Paek, Insu

    2016-01-01

    The effect of guessing on the point estimate of coefficient alpha has been studied in the literature, but the impact of guessing and its interactions with other test characteristics on the interval estimators for coefficient alpha has not been fully investigated. This study examined the impact of guessing and its interactions with other test…

  1. Water impact test of aft skirt end ring, and mid ring segments of the Space Shuttle Solid Rocket Booster

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The results of water impact loads tests using aft skirt end ring, and mid ring segments of the Space Shuttle Solid Rocket Booster (SRB) are examined. Dynamic structural response data is developed and an evaluation of the model in various configurations is presented. Impact velocities are determined for the SRB with the larger main chute system. Various failure modes are also investigated.

  2. The impact of screening-test negative samples not enumerated by MPN.

    PubMed

    Corbellini, Lus Gustavo; Duarte, Ana Sofia Ribeiro; de Knegt, Leonardo Vctor; da Silva, Luis Eduardo; Cardoso, Marisa; Nauta, Maarten

    2015-07-16

    In microbiological surveys, false negative results in detection tests precluding the enumeration by MPN may occur. The objective of this study was to illustrate the impact of screening test failure on the probability distribution of Salmonella concentrations in pork using a Bayesian method. A total of 276 swab samples in four slaughter steps (69 samples in each slaughter step: after dehairing, after singeing, after evisceration, and before chilling) were screened for Salmonella and enumerated by the MPN method. Salmonella contamination data were fitted to a lognormal distribution by using a Bayesian model that uses the number of positive tubes at each dilution in an MPN analysis to estimate the parameters of the concentration distribution. With Salmonella paired data, three data sets were used for each slaughter step: one that includes the positives in the screening test only, a second one that includes false negative results from the screening, and a third that considers the entire data set. The relative sensitivity of the screening test was also calculated assuming as gold standard samples with confirmed Salmonella. Salmonella was confirmed by a reference laboratory in 29 samples either by screening or MPN method. The relative sensitivity of the screening test was 69% (CI 95%: 52%-85%). The data set that included enumerations from screen-negative samples (false negative results) tended to have higher ?? and smaller ?? in comparison with the data set that discards false negative results, suggesting that the lack of sensitivity of the screening test affects the distribution that describes the contamination across the population. Numerous surveys on fitting distribution methods of microbial censored data have been published and discuss source of bias due to fitting method. Results of this survey contribute with that discussion by illustrating another possible source of bias due to failure of the screening methods preceding the MPN. PMID:25866905

  3. Design of a single batch leaching test to assess the environmental impact of volcanic ash

    NASA Astrophysics Data System (ADS)

    Fernandez-Turiel, J.; Ruggieri, F.; Saavedra, J.; Gimeno, D.; Martinez, L.; Galindo, G.; Garcia-Valles, M.; Polanco, E.; Perez-Torrado, F.; Rodriguez-Gonzalez, A.; Rodriguez-Fernandez, D.

    2010-12-01

    Most of the environmentally mobile constituents of volcanic ashes may be detected by one stage batch leaching tests, but the lack of a standardized procedure makes difficult the comparison between different studies. A series of batch tests were conducted using rhyolithic Andean ashes of the Chaiten 2008 eruption (Chile) and an ancient (hundreds of thousands of years) eruption in the southern Puna (NW Argentina) in order to propose a batch test susceptible of harmonization for volcanic ash. Tests carried out varying amount of ash (0.1 and 1 g), leachant volume (1, 2, 5, 10, 25 and 50 ml of deionized water) and contact time (1.5, 4 and 16 h). The mixture of ash and leachant was shaken at 20 rpm at room temperature in polypropylene test tubes (14x100 mm) or polyethylene (HDPE) reactors (50 and 100 ml), depending on the leachate volume. Leachate solutions, previous centrifugation (3000 rpm) during 15 minutes, were filtered through PVDF syringe filters with tube tip (25 mm diameter and 0.45 µm pore size) and made up to 100 ml volume in 1% (v/v) HNO3. These solutions were analyzed by ICP-OES, ICP-MS and ISE (fluoride). Leaching tests with 0.1 g of ash have a low reproducibility of results whereas leachant volume has not a great influence on the element contents released when 1 g of sample is employed. Batch leaching tests performed at 1.5 and 16 h are less reproducible that those tested at 4 h. The best batch leaching conditions tested correspond to 1 g of ash and 10 ml of deionized water shaking during 4 h. This methodology has been applied to recent and historical eruptions of the Southern Volcanic Zone of the Andes (Quizapu, 1932; Lonquimay, 1988; Hudson, 1991; Copahue, 2000; Llaima 2008; Chaiten 2008), the Central Volcanic Zone of the Andes (Quaternary ashes of different eruptions in southern Puna and neighboring areas in northwestern Argentina), and the recent eruption of Eyjafjallajokull (april-may 2010) in Iceland. The method developed is reproducible, fast and reliable in laboratory conditions and the results easily applicable to environmental impact models. This study was carried out in the framework of the PEGEFA Working Group (Catalonian Government 2009-SGR-972), and was funded by the Project ASH of the Spanish MICINN (CGL2008-00099) and the FPU Grant of the Spanish Ministry of Education of one of the authors (F. Ruggieri, Ref. AP2006-04592).

