These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Vaccinia virus vaccines: past, present and future.  

PubMed

Vaccinia virus (VACV) has been used more extensively for human immunization than any other vaccine. For almost two centuries, VACV was employed to provide cross-protection against variola virus, the causative agent of smallpox, until the disease was eradicated in the late 1970s. Since that time, continued research on VACV has produced a number of modified vaccines with improved safety profiles. Attenuation has been achieved through several strategies, including sequential passage in an alternative host, deletion of specific genes or genetic engineering of viral genes encoding immunomodulatory proteins. Some highly attenuated third- and fourth-generation VACV vaccines are now being considered for stockpiling against a possible re-introduction of smallpox through bioterrorism. Researchers have also taken advantage of the ability of the VACV genome to accommodate additional genetic material to produce novel vaccines against a wide variety of infectious agents, including a recombinant VACV encoding the rabies virus glycoprotein that is administered orally to wild animals. This review provides an in-depth examination of these successive generations of VACV vaccines, focusing on how the understanding of poxviral replication and viral gene function permits the deliberate modification of VACV immunogenicity and virulence. PMID:19563829

Jacobs, Bertram L; Langland, Jeffrey O; Kibler, Karen V; Denzler, Karen L; White, Stacy D; Holechek, Susan A; Wong, Shukmei; Huynh, Trung; Baskin, Carole R

2009-10-01

2

Antitumor efficacy of vaccinia virus-modified tumor cell vaccine  

SciTech Connect

The antitumor efficacies of vaccinia virus-modified tumor cell vaccines were examined in murine syngeneic MH134 and X5563 tumor cells. UV-inactivated vaccinia virus was inoculated i.p. into C3H/HeN mice that had received whole body X-irradiation at 150 rads. After 3 weeks, the vaccines were administered i.p. 3 times at weekly intervals. One week after the last injection, mice were challenged i.p. with various doses of syngeneic MH134 or X5563 viable tumor cells. Four methods were used for preparing tumor cell vaccines: X-ray irradiation; fixation with paraformaldehyde for 1 h or 3 months; and purification of the membrane fraction. All four vaccines were effective, but the former two vaccines were the most effective. A mixture of the membrane fraction of untreated tumor cells and UV-inactivated vaccinia virus also had an antitumor effect. These results indicate that vaccine with the complete cell structure is the most effective. The membrane fraction of UV-inactivated vaccinia virus-absorbed tumor cells was also effective. UV-inactivated vaccinia virus can react with not only intact tumor cells but also the purified membrane fraction of tumor cells and augment antitumor activity.

Ito, T.; Wang, D.Q.; Maru, M.; Nakajima, K.; Kato, S.; Kurimura, T.; Wakamiya, N. (Osaka Univ. (Japan))

1990-11-01

3

Vaccinia Virus: A Tool for Research and Vaccine Development  

NASA Astrophysics Data System (ADS)

Vaccinia virus is no longer needed for smallpox immunization, but now serves as a useful vector for expressing genes within the cytoplasm of eukaryotic cells. As a research tool, recombinant vaccinia viruses are used to synthesize biologically active proteins and analyze structure-function relations, determine the targets of humoral- and cell-mediated immunity, and investigate the immune responses needed for protection against specific infectious diseases. When more data on safety and efficacy are available, recombinant vaccinia and related poxviruses may be candidates for live vaccines and for cancer immunotherapy.

Moss, Bernard

1991-06-01

4

Vaccinia virus as a vaccine delivery system for marsupial wildlife.  

PubMed

Vaccines based on recombinant poxviruses have proved successful in controlling diseases such as rabies and plague in wild eutherian mammals. They have also been trialled experimentally as delivery agents for fertility-control vaccines in rodents and foxes. In some countries, marsupial mammals represent a wildlife disease reservoir or a threat to conservation values but, as yet there has been no bespoke study of efficacy or immunogenicity of a poxvirus-based vaccine delivery system in a marsupial. Here, we report a study of the potential for vaccination using vaccinia virus in the Australian brushtail possum Trichosurus vulpecula, an introduced pest species in New Zealand. Parent-strain vaccinia virus (Lister) infected 8/8 possums following delivery of virus to the oral cavity and outer nares surfaces (oronasal immunisation), and persisted in the mucosal epithelium around the palatine tonsils for up to 2 weeks post-exposure. A recombinant vaccinia virus construct (VV399, which expresses the Eg95 antigen of the hydatid disease parasite Echinococcus granulosus) was shown to infect 10/15 possums after a single-dose oronasal delivery and to also persist. Both parent vaccinia virus and the VV399 construct virus induced peripheral blood lymphocyte reactivity against viral antigens in possums, first apparent at 4 weeks post-exposure and still detectable at 4 months post-exposure. Serum antibody reactivity to Eg95 was recorded in 7/8 possums which received a single dose of the VV399 construct and 7/7 animals which received triple-dose delivery, with titre end-points in the latter case exceeding 1/4000 dilution. This study demonstrates that vaccinia virus will readily infect possums via a delivery means used to deploy wildlife vaccines, and in doing is capable of generating immune reactivity against viral and heterologous antigens. This highlights the future potential of recombinant vaccinia virus as a vaccine delivery system in marsupial wildlife. PMID:21570435

Cross, Martin L; Fleming, Stephen B; Cowan, Phil E; Scobie, Susie; Whelan, Ellena; Prada, Diana; Mercer, Andrew A; Duckworth, Janine A

2011-06-20

5

Clonal vaccinia virus grown in cell culture as a new smallpox vaccine  

Microsoft Academic Search

Although the smallpox virus was eradicated over 20 years ago, its potential release through bioterrorism has generated renewed interest in vaccination. To develop a modern smallpox vaccine, we have adapted vaccinia virus that was derived from the existing Dryvax vaccine for growth in a human diploid cell line. We characterized six cloned and one uncloned vaccine candidates. One clone, designated

Jian Liu; Konstantin V Pugachev; Gwendolyn A Myers; Brie Coughlin; Paul S Blum; Richard Nichols; Casey Johnson; John Cruz; Jeffrey S Kennedy; Francis A Ennis; Richard Weltzin; Thomas P Monath

2003-01-01

6

Brazilian Vaccinia virus strains are genetically divergent and differ from the Lister vaccine strain.  

PubMed

Vaccinia virus is responsible for an important zoonotic disease affecting dairy cattle and humans in Brazil, but little is known about the origin, epidemiology and evolution of these Brazilian Vaccinia virus strains. In this work, seven Brazilian Vaccinia virus strains and the Lister-derived Brazilian vaccine strain, named Lister-Butantan, were compared based on the sequences of ten host range and virulence related genes. Comparison of Brazilian Vaccinia virus strains with Lister-Butantan revealed several differences. Phylogenetic analyses confirmed the existence of genetically distinct Brazilian Vaccinia virus groups and has not thus far demonstrated a close relationship between Brazilian strains and Lister-Butantan. In this study, the BeAn58058 and SPAn232 strains were grouped together with the Belo Horizonte and Guarani P1 strains. Additionally, genetic polymorphisms in host range and virulence genes as well as differences in the deduced amino acid sequences were detected among Brazilian Vaccinia virus. This genetic diversity may result in a plethora of different biological properties presented by Brazilian Vaccinia virus, including differences in adaptation to the host as well as pathogenic properties. Furthermore, co-circulation of these divergent strains could increase the possibility of recombination events in nature, leading to the formation of new variants with unpredictable pathogenic potential. PMID:18248758

Drumond, Betânia Paiva; Leite, Juliana Almeida; da Fonseca, Flávio Guimarães; Bonjardim, Cláudio Antônio; Ferreira, Paulo César Peregrino; Kroon, Erna Geessien

2008-02-01

7

Human CD4+ T Cell Epitopes from Vaccinia Virus Induced by Vaccination or Infection  

PubMed Central

Despite the importance of vaccinia virus in basic and applied immunology, our knowledge of the human immune response directed against this virus is very limited. CD4+ T cell responses are an important component of immunity induced by current vaccinia-based vaccines, and likely will be required for new subunit vaccine approaches, but to date vaccinia-specific CD4+ T cell responses have been poorly characterized, and CD4+ T cell epitopes have been reported only recently. Classical approaches used to identify T cell epitopes are not practical for large genomes like vaccinia. We developed and validated a highly efficient computational approach that combines prediction of class II MHC-peptide binding activity with prediction of antigen processing and presentation. Using this approach and screening only 36 peptides, we identified 25 epitopes recognized by T cells from vaccinia-immune individuals. Although the predictions were made for HLA-DR1, eight of the peptides were recognized by donors of multiple haplotypes. T cell responses were observed in samples of peripheral blood obtained many years after primary vaccination, and were amplified after booster immunization. Peptides recognized by multiple donors are highly conserved across the poxvirus family, including variola, the causative agent of smallpox, and may be useful in development of a new generation of smallpox vaccines and in the analysis of the immune response elicited to vaccinia virus. Moreover, the epitope identification approach developed here should find application to other large-genome pathogens. PMID:17937498

Calvo-Calle, J. Mauricio; Strug, Iwona; Nastke, Maria-Dorothea; Baker, Stephen P; Stern, Lawrence J

2007-01-01

8

Construction of Live Vaccines Using Genetically Engineered Poxviruses: Biological Activity of Vaccinia Virus Recombinants Expressing the Hepatitis B Virus Surface Antigen and the Herpes Simplex Virus Glycoprotein D  

Microsoft Academic Search

Potential live vaccines using recombinant vaccinia viruses have been constructed for both hepatitis B and herpes simplex. These recombinant vaccinia viruses express cloned genes of the hepatitis B virus surface antigen (HBsAg) or the glycoprotein D from herpes simplex virus (HSV-gD). The HBsAg synthesized in vitro under the regulation of vaccinia virus is secreted from infected cells as a particle

Enzo Paoletti; Bernard R. Lipinskas; Carol Samsonoff; Susan Mercer; Dennis Panicali

1984-01-01

9

Protective efficacy of vaccination by recombinant vaccinia virus against Neospora caninum infection.  

PubMed

The recombinant vaccinia viruses expressing the surface protein of Neospora caninum tachyzoite, NcSAG1 or NcSRS2, were constructed. The vaccination with these recombinant viruses could protect effectively the parasite invasion in a mouse model system. The vaccine efficacy of NcSRS2 was higher than that of NcSAG1. The present study indicated that a high level of IgG1 Ab production to parasite is important for clearance of parasite at the early stage of infection and that T cell response has a crucial role for protection against the intracellular infection at the late stage of infection. The recombinant vaccinia viruses might be applicable as vaccine against N. caninum infection in a natural host. PMID:11163660

Nishikawa, Y; Inoue, N; Xuan, X; Nagasawa, H; Igarashi, I; Fujisaki, K; Otsuka, H; Mikami, T

2001-01-01

10

Host range, growth property, and virulence of the smallpox vaccine: Vaccinia virus Tian Tan strain  

SciTech Connect

Vaccinia Tian Tan (VTT) was used as a vaccine against smallpox in China for millions of people before 1980, yet the biological characteristics of the virus remain unclear. We have characterized VTT with respect to its host cell range, growth properties in vitro, and virulence in vivo. We found that 11 of the 12 mammalian cell lines studied are permissive to VTT infection whereas one, CHO-K1, is non-permissive. Using electron microscopy and sequence analysis, we found that the restriction of VTT replication in CHO-K1 is at a step before viral maturation probably due to the loss of the V025 gene. Moreover, VTT is significantly less virulent than vaccinia WR but remains neurovirulent in mice and causes significant body weight loss after intranasal inoculation. Our data demonstrate the need for further attenuation of VTT to serve either as a safer smallpox vaccine or as a live vaccine vector for other pathogens.

Fang Qing [Modern Virology Research Center and AIDS Center, National Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei 430072 (China); Yang Lin [Modern Virology Research Center and AIDS Center, National Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei 430072 (China); Zhu Weijun [Modern Virology Research Center and AIDS Center, National Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei 430072 (China); Liu Li [Modern Virology Research Center and AIDS Center, National Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei 430072 (China); Wang Haibo [Modern Virology Research Center and AIDS Center, National Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei 430072 (China); Yu Wenbo [Modern Virology Research Center and AIDS Center, National Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei 430072 (China); Xiao Genfu [Modern Virology Research Center and AIDS Center, National Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei 430072 (China); Tien Po [Modern Virology Research Center and AIDS Center, National Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei 430072 (China); Zhang Linqi [Modern Virology Research Center and AIDS Center, National Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei 430072 (China); Aaron Diamond AIDS Research Center, Rockefeller University, New York, NY 10016 (United States); AIDS Research Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing (China); Chen Zhiwei [Modern Virology Research Center and AIDS Center, National Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei 430072 (China) and Aaron Diamond AIDS Research Center, Rockefeller University, New York, NY 10016 (United States)]. E-mail: zchen@adarc.org

2005-05-10

11

Reemergence of Vaccinia Virus during Zoonotic Outbreak, Pará State, Brazil  

PubMed Central

In 2010, vaccinia virus caused an outbreak of bovine vaccinia that affected dairy cattle and rural workers in Pará State, Brazil. Genetic analyses identified the virus as distinct from BeAn58058 vaccinia virus (identified in 1960s) and from smallpox vaccine virus strains. These findings suggest spread of autochthonous group 1 vaccinia virus in this region. PMID:24274374

de Assis, Felipe L.; Vinhote, Wagner M.; Barbosa, José D.; de Oliveira, Cairo H.S.; de Oliveira, Carlos M.G.; Campos, Karinny F.; Silva, Natália S.; Trindade, Giliane de Souza

2013-01-01

12

Development of a vaccinia virus based reservoir-targeted vaccine against Yersinia pestis  

PubMed Central

Yersinia pestis, the causative organism of plague, is a zoonotic organism with a worldwide distribution. Although the last plague epidemic occurred in early 1900s, human cases continue to occur due to contact with infected wild animals. In this study, we have developed a reservoir-targeted vaccine against Y. pestis, to interrupt transmission of disease in wild animals as a potential strategy for decreasing human disease. A vaccinia virus delivery system was used to express the F1 capsular protein and the LcrV type III secretion component of Y. pestis as a fusion protein. Here we show that a single dose of this vaccine administered orally, generates a dose-dependent antibody response in mice. Antibody titers peak by 3 weeks after administration and remain elevated for a minimum of 45 weeks. Vaccination provided up to 100% protection against challenge with Y. pestis administered by intranasal challenge at 10 times the lethal dose with protection lasting a minimum of 45 weeks. An orally available, vaccinia virus expressed vaccine against Y. pestis may be a suitable vaccine for a reservoir targeted strategy for the prevention of enzootic plague. PMID:20875494

Bhattacharya, Debaditya; Mecsas, Joan; Hu, Linden T.

2010-01-01

13

Oral vaccination with vaccinia virus expressing the tick antigen subolesin inhibits tick feeding and transmission of Borrelia burgdorferi.  

PubMed

Immunization with the Ixodes scapularis protein, subolesin, has previously been shown to protect hosts against tick infestation and to decrease acquisition of Anaplsma marginale and Babesia bigemina. Here we report the efficacy of subolesin, a conserved tick protein that can act as a regulator of gene expression, expressed from vaccinia virus for use as an orally delivered reservoir - targeted vaccine for prevention of tick infestation and acquisition/transmission of Borrelia burgdorferi to its tick and mouse hosts. We cloned subolesin into vaccinia virus and showed that it is expressed from mammalian cells infected with the recombinant virus in vitro. We then vaccinated mice by oral gavage. A single dose of the vaccine was sufficient for mice to generate antibody response to subolesin. Vaccination with the subolesin expressing vaccinia virus inhibited tick infestation by 52% compared to control vaccination with vaccinia virus and reduced uptake of B. burgdorferi among the surviving ticks that fed to repletion by 34%. There was a reduction in transmission of B. burgdorferi to uninfected vaccinated mice of 40% compared to controls. These results suggest that subolesin has potential as a component of a reservoir targeted vaccine to decrease B. burgdorferi, Babesia and Anaplasma species infections in their natural hosts. PMID:22864146

Bensaci, Mekki; Bhattacharya, Debaditya; Clark, Roger; Hu, Linden T

2012-09-14

14

Identification of vaccinia virus epitope-specific HLA-A*0201-restricted T cells and comparative analysis of smallpox vaccines  

PubMed Central

Despite worldwide eradication of naturally occurring variola virus, smallpox remains a potential threat to both civilian and military populations. New, safe smallpox vaccines are being developed, and there is an urgent need for methods to evaluate vaccine efficacy after immunization. Here we report the identification of an immunodominant HLA-A*0201-restricted epitope that is recognized by cytotoxic CD8+ T cells and conserved among Orthopoxvirus species including variola virus. This finding has permitted analysis and monitoring of epitope-specific T cell responses after immunization and demonstration of the identified T cell specificity in an A*0201-positive human donor. Vaccination of transgenic mice allowed us to compare the immunogenicity of several vaccinia viruses including highly attenuated, replication-deficient modified vaccinia virus Ankara (MVA). MVA vaccines elicited levels of CD8+ T cell responses that were comparable to those induced by the replication-competent vaccinia virus strains. Finally, we demonstrate that MVA vaccination is fully protective against a lethal respiratory challenge with virulent vaccinia virus strain Western Reserve. Our data provide a basis to rationally estimate immunogenicity of safe, second-generation poxvirus vaccines and suggest that MVA may be a suitable candidate. PMID:12518065

Drexler, Ingo; Staib, Caroline; Kastenmüller, Wolfgang; Stevanovi?, Stefan; Schmidt, Burkhard; Lemonnier, François A.; Rammensee, Hans-Georg; Busch, Dirk H.; Bernhard, Helga; Erfle, Volker; Sutter, Gerd

2003-01-01

15

A human multi-epitope recombinant vaccinia virus as a universal T cell vaccine candidate against influenza virus.  

PubMed

There is a need to develop a universal vaccine against influenza virus infection to avoid developing new formulations of a seasonal vaccine each year. Many of the vaccine strategies for a universal vaccine target strain-conserved influenza virus proteins, such as the matrix, polymerase, and nucleoproteins, rather than the surface hemagglutinin and neuraminidase proteins. In addition, non-disease-causing viral vectors are a popular choice as a delivery system for the influenza virus antigens. As a proof-of-concept, we have designed a novel influenza virus immunogen based on the NP backbone containing human T cell epitopes for M1, NS1, NP, PB1 and PA proteins (referred as NPmix) as well as a construct containing the conserved regions of influenza virus neuraminidase (N-terminal) and hemagglutinin (C-terminal) (referred as NA-HA). DNA vectors and vaccinia virus recombinants expressing NPmix (WR-NP) or both NPmix plus NA-HA (WR-flu) in the cytosol were tested in a heterologous DNA-prime/vaccinia virus-boost vaccine regimen in mice. We observed an increase in the number of influenza virus-specific IFN?-secreting splenocytes, composed of populations marked by CD4(+) and CD8(+) T cells producing IFN? or TNF?. Upon challenge with influenza virus, the vaccinated mice exhibited decreased viral load in the lungs and a delay in mortality. These findings suggest that DNA prime/poxvirus boost with human multi-epitope recombinant influenza virus proteins is a valid approach for a general T-cell vaccine to protect against influenza virus infection. PMID:21998725

Goodman, Alan G; Heinen, Paul P; Guerra, Susana; Vijayan, Aneesh; Sorzano, Carlos Oscar S; Gomez, Carmen E; Esteban, Mariano

2011-01-01

16

Failure of the Smallpox Vaccine To Develop a Skin Lesion in Vaccinia Virus-Naïve Individuals Is Related to Differences in Antibody Profiles before Vaccination, Not After  

PubMed Central

Successful vaccination against smallpox with conventional vaccinia virus is usually determined by the development of a vesicular skin lesion at the site of vaccinia inoculation, called a “take.” Although previous vaccination is known to be associated with attenuation of the take, the immunology that underlies a no-take in vaccinia-naïve individuals is not well understood. We hypothesized that antibody profiling of individuals before and after receiving vaccinia virus would reveal differences between takes and no-takes that may help better explain the phenomenon. Using vaccinia virus proteome microarrays and recombinant protein enzyme-linked immunosorbent assays (ELISAs), we first examined the antibody response in vaccinia-naïve individuals that failed to take after receiving different doses of the replication-competent DryVax and Aventis Pasteur (APSV) smallpox vaccines. Most that received diluted vaccine failed to respond, although four no-takes receiving diluted vaccine and four receiving undiluted vaccine mounted an antibody response. Interestingly, their antibody profiles were not significantly different from those of controls that did show a take. However, we did find elevated antibody titers in no-takes prior to receiving DryVax that were significantly different from those of takes. Although the sample size studied was small, we conclude the failure to take in responders correlates with preexisting immunity of unknown etiology that may attenuate the skin reaction in a way similar to previous smallpox vaccination. PMID:22258709

Tan, Xiaolin; Chun, Sookhee; Pablo, Jozelyn; Felgner, Philip; Liang, Xiaowu

2012-01-01

17

A vaccinia virus renaissance  

PubMed Central

In 1796, Edward Jenner introduced the concept of vaccination with cowpox virus, an Orthopoxvirus within the family Poxviridae that elicits cross protective immunity against related orthopoxviruses, including smallpox virus (variola virus). Over time, vaccinia virus (VACV) replaced cowpox virus as the smallpox vaccine, and vaccination efforts eventually led to the successful global eradication of smallpox in 1979. VACV has many characteristics that make it an excellent vaccine and that were crucial for the successful eradication of smallpox, including (1) its exceptional thermal stability (a very important but uncommon characteristic in live vaccines), (2) its ability to elicit strong humoral and cell-mediated immune responses, (3) the fact that it is easy to propagate, and (4) that it is not oncogenic, given that VACV replication occurs exclusively within the host cell cytoplasm and there is no evidence that the viral genome integrates into the host genome. Since the eradication of smallpox, VACV has experienced a renaissance of interest as a viral vector for the development of recombinant vaccines, immunotherapies, and oncolytic therapies, as well as the development of next-generation smallpox vaccines. This revival is mainly due to the successful use and extensive characterization of VACV as a vaccine during the smallpox eradication campaign, along with the ability to genetically manipulate its large dsDNA genome while retaining infectivity and immunogenicity, its wide mammalian host range, and its natural tropism for tumor cells that allows its use as an oncolytic vector. This review provides an overview of new uses of VACV that are currently being explored for the development of vaccines, immunotherapeutics, and oncolytic virotherapies. PMID:22777090

Verardi, Paulo H.; Titong, Allison; Hagen, Caitlin J.

2012-01-01

18

Cross-protective immunity against multiple influenza virus subtypes by a novel modified vaccinia Ankara (MVA) vectored vaccine in mice.  

PubMed

Development of an influenza vaccine that provides cross-protective immunity remains a challenge. Candidate vaccines based on a recombinant modified vaccinia Ankara (MVA) viral vector expressing antigens from influenza (MVA/Flu) viruses were constructed. A vaccine candidate, designated MVA/HA1/C13L/NP, that expresses the hemagglutinin from pandemic H1N1 (A/California/04/09) and the nucleoprotein (NP) from highly pathogenic H5N1 (A/Vietnam/1203/04) fused to a secretory signal sequence from vaccinia virus was highly protective. The vaccine elicited strong antibody titers to homologous H1N1 viruses while cross-reactive antibodies to heterologous viruses were not detectable. In mice, this MVA/HA1/C13L/NP vaccine conferred complete protection against lethal challenge with A/Vietnam/1203/04 (H5N1), A/Norway/3487-2/09 (pandemic H1N1) or A/Influenza/Puerto Rico/8/34 (seasonal H1N1) and partial protection (57.1%) against challenge with seasonal H3N2 virus (A/Aichi/68). The protective efficacy of the vaccine was not affected by pre-existing immunity to vaccinia. Our findings highlight MVA as suitable vector to express multiple influenza antigens that could afford broad cross-protective immunity against multiple subtypes of influenza virus. PMID:23376279

Brewoo, Joseph N; Powell, Tim D; Jones, Jeremy C; Gundlach, Nancy A; Young, Ginger R; Chu, Haiyan; Das, Subash C; Partidos, Charalambos D; Stinchcomb, Dan T; Osorio, Jorge E

2013-04-01

19

Construction of Live Vaccines by Using Genetically Engineered Poxviruses: Biological Activity of Recombinant Vaccinia Virus Expressing Influenza Virus Hemagglutinin  

Microsoft Academic Search

Recombinant vaccinia viruses containing the cloned hemagglutinin (HA) gene from influenza virus were constructed. The biological activity of these poxvirus vectors was demonstrated both in vitro and in vivo. Expression of HA in cells infected with recombinant vaccinia was detected by using specific anti-HA antiserum and 125I-labeled protein A, showing that HA synthesized under the regulation of vaccinia virus was

Dennis Panicali; Stephen W. Davis; Randall L. Weinberg; Enzo Paoletti

1983-01-01

20

Genomic analysis of the vaccinia virus strain variants found in Dryvax vaccine.  

PubMed

Smallpox was eradicated using variant forms of vaccinia virus-based vaccines. One of these was Dryvax, a calf lymph vaccine derived from the New York City Board of Health strain. We used genome-sequencing technology to examine the genetic diversity of the population of viruses present in a sample of Dryvax. These studies show that the conserved cores of these viruses exhibit a lower level of sequence variation than do the telomeres. However, even though the ends of orthopoxviruses are more genetically plastic than the cores, there are still many telomeric genes that are conserved as intact open reading frames in the 11 genomes that we, and 4 genomes that others, have sequenced. Most of these genes likely modulate inflammation. Our sequencing also detected an evolving pattern of mutation, with some genes being highly fragmented by randomly assorting mutations (e.g., M1L), while other genes are intact in most viruses but have been disrupted in individual strains (e.g., I4L in strain DPP17). Over 85% of insertion and deletion mutations are associated with repeats, and a rare new isolate bearing a large deletion in the right telomere was identified. All of these strains cluster in dendrograms consistent with their origin but which also surprisingly incorporate horsepox virus. However, these viruses also exhibit a "patchy" pattern of polymorphic sites characteristic of recombinants. There is more genetic diversity detected within a vial of Dryvax than between variola virus major and minor strains, and our study highlights how propagation methods affect the genetics of orthopoxvirus populations. PMID:21976639

Qin, Li; Upton, Chris; Hazes, Bart; Evans, David H

2011-12-01

21

Effect of the Deletion of Genes Encoding Proteins of the Extracellular Virion Form of Vaccinia Virus on Vaccine Immunogenicity and Protective Effectiveness in the Mouse Model  

PubMed Central

Antibodies to both infectious forms of vaccinia virus, the mature virion (MV) and the enveloped virion (EV), as well as cell-mediated immune response appear to be important for protection against smallpox. EV virus particles, although more labile and less numerous than MV, are important for dissemination and spread of virus in infected hosts and thus important in virus pathogenesis. The importance of the EV A33 and B5 proteins for vaccine induced immunity and protection in a murine intranasal challenge model was evaluated by deletion of both the A33R and B5R genes in a vaccine-derived strain of vaccinia virus. Deletion of either A33R or B5R resulted in viruses with a small plaque phenotype and reduced virus yields, as reported previously, whereas deletion of both EV protein-encoding genes resulted in a virus that formed small infection foci that were detectable and quantifiable only by immunostaining and an even more dramatic decrease in total virus yield in cell culture. Deletion of B5R, either as a single gene knockout or in the double EV gene knockout virus, resulted in a loss of EV neutralizing activity, but all EV gene knockout viruses still induced a robust neutralizing activity against the vaccinia MV form of the virus. The effect of elimination of A33 and/or B5 on the protection afforded by vaccination was evaluated by intranasal challenge with a lethal dose of either vaccinia virus WR or IHD-J, a strain of vaccinia virus that produces relatively higher amounts of EV virus. The results from multiple experiments, using a range of vaccination doses and virus challenge doses, and using mortality, morbidity, and virus dissemination as endpoints, indicate that the absence of A33 and B5 have little effect on the ability of a vaccinia vaccine virus to provide protection against a lethal intranasal challenge in a mouse model. PMID:23785523

Meseda, Clement A.; Campbell, Joseph; Kumar, Arunima; Garcia, Alonzo D.; Merchlinsky, Michael; Weir, Jerry P.

2013-01-01

22

Genomic sequence and virulence of clonal isolates of vaccinia virus Tiantan, the Chinese smallpox vaccine strain.  

PubMed

Despite the worldwide eradication of smallpox in 1979, the potential bioterrorism threat from variola virus and the ongoing use of vaccinia virus (VACV) as a vector for vaccine development argue for continued research on VACV. In China, the VACV Tiantan strain (TT) was used in the smallpox eradication campaign. Its progeny strain is currently being used to develop a human immunodeficiency virus (HIV) vaccine. Here we sequenced the full genomes of five TT clones isolated by plaque purification from the TT (752-1) viral stock. Phylogenetic analysis with other commonly used VACV strains showed that TT (752-1) and its clones clustered and exhibited higher sequence diversity than that found in Dryvax clones. The ?190 kbp genomes of TT appeared to encode 273 open reading frames (ORFs). ORFs located in the middle of the genome were more conserved than those located at the two termini, where many virulence and immunomodulation associated genes reside. Several patterns of nucleotide changes including point mutations, insertions and deletions were identified. The polymorphisms in seven virulence-associated proteins and six immunomodulation-related proteins were analyzed. We also investigated the neuro- and skin- virulence of TT clones in mice and rabbits, respectively. The TT clones exhibited significantly less virulence than the New York City Board of Health (NYCBH) strain, as evidenced by less extensive weight loss and morbidity in mice as well as produced smaller skin lesions and lower incidence of putrescence in rabbits. The complete genome sequences, ORF annotations, and phenotypic diversity yielded from this study aid our understanding of the Chinese historic TT strain and are useful for HIV vaccine projects employing TT as a vector. PMID:23593246

Zhang, Qicheng; Tian, Meijuan; Feng, Yi; Zhao, Kai; Xu, Jing; Liu, Ying; Shao, Yiming

2013-01-01

23

Deletion of immunomodulator C6 from vaccinia virus strain Western Reserve enhances virus immunogenicity and vaccine efficacy.  

PubMed

Vectors based on vaccinia virus (VACV), the vaccine used to eradicate smallpox, are currently popular candidates for the vaccination against numerous infectious diseases including malaria and AIDS. Although VACV induces robust cellular and humoral responses, enhancing the safety and efficacy of these vectors remains an important area of research. Here, we describe the enhanced immunogenicity of a recombinant VACV Western Reserve (WR) strain lacking the immunomodulatory protein C6 (v?C6). Intradermal infection of mice with v?C6 was shown previously to induce smaller lesions, indicating viral attenuation, and this was confirmed here using a different inoculation dose. In addition, data presented show that vaccination with v?C6 provided better protection against challenge with a lethal dose of VACV WR, indicating this virus is a better vaccine. Increased protection was not due to improved humoral responses, but instead enhanced cytotoxic activity of T-cells 1 month post-inoculation in the spleens of v?C6-vaccinated mice. PMID:23288427

Sumner, Rebecca P; Ren, Hongwei; Smith, Geoffrey L

2013-05-01

24

Genomic differences of Vaccinia virus clones from Dryvax smallpox vaccine: The Dryvax-like ACAM2000 and the mouse neurovirulent Clone3  

Microsoft Academic Search

Conventional vaccines used for smallpox eradication were often denoted one or another strain of Vaccinia virus (VACV), even though seed virus was sub-cultured multifariously, which rendered the virion population genetically heterogeneous. ACAM2000 cell culture vaccine, recently licensed in the U.S., consists of a biologically vaccine-like VACV homogeneous-sequence clone from the conventional smallpox vaccine Dryvax, which we verified from Dryvax sequence

John D. Osborne; Melissa Da Silva; A. Michael Frace; Scott A. Sammons; Melissa Olsen-Rasmussen; Chris Upton; R. Mark L. Buller; Nanhai Chen; Zehua Feng; Rachel L. Roper; Jonathan Liu; Svetlana Pougatcheva; Weiping Chen; Robert M. Wohlhueter; Joseph J. Esposito

2007-01-01

25

Protective properties of vaccinia virus-based vaccines: skin scarification promotes a nonspecific immune response that protects against orthopoxvirus disease.  

PubMed

The process of vaccination introduced by Jenner generated immunity against smallpox and ultimately led to the eradication of the disease. Procedurally, in modern times, the virus is introduced into patients via a process called scarification, performed with a bifurcated needle containing a small amount of virus. What was unappreciated was the role that scarification itself plays in generating protective immunity. In rabbits, protection from lethal disease is induced by intradermal injection of vaccinia virus, whereas a protective response occurs within the first 2 min after scarification with or without virus, suggesting that the scarification process itself is a major contributor to immunoprotection. importance: These results show the importance of local nonspecific immunity in controlling poxvirus infections and indicate that the process of scarification should be critically considered during the development of vaccination protocols for other infectious agents. PMID:24760885

Rice, Amanda D; Adams, Mathew M; Lindsey, Scott F; Swetnam, Daniele M; Manning, Brandi R; Smith, Andrew J; Burrage, Andrew M; Wallace, Greg; MacNeill, Amy L; Moyer, Richard W

2014-07-01

26

Protective Properties of Vaccinia Virus-Based Vaccines: Skin Scarification Promotes a Nonspecific Immune Response That Protects against Orthopoxvirus Disease  

PubMed Central

ABSTRACT The process of vaccination introduced by Jenner generated immunity against smallpox and ultimately led to the eradication of the disease. Procedurally, in modern times, the virus is introduced into patients via a process called scarification, performed with a bifurcated needle containing a small amount of virus. What was unappreciated was the role that scarification itself plays in generating protective immunity. In rabbits, protection from lethal disease is induced by intradermal injection of vaccinia virus, whereas a protective response occurs within the first 2 min after scarification with or without virus, suggesting that the scarification process itself is a major contributor to immunoprotection. IMPORTANCE These results show the importance of local nonspecific immunity in controlling poxvirus infections and indicate that the process of scarification should be critically considered during the development of vaccination protocols for other infectious agents. PMID:24760885

Rice, Amanda D.; Adams, Mathew M.; Lindsey, Scott F.; Swetnam, Daniele M.; Manning, Brandi R.; Smith, Andrew J.; Burrage, Andrew M.; Wallace, Greg; MacNeill, Amy L.

2014-01-01

27

Vaccinia and other viruses with available vaccines show marked homology with the HIV-1 envelope glycoprotein: the prospect of using existing vaccines to stem the AIDS pandemic.  

PubMed

Cross-reactive immunity occurs when infection with or vaccination against one virus protects against another related family member. A search for homologues of the HIV-1 envelope glycoprotein revealed that it is composed of thousands of intercalating and overlapping viral matches of pentapeptide or longer gapped consensi, belonging to over 70% of the currently sequenced virome, infecting all kingdoms from bacteria to man. It was also highly homologous to proteins from the Visna/Maedi and other ovine viruses, while other proteins (nef/tat/gag/pol) were homologous to proteins from the equine infectious anaemia virus and HTLV-2/HTLV-3 viruses. This phenomenon suggests that horizontal gene transfer from coinfecting RNA and DNA viruses to retroviruses is extensive, providing a route for the subsequent insertion of non-retroviral genes into human and other genomes via retroviral integration. This homology includes all viruses for which vaccines already exist. Cross-reactive immunity may be operative in AIDS, as Vaccinia vaccination decreases viral replication in HIV-1 infected patients' cells, for the CCR5 tropic form. Measles, Dengue virus, or GB virus C infections also decrease the HIV-1 viral load. A resumption of Vaccinia/smallpox vaccination might be expected to have a significant effect on the AIDS pandemic, and a careful study of the potential uses of other existing viral and bacterial vaccines merits close attention. This phenomenon may also be relevant to other recalcitrant viruses, bacteria, and parasites for which no vaccine exists and the armory of existing vaccines may have a role to play in diseases other than those for which they were designed. PMID:21851326

Carter, C J Chris

2012-04-01

28

DNA and modified vaccinia virus Ankara vaccines encoding multiple cytotoxic and helper T-lymphocyte epitopes of human immunodeficiency virus type 1 (HIV-1) are safe but weakly immunogenic in HIV-1-uninfected, vaccinia virus-naive adults.  

PubMed

We evaluated a DNA plasmid-vectored vaccine and a recombinant modified vaccinia virus Ankara vaccine (MVA-mBN32), each encoding cytotoxic and helper T-lymphocyte epitopes of human immunodeficiency virus type 1 (HIV-1) in a randomized, double-blinded, placebo-controlled trial in 36 HIV-1-uninfected adults using a heterologous prime-boost schedule. HIV-1-specific cellular immune responses, measured as interleukin-2 and/or gamma interferon production, were induced in 1 (4%) of 28 subjects after the first MVA-mBN32 immunization and in 3 (12%) of 25 subjects after the second MVA-mBN32 immunization. Among these responders, polyfunctional T-cell responses, including the production of tumor necrosis factor alpha and perforin, were detected. Vaccinia virus-specific antibodies were induced to the MVA vector in 27 (93%) of 29 and 26 (93%) of 28 subjects after the first and second immunizations with MVA-mBN32. These peptide-based vaccines were safe but were ineffective at inducing HIV-1-specific immune responses and induced much weaker responses than MVA vaccines expressing the entire open reading frames of HIV-1 proteins. PMID:22398243

Gorse, Geoffrey J; Newman, Mark J; deCamp, Allan; Hay, Christine Mhorag; De Rosa, Stephen C; Noonan, Elizabeth; Livingston, Brian D; Fuchs, Jonathan D; Kalams, Spyros A; Cassis-Ghavami, Farah L

2012-05-01

29

DNA and Modified Vaccinia Virus Ankara Vaccines Encoding Multiple Cytotoxic and Helper T-Lymphocyte Epitopes of Human Immunodeficiency Virus Type 1 (HIV-1) Are Safe but Weakly Immunogenic in HIV-1-Uninfected, Vaccinia Virus-Naive Adults  

PubMed Central

We evaluated a DNA plasmid-vectored vaccine and a recombinant modified vaccinia virus Ankara vaccine (MVA-mBN32), each encoding cytotoxic and helper T-lymphocyte epitopes of human immunodeficiency virus type 1 (HIV-1) in a randomized, double-blinded, placebo-controlled trial in 36 HIV-1-uninfected adults using a heterologous prime-boost schedule. HIV-1-specific cellular immune responses, measured as interleukin-2 and/or gamma interferon production, were induced in 1 (4%) of 28 subjects after the first MVA-mBN32 immunization and in 3 (12%) of 25 subjects after the second MVA-mBN32 immunization. Among these responders, polyfunctional T-cell responses, including the production of tumor necrosis factor alpha and perforin, were detected. Vaccinia virus-specific antibodies were induced to the MVA vector in 27 (93%) of 29 and 26 (93%) of 28 subjects after the first and second immunizations with MVA-mBN32. These peptide-based vaccines were safe but were ineffective at inducing HIV-1-specific immune responses and induced much weaker responses than MVA vaccines expressing the entire open reading frames of HIV-1 proteins. PMID:22398243

Newman, Mark J.; deCamp, Allan; Hay, Christine Mhorag; De Rosa, Stephen C.; Noonan, Elizabeth; Livingston, Brian D.; Fuchs, Jonathan D.; Kalams, Spyros A.; Cassis-Ghavami, Farah L.

2012-01-01

30

Protection of Mice from Fatal Measles Encephalitis by Vaccination with Vaccinia Virus Recombinants Encoding Either the Hemagglutinin or the Fusion Protein  

NASA Astrophysics Data System (ADS)

Vaccinia virus recombinants encoding the hemagglutinin or fusion protein of measles virus have been constructed. Infection of cell cultures with the recombinants led to the synthesis of authentic measles proteins as judged by their electrophoretic mobility, recognition by antibodies, glycosylation, proteolytic cleavage, and presentation on the cell surface. Mice vaccinated with a single dose of the recombinant encoding the hemagglutinin protein developed antibodies capable of both inhibiting hemagglutination activity and neutralizing measles virus, whereas animals vaccinated with the recombinant encoding the fusion protein developed measles neutralizing antibodies. Mice vaccinated with either of the recombinants resisted a normally lethal intracerebral inoculation of a cell-associated measles virus subacute sclerosing panencephalitis strain.

Drillien, Robert; Spehner, Daniele; Kirn, Andre; Giraudon, Pascale; Buckland, Robin; Wild, Fabian; Lecocq, Jean-Pierre

1988-02-01

31

Safety and Immunogenicity of DNA Prime and Modified Vaccinia Ankara Virus-HIV Subtype C Vaccine Boost in Healthy Adults  

PubMed Central

A randomized, double-blind, placebo-controlled phase I trial was conducted in 32 HIV-uninfected healthy volunteers to assess the safety and immunogenicity of 3 doses of DNA vaccine (Advax) plus 1 dose of recombinant modified vaccinia virus Ankara (MVA) (TBC-M4) or 3 doses of TBC-M4 alone (groups A and B, respectively). Both vaccine regimens were found to be safe and well tolerated. Gamma interferon (IFN-?) enzyme-linked immunosorbent spot (ELISPOT) assay responses were detected in 1/10 (10%) individuals in group A after three Advax primes and in 9/9 individuals (100%) after the MVA boost. In group B, IFN-? ELISPOT responses were detected in 6/12 (50%) and 7/11 (64%) individuals after the second and third MVA vaccinations, respectively. Responses to all vaccine components, but predominantly to Env, were seen. The breadth and magnitude of the T cell response and viral inhibition were greater in group A than in group B, indicating that the quality of the T-cell response was enhanced by the DNA prime. Intracellular cytokine staining indicated that the T-cell responses were polyfunctional but were skewed toward Env with a CD4+ phenotype. At 2 weeks after the last vaccination, HIV-specific antibody responses were detected in all (100%) group B and 1/11 (9.1%) group A vaccinees. Vaccinia virus-specific responses were detected in all (100%) group B and 2/11 (18.2%) group A vaccinees. In conclusion, HIV-specific T-cell responses were seen in the majority of volunteers in groups A and B but with a trend toward greater quality of the T-cell response in group A. Antibody responses were better in group B than in group A. PMID:23345581

Hayes, Peter; Gilmour, Jill; von Lieven, Andrea; Gill, Dilbinder; Clark, Lorna; Kopycinski, Jakub; Cheeseman, Hannah; Chung, Amy; Alter, Galit; Dally, Len; Zachariah, Devika; Lombardo, Angela; Ackland, James; Sayeed, Eddy; Jackson, Akil; Boffito, Marta; Gazzard, Brian; Fast, Patricia E.; Laufer, Dagna

2013-01-01

32

Safety and immunogenicity of DNA prime and modified vaccinia ankara virus-HIV subtype C vaccine boost in healthy adults.  

PubMed

A randomized, double-blind, placebo-controlled phase I trial was conducted in 32 HIV-uninfected healthy volunteers to assess the safety and immunogenicity of 3 doses of DNA vaccine (Advax) plus 1 dose of recombinant modified vaccinia virus Ankara (MVA) (TBC-M4) or 3 doses of TBC-M4 alone (groups A and B, respectively). Both vaccine regimens were found to be safe and well tolerated. Gamma interferon (IFN-?) enzyme-linked immunosorbent spot (ELISPOT) assay responses were detected in 1/10 (10%) individuals in group A after three Advax primes and in 9/9 individuals (100%) after the MVA boost. In group B, IFN-? ELISPOT responses were detected in 6/12 (50%) and 7/11 (64%) individuals after the second and third MVA vaccinations, respectively. Responses to all vaccine components, but predominantly to Env, were seen. The breadth and magnitude of the T cell response and viral inhibition were greater in group A than in group B, indicating that the quality of the T-cell response was enhanced by the DNA prime. Intracellular cytokine staining indicated that the T-cell responses were polyfunctional but were skewed toward Env with a CD4(+) phenotype. At 2 weeks after the last vaccination, HIV-specific antibody responses were detected in all (100%) group B and 1/11 (9.1%) group A vaccinees. Vaccinia virus-specific responses were detected in all (100%) group B and 2/11 (18.2%) group A vaccinees. In conclusion, HIV-specific T-cell responses were seen in the majority of volunteers in groups A and B but with a trend toward greater quality of the T-cell response in group A. Antibody responses were better in group B than in group A. PMID:23345581

Hayes, Peter; Gilmour, Jill; von Lieven, Andrea; Gill, Dilbinder; Clark, Lorna; Kopycinski, Jakub; Cheeseman, Hannah; Chung, Amy; Alter, Galit; Dally, Len; Zachariah, Devika; Lombardo, Angela; Ackland, James; Sayeed, Eddy; Jackson, Akil; Boffito, Marta; Gazzard, Brian; Fast, Patricia E; Cox, Josephine H; Laufer, Dagna

2013-03-01

33

Plasmodium knowlesi Sporozoite Antigen: Expression by Infectious Recombinant Vaccinia Virus  

NASA Astrophysics Data System (ADS)

The gene coding for the circumsporozoite antigen of the malaria parasite Plasmodium knowlesi was inserted into the vaccinia virus genome under the control of a defined vaccinia virus promoter. Cells infected with the recombinant virus synthesized polypeptides of 53,000 to 56,000 daltons that reacted with monoclonal antibody against the repeating epitope of the malaria protein. Furthermore, rabbits vaccinated with the recombinant virus produced antibodies that bound specifically to sporozoites. These data provide evidence for expression of a cloned malaria gene in mammalian cells and illustrate the potential of vaccinia virus recombinants as live malaria vaccines.

Smith, Geoffrey L.; Godson, G. Nigel; Nussenzweig, Victor; Nussenzweig, Ruth S.; Barnwell, John; Moss, Bernard

1984-04-01

34

Deletion of Major Nonessential Genomic Regions in the Vaccinia Virus Lister Strain Enhances Attenuation without Altering Vaccine Efficacy in Mice?  

PubMed Central

The vaccinia virus (VACV) Lister strain was one of the vaccine strains that enabled smallpox eradication. Although the strain is most often harmless, there have been numerous incidents of mild to life-threatening accidents with this strain and others. In an attempt to further attenuate the Lister strain, we investigated the role of 5 genomic regions known to be deleted in the modified VACV Ankara (MVA) genome in virulence in immunodeficient mice, immunogenicity in immunocompetent mice, and vaccine efficacy in a cowpox virus challenge model. Lister mutants were constructed so as to delete each of the 5 regions or various combinations of these regions. All of the mutants replicated efficiently in tissue culture except region I mutants, which multiplied more poorly in human cells than the parental strain. Mutants with single deletions were not attenuated or only moderately so in athymic nude mice. Mutants with multiple deletions were more highly attenuated than those with single deletions. Deleting regions II, III, and V together resulted in total attenuation for nude mice and partial attenuation for SCID mice. In immunocompetent mice, the Lister deletion mutants induced VACV specific humoral responses equivalent to those of the parental strain but in some cases lower cell-mediated immune responses. All of the highly attenuated mutants protected mice from a severe cowpox virus challenge at low vaccine doses. The data suggest that several of the Lister mutants combining multiple deletions could be used in smallpox vaccination or as live virus vectors at doses equivalent to those used for the traditional vaccine while displaying increased safety. PMID:21367889

Dimier, Julie; Ferrier-Rembert, Audrey; Pradeau-Aubreton, Karine; Hebben, Matthias; Spehner, Danièle; Favier, Anne-Laure; Gratier, Danielle; Garin, Daniel; Crance, Jean-Marc; Drillien, Robert

2011-01-01

35

CD40L-Adjuvanted DNA/Modified Vaccinia Virus Ankara Simian Immunodeficiency Virus (SIV) Vaccine Enhances Protection against Neutralization-Resistant Mucosal SIV Infection.  

PubMed

Here, we show that a CD40L-adjuvanted DNA/modified vaccinia virus Ankara (MVA) simian immunodeficiency virus (SIV) vaccine enhances protection against a pathogenic neutralization-resistant mucosal SIV infection, improves long-term viral control, and prevents AIDS. Analyses of serum IgG antibodies to linear peptides of SIV Env revealed a strong response to V2, with targeting of fewer epitopes in the immunodominant region of gp41 (gp41-ID) and the V1 region as a correlate for enhanced protection. Greater expansion of antiviral CD8 T cells in the gut correlated with long-term viral control. PMID:25653428

Kwa, Suefen; Sadagopal, Shanmugalakshmi; Shen, Xiaoying; Hong, Jung Joo; Gangadhara, Sailaja; Basu, Rahul; Victor, Blandine; Iyer, Smita S; LaBranche, Celia C; Montefiori, David C; Tomaras, Georgia D; Villinger, Francois; Moss, Bernard; Kozlowski, Pamela A; Amara, Rama Rao

2015-04-15

36

Vaccination of horses with a recombinant modified vaccinia Ankara virus (MVA) expressing African horse sickness (AHS) virus major capsid protein VP2 provides complete clinical protection against challenge  

PubMed Central

African horse sickness virus (AHSV) is an arthropod-borne pathogen that infects all species of equidae and causes high mortality in horses. Previously, a recombinant modified vaccinia Ankara (MVA) virus expressing the protein VP2 of AHSV serotype 4 was shown to induce virus neutralising antibodies in horses and protected interferon alpha receptor gene knock-out mice (IFNAR ?/?) against virulent AHSV challenge. This study builds on the previous work, examining the protective efficacy of MVA-VP2 vaccination in the natural host of AHSV infection. A study group of 4 horses was vaccinated twice with a recombinant MVA virus expressing the major capsid protein (VP2) of AHSV serotype 9. Vaccinated animals and a control group of unvaccinated horses were then challenged with a virulent strain of AHSV-9. The vaccinated animals were completely protected against clinical disease and also against viraemia as measured by standard end-point dilution assays. In contrast, all control horses presented viraemia after challenge and succumbed to the infection. These results demonstrate the potential of recombinant MVA viruses expressing the outer capsid VP2 of AHSV as a protective vaccine against AHSV infection in the field. PMID:24837765

Alberca, Berta; Bachanek-Bankowska, Katarzyna; Cabana, Marta; Calvo-Pinilla, Eva; Viaplana, Elisenda; Frost, Lorraine; Gubbins, Simon; Urniza, Alicia; Mertens, Peter; Castillo-Olivares, Javier

2014-01-01

37

Vaccination of horses with a recombinant modified vaccinia Ankara virus (MVA) expressing African horse sickness (AHS) virus major capsid protein VP2 provides complete clinical protection against challenge.  

PubMed

African horse sickness virus (AHSV) is an arthropod-borne pathogen that infects all species of equidae and causes high mortality in horses. Previously, a recombinant modified vaccinia Ankara (MVA) virus expressing the protein VP2 of AHSV serotype 4 was shown to induce virus neutralising antibodies in horses and protected interferon alpha receptor gene knock-out mice (IFNAR -/-) against virulent AHSV challenge. This study builds on the previous work, examining the protective efficacy of MVA-VP2 vaccination in the natural host of AHSV infection. A study group of 4 horses was vaccinated twice with a recombinant MVA virus expressing the major capsid protein (VP2) of AHSV serotype 9. Vaccinated animals and a control group of unvaccinated horses were then challenged with a virulent strain of AHSV-9. The vaccinated animals were completely protected against clinical disease and also against viraemia as measured by standard end-point dilution assays. In contrast, all control horses presented viraemia after challenge and succumbed to the infection. These results demonstrate the potential of recombinant MVA viruses expressing the outer capsid VP2 of AHSV as a protective vaccine against AHSV infection in the field. PMID:24837765

Alberca, Berta; Bachanek-Bankowska, Katarzyna; Cabana, Marta; Calvo-Pinilla, Eva; Viaplana, Elisenda; Frost, Lorraine; Gubbins, Simon; Urniza, Alicia; Mertens, Peter; Castillo-Olivares, Javier

2014-06-17

38

Oral vaccination of the fox against rabies using a live recombinant vaccinia virus  

Microsoft Academic Search

Rabies, a viral disease affecting all warm-blooded animals, is prevalent in most parts of the world1, where it propagates amongst wild animals, particularly the fox and dog. The public health and economic consequences of infection in man and livestock are well known. Attempts to control the disease by vaccinating wild carnivores with inactivated or attenuated rabies virus remain controversial, and

J. Blancou; M. P. Kieny; R. Lathe; J. P. Lecocq; P. P. Pastore; J. P. Soulebot; P. Desmettre

1986-01-01

39

Adjuvant-like effect of vaccinia virus 14K protein: a case study with malaria vaccine based on the circumsporozoite protein.  

PubMed

Development of subunit vaccines for malaria that elicit a strong, long-term memory response is an intensive area of research, with the focus on improving the immunogenicity of a circumsporozoite (CS) protein-based vaccine. In this study, we found that a chimeric protein, formed by fusing vaccinia virus protein 14K (A27) to the CS of Plasmodium yoelii, induces strong effector memory CD8(+) T cell responses in addition to high-affinity Abs when used as a priming agent in the absence of any adjuvant, followed by an attenuated vaccinia virus boost expressing CS in murine models. Moreover, priming with the chimeric protein improved the magnitude and polyfunctionality of cytokine-secreting CD8(+) T cells. This fusion protein formed oligomers/aggregates that led to activation of STAT-1 and IFN regulatory factor-3 in human macrophages, indicating a type I IFN response, resulting in NO, IL-12, and IL-6 induction. Furthermore, this vaccination regimen inhibited the liver stage development of the parasite, resulting in sterile protection. In summary, we propose a novel approach in designing CS based pre-erythrocytic vaccines against Plasmodium using the adjuvant-like effect of the immunogenic vaccinia virus protein 14K. PMID:22615208

Vijayan, Aneesh; Gómez, Carmen E; Espinosa, Diego A; Goodman, Alan G; Sanchez-Sampedro, Lucas; Sorzano, Carlos Oscar S; Zavala, Fidel; Esteban, Mariano

2012-06-15

40

Prime-boost vaccination with plasmid DNA followed by recombinant vaccinia virus expressing BgGARP induced a partial protective immunity to inhibit Babesia gibsoni proliferation in dogs.  

PubMed

A heterologous prime-boost vaccination regime with DNA and recombinant vaccinia virus (rvv) vectors expressing relevant antigens has been shown to induce effective immune responses against several infectious pathogens. In this study, we describe the effectiveness of the prime-boost strategy by immunizing dogs with a recombinant plasmid followed by vaccinia virus, both of which expressed the glutamic acid-rich protein (BgGARP) of Babesia gibsoni. The dogs immunized with the prime-boost regime developed a significantly high level of specific antibodies against BgGARP when compared with the control groups. The antibody level was strongly increased after a booster immunization with a recombinant vaccinia virus. Two weeks after the booster immunization with a recombinant vaccinia virus expressing BgGARP, the dogs were challenged with B. gibsoni parasite. The dogs immunized with the prime-boost regime showed partial protection, manifested as a significantly low level of parasitemia. These results indicated that this type of DNA/rvv prime-boost immunization approach may have use against B. gibsoni infection in dogs. PMID:24338330

Cao, Shinuo; Mousa, Ahmed Abdelmoniem; Aboge, Gabriel Oluga; Kamyingkird, Ketsarin; Zhou, Mo; Moumouni, Paul Franck Adjou; Terkawi, Mohamad Alaa; Masatani, Tatsunori; Nishikawa, Yoshifumi; Suzuki, Hiroshi; Fukumoto, Shinya; Xuan, Xuenan

2013-12-01

41

Mucosal Priming with a Replicating-Vaccinia Virus-Based Vaccine Elicits Protective Immunity to Simian Immunodeficiency Virus Challenge in Rhesus Monkeys  

PubMed Central

Mucosal surfaces are not targeted by most human immunodeficiency virus type 1 (HIV-1) vaccines, despite being major routes for HIV-1 transmission. Here we report a novel vaccination regimen consisting of a mucosal prime with a modified replicating vaccinia virus Tiantan strain (MVTTSIVgpe) and an intramuscular boost with a nonreplicating adenovirus strain (Ad5SIVgpe). This regimen elicited robust cellular immune responses with enhanced magnitudes, sustainability, and polyfunctionality, as well as higher titers of neutralizing antibodies against the simian immunodeficiency virus SIVmac1A11 in rhesus monkeys. The reductions in peak and set-point viral loads were significant in most animals, with one other animal being protected fully from high-dose intrarectal inoculation of SIVmac239. Furthermore, the animals vaccinated with this regimen were healthy, while ?75% of control animals developed simian AIDS. The protective effects correlated with the vaccine-elicited SIV-specific CD8+ T cell responses against Gag and Pol. Our study provides a novel strategy for developing an HIV-1 vaccine by using the combination of a replicating vector and mucosal priming. PMID:23487457

Sun, Caijun; Tang, Xian; Zhang, Yinfeng; Feng, Liqiang; Du, Yanhua; Xiao, Lijun; Liu, Li; Zhu, Weijun; Chen, Ling

2013-01-01

42

Protection of mice from fatal measles encephalitis by vaccination with vaccinia virus recombinants encoding either the hemagglutinin or the fusion protein.  

PubMed Central

Vaccinia virus recombinants encoding the hemagglutinin or fusion protein of measles virus have been constructed. Infection of cell cultures with the recombinants led to the synthesis of authentic measles proteins as judged by their electrophoretic mobility, recognition by antibodies, glycosylation, proteolytic cleavage, and presentation on the cell surface. Mice vaccinated with a single dose of the recombinant encoding the hemagglutinin protein developed antibodies capable of both inhibiting hemagglutination activity and neutralizing measles virus, whereas animals vaccinated with the recombinant encoding the fusion protein developed measles neutralizing antibodies. Mice vaccinated with either of the recombinants resisted a normally lethal intracerebral inoculation of a cell-associated measles virus subacute sclerosing panencephalitis strain. Images PMID:3422488

Drillien, R; Spehner, D; Kirn, A; Giraudon, P; Buckland, R; Wild, F; Lecocq, J P

1988-01-01

43

Expression of rabies virus glycoprotein from a recombinant vaccinia virus  

Microsoft Academic Search

Rabies is one of the oldest diseases known to man, but its successful control has remained elusive. Although effective vaccines of tissue culture origin against rabies do exist1, such preparations are expensive. Live vaccinia virus (VV) recombinants expressing influenza or hepatitis B antigens have recently been used to immunize against these diseases2-4. We have now used this approach to produce

M. P. Kieny; R. Lathe; R. Drillien; D. Spehner; S. Skory; D. Schmitt; T. Wiktor; H. Koprowski; J. P. Lecocq

1984-01-01

44

Kinetics of Immune Cell Infiltration in Vaccinia Virus Keratitis  

PubMed Central

Purpose. Vaccinia virus keratitis leading to blindness is a severe complication of smallpox vaccination. The clinical manifestations of vaccinia virus keratitis are similar to those of herpes simplex virus keratitis, a well-studied immunopathologic disease. Vaccinia virus keratitis is likely to involve an immunopathologic component, but little is known about the pathogenesis of the disease. The goal of this study was to determine type and kinetics of immune cell infiltration in the cornea during vaccinia virus keratitis. Methods. Rabbit eyes were trephined and inoculated with 1 × 105 pfu of the Dryvax strain of the vaccinia virus. On days 2, 4, 7, 10, 14, and 28 after infection, the animals were scored for clinical disease and eye sections were stained for B cells, CD4+ cells, CD8+ cells, and neutrophils. The eyelid, ciliary body, cornea, iris, iridocorneal angle, and choroid were examined. Results. Corneal vaccinia virus challenge resulted in the infiltration of B cells, CD4+ cells, CD8+ cells, and neutrophils into the cornea and eyelids. Neutrophils were the predominant cell type on days 2 and 3 after infection, whereas CD4+ cells were the predominant cell type detected in corneas on days 4 through 10. CD8+ cells and B cells peaked on day 10, but at lower levels than CD4+ cells and neutrophils. Conclusions. These results suggest that sequential migration of neutrophils, then CD4+ cells, plays an important role in vaccinia virus keratitis. PMID:20375330

Altmann, Sharon; Toomey, Megan; Nesbit, Brittany; McIntyre, Kim; Covert, Jill; Dubielzig, Richard Redd; Leatherberry, Gary; Adkins, Elizabeth; Murphy, Christopher J.

