Science.gov

Sample records for vacuum annealing phenomena

  1. A review of anode phenomena in vacuum arces

    SciTech Connect

    Miller, H.C.

    1988-09-01

    This report discusses arc modes at the anode, experimental results pertinent to anode phenomena, and theoretical explanations of anode phenomena. The dominant mechanism controlling the formation of an anode spot appears to depend upon the electrode geometry, the electrode material, and the current waveforms of the particular vacuum arc being considered. In specific experimental conditions, either magnetic constriction in the gap plasma or gross anode melting or local anode evaporation can trigger the transition. However, the most probable explanation of anode spot formation is a combination theory, which considers magnetic constriction in the plasma together with the fluxes of material from the anode and cathode as well as the thermal, electrical, and geometric effects of the anode in analyzing the behavior of the anode and the nearby plasma. 88 refs., 6 figs., 8 tabs.

  2. Annealing effect for SnS thin films prepared by high-vacuum evaporation

    SciTech Connect

    Revathi, Naidu Bereznev, Sergei; Loorits, Mihkel; Raudoja, Jaan; Lehner, Julia; Gurevits, Jelena; Traksmaa, Rainer; Mikli, Valdek; Mellikov, Enn; Volobujeva, Olga

    2014-11-01

    Thin films of SnS are deposited onto molybdenum-coated soda lime glass substrates using the high-vacuum evaporation technique at a substrate temperature of 300 °C. The as-deposited SnS layers are then annealed in three different media: (1) H{sub 2}S, (2) argon, and (3) vacuum, for different periods and temperatures to study the changes in the microstructural properties of the layers and to prepare single-phase SnS photoabsorber films. It is found that annealing the layers in H{sub 2}S at 400 °C changes the stoichiometry of the as-deposited SnS films and leads to the formation of a dominant SnS{sub 2} phase. Annealing in an argon atmosphere for 1 h, however, causes no deviations in the composition of the SnS films, though the surface morphology of the annealed SnS layers changes significantly as a result of a 2 h annealing process. The crystalline structure, surface morphology, and photosensitivity of the as-deposited SnS films improves significantly as the result of annealing in vacuum, and the vacuum-annealed films are found to exhibit promising properties for fabricating complete solar cells based on these single-phase SnS photoabsorber layers.

  3. Surface enhanced Raman scattering of aged graphene: Effects of annealing in vacuum

    SciTech Connect

    Wang Yingying; Li Aizhi; Qu Shiliang; Ni Zhenhua; Zafar, Zainab; Qiu Teng; Zhang Yan; Ni Zhonghua; Yu Ting; Shen Zexiang

    2011-12-05

    In this paper, we report a simple method to recover the surface enhanced Raman scattering activity of aged graphene. The Raman signals of Rhodamine molecules absorbed on aged graphene are dramatically increased after vacuum annealing and comparable to those on fresh graphene. Atomic force microscopy measurements indicate that residues on aged graphene surface can efficiently be removed by vacuum annealing, which makes target molecule closely contact with graphene. We also find that the hole doping in graphene will facilitate charge transfer between graphene and molecule. These results confirm the strong Raman enhancement of target molecule absorbed on graphene is due to the charge transfer mechanism.

  4. Development of fast heating electron beam annealing setup for ultra high vacuum chamber

    SciTech Connect

    Das, Sadhan Chandra; School of Electronics, Devi Ahilya University, Indore 452001, MP; Institute of Physics, University of Greifswald, Felix Hausdroff Str. 6 ; Majumdar, Abhijit E-mail: majumdar@uni-greifswald.de; Hippler, R.; Katiyal, Sumant; Shripathi, T.

    2014-02-15

    We report the design and development of a simple, electrically low powered and fast heating versatile electron beam annealing setup (up to 1000 °C) working with ultra high vacuum (UHV) chamber for annealing thin films and multilayer structures. The important features of the system are constant temperature control in UHV conditions for the temperature range from room temperature to 1000 ºC with sufficient power of 330 W, at constant vacuum during annealing treatment. It takes approximately 6 min to reach 1000 °C from room temperature (∼10{sup −6} mbar) and 45 min to cool down without any extra cooling. The annealing setup consists of a UHV chamber, sample holder, heating arrangement mounted on suitable UHV electrical feed-through and electronic control and feedback systems to control the temperature within ±1 ºC of set value. The outside of the vacuum chamber is cooled by cold air of 20 °C of air conditioning machine used for the laboratory, so that chamber temperature does not go beyond 50 °C when target temperature is maximum. The probability of surface oxidation or surface contamination during annealing is examined by means of x-ray photoelectron spectroscopy of virgin Cu sample annealed at 1000 °C.

  5. Physical properties of vacuum evaporated CdTe thin films with post-deposition thermal annealing

    NASA Astrophysics Data System (ADS)

    Chander, Subhash; Dhaka, M. S.

    2015-09-01

    This paper presents the physical properties of vacuum evaporated CdTe thin films with post-deposition thermal annealing. The thin films of thickness 500 nm were grown on glass and indium tin oxide (ITO) coated glass substrates employing thermal vacuum evaporation technique followed by post-deposition thermal annealing at temperature 450 °C. These films were subjected to the X-ray diffraction (XRD),UV-Vis spectrophotometer, source meter and atomic force microscopy (AFM) for structural, optical, electrical and surface morphological analysis respectively. The X-ray diffraction patterns reveal that the films have zinc-blende structure of single cubic phase with preferred orientation (111) and polycrystalline in nature. The crystallographic and optical parameters are calculated and discussed in brief. The optical band gap is found to be 1.62 eV and 1.52 eV for as-grown and annealed films respectively. The I-V characteristics show that the conductivity is decreased for annealed thin films. The AFM studies reveal that the surface roughness is observed to be increased for thermally annealed films.

  6. Thin porous indium tin oxide nanoparticle films: effects of annealing in vacuum and air

    NASA Astrophysics Data System (ADS)

    Ederth, J.; Hultåker, A.; Niklasson, G. A.; Heszler, P.; van Doorn, A. R.; Jongerius, M. J.; Burgard, D.; Granqvist, C. G.

    2005-11-01

    Electrical and optical properties were investigated in porous thin films consisting of In2O3:Sn (indium tin oxide; ITO) nanoparticles. The temperature-dependent resistivity was successfully described by a fluctuation-induced tunneling model, indicating a sample morphology dominated by clusters of ITO nanoparticles separated by insulating barriers. An effective-medium model, including the effect of ionized impurity scattering, was successfully fitted to measured reflectance and transmittance. Post-deposition treatments were carried out at 773 K for 2 h in both air and vacuum. It is shown that vacuum annealing increases either the barrier width or the area between two conducting clusters in the samples and, furthermore, an extra optical absorption occurs close to the band gap. A subsequent air annealing then reduces the effect of the barriers on the electrical properties and diminishes the absorption close to the band gap.

  7. Twinned Si nanowires grown by high temperature annealing of Au/Si system in vacuum

    NASA Astrophysics Data System (ADS)

    Ruffino, F.; Torrisi, V.; Grimaldi, M. G.

    2015-09-01

    Periodically twinned Si nanowires were fabricated on Si surface by high-temperature annealing, in vacuum, of deposited colloidal Au nanoparticles. While performing the annealing process in a gas carrier with trace amounts of oxygen almost-cylindrical silica nanowires are obtained thanks to the stabilizing effect of the oxygen, faceted nanowires are obtained in vacuum condition. In this last case, nanowires with diameter in the 70-150 nm range and length of some microns are obtained. They present an arrangement of periodically twinned segments with a rather uniform thickness along the entire growth length. A minimum surface energy and strain energy argument is used to explain the formation of periodic twins in the Si nanowires. The thickness of the periodic twinned segments is found to be linearly proportional to the nanowire diameter, and a constant volume model is used to explain the relation. By the fit of the experimental data, in particular, an estimation of the twin energy formation is obtained.

  8. Influence of rapid thermal vacuum annealing and high temperature treatment on the properties of PSG films

    NASA Astrophysics Data System (ADS)

    Beschkov, G.; Bakardjieva, V.; Alexieva, Z.

    2008-05-01

    The effect is presented of rapid thermal annealing (RTA) in vacuum and thermal annealing in water vapor at 850 °C on the properties of phosphosilicate glass (PSG) films deposited in PECVD and μPCVD reactors. The films were characterized by etch rates and XPS and AES analyses. The RTA was carried out at 800 - 1400 °C at annealing times varying from 15 to 180 sec. The RTA caused a significant decrease in the etch rate, which is indicative of structural changes. The XPS and AES analyses showed that the PECVD PSG films contain excess Si due to the lower oxidation activity of N2O. The excess Si can be oxidized in water vapor at high temperatures. The excess Si leads to a decrease in the etching rate of the PECVD PSG layers as compared to that of the μPCVD films.

  9. Effects of Vacuum Annealing on the Conduction Characteristics of ZnO Nanosheets

    NASA Astrophysics Data System (ADS)

    Barnett, Chris J.; Smith, Nathan A.; Jones, Daniel R.; Maffeis, Thierry G. G.; Cobley, Richard J.

    2015-09-01

    ZnO nanosheets are a relatively new form of nanostructure and have demonstrated potential as gas-sensing devices and dye sensitised solar cells. For integration into other devices, and when used as gas sensors, the nanosheets are often heated. Here we study the effect of vacuum annealing on the electrical transport properties of ZnO nanosheets in order to understand the role of heating in device fabrication. A low cost, mass production method has been used for synthesis and characterisation is achieved using scanning electron microscopy (SEM), photoluminescence (PL), auger electron spectroscopy (AES) and nanoscale two-point probe. Before annealing, the measured nanosheet resistance displayed a non-linear increase with probe separation, attributed to surface contamination. Annealing to 300 °C removed this contamination giving a resistance drop, linear probe spacing dependence, increased grain size and a reduction in the number of n-type defects. Further annealing to 500 °C caused the n-type defect concentration to reduce further with a corresponding increase in nanosheet resistance not compensated by any further sintering. At 700 °C, the nanosheets partially disintegrated and the resistance increased and became less linear with probe separation. These effects need to be taken into account when using ZnO nanosheets in devices that require an annealing stage during fabrication or heating during use.

  10. Laser-plasma simulations of astrophysical phenomena and novel applications to semiconductor annealing

    NASA Astrophysics Data System (ADS)

    Grun, J.; Laming, M.; Manka, C.; Donnelly, D. W.; Covington, B. C.; Fischer, R. P.; Velikovich, A.; Khokhlov, A.

    2003-10-01

    At the frontier of plasma physics and technology are applications of laser-generated plasmas to laboratory simulations of astrophysical phenomena and to industrial processing. This article presents work at the Naval Research Laboratory in both of these areas. We show how laser plasmas are used to measure a blast wave corrugation overstability important in astrophysics. Detailed atomic physics calculations of radiative cooling within the blast front are used to develop a criterion of the existence of the overstability and are used to explain the experimental results. The criterion depends on quantities such as element abundances, densities, temperatures, and blast wave velocities—quantities which can be measured spectroscopically—and therefore used to infer whether astrophysical blast wave nonuniformities are the result of this instability. In other experiments, high-velocity jets are formed in the laboratory using miniature hollow cones. Jets produced by these cones are used to study the physics of jets occurring in supernovae and in star-forming accretion disks. In industrial semiconductor processing, annealing, that is, removing crystal damage and electrically activating the semiconductor, is a critical step. Industrial annealing techniques most often utilize heat generated by an oven, flash lamps, or a low-power laser. During such heating dopants within the semiconductor lattice diffuse and spread. This degrades the performance of circuits in which the individual circuit elements are very close to each other. We are developing an annealing technique in which shock or sound waves generated by a laser plasma are used to anneal the semiconductor. We have demonstrated that the method works over small areas and that it does not lead to significant dopant diffusion.

  11. Controlling superconductivity in La2-xSrxCuO4+δ by ozone and vacuum annealing

    DOE PAGESBeta

    Leng, Xiang; Bozovic, Ivan

    2014-11-21

    In this study we performed a series of ozone and vacuum annealing experiments on epitaxial La2-xSrxCuO4+δ thin films. The transition temperature after each annealing step has been measured by the mutual inductance technique. The relationship between the effective doping and the vacuum annealing time has been studied. Short-time ozone annealing at 470 °C oxidizes an underdoped film all the way to the overdoped regime. The subsequent vacuum annealing at 350 °C to 380 °C slowly brings the sample across the optimal doping point back to the undoped, non-superconducting state. Several ozone and vacuum annealing cycles have been done on themore »same sample and the effects were found to be repeatable and reversible Vacuum annealing of ozone-loaded LSCO films is a very controllable process, allowing one to tune the doping level of LSCO in small steps across the superconducting dome, which can be used for fundamental physics studies.« less

  12. Controlling superconductivity in La2-xSrxCuO4+δ by ozone and vacuum annealing

    DOE PAGESBeta

    Leng, Xiang; Bozovic, Ivan

    2014-11-21

    In this study we performed a series of ozone and vacuum annealing experiments on epitaxial La2-xSrxCuO4+δ thin films. The transition temperature after each annealing step has been measured by the mutual inductance technique. The relationship between the effective doping and the vacuum annealing time has been studied. Short-time ozone annealing at 470 °C oxidizes an underdoped film all the way to the overdoped regime. The subsequent vacuum annealing at 350 °C to 380 °C slowly brings the sample across the optimal doping point back to the undoped, non-superconducting state. Several ozone and vacuum annealing cycles have been done on themore » same sample and the effects were found to be repeatable and reversible Vacuum annealing of ozone-loaded LSCO films is a very controllable process, allowing one to tune the doping level of LSCO in small steps across the superconducting dome, which can be used for fundamental physics studies.« less

  13. Impact of thermal annealing on optical properties of vacuum evaporated CdTe thin films for solar cells

    NASA Astrophysics Data System (ADS)

    Chander, Subhash; Purohit, A.; Lal, C.; Nehra, S. P.; Dhaka, M. S.

    2016-05-01

    In this paper, the impact of thermal annealing on optical properties of cadmium telluride (CdTe) thin films is investigated. The films of thickness 650 nm were deposited on thoroughly cleaned glass substrate employing vacuum evaporation followed by thermal annealing in the temperature range 250-450 °C. The as-deposited and annealed films were characterized using UV-Vis spectrophotometer. The optical band gap is found to be decreased from 1.88 eV to 1.48 eV with thermal annealing. The refractive index is found to be in the range 2.73-2.92 and observed to increase with annealing treatment. The experimental results reveal that the thermal annealing plays an important role to enhance the optical properties of CdTe thin films and annealed films may be used as absorber layer in CdTe/CdS solar cells.

  14. Physical property characterization of Fe-tube encapsulated and vacuum annealed bulk MgB 2

    NASA Astrophysics Data System (ADS)

    Awana, V. P. S.; Rawat, Rajeev; Gupta, Anurag; Isobe, M.; Singh, K. P.; Vajpayee, Arpita; Kishan, H.; Takayama-Muromachi, E.; Narlikar, A. V.

    2006-08-01

    We report the phase formation, and present a detailed study of magnetization and resistivity under magnetic field of MgB 2 polycrystalline bulk samples prepared by the Fe-tube encapsulated and vacuum (10 -5 Torr) annealed (750 ∘C) route. Zero-field-cooled magnetic susceptibility (χ) measurements exhibited a sharp transition to the superconducting state with a sizeable diamagnetic signal at 39 K (Tc). The measured magnetization loops of the samples, despite the presence of flux jumps, exhibited a stable current density (Jc) of around 2.4×10 5 A/cm 2 in up to 2 T (Tesla) field and at temperatures (T) up to 10 K. The upper critical field is estimated from resistivity measurements in various fields and shows a typical value of 8 T at 21 K. Further, χ measurements at an applied field of 0.1 T reveal a paramagnetic Meissner effect (PME) that is briefly discussed.

  15. The surface of SrTiO3 (111): effect of annealing in vacuum and in oxygen

    NASA Astrophysics Data System (ADS)

    Saghayezhian, Mohammad; Chen, Lina; Wang, Gaomin; Guo, Hangwen; Zhang, Jiandi; Plummer, Earl W.

    2015-03-01

    The surface of SrTiO3 (111) have created a new playground for new physics, exhibiting novel properties such as 2DEG and topological phases such as quantum spin Hall effect. Due to the polar nature of the surface, it is very susceptible to different kinds of reconstructions which results in various terminations. There has been a fair amount of investigations on SrTiO3 (111) as a function of sputtering and annealing, while less attention has been paid to its reconstruction when the surface comes in contact with oxygen or the mere effect of annealing in vacuum. We have focused on the surface reconstruction and chemical composition of SrTiO3 (111) as a function of annealing temperature and oxygen pressure using LEED and ARXPS. We observed that annealing in oxygen brings more Ti to the surface in comparison with annealing in vacuum. Our data show that the SrTiO3 (111) surface is highly reactive and easily absorbs carbon. Furthermore, we show that in contrast to SrTiO3 (001), where carbon tends to be physisorbed and can easily be removed by low temperature annealing, on SrTiO3 (111), carbon only leaves the surface after annealing to very high temperature. Also, our data show that the presence of oxygen can facilitate de-contamination of the surface and makes the surface more ordered. Supported by U.S. DOE under Grant No. DOE DE-SC0002136.