  4. Small specimen fracture toughness tests of HT-9 steel irradiated with protons

    NASA Astrophysics Data System (ADS)

    Misawa, T.; Sugawara, H.; Miura, R.; Hamaguchi, Y.

    1985-08-01

    A method to evaluate the fracture toughness, using the recrystallization technique and a small punch test, has been developed on miniaturized specimens of ferritic/martensitic steel HT-9. The recrystallization technique, to measure the plastic strain region formed with crack extension in precracked disk-shaped compact tension (DCT) specimens, made it possible to evaluate the specimen-size independent elastic-plastic fracture toughness in irradiated ferritic steels. The electrical potential drop and acoustic emission measurements were also applied to detect the crack extension together with load/displacement curves in DCT specimens. The small punch tests demonstrated a clear ductile-brittle fracture energy transition behavior and good ductile-brittle transition temperature (DBTT) correlation with the Charpy V-notch tests results. The effect of proton irradiation and/or hydrogen charging on-the fracture behavior of HT-9 was observed.

  5. Testing temperatures and deflection rates dependencies of hydrogen embrittlements on RAFs

    NASA Astrophysics Data System (ADS)

    Sakamura, T.; Komazaki, S.; Kishimoto, H.; Kohno, Y.

    2011-10-01

    It is well known that diffusible hydrogen in steels causes the reduction of fracture strength of steels. The hydrogen is usually trapped by vacancies, dislocations, grain boundaries, precipitates, voids, etc. The trapped hydrogen is thermally released from the trap sites. Thermal desorption spectroscopic (TDS) method is able to investigate the hydrogen trapping states in a material. In this study, the hydrogen embrittlement of a reduced activation ferritic steels (RAFs), JLF-1, is studied using a hydrogen cathodic electrolytic charging method. The amount of charged hydrogen into material was between 0 and 3.63 mppm. The small punch (SP) test and 1.5 mm charpy V-notch (1.5 mm CVN) test focusing on the test temperature and deflection rate dependencies studied at the between 20 and -196 °C, and deflection rates at 1 m/s and 0.2 mm/min.

  6. Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems. Part 2; Ballistic Impact Testing

    NASA Technical Reports Server (NTRS)

    Pereira, J. M.; Revilock, D. M.

    2004-01-01

    Under the Federal Aviation Administration's Airworthiness Assurance Center of Excellence and the Aircraft Catastrophic Failure Prevention Program, National Aeronautics and Space Administration Glenn Research Center collaborated with Arizona State University, Honeywell Engines, Systems and Services, and SRI International to develop improved computational models for designing fabric-based engine containment systems. In the study described in this report, ballistic impact tests were conducted on layered dry fabric rings to provide impact response data for calibrating and verifying the improved numerical models. This report provides data on projectile velocity, impact and residual energy, and fabric deformation for a number of different test conditions.

  7. Improved neurocognitive test performance in both arms of the SMART study: impact of practice effect

    PubMed Central

    Grund, Birgit; Wright, Edwina J.; Brew, Bruce J.; Price, Richard W.; Roediger, Mollie P.; Bain, Margaret P.; Hoy, Jennifer F.; Shlay, Judith C.; Vjecha, Michael J.; Robertson, Kevin R.