2010-01-01

45

Towards a universal vaccine for avian influenza: protective efficacy of modified Vaccinia virus Ankara and Adenovirus vaccines expressing conserved influenza antigens in chickens challenged with low pathogenic avian influenza virus.  

PubMed

Current vaccines targeting surface proteins can drive antigenic variation resulting either in the emergence of more highly pathogenic viruses or of antigenically distinct viruses that escape control by vaccination and thereby persist in the host population. Influenza vaccines typically target the highly mutable surface proteins and do not provide protection against heterologous challenge. Vaccines which induce immune responses against conserved influenza epitopes may confer protection against heterologous challenge. We report here the results of vaccination with recombinant modified Vaccinia virus Ankara (MVA) and Adenovirus (Ad) expressing a fusion construct of nucleoprotein and matrix protein (NP+M1). Prime and boost vaccination regimes were trialled in different ages of chicken and were found to be safe and immunogenic. Interferon-? (IFN-?) ELISpot was used to assess the cellular immune response post secondary vaccination. In ovo Ad prime followed by a 4 week post hatch MVA boost was identified as the most immunogenic regime in one outbred and two inbred lines of chicken. Following vaccination, one inbred line (C15I) was challenged with low pathogenic avian influenza (LPAI) H7N7 (A/Turkey/England/1977). Birds receiving a primary vaccination with Ad-NP+M1 and a secondary vaccination with MVA-NP+M1 exhibited reduced cloacal shedding as measured by plaque assay at 7 days post infection compared with birds vaccinated with recombinant viruses containing irrelevant antigen. This preliminary indication of efficacy demonstrates proof of concept in birds; induction of T cell responses in chickens by viral vectors containing internal influenza antigens may be a productive strategy for the development of vaccines to induce heterologous protection against influenza in poultry. PMID:23200938

Boyd, Amy C; Ruiz-Hernandez, Raul; Peroval, Marylene Y; Carson, Connor; Balkissoon, Devanand; Staines, Karen; Turner, Alison V; Hill, Adrian V S; Gilbert, Sarah C; Butter, Colin

2013-01-11

46

Prevention of infection by a granulocyte-macrophage colony-stimulating factor co-expressing DNA/modified vaccinia Ankara simian immunodeficiency virus vaccine.  

PubMed

A simian immunodeficiency virus (SIV) vaccine coexpressing granulocyte-macrophage colony stimulating factor (GM-CSF) prevented infection in 71% of macaques that received 12 rectal challenges. The SIVsmE660 challenge had the tropism of incident human immunodeficiency virus (HIV) infections and a similar genetic distance from the SIV239 vaccine as intraclade HIV isolates. The heterologous prime-boost vaccine regimen used recombinant DNA for priming and recombinant modified vaccinia Ankara for boosting. Co-expression of GM-CSF in the DNA prime enhanced the avidity of elicited immunoglobulin G for SIV envelope glycoproteins, the titers of neutralizing antibody for easy-to-neutralize SIV isolates, and antibody-dependent cellular cytotoxicity. Impressively, the co-expressed GM-CSF increased vaccine-induced prevention of infection from 25% in the non-GM-CSF co-expressing vaccine group to 71% in the GM-CSF co-expressing vaccine group. The prevention of infection showed a strong correlation with the avidity of the elicited Env-specific antibody for the Env of the SIVsmE660 challenge virus (r = 0.9; P < .0001). PMID:21628671

Lai, Lilin; Kwa, Suefen; Kozlowski, Pamela A; Montefiori, David C; Ferrari, Guido; Johnson, Welkin E; Hirsch, Vanessa; Villinger, Francois; Chennareddi, Lakshmi; Earl, Patricia L; Moss, Bernard; Amara, Rama Rao; Robinson, Harriet L

2011-07-01

47

Adsorption of recombinant poxvirus L1-protein to aluminum hydroxide/CpG vaccine adjuvants enhances immune responses and protection of mice from vaccinia virus challenge.  

PubMed

The stockpiling of live vaccinia virus vaccines has enhanced biopreparedness against the intentional or accidental release of smallpox. Ongoing research on future generation smallpox vaccines is providing key insights into protective immune responses as well as important information about subunit-vaccine design strategies. For protein-based recombinant subunit vaccines, the formulation and stability of candidate antigens with different adjuvants are important factors to consider for vaccine design. In this work, a non-tagged secreted L1-protein, a target antigen on mature virus, was expressed using recombinant baculovirus technology and purified. To identify optimal formulation conditions for L1, a series of biophysical studies was performed over a range of pH and temperature conditions. The overall physical stability profile was summarized in an empirical phase diagram. Another critical question to address for development of an adjuvanted vaccine was if immunogenicity and protection could be affected by the interactions and binding of L1 to aluminum salts (Alhydrogel) with and without a second adjuvant, CpG. We thus designed a series of vaccine formulations with different binding interactions between the L1 and the two adjuvants, and then performed a series of vaccination-challenge experiments in mice including measurement of antibody responses and post-challenge weight loss and survival. We found that better humoral responses and protection were conferred with vaccine formulations when the L1-protein was adsorbed to Alhydrogel. These data demonstrate that designing vaccine formulation conditions to maximize antigen-adjuvant interactions is a key factor in smallpox subunit-vaccine immunogenicity and protection. PMID:23153450

Xiao, Yuhong; Zeng, Yuhong; Alexander, Edward; Mehta, Shyam; Joshi, Sangeeta B; Buchman, George W; Volkin, David B; Middaugh, C Russell; Isaacs, Stuart N

2013-01-01

48

Mucosal Vaccination Overcomes the Barrier to Recombinant Vaccinia Immunization Caused by Preexisting Poxvirus Immunity  

NASA Astrophysics Data System (ADS)

Overcoming preexisting immunity to vaccinia virus in the adult population is a key requirement for development of otherwise potent recombinant vaccinia vaccines. Based on our observation that s.c. immunization with vaccinia induces cellular and antibody immunity to vaccinia only in systemic lymphoid tissue and not in mucosal sites, we hypothesized that the mucosal immune system remains naive to vaccinia and therefore amenable to immunization with recombinant vaccinia vectors despite earlier vaccinia exposure. We show that mucosal immunization of vaccinia-immune BALB/c mice with recombinant vaccinia expressing HIV gp160 induced specific serum antibody and strong HIV-specific cytotoxic T lymphocyte responses. These responses occurred not only in mucosal but also in systemic lymphoid tissue, whereas systemic immunization was ineffective under these circumstances. In this context, intrarectal immunization was more effective than intranasal immunization. Boosting with a second dose of recombinant vaccinia was also more effective via the mucosal route. The systemic HIV-specific cytotoxic T lymphocyte response was enhanced by coadministration of IL-12 at the mucosal site. These results also demonstrate the independent compartmentalization of the mucosal versus systemic immune systems and the asymmetric trafficking of lymphocytes between them. This approach to circumvent previous vaccinia immunity may be useful for induction of protective immunity against infectious diseases and cancer in the sizable populations with preexisting immunity to vaccinia from smallpox vaccination.

Belyakov, Igor M.; Moss, Bernard; Strober, Warren; Berzofsky, Jay A.

1999-04-01

49

UV-inactivated vaccinia virus (VV) in a multi-envelope DNA-VV-protein (DVP) HIV-1 vaccine protects macaques from lethal challenge with heterologous SHIV  

PubMed Central

The pandemic of HIV-1 has continued for decades, yet there remains no licensed vaccine. Previous research has demonstrated the effectiveness of a multi-envelope, multi-vectored HIV-1 vaccine in a macaque-SHIV model, illustrating a potential means of combating HIV-1. Specifically, recombinant DNA, vaccinia virus (VV) and purified protein (DVP) delivery systems were used to vaccinate animals with dozens of antigenically-distinct HIV-1 envelopes for induction of immune breadth. The vaccinated animals controlled disease following challenge with a heterologous SHIV. This demonstration suggested that the antigenic cocktail vaccine strategy, which has succeeded in several other vaccine fields (e.g. pneumococcus), might also succeed against HIV-1. The strategy remains untested in an advanced clinical study, in part due to safety concerns associated with the use of replication-competent VV. To address this concern, we designed a macaque study in which psoralen/ultraviolet light-inactivated VV (UV VV) was substituted for replication-competent VV in the multi-envelope DVP protocol. Control animals received a vaccine encompassing no VV, or no vaccine. All VV vaccinated animals generated an immune response toward VV, and all vaccinated animals generated an immune response toward HIV-1 envelope. After challenge with heterologous SHIV 89.6P, animals that received replication-competent VV or UV VV experienced similar outcomes. They exhibited reduced peak viral loads, maintenance of CD4+ T cell counts and improved survival compared to control animals that received no VV or no vaccine; there were 0/15 deaths among all animals that received VV and 5/9 deaths among controls. Results define a practical means of improving VV safety, and encourage advancement of a promising multi-envelope DVP HIV-1 vaccine candidate. PMID:22425790

Jones, Bart G; Sealy, Robert E; Zhan, Xiaoyan; Freiden, Pamela J; Surman, Sherri L; Blanchard, James L.; Hurwitz, Julia L

2012-01-01

50

Vaccination of mice with a modified Vaccinia Ankara (MVA) virus expressing the African horse sickness virus (AHSV) capsid protein VP2 induces virus neutralising antibodies that confer protection against AHSV upon passive immunisation.  

PubMed

In previous studies we showed that a recombinant Modified Vaccinia Ankara (MVA) virus expressing the protein VP2 of AHSV serotype 4 (MVA-VP2) induced virus neutralising antibodies in horses and protected interferon alpha receptor gene knock-out mice (IFNAR-/-) against challenge. We continued these studies and determined, in the IFNAR-/- mouse model, whether the antibody responses induced by MVA-VP2 vaccination play a key role in protection against AHSV. Thus, groups of mice were vaccinated with wild type MVA (MVA-wt) or MVA-VP2 and the antisera from these mice were used in a passive immunisation experiment. Donor antisera from (a) MVA-wt; (b) MVA-VP2 vaccinated; or (c) MVA-VP2 vaccinated and AHSV infected mice, were transferred to AHSV non-immune recipient mice. The recipients were challenged with virulent AHSV together with MVA-VP2 vaccinated and MVA-wt vaccinated control animals and the levels of protection against AHSV-4 were compared between all these groups. The results showed that following AHSV challenge, mice that were passively immunised with MVA-VP2 vaccinated antisera were highly protected against AHSV disease and had lower levels of viraemia than recipients of MVA-wt antisera. Our study indicates that MVA-VP2 vaccination induces a highly protective humoral immune response against AHSV. PMID:24333835

Calvo-Pinilla, Eva; de la Poza, Francisco; Gubbins, Simon; Mertens, Peter Paul Clement; Ortego, Javier; Castillo-Olivares, Javier

2014-02-13

51

Genomic differences of Vaccinia virus clones from Dryvax smallpox vaccine: the Dryvax-like ACAM2000 and the mouse neurovirulent Clone-3.  

PubMed

Conventional vaccines used for smallpox eradication were often denoted one or another strain of Vaccinia virus (VACV), even though seed virus was sub-cultured multifariously, which rendered the virion population genetically heterogeneous. ACAM2000 cell culture vaccine, recently licensed in the U.S., consists of a biologically vaccine-like VACV homogeneous-sequence clone from the conventional smallpox vaccine Dryvax, which we verified from Dryvax sequence chromatograms is genetically heterogeneous. ACAM2000 VACV and CL3, a mouse-neurovirulent clone from Dryvax, differ by 572 single nucleotide polymorphisms and 53 insertions-deletions of varied size, including a 4.5-kbp deletion in ACAM2000 and a 6.2-kbp deletion in CL3. The sequence diversity between the two clones precludes precisely defining why CL3 is more pathogenic; however, four genes appear significantly dissimilar to account for virulence differences. CL3 encodes intact immunomodulators interferon-alpha/beta and tumor necrosis factor receptors, which are truncated in ACAM2000. CL3 specifies a Cowpox and Variola virus-like ankyrin-repeat protein that might be associated with proteolysis via ubiquitination. And, CL3 shows an elongated thymidylate kinase, similar to the enzyme of the mouse-neurovirulent VACV-WR, a derivative of the New York City Board of Health vaccine, the origin vaccine of Dryvax. Although ACAM2000 encodes most proteins associated with immunization protection, the cloning probably delimited the variant epitopes and other motifs produced by Dryvax due to its VACV genetic heterogeneity. The sequence information for ACAM2000 and CL3 could be significant for resolving the dynamics of their different proteomes and thereby aid development of safer, more effective vaccines. PMID:18037545

Osborne, John D; Da Silva, Melissa; Frace, A Michael; Sammons, Scott A; Olsen-Rasmussen, Melissa; Upton, Chris; Buller, R Mark L; Chen, Nanhai; Feng, Zehua; Roper, Rachel L; Liu, Jonathan; Pougatcheva, Svetlana; Chen, Weiping; Wohlhueter, Robert M; Esposito, Joseph J

2007-12-17

52

Induction of Antibody Responses to African Horse Sickness Virus (AHSV) in Ponies after Vaccination with Recombinant Modified Vaccinia Ankara (MVA)  

Microsoft Academic Search

BackgroundAfrican horse sickness virus (AHSV) causes a non-contagious, infectious disease in equids, with mortality rates that can exceed 90% in susceptible horse populations. AHSV vaccines play a crucial role in the control of the disease; however, there are concerns over the use of polyvalent live attenuated vaccines particularly in areas where AHSV is not endemic. Therefore, it is important to

Rachael Chiam; Emma Sharp; Sushila Maan; Shujing Rao; Peter Mertens; Barbara Blacklaws; Nick Davis-Poynter; James Wood; Javier Castillo-Olivares; Derya Unutmaz

2009-01-01

53

Comparative efficacy of modified vaccinia Ankara (MVA) as a potential replacement smallpox vaccine  

Microsoft Academic Search

International concern over the potential consequences of a Bioterrorist or Biowarfare associated release of variola virus have prompted renewed interest in the vaccines for smallpox. The traditional live, replicating vaccine strains are subject to novel safety concerns associated with historical production methods in domesticated ruminants and the additional hazards that vaccinia virus poses for people with immune system abnormalities or

A. L. Phelps; A. J. Gates; M. Hillier; L. Eastaugh; D. O. Ulaeto

2007-01-01

54

Elimination of fox rabies from Belgium using a recombinant vaccinia-rabies vaccine: an update  

Microsoft Academic Search

To improve both safety and stability of the vaccines used in the field to vaccinate foxes against rabies by the oral route, a recombinant vaccinia virus, expressing the glycoprotein of rabies virus (VVTGgRAB) has been developed. VVTGgRAB innocuity was verified in target species and in domestic animals as well as in numerous wild animal species that could compete with the

B. Brochier; F. Costy; P.-P. Pastoret

1995-01-01

55

Attenuated and replication-competent vaccinia virus strains M65 and M101 with distinct biology and immunogenicity as potential vaccine candidates against pathogens.  

PubMed

Replication-competent poxvirus vectors with an attenuation phenotype and with a high immunogenic capacity of the foreign expressed antigen are being pursued as novel vaccine vectors against different pathogens. In this investigation, we have examined the replication and immunogenic characteristics of two vaccinia virus (VACV) mutants, M65 and M101. These mutants were generated after 65 and 101 serial passages of persistently infected Friend erythroleukemia (FEL) cells. In cultured cells of different origins, the mutants are replication competent and have growth kinetics similar to or slightly reduced in comparison with those of the parental Western Reserve (WR) virus strain. In normal and immune-suppressed infected mice, the mutants showed different levels of attenuation and pathogenicity in comparison with WR and modified vaccinia Ankara (MVA) strains. Wide genome analysis after deep sequencing revealed selected genomic deletions and mutations in a number of viral open reading frames (ORFs). Mice immunized in a DNA prime/mutant boost regimen with viral vectors expressing the LACK (Leishmania homologue for receptors of activated C kinase) antigen of Leishmania infantum showed protection or a delay in the onset of cutaneous leishmaniasis. Protection was similar to that triggered by MVA-LACK. In immunized mice, both polyfunctional CD4(+) and CD8(+) T cells with an effector memory phenotype were activated by the two mutants, but the DNA-LACK/M65-LACK protocol preferentially induced CD4(+) whereas DNA-LACK/M101-LACK preferentially induced CD8(+) T cell responses. Altogether, our findings showed the adaptive changes of the WR genome during long-term virus-host cell interaction and how the replication competency of M65 and M101 mutants confers distinct biological properties and immunogenicity in mice compared to those of the MVA strain. These mutants could have applicability for understanding VACV biology and as potential vaccine vectors against pathogens and tumors. PMID:23596295

Sánchez-Sampedro, Lucas; Gómez, Carmen Elena; Mejías-Pérez, Ernesto; Pérez-Jiménez, Eva; Oliveros, Juan Carlos; Esteban, Mariano

2013-06-01

56

Attenuated and Replication-Competent Vaccinia Virus Strains M65 and M101 with Distinct Biology and Immunogenicity as Potential Vaccine Candidates against Pathogens  

PubMed Central

Replication-competent poxvirus vectors with an attenuation phenotype and with a high immunogenic capacity of the foreign expressed antigen are being pursued as novel vaccine vectors against different pathogens. In this investigation, we have examined the replication and immunogenic characteristics of two vaccinia virus (VACV) mutants, M65 and M101. These mutants were generated after 65 and 101 serial passages of persistently infected Friend erythroleukemia (FEL) cells. In cultured cells of different origins, the mutants are replication competent and have growth kinetics similar to or slightly reduced in comparison with those of the parental Western Reserve (WR) virus strain. In normal and immune-suppressed infected mice, the mutants showed different levels of attenuation and pathogenicity in comparison with WR and modified vaccinia Ankara (MVA) strains. Wide genome analysis after deep sequencing revealed selected genomic deletions and mutations in a number of viral open reading frames (ORFs). Mice immunized in a DNA prime/mutant boost regimen with viral vectors expressing the LACK (Leishmania homologue for receptors of activated C kinase) antigen of Leishmania infantum showed protection or a delay in the onset of cutaneous leishmaniasis. Protection was similar to that triggered by MVA-LACK. In immunized mice, both polyfunctional CD4+ and CD8+ T cells with an effector memory phenotype were activated by the two mutants, but the DNA-LACK/M65-LACK protocol preferentially induced CD4+ whereas DNA-LACK/M101-LACK preferentially induced CD8+ T cell responses. Altogether, our findings showed the adaptive changes of the WR genome during long-term virus-host cell interaction and how the replication competency of M65 and M101 mutants confers distinct biological properties and immunogenicity in mice compared to those of the MVA strain. These mutants could have applicability for understanding VACV biology and as potential vaccine vectors against pathogens and tumors. PMID:23596295

Sánchez-Sampedro, Lucas; Gómez, Carmen Elena; Mejías-Pérez, Ernesto; Pérez-Jiménez, Eva; Oliveros, Juan Carlos

2013-01-01

57

Vaccinia Virus Recombinant Expressing Herpes Simplex Virus Type 1 Glycoprotein D Prevents Latent Herpes in Mice  

Microsoft Academic Search

In humans, herpes simplex virus causes a primary infection and then often a latent ganglionic infection that persists for life. Because these latent infections can recur periodically, vaccines are needed that can protect against both primary and latent herpes simplex infections. Infectious vaccinia virus recombinants that contain the herpes simplex virus type 1 (HSV-1) glycoprotein D gene under control of

Kenneth J. Cremer; Michael Mackett; Charles Wohlenberg; Abner Louis Notkins; Bernard Moss

1985-01-01

58

Identification of vaccinia virus epitope-specific HLA-A*0201-restricted T cells and comparative analysis of smallpox vaccines  

Microsoft Academic Search

Despite worldwide eradication of naturally occurring variola virus, smallpox remains a potential threat to both civilian and military populations. New, safe smallpox vaccines are being developed, and there is an urgent need for methods to evaluate vaccine efficacy after immunization. Here we report the identification of an immunodominant HLA-A*0201-restricted epitope that is recognized by cytotoxic CD8+ T cells and conserved

Ingo Drexler; Caroline Staib; Wolfgang Kastenmüller; Stefan Stevanovi; Burkhard Schmidt; François A. Lemonnier; Hans-Georg Rammensee; Dirk H. Busch; Helga Bernhard; Volker Erfle; Gerd Sutter

2003-01-01

59

Localization of Epstein-Barr virus cytotoxic T cell epitopes using recombinant vaccinia: implications for vaccine development  

Microsoft Academic Search

Summal~ There is considerable interest in designing an effective vaccine to the ubiquitous Epstein-Barr virus (EBV). An important role for EBV-specific cytotoxic T lymphocytes (CTLs) in eliminating virus-infected cells is well established. Limited studies using a small number of immune donors have defined target epitopes within the latent antigens of EBV. The present study provides an extensive analysis of the

R. Khanna; S. t L. Burrows; M. G. Kuri; C. A. Jacob; I. S. Misko; T. B. Scul; E. Kieff; D. J. Moss

1992-01-01

60

Progress toward a Universal H5N1 Vaccine: A Recombinant Modified Vaccinia Virus Ankara-Expressing Trivalent Hemagglutinin Vaccine  

PubMed Central

Background The rapid evolution of new sublineages of H5N1 influenza poses the greatest challenge in control of H5N1 infection by currently existing vaccines. To overcome this, an MVAtor vector expressing three H5HA antigens A/Vietnam/1203/04, A/Indonesia/669/06 and A/Anhui/01/05 (MVAtor-tri-HA vector) was developed to elicit broad cross-protection against diverse clades by covering amino acid variations in the major neutralizing epitopes of HA among H5N1 subtypes. Methods BALB/c mice and guinea pigs were immunized i.m. with 8×107 TCID50/animal of MVAtor-tri-HA vector. The immunogenicity and cross-protective immunity of the MVAtor-tri-HA vector was evaluated against diverse clades of H5N1 strains. Results The results showed that mice immunized with MVAtor-tri-HA vector induced robust cross-neutralizing immunity to diverse H5N1 clades. In addition, the MVAtor-tri-HA vector completely protected against 10 MLD50 of a divergent clade of H5N1 infection (clade 7). Importantly, the serological surveillance of post-vaccinated guinea pig sera demonstrated that MVAtor-tri-HA vector was able to elicit strong cross-clade neutralizing immunity against twenty different H5N1 strains from six clades that emerged between 1997 and 2012. Conclusions The present findings revealed that incorporation of carefully selected HA genes from divergent H5N1 strains within a single vector could be an effective approach in developing a vaccine with broad coverage to prevent infection during a pandemic situation. PMID:25229722

He, Fang; Auer, Sebastian; Kumar, Subaschandrabose R.; Kindsmueller, Kathrin; Mytle, Nutan; Schneider, Joerg; Lockhart, Stephen; Kwang, Jimmy

2014-01-01

61

From crescent to mature virion: vaccinia virus assembly and maturation.  

PubMed

Vaccinia virus (VACV) has achieved unprecedented success as a live viral vaccine for smallpox which mitigated eradication of the disease. Vaccinia virus has a complex virion morphology and recent advances have been made to answer some of the key outstanding questions, in particular, the origin and biogenesis of the virion membrane, the transformation from immature virion (IV) to mature virus (MV), and the role of several novel genes, which were previously uncharacterized, but have now been shown to be essential for VACV virion formation. This new knowledge will undoubtedly contribute to the rational design of safe, immunogenic vaccine candidates, or effective antivirals in the future. This review endeavors to provide an update on our current knowledge of the VACV maturation processes with a specific focus on the initiation of VACV replication through to the formation of mature virions. PMID:25296112

Liu, Liang; Cooper, Tamara; Howley, Paul M; Hayball, John D

2014-10-01

62

From Crescent to Mature Virion: Vaccinia Virus Assembly and Maturation  

PubMed Central

Vaccinia virus (VACV) has achieved unprecedented success as a live viral vaccine for smallpox which mitigated eradication of the disease. Vaccinia virus has a complex virion morphology and recent advances have been made to answer some of the key outstanding questions, in particular, the origin and biogenesis of the virion membrane, the transformation from immature virion (IV) to mature virus (MV), and the role of several novel genes, which were previously uncharacterized, but have now been shown to be essential for VACV virion formation. This new knowledge will undoubtedly contribute to the rational design of safe, immunogenic vaccine candidates, or effective antivirals in the future. This review endeavors to provide an update on our current knowledge of the VACV maturation processes with a specific focus on the initiation of VACV replication through to the formation of mature virions. PMID:25296112

Liu, Liang; Cooper, Tamara; Howley, Paul M.; Hayball, John D.

2014-01-01

63

A modified vaccinia Ankara virus (MVA) vaccine expressing African horse sickness virus (AHSV) VP2 protects against AHSV challenge in an IFNAR -/- mouse model.  

PubMed

African horse sickness (AHS) is a lethal viral disease of equids, which is transmitted by Culicoides midges that become infected after biting a viraemic host. The use of live attenuated vaccines has been vital for the control of this disease in endemic regions. However, there are safety concerns over their use in non-endemic countries. Research efforts over the last two decades have therefore focused on developing alternative vaccines based on recombinant baculovirus or live viral vectors expressing structural components of the AHS virion. However, ethical and financial considerations, relating to the use of infected horses in high biosecurity installations, have made progress very slow. We have therefore assessed the potential of an experimental mouse-model for AHSV infection for vaccine and immunology research. We initially characterised AHSV infection in this model, then tested the protective efficacy of a recombinant vaccine based on modified vaccinia Ankara expressing AHS-4 VP2 (MVA-VP2). PMID:21298069

Castillo-Olivares, Javier; Calvo-Pinilla, Eva; Casanova, Isabel; Bachanek-Bankowska, Katarzyna; Chiam, Rachael; Maan, Sushila; Nieto, Jose Maria; Ortego, Javier; Mertens, Peter Paul Clement

2011-01-01

64

A Modified Vaccinia Ankara Virus (MVA) Vaccine Expressing African Horse Sickness Virus (AHSV) VP2 Protects Against AHSV Challenge in an IFNAR ?/? Mouse Model  

PubMed Central

African horse sickness (AHS) is a lethal viral disease of equids, which is transmitted by Culicoides midges that become infected after biting a viraemic host. The use of live attenuated vaccines has been vital for the control of this disease in endemic regions. However, there are safety concerns over their use in non-endemic countries. Research efforts over the last two decades have therefore focused on developing alternative vaccines based on recombinant baculovirus or live viral vectors expressing structural components of the AHS virion. However, ethical and financial considerations, relating to the use of infected horses in high biosecurity installations, have made progress very slow. We have therefore assessed the potential of an experimental mouse-model for AHSV infection for vaccine and immunology research. We initially characterised AHSV infection in this model, then tested the protective efficacy of a recombinant vaccine based on modified vaccinia Ankara expressing AHS-4 VP2 (MVA-VP2). PMID:21298069

Castillo-Olivares, Javier; Calvo-Pinilla, Eva; Casanova, Isabel; Bachanek-Bankowska, Katarzyna; Chiam, Rachael; Maan, Sushila; Nieto, Jose Maria; Ortego, Javier; Mertens, Peter Paul Clement

2011-01-01

65

Long-term control of simian immunodeficiency virus mac251 viremia to undetectable levels in half of infected female rhesus macaques nasally vaccinated with simian immunodeficiency virus DNA/recombinant modified vaccinia virus Ankara.  

PubMed

The efficacy of two SIV DNA plus recombinant modified vaccinia virus Ankara nasal vaccine regimens, one combined with plasmids expressing IL-2 and IL-15, the other with plasmids expressing GM-CSF, IL-12, and TNF-?, which may better stimulate humoral responses, was evaluated in two female rhesus macaque groups. Vaccination stimulated significant SIV-specific mucosal and systemic cell-mediated immunity in both groups, whereas SIV-specific IgA titers were sporadic and IgG titers negative. All vaccinated animals, except one, became infected after intravaginal SIV(mac251) low-dose challenge. Half of the vaccinated, infected animals (7/13) promptly controlled virus replication to undetectable viremia for the duration of the trial (130 wk) and displayed virological and immunological phenotypes similar to those of exposed, uninfected individuals. When all vaccinated animals were considered, a 3-log viremia reduction was observed, compared with controls. The excellent viral replication containment achieved in vaccinated animals translated into significant preservation of circulating ?4?7(high+)/CD4(+) T cells and of circulating and mucosal CD4(+)/C(M) T cells and in reduced immune activation. A more significant long-term survival was also observed in these animals. Median survival was 72 wk for the control group, whereas >50% of the vaccinated animals were still disease free 130 wk postchallenge, when the trial was closed. There was a statistically significant correlation between levels of CD4(+)/IFN-?(+) and CD8(+)/IFN-?(+) T cell percentages on the day of challenge and the control of viremia at week 60 postchallenge or survival. Postchallenge immunological correlates of protection were systemic anti-SIV Gag + Env CD4(+)/IL-2(+), CD4(+)/IFN-?(+), and CD8(+)/TNF-?(+) T cells and vaginal anti-SIV Gag + Env CD8(+) T cell total monofunctional responses. PMID:21317390

Manrique, Mariana; Kozlowski, Pamela A; Cobo-Molinos, Antonio; Wang, Shainn-Wei; Wilson, Robert L; Montefiori, David C; Mansfield, Keith G; Carville, Angela; Aldovini, Anna

2011-03-15

66

Human vaccinia infection after contact with a raccoon rabies vaccine bait - Pennsylvania, 2009.  

PubMed

Since 2003, the U.S. Department of Agriculture's Wildlife Services has coordinated a multistate oral rabies vaccination (ORV) program for wildlife in a 15-state zone extending from Maine to Alabama and in Texas. The program seeks to enhance local control and prevent the spread of epizootic rabies among raccoons and, in Texas, among gray foxes and coyotes. The program uses baits containing liquid vaccinia-rabies glycoprotein (V-RG) recombinant virus vaccine. Because contact with ruptured baits can produce vaccinia virus infection in certain persons, surveillance for human and domestic animal contact with the baits is conducted, relying largely on reports from persons who find baits and call telephone numbers printed on them. In August 2009, during the autumn baiting campaign in western Pennsylvania, a woman aged 35 years who was taking immunosuppressive medication for inflammatory bowel disease contacted the Pennsylvania Department of Health (PADOH) after handling a ruptured bait, which had leaked liquid rabies vaccine onto a patch of abraded skin on her right hand. The patient subsequently developed vaccinia virus infection and was treated with human vaccinia immune globulin intravenous (VIGIV) and an investigational antiviral agent. This report describes this case, which was the second case of human vaccinia infection related to the ORV program. Public health agencies should educate the public, and particularly pet owners, regarding potential hazards associated with handling wildlife rabies vaccine baits and should provide guidance for persons exposed to this vaccine. PMID:19893480

2009-11-01

67

Reduction of Simian-Human Immunodeficiency Virus 89.6P Viremia in Rhesus Monkeys by Recombinant Modified Vaccinia Virus Ankara Vaccination  

Microsoft Academic Search

Since cytotoxic T lymphocytes (CTLs) are critical for controlling human immunodeficiency virus type 1 (HIV-1) replication in infected individuals, candidate HIV-1 vaccines should elicit virus-specific CTL re- sponses. In this report, we study the immune responses elicited in rhesus monkeys by a recombinant poxvirus vaccine and the degree of protection afforded against a pathogenic simian-human immunodeficiency virus SHIV-89.6P challenge. Immunization

DAN H. BAROUCH; SAMPA SANTRA; MARCELO J. KURODA; JORN E. SCHMITZ; RONALD PLISHKA; ALICIA BUCKLER-WHITE; ALICIA E. GAITAN; REBEKAH ZIN; JAE-HWAN NAM; LINDA S. WYATT; MICHELLE A. LIFTON; CHRISTINE E. NICKERSON; BERNARD MOSS; DAVID C. MONTEFIORI; VANESSA M. HIRSCH; NORMAN L. LETVIN

2001-01-01

68

Isolation of a monoclonal antibody which blocks vaccinia virus infection.  

PubMed Central

We have isolated a monoclonal antibody, B2, that neutralizes vaccinia virus infection. B2 reacts with a trypsin-sensitive cell surface epitope. B2 does not neutralize infection of herpes simplex virus, suggesting that the B2-reactive epitope is specifically involved in vaccinia virus entry. A survey of 12 different cell lines reveals a correlation between B2 reactivity and susceptibility to vaccinia virus infection. In addition, B2 interferes with vaccinia virus adsorption to target cells. Taken together, the B2-reactive epitope is part of a receptor that appears important for vaccinia virus entry. PMID:7527087

Chang, W; Hsiao, J C; Chung, C S; Bair, C H

1995-01-01

69

Chemotherapeutic prevention of complications caused by vaccinia virus-vectored immunogen.  

PubMed

Vaccinia virus strains and constructs differ greatly in the number of PFUs required to produce tail lesions in the vaccinia virus mouse model. The pathogenesis of lesion formation appeared to involve virus spread from an initial focus in specific cells surrounding hair follicles to other concentrated areas of the dermis and finally, at the time of lesion development, to the epidermis. Antivirals that suppressed tail lesions, to a greater or lesser degree, included ara A, ribavirin, rifampicin, adenosine N'-oxide, and selected analogues. Immunomodulators, including ampligen and recombinant interferon, suppressed lesions at very low doses. Spread of virus infection from the dermis to the epidermis was inhibited as determined by immunofluorescence. These studies in the tail lesion model have suggested drugs that could be tested further in primate models of vaccinia virus infection. In addition, these studies provide additional data on a model that may be a useful adjunct in safety testing of recombinant vaccinia virus vaccines. PMID:1626883

Tignor, G H; Kende, M; Hanham, C A

1992-06-16

70

Deletion of specific immune-modulatory genes from modified vaccinia virus Ankara-based HIV vaccines engenders improved immunogenicity in rhesus macaques.  

PubMed

Modified vaccinia virus Ankara (MVA) is a safe, attenuated orthopoxvirus that is being developed as a vaccine vector but has demonstrated limited immunogenicity in several early-phase clinical trials. Our objective was to rationally improve the immunogenicity of MVA-based HIV/AIDS vaccines via the targeted deletion of specific poxvirus immune-modulatory genes. Vaccines expressing codon-optimized HIV subtype C consensus Env and Gag antigens were generated from MVA vector backbones that (i) harbor simultaneous deletions of four viral immune-modulatory genes, encoding an interleukin-18 (IL-18) binding protein, an IL-1? receptor, a dominant negative Toll/IL-1 signaling adapter, and CC-chemokine binding protein (MVA?4-HIV); (ii) harbor a deletion of an additional (fifth) viral gene, encoding uracil-DNA glycosylase (MVA?5-HIV); or (iii) represent the parental MVA backbone as a control (MVA-HIV). We performed head-to-head comparisons of the cellular and humoral immune responses that were elicited by these vectors during homologous prime-boost immunization regimens utilizing either high-dose (2 × 10(8) PFU) or low-dose (1 × 10(7) PFU) intramuscular immunization of rhesus macaques. At all time points, a majority of the HIV-specific T cell responses, elicited by all vectors, were directed against Env, rather than Gag, determinants, as previously observed with other vector systems. Both modified vectors elicited up to 6-fold-higher frequencies of HIV-specific CD8 and CD4 T cell responses and up to 25-fold-higher titers of Env (gp120)-specific binding (nonneutralizing) antibody responses that were relatively transient in nature. While the correlates of protection against HIV infection remain incompletely defined, our results indicate that the rational deletion of specific genes from MVA vectors can positively alter their cellular and humoral immunogenicity profiles in nonhuman primates. PMID:22973033

Garber, David A; O'Mara, Leigh A; Gangadhara, Sailaja; McQuoid, Monica; Zhang, Xiugen; Zheng, Rui; Gill, Kiran; Verma, Meena; Yu, Tianwei; Johnson, Brent; Li, Bing; Derdeyn, Cynthia A; Ibegbu, Chris; Altman, John D; Hunter, Eric; Feinberg, Mark B

2012-12-01

71

Comparison of Methods for Detection of Vaccinia Virus in Patient Specimens  

PubMed Central

We analyzed a shell vial culture assay (SVA), real-time PCR, and a direct fluorescent antibody assay (DFA) for rapid detection of vaccinia virus from vaccination sites of Dryvax vaccine recipients. Of 47 samples assayed, 100% were positive by PCR, 89% were positive by SVA, and 40% were positive by DFA. DFA was limited by the need for adequate numbers of cells, with 32% of samples inadequate for interpretation. DFA performed better with specimens from patients who had not previously received the vaccine. PCR was positive for longer times postvaccination than was SVA. Infectious virus could be recovered after 45 min of acetone fixation of shell vial coverslips. Commercially available polyclonal antibodies cross-reacted with other orthopoxviruses and herpes simplex 1, but commercially available monoclonal antibodies were specific for vaccinia virus. In summary, PCR was the most sensitive test for detecting vaccinia virus in clinical specimens, while the DFA was the most rapid but the least sensitive test. PMID:16145113

Fedorko, Daniel P.; Preuss, Jeanne C.; Fahle, Gary A.; Li, Li; Fischer, Steven H.; Hohman, Patricia; Cohen, Jeffrey I.

2005-01-01

72

Safety and immunogenicity of recombinant low-dosage HIV-1 A vaccine candidates vectored by plasmid pTHr DNA or modified vaccinia virus Ankara (MVA) in humans in East Africa.  

PubMed

The safety and immunogenicity of plasmid pTHr DNA, modified vaccinia virus Ankara (MVA) human immunodeficiency virus type 1 (HIV-1) vaccine candidates were evaluated in four Phase I clinical trials in Kenya and Uganda. Both vaccines, expressing HIV-1 subtype A gag p24/p17 and a string of CD8 T-cell epitopes (HIVA), were generally safe and well-tolerated. At the dosage levels and intervals tested, the percentage of vaccine recipients with HIV-1-specific cell-mediated immune responses, assessed by a validated ex vivo interferon gamma (IFN-gamma) ELISPOT assay and Cytokine Flow Cytometry (CFC), did not significantly differ from placebo recipients. These trials demonstrated the feasibility of conducting high-quality Phase 1 trials in Africa. PMID:18440674

Jaoko, Walter; Nakwagala, Frederick N; Anzala, Omu; Manyonyi, Gloria Omosa; Birungi, Josephine; Nanvubya, Annet; Bashir, Farah; Bhatt, Kirana; Ogutu, Hilda; Wakasiaka, Sabina; Matu, Lucy; Waruingi, Wambui; Odada, Jane; Oyaro, Micah; Indangasi, Jackton; Ndinya-Achola, Jeckonia; Konde, Carol; Mugisha, Emmanuel; Fast, Patricia; Schmidt, Claudia; Gilmour, Jill; Tarragona, Tony; Smith, Carol; Barin, Burc; Dally, Len; Johnson, Bruce; Muluubya, Andrew; Nielsen, Leslie; Hayes, Peter; Boaz, Mark; Hughes, Peter; Hanke, Tomás; McMichael, Andrew; Bwayo, Job; Kaleebu, Pontiano

2008-05-23

73

Vaccinia recombinant virus expressing the rabies virus glycoprotein: safety and efficacy trials in Canadian wildlife.  

PubMed

Twenty-six meadow voles (Microtus pennsylvanicus), ten woodchucks (Marmota monax), thirteen grey squirrels (Sciurus carolinensis), thirteen ring-billed gulls (Larus delawarensis), six red-tailed hawks (Buteo jamaicensis) and eight great horned owls (Bubo virginianus) received vaccinia virus recombinant expressing the rabies virus glycoprotein (V-RG) by direct instillation into the oral cavity. Each of ten coyotes (Canis latrans) received the virus in two vaccine-laden baits. Several voles and most of the gulls died from diseases unrelated to vaccination during the observation period, but all other animals remained healthy and survived. These deaths from causes other than vaccination and the absence of any lesions suggestive of vaccinia infection indicate that it is unlikely that any animal suffered or died as a result of V-RG administration. In addition several animals showed an unexpected high level of rabies neutralizing antibodies. PMID:2249183

Artois, M; Charlton, K M; Tolson, N D; Casey, G A; Knowles, M K; Campbell, J B

1990-10-01

74

Vaccinia recombinant virus expressing the rabies virus glycoprotein: safety and efficacy trials in Canadian wildlife.  

PubMed Central

Twenty-six meadow voles (Microtus pennsylvanicus), ten woodchucks (Marmota monax), thirteen grey squirrels (Sciurus carolinensis), thirteen ring-billed gulls (Larus delawarensis), six red-tailed hawks (Buteo jamaicensis) and eight great horned owls (Bubo virginianus) received vaccinia virus recombinant expressing the rabies virus glycoprotein (V-RG) by direct instillation into the oral cavity. Each of ten coyotes (Canis latrans) received the virus in two vaccine-laden baits. Several voles and most of the gulls died from diseases unrelated to vaccination during the observation period, but all other animals remained healthy and survived. These deaths from causes other than vaccination and the absence of any lesions suggestive of vaccinia infection indicate that it is unlikely that any animal suffered or died as a result of V-RG administration. In addition several animals showed an unexpected high level of rabies neutralizing antibodies. PMID:2249183

Artois, M; Charlton, K M; Tolson, N D; Casey, G A; Knowles, M K; Campbell, J B

1990-01-01

75

Vaccine efficacy against malaria by the combination of porcine parvovirus-like particles and vaccinia virus vectors expressing CS of Plasmodium.  

PubMed

With the aim to develop an efficient and cost-effective approach to control malaria, we have generated porcine parvovirus-like particles (PPV-VLPs) carrying the CD8(+) T cell epitope (SYVPSAEQI) of the circumsporozoite (CS) protein from Plasmodium yoelii fused to the PPV VP2 capsid protein (PPV-PYCS), and tested in prime/boost protocols with poxvirus vectors for efficacy in a rodent malaria model. As a proof-of concept, we have characterized the anti-CS CD8(+) T cell response elicited by these hybrid PPV-VLPs in BALB/c mice after immunizations with the protein PPV-PYCS administered alone or in combination with recombinant vaccinia virus (VACV) vectors from the Western Reserve (WR) and modified virus Ankara (MVA) strains expressing the entire P. yoelii CS protein. The results of different immunization protocols showed that the combination of PPV-PYCS prime/poxvirus boost was highly immunogenic, inducing specific CD8+ T cell responses to CS resulting in 95% reduction in liver stage parasites two days following sporozoite challenge. In contrast, neither the administration of PPV-PYCS alone nor the immunization with the vectors given in the order poxvirus/VLPs was as effective. The immune profile induced by VLPs/MVA boost was associated with polyfunctional and effector memory CD8+ T cell responses. These findings highlight the use of recombinant parvovirus PPV-PYCS particles as priming agents and poxvirus vectors, like MVA, as booster to enhance specific CD8+ T cell responses to Plasmodium antigens and to control infection. These observations are relevant in the design of T cell-inducing vaccines against malaria. PMID:22529915

Rodríguez, Dolores; González-Aseguinolaza, Gloria; Rodríguez, Juan R; Vijayan, Aneesh; Gherardi, Magdalena; Rueda, Paloma; Casal, J Ignacio; Esteban, Mariano

2012-01-01

76

CD40L-Adjuvanted DNA/Modified Vaccinia Virus Ankara Simian Immunodeficiency Virus SIV239 Vaccine Enhances SIV-Specific Humoral and Cellular Immunity and Improves Protection against a Heterologous SIVE660 Mucosal Challenge  

PubMed Central

ABSTRACT It remains a challenge to develop a successful human immunodeficiency virus (HIV) vaccine that is capable of preventing infection. Here, we utilized the benefits of CD40L, a costimulatory molecule that can stimulate both dendritic cells (DCs) and B cells, as an adjuvant for our simian immunodeficiency virus (SIV) DNA vaccine in rhesus macaques. We coexpressed the CD40L with our DNA/SIV vaccine such that the CD40L is anchored on the membrane of SIV virus-like particle (VLP). These CD40L containing SIV VLPs showed enhanced activation of DCs in vitro. We then tested the potential of DNA/SIV-CD40L vaccine to adjuvant the DNA prime of a DNA/modified vaccinia virus Ankara (MVA) vaccine in rhesus macaques. Our results demonstrated that the CD40L adjuvant enhanced the functional quality of anti-Env antibody response and breadth of anti-SIV CD8 and CD4 T cell responses, significantly delayed the acquisition of heterologous mucosal SIV infection, and improved viral control. Notably, the CD40L adjuvant enhanced the control of viral replication in the gut at the site of challenge that was associated with lower mucosal CD8 immune activation, one of the strong predictors of disease progression. Collectively, our results highlight the benefits of CD40L adjuvant for enhancing antiviral humoral and cellular immunity, leading to enhanced protection against a pathogenic SIV. A single adjuvant that enhances both humoral and cellular immunity is rare and thus underlines the importance and practicality of CD40L as an adjuvant for vaccines against infectious diseases, including HIV-1. IMPORTANCE Despite many advances in the field of AIDS research, an effective AIDS vaccine that can prevent infection remains elusive. CD40L is a key stimulator of dendritic cells and B cells and can therefore enhance T cell and antibody responses, but its overly potent nature can lead to adverse effects unless used in small doses. In order to modulate local expression of CD40L at relatively lower levels, we expressed CD40L in a membrane-bound form, along with SIV antigens, in a nucleic acid (DNA) vector. We tested the immunogenicity and efficacy of the CD40L-adjuvanted vaccine in macaques using a heterologous mucosal SIV infection. The CD40L-adjuvanted vaccine enhanced the functional quality of anti-Env antibody response and breadth of anti-SIV T cell responses and improved protection. These results demonstrate that VLP-membrane-bound CD40L serves as a novel adjuvant for an HIV vaccine. PMID:24920805

Kwa, Suefen; Lai, Lilin; Gangadhara, Sailaja; Siddiqui, Mariam; Pillai, Vinod B.; Labranche, Celia; Yu, Tianwei; Moss, Bernard; Montefiori, David C.; Robinson, Harriet L.; Kozlowski, Pamela A.

2014-01-01

77

A Single Immunization With Modified Vaccinia Virus Ankara-Based Influenza Virus H7 Vaccine Affords Protection in the Influenza A(H7N9) Pneumonia Ferret Model.  

PubMed

Since the first reports in early 2013, >440 human cases of infection with avian influenza A(H7N9) have been reported including 122 fatalities. After the isolation of the first A(H7N9) viruses, the nucleotide sequences became publically available. Based on the coding sequence of the influenza virus A/Shanghai/2/2013 hemagglutinin gene, a codon-optimized gene was synthesized and cloned into a recombinant modified vaccinia virus Ankara (MVA). This MVA-H7-Sh2 viral vector was used to immunize ferrets and proved to be immunogenic, even after a single immunization. Subsequently, ferrets were challenged with influenza virus A/Anhui/1/2013 via the intratracheal route. Unprotected animals that were mock vaccinated or received empty vector developed interstitial pneumonia characterized by a marked alveolitis, accompanied by loss of appetite, weight loss, and heavy breathing. In contrast, animals vaccinated with MVA-H7-Sh2 were protected from severe disease. PMID:25246535

Kreijtz, Joost H C M; Wiersma, Lidewij C M; De Gruyter, Heidi L M; Vogelzang-van Trierum, Stella E; van Amerongen, Geert; Stittelaar, Koert J; Fouchier, Ron A M; Osterhaus, Albert D M E; Sutter, Gerd; Rimmelzwaan, Guus F

2015-03-01

78

A vaccinia virus double recombinant expressing the F and H genes of rinderpest virus protects cattle against rinderpest and causes no pock lesions.  

PubMed Central

Rinderpest is a highly contagious viral disease of ruminants with greater than 95% morbidity and mortality. We have constructed an infectious vaccinia virus recombinant that expresses both the fusion (F) gene and the hemagglutinin (H) gene of rinderpest virus. The Wyeth strain of vaccinia virus was used for the construction of the recombinant. Cattle vaccinated with the recombinant virus were 100% protected from challenge inoculation with greater than 1000 times the lethal dose of rinderpest virus. No transmission of recombinant vaccinia virus from vaccinated animals to contact animals was observed. The lyophilized form of vaccinia virus is thermostable and allows circumvention of the logistical problems associated with the distribution and administration of vaccines in the arid and hot regions of Asia and Africa. The insertional inactivation of both the thymidine kinase and the hemagglutinin genes of vaccinia virus led to increased attenuation of the virus; this was manifested by the lack of detectable pock lesions in vaccinated animals. This approach may have wide application in the development of safe and efficacious recombinant vaccines for humans and animals. This becomes quite relevant with the concern of the use of vaccinia virus in a population with high incidence of the human immunodeficiency virus. Images PMID:1896447

Giavedoni, L; Jones, L; Mebus, C; Yilma, T

1991-01-01

79

Antiserum from mice vaccinated with modified vaccinia Ankara virus expressing African horse sickness virus (AHSV) VP2 provides protection when it is administered 48h before, or 48h after challenge.  

PubMed

Previous studies show that a recombinant modified vaccinia Ankara (MVA) virus expressing VP2 of AHSV serotype 4 (MVA-VP2) induced virus neutralising antibodies in horses and protected interferon alpha receptor gene knock-out mice (IFNAR -/-) against challenge. Follow up experiments indicated that passive transfer of antiserum, from MVA-VP2 immune donors to recipient mice 1h before challenge, conferred complete clinical protection and significantly reduced viraemia. These studies have been extended to determine the protective effect of MVA-VP2 vaccine-induced antiserum, when administered 48h before, or 48h after challenge. In addition, passive transfer of splenocytes was undertaken to assess if they confer any degree of immunity to immunologically naïve recipient mice. Thus, antisera and splenocytes were collected from groups of mice that had been vaccinated with MVA-VP2, or wild type MVA (MVA-wt), for passive immunisation of recipient mice. The latter were subsequently challenged with AHSV-4 (together with appropriate vaccinated or unvaccinated control animals) and protection was assessed by comparing clinical signs, lethality and viraemia between treated and control groups. All antiserum recipients showed high protection against disease (100% survival rates even in mice that were immunised 48h after challenge) and statistically significant reduction or viraemia in comparison with the control groups. The mouse group receiving splenocytes from MVA-VP2 vaccinates, showed only a 40% survival rate, with a small reduction in viraemia, compared to those mice that had received splenocytes from MVA-wt vaccinates. These results confirm the primarily humoral nature of protective immunity conferred by MVA-VP2 vaccination and show the potential of administering MVA-VP2 specific antiserum as an emergency treatment for AHSV. PMID:25643968

Calvo-Pinilla, Eva; de la Poza, Francisco; Gubbins, Simon; Mertens, Peter Paul Clement; Ortego, Javier; Castillo-Olivares, Javier

2015-04-01

80

Surveillance guidelines for smallpox vaccine (vaccinia) adverse reactions.  

PubMed

CDC and the U.S. Food and Drug Administration rely on state and local health departments, health-care providers, and the public to report the occurrence of adverse events after vaccination to the Vaccine Adverse Event Reporting System. With such data, trends can be accurately monitored, unusual occurrences of adverse events can be detected, and the safety of vaccination intervention activities can be evaluated. On January 24, 2003, the U.S. Department of Health and Human Services (DHHS) implemented a preparedness program in which smallpox (vaccinia) vaccine was administered to federal, state, and local volunteers who might be first responders during a biologic terrorism event. As part of the DHHS Smallpox Preparedness and Response Program, CDC in consultation with experts, established surveillance case definitions for adverse events after smallpox vaccination. Adverse reactions after smallpox vaccination identified during the 1960s surveillance activities were classified on the basis of clinical description and included eczema vaccinatum; fetal vaccinia; generalized vaccinia; accidental autoinoculation, nonocular; ocular vaccinia; progressive vaccinia; erythema multiforme major; postvaccinial encephalitis or encephalomyelitis; and pyogenic infection of the vaccination site. This report provides uniform criteria used for the surveillance case definition and classification for these previously recognized adverse reactions used during the DHHS Smallpox Preparedness and Response Program. Inadvertent inoculation was changed to more precisely describe this event as inadvertent autoinoculation and contact transmission, nonocular and ocular vaccinia. Pyogenic infection also was renamed superinfection of the vaccination site or regional lymph nodes. Finally, case definitions were developed for a new cardiac adverse reaction (myo/pericarditis) and for a cardiac adverse event (dilated cardiomyopathy) and are included in this report. The smallpox vaccine surveillance case definitions presented in the report can be used in future vaccination programs to ensure uniform reporting guidelines and case classification. PMID:16456528

Casey, Christine; Vellozzi, Claudia; Mootrey, Gina T; Chapman, Louisa E; McCauley, Mary; Roper, Martha H; Damon, Inger; Swerdlow, David L

2006-02-01

81

2011 Apr; [Epub ahead of print] Vaccinia Virus Infections in Martial Arts  

E-print Network

These authors contributed equally to this article. Vaccinia virus is an orthopoxvirus used in the live vaccine against smallpox. Vaccinia virus infections can be transmissible and can cause severe complications in those with weakened immune systems. We report on a cluster of 4 cases of vaccinia virus infection in Maryland, USA, likely acquired at a martial arts gym. Vaccinia virus (VACV) is the virus used in the live vaccine against smallpox. Smallpox was declared eradicated by the World Health Organization in 1980 (1), and routine childhood smallpox vaccination ceased after 1972 in the United States. Since 2002, smallpox vaccinations have again been administered to some military personnel and health care workers, and they continue to be recommended for laboratory workers who work with nonattenuated Page 1 of 7orthopoxviruses (2). VACV infections are transmissible and can cause severe complications in those with weakened immune systems (3). We report a cluster of community-acquired VACV infections at a martial arts gym in Maryland, USA.

Celia Adams; Holly Conners; Catherine Rasa; Sue Wilby; Jamaal Russell; Kelly S. Russo; Patricia Somsel; Danny L. Wiedbrauk; Cindy Dougherty; Christopher Allen; Mike Frace; Ginny Emerson; Victoria A. Olson; Scott K. Smith; Zachary Braden; Jason Abel; Whitni Davidson; Mary Reynolds; Inger K. Damon

2008-01-01

82

Outbreak of Severe Zoonotic Vaccinia Virus Infection, Southeastern Brazil  

PubMed Central

In 2010, a vaccinia virus isolate caused an atypically severe outbreak that affected humans and cattle in Brazil. Of 26 rural workers affected, 12 were hospitalized. Our data raise questions about the risk factors related to the increasing number and severity of vaccinia virus infections. PMID:25811411

Abrahão, Jônatas Santos; Campos, Rafael Kroon; Trindade, Giliane de Souza; Guimarães da Fonseca, Flávio; Ferreira, Paulo César Peregrino

2015-01-01

83

Vaccinia Virus and Dendritic (Langerhans) Cells: Need for Elucidation of the Role of Dendritic Cells in Vaccination  

Microsoft Academic Search

\\u000a In the review on smallpox by Behbahani (1) it is indicated that Edward Jenner used materials from individuals infected with\\u000a cowpox or horsepox (grease) for immunization. The live vaccines subsequently used were produced from four basic strains: a)\\u000a The Lister Institute or Elstree strain in the United Kingdom that originated from a Prussian soldier with smallpox during\\u000a the 1870 Franco-Prussian

Yechiel Becker

84

Stability of vaccinia-vectored recombinant oral rabies vaccine under field conditions: a 3-year study.  

PubMed

Rabies is an incurable zoonotic disease caused by rabies virus, a member of the rhabdovirus family. It is transmitted through the bite of an infected animal. Control methods, including oral rabies vaccination (ORV) programs, have led to a reduction in the spread and prevalence of the disease in wildlife. This study evaluated the stability of RABORAL, a recombinant vaccinia virus vaccine that is used in oral rabies vaccination programs. The vaccine was studied in various field microenvironments in order to describe its viability and facilitate effective baiting strategies. Field microenvironments influenced the stability of this vaccine in this study. This study emphasizes the importance of understanding how vaccines perform under varying field conditions in order to plan effective baiting strategies. PMID:22468025

Hermann, Joseph R; Fry, Alethea M; Siev, David; Slate, Dennis; Lewis, Charles; Gatewood, Donna M

2011-10-01

85

Vaccinia Virus Requires Glutamine but Not Glucose for Efficient Replication  

PubMed Central

ABSTRACT Viruses require host cell metabolism to provide the necessary energy and biosynthetic precursors for successful viral replication. Vaccinia virus (VACV) is a member of the Poxviridae family, and its use as a vaccine enabled the eradication of variola virus, the etiologic agent of smallpox. A global metabolic screen of VACV-infected primary human foreskin fibroblasts suggested that glutamine metabolism is altered during infection. Glutamine and glucose represent the two main carbon sources for mammalian cells. Depriving VACV-infected cells of exogenous glutamine led to a substantial decrease in infectious virus production, whereas starving infected cells of exogenous glucose had no significant impact on replication. Viral yield in glutamine-deprived cells or in cells treated with an inhibitor of glutaminolysis, the pathway of glutamine catabolism, could be rescued by the addition of multiple tricarboxylic acid (TCA) cycle intermediates. Thus, VACV infection induces a metabolic alteration to fully rely on glutamine to anaplerotically maintain the TCA cycle. VACV protein synthesis, but not viral transcription, was decreased in glutamine-deprived cells, which corresponded with a dramatic reduction in all VACV morphogenetic intermediates. This study reveals the unique carbon utilization program implemented during poxvirus infection and provides a potential metabolic pathway to target viral replication. IMPORTANCE Viruses are dependent on the metabolic machinery of the host cell to supply the energy and molecular building blocks needed for critical processes including genome replication, viral protein synthesis, and membrane production. This study investigates how vaccinia virus (VACV) infection alters global cellular metabolism, providing the first metabolomic analysis for a member of the poxvirus family. Unlike most viruses examined to date, VACV does not activate glycolysis, and exogenous glucose is not required for maximal virus production. Instead, VACV requires exogenous glutamine for efficient replication, and inhibition of glutamine metabolism effectively blocks VACV protein synthesis. This study defines a major metabolic perturbation essential for the replication of a poxvirus and may lead to the discovery of novel antiviral therapies based on metabolic inhibitors. PMID:24501408

Fontaine, Krystal A.; Camarda, Roman

2014-01-01

86

Effect of vaccination with recombinant modified vaccinia virus Ankara expressing structural and regulatory genes of SIV(macJ5) on the kinetics of SIV replication in cynomolgus monkeys.  