  16. Study of the I-V characteristics of nanostructured Pd films on a Si substrate after vacuum annealing

    SciTech Connect

    Tomilin, S. V. Yanovsky, A. S.; Tomilina, O. A.; Mikaelyan, G. R.

    2013-06-15

    The I-V characteristics of nanostructured Pd films on a Si substrate are investigated. The nanostructures (nanoislands) are formed by the vacuum annealing of continuous ultrathin Pd films sputtered onto a substrate. The shape of the I-V characteristics of the investigated Si substrate-Pd film system is shown to be heavily dependent on the degree of film nanostructuring. The surface morphology of the films is studied using scanning electron microscopy.

  17. Impact of thermal annealing on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications

    NASA Astrophysics Data System (ADS)

    Chander, Subhash; Dhaka, M. S.

    2016-06-01

    A study on impact of post-deposition thermal annealing on the physical properties of CdTe thin films is undertaken in this paper. The thin films of thickness 500 nm were grown on ITO and glass substrates employing thermal vacuum evaporation followed by post-deposition thermal annealing in air atmosphere within low temperature range 150-350 °C. These films were subjected to the XRD, UV-Vis NIR spectrophotometer, source meter, SEM coupled with EDS and AFM for structural, optical, electrical and surface topographical analysis respectively. The diffraction patterns reveal that the films are having zinc-blende cubic structure with preferred orientation along (111) and polycrystalline in nature. The crystallographic parameters are calculated and discussed in detail. The optical band gap is found in the range 1.48-1.64 eV and observed to decrease with thermal annealing. The current-voltage characteristics show that the CdTe films exhibit linear ohmic behavior. The SEM studies show that the as-grown films are homogeneous, uniform and free from defects. The AFM studies reveal that the surface roughness of films is observed to increase with annealing. The experimental results reveal that the thermal annealing has significant impact on the physical properties of CdTe thin films and may be used as absorber layer to the CdTe/CdS thin films solar cells.

  18. Controlling superconductivity in La2-xSrxCuO4+δ by ozone and vacuum annealing

    SciTech Connect

    Leng, Xiang; Bozovic, Ivan

    2014-11-21

    In this study we performed a series of ozone and vacuum annealing experiments on epitaxial La2-xSrxCuO4+δ thin films. The transition temperature after each annealing step has been measured by the mutual inductance technique. The relationship between the effective doping and the vacuum annealing time has been studied. Short-time ozone annealing at 470 °C oxidizes an underdoped film all the way to the overdoped regime. The subsequent vacuum annealing at 350 °C to 380 °C slowly brings the sample across the optimal doping point back to the undoped, non-superconducting state. Several ozone and vacuum annealing cycles have been done on the same sample and the effects were found to be repeatable and reversible Vacuum annealing of ozone-loaded LSCO films is a very controllable process, allowing one to tune the doping level of LSCO in small steps across the superconducting dome, which can be used for fundamental physics studies.

  19. Vacuum annealed cerium-substituted yttrium iron garnet films on non-garnet substrates for integrated optical circuits

    SciTech Connect

    Goto, Taichi; Ross, C. A.; Eto, Yu; Kobayashi, Keiichi; Haga, Yoji; Inoue, Mitsuteru

    2013-05-07

    Polycrystalline cerium-substituted yttrium iron garnet (CeYIG) showing large Faraday rotation (FR) in the near-IR region was grown on non-garnet (synthetic fused silica, Si, and Si-on-insulator) substrates by sputtering followed by thermal annealing in vacuum. The FR of the films is comparable to the single crystal value. Structural characterization, magnetic properties, refractive index, extinction coefficient, surface topography, and FR vs. wavelength were measured and the magnetooptical figure of merit was compared with that of CeYIG films on garnet substrates.

  20. The evolution of chemical nature on U-0.79 wt.%Ti surface during vacuum annealing

    NASA Astrophysics Data System (ADS)

    Shi, Peng; Luo, Lizhu; Zhao, Yawen; Fu, Xiaoguo; Ao, Bingyun; Bai, Bin; Wang, Xiaolin

    2015-07-01

    The evolution of the oxide-overlayer's chemical nature on the surface of U-0.79 wt.%Ti alloy during vacuum annealing has been examined in situ by X-ray photoelectron spectroscopy (XPS). A specimen sheet of the alloy covered by oxide films is heated from room temperature to 700 °C in vacuum. It is found that the UO2+x outer oxide layer starts to be reduced to UO2 at 200 °C. Between 300 and 400 °C, an oxycarbide (UOxCy) layer is observed due to the reaction between UO2 and carbon. Above 500 °C, UOxCy decomposes and the surface covered oxide layer starts to be reduced to the metallic state, meanwhile, a thermal driven segregation of Ti to the surface is also observed.

  1. Surface phase, morphology, and charge distribution transitions on vacuum and ambient annealed SrTi O3 (100)

    NASA Astrophysics Data System (ADS)

    Dagdeviren, Omur E.; Simon, Georg H.; Zou, Ke; Walker, Fred J.; Ahn, Charles; Altman, Eric I.; Schwarz, Udo D.

    2016-05-01

    The surface structures of SrTi O3 (100) single crystals were examined as a function of annealing time and temperature in either oxygen atmosphere or ultrahigh vacuum (UHV) using noncontact atomic force microscopy (NC-AFM), Auger electron spectroscopy (AES), and low-energy electron diffraction (LEED). Samples were subsequently analyzed for the effect the modulation of their charge distribution had on their surface potential. It was found that the evolution of the SrTi O3 surface roughness, stoichiometry, and reconstruction depends on the preparation scheme. LEED revealed phase transitions from a (1 ×1 ) termination to an intermediate c (4 ×2 ) reconstruction to ultimately a (√ 13 ×√ 13 ) -R 33 .7∘ surface phase when the surface was annealed in an oxygen flux, while the reverse transition from (√ 13 ×√ 13 ) -R 33 .7∘ to c (4 ×2 ) was observed when samples were annealed in UHV. When the surface reverted to c (4 ×2 ) , AES data indicated decreases in both the surface Ti and O concentrations. These findings were corroborated by NC-AFM imaging, where initially Ti O2 -terminated crystals developed half-unit cell high steps following UHV annealing, which is typically attributed to a mix of SrO and Ti O2 terminations. Surface roughness evolved nonmonotonically with UHV annealing temperature, which is explained by electrostatic modulations of the surface potential caused by increasing oxygen depletion. This was further corroborated by experiments in which the apparent roughness tracked in NC-AFM could be correlated with changes in the surface charge distribution that were controlled by applying a bias voltage to the sample. Based on these findings, it is suggested that careful selection of preparation procedures combined with application of an electric field may be used to tune the properties of thin films grown on SrTi O3 .

  2. The expansion of a plasma into a vacuum - Basic phenomena and processes and applications to space plasma physics

    NASA Technical Reports Server (NTRS)

    Wright, K. H., Jr.; Stone, N. H.; Samir, U.

    1983-01-01

    In this review attention is called to basic phenomena and physical processes involved in the expansion of a plasma into a vacuum, or the expansion of a plasma into a more tenuous plasma, in particular the fact that upon the expansion, ions are accelerated and reach energies well above their thermal energy. Also, in the process of the expansion a rarefaction wave propagates into the ambient plasma, an ion front moves into the expansion volume, and discontinuities in plasma parameters occur. The physical processes which cause the above phenomena are discussed, and their possible application is suggested for the case of the distribution of ions and electrons (hence plasma potential and electric fields) in the wake region behind artificial and natural obstacles moving supersonically in a rarefied space plasma. To illustrate this, some in situ results are reexamined. Directions for future work in this area via the utilization of the Space Shuttle and laboratory work are also mentioned.

  3. Rapid thermal annealing effects on vacuum evaporated ITO for InGaN/GaN blue LEDs

    NASA Astrophysics Data System (ADS)

    Yan, Ding; Weiling, Guo; Yanxu, Zhu; Jianpeng, Liu; Weiwei, Yan

    2012-06-01

    8 mil × 10 mil InGaN/GaN blue LEDs with indium tin oxide (ITO) emitting at 460 nm were fabricated. A vacuum evaporation technique was adopted to deposit ITO on P-GaN with thickness of 240 nm. The electrical and optical properties of ITO films on P-GaN wafers, as well as rapid thermal annealing (RTA) effects at different temperatures (100 to 550 °C) were analyzed and compared. It was found that resistivity of 450 °C RTA was as low as 1.19 × 10-4 Ω·cm, along with a high transparency of 94.17% at 460 nm. AES analysis indicated the variation of oxygen content after 450 °C annealing, and ITO contact resistance showed a minimized value of 3.9 × 10-3 Ω·cm2. With 20 mA current injection, it was found that forward voltage and output power were 3.14 V and 12.57 mW. Furthermore, maximum luminous flux of 0.49 lm of ITO RTA at 550 °C was measured, which is the consequence of a higher transparency.

  4. Effect of thermal annealing in vacuum on the photovoltaic properties of electrodeposited Cu2O-absorber solar cell

    NASA Astrophysics Data System (ADS)

    Dimopoulos, T.; Peić, A.; Abermann, S.; Postl, M.; List-Kratochvil, E. J. W.; Resel, R.

    2014-07-01

    Heterojunction solar cells were fabricated by electrochemical deposition of p-type, cuprous oxide (Cu2O) absorber on sputtered, n-type ZnO layer. X-ray diffraction measurements revealed that the as-deposited absorber consists mainly of Cu2O, but appreciable amounts of metallic Cu and cupric oxide (CuO) are also present. These undesired oxidation states are incorporated during the deposition process and have a detrimental effect on the photovoltaic properties of the cells. The open circuit voltage (VOC), short circuit current density (jSC), fill factor (FF) and power conversion efficiency (η) of the as-deposited cells are 0.37 V, 3.71 mA/cm2, 35.7% and 0.49%, respectively, under AM1.5G illumination. We show that by thermal annealing in vacuum, at temperatures up to 300 °C, compositional purity of the Cu2O absorber could be obtained. A general improvement of the heterojunction and bulk materials quality is observed, reflected upon the smallest influence of the shunt and series resistance on the transport properties of the cells in dark and under illumination. Independent of the annealing temperature, transport is dominated by the space-charge layer generation-recombination current. After annealing at 300 °C the solar cell parameters could be significantly improved to the values of: VOC = 0.505 V, jSC = 4.67 mA/cm2, FF = 47.1% and η = 1.12%.

  5. Postarc phenomena in a diffuse self-commutating dc vacuum arc

    SciTech Connect

    Graneau, N. . Dept. of Engineering Science)

    1989-10-01

    Measurements have been made of the postarc chopping current of a self-commutating dc vacuum arc. Cathode current, anode current, and arc voltage, as well as ion current, to a grounded shield are monitored. A qualitative description of conditions in the gap is proposed, explaining the apparent current reversal observed.

  6. High-Vacuum Annealing of Polythiophene:Methanofullerene Bulk Heterojunction Solar Cells

    NASA Astrophysics Data System (ADS)

    Segui, Jennifer; Gearba, Ioana; Rafailovich, Miriam; Black, Charles

    2009-03-01

    Solar cell device architectures incorporating photoactive layers of immiscible blends of organic semiconductors achieve improved photovoltaic power conversion efficiency compared to planar device geometries. We have fabricated bulk heterojunction solar cells with active layer blends of poly-3 hexylthiophene (P3HT) and the fullerene derivative, [6,6] phenyl C61-butyric acid methyl ester (PCBM). Spin casting the blend from a chlorobenzene solution forms nanometer-scale domains of electron donor and acceptor phases in the device active layer. We solution process the active layers in ambient atmospheric conditions prior to aluminum contact evaporation resulting in inevitable oxygen adsorption in the P3HT bulk and interfaces. We have investigated several device post-fabrication thermal treatments for driving oxygen from the device active layer, including different temperatures, times, and vacuum pressures. We evaluate the efficacy of this technique in improving Al contact quality, film morphology, solar cell efficiency, and reproducibility via analysis of device current-voltage characteristics and tapping mode atomic force microscopy.

  7. Effect of non-vacuum thermal annealing on high indium content InGaN films deposited by pulsed laser deposition.

    PubMed

    Wang, Tzu-Yu; Ou, Sin-Liang; Shen, Kun-Ching; Wuu, Dong-Sing

    2013-03-25

    InGaN films with 33% and 60% indium contents were deposited by pulsed laser deposition (PLD) at a low growth temperature of 300 °C. The films were then annealed at 500-800 °C in the non-vacuum furnace for 15 min with an addition of N(2) atmosphere. X-ray diffraction results indicate that the indium contents in these two films were raised to 41% and 63%, respectively, after annealing in furnace. In(2)O(3) phase was formed on InGaN surface during the annealing process, which can be clearly observed by the measurements of auger electron spectroscopy, transmission electron microscopy and x-ray photoelectron spectroscopy. Due to the obstruction of indium out-diffusion by forming In(2)O(3) on surface, it leads to the efficient increment in indium content of InGaN layer. In addition, the surface roughness was greatly improved by removing In(2)O(3) with the etching treatment in HCl solution. Micro-photoluminescence measurement was performed to analyze the emission property of InGaN layer. For the as-grown InGaN with 33% indium content, the emission wavelength was gradually shifted from 552 to 618 nm with increasing the annealing temperature to 800 °C. It reveals the InGaN films have high potential in optoelectronic applications. PMID:23546117

  8. Effect of Vacuum Annealing on the Characteristics of Plasma Sprayed Al2O3-13wt.%TiO2 Coatings

    NASA Astrophysics Data System (ADS)

    Jingjing, Zhang; Zehua, Wang; Pinghua, Lin; Hongbin, Yuan; Zehua, Zhou; Shaoqun, Jiang

    2012-09-01

    Adhesion strength is one of the critical properties for plasma-sprayed coating. In this study, the plasma-sprayed Al2O3-13wt.%TiO2/NiCrAl coatings were annealed at 300-900 °C for 6 h in vacuum. The tensile bond strength and porosity of the coatings were investigated. The microstructure and the fracture were studied using optical microscopy, scanning electron spectroscopy, and x-ray diffraction. It was found that the tensile bond strength of coatings increased with the increase of annealing temperature until 500 °C, reaching the maximum value of 41.2 MPa, and then decreased as the annealing temperature continues to increase. All coatings presented a brittle fracture and the fracture occurred inside the ceramic coatings except for the coating annealed at 500 °C, which had a brittle-ductile mixed fracture and the fracture occurred at the interface of bond coating and the substrate.

  9. Improvement of electrical characteristics of solution-processed InZnO thin-film transistor by vacuum annealing and nitrogen pressure treatment at 200 C

    NASA Astrophysics Data System (ADS)

    Jeong, Woong Hee; Rim, You Seung; Lim Kim, Dong; Kim, Hyun Jae

    2015-12-01

    Electrical characteristics of the InZnO (IZO) thin-film transistor (TFT) using solution process were improved via vacuum annealing and N2 pressure treatment (PT) at 200 C. Especially, the PT reduced the IZO film thickness and enhanced the IZO film density. It reduced the trap sites at the interface of IZO/gate insulator and those in the IZO bulk. Therefore, the PT IZO TFT exhibited a higher mobility of 4.44 cm2 V?1 s?1 and a steeper subthreshold swing of 0.79 V/decade than non-PT IZO TFT. The improvement of hysteresis on the PT IZO TFT was also observed.

  10. Hysteresis-free, stable and efficient perovskite solar cells achieved by vacuum-treated thermal annealing of CH3NH3PbI3

    NASA Astrophysics Data System (ADS)

    Xie, Fengxian; Zhang, Di; Choy, Wallace C. H.

    2015-09-01

    The lead halide-based perovskite solar cells have emerged as a promising candidate in photovoltaic applications. However, the precise control over the morphologiy of the perovskite films (minimizing pore formation) and enhanced stability and reproducibility of the devices remain challenging, even though both will be necessary for further advancements. Here we introduce vacuum-assisted thermal annealing as a means of controlling the composition and morphology of the CH3NH3PbI3 films formed from PbCl2 and CH3NH3I as precursors. We identify the critical role that the CH3NH3Cl generated as a byproduct during the pervoskite synthesis plays for the photovoltaic performance of the perovskite film. Removing this byproduct through vacuum-assisted thermal annealing we succeeded in producing pure, pore-free planar CH3NH3PbI3 films showing high conversion efficiency (PCE) reaching 14.5%). Removal of CH3NH3Cl strongly attenuate the photocurrent hysteresis.