    2013-01-01

    We evaluated factors associated with improvement in neurocognitive performance in 258 HIV-infected adults with baseline CD4 lymphocyte counts above 350 cells/mm3 randomized to intermittent, CD4-guided antiretroviral therapy (ART) (128 participants) versus continuous therapy (130) in the Neurology substudy of the Strategies for Management of Antiretroviral Therapy trial. Participants were enrolled in Australia, North America, Brazil, and Thailand, and neurocognitive performance was assessed by a five-test battery at baseline and month 6. The primary outcome was change in the quantitative neurocognitive performance z score (QNPZ-5), the average of the z scores of the five tests. Associations of the 6-month change in test scores with ART use, CD4 cell counts, HIV RNA levels, and other factors were determined using multiple regression models. At baseline, median age was 40 years, median CD4 cell count was 513 cells/mm3, 88 % had plasma HIV RNA ≤400 copies/mL, and mean QNPZ-5 was −0.68. Neurocognitive performance improved in both treatment groups by 6 months; QNPZ-5 scores increased by 0.20 and 0.13 in the intermittent and continuous ART groups, respectively (both P<0.001 for increase and P=0.26 for difference). ART was used on average for 3.6 and 5.9 out of the 6 months in the intermittent and continuous ART groups, respectively, but the increase in neurocognitive test scores could not be explained by ART use, changes in CD4, or plasma HIV RNA, which suggests a practice effect. The impact of a practice effect after 6 months emphasizes the need for a control group in HIV studies that measure intervention effects using neurocognitive tests similar to ours. PMID:23943468

  8. Improved neurocognitive test performance in both arms of the SMART study: impact of practice effect.

    PubMed

    Grund, Birgit; Wright, Edwina J; Brew, Bruce J; Price, Richard W; Roediger, Mollie P; Bain, Margaret P; Hoy, Jennifer F; Shlay, Judith C; Vjecha, Michael J; Robertson, Kevin R

    2013-08-01

    We evaluated factors associated with improvement in neurocognitive performance in 258 HIV-infected adults with baseline CD4 lymphocyte counts above 350 cells/mm³ randomized to intermittent, CD4-guided antiretroviral therapy (ART) (128 participants) versus continuous therapy (130) in the Neurology substudy of the Strategies for Management of Antiretroviral Therapy trial. Participants were enrolled in Australia, North America, Brazil, and Thailand, and neurocognitive performance was assessed by a five-test battery at baseline and month 6. The primary outcome was change in the quantitative neurocognitive performance z score (QNPZ-5), the average of the z scores of the five tests. Associations of the 6-month change in test scores with ART use, CD4 cell counts, HIV RNA levels, and other factors were determined using multiple regression models. At baseline, median age was 40 years, median CD4 cell count was 513 cells/mm³, 88 % had plasma HIV RNA ≤ 400 copies/mL, and mean QNPZ-5 was -0.68. Neurocognitive performance improved in both treatment groups by 6 months; QNPZ-5 scores increased by 0.20 and 0.13 in the intermittent and continuous ART groups, respectively (both P < 0.001 for increase and P = 0.26 for difference). ART was used on average for 3.6 and 5.9 out of the 6 months in the intermittent and continuous ART groups, respectively, but the increase in neurocognitive test scores could not be explained by ART use, changes in CD4, or plasma HIV RNA, which suggests a practice effect. The impact of a practice effect after 6 months emphasizes the need for a control group in HIV studies that measure intervention effects using neurocognitive tests similar to ours. PMID:23943468

  9. Testing the origin of high remanent magnetization in Vredefort impact structure

    NASA Astrophysics Data System (ADS)

    Salminen, J. M.; Pesonen, L. J.; Lahti, K.; Kannus, K.