PubMed

The efficacy of a multicomponent vaccination with modified vaccinia Ankara constructs (rMVA) expressing structural and regulatory genes of simian immunodeficiency virus (SIV(mac251/32H/J5)) was investigated in cynomolgus monkeys, following challenge with a pathogenic SIV. Vaccination with rMVA-J5 performed at week 0, 12, and 24 induced a moderate proliferative response to whole SIV, a detectable humoral response to all but Nef SIV antigens, and failed to induce neutralizing antibodies. Two months after the last boost, the monkeys were challenged intravenously with 50 MID50 of SIV(mac251). All control monkeys, previously inoculated with non-recombinant MVA, were infected by week two and seroconverted by weeks four to eight. In contrast a sharp increase of both humoral and proliferative responses at two weeks post-challenge was observed in vaccinated monkeys compared to control monkeys. Although all vaccinated monkeys were infected, vaccination with rMVA-J5 appeared to partially control viral replication during the acute and late phase of infection as judged by cell- and plasma-associated viral load. PMID:11555138

Negri, D R; Baroncelli, S; Michelini, Z; Macchia, I; Belli, R; Catone, S; Incitti, F; ten Haaft, P; Corrias, F; Cranage, M P; Polyanskaya, N; Norley, S; Heeney, J; Verani, P; Titti, F

2001-08-01

87

Cardiac Safety of Modified Vaccinia Ankara for Vaccination against Smallpox in a Young, Healthy Study Population  

PubMed Central

Background Conventional smallpox vaccines based on replicating vaccinia virus (VV) strains (e.g. Lister Elstree, NYCBOH) are associated with a high incidence of myo-/pericarditis, a severe inflammatory cardiac complication. A new smallpox vaccine candidate based on a non-replicating Modified Vaccinia Ankara (MVA) poxvirus has been assessed for cardiac safety in a large placebo-controlled clinical trial. Methods Cardiac safety of one and two doses of MVA compared to placebo was assessed in 745 healthy subjects. Vaccinia-naïve subjects received either one dose of MVA and one dose of placebo, two doses of MVA, or two doses of placebo by subcutaneous injection four weeks apart; vaccinia-experienced subjects received a single dose of MVA. Solicited and unsolicited adverse events (AE) and cardiac safety parameters (recorded as Adverse Events of Special Interest, AESI) were monitored after each injection. Results A total of 5 possibly related AESI (3 cases of palpitations, 2 of tachycardia) were reported during the study. No case of myo- or pericarditis occurred. One possibly related serious AE (SAE) was reported during the 6-month follow-up period (sarcoidosis). The most frequently observed AEs were injection site reactions. Conclusions Vaccination with MVA was safe and well tolerated and did not increase the risk for development of myo-/pericarditis. Trial Registration ClinicalTrials.gov NCT00316524 PMID:25879867

Zitzmann-Roth, Eva-Maria; von Sonnenburg, Frank; de la Motte, Stephan; Arndtz-Wiedemann, Nathaly; von Krempelhuber, Alfred; Uebler, Nadine; Vollmar, Jens; Virgin, Garth; Chaplin, Paul

2015-01-01

88

Oral vaccination of raccoons ( Procyon lotor) with genetically modified rabies virus vaccines  

Microsoft Academic Search

Oral vaccination is an important tool currently in use to control the spread of rabies in wildlife populations in various programs around the world. Oral rabies vaccination (ORV) of raccoons represents the largest targeted program to control wildlife rabies in the United States. Currently, the vaccinia-rabies glycoprotein recombinant virus vaccine (V-RG) is the only licensed oral rabies vaccine in the

Jesse D. Blanton; Joshua Self; Michael Niezgoda; Marie-Luise Faber; Bernhard Dietzschold; Charles Rupprecht

2007-01-01

89

Low-Resolution Structure of Vaccinia Virus DNA Replication Machinery  

PubMed Central

Smallpox caused by the poxvirus variola virus is a highly lethal disease that marked human history and was eradicated in 1979 thanks to a worldwide mass vaccination campaign. This virus remains a significant threat for public health due to its potential use as a bioterrorism agent and requires further development of antiviral drugs. The viral genome replication machinery appears to be an ideal target, although very little is known about its structure. Vaccinia virus is the prototypic virus of the Orthopoxvirus genus and shares more than 97% amino acid sequence identity with variola virus. Here we studied four essential viral proteins of the replication machinery: the DNA polymerase E9, the processivity factor A20, the uracil-DNA glycosylase D4, and the helicase-primase D5. We present the recombinant expression and biochemical and biophysical characterizations of these proteins and the complexes they form. We show that the A20D4 polymerase cofactor binds to E9 with high affinity, leading to the formation of the A20D4E9 holoenzyme. Small-angle X-ray scattering yielded envelopes for E9, A20D4, and A20D4E9. They showed the elongated shape of the A20D4 cofactor, leading to a 150-Å separation between the polymerase active site of E9 and the DNA-binding site of D4. Electron microscopy showed a 6-fold rotational symmetry of the helicase-primase D5, as observed for other SF3 helicases. These results favor a rolling-circle mechanism of vaccinia virus genome replication similar to the one suggested for tailed bacteriophages. PMID:23175373

Sèle, Céleste; Gabel, Frank; Gutsche, Irina; Ivanov, Ivan; Burmeister, Wim P.

2013-01-01

90

Vaccinia Virus Recombinant Expressing Herpes Simplex Virus Type 1 Glycoprotein D Prevents Latent Herpes in Mice  

NASA Astrophysics Data System (ADS)

In humans, herpes simplex virus causes a primary infection and then often a latent ganglionic infection that persists for life. Because these latent infections can recur periodically, vaccines are needed that can protect against both primary and latent herpes simplex infections. Infectious vaccinia virus recombinants that contain the herpes simplex virus type 1 (HSV-1) glycoprotein D gene under control of defined early or late vaccinia virus promoters were constructed. Tissue culture cells infected with these recombinant viruses synthesized a glycosylated protein that had the same mass (60,000 daltons) as the glycoprotein D produced by HSV-1. Immunization of mice with one of these recombinant viruses by intradermal, subcutaneous, or intraperitoneal routes resulted in the production of antibodies that neutralized HSV-1 and protected the mice against subsequent lethal challenge with HSV-1 or HSV-2. Immunization with the recombinant virus also protected the majority of the mice against the development of a latent HSV-1 infection of the trigeminal ganglia. This is the first demonstration that a genetically engineered vaccine can prevent the development of latency.

Cremer, Kenneth J.; Mackett, Michael; Wohlenberg, Charles; Notkins, Abner Louis; Moss, Bernard

1985-05-01

91

Combination therapy of vaccinia virus infection with human anti-H3 and anti-B5 monoclonal antibodies in a small animal model  

PubMed Central

Vaccinia virus possesses two immunologically distinct virion forms in vivo—mature virion (MV, IMV) and extracellular virion (EV, EEV). Here we show that combination therapy with two fully human mAbs against an immunodominant MV antigen, H3 (H3L), and an EV antigen, B5 (B5R), provides significantly better protection against vaccinia infection in a small animal model of progressive vaccinia (SCID mice infected with VACVNYCBOH vaccine strain) than a single human monoclonal or human vaccinia immune globulin (VIG), the currently licensed therapeutic for side effects of smallpox vaccination. PMID:20587859

McCausland, Megan M.; Benhnia, Mohammed Rafii-El-Idrissi; Crickard, Lindsay; Laudenslager, John; Granger, Steven W.; Tahara, Tomoyuki; Kubo, Ralph; Koriazova, Lilia; Kato, Shinichiro; Crotty, Shane

2010-01-01

92

Modified vaccinia virus Ankara-based vaccine vectors induce apoptosis in dendritic cells draining from the skin via both the extrinsic and intrinsic caspase pathways, preventing efficient antigen presentation.  

PubMed

Dendritic cells (DC) are potent antigen-presenting cells and central to the induction of immune responses following infection or vaccination. The collection of DC migrating from peripheral tissues by cannulation of the afferent lymphatic vessels provides DC which can be used directly ex vivo without extensive in vitro manipulations. We have previously used bovine migrating DC to show that recombinant human adenovirus 5 vectors efficiently transduce afferent lymph migrating DEC-205(+) CD11c(+) CD8(-) DC (ALDC). We have also shown that recombinant modified vaccinia virus Ankara (MVA) infects ALDC in vitro, causing downregulation of costimulatory molecules, apoptosis, and cell death. We now show that in the bovine system, modified vaccinia virus Ankara-induced apoptosis in DC draining from the skin occurs soon after virus binding via the caspase 8 pathway and is not associated with viral gene expression. We also show that after virus entry, the caspase 9 pathway cascade is initiated. The magnitude of T cell responses to mycobacterial antigen 85A (Ag85A) expressed by recombinant MVA-infected ALDC is increased by blocking caspase-induced apoptosis. Apoptotic bodies generated by recombinant MVA (rMVA)-Ag85A-infected ALDC and containing Ag85A were phagocytosed by noninfected migrating ALDC expressing SIRP? via actin-dependent phagocytosis, and these ALDC in turn presented antigen. However, the addition of fresh ALDC to MVA-infected cultures did not improve on the magnitude of the T cell responses; in contrast, these noninfected DC showed downregulation of major histocompatibility complex class II (MHC-II), CD40, CD80, and CD86. We also observed that MVA-infected ALDC promoted migration of DEC-205(+) SIRP?(+) CD21(+) DC as well as CD4(+) and CD8(+) T cells independently of caspase activation. These in vitro studies show that induction of apoptosis in DC by MVA vectors is detrimental to the subsequent induction of T cell responses. PMID:22419811

Guzman, E; Cubillos-Zapata, C; Cottingham, M G; Gilbert, S C; Prentice, H; Charleston, B; Hope, J C

2012-05-01

93

Methodology for the Efficient Generation of Fluorescently Tagged Vaccinia Virus Proteins  

PubMed Central

Tagging of viral proteins with fluorescent proteins has proven an indispensable approach to furthering our understanding of virus-host interactions. Vaccinia virus (VACV), the live vaccine used in the eradication of smallpox, is particularly amenable to fluorescent live-cell microscopy owing to its large virion size and the ease with which it can be engineered at the genome level. We report here an optimized protocol for generating recombinant viruses. The minimal requirements for targeted homologous recombination during vaccinia replication were determined, which allows the simplification of construct generation. This enabled the alliance of transient dominant selection (TDS) with a fluorescent reporter and metabolic selection to provide a rapid and modular approach to fluorescently label viral proteins. By streamlining the generation of fluorescent recombinant viruses, we are able to facilitate downstream applications such as advanced imaging analysis of many aspects of the virus-host interplay that occurs during virus replication. PMID:24473272

Lynn, Helena; Yamamoto, Yui; Horsington, Jacquelyn; Newsome, Timothy P.

2014-01-01

94

Broad, high-magnitude and multifunctional CD4+ and CD8+ T-cell responses elicited by a DNA and modified vaccinia Ankara vaccine containing human immunodeficiency virus type 1 subtype C genes in baboons.  

PubMed

Candidate human immunodeficiency virus (HIV) vaccine regimens based on DNA boosted with recombinant modified vaccinia Ankara (MVA) have been in development for some time, and there is evidence for improved immunogenicity of newly developed constructs. This study describes immune responses to candidate DNA and MVA vaccines expressing multiple genes (gag, RT, tat, nef and env) from HIV-1 subtype C in chacma baboons (Papio ursinus). The vaccine regimen induced (i) strong T-cell responses, with a median of 4103 spot forming units per 10(6) peripheral blood mononuclear cells by gamma interferon (IFN-gamma) ELISPOT, (ii) broad T-cell responses targeting all five vaccine-expressed genes, with a median of 12 peptides targeted per animal and without any single protein dominating the response, (iii) balanced CD4(+) and CD8(+) responses, which produced both IFN-gamma and interleukin (IL)-2, including IL-2-only responses not detected by the ELISPOT assay, (iv) vaccine memory, which persisted 1 year after immunization and could be boosted further, despite strong anti-vector responses, and (v) mucosal T-cell responses in iliac and mesenteric lymph nodes in two animals tested. The majority of peptide responses mapped contained epitopes previously identified in human HIV infection, and two high-avidity HIV epitope responses were confirmed, indicating the utility of the baboon model for immunogenicity testing. Together, our data show that a combination of DNA and MVA immunization induced robust, durable, multifunctional CD4(+) and CD8(+) responses in baboons targeting multiple HIV epitopes that may home to mucosal sites. These candidate vaccines, which are immunogenic in this pre-clinical model, represent an alternative to adenoviral-based vaccines and have been approved for clinical trials. PMID:19141458

Burgers, Wendy A; Chege, Gerald K; Müller, Tracey L; van Harmelen, Joanne H; Khoury, Greg; Shephard, Enid G; Gray, Clive M; Williamson, Carolyn; Williamson, Anna-Lise

2009-02-01

95

The novel capripoxvirus vector lumpy skin disease virus efficiently boosts modified vaccinia Ankara human immunodeficiency virus responses in rhesus macaques.  

PubMed

Poxvirus vectors represent promising human immunodeficiency virus (HIV) vaccine candidates and were a component of the only successful HIV vaccine efficacy trial to date. We tested the immunogenicity of a novel recombinant capripoxvirus vector, lumpy skin disease virus (LSDV), in combination with modified vaccinia Ankara (MVA), both expressing genes from HIV-1. Here, we demonstrated that the combination regimen was immunogenic in rhesus macaques, inducing high-magnitude, broad and balanced CD4(+) and CD8(+) T-cell responses, and transient activation of the immune response. These studies support further development of LSDV as a vaccine vector. PMID:24866849

Burgers, Wendy A; Ginbot, Zekarias; Shen, Yen-Ju; Chege, Gerald K; Soares, Andreia P; Müller, Tracey L; Bunjun, Rubina; Kiravu, Agano; Munyanduki, Henry; Douglass, Nicola; Williamson, Anna-Lise

2014-10-01

96

Rabies Challenge of Captive Striped Skunks (Mephitis mephitis) following Oral Administration of a Live Vaccinia-Vectored Rabies Vaccine  

Microsoft Academic Search

Twenty-four adult striped skunks (Mephitis mephitis) were administered the raccoon product formulation of Rabies Vaccine, Live Vaccinia-Vectored (Raboral V-RGH, Mer- ial Limited, Athens, Georgia, USA), either by oral instillation or in vaccine-filled coated sachets either as single or multiple doses. A control group remained unvaccinated. Twenty- three of the skunks were challenged 116 days postvaccination with rabies virus (skunk iso-

Deborah A. Grosenbaugh; Joanne L. Maki; Charles E. Rupprecht; Debra K. Wall

97

Deletion of the vaccinia virus gene A46R, encoding for an inhibitor of TLR signalling, is an effective approach to enhance the immunogenicity in mice of the HIV/AIDS vaccine candidate NYVAC-C.  

PubMed

Viruses have developed strategies to counteract signalling through Toll-like receptors (TLRs) that are involved in the detection of viruses and induction of proinflammatory cytokines and IFNs. Vaccinia virus (VACV) encodes A46 protein which disrupts TLR signalling by interfering with TLR: adaptor interactions. Since the innate immune response to viruses is critical to induce protective immunity, we studied whether deletion of A46R gene in a NYVAC vector expressing HIV-1 Env, Gag, Pol and Nef antigens (NYVAC-C) improves immune responses against HIV-1 antigens. This question was examined in human macrophages and in mice infected with a single A46R deletion mutant of the vaccine candidate NYVAC-C (NYVAC-C-?A46R). The viral gene A46R is not required for virus replication in primary chicken embryo fibroblast (CEF) cells and its deletion in NYVAC-C markedly increases TNF, IL-6 and IL-8 secretion by human macrophages. Analysis of the immune responses elicited in BALB/c mice after DNA prime/NYVAC boost immunization shows that deletion of A46R improves the magnitude of the HIV-1-specific CD4 and CD8 T cell immune responses during adaptive and memory phases, maintains the functional profile observed with the parental NYVAC-C and enhances anti-gp120 humoral response during the memory phase. These findings establish the immunological role of VACV A46R on innate immune responses of macrophages in vitro and antigen-specific T and B cell immune responses in vivo and suggest that deletion of viral inhibitors of TLR signalling is a useful approach for the improvement of poxvirus-based vaccine candidates. PMID:24069354

Perdiguero, Beatriz; Gómez, Carmen Elena; Di Pilato, Mauro; Sorzano, Carlos Oscar S; Delaloye, Julie; Roger, Thierry; Calandra, Thierry; Pantaleo, Giuseppe; Esteban, Mariano

2013-01-01

98

Preventing vaccinia virus class-I epitopes presentation by HSV-ICP47 enhances the immunogenicity of a TAP-independent cancer vaccine epitope.  

PubMed

Herpes simplex virus protein ICP47, encoded by US12 gene, strongly downregulates major histocompatibility complex (MHC) class-I antigen restricted presentation by blocking transporter associated with antigen processing (TAP) protein. To decrease viral vector antigenic immunodominance and MHC class-I driven clearance, we engineered recombinant vaccinia viruses (rVV) expressing ICP47 alone (rVV-US12) or together with endoplasmic reticulum (ER)-targeted Melan-A/MART-1(27-35) model tumor epitope (rVV-MUS12). In this study, we show that antigen presenting cells (APC), infected with rVV-US12, display a decreased ability to present TAP dependent MHC class-I restricted viral antigens to CD8+ T-cells. While HLA class-I cell surface expression is strongly downregulated, other important immune related molecules such as CD80, CD44 and, most importantly, MHC class-II are unaffected. Characterization of rVV-MUS12 infected cells demonstrates that over-expression of a TAP-independent peptide, partially compensates for ICP47 induced surface MHC class-I downregulation (30% vs. 70% respectively). Most importantly, in conditions where clearance of infected APC by virus-specific CTL represents a limiting factor, a significant enhancement of CTL responses to the tumor epitope can be detected in cultures stimulated with rVV-MUS12, as compared to those stimulated by rVV-MART alone. Such reagents could become of high relevance in multiple boost protocols required for cancer immunotherapy, to limit vector-specific responsiveness. PMID:22116674

Raafat, Nermin; Sadowski-Cron, Charlotte; Mengus, Chantal; Heberer, Michael; Spagnoli, Giulio C; Zajac, Paul

2012-09-01

99

Quantitation of CD8 ? T Cell Responses to Newly Identified HLA-A * 0201-restricted T Cell Epitopes Conserved Among Vaccinia and Variola (Smallpox) Viruses  

Microsoft Academic Search

Immunization with vaccinia virus resulted in long-lasting protection against smallpox and was the approach used to eliminate natural smallpox infections worldwide. Due to the concern about the potential use of smallpox virus as a bioweapon, smallpox vaccination is currently be- ing reintroduced. Severe complications from vaccination were associated with congenital or acquired T cell deficiencies, but not with congenital agammaglobulinemia,

Masanori Terajima; John Cruz; Gregory Raines; Elizabeth D. Kilpatrick; Jeffrey S. Kennedy; Alan L. Rothman; Francis A. Ennis

100

Cryo-electron tomography of vaccinia virus  

PubMed Central

The combination of cryo-microscopy and electron tomographic reconstruction has allowed us to determine the structure of one of the more complex viruses, intracellular mature vaccinia virus, at a resolution of 4–6 nm. The tomographic reconstruction allows us to dissect the different structural components of the viral particle, avoiding projection artifacts derived from previous microscopic observations. A surface-rendering representation revealed brick-shaped viral particles with slightly rounded edges and dimensions of ?360 × 270 × 250 nm. The outer layer was consistent with a lipid membrane (5–6 nm thick), below which usually two lateral bodies were found, built up by a heterogeneous material without apparent ordering or repetitive features. The internal core presented an inner cavity with electron dense coils of presumptive DNA–protein complexes, together with areas of very low density. The core was surrounded by two layers comprising an overall thickness of ?18–19 nm; the inner layer was consistent with a lipid membrane. The outer layer was discontinuous, formed by a periodic palisade built by the side interaction of T-shaped protein spikes that were anchored in the lower membrane and were arranged into small hexagonal crystallites. It was possible to detect a few pore-like structures that communicated the inner side of the core with the region outside the layer built by the T-shaped spike palisade. PMID:15699328

Cyrklaff, Marek; Risco, Cristina; Fernández, Jose Jesús; Jiménez, Maria Victoria; Estéban, Mariano; Baumeister, Wolfgang; Carrascosa, José L.

2005-01-01

101

Improving Adaptive and Memory Immune Responses of an HIV/AIDS Vaccine Candidate MVA-B by Deletion of Vaccinia Virus Genes (C6L and K7R) Blocking Interferon Signaling Pathways.  

PubMed

Poxvirus vector Modified Vaccinia Virus Ankara (MVA) expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (termed MVA-B) is a promising HIV/AIDS vaccine candidate, as confirmed from results obtained in a prophylactic phase I clinical trial in humans. To improve the immunogenicity elicited by MVA-B, we have generated and characterized the innate immune sensing and the in vivo immunogenicity profile of a vector with a double deletion in two vaccinia virus (VACV) genes (C6L and K7R) coding for inhibitors of interferon (IFN) signaling pathways. The innate immune signals elicited by MVA-B deletion mutants (MVA-B ?C6L and MVA-B ?C6L/K7R) in human macrophages and monocyte-derived dendritic cells (moDCs) showed an up-regulation of the expression of IFN-?, IFN-?/?-inducible genes, TNF-?, and other cytokines and chemokines. A DNA prime/MVA boost immunization protocol in mice revealed that these MVA-B deletion mutants were able to improve the magnitude and quality of HIV-1-specific CD4(+) and CD8(+) T cell adaptive and memory immune responses, which were mostly mediated by CD8(+) T cells of an effector phenotype, with MVA-B ?C6L/K7R being the most immunogenic virus recombinant. CD4(+) T cell responses were mainly directed against Env, while GPN-specific CD8(+) T cell responses were induced preferentially by the MVA-B deletion mutants. Furthermore, antibody levels to Env in the memory phase were slightly enhanced by the MVA-B deletion mutants compared to the parental MVA-B. These findings revealed that double deletion of VACV genes that act blocking intracellularly the IFN signaling pathway confers an immunological benefit, inducing innate immune responses and increases in the magnitude, quality and durability of the HIV-1-specific T cell immune responses. Our observations highlighted the immunomodulatory role of the VACV genes C6L and K7R, and that targeting common pathways, like IRF3/IFN-? signaling, could be a general strategy to improve the immunogenicity of poxvirus-based vaccine candidates. PMID:23826170

García-Arriaza, Juan; Arnáez, Pilar; Gómez, Carmen E; Sorzano, Carlos Óscar S; Esteban, Mariano

2013-01-01

102

Gene transfer into the mammalian inner ear using HSV-1 and vaccinia virus vectors  

E-print Network

Gene transfer into the mammalian inner ear using HSV-1 and vaccinia virus vectors Michael L. Derby type 1 (HSV-1), and vaccinia virus, bearing the Escherichia coli lacZ gene, we tested gene delivery to the guinea pig cochlea in vivo with L-galactosidase staining as an assay. The HSV-1 and vaccinia virus

Corey, David P.

103

Host Cell Nuclear Proteins Are Recruited to Cytoplasmic Vaccinia Virus Replication Complexes  

Microsoft Academic Search

The initiation and termination of vaccinia virus postreplicative transcription have been reported to require cellular proteins, some of which are believed to be nuclear proteins. Vaccinia virus replicates in the cytoplasmic compartment of the cell, raising questions as to whether vaccinia virus has access to nuclear proteins. This was addressed here by following the fate of several nuclear proteins after

Jaewook Oh; Steven S. Broyles

2005-01-01

104

Middle East Respiratory Syndrome Coronavirus Spike Protein Delivered by Modified Vaccinia Virus Ankara Efficiently Induces Virus-Neutralizing Antibodies  

PubMed Central

Middle East respiratory syndrome coronavirus (MERS-CoV) has recently emerged as a causative agent of severe respiratory disease in humans. Here, we constructed recombinant modified vaccinia virus Ankara (MVA) expressing full-length MERS-CoV spike (S) protein (MVA-MERS-S). The genetic stability and growth characteristics of MVA-MERS-S make it a suitable candidate vaccine for clinical testing. Vaccinated mice produced high levels of serum antibodies neutralizing MERS-CoV. Thus, MVA-MERS-S may serve for further development of an emergency vaccine against MERS-CoV. PMID:23986586

Song, Fei; Fux, Robert; Provacia, Lisette B.; Volz, Asisa; Eickmann, Markus; Becker, Stephan; Osterhaus, Albert D. M. E.; Haagmans, Bart L.

2013-01-01

105

Middle East respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus Ankara efficiently induces virus-neutralizing antibodies.  

PubMed

Middle East respiratory syndrome coronavirus (MERS-CoV) has recently emerged as a causative agent of severe respiratory disease in humans. Here, we constructed recombinant modified vaccinia virus Ankara (MVA) expressing full-length MERS-CoV spike (S) protein (MVA-MERS-S). The genetic stability and growth characteristics of MVA-MERS-S make it a suitable candidate vaccine for clinical testing. Vaccinated mice produced high levels of serum antibodies neutralizing MERS-CoV. Thus, MVA-MERS-S may serve for further development of an emergency vaccine against MERS-CoV. PMID:23986586

Song, Fei; Fux, Robert; Provacia, Lisette B; Volz, Asisa; Eickmann, Markus; Becker, Stephan; Osterhaus, Albert D M E; Haagmans, Bart L; Sutter, Gerd

2013-11-01

106

Glycosylated and Nonglycosylated Complement Control Protein of the Lister Strain of Vaccinia Virus  

PubMed Central

The vaccinia virus complement control protein (VCP) is a secreted viral protein that binds the C3b and C4b complement components and inhibits the classic and alternative complement pathways. Previously, we reported that an attenuated smallpox vaccine, LC16m8, which was derived from the Lister strain of vaccinia virus (VV-Lister), expressed a glycosylated form of VCP, whereas published sequence data at that time indicated that the VV-Lister VCP has no motif for N-linked glycosylation. We were interested in determining whether the glycosylation of VCP impairs its biological activity, possibly contributing to the attenuation of LC16m8, and the likely origin of the glycosylated VCP. Expression analysis indicated that VV-Lister contains substrains expressing glycosylated VCP and substrains expressing nonglycosylated VCP. Other strains of smallpox vaccine, as well as laboratory strains of vaccinia virus, all expressed nonglycosylated VCP. Individual Lister virus clones expressing either the glycosylated VCP or the nonglycosylated species were isolated, and partially purified VCP from the isolates were found to be functional equivalents in binding human C3b and C4b complement proteins and inhibiting hemolysis and in immunogenicity. Recombinant vaccinia viruses expressing FLAG-tagged glycosylated VCP (FLAG-VCPg) and nonglycosylated VCP (FLAG-VCP) were constructed based on the Western Reserve strain. Purified FLAG-VCP and FLAG-VCPg bind human C3b and C4b and blocked complement-mediated hemolysis. Our data suggest that glycosylation did not affect the biological activity of VCP and thus may not have contributed to the attenuation of LC16m8. In addition, the LC16m8 virus likely originated from a substrain of VV-Lister that expresses glycosylated VCP. PMID:25030055

Kuhn, Jordan; Atukorale, Vajini; Campbell, Joseph; Weir, Jerry P.

2014-01-01

107

Glycosylated and nonglycosylated complement control protein of the lister strain of vaccinia virus.  

PubMed

The vaccinia virus complement control protein (VCP) is a secreted viral protein that binds the C3b and C4b complement components and inhibits the classic and alternative complement pathways. Previously, we reported that an attenuated smallpox vaccine, LC16m8, which was derived from the Lister strain of vaccinia virus (VV-Lister), expressed a glycosylated form of VCP, whereas published sequence data at that time indicated that the VV-Lister VCP has no motif for N-linked glycosylation. We were interested in determining whether the glycosylation of VCP impairs its biological activity, possibly contributing to the attenuation of LC16m8, and the likely origin of the glycosylated VCP. Expression analysis indicated that VV-Lister contains substrains expressing glycosylated VCP and substrains expressing nonglycosylated VCP. Other strains of smallpox vaccine, as well as laboratory strains of vaccinia virus, all expressed nonglycosylated VCP. Individual Lister virus clones expressing either the glycosylated VCP or the nonglycosylated species were isolated, and partially purified VCP from the isolates were found to be functional equivalents in binding human C3b and C4b complement proteins and inhibiting hemolysis and in immunogenicity. Recombinant vaccinia viruses expressing FLAG-tagged glycosylated VCP (FLAG-VCPg) and nonglycosylated VCP (FLAG-VCP) were constructed based on the Western Reserve strain. Purified FLAG-VCP and FLAG-VCPg bind human C3b and C4b and blocked complement-mediated hemolysis. Our data suggest that glycosylation did not affect the biological activity of VCP and thus may not have contributed to the attenuation of LC16m8. In addition, the LC16m8 virus likely originated from a substrain of VV-Lister that expresses glycosylated VCP. PMID:25030055

Meseda, Clement A; Kuhn, Jordan; Atukorale, Vajini; Campbell, Joseph; Weir, Jerry P

2014-09-01

108

Vaccinia Virus Induces Rapid Necrosis in Keratinocytes by a STAT3-Dependent Mechanism  

PubMed Central

Rationale Humans with a dominant negative mutation in STAT3 are susceptible to severe skin infections, suggesting an essential role for STAT3 signaling in defense against cutaneous pathogens. Methods To focus on innate antiviral defenses in keratinocytes, we used a standard model of cutaneous infection of severe combined immunodeficient mice with the current smallpox vaccine, ACAM-2000. In parallel, early events post-infection with the smallpox vaccine ACAM-2000 were investigated in cultured keratinocytes of human and mouse origin. Results Mice treated topically with a STAT3 inhibitor (Stattic) developed larger vaccinia lesions with higher virus titers and died more rapidly than untreated controls. Cultured human and murine keratinocytes infected with ACAM-2000 underwent rapid necrosis, but when treated with Stattic or with inhibitors of RIP1 kinase or caspase-1, they survived longer, produced higher titers of virus, and showed reduced activation of type I interferon responses and inflammatory cytokines release. Treatment with inhibitors of RIP1 kinase and STAT3, but not caspase-1, also reduced the inflammatory response of keratinocytes to TLR ligands. Vaccinia growth properties in Vero cells, which are known to be defective in some antiviral responses, were unaffected by inhibition of RIP1K, caspase-1, or STAT3. Conclusions Our findings indicate that keratinocytes suppress the replication and spread of vaccinia virus by undergoing rapid programmed cell death, in a process requiring STAT3. These data offer a new framework for understanding susceptibility to skin infection in patients with STAT3 mutations. Interventions which promote prompt necroptosis/pyroptosis of infected keratinocytes may reduce risks associated with vaccination with live vaccinia virus. PMID:25419841

He, Yong; Fisher, Robert; Chowdhury, Soma; Sultana, Ishrat; Pereira, Claudia P.; Bray, Mike; Reed, Jennifer L.

2014-01-01

109

Protection against Friend retrovirus-induced leukemia by recombinant vaccinia viruses expressing the gag gene.  

PubMed Central

High sequence variability in the envelope gene of human immunodeficiency virus has provoked interest in nonenvelope antigens as potential immunogens against retrovirus infection. However, the role of core protein antigens encoded by the gag gene in protective immunity against retroviruses is unclear. By using recombinant vaccinia viruses expressing the Friend murine leukemia helper virus (F-MuLV) gag gene, we could prime CD4+ T-helper cells and protectively immunize susceptible strains of mice against Friend retrovirus infection. Recovery from leukemic splenomegaly developed more slowly after immunization with vaccinia virus-F-MuLV gag than with vaccinia virus-F-MuLV env; however, genetic nonresponders to the envelope protein could be partially protected with Gag vaccines. Class switching of F-MuLV-neutralizing antibodies from immunoglobulin M to immunoglobulin G after challenge with Friend virus complex was facilitated in mice immunized with the Gag antigen. Sequential deletion of the gag gene revealed that the major protective epitope was located on the N-terminal hydrophobic protein p15. Images PMID:1534853

Miyazawa, M; Nishio, J; Chesebro, B

1992-01-01

110

Potential effect of prior raccoonpox virus infection in raccoons on vaccinia-based rabies immunization  

PubMed Central

Background The USDA, Wildlife Services cooperative oral rabies vaccination (ORV) program uses a live vaccinia virus-vectored (genus Orthopoxvirus) vaccine, Raboral V-RG® (V-RG), to vaccinate specific wildlife species against rabies virus in several regions of the U.S. Several naturally occurring orthopoxviruses have been found in North America, including one isolated from asymptomatic raccoons (Procyon lotor). The effect of naturally occurring antibodies to orthopoxviruses on successful V-RG vaccination in raccoons is the focus of this study. Results Overall, raccoons pre-immunized (n = 10) with a recombinant raccoonpox virus vaccine (RCN-F1) responded to vaccination with V-RG with lower rabies virus neutralizing antibody (VNA) titers than those which were not pre-immunized (n = 10) and some failed to seroconvert for rabies VNA to detectable levels. Conclusion These results suggest that the success of some ORV campaigns may be hindered where raccoonpox virus or possibly other orthopoxvirus antibodies are common in wildlife species targeted for ORV. If these areas are identified, different vaccination strategies may be warranted. PMID:18834520

Root, J Jeffrey; McLean, Robert G; Slate, Dennis; MacCarthy, Kathleen A; Osorio, Jorge E

2008-01-01

111

Construction and Characterization of an Infectious Vaccinia Virus Recombinant That Expresses the Influenza Hemagglutinin Gene and Induces Resistance to Influenza Virus Infection in Hamsters  

NASA Astrophysics Data System (ADS)

A DNA copy of the influenza virus hemagglutinin gene, derived from influenza virus A/Jap/305/57 (H2N2) was inserted into the genome of vaccinia virus under the control of an early vaccinia virus promoter. Tissue culture cells infected with the purified recombinant virus synthesized influenza hemagglutinin, which was glycosylated and transported to the cell surface where it could be cleaved with trypsin into HA1 and HA2 subunits. Rabbits and hamsters inoculated intradermally with recombinant virus produced circulating antibodies that inhibited hemagglutination by influenza virus. Furthermore, vaccinated hamsters achieved levels of antibody similar to those obtained upon primary infection with influenza virus and were protected against respiratory infection with the A/Jap/305/57 influenza virus.

Smith, Geoffrey L.; Murphy, Brian R.; Moss, Bernard

1983-12-01

112

Immunization of rhesus monkeys with a recombinant of modified vaccinia virus Ankara expressing a truncated envelope glycoprotein of dengue type 2 virus induced resistance to dengue type 2 virus challenge  

Microsoft Academic Search

Dengue epidemics increasingly pose a public health problem in most countries of the tropical and subtropical areas. Despite decades of research, development of a safe and effective live dengue virus vaccine is still at the experimental stage. To explore an alternative vaccine strategy, we employed the highly attenuated, replication-deficient modified vaccinia Ankara (MVA) as a vector to construct recombinants for

Ruhe Men; Linda Wyatt; Issei Tokimatsu; Sakae Arakaki; Golam Shameem; Randy Elkins; Robert Chanock; Bernard Moss; Ching-Juh Lai

2000-01-01

113

GMCSF-armed vaccinia virus induces an antitumor immune response.  

PubMed

Oncolytic Western Reserve strain vaccinia virus selective for epidermal growth factor receptor pathway mutations and tumor-associated hypermetabolism was armed with human granulocyte-macrophage colony-stimulating factor (GMCSF) and a tdTomato fluorophore. As the assessment of immunological responses to human transgenes is challenging in the most commonly used animal models, we used immunocompetent Syrian golden hamsters, known to be sensitive to human GMCSF and semipermissive to vaccinia virus. Efficacy was initially tested in vitro on various human and hamster cell lines and oncolytic potency of transgene-carrying viruses was similar to unarmed virus. The hGMCSF-encoding virus was able to completely eradicate subcutaneous pancreatic tumors in hamsters, and to fully protect the animals from subsequent rechallenge with the same tumor. Induction of specific antitumor immunity was also shown by ex vivo co-culture experiments with hamster splenocytes. In addition, histological examination revealed increased infiltration of neutrophils and macrophages in GMCSF-virus-treated tumors. These findings help clarify the mechanism of action of GMCSF-armed vaccinia viruses undergoing clinical trials. PMID:25042001

Parviainen, Suvi; Ahonen, Marko; Diaconu, Iulia; Kipar, Anja; Siurala, Mikko; Vähä-Koskela, Markus; Kanerva, Anna; Cerullo, Vincenzo; Hemminki, Akseli

2015-03-01

114

Comparison of the replication characteristics of vaccinia virus strains Guang 9 and Tian Tan in vivo and in vitro.  

PubMed

Vaccinia virus is widely used as a vector in the development of recombinant vaccines. Vaccinia virus strain Guang 9 (VG9), which was derived from vaccinia virus strain Tian Tan (VTT) by successive plaque-cloning purification, was more attenuated than VTT. In this study, the host cell range and the growth and replication of VG9 were compared with those of VTT. The results showed that both VG9 and VTT could infect permissive cells (Vero, TK-143 and CEF) and semipermissive cells PK (15) and induced a visible cytopathic effect (CPE). Both strains could infect nonpermissive CHO-K1 cells but neither was able to reproduce. The replicative ability of VG9 was a little lower than that of VTT. Additionally, recombinant vaccinia viruses containing a firefly luciferase gene (VG9-L and VTT-L) were constructed, and their expression in vitro and replication and spread in vivo were compared. The expression ability of VG9-L was lower than that of VTT-L. Whole-animal imaging data indicated that VG9-L could reproduce quickly and express the exogenous protein at the site of inoculation, regardless of whether the intramuscular, intracutaneous, subcutaneous or celiac inoculation route was used. VG9-L was better in its ability to express a foreign protein than VTT-L, but the time during which expression occurred was shorter. There was no dissemination of virus in mice inoculated with either strain. In summary, this study demonstrates the possibility of using VG9 for the production of smallpox vaccines or the construction of recombinant vaccinia virus vaccines. PMID:24838849

Zhu, Rong; Liu, Qiang; Huang, Weijin; Yu, Yongxin; Wang, Youchun

2014-10-01

115

Smallpox vaccine–induced antibodies are necessary and sufficient for protection against monkeypox virus  

Microsoft Academic Search

Vaccination with live vaccinia virus affords long-lasting protection against variola virus, the agent of smallpox. Its mode of protection in humans, however, has not been clearly defined. Here we report that vaccinia-specific B-cell responses are essential for protection of macaques from monkeypox virus, a variola virus ortholog. Antibody-mediated depletion of B cells, but not CD4+ or CD8+ T cells, abrogated

Yvette Edghill-Smith; Hana Golding; Jody Manischewitz; Lisa R King; Dorothy Scott; Mike Bray; Aysegul Nalca; Jay W Hooper; Chris A Whitehouse; Joern E Schmitz; Keith A Reimann; Genoveffa Franchini

2005-01-01

116

Capturing the Natural Diversity of the Human Antibody Response against Vaccinia Virus ?  

PubMed Central

The eradication of smallpox (variola) and the subsequent cessation of routine vaccination have left modern society vulnerable to bioterrorism employing this devastating contagious disease. The existing, licensed vaccines based on live vaccinia virus (VACV) are contraindicated for a substantial number of people, and prophylactic vaccination of large populations is not reasonable when there is little risk of exposure. Consequently, there is an emerging need to develop efficient and safe therapeutics to be used shortly before or after exposure, either alone or in combination with vaccination. We have characterized the human antibody response to smallpox vaccine (VACV Lister) in immunized volunteers and isolated a large number of VACV-specific antibodies that recognize a variety of different VACV antigens. Using this broad antibody panel, we have generated a fully human, recombinant analogue to plasma-derived vaccinia immunoglobulin (VIG), which mirrors the diversity and specificity of the human antibody immune response and offers the advantage of unlimited supply and reproducible specificity and activity. The recombinant VIG was found to display a high specific binding activity toward VACV antigens, potent in vitro VACV neutralizing activity, and a highly protective efficacy against VACV challenge in the mouse tail lesion model when given either prophylactically or therapeutically. Altogether, the results suggest that this compound has the potential to be used as an effective postexposure prophylaxis or treatment of disease caused by orthopoxviruses. PMID:21147924

Lantto, Johan; Haahr Hansen, Margit; Rasmussen, Søren Kofoed; Steinaa, Lucilla; Poulsen, Tine R.; Duggan, Jackie; Dennis, Mike; Naylor, Irene; Easterbrook, Linda; Bregenholt, Søren; Haurum, John; Jensen, Allan

2011-01-01

117

ORIGINAL ARTICLE CD40 ligand and tdTomato-armed vaccinia virus for induction  

E-print Network

ORIGINAL ARTICLE CD40 ligand and tdTomato-armed vaccinia virus for induction of antitumor immune¨ha¨-Koskela1 , A Hemminki1,3 and V Cerullo2,3 Oncolytic vaccinia virus is an attractive platform the virus can improve efficacy further. CD40 ligand (CD40L, CD154) can induce apoptosis of tumor cells

Hemminki, Akseli

118

Evaluation of modified vaccinia virus Ankara expressing VP2 protein of infectious bursal disease virus as an immunogen in chickens.  

PubMed

A recombinant modified vaccinia Ankara (MVA) virus expressing mature viral protein 2 (VP2) of the infectious bursal disease virus (IBDV) was constructed to develop MVA-based vaccines for poultry. We demonstrated that this recombinant virus was able to induce a specific immune response by observing the production of anti-IBDV-seroneutralizing antibodies in specific pathogen-free chickens. Besides, as the epitopes of VP2 responsible to induce IBDV-neutralizing antibodies are discontinuous, our results suggest that VP2 protein expressed from MVA-VP2 maintained the correct conformational structure. To our knowledge, this is the first report on the usefulness of MVA-based vectors for developing recombinant vaccines for poultry. PMID:22705743

Zanetti, Flavia Adriana; Del Médico Zajac, María Paula; Taboga, Oscar Alberto; Calamante, Gabriela

2012-06-01

119

Chasing Jenner's Vaccine: Revisiting Cowpox Virus Classification  

PubMed Central

Cowpox virus (CPXV) is described as the source of the first vaccine used to prevent the onset and spread of an infectious disease. It is one of the earliest described members of the genus Orthopoxvirus, which includes the viruses that cause smallpox and monkeypox in humans. Both the historic and current literature describe “cowpox” as a disease with a single etiologic agent. Genotypic data presented herein indicate that CPXV is not a single species, but a composite of several (up to 5) species that can infect cows, humans, and other animals. The practice of naming agents after the host in which the resultant disease manifests obfuscates the true taxonomic relationships of “cowpox” isolates. These data support the elevation of as many as four new species within the traditional “cowpox” group and suggest that both wild and modern vaccine strains of Vaccinia virus are most closely related to CPXV of continental Europe rather than the United Kingdom, the homeland of the vaccine. PMID:21858000

Carroll, Darin S.; Emerson, Ginny L.; Li, Yu; Sammons, Scott; Olson, Victoria; Frace, Michael; Nakazawa, Yoshinori; Czerny, Claus Peter; Tryland, Morten; Kolodziejek, Jolanta; Nowotny, Norbert; Olsen-Rasmussen, Melissa; Khristova, Marina; Govil, Dhwani; Karem, Kevin; Damon, Inger K.; Meyer, Hermann

2011-01-01

120

Significantly reduced CCR5-tropic HIV-1 replication in vitro in cells from subjects previously immunized with Vaccinia Virus  

PubMed Central

Background At present, the relatively sudden appearance and explosive spread of HIV throughout Africa and around the world beginning in the 1950s has never been adequately explained. Theorizing that this phenomenon may be somehow related to the eradication of smallpox followed by the cessation of vaccinia immunization, we undertook a comparison of HIV-1 susceptibility in the peripheral blood mononuclear cells from subjects immunized with the vaccinia virus to those from vaccinia naive donors. Results Vaccinia immunization in the preceding 3-6 months resulted in an up to 5-fold reduction in CCR5-tropic but not in CXCR4-tropic HIV-1 replication in the cells from vaccinated subjects. The addition of autologous serum to the cell cultures resulted in enhanced R5 HIV-1 replication in the cells from unvaccinated, but not vaccinated subjects. There were no significant differences in the concentrations of MIP-1?, MIP-1? and RANTES between the cell cultures derived from vaccinated and unvaccinated subjects when measured in culture medium on days 2 and 5 following R5 HIV-1 challenge. Discussion Since primary HIV-1 infections are caused almost exclusively by the CCR5-tropic HIV-1 strains, our results suggest that prior immunization with vaccinia virus might provide an individual with some degree of protection to subsequent HIV infection and/or progression. The duration of such protection remains to be determined. A differential elaboration of MIP-1?, MIP-1? and RANTES between vaccinated and unvaccinated subjects, following infection, does not appear to be a mechanism in the noted protection. PMID:20482754

2010-01-01

121

IL-15 adjuvanted multivalent vaccinia-based universal influenza vaccine requires CD4+ T cells for heterosubtypic protection.  

PubMed

Current influenza vaccines are ineffective against novel viruses and the source or the strain of the next outbreak of influenza is unpredictable; therefore, establishing universal immunity by vaccination to limit the impact of influenza remains a high priority. To meet this challenge, a novel vaccine has been developed using the immunogenic live vaccinia virus as a vaccine vector, expressing multiple H5N1 viral proteins (HA, NA, M1, M2, and NP) together with IL-15 as a molecular adjuvant. Previously, this vaccine demonstrated robust sterile cross-clade protection in mice against H5 influenza viruses, and herein its use has been extended to mediate heterosubtypic immunity toward viruses from both group 1 and 2 HA lineages. The vaccine protected mice against lethal challenge by increasing survival and significantly reducing lung viral loads against the most recent human H7N9, seasonal H3N2, pandemic-2009 H1N1, and highly pathogenic H7N7 influenza A viruses. Influenza-specific antibodies elicited by the vaccine failed to neutralize heterologous viruses and were unable to confer protection by passive transfer. Importantly, heterologous influenza-specific CD4(+) and CD8(+) T-cell responses that were elicited by the vaccine were effectively recalled and amplified following viral challenge in the lungs and periphery. Selective depletion of T-cell subsets in the immunized mice revealed an important role for CD4(+) T cells in heterosubtypic protection, despite low sequence conservation among known MHC-II restricted epitopes across different influenza viruses. This study illustrates the potential utility of our multivalent Wyeth/IL-15/5Flu as a universal influenza vaccine with a correlate of protective immunity that is independent of neutralizing antibodies. PMID:24706798

Valkenburg, Sophie A; Li, Olive T W; Mak, Polly W Y; Mok, Chris K P; Nicholls, John M; Guan, Yi; Waldmann, Thomas A; Peiris, J S Malik; Perera, Liyanage P; Poon, Leo L M

2014-04-15

122

IL-15 adjuvanted multivalent vaccinia-based universal influenza vaccine requires CD4+ T cells for heterosubtypic protection  

PubMed Central

Current influenza vaccines are ineffective against novel viruses and the source or the strain of the next outbreak of influenza is unpredictable; therefore, establishing universal immunity by vaccination to limit the impact of influenza remains a high priority. To meet this challenge, a novel vaccine has been developed using the immunogenic live vaccinia virus as a vaccine vector, expressing multiple H5N1 viral proteins (HA, NA, M1, M2, and NP) together with IL-15 as a molecular adjuvant. Previously, this vaccine demonstrated robust sterile cross-clade protection in mice against H5 influenza viruses, and herein its use has been extended to mediate heterosubtypic immunity toward viruses from both group 1 and 2 HA lineages. The vaccine protected mice against lethal challenge by increasing survival and significantly reducing lung viral loads against the most recent human H7N9, seasonal H3N2, pandemic-2009 H1N1, and highly pathogenic H7N7 influenza A viruses. Influenza-specific antibodies elicited by the vaccine failed to neutralize heterologous viruses and were unable to confer protection by passive transfer. Importantly, heterologous influenza-specific CD4+ and CD8+ T-cell responses that were elicited by the vaccine were effectively recalled and amplified following viral challenge in the lungs and periphery. Selective depletion of T-cell subsets in the immunized mice revealed an important role for CD4+ T cells in heterosubtypic protection, despite low sequence conservation among known MHC-II restricted epitopes across different influenza viruses. This study illustrates the potential utility of our multivalent Wyeth/IL-15/5Flu as a universal influenza vaccine with a correlate of protective immunity that is independent of neutralizing antibodies. PMID:24706798

Valkenburg, Sophie A.; Li, Olive T. W.; Mak, Polly W. Y.; Mok, Chris K. P.; Nicholls, John M.; Guan, Yi; Waldmann, Thomas A.; Peiris, J. S. Malik; Perera, Liyanage P.; Poon, Leo L. M.

2014-01-01

123

Interactions between Human Immunodeficiency Virus Type 1 and Vaccinia Virus in Human Lymphoid Tissue Ex Vivo?  

PubMed Central

Vaccinia virus (VACV) has been attracting attention recently not only as a vector for various vaccines but also as an immunization tool against smallpox because of its potential use as a bioterrorism agent. It has become evident that in spite of a long history of studies of VACV, its tissue pathogenesis remains to be fully understood. Here, we investigated the pathogenesis of VACV and its interactions with human immunodeficiency virus type 1 (HIV-1) in the context of human lymphoid tissues. We found that ex vivo-cultured tonsillar tissue supports productive infection by the New York City Board of Health strain, the VACV strain of the Dryvax vaccine. VACV readily infected both T and non-T (B) lymphocytes and depleted cells of both of these subsets equally over a 12-day period postinfection. Among T lymphocytes, CD8+ cells are preferentially depleted in accordance with their preferential infection: the probability that a CD8+ T cell will be productively infected is almost six times higher than for a CD4+ T cell. T cells expressing CCR5 and the activation markers CD25, CD38, and HLA-DR are other major targets for infection by VACV in lymphoid tissue. As a consequence, VACV predominantly inhibits the replication of the R5SF162 phenotype of HIV-1 in coinfected tissues, as R5-tropic HIV-1 requires activated CCR5+ CD4+ cells for productive infection. Human lymphoid tissue infected ex vivo by VACV can be used to investigate interactions of VACV with other viruses, in particular HIV-1, and to evaluate various VACV vectors for the purpose of recombinant vaccine development. PMID:17804502

Vanpouille, Christophe; Biancotto, Angélique; Lisco, Andrea; Brichacek, Beda

2007-01-01

124

Field use of a vaccinia-rabies recombinant vaccine for the control of sylvatic rabies in Europe and North America.  

PubMed

During recent years, most research on the control of sylvatic rabies has concentrated on developing methods of oral vaccination of wild rabies vectors. To improve both the safety and the stability of the vaccine used, a recombinant vaccinia virus, which expresses the immunising glycoprotein of rabies virus (VRG), has been developed and tested extensively in the laboratory as well as in the field. From 1989 to 1995, approximately 8.5 million VRG vaccine doses were dispersed in Western Europe to vaccinate red foxes (Vulpes vulpes), and in the United States of America (USA) to vaccinate raccoons (Procyon lotor) and coyotes (Canis latrans). In Europe, the use of VRG has led to the elimination of sylvatic rabies from large areas of land, which have consequently been freed from the need for vaccination. Nevertheless, despite very good examples of cross-border cooperation, reinfections have occurred in some regions, due to the difficulty of co-ordinating vaccination plans among neighbouring countries. In the USA, preliminary data from field trails indicate a significant reduction in the incidence of rabies in vaccinated areas. PMID:9025144

Brochier, B; Aubert, M F; Pastoret, P P; Masson, E; Schon, J; Lombard, M; Chappuis, G; Languet, B; Desmettre, P

1996-09-01

125

Innocuit et efficacit d'un vaccin antirabique recombinant des virus de la vaccine et de la rage  

E-print Network

- voie orale Summary ― Safety and efficiency of a vaccine against rabies (vaccinia-rabies doses de ce vaccin par voie orale à 59 renards (Vulpes vulpes) puis titré leurs anticorps avant de les recombinant virus) administered orally in fox, dog and cat. One of the most promising ways to control rabies

Paris-Sud XI, Université de

126

Co-expressing GP5 and M proteins under different promoters in recombinant modified vaccinia virus ankara (rMVA)-based vaccine vector enhanced the humoral and cellular immune responses of porcine reproductive and respiratory syndrome virus (PRRSV)  

Microsoft Academic Search

The porcine reproductive and respiratory syndrome virus (PRRSV) has three major structural proteins which designated as GP5,\\u000a M, and N. Protein GP5 and M have been considered very important to arouse the humoral and cellular immune responses against\\u000a PRRSV infection and proposed to be the excellent candidate proteins in the design of PRRS bioengineering vaccine. There were\\u000a some attempts on

Qisheng Zheng; Desheng Chen; Peng Li; Zhixiang Bi; Ruibing Cao; Bin Zhou; Puyan Chen

2007-01-01

127

Lister strain of vaccinia virus armed with endostatin–angiostatin fusion gene as a novel therapeutic agent for human pancreatic cancer  

Microsoft Academic Search

Survival after pancreatic cancer remains poor despite incremental advances in surgical and adjuvant therapy, and new strategies for treatment are needed. Oncolytic virotherapy is an attractive approach for cancer treatment. In this study, we have evaluated the effectiveness of the Lister vaccine strain of vaccinia virus armed with the endostatin–angiostatin fusion gene (VVhEA) as a novel therapeutic approach for pancreatic

J R Tysome; A Briat; G Alusi; F Cao; D Gao; J Yu; P Wang; S Yang; Z Dong; S Wang; L Deng; J Francis; T Timiryasova; I Fodor; N R Lemoine; Y Wang

2009-01-01

128

Characterization of UVC Light Sensitivity of Vaccinia Virus?  

PubMed Central

Interest in airborne smallpox transmission has been renewed because of concerns regarding the potential use of smallpox virus as a biothreat agent. Air disinfection via upper-room 254-nm germicidal UV (UVC) light in public buildings may reduce the impact of primary agent releases, prevent secondary airborne transmission, and be effective prior to the time when public health authorities are aware of a smallpox outbreak. We characterized the susceptibility of vaccinia virus aerosols, as a surrogate for smallpox, to UVC light by using a benchtop, one-pass aerosol chamber. We evaluated virus susceptibility to UVC doses ranging from 0.1 to 3.2 J/m2, three relative humidity (RH) levels (20%, 60%, and 80%), and suspensions of virus in either water or synthetic respiratory fluid. Dose-response plots show that vaccinia virus susceptibility increased with decreasing RH. These plots also show a significant nonlinear component and a poor fit when using a first-order decay model but show a reasonable fit when we assume that virus susceptibility follows a log-normal distribution. The overall effects of RH (P < 0.0001) and the suspending medium (P = 0.014) were statistically significant. When controlling for the suspending medium, the RH remained a significant factor (P < 0.0001) and the effect of the suspending medium was significant overall (P < 0.0001) after controlling for RH. Virus susceptibility did not appear to be a function of virus particle size. This work provides an essential scientific basis for the design of effective upper-room UVC installations for the prevention of airborne infection transmission of smallpox virus by characterizing the susceptibility of an important orthopoxvirus to UVC exposure. PMID:17644645

McDevitt, James J.; Lai, Ka Man; Rudnick, Stephen N.; Houseman, E. Andres; First, Melvin W.; Milton, Donald K.

2007-01-01

129

Characterization of UVC light sensitivity of vaccinia virus.  

PubMed

Interest in airborne smallpox transmission has been renewed because of concerns regarding the potential use of smallpox virus as a biothreat agent. Air disinfection via upper-room 254-nm germicidal UV (UVC) light in public buildings may reduce the impact of primary agent releases, prevent secondary airborne transmission, and be effective prior to the time when public health authorities are aware of a smallpox outbreak. We characterized the susceptibility of vaccinia virus aerosols, as a surrogate for smallpox, to UVC light by using a benchtop, one-pass aerosol chamber. We evaluated virus susceptibility to UVC doses ranging from 0.1 to 3.2 J/m(2), three relative humidity (RH) levels (20%, 60%, and 80%), and suspensions of virus in either water or synthetic respiratory fluid. Dose-response plots show that vaccinia virus susceptibility increased with decreasing RH. These plots also show a significant nonlinear component and a poor fit when using a first-order decay model but show a reasonable fit when we assume that virus susceptibility follows a log-normal distribution. The overall effects of RH (P < 0.0001) and the suspending medium (P = 0.014) were statistically significant. When controlling for the suspending medium, the RH remained a significant factor (P < 0.0001) and the effect of the suspending medium was significant overall (P < 0.0001) after controlling for RH. Virus susceptibility did not appear to be a function of virus particle size. This work provides an essential scientific basis for the design of effective upper-room UVC installations for the prevention of airborne infection transmission of smallpox virus by characterizing the susceptibility of an important orthopoxvirus to UVC exposure. PMID:17644645

McDevitt, James J; Lai, Ka Man; Rudnick, Stephen N; Houseman, E Andres; First, Melvin W; Milton, Donald K

2007-09-01

130

Environmental risk assessment of clinical trials involving modified vaccinia virus Ankara (MVA)-based vectors.  

PubMed

The modified vaccinia virus Ankara (MVA) strain, which has been developed as a vaccine against smallpox, is since the nineties widely tested in clinical trials as recombinant vector for vaccination or gene therapy applications. Although MVA is renowned for its safety, several biosafety aspects need to be considered when performing the risk assessment of a recombinant MVA (rMVA). This paper presents the biosafety issues and the main lessons learned from the evaluation of the clinical trials with rMVA performed in Belgium. Factors such as the specific characteristics of the rMVA, the inserted foreign sequences/transgene, its ability for reconversion, recombination and dissemination in the population and the environment are the main points of attention. Measures to prevent or manage identified risks are also discussed. PMID:24397528

Goossens, Martine; Pauwels, Katia; Willemarck, Nicolas; Breyer, Didier

2013-12-01

131

Environmental Risk Assessment of Clinical Trials Involving Modified Vaccinia Virus Ankara (MVA)-Based Vectors  

PubMed Central

The modified vaccinia virus Ankara (MVA) strain, which has been developed as a vaccine against smallpox, is since the nineties widely tested in clinical trials as recombinant vector for vaccination or gene therapy applications. Although MVA is renowned for its safety, several biosafety aspects need to be considered when performing the risk assessment of a recombinant MVA (rMVA). This paper presents the biosafety issues and the main lessons learned from the evaluation of the clinical trials with rMVA performed in Belgium. Factors such as the specific characteristics of the rMVA, the inserted foreign sequences/transgene, its ability for reconversion, recombination and dissemination in the population and the environment are the main points of attention. Measures to prevent or manage identified risks are also discussed. PMID:24397528

Goossens, Martine; Pauwels, Katia; Willemarck, Nicolas; Breyer, Didier

2013-01-01

132

Generation of an attenuated Tiantan vaccinia virus by deletion of the ribonucleotide reductase large subunit.  

PubMed

Attenuation of the virulence of vaccinia Tiantan virus (VTT) underlies the strategy adopted for mass vaccination campaigns. This strategy provides advantages of safety and efficacy over traditional vaccines and is aimed at minimization of adverse health effects. In this study, a mutant form of the virus, MVTT was derived from VTT by deletion of the ribonucleotide reductase large subunit (R1) (TI4L). Compared to wild-type parental (VTT) and revertant (VTT-rev) viruses, virulence of the mutant MVTT was reduced by 100-fold based on body weight reduction and by 3,200-fold based on determination of the intracranial 50% lethal infectious dose. However, the immunogenicity of MVTT was equivalent to that of the parental VTT. We also demonstrated that the TI4L gene is not required for efficient replication. These data support the conclusion that MVTT can be used as a replicating virus vector or as a platform for the development of vaccines against infectious diseases and for cancer therapy. PMID:24677065

Kan, Shifu; Jia, Peng; Sun, Lili; Hu, Ningning; Li, Chang; Lu, Huijun; Tian, Mingyao; Qi, Yanxin; Jin, Ningyi; Li, Xiao

2014-09-01

133

The development and use of a vaccinia-rabies recombinant oral vaccine for the control of wildlife rabies; a link between Jenner and Pasteur.  