  11. A vacuum-annealing strategy for improving near-infrared super long persistent luminescence in Cr(3+) doped zinc gallogermanate nanoparticles for bio-imaging.

    PubMed

    Yang, Jian; Liu, Yuxue; Yan, Duanting; Zhu, Hancheng; Liu, Chunguang; Xu, Changshan; Ma, Li; Wang, Xiaojun

    2016-01-19

    Novel Cr(3+) doped zinc gallogermanate (ZGGO) nanoparticles with 697 nm near-infrared (NIR) super long afterglow were prepared via a hydrothermal method. Subsequently, a vacuum-annealing strategy was adopted to improve NIR afterglow in ZGGO:Cr(3+) nanoparticles. For the sample annealed at 800 °C, no variation in the particle size is observed, the persistent luminescence increases by an order of magnitude (∼14 times) and the NIR afterglow time reaches more than 15 hours relative to the as-prepared sample. After annealing at temperatures higher than 880 °C, the persistent luminescence of the nanoparticles is enhanced, but they show aggregated-surface behavior. Meanwhile, shallow and deep traps are generated, related to the antisite defects and VGe-Cr(3+)-VO defect clusters, respectively. Finally, we apply ZGGO:Cr(3+) persistent luminescence nanoparticles (PLNPs) to a human serum albumin (HSA) colloid solution, and more than 1 h of NIR persistent luminescence is detected under 320 nm excitation. The quenching effect of NIR luminescence by OH(-) in the HSA solution is observed based on the reduced contribution of surface Cr(3+) in PLNPs to NIR luminescence. Our results suggest that ZGGO:Cr(3+) PLNPs have potential applications for in vivo bio-imaging. PMID:26647021

  12. Characterization of mixed titanium-niobium oxide Ti2Nb10O29 annealed in vacuum as anode material for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Takashima, Toshiki; Tojo, Tomohiro; Inada, Ryoji; Sakurai, Yoji

    2015-02-01

    In this paper, the properties of mixed titanium-niobium oxide Ti2Nb10O29 (TNO) annealed in air and vacuum as anode material for lithium-ion battery were investigated. The color of TNO annealed in vacuum (V-TNO) is dark blue while white for TNO annealed in air (A-TNO). Moreover, lattice parameters for V-TNO were confirmed to be slightly larger than those for A-TNO. Introduction of oxygen defect in V-TNO was confirmed by thermogravimetric analysis. X-ray photoelectron spectroscopy analysis also indicated that Ti4+ in V-TNO are partially reduced into Ti3+, due to the introduction of oxygen defect in V-TNO. Electronic conductivity at room temperature for uni-axially pressed V-TNO powder is estimated to be around 10-6-10-5 S cm-1, which is more than three digits higher than that for pressed A-TNO powder (= 10-9 S cm-1). The enhancement of intrinsic electronic conductivity of TNO greatly contributes for improving the rate performance. At low current density of 0.5 mA cm-2, both A-TNO and V-TNO showed reversible capacity around 250 mAh g-1 at potential range from 1.0 to 2.5 V vs. Li/Li+, while at higher current density of 10 mA cm-2, V-TNO maintained much higher discharge capacity of 150 mAh g-1 than that for TNO (= 50 mAh g-1).

  13. Characteristics of Al-doped ZnO thin films prepared in Ar + H{sub 2} atmosphere and their vacuum annealing behavior

    SciTech Connect

    Zhu, Bailin; Lü, Kun; Wang, Jun; Li, Taotao; Wu, Jun; Zeng, Dawen; Xie, Changsheng

    2013-11-15

    The microstructure and electrical–optical properties of Al-doped ZnO (AZO) films have been studied as a function of H{sub 2} flux in the magnetron sputtering process at 150 °C and postannealing temperature in vacuum. As H{sub 2} flux increases in the sputtering gas, the AZO films deposited have a (002) preferred orientation rather than the mixed (100) and (002) orientations, the grain size shows a tendency to first increase then decrease, and (002) diffraction peak position is inclined to shift to higher angles first then to lower angles. The resistivity of the films first decreases then increases with H{sub 2} flux, and the lowest resistivity of 4.02 × 10{sup −4}Ω cm is obtained at a H{sub 2} flux of 10 sccm. The average transmittance in the visible region shows little dependence on H{sub 2} flux. As a whole, the AZO films with higher values of figure of merit are obtained when the H{sub 2} flux is in the range of 6–12 sccm. The AZO films deposited in Ar and Ar + H{sub 2} exhibit different annealing behaviors. For the AZO film deposited in Ar, the grain size gradually increases, the stresses are relaxed, the resistivity first decreases then increases, and the average transmittance in the visible region is unchanged initially then somewhat decreased as annealing temperature is increased. The optimum annealing temperature for improving properties of AZO films deposited in Ar is 300 °C. For the AZO films deposited in Ar + H{sub 2}, annealing does not significantly change the microstructure but increases the resistivity of the films; the average transmittance in the visible region remains unchanged initially but greatly reduced with further increase in annealing temperature. The carrier transport in the as-deposited and annealed films appears to be controlled by a mechanism of grain boundary scattering, and the value of E{sub g} increases with the increase in carrier concentration due to Burstein–Moss effect.

  14. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Vacuum relaxation and annealing-induced enhancement of mobility of regioregular poly (3-hexylthiophene) field-effect transistors

    NASA Astrophysics Data System (ADS)

    Tian, Xue-Yan; Xu, Zheng; Zhao, Su-Ling; Zhang, Fu-Jun; Xu, Xu-Rong; Yuan, Guang-Cai; Li, Jing; Sun, Qin-Jun; Wang, Ying

    2009-11-01

    In order to enhance the performance of regioregular poly(3-hexylthiophene) (RR-P3HT) field-effect transistors (FETs), RR-P3HT FETs are prepared by the spin-coating method followed by vacuum placement and annealing. This paper reports that the crystal structure, the molecule interconnection, the surface morphology, and the charge carrier mobility of RR-P3HT films are affected by vacuum relaxation and annealing. The results reveal that the field-effect mobility of RR-P3HT FETs can reach 4.17 × 10-2 m2/(V · s) by vacuum relaxation at room temperature due to an enhanced local self-organization. Furthermore, it reports that an appropriate annealing temperature can facilitate the crystal structure, the orientation and the interconnection of polymer molecules. These results show that the field-effect mobility of device annealed at 150 °C for 10 minutes in vacuum at atmosphere and followed by placement for 20 hours in vacuum at room temperature is enhanced dramatically to 9.00 × 10-2 cm2/(V · s).

  15. Compositional study of vacuum annealed Al doped ZnO thin films obtained by RF magnetron sputtering

    SciTech Connect

    Shantheyanda, B. P.; Todi, V. O.; Sundaram, K. B.; Vijayakumar, A.; Oladeji, I.

    2011-09-15

    Aluminum doped zinc oxide (AZO) thin films were obtained by RF magnetron sputtering. The effects of deposition parameters such as power, gas flow conditions, and substrate heating have been studied. Deposited and annealed films were characterized for composition as well as microstructure using x ray photoelectron spectroscopy and x ray diffraction. Films produced were polycrystalline in nature. Surface imaging and roughness studies were carried out using SEM and AFM, respectively. Columnar grain growth was predominantly observed. Optical and electrical properties were evaluated for transparent conducting oxide applications. Processing conditions were optimized to obtain highly transparent AZO films with a low resistivity value of 6.67 x 10{sup -4}{Omega} cm.

  16. Temperature-dependent phase separation during annealing of Ge2Sb2Te5 thin films in vacuum

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng; Pan, Jisheng; Fang, Lina Wei-Wei; Yeo, Yee-Chia; Foo, Yong Lim; Zhao, Rong; Shi, Luping; Tok, Eng Soon

    2012-06-01

    Thermal stability of 100 nm Ge2Sb2Te5 thin film during annealing from room temperature to 240 C inside a UHV chamber was studied in situ by X-ray photoelectron spectroscopy (XPS) and ex situ by X-ray diffraction (XRD) and atomic force microscopy (AFM). Ge species are found to diffuse preferentially to the surface when GST film is annealed from 25 C to 100 C. This process is accompanied by a change of phase whereby the amorphous film completely becomes face-center-cubic (FCC) phase at 100 C. From 100 C to 200 C, both Sb and Te species are observed to diffuse more to the surface. The FCC phase is partially changed into hexagonal-close-pack (HCP) phase at 200 C. At 220 C, FCC phase is completely transformed into HCP phase. Loss of Sb and Te are also detected from the surface and this is attributed to desorption due to their high vapor pressures. At 240 C, Sb and Te species are found to have desorbed completely from the surface, and leave behind Ge-rich 3D droplets on the surface. The separation of Ge2Sb2Te5 into Sb,Te-rich phase and Ge-rich phase is thus the main mechanism to account for the failure of Ge2Sb2Te5-based phase change memory devices under thermal stress.

  17. Vacuum induced transparency and slow light phenomena in a two-level atomic ensemble controlled by a cavity

    NASA Astrophysics Data System (ADS)

    Guo, Yu-Jie; Nie, Wen-Jie

    2015-09-01

    We study the optical properties of a two-level atomic ensemble controlled by a high-finesse cavity. Even though the cavity is initially in the vacuum state in the absence of external driving, the probe response of the atomic ensemble can be dramatically modified. When the collectively enhanced atom-cavity coupling is strong enough and the cavity decay rate is much smaller than the atomic damping rate, an electromagnetically induced transparency-like coherent phenomenon emerges with a dip absorption for the response of the two-level atoms in the cavity without driving, and thus is called vacuum induced transparency. We also show the slow light with very low group velocity in such an atomic ensemble. Project supported by the National Natural Science Foundation of China (Grant No. 11304010).

  18. Annealing effect on the particle size and chemical composition of activated carbon obtained from vacuum furnace of teak sawdust

    NASA Astrophysics Data System (ADS)

    Armynah, B.; Tahir, D.; Jaya, N.

    2014-09-01

    Activated carbon was produced from sawdust by using physical method in a high temperature vacuum furnace without additional chemical. Fast pyrolysis process was carried out prior in fluidized a bed furnace to produce char before activation process. Experiments were conducted to investigate the influence of various process parameters such as particle size, activation temperature and activation time on the quality of the activated carbon. In addition, the chemical composition studies were done by using x-ray fluorescence (XRF) spectroscopy. The crystallite sizes were calculated by using Scherer equation based on x-ray diffraction (XRD) spectroscopy data. The pyrolysis temperature and time were varied from 600°C to 900°C and from 3 hours to 6 hours, respectively. The particle size of activated carbon was increase with increasing temperature. The composition and crystallite size of the prepared activated carbon was compared with the non-activated carbon. The results indicated that the teak sawdust carbon could be employed as a low cost alternative to produce commercial activated carbon.

  19. Annealing effect on the particle size and chemical composition of activated carbon obtained from vacuum furnace of teak sawdust

    SciTech Connect

    Armynah, B. Tahir, D. Jaya, N.

    2014-09-25

    Activated carbon was produced from sawdust by using physical method in a high temperature vacuum furnace without additional chemical. Fast pyrolysis process was carried out prior in fluidized a bed furnace to produce char before activation process. Experiments were conducted to investigate the influence of various process parameters such as particle size, activation temperature and activation time on the quality of the activated carbon. In addition, the chemical composition studies were done by using x-ray fluorescence (XRF) spectroscopy. The crystallite sizes were calculated by using Scherer equation based on x-ray diffraction (XRD) spectroscopy data. The pyrolysis temperature and time were varied from 600°C to 900°C and from 3 hours to 6 hours, respectively. The particle size of activated carbon was increase with increasing temperature. The composition and crystallite size of the prepared activated carbon was compared with the non-activated carbon. The results indicated that the teak sawdust carbon could be employed as a low cost alternative to produce commercial activated carbon.

  20. In-situ x-ray diffraction studies on post-deposition vacuum-annealing of ultra-thin iron oxide films

    SciTech Connect

    Bertram, F.; Deiter, C.; Pflaum, K.; Suendorf, M.; Otte, C.; Wollschlaeger, J.

    2011-11-15

    A maghemite ({gamma}-Fe{sub 2}O{sub 3}) film of 8.3 nm thickness is epitaxially grown on MgO(001) single crystal substrate by reactive molecular beam epitaxy. Chemical composition and crystal structure of the surface was studied by x-ray photoelectron spectroscopy and low energy electron diffraction, respectively. Afterwards the sample was moved to a heating cell for in situ x-ray diffraction experiments on the post-deposition annealing process in high-vacuum to study structural phase transitions of the iron oxide film. The iron oxide film is reduced with increasing temperature. This reduction occurs in two steps that are accompanied by structural transitions. The first step is a reduction from {gamma}-Fe{sub 2}O{sub 3} to Fe{sub 3}O{sub 4} at 360 deg. C and the second step is the reduction from Fe{sub 3}O{sub 4} to FeO at 410 deg. C.

  1. Thermal analysis study of polysterene-poly(methyl methacrylate) (PS-PMMA) diblock copolymer thin films morphologies when annealed and sheared under vacuum in inert atmosphere

    NASA Astrophysics Data System (ADS)

    Pomales, Luis; Davila-Santana, Melissa; Rivera-Claudio, Mirna; Vedrine-Pauleus, Josee

    2011-03-01

    Diblock copolymers are made of two chemically bonded blocks, with incompatible monomers. This incompatibility gives the block the property to phase separate at temperatures above the glass transition (Tg). The ability to self-assemble into different mesophase structures is of great importance in nanolithography and nanofabrication. This research involves the morphological study of PS-PMMA thin films annealed under inert atmosphere. Our objective is to determine the microstructure properties of the PS-PMMA diblock copolymer as a function of film thickness, annealing temperature, and applied shear force. The PS-PMMA thin film is spin casted onto silicon substrates, and annealed under an inert atmosphere. Our initial results show that the samples have an incomplete formation of the microstructures. However, further film analysis is needed to study the morphological properties when annealed. Futures studies will focus on the effects of a shear force during annealing, to align the film microstructures.

  2. Study of the effect of thermal annealing on the optical and electrical properties of vacuum evaporated amorphous thin films in the system Ge20Te80-xBix

    NASA Astrophysics Data System (ADS)

    Bhatia, K. L.; Kishore, Nawal; Malik, Jitender; Singh, Mahender; Kundu, R. S.; Sharma, Ashwani; Srivastav, B. K.

    2002-03-01

    We systematically studied the effect of thermal annealing on the optical and electrical properties of amorphous semiconducting thin films in the system Ge20Te80-xBix (x = 0, 0.19, 2.93, 7.35) prepared by flash evaporation in a vacuum of 1 × 10-6 Torr. The films are characterized by x-ray diffraction (XRD) and electron probe micro analysis. The annealing temperature is kept at 150 °C, 180 °C and 220 °C. No crystallization of the thin films is achieved on annealing up to the temperature of 150 °C. At a higher temperature of annealing, microcrystals of Te, Bi2Te3, Ge-Te, etc, are observed along with an amorphous phase as indicated by XRD analysis. The fundamental optical absorption edge and reflection spectra of as-prepared and annealed films are determined. Optical interband transitions are observed for various films (as-prepared and annealed). The presence of crystalline Bi2Te3 in films annealed at 220 °C is also supported by the reflection spectrum. The optical energy gap (Eg), the slope parameter (Δ) of the absorption edge and the tailing parameter (B-1) of the energy band tails are computed from the optical data. The dc electrical conductivity (σdc) of various films is studied in the temperature range of 150-450 K. We observe that two types of conduction take place: conduction through extended states in the higher temperature region, and conduction through localized states in the band tails and at the Fermi level by the hopping process assisted by phonons at lower temperatures. The data at higher temperatures have been fitted with the expression σdc = σ0exp(-ΔE/kT) and the electrical parameters, ΔE and σ0, are also determined. It is observed that the bismuth concentration and annealing temperature dependences of the optical and electrical parameters are different in the two regions of compositions, x ≤ 2.93 and x > 2.93, indicating structural differences in the two sets of compositions. It is pointed out that the bulk form of these amorphous semiconductors exhibits a carrier sign reversal at a bismuth concentration of about 3.5 at%. However, the thin-film form of these amorphous semiconductors does not show such a carrier sign reversal in the electrical transport.