    2010-12-01

    Vredefort impact structure (2.0 Ga) in South Africa with diameter 250-300 km [1] is considered largest impact structure on Earth. Values of natural remanent magnetization (NRM) for the impactites and some Archean host rocks of Vredefort impact structure are elevated compared to the values for similar rock types found elsewhere and these also show random directions of remanent magnetization [2, 3, 4, 5]. It has been suggested that the source for elevated NRM values and hence elevated Q values (Koenigsberger’s ratio) would be related to impact event in a way where an ultra-small single-domain magnetite formed in a high pressure/temperature environment and crystallized along planar deformation features [2, 6, 3]. It has been further suggested that a plasma field produced from the impact event generated small-wavelength magnetic fields of high intensity which randomized the directions of remanent magnetization [4, 8]. Results of [5] contradict these findings. As, firstly, concentration of elevated Q values near the center of the structure was not observed, as should be if of impact origin, and, secondly, the elevated Q values were also seen in samples from the Johannesburg Dome (120 km from Vredefort dome). Moreover a correlation between hysteresis data and elevated Q values of the basement rocks was not observed, as would be expected if the ultra-fine particles in the PDFs solely were the carriers of the high Q values [5]. This seems to rule out the direct connection of elevated NRM to the shock event. In order to further study the origin of elevated NRM values we have tried to simulate impact shock with conventional explosives and to simulate lighting strikes with high voltage measurements. Ten Archean host rock samples (masses between 0.5 and 1.5 kg) with normal Q values (0.7-2) for Vredefort impact structure were exploded using the plastic explosive with explosive velocity of 8.2 km/s. Three out of ten samples were covered with cement before exploding. Six demagnetized Archean host rock samples originally with low Q values (0.9-2) were treated with high voltage equipment (Haefely Test, AG Switzerland; max: 1000 kV) in order to simulate lightning strikes. Three pulses (11.5 kA) were given to two and one pulse was given to four samples. Exploding did not increase NRM, susceptibility or Q values of the samples. However we are aware that this study is a small scale study and in case of the Vredefort the velocity of the projectile has been modelled to be ca. 20 km/s [7]. After high voltage treatment samples showed elevated Q and NRM values with relation to number of pulses. This study indicates that lightning strikes with multiple pulses could explain observed high Q values and random magnetization directions observed for Vredefort rocks. References: [1] Henkel & Reimold 1998. Tectonophysics 287, 1-20; [2] Hart et al. 1995. Geology, 23, 277-280; [3] Hart et al. 2000. Afr. J. Geol. 103, 151-155; [4] Carporzen et al. 2005. Nature 435, 198-201; [5] Salminen et al. 2009. Prec. Res. 168, 167-184; [6] Cloete et al. 1999. Mineral. Petrol. 137, 232-245; [7] Turtle & Pierazzo 1998. Meteorit. Planet. Sci. 33, 483-490. [8] Kletetscka 2010. Travaux Geophysiques XXXIX (2010), 40-41.

  10. Flight test experience and controlled impact of a remotely piloted jet transport aircraft

    NASA Technical Reports Server (NTRS)

    Horton, Timothy W.; Kempel, Robert W.

    1988-01-01

    The Dryden Flight Research Center Facility of NASA Ames Research Center (Ames-Dryden) and the FAA conducted the controlled impact demonstration (CID) program using a large, four-engine, remotely piloted jet transport airplane. Closed-loop primary flight was controlled through the existing onboard PB-20D autopilot which had been modified for the CID program. Uplink commands were sent from a ground-based cockpit and digital computer in conjunction with an up-down telemetry link. These uplink commands were received aboard the airplane and transferred through uplink interface systems to the modified PB-20D autopilot. Both proportional and discrete commands were produced by the ground system. Prior to flight tests, extensive simulation was conducted during the development of ground-based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems; however, piloted flight tests were the primary method and validation of control law concepts developed from simulation. The design, development, and flight testing of control laws and systems required to accomplish the remotely piloted mission are discussed.

  11. Hypervelocity Impact Test Fragment Modeling: Modifications to the Fragment Rotation Analysis and Lightcurve Code

    NASA Technical Reports Server (NTRS)

    Gouge, Michael F.

    2011-01-01

    Hypervelocity impact tests on test satellites are performed by members of the orbital debris scientific community in order to understand and typify the on-orbit collision breakup process. By analysis of these test satellite fragments, the fragment size and mass distributions are derived and incorporated into various orbital debris models. These same fragments are currently being put to new use using emerging technologies. Digital models of these fragments are created using a laser scanner. A group of computer programs referred to as the Fragment Rotation Analysis and Lightcurve code uses these digital representations in a multitude of ways that describe, measure, and model on-orbit fragments and fragment behavior. The Dynamic Rotation subroutine generates all of the possible reflected intensities from a scanned fragment as if it were observed to rotate dynamically while in orbit about the Earth. This calls an additional subroutine that graphically displays the intensities and the resulting frequency of those intensities as a range of solar phase angles in a Probability Density Function plot. This document reports the additions and modifications to the subset of the Fragment Rotation Analysis and Lightcurve concerned with the Dynamic Rotation and Probability Density Function plotting subroutines.