PubMed Central

To improve both safety and stability of the oral vaccines used in the field to vaccinate foxes against rabies, a recombinant vaccinia virus, which expresses the immunizing G protein of rabies virus has been developed by inserting the cDNA which codes for the immunogenic glycoprotein of rabies virus into the thymidine kinase (TK) gene of the Copenhagen strain of vaccinia virus. The efficacy of this vaccine was tested by the oral route, primarily in foxes. The immunity conferred, a minimum of 12 months in cubs and 18 months in adult animals, corresponds to the duration of the protection required for vaccination of foxes in the field. Innocuity was tested in foxes, domestic animals, and in numerous European wild animal species that could compete with the red fox for the vaccine bait. No clinical signs or lesions were observed in any of the vaccinated animals during a minimum of 28 days post vaccination. Moreover, no transmission of immunizing doses of the recombinant occurred between foxes or other species tested. To study the stability of the vaccine strain, baits containing the vaccine were placed in the field. Despite considerable variations of environmental temperatures, the vaccine remained stable for at least one month. Because bait is taken within one month, it can be assumed that most animals taking the baits are effectively vaccinated. To test the field efficacy of the recombinant vaccine, large-scale campaigns of fox vaccination were set up in a 2200 km2 region of southern Belgium, were rabies was prevalent. A dramatic decrease in the incidence of rabies was noted after the campaigns. The recombinant is presently used to control wildlife rabies in the field both in several European countries and in the United States. PMID:8666066

Pastoret, P. P.; Brochier, B.

1996-01-01

134

The NYCBH vaccinia virus deleted for the innate immune evasion gene, E3L, protects rabbits against lethal challenge by rabbitpox virus  

PubMed Central

Vaccinia virus deleted for the innate immune evasion gene, E3L, has been shown to be highly attenuated and yet induces a protective immune response against challenge by homologous virus in a mouse model. In this manuscript the NYCBH vaccinia virus vaccine strain was compared to NYCBH vaccinia virus deleted for E3L (NYCBH?E3L) in a rabbitpox virus (RPV) challenge model. Upon scarification, both vaccines produced a desired skin lesion, although the lesion produced by NYCBH?E3L was smaller. Both vaccines fully protected rabbits against lethal challenge by escalating doses of RPV, from 10 LD50 to 1,000 LD50. A single dose of NYCBH?E3L protected rabbits from weight loss, fever, and clinical symptoms following the lowest dose challenge of 10 LD50, however it allowed a moderate level of RPV replication at the challenge site, some spread to external skin and mucosal surfaces, and increased numbers of secondary lesions as compared to vaccination with NYCBH. Alternately, two doses of NYCBH?E3L fully protected rabbits from weight loss, fever, and clinical symptoms, following challenge with 100 to 1,000 LD50 RPV, and it prevented development of secondary lesions similar to protection seen with NYCBH. Finally, vaccination with either one or two doses of NYCBH?E3L resulted in similar neutralizing antibody titers following RPV challenge as compared to titers obtained by vaccination with NYCBH. These results support the efficacy of the attenuated NYCBH?E3L in protection against an orthologous poxvirus challenge. PMID:21840358

Denzler, Karen L; Rice, Amanda D; MacNeill, Amy L; Fukushima, Nobuko; Lindsey, Scott F; Wallace, Greg; Burrage, Andrew M; Smith, Andrew J; Manning, Brandi R; Swetnam, Daniele M; Gray, Stacey A; Moyer, RW; Jacobs, Bertram L

2011-01-01

135

Genome Scale Patterns of Recombination between Coinfecting Vaccinia Viruses  

PubMed Central

ABSTRACT Recombination plays a critical role in virus evolution. It helps avoid genetic decline and creates novel phenotypes. This promotes survival, and genome sequencing suggests that recombination has facilitated the evolution of human pathogens, including orthopoxviruses such as variola virus. Recombination can also be used to map genes, but although recombinant poxviruses are easily produced in culture, classical attempts to map the vaccinia virus (VACV) genome this way met with little success. We have sequenced recombinants formed when VACV strains TianTan and Dryvax are crossed under different conditions. These were a single round of growth in coinfected cells, five rounds of sequential passage, or recombinants obtained using leporipoxvirus-mediated DNA reactivation. Our studies showed that recombinants contain a patchwork of DNA, with the number of exchanges increasing with passage. Further passage also selected for TianTan DNA and correlated with increased plaque size. The recombinants produced through a single round of coinfection contain a disproportionate number of short conversion tracks (<1 kbp) and exhibited 1 exchange per 12 kbp, close to the ?1 per 8 kbp in the literature. One by-product of this study was that rare mutations were also detected; VACV replication produces ?1 × 10?8 mutation per nucleotide copied per cycle of replication and ?1 large (21 kbp) deletion per 70 rounds of passage. Viruses produced using DNA reactivation appeared no different from recombinants produced using ordinary methods. An attractive feature of this approach is that when it is combined with selection for a particular phenotype, it provides a way of mapping and dissecting more complex virus traits. IMPORTANCE When two closely related viruses coinfect the same cell, they can swap genetic information through a process called recombination. Recombination produces new viruses bearing different combinations of genes, and it plays an important role in virus evolution. Poxviruses are a family of viruses that includes variola (or smallpox) virus, and although poxviruses are known to recombine, no one has previously mapped the patterns of DNAs exchanged between viruses. We coinfected cells with two different vaccinia poxviruses, isolated the progeny, and sequenced them. We show that poxvirus recombination is a very accurate process that assembles viruses containing DNA copied from both parents. In a single round of infection, DNA is swapped back and forth ?18 times per genome to make recombinant viruses that are a mosaic of the two parental DNAs. This mixes many different genes in complex combinations and illustrates how recombination can produce viruses with greatly altered disease potential. PMID:24574414

Qin, Li

2014-01-01

136

Potent Neutralization of Vaccinia Virus by Divergent Murine Antibodies Targeting a Common Site of Vulnerability in L1 Protein  

PubMed Central

ABSTRACT Vaccinia virus (VACV) L1 is an important target for viral neutralization and has been included in multicomponent DNA or protein vaccines against orthopoxviruses. To further understand the protective mechanism of the anti-L1 antibodies, we generated five murine anti-L1 monoclonal antibodies (MAbs), which clustered into 3 distinct epitope groups. While two groups of anti-L1 failed to neutralize, one group of 3 MAbs potently neutralized VACV in an isotype- and complement-independent manner. This is in contrast to neutralizing antibodies against major VACV envelope proteins, such as H3, D8, or A27, which failed to completely neutralize VACV unless the antibodies are of complement-fixing isotypes and complement is present. Compared to nonneutralizing anti-L1 MAbs, the neutralization antibodies bound to the recombinant L1 protein with a significantly higher affinity and also could bind to virions. By using a variety of techniques, including the isolation of neutralization escape mutants, hydrogen/deuterium exchange mass spectrometry, and X-ray crystallography, the epitope of the neutralizing antibodies was mapped to a conformational epitope with Asp35 as the key residue. This epitope is similar to the epitope of 7D11, a previously described potent VACV neutralizing antibody. The epitope was recognized mainly by CDR1 and CDR2 of the heavy chain, which are highly conserved among antibodies recognizing the epitope. These antibodies, however, had divergent light-chain and heavy-chain CDR3 sequences. Our study demonstrates that the conformational L1 epitope with Asp35 is a common site of vulnerability for potent neutralization by a divergent group of antibodies. IMPORTANCE Vaccinia virus, the live vaccine for smallpox, is one of the most successful vaccines in human history, but it presents a level of risk that has become unacceptable for the current population. Studying the immune protection mechanism of smallpox vaccine is important for understanding the basic principle of successful vaccines and the development of next-generation, safer vaccines for highly pathogenic orthopoxviruses. We studied antibody targets in smallpox vaccine by developing potent neutralizing antibodies against vaccinia virus and comprehensively characterizing their epitopes. We found a site in vaccinia virus L1 protein as the target of a group of highly potent murine neutralizing antibodies. The analysis of antibody-antigen complex structure and the sequences of the antibody genes shed light on how these potent neutralizing antibodies are elicited from immunized mice. PMID:25031354

Kaever, Thomas; Meng, Xiangzhi; Matho, Michael H.; Schlossman, Andrew; Li, Sheng; Sela-Culang, Inbal; Ofran, Yanay; Buller, Mark; Crump, Ryan W.; Parker, Scott; Frazier, April; Crotty, Shane; Zajonc, Dirk M.; Peters, Bjoern

2014-01-01

137

Spread of vaccinia virus through shaving during military training, Joint Base San Antonio-Lackland, TX, June 2014.  

PubMed

Although naturally occurring smallpox virus was officially declared eradicated in 1980, concern for biological warfare prompted the U.S. Government in 2002 to recommend smallpox vaccination for select individuals. Vaccinia, the smallpox vaccine virus, is administered into the skin, typically on the upper arm, where the virus remains viable and infectious until the scab falls off and the epidermis is fully intact - typically 2-4 weeks. Adverse events following smallpox vaccination may occur in the vaccinee, in individuals who have contact with the vaccinee (i.e., secondary transmission), or in individuals who have contact with the vaccinee's contact (i.e., tertiary transmission). In June 2014 at Joint Base San Antonio-Lackland, TX, two cases of inadvertent inoculation of vaccinia and one case of a non-viral reaction following vaccination occurred in the security forces training squadron. This includes the first reported case of shaving as the likely source of autoinoculation after contact transmission. This paper describes the diagnosis and treatment of these cases, the outbreak investigation, and steps taken to prevent future transmission. PMID:25162496

Webber, Bryant J; Montgomery, Jay R; Markelz, Ana E; Allen, Kahtonna C; Hunninghake, John C; Ritchie, Simon A; Pawlak, Mary T; Johnston, Lindsay A; Oliver, Tiffany A; Winterton, Brad S

2014-08-01

138

Theranostic Potential of Oncolytic Vaccinia Virus  

PubMed Central

Biological cancer therapies, such as oncolytic, or replication-selective viruses have advantages over traditional therapeutics as they can employ multiple different mechanisms to target and destroy cancers (including direct cell lysis, immune activation and vascular collapse). This has led to their rapid recent clinical development. However this also makes their pre-clinical and clinical study complex, as many parameters may affect their therapeutic potential and so defining reason for treatment failure or approaches that might enhance their therapeutic activity can be complicated. The ability to non-invasively image viral gene expression in vivo both in pre-clinical models and during clinical testing will considerably enhance the speed of oncolytic virus development as well as increasing the level and type of useful data produced from these studies. Further, subsequent to future clinical approval, imaging of reporter gene expression might be used to evaluate the likelihood of response to oncolytic viral therapy prior to changes in tumor burden. Here different reporter genes used in conjunction with oncolytic viral therapy are described, along with the imaging modalities used to measure their expression, while their applications both in pre-clinical and clinical testing are discussed. Possible future applications for reporter gene expression from oncolytic viruses in the phenotyping of tumors and the personalizing of treatment regimens are also discussed. PMID:22509200

Rojas, Juan J; Thorne, Steve H

2012-01-01

139

Immunotherapeutic Potential of Oncolytic Vaccinia Virus  

PubMed Central

The concept of oncolytic viral therapy was based on the hypothesis that engineering tumor-selectivity into the replication potential of viruses would permit direct destruction of tumor cells as a result of viral-mediated lysis, resulting in amplification of the therapy exclusively within the tumor environment. The immune response raised by the virus was not only considered to be necessary for the safety of the approach, but also something of a hindrance to optimal therapeutic activity and repeat dosing. However, the pre-clinical and subsequent clinical success of several oncolytic viruses expressing selected cytokines has demonstrated the potential for harnessing the immune response as an additional and beneficial mechanism of therapeutic activity within the platform. Over the last few years, a variety of novel approaches have been incorporated to try to enhance this immunotherapeutic activity. Several innovative and subtle approaches have moved far beyond the expression of a single cytokine transgene, with the hope of optimizing anti-tumor immunity while having minimal detrimental impact on viral oncolytic activity. PMID:24987615

Thorne, Steve H.

2014-01-01

140

Vaccinia virus strain differences in cell attachment and entry  

SciTech Connect

Vaccinia virus (VACV) strain WR can enter cells by a low pH endosomal pathway or direct fusion with the plasma membrane at neutral pH. Here, we compared attachment and entry of five VACV strains in six cell lines and discovered two major patterns. Only WR exhibited pH 5-enhanced rate of entry following neutral pH adsorption to cells, which correlated with sensitivity to bafilomycin A1, an inhibitor of endosomal acidification. Entry of IHD-J, Copenhagen and Elstree strains were neither accelerated by pH 5 treatment nor prevented by bafilomycin A1. Entry of the Wyeth strain, although not augmented by pH 5, was inhibited by bafilomycin A1. WR and Wyeth were both relatively resistant to the negative effects of heparin on entry, whereas the other strains were extremely sensitive due to inhibition of cell binding. The relative sensitivities of individual vaccinia virus strains to heparin correlated inversely with their abilities to bind to and enter glycosaminoglycan-deficient sog9 cells but not other cell lines tested. These results suggested that that IHD-J, Copenhagen and Elstree have a more limited ability than WR and Wyeth to use the low pH endosomal pathway and are more dependent on binding to glycosaminoglycans for cell attachment.

Bengali, Zain; Townsley, Alan C. [Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, Bethesda, MD 20892-3210 (United States); Moss, Bernard, E-mail: bmoss@nih.go [Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, Bethesda, MD 20892-3210 (United States)

2009-06-20

141

Subcutaneous administration of modified vaccinia virus Ankara expressing an Ag85B-ESAT6 fusion protein, but not an adenovirus-based vaccine, protects mice against intravenous challenge with Mycobacterium tuberculosis.  

PubMed

Recombinant virus-based tuberculosis (TB) vaccines that are strongly immunogenic and elicit robust cellular immunity are considered ideal vaccine candidates. Here, we engineered a poxvirus-based vaccine, MVA85B-E6, and an adenovirus-based vaccine, AD85B-E6, both of which express the fusion protein Ag85B-ESAT6. Subcutaneous vaccination of AD85B-E6 generated strong interferon (IFN)-? production by both CD4 and CD8 T cells and CD8 cytotoxic T lymphocyte activity; these results indicate that strong T-helper type 1 immune responses were elicited in mice, which is in contrast to the moderate responses induced by vaccination with MVA85B-E6. However, MVA85B-E6 given subcutaneously led to levels of protection comparable with that induced by the bacillus Calmette-Guérin vaccine in the lungs and spleens, whereas AD85B-E6 given subcutaneously did not show any protective efficacy after intravenous challenge of BALB/c mice with Mycobacterium tuberculosis H37Rv. Our study emphasizes that more efficient biomarkers for vaccine efficacy and more appropriate routes of vaccine administration are necessary for the development of a successful TB vaccine. PMID:21916923

You, Q; Jiang, C; Wu, Y; Yu, X; Chen, Y; Zhang, X; Wei, W; Wang, Y; Tang, Z; Jiang, D; Wu, Y; Wang, C; Meng, X; Zhao, X; Kong, W

2012-01-01

142

Expression of Herpes Simplex Virus 1 Glycoprotein B by a Recombinant Vaccinia Virus and Protection of Mice against Lethal Herpes Simplex Virus 1 Infection  

NASA Astrophysics Data System (ADS)

The herpes simplex virus 1 (HSV-1) strain F gene encoding glycoprotein gB was isolated and modified at the 5' end by in vitro oligonucleotide-directed mutagenesis. The modified gB gene was inserted into the vaccinia virus genome and expressed under the control of a vaccinia virus promoter. The mature gB glycoprotein produced by the vaccinia virus recombinant was glycosylated, was expressed at the cell surface, and was indistinguishable from authentic HSV-1 gB in terms of electrophoretic mobility. Mice immunized intradermally with the recombinant vaccinia virus produced gB-specific neutralizing antibodies and were resistant to a lethal HSV-1 challenge.

Cantin, Edouard M.; Eberle, Richard; Baldick, Joseph L.; Moss, Bernard; Willey, Dru E.; Notkins, Abner L.; Openshaw, Harry

1987-08-01

143

Rabies vaccine  

Microsoft Academic Search

Rabies vaccines produced by means of molecular biology are described. Recombinant vaccines employing either viruses as vectors\\u000a (vaccinia, adenovirus, poxvirus, baculovirus, plant viruses) or a plasmid vector carrying the rabies virus glycoprotein gene\\u000a are discussed. Synthetic peptide technology directed to rabies vaccine production is also presented.

Claudio Carlos Paolazzi; Oscar Pérez; Javier De Filippo

1999-01-01

144

Respiratory Syncytial Virus Vaccines  

PubMed Central

Respiratory syncytial virus (RSV) is the most important cause of viral lower respiratory tract illness (LRI) in infants and children worldwide and causes significant LRI in the elderly and in immunocompromised patients. The goal of RSV vaccination is to prevent serious RSV-associated LRI. There are several obstacles to the development of successful RSV vaccines, including the need to immunize very young infants, who may respond inadequately to vaccination; the existence of two antigenically distinct RSV groups, A and B; and the history of disease enhancement following administration of a formalin-inactivated vaccine. It is likely that more than one type of vaccine will be needed to prevent RSV LRI in the various populations at risk. Although vector delivery systems, synthetic peptide, and immune-stimulating complex vaccines have been evaluated in animal models, only the purified F protein (PFP) subunit vaccines and live attenuated vaccines have been evaluated in recent clinical trials. PFP-2 appears to be a promising vaccine for the elderly and for RSV-seropositive children with underlying pulmonary disease, whereas live cold-passaged (cp), temperature-sensitive (ts) RSV vaccines (denoted cpts vaccines) would most probably be useful in young infants. The availability of cDNA technology should allow further refinement of existing live attenuated cpts candidate vaccines to produce engineered vaccines that are satisfactorily attenuated, immunogenic, and phenotypically stable. PMID:9665976

Dudas, Robert A.; Karron, Ruth A.

1998-01-01

145

killed-virus influenza vaccine Polio vaccine  

E-print Network

killed-virus influenza vaccine Polio vaccine FluMist Thomas Francis, Jr. National Institutes of Health live-virus influenza vaccine Hunein Maassab Jonas Salk Type-A virus trivalent cold-adapted retrofitting virus 18 19Findings L A B O R A T O R Y D R E A M S U N I V E R S I T Y O F M I C H I G A N S C H

Shyy, Wei

146

Genetic characterisation of attenuated SAD rabies virus strains used for oral vaccination of wildlife  

Microsoft Academic Search

The elimination of rabies from the red fox (Vulpes vulpes) in Western Europe has been achieved by the oral rabies vaccination (ORV) of wildlife with a range of attenuated rabies virus strains. With the exception of the vaccinia rabies glycoprotein recombinant vaccine (VRG), all strains were originally derived from a common ancestor; the Street Alabama Dufferin (SAD) field strain. However,

Lutz Geue; Susann Schares; Christina Schnick; Jeannette Kliemt; Aline Beckert; Conrad Freuling; Franz J. Conraths; Bernd Hoffmann; Reto Zanoni; Denise Marston; Lorraine McElhinney; Nicholas Johnson; Anthony R. Fooks; Noel Tordo; Thomas Müller

2008-01-01

147

Antigen profiling analysis of vaccinia virus injected canine tumors: oncolytic virus efficiency predicted by boolean models.  

PubMed

Virotherapy on the basis of oncolytic vaccinia virus (VACV) strains is a novel approach for cancer therapy. In this study we describe for the first time the use of dynamic boolean modeling for tumor growth prediction of vaccinia virus GLV-1h68-injected canine tumors including canine mammary adenoma (ZMTH3), canine mammary carcinoma (MTH52c), canine prostate carcinoma (CT1258), and canine soft tissue sarcoma (STSA-1). Additionally, the STSA-1 xenografted mice were injected with either LIVP 1.1.1 or LIVP 5.1.1 vaccinia virus strains.   Antigen profiling data of the four different vaccinia virus-injected canine tumors were obtained, analyzed and used to calculate differences in the tumor growth signaling network by type and tumor type. Our model combines networks for apoptosis, MAPK, p53, WNT, Hedgehog, TK cell, Interferon, and Interleukin signaling networks. The in silico findings conform with in vivo findings of tumor growth. Boolean modeling describes tumor growth and remission semi-quantitatively with a good fit to the data obtained for all cancer type variants. At the same time it monitors all signaling activities as a basis for treatment planning according to antigen levels. Mitigation and elimination of VACV- susceptible tumor types as well as effects on the non-susceptible type CT1258 are predicted correctly. Thus the combination of Antigen profiling and semi-quantitative modeling optimizes the therapy already before its start. PMID:25482233

Cecil, Alexander; Gentschev, Ivaylo; Adelfinger, Marion; Nolte, Ingo; Dandekar, Thomas; Szalay, Aladar A

2014-01-01

148

Primary Human Macrophages Serve as Vehicles for Vaccinia Virus Replication and Dissemination  

PubMed Central

ABSTRACT Human monocytic and professional antigen-presenting cells have been reported only to exhibit abortive infections with vaccinia virus (VACV). We found that monocyte-derived macrophages (MDMs), including granulocyte macrophage colony-stimulating factor (GM-CSF)-polarized M1 and macrophage colony-stimulating factor (M-CSF)-polarized M2, but not human AB serum-derived cells, were permissive to VACV replication. The titers of infectious virions in both cell-free supernatants and cellular lysates of infected M1 and M2 markedly increased in a time-dependent manner. The majority of virions produced in permissive MDMs were extracellular enveloped virions (EEV), a secreted form of VACV associated with long-range virus dissemination, and were mainly found in the culture supernatant. Infected MDMs formed VACV factories, actin tails, virion-associated branching structures, and cell linkages, indicating that MDMs are able to initiate de novo synthesis of viral DNA and promote virus release. VACV replication was sensitive to inhibitors against the Akt and Erk1/2 pathways that can be activated by VACV infection and M-CSF stimulation. Classical activation of MDMs by lipopolysaccharide (LPS) plus gamma interferon (IFN-?) stimulation caused no effect on VACV replication, while alternative activation of MDMs by interleukin-10 (IL-10) or LPS-plus-IL-1? treatment significantly decreased VACV production. The IL-10-mediated suppression of VACV replication was largely due to Stat3 activation, as a Stat3 inhibitor restored virus production to levels observed without IL-10 stimulation. In conclusion, our data demonstrate that primary human macrophages are permissive to VACV replication. After infection, these cells produce EEV for long-range dissemination and also form structures associated with virions which may contribute to cell-cell spread. IMPORTANCE Our results provide critical information to the burgeoning fields of cancer-killing (oncolytic) virus therapy with vaccinia virus (VACV). One type of macrophage (M2) is considered a common presence in tumors and is associated with poor prognosis. Our results demonstrate a preference for VACV replication in M2 macrophages and could assist in designing treatments and engineering poxviruses with special considerations for their effect on M2 macrophage-containing tumors. Additionally, this work highlights the importance of macrophages in the field of vaccine development using poxviruses as vectors. The understanding of the dynamics of poxvirus-infected foci is central in understanding the effectiveness of the immune response to poxvirus-mediated vaccine vectors. Monocytic cells have been found to be an important part of VACV skin lesions in mice in controlling the infection as well as mediating virus transport out of infected foci. PMID:24696488

Byrd, Daniel; Shepherd, Nicole; Lan, Jie; Hu, Ningjie; Amet, Tohti; Yang, Kai; Desai, Mona

2014-01-01

149

Immunization with recombinant modified vaccinia virus Ankara can modify mucosal simian immunodeficiency virus infection and delay disease progression in macaques.  

PubMed

In the present study, the immunogenicity and protective efficacy of a recombinant vaccinia virus-based simian immunodeficiency virus (SIV) vaccine, given alone or in combination with a protein boost, were investigated. Cynomolgus macaques were immunized intramuscularly with modified vaccinia virus Ankara (MVA) expressing the SIVsm env and gag-pol genes (MVA-SIVsm) at 0 and 3 months (n=4), at 0, 3 and 8 months (n=4) or at 0 and 3 months followed by purified native SIVsm gp148 and recombinant SIVmac p27 in immunostimulatory complexes at 8 months (n=4). One month after the last immunization, the vaccinees, together with four naive control monkeys and four monkeys immunized with wild-type MVA, were challenged intrarectally with 10 MID50 SIVsm. At the time of challenge, antibody titres to SIV Env and lymphocyte proliferation responses to whole viral antigen were highest in vaccinees receiving MVA-SIVsm in combination with protein immunizations. Following rectal challenge, one of these vaccinees was completely protected. A prolonged survival time was observed in two of four monkeys in each of the groups immunized with MVA-SIVsm, in two monkeys given MVA-SIVsm followed by protein and in three of four monkeys given wild-type MVA, compared with naive controls. In conclusion, one monkey given the combined vaccine was protected completely against SIVsm infection. Furthermore, immunization with MVA-SIVsm, as well as wild-type MVA alone, seemed to delay disease progression after mucosal SIV infection in a proportion of the monkeys. PMID:11907330

Nilsson, Charlotta; Sutter, Gerd; Walther-Jallow, Lilian; ten Haaft, Peter; Akerblom, Lennart; Heeney, Jonathan; Erfle, Volker; Böttiger, Per; Biberfeld, Gunnel; Thorstensson, Rigmor

2002-04-01

150

Virus-Vectored Influenza Virus Vaccines  

PubMed Central

Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines. PMID:25105278

Tripp, Ralph A.; Tompkins, S. Mark

2014-01-01

151

Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells.  

PubMed

Viruses employ many different strategies to enter host cells. Vaccinia virus, a prototype poxvirus, enters cells in a pH-dependent fashion. Live cell imaging showed that fluorescent virus particles associated with and moved along filopodia to the cell body, where they were internalized after inducing the extrusion of large transient membrane blebs. p21-activated kinase 1 (PAK1) was activated by the virus, and the endocytic process had the general characteristics of macropinocytosis. The induction of blebs, the endocytic event, and infection were all critically dependent on the presence of exposed phosphatidylserine in the viral membrane, which suggests that vaccinia virus uses apoptotic mimicry to enter cells. PMID:18436786

Mercer, Jason; Helenius, Ari

2008-04-25

152

Replication-Deficient Vaccinia Virus Encoding Bacteriophage T7 RNA Polymerase for Transient Gene Expression in Mammalian Cells  

Microsoft Academic Search

The vaccinia virus\\/bacteriophage T7 hybrid transient expression system employs a recombinant vaccinia virus that encodes the T7 RNA polymerase gene, a plasmid vector with a gene of interest regulated by a T7 promoter, and any cell line suitable for infection and transfection. Although high expression in a majority of cells is achieved. the severe cytopathic effects of vaccinia virus and

Linda S. Wyatt; Bernard Moss; Shmuel Rozenblatt

1995-01-01

153

Robust Intrapulmonary CD8 T Cell Responses and Protection with an Attenuated N1L Deleted Vaccinia Virus  

PubMed Central

Background Vaccinia viruses have been used as a model for viral disease and as a protective live vaccine. Methodology and Principal Findings We investigated the immunogenicity of an attenuated strain of vaccinia virus engineered to inactivate the N1L gene (vGK5). Using the intranasal route, this recombinant virus was 2 logs less virulent compared to the wildtype VACV-WR. Infection by the intranasal, intraperitoneal, and tail scarification routes resulted in the robust induction of cytolytic virus-specific CD8 T cells in the spleens and the lungs. VACV-specific antibodies were also detected in the sera of mice infected 3–5 months prior with the attenuated vGK5 virus. Finally, mice immunized with vGK5 were significantly protected when challenged with a lethal dose of VACV-WR. Conclusions These results indicate that the attenuated vGK5 virus protects against subsequent infection and suggest that the N1L protein limits the strength of the early antiviral CD8 T cell response following respiratory infection. PMID:18830408

Mathew, Anuja; O'Bryan, Joel; Marshall, William; Kotwal, Girish J.; Terajima, Masanori; Green, Sharone; Rothman, Alan L.; Ennis, Francis A.

2008-01-01

154

Double-stranded RNA is a trigger for apoptosis in vaccinia virus-infected cells.  

PubMed Central

The vaccinia virus E3L gene codes for double-stranded RNA (dsRNA) binding proteins which can prevent activation of the dsRNA-dependent, interferon-induced protein kinase PKR. Activated PKR has been shown to induce apoptosis in HeLa cells. HeLa cells infected with vaccinia virus with the E3L gene deleted have also been shown to undergo apoptosis, whereas HeLa cells infected with wild-type vaccinia virus do not. In this report, using virus recombinants expressing mutant E3L products or alternative dsRNA binding proteins, we show that suppression of induction of apoptosis correlates with functional binding of proteins to dsRNA. Infection of HeLa cells with ts23, which leads to synthesis of increased dsRNA at restrictive temperature, induced apoptosis at restrictive but not permissive temperatures. Treatment of cells with cytosine arabinoside, which blocks the late buildup of dsRNA in vaccinia virus-infected cells, prevented induction of apoptosis by vaccinia virus with E3L deleted. Cells transfected with dsRNA in the absence of virus infection also underwent apoptosis. These results suggest that dsRNA is a trigger that can initiate a suicide response in virus-infected and perhaps uninfected cells. PMID:9032331

Kibler, K V; Shors, T; Perkins, K B; Zeman, C C; Banaszak, M P; Biesterfeldt, J; Langland, J O; Jacobs, B L

1997-01-01

155

A comparison of the antigens present on the surface of virus released artificially from chick cells infected with vaccinia virus, and cowpox virus and its white pock mutant  

PubMed Central

Antisera prepared against vaccinia and cowpox viruses were absorbed with purified suspensions of vaccinia virus, red cowpox and white cowpox viruses. They were then tested for their ability to neutralize the viruses, and to precipitate the virus soluble antigens. The results showed that some virus specific antigens were not virus surface components and that some components were present on the surface of all three viruses. However, certain components were detected on the surface of vaccinia virus but not on the surface of cowpox virus, and vice versa. Some evidence for the existence of a vaccinia-specific surface component was also obtained. Comparisons between results of cross-neutralization tests and immunodiffusion tests on the absorbed sera indicated that antibody to a number of antigens, including the classical LS, and the cowpox-specific d antigen play no part in the process of poxvirus neutralization. ImagesFig. AFig. BFig. CFig. DFig. EFig. FFig. G PMID:4624399

Baxby, Derrick

1972-01-01

156

Induction of multifunctional human immunodeficiency virus type 1 (HIV-1)-specific T cells capable of proliferation in healthy subjects by using a prime-boost regimen of DNA- and modified vaccinia virus Ankara-vectored vaccines expressing HIV-1 Gag coupled to CD8+ T-cell epitopes.  

PubMed

A double-blind randomized phase I trial was conducted in human immunodeficiency virus type 1 (HIV-1)-negative subjects receiving vaccines vectored by plasmid DNA and modified vaccinia virus Ankara (MVA) expressing HIV-1 p24/p17 gag linked to a string of CD8(+) T-cell epitopes. The trial had two groups. One group received either two doses of MVA.HIVA (2x MVA.HIVA) (n=8) or two doses of placebo (2x placebo) (n=4). The second group received 2x pTHr.HIVA followed by one dose of MVA.HIVA (n=8) or 3x placebo (n=4). In the pTHr.HIVA-MVA.HIVA group, HIV-1-specific T-cell responses peaked 1 week after MVA.HIVA vaccination in both ex vivo gamma interferon (IFN-gamma) ELISPOT (group mean, 210 spot-forming cells/10(6) cells) and proliferation (group mean stimulation index, 37), with assays detecting positive responses in four out of eight and five out of eight subjects, respectively. No HIV-1-specific T-cell responses were detected in either assay in the 2x MVA.HIVA group or subjects receiving placebo. Using a highly sensitive and reproducible cultured IFN-gamma ELISPOT assay, positive responses mainly mediated by CD4(+) T cells were detected in eight out of eight vaccinees in the pTHr.HIVA-MVA.HIVA group and four out of eight vaccinees in the 2x MVA.HIVA group. Importantly, no false-positive responses were detected in the eight subjects receiving placebo. Of the 12 responders, 11 developed responses to previously identified immunodominant CD4(+) T-cell epitopes, with 6 volunteers having responses to more than one epitope. Five out of 12 responders also developed CD8(+) T-cell responses to the epitope string. Induced T cells produced a variety of anti-viral cytokines, including tumor necrosis factor alpha and macrophage inflammatory protein 1 beta. These data demonstrate that prime-boost vaccination with recombinant DNA and MVA vectors can induce multifunctional HIV-1-specific T cells in the majority of vaccinees. PMID:16641265

Goonetilleke, Nilu; Moore, Stephen; Dally, Len; Winstone, Nicola; Cebere, Inese; Mahmoud, Abdul; Pinheiro, Susana; Gillespie, Geraldine; Brown, Denise; Loach, Vanessa; Roberts, Joanna; Guimaraes-Walker, Ana; Hayes, Peter; Loughran, Kelley; Smith, Carole; De Bont, Jan; Verlinde, Carl; Vooijs, Danii; Schmidt, Claudia; Boaz, Mark; Gilmour, Jill; Fast, Pat; Dorrell, Lucy; Hanke, Tomas; McMichael, Andrew J

2006-05-01

157

Atomic Force Microscopy Investigation of Vaccinia Virus Structure?  

PubMed Central

Vaccinia virus was treated in a controlled manner with various combinations of nonionic detergents, reducing agents, and proteolytic enzymes, and successive products of the reactions were visualized using atomic force microscopy (AFM). Following removal of the outer lipid/protein membrane, a layer 20 to 40 nm in thickness was encountered that was composed of fibrous elements which, under reducing conditions, rapidly decomposed into individual monomers on the substrate. Beneath this layer was the virus core and its prominent lateral bodies, which could be dissociated or degraded with proteases. The core, in addition to the lateral bodies, was composed of a thick, multilayered shell of proteins of diverse sizes and shapes. The shell, which was readily etched with proteases, was thoroughly permeated with pores, or channels. Prolonged exposure to proteases and reductants produced disgorgement of the viral DNA from the remainders of the cores and also left residual, flattened, protease-resistant sacs on the imaging substrate. The DNA was readily visualized by AFM, which revealed some regions to be “soldered” by proteins, others to be heavily complexed with protein, and yet other parts to apparently exist as bundled, naked DNA. Prolonged exposure to proteases deproteinized the DNA, leaving masses of extended, free DNA. Estimates of the interior core volume suggest moderate but not extreme compaction of the genome. PMID:18508898

Kuznetsov, Y.; Gershon, P. D.; McPherson, A.

2008-01-01

158

Mouse neurotoxicity test for vaccinia-based smallpox vaccines  

Microsoft Academic Search

The only US FDA licensed smallpox vaccine, Dryvax, was associated with rare but serious neurological adverse events. After smallpox was eradicated in the United States, mass vaccination ceased in 1971. As counter-bioterrorism\\/biowarfare measures, new smallpox vaccines are now being investigated. However, there are no established pre-clinical neurotoxicity assays with which to evaluate these new vaccines prior to licensure. Here we

Zhongqi Li; Steven A Rubin; Rolf E Taffs; Michael Merchlinsky; Zhiping Ye; Kathryn M Carbone

2004-01-01

159

Antibodies, viruses and vaccines  

Microsoft Academic Search

Neutralizing antibodies are crucial for vaccine-mediated protection against viral diseases. They probably act, in most cases, by blunting the infection, which is then resolved by cellular immunity. The protective effects of neutralizing antibodies can be achieved not only by neutralization of free virus particles, but also by several activities directed against infected cells. In certain instances, non-neutralizing antibodies contribute to

Dennis R. Burton

2002-01-01

160

Vaccine strategies against Babesia bovis based on prime-boost immunizations in mice with modified vaccinia Ankara vector and recombinant proteins.  

PubMed

In this study, a recombinant modified vaccinia virus Ankara vector expressing a chimeric multi-antigen was obtained and evaluated as a candidate vaccine in homologous and heterologous prime-boost immunizations with a recombinant protein cocktail. The chimeric multi-antigen comprises immunodominant B and T cell regions of three Babesia bovis proteins. Humoral and cellular immune responses were evaluated in mice to compare the immunogenicity induced by different immunization schemes. The best vaccination scheme was achieved with a prime of protein cocktail and a boost with the recombinant virus. This scheme induced high level of specific IgG antibodies and secreted IFN and a high degree of activation of IFN?(+) CD4(+) and CD8(+) specific T cells. This is the first report in which a novel vaccine candidate was constructed based on a rationally designed multi-antigen and evaluated in a prime-boost regime, optimizing the immune response necessary for protection against bovine babesiosis. PMID:24968152

Jaramillo Ortiz, José Manuel; Del Médico Zajac, María Paula; Zanetti, Flavia Adriana; Molinari, María Paula; Gravisaco, María José; Calamante, Gabriela; Wilkowsky, Silvina Elizabeth

2014-08-01

161

Reverse Genetics of SARS-Related Coronavirus Using Vaccinia Virus-Based Recombination  

PubMed Central

Severe acute respiratory syndrome (SARS) is a zoonotic disease caused by SARS-related coronavirus (SARS-CoV) that emerged in 2002 to become a global health concern. Although the original outbreak was controlled by classical public health measures, there is a real risk that another SARS-CoV could re-emerge from its natural reservoir, either in its original form or as a more virulent or pathogenic strain; in which case, the virus would be difficult to control in the absence of any effective antiviral drugs or vaccines. Using the well-studied SARS-CoV isolate HKU-39849, we developed a vaccinia virus-based SARS-CoV reverse genetic system that is both robust and biosafe. The SARS-CoV genome was cloned in separate vaccinia virus vectors, (vSARS-CoV-5prime and vSARS-CoV-3prime) as two cDNAs that were subsequently ligated to create a genome-length SARS-CoV cDNA template for in vitro transcription of SARS-CoV infectious RNA transcripts. Transfection of the RNA transcripts into permissive cells led to the recovery of infectious virus (recSARS-CoV). Characterization of the plaques produced by recSARS-CoV showed that they were similar in size to the parental SARS-CoV isolate HKU-39849 but smaller than the SARS-CoV isolate Frankfurt-1. Comparative analysis of replication kinetics showed that the kinetics of recSARS-CoV replication are similar to those of SARS-CoV Frankfurt-1, although the titers of virus released into the culture supernatant are approximately 10-fold less. The reverse genetic system was finally used to generate a recSARS-CoV reporter virus expressing Renilla luciferase in order to facilitate the analysis of SARS-CoV gene expression in human dendritic cells (hDCs). In parallel, a Renilla luciferase gene was also inserted into the genome of human coronavirus 229E (HCoV-229E). Using this approach, we demonstrate that, in contrast to HCoV-229E, SARS-CoV is not able to mediate efficient heterologous gene expression in hDCs. PMID:22412934

Zevenhoven, Jessika C.; Weber, Friedemann; Züst, Roland; Kuri, Thomas; Dijkman, Ronald; Chang, Guohui; Siddell, Stuart G.; Snijder, Eric J.; Thiel, Volker; Davidson, Andrew D.

2012-01-01

162

Reverse genetics of SARS-related coronavirus using vaccinia virus-based recombination.  

PubMed

Severe acute respiratory syndrome (SARS) is a zoonotic disease caused by SARS-related coronavirus (SARS-CoV) that emerged in 2002 to become a global health concern. Although the original outbreak was controlled by classical public health measures, there is a real risk that another SARS-CoV could re-emerge from its natural reservoir, either in its original form or as a more virulent or pathogenic strain; in which case, the virus would be difficult to control in the absence of any effective antiviral drugs or vaccines. Using the well-studied SARS-CoV isolate HKU-39849, we developed a vaccinia virus-based SARS-CoV reverse genetic system that is both robust and biosafe. The SARS-CoV genome was cloned in separate vaccinia virus vectors, (vSARS-CoV-5prime and vSARS-CoV-3prime) as two cDNAs that were subsequently ligated to create a genome-length SARS-CoV cDNA template for in vitro transcription of SARS-CoV infectious RNA transcripts. Transfection of the RNA transcripts into permissive cells led to the recovery of infectious virus (recSARS-CoV). Characterization of the plaques produced by recSARS-CoV showed that they were similar in size to the parental SARS-CoV isolate HKU-39849 but smaller than the SARS-CoV isolate Frankfurt-1. Comparative analysis of replication kinetics showed that the kinetics of recSARS-CoV replication are similar to those of SARS-CoV Frankfurt-1, although the titers of virus released into the culture supernatant are approximately 10-fold less. The reverse genetic system was finally used to generate a recSARS-CoV reporter virus expressing Renilla luciferase in order to facilitate the analysis of SARS-CoV gene expression in human dendritic cells (hDCs). In parallel, a Renilla luciferase gene was also inserted into the genome of human coronavirus 229E (HCoV-229E). Using this approach, we demonstrate that, in contrast to HCoV-229E, SARS-CoV is not able to mediate efficient heterologous gene expression in hDCs. PMID:22412934

van den Worm, Sjoerd H E; Eriksson, Klara Kristin; Zevenhoven, Jessika C; Weber, Friedemann; Züst, Roland; Kuri, Thomas; Dijkman, Ronald; Chang, Guohui; Siddell, Stuart G; Snijder, Eric J; Thiel, Volker; Davidson, Andrew D

2012-01-01

163

Vaccinia Virus Interactions with the Cell Membrane Studied by New Chromatic Vesicle and Cell Sensor Assays  

Microsoft Academic Search

The potential danger of cross-species viral infection points to the significance of understanding the contri- butions of nonspecific membrane interactions with the viral envelope compared to receptor-mediated uptake as a factor in virus internalization and infection. We present a detailed investigation of the interactions of vaccinia virus particles with lipid bilayers and with epithelial cell membranes using newly developed chromatic

Z. Orynbayeva; S. Kolusheva; N. Groysman; N. Gavrielov; L. Lobel; R. Jelinek

2007-01-01

164

Animal Movement and Establishment of Vaccinia Virus Cantagalo Strain in Amazon Biome, Brazil  

PubMed Central

To understand the emergence of vaccinia virus Cantagalo strain in the Amazon biome of Brazil, during 2008–2010 we conducted a molecular and epidemiologic survey of poxvirus outbreaks. Data indicate that animal movement was the major cause of virus dissemination within Rondônia State, leading to the establishment and spread of this pathogen. PMID:21470472

Quixabeira-Santos, Jociane Cristina; Medaglia, Maria Luiza G.; Pescador, Caroline A.

2011-01-01

165

Evaluation in Nonhuman Primates of Vaccines against Ebola Virus  

PubMed Central

Ebola virus (EBOV) causes acute hemorrhagic fever that is fatal in up to 90% of cases in both humans and nonhuman primates. No vaccines or treatments are available for human use. We evaluated the effects in nonhuman primates of vaccine strategies that had protected mice or guinea pigs from lethal EBOV infection. The following immunogens were used: RNA replicon particles derived from an attenuated strain of Venezuelan equine encephalitis virus (VEEV) expressing EBOV glycoprotein and nucleoprotein; recombinant Vaccinia virus expressing EBOV glycoprotein; liposomes containing lipid A and inactivated EBOV; and a concentrated, inactivated whole-virion preparation. None of these strategies successfully protected nonhuman primates from robust challenge with EBOV. The disease observed in primates differed from that in rodents, suggesting that rodent models of EBOV may not predict the efficacy of candidate vaccines in primates and that protection of primates may require different mechanisms. PMID:11996686

Geisbert, Thomas W.; Pushko, Peter; Anderson, Kevin; Smith, Jonathan; Davis, Kelly J.; Jahrling, Peter B.

2002-01-01

166

Mucosal Immunization Induces a Higher Level of Lasting Neutralizing Antibody Response in Mice by a Replication-Competent Smallpox Vaccine: Vaccinia Tiantan Strain  

PubMed Central

The possible bioterrorism threat using the variola virus, the causative agent of smallpox, has promoted us to further investigate the immunogenicity profiles of existing vaccines. Here, we study for the first time the immunogenicity profile of a replication-competent smallpox vaccine (vaccinia Tiantan, VTT strain) for inducing neutralizing antibodies (Nabs) through mucosal vaccination, which is noninvasive and has a critical implication for massive vaccination programs. Four different routes of vaccination were tested in parallel including intramuscular (i.m.), intranasal (i.n.), oral (i.o.), and subcutaneous (s.c.) inoculations in mice. We found that one time vaccination with an optimal dose of VTT was able to induce anti-VTT Nabs via each of the four routes. Higher levels of antiviral Nabs, however, were induced via the i.n. and i.o. inoculations when compared with the i.m. and s.c. routes. Moreover, the i.n. and i.o. vaccinations also induced higher sustained levels of Nabs overtime, which conferred better protections against homologous or alternating mucosal routes of viral challenges six months post vaccination. The VTT-induced immunity via all four routes, however, was partially effective against the intramuscular viral challenge. Our data have implications for understanding the potential application of mucosal smallpox vaccination and for developing VTT-based vaccines to overcome preexisting antivaccinia immunity. PMID:21765641

Lu, Bin; Yu, Wenbo; Huang, Xiaoxing; Wang, Haibo; Liu, Li; Chen, Zhiwei

2011-01-01

167

Protection from rabies by a vaccinia virus recombinant containing the rabies virus glycoprotein gene.  

PubMed Central

Inoculation of rabbits and mice with a vaccinia-rabies glycoprotein recombinant (V-RG) virus resulted in rapid induction of high concentrations of rabies virus-neutralizing antibodies and protection from severe intracerebral challenge with several strains of rabies virus. Protection from virus challenge also was achieved against the rabies-related Duvenhage virus but not against the Mokola virus. Effective immunization by V-RG depended on the expression of a rabies glycoprotein that registered proline rather than leucine as the eighth amino acid from its NH2 terminus (V-RGpro8). A minimum dose required for effective immunization of mice was 10(4) plaque-forming units of V-RGpro8 virus. beta-propiolactone-inactivated preparations of V-RGpro8 virus also induced high levels of rabies virus-neutralizing antibody and protected mice against intracerebral challenge with street rabies virus. V-RGpro8 virus was highly effective in priming mice to generate a secondary rabies virus-specific cytotoxic T-lymphocyte response following culture of lymphocytes with either ERA or PM strains of rabies virus. Images PMID:6095272

Wiktor, T J; Macfarlan, R I; Reagan, K J; Dietzschold, B; Curtis, P J; Wunner, W H; Kieny, M P; Lathe, R; Lecocq, J P; Mackett, M

1984-01-01

168

Biochemical and Biophysical Properties of a Putative Hub Protein Expressed by Vaccinia Virus*  

PubMed Central

H5 is a constitutively expressed, phosphorylated vaccinia virus protein that has been implicated in viral DNA replication, post-replicative gene expression, and virus assembly. For the purpose of understanding the role of H5 in vaccinia biology, we have characterized its biochemical and biophysical properties. Previously, we have demonstrated that H5 is associated with an endoribonucleolytic activity. In this study, we have shown that this cleavage results in a 3?-OH end suitable for polyadenylation of the nascent transcript, corroborating a role for H5 in vaccinia transcription termination. Furthermore, we have shown that H5 is intrinsically disordered, with an elongated rod-shaped structure that preferentially binds double-stranded nucleic acids in a sequence nonspecific manner. The dynamic phosphorylation status of H5 influences this structure and has implications for the role of H5 in multiple processes during virus replication. PMID:23476017

Kay, Nicole E.; Bainbridge, Travis W.; Condit, Richard C.; Bubb, Michael R.; Judd, Reuben E.; Venkatakrishnan, Balasubramanian; McKenna, Robert; D'Costa, Susan M.

2013-01-01

169

Short report: Isolation of two vaccinia virus strains from a single bovine vaccinia outbreak in rural area from Brazil: Implications on the emergence of zoonotic orthopoxviruses.  

PubMed

Outbreaks of bovine vaccinia disease caused by circulation of Vaccinia virus (VACV) strains have been a common occurrence in Brazil in the recent years, being an important emergent zoonosis. During a single outbreak that took place in 2001, two genetically different VACV strains were isolated and named Guarani P1 virus (GP1V) and Guarani P2 virus (GP2V). Molecular diagnosis was done through restriction fragment length polymorphism (RFLP) of ati gene (A26L) and by sequence analysis of a group of five VACV genes including the C11R, J2R, A56R, B18R, and E3L genes. These findings confirmed the co-circulation of two different Vaccinia virus strains during the same outbreak, raising important questions about the origin, emergence, and circulation of VACV strains in Brazil. PMID:16968926

Trindade, Giliane S; Lobato, Zélia I P; Drumond, Betânia P; Leite, Juliana A; Trigueiro, Ricardo C; Guedes, Maria I M C; da Fonseca, Flávio G; dos Santos, João R; Bonjardim, Cláudio A; Ferreira, Paulo C P; Kroon, Erna G

2006-09-01

170

High, broad, polyfunctional, and durable T cell immune responses induced in mice by a novel hepatitis C virus (HCV) vaccine candidate (MVA-HCV) based on modified vaccinia virus Ankara expressing the nearly full-length HCV genome.  

PubMed

A major goal in the control of hepatitis C infection is the development of a vaccine. Here, we have developed a novel HCV vaccine candidate based on the highly attenuated poxvirus vector MVA (referred to as MVA-HCV) expressing the nearly full-length (7.9-kbp) HCV sequence, with the aim to target almost all of the T and B cell determinants described for HCV. In infected cells, MVA-HCV produces a polyprotein that is subsequently processed into the structural and nonstructural HCV proteins, triggering the cytoplasmic accumulation of dense membrane aggregates. In both C57BL/6 and transgenic HLA-A2-vaccinated mice, MVA-HCV induced high, broad, polyfunctional, and long-lasting HCV-specific T cell immune responses. The vaccine-induced T cell response was mainly mediated by CD8 T cells; however, although lower in magnitude, the CD4(+) T cells were highly polyfunctional. In homologous protocol (MVA-HCV/MVA-HCV) the main CD8(+) T cell target was p7+NS2, whereas in heterologous combination (DNA-HCV/MVA-HCV) the main target was NS3. Antigenic responses were also detected against other HCV proteins (Core, E1-E2, and NS4), but the magnitude of the responses was dependent on the protocol used. The majority of the HCV-induced CD8(+) T cells were triple or quadruple cytokine producers. The MVA-HCV vaccine induced memory CD8(+) T cell responses with an effector memory phenotype. Overall, our data showed that MVA-HCV induced broad, highly polyfunctional, and durable T cell responses of a magnitude and quality that might be associated with protective immunity and open the path for future considerations of MVA-HCV as a prophylactic and/or therapeutic vaccine candidate against HCV. PMID:23596307

Gómez, Carmen E; Perdiguero, Beatriz; Cepeda, María Victoria; Mingorance, Lidia; García-Arriaza, Juan; Vandermeeren, Andrea; Sorzano, Carlos Óscar S; Esteban, Mariano

2013-07-01

171

Novel avian influenza virus vaccines.  

PubMed

Current vaccines against avian influenza (AI) virus infections are primarily based on classical inactivated whole-virus preparations. Although administration of these vaccines can protect poultry from clinical disease, sterile immunity is not achieved under field conditions, allowing for undetected virus spread and evolution under immune cover. Therefore, there is an urgent need for a robust and reliable system of differentiation between infected and vaccinated animals. Moreover, current AI vaccines must be administered individually, requiring the handling of excessively large numbers of animals, which makes it difficult to obtain high vaccine coverage. Consequently, AI vaccines conferring solid immunity that could be used for mass application would be advantageous. Several approaches are being pursued to improve existing vaccines and develop novel vaccines, all of which will be covered in this overview. PMID:19618635

Fuchs, W; Römer-Oberdörfer, A; Veits, J; Mettenleiter, T C

2009-04-01

172

Enhancement of CD8(+) T-cell memory by removal of a vaccinia virus nuclear factor-?B inhibitor.  

PubMed

Factors influencing T-cell responses are important for vaccine development but are incompletely understood. Here, vaccinia virus (VACV) protein N1 is shown to impair the development of both effector and memory CD8(+) T cells and this correlates with its inhibition of nuclear factor-?B (NF-?B) activation. Infection with VACVs that either have the N1L gene deleted (v?N1) or contain a I6E mutation (vN1.I6E) that abrogates its inhibition of NF-?B resulted in increased central and memory CD8(+) T-cell populations, increased CD8(+) T-cell cytotoxicity and lower virus titres after challenge. Furthermore, CD8(+) memory T-cell function was increased following infection with vN1.I6E, with more interferon-? production and greater protection against VACV infection following passive transfer to naive mice, compared with CD8(+) T cells from mice infected with wild-type virus (vN1.WT). This demonstrates the importance of NF-?B activation within infected cells for long-term CD8(+) T-cell memory and vaccine efficacy. Further, it provides a rationale for deleting N1 from VACV vectors to enhance CD8(+) T-cell immunogenicity, while simultaneously reducing virulence to improve vaccine safety. PMID:25382035

Ren, Hongwei; Ferguson, Brian J; de Motes, Carlos Maluquer; Sumner, Rebecca P; Harman, Laura E R; Smith, Geoffrey L

2015-05-01

173

Anti-tumour activity of oncolytic Western Reserve vaccinia viruses in canine tumour cell lines, xenografts, and fresh tumour biopsies.  

PubMed

Cancer is one of the most common reasons for death in dogs. One promising approach is oncolytic virotherapy. We assessed the oncolytic effect of genetically modified vaccinia viruses in canine cancer cells, in freshly excised tumour biopsies, and in mice harbouring canine tumour xenografts. Tumour transduction efficacy was assessed using virus expressing luciferase or fluorescent marker genes and oncolysis was quantified by a colorimetric cell viability assay. Oncolytic efficacy in vivo was evaluated in a nude mouse xenograft model. Vaccinia virus was shown to infect most tested canine cancer cell lines and primary surgical tumour tissues. Virus infection significantly reduced tumour growth in the xenograft model. Oncolytic vaccinia virus has antitumour effects against canine cancer cells and experimental tumours and is able to replicate in freshly excised patient tumour tissue. Our results suggest that oncolytic vaccinia virus may offer an effective treatment option for otherwise incurable canine tumours. PMID:25302859

Autio, K; Knuuttila, A; Kipar, A; Ahonen, M; Parviainen, S; Diaconu, I; Kanerva, A; Hakonen, T; Vähä-Koskela, M; Hemminki, A

2014-10-10

174

THE UPTAKE AND DEVELOPMENT OF VACCINIA VIRUS IN STRAIN L CELLS FOLLOWED WITH LABELED VIRAL DEOXYRIBONUCLEIC ACID  

Microsoft Academic Search

Vaccinia virus which had its DNA labeled with thymidine-H ~ was purified and used as in- oculum for L cells growing in suspension. Samples taken over an 8-hour period after infection were studied by light and electron microscopic autoradiography. Within 20 minutes of its being taken up at the cell membrane in phagocytic vesicles, the outer coat of vaccinia becomes

SAMUEL DALES

1963-01-01

175

Vaccinia virus complement control protein significantly improves sensorimotor function recovery after severe head trauma  

Microsoft Academic Search

Vaccinia virus complement control protein (VCP) is an immunomodulator that inhibits both the classical and alternate pathways of the complement system, therefore preventing cell death and inflammation. VCP has previously been shown to be therapeutically effective in mild and moderate traumatic brain injury models. In this study the efficacy of VCP in a severe head injury model is investigated in

Nirvana S. Pillay; Laurie A. Kellaway; Girish J. Kotwal

2007-01-01

176

Blockade of Chemokine Activity by a Soluble Chemokine Binding Protein from Vaccinia Virus1  

Microsoft Academic Search

Chemokines direct migration of immune cells into sites of inflammation and infection. Chemokine receptors are seven-trans- membrane domain proteins that, in contrast to other cytokine receptors, cannot be easily engineered as soluble chemokine inhibitors. Poxviruses encode several soluble cytokine receptors to evade immune surveillance, providing new strategies for immune modulation. Here we show that vaccinia virus and other orthopoxviruses (cowpox

Antonio Alcami; Julian A. Symons; Paul D. Collins; Timothy J. Williams; Geoffrey L. Smith

177

Functional Characterization of Glycosylation-Deficient Human P-Glycoprotein Using A Vaccinia Virus Expression System  

E-print Network

Functional Characterization of Glycosylation-Deficient Human P-Glycoprotein Using A Vaccinia Virus Abstract. P-glycoprotein (P-gp), the product of human MDR1 gene, which functions as an ATP-dependent drug surface, is functional and suitable for structural studies. Key words: Multidrug resistance -- P-glycoprotein

Hrycyna, Christine A.

178

GMCSF-armed vaccinia virus induces an antitumor immune Suvi Parviainen1  

E-print Network

models, we used immunocompetent Syrian golden hamsters, known to be sensitive to human GMCSF and semipermissive to vaccinia virus. Efficacy was initially tested in vitro on various human and hamster cell lines was able to completely eradicate subcuta- neous pancreatic tumors in hamsters, and to fully protect

Hemminki, Akseli

179

Identification of Novel Antipoxviral Agents: Mitoxantrone Inhibits Vaccinia Virus Replication by Blocking Virion Assembly  

Microsoft Academic Search

The bioterror threat of a smallpox outbreak in an unvaccinated population has mobilized efforts to develop new antipoxviral agents. By screening a library of known drugs, we identified 13 compounds that inhibited vaccinia virus replication at noncytotoxic doses. The anticancer drug mitoxantrone is unique among the inhibitors identified in that it has no apparent impact on viral gene expression. Rather,

Liang Deng; Peihong Dai; Anthony Ciro; Donald F. Smee; Hakim Djaballah; Stewart Shuman

2007-01-01

180

A Loss of Function Analysis of Host Factors Influencing Vaccinia virus Replication by RNA Interference  

PubMed Central

Vaccinia virus (VACV) is a large, cytoplasmic, double-stranded DNA virus that requires complex interactions with host proteins in order to replicate. To explore these interactions a functional high throughput small interfering RNA (siRNA) screen targeting 6719 druggable cellular genes was undertaken to identify host factors (HF) influencing the replication and spread of an eGFP-tagged VACV. The experimental design incorporated a low multiplicity of infection, thereby enhancing detection of cellular proteins involved in cell-to-cell spread of VACV. The screen revealed 153 pro- and 149 anti-viral HFs that strongly influenced VACV replication. These HFs were investigated further by comparisons with transcriptional profiling data sets and HFs identified in RNAi screens of other viruses. In addition, functional and pathway analysis of the entire screen was carried out to highlight cellular mechanisms involved in VACV replication. This revealed, as anticipated, that many pro-viral HFs are involved in translation of mRNA and, unexpectedly, suggested that a range of proteins involved in cellular transcriptional processes and several DNA repair pathways possess anti-viral activity. Multiple components of the AMPK complex were found to act as pro-viral HFs, while several septins, a group of highly conserved GTP binding proteins with a role in sequestering intracellular bacteria, were identified as strong anti-viral VACV HFs. This screen has identified novel and previously unexplored roles for cellular factors in poxvirus replication. This advancement in our understanding of the VACV life cycle provides a reliable knowledge base for the improvement of poxvirus-based vaccine vectors and development of anti-viral theraputics. PMID:24901222

Gonzalez, Orland; Haga, Ismar R.; Pechenick Jowers, Tali; Reynolds, Danielle K.; Wildenhain, Jan; Tekotte, Hille; Auer, Manfred; Tyers, Mike; Ghazal, Peter; Zimmer, Ralf; Haas, Jürgen

2014-01-01

181

Genetic strain modification of a live rabies virus vaccine widely used in Europe for wildlife oral vaccination.  