  3. Depth profile investigation of β-FeSi2 formed in Si(1 0 0) by high fluence implantation of 50 keV Fe ion and post-thermal vacuum annealing

    NASA Astrophysics Data System (ADS)

    Lakshantha, Wickramaarachchige J.; Kummari, Venkata C.; Reinert, Tilo; McDaniel, Floyd D.; Rout, Bibhudutta

    2014-08-01

    A single phase polycrystalline β-FeSi2 layer has been synthesized at the near surface region by implantation in Si(1 0 0) of a high fluence (∼1017 atoms/cm2) of 50 keV Fe ions and subsequent thermal annealing in vacuum at 800 °C. The depth profile of the implanted Fe atoms in Si(1 0 0) were simulated by the widely used transportation of ions in matter (TRIM) computer code as well as by the dynamic transportation of ions in matter code (T-DYN). The simulated depth profile predictions for this heavy ion implantation process were experimentally verified using Rutherford Backscattering Spectrometry (RBS) and X-ray Photoelectron Spectroscopy (XPS) in combination with Ar-ion etching. The formation of the β-FeSi2 phase was monitored by X-ray diffraction measurements. The T-DYN simulations show better agreement with the experimental Fe depth profile results than the static TRIM simulations. The experimental and T-DYN simulated results show an asymmetric distribution of Fe concentrated more toward the surface region of the Si substrate.

  4. Simulated annealing versus quantum annealing

    NASA Astrophysics Data System (ADS)

    Troyer, Matthias

    Based on simulated classical annealing and simulated quantum annealing using quantum Monte Carlo (QMC) simulations I will explore the question where physical or simulated quantum annealers may outperform classical optimization algorithms. Although the stochastic dynamics of QMC simulations is not the same as the unitary dynamics of a quantum system, I will first show that for the problem of quantum tunneling between two local minima both QMC simulations and a physical system exhibit the same scaling of tunneling times with barrier height. The scaling in both cases is O (Δ2) , where Δ is the tunneling splitting. An important consequence is that QMC simulations can be used to predict the performance of a quantum annealer for tunneling through a barrier. Furthermore, by using open instead of periodic boundary conditions in imaginary time, equivalent to a projector QMC algorithm, one obtains a quadratic speedup for QMC, and achieve linear scaling in Δ. I will then address the apparent contradiction between experiments on a D-Wave 2 system that failed to see evidence of quantum speedup and previous QMC results that indicated an advantage of quantum annealing over classical annealing for spin glasses. We find that this contradiction is resolved by taking the continuous time limit in the QMC simulations which then agree with the experimentally observed behavior and show no speedup for 2D spin glasses. However, QMC simulations with large time steps gain further advantage: they ``cheat'' by ignoring what happens during a (large) time step, and can thus outperform both simulated quantum annealers and classical annealers. I will then address the question how to optimally run a simulated or physical quantum annealer. Investigating the behavior of the tails of the distribution of runtimes for very hard instances we find that adiabatically slow annealing is far from optimal. On the contrary, many repeated relatively fast annealing runs can be orders of magnitude faster for hard sin glass problems. The intuitive explanation is that hard instances, which are stuck in the ``wrong'' minimum can be solved faster by perturbing them. I will finally discuss the consequences of these findings for designing better quantum annealers.

  5. Paranormal phenomena

    NASA Astrophysics Data System (ADS)

    Gaina, Alex

    1996-08-01

    Critical analysis is given of some paranormal phenomena events (UFO, healers, psychokinesis (telekinesis))reported in Moldova. It is argued that correct analysis of paranormal phenomena should be made in the framework of electromagnetism.

  6. Vacuum tunneling in gravity

    NASA Astrophysics Data System (ADS)

    Cho, Y. M.; Pak, D. G.

    2011-08-01

    Topologically non-trivial vacuum structures in gravity models with Cartan variables (vielbein and contortion) are considered. We study the possibility of vacuum spacetime tunneling in Einstein gravity assuming that the vielbein may play a fundamental role in quantum gravitational phenomena. It has been shown that in the case of RP3 space topology, the tunneling between non-trivial topological vacuums can be realized by means of Eguchi-Hanson gravitational instanton. In the Riemann-Cartan geometric approach to quantum gravity, the vacuum tunneling can be provided by means of contortion quantum fluctuations. We define a double self-duality condition for the contortion and give explicit self-dual configurations which can contribute to vacuum tunneling amplitude.

  7. Colloidal Phenomena.

    ERIC Educational Resources Information Center

    Russel, William B.; And Others

    1979-01-01

    Described is a graduate level engineering course offered at Princeton University in colloidal phenomena stressing the physical and dynamical side of colloid science. The course outline, reading list, and requirements are presented. (BT)

  8. Fluctuation phenomena

    SciTech Connect

    Montroll, E.W.; Lebowitz, J.L.

    1986-01-01

    Fluctuation phenomena are the ''tip of the iceberg'' revealing the existence, behind even the most quiescent appearing macroscopic states, of an underlying world of agitated, ever-changing microscopic processes. While the presence of these fluctuations can be ignored in some cases, e.g. if one is satisfied with purely thermostatic description of systems in equilibrium, they are central to the understanding of other phenomena, e.g. the nucleation of a new phase following the quenching of a system into the co-existence region. This volume contains a collection of review articles, written by experts in the field, on the subject of fluctuation phenomena. Some of the articles are of a very general nature discussing the modern mathematical formulation of the problems involved, while other articles deal with specific topics such as kinetics of phase transitions and conductivity in solids. The juxtaposition of the variety of physical situations in which fluctuation phenomena play an important role is novel and should give the reader an insight into this subject.

  9. Transport Phenomena.

    ERIC Educational Resources Information Center

    McCready, Mark J.; Leighton, David T.

    1987-01-01

    Discusses the problems created in graduate chemical engineering programs when students enter with a wide diversity of understandings of transport phenomena. Describes a two-semester graduate transport course sequence at the University of Notre Dame which focuses on fluid mechanics and heat and mass transfer. (TW)

  10. VACUUM TRAP

    DOEpatents

    Gordon, H.S.

    1959-09-15

    An improved adsorption vacuum trap for use in vacuum systems was designed. The distinguishing feature is the placement of a plurality of torsionally deformed metallic fins within a vacuum jacket extending from the walls to the central axis so that substantially all gas molecules pass through the jacket will impinge upon the fin surfaces. T fins are heated by direct metallic conduction, thereby ol taining a uniform temperature at the adeorbing surfaces so that essentially all of the condensible impurities from the evacuating gas are removed from the vacuum system.

  11. Vacuum Technology

    SciTech Connect

    Biltoft, P J

    2004-10-15

    The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.

  12. Vacuum Virtues

    ERIC Educational Resources Information Center

    Rathey, Allen

    2007-01-01

    Upright vacuums, like cars, vary in quality, features and performance. Like automobiles, some uprights are reliable, others may be problematic, and some become a problem as a result of neglect or improper use. So, how do education institutions make an informed choice and, having done so, ensure that an upright vacuum goes the distance? In this

  13. Vacuum mechatronics

    NASA Technical Reports Server (NTRS)

    Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo

    1989-01-01

    The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.

  14. Vacuum Virtues

    ERIC Educational Resources Information Center

    Rathey, Allen

    2007-01-01

    Upright vacuums, like cars, vary in quality, features and performance. Like automobiles, some uprights are reliable, others may be problematic, and some become a problem as a result of neglect or improper use. So, how do education institutions make an informed choice and, having done so, ensure that an upright vacuum goes the distance? In this…

  15. Post-annealed gallium and aluminum co-doped zinc oxide films applied in organic photovoltaic devices

    PubMed Central

    2014-01-01

    Gallium and aluminum co-doped zinc oxide (GAZO) films were produced by magnetron sputtering. The GAZO films were post-annealed in either vacuum or hydrogen microwave plasma. Vacuum- and hydrogen microwave plasma-annealed GAZO films show different surface morphologies and lattice structures. The surface roughness and the spacing between adjacent (002) planes decrease; grain growth occurs for the GAZO films after vacuum annealing. The surface roughness increases and nanocrystals are grown for the GAZO films after hydrogen microwave plasma annealing. Both vacuum and hydrogen microwave plasma annealing can improve the electrical and optical properties of GAZO films. Hydrogen microwave plasma annealing improves more than vacuum annealing does for GAZO films. An electrical resistivity of 4.7 × 10−4 Ω-cm and average optical transmittance in the visible range from 400 to 800 nm of 95% can be obtained for the GAZO films after hydrogen microwave plasma annealing. Hybrid organic photovoltaic (OPV) devices were fabricated on the as-deposited, vacuum-annealed, and hydrogen microwave plasma-annealed GAZO-coated glass substrates. The active layer consisted of blended poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) in the OPV devices. The power conversion efficiency of the OPV devices is 1.22% for the hydrogen microwave plasma-annealed GAZO films, which is nearly two times higher compared with that for the as-deposited GAZO films. PMID:25352768

  16. Post-Growth Annealing of Bridgman-grown CdZnTe and CdMnTe Crystals for Room-temperature Nuclear Radiation Detectors

    DOE PAGESBeta

    Egarievwe, Stephen U.; Yang, Ge; Egarievwe, Alexander; Okwechime, Ifechukwude O.; Gray, Justin; Hales, Zaveon M.; Hossain, Anwar; Camarda, Guiseppe S.; Bolotnikov, Aleksey E.; James, Ralph B.

    2015-02-11

    Bridgman-grown cadmium zinc telluride (CdZnTe or CZT) and cadmium manganese telluride (CdMnTe or CMT) crystals often have Te inclusions that limit their performances as X-ray- and gamma-ray-detectors. We present here the results of post-growth thermal annealing aimed at reducing and eliminating Te inclusions in them. In a 2D analysis, we observed that the sizes of the Te inclusions declined to 92% during a 60-h annealing of CZT at 510 °C under Cd vapor. Further, tellurium inclusions were eliminated completely in CMT samples annealed at 570 °C in Cd vapor for 26 h, whilst their electrical resistivity fell by an ordermore » of 102. During the temperature-gradient annealing of CMT at 730 °C and an 18 °C/cm temperature gradient for 18 h in a vacuum of 10-5 mbar, we observed the diffusion of Te from the sample, causing a reduction in size of the Te inclusions. For CZT samples annealed at 700 °C in a 10 °C/cm temperature gradient, we observed the migration of Te inclusions from a low-temperature region to a high one at 0.022 μm/s. During the temperature-gradient annealing of CZT in a vacuum of 10-5 mbar at 570 °C and 30 °C/cm for 18 h, some Te inclusions moved toward the high-temperature side of the wafer, while other inclusions of the same size, i.e., 10 µm in diameter, remained in the same position. These results show that the migration, diffusion, and reaction of Te with Cd in the matrix of CZT- and CMT-wafers are complex phenomena that depend on certain conditions.« less

  17. Post-Growth Annealing of Bridgman-grown CdZnTe and CdMnTe Crystals for Room-temperature Nuclear Radiation Detectors

    SciTech Connect

    Egarievwe, Stephen U.; Yang, Ge; Egarievwe, Alexander; Okwechime, Ifechukwude O.; Gray, Justin; Hales, Zaveon M.; Hossain, Anwar; Camarda, Guiseppe S.; Bolotnikov, Aleksey E.; James, Ralph B.

    2015-02-11

    Bridgman-grown cadmium zinc telluride (CdZnTe or CZT) and cadmium manganese telluride (CdMnTe or CMT) crystals often have Te inclusions that limit their performances as X-ray- and gamma-ray-detectors. We present here the results of post-growth thermal annealing aimed at reducing and eliminating Te inclusions in them. In a 2D analysis, we observed that the sizes of the Te inclusions declined to 92% during a 60-h annealing of CZT at 510 °C under Cd vapor. Further, tellurium inclusions were eliminated completely in CMT samples annealed at 570 °C in Cd vapor for 26 h, whilst their electrical resistivity fell by an order of 102. During the temperature-gradient annealing of CMT at 730 °C and an 18 °C/cm temperature gradient for 18 h in a vacuum of 10-5 mbar, we observed the diffusion of Te from the sample, causing a reduction in size of the Te inclusions. For CZT samples annealed at 700 °C in a 10 °C/cm temperature gradient, we observed the migration of Te inclusions from a low-temperature region to a high one at 0.022 μm/s. During the temperature-gradient annealing of CZT in a vacuum of 10-5 mbar at 570 °C and 30 °C/cm for 18 h, some Te inclusions moved toward the high-temperature side of the wafer, while other inclusions of the same size, i.e., 10 µm in diameter, remained in the same position. These results show that the migration, diffusion, and reaction of Te with Cd in the matrix of CZT- and CMT-wafers are complex phenomena that depend on certain conditions.

  18. Controlling preferred orientation and electrical conductivity of zinc oxide thin films by post growth annealing treatment

    NASA Astrophysics Data System (ADS)

    Kennedy, J.; Murmu, P. P.; Leveneur, J.; Markwitz, A.; Futter, J.

    2016-03-01

    We report the microstructural evolution of the preferred orientation and electrical conductivity of zinc oxide (ZnO) thin films prepared by ion beam sputtering. Elastic recoil detection analysis results showed 0.6 at% H in as-deposited film which decreased to 0.35 at% in air annealed film due to H diffusion. XRD results showed that the preferred orientation can be tuned by selecting annealing conditions. Vacuum annealed films exhibited (1 0 0) orientation, whereas air annealed film showed (0 0 2) orientation. The annealing conditions caused a dramatic increase in the resistivity of air annealed films (∼106 Ω cm), whereas vacuum annealed films showed lower resistivity (∼10-2 Ω cm). High resistivity in air annealed film is attributed to the lack of hydrogen interstitials and hydrogen-oxygen vacancy complexes. Raman results supported the XRD results which demonstrated that annealing assisted in recovery of the crystalline disorder in as-deposited films. Air annealed film exhibited the highest optical transmission (89.7%) in the UV-vis region compared to as-deposited and vacuum annealed films (∼85%). Optical bandgap was found to vary between 3.11 eV and 3.18 eV in as-deposited and annealed films, respectively. The bandgap narrowing is associated with the intrinsic defects which introduced defect states resulting in band tail in ZnO films.

  19. On the Debossing, Annealing and Mounting of Bells

    NASA Astrophysics Data System (ADS)

    PERRIN, R.; SWALLOWE, G. M.; CHARNLEY, T.; MARSHALL, C.

    1999-10-01

    Changes in the frequencies of the musical partials of various types of bells following debossing dismounting/mounting and annealing/quench annealing are reported. Debossing, dismounting and quench annealing lead to frequency drops, while mounting gives rises. Annealing can lead to frequency increases or decreases depending upon the maximum temperature employed and the initial residual stress. Qualitative explanations of these phenomena are given in terms of changes in crown stiffness, internal stress and alloy phase structure. These are supported by the results of X-ray diffraction measurements. Although the effects are all small they can be large enough to be detected by a reasonably musical car. This, together with the fact that the effects cannot be controlled, gives a plausible explanation of why modern bellfounders use vertical lathes for tuning, even with small carillon bells, and do not anneal bells when trying to control warble.

  20. Positron impact ionization phenomena

    NASA Astrophysics Data System (ADS)

    Murtagh, Daniel James

    In the present work, a beam of positrons, obtained from a radioactive source (MNa) in conjunction with a W moderator and guided by a magnetic field, has been used to investigate low energy positron-impact ionization phenomena from atomic and molecular targets. For He below threshold, the investigation discovered vacuum contaminants in creased with gas load and hence concluded that the high 7-ray/ion signal observed by Szluinska and Laricchia (2004a) in Ne could not be safely attributed to annihila tion. A detailed measurement of the total ionization cross-section for He has been performed from below threshold for Ps formation to high energy. Combined with previously measured data and previously measured direct ionization cross-sections (Moxom et al 1996, Ashley et al 1996), a new determination of the positronium formation cross-section has been achieved and compared to other available experi mental measurements and theoretical calculations. Measurements of the excited state (n > 1) positronium formation cross-section for He and Ar have been performed and compared to available theoretical calcu lations. This work has been motivated both for a direct comparison with theory and to test the hypothesis that structure observed in the total (all n) positron ium formation cross-sections for the heavier noble gases, is due to excited state positronium formation (Laricchia et al 2002). The present study is unable to verify fully this hypothesis due to the experimental methods insensitivity to positronium formation in to the 2S or n > 2 states. However, the present results are close to the most sophisticated theoretical calculation of positronium formation into the 2P state (Campbell et al 1998).

  1. Annealing effect in structural and electrical properties of sputtered Mo thin film

    NASA Astrophysics Data System (ADS)

    Chelvanathan, P.; Zakaria, Z.; Yusoff, Y.; Akhtaruzzaman, M.; Alam, M. M.; Alghoul, M. A.; Sopian, K.; Amin, N.