  12. Reconstruction of dynamic forces during impact tests of a crushable structure

    SciTech Connect

    Bateman, V.I.; Carne, T.G.; Mayes, R.L.; Davie, N.T.

    1993-12-31

    A force reconstruction technique is being used to assess the dynamic performance of a crushable structure (a bomb nose) in both the axial (90{degree}) and slapdown (30{degree}) impact conditions. The dynamic force characteristics for the current nose design, determined from these tests, will be used to write a dynamic force specification for a new nose design that will replace the current nose. Two structures for experimentally determining the dynamic force -- deflection characteristics of the old and new noses have been designed and constructed. One structure has the same dynamic characteristics as the bomb and is being used for axial and slapdown orientations with rocket-propelled testing. The second structure has the same mass as the bomb and is being used for iterative axial testing of candidate designs with a pneumatic ram. The structural characteristics of these two structures have been determined and are presented. A force reconstruction algorithm using the Sum of Weighted Accelerations Technique (SWAT) has been developed for each of the two structures. The force reconstruction algorithms have been verified for both structures using laboratory data. The force reconstruction process and the resulting algorithms are described. Data verifying the force reconstruction algorithms is presented.

  13. Investigation of Steven Impact Test Using a Transportation Hook Projectile with Gauged Experiments and 3D Modeling

    SciTech Connect

    Vandersall, K S; Murty, S S; Chidester, S K; Forbes, J W; Garcia, F; Greenwood, D W; Tarver, C M

    2003-07-02

    The Steven Impact Test and associated modeling offer valuable practical predictions for evaluating numerous safety scenarios involving low velocity impact of energetic materials by different projectile geometries. One such scenario is the impact of energetic material by a transportation hook during shipping, which offers complexity because of the irregular hook projectile shape. Experiments were performed using gauged Steven Test targets with PBX9404 impacted by a transportation hook projectile to compliment previous non-gauged experiments that established an impact threshold of approximately 69 m/s. Modeling of these experiments was performed with LS-DYNA code using an Ignition and Growth reaction criteria with a friction term. Comparison of the experiment to the model shows reasonable agreement with some details requiring more attention. The experimental results (including carbon resistor gauge records), model calculations, and a discussion of the dominant reaction mechanisms in light of comparisons between experiment and model will be presented.

  14. Neurocognitive performance and symptom profiles of Spanish-speaking Hispanic athletes on the ImPACT test.

    PubMed

    Ott, Summer; Schatz, Philip; Solomon, Gary; Ryan, Joseph J

    2014-03-01

    This study documented baseline neurocognitive performance of 23,815 athletes on the Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) test. Specifically, 9,733 Hispanic, Spanish-speaking athletes who completed the ImPACT test in English and 2,087 Hispanic, Spanish-speaking athletes who completed the test in Spanish were compared with 11,955 English-speaking athletes who completed the test in English. Athletes were assigned to age groups (13-15, 16-18). Results revealed a significant effect of language group (p < .001; partial η(2) = 0.06) and age (p < .001; partial η(2) = 0.01) on test performance. Younger athletes performed more poorly than older athletes, and Spanish-speaking athletes completing the test in Spanish scored more poorly than Spanish-speaking and English-speaking athletes completing the test in English, on all Composite scores and Total Symptom scores. Spanish-speaking athletes completing the test in English also performed more poorly than English-speaking athletes completing the test in English on three Composite scores. These differences in performance and reported symptoms highlight the need for caution in interpreting ImPACT test data for Hispanic Americans. PMID:24389704

  15. Impact of erosion testing aspects on current and future flight conditions

    NASA Astrophysics Data System (ADS)

    Gohardani, Omid

    2011-05-01

    High speed of aero vehicles including commercial and military aircraft, missiles, unmanned air vehicles, as well as conceptual aircraft of the future are imposing larger restrictions on the materials of these vehicles and highlight the importance of adequate quantification of material behavior and performance during different flight conditions. Erosion due to weather conditions and other present particles such as hydrometeors; rain, hail and ice, as well as sand, volcanic ash and dust resulting from residues in the atmosphere are eminent as hazardous on the structure of a flying vehicle and may adversely influence the lifecycle of the structure. This study outlines an extensive review of research efforts on erosion in aviation and provides a basis for comparison between different apparatus simulating rain erosion and their usage within the aerospace industry. The significant aspects of erosion testing and future prospects for erosion impact are further addressed for forthcoming generations of flying vehicles.