PubMed

In Europe, the main reservoir and vector of rabies has been the red fox (Vulpes vulpes). Oral immunization of foxes with live vaccines, using attenuated rabies strains (SAD B19, SAD Bern), apathogenic mutants of an attenuated strain (SAG2) and the vaccinia-rabies glycoprotein recombinant virus vaccine (V-RG), has been shown to be the most effective method for the control and elimination of rabies. Among all vaccines currently used for wildlife oral vaccination, one vaccine (marketed as SAD Bern strain) has been widely used in Europe since 1992 with the distribution of 17million of baits in 2011. Because of the potential environmental safety risk of a live virus which could revert to virulence, the full genome sequencing of this vaccine was undertaken and the sequence was characterized and compared with those of referenced rabies viruses. The vaccine showed higher similarity to the strains belonging to the SAD B19 vaccine virus strains than to the SAD Bern vaccines. This study is the first one reporting on virus strain identity changes in this attenuated vaccine. PMID:23899697

Cliquet, Florence; Robardet, Emmanuelle; Picard Meyer, Evelyne

2013-10-01

182

Modulation of the Myxoma Virus Plaque Phenotype by Vaccinia Virus Protein F11  

PubMed Central

Vaccinia virus (VACV) produces large plaques consisting of a rapidly expanding ring of infected cells surrounding a lytic core, whereas myxoma virus (MYXV) produces small plaques that resemble a focus of transformed cells. This is odd, because bioinformatics suggests that MYXV carries homologs of nearly all of the genes regulating Orthopoxvirus attachment, entry, and exit. So why does MYXV produce foci? One notable difference is that MYXV-infected cells produce few of the actin microfilaments that promote VACV exit and spread. This suggested that although MYXV carries homologs of the required genes (A33R, A34R, A36R, and B5R), they are dysfunctional. To test this, we produced MYXV recombinants expressing these genes, but we could not enhance actin projectile formation even in cells expressing all four VACV proteins. Another notable difference between these viruses is that MYXV lacks a homolog of the F11L gene. F11 inhibits the RhoA-mDia signaling that maintains the integrity of the cortical actin layer. We constructed an MYXV strain encoding F11L and observed that, unlike wild-type MYXV, the recombinant virus disrupted actin stress fibers and produced plaques up to 4-fold larger than those of controls, and these plaques expanded ?6-fold faster. These viruses also grew to higher titers in multistep growth conditions, produced higher levels of actin projectiles, and promoted infected cell movement, although neither process was to the extent of that observed in VACV-infected cells. Thus, one reason for why MYXV produces small plaques is that it cannot spread via actin filaments, although the reason for this deficiency remains obscure. A second reason is that leporipoxviruses lack vaccinia's capacity to disrupt cortical actin. PMID:22514354

Irwin, Chad R.

2012-01-01

183

Respiratory syncytial virus vaccine development.  

PubMed

The importance of RSV as a respiratory pathogen in young children made it a priority for vaccine development shortly after it was discovered. Unfortunately, after over 50 years of vaccine development no vaccine has yet been licensed and it is not certain which if any vaccines being developed will be successful. The first candidate vaccine, a formalin inactivated RSV vaccine (FI-RSV), was tested in children in the 1960s and predisposed young recipients to more serious disease with later natural infection. The ongoing challenges in developing RSV vaccines are balanced by advances in our understanding of the virus, the host immune response to vaccines and infection, and pathogenesis of disease. It seems likely that with efficient and appropriately focused effort a safe and effective vaccine is within reach. There are at least 4 different target populations for an RSV vaccine, i.e. the RSV naïve young infant, the RSV naïve infant >4-6 months of age, pregnant women, and elderly adults. Each target population has different issues related to vaccine development. Numerous vaccines from live attenuated RSV to virus like particle vaccines have been developed and evaluated in animals. Very few vaccines have been studied in humans and studies in humans are needed to determine which vaccines are worth moving toward licensure. Some changes in the approach may improve the efficiency of evaluating candidate vaccines. The complexity of the challenges for developing RSV vaccines suggests that collaboration among academic, government, and funding institutions and industry is needed to most efficiently achieve an RSV vaccine. PMID:23778071

Anderson, Larry J

2013-04-01

184

Heterologous Prime-Boost Vaccination with the LACK Antigen Protects against Murine Visceral Leishmaniasis  

Microsoft Academic Search

This study reports the efficacy of a heterologous prime-boost vaccination using DNA and vaccinia viruses (Western Reserve (WR) virus and modified (attenuated) vaccinia virus Ankara (MVA)) expressing the LACK antigen (Leishmania homologue of receptors for activated C kinase) and an intradermal murine infection model employing Leishmania infantum. At 1 month postinfection, vaccinated mice showed high levels of protection in the

Blaise Dondji; Eva Perez-Jimenez; Karen Goldsmith-Pestana; Mariano Esteban; D. McMahon-Pratt

2005-01-01

185

Induction of Potent Humoral and Cell-Mediated Immune Responses by Attenuated Vaccinia Virus Vectors with Deleted Serpin Genes  

PubMed Central

Vaccinia virus (VV) has been effectively utilized as a live vaccine against smallpox as well as a vector for vaccine development and immunotherapy. Increasingly there is a need for a new generation of highly attenuated and efficacious VV vaccines, especially in light of the AIDS pandemic and the threat of global bioterrorism. We therefore developed recombinant VV (rVV) vaccines that are significantly attenuated and yet elicit potent humoral and cell-mediated immune responses. B13R (SPI-2) and B22R (SPI-1) are two VV immunomodulating genes with sequence homology to serine protease inhibitors (serpins) that possess antiapoptotic and anti-inflammatory properties. We constructed and characterized rVVs that have the B13R or B22R gene insertionally inactivated (v?B13R and v?B22R) and coexpress the vesicular stomatitis virus glycoprotein (v50?B13R and v50?B22R). Virulence studies with immunocompromised BALB/cBy nude mice indicated that B13R or B22R gene deletion decreases viral replication and significantly extends time of survival. Viral pathogenesis studies in immunocompetent CB6F1 mice further demonstrated that B13R or B22R gene inactivation diminishes VV virulence, as measured by decreased levels of weight loss and limited viral spread. Finally, rVVs with B13R and B22R deleted elicited potent humoral, T-helper, and cytotoxic T-cell immune responses, revealing that the observed attenuation did not reduce immunogenicity. Therefore, inactivation of immunomodulating genes such as B13R or B22R represents a general method for enhancing the safety of rVV vaccines while maintaining a high level of immunogenicity. Such rVVs could serve as effective vectors for vaccine development and immunotherapy. PMID:14990697

Legrand, Fatema A.; Verardi, Paulo H.; Jones, Leslie A.; Chan, Kenneth S.; Peng, Yue; Yilma, Tilahun D.

2004-01-01

186

Computer Bytes, Viruses and Vaccines.  

ERIC Educational Resources Information Center

Presents a history of computer viruses, explains various types of viruses and how they affect software or computer operating systems, and describes examples of specific viruses. Available vaccines are explained, and precautions for protecting programs and disks are given. (nine references) (LRW)

Palmore, Teddy B.

1989-01-01

187

An intact signal peptide on dengue virus E protein enhances immunogenicity for CD8(+) T cells and antibody when expressed from modified vaccinia Ankara.  

PubMed

Dengue is a global public health concern and this is aggravated by a lack of vaccines or antiviral therapies. Despite the well-known role of CD8(+) T cells in the immunopathogenesis of Dengue virus (DENV), only recent studies have highlighted the importance of this arm of the immune response in protection against the disease. Thus, the majority of DENV vaccine candidates are designed to achieve protective titers of neutralizing antibodies, with less regard for cellular responses. Here, we used a mouse model to investigate CD8(+) T cell and humoral responses to a set of potential DENV vaccines based on recombinant modified vaccinia virus Ankara (rMVA). To enable this study, we identified two CD8(+) T cell epitopes in the DENV-3 E protein in C57BL/6 mice. Using these we found that all the rMVA vaccines elicited DENV-specific CD8(+) T cells that were cytotoxic in vivo and polyfunctional in vitro. Moreover, vaccines expressing the E protein with an intact signal peptide sequence elicited more DENV-specific CD8(+) T cells than those expressing E proteins in the cytoplasm. Significantly, it was these same ER-targeted E protein vaccines that elicited antibody responses. Our results support the further development of rMVA vaccines expressing DENV E proteins and add to the tools available for dengue vaccine development. PMID:24726244

Quinan, Bárbara R; Flesch, Inge E A; Pinho, Tânia M G; Coelho, Fabiana M; Tscharke, David C; da Fonseca, Flávio G

2014-05-23

188

Characterization of a molluscum contagiosum virus homolog of the vaccinia virus p37K major envelope antigen.  

PubMed Central

We present the first nucleotide sequence data for molluscum contagiosum virus (MCV), an unclassified poxvirus. A 2,276-bp XhoI fragment from a near left-terminal fragment of MCV subtype I (MCVI) and a 1,920-bp XhoI fragment from the corresponding locus of MCV subtype II (MCVII) were sequenced and analyzed for open reading frames (ORFs). A large, complete ORF of 1,167 bp was present in both fragments. The putative polypeptide has a calculated molecular mass of 43 kDa (p43K protein) and was shown to have a high degree of homology to the vaccinia virus p37K major envelope antigen (40% amino acid identity and 22% conservative changes). The nucleotide content of the MCV fragments sequenced was 66% G or C. The codon usage within the gene for p43K reflected this high G + C content, with position 3 of codons being predominantly G or C (82 and 87% for MCVI and MCVII, respectively). The MCV p43K-encoding gene has motifs immediately upstream which are similar to those required for vaccinia virus late gene expression. The location and direction of transcription of the MCV p43K-encoding gene were equivalent to those of the vaccinia virus p37K gene, revealing similarity in genetic organization between MCV and vaccinia virus. Another, incomplete ORF was identified downstream of the p43K-encoding gene in both MCVI and MCVII. The sequence immediately upstream of this ORF overlapped the termination codon of the p43K-encoding gene and contained a motif which had homology to the derived consensus sequence for vaccinia virus early gene promoters. PMID:2041084

Blake, N W; Porter, C D; Archard, L C

1991-01-01

189

Recombinant modified vaccinia virus Ankara expressing glycoprotein E2 of Chikungunya virus protects AG129 mice against lethal challenge.  

PubMed

Chikungunya virus (CHIKV) infection is characterized by rash, acute high fever, chills, headache, nausea, photophobia, vomiting, and severe polyarthralgia. There is evidence that arthralgia can persist for years and result in long-term discomfort. Neurologic disease with fatal outcome has been documented, although at low incidences. The CHIKV RNA genome encodes five structural proteins (C, E1, E2, E3 and 6K). The E1 spike protein drives the fusion process within the cytoplasm, while the E2 protein is believed to interact with cellular receptors and therefore most probably constitutes the target of neutralizing antibodies. We have constructed recombinant Modified Vaccinia Ankara (MVA) expressing E3E2, 6KE1, or the entire CHIKV envelope polyprotein cassette E3E26KE1. MVA is an appropriate platform because of its demonstrated clinical safety and its suitability for expression of various heterologous proteins. After completing the immunization scheme, animals were challenged with CHIV-S27. Immunization of AG129 mice with MVAs expressing E2 or E3E26KE1 elicited neutralizing antibodies in all animals and provided 100% protection against lethal disease. In contrast, 75% of the animals immunized with 6KE1 were protected against lethal infection. In conclusion, MVA expressing the glycoprotein E2 of CHIKV represents as an immunogenic and effective candidate vaccine against CHIKV infections. PMID:25188230

van den Doel, Petra; Volz, Asisa; Roose, Jouke M; Sewbalaksing, Varsha D; Pijlman, Gorben P; van Middelkoop, Ingeborg; Duiverman, Vincent; van de Wetering, Eva; Sutter, Gerd; Osterhaus, Albert D M E; Martina, Byron E E

2014-09-01

190

Recombinant Modified Vaccinia Virus Ankara Expressing Glycoprotein E2 of Chikungunya Virus Protects AG129 Mice against Lethal Challenge  

PubMed Central

Chikungunya virus (CHIKV) infection is characterized by rash, acute high fever, chills, headache, nausea, photophobia, vomiting, and severe polyarthralgia. There is evidence that arthralgia can persist for years and result in long-term discomfort. Neurologic disease with fatal outcome has been documented, although at low incidences. The CHIKV RNA genome encodes five structural proteins (C, E1, E2, E3 and 6K). The E1 spike protein drives the fusion process within the cytoplasm, while the E2 protein is believed to interact with cellular receptors and therefore most probably constitutes the target of neutralizing antibodies. We have constructed recombinant Modified Vaccinia Ankara (MVA) expressing E3E2, 6KE1, or the entire CHIKV envelope polyprotein cassette E3E26KE1. MVA is an appropriate platform because of its demonstrated clinical safety and its suitability for expression of various heterologous proteins. After completing the immunization scheme, animals were challenged with CHIV-S27. Immunization of AG129 mice with MVAs expressing E2 or E3E26KE1 elicited neutralizing antibodies in all animals and provided 100% protection against lethal disease. In contrast, 75% of the animals immunized with 6KE1 were protected against lethal infection. In conclusion, MVA expressing the glycoprotein E2 of CHIKV represents as an immunogenic and effective candidate vaccine against CHIKV infections. PMID:25188230

van den Doel, Petra; Volz, Asisa; Roose, Jouke M.; Sewbalaksing, Varsha D.; Pijlman, Gorben P.; van Middelkoop, Ingeborg; Duiverman, Vincent; van de Wetering, Eva; Sutter, Gerd; Osterhaus, Albert D. M. E.; Martina, Byron E. E.

2014-01-01

191

Oncolytic vaccinia virus demonstrates antiangiogenic effects mediated by targeting of VEGF.  

PubMed

Oncolytic vaccinia virus has been shown to induce a profound, rapid and tumor-specific vascular collapse in both preclinical models and clinical studies; however, a complete examination of the kinetics and levels of collapse and revascularization has not been described previously. Contrast-enhanced ultrasound was used to follow tumor perfusion levels in mouse tumor models at times after vaccinia therapy. It was observed that revascularization after viral therapy was dramatically delayed and did not occur until after viral clearance. This indicated that oncolytic vaccinia may possess a previously undescribed antiangiogenic potential that might synergize with the reported anti-vascular effects. Despite a rapid loss of perfusion and widespread hypoxia within the tumor, it was observed that VEGF levels in the tumor were suppressed throughout the period of active viral infection. Although tumor vasculature could eventually reform after the viral therapy was cleared in mouse models, anti-tumor effects could be significantly enhanced through additional combination with anti-VEGF therapies. This was initially examined using a gene therapy approach (Ad-Flk1-Fc) to target VEGF directly, demonstrating that the timing of application of the antiangiogenic therapy was critical. However, it is also known that oncolytic vaccinia sensitizes tumors to tyrosine kinase inhibitors (TKI) in the clinic through an unknown mechanism. It is possible this phenomenon may be mediated through the antiangiogenic effects of the TKIs. This was modeled in mouse tumors using sunitinib in combination with oncolytic vaccinia. It was observed that prevention of angiogenesis mediated by oncolytic vaccinia can be utilized to enhance the TKI therapy. PMID:24474587

Hou, Weizhou; Chen, Hannah; Rojas, Juan; Sampath, Padma; Thorne, Stephen H

2014-09-01

192

Human Vaccines & Immunotherapeutics: News  

PubMed Central

Oncolytic vaccinia virus vaccine: Promising in liver cancer patients FDA panel endorses quadrivalent influenza vaccines Approval for the first meningitis B vaccine Stallergenes seeks FDA approval for sublingual grass-pollen allergy tablet Live-attenuated dengue vaccine promising in Phase 1 GAVI funds HPV vaccines for girls in developing countries First human trials for new superantigen bioterrorism vaccine Hexyon hexavalent pediatric vaccine recommended for approval

Riedmann, Eva M.

2013-01-01

193

Virus vaccines: principles and prospects.  

PubMed Central

The present status of vaccination for controlling viral diseases is reviewed, and the needs and directions for future investigations are discussed. A survey of viral vaccines now in use has shown that knowledge about the viral agents and about the hosts' responses to infection was essential for their development. The steps needed to demonstrate the efficacy and safety of a viral vaccine are summarized; the final requirement for a successful vaccine is that it be administered in proper dosage and potency to the target populations. After general remarks on the proper use of current vaccines there follows an overview of various developments in creating new vaccines, along with the predicted time-frames for their coming into general use. Topics considered include vaccines to be administered locally at the portal of entry, subunit vaccines, viruses attenuated by genetic manipulation, use of viral vectors, vaccines developed by means of recombinant DNA, synthetic peptides, and anti-idiotype vaccines, as well as new vaccines being developed by more conventional methods. PMID:2663217

Melnick, J. L.

1989-01-01

194

Characterization of a New Vaccinia virus Isolate Reveals the C23L Gene as a Putative Genetic Marker for Autochthonous Group 1 Brazilian Vaccinia virus  

PubMed Central

Since 1999, several Vaccinia virus (VACV) isolates, the etiological agents of bovine vaccinia (BV), have been frequently isolated and characterized with various biological and molecular methods. The results from these approaches have grouped these VACV isolates into two different clusters. This dichotomy has elicited debates surrounding the origin of the Brazilian VACV and its epidemiological significance. To ascertain vital information to settle these debates, we and other research groups have made efforts to identify molecular markers to discriminate VACV from other viruses of the genus Orthopoxvirus (OPV) and other VACV-BR groups. In this way, some genes have been identified as useful markers to discriminate between the VACV-BR groups. However, new markers are needed to infer ancestry and to correlate each sample or group with its unique epidemiological and biological features. The aims of this work were to characterize a new VACV isolate (VACV DMTV-2005) molecularly and biologically using conserved and non-conserved gene analyses for phylogenetic inference and to search for new genes that would elucidate the VACV-BR dichotomy. The VACV DMTV-2005 isolate reported in this study is biologically and phylogenetically clustered with other strains of Group 1 VACV-BR, the most prevalent VACV group that was isolated during the bovine vaccinia outbreaks in Brazil. Sequence analysis of C23L, the gene that encodes for the CC-chemokine-binding protein, revealed a ten-nucleotide deletion, which is a new Group 1 Brazilian VACV genetic marker. This deletion in the C23L open reading frame produces a premature stop-codon that is shared by all Group 1 VACV-BR strains and may also reflect the VACV-BR dichotomy; the deletion can also be considered to be a putative genetic marker for non-virulent Brazilian VACV isolates and may be used for the detection and molecular characterization of new isolates. PMID:23189200

Oliveira, Danilo B.; Franco-Luiz, Ana P. M.; Campos, Rafael K.; Guedes, Maria I. M.; Fonseca, Flávio G.; Trindade, Giliane S.; Drumond, Betânia P.; Kroon, Erna G.; Abrahão, Jônatas S.

2012-01-01

195

Immunogenicity and protective efficacy of Semliki forest virus replicon-based DNA vaccines encoding goatpox virus structural proteins  

SciTech Connect

Goatpox, caused by goatpox virus (GTPV), is an acute feverish and contagious disease in goats often associated with high morbidity and high mortality. To resolve potential safety risks and vaccination side effects of existing live attenuated goatpox vaccine (AV41), two Semliki forest virus (SFV) replicon-based bicistronic expression DNA vaccines (pCSm-AAL and pCSm-BAA) which encode GTPV structural proteins corresponding to the Vaccinia virus proteins A27, L1, A33, and B5, respectively, were constructed. Then, theirs ability to induce humoral and cellular response in mice and goats, and protect goats against virulent virus challenge were evaluated. The results showed that, vaccination with pCSm-AAL and pCSm-BAA in combination could elicit strong humoral and cellular responses in mice and goats, provide partial protection against viral challenge in goats, and reduce disease symptoms. Additionally, priming vaccination with the above-mentioned DNA vaccines could significantly reduce the goats' side reactions from boosting vaccinations with current live vaccine (AV41), which include skin lesions at the inoculation site and fevers. Data obtained in this study could not only facilitate improvement of the current goatpox vaccination strategy, but also provide valuable guidance to suitable candidates for evaluation and development of orthopoxvirus vaccines.

Zheng Min [Genetic Engineering Laboratory of PLA, Academy of Military Medical Sciences of PLA, Changchun 130062 (China); Guangxi Center for Animal Disease Control and Prevention, Nanning 530001 (China); College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062 (China); Jin Ningyi, E-mail: jinningyi2000@yahoo.com.c [Genetic Engineering Laboratory of PLA, Academy of Military Medical Sciences of PLA, Changchun 130062 (China); Liu Qi, E-mail: gx_liuqi@yahoo.com.c [Guangxi Center for Animal Disease Control and Prevention, Nanning 530001 (China); Huo Xiaowei [Genetic Engineering Laboratory of PLA, Academy of Military Medical Sciences of PLA, Changchun 130062 (China); Li Yang [Genetic Engineering Laboratory of PLA, Academy of Military Medical Sciences of PLA, Changchun 130062 (China); College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062 (China); Hu Bo; Ma Haili; Zhu Zhanbo; Cong Yanzhao; Li Xiao; Jin Minglan; Zhu Guangze [Genetic Engineering Laboratory of PLA, Academy of Military Medical Sciences of PLA, Changchun 130062 (China)

2009-08-15

196

Modified vaccinia virus Ankara expressing the hemagglutinin of pandemic (H1N1) 2009 virus induces cross-protective immunity against Eurasian ‘avian-like’ H1N1 swine viruses in mice  

PubMed Central

Objectives To examine cross-reactivity between hemagglutinin (HA) derived from A/California/7/09 (CA/09) virus and that derived from representative Eurasian “avian-like” (EA) H1N1 swine viruses isolated in Italy between 1999 and 2008 during virological surveillance in pigs. Design Modified vaccinia virus Ankara (MVA) expressing the HA gene of CA/09 virus (MVA-HA-CA/09) was used as a vaccine to investigate cross-protective immunity against H1N1 swine viruses in mice. Sample Two classical swine H1N1 (CS) viruses and four representative EA-like H1N1 swine viruses previously isolated during outbreaks of respiratory disease in pigs on farms in Northern Italy were used in this study. Setting Female C57BL/6 mice were vaccinated with MVA/HA/CA/09 and then challenged intranasally with H1N1 swine viruses. Main outcome measures Cross-reactive antibody responses were determined by hemagglutination- inhibition (HI) and virus microneutralizing (MN) assays of sera from MVA-vaccinated mice. The extent of protective immunity against infection with H1N1 swine viruses was determined by measuring lung viral load on days 2 and 4 post-challenge. Results and Conclusions Systemic immunization of mice with CA/09-derived HA, vectored by MVA, elicited cross-protective immunity against recent EA-like swine viruses. This immune protection was related to the levels of cross-reactive HI antibodies in the sera of the immunized mice and was dependent on the similarity of the antigenic site Sa of H1 HAs. Our findings suggest that the herd immunity elicited in humans by the pandemic (H1N1) 2009 virus could limit the transmission of recent EA-like swine HA genes into the influenza A virus gene pool in humans. PMID:24373385

Castrucci, Maria R; Facchini, Marzia; Di Mario, Giuseppina; Garulli, Bruno; Sciaraffia, Ester; Meola, Monica; Fabiani, Concetta; De Marco, Maria A; Cordioli, Paolo; Siccardi, Antonio; Kawaoka, Yoshihiro; Donatelli, Isabella

2014-01-01

197

A rapid detection method for Vaccinia virus, the surrogate for smallpox virus  

Microsoft Academic Search

Prior to the World Health Organization’s announcement of total eradication in 1977 [J. Am. Med. Assoc. 281 (1999) 1735], smallpox was a worldwide pathogen. Vaccinations were ceased in 1980 and now with a largely unprotected world population, smallpox is considered the ideal biowarfare agent [Antiviral Res. 57 (2002) 1]. Infection normally occurs after implantation of the virus on the oropharyngeal

Kim A. Donaldson; Marianne F. Kramer; Daniel V. Lim

2004-01-01

198

Epstein–barr virus vaccines  

PubMed Central

Epstein–Barr virus (EBV) is the primary cause of infectious mononucleosis (IM) and is associated with epithelial cell malignancies such as nasopharyngeal carcinoma and gastric carcinoma, as well as lymphoid malignancies including Hodgkin lymphoma, Burkitt lymphoma, non-Hodgkin lymphoma and post-transplant lymphoproliferative disorder. EBV vaccines to prevent primary infection or disease, or therapeutic vaccines to treat EBV malignancies have not been licensed. Most efforts to develop prophylactic vaccines have focused on EBV gp350, which is the major target of neutralizing antibody. A single phase 2 trial of an EBV gp350 vaccine has been reported; the vaccine reduced the rate of IM but not virus infection. The observation that infusion of EBV-specific T cells can reduce disease due to Hodgkin lymphoma and nasopharyngeal carcinoma provides a proof of principle that a therapeutic vaccine for these and other EBV-associated malignancies might be effective. Most therapeutic vaccines have targeted EBV LMP2 and EBV nuclear antigen-1. As EBV is associated with nearly 200?000 new malignancies each year worldwide, an EBV vaccine to prevent these diseases is needed. PMID:25671130

Cohen, Jeffrey I

2015-01-01

199

Genomic analysis of vaccinia virus strain TianTan provides new insights into the evolution and evolutionary relationships between Orthopoxviruses.  

PubMed

Vaccinia virus (VACV) strain TianTan was used for much of China's modern history to vaccinate against smallpox, however the only genome sequence contains errors. We have sequenced additional examples of TianTan to obtain a better picture of this important virus. We detected two different subclones. One (TP03) encodes large deletions in the terminal repeats that extend into both VEGF genes and create a small plaque variant. The second clone (TP05) encodes a nearly intact complement of genes in the terminal repeats, except for an insertion of sequences resembling the telomeric 69 bp repeats. The TP05 genome spans 196,260 bp and encodes 219 genes. The revised sequence documents the integrity of all the genes in the conserved virus core. Phylogenetic methods show that TianTan belongs to a unique clade of VACV, but probably also share a common origin with strains belonging to the Copenhagen/Lister lineage and distinct from the Wyeth/Dryvax lineage. PMID:23608359

Qin, Li; Liang, Min; Evans, David H

2013-07-20

200

Vaccinia virus, herpes simplex virus, and carcinogens induce DNA amplification in a human cell line and support replication of a helpervirus dependent parvovirus  

SciTech Connect

The SV40-transformed human kidney cell line, NB-E, amplifies integrated as well as episomal SV40 DNA upon treatment with chemical (DMBA) or physical (uv irradiation) carcinogens (initiators) as well as after infection with herpes simplex virus (HSV) type 1 or with vaccinia virus. In addition it is shown that vaccinia virus induces SV40 DNA amplification also in the SV40-transformed Chinese hamster embryo cell line, CO631. These findings demonstrate that human cells similar to Chinese hamster cells amplify integrated DNA sequences after treatment with carcinogens or infection with specific viruses. Furthermore, a poxvirus--vaccinia virus--similar to herpes group viruses induces DNA amplification. As reported for other systems, the vaccinia virus-induced DNA amplification in NB-E cells is inhibited by coinfection with adeno-associated virus (AAV) type 5. This is in line with previous studies on inhibition of carcinogen- or HSV-induced DNA amplification in CO631 cells. The experiments also demonstrate that vaccinia virus, in addition to herpes and adenoviruses acts as a helper virus for replication and structural antigen synthesis of AAV-5 in NB-E cells.

Schlehofer, J.R.; Ehrbar, M.; zur Hausen, H.

1986-07-15

201

Limited expression of poliovirus by vaccinia virus recombinants due to inhibition of the vector by proteinase 2A.  

PubMed Central

A recombinant vaccinia virus was constructed that expressed poliovirus coat precursor protein P1 fused to about two-thirds of the 2A proteinase. The truncated 2A segment could be cleaved away from the P1 region by coinfecting with poliovirus type 1, 2, or 3 or with human rhinovirus 14 but not with encephalomyocarditis virus. Further cleavage of the vector-derived P1 to yield mature poliovirus capsid proteins was not observed. Attempts to isolate vaccinia virus recombinants containing portions of the poliovirus genome that encompassed the complete gene for proteinase 2A were unsuccessful, unless expression of functional 2A was abolished by insertion of a frameshift mutation. We conclude that an activity of the 2A proteinase, probably its role in translational inhibition, prevented isolation of vaccinia virus recombinants that expressed 2A. Images PMID:2154618

Jewell, J E; Ball, L A; Rueckert, R

1990-01-01

202

Live Virus Smallpox Vaccine  

MedlinePLUS

... Evaluation Lab Testing Infection Control Surveillance & Investigation Preparation & Planning Response Vaccination Images Medical Management Training & Education References Tularemia Diagnosis & Evaluation Treatment & PEP ...

203

Vaccinia virus is not inactivated after thermal treatment and cheese production using experimentally contaminated milk.  

PubMed

Bovine vaccinia is an emergent zoonosis caused by the Vaccinia virus (VACV). The disease is characterized by the appearance of exanthematic lesions that occur in humans and dairy cows. Previous studies have revealed the presence of infectious viral particles in milk samples during an outbreak of bovine vaccinia in Brazil, indicating the possibility of disease transmission through raw milk. To assess the viability of the virus in milk after thermal treatment and processing procedures, milk samples were experimentally contaminated with 10(3) plaque forming units (PFU)/mL (group I) and 10(5) PFU/mL (group II) VACV Guarani P2 virus, and the third group was not contaminated and served as a control. The samples were submitted to storage temperatures in a cold chamber, freezer for 48 hours, and to low temperature long-time treatment. Moreover, the viral viability was evaluated in cheese produced with contaminated milk using 10(4) PFU/mL VACV Guarani P2. Notably, the virus remained viable in milk after storage for 48 hours in both the cold chamber and the freezer, with a reduction in viral titer of 14.49% and 25.86%, respectively. Group II showed a viral reduction in titer of 61.88% and 75.98%, respectively. Thermal treatment 65°C for 30 minutes showed a reduction of viral titer of 94.83% and 99.99%, respectively, in group I and group II, but still showed remaining viable virus particles. In addition, it was possible to recover infectious viral particles from both the solid curds and the whey of the cheese produced with experimentally contaminated milk. The cheese shows a reduction in viral titer of 84.87% after storage at 4°C for 24 hours. The presence of viable viral particles in milk after both thermal treatment and cheese production indicates a potential public health risk. PMID:20707725

de Oliveira, Tércia M Ludoulfo; Rehfeld, Izabelle S; Siqueira, Jaqueline Maria Ferreira; Abrahão, Jônatas S; Campos, Rafael K; dos Santos, Andréia Kelly R; Cerqueira, Mônica Maria O P; Kroon, Erna G; Lobato, Zélia I P

2010-12-01

204

Genome-wide analysis of vaccinia virus proteinprotein interactions  

E-print Network

as the smallpox vaccine, has gained popularity as a mammalian expression vector, and is being tested of smallpox, monkeypox, and molluscum contagiosum (10), as well as insights into many areas of molecular

Dunham, Maitreya

205

Structural Insight into BH3 Domain Binding of Vaccinia Virus Antiapoptotic F1L  

PubMed Central

ABSTRACT Apoptosis is a tightly regulated process that plays a crucial role in the removal of virus-infected cells, a process controlled by both pro- and antiapoptotic members of the Bcl-2 family. The proapoptotic proteins Bak and Bax are regulated by antiapoptotic Bcl-2 proteins and are also activated by a subset of proteins known as BH3-only proteins that perform dual functions by directly activating Bak and Bax or by sequestering and neutralizing antiapoptotic family members. Numerous viruses express proteins that prevent premature host cell apoptosis. Vaccinia virus encodes F1L, an antiapoptotic protein essential for survival of infected cells that bears no discernible sequence homology to mammalian cell death inhibitors. Despite the limited sequence similarities, F1L has been shown to adopt a novel dimeric Bcl-2-like fold that enables hetero-oligomeric binding to both Bak and the proapoptotic BH3-only protein Bim that ultimately prevents Bak and Bax homo-oligomerization. However, no structural data on the mode of engagement of F1L and its Bcl-2 counterparts are available. Here we solved the crystal structures of F1L in complex with two ligands, Bim and Bak. Our structures indicate that F1L can engage two BH3 ligands simultaneously via the canonical Bcl-2 ligand binding grooves. Furthermore, by structure-guided mutagenesis, we generated point mutations within the binding pocket of F1L in order to elucidate the residues responsible for both Bim and Bak binding and prevention of apoptosis. We propose that the sequestration of Bim by F1L is primarily responsible for preventing apoptosis during vaccinia virus infection. IMPORTANCE Numerous viruses have adapted strategies to counteract apoptosis by encoding proteins responsible for sequestering proapoptotic components. Vaccinia virus, the prototypical member of the family Orthopoxviridae, encodes a protein known as F1L that functions to prevent apoptosis by interacting with Bak and the BH3-only protein Bim. Despite recent structural advances, little is known regarding the mechanics of binding between F1L and the proapoptotic Bcl-2 family members. Utilizing three-dimensional structures of F1L bound to host proapoptotic proteins, we generated variants of F1L that neutralize Bim and/or Bak. We demonstrate that during vaccinia virus infection, engagement of Bim and Bak by F1L is crucial for subversion of host cell apoptosis. PMID:24850748

Campbell, Stephanie; Thibault, John; Mehta, Ninad; Colman, Peter M.

2014-01-01

206

Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing  

PubMed Central

Homology-dependent RNA silencing occurs in many eukaryotic cells. We reported recently that nodaviral infection triggers an RNA silencing-based antiviral response (RSAR) in Drosophila, which is capable of a rapid virus clearance in the absence of expression of a virus-encoded suppressor. Here, we present further evidence to show that the Drosophila RSAR is mediated by the RNA interference (RNAi) pathway, as the viral suppressor of RSAR inhibits experimental RNAi initiated by exogenous double-stranded RNA and RSAR requires the RNAi machinery. We demonstrate that RNAi also functions as a natural antiviral immunity in mosquito cells. We further show that vaccinia virus and human influenza A, B, and C viruses each encode an essential protein that suppresses RSAR in Drosophila. The vaccinia and influenza viral suppressors, E3L and NS1, are distinct double-stranded RNA-binding proteins and essential for pathogenesis by inhibiting the mammalian IFN-regulated innate antiviral response. We found that the double-stranded RNA-binding domain of NS1, implicated in innate immunity suppression, is both essential and sufficient for RSAR suppression. These findings provide evidence that mammalian virus proteins can inhibit RNA silencing, implicating this mechanism as a nucleic acid-based antiviral immunity in mammalian cells. PMID:14745017

Li, Wan-Xiang; Li, Hongwei; Lu, Rui; Li, Feng; Dus, Monica; Atkinson, Peter; Brydon, Edward W. A.; Johnson, Kyle L.; García-Sastre, Adolfo; Ball, L. Andrew; Palese, Peter; Ding, Shou-Wei

2004-01-01

207

Distinct Gene Expression Profiles in Peripheral Blood Mononuclear Cells from Patients Infected with Vaccinia Virus, Yellow Fever 17D Virus, or Upper Respiratory Infections Running Title: PBMC Expression Response to Viral Agents  

PubMed Central

Gene expression in human peripheral blood mononuclear cells was systematically evaluated following smallpox and yellow fever vaccination, and naturally occurring upper respiratory infection (URI). All three infections were characterized by the induction of many interferon stimulated genes, as well as enhanced expression of genes involved in proteolysis and antigen presentation. Vaccinia infection was also characterized by a distinct expression signature composed of up-regulation of monocyte response genes, with repression of genes expressed by B and T-cells. In contrast, the yellow fever host response was characterized by a suppression of ribosomal and translation factors, distinguishing this infection from vaccinia and URI. No significant URI-specific signature was observed, perhaps reflecting greater heterogeneity in the study population and etiological agents. Taken together, these data suggest that specific host gene expression signatures may be identified that distinguish one or a small number of virus agents. PMID:17651872

Scherer, Christina A.; Magness, Charles L.; Steiger, Kathryn V.; Poitinger, Nicholas D.; Caputo, Christine M.; Miner, Douglas G.; Winokur, Patricia L.; Klinzman, Donna; McKee, Janice; Pilar, Christine; Ward, Patricia A.; Gillham, Martha H.; Haulman, N. Jean; Stapleton, Jack T.; Iadonato, Shawn P.

2007-01-01

208

Production and characterization of mammalian virus-like particles from modified vaccinia virus Ankara vectors expressing influenza H5N1 hemagglutinin and neuraminidase.  

PubMed

Several studies have described the production of influenza virus-like particles (VLP) using a variety of platform systems. These VLPs are non-replicating particles that spontaneously self-assemble from expressed influenza virus proteins and have been proposed as vaccine candidates for both seasonal and pandemic influenza. Although still in the early stages of development and evaluation as influenza vaccines, influenza VLPs have a variety of other valuable uses such as examining and understanding correlates of protection against influenza and investigating virus-cell interactions. The most common production system for influenza VLPs is the baculovirus-insect cell expression which has several attractive features including the ease in which new gene combinations can be constructed, the immunogenicity elicited and protection afforded by the produced VLPs, and the scalability offered by the system. However, there are differences between the influenza VLPs produced by baculovirus expression systems in insect cells and the influenza viruses produced for use as current vaccines or the virus produced during a productive clinical infection. We describe here the development of a modified vaccinia virus Ankara (MVA) system to generate mammalian influenza VLPs containing influenza H5N1 proteins. The MVA vector system is flexible for manipulating and generating various VLP constructs, expresses high level of influenza hemagglutinin (HA), neuraminidase (NA), and matrix (M) proteins, and can be scaled up to produce VLPs in quantities sufficient for in vivo studies. We show that mammalian VLPs are generated from recombinant MVA vectors expressing H5N1 HA alone, but that increased VLP production can be achieved if NA is co-expressed. These mammalian H5N1 influenza VLPs have properties in common with live virus, as shown by electron microscopy analysis, their ability to hemagglutinate red blood cells, express neuraminidase activity, and to bind influenza specific antibodies. Importantly, these VLPs are able to elicit a protective immune response in a mouse challenge model, suggesting their utility in dissecting the correlates of immunity in such models. Mammalian derived VLPs may also provide a useful tool for studying virus-cell interactions and may have potential for development as pandemic vaccines. PMID:22465746

Schmeisser, Falko; Adamo, Joan E; Blumberg, Benjamin; Friedman, Rachel; Muller, Jacqueline; Soto, Jackeline; Weir, Jerry P

2012-05-14

209

Identification and characterization of an extracellular envelope glycoprotein affecting vaccinia virus egress.  

PubMed Central

Sequence analysis of the vaccinia virus strain Western Reserve genome revealed the presence of an open reading frame (ORF), SalL4R, which has the potential to encode a transmembrane glycoprotein with homology to C-type animal lectins (G. L. Smith, Y. S. Chan, and S. T. Howard, J. Gen. Virol. 72:1349-1376, 1991). Here we show that the SalL4R gene is transcribed late during infection from a TAAATG motif at the beginning of the ORF. Antisera raised against a TrpE-SalL4R fusion protein identified three glycoprotein species of Mr 22,000 to 24,000 in infected cells. Immunogold electron microscopy demonstrated that SalL4R protein is present in purified extracellular enveloped virus particles but not in intracellular naked virus (INV). A mutant virus was constructed by placing a copy of the SalL4R ORF downstream of an isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible vaccinia virus promoter within the thymidine kinase locus and subsequently deleting the endogenous SalL4R gene. The growth kinetics of this virus demonstrated that SalL4R was nonessential for the production of infectious INV but was required for virus dissemination. Consistent with this finding, the formation of wild-type-size plaques by this mutant was dependent on the presence of IPTG. Electron microscopy showed that without SalL4R expression, the inability of the virus to spread is due to a lack of envelopment of INV virions by Golgi-derived membrane, a morphogenic event required for virus egress. Images PMID:1738204

Duncan, S A; Smith, G L

1992-01-01

210

Chemokine Binding Protein vCCI Attenuates Vaccinia Virus Without Affecting the Cellular Response Elicited by Immunization with a Recombinant Vaccinia Vector Carrying the HPV16 E7 Gene  

PubMed Central

Abstract Viral CC chemokine inhibitor (vCCI) of the clone P13 vaccinia virus (VACV) strain PRAHA lacks eight amino acids in the signal peptide sequence. To study the influence of vCCI on virus biology, a virus with the vCCI gene coding for a prolonged signal sequence was prepared. We found that secreted vCCI attenuated the virus in vivo, and that it correlated with decreased levels of RANTES, eotaxin, TARC, and MDC in the blood in comparison with the parental virus. We determined the influence of vCCI on the CTL response against VACV E3(140–148) (VGPSNSPTF) and HPV16 E7(49–57) (RAHYNIVTF) H-2Db-restricted epitopes. The examination of the specific CTL response elicited by immunization with the recombinant VACV-expressing tumor-associated HPV16 E7 antigen by IFN-? ELISPOT showed that the immunogenicity of the recombinant VACV-producing secretory vCCI was similar to that of the parent virus or deletion mutant in the C23L/B29R locus. Immunization with the secretory vCCI-producing recombinant virus has a lower therapeutic anti-tumor effect against TC-1 tumors. Viral CCI downregulated the E7-specific response induced by gene gun immunization with the DNA vaccines pBSC-SigE7 LAMP and pBSC-vCCI. We also observed that the immune response against vCCI elicited by the DNA vaccine did not affect the multiplication of VACV in vivo. PMID:23035852

Gabriel, Pavel; Babiarova, Katarina; Zurkova, Kamila; Krystofova, Jitka; Hainz, Petr; Kutinova, Luda

2012-01-01

211

Aptamers recognize glycosylated hemagglutinin expressed on the surface of vaccinia virus-infected cells  

PubMed Central

Traditional methods for detection and identification of pathogenic viruses or bacteria tend to be slow and cumbersome. We have developed aptamer probes with the capacity to rapidly detect the presence of viral infection with specificity and sensitivity. Vaccinia virus (VV) was chosen as the model because it is closely related to variola virus that causes smallpox. A method known as cell-SELEX (Systematic Evolution of Ligands by Exponential Enrichment) was used to generate very selective and highly specific aptamers designed to recognize proteins expressed on the surface of VV-infected cells. Characterization of the aptamers showed that the virus-encoded hemagglutinin, a protein expressed on the surface of infected cells, is the preferential binding target. These studies show the feasibility of generating aptamers against a given specific infectious agent and will enable further development of aptamers as diagnostic and/or therapeutic tools against a broad range of infectious agents. PMID:20873781

Parekh, Parag; Tang, Zhiwen; Turner, Peter C.; Moyer, Richard W.; Tan, Weihong

2010-01-01

212

Respiratory syncytial virus vaccine development  

PubMed Central

Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract viral disease in infants and young children. Presently, there are no explicit recommendations for RSV treatment apart from supportive care. The virus is therefore responsible for an estimated 160,000 deaths per year worldwide. Despite half a century of dedicated research, there remains no licensed vaccine product. Herein are described past and current efforts to harness innate and adaptive immune potentials to combat RSV. A plethora of candidate vaccine products and strategies are reviewed. The development of a successful RSV vaccine may ultimately stem from attention to historical lessons, in concert with an integral partnering of immunology and virology research fields. PMID:21988307

Hurwitz, Julia L

2011-01-01

213

Molecular cloning, encoding sequence, and expression of vaccinia virus nucleic acid-dependent nucleoside triphosphatase gene.  

PubMed Central

A rabbit poxvirus genomic library contained within the expression vector lambda gt11 was screened with polyclonal antiserum prepared against vaccinia virus nucleic acid-dependent nucleoside triphosphatase (NTPase)-I enzyme. Five positive phage clones containing from 0.72- to 2.5-kilobase-pair (kbp) inserts expressed a beta-galactosidase fusion protein that was reactive by immunoblotting with the NTPase-I antibody. Hybridization analysis allowed the location of this gene within the vaccinia HindIIID restriction fragment. From the known nucleotide sequence of the 16-kbp vaccinia HindIIID fragment, we identified a region that contains a 1896-base open reading frame coding for a 631-amino acid protein. Analysis of the complete sequence revealed a highly basic protein, with hydrophilic COOH and NH2 termini, various hydrophobic domains, and no significant homology to other known proteins. Translational studies demonstrate that NTPase-I belongs to a late class of viral genes. This protein is highly conserved among Orthopoxviruses. Images PMID:3025846

Rodriguez, J F; Kahn, J S; Esteban, M

1986-01-01

214

Vaccinia virus protein C16 acts intracellularly to modulate the host response and promote virulence  

PubMed Central

The vaccinia virus (VACV) strain Western Reserve C16 protein has been characterized and its effects on virus replication and virulence have been determined. The C16L gene is present in the inverted terminal repeat and so is one of the few VACV genes that are diploid. The C16 protein is highly conserved between different VACV strains, and also in the orthopoxviruses variola virus, ectromelia virus, horsepox virus and cowpox virus. C16 is a 37.5?kDa protein, which is expressed early during infection and localizes to the cell nucleus and cytoplasm of infected and transfected cells. The loss of the C16L gene had no effect on virus growth kinetics but did reduce plaque size slightly. Furthermore, the virulence of a virus lacking C16L (v?C16) was reduced in a murine intranasal model compared with control viruses and there were reduced virus titres from 4?days post-infection. In the absence of C16, the recruitment of inflammatory cells in the lung and bronchoalveolar lavage was increased early after infection (day 3) and more CD4+ and CD8+ T cells expressed the CD69 activation marker. Conversely, late after infection with v?C16 (day 10) there were fewer T cells remaining, indicating more rapid clearance of infection. Collectively, these data indicate that C16 diminishes the immune response and is an intracellular immunomodulator. PMID:18796705

Fahy, Aodhnait S.; Clark, Richard H.; Glyde, Emily F.; Smith, Geoffrey L.

2008-01-01

215

Chemokine (C-C Motif) Receptor 1 Is Required for Efficient Recruitment of Neutrophils during Respiratory Infection with Modified Vaccinia Virus Ankara  

PubMed Central

ABSTRACT Modified vaccinia virus Ankara (MVA) serves as a versatile platform in vaccine development. This highly attenuated orthopoxvirus, which cannot replicate in mammalian cells, triggers strong innate immune responses, including cell migration. Previously, we have shown that induction of chemokine (C-C motif) ligand 2 (CCL2) by MVA is necessary for the recruitment of monocytes and T cells, but not neutrophils, to the lung. Here, we identified neutrophil-attracting chemokines produced by MVA-infected primary murine lung fibroblasts and murine bone marrow-derived macrophages. We demonstrate that MVA, but not vaccinia virus (VACV) strain WR, induces chemokine expression, which is independent of Toll-like receptor 2 (TLR2) signaling. Additionally, we show that both chemokine (C-C motif) receptor 1 (CCR1) and chemokine (C-X-C motif) receptor 2 (CXCR2) are involved in MVA-induced neutrophil chemotaxis in vitro. Finally, intranasal infection of Ccr1?/? mice with MVA, as well as application of the CCR1 antagonist J-113863, revealed a role for CCR1 in leukocyte recruitment, including neutrophils, into the lung. IMPORTANCE Rapid attraction of leukocytes to the site of inoculation is unique to MVA in comparison to other VACV strains. The findings here extend current knowledge about the regulation of MVA-induced leukocyte migration, particularly regarding neutrophils, which could potentially be exploited to improve other VACV strains currently in development as oncolytic viruses and viral vectors. Additionally, the data presented here indicate that the inflammatory response may vary depending on the cell type infected by MVA, highlighting the importance of the site of vaccine application. Moreover, the rapid recruitment of neutrophils and other leukocytes can directly contribute to the induction of adaptive immune responses elicited by MVA inoculation. Thus, a better understanding of leukocyte migration upon MVA infection is particularly relevant for further development and use of MVA-based vaccines and vectors. PMID:25008920

Price, Philip J. R.; Luckow, Bruno; Torres-Domínguez, Lino E.; Brandmüller, Christine; Zorn, Julia; Kirschning, Carsten J.; Sutter, Gerd

2014-01-01

216

Modified-vaccinia-virus-Ankara (MVA) priming and fowlpox-virus booster elicit a stronger CD8+ T-cell response in mice against an HIV-1 epitope than does a DNA/poxvirus prime-booster approach.  

PubMed

A prime-boost strategy combining FWPV (fowlpox virus) and the MVA (modified vaccinia virus Ankara), both expressing HIV-1 multi-V3 epitope polypeptides, was compared with a DNA-based Semliki Forest virus replicon/poxvirus approach for the induction of a CD8(+) T-cell response. Priming mice with recombinant MVA and boosting with recombinant FWPV, and not in the reverse order, increased the number of specific interferon-gamma-secreting cells in relation to the homologous combinations. Moreover, the improvement of the CD8(+) T-cell response with this combination was remarkably higher than that obtained by priming with a DNA vector containing a Semliki Forest virus replicon expressing the multi-epitope polypeptide and boosting either with recombinant MVA or FWPV. These results open a new and attractive alternative for vaccine preparation against HIV-1 using different immunogens. PMID:15154843

Vázquez-Blomquist, Dania; Quintana, Diógenes; Duarte, Carlos A

2004-06-01

217

A comparison of DNA vaccines for the rabies-related virus, Mokola.  

PubMed

Mokola virus, a rabies-related virus, has been reported to date from the African continent only. Like rabies virus, it is highly pathogenic, causes acute encephalitis, and zoonotic events have been documented. Although believed to be rare, there has been an unexplained increase in the number of isolations of the virus in South Africa in recent years. We have cloned and sequenced the glycoprotein (G) and nucleoprotein (N) genes from a South African Mokola virus, and used these in the construction of different DNA vaccines for immunization against Mokola virus. Four vaccines, utilizing different promoters and DNA backbone compositions, were generated and compared for efficacy in protection against Mokola virus. In one of these, both the Mokola virus G and N genes were co-expressed. Two of the single G-expressing DNA vaccines (based on pSG5 and pCI-neo, respectively) protected laboratory mice against lethal challenge, despite major differences in their promoters. However, neither vaccine was fully protective in a single immunization only. Serological assays confirmed titers of virus-neutralizing antibodies after immunization, which increased upon booster vaccine administration. A third construct (based on pBudCE4) was less effective in inducing a protective immune response, despite employing a strong CMV enhancer/promoter also used in the pCI-neo plasmid. Dual expression of Mokola virus G and N genes in pBudCE4 did not enhance its efficacy, under the conditions described. In addition, no significant utility could be demonstrated for a combined prime-boost approach, as no cross-protective immunity was observed against rabies or Mokola viruses from the use of pSG5-mokG or vaccinia-rabies glycoprotein recombinant virus vaccines, respectively, even though both vaccines provided 60-100% protection against homologous virus challenge. PMID:12744896

Nel, L H; Niezgoda, M; Hanlon, C A; Morril, P A; Yager, P A; Rupprecht, C E

2003-06-01

218

RAB1A promotes Vaccinia virus replication by facilitating the production of intracellular enveloped virions  

PubMed Central

Vaccinia virus (VACV) is a large double-stranded DNA virus with a complex cytoplasmic replication cycle that exploits numerous cellular proteins. This work characterises the role of a proviral cellular protein, the small GTPase RAB1A, in VACV replication. Using siRNA, we identified RAB1A as required for the production of extracellular enveloped virions (EEVs), but not intracellular mature virions (IMVs). Immunofluorescence and electron microscopy further refined the role of RAB1A as facilitating the wrapping of IMVs to become intracellular enveloped virions (IEVs). This is consistent with the known function of RAB1A in maintenance of ER to Golgi transport. VACV can therefore be added to the growing list of viruses which require RAB1A for optimal replication, highlighting this protein as a broadly proviral host factor. PMID:25462347

Pechenick Jowers, Tali; Featherstone, Rebecca J.; Reynolds, Danielle K.; Brown, Helen K.; James, John; Prescott, Alan; Haga, Ismar R.; Beard, Philippa M.

2015-01-01

219

Inhibition of Vaccinia virus entry by a broad spectrum antiviral peptide  

SciTech Connect

Concerns about the possible use of Variola virus, the causative agent of smallpox, as a weapon for bioterrorism have led to renewed efforts to identify new antivirals against orthopoxviruses. We identified a peptide, EB, which inhibited infection by Vaccinia virus with an EC{sub 50} of 15 muM. A control peptide, EBX, identical in composition to EB but differing in sequence, was inactive (EC{sub 50} > 200 muM), indicating sequence specificity. The inhibition was reversed upon removal of the peptide, and EB treatment had no effect on the physical integrity of virus particles as determined by electron microscopy. Viral adsorption was unaffected by the presence of EB, and the addition of EB post-entry had no effect on viral titers or on early gene expression. The addition of EB post-adsorption resulted in the inhibition of beta-galactosidase expression from an early viral promoter with an EC{sub 50} of 45 muM. A significant reduction in virus entry was detected in the presence of the peptide when the number of viral cores released into the cytoplasm was quantified. Electron microscopy indicated that 88% of the virions remained on the surface of cells in the presence of EB, compared to 37% in the control (p < 0.001). EB also blocked fusion-from-within, suggesting that virus infection is inhibited at the fusion step. Analysis of EB derivatives suggested that peptide length may be important for the activity of EB. The EB peptide is, to our knowledge, the first known small molecule inhibitor of Vaccinia virus entry.

Altmann, S.E.; Jones, J.C. [Microbiology Doctoral Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706 (United States); Schultz-Cherry, S. [Microbiology Doctoral Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706 (United States); Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706 (United States); Brandt, C.R., E-mail: crbrandt@wisc.ed [Microbiology Doctoral Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706 (United States); Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706 (United States); Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706 (United States)

2009-06-05

220

INTRACELLULAR FORMS OF POX VIRUSES AS SHOWN BY THE ELECTRON MICROSCOPE (VACCINIA, ECTROMELIA, MOLLUSCUM CONTAGIOSUM)  

PubMed Central

The intracellular development of three pox viruses has been studied with the electron microscope using thin sections of infected tissue. Cells infected with vaccinia, ectromelia, and molluscum contagiosum viruses all form developmental bodies preliminary to the production of mature virus. Developmental bodies, believed to be virus precursors, are round to oval, slightly larger than mature virus particles, less dense to electrons, and have a more varied morphology. It is suggested as a working hypothesis that the process of maturation of a virus particle takes place as follows. In the earliest form the developmental bodies appear as hollow spheres, imbedded in a very dense cytoplasmic mass constituting an inclusion body, or in a less dense matrix near the nucleus in cells without typical inclusion bodies. The spheres become filled with a homogeneous material of low electron density. A small, dense granule appears in each developmental body and grows in size at the expense of the low density material. Following growth of the granule, particles are found with the dimensions of mature virus and having complex internal structure resembling bars or dumbells. Mature virus is ovoid and very dense to electrons. An "empty" interior may be found within its thick walls. PMID:13069658

Gaylord, William H.; Melnick, Joseph L.

1953-01-01

221

Oral vaccination of dogs with recombinant rabies virus vaccines  

Microsoft Academic Search

Oral rabies virus (RV) vaccines are used to immunize a diversity of mammalian carnivores, but no single biological is effective for all major species. Recently, advances in reverse genetics have allowed the design of recombinant RV for consideration as new vaccines. The objective of this experiment was to examine the safety, immunogenicity and efficacy of recombinant RV vaccines administered to

Charles E. Rupprecht; Cathleen A. Hanlon; Jesse Blanton; Jamie Manangan; Patricia Morrill; Staci Murphy; Michael Niezgoda; Lillian A. Orciari; Carolin L. Schumacher; Bernhard Dietzschold

2005-01-01

222

Co-administration of the broad-spectrum antiviral, brincidofovir (CMX001), with smallpox vaccine does not compromise vaccine protection in mice challenged with ectromelia virus.  

PubMed

Natural orthopoxvirus outbreaks such as vaccinia, cowpox, cattlepox and buffalopox continue to cause morbidity in the human population. Monkeypox virus remains a significant agent of morbidity and mortality in Africa. Furthermore, monkeypox virus's broad host-range and expanding environs make it of particular concern as an emerging human pathogen. Monkeypox virus and variola virus (the etiological agent of smallpox) are both potential agents of bioterrorism. The first line response to orthopoxvirus disease is through vaccination with first-generation and second-generation vaccines, such as Dryvax and ACAM2000. Although these vaccines provide excellent protection, their widespread use is impeded by the high level of adverse events associated with vaccination using live, attenuated virus. It is possible that vaccines could be used in combination with antiviral drugs to reduce the incidence and severity of vaccine-associated adverse events, or as a preventive in individuals with uncertain exposure status or contraindication to vaccination. We have used the intranasal mousepox (ectromelia) model to evaluate the efficacy of vaccination with Dryvax or ACAM2000 in conjunction with treatment using the broad spectrum antiviral, brincidofovir (BCV, CMX001). We found that co-treatment with BCV reduced the severity of vaccination-associated lesion development. Although the immune response to vaccination was quantifiably attenuated, vaccination combined with BCV treatment did not alter the development of full protective immunity, even when administered two days following ectromelia challenge. Studies with a non-replicating vaccine, ACAM3000 (MVA), confirmed that BCV's mechanism of attenuating the immune response following vaccination with live virus was, as expected, by limiting viral replication and not through inhibition of the immune system. These studies suggest that, in the setting of post-exposure prophylaxis, co-administration of BCV with vaccination should be considered a first response to a smallpox emergency in subjects of uncertain exposure status or as a means of reduction of the incidence and severity of vaccine-associated adverse events. PMID:25128688

Parker, Scott; Crump, Ryan; Foster, Scott; Hartzler, Hollyce; Hembrador, Ed; Lanier, E Randall; Painter, George; Schriewer, Jill; Trost, Lawrence C; Buller, R Mark

2014-11-01

223

Insights into the Evolution of a Complex Virus from the Crystal Structure of Vaccinia Virus D13  

PubMed Central

Summary The morphogenesis of poxviruses such as vaccinia virus (VACV) sees the virion shape mature from spherical to brick-shaped. Trimeric capsomers of the VACV D13 protein form a transitory, stabilizing lattice on the surface of the initial spherical immature virus particle. The crystal structure of D13 reveals that this major scaffolding protein comprises a double ? barrel “jelly-roll” subunit arranged as pseudo-hexagonal trimers. These structural features are characteristic of the major capsid proteins of a lineage of large icosahedral double-stranded DNA viruses including human adenovirus and the bacteriophages PRD1 and PM2. Structure-based phylogenetic analysis confirms that VACV belongs to this lineage, suggesting that (analogously to higher organism embryogenesis) early poxvirus morphogenesis reflects their evolution from a lineage of viruses sharing a common icosahedral ancestor. PMID:21742267

Bahar, Mohammad W.; Graham, Stephen C.; Stuart, David I.; Grimes, Jonathan M.

2011-01-01

224

Virus-encoded ectopic CD74 enhances poxvirus vaccine efficacy  

PubMed Central

Vaccinia virus (VV) has been used globally as a vaccine to eradicate smallpox. Widespread use of this viral vaccine has been tempered in recent years because of its immuno-evasive properties, with restrictions prohibiting VV inoculation of individuals with immune deficiencies or atopic skin diseases. VV infection is known to perturb several pathways for immune recognition including MHC class II (MHCII) and CD1d-restricted antigen presentation. MHCII and CD1d molecules associate with a conserved intracellular chaperone, CD74, also known as invariant chain. Upon VV infection, cellular CD74 levels are significantly reduced in antigen-presenting cells, consistent with the observed destabilization of MHCII molecules. In the current study, the ability of sustained CD74 expression to overcome VV-induced suppression of antigen presentation was investigated. Viral inhibition of MHCII antigen presentation could be partially ameliorated by ectopic expression of CD74 or by infection of cells with a recombinant VV encoding murine CD74 (mCD74-VV). In contrast, virus-induced disruptions in CD1d-mediated antigen presentation persisted even with sustained CD74 expression. Mice immunized with the recombinant mCD74-VV displayed greater protection during VV challenge and more robust anti-VV antibody responses. Together, these observations suggest that recombinant VV vaccines encoding CD74 may be useful tools to improve CD4+ T-cell responses to viral and tumour antigens. PMID:24205828

Walline, Crystal C; Deffit, Sarah N; Wang, Nan; Guindon, Lynette M; Crotzer, Victoria L; Liu, Jianyun; Hollister, Kristin; Eisenlohr, Laurence C; Brutkiewicz, Randy R; Kaplan, Mark H; Blum, Janice S

2014-01-01

225

[Gene technology in the diagnosis of viruses and vaccine development].  

PubMed

The development of genetechnological methods since the beginning of the 1970's allowed the molecular cloning of partial or complete viral genomes and the sequencing of their nucleic acids. On this basis, new tools for viral diagnostics are available: molecular probes for hybridization techniques and synthetic peptides or highly purified proteins for the specific detection of antibodies. While the role of synthetic peptides as vaccines seems to be limited, complete viral surface proteins produced by gene technological methods are already used for vaccination in man. The advantages and disadvantages of production in bacteria, in yeast and in higher eukaryotic cells of polypeptides designed as subunit vaccines are discussed. An additional, attractive model is the synthesis of antigens immediately in the host, directed by a recombinant vaccinia virus. Another promising approach is the establishment of potent and safe live vaccines by the introduction of defined mutations or deletions into a viral genome, based on the previous elucidation of the molecular mechanism of attenuation. PMID:3134900

Löwer, J

1988-03-01

226

Interplay between modified vaccinia virus Ankara and dendritic cells: phenotypic and functional maturation of bystander dendritic cells.  

PubMed

Modified vaccinia virus Ankara (MVA) is an attenuated poxvirus strain, currently under evaluation as a vaccine vector in various clinical settings. It has been reported that human dendritic cells (DCs) mature after infection with MVA, but reports on the functionality of DCs have so far been controversial. In this work, we studied the phenotype and functionality of MVA-infected DCs. As previously reported, we found that human monocyte-derived DCs upregulated CD86 and HLA-DR in response to MVA infection. Moreover, infected DCs produced a broad array of chemokines and cytokines and were able to activate and induce gamma interferon (IFN-?) production both in CD4(+) and in CD8(+) allogeneic T cells and in specific autologous peripheral blood lymphocytes (PBLs). Analysis of DC maturation following infection with a recombinant green fluorescent protein (GFP)-expressing MVA revealed that upregulation of CD86 expression was mainly observed in GFP(neg) (bystander) cells. While GFP(pos) (infected) DCs produced tumor necrosis factor alpha (TNF-?), they were unable to produce CXCL10 and were less efficient at inducing IFN-? production in CEF-specific autologous PBLs. Maturation of bystander DCs could be achieved by incubation with supernatant from infected cultures or with apoptotic infected cells. Type I IFNs were partially responsible for the induction of CXCL10 on bystander DCs. Our findings demonstrate for the first time that, in MVA-infected DC cultures, the leading role with respect to functionality and maturation characteristics is achieved by the bystander DCs. PMID:21411535

Pascutti, María F; Rodríguez, Ana M; Falivene, Juliana; Giavedoni, Luis; Drexler, Ingo; Gherardi, M Magdalena

2011-06-01

227

Interplay between Modified Vaccinia Virus Ankara and Dendritic Cells: Phenotypic and Functional Maturation of Bystander Dendritic Cells?  

PubMed Central

Modified vaccinia virus Ankara (MVA) is an attenuated poxvirus strain, currently under evaluation as a vaccine vector in various clinical settings. It has been reported that human dendritic cells (DCs) mature after infection with MVA, but reports on the functionality of DCs have so far been controversial. In this work, we studied the phenotype and functionality of MVA-infected DCs. As previously reported, we found that human monocyte-derived DCs upregulated CD86 and HLA-DR in response to MVA infection. Moreover, infected DCs produced a broad array of chemokines and cytokines and were able to activate and induce gamma interferon (IFN-?) production both in CD4+ and in CD8+ allogeneic T cells and in specific autologous peripheral blood lymphocytes (PBLs). Analysis of DC maturation following infection with a recombinant green fluorescent protein (GFP)-expressing MVA revealed that upregulation of CD86 expression was mainly observed in GFPneg (bystander) cells. While GFPpos (infected) DCs produced tumor necrosis factor alpha (TNF-?), they were unable to produce CXCL10 and were less efficient at inducing IFN-? production in CEF-specific autologous PBLs. Maturation of bystander DCs could be achieved by incubation with supernatant from infected cultures or with apoptotic infected cells. Type I IFNs were partially responsible for the induction of CXCL10 on bystander DCs. Our findings demonstrate for the first time that, in MVA-infected DC cultures, the leading role with respect to functionality and maturation characteristics is achieved by the bystander DCs. PMID:21411535

Pascutti, María F.; Rodríguez, Ana M.; Falivene, Juliana; Giavedoni, Luis; Drexler, Ingo; Gherardi, M. Magdalena

2011-01-01

228

Early detection of memory deficits and memory improvement with vaccinia virus complement control protein in an Alzheimer's disease model  

Microsoft Academic Search

Vaccinia virus complement control protein (VCP) inhibits both the classical and alternate complement pathways. In diseases such as traumatic brain injury (TBI) and Alzheimer's disease (AD), pathological inflammation is caused by amongst several factors, prolonged or inappropriate activation of the complement system and is a significant cause of neurodegeneration. This study investigates for the first time the use of a

Nirvana S. Pillay; Laurie A. Kellaway; Girish J. Kotwal

2008-01-01

229

Vaccinia Virus F1L Protein Is a Tail-Anchored Protein That Functions at the Mitochondria To Inhibit Apoptosis  

Microsoft Academic Search

Members of the poxvirus family encode multiple immune evasion proteins, including proteins that regulate apoptosis. We recently identified one such protein, F1L, encoded by vaccinia virus, the prototypic member of the poxvirus family. F1L localizes to the mitochondria and inhibits apoptosis by interfering with the release of cytochrome c, the pivotal commitment step in the apoptotic cascade. Sequence analysis of

Tara L. Stewart; Shawn T. Wasilenko; Michele Barry

2005-01-01

230

Postexposure prevention of progressive vaccinia in SCID mice treated with vaccinia immune globulin.  

PubMed

A recently reported case of progressive vaccinia (PV) in an immunocompromised patient has refocused attention on this condition. Uniformly fatal prior to the licensure of vaccinia immune globulin (VIG) in 1978, PV was still fatal in about half of VIG-treated patients overall, with a greater mortality rate in infants and children. Additional therapies would be needed in the setting of a smallpox bioterror event, since mass vaccination following any variola virus release would inevitably result in exposure of immunocompromised people through vaccination or contact with vaccinees. Well-characterized animal models of disease can support the licensure of new products when human studies are not ethical or feasible, as in the case of PV. We chose vaccinia virus-scarified SCID mice to model PV. As in immunocompromised humans, vaccinia virus-scarified SCID animals develop enlarging primary lesions with minimal or no inflammation, eventual distal virus spread, and lethal outcomes if left untreated. Postexposure treatment with VIG slowed disease progression, caused local lesion regression, and resulted in the healthy survival of most of the mice for more than 120 days. Combination treatment with VIG and topical cidofovir also resulted in long-term disease-free survival of most of the animals, even when initiated 7 days postinfection. These results support the possibility that combination treatments may be effective in humans and support using this SCID model of PV to test new antibody therapies and combination therapies and to provide further insights into the pathogenesis and treatment of PV. PMID:21106779

Fisher, R W; Reed, J L; Snoy, P J; Mikolajczyk, M G; Bray, M; Scott, D E; Kennedy, M C

2011-01-01

231

Expression of the E3L Gene of Vaccinia Virus in Transgenic Mice Decreases Host Resistance to Vaccinia Virus and Leishmania major Infections?  

PubMed Central

The E3L gene of vaccinia virus (VACV) encodes the E3 protein that in cultured cells inhibits the activation of interferon (IFN)-induced proteins, double-stranded RNA-dependent protein kinase (PKR), 2?-5?-oligoadenylate synthetase/RNase L (2-5A system) and adenosine deaminase (ADAR-1), thus helping the virus to evade host responses. Here, we have characterized the in vivo E3 functions in a murine inducible cell culture system (E3L-TetOFF) and in transgenic mice (TgE3L). Inducible E3 expression in cultured cells conferred on cells resistance to the antiviral action of IFN against different viruses, while expression of the E3L gene in TgE3L mice triggered enhanced sensitivity of the animals to pathogens. Virus infection monitored in TgE3L mice by different inoculation routes (intraperitoneal and tail scarification) showed that transgenic mice became more susceptible to VACV infection than control mice. TgE3L mice were also more susceptible to Leishmania major infection, leading to an increase in parasitemia compared to control mice. The enhanced sensitivity of TgE3L mice to VACV and L. major infections occurred together with alterations in the host immune system, as revealed by decreased T-cell responses to viral antigens in the spleen and lymph nodes and by differences in the levels of specific innate cell populations. These results demonstrate that expression of the E3L gene in transgenic mice partly reverses the resistance of the host to viral and parasitic infections and that these effects are associated with immune alterations. PMID:17959665

Domingo-Gil, Elena; Pérez-Jiménez, Eva; Ventoso, Iván; Nájera, José L.; Esteban, Mariano

2008-01-01

232

The E6 protein from vaccinia virus is required for the formation of immature virions  

SciTech Connect

An IPTG-inducible mutant in the E6R gene of vaccinia virus was used to study the role of the E6 virion core protein in viral replication. In the absence of the inducer, the mutant exhibited a normal pattern DNA replication, concatemer resolution and late gene expression, but it showed an inhibition of virion structural protein processing it failed to produce infectious particles. Electron microscopic analysis showed that in the absence of IPTG viral morphogenesis was arrested before IV formation: crescents, aberrant or empty IV-like structures, and large aggregated virosomes were observed throughout the cytoplasm. The addition of IPTG to release a 12-h block showed that virus infectious particles could be formed in the absence of de novo DNA synthesis. Our observations show that in the absence of E6 the association of viroplasm with viral membrane crescents is impaired.

Boyd, Olga; Turner, Peter C.; Moyer, Richard W.; Condit, Richard C. [Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610 (United States); Moussatche, Nissin, E-mail: nissin@ufl.ed [Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610 (United States)

2010-04-10

233

Expression of the highly conserved vaccinia virus E6 protein is required for virion morphogenesis  

SciTech Connect

The vaccinia virus E6R gene (VACVWR062) is conserved in all members of the poxvirus family and encodes a protein associated with the mature virion. We confirmed this association and provided evidence for an internal location. An inducible mutant that conditionally expresses E6 was constructed. In the absence of inducer, plaque formation and virus production were severely inhibited in several cell lines, whereas some replication occurred in others. This difference could be due to variation in the stringency of repression, since we could not isolate a stable deletion mutant even in the more 'permissive' cells. Under non-permissive conditions, viral late proteins were synthesized but processing of core proteins was inefficient, indicative of an assembly block. Transmission electron microscopy of sections of cells infected with the mutant in the absence of inducer revealed morphogenetic defects with crescents and empty immature virions adjacent to dense inclusions of viroplasm. Mature virions were infrequent and cores appeared to have lucent centers.

Resch, Wolfgang; Weisberg, Andrea S. [Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3210 (United States); Moss, Bernard, E-mail: bmoss@nih.go [Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3210 (United States)

2009-04-10

234

Vaccination with a Fusion Protein That Introduces HIV-1 Gag Antigen into a Multitrimer CD40L Construct Results in Enhanced CD8+ T Cell Responses and Protection from Viral Challenge by Vaccinia-Gag  

PubMed Central

CD40 ligand (CD40L, CD154) is a membrane protein that is important for the activation of dendritic cells (DCs) and DC-induced CD8+ T cell responses. To be active, CD40L must cluster CD40 receptors on responding cells. To produce a soluble form of CD40L that clusters CD40 receptors necessitates the use of a multitrimer construct. With this in mind, a tripartite fusion protein was made from surfactant protein D (SPD), HIV-1 Gag as a test antigen, and CD40L, where SPD serves as a scaffold for the multitrimer protein complex. This SPD-Gag-CD40L protein activated CD40-bearing cells and bone marrow-derived DCs in vitro. Compared to a plasmid for Gag antigen alone (pGag), DNA vaccination of mice with pSPD-Gag-CD40L induced an increased number of Gag-specific CD8+ T cells with increased avidity for major histocompatibility complex class I-restricted Gag peptide and improved vaccine-induced protection from challenge by vaccinia-Gag virus. The importance of the multitrimeric nature of the complex was shown using a plasmid lacking the N terminus of SPD that produced a single trimer fusion protein. This plasmid, pTrimer-Gag-CD40L, was only weakly active on CD40-bearing cells and did not elicit strong CD8+ T cell responses or improve protection from vaccinia-Gag challenge. An adenovirus 5 (Ad5) vaccine incorporating SPD-Gag-CD40L was much stronger than Ad5 expressing Gag alone (Ad5-Gag) and induced complete protection (i.e., sterilizing immunity) from vaccinia-Gag challenge. Overall, these results show the potential of a new vaccine design in which antigen is introduced into a construct that expresses a multitrimer soluble form of CD40L, leading to strongly protective CD8+ T cell responses. PMID:24227853

Gupta, Sachin; Termini, James M.; Raffa, Francesca N.; Williams, Cindi-Ann; Kornbluth, Richard S.

2014-01-01

235

Single-Virus Fusion Experiments Reveal Proton Influx into Vaccinia Virions and Hemifusion Lag Times  

PubMed Central

Recent studies have revealed new insights into the endocytosis of vaccinia virus (VACV). However, the mechanism of fusion between viral and cellular membranes remains unknown. We developed a microfluidic device with a cell-trap array for immobilization of individual cells, with which we analyzed the acid-dependent fusion of single virions. VACV particles incorporating enhanced green fluorescent protein (EGFP) and labeled with self-quenching concentrations of R18 membrane dye were used in combination with total internal reflection fluorescence microscopy to measure the kinetics of R18 dequenching and thus single hemifusion events initiated by a fast low-pH trigger. These studies revealed unexpectedly long lag phases between pH change and hemifusion. In addition, we found that EGFP fluorescence in the virus was quenched upon acidification, indicating that protons could access the virus core, possibly through a proton channel. In a fraction of virus particles, EGFP fluorescence was recovered, presumably after fusion-pore formation and exposure of the core to the physiological pH of the host-cell cytosol. Given that virus-encoded cation channels play a crucial role in the life cycle of many viruses and can serve as antiviral drug targets, further investigations into a potential VACV viroporin are justified. Our findings indicate that the microfluidic device described may be highly beneficial to similar studies requiring fast kinetic measurements. PMID:23870263

Schmidt, Florian I.; Kuhn, Phillip; Robinson, Tom; Mercer, Jason; Dittrich, Petra S.

2013-01-01

236

Oncolytic Viruses as Anticancer Vaccines  

PubMed Central

Oncolytic virotherapy has shown impressive results in preclinical studies and first promising therapeutic outcomes in clinical trials as well. Since viruses are known for a long time as excellent vaccination agents, oncolytic viruses are now designed as novel anticancer agents combining the aspect of lysis-dependent cytoreductive activity with concomitant induction of antitumoral immune responses. Antitumoral immune activation by oncolytic virus infection of tumor tissue comprises both, immediate effects of innate immunity and also adaptive responses for long lasting antitumoral activity, which is regarded as the most prominent challenge in clinical oncology. To date, the complex effects of a viral tumor infection on the tumor microenvironment and the consequences for the tumor-infiltrating immune cell compartment are poorly understood. However, there is more and more evidence that a tumor infection by an oncolytic virus opens up a number of options for further immunomodulating interventions such as systemic chemotherapy, generic immunostimulating strategies, dendritic cell-based vaccines, and antigenic libraries to further support clinical efficacy of oncolytic virotherapy. PMID:25101244

Woller, Norman; Gürlevik, Engin; Ureche, Cristina-Ileana; Schumacher, Anja; Kühnel, Florian

2014-01-01

237

Efficacy of a Plasmodium vivax malaria vaccine using ChAd63 and modified vaccinia Ankara expressing thrombospondin-related anonymous protein as assessed with transgenic Plasmodium berghei parasites.  

PubMed

Plasmodium vivax is the world's most widely distributed malaria parasite and a potential cause of morbidity and mortality for approximately 2.85 billion people living mainly in Southeast Asia and Latin America. Despite this dramatic burden, very few vaccines have been assessed in humans. The clinically relevant vectors modified vaccinia virus Ankara (MVA) and the chimpanzee adenovirus ChAd63 are promising delivery systems for malaria vaccines due to their safety profiles and proven ability to induce protective immune responses against Plasmodium falciparum thrombospondin-related anonymous protein (TRAP) in clinical trials. Here, we describe the development of new recombinant ChAd63 and MVA vectors expressing P. vivax TRAP (PvTRAP) and show their ability to induce high antibody titers and T cell responses in mice. In addition, we report a novel way of assessing the efficacy of new candidate vaccines against P. vivax using a fully infectious transgenic Plasmodium berghei parasite expressing P. vivax TRAP to allow studies of vaccine efficacy and protective mechanisms in rodents. Using this model, we found that both CD8+ T cells and antibodies mediated protection against malaria using virus-vectored vaccines. Our data indicate that ChAd63 and MVA expressing PvTRAP are good preerythrocytic-stage vaccine candidates with potential for future clinical application. PMID:24379295

Bauza, Karolis; Malinauskas, Tomas; Pfander, Claudia; Anar, Burcu; Jones, E Yvonne; Billker, Oliver; Hill, Adrian V S; Reyes-Sandoval, Arturo

2014-03-01

238

Oncolytic virotherapy for ovarian carcinomatosis using a replication-selective vaccinia virus armed with a yeast cytosine deaminase gene  

Microsoft Academic Search

In this study, we assessed the ability of a highly tumor-selective oncolytic vaccinia virus armed with a yeast cytosine deaminase gene to infect and lyse human and murine ovarian tumors both in vitro and in vivo. The virus vvDD-CD could infect, replicate in and effectively lyse both human and mouse ovarian cancer cells in vitro. In two different treatment schedules

S Chalikonda; M H Kivlen; M E O'Malley; J A McCart; M C Gorry; X-Y Yin; C K Brown; H J Zeh; Z S Guo; D L Bartlett

2008-01-01

239

Rapid Expansion of CD8+ T Cells in Wild-Type and Type I Interferon Receptor-Deficient Mice Correlates with Protection after Low-Dose Emergency Immunization with Modified Vaccinia Virus Ankara  

PubMed Central

ABSTRACT Immunization with modified vaccinia virus Ankara (MVA) can rapidly protect mice against lethal ectromelia virus (ECTV) infection, serving as an experimental model for severe systemic infections. Importantly, this early protective capacity of MVA vaccination completely depends on virus-specific cytotoxic CD8+ T cell responses. We used MVA vaccination in the mousepox challenge model using ECTV infection to investigate the previously unknown factors required to elicit rapid protective T cell immunity in normal C57BL/6 mice and in mice lacking the interferon alpha/beta receptor (IFNAR?/?). We found a minimal dose of 105 PFU of MVA vaccine fully sufficient to allow robust protection against lethal mousepox, as assessed by the absence of disease symptoms and failure to detect ECTV in organs from vaccinated animals. Moreover, MVA immunization at low dosage also protected IFNAR?/? mice, indicating efficient activation of cellular immunity even in the absence of type I interferon signaling. When monitoring for virus-specific CD8+ T cell responses in mice vaccinated with the minimal protective dose of MVA, we found significantly enhanced levels of antigen-specific T cells in animals that were MVA vaccinated and ECTV challenged compared to mice that were only vaccinated. The initial priming of naive CD8+ T cells by MVA immunization appears to be highly efficient and, even at low doses, mediates a rapid in vivo burst of pathogen-specific T cells upon challenge. Our findings define striking requirements for protective emergency immunization against severe systemic infections with orthopoxviruses. IMPORTANCE We demonstrate that single-shot low-dose immunizations with vaccinia virus MVA can rapidly induce T cell-mediated protective immunity against lethal orthopoxvirus infections. Our data provide new evidence for an efficient protective capacity of vaccination with replication-deficient MVA. These data are of important practical relevance for public health, as the effectiveness of a safety-tested, next-generation smallpox vaccine based on MVA is still debated. Furthermore, producing sufficient amounts of vaccine is expected to be a major challenge should an outbreak occur. Moreover, prevention of other infections may require rapidly protective immunization; hence, MVA could be an extremely useful vaccine for delivering heterologous T cell antigens, particularly for infectious diseases that fit a scenario of emergency vaccination. PMID:25008931

Volz, Asisa; Langenmayer, Martin; Jany, Sylvia; Kalinke, Ulrich

2014-01-01

240

Multiserotype protection elicited by a combinatorial prime-boost vaccination strategy against bluetongue virus.  

PubMed

Bluetongue virus (BTV) belongs to the genus Orbivirus within the family Reoviridae. The development of vector-based vaccines expressing conserved protective antigens results in increased immune activation and could reduce the number of multiserotype vaccinations required, therefore providing a cost-effective product. Recent recombinant DNA technology has allowed the development of novel strategies to develop marker and safe vaccines against BTV. We have now engineered naked DNAs and recombinant modified vaccinia virus Ankara (rMVA) expressing VP2, VP7 and NS1 proteins from BTV-4. IFNAR((-/-)) mice inoculated with DNA/rMVA-VP2,-VP7-NS1 in an heterologous prime boost vaccination strategy generated significant levels of antibodies specific of VP2, VP7, and NS1, including those with neutralizing activity against BTV-4. In addition, vaccination stimulated specific CD8(+) T cell responses against these three BTV proteins. Importantly, the vaccine combination expressing NS1, VP2 and VP7 proteins of BTV-4, elicited sterile protection against a lethal dose of homologous BTV-4 infection. Remarkably, the vaccine induced cross-protection against lethal doses of heterologous BTV-8 and BTV-1 suggesting that the DNA/rMVA-VP2,-VP7,-NS1 marker vaccine is a promising multiserotype vaccine against BTV. PMID:22514660

Calvo-Pinilla, Eva; Navasa, Nicolás; Anguita, Juan; Ortego, Javier

2012-01-01

241

Analysis of a Vaccinia Virus Mutant Expressing a Nonpalmitylated Form of p37, a Mediator of Virion Envelopment  

PubMed Central

Vaccinia virus encodes a 37-kDa palmitylated protein (p37) that is required for envelopment, translocation, and cell-to-cell spread of virions. We have analyzed the biological significance of the palmitate modification by constructing a recombinant vaccinia virus that expresses a nonpalmitylated p37 and comparing its biological activity to that of the wild-type virus. The mutant virus is inefficient at cell-to-cell spread and does not produce or release enveloped virions, although it produces normal amounts of nonenveloped virions. Furthermore, the mutant virus is not able to nucleate actin to propel itself through and out of the cell, a function requiring the indirect participation of p37. The deficiency in protein function appears to result from a lack of appropriate targeting to the membranes of the trans-Golgi network (TGN) which leaves p37 soluble in the cytoplasm. We conclude that the palmitate moiety is necessary for targeting or anchoring p37 to the TGN membrane, where, along with other vaccinia virus-encoded proteins, p37 is involved in the complex process of virion envelopment and release. PMID:9573282

Grosenbach, Douglas W.; Hruby, Dennis E.

1998-01-01

242

Newcastle disease virus vaccine potency determination  

Technology Transfer Automated Retrieval System (TEKTRAN)

Potency of inactivated Newcastle disease virus (NDV) vaccines is determined using vaccination and challenge. If the minimum killed viral antigen necessary for clinical protection can be determined, vaccines meeting or exceeding this dose might be considered of adequate potency. In these studies, c...

243

MyD88-Dependent Immunity to a Natural Model of Vaccinia Virus Infection Does Not Involve Toll-Like Receptor 2  

PubMed Central

ABSTRACT Although the pattern recognition receptor Toll-like receptor 2 (TLR2) is typically thought to recognize bacterial components, it has been described to alter the induction of both innate and adaptive immunity to a number of viruses, including vaccinia virus (VACV). However, many pathogens that reportedly encode TLR2 agonists may actually be artifactually contaminated during preparation, possibly with cellular debris or merely with molecules that sensitize cells to be activated by authentic TLR2 agonists. In both humans and mice, the most relevant natural route of infection with VACV is through intradermal infection of the skin. Therefore, we examined the requirement for TLR2 and its signaling adaptor MyD88 in protective immunity to VACV after intradermal infection. We find that although TLR2 may recognize virus preparations in vitro and have a minor role in preventing dissemination of VACV following systemic infection with large doses of virus, it is wholly disposable in both control of virus replication and induction of adaptive immunity following intradermal infection. In contrast, MyD88 is required for efficient induction of CD4 T cell and B cell responses and for local control of virus replication following intradermal infection. However, even MyD88 is not required to induce local inflammation, inflammatory cytokine production, or recruitment of cells that restrict virus from spreading systemically after peripheral infection. Thus, an effective antiviral response does require MyD88, but TLR2 is not required for control of a peripheral VACV infection. These findings emphasize the importance of studying relevant routes of infection when examining innate sensing mechanisms. IMPORTANCE Vaccinia virus (VACV) provides the backbone for some of the most widely used and successful viral vaccine vectors and is also related to the human pathogens Cantagalo virus and molluscum contagiosum virus that infect the skin of patients. Therefore, it is vital to understand the mechanisms that induce a strong innate immune response to the virus following dermal infection. Here, we compare the ability of the innate sensing molecule Toll-like receptor 2 (TLR2) and the signaling molecule MyD88 to influence the innate and adaptive immune response to VACV following systemic or dermal infection. PMID:24403581

Davies, Michael L.; Sei, Janet J.; Siciliano, Nicholas A.; Xu, Ren-Huan; Roscoe, Felicia; Sigal, Luis J.; Eisenlohr, Laurence C.

2014-01-01

244

Immunological characterization of a modified vaccinia virus Ankara vector expressing the human papillomavirus 16 E1 protein.  

PubMed

Women showing normal cytology but diagnosed with a persistent high-risk human papillomavirus (HR-HPV) infection have a higher risk of developing high-grade cervical intraepithelial neoplasia and cervical cancer than noninfected women. As no therapeutic management other than surveillance is offered to these women, there is a major challenge to develop novel targeted therapies dedicated to the treatment of these patients. As such, E1 and E2 antigens, expressed early in the HPV life cycle, represent very interesting candidates. Both proteins are necessary for maintaining coordinated viral replication and gene synthesis during the differentiation process of the epithelium and are essential for the virus to complete its normal and propagative replication cycle. In the present study, we evaluated a new active targeted immunotherapeutic, a modified vaccinia virus Ankara (MVA) vector containing the E1 sequence of HPV16, aimed at inducing cellular immune responses with the potential to help and clear persistent HPV16-related infection. We carried out an extensive comparative time course analysis of the cellular immune responses induced by different schedules of immunization in C57BL/6 mice. We showed that multiple injections of MVA-E1 allowed sustained HPV16 E1-specific cellular immune responses in vaccinated mice and had no impact on the exhaustion phenotype of the generated HPV16 E1-specific CD8? T cells, but they led to the differentiation of multifunctional effector T cells with high cytotoxic capacity. This study provides proof of concept that an MVA expressing HPV16 E1 can induce robust and long-lasting E1-specific responses and warrants further development of this candidate. PMID:24307238

Remy-Ziller, Christelle; Germain, Claire; Spindler, Anita; Hoffmann, Chantal; Silvestre, Nathalie; Rooke, Ronald; Bonnefoy, Jean-Yves; Préville, Xavier

2014-02-01

245

New developments in vaccines against respiratory viruses.  

PubMed

Respiratory viruses are important human pathogens, affecting both healthy individuals and immunocompromised patients. In the past decade several new human respiratory viruses have been described, some of which have the potential to start an epidemic. At the same time, influenza A viruses continue to constitute a challenge to mankind as they undergo genetic modification. In this review new developments in the field of vaccines against respiratory viruses are presented, in view of the problems encountered during the development of such vaccines in the past, as well as the availability of modern technologies, which make it possible to create novel vaccines. PMID:18666032

Wroblewska, Marta

2008-08-01

246

Immunization of rhesus monkeys with a recombinant of modified vaccinia virus Ankara expressing a truncated envelope glycoprotein of dengue type 2 virus induced resistance to dengue type 2 virus challenge.  

PubMed

Dengue epidemics increasingly pose a public health problem in most countries of the tropical and subtropical areas. Despite decades of research, development of a safe and effective live dengue virus vaccine is still at the experimental stage. To explore an alternative vaccine strategy, we employed the highly attenuated, replication-deficient modified vaccinia Ankara (MVA) as a vector to construct recombinants for expression of the major envelope glycoprotein of one or more dengue virus serotypes. MVA recombinants expressing the highly immunogenic C-terminally truncated dengue type 2 virus (DEN2) or dengue type 4 virus (DEN4) envelope protein (E), approx. 80% of the full-length, were evaluated for their protective immunity in animal models. Each of these recombinants elicited an elevated antibody response to DEN2 or DEN4 E in mice following the booster inoculation, as detected by radio-immunoprecipitation. Recombinant MVA-DEN2 80%E, but not MVA-DEN4 80%E, induced a neutralizing antibody response. The MVA-DEN2 80%E recombinant was chosen to further evaluate its ability to induce resistance to wild type DEN2 challenge in monkeys. Monkeys immunized twice with recombinant MVA-DEN2 80%E developed a low to moderate antibody response and were partially protected against DEN2 challenge, as determined by the viremia pattern. Importantly, the subsequent study showed that all four monkeys immunized with the recombinant in a three dose schedule developed an increased level of antibodies and were completely protected against DEN2 challenge. The potential efficacy of recombinant MVA-DEN2 80%E to protect primates against dengue infection suggests that construction and evaluation of MVA recombinants expressing other serotypes of dengue virus E for use in a tetravalent vaccine strategy might be warranted. PMID:10856791

Men, R; Wyatt, L; Tokimatsu, I; Arakaki, S; Shameem, G; Elkins, R; Chanock, R; Moss, B; Lai, C J

2000-07-15

247

Evaluation of a New Recombinant Oncolytic Vaccinia Virus Strain GLV-5b451 for Feline Mammary Carcinoma Therapy  

PubMed Central

Virotherapy on the basis of oncolytic vaccinia virus (VACV) infection is a promising approach for cancer therapy. In this study we describe the establishment of a new preclinical model of feline mammary carcinoma (FMC) using a recently established cancer cell line, DT09/06. In addition, we evaluated a recombinant vaccinia virus strain, GLV-5b451, expressing the anti-vascular endothelial growth factor (VEGF) single-chain antibody (scAb) GLAF-2 as an oncolytic agent against FMC. Cell culture data demonstrate that GLV-5b451 virus efficiently infected, replicated in and destroyed DT09/06 cancer cells. In the selected xenografts of FMC, a single systemic administration of GLV-5b451 led to significant inhibition of tumor growth in comparison to untreated tumor-bearing mice. Furthermore, tumor-specific virus infection led to overproduction of functional scAb GLAF-2, which caused drastic reduction of intratumoral VEGF levels and inhibition of angiogenesis. In summary, here we have shown, for the first time, that the vaccinia virus strains and especially GLV-5b451 have great potential for effective treatment of FMC in animal model. PMID:25093734

Weibel, Stephanie; Langbein-Laugwitz, Johanna; Härtl, Barbara; Escobar, Hugo Murua; Nolte, Ingo; Chen, Nanhai G.; Aguilar, Richard J.; Yu, Yong A.; Zhang, Qian; Frentzen, Alexa; Szalay, Aladar A.

2014-01-01

248

Evaluation of a new recombinant oncolytic vaccinia virus strain GLV-5b451 for feline mammary carcinoma therapy.  

PubMed

Virotherapy on the basis of oncolytic vaccinia virus (VACV) infection is a promising approach for cancer therapy. In this study we describe the establishment of a new preclinical model of feline mammary carcinoma (FMC) using a recently established cancer cell line, DT09/06. In addition, we evaluated a recombinant vaccinia virus strain, GLV-5b451, expressing the anti-vascular endothelial growth factor (VEGF) single-chain antibody (scAb) GLAF-2 as an oncolytic agent against FMC. Cell culture data demonstrate that GLV-5b451 virus efficiently infected, replicated in and destroyed DT09/06 cancer cells. In the selected xenografts of FMC, a single systemic administration of GLV-5b451 led to significant inhibition of tumor growth in comparison to untreated tumor-bearing mice. Furthermore, tumor-specific virus infection led to overproduction of functional scAb GLAF-2, which caused drastic reduction of intratumoral VEGF levels and inhibition of angiogenesis. In summary, here we have shown, for the first time, that the vaccinia virus strains and especially GLV-5b451 have great potential for effective treatment of FMC in animal model. PMID:25093734

Adelfinger, Marion; Gentschev, Ivaylo; Grimm de Guibert, Julio; Weibel, Stephanie; Langbein-Laugwitz, Johanna; Härtl, Barbara; Murua Escobar, Hugo; Nolte, Ingo; Chen, Nanhai G; Aguilar, Richard J; Yu, Yong A; Zhang, Qian; Frentzen, Alexa; Szalay, Aladar A

2014-01-01

249

Myxoma and vaccinia virus exploit different mechanisms to enter and infect human cancer cells  

PubMed Central

Myxoma (MYXV) and vaccinia virus (VACV) have recently emerged as potential oncolytic agents that can infect and kill different human cancer cells. Although both are structurally similar, it is unknown whether the pathway(s) used by these poxviruses to enter and cause oncolysis in cancer cells are mechanistically similar. Here, we compared the entry of MYXV and VACV-WR into various human cancer cells and observed significant differences: 1- Low pH treatment accelerates fusion-mediated entry of VACV but not MYXV, 2- The tyrosine kinase inhibitor genistein inhibits entry of VACV, but not MYXV, 3- Knockdown of PAK1 revealed that it is required for a late stage downstream of MYXV entry into cancer cells, whereas PAK1 is required for VACV entry into the same target cells. These results suggest that VACV and MYXV exploit different mechanisms to enter into human cancer cells, thus providing some rationale for their divergent cancer cell tropisms. PMID:20334889

Villa, Nancy Y.; Bartee, Eric; Mohamed, Mohamed R.; Rahman, Masmudur M.; Barrett, John W.; McFadden, Grant

2010-01-01

250

Vaccinia virus binds to the scavenger receptor MARCO on the surface of keratinocytes.  

PubMed

Patients with altered skin immunity, such as individuals with atopic dermatitis (AD), can have a life-threatening disruption of the epidermis known as eczema vaccinatum after vaccinia virus (VV) infection of the skin. Here, we sought to better understand the mechanism(s) by which VV associates with keratinocytes. The class A scavenger receptor known as MARCO (macrophage receptor with collagenous structure) is expressed on human and mouse keratinocytes and found to be abundantly expressed in the skin of patients with AD. VV bound directly to MARCO, and overexpression of MARCO increased susceptibility to VV infection. Furthermore, ligands with affinity for MARCO, or excess soluble MARCO, competitively inhibited VV infection. These findings indicate that MARCO promotes VV infection and highlights potential new therapeutic strategies for prevention of VV infection in the skin. PMID:25089661

MacLeod, Daniel T; Nakatsuji, Teruaki; Wang, Zhenping; di Nardo, Anna; Gallo, Richard L

2015-01-01

251

Myxoma and vaccinia viruses exploit different mechanisms to enter and infect human cancer cells  

SciTech Connect

Myxoma (MYXV) and vaccinia (VACV) viruses have recently emerged as potential oncolytic agents that can infect and kill different human cancer cells. Although both are structurally similar, it is unknown whether the pathway(s) used by these poxviruses to enter and cause oncolysis in cancer cells are mechanistically similar. Here, we compared the entry of MYXV and VACV-WR into various human cancer cells and observed significant differences: 1 - low-pH treatment accelerates fusion-mediated entry of VACV but not MYXV, 2 - the tyrosine kinase inhibitor genistein inhibits entry of VACV, but not MYXV, 3 - knockdown of PAK1 revealed that it is required for a late stage event downstream of MYXV entry into cancer cells, whereas PAK1 is required for VACV entry into the same target cells. These results suggest that VACV and MYXV exploit different mechanisms to enter into human cancer cells, thus providing some rationale for their divergent cancer cell tropisms.

Villa, Nancy Y.; Bartee, Eric [Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida 32610 (United States); Mohamed, Mohamed R. [Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida 32610 (United States); Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo (Egypt); Rahman, Masmudur M. [Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida 32610 (United States); Barrett, John W. [Department of Microbiology and Immunology, BioTherapeutics Research Group, Robarts Research Institute, University of Western Ontario, London, Ontario (Canada); McFadden, Grant, E-mail: grantmcf@ufl.ed [Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida 32610 (United States)

2010-06-05

252

Poxvirus-vectored vaccines for rabies—A review  

Microsoft Academic Search

Oral rabies vaccination of target reservoir species has proved to be one of the pillars of successful rabies elimination programs. The use of live attenuated rabies virus vaccines has been extensive but several limitations hamper its future use. A recombinant vaccinia-rabies vaccine has also been successfully used for the oral vaccination of several species. Nevertheless, its lack of efficacy in

Jacqueline Weyer; Charles E. Rupprecht; Louis H. Nel

2009-01-01

253

[Experiments on disinfection of vaccinia virus embedded in scabs and/or at the hand].  

PubMed

Vaccinia viruses embedded in rabbit dermal scabs were subjected to physical and chemical disinfection procedures. Scabs were suspended in vitro without saline or in physiological saline, and left for 1 hour at 70 to 90 degrees C. A complete inactivation was achived only in those scab samples which had been incubated at 90 degrees C for 1 hour and suspended in physiological saline. Scabs which had been placed in a disinfecting apparatus (Vacudes 4000) filled with mattrasses consistently proved to be free of infectious vaccinia viruses in each of the chosen programs. In addition scabs were subjected to disinfection by means of chemical disinfecting agents. The scabs had been placed in a chemical disinfecting suspension and left there for 90 minutes. Complete disinfection was obtained with glutaraldehyde 2%, formaldehyde 2%, Lysoformin 2% or 3%, phenol 5% and chloramine T 2%. Complete disinfection was likewise achieved after 3 hours treatment with some alchohols (ethylalcohol 80%, isopropylalcohol 7%, n-propylalcohol 60%), Amocid 5% and formaldehyde 1%.0.5% formaldehyde caused complete disinfection when applied for 6 hours. The only exception was a Quat which did not disinfect fully even after 18 hours application. Concerning the tests to disinfect the hands complete disinfection occurs when using chloramine T (1.5%) or isopropylalcohol (70%) in 2 to 5 minutes. Further tests were performed with scabs which were placed in sick rooms that were terminally disinfected with formaline vapor. It could be confirmed that the usual terminal disinfection with formaldehyde vapor was unable to completely disinfect the scabs. It is necessary to double the amount of formaldehyde (10 g formaldehyde per cubic metre of space) and prolong the period of treatment to 24 hours to achieve a greater degree of disinfection rate. PMID:557270

Schümann, K; Grossgebauer, K

1977-01-01

254

From Lesions to Viral Clones: Biological and Molecular Diversity amongst Autochthonous Brazilian Vaccinia Virus.  

PubMed

Vaccinia virus (VACV) has had an important role for humanity because of its use during the smallpox eradication campaign. VACV is the etiologic agent of the bovine vaccinia (BV), an emerging zoonosis that has been associated with economic, social, veterinary and public health problems, mainly in Brazil and India. Despite the current and historical VACV importance, there is little information about its circulation, prevalence, origins and maintenance in the environment, natural reservoirs and diversity. Brazilian VACV (VACV-BR) are grouped into at least two groups based on genetic and biological diversity: group 1 (G1) and group 2 (G2). In this study, we went to the field and investigated VACV clonal diversity directly from exanthemous lesions, during BV outbreaks. Our results demonstrate that the G1 VACV-BR were more frequently isolated. Furthermore, we were able to co-detect the two variants (G1 and G2) in the same sample. Molecular and biological analysis corroborated previous reports and confirmed the co-circulation of two VACV-BR lineages. The detected G2 clones presented exclusive genetic and biological markers, distinct to reference isolates, including VACV-Western Reserve. Two clones presented a mosaic profile, with both G1 and G2 features based on the molecular analysis of A56R, A26L and C23L genes. Indeed, some SNPs and INDELs in A56R nucleotide sequences were observed among clones of the same virus population, maybe as a result of an increased mutation rate in a mixed population. These results provide information about the diversity profile in VACV populations, highlighting its importance to VACV evolution and maintenance in the environment. PMID:25785515

Oliveira, Graziele; Assis, Felipe; Almeida, Gabriel; Albarnaz, Jonas; Lima, Maurício; Andrade, Ana Cláudia; Calixto, Rafael; Oliveira, Cairo; Diomedes Neto, José; Trindade, Giliane; Ferreira, Paulo César; Kroon, Erna Geessien; Abrahão, Jônatas

2015-01-01

255

RNA Virus Reverse Genetics and Vaccine Design  

PubMed Central

RNA viruses are capable of rapid spread and severe or potentially lethal disease in both animals and humans. The development of reverse genetics systems for manipulation and study of RNA virus genomes has provided platforms for designing and optimizing viral mutants for vaccine development. Here, we review the impact of RNA virus reverse genetics systems on past and current efforts to design effective and safe viral therapeutics and vaccines. PMID:24967693

Stobart, Christopher C.; Moore, Martin L.

2014-01-01

256

EFFICACY OF AN ORAL VACCINIA-RABIES GLYCOPROTEIN RECOMBINANT VACCINE IN CONTROLLING EPIDEMIC RACCOON RABIES IN NEW JERSEY  

Microsoft Academic Search

area raccoons following the fall 1993 and spring 1994 vaccinations. Eleven (61%) of the raccoons sampled in the same time period seroconverted (?0.5 IU) in response to rabies virus glycoprotein. A raccoon diagnosed with rabies from the northern border of the vaccination area on 30 April 1993 provided the first evidence that the barrier was being challenged by the rabies

Douglas E. Roscoe; Warren C. Holste; Faye E. Sorhage; CoIln Campbell; Michael Nlezgoda; Raymond Buchannan; Daniel Diehl; Hong Shin

257

Cap-Independent Translation of mRNA Conferred by Encephalomyocarditis Virus 5' Sequence Improves the Performance of the Vaccinia Virus\\/Bacteriophage T7 Hybrid Expression System  

Microsoft Academic Search

A recombinant vaccinia virus that directs the synthesis of bacteriophage T7 RNA polymerase provides the basis for the expression of genes that are regulated by T7 promoters in mammalian cells. The T7 transcripts, which account for as much as 30% of the total cytoplasmic RNA at 24 hr after infection, are largely uncapped. To improve the translatability of the uncapped

Orna Elroy-Stein; Thomas R. Fuerst; Bernard Moss

1989-01-01

258

A role for vaccinia virus protein C16 in reprogramming cellular energy metabolism.  

PubMed

Vaccinia virus (VACV) is a large DNA virus that replicates in the cytoplasm and encodes about 200 proteins of which approximately 50?% may be non-essential for viral replication. These proteins enable VACV to suppress transcription and translation of cellular genes, to inhibit the innate immune response, to exploit microtubule- and actin-based transport for virus entry and spread, and to subvert cellular metabolism for the benefit of the virus. VACV strain WR protein C16 induces stabilization of the hypoxia-inducible transcription factor (HIF)-1? by binding to the cellular oxygen sensor prolylhydroxylase domain-containing protein (PHD)2. Stabilization of HIF-1? is induced by several virus groups, but the purpose and consequences are unclear. Here, (1)H-NMR spectroscopy and liquid chromatography-mass spectrometry are used to investigate the metabolic alterations during VACV infection in HeLa and 2FTGH cells. The role of C16 in such alterations was examined by comparing infection to WT VACV (strain WR) and a derivative virus lacking gene C16L (v?C16). Compared with uninfected cells, VACV infection caused increased nucleotide and glutamine metabolism. In addition, there were increased concentrations of glutamine derivatives in cells infected with WT VACV compared with v?C16. This indicates that C16 contributes to enhanced glutamine metabolism and this may help preserve tricarboxylic acid cycle activity. These data show that VACV infection reprogrammes cellular energy metabolism towards increased synthesis of the metabolic precursors utilized during viral replication, and that C16 contributes to this anabolic reprogramming of the cell, probably via the stabilization of HIF-1?. PMID:25351724

Mazzon, Michela; Castro, Cecilia; Roberts, Lee D; Griffin, Julian L; Smith, Geoffrey L

2015-02-01

259

A role for vaccinia virus protein C16 in reprogramming cellular energy metabolism  

PubMed Central

Vaccinia virus (VACV) is a large DNA virus that replicates in the cytoplasm and encodes about 200 proteins of which approximately 50?% may be non-essential for viral replication. These proteins enable VACV to suppress transcription and translation of cellular genes, to inhibit the innate immune response, to exploit microtubule- and actin-based transport for virus entry and spread, and to subvert cellular metabolism for the benefit of the virus. VACV strain WR protein C16 induces stabilization of the hypoxia-inducible transcription factor (HIF)-1? by binding to the cellular oxygen sensor prolylhydroxylase domain-containing protein (PHD)2. Stabilization of HIF-1? is induced by several virus groups, but the purpose and consequences are unclear. Here, 1H-NMR spectroscopy and liquid chromatography-mass spectrometry are used to investigate the metabolic alterations during VACV infection in HeLa and 2FTGH cells. The role of C16 in such alterations was examined by comparing infection to WT VACV (strain WR) and a derivative virus lacking gene C16L (v?C16). Compared with uninfected cells, VACV infection caused increased nucleotide and glutamine metabolism. In addition, there were increased concentrations of glutamine derivatives in cells infected with WT VACV compared with v?C16. This indicates that C16 contributes to enhanced glutamine metabolism and this may help preserve tricarboxylic acid cycle activity. These data show that VACV infection reprogrammes cellular energy metabolism towards increased synthesis of the metabolic precursors utilized during viral replication, and that C16 contributes to this anabolic reprogramming of the cell, probably via the stabilization of HIF-1?. PMID:25351724

Mazzon, Michela; Castro, Cecilia; Roberts, Lee D.; Griffin, Julian L.

2015-01-01

260

Vesicular stomatitis virus-based vaccines against Lassa and Ebola viruses.  

PubMed

We demonstrated that previous vaccination with a vesicular stomatitis virus (VSV)-based Lassa virus vaccine does not alter protective efficacy of subsequent vaccination with a VSV-based Ebola virus vaccine. These findings demonstrate the utility of VSV-based vaccines against divergent viral pathogens, even when preexisting immunity to the vaccine vector is present. PMID:25625358

Marzi, Andrea; Feldmann, Friederike; Geisbert, Thomas W; Feldmann, Heinz; Safronetz, David

2015-02-01

261

Vesicular Stomatitis Virus–Based Vaccines against Lassa and Ebola Viruses  

PubMed Central

We demonstrated that previous vaccination with a vesicular stomatitis virus (VSV)–based Lassa virus vaccine does not alter protective efficacy of subsequent vaccination with a VSV-based Ebola virus vaccine. These findings demonstrate the utility of VSV-based vaccines against divergent viral pathogens, even when preexisting immunity to the vaccine vector is present. PMID:25625358

Marzi, Andrea; Feldmann, Friederike; Geisbert, Thomas W.; Feldmann, Heinz

2015-01-01

262

Immunization with a recombinant fowlpox virus expressing a hepatitis C virus core-E1 polyprotein variant, protects mice and African green monkeys (Chlorocebus aethiops sabaeus) against challenge with a surrogate vaccinia virus.  

PubMed

HCV (hepatitis C virus) is a worldwide health problem nowadays. No preventive vaccine is available against this pathogen, and therapeutic treatments currently in use have important drawbacks, including limited efficacy. In the present work a recombinant fowlpox virus, FPCoE1, expressing a truncated HCV core-E1 polyprotein, was generated. FPCoE1 virus generally failed to elicit a humoral immune response against HCV antigens in BALB/c mice. By contrast, mice inoculated with FPCoE1 elicited a positive interferon-gamma secretion response against HCV core in ex-vivo ELISPOT (enzyme-linked immunospot) assays. Remarkably, mice inoculated with FPCoE1 significantly controlled viraemia in a surrogate challenge model with vvRE, a recombinant vaccinia virus expressing HCV structural antigens. In fact, 40% of the mice had no detectable levels of vvRE in their ovaries. Administration of FPCoE1 in vervet monkeys [Chlorocebus (formerly Cercophitecus) aethiops sabaeus] induced lymphoproliferative response against HCV core and E1 proteins in 50% of immunized animals. Monkeys immunized with FPCoE1 had no detectable levels of vvRE in their blood, whereas monkeys inoculated with FP9, the negative control virus, had detectable levels of vvRE in blood up to 7 days after challenge. In conclusion, recombinant fowlpox virus FPCoE1 is able to induce an anti-HCV immune response in mice and monkeys. This ability could be rationally employed to develop effective strategies against HCV infection by using FPCoE1 in combination with other vaccine candidates or antiviral treatments. PMID:18215116

Alvarez-Lajonchere, Liz; Amador-Cañizares, Yalena; Frías, Roberto; Milian, Yoamel; Musacchio, Alexis; Guerra, Ivis; Acosta-Rivero, Nelson; Martínez, Gillian; Castro, Jorge; Puentes, Pedro; Cosme, Karelia; Dueñas-Carrera, Santiago

2008-10-01

263

Comparing adjuvanted H28 and modified vaccinia virus ankara expressingH28 in a mouse and a non-human primate tuberculosis model.  

PubMed

Here we report for the first time on the immunogenicity and protective efficacy of a vaccine strategy involving the adjuvanted fusion protein "H28" (consisting of Ag85B-TB10.4-Rv2660c) and Modified Vaccinia Virus Ankara expressing H28. We show that a heterologous prime-boost regimen involving priming with H28 in a Th1 adjuvant followed by boosting with H28 expressed by MVA (H28/MVA28) induced the highest percentage of IFN-? expressing T cells, the highest production of IFN-? per single cell and the highest induction of CD8 T cells compared to either of the vaccines given alone. In contrast, in mice vaccinated with adjuvanted recombinant H28 alone (H28/H28) we observed the highest production of IL-2 per single cell and the highest frequency of antigen specific TNF-?/IL-2 expressing CD4 T cells pre and post infection. Interestingly, TNF-?/IL-2 expressing central memory-like CD4 T cells showed a significant positive correlation with protection at week 6 post infection, whereas the opposite was observed for post infection CD4 T cells producing only IFN-?. Moreover, as a BCG booster vaccine in a clinically relevant non-human primate TB model, the H28/H28 vaccine strategy induced a slightly more prominent reduction of clinical disease and pathology for up to one year post infection compared to H28/MVA28. Taken together, our data showed that the adjuvanted subunit and MVA strategies led to different T cell subset combinations pre and post infection and that TNF-?/IL-2 double producing but not IFN-? single producing CD4 T cell subsets correlated with protection in the mouse TB model. Moreover, our data demonstrated that the H28 vaccine antigen was able to induce strong protection in both a mouse and a non-human primate TB model. PMID:23977248

Billeskov, Rolf; Christensen, Jan P; Aagaard, Claus; Andersen, Peter; Dietrich, Jes

2013-01-01

264

Comparing Adjuvanted H28 and Modified Vaccinia Virus Ankara Expressing H28 in a Mouse and a Non-Human Primate Tuberculosis Model  

PubMed Central

Here we report for the first time on the immunogenicity and protective efficacy of a vaccine strategy involving the adjuvanted fusion protein “H28” (consisting of Ag85B-TB10.4-Rv2660c) and Modified Vaccinia Virus Ankara expressing H28. We show that a heterologous prime-boost regimen involving priming with H28 in a Th1 adjuvant followed by boosting with H28 expressed by MVA (H28/MVA28) induced the highest percentage of IFN-? expressing T cells, the highest production of IFN-? per single cell and the highest induction of CD8 T cells compared to either of the vaccines given alone. In contrast, in mice vaccinated with adjuvanted recombinant H28 alone (H28/H28) we observed the highest production of IL-2 per single cell and the highest frequency of antigen specific TNF-?/IL-2 expressing CD4 T cells pre and post infection. Interestingly, TNF-?/IL-2 expressing central memory-like CD4 T cells showed a significant positive correlation with protection at week 6 post infection, whereas the opposite was observed for post infection CD4 T cells producing only IFN-?. Moreover, as a BCG booster vaccine in a clinically relevant non-human primate TB model, the H28/H28 vaccine strategy induced a slightly more prominent reduction of clinical disease and pathology for up to one year post infection compared to H28/MVA28. Taken together, our data showed that the adjuvanted subunit and MVA strategies led to different T cell subset combinations pre and post infection and that TNF-?/IL-2 double producing but not IFN-? single producing CD4 T cell subsets correlated with protection in the mouse TB model. Moreover, our data demonstrated that the H28 vaccine antigen was able to induce strong protection in both a mouse and a non-human primate TB model. PMID:23977248

Billeskov, Rolf; Christensen, Jan P.; Aagaard, Claus; Andersen, Peter; Dietrich, Jes

2013-01-01

265

Increased ATP generation in the host cell is required for efficient vaccinia virus production  

PubMed Central

To search for cellular genes up-regulated by vaccinia virus (VV) infection, differential display-reverse transcription-polymerase chain reaction (ddRT-PCR) assays were used to examine the expression of mRNAs from mock-infected and VV-infected HeLa cells. Two mitochondrial genes for proteins that are part of the electron transport chain that generates ATP, ND4 and CO II, were up-regulated after VV infection. Up-regulation of ND4 level by VV infection was confirmed by Western blotting analysis. Up-regulation of ND4 was reduced by the MAPK inhibitor, apigenin, which has been demonstrated elsewhere to inhibit VV replication. The induction of ND4 expression occurred after viral DNA replication since ara C, an inhibitor of poxviral DNA replication, could block this induction. ATP production was increased in the host cells after VV infection. Moreover, 4.5 ?M oligomycin, an inhibitor of ATP production, reduced the ATP level 13 hr after virus infection to that of mock-infected cells and inhibited viral protein expression and virus production, suggesting that increased ATP production is required for efficient VV production. Our results further suggest that induction of ND4 expression is through a Bcl-2 independent pathway. PMID:19725950

Chang, Chia-Wei; Li, Hui-Chun; Hsu, Che-Fang; Chang, Chiao-Yen; Lo, Shih-Yen

2009-01-01

266

9 CFR 113.204 - Mink Enteritis Vaccine, Killed Virus.  

Code of Federal Regulations, 2014 CFR

...false Mink Enteritis Vaccine, Killed Virus. 113.204 Section 113.204 Animals...INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS...VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.204 Mink...

2014-01-01

267

9 CFR 113.205 - Newcastle Disease Vaccine, Killed Virus.  

Code of Federal Regulations, 2013 CFR

...false Newcastle Disease Vaccine, Killed Virus. 113.205 Section 113.205 Animals...INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS...VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.205 Newcastle...

2013-01-01

268

9 CFR 113.204 - Mink Enteritis Vaccine, Killed Virus.  

Code of Federal Regulations, 2010 CFR

...false Mink Enteritis Vaccine, Killed Virus. 113.204 Section 113.204 Animals...INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS...VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.204 Mink...

2010-01-01

269

9 CFR 113.205 - Newcastle Disease Vaccine, Killed Virus.  

Code of Federal Regulations, 2014 CFR

...false Newcastle Disease Vaccine, Killed Virus. 113.205 Section 113.205 Animals...INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS...VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.205 Newcastle...

2014-01-01

270

9 CFR 113.206 - Wart Vaccine, Killed Virus.  

Code of Federal Regulations, 2012 CFR

...2012-01-01 false Wart Vaccine, Killed Virus. 113.206 Section 113.206 Animals...INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS...VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.206 Wart...

2012-01-01

271

9 CFR 113.208 - Avian Encephalomyelitis Vaccine, Killed Virus.  

Code of Federal Regulations, 2010 CFR

...Avian Encephalomyelitis Vaccine, Killed Virus. 113.208 Section 113.208 Animals...INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS...VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.208 Avian...

2010-01-01

272

9 CFR 113.206 - Wart Vaccine, Killed Virus.  

Code of Federal Regulations, 2011 CFR

...2011-01-01 false Wart Vaccine, Killed Virus. 113.206 Section 113.206 Animals...INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS...VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.206 Wart...

2011-01-01

273

9 CFR 113.206 - Wart Vaccine, Killed Virus.  

Code of Federal Regulations, 2013 CFR

...2013-01-01 false Wart Vaccine, Killed Virus. 113.206 Section 113.206 Animals...INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS...VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.206 Wart...

2013-01-01

274

9 CFR 113.208 - Avian Encephalomyelitis Vaccine, Killed Virus.  

Code of Federal Regulations, 2014 CFR

...Avian Encephalomyelitis Vaccine, Killed Virus. 113.208 Section 113.208 Animals...INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS...VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.208 Avian...

2014-01-01

275

9 CFR 113.205 - Newcastle Disease Vaccine, Killed Virus.  

Code of Federal Regulations, 2012 CFR

...false Newcastle Disease Vaccine, Killed Virus. 113.205 Section 113.205 Animals...INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS...VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.205 Newcastle...

2012-01-01

276

9 CFR 113.205 - Newcastle Disease Vaccine, Killed Virus.  

Code of Federal Regulations, 2010 CFR

...false Newcastle Disease Vaccine, Killed Virus. 113.205 Section 113.205 Animals...INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS...VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.205 Newcastle...

2010-01-01

277

9 CFR 113.205 - Newcastle Disease Vaccine, Killed Virus.  

Code of Federal Regulations, 2011 CFR

...false Newcastle Disease Vaccine, Killed Virus. 113.205 Section 113.205 Animals...INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS...VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.205 Newcastle...

2011-01-01

278

9 CFR 113.208 - Avian Encephalomyelitis Vaccine, Killed Virus.  

Code of Federal Regulations, 2011 CFR

...Avian Encephalomyelitis Vaccine, Killed Virus. 113.208 Section 113.208 Animals...INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS...VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.208 Avian...

2011-01-01

279

9 CFR 113.206 - Wart Vaccine, Killed Virus.  

Code of Federal Regulations, 2010 CFR

...2010-01-01 false Wart Vaccine, Killed Virus. 113.206 Section 113.206 Animals...INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS...VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.206 Wart...

2010-01-01

280

9 CFR 113.208 - Avian Encephalomyelitis Vaccine, Killed Virus.  

Code of Federal Regulations, 2013 CFR

...Avian Encephalomyelitis Vaccine, Killed Virus. 113.208 Section 113.208 Animals...INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS...VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.208 Avian...

2013-01-01

281

9 CFR 113.208 - Avian Encephalomyelitis Vaccine, Killed Virus.  

Code of Federal Regulations, 2012 CFR

...Avian Encephalomyelitis Vaccine, Killed Virus. 113.208 Section 113.208 Animals...INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS...VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.208 Avian...

2012-01-01

282

9 CFR 113.206 - Wart Vaccine, Killed Virus.  

Code of Federal Regulations, 2014 CFR

...2014-01-01 false Wart Vaccine, Killed Virus. 113.206 Section 113.206 Animals...INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS...VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.206 Wart...

2014-01-01

283

9 CFR 113.204 - Mink Enteritis Vaccine, Killed Virus.  

Code of Federal Regulations, 2012 CFR

...false Mink Enteritis Vaccine, Killed Virus. 113.204 Section 113.204 Animals...INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS...VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.204 Mink...

2012-01-01

284

9 CFR 113.204 - Mink Enteritis Vaccine, Killed Virus.  

Code of Federal Regulations, 2011 CFR

...false Mink Enteritis Vaccine, Killed Virus. 113.204 Section 113.204 Animals...INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS...VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.204 Mink...

2011-01-01

285

9 CFR 113.204 - Mink Enteritis Vaccine, Killed Virus.  

Code of Federal Regulations, 2013 CFR

...false Mink Enteritis Vaccine, Killed Virus. 113.204 Section 113.204 Animals...INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS...VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.204 Mink...

2013-01-01

286

Live-attenuated influenza A virus vaccines using a B virus backbone  

Technology Transfer Automated Retrieval System (TEKTRAN)

The currently FDA-licensed live attenuated influenza virus vaccine contains a trivalent mixture of types A (H1N1 and H3N2) and B vaccine viruses. The two A virus vaccines have the backbone of a cold-adapted influenza A virus and the B virus vaccine has the six backbone segments derived from a cold-...

287

Extracts from rabbit skin inflamed by the vaccinia virus attenuate bupivacaine-induced spinal neurotoxicity in pregnant rats?  

PubMed Central

Extracts from rabbit skin inflamed by the vaccinia virus can relieve pain and promote repair of nerve injury. The present study intraperitoneally injected extracts from rabbit skin inflamed by the vaccinia virus for 3 and 4 days prior to and following intrathecal injection of bupivacaine into pregnant rats. The pain threshold test after bupivacaine injection showed that the maximum possible effect of tail-flick latency peaked 1 day after intrathecal injection of bupivacaine in the extract-pretreatment group, and gradually decreased, while the maximum possible effect in the bupivacaine group continued to increase after intrathecal injection of bupivacaine. Histological observation showed that after 4 days of intrathecal injection of bupivacaine, the number of shrunken, vacuolated, apoptotic and caspase-9-positive cells in the dorsal root ganglion in the extract-pretreatment group was significantly reduced compared with the bupivacaine group. These findings indicate that extracts from rabbit skin inflamed by the vaccinia virus can attenuate neurotoxicity induced by intrathecal injection of bupivacaine in pregnant rats, possibly by inhibiting caspase-9 protein expression and suppressing nerve cell apoptosis. PMID:25206391

Cui, Rui; Xu, Shiyuan; Wang, Liang; Lei, Hongyi; Cai, Qingxiang; Zhang, Hongfei; Wang, Dongmei

2013-01-01

288

Extracts from rabbit skin inflamed by the vaccinia virus attenuate bupivacaine-induced spinal neurotoxicity in pregnant rats.  

PubMed

Extracts from rabbit skin inflamed by the vaccinia virus can relieve pain and promote repair of nerve injury. The present study intraperitoneally injected extracts from rabbit skin inflamed by the vaccinia virus for 3 and 4 days prior to and following intrathecal injection of bupivacaine into pregnant rats. The pain threshold test after bupivacaine injection showed that the maximum possible effect of tail-flick latency peaked 1 day after intrathecal injection of bupivacaine in the extract-pretreatment group, and gradually decreased, while the maximum possible effect in the bupivacaine group continued to increase after intrathecal injection of bupivacaine. Histological observation showed that after 4 days of intrathecal injection of bupivacaine, the number of shrunken, vacuolated, apoptotic and caspase-9-positive cells in the dorsal root ganglion in the extract-pretreatment group was significantly reduced compared with the bupivacaine group. These findings indicate that extracts from rabbit skin inflamed by the vaccinia virus can attenuate neurotoxicity induced by intrathecal injection of bupivacaine in pregnant rats, possibly by inhibiting caspase-9 protein expression and suppressing nerve cell apoptosis. PMID:25206391

Cui, Rui; Xu, Shiyuan; Wang, Liang; Lei, Hongyi; Cai, Qingxiang; Zhang, Hongfei; Wang, Dongmei

2013-04-15

289

Generation of hybrid genes and proteins by vaccinia virus-mediated recombination: application to human immunodeficiency virus type 1 env.  

PubMed Central

The ability of poxviruses to undergo intramolecular recombination within tandemly arranged homologous sequences can be used to generate chimeric genes and proteins. Genes containing regions of nucleotide homology will recombine to yield a single sequence composed of portions of both original genes. A recombinant virus containing two genes with a number of conserved regions will yield a population of recombinant viruses containing a spectrum of hybrid sequences derived by recombination between the original genes. This scheme has been used to generate hybrid human immunodeficiency virus type 1 env genes. Recombinant vaccinia viruses that contain two divergent env genes in tandem array have been constructed. In the absence of selective pressure to maintain both genes, recombination between conserved homologous regions in these genes generated a wide range of progeny, each of which expressed a novel variant polypeptide encoded by the newly created hybrid env gene. Poxvirus-mediated recombination may be applied to map type-specific epitopes, to create novel pharmaceuticals such as hybrid interferons, to study receptor-binding or enzyme substrate specificities, or to mimic the antigenic diversity found in numerous pathogens. Images PMID:2243381

Gritz, L; Destree, A; Cormier, N; Day, E; Stallard, V; Caiazzo, T; Mazzara, G; Panicali, D

1990-01-01

290

Clinical experience with respiratory syncytial virus vaccines.  

PubMed

Respiratory syncytial virus (RSV) infection is at times associated with life-threatening lower respiratory tract illness in infancy. Severe infection during the first year of life may be an important risk factor or indicator for the development of asthma in early childhood. Severe infections primarily occur in healthy infants, and young infants and children with specific risk factors. However, RSV causes respiratory infections in all age groups. Indeed it is now recognized that RSV disease is responsible for significant morbidity and mortality in the geriatric population. RSV infection remains difficult to treat, and prevention is a worldwide goal. For this reason there has been an intensive effort to develop an effective and safe RSV vaccine. Initial infection with RSV affords limited protection to reinfection, yet repeated episodes decrease the risk for lower respiratory tract illness. In the 20 years from 1960 to 1980, trials of several candidate RSV vaccines failed to attain the desired safety and protection against natural infection. Some vaccine types either failed to elicit immunogenicity, as with the live subcutaneous vaccine, or resulted in exaggerated disease on natural exposure to the virus, as with the formalin-inactivated (FI) type. Currently vaccine candidates are being developed based on the molecular virology of RSV. Recent formulations of candidate RSV vaccines have focused on subunit vaccines [such as purified fusion protein (PFP)], subunit vaccines combined with nonspecific immune activating adjuvants, live attenuated vaccines (including cold passaged, temperature-sensitive or cpts mutants), genetically engineered live attenuated vaccines and polypeptide vaccines. PMID:12671459

Piedra, Pedro A

2003-02-01

291

Vaccinia virus virulence factor N1 can be ubiquitylated on multiple lysine residues  

PubMed Central

Ubiquitylation is a covalent post-translational modification that regulates protein stability and is involved in many biological functions. Proteins may be modified with mono-ubiquitin or ubiquitin chains. Viruses have evolved multiple mechanisms to perturb the cell ubiquitin system and manipulate it to their own benefit. Here, we report ubiquitylation of vaccinia virus (VACV) protein N1. N1 is an inhibitor of the nuclear factor NF-?B and apoptosis that contributes to virulence, has a Bcl-2-like fold, and is highly conserved amongst orthopoxviruses. The interaction between N1 and ubiquitin occurs at endogenous protein levels during VACV infection and following ectopic expression of N1. Biochemical analysis demonstrated that N1 is covalently ubiquitylated, and heterodimers of ubiquitylated and non-ubiquitylated N1 monomers were identified, suggesting that ubiquitylation does not inhibit N1 dimerization. Studies with other VACV Bcl-2 proteins, such as C6 or B14, revealed that although these proteins also interact with ubiquitin, these interactions are non-covalent. Finally, mutagenesis of N1 showed that ubiquitylation occurs in a conventional lysine-dependent manner at multiple acceptor sites because only an N1 allele devoid of lysine residues remained unmodified. Taken together, we described a previously uncharacterized modification of the VACV protein N1 that provided a new layer of complexity to the biology of this virulence factor, and provided another example of the intricate interplay between poxviruses and the host ubiquitin system. PMID:24914067

Maluquer de Motes, Carlos; Schiffner, Torben; Sumner, Rebecca P.

2014-01-01

292

Vaccinia virus-induced changes in [Na+] and [K+] in HeLa cells.  

PubMed

A flame photometric technique is described for determining average values for intracellular [Na+] and [K+] in HeLa cells. Ion measurements were made on unwashed cells disrupted ultrasonically in the presence of residual medium; corrections for the latter were made by measurement of extracellular volume in cell plus medium preparations using 125I-labelled polyvinylpyrrolidone (PVP) as the marker in an isotopic dilution technique. Accurate measurement of the volume occupied by the cells was critical and required a concentration step. This was achieved by concentrating cell suspensions in a microhaematocrit centrifuge using calibrated capillary tubes. Most reliable values were obtained in our system using HeLa S3 (suspension) cells grown as monolayers, which were removed by EDTA and held in suspension for a minimum of 2 h. Uninfected HeLa cells had values of 20 to 30 and 110 to 120 mM for Na+ and K+ respectively. At 13 h after inoculation with vaccinia virus, a dramatic reversal in [Na+] and [K+] occurred, but throughout the infection cycle the total [Na+ + K+] varied little. The significance of these data is discussed in relation to theories of virus-induced modulation of protein synthesis in infected cells and in cell-free systems. PMID:7130948

Norrie, D H; Wolstenholme, J; Howcroft, H; Stephen, J

1982-09-01

293

Live Bivalent Vaccine for Parainfluenza and Influenza Virus Infections  

Microsoft Academic Search

Influenza and human parainfluenza virus infections are of both medical and economical importance. Currently, inactivated vaccines provide suboptimal protection against influenza, and vaccines for human parainfluenza virus infection are not available, underscoring the need for new vaccines against these respi- ratory diseases. Furthermore, to reduce the burden of vaccination, the development of multivalent vaccines is highly desirable. Thus, to devise

Yasuko Maeda; Masato Hatta; Ayato Takada; Tokiko Watanabe; Hideo Goto; Gabriele Neumann; Yoshihiro Kawaoka

2005-01-01

294

Involvement of the Cellular Phosphatase DUSP1 in Vaccinia Virus Infection  

PubMed Central

Poxviruses encode a large variety of proteins that mimic, block or enhance host cell signaling pathways on their own benefit. It has been reported that mitogen-activated protein kinases (MAPKs) are specifically upregulated during vaccinia virus (VACV) infection. Here, we have evaluated the role of the MAPK negative regulator dual specificity phosphatase 1 (DUSP1) in the infection of VACV. We demonstrated that DUSP1 expression is enhanced upon infection with the replicative WR virus and with the attenuated VACV viruses MVA and NYVAC. This upregulation is dependent on early viral gene expression. In the absence of DUSP1 in cultured cells, there is an increased activation of its molecular targets JNK and ERK and an enhanced WR replication. Moreover, DUSP1 knock-out (KO) mice are more susceptible to WR infection as a result of enhanced virus replication in the lungs. Significantly, MVA, which is known to produce non-permissive infections in most mammalian cell lines, is able to grow in DUSP1 KO immortalized murine embryo fibroblasts (MEFs). By confocal and electron microscopy assays, we showed that in the absence of DUSP1 MVA morphogenesis is similar as in permissive cell lines and demonstrated that DUSP1 is involved at the stage of transition between IVN and MV in VACV morphogenesis. In addition, we have observed that the secretion of pro-inflammatory cytokines at early times post-infection in KO mice infected with MVA and NYVAC is increased and that the adaptive immune response is enhanced in comparison with WT-infected mice. Altogether, these findings reveal that DUSP1 is involved in the replication and host range of VACV and in the regulation of host immune responses through the modulation of MAPKs. Thus, in this study we demonstrate that DUSP1 is actively involved in the antiviral host defense mechanism against a poxvirus infection. PMID:24244156

Cáceres, Ana; Perdiguero, Beatriz; Gómez, Carmen E.; Cepeda, Maria Victoria; Caelles, Carme; Sorzano, Carlos Oscar; Esteban, Mariano

2013-01-01

295

Cellular expression of a functional nodavirus RNA replicon from vaccinia virus vectors.  

PubMed Central

RNA replication provides a powerful means for the amplification of RNA, but to date it has been found to occur naturally only among RNA viruses. In an attempt to harness this process for the amplification of heterologous mRNAs, both an RNA replicase and its corresponding RNA templates have been expressed in functional form, using vaccinia virus-bacteriophage T7 RNA polymerase vectors. Plasmids were constructed which contained in 5'-to-3' order (i) a bacteriophage T7 promoter; (ii) a full-length cDNA encoding either the RNA replicase (RNA 1) or the coat protein (RNA 2) of flock house virus (FHV), (iii) a cDNA sequence that encoded the self-cleaving ribozyme of satellite tobacco ringspot virus, and (iv) a T7 transcriptional terminator. Both in vitro and in vivo, circular plasmids of this structure were transcribed by T7 RNA polymerase to produce RNAs with sizes that closely resembled those of the two authentic FHV genomic RNAs, RNA 1 and RNA 2. In baby hamster kidney cells that expressed authentic FHV RNA replicase, the RNA 2 (coat protein) transcripts were accurately replicated. Moreover, the RNA 1 (replicase) transcripts directed the synthesis of an enzyme that could replicate not only authentic virion-derived FHV RNA but also the plasmid-derived transcripts themselves. Under the latter conditions, replicative amplification of the RNA transcripts ensued and resulted in a high rate of synthesis of the encoded proteins. This successful expression from a DNA vector of the complex biological process of RNA replication will greatly facilitate studies of its mechanism and is a major step towards the goal of harnessing RNA replication for mRNA amplification. Images PMID:1548766

Ball, L A

1992-01-01

296

Vaccinia virus protein N2 is a nuclear IRF3 inhibitor that promotes virulence  

PubMed Central

Vaccinia virus (VACV) expresses many proteins that are non-essential for virus replication but promote virulence by inhibiting components of the host immune response to infection. These immunomodulators include a family of proteins that have, or are predicted to have, a structure related to the B-cell lymphoma (Bcl)-2 protein. Five members of the VACV Bcl-2 family (N1, B14, A52, F1 and K7) have had their crystal structure solved, others have been characterized and a function assigned (C6, A46), and others are predicted to be Bcl-2 proteins but are uncharacterized hitherto (N2, B22, C1). Data presented here show that N2 is a nuclear protein that is expressed early during infection and inhibits the activation of interferon regulatory factor (IRF)3. Consistent with its nuclear localization, N2 inhibits IRF3 downstream of the TANK-binding kinase (TBK)-1 and after IRF3 translocation into the nucleus. A mutant VACV strain Western Reserve lacking the N2L gene (v?N2) showed normal replication and spread in cultured cells compared to wild-type parental (vN2) and revertant (vN2-rev) viruses, but was attenuated in two murine models of infection. After intranasal infection, the v?N2 mutant induced lower weight loss and signs of illness, and virus was cleared more rapidly from the infected tissue. In the intradermal model of infection, v?N2 induced smaller lesions that were resolved more rapidly. In summary, the N2 protein is an intracellular virulence factor that inhibits IRF3 activity in the nucleus. PMID:23761407

Ferguson, Brian J.; Benfield, Camilla T. O.; Ren, Hongwei; Lee, Vivian H.; Frazer, Gordon L.; Strnadova, Pavla; Sumner, Rebecca P.

2013-01-01

297

Vaccines in Development against West Nile Virus  

PubMed Central

West Nile encephalitis emerged in 1999 in the United States, then rapidly spread through the North American continent causing severe disease in human and horses. Since then, outbreaks appeared in Europe, and in 2012, the United States experienced a new severe outbreak reporting a total of 5,387 cases of West Nile virus (WNV) disease in humans, including 243 deaths. So far, no human vaccine is available to control new WNV outbreaks and to avoid worldwide spreading. In this review, we discuss the state-of-the-art of West Nile vaccine development and the potential of a novel safe and effective approach based on recombinant live attenuated measles virus (MV) vaccine. MV vaccine is a live attenuated negative-stranded RNA virus proven as one of the safest, most stable and effective human vaccines. We previously described a vector derived from the Schwarz MV vaccine strain that stably expresses antigens from emerging arboviruses, such as dengue, West Nile or chikungunya viruses, and is strongly immunogenic in animal models, even in the presence of MV pre-existing immunity. A single administration of a recombinant MV vaccine expressing the secreted form of WNV envelope glycoprotein elicited protective immunity in mice and non-human primates as early as two weeks after immunization, indicating its potential as a human vaccine. PMID:24084235

Brandler, Samantha; Tangy, Frederic

2013-01-01

298

Vaccines in development against West Nile virus.  

PubMed

West Nile encephalitis emerged in 1999 in the United States, then rapidly spread through the North American continent causing severe disease in human and horses. Since then, outbreaks appeared in Europe, and in 2012, the United States experienced a new severe outbreak reporting a total of 5,387 cases of West Nile virus (WNV) disease in humans, including 243 deaths. So far, no human vaccine is available to control new WNV outbreaks and to avoid worldwide spreading. In this review, we discuss the state-of-the-art of West Nile vaccine development and the potential of a novel safe and effective approach based on recombinant live attenuated measles virus (MV) vaccine. MV vaccine is a live attenuated negative-stranded RNA virus proven as one of the safest, most stable and effective human vaccines. We previously described a vector derived from the Schwarz MV vaccine strain that stably expresses antigens from emerging arboviruses, such as dengue, West Nile or chikungunya viruses, and is strongly immunogenic in animal models, even in the presence of MV pre-existing immunity. A single administration of a recombinant MV vaccine expressing the secreted form of WNV envelope glycoprotein elicited protective immunity in mice and non-human primates as early as two weeks after immunization, indicating its potential as a human vaccine. PMID:24084235

Brandler, Samantha; Tangy, Frederic

2013-10-01

299

Immunization with a Recombinant Vaccinia Virus That Encodes Nonstructural Proteins of the Hepatitis C Virus Suppresses Viral Protein Levels in Mouse Liver  

PubMed Central

Chronic hepatitis C, which is caused by infection with the hepatitis C virus (HCV), is a global health problem. Using a mouse model of hepatitis C, we examined the therapeutic effects of a recombinant vaccinia virus (rVV) that encodes an HCV protein. We generated immunocompetent mice that each expressed multiple HCV proteins via a Cre/loxP switching system and established several distinct attenuated rVV strains. The HCV core protein was expressed consistently in the liver after polyinosinic acid–polycytidylic acid injection, and these mice showed chronic hepatitis C-related pathological findings (hepatocyte abnormalities, accumulation of glycogen, steatosis), liver fibrosis, and hepatocellular carcinoma. Immunization with one rVV strain (rVV-N25), which encoded nonstructural HCV proteins, suppressed serum inflammatory cytokine levels and alleviated the symptoms of pathological chronic hepatitis C within 7 days after injection. Furthermore, HCV protein levels in liver tissue also decreased in a CD4 and CD8 T-cell-dependent manner. Consistent with these results, we showed that rVV-N25 immunization induced a robust CD8 T-cell immune response that was specific to the HCV nonstructural protein 2. We also demonstrated that the onset of chronic hepatitis in CN2-29(+/?)/MxCre(+/?) mice was mainly attributable to inflammatory cytokines, (tumor necrosis factor) TNF-? and (interleukin) IL-6. Thus, our generated mice model should be useful for further investigation of the immunological processes associated with persistent expression of HCV proteins because these mice had not developed immune tolerance to the HCV antigen. In addition, we propose that rVV-N25 could be developed as an effective therapeutic vaccine. PMID:23284733

Sekiguchi, Satoshi; Kimura, Kiminori; Chiyo, Tomoko; Ohtsuki, Takahiro; Tobita, Yoshimi; Tokunaga, Yuko; Yasui, Fumihiko; Tsukiyama-Kohara, Kyoko; Wakita, Takaji; Tanaka, Toshiyuki; Miyasaka, Masayuki; Mizuno, Kyosuke; Hayashi, Yukiko; Hishima, Tsunekazu; Matsushima, Kouji; Kohara, Michinori

2012-01-01

300

Oral immunization of raccoons and skunks with a canine adenovirus recombinant rabies vaccine  

Microsoft Academic Search

Oral vaccination is an important part of wildlife rabies control programs. Currently, the vaccinia-rabies glycoprotein recombinant virus is the only oral rabies vaccine licensed in the United States, and it is not effective in skunks. In the current study, captive raccoons and skunks were used to evaluate a vaccine developed by incorporating the rabies virus glycoprotein gene into a canine

Heather Henderson; Felix Jackson; Kayla Bean; Brian Panasuk; Michael Niezgoda; Dennis Slate; Jianwei Li; Bernard Dietzschold; Jeff Mattis; Charles E. Rupprecht

2009-01-01

301

Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety.  

PubMed Central

Vaccinia virus, no longer required for immunization against smallpox, now serves as a unique vector for expressing genes within the cytoplasm of mammalian cells. As a research tool, recombinant vaccinia viruses are used to synthesize and analyze the structure-function relationships of proteins, determine the targets of humoral and cell-mediated immunity, and investigate the types of immune response needed for protection against specific infectious diseases and cancer. The vaccine potential of recombinant vaccinia virus has been realized in the form of an effective oral wild-life rabies vaccine, although no product for humans has been licensed. A genetically altered vaccinia virus that is unable to replicate in mammalian cells and produces diminished cytopathic effects retains the capacity for high-level gene expression and immunogenicity while promising exceptional safety for laboratory workers and potential vaccine recipients. Images Fig. 1 Fig. 2 PMID:8876137

Moss, B

1996-01-01

302

Genetically Engineered Poxviruses for Recombinant Gene Expression, Vaccination, and Safety  

NASA Astrophysics Data System (ADS)

Vaccinia virus, no longer required for immunization against smallpox, now serves as a unique vector for expressing genes within the cytoplasm of mammalian cells. As a research tool, recombinant vaccinia viruses are used to synthesize and analyze the structure--function relationships of proteins, determine the targets of humoral and cell-mediated immunity, and investigate the types of immune response needed for protection against specific infectious diseases and cancer. The vaccine potential of recombinant vaccinia virus has been realized in the form of an effective oral wild-life rabies vaccine, although no product for humans has been licensed. A genetically altered vaccinia virus that is unable to replicate in mammalian cells and produces diminished cytopathic effects retains the capacity for high-level gene expression and immunogenicity while promising exceptional safety for laboratory workers and potential vaccine recipients.

Moss, Bernard

1996-10-01

303

Attacking Postoperative Metastases using Perioperative Oncolytic Viruses and Viral Vaccines  

PubMed Central

Surgical resection of solid primary malignancies is a mainstay of therapy for cancer patients. Despite being the most effective treatment for these tumors, cancer surgery has been associated with impaired metastatic clearance due to immunosuppression. In preclinical surgery models and human cancer patients, we and others have demonstrated a profound suppression of both natural killer (NK) and T cell function in the postoperative period and this plays a major role in the enhanced development of metastases following surgery. Oncolytic viruses (OV) were originally designed to selectively infect and replicate in tumors, with the primary objective of directly lysing cancer cells. It is becoming increasingly clear, however, that OV infection results in a profound inflammatory reaction within the tumor, initiating innate and adaptive immune responses against it that is critical for its therapeutic benefit. This anti-tumor immunity appears to be mediated predominantly by NK and cytotoxic T cells. In preclinical models, we found that preoperative OV prevents postoperative NK cell dysfunction and attenuates tumor dissemination. Due to theoretical safety concerns of administering live virus prior to surgery in cancer patients, we characterized safe, attenuated versions of OV, and viral vaccines that could stimulate NK cells and reduce metastases when administered in the perioperative period. In cancer patients, we observed that in vivo infusion with oncolytic vaccinia virus and ex vivo stimulation with viral vaccines promote NK cell activation. These preclinical studies provide a novel and clinically relevant setting for OV therapy. Our challenge is to identify safe and promising OV therapies that will activate NK and T cells in the perioperative period preventing the establishment of micrometastatic disease in cancer patients. PMID:25161958

Tai, Lee-Hwa; Auer, Rebecca

2014-01-01

304

Ectopic Expression of Vaccinia Virus E3 and K3 Cannot Rescue Ectromelia Virus Replication in Rabbit RK13 Cells  

PubMed Central

As a group, poxviruses have been shown to infect a wide variety of animal species. However, there is individual variability in the range of species able to be productively infected. In this study, we observed that ectromelia virus (ECTV) does not replicate efficiently in cultured rabbit RK13 cells. Conversely, vaccinia virus (VACV) replicates well in these cells. Upon infection of RK13 cells, the replication cycle of ECTV is abortive in nature, resulting in a greatly reduced ability to spread among cells in culture. We observed ample levels of early gene expression but reduced detection of virus factories and severely blunted production of enveloped virus at the cell surface. This work focused on two important host range genes, named E3L and K3L, in VACV. Both VACV and ECTV express a functional protein product from the E3L gene, but only VACV contains an intact K3L gene. To better understand the discrepancy in replication capacity of these viruses, we examined the ability of ECTV to replicate in wild-type RK13 cells compared to cells that constitutively express E3 and K3 from VACV. The role these proteins play in the ability of VACV to replicate in RK13 cells was also analyzed to determine their individual contribution to viral replication and PKR activation. Since E3L and K3L are two relevant host range genes, we hypothesized that expression of one or both of them may have a positive impact on the ability of ECTV to replicate in RK13 cells. Using various methods to assess virus growth, we did not detect any significant differences with respect to the replication of ECTV between wild-type RK13 compared to versions of this cell line that stably expressed VACV E3 alone or in combination with K3. Therefore, there remain unanswered questions related to the factors that limit the host range of ECTV. PMID:25734776

Peng, Chen; Rothenburg, Stefan; Hersperger, Adam R.

2015-01-01

305

Vaccine and adjuvant design for emerging viruses  

PubMed Central

Vaccination is currently the most effective strategy to medically control viral diseases. However, developing vaccines is a long and expensive process and traditional methods, such as attenuating wild-type viruses by serial passage, may not be suitable for all viruses and may lead to vaccine safety considerations, particularly in the case of the vaccination of particular patient groups, such as the immunocompromised and the elderly. In particular, developing vaccines against emerging viral pathogens adds a further level of complexity, as they may only be administered to small groups of people or only in response to a specific event or threat, limiting our ability to study and evaluate responses. In this commentary, we discuss how novel techniques may be used to engineer a new generation of vaccine candidates as we move toward a more targeted vaccine design strategy, driven by our understanding of the mechanisms of viral pathogenesis, attenuation and the signaling events which are required to develop a lasting, protective immunity. We will also briefly discuss the potential future role of vaccine adjuvants, which could be used to bridge the gap between vaccine safety and lasting immunity from a single vaccination. PMID:21637006

McAuley, Alexander J

2011-01-01

306

Inducible Gene Expression in Tumors Colonized by Modified Oncolytic Vaccinia Virus Strains  

PubMed Central

ABSTRACT Exogenous gene induction of therapeutic, diagnostic, and safety mechanisms could be a considerable improvement in oncolytic virotherapy. Here, we introduced a doxycycline-inducible promoter system (comprised of a tetracycline repressor, several promoter constructs, and a tet operator sequence) into oncolytic recombinant vaccinia viruses (rVACV), which were further characterized in detail. Experiments in cell cultures as well as in tumor-bearing mice were analyzed to determine the role of the inducible-system components. To accomplish this, we took advantage of the optical reporter construct, which resulted in the production of click-beetle luciferase as well as a red fluorescent protein. The results indicated that each of the system components could be used to optimize the induction rates and had an influence on the background expression levels. Depending on the given gene to be induced in rVACV-colonized tumors of patients, we discuss the doxycycline-inducible promoter system adjustment and further optimization. IMPORTANCE Oncolytic virotherapy of cancer can greatly benefit from the expression of heterologous genes. It is reasonable that some of those heterologous gene products could have detrimental effects either on the cancer patient or on the oncolytic virus itself if they are expressed at the wrong time or if the expression levels are too high. Therefore, exogenous control of gene expression levels by administration of a nontoxic inducer will have positive effects on the safety as well as the therapeutic outcome of oncolytic virotherapy. In addition, it paves the way for the introduction of new therapeutic genes into the genome of oncolytic viruses that could not have been tested otherwise. PMID:25056902

Huppertz, Sascha; Zhang, Qian; Geissinger, Ulrike; Härtl, Barbara; Gentschev, Ivaylo

2014-01-01

307

Vaccinia Virus Inhibits NF-?B-Dependent Gene Expression Downstream of p65 Translocation  

PubMed Central

The transcription factor nuclear factor kappa light-chain enhancer of activated B cells (NF-?B) plays a critical role in host defense against viral infection by inducing the production of proinflammatory mediators and type I interferon. Consequently, viruses have evolved many mechanisms to block its activation. The poxvirus vaccinia virus (VACV) encodes numerous inhibitors of NF-?B activation that target multiple points in the signaling pathway. A derivative of VACV strain Copenhagen, called vv811, lacking 55 open reading frames in the left and right terminal regions of the genome was reported to still inhibit NF-?B activation downstream of tumor necrosis factor alpha (TNF-?) and interleukin-1? (IL-1?), suggesting the presence of one or more additional inhibitors. In this study, we constructed a recombinant vv811 lacking the recently described NF-?B inhibitor A49 (vv811?A49), yielding a virus that lacked all currently described inhibitors downstream of TNF-? and IL-1?. Unlike vv811, vv811?A49 no longer inhibited degradation of the phosphorylated inhibitor of ?B? and p65 translocated into the nucleus. However, despite this translocation, vv811?A49 still inhibited TNF-?- and IL-1?-induced NF-?B-dependent reporter gene expression and the transcription and production of cytokines induced by these agonists. This inhibition did not require late viral gene expression. These findings indicate the presence of another inhibitor of NF-?B that is expressed early during infection and acts by a novel mechanism downstream of p65 translocation into the nucleus. PMID:24371075

Sumner, Rebecca P.; Maluquer de Motes, Carlos; Veyer, David L.

2014-01-01

308

Vaccinia virus inhibits NF-?B-dependent gene expression downstream of p65 translocation.  

PubMed

The transcription factor nuclear factor kappa light-chain enhancer of activated B cells (NF-?B) plays a critical role in host defense against viral infection by inducing the production of proinflammatory mediators and type I interferon. Consequently, viruses have evolved many mechanisms to block its activation. The poxvirus vaccinia virus (VACV) encodes numerous inhibitors of NF-?B activation that target multiple points in the signaling pathway. A derivative of VACV strain Copenhagen, called vv811, lacking 55 open reading frames in the left and right terminal regions of the genome was reported to still inhibit NF-?B activation downstream of tumor necrosis factor alpha (TNF-?) and interleukin-1? (IL-1?), suggesting the presence of one or more additional inhibitors. In this study, we constructed a recombinant vv811 lacking the recently described NF-?B inhibitor A49 (vv811?A49), yielding a virus that lacked all currently described inhibitors downstream of TNF-? and IL-1?. Unlike vv811, vv811?A49 no longer inhibited degradation of the phosphorylated inhibitor of ?B? and p65 translocated into the nucleus. However, despite this translocation, vv811?A49 still inhibited TNF-?- and IL-1?-induced NF-?B-dependent reporter gene expression and the transcription and production of cytokines induced by these agonists. This inhibition did not require late viral gene expression. These findings indicate the presence of another inhibitor of NF-?B that is expressed early during infection and acts by a novel mechanism downstream of p65 translocation into the nucleus. PMID:24371075

Sumner, Rebecca P; Maluquer de Motes, Carlos; Veyer, David L; Smith, Geoffrey L

2014-03-01

309

Gold nanorod vaccine for respiratory syncytial virus  

PubMed Central

Respiratory syncytial virus (RSV) is a major cause of pneumonia and wheezing in infants and the elderly, but to date there is no licensed vaccine. We developed a gold nanorod construct that displayed the major protective antigen of the virus, the fusion protein (F). Nanorods conjugated to RSV F were formulated as a candidate vaccine preparation by covalent attachment of viral protein using a layer-by-layer approach. In vitro studies using ELISA, confocal microscopy and circular dichroism revealed that conformation-dependent epitopes were maintained during conjugation, and transmission electron microscopy studies showed that a dispersed population of particles could be achieved. Human dendritic cells treated with the vaccine-induced immune responses in primary human T cells. These results suggest that this vaccine approach may be a potent method for immunizing against viruses such as RSV with surface glycoproteins that are targets for the human immune response. PMID:23799651

Stone, John W.; Thornburg, Natalie J.; Blum, David L.; Kuhn, Sam J.; Wright, David W.; Crowe, James E.

2013-01-01

310

Gold nanorod vaccine for respiratory syncytial virus  

NASA Astrophysics Data System (ADS)

Respiratory syncytial virus (RSV) is a major cause of pneumonia and wheezing in infants and the elderly, but to date there is no licensed vaccine. We developed a gold nanorod construct that displayed the major protective antigen of the virus, the fusion protein (F). Nanorods conjugated to RSV F were formulated as a candidate vaccine preparation by covalent attachment of viral protein using a layer-by-layer approach. In vitro studies using ELISA, electron microscopy and circular dichroism revealed that conformation-dependent epitopes were maintained during conjugation, and transmission electron microscopy studies showed that a dispersed population of particles could be achieved. Human dendritic cells treated with the vaccine induced immune responses in primary human T cells. These results suggest that this vaccine approach may be a potent method for immunizing against viruses such as RSV with surface glycoproteins that are targets for the human immune response.

Stone, John W.; Thornburg, Natalie J.; Blum, David L.; Kuhn, Sam J.; Wright, David W.; Crowe, James E., Jr.

2013-07-01

311

Emerging Respiratory Viruses: Challenges and Vaccine Strategies  

PubMed Central

The current threat of avian influenza to the human population, the potential for the reemergence of severe acute respiratory syndrome (SARS)-associated coronavirus, and the identification of multiple novel respiratory viruses underline the necessity for the development of therapeutic and preventive strategies to combat viral infection. Vaccine development is a key component in the prevention of widespread viral infection and in the reduction of morbidity and mortality associated with many viral infections. In this review we describe the different approaches currently being evaluated in the development of vaccines against SARS-associated coronavirus and avian influenza viruses and also highlight the many obstacles encountered in the development of these vaccines. Lessons learned from current vaccine studies, coupled with our increasing knowledge of the host and viral factors involved in viral pathogenesis, will help to increase the speed with which efficacious vaccines targeting newly emerging viral pathogens can be developed. PMID:17041137

Gillim-Ross, Laura; Subbarao, Kanta

2006-01-01

312

PEG-pHPMAm-based polymeric micelles loaded with doxorubicin-prodrugs in combination antitumor therapy with oncolytic vaccinia viruses  

PubMed Central

An enzymatically activatable prodrug of doxorubicin was covalently coupled, using click-chemistry, to the hydrophobic core of poly(ethylene glycol)-b-poly[N-(2-hydroxypropyl)-methacrylamide-lactate] micelles. The release and cytotoxic activity of the prodrug was evaluated in vitro in A549 non-small-cell lung cancer cells after adding ?-glucuronidase, an enzyme which is present intracellularly in lysosomes and extracellularly in necrotic areas of tumor lesions. The prodrug-containing micelles alone and in combination with standard and ?-glucuronidase-producing oncolytic vaccinia viruses were also evaluated in vivo, in mice bearing A549 xenograft tumors. When combined with the oncolytic viruses, the micelles completely blocked tumor growth. Moreover, a significantly better antitumor efficacy as compared to virus treatment alone was observed when ?-glucuronidase virus treated tumor-bearing mice received the prodrug-containing micelles. These findings show that combining tumor-targeted drug delivery systems with oncolytic vaccinia viruses holds potential for improving anticancer therapy. PMID:24518685

Melen, Gustavo J.; Theek, Benjamin; Talelli, Marina; Shi, Yang; Ozbakir, Burcin; Teunissen, Erik A.; Ramírez, Manuel; Moeckel, Diana; Kiessling, Fabian; Storm, Gert; Scheeren, Hans W.; Hennink, Wim E.; Szalay, Aladar A.; Stritzker, Jochen; Lammers, Twan

2013-01-01

313

Recombinant vaccinia\\/fowlpox NY-ESO-1 vaccines induce both humoral and cellular NY-ESO-1-specific immune responses in cancer patients  

Microsoft Academic Search

NY-ESO-1 is a cancer\\/testis antigen expressed in a range of human malignancies, and a number of vaccine strategies targeting NY-ESO-1 are being developed. In the present study, the safety and immunogenicity of recombinant vaccinia-NY-ESO-1 and recombinant fowlpox-NY-ESO-1 were analyzed in a series of 36 patients with a range of different tumor types. Each construct was first tested individually at two

Elke Jäger; Julia Karbach; Sacha Gnjatic; Antje Neumann; Armin Bender; Danila Valmori; Maha Ayyoub; Erika Ritter; Gerd Ritter; Dirk Jäger; Dennis Panicali; Eric Hoffman; Linda Pan; Herbert Oettgen; Lloyd J. Old; Alexander Knuth

2006-01-01

314

Efficacy and bait acceptance of vaccinia vectored rabies glycoprotein vaccine in captive foxes ( Vulpes vulpes), raccoon dogs ( Nyctereutes procyonoides) and dogs ( Canis familiaris)  

Microsoft Academic Search

The red fox, dog, and raccoon dog are known to play a major role in the global epidemiology of rabies. These three canid species were used to compare the appetency and efficacy of two commercial bait formats, each containing a single dose of vaccinia-rabies glycoprotein (V-RG) vaccine. Square and rectangular RABORAL V-RG baits were fed to individual caged animal, and

F. Cliquet; J. Barrat; A. L. Guiot; N. Caël; S. Boutrand; J. Maki; C. L. Schumacher

2008-01-01

315

Nucleotide sequence of the vaccinia virus thymidine kinase gene and the nature of spontaneous frameshift mutations.  

PubMed Central

Nucleotide sequencing of a 1,300-base-pair vaccinia virus DNA segment previously shown to contain a thymidine kinase (TK) gene revealed an uninterrupted reading frame of 177 codons capable of producing a polypeptide with a molecular weight of 20,102. Mapping of the TK mRNA by primer extension indicated a unique 5' end that precedes the initiation codon by only six nucleotides. Multiple 3' ends within a 10-nucleotide region, about 30 nucleotides beyond the termination codon, were located by nuclease digestion of DNA-RNA hybrids, and the length of the TK transcript, exclusive of polyadenylate, was estimated to be approximately 570 nucleotides. The region preceding the TK mRNA start site is extremely A + T rich and has sequence homologies with three other early genes. Genetic information is so compressed in this region of the DNA that the putative transcriptional regulatory sequence of the TK gene overlaps the coding sequence of a late gene. Only nine nucleotides separate the termination codon of the late gene from the initiation codon of the TK gene. Downstream, 66 nucleotides separate the TK termination codon from the apparent initiation codon of another early gene. The nature of three independent TK- mutants was revealed by nucleotide sequencing. Each has a nucleotide reiteration leading to a +1 frameshift and a nonsense codon downstream. The location of one frameshift mutation provided evidence that the first ATG is used for initiation of protein synthesis. Images PMID:6842679

Weir, J P; Moss, B

1983-01-01

316

Dermal-Resident versus Recruited ?? T Cell Response to Cutaneous Vaccinia Virus Infection.  

PubMed

The study of T cell immunity at barrier surfaces has largely focused on T cells bearing the ?? TCR. However, T cells that express the ?? TCR are disproportionately represented in peripheral tissues of mice and humans, suggesting they too may play an important role responding to external stimuli. In this article, we report that, in a murine model of cutaneous infection with vaccinia virus, dermal ?? T cell numbers increased 10-fold in the infected ear and resulted in a novel ?? T cell population not found in naive skin. Circulating ?? T cells were specifically recruited to the site of inflammation and differentially contributed to dermal populations based on their CD27 expression. Recruited ?? T cells, the majority of which were CD27(+), were granzyme B(+) and made up about half of the dermal population at the peak of the response. In contrast, recruited and resident ?? T cell populations that made IL-17 were CD27(-). Using a double-chimera model that can discriminate between the resident dermal and recruited ?? T cell populations, we demonstrated their divergent functions and contributions to early stages of tissue inflammation. Specifically, the loss of the perinatal thymus-derived resident dermal population resulted in decreased cellularity and collateral damage in the tissue during viral infection. These findings have important implications for our understanding of immune coordination at barrier surfaces and the contribution of innate-like lymphocytes on the front lines of immune defense. PMID:25609844

Woodward Davis, Amanda S; Bergsbaken, Tessa; Delaney, Martha A; Bevan, Michael J

2015-03-01

317

Vaccinia virus complement control protein significantly improves sensorimotor function recovery after severe head trauma.  

PubMed

Vaccinia virus complement control protein (VCP) is an immunomodulator that inhibits both the classical and alternate pathways of the complement system, therefore preventing cell death and inflammation. VCP has previously been shown to be therapeutically effective in mild and moderate traumatic brain injury models. In this study the efficacy of VCP in a severe head injury model is investigated in Wistar rats. Training in a Morris Water Maze (MWM) commenced 2 days prior stereotaxic surgery. Rats were anesthetized before being subjected to a severe (2.7-3.0 atm) lateral fluid percussion injury (FPI) 3.0 mm lateral to the sagittal suture and 4.5 mm posterior to bregma. Ten microliters of VCP (1.7 microg/microl) was injected into the injury site immediately after FPI. Fourteen days post-FPI, rats were tested for spatial learning and memory using the Morris Water Maze, followed by a battery of sensorimotor tests. The latter tests showed statistically significant differences between saline-treated and VCP-treated rats in lateral left pulsion (p=0.001) and tactile placing (p=0.002) on the first 5 days of testing. In addition, significant differences in right lateral pulsion in the first 4 days (p=0.007) of testing was evident. The results suggest that in a severe head injury model, VCP at this dosage favorably influences sensorimotor outcome. PMID:17467672

Pillay, Nirvana S; Kellaway, Laurie A; Kotwal, Girish J

2007-06-11

318

Large-scale eradication of rabies using recombinant vaccinia-rabies vaccine  

Microsoft Academic Search

RABIES infection of domestic and wild animals is a serious problem throughout the world. The major disease vector in Europe is the red fox (Vulpes vulpes) and rabies control has focused on vaccinating and\\/or culling foxes. Culling has not been effective, and the distribution of live vaccine baits is the only appropriate method for the vaccination of wild foxes1. Although

B. Brochier; M. P. Kieny; F. Costy; P. Coppens; B. Bauduin; J. P. Lecocq; B. Languet; G. Chappuis; P. Desmettre; K. Afiademanyo; R. Libois; P.-P. Pastoret

1991-01-01

319

[Detection of extraneous virus in live vaccines  

PubMed

In the study in vitro alternatives to a non-validated and harmful animal test for the absence of extraneous virus in live vaccines were investigated. For evaluation of a suitable in vitro method the porcine herpesvirus (Aujeszkyvirus, Pseudorabiesvirus) was used as a model virus. In artificially contaminated live vaccines the aujeszkyvirus could be detected by moleculargenetical and cellular methods. Regarding the threshold values of virus detection in vitro tests showed to be more efficacious than animal testing. Meanwhile the European Pharmacopoeia Commission deleted the animal test for extraneous virus from two monographs. The discussion, if respective animal testing can be cancelled for the other live vaccines as well, is still ongoing. The study was supported by the German Ministry of Education, Science, Research and Technology. PMID:11178539

Krämer, Beate; Rübmann, Petra; Duchow, Karin Cubetaler Klaus

1998-01-01

320

Smallpox vaccination: Risk considerations for patients with atopic dermatitis  

Microsoft Academic Search

As the threat of bioterrorism with pathogenic microbes such as smallpox virus (Variola major) increases, the question of widespread voluntary vaccination with smallpox (vaccinia) vaccines is being carefully considered. A major challenge lies in the ability to protect the population from the disease while minimizing the considerable side effects from the vaccine. Individuals with active or quiescent atopic dermatitis are

Renata J. M. Engler; Julie Kenner; Donald Y. M. Leung

2002-01-01

321

Canine distemper virus (CDV) infection of ferrets as a model for testing Morbillivirus vaccine strategies: NYVAC- and ALVAC-based CDV recombinants protect against symptomatic infection.  

PubMed Central

Canine distemper virus (CDV) infection of ferrets causes an acute systemic disease involving multiple organ systems, including the respiratory tract, lymphoid system, and central nervous system (CNS). We have tested candidate CDV vaccines incorporating the fusion (F) and hemagglutinin (HA) proteins in the highly attenuated NYVAC strain of vaccinia virus and in the ALVAC strain of canarypox virus, which does not productively replicate in mammalian hosts. Juvenile ferrets were vaccinated twice with these constructs, or with an attenuated live-virus vaccine, while controls received saline or the NYVAC and ALVAC vectors expressing rabies virus glycoprotein. Control animals did not develop neutralizing antibody and succumbed to distemper after developing fever, weight loss, leukocytopenia, decreased activity, conjunctivitis, an erythematous rash typical of distemper, CNS signs, and viremia in peripheral blood mononuclear cells (as measured by reverse transcription-PCR). All three CDV vaccines elicited neutralizing titers of at least 1:96. All vaccinated ferrets survived, and none developed viremia. Both recombinant vaccines also protected against the development of symptomatic distemper. However, ferrets receiving the live-virus vaccine lost weight, became lymphocytopenic, and developed the erythematous rash typical of CDV. These data show that ferrets are an excellent model for evaluating the ability of CDV vaccines to protect against symptomatic infection. Because the pathogenesis and clinical course of CDV infection of ferrets is quite similar to that of other Morbillivirus infections, including measles, this model will be useful in testing new candidate Morbillivirus vaccines. PMID:8995676

Stephensen, C B; Welter, J; Thaker, S R; Taylor, J; Tartaglia, J; Paoletti, E

1997-01-01

322

[Vaccination against hepatitis B virus: current data].  

PubMed

Infection by hepatitis B virus remains a major health problem in the world despite the availability of effective vaccines. Although vaccination programs targeting high risk groups have been pushed to their limits, high prevalence rates persist especially in endemic zones. More recently mass vaccination programs conducted on Taiwan have demonstrated the efficacy of this approach with a decrease in the number of chronic hepatitis B virus carriers in the general population in association with a decrease in the incidence of hepatocellular carcinoma, one of the most serious complications of chronic hepatitis B virus infection. Side effects have been reported including the risk of central nervous system demyelination. However studies have shown no evidence of a significant correlation between vaccination and this type of disease. Occurrence of hepatitis B in properly vaccinated subjects could result from selection of mutant viral strains able to escape detection by the immune system. The recently revised benefit-to-risk ratio remains highly favorable for vaccination. Current data indicates that the policy of mass vaccination of the population should be pursued. PMID:10901855

Zoulim, F

1999-01-01

323

Protective Effect of Surfactant Protein D in Pulmonary Vaccinia Virus Infection: Implication of A27 Viral Protein  

PubMed Central

Vaccinia virus (VACV) was used as a surrogate of variola virus (VARV) (genus Orthopoxvirus), the causative agent of smallpox, to study Orthopoxvirus infection. VARV is principally transmitted between humans by aerosol droplets. Once inhaled, VARV first infects the respiratory tract where it could encounter surfactant components, such as soluble pattern recognition receptors. Surfactant protein D (SP-D), constitutively present in the lining fluids of the respiratory tract, plays important roles in innate host defense against virus infection. We investigated the role of SP-D in VACV infection and studied the A27 viral protein involvement in the interaction with SP-D. Interaction between SP-D and VACV caused viral inhibition in a lung cell model. Interaction of SP-D with VACV was mediated by the A27 viral protein. Binding required Ca2+ and interactions were blocked in the presence of excess of SP-D saccharide ligands. A27, which lacks glycosylation, directly interacted with SP-D. The interaction between SP-D and the viral particle was also observed using electron microscopy. Infection of mice lacking SP-D (SP-D-/-) resulted in increased mortality compared to SP-D+/+ mice. Altogether, our data show that SP-D participates in host defense against the vaccinia virus infection and that the interaction occurs with the viral surface protein A27. PMID:23518578

Julien, Perino; Thielens, Nicole M.; Crouch, Erika; Spehner, Danièle; Crance, Jean-Marc; Favier, Anne-Laure

2013-01-01

324

Virotherapy of Canine Tumors with Oncolytic Vaccinia Virus GLV-1h109 Expressing an Anti-VEGF Single-Chain Antibody  

PubMed Central

Virotherapy using oncolytic vaccinia virus (VACV) strains is one promising new strategy for cancer therapy. We have previously reported that oncolytic vaccinia virus strains expressing an anti-VEGF (Vascular Endothelial Growth Factor) single-chain antibody (scAb) GLAF-1 exhibited significant therapeutic efficacy for treatment of human tumor xenografts. Here, we describe the use of oncolytic vaccinia virus GLV-1h109 encoding GLAF-1 for canine cancer therapy. In this study we analyzed the virus-mediated delivery and production of scAb GLAF-1 and the oncolytic and immunological effects of the GLV-1h109 vaccinia virus strain against canine soft tissue sarcoma and canine prostate carcinoma in xenograft models. Cell culture data demonstrated that the GLV-1h109 virus efficiently infect, replicate in and destroy both tested canine cancer cell lines. In addition, successful expression of GLAF-1 was demonstrated in virus-infected canine cancer cells and the antibody specifically recognized canine VEGF. In two different xenograft models, the systemic administration of the GLV-1h109 virus was found to be safe and led to anti-tumor and immunological effects resulting in the significant reduction of tumor growth in comparison to untreated control mice. Furthermore, tumor-specific virus infection led to a continued production of functional scAb GLAF-1, resulting in inhibition of angiogenesis. Overall, the GLV-1h109-mediated cancer therapy and production of immunotherapeutic anti-VEGF scAb may open the way for combination therapy concept i.e. vaccinia virus mediated oncolysis and intratumoral production of therapeutic drugs in canine cancer patients. PMID:23091626

Adelfinger, Marion; Donat, Ulrike; Hess, Michael; Weibel, Stephanie; Nolte, Ingo; Frentzen, Alexa; Szalay, Aladar A.

2012-01-01

325

DETECTION OF RETICULOENDOTHELIOSIS VIRUS IN LIVE VIRUS VACCINES OF POULTRY  

Technology Transfer Automated Retrieval System (TEKTRAN)

In vitro and in vivo assays have been used for detection of reticuloendotheliosis virus (REV) in live virus vaccines of poultry. The presence of REV is confirmed by the demonstration of viral antigen or provirus in chicken embryo fibroblasts (CEFs) or in specific-pathogen-free chickens inoculated wi...

326

Studies with a bivalent infectious bronchitis killed virus vaccine  

Microsoft Academic Search

Haemagglutination inhibition and virus neutralisation antibody responses of chickens given different vaccination programmes were compared. This was followed by a further experiment in which variously vaccinated laying hens were challenged at 30 weeks of age with two strains of infectious bronchitis virus of the “variant” Dutch D207 serotype.Chickens were given primary vaccinations to different strains of infectious bronchitis live virus

P. M. Finney; P. G. Box; H. C. Holmes

1990-01-01

327

Partially Randomized, Non-Blinded Trial of DNA and MVA Therapeutic Vaccines Based on Hepatitis B Virus Surface Protein for Chronic HBV Infection  

Microsoft Academic Search

BackgroundChronic HBV infects 350 million people causing cancer and liver failure. We aimed to assess the safety and efficacy of plasmid DNA (pSG2.HBs) vaccine, followed by recombinant modified vaccinia virus Ankara (MVA.HBs), encoding the surface antigen of HBV as therapy for chronic HBV. A secondary goal was to characterize the immune responses.MethodsFirstly 32 HBV e antigen negative (eAg–) participants were

James S. Cavenaugh; Dorka Awi; Maimuna Mendy; Adrian V. S. Hill; Hilton Whittle; Samuel J. McConkey; Denise L. Doolan

2011-01-01

328

Effects of deletion or stringent repression of the H3L envelope gene on vaccinia virus replication.  

PubMed

The C-terminal membrane anchor protein encoded by the H3L open reading frame of vaccinia virus is located on the surfaces of intracellular mature virions. To investigate the role of the H3L protein, we constructed deletion (vH3Delta) and inducible (vH3i) null mutants. The H3L protein was not detected in lysates of cells infected with vH3Delta or vH3i in the absence of inducer. Under these conditions, plaques were small and round instead of large and comet shaped, indicative of decreased virus replication or cell-to-cell spread. The mutant phenotype was correlated with reduced yields of infectious intra- and extracellular virus in one-step growth experiments. The defect in vH3i replication could not be attributed to a role of the H3L protein in virus binding, internalization, or any event prior to late gene expression. Electron microscopic examination of cells infected with vH3Delta or vH3i in the absence of inducer revealed that virion assembly was impaired, resulting in a high ratio of immature to mature virus forms with an accumulation of crescent membranes adjacent to granular material and DNA crystalloids. The absence of the H3L protein did not impair the membrane localization of virion surface proteins encoded by the A27L, D8L, and L1R genes. The wrapping of virions and actin tail formation were not specifically blocked, but there was an apparent defect in low-pH-mediated syncytium formation that could be attributed to decreased virus particle production. The phenotypes of the H3L deletion and repression mutants were identical to each other but differed from those produced by null mutations of genes encoding other vaccinia virus membrane components. PMID:10906205

da Fonseca, F G; Wolffe, E J; Weisberg, A; Moss, B

2000-08-01

329

Prime-boost immunization schedules based on influenza virus and vaccinia virus vectors potentiate cellular immune responses against human immunodeficiency virus Env protein systemically and in the genitorectal draining lymph nodes.  

PubMed

Vaccines that elicit systemic and mucosal immune responses should be the choice to control human immunodeficiency virus (HIV) infections. We have previously shown that prime-boost immunizations with influenza virus Env and vaccinia virus (VV) WR Env recombinants induced an enhanced systemic CD8(+) T-cell response against HIV-1 Env antigen. In this report, we analyzed in BALB/c mice after priming with influenza virus Env the ability of two VV recombinants expressing HIV-1 Env B (VV WR Env and the highly attenuated modified VV Ankara [MVA] Env) to boost cellular immune responses in the spleen and in the lymph nodes draining the genital and rectal tracts. Groups of mice were primed by the intranasal route with 10(4) PFU of influenza virus Env and boosted 14 days later by the intraperitoneal or intranasal route with 10(7) PFU of MVA Env or VV WR Env, while the control group received two immunizations with influenza virus Env. We found that the combined immunization (Flu/VV) increased more than 60 times the number of gamma interferon-specific CD8(+) T cells compared to the Flu/Flu scheme. Significantly, boosting with MVA Env by the intraperitoneal route induced a response 1.25 or 2.5 times (spleen or genital lymph nodes) higher with respect to that found after the boost with VV WR Env. Mice with an enhanced CD8(+) T-cell response also had an increased Th1/Th2 ratio, evaluated by the cytokine pattern secreted following in vitro restimulation with gp160 protein and by the specific immunoglobulin G2a (IgG2a)/IgG1 ratio in serum. By the intranasal route recombinant WR Env booster gave a more efficient immune response (10 and 1.3 times in spleen and genital lymph nodes, respectively) than recombinant MVA Env. However, the scheme influenza virus Env/MVA Env increased four times the response in the spleen, giving a low but significant response in the genital lymph nodes compared with a single intranasal immunization with MVA Env. These results demonstrate that the combination Flu/MVA in prime-booster immunization regimens is an effective vaccination approach to generate cellular immune responses to HIV antigens at sites critical for protective responses. PMID:12768024

Gherardi, M Magdalena; Nájera, José Luis; Pérez-Jiménez, Eva; Guerra, Susana; García-Sastre, Adolfo; Esteban, Mariano

2003-06-01

330

Oncolytic Virotherapy for Ovarian Carcinomatosis Using a Replication-Selective Vaccinia Virus Armed with a Yeast Cytosine Deaminase Gene*  

PubMed Central

In this study, we assessed the ability of a highly tumor-selective oncolytic vaccinia virus armed with a yeast cytosine deaminase gene to infect and lyse human and murine ovarian tumors both in vitro and in vivo. The virus vvDD-CD could infect, replicate in and effectively lyse both human and mouse ovarian cancer cells in vitro. In two different treatment schedules involving either murine MOSEC or human A2780 ovarian carcinomatosis models, regional delivery of vvDD-CD selectively targeted tumor cells and ovarian tissue, effectively delaying the development of either tumor or ascites and leading to significant survival advantages. Oncolytic virotherapy using vvDD-CD in combination with the prodrug 5-fluorocytosine (5-FC) conferred an additional long-term survival advantage upon tumor-bearing immunocompetent mice. These findings demonstrate that a tumor-selective oncolytic vaccinia combined with gene-directed enzyme prodrug therapy (GDEPT) is a highly effective strategy for treating advanced ovarian cancers in both syngeneic mouse and human xenograft models. Given the biological safety, tumor selectivity and oncolytic potency of this armed oncolytic virus, this dual therapy merits further investigation as a promising new treatment for metastatic ovarian cancer. PMID:18084242

Chalikonda, Sricharan; Kivlen, Maryann H.; O’Malley, Mark E.; Dong, Xiang Da (Eric); McCart, J. Andrea; Gorry, Michael C.; Yin, Xiao-Yu; Brown, Charles K.; Zeh, Herbert J.; Guo, Z. Sheng; Bartlett, David L.

2010-01-01

331

Protection of IFNAR (-/-) mice against bluetongue virus serotype 8, by heterologous (DNA/rMVA) and homologous (rMVA/rMVA) vaccination, expressing outer-capsid protein VP2.  

PubMed

The protective efficacy of recombinant vaccines expressing serotype 8 bluetongue virus (BTV-8) capsid proteins was tested in a mouse model. The recombinant vaccines comprised plasmid DNA or Modified Vaccinia Ankara viruses encoding BTV VP2, VP5 or VP7 proteins. These constructs were administered alone or in combination using either a homologous prime boost vaccination regime (rMVA/rMVA) or a heterologous vaccination regime (DNA/rMVA). The DNA/rMVA or rMVA/rMVA prime-boost were administered at a three week interval and all of the animals that received VP2 generated neutralising antibodies. The vaccinated and non-vaccinated-control mice were subsequently challenged with a lethal dose of BTV-8. Mice vaccinated with VP7 alone were not protected. However, mice vaccinated with DNA/rMVA or rMVA/rMVA expressing VP2, VP5 and VP7 or VP2 alone were all protected. PMID:23593251

Jabbar, Tamara Kusay; Calvo-Pinilla, Eva; Mateos, Francisco; Gubbins, Simon; Bin-Tarif, Abdelghani; Bachanek-Bankowska, Katarzyna; Alpar, Oya; Ortego, Javier; Takamatsu, Haru-Hisa; Mertens, Peter Paul Clement; Castillo-Olivares, Javier

2013-01-01

332

Cleavage of Dicer Protein by I7 Protease during Vaccinia Virus Infection  

PubMed Central

Dicer is the key component in the miRNA pathway. Degradation of Dicer protein is facilitated during vaccinia virus (VV) infection. A C-terminal cleaved product of Dicer protein was detected in the presence of MG132 during VV infection. Thus, it is possible that Dicer protein is cleaved by a viral protease followed by proteasome degradation of the cleaved product. There is a potential I7 protease cleavage site in the C-terminus of Dicer protein. Indeed, reduction of Dicer protein was detected when Dicer was co-expressed with I7 protease but not with an I7 protease mutant protein lack of the protease activity. Mutation of the potential I7 cleavage site in the C-terminus of Dicer protein resisted its degradation during VV infection. Furthermore, Dicer protein was reduced dramatically by recombinant VV vI7Li after the induction of I7 protease. If VV could facilitate the degradation of Dicer protein, the process of miRNA should be affected by VV infection. Indeed, accumulation of precursor miR122 was detected after VV infection or I7 protease expression. Reduction of miR122 would result in the suppression of HCV sub-genomic RNA replication, and, in turn, the amount of viral proteins. As expected, significant reduction of HCVNS5A protein was detected after VV infection and I7 protease expression. Therefore, our results suggest that VV could cleave Dicer protein through I7 protease to facilitate Dicer degradation, and in turn, suppress the processing of miRNAs. Effect of Dicer protein on VV replication was also studied. Exogenous expression of Dicer protein suppresses VV replication slightly while knockdown of Dicer protein does not affect VV replication significantly. PMID:25815818

Lin, Shu-I; Yang, Chee-Hing; Chien, Wan-Yu; Syu, Ciao-Ling; Lo, Shih-Yen

2015-01-01

333

Yellow fever vector live-virus vaccines: West Nile virus vaccine development  

Microsoft Academic Search

By combining molecular-biological techniques with our increased understanding of the effect of gene sequence modification on viral function, yellow fever 17D, a positive-strand RNA virus vaccine, has been manipulated to induce a protective immune response against viruses of the same family (e.g. Japanese encephalitis and dengue viruses). Triggered by the emergence of West Nile virus infections in the New World

Juan Arroyo; Charles A Miller; John Catalan; Thomas P Monath

2001-01-01

334

Ebola Virus: Immune Mechanisms of Protection and Vaccine Development  

Microsoft Academic Search

Vaccination is one of our most powerful antiviral strategies. Despite the emergence of deadly viruses such as Ebola virus, vaccination efforts have focused mainly on childhood communicable diseases. Although Ebola virus was once believed to be limited to isolated outbreaks in distant lands, forces of globalization potentiate outbreaks anywhere in the world through incidental transmission. Moreover, since this virus has

Adeline M. Nyamathi; John L. Fahey; Heather Sands; Adrian M. Casillas

2003-01-01

335

De novo Fatty Acid Biosynthesis Contributes Significantly to Establishment of a Bioenergetically Favorable Environment for Vaccinia Virus Infection  

PubMed Central

The poxvirus life cycle, although physically autonomous from the host nucleus, is nevertheless dependent upon cellular functions. A requirement for de novo fatty acid biosynthesis was implied by our previous demonstration that cerulenin, a fatty acid synthase inhibitor, impaired vaccinia virus production. Here we show that additional inhibitors of this pathway, TOFA and C75, reduce viral yield significantly, with partial rescue provided by exogenous palmitate, the pathway's end-product. Palmitate's major role during infection is not for phospholipid synthesis or protein palmitoylation. Instead, the mitochondrial import and ?-oxidation of palmitate are essential, as shown by the impact of etomoxir and trimetazidine, which target these two processes respectively. Moreover, the impact of these inhibitors is exacerbated in the absence of exogenous glucose, which is otherwise dispensable for infection. In contrast to glucose, glutamine is essential for productive viral infection, providing intermediates that sustain the TCA cycle (anaplerosis). Cumulatively, these data suggest that productive infection requires the mitochondrial ?-oxidation of palmitate which drives the TCA cycle and energy production. Additionally, infection causes a significant rise in the cellular oxygen consumption rate (ATP synthesis) that is ablated by etomoxir. The biochemical progression of the vaccinia life cycle is not impaired in the presence of TOFA, C75, or etomoxir, although the levels of viral DNA and proteins synthesized are somewhat diminished. However, by reversibly arresting infections at the onset of morphogenesis, and then monitoring virus production after release of the block, we determined that virion assembly is highly sensitive to TOFA and C75. Electron microscopic analysis of cells released into C75 revealed fragmented aggregates of viroplasm which failed to be enclosed by developing virion membranes. Taken together, these data indicate that vaccinia infection, and in particular virion assembly, relies on the synthesis and mitochondrial import of fatty acids, where their ?-oxidation drives robust ATP production. PMID:24651651

Greseth, Matthew D.; Traktman, Paula

2014-01-01

336

Respiratory syncytial virus vaccine: a systematic overview with emphasis on respiratory syncytial virus subunit vaccines  

Microsoft Academic Search

Objective: To explore whether RSV vaccines are efficacious in preventing respiratory syncytial virus (RSV) lower respiratory infection (LRI). Methods: Randomized clinical trials were sought through Medline using the following search terms: ‘RSV’ or ‘RSV infection’ and ‘viral vaccine’. Randomized controlled trials in adults or children that provided data on clinical outcomes (RSV LRIs, all LRI, all RSV infections) were included.

Eric A. F Simoes; Darrell H. S Tan; Arne Ohlsson; Valerie Sales; Elaine E. L Wang

2001-01-01

337

Vaccinia virus A17L gene product is essential for an early step in virion morphogenesis.  

PubMed

Vaccinia virus (VV) A17L gene encodes a 23-kDa protein that is proteolytically cleaved to generate a 21-kDa product that is incorporated into the viral particles. We have previously shown that the 21-kDa protein forms a stable complex with the VV 14-kDa envelope protein and suggested that the 21-kDa protein may serve to anchor the 14-kDa protein to the envelope of the virion (D. Rodríguez, J. R. Rodríguez, and M. Esteban, J. Virol. 67:3435-3440, 1993). To study the role of the 21-kDa protein in virion assembly, in this investigation we generated a VV recombinant, VVindA17L, that contains an inducible A17L gene regulated by the E. coli repressor/operator system. In the absence of the inducer, shutoff of the A17L gene was complete, and this shutoff correlated with a reduction in virus yields of about 3 log units. Although early and late viral polypeptides are normally synthesized in the absence of the A17L gene product, proteolytic processing of the major p4a and p4b core proteins was clearly impaired under these conditions. Electron microscopy examination of cells infected in the absence of isopropylthiogalactopyranoside (IPTG) revealed that virion morphogenesis was completely arrested at a very early stage, even prior to the formation of crescent-shaped membranes, which are the first distinguishable viral structures. Only electron-dense structures similar to rifampin bodies, but devoid of membranes, could be observed in the cytoplasm of cells infected with VVindA17L under nonpermissive conditions. Considering the most recent assembly model presented by Sodeik et al. (B. Sodeik, R. W. Doms, M. Ericsson, G. Hiller, C. E. Machamer, W. van't Hof, G. van Meer, B. Moss, and G. Griffiths, J. Cell Biol. 121:521-541, 1993), we propose that this protein is targeted to the intermediate compartment and is involved in the recruitment of these membranes to the viral factories, where it forms the characteristic crescent structures that subsequently result in the formation of virions. PMID:7609028

Rodríguez, D; Esteban, M; Rodríguez, J R

1995-08-01

338

Local Control of Repeated-Dose Rectal Challenges in DNA/MVA-Vaccinated Macaques Protected against a First Series of Simian Immunodeficiency Virus Challenges  

PubMed Central

Here, we report the results of a late boost and three additional series of simian immunodeficiency virus (SIV) challenges in seven DNA/modified vaccinia virus Ankara (MVA)-vaccinated rhesus macaques who resisted a first series of rectal challenges. During 29 additional challenges delivered over 2.3 years, all animals became infected. However, 13 blips of virus in six macaques and anamnestic Env-specific rectal IgA responses in three of the six suggested that local control of infections was occurring during the serial challenge. PMID:24574408

Kannanganant, Sunil; Gangadhara, Salaija; Lai, Lilin; Lawson, Benton; Kozlowski, Pamela A.; Robinson, Harriet L.

2014-01-01

339

Structure of vaccinia virus A46, an inhibitor of TLR4 signaling pathway, shows the conformation of VIPER motif.  

PubMed

Vaccinia virus (VACV) encodes many proteins that interfere with the host immune system. Vaccinia virus A46 protein specifically targets the BB-loop motif of TIR-domain-containing proteins to disrupt receptor:adaptor (e.g., TLR4:MAL and TLR4:TRAM) interactions of the toll-like receptor signaling. The crystal structure of A46 (75-227) determined at 2.58 Å resolution showed that A46 formed a homodimer and adopted a Bcl-2-like fold similar to other VACV proteins such as A52, B14, and K7. Our structure also revealed that VIPER (viral inhibitory peptide of TLR4) motif resides in the ?1-helix and six residues of the VIPER region were exposed to surface for binding to target proteins. In vitro binding assays between wild type and six mutants A46 (75-227) and full-length MAL identified critical residues in the VIPER motif. Computational modeling of the A46:MAL complex structure showed that the VIPER region of A46 and AB loop of MAL protein formed a major binding interface. In summary, A46 is a homodimer with a Bcl-2-like fold and VIPER motif is believed to be involved in the interaction with MAL protein based on our binding assays. PMID:24723367

Kim, Yongwoon; Lee, Hasup; Heo, Lim; Seok, Chaok; Choe, Jungwoo

2014-07-01

340

DIVA vaccination strategies for avian influenza virus  

Technology Transfer Automated Retrieval System (TEKTRAN)

Vaccination for both low pathogenic and highly pathogenic avian influenza is commonly used for countries that have been endemic for avian influenza influenza virus, but stamping out policies are common for countries that are normally free of the disease. Stamping out policies of euthanizing infecte...

341

Biochem. J. (2009) 420, 2735 (Printed in Great Britain) doi:10.1042/BJ20082296 27 Characterization of the vaccinia virus D10 decapping enzyme provides  

E-print Network

of the vaccinia virus D10 decapping enzyme provides evidence for a two-metal-ion mechanism Marie F. SOULI Decapping enzymes are required for the removal of the 5 -end cap of mRNAs. These enzymes exhibit a specific m7 GDP and monophosphorylated RNA products. Decapping enzymes have been found in humans, plants

Perreault, Jean-Pierre

342

Synthesis, cellular location, and immunogenicity of bovine herpesvirus 1 glycoproteins gI and gIII expressed by recombinant vaccinia virus.  

PubMed Central

Two of the major glycoproteins of bovine herpesvirus 1 (BHV-1) are gI, a polypeptide complex with apparent molecular weights of 130,000, 74,000, and 55,000, and gIII (a 91,000-molecular-weight [91K] glycoprotein), which also exists as a 180K dimer. Vaccinia virus (VAC) recombinants were constructed which carry full-length gI (VAC-I) or gIII (VAC-III) genes. The genes for gI and gIII were each placed under the control of the early VAC 7.5K gene promoter and inserted within the VAC gene for thymidine kinase. The recombinant viruses VAC-I and VAC-III retained infectivity and expressed both precursor and mature forms of glycoproteins gI and gIII. The polypeptide backbones, partially glycosylated precursors, and mature gI and gIII glycoproteins were indistinguishable from those produced in BHV-1-infected cells. Consequently, they were apparently cleaved, glycosylated, and transported in a manner similar to that seen during authentic BHV-1 infection, although the processing efficiencies of both gI and gIII were generally higher in recombinant-infected cells than in BHV-1-infected cells. Immunofluorescence studies further demonstrated that the mature gI and gIII glycoproteins were transported to and expressed on the surface of cells infected with the respective recombinants. Immunization of cattle with recombinant viruses VAC-I and VAC-III resulted in the induction of neutralizing antibodies to BHV-1, which were reactive with authentic gI and gIII. These data demonstrate the immunogenicity of VAC-expressed gI and gIII and indicate the potential of these recombinant glycoproteins as a vaccine against BHV-1. Images PMID:2539509

van Drunen Littel-van den Hurk, S; Zamb, T; Babiuk, L A

1989-01-01

343

Evaluation of radiation effects against C6 glioma in combination with vaccinia virus-p53 gene therapy  

NASA Technical Reports Server (NTRS)

The primary objective of this study was to evaluate the antitumor effects of recombinant vaccinia virus-p53 (rVV-p53) in combination with radiation therapy against the C6 rat glioma, a p53 deficient tumor that is relatively radioresistant. VV-LIVP, the parental virus (Lister strain), was used as a control. Localized treatment of subcutaneous C6 tumors in athymic mice with either rVV-p53 or VV-LIVP together with tumor irradiation resulted in low tumor incidence and significantly slower tumor progression compared to the agents given as single modalities. Assays of blood and spleen indicated that immune system activation may account, at least partly, for the enhance tumor inhibition seen with combined treatment. No overt signs of treatment-related toxicity were noted.

Gridley, D. S.; Andres, M. L.; Li, J.; Timiryasova, T.; Chen, B.; Fodor, I.; Nelson, G. A. (Principal Investigator)

1998-01-01

344

Recombinant vaccinia virus-induced T-cell immunity: quantitation of the response to the virus vector and the foreign epitope.  

PubMed

Recombinant vaccinia viruses (rVV) have been extensively used as vaccines, but there is little information about the total magnitude of the VV-specific T-cell response and how this compares to the immune response to the foreign gene(s) expressed by the rVV. To address this issue, we quantitated the T-cell responses to both the viral vector and the insert following the infection of mice with VV expressing a cytotoxic T lymphocyte (CTL) epitope (NP118-126) from lymphocytic choriomeningitis virus (LCMV). The LCMV epitope-specific response was quantitated by intracellular cytokine staining after stimulation with the specific peptide. To analyze the total VV-specific response, we developed a simple intracellular cytokine staining assay using VV-infected major histocompatibility complex class I and II matched cells as stimulators. Using this approach, we made the following determinations. (i) VV-NP118 induced potent and long-lasting CD8 and CD4 T-cell responses to the vector; at the peak of the response (approximately 1 week), there were approximately 10(7) VV-specific CD8 T cells (25% of the CD8 T cells) and approximately 10(6) VV-specific CD4 T cells (approximately 5% of the CD4 T cells) in the spleen. These numbers decreased to approximately 5 x 10(5) CD8 T cells (approximately 5% frequency) and approximately 10(5) CD4 T cells (approximately 0.5% frequency), respectively, by day 30 and were then stably maintained at these levels for >300 days. The size of this VV-specific T-cell response was comparable to that of the T-cell response induced following an acute LCMV infection. (ii) VV-specific CD8 and CD4 T cells were capable of producing gamma interferon (IFN-gamma), tumor necrosis factor alpha (TNF-alpha), and interleukin-2; all cells were able to make IFN-gamma, a subset produced both IFN-gamma and TNF-alpha, and another subset produced all three cytokines. (iii) The CD8 T-cell response to the foreign gene (LCMV NP118-126 epitope) was coordinately regulated with the response to the vector during all three phases (expansion, contraction, and memory) of the T-cell response. The total number of CD8 T cells responding to NP118-126 were approximately 20- to 30-fold lower than the number responding to the VV vector (approximately 1% at the peak and 0.2% in memory). This study provides a better understanding of T-cell immunity induced by VV-based vaccines, and in addition, the technique described in the study can be readily extended to other viral vectors to determine the ratio of the T-cell response to the insert versus the vector. This information will be useful in optimizing prime-boost regimens for vaccination. PMID:11884558

Harrington, Laurie E; Most Rv, Robbert van der; Whitton, J Lindsay; Ahmed, Rafi

2002-04-01

345

The effect of vaccination on Marek's disease virus shedding  

Technology Transfer Automated Retrieval System (TEKTRAN)

Current Marek’s Disease vaccines are efficient at preventing disease. However, vaccination can reduce but not completely eliminate virus shedding. Our hypothesis is that an efficient vaccine will result in fewer viruses being shed. To test this hypothesis, we developed a real-time PCR to measure Mar...

346

Scientific barriers to developing vaccines against avian influenza viruses  

Microsoft Academic Search

The increasing number of reports of direct transmission of avian influenza viruses to humans underscores the need for control strategies to prevent an influenza pandemic. Vaccination is the key strategy to prevent severe illness and death from pandemic influenza. Despite long-term experience with vaccines against human influenza viruses, researchers face several additional challenges in developing human vaccines against avian influenza

Tomy Joseph; Kanta Subbarao

2007-01-01

347

Characterization of Russian rabies virus vaccine strain RV97  

Microsoft Academic Search

The RV-97 rabies virus vaccine strain is widely used in Russia as a component of the live attenuated oral anti-rabies vaccine “Sinrab”. This vaccine has also been used in some other countries, such as Kazakhstan, Belarus, and Ukraine. Entire genome sequencing is an effective tool for studying the genetic properties of virus strains. In this study, a simple technique for

A. Metlin; L. Paulin; S. Suomalainen; E. Neuvonen; S. Rybakov; V. Mikhalishin; A. Huovilainen

2008-01-01

348

Comparative efficacy of replicating smallpox vaccine strains in a Murine Challenge Model  

Microsoft Academic Search

There is currently considerable concern about the vulnerability of human populations to biowarfare or bioterrorist attacks with variola virus (VARV). Traditional smallpox vaccines were manufactured using the lymph of ruminants infected with the vaccinia virus (VACV). However, these production methods do not meet current standards for vaccines, especially since the emergence of transmissable spongiform encephalopathies in domesticated ruminants. This study

A. Phelps; A. J. Gates; M. Hillier; L. Eastaugh; D. O. Ulaeto

2005-01-01

349

Functional hyper-IL-6 from vaccinia virus-colonized tumors triggers platelet formation and helps to alleviate toxicity of mitomycin C enhanced virus therapy  

PubMed Central

Background Combination of oncolytic vaccinia virus therapy with conventional chemotherapy has shown promise for tumor therapy. However, side effects of chemotherapy including thrombocytopenia, still remain problematic. Methods Here, we describe a novel approach to optimize combination therapy of oncolytic virus and chemotherapy utilizing virus-encoding hyper-IL-6, GLV-1h90, to reduce chemotherapy-associated side effects. Results We showed that the hyper-IL-6 cytokine was successfully produced by GLV-1h90 and was functional both in cell culture as well as in tumor-bearing animals, in which the cytokine-producing vaccinia virus strain was well tolerated. When combined with the chemotherapeutic mitomycin C, the anti-tumor effect of the oncolytic virotherapy was significantly enhanced. Moreover, hyper-IL-6 expression greatly reduced the time interval during which the mice suffered from chemotherapy-induced thrombocytopenia. Conclusion Therefore, future clinical application would benefit from careful investigation of additional cytokine treatment to reduce chemotherapy-induced side effects. PMID:22236378

2012-01-01

350

A Novel MVA Vectored Chikungunya Virus Vaccine Elicits Protective Immunity in Mice  

PubMed Central

Background Chikungunya virus (CHIKV) is a re-emerging arbovirus associated with febrile illness often accompanied by rash and arthralgia that may persist for several years. Outbreaks are associated with high morbidity and create a public health challenge for countries affected. Recent outbreaks have occurred in both Europe and the Americas, suggesting CHIKV may continue to spread. Despite the sustained threat of the virus, there is no approved vaccine or antiviral therapy against CHIKV. Therefore, it is critical to develop a vaccine that is both well tolerated and highly protective. Methodology/Principal Findings In this study, we describe the construction and characterization of a modified Vaccinia virus Ankara (MVA) virus expressing CHIKV E3 and E2 proteins (MVA-CHIK) that protected several mouse models from challenge with CHIKV. In particular, BALB/c mice were completely protected against viremia upon challenge with CHIKV after two doses of MVA-CHIK. Additionally, A129 mice (deficient in IFN?/?) were protected from viremia, footpad swelling, and mortality. While high anti-virus antibodies were elicited, low or undetectable levels of neutralizing antibodies were produced in both mouse models. However, passive transfer of MVA-CHIK immune serum to naïve mice did not protect against mortality, suggesting that antibodies may not be the main effectors of protection afforded by MVA-CHIK. Furthermore, depletion of CD4+, but not CD8+ T-cells from vaccinated mice resulted in 100% mortality, implicating the indispensable role of CD4+ T-cells in the protection afforded by MVA-CHIK. Conclusions/Significance The results presented herein demonstrate the potential of MVA to effectively express CHIKV E3-E2 proteins and generate protective immune responses. Our findings challenge the assumption that only neutralizing antibodies are effective in providing protection against CHIKV, and provides a framework for the development of novel, more effective vaccine strategies to combat CHIKV. PMID:25058320

Weger-Lucarelli, James; Chu, Haiyan; Aliota, Matthew T.; Partidos, Charalambos D.; Osorio, Jorge E.

2014-01-01

351

Vaccinia virus F5 is required for normal plaque morphology in multiple cell lines but not replication in culture or virulence in mice.  

PubMed

Vaccinia virus (VACV) gene F5L was recently identified as a determinant of plaque morphology that is truncated in Modified Vaccinia virus Ankara (MVA). Here we show that F5L also affects plaque morphology of the virulent VACV strain Western Reserve (WR) in some, but not all cell lines, and not via previously described mechanisms. Further, despite a reduction in plaque size for VACV WR lacking F5L there was no evidence of reduced virus replication or spread in vitro or in vivo. In vivo we examined two mouse models, each with more than one dose and measured signs of disease and virus burden. These data provide an initial characterization of VACV F5L in a virulent strain of VACV. Further they show the necessity of testing plaque phenotypes in more than one cell type and provide an example of a VACV gene required for normal plaque morphology but not replication and spread. PMID:24889234

Dobson, Bianca M; Procter, Dean J; Hollett, Natasha A; Flesch, Inge E A; Newsome, Timothy P; Tscharke, David C

2014-05-01

352

Varicella-zoster virus: Prevention through vaccination.  

PubMed

Widespread use of varicella vaccine in the United States has drastically changed the epidemiology of the disease. Although chickenpox is no longer a ubiquitous childhood infection, varicella-zoster virus continues to circulate in the community and nonimmune pregnant women remain at risk. Varicella can cause severe infection in pregnant women, often complicated by viral pneumonia. Maternal varicella occurring in the first half of pregnancy can cause the rare but devastating congenital varicella syndrome, whereas infection in the late stages of pregnancy may cause neonatal varicella. The best approach to avoiding the morbidity and mortality associated with chickenpox in pregnancy is to screen and vaccinate susceptible reproductive-age women. PMID:22510639

Gnann, John W

2012-06-01

353

Expert Rev Vaccines . Author manuscript Development of hepatitis C virus vaccines: challenges and progress  

E-print Network

Expert Rev Vaccines . Author manuscript Page /1 14 Development of hepatitis C virus vaccines of an effective vaccine against hepatitis C virus (HCV) has long been defined as a difficult challenge due their efficacy. MESH Keywords Animals ; Biomedical Research ; trends ; Hepatitis C ; immunology ; prevention

Paris-Sud XI, Université de

354

Foot and mouth disease virus vaccines.  

PubMed

Foot and mouth disease (FMD) is a highly infectious and economically devastating disease of livestock. Although vaccines, available since the early 1900s, have been instrumental in eradicating FMD from parts of the world, the disease still affects millions of animals around the globe and remains the main sanitary barrier to the commerce of animals and animal products. Currently available inactivated antigen vaccines applied intramuscularly to individual animals, confer serotype and subtype specific protection in 1-2 weeks but fail to induce long-term protective immunity. Among the limitations of this vaccine are potential virus escape from the production facility, short shelf life of formulated product, short duration of immunity and requirement of dozens of antigens to address viral antigenic diversity. Here we review novel vaccine approaches that address some of these limitations. Basic research and the combination of reliable animal inoculation models, reverse genetics and computational biology tools will allow the rational design of safe and effective FMD vaccines. These vaccines should address not only the needs of FMD-free countries but also allow the progressive global control and eradication of this devastating disease. PMID:19837296

Rodriguez, Luis L; Grubman, Marvin J

2009-11-01

355

9 CFR 113.213 - Pseudorabies Vaccine, Killed Virus.  

Code of Federal Regulations, 2010 CFR

... (i) Ten pseudorabies susceptible pigs (five vaccinates and five controls...300 TCID50 of virus shall be used. Pigs shall be considered susceptible if there...Service may be used. (iii) The five pigs used as vaccinates shall be...

2010-01-01

356

Live Bivalent Vaccine for Parainfluenza and Influenza Virus Infections  

PubMed Central

Influenza and human parainfluenza virus infections are of both medical and economical importance. Currently, inactivated vaccines provide suboptimal protection against influenza, and vaccines for human parainfluenza virus infection are not available, underscoring the need for new vaccines against these respiratory diseases. Furthermore, to reduce the burden of vaccination, the development of multivalent vaccines is highly desirable. Thus, to devise a single vaccine that would elicit immune responses against both influenza and parainfluenza viruses, we used reverse genetics to generate an influenza A virus that possesses the coding region for the hemagglutinin/neuraminidase ectodomain of parainfluenza virus instead of the influenza virus neuraminidase. The recombinant virus grew efficiently in eggs but was attenuated in mice. When intranasally immunized with the recombinant vaccine, all mice developed antibodies against both influenza and parainfluenza viruses and survived an otherwise lethal challenge with either of these viruses. This live bivalent vaccine has obvious advantages over combination vaccines, and its method of generation could, in principle, be applied in the development of a “cocktail” vaccine with efficacy against several different infectious diseases. PMID:15890905

Maeda, Yasuko; Hatta, Masato; Takada, Ayato; Watanabe, Tokiko; Goto, Hideo; Neumann, Gabriele; Kawaoka, Yoshihiro

2005-01-01

357

Type I interferon mimetics bypass vaccinia virus decoy receptor virulence factor for protection of mice against lethal infection.  

PubMed

The canonical model of interferon (IFN) signaling focuses solely on the activation of STAT transcription factors which, according to the model, are initiated by the singular event of cross-linkage of the receptor extracellular domain by the IFN. The IFN has no further function beyond this. The model thus provides no approach to circumventing poxviruses decoy receptors that compete with the IFN receptors for IFNs. This simple event has allowed smallpox virus to decimate human populations throughout the ages. We have developed a noncanonical model of IFN signaling that has resulted in the development of small peptide mimetics to both types I and II IFNs. In this report, we focus on a type I IFN mimetic at positions 152 to 189, IFN-?1(152-189), which corresponds to the C terminus of human IFN-?1. This mimetic functions intracellularly and is thus not recognized by the B18R vaccinia virus decoy receptor. Mimetic synthesized with an attached palmitate (lipo-) for cell penetration protects mice from a lethal dose of vaccinia virus, while the parent IFN-?1 is ineffective. Unlike IFN-?1, the mimetic does not bind to the B18R decoy receptor. It further differs from the parent IFN in that it lacks the toxicity of weight loss and bone marrow suppression in mice while at the same time possessing a strong adjuvant effect on the immune system. The mimetic is thus an innate and adaptive immune regulator that is evidence of the dynamic nature of the noncanonical model of IFN signaling, in stark contrast to the canonical or classical model of signaling. PMID:24964806

Ahmed, Chulbul M; Johnson, Howard M

2014-08-01

358

Recombinant Vaccinia Virus Coexpressing the F Protein of Respiratory Syncytial Virus (RSV) and Interleukin-4 (IL-4) Does Not Inhibit the Development of RSV-Specific Memory Cytotoxic T Lymphocytes, whereas Priming Is Diminished in the Presence of High Levels of IL-2 or Gamma Interferon  

PubMed Central

In order to investigate if immune responses to the fusion (F) protein of respiratory syncytial virus (RSV) could be influenced by cytokines, recombinant vaccinia viruses (rVV) carrying both the F gene of RSV and the gene for murine interleukin-2 (IL-2), IL-4, or gamma interferon (IFN-?) were constructed. In vitro characterization of rVV revealed that insertion of the cytokine gene into the VP37 locus of the vaccinia virus genome resulted in 100- to 1,000-fold higher expression than insertion of the same gene into the thymidine kinase (TK) locus. In comparison, only a two- to fivefold difference in the level of expression of the F protein was observed when the gene was inserted into either of these two loci. Mice vaccinated with rVV expressing the F protein and high levels of IL-2 or IFN-? cleared rVV more rapidly than mice inoculated with a control rVV and developed only low levels of RSV-specific serum antibody. In addition, these recombinants were much less effective at priming RSV-specific memory cytotoxic T lymphocytes (CTL) and IFN-? production by spleen cells than rVV expressing the F protein alone. In contrast, mice vaccinated with rVV expressing high levels of IL-4 showed signs of delayed rVV clearance. RSV-specific serum antibody responses were biased in favor of immunoglobulin G1 (IgG1) in these mice, as there was a significant reduction in IgG2a antibody responses compared with serum antibody responses in mice vaccinated with rVV expressing the F protein alone. However, vaccination with rVV expressing the F protein together with high levels of IL-4 did not alter the development of RSV-specific memory CTL or IFN-? production by RSV-restimulated splenocytes. PMID:9557697

Bembridge, Gary P.; Lopez, Juan A.; Cook, Roy; Melero, Jose A.; Taylor, Geraldine

1998-01-01

359

Eosinophils do not contribute to respiratory syncytial virus vaccine-enhanced disease1  

PubMed Central

Respiratory syncytial virus (RSV) infection of BALB/c mice previously immunized with a recombinant vaccinia virus (vacv) expressing the attachment (G) protein of RSV results in pulmonary eosinophilia, which mimics the response of FI-RSV vaccinated children, as well as increased weight loss, clinical illness, and Penh. We show that RSV infection of eosinophil-deficient mice previously immunized with vacvG results in the development of increased weight loss, clinical illness, and Penh that is similar to wild-type controls. These measures of RSV vaccine-enhanced disease are dependent upon STAT4. Interestingly, neither IL-12 nor IL-23, the two most common STAT4-activating cytokines, proved necessary for the development of disease. We demonstrate that IFN-?, which is produced following STAT4 activation, contributes to clinical illness and increased Penh, but not weight loss. Our results have important implications for future RSV vaccine design suggesting that enhancing a Th1 response may exacerbate disease. PMID:18981084

Castilow, Elaine M.; Legge, Kevin L.; Varga, Steven M.

2008-01-01

360

Analysis of murine major histocompatibility complex class II-restricted T-cell responses to the flavivirus Kunjin by using vaccinia virus expression.  

PubMed

The present paper analyzes the influence of major histocompatibility complex (MHC) class II (Ir) genes on MHC class II-restricted T-cell responses to West Nile virus (WNV) and recombinant vaccinia virus-derived Kunjin virus antigens and identifies the immunodominant Kunjin virus antigens. Generally, mice were primed by intravenous infection with WNV or Kunjin virus, and their CD4+ T cells were stimulated in vitro 14 days later with WNV or Kunjin virus antigens to pulse macrophage or B-cell antigen-presenting cells (APC). WNV-specific in vitro T-cell responses from H-2b mice were higher than those from H-2d, H-2k, and H-2q mice. When recombinant vaccinia virus-derived Kunjin virus antigen preparations were tested in vitro, Kunjin virus-immune T cells of H-2b haplotype responded most strongly to structural (prM, C, E) and membrane-associated nonstructural (NS1) proteins encoded by VKV 1031 and showed weaker responses to cytosolic nonstructural protein NS5 (VKV 1022), whereas the responders of H-2k haplotype responded most strongly to the antigens encoded by VKV 1022 and gave lesser responses to VKV 1031. H-2d T cells gave weaker responses than either H-2b or H-2k cells, with responses to VKV 1031 generally being higher than those to VKV 1022. Responses to VKV 1023 or VKV 1024 encoding all of the NS3 to NS5 gene sequence or to VKV 1023 encoding all of NS3 were weak or absent. Within a given inbred strain, B cells and macrophages differed in their abilities to present recombinant vaccinia virus-derived Kunjin virus antigens, both in terms of magnitude of T-cell responses induced and the particular Kunjin virus protein presented. T cells from different non-MHC genetic backgrounds varied in their requirements of macrophage numbers as APC for maximum reactivity, suggesting that the concentration of class II MHC antigens and other molecules affecting APC-T-cell interaction varied in mice with different genetic backgrounds. Regardless of MHC haplotype, responses to VKV 1024, which encompasses VKV 1023 and VKV 1022, were either absent or lower than those to VKV 1022, possibly reflecting differences in the processing requirements of these two proteins. When mice were primed intravenously with recombinant vaccinia virus and when their CD4+ T cells were stimulated in vitro with native Kunjin virus antigens, VKV 1031 primed more efficiently than Kunjin virus and VKV 1022 primed similarly to Kunjin virus. PMID:1349926

Kulkarni, A B; Müllbacher, A; Parrish, C R; Westaway, E G; Coia, G; Blanden, R V

1992-06-01

361

Experimental vaccines against potentially pandemic and highly pathogenic avian influenza viruses  

PubMed Central

Influenza A viruses continue to emerge and re-emerge, causing outbreaks, epidemics and occasionally pandemics. While the influenza vaccines licensed for public use are generally effective against seasonal influenza, issues arise with production, immunogenicity, and efficacy in the case of vaccines against pandemic and emerging influenza viruses, and highly pathogenic avian influenza virus in particular. Thus, there is need of improved influenza vaccines and vaccination strategies. This review discusses advances in alternative influenza vaccines, touching briefly on licensed vaccines and vaccine antigens; then reviewing recombinant subunit vaccines, virus-like particle vaccines and DNA vaccines, with the main focus on virus-vectored vaccine approaches. PMID:23440999

Mooney, Alaina J; Tompkins, S Mark

2013-01-01

362

Vaccinia Virus Envelope H3L Protein Binds to Cell Surface Heparan Sulfate and Is Important for Intracellular Mature Virion Morphogenesis and Virus Infection In Vitro and In Vivo  

PubMed Central

An immunodominant antigen, p35, is expressed on the envelope of intracellular mature virions (IMV) of vaccinia virus. p35 is encoded by the viral late gene H3L, but its role in the virus life cycle is not known. This report demonstrates that soluble H3L protein binds to heparan sulfate on the cell surface and competes with the binding of vaccinia virus, indicating a role for H3L protein in IMV adsorption to mammalian cells. A mutant virus defective in expression of H3L (H3L?) was constructed; the mutant virus has a small plaque phenotype and 10-fold lower IMV and extracellular enveloped virion titers than the wild-type virus. Virion morphogenesis is severely blocked and intermediate viral structures such as viral factories and crescents accumulate in cells infected with the H3L? mutant virus. IMV from the H3L? mutant virus are somewhat altered and less infectious than wild-type virions. However, cells infected by the mutant virus form multinucleated syncytia after low pH treatment, suggesting that H3L protein is not required for cell fusion. Mice inoculated intranasally with wild-type virus show high mortality and severe weight loss, whereas mice infected with H3L? mutant virus survive and recover faster, indicating that inactivation of the H3L gene attenuates virus virulence in vivo. In summary, these data indicate that H3L protein mediates vaccinia virus adsorption to cell surface heparan sulfate and is important for vaccinia virus infection in vitro and in vivo. In addition, H3L protein plays a role in virion assembly. PMID:10708453

Lin, Chi-Long; Chung, Che-Sheng; Heine, Hans G.; Chang, Wen

2000-01-01

363

Vaccination of rhesus macaques with a vif-deleted simian immunodeficiency virus proviral DNA vaccine  

SciTech Connect

Studies in non-human primates, with simian immunodeficiency virus (SIV) and simian/human immunodeficiency virus (SHIV) have demonstrated that live-attenuated viral vaccines are highly effective; however these vaccine viruses maintain a low level of pathogenicity. Lentivirus attenuation associated with deletion of the viral vif gene carries a significantly reduced risk for pathogenicity, while retaining the potential for virus replication of low magnitude in the host. This report describes a vif-deleted simian immunodeficiency virus (SIV)mac239 provirus that was tested as an attenuated proviral DNA vaccine by inoculation of female rhesus macaques. SIV-specific interferon-{gamma} enzyme-linked immunospot responses of low magnitude were observed after immunization with plasmid containing the vif-deleted SIV provirus. However, vaccinated animals displayed strong sustained virus-specific T cell proliferative responses and increasing antiviral antibody titers. These immune responses suggested either persistent vaccine plasmid expression or low level replication of vif-deleted SIV in the host. Immunized and unvaccinated macaques received a single high dose vaginal challenge with pathogenic SIVmac251. A transient suppression of challenge virus load and a greater median survival time was observed for vaccinated animals. However, virus loads for vaccinated and unvaccinated macaques were comparable by twenty weeks after challenge and overall survival curves for the two groups were not significantly different. Thus, a vif-deleted SIVmac239 proviral DNA vaccine is immunogenic and capable of inducing a transient suppression of pathogenic challenge virus, despite severe attenuation of the vaccine virus.

Sparger, Ellen E. [Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616 (United States)], E-mail: eesparger@ucdavis.edu; Dubie, Robert A. [Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616 (United States); Shacklett, Barbara L. [Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616 (United States); Cole, Kelly S. [Center for Vaccine Research, Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 (United States); Chang, W.L.; Luciw, Paul A. [Center for Comparative Medicine, University of California, Davis, CA 95616 (United States)

2008-05-10

364

Kinetics and intracellular location of intramolecular disulfide bond formation mediated by the cytoplasmic redox system encoded by vaccinia virus  

SciTech Connect

Poxviruses encode a redox system for intramolecular disulfide bond formation in cytoplasmic domains of viral proteins. Our objectives were to determine the kinetics and intracellular location of disulfide bond formation. The vaccinia virus L1 myristoylated membrane protein, used as an example, has three intramolecular disulfide bonds. Reduced and disulfide-bonded forms of L1 were distinguished by electrophoretic mobility and reactivity with monoclonal and polyclonal antibodies. Because disulfide bonds formed during 5 min pulse labeling with radioactive amino acids, a protocol was devised in which dithiothreitol was present at this step. Disulfide bond formation was detected by 2 min after removal of reducing agent and was nearly complete in 10 min. When the penultimate glycine residue was mutated to prevent myristoylation, L1 was mistargeted to the endoplasmic reticulum and disulfide bond formation failed to occur. These data suggested that viral membrane association was required for oxidation of L1, providing specificity for the process.

Bisht, Himani; Brown, Erica [Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894 (United States); Moss, Bernard, E-mail: bmoss@nih.go [Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894 (United States)

2010-03-15

365

Joint production of prime/boost pairs of Fowlpox Virus and Modified Vaccinia Ankara recombinants carrying the same transgene.  

PubMed

Pairs of recombinant MVA (Modified Vaccinia Ankara) and FPV (Fowlpox Virus) expressing the same transgene are reasonable candidates for prime/boost regimens, because cross-reacting immune responses between the two vectors, both non-replicative in mammalian hosts, are very limited. The acceptor virus FPD-Red, a derivative of FPV, carrying a red fluorescent protein gene flanked by the homology regions of MVA deletion III, was constructed. The same MVA Transfer Plasmid Green, designed to insert transgenes into the MVA deletion III locus, can therefore be used to transfer transgenes into both acceptor viruses MVA-Red and FPD-Red with the described recently Red-to-Green gene swapping method. Cells infected by either recombinant virus can be sorted differentially by a simple and reliable FACS-based purification protocol. The procedure is carried out in primary chick embryo fibroblasts grown in serum-free media and was applied to the production of three rMVA/rFPV pairs expressing the H5N1 avian influenza antigens M1, M2 and NP. The viral genes were human codon-optimized and expressed at high levels in both chick and mammalian cells. Both single-step and multiple-step growth analyses showed no significant differences in growth due to the transgenes in either rMVA or rFPV derivatives. PMID:21419167

Soprana, Elisa; Panigada, Maddalena; Knauf, Mathias; Radaelli, Antonia; Vigevani, Luisa; Palini, Alessio; Villa, Chiara; Malnati, Mauro; Cassina, Giulia; Kurth, Reinhard; Norley, Stephen; Siccardi, Antonio G

2011-06-01

366

DNA Packaging Mutant: Repression of the Vaccinia Virus A32 Gene Results in Noninfectious, DNA-Deficient, Spherical, Enveloped Particles  

PubMed Central

The vaccinia virus A32 open reading frame was predicted to encode a protein with a nucleoside triphosphate-binding motif and a mass of 34 kDa. To investigate the role of this protein, we constructed a mutant in which the original A32 gene was replaced by an inducible copy. The recombinant virus, vA32i, has a conditional lethal phenotype: infectious virus formation was dependent on isopropyl-?-d-thiogalactopyranoside (IPTG). Under nonpermissive conditions, the mutant synthesized early- and late-stage viral proteins, as well as viral DNA that was processed into unit-length genomes. Electron microscopy of cells infected in the absence of IPTG revealed normal-appearing crescents and immature virus particles but very few with nucleoids. Instead of brick-shaped mature particles with defined core structures, there were numerous electron-dense, spherical particles. Some of these spherical particles were wrapped with cisternal membranes, analogous to intracellular and extracellular enveloped virions. Mutant viral particles, purified by sucrose density gradient centrifugation, had low infectivity and transcriptional activity, and the majority were spherical and lacked DNA. Nevertheless, the particle preparation contained representative membrane proteins, cleaved and uncleaved core proteins, the viral RNA polymerase, the early transcription factor and several enzymes, suggesting that incorporation of these components is not strictly coupled to DNA packaging. PMID:9621036

Cassetti, Maria Cristina; Merchlinsky, Michael; Wolffe, Elizabeth J.; Weisberg, Andrea S.; Moss, Bernard

1998-01-01

367

ORAL VACCINATION OF RACCOONS (PROCYON LOTOR) WITH AN ATTENUATED (SAD-B19) RABIES VIRUS VACCINE  

Microsoft Academic Search

Unlike previous reports to the contrary, raccoons (Proc yon lotor) were successfully vaccinated against rabies with a liquid SAD-B19 attenuated virus vaccine administered per os and given in vaccine-laden baits. There was neither evidence of vaccine-induced rabies in raccoons nior mia limited safety trial with opossums (Dideiphis virginiana) given SAD-B19. Protection from lethal street rabies virus infection was not absolute:

C. E. Rupprecht; B. Dietzschold; J. H. Cox; L. G. Schneider

368

Vaccinia virus protein K7 is a virulence factor that alters the acute immune response to infection  

PubMed Central

Vaccinia virus (VACV) encodes many proteins that antagonize the innate immune system including a family of intracellular proteins with a B-cell lymphoma (Bcl)-2-like structure. One of these Bcl-2 proteins called K7 binds Toll-like receptor-adaptor proteins and the DEAD-box RNA helicase DDX3 and thereby inhibits the activation of NF-?B and interferon regulatory factor 3. However, the contribution of K7 to virus virulence is not known. Here a VACV lacking the K7R gene (v?K7) was constructed and compared with control viruses that included a plaque purified wt (vK7), a revertant with the K7R gene reinserted (vK7-rev) and a frame-shifted virus in which the translational initiation codon was mutated to prevent K7 protein expression (vK7-fs). Data presented show that loss of K7 does not affect virus replication in cell culture or in vivo; however, viruses lacking the K7 protein were less virulent than controls in murine intradermal (i.d.) and intranasal (i.n.) infection models and there was an altered acute immune response to infection. In the i.d. model, v?K7 induced smaller lesions than controls, and after i.n. infection v?K7 induced a reduced weight loss and signs of illness, and more rapid clearance of virus from infected tissue. Concomitantly, the intrapulmonary innate immune response to infection with v?K7 showed increased infiltration of NK cells and CD8+ T-cells, enhanced MHC class II expression by macrophages, and enhanced cytolysis of target cells by NK cells and VACV-specific CD8+ T-cells. Thus protein K7 is a virulence factor that affects the acute immune response to infection. PMID:23580427

Benfield, Camilla T. O.; Ren, Hongwei; Lucas, Stuart J.; Bahsoun, Basma

2013-01-01

369

Protection of inactivated influenza virus vaccine against lethal influenza virus infection in diabetic mice  

Microsoft Academic Search

Influenza virus infection frequently causes complications and some excess mortality in the patients with diabetes. Vaccination is an effective measure to prevent influenza virus infection. In this paper, antibody response and protection against influenza virus infection induced by vaccination were studied in mouse model of diabetes. Healthy and diabetic BALB\\/c mice were immunized once or twice with inactivated influenza virus

Qiang Zhu; Haiyan Chang; Yan Chen; Fang Fang; Changyong Xue; Fenghua Zhang; Meizhen Qiu; Hanzhong Wang; Bin Wang; Ze Chen

2005-01-01

370

Molecular Smallpox Vaccine Delivered by Alphavirus Replicons Elicits Protective Immunity in Mice and Non-human Primates  

PubMed Central

Naturally occurring smallpox was eradicated as a result of successful vaccination campaigns during the 1960s and 70s. Because of its highly contagious nature and high mortality rate, smallpox has significant potential as a biological weapon. Unfortunately, the current vaccine for orthopoxviruses is contraindicated for large portions of the population. Thus, there is a need for new, safe, and effective orthopoxvirus vaccines. Alphavirus replicon vectors, derived from strains of Venezuelan equine encephalitis virus, are being used to develop alternatives to the current smallpox vaccine. Here, we demonstrated that virus-like replicon particles (VRP) expressing the vaccinia virus A33R, B5R, A27L, and L1R genes elicited protective immunity in mice comparable to vaccination with live-vaccinia virus. Furthermore, cynomolgus macaques vaccinated with a combination of the four poxvirus VRPs (4pox-VRP) developed antibody responses to each antigen. These antibody responses were able to neutralize and inhibit the spread of both vaccinia virus and monkeypox virus. Macaques vaccinated with 4pox-VRP, flu HA VRP (negative control), or live-vaccinia virus (positive control) were challenged intravenously with 5 × 106 PFU of monkeypox virus 1 month after the second VRP vaccination. Four of the six negative control animals succumbed to monkeypox and the remaining two animals demonstrated either severe or grave disease. Importantly, all 10 macaques vaccinated with the 4pox-VRP vaccine survived without developing severe disease. These findings revealed that a single-boost VRP smallpox vaccine shows promise as a safe alternative to the currently licensed live-vaccinia virus smallpox vaccine. PMID:19833247

Hooper, Jay W.; Ferro, Anthony M.; Golden, Joseph W.; Silvera, Peter; Dudek, Jeanne; Alterson, Kim; Custer, Max; Rivers, Bryan; Morris, John; Owens, Gary; Smith, Jonathan F.; Kamrud, Kurt I.

2009-01-01

371

Efficacy of vaccination with recombinant vaccinia and fowlpox vectors expressing NY-ESO-1 antigen in ovarian cancer and melanoma patients.  

PubMed

Recombinant poxviruses (vaccinia and fowlpox) expressing tumor-associated antigens are currently being evaluated in clinical trials as cancer vaccines to induce tumor-specific immune responses that will improve clinical outcome. To test whether a diversified prime and boost regimen targeting NY-ESO-1 will result in clinical benefit, we conducted two parallel phase II clinical trials of recombinant vaccinia-NY-ESO-1 (rV-NY-ESO-1), followed by booster vaccinations with recombinant fowlpox-NY-ESO-1 (rF-NY-ESO-1) in 25 melanoma and 22 epithelial ovarian cancer (EOC) patients with advanced disease who were at high risk for recurrence/progression. Integrated NY-ESO-1-specific antibody and CD4(+) and CD8(+) T cells were induced in a high proportion of melanoma and EOC patients. In melanoma patients, objective response rate [complete and partial response (CR+PR)] was 14%, mixed response was 5%, and disease stabilization was 52%, amounting to a clinical benefit rate (CBR) of 72% in melanoma patients. The median PFS in the melanoma patients was 9 mo (range, 0-84 mo) and the median OS was 48 mo (range, 3-106 mo). In EOC patients, the median PFS was 21 mo (95% CI, 16-29 mo), and median OS was 48 mo (CI, not estimable). CD8(+) T cells derived from vaccinated patients were shown to lyse NY-ESO-1-expressing tumor targets. These data provide preliminary evidence of clinically meaningful benefit for diversified prime and boost recombinant pox-viral-based vaccines in melanoma and ovarian cancer and support further evaluation of this approach in these patient populations. PMID:22454499

Odunsi, Kunle; Matsuzaki, Junko; Karbach, Julia; Neumann, Antje; Mhawech-Fauceglia, Paulette; Miller, Austin; Beck, Amy; Morrison, Carl D; Ritter, Gerd; Godoy, Heidi; Lele, Shashikant; duPont, Nefertiti; Edwards, Robert; Shrikant, Protul; Old, Lloyd J; Gnjatic, Sacha; Jäger, Elke

2012-04-10

372

Ns1 is a key protein in the vaccine composition to protect Ifnar(-/-) mice against infection with multiple serotypes of African horse sickness virus.  

PubMed

African horse sickness virus (AHSV) belongs to the genus Orbivirus. We have now engineered naked DNAs and recombinant modified vaccinia virus Ankara (rMVA) expressing VP2 and NS1 proteins from AHSV-4. IFNAR((-/-)) mice inoculated with DNA/rMVA-VP2,-NS1 from AHSV-4 in an heterologous prime-boost vaccination strategy generated significant levels of neutralizing antibodies specific of AHSV-4. In addition, vaccination stimulated specific T cell responses against the virus. The vaccine elicited partial protection against an homologous AHSV-4 infection and induced cross-protection against the heterologous AHSV-9. Similarly, IFNAR((-/-)) mice vaccinated with an homologous prime-boost strategy with rMVA-VP2-NS1 from AHSV-4 developed neutralizing antibodies and protective immunity against AHSV-4. Furthermore, the levels of immunity were very high since none of vaccinated animals presented viraemia when they were challenged against the homologous AHSV-4 and very low levels when they were challenged against the heterologous virus AHSV-9. These data suggest that the immunization with rMVA/rMVA was more efficient in protection against a virulent challenge with AHSV-4 and both strategies, DNA/rMVA and rMVA/rMVA, protected against the infection with AHSV-9. The inclusion of the protein NS1 in the vaccine formulations targeting AHSV generates promising multiserotype vaccines. PMID:23894615

de la Poza, Francisco; Calvo-Pinilla, Eva; López-Gil, Elena; Marín-López, Alejandro; Mateos, Francisco; Castillo-Olivares, Javier; Lorenzo, Gema; Ortego, Javier

2013-01-01

373

New smallpox vaccines for an ancient scourge.  

PubMed

The potential use of variola virus, a Class A agent of bioterrorism, remains a concern. In an effort to prepare for a possible smallpox outbreak due to an intentional release of variola, the U.S. government and industry have been evaluating vaccines stored in the National Strategic Stockpile including cell culture grown ACAM2000 and modified vaccinia Ankara, IMVAMUNE, in clinical studies. This paper discusses smallpox vaccines studies conducted at the Saint Louis University Center for Vaccine Development. PMID:25211864

Frey, Sharon E

2014-01-01

374

Structure Function Studies of Vaccinia Virus Host Range Protein K1 Reveal a Novel Functional Surface for Ankyrin Repeat Proteins  

SciTech Connect

Poxvirus host tropism at the cellular level is regulated by virus-encoded host range proteins acting downstream of virus entry. The functioning mechanisms of most host range proteins are unclear, but many contain multiple ankyrin (ANK) repeats, a motif that is known for ligand interaction through a concave surface. We report here the crystal structure of one of the ANK repeat-containing host range proteins, the vaccinia virus K1 protein. The structure, at a resolution of 2.3 {angstrom}, showed that K1 consists entirely of ANK repeats, including seven complete ones and two incomplete ones, one each at the N and C terminus. Interestingly, Phe82 and Ser83, which were previously shown to be critical for K1's function, are solvent exposed and located on a convex surface, opposite the consensus ANK interaction surface. The importance of this convex surface was further supported by our additional mutagenesis studies. We found that K1's host range function was negatively affected by substitution of either Asn51 or Cys47 and completely abolished by substitution of both residues. Cys47 and Asn51 are also exposed on the convex surface, spatially adjacent to Phe82 and Ser83. Altogether, our data showed that K1 residues on a continuous convex ANK repeat surface are critical for the host range function, suggesting that K1 functions through ligand interaction and does so with a novel ANK interaction surface.

Li, Yongchao; Meng, Xiangzhi; Xiang, Yan; Deng, Junpeng (Texas-HSC); (OKLU)

2010-06-15

375

Vaccinia Virus N1l Protein Resembles a B Cell Lymphoma-2 (Bcl-2) Family Protein  

SciTech Connect

Poxviruses encode immuno-modulatory proteins capable of subverting host defenses. The poxvirus vaccinia expresses a small 14-kDa protein, N1L, that is critical for virulence. We report the crystal structure of N1L, which reveals an unexpected but striking resemblance to host apoptotic regulators of the B cell lymphoma-2 (Bcl-2) family. Although N1L lacks detectable Bcl-2 homology (BH) motifs at the sequence level, we show that N1L binds with high affinity to the BH3 peptides of pro-apoptotic Bcl-2 family proteins in vitro, consistent with a role for N1L in modulating host antiviral defenses.

Aoyagi, M.; Zhai, D.; Jin, C.; Aleshin, A.E.; Stec, B.; Reed, J.C.; Liddington, R.C.; /Burnham Inst.

2007-07-03

376

Public knowledge and attitudes towards Human Papilloma Virus (HPV) vaccination  

Microsoft Academic Search

BACKGROUND: Human Papilloma Virus (HPV) vaccine has undergone successful trials and has recently been approved for use for the primary prevention of cervical cancer. The aim of this study was to determine knowledge and attitudes towards HPV vaccination. METHODS: Semi-structured interview and questionnaire delivered in a street survey. Standardised HPV-related statements used to measure HPV knowledge and attitudes to vaccination.

Charlotte Walsh; Aradhana Gera; Meeraj Shah; Amit Sharma; Judy E Powell; Sue Wilson

2008-01-01

377

The development of novel hepatitis B vaccines*  

PubMed Central

Development of vaccines against viral hepatitis B has proceeded along four main lines. (1) Human plasma-derived vaccines are safe, effective and are now in general use. (2) Subunit polypeptide vaccines formulated in micelles have reached the stage of clinical trials. (3) Recombinant DNA vaccines have been produced in prokaryotic and eukaryotic cells, notably in yeast. The yeast-derived recombinant vaccines have proved safe and effective in extensive clinical trials, eliciting antibodies which in quantity and specificity are equal to those elicited by plasma-derived vaccine. DNA recombinant has also been applied to the development of hybrid and vaccinia virus vaccines which are capable of immunological ”priming”, and other hybrid virus vaccines are under development. (4) Finally, chemical synthesis has succeeded in producing small peptides which include specific epitopes eliciting antibody responses in experimental animals. Such chemically synthesized preparations offer a prospect of ultimately producing multivalent synthetic vaccines against several viruses, bacteria and protozoa. PMID:2959387

Zuckerman, A. J.

1987-01-01

378

Drosophila S2 Cells Are Non-Permissive for Vaccinia Virus DNA Replication Following Entry via Low pH-Dependent Endocytosis and Early Transcription  

Microsoft Academic Search

Vaccinia virus (VACV), a member of the chordopox subfamily of the Poxviridae, abortively infects insect cells. We have investigated VACV infection of Drosophila S2 cells, which are useful for protein expression and genome-wide RNAi screening. Biochemical and electron microscopic analyses indicated that VACV entry into Drosophila S2 cells depended on the VACV multiprotein entry-fusion complex but appeared to occur exclusively

Zain Bengali; P. S. Satheshkumar; Zhilong Yang; Andrea S. Weisberg; Nir Paran; Bernard Moss; Paul Digard

2011-01-01

379

Chikungunya virus and prospects for a vaccine  

PubMed Central

In 2004, chikungunya virus (CHIKV) re-emerged from East Africa to cause devastating epidemics of debilitating and often chronic arthralgia that have affected millions of people in the Indian Ocean Basin and Asia. More limited epidemics initiated by travelers subsequently occurred in Italy and France, as well as human cases exported to most regions of the world, including the Americas where CHIKV could become endemic. Because CHIKV circulates during epidemics in an urban mosquito–human cycle, control of transmission relies on mosquito abatement, which is rarely effective. Furthermore, there is no antiviral treatment for CHIKV infection and no licensed vaccine to prevent disease. Here, we discuss the challenges to the development of a safe, effective and affordable chikungunya vaccine and recent progress toward this goal. PMID:23151166

Weaver, Scott C; Osorio, Jorge E; Livengood, Jill A; Chen, Rubing; Stinchcomb, Dan T

2013-01-01

380

Biological properties of H5 hemagglutinin expressed by vaccinia virus vector and its immunological reactivity with human sera.  

PubMed

A recombinant vaccinia virus harboring the full length hemagglutinin (HA) gene derived from a highly pathogenic avian influenza A/Thailand/1(KAN-1)/2004 (H5N1) virus (rVac-H5 HA virus) was constructed. The immunogenicity of the expressed HA protein was characterized using goat antiserum, mouse monoclonal antibody, and human sera. The expressed HA protein localized both in the cytoplasm and on the cytoplasmic membrane of the thymidine kinase negative cells infected with the rVac-H5 HA virus, as determined by immunofluorescence assay. Western blot analysis demonstrated that the rVac-H5 HA protein was post-translationally processed by proteolytic cleavage of the HA0 precursor into HA1 and HA2 domains; and all of these HA forms were immunogenic in BALB/c mice. The molecular weight (MW) of each HA domain was the same as the wild-type H5 HA produced in Madin-Darby canine kidney cells infected with the H5N1 virus, but was higher than that expressed by a baculovirus-insect cell system. Sera from all H5N1 survivors reacted to HA0, HA1, and HA2 domains; whereas sera from H5N1-uninfected subjects reacted to the HA2 domain only, but not to HA0 or HA1, indicating that some cross-subtypic immunity exists in the general population. There was a lot-to-lot variation of the recombinant HA produced in the baculovirus-insect cell system that might affect the detection rate of antibody directed against certain HA domains. PMID:23374152

Noisumdaeng, Pirom; Pooruk, Phisanu; Kongchanagul, Alita; Assanasen, Susan; Kitphati, Rungrueng; Auewarakul, Prasert; Puthavathana, Pilaipan

2013-02-01

381

Recombinant vesicular stomatitis virus as an HIV1 vaccine vector  

Microsoft Academic Search

Recombinant vesicular stomatitis virus (rVSV) is currently under evaluation as a human immunodeficiency virus (HIV)-1 vaccine vector. The most compelling reasons to develop rVSV as a vaccine vector include a very low seroprevalence in humans, the ability to infect and robustly express foreign antigens in a broad range of cells, and vigorous growth in continuous cell lines used for vaccine

David K. Clarke; David Cooper; Michael A. Egan; R. Michael Hendry; Christopher L. Parks; Stephen A. Udem

2006-01-01

382

Evaluating the immunogenicity and protective efficacy of a DNA vaccine encoding Lassa virus nucleoprotein  

Microsoft Academic Search

Several viruses in the Arenavirus genus of the family Arenaviridae cause severe, often fatal, hemorrhagic fever. One such virus, Lassa virus (LV), is a frequent cause of disease in Africa, and survivors often are left with substantial neurological impairment. The feasibility of protective immunization against LV infection, and the associated disease, has been demonstrated in animal models, using recombinant vaccinia

Maria P. Rodriguez-Carreno; Michael S. Nelson; Jason Botten; Kim Smith-Nixon; Michael J. Buchmeier; J. Lindsay Whitton

2005-01-01

383

A propagation model of computer virus with nonlinear vaccination probability  

NASA Astrophysics Data System (ADS)

This paper is intended to examine the effect of vaccination on the spread of computer viruses. For that purpose, a novel computer virus propagation model, which incorporates a nonlinear vaccination probability, is proposed. A qualitative analysis of this model reveals that, depending on the value of the basic reproduction number, either the virus-free equilibrium or the viral equilibrium is globally asymptotically stable. The results of simulation experiments not only demonstrate the validity of our model, but also show the effectiveness of nonlinear vaccination strategies. Through parameter analysis, some effective strategies for eradicating viruses are suggested.

Gan, Chenquan; Yang, Xiaofan; Liu, Wanping; Zhu, Qingyi

2014-01-01

384

Influenza A virus hemagglutinin protein subunit vaccine elicits vaccine-associated enhanced respiratory disease  

Technology Transfer Automated Retrieval System (TEKTRAN)

Vaccine-associated enhanced respiratory disease (VAERD) can occur when pigs are challenged with heterologous virus in the presence of non-neutralizing but cross-reactive antibodies elicited by whole inactivated virus (WIV) vaccine. The aim of this study was to compare the effects of heterologous del...

385

Probable Congenital Transmission of Reticuloendotheliosis Virus Caused by Vaccination with Contaminated Vaccines  

PubMed Central

Contaminated vaccine is one unexpected and potential origin of virus infection. In order to investigate the most likely cause of disease in a broiler breeder company of Shandong Province, all 17 batches of live-virus vacci