    2015-04-01

    In this study, the effects of vacuum annealing on the structural and electrical properties of DC-sputtered molybdenum (Mo) thin films have been investigated. Mo thin films were deposited by DC sputtering and subsequently subjected to vacuum annealing in a tube furnace from 350 to 500 °C. Films that were deposited with different temperatures showed good adhesion with soda lime glass substrate after "tape testing". X-ray diffraction (XRD) spectra have indicated existence of (1 1 0) and (2 1 1) orientations. However, I(1 1 0)/I(2 1 1) peak intensity ratio decreased for all vacuum annealed Mo films compared to as-sputtered films indicating change of preferential orientation. This suggests vacuum annealing can be employed to tailor the Mo thin film atomic packing density of the plane parallel to the substrate. SEM images of surface morphology clearly show compact and dense triangular like grains for as-sputtered film, while annealed films at 350 °C, 400 °C and 450 °C indicate rice-like grains. Stony grains with less uniformity were detected for films annealed for 500 °C. Meanwhile, electrical resistivity is insensitive to the vacuum annealing condition as all films showed more or less same resistivity in the range of 3 × 10-5-6 × 10-5 Ω cm.

  2. WFC3/UVIS Anneal

    NASA Astrophysics Data System (ADS)

    Baggett, Sylvia

    2012-10-01

    New hot pixels are continuously generated in the WFC3 devices due to the on-orbit radiation environment. A large fraction of these hot pixels can be restored to normal levels by warming the detectors up to 20C during a procedure called an anneal. During the anneal, the two-stage thermo-electric cooler {TEC} is turned off and the four-stage TEC is used as a heater to warm the detectors. To monitor the efficacy of the process, UVIS darks and biases are acquired before and after each anneal. These data allow for an assessment of the hot pixels levels as well as a check of readnoise, bias level and global dark current; the data are also used in the generation of calibration reference files. In addition, after each anneal, a short visit with UVIS internal flatfields provides hysteresis prevention and an IR dark supplies a check of the IR dark current levels.

  3. WFC3 UVIS Anneal

    NASA Astrophysics Data System (ADS)

    Baggett, Sylvia

    2013-10-01

    New hot pixels are continuously generated in the WFC3 devices due to the on-orbit radiation environment. A large fraction of these hot pixels can be restored to normal levels by warming the detectors up to 20C during a procedure called an anneal. During the anneal, the two-stage thermo-electric cooler {TEC} is turned off and the four-stage TEC is used as a heater to warm the detectors. To monitor the efficacy of the process, UVIS darks and biases are acquired before and after each anneal. These data allow for an assessment of the hot pixel levels as well as a check of readnoise, bias level and global dark current; the data are also used in the generation of calibration reference files. In addition, after each anneal, a short visit with UVIS internal flatfields provides hysteresis prevention.

  4. Recent progress of quantum annealing

    SciTech Connect

    Suzuki, Sei

    2015-03-10

    We review the recent progress of quantum annealing. Quantum annealing was proposed as a method to solve generic optimization problems. Recently a Canadian company has drawn a great deal of attention, as it has commercialized a quantum computer based on quantum annealing. Although the performance of quantum annealing is not sufficiently understood, it is likely that quantum annealing will be a practical method both on a conventional computer and on a quantum computer.

  5. WFC3/UVIS Anneal

    NASA Astrophysics Data System (ADS)

    Baggett, Sylvia

    2011-10-01

    The on-orbit radiation environment of WFC3 continually generates new hot pixels. This proposal performs the procedure required for repairing those hot pixels in the UVIS CCDs. During an anneal, the two-stage thermo-electric cooler {TEC} is turned off and the four-stage TEC is used as a heater to bring the UVIS CCDs up to 20C. As a result of the CCD warmup, a large fraction of the hot pixels are fixed. UVIS bias and dark frames are taken before and after each anneal, to allow an assessment of the procedure's effectiveness, provide a check of readnoise, bias, global dark current, and hot pixel levels, as well as support hysteresis {bowtie} monitoring and CDBS reference file generation. One IR dark is taken after each anneal, to provide a check of the IR detector.

  6. Gravitational vacuum polarization phenomena due to the Higgs field

    NASA Astrophysics Data System (ADS)

    Onofrio, Roberto

    2012-05-01

    In the standard model the mass of elementary particles is considered as a dynamical property emerging from their interaction with the Higgs field. We show that this assumption implies peculiar deviations from the law of universal gravitation in its distance and mass dependence, as well as from the superposition principle. The experimental observation of the predicted deviations from the law of universal gravitation seems out of reach. However, we argue that a new class of experiments aimed at studying the influence of surrounding masses on the gravitational force—similar to the ones performed by Quirino Majorana almost a century ago—could be performed to test the superposition principle and to give direct limits on the presence of nonminimal couplings between the Higgs field and the spacetime curvature. From the conceptual viewpoint, the violation of the superposition principle for gravitational forces due to the Higgs field creates a conflict with the notion that gravitational potentials, as assumed in Newtonian gravitation or in post-Newtonian parameterizations of metric theories, are well-defined concepts to describe gravity in their non-relativistic limit.

  7. THE VACUUM/STEAM/VACUUM PROCESS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Vacuum/Steam/Vacuum surface intervention pilot plant process was developed. The process was developed for chicken, hot dogs, fruits and vegetables, and catfish. Optimum process conditions were determined as nominally, 138 C saturated steam, vacuum and steam times of 0.1 s except that the final...

  8. GenAnneal: Genetically modified Simulated Annealing

    NASA Astrophysics Data System (ADS)

    Tsoulos, Ioannis G.; Lagaris, Isaac E.

    2006-05-01

    A modification of the standard Simulated Annealing (SA) algorithm is presented for finding the global minimum of a continuous multidimensional, multimodal function. We report results of computational experiments with a set of test functions and we compare to methods of similar structure. The accompanying software accepts objective functions coded both in Fortran 77 and C++. Program summaryTitle of program:GenAnneal Catalogue identifier:ADXI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXI_v1_0 Program available from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: The tool is designed to be portable in all systems running the GNU C++ compiler Installation: University of Ioannina, Greece on Linux based machines Programming language used:GNU-C++, GNU-C, GNU Fortran 77 Memory required to execute with typical data: 200 KB No. of bits in a word: 32 No. of processors used: 1 Has the code been vectorized or parallelized?: No No. of bytes in distributed program, including test data, etc.:84 885 No. of lines in distributed program, including test data, etc.:14 896 Distribution format: tar.gz Nature of physical problem: A multitude of problems in science and engineering are often reduced to minimizing a function of many variables. There are instances that a local optimum does not correspond to the desired physical solution and hence the search for a better solution is required. Local optimization techniques are frequently trapped in local minima. Global optimization is hence the appropriate tool. For example, solving a non-linear system of equations via optimization, employing a "least squares" type of objective, one may encounter many local minima that do not correspond to solutions (i.e. they are far from zero). Typical running time: Depending on the objective function. Method of solution: We modified the process of step selection that the traditional Simulated Annealing employs and instead we used a global technique based on grammatical evolution.

  9. Vacuum energy and the cosmological constant

    NASA Astrophysics Data System (ADS)

    Bass, Steven D.

    2015-06-01

    The accelerating expansion of the Universe points to a small positive value for the cosmological constant or vacuum energy density. We discuss recent ideas that the cosmological constant plus Large Hadron Collider (LHC) results might hint at critical phenomena near the Planck scale.

  10. Recent advances in vacuum sciences and applications

    NASA Astrophysics Data System (ADS)

    Mozetič, M.; Ostrikov, K.; Ruzic, D. N.; Curreli, D.; Cvelbar, U.; Vesel, A.; Primc, G.; Leisch, M.; Jousten, K.; Malyshev, O. B.; Hendricks, J. H.; Kövér, L.; Tagliaferro, A.; Conde, O.; Silvestre, A. J.; Giapintzakis, J.; Buljan, M.; Radić, N.; Dražić, G.; Bernstorff, S.; Biederman, H.; Kylián, O.; Hanuš, J.; Miloševič, S.; Galtayries, A.; Dietrich, P.; Unger, W.; Lehocky, M.; Sedlarik, V.; Stana-Kleinschek, K.; Drmota-Petrič, A.; Pireaux, J. J.; Rogers, J. W.; Anderle, M.

    2014-04-01

    Recent advances in vacuum sciences and applications are reviewed. Novel optical interferometer cavity devices enable pressure measurements with ppm accuracy. The innovative dynamic vacuum standard allows for pressure measurements with temporal resolution of 2 ms. Vacuum issues in the construction of huge ultra-high vacuum devices worldwide are reviewed. Recent advances in surface science and thin films include new phenomena observed in electron transport near solid surfaces as well as novel results on the properties of carbon nanomaterials. Precise techniques for surface and thin-film characterization have been applied in the conservation technology of cultural heritage objects and recent advances in the characterization of biointerfaces are presented. The combination of various vacuum and atmospheric-pressure techniques enables an insight into the complex phenomena of protein and other biomolecule conformations on solid surfaces. Studying these phenomena at solid-liquid interfaces is regarded as the main issue in the development of alternative techniques for drug delivery, tissue engineering and thus the development of innovative techniques for curing cancer and cardiovascular diseases. A review on recent advances in plasma medicine is presented as well as novel hypotheses on cell apoptosis upon treatment with gaseous plasma. Finally, recent advances in plasma nanoscience are illustrated with several examples and a roadmap for future activities is presented.

  11. Learning quantum annealing

    NASA Astrophysics Data System (ADS)

    Behrman, Elizabeth; Steck, James

    We propose and develop a new quantum algorithm, whereby a quantum system can learn to anneal to a desired ground state. We demonstrate successful learning of entanglement for a two-qubit system, then bootstrap to larger systems. We also show that the method is robust to noise and decoherence.

  12. UVIS Hot Pixel Anneal

    NASA Astrophysics Data System (ADS)

    Baggett, Sylvia

    2010-09-01

    The on-orbit radiation environment of WFC3 continually generates new hot pixels. This proposal performs the procedure required for repairing those hot pixels in the UVIS CCDs. During an anneal, the two-stage thermo-electric cooler {TEC} is turned off and the four-stage TEC is used as a heater to bring the UVIS CCDs up to 20C. As a result of the CCD warmup, a majority of the hot pixels are fixed. UVIS bias and dark frames are taken before and after each anneal, to allow an assessment of the procedure's effectiveness, provide a check of readnoise, bias, global dark current, and hot pixel levels, as well as support hysteresis {bowtie} monitoring and CDBS reference file generation. One IR dark is taken after each anneal, to provide a check of the IR detector. Finally, the first two anneals of the cycle will be preceded and followed by internal flats to allow a measure of pixel-to-pixel temporal changes.

  13. Coupled Phenomena in Chemistry.

    ERIC Educational Resources Information Center

    Matsubara, Akira; Nomura, Kazuo

    1979-01-01

    Various phenomena in chemistry and biology can be understood through Gibbs energy utilization. Some common phenomena in chemistry are explained including neutralization, hydrolysis, oxidation and reaction, simultaneous dissociation equilibrium of two weak acids, and common ion effect on solubility. (Author/SA)

  14. The Vacuum Bubble Nucleation

    SciTech Connect

    Lee, Bum-Hoon; Lee, Wonwoo

    2009-07-10

    We study the nucleation of a vacuum bubble via the vacuum-to-vacuum tunneling transition in curved spacetime. We consider Coleman-de Luccia's semiclassical approximation at zero temperature in pure Einstein theory of gravity and the theory with nonminimal coupling. We discuss the dynamics of a nucleated vacuum bubble.

  15. Germanium detector vacuum encapsulation

    NASA Astrophysics Data System (ADS)

    Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.

    1991-08-01

    This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.

  16. Germanium detector vacuum encapsulation

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.

    1991-01-01

    This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.

  17. Natural vacuum electronics

    NASA Technical Reports Server (NTRS)

    Leggett, Nickolaus

    1990-01-01

    The ambient natural vacuum of space is proposed as a basis for electron valves. Each valve is an electron controlling structure similiar to a vacuum tube that is operated without a vacuum sustaining envelope. The natural vacuum electron valves discussed offer a viable substitute for solid state devices. The natural vacuum valve is highly resistant to ionizing radiation, system generated electromagnetic pulse, current transients, and direct exposure to space conditions.

  18. Effect of thermal annealing on the thermoluminescent properties of nano-calcium fluoride and its dose-response characteristics.

    PubMed

    Mundupuzhakal, J K; Biswas, R H; Chauhan, S; Varma, V; Acharya, Y B; Chakrabarty, B S

    2015-12-01

    Nano-CaF2, prepared by the co-precipitation method, was annealed under different annealing conditions to improve its thermoluminescence (TL) characteristics. Different annealing parameters, such as temperature (400-700°C), duration (1-4 h) and environment (vacuum and air), were explored. The effect on TL sensitivity, peak position (Tm) and full-width at half-maximum (FWHM) with respect to the different annealing conditions are discussed as they are the measure of crystallinity of the material. Annealing temperature of 500°C with annealing duration of two and a half hours in vacuum provided the highest luminescence response (i.e. maximum sensitivity, minimum peak temperature and FWHM). Wide detectable dose range (5 mGy to 2 kGy), absence of thermal quenching and sufficient activation energy (1.04 eV) of this phosphor make it suitable for dosimetric applications. PMID:25398396

  19. Wave phenomena in sunspots

    NASA Astrophysics Data System (ADS)

    Löhner-Böttcher, Johannes

    2016-03-01

    Context: The dynamic atmosphere of the Sun exhibits a wealth of magnetohydrodynamic (MHD) waves. In the presence of strong magnetic fields, most spectacular and powerful waves evolve in the sunspot atmosphere. Allover the sunspot area, continuously propagating waves generate strong oscillations in spectral intensity and velocity. The most prominent and fascinating phenomena are the 'umbral flashes' and 'running penumbral waves' as seen in the sunspot chromosphere. Their nature and relation have been under intense discussion in the last decades. Aims: Waves are suggested to propagate upward along the magnetic field lines of sunspots. An observational study is performed to prove or disprove the field-guided nature and coupling of the prevalent umbral and penumbral waves. Comprehensive spectroscopic observations at high resolution shall provide new insights into the wave characteristics and distribution across the sunspot atmosphere. Methods: Two prime sunspot observations were carried out with the Dunn Solar Telescope at the National Solar Observatory in New Mexico and with the Vacuum Tower Telescope at the Teide Observatory on Tenerife. The two-dimensional spectroscopic observations were performed with the interferometric spectrometers IBIS and TESOS. Multiple spectral lines are scanned co-temporally to sample the dynamics at the photospheric and chromospheric layers. The time series (1 – 2.5 h) taken at high spatial and temporal resolution are analyzed according to their evolution in spectral intensities and Doppler velocities. A wavelet analysis was used to obtain the wave power and dominating wave periods. A reconstruction of the magnetic field inclination based on sunspot oscillations was developed. Results and conclusions: Sunspot oscillations occur continuously in spectral intensity and velocity. The obtained wave characteristics of umbral flashes and running penumbral waves strongly support the scenario of slow-mode magnetoacoustic wave propagation along the magnetic field lines. Signatures of umbral flashes and running penumbral waves are found already in the middle to upper photosphere. The signal and velocity increases toward the chromosphere. The shock wave behavior of the umbral flashes is confirmed by the evolving saw-tooth pattern in velocity and the strong downward motion of the plasma right after the passage of the shock front. The power spectra and peak periods of sunspot waves vary significantly with atmospheric altitude and position within the sunspot. In the vertical field of the umbra, the mixture of wave periods in the lower photosphere transforms into a domination of the 2.5min range in the upper photosphere and chromosphere. In the differentially inclined penumbra, the dominating wave periods increase with radial distance. The acoustic cut-off frequency which blocks the propagation of long-period waves is considered to increase with the field inclination and the ambient sound speed. The reconstruction of the sunspot's magnetic field inclination based on the peak period distribution yields consistent results with the inferred photospheric and extrapolated coronal magnetic field.

  20. Science and Paranormal Phenomena

    SciTech Connect

    Noyes, H. Pierre

    1999-06-03

    In order to ground my approach to the study of paranormal phenomena, I first explain my operational approach to physics, and to the ''historical'' sciences of cosmic, biological, human, social and political evolution. I then indicate why I believe that ''paranormal phenomena'' might-but need not- fit into this framework. I endorse the need for a new theoretical framework for the investigation of this field presented by Etter and Shoup at this meeting. I close with a short discussion of Ted Bastin's contention that paranormal phenomena should be defined as contradicting physics.

  1. Vacuum polarization and Hawking radiation

    NASA Astrophysics Data System (ADS)

    Rahmati, Shohreh

    Quantum gravity is one of the interesting fields in contemporary physics which is still in progress. The purpose of quantum gravity is to present a quantum description for spacetime at 10-33cm or find the 'quanta' of gravitational interaction.. At present, the most viable theory to describe gravitational interaction is general relativity which is a classical theory. Semi-classical quantum gravity or quantum field theory in curved spacetime is an approximation to a full quantum theory of gravity. This approximation considers gravity as a classical field and matter fields are quantized. One interesting phenomena in semi-classical quantum gravity is Hawking radiation. Hawking radiation was derived by Stephen Hawking as a thermal emission of particles from the black hole horizon. In this thesis we obtain the spectrum of Hawking radiation using a new method. Vacuum is defined as the possible lowest energy state which is filled with pairs of virtual particle-antiparticle. Vacuum polarization is a consequence of pair creation in the presence of an external field such as an electromagnetic or gravitational field. Vacuum polarization in the vicinity of a black hole horizon can be interpreted as the cause of the emission from black holes known as Hawking radiation. In this thesis we try to obtain the Hawking spectrum using this approach. We re-examine vacuum polarization of a scalar field in a quasi-local volume that includes the horizon. We study the interaction of a scalar field with the background gravitational field of the black hole in the desired quasi-local region. The quasi-local volume is a hollow cylinder enclosed by two membranes, one inside the horizon and one outside the horizon. The net rate of particle emission can be obtained as the difference of the vacuum polarization from the outer boundary and inner boundary of the cylinder. Thus we found a new method to derive Hawking emission which is unitary and well defined in quantum field theory.

  2. Laser sealed vacuum insulating window

    DOEpatents

    Benson, D.K.; Tracy, C.E.

    1985-08-19

    A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the galss panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

  3. Laser sealed vacuum insulation window

    DOEpatents

    Benson, David K.; Tracy, C. Edwin

    1987-01-01

    A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the glass panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

  4. Wear of Steel and Ti6Al4V Rollers in Vacuum

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L.; Shareef, Iqbal

    2012-01-01

    This investigation was prompted by results of a qualification test of a mechanism to be used for the James Webb Space Telescope. Post-test inspections of the qualification test article revealed some loose wear debris and wear of the steel rollers and the mating Ti6Al4V surfaces. An engineering assessment of the design and observations from the tested qualification unit suggested that roller misalignment was a controlling factor. The wear phenomena were investigated using dedicated laboratory experiments. Tests were done using a vacuum roller rig for a range of roller misalignment angles. The wear in these tests was mainly adhesive wear. The measured wear rates were highly correlated to the misalignment angle. For all tests with some roller misalignment, the steel rollers lost mass while the titanium rollers gained mass indicating strong adhesion of the steel with the titanium alloy. Inspection of the rollers revealed that the adhesive wear was a two-way process as titanium alloy was found on the steel rollers and vice versa. The qualification test unit made use of 440F steel rollers in the annealed condition. Both annealed 440F steel rollers and hardened 440C rollers were tested in the vacuum roller rig to investigate possibility to reduce wear rates and the risk of loose debris formation. The 440F and 440C rollers had differing wear behaviors with significantly lesser wear rates for the 440C. For the test condition of zero roller misalignment, the adhesive wear rates were very low, but still some loose debris was formed

  5. Extinction of ferromagnetism in HOPG by thermal annealing

    NASA Astrophysics Data System (ADS)

    Miao, Xiaochang; Hebard, Arthur; Tongay, Sefaattin; Appleton, Bill

    2011-03-01

    Observations of ferromagnetism (FM) in highly ordered pyrolytic graphite (HOPG) have generated vigorous research activity to clarify its origin, especially when transition metals are known to be absent. We report that the ferromagnetism of pristine HOPG samples as measured by hysteretic magnetization loops can be diminished and eventually extinguished with sufficiently long high vacuum anneals at temperatures greater than 2000°C. Concomitant with the extinction of ferromagnetism, we observe an anneal-induced increase in grain size (accompanied by possible edge reconstruction) confirmed by XRD measurement and improved transport properties, including lower in-plane and out-of-plane resistance, higher electron and hole mobility and improved charge compensation. The implied anneal-induced reduction of defects and vacancies suggests that the FM of pristine HOPG is correlated with localized states located at zigzag edges, vacancies and related defects. Work supported ONR-00075094 and NSF-1005301.

  6. Remarkably improved field emission of TiO{sub 2} nanotube arrays by annealing atmosphere engineering

    SciTech Connect

    Liao, Ai-Zhen; Wang, Cheng-Wei Chen, Jian-Biao; Zhang, Xu-Qiang; Li, Yan; Wang, Jian

    2015-10-15

    Highlights: • TNAs were prepared by anodization and annealed in different atmospheres. • The crystal structure and electronic properties of the prepared TNAs were investigated. • The field emission of TNAs was highly dependent on annealing atmosphere. • A low turn-on of 2.44 V/μm was obtained for TNAs annealed in H{sub 2} atmosphere. - Abstract: Highly ordered TiO{sub 2} nanotube arrays (TNAs) were prepared by anodization, and followed by annealing in the atmospheres of Air, Vacuum, Ar, and H{sub 2}. The effect of annealing atmosphere on the crystal structure, composition, and electronic properties of TNAs were systematically investigated. Raman and EDS results indicated that the TNAs annealed in anaerobic atmospheres contained more oxygen vacancies, which result in the substantially improved electron transport properties and reduced work function. Moreover, it was found that the FE properties of TNAs were highly dependent on the annealing atmosphere. By engineering the annealing atmosphere, the turn-on field as low as 2.44 V/μm can be obtained from TNAs annealed in H{sub 2}, which was much lower than the value of 18.23 V/μm from the TNAs annealed in the commonly used atmosphere of Air. Our work suggests an instructive and attractive way to fabricate high performance TNAs field emitters.

  7. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-01-01

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  8. The Classical Vacuum.

    ERIC Educational Resources Information Center

    Boyer, Timothy H.

    1985-01-01

    The classical vacuum of physics is not empty, but contains a distinctive pattern of electromagnetic fields. Discovery of the vacuum, thermal spectrum, classical electron theory, zero-point spectrum, and effects of acceleration are discussed. Connection between thermal radiation and the classical vacuum reveals unexpected unity in the laws of…

  9. The Classical Vacuum.

    ERIC Educational Resources Information Center

    Boyer, Timothy H.

    1985-01-01

    The classical vacuum of physics is not empty, but contains a distinctive pattern of electromagnetic fields. Discovery of the vacuum, thermal spectrum, classical electron theory, zero-point spectrum, and effects of acceleration are discussed. Connection between thermal radiation and the classical vacuum reveals unexpected unity in the laws of

  10. Ion exchange phenomena

    SciTech Connect

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  11. Rapid preparation of solution-processed InGaZnO thin films by microwave annealing and photoirradiation

    NASA Astrophysics Data System (ADS)

    Cheong, Heajeong; Ogura, Shintaro; Ushijima, Hirobumi; Yoshida, Manabu; Fukuda, Nobuko; Uemura, Sei

    2015-06-01

    We fabricated solution-processed indium-gallium-zinc oxide (IGZO) thin-film transistors (TFTs) by microwave (MW) annealing an IGZO precursor film followed by irradiating with vacuum ultraviolet (VUV) light. MW annealing allows more rapid heating of the precursor film than conventional annealing processes using a hot plate or electric oven and promotes the crystallization of IGZO. VUV irradiation was used to reduce the duration and temperature of the post-annealing step. Consequently, the IGZO TFTs fabricated through MW annealing for 5 min and VUV irradiation for 1 min exhibited an on/off current ratio of 108 and a field-effect mobility of 0.3 cm2 V-1 s-1. These results indicate that MW annealing and photoirradiation is an effective combination for annealing solution processed IGZO precursor films to prepare the semiconductor layers of TFTs.

  12. Stress pulse phenomena

    SciTech Connect

    McGlaun, M.

    1993-08-01

    This paper is an introductory discussion of stress pulse phenomena in simple solids and fluids. Stress pulse phenomena is a very rich and complex field that has been studied by many scientists and engineers. This paper describes the behavior of stress pulses in idealized materials. Inviscid fluids and simple solids are realistic enough to illustrate the basic behavior of stress pulses. Sections 2 through 8 deal with the behavior of pressure pulses. Pressure is best thought of as the average stress at a point. Section 9 deals with shear stresses which are most important in studying solids.

  13. Imaging of snapping phenomena

    PubMed Central

    Guillin, R; Marchand, A J; Roux, A; Niederberger, E; Duvauferrier, R

    2012-01-01

    Snapping phenomena result from the sudden impingement between anatomical and/or heterotopical structures with subsequent abrupt movement and noise. Snaps are variously perceived by patients, from mild discomfort to significant pain requiring surgical management. Identifying the precise cause of snaps may be challenging when no abnormality is encountered on routinely performed static examinations. In this regard, dynamic imaging techniques have been developed over time, with various degrees of success. This review encompasses the main features of each imaging technique and proposes an overview of the main snapping phenomena in the musculoskeletal system. PMID:22744321

  14. Molecular dynamics simulation of annealed ZnO surfaces

    SciTech Connect

    Min, Tjun Kit; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    The effect of thermally annealing a slab of wurtzite ZnO, terminated by two surfaces, (0001) (which is oxygen-terminated) and (0001{sup ¯}) (which is Zn-terminated), is investigated via molecular dynamics simulation by using reactive force field (ReaxFF). We found that upon heating beyond a threshold temperature of ∼700 K, surface oxygen atoms begin to sublimate from the (0001) surface. The ratio of oxygen leaving the surface at a given temperature increases as the heating temperature increases. A range of phenomena occurring at the atomic level on the (0001) surface has also been explored, such as formation of oxygen dimers on the surface and evolution of partial charge distribution in the slab during the annealing process. It was found that the partial charge distribution as a function of the depth from the surface undergoes a qualitative change when the annealing temperature is above the threshold temperature.

  15. Neutron Star Phenomena

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin

    1998-01-01

    Various phenomena involving neutron stars are addressed. Electron-positron production in the near magnetosphere of gamma-ray pulsars is discussed along with magnetic field evolution in spun-up and spinning-down pulsars. Glitches and gamma-ray central engines are also discussed.

  16. Indian Vacuum Society: The Indian Vacuum Society

    NASA Astrophysics Data System (ADS)

    Saha, T. K.

    2008-03-01

    The Indian Vacuum Society (IVS) was established in 1970. It has over 800 members including many from Industry and R & D Institutions spread throughout India. The society has an active chapter at Kolkata. The society was formed with the main aim to promote, encourage and develop the growth of Vacuum Science, Techniques and Applications in India. In order to achieve this aim it has conducted a number of short term courses at graduate and technician levels on vacuum science and technology on topics ranging from low vacuum to ultrahigh vacuum So far it has conducted 39 such courses at different parts of the country and imparted training to more than 1200 persons in the field. Some of these courses were in-plant training courses conducted on the premises of the establishment and designed to take care of the special needs of the establishment. IVS also regularly conducts national and international seminars and symposia on vacuum science and technology with special emphasis on some theme related to applications of vacuum. A large number of delegates from all over India take part in the deliberations of such seminars and symposia and present their work. IVS also arranges technical visits to different industries and research institutes. The society also helped in the UNESCO sponsored post-graduate level courses in vacuum science, technology and applications conducted by Mumbai University. The society has also designed a certificate and diploma course for graduate level students studying vacuum science and technology and has submitted a syllabus to the academic council of the University of Mumbai for their approval, we hope that some colleges affiliated to the university will start this course from the coming academic year. IVS extended its support in standardizing many of the vacuum instruments and played a vital role in helping to set up a Regional Testing Centre along with BARC. As part of the development of vacuum education, the society arranges the participation of expert members on the subject to deliver lectures and take part in devising courses in the universities. IVS publishes a quarterly called the `Bulletin of Indian Vacuum Society' since its inception, in which articles on vacuum and related topics are published. NIRVAT, news, announcements, and reports are the other features of the Bulletin. The articles in the Bulletin are internationally abstracted. The Bulletin is distributed free to all the members of the society. The society also publishes proceedings of national/international symposia and seminars, manuals, lecture notes etc. It has published a `Vacuum Directory' containing very useful information on vacuum technology. IVS has also set up its own website http://www.ivsnet.org in January 2002. The website contains information about IVS, list of members, list of EC members, events and news, abstracts of articles published in the `Bulletin of Indian Vacuum Society', utilities, announcements, reports, membership and other forms which can be completed online and also gives links to other vacuum societies. Our Society has been a member of the executive council of the International Union of Vacuum Science, Techniques and Applications (IUVSTA) and its various committees since 1970. In 1983 IVS conducted an International Symposium on Vacuum Technology and Nuclear Applications in BARC, Mumbai, under the sponsorship of IUVSTA. In 1987 IVS arranged the Triennial International Conference on Thin Films in New Delhi, where more than 200 foreign delegates participated. IVS also hosted the IUVSTA Executive Council Meeting along with the conference. The society organized yet again an International Conference on Vacuum Science and Technology and SRS Vacuum Systems at CAT, Indore in1995. IVS arranges the prestigious Professor Balakrishnan Memorial Lecture in memory of its founder vice-president. Leading scientists from India and abroad in the field are invited to deliver the talks. So far 23 lectures have been held in this series. IVS has instituted the `IVS- Professor D Y Phadke Memorial Prize' in memory of our founder president, the late Professor D Y Phadke at the University of Mumbai. The prize is given every year to the student ranked top in the MSc (PHY.) examination conducted by the university. The IVS Kolkata Chapter has established the Dr A S Divatia Memorial Trust with the objective of organizing the Dr A S Divatia Memorial Lecture and a seminar once a year and to set up a vacuum testing and calibration facility. IVS has instituted an award in memory of the late Shri C Ambasankaran, its past president and pioneer of vacuum technology in India. This award is given to one of the best papers presented in the national symposium conducted by IVS. One more best paper award `Smt. Shakuntalabai Vyawahare Memorial Prize' is established from a donation given by Shri Mohan R Vyawahare, a life member and a present EC member of the society, in memory of his mother. During the symposia, IVS felicitates two of its members, one from Industry and one from an R & D Institution for their lifetime contribution to vacuum science and technology. Dr A K Gupta, Ex BARC, Ex Generla Manager, IBP, Head, Energy Group, Shapoorji Pallonji & Co Ltd (Industry), and Dr S R Gowariker, Ex BARC, Ex Director, CSIO, Chandigarh, Director, Tolani Education Foundation (R & D) are being honoured this year. T K Saha Geneneral Secretary, IVS

  17. High rate vacuum deposited silicon layers

    NASA Astrophysics Data System (ADS)

    Kipperman, A. H. M.; van Zolingen, R. J. C.

    1982-08-01

    Silicon layers were deposited in vacuum at high rates (up to 50 microns/min) on aluminum-, silicon oxide-, and silicon nitride-coated stainless steel, pyrex, and silicon substrates. The morphological, crystallographic, and electrical properties of the layers were studied in as-grown and annealed conditions. Layers as-grown on aluminum-coated substrates had unsatisfactory electrical properties and too high an aluminum concentration to be acceptable for solar cells. Thermal annealing of layers on SiO2- and on Si3N4-coated substrates markedly improved their crystallographic and electrical properties. In all cases, silicon layers deposited at about 550 C showed a columnar structure which, after prolonged etching, was found to be composed of fibrils of about 0.3 microns in diameter extending over the entire thickness of the layer. It is suggested that further tests should be carried out at a substrate temperature of about 800 C maintaining the high deposition rates.

  18. Surface Superstructure of Carbon Nanotubes on Highly Oriented Pyrolytic Graphite Annealed at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    An, Bai; Fukuyama, Seiji; Yokogawa, Kiyoshi; Yoshimura, Masamichi

    1998-06-01

    Carbon nanotubes deposited on highly oriented pyrolytic graphite (HOPG) are annealed in ultra high vacuum. The effect of annealing temperature on the surface morphology of the carbon nanotubes on HOPG is examined by scanning tunneling microscopy. The ring-like surface superstructure of (\\sqrt {3}× \\sqrt {3})R30° of graphite is found on the carbon nanotubes annealed above 1593 K. The tips of the carbon nanotubes are destroyed and the stacking misarrangement between the upper and the lower walls of the tube join with HOPG resulting in the superstructure.

  19. Annealing to Mitigate Pitting in Electropolished Niobium Coupons and SRF Cavities

    SciTech Connect

    Cooley, L.D.; Hahn, E.; Hicks, D.; Romanenko, A.; Schuessler, R.; Thompson, C.; /Fermilab

    2011-06-08

    Ongoing studies at Fermilab investigate whether dislocations and other factors instigate pitting during cavity electropolishing (EP), despite careful processing controls and the inherent leveling mechanism of EP itself. Here, cold-worked niobium coupons, which exhibited increased tendencies for pitting in our past study, were annealed in a high vacuum furnace and subsequently processed by EP. Laser confocal scanning microscopy and special defect counting algorithms were used to assess the population of pits formed. Hardness measurements indicated that annealing for 2 hours at 800 C produced recovery, whereas annealing for 12 hours at 600 C did not, as is consistent with known changes for cavities annealed in a similar way. The 800 C anneal was effective in some cases but not others, and we discuss reasons why tendencies for pitting remain. We discuss implications for cavities and continued work to understand pitting.

  20. A new field-assisted annealing approach for advanced Cu-Zr Alloy metallization

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Cao, Fei; Zhang, Mi-lin

    2012-10-01

    A new field-assisted annealing approach for Cu-Zr alloy metallization is proposed and investigated. Cu-Zr/SiO2/Si samples were vacuum-annealed at pressure of 2 10-3 Pa with (-20 V) and without field-assisted annealing for an hour in 250C-400C temperature range. Based on the XRD, TEM, XPS, and resistivity measurement results, we conclude that the dragging force for Zr atoms in field-assisted annealing samples to the interface shall be larger than that of samples without field-assisted annealing. As a consequence, by low concentration alloy atoms adding and FAA processing, the low Cu alloy film resistivity and thin self-forming barrier layer can be simultaneously obtained at lower temperature.

  1. High power, high frequency, vacuum flange

    SciTech Connect

    Felker, B.; McDaniel, M.

    1991-12-31

    This invention is comprised of an improved waveguide flange is disclosed for high power operation that helps prevent arcs from being initiated at the junctions between waveguide sections. The flanges at the end of the waveguide sections have counterbores surrounding the waveguide tubes. When the sections are bolted together the counterbores form a groove that holds a fully annealed copper gasket. Each counterbore has a beveled step that is specially configured to insure the gasket forms a metal-to-metal vacuum seal without gaps or sharp edges. The resultant inner surface of the waveguide is smooth across the junctions between waveguide sections, and arcing is prevented.

  2. High power, high frequency, vacuum flange

    DOEpatents

    Felker, Brian; McDaniel, Michael R.

    1993-01-01

    An improved waveguide flange is disclosed for high power operation that helps prevent arcs from being initiated at the junctions between waveguide sections. The flanges at the end of the waveguide sections have counterbores surrounding the waveguide tubes. When the sections are bolted together the counterbores form a groove that holds a fully annealed copper gasket. Each counterbore has a beveled step that is specially configured to insure the gasket forms a metal-to-metal vacuum seal without gaps or sharp edges. The resultant inner surface of the waveguide is smooth across the junctions between waveguide sections, and arcing is prevented.

  3. High power, high frequency, vacuum flange

    DOEpatents

    Felker, B.; McDaniel, M.R.

    1993-03-23

    An improved waveguide flange is disclosed for high power operation that helps prevent arcs from being initiated at the junctions between waveguide sections. The flanges at the end of the waveguide sections have counter bores surrounding the waveguide tubes. When the sections are bolted together the counter bores form a groove that holds a fully annealed copper gasket. Each counterbore has a beveled step that is specially configured to insure the gasket forms a metal-to-metal vacuum seal without gaps or sharp edges. The resultant inner surface of the waveguide is smooth across the junctions between waveguide sections, and arcing is prevented.

  4. Some atmospheric optical phenomena

    NASA Astrophysics Data System (ADS)

    Malherbe, Jean-Marie

    1988-10-01

    Atmospheric optical effects resulting from the interaction between extended light sources (the sun and moon) or point sources (planets and bright stars) and the heterogeneous atmosphere are discussed. It is noted that refraction is responsible for such phenomena as the oblateness of the sun and moon when rising or setting, mirages (the curving of light rays near the ground), nocturnal scintillation, rainbows, and halos. The diffusion of light by particles in the atmosphere is responsible for the blue color of the sky during the day and the red color of the sky at sunrise and sunset. Diffractive phenomena discussed include the colored ring surrounding the sun or moon when viewed through fog and the iridescent Bishop's ring.

  5. Lunar transient phenomena

    NASA Astrophysics Data System (ADS)

    Cameron, W. S.

    1991-03-01

    Lunar transient phenomena (LTP) sightings are classified into five categories: brightenings, darkenings, reddish colorations, bluish colorations, and obscurations. There is evidence that the remaining LTP's are of lunar origin. A substantial number of sightings are independently confirmed. They have been recorded on film and spectrograms, as well as with photoelectric photometers and polarization equipment. It suggested that the LTP's may be gentle outgassings of less-than-volcanic proportions.

  6. Membrane Transport Phenomena (MTP)

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1997-01-01

    The third semi-annual period of the MTP project has been involved with performing experiments using the Membrane Transport Apparatus (MTA), development of analysis techniques for the experiment results, analytical modeling of the osmotic transport phenomena, and completion of a DC-9 microgravity flight to test candidate fluid cell geometries. Preparations were also made for the MTP Science Concept Review (SCR), held on 13 June 1997 at Lockheed Martin Astronautics in Denver. These activities are detailed in the report.

  7. Intense magnetic field phenomena

    SciTech Connect

    Weisheit, J.

    1994-12-31

    This article surveys three of the many challenging problems involving quantum phenomena in plasmas with magnetic fields B in the range 10{sup 8}--10{sup 10} Gauss: magnetic white dwarf stars, spectroscopic effects of motional (v {times} B) electric fields, and statistical models of many-electron atoms in strong B fields. It has proved difficult to make progress in this regime of field strengths, where Coulomb and magnetic interactions are comparable.

  8. Vacuum pump aids ejectors

    SciTech Connect

    Nelson, R.E.

    1982-12-01

    The steam ejector/vacuum pump hybrid system has been operating satisfactorily since the summer of 1981. This system has essentially been as troublefree as the all-ejector system and, of course, has provided a substantial cost savings. Construction is currently under way to convert the vacuum system of another crude still which is equipped with steam ejectors and barometric condensers to the hybrid system of steam ejectors, surface condensers, and vacuum pumps. This current project is even more financially attractive because it allows a dirty water cooling tower which serves the barometric condensers to be shut down. Providing a vacuum for crude distillation vacuum towers with this hybrid system is by no means the only application of this technique. Any vacuum system consisting of all steam ejectors would be a candidate for this hybrid system and the resulting savings in energy.

  9. Reactor vessel annealing system

    DOEpatents

    Miller, Phillip E. (Greensburg, PA); Katz, Leonoard R. (Pittsburgh, PA); Nath, Raymond J. (Murrysville, PA); Blaushild, Ronald M. (Export, PA); Tatch, Michael D. (Randolph, NJ); Kordalski, Frank J. (White Oak, PA); Wykstra, Donald T. (Pittsburgh, PA); Kavalkovich, William M. (Monroeville, PA)

    1991-01-01

    A system for annealing a vessel (14) in situ by heating the vessel (14) to a defined temperature, composed of: an electrically operated heater assembly (10) insertable into the vessel (14) for heating the vessel (14) to the defined temperature; temperature monitoring components positioned relative to the heater assembly (10) for monitoring the temperature of the vessel (14); a controllable electric power supply unit (32-60) for supplying electric power required by the heater assembly (10); a control unit (80-86) for controlling the power supplied by the power supply unit (32-60); a first vehicle (2) containing the power supply unit (32-60); a second vehicle (4) containing the control unit (80-86); power conductors (18,22) connectable between the power supply unit (32-60) and the heater unit (10) for delivering the power supplied by the power supply unit (32-60) to the heater assembly (10); signal conductors (20,24) connectable between the temperature monitoring components and the control unit (80-86) for delivering temperature indicating signals from the temperature monitoring components to the control unit (80-86); and control conductors (8) connectable between the control unit (80-86) and the power supply unit (32-60) for delivering to the power supply unit (32-60) control signals for controlling the level of power supplied by the power supply unit (32-60) to the heater assembly (10).

  10. Fullerene formation and annealing

    SciTech Connect

    Mintmire, J.W.

    1996-04-05

    Why does the highly symmetric carbon cluster C{sub 60} form in such profusion under the right conditions? This question was first asked in 1985, when Kroto suggested that the predominance of the C{sub 60} carbon clusters observed in the molecular beam experiments could be explained by the truncated icosahedral (or soccer ball) form. The name given to this cluster, buckminsterfullerene, led to the use of the term fullerenes for the family of hollow-cage carbon clusters made up of even numbers of triply coordinated carbons arranged with 12 pentagonal rings and an almost arbitrary number of hexagonal rings. More than a decade later, we still lack a completely satisfying understanding of the fundamental chemistry that takes place during fullerene formation. Most current models for fullerene formation require a facile mechanism for ring rearrangement in the fullerene structure, but the simplest proposed mechanisms are believed to have unrealistically high activation barriers. In recent research calculations have suggested that atomic carbon in the reaction mixture could act as a catalyst and allow substantially lower activation barriers for fullerene annealing. This article discusses the background for this research and other adjunct research. 14 refs.

  11. Vacuum probe surface sampler

    NASA Technical Reports Server (NTRS)

    Zahlava, B. A. (Inventor)

    1973-01-01

    A vacuum probe surface sampler is described for rapidly sampling relatively large surface areas which possess relatively light loading densities of micro-organism, drug particles or the like. A vacuum head with a hollow handle connected to a suitable vacuum source is frictionally attached to a cone assembly terminating in a flared tip adapted to be passed over the surface to be sampled. A fine mesh screen carried by the vacuum head provides support for a membrane filter which collects the microorganisms or other particles. The head assembly is easily removed from the cone assembly without contacting the cone assembly with human hands.

  12. NSLS II Vacuum System

    SciTech Connect

    Ferreira, M.; Doom, L.; Hseuh, H.; Longo, C.; Settepani, P.; Wilson, K.; Hu, J.

    2009-09-13

    National Synchrotron Light Source II, being constructed at Brookhaven, is a 3-GeV, 500 mA, 3rd generation synchrotron radiation facility with ultra low emittance electron beams. The storage ring vacuum system has a circumference of 792 m and consists of over 250 vacuum chambers with a simulated average operating pressure of less than 1 x 10{sup -9} mbar. A summary of the update design of the vacuum system including girder supports of the chambers, gauges, vacuum pumps, bellows, beam position monitors and simulation of the average pressure will be shown. A brief description of the techniques and procedures for cleaning and mounting the chambers are given.

  13. The effect of post oxide deposition annealing on the effective work function in metal/Al{sub 2}O{sub 3}/InGaAs gate stack

    SciTech Connect

    Winter, R.; Krylov, I.; Eizenberg, M.; Ahn, J.; McIntyre, P. C.

    2014-05-19

    The effect of post oxide deposition annealing on the effective work function in metal/Al{sub 2}O{sub 3}/ InGaAs gate stacks was investigated. Using a systematic method for effective work function extraction, a shift of 0.3 ± 0.1 eV was found between the effective work function of forming gas annealed samples and vacuum annealed samples. The electrical measurements enabled us to obtain the band alignment of the metal/Al{sub 2}O{sub 3}/InGaAs gate stack. This band alignment was confirmed by X-ray photoelectron spectroscopy. The measured shift in the effective work function between different annealing ambient may be attributed to indium out-diffusion during post oxide deposition annealing that is observed in forming gas anneal to a much larger extent than in vacuum.

  14. Study on effect of annealing conditions on structural, magnetic and superconducting properties of MgB{sub 2} bulk samples

    SciTech Connect

    Phaneendra, Konduru Asokan, K. Kanjilal, D.; Awana, V. P. S.; Sastry, S. Sreehari

    2014-04-24

    Effect of annealing conditions on structural, magnetic and superconducting properties of Magnesium Diboride (MgB{sub 2}) bulk superconductor samples prepared by solid state route method are compared. The samples are made by taking Magnesium and Boron powders in stoichiometric ratio, grounded well and pelletized at pressure of about 10Tonnes. These pellets are annealed in both Argon and vacuum environment separately up to 800°c for two hours. Both the samples show clear superconducting transition at Tc ∼ 38 k. This is further conformed by AC/DC magnetization (M-T), Resistivity [ρ (T, H)] measurements under magnetic field up to 14 Tesla as well. Rietveld refinement of X-ray diffraction of both samples conformed the MgB{sub 2} phase formation with P6/mmm space group symmetry. Scanning Electron Microscopy images of the surface revile more agglomeration of grains in case of Argon annealed samples. This result in more critical current density (J{sub c}) of Argon annealed samples than vacuum annealed one calculated from Bean's critical state model. This high Jc is explained in terms of more inter grain connectivity for Argon annealed sample than vacuum annealed sample.

  15. Working in a Vacuum

    ERIC Educational Resources Information Center

    Rathey, Allen

    2005-01-01

    In this article, the author discusses several myths about vacuum cleaners and offers tips on evaluating and purchasing this essential maintenance tool. These myths are: (1) Amps mean performance; (2) Everyone needs high-efficiency particulate air (HEPA): (3) Picking up a "bowling ball" shows cleaning power; (4) All vacuum bags are the same; (5)

  16. Working in a Vacuum

    ERIC Educational Resources Information Center

    Rathey, Allen

    2005-01-01

    In this article, the author discusses several myths about vacuum cleaners and offers tips on evaluating and purchasing this essential maintenance tool. These myths are: (1) Amps mean performance; (2) Everyone needs high-efficiency particulate air (HEPA): (3) Picking up a "bowling ball" shows cleaning power; (4) All vacuum bags are the same; (5)…

  17. Microfabricated triggered vacuum switch

    DOEpatents

    Roesler, Alexander W. (Tijeras, NM); Schare, Joshua M. (Albuquerque, NM); Bunch, Kyle (Albuquerque, NM)

    2010-05-11

    A microfabricated vacuum switch is disclosed which includes a substrate upon which an anode, cathode and trigger electrode are located. A cover is sealed over the substrate under vacuum to complete the vacuum switch. In some embodiments of the present invention, a metal cover can be used in place of the trigger electrode on the substrate. Materials used for the vacuum switch are compatible with high vacuum, relatively high temperature processing. These materials include molybdenum, niobium, copper, tungsten, aluminum and alloys thereof for the anode and cathode. Carbon in the form of graphitic carbon, a diamond-like material, or carbon nanotubes can be used in the trigger electrode. Channels can be optionally formed in the substrate to mitigate against surface breakdown.

  18. MULTISCALE PHENOMENA IN MATERIALS

    SciTech Connect

    A. BISHOP

    2000-09-01

    This project developed and supported a technology base in nonequilibrium phenomena underpinning fundamental issues in condensed matter and materials science, and applied this technology to selected problems. In this way the increasingly sophisticated synthesis and characterization available for classes of complex electronic and structural materials provided a testbed for nonlinear science, while nonlinear and nonequilibrium techniques helped advance our understanding of the scientific principles underlying the control of material microstructure, their evolution, fundamental to macroscopic functionalities. The project focused on overlapping areas of emerging thrusts and programs in the Los Alamos materials community for which nonlinear and nonequilibrium approaches will have decisive roles and where productive teamwork among elements of modeling, simulations, synthesis, characterization and applications could be anticipated--particularly multiscale and nonequilibrium phenomena, and complex matter in and between fields of soft, hard and biomimetic materials. Principal topics were: (i) Complex organic and inorganic electronic materials, including hard, soft and biomimetic materials, self-assembly processes and photophysics; (ii) Microstructure and evolution in multiscale and hierarchical materials, including dynamic fracture and friction, dislocation and large-scale deformation, metastability, and inhomogeneity; and (iii) Equilibrium and nonequilibrium phases and phase transformations, emphasizing competing interactions, frustration, landscapes, glassy and stochastic dynamics, and energy focusing.

  19. Quantum annealing with manufactured spins.

    PubMed

    Johnson, M W; Amin, M H S; Gildert, S; Lanting, T; Hamze, F; Dickson, N; Harris, R; Berkley, A J; Johansson, J; Bunyk, P; Chapple, E M; Enderud, C; Hilton, J P; Karimi, K; Ladizinsky, E; Ladizinsky, N; Oh, T; Perminov, I; Rich, C; Thom, M C; Tolkacheva, E; Truncik, C J S; Uchaikin, S; Wang, J; Wilson, B; Rose, G

    2011-05-12

    Many interesting but practically intractable problems can be reduced to that of finding the ground state of a system of interacting spins; however, finding such a ground state remains computationally difficult. It is believed that the ground state of some naturally occurring spin systems can be effectively attained through a process called quantum annealing. If it could be harnessed, quantum annealing might improve on known methods for solving certain types of problem. However, physical investigation of quantum annealing has been largely confined to microscopic spins in condensed-matter systems. Here we use quantum annealing to find the ground state of an artificial Ising spin system comprising an array of eight superconducting flux quantum bits with programmable spin-spin couplings. We observe a clear signature of quantum annealing, distinguishable from classical thermal annealing through the temperature dependence of the time at which the system dynamics freezes. Our implementation can be configured in situ to realize a wide variety of different spin networks, each of which can be monitored as it moves towards a low-energy configuration. This programmable artificial spin network bridges the gap between the theoretical study of ideal isolated spin networks and the experimental investigation of bulk magnetic samples. Moreover, with an increased number of spins, such a system may provide a practical physical means to implement a quantum algorithm, possibly allowing more-effective approaches to solving certain classes of hard combinatorial optimization problems. PMID:21562559

  20. High temperature annealing studies of strontium ion implanted glassy carbon

    NASA Astrophysics Data System (ADS)

    Odutemowo, O. S.; Malherbe, J. B.; Prinsloo, L.; Langa, D. F.; Wendler, E.

    2016-03-01

    Glassy carbon samples were implanted with 200 keV strontium ions to a fluence of 2 × 1016 ions/cm2 at room temperature. Analysis with Raman spectroscopy showed that ion bombardment amorphises the glassy carbon structure. Partial recovery of the glassy carbon structure was achieved after the implanted sample was vacuum annealed at 900 °C for 1 h. Annealing the strontium ion bombarded sample at 2000 °C for 5 h resulted in recovery of the glassy carbon substrate with the intensity of the D peak becoming lower than that of the pristine glassy carbon. Rutherford backscattering spectroscopy (RBS) showed that the implanted strontium diffused towards the surface of the glassy carbon after annealing the sample at 900 °C. This diffusion was also accompanied by loss of the implanted strontium. Comparison between the as-implanted and 900 °C depth profiles showed that less than 30% of the strontium was retained in the glassy carbon after heat treatment at 900 °C. The RBS profile after annealing at 2000 °C indicated that no strontium ions were retained after heat treatment at this temperature.

  1. Housing protects laser in vacuum

    NASA Technical Reports Server (NTRS)

    Canali, V. G.

    1978-01-01

    Airtight housing encloses laser for easy alinement and operation in high-vacuum chamber. Beam is transmitted through window into vacuum chamber. Flexible line runs through vacuum chamber to outside, maintaining laser enclosure at atmospheric pressure.

  2. Thermal Wave Phenomena

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This map from the MGS Horizon Sensor Assembly (HORSE) shows middle atmospheric temperatures near the 1 mbar level of Mars between Ls 170 to 175 (approx. July 14 - 23, 1999). Local Mars times between 1:30 and 4:30 AM are included. Infrared radiation measured by the Mars Horizon Sensor Assembly was used to make the map. That device continuously views the 'limb' of Mars in four directions, to help orient the spacecraft instruments to the nadir: straight down.

    The map shows thermal wave phenomena that are caused by the large topographic variety of Mars' surface, as well the latitudinally symmetric behavior expected at this time of year near the equinox.

  3. Thermophoretic vacuum wand

    DOEpatents

    Klebanoff, Leonard Elliott (San Ramon, CA); Rader, Daniel John (Lafayette, CA)

    2000-01-01

    A thermophoretic vacuum wand that is particularly suited for transporting articles in a cleanroom environment so that potential particle contaminants in the air do not become adhered to the surface of the article is described. The wand includes a housing having a platen with a front surface with suction port(s) through the platen; a vacuum source for applying a negative pressure to the suction port(s); and heating device for the object. Heating the article when it is held by the vacuum wand affords thermophoretic protection that effectively prevents particles in the air from depositing onto the article.

  4. Thermophoretic vacuum wand

    DOEpatents

    Klebanoff, Leonard Elliott (San Ramon, CA); Rader, Daniel John (Lafayette, CA)

    2001-01-01

    A thermophoretic vacuum wand that is particularly suited for transporting articles in a cleanroom environment so that potential particle contaminants in the air do not become adhered to the surface of the article is described. The wand includes a housing having a platen with a front surface with suction port(s) through the platen; a vacuum source for applying a negative pressure to the suction port(s); and heating device for the object. Heating the article when it is held by the vacuum wand affords thermophoretic protection that effectively prevents particles in the air from depositing onto the article.

  5. Vacuum deposition system

    SciTech Connect

    Austin, S.; Bark, D.

    1990-05-31

    The Physics Section vacuum deposition system is available for several types of thin film techniques. This vacuum evaporation system operates in the high vacuum range. The evaporation source is a resistive heating element, either a boat or a filament design. Coating is then line of sight from the source. Substrates to be coated can have a maximum diameter of 17 inches. At this time the variations in the thickness of the coatings can be controlled, by monitor, to within about 100 angstroms. The system diagrams follow the Operation Procedures and the Sample Coating Procedures provided in this document. 3 figs.

  6. Collapse of vacuum bubbles in a vacuum

    SciTech Connect

    Ng, Kin-Wang; Wang, Shang-Yung

    2011-02-15

    We revisit the dynamics of a false vacuum bubble in a background de Sitter spacetime. We find that there exists a large parameter space that allows the bubble to collapse into a black hole or to form a wormhole. This may have interesting implications for the creation of a baby universe in the laboratory, the string landscape where the bubble nucleation takes place among a plenitude of metastable vacua, and the inflationary physics.

  7. Origin of New Broad Raman D and G Peaks in Annealed Graphene

    PubMed Central

    Hong, Jinpyo; Park, Min Kyu; Lee, Eun Jung; Lee, DaeEung; Hwang, Dong Seok; Ryu, Sunmin

    2013-01-01

    Since graphene, a single sheet of graphite, has all of its carbon atoms on the surface, its property is very sensitive to materials contacting the surface. Herein, we report novel Raman peaks observed in annealed graphene and elucidate their chemical origins by Raman spectroscopy and atomic force microscopy (AFM). Graphene annealed in oxygen-free atmosphere revealed very broad additional Raman peaks overlapping the D, G and 2D peaks of graphene itself. Based on the topographic confirmation by AFM, the new Raman peaks were attributed to amorphous carbon formed on the surface of graphene by carbonization of environmental hydrocarbons. While the carbonaceous layers were formed for a wide range of annealing temperature and time, they could be effectively removed by prolonged annealing in vacuum. This study underlines that spectral features of graphene and presumably other 2-dimensional materials are highly vulnerable to interference by foreign materials of molecular thickness. PMID:24048447

  8. Linear response theory for annealing of radiation damage in semiconductor devices

    NASA Technical Reports Server (NTRS)

    Litovchenko, Vitaly

    1988-01-01

    A theoretical study of the radiation/annealing response of MOS ICs is described. Although many experiments have been performed in this field, no comprehensive theory dealing with radiation/annealing response has been proposed. Many attempts have been made to apply linear response theory, but no theoretical foundation has been presented. The linear response theory outlined here is capable of describing a broad area of radiation/annealing response phenomena in MOS ICs, in particular, both simultaneous irradiation and annealing, as well as short- and long-term annealing, including the case when annealing is nearing completion. For the first time, a simple procedure is devised to determine the response function from experimental radiation/annealing data. In addition, this procedure enables us to study the effect of variable temperature and dose rate, effects which are of interest in spaceflight. In the past, the shift in threshold potential due to radiation/annealing has usually been assumed to depend on one variable: the time lapse between an impulse dose and the time of observation. While such a suggestion of uniformity in time is certainly true for a broad range of radiation annealing phenomena, it may not hold for some ranges of the variables of interest (temperature, dose rate, etc.). A response function is projected which is dependent on two variables: the time of observation and the time of the impulse dose. This dependence on two variables allows us to extend the theory to the treatment of a variable dose rate. Finally, the linear theory is generalized to the case in which the response is nonlinear with impulse dose, but is proportional to some impulse function of dose. A method to determine both the impulse and response functions is presented.

  9. Vacuum Camera Cooler

    NASA Technical Reports Server (NTRS)

    Laugen, Geoffrey A.

    2011-01-01

    Acquiring cheap, moving video was impossible in a vacuum environment, due to camera overheating. This overheating is brought on by the lack of cooling media in vacuum. A water-jacketed camera cooler enclosure machined and assembled from copper plate and tube has been developed. The camera cooler (see figure) is cup-shaped and cooled by circulating water or nitrogen gas through copper tubing. The camera, a store-bought "spy type," is not designed to work in a vacuum. With some modifications the unit can be thermally connected when mounted in the cup portion of the camera cooler. The thermal conductivity is provided by copper tape between parts of the camera and the cooled enclosure. During initial testing of the demonstration unit, the camera cooler kept the CPU (central processing unit) of this video camera at operating temperature. This development allowed video recording of an in-progress test, within a vacuum environment.

  10. Welding space vacuum technology

    NASA Technical Reports Server (NTRS)

    Johnson, R. Barry

    1991-01-01

    The objective was to assist the EH 42 Division in putting together a vacuum system that could attain the desired pressure and be large enough to accommodate the gas-metal arc (GMA) welding fixture apparatus. A major accomplishment was the design and fabrication of the controller/annunciator for the 4' by 8' system. It contains many safety features such as thermocouple set point relays that will only allow inlet and exit gas and vacuum valves to be operated at pre-selected system pressures, and a fail safe mode for power interruptions and operator mistakes. It is felt that significant progress was made in this research effort to weld in a vacuum environment. With continued efforts to increase the pump speeds for vacuum chambers and further studies on weld fixtures and gas inlet pressures, the NASA program will be successful.

  11. Indium out-diffusion in Al{sub 2}O{sub 3}/InGaAs stacks during anneal at different ambient conditions

    SciTech Connect

    Krylov, Igor; Winter, Roy; Ritter, Dan; Eizenberg, Moshe

    2014-06-16

    Indium out-diffusion during anneal enhances leakage currents in metal/dielectric/InGaAs gate stacks. In this work, we study the influence of ambient conditions during anneal on indium out-diffusion in Al{sub 2}O{sub 3}/InGaAs structures, prior to the gate metal deposition. Using X-ray photoemission spectroscopy and time of flight secondary ions mass spectrometry, we observed much lower indium concentrations in the Al{sub 2}O{sub 3} layer following vacuum and O{sub 2} anneals compared to forming gas or nitrogen anneals. The electrical characteristics of the Ni/Al{sub 2}O{sub 3}/InGaAs gate stack following these pre-metallization anneals as well as after subsequent post metallization anneals are presented. Possible explanations for the role of the annealing ambient conditions on indium out-diffusion are presented.

  12. Vacuum self-magnetization?

    SciTech Connect

    Perez Rojas, H.; Rodriguez Querts, E.

    2006-06-19

    We study vacuum properties in a strong magnetic field as the zero temperature and zero density limit of quantum statistics. For charged vector bosons (W bosons) the vacuum energy density diverges for B > B{sub c} = m{sub w}{sup 2}/e, leading to vacuum instability. A logarithmic divergence of vacuum magnetization is found for B = Bc, which suggests that if the magnetic field is large enough, it is self-consistently maintained, and this mechanism actually prevents B from reaching the critical value Bc. For virtual neutral vector bosons bearing an anomalous magnetic moment, the instability of the ground state for B > B{sub c}{sup '} = m{sub n}{sup 2}/q also leads to the vacuum energy density divergence for fields B > B{sub c}{sup '} and to the magnetization divergence for B B{sub c}{sup '}. The possibility of virtual electron-positron pairs bosonization in strong magnetic field and the applicability of the neutral bosons model to describe the virtual positronium behavior in a magnetic field are discussed. We conjecture that this could lead to vacuum self-magnetization in QED.

  13. Influence of Substrate Nature and Annealing on Electro-Optical Properties of ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Iacomi, Felicia; Baban, C.; Iftimie, Nicoleta; Prepelita, Petronela; Luca, D.

    2007-04-01

    ZnO thin films were grown on different substrates (glass, quartz, silicon wafers, etc) by vacuum thermal evaporation. Different thermal treatments were performed in order to obtain transparent and conductive or high resistive ZnO tin films. The optical and electrical properties of ZnO thin films are dependent on the crucible temperature, annealing conditions and on the substrate nature. The thin films are transparent and have an electrical resistivity in 10-4 Ωm regio. The annealing process performed in vacuum at 573K or under UV irradiation determines a decrease in the electrical resistivity of films.

  14. Arcjet cathode phenomena

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Haag, Thomas W.; Raquet, John F.

    1989-01-01

    Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.

  15. ON DETECTING TRANSIENT PHENOMENA

    SciTech Connect

    Belanger, G.

    2013-08-10

    Transient phenomena are interesting and potentially highly revealing of details about the processes under observation and study that could otherwise go unnoticed. It is therefore important to maximize the sensitivity of the method used to identify such events. In this article, we present a general procedure based on the use of the likelihood function for identifying transients which is particularly suited for real-time applications because it requires no grouping or pre-processing of the data. The method makes use of all the information that is available in the data throughout the statistical decision-making process, and is suitable for a wide range of applications. Here we consider those most common in astrophysics, which involve searching for transient sources, events or features in images, time series, energy spectra, and power spectra, and demonstrate the use of the method in the case of a weak X-ray flare in a time series and a short-lived quasi-periodic oscillation in a power spectrum. We derive a fit statistic that is ideal for fitting arbitrarily shaped models to a power density distribution, which is of general interest in all applications involving periodogram analysis.

  16. Arcjet Cathode Phenomena

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Haag, Thomas W.; Raquet, John F.

    1989-01-01

    Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.

  17. Annealing studies of amorphous alloys

    SciTech Connect

    Wiley, J.D.; Perepezko, J.H.; Nordman, J.E.

    1983-04-01

    Amorphous films of the alloys Ni-Nb, Ni-Mo, Mo-Si, and W-Si were sputter deposited on single-crystal semiconductor substrates. One-hour crystallization temperatures of the films were determined to within +-25/sup 0/C by annealing and x-ray diffraction measurements. Interdiffusion between Au or Cu overlayers and the amorphous films were studied by annealing combined with Auger Electron Spectroscopy (AES) profiling, and by Rutherford Backscatter (RBS) analysis. Supplementary measurements used to study structural relaxation and crystallization included resistivity as a function of temperature; DTA and DSC; and electron microscopy.

  18. Influence of annealing process on conductive properties of Nb-doped TiO 2 polycrystalline films prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Liu, Jinming; Zhao, Xiaoru; Duan, Libing; Cao, Mengmeng; Sun, Huinan; Shao, Jifeng; Chen, Shuai; Xie, Haiyan; Chang, Xiao; Chen, Changle

    2011-09-01

    Nb-doped TiO2 (TNO) thin films were prepared by sol-gel dip-coating method with Nb content in a wide range of 0-20 at.%. The prepared films were preheated at 400 °C and then undertaken by two different post-annealing processes: (a) three times vacuum annealing and (b) multi-round annealing. The designed multi-round annealing was shown to be an effective way to improve the conductive properties of the films, compared to the traditional vacuum annealing process. The minimum resistivity reached approximately 0.5 Ω cm with Nb doping concentration around 12 at.%, and the carrier density increased with Nb-doping concentration until the critical point of 12 at.%, which might be the optimal doping content for our TNO films prepared by sol-gel method.

  19. Hypervelocity impact phenomena

    SciTech Connect

    Chhabildas, L.C.

    1995-07-01

    There is a need to determine the equations of state of materials in regimes of extreme high pressures, temperatures and strain rates that are not attainable on current two-stage light-gas guns. Understanding high-pressure material behavior is crucial to address the physical processes associated with a variety of hypervelocity impact events related to space sciences-orbital-debris impact, debris-shield designs, high-speed plasma propagation, and impact lethality applications. At very high impact velocities material properties will be dominated by phase-changes, such as melting or vaporization, which cannot be achieved at lower impact velocities. Development of well-controlled and repeatable hypervelocity launch capabilities is the first step necessary to improve our understanding of material behavior at extreme pressures and temperatures not currently available using conventional two-stage light-gas gun techniques. In this paper, techniques that have been used to extend both the launch capabilities of a two-stage light gas gun to 16 km/s, and their use to determine the material properties at pressures and temperature states higher than those ever obtained in the laboratory are summarized. The newly developed hypervelocity launcher (HVL) can launch intact (macroscopic dimensions) plates to 16 km/s. Time-resolved interferometric techniques have been used to determine shock-loading/release characteristics of materials impacted by such fliers as well as shock-induced vaporization phenomena in fully vaporized states. High-speed photography or radiography has been used to evaluate the debris propagation characteristics resulting from disc impact of thin bumper sheets at hypervelocities in excess of 10 km/s using the HVL. Examples of these experiments are provided in this paper.

  20. Annealing properties of rice starch.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal properties of starch can be modified by annealing, i.e., a pre-treatment in excessive amounts of water at temperatures below the gelatinization temperatures. This treatment is known to improve the crystalline properties, and is a useful tool to gain a better control of the functional proper...

  1. An Introduction to Simulated Annealing

    ERIC Educational Resources Information Center

    Albright, Brian

    2007-01-01

    An attempt to model the physical process of annealing lead to the development of a type of combinatorial optimization algorithm that takes on the problem of getting trapped in a local minimum. The author presents a Microsoft Excel spreadsheet that illustrates how this works.

  2. Performance of quantum annealing hardware

    NASA Astrophysics Data System (ADS)

    Steiger, Damian S.; Heim, Bettina; Rnnow, Troels F.; Troyer, Matthias

    2015-10-01

    In this paper, we provide an introduction to quantum annealers, which are