  16. The Impact of Cooperative Learning on Critical Thinking Test Scores of Associate's Degree Graduates in Southwest Virginia

    ERIC Educational Resources Information Center

    Hodges, James Gregory

    2013-01-01

    This study examined the impact that the teaching technique known as cooperative learning had on the changes between pre- and post-test scores on all sub-categories ("induction, deduction, analysis, evaluation, inference", and "total composite") associated with the "California Critical Thinking Skills Test" (CCTST) for…

  17. The Impact of Cooperative Learning on Critical Thinking Test Scores of Associate's Degree Graduates in Southwest Virginia

    ERIC Educational Resources Information Center

    Hodges, James Gregory

    2013-01-01

    This study examined the impact that the teaching technique known as cooperative learning had on the changes between pre- and post-test scores on all sub-categories ("induction, deduction, analysis, evaluation, inference", and "total composite") associated with the "California Critical Thinking Skills Test" (CCTST) for

  18. Urineschool: A Study of the Impact of the Earls Decision on High School Random Drug Testing Policies.

    ERIC Educational Resources Information Center

    Conlon, Cynthia Kelly

    2003-01-01

    Examines impact of Supreme Court's 2002 decision in "Board of Education v. Earls" on high school random drug-testing policies and practices. Court held that random drug-testing policy at Tecumseh, Oklahoma, school district did not violate students' Fourth Amendment right against unreasonable searches. (Contains 46 references.) (PKP)

  19. An exploratory study into the impact and acceptability of formatively used progress testing in postgraduate obstetrics and gynaecology.

    PubMed

    Dijksterhuis, Marja G K; Schuwirth, Lambert W T; Braat, Didi D M; Scheele, Fedde

    2013-06-01

    Part of recent reforms of postgraduate medical training in the Netherlands is the introduction of formatively intended knowledge testing or progress testing. We previously evaluated the construct validity and reliability of postgraduate progress testing. However, when assessment is intended to be formative, the acceptability of the test (scores) and the educational impact that is achieved are at least as important in the utility of this assessment format. We developed a questionnaire targeted at both educational supervisors and postgraduate trainees, containing questions on general acceptability, educational impact and acceptability of test content. 90 % of trainees and 84 % of educational supervisors completed the questionnaire. The general acceptability of formatively used progress testing is good; however, the self-reported educational impact is limited. Furthermore, trainees query the validity of test content. Formatively intended progress testing is well accepted; however the impact is limited. We discuss the importance of feedback quality and the effect of grading. Furthermore we start a debate on whether, for a genuine effect on learning, formative assessment should have consequences, either by entwining the assessment with the training programme or by linking the assessment to a summative standard. PMID:27023455

  20. Force corridors of post mortem human surrogates in oblique side impacts from sled tests.

    PubMed

    Yoganandan, Narayan; Humm, John R; Pintar, Frank A

    2013-11-01

    To develop region-specific force corridors in side impacts under oblique loadings using post mortem human surrogates (PMHS). Unembalmed PMHS were positioned on a sled. Surrogates contacted a segmented, modular/ scalable load-wall to isolate region-specific forces (shoulder, thorax, abdomen, pelvis). Heights and widths of segmented load-wall plates were adjustable in sagittal and coronal planes to accommodate anthropometry variations. Load cells were used to gather region-specific forces. Tests were conducted at 6.7 m/s. Peak forces and times of attainments, and standard corridors (mean ± 1 SD) are given for the four torso regions and summated forces. The mean age, stature, and total body mass of the five male PMHS were: 56.6 ± 4.4 years, 183 ± 3.5 cm and 70.6 ± 9.0 kg. Peak pelvis forces were the greatest, followed by thorax, abdomen and shoulder. Sequence of times of attainments of peak forces initiating from pelvis increased rostrally to abdomen to thorax and shoulder regions. Corridors were tight in all regions, except shoulder. As previous force corridors were based solely on pure-lateral impacts and region-specific forces were not extracted, the present oblique responses using anthropometry-specific load-wall design can be used to develop injury criteria and evaluate the biofidelity of dummies. PMID:23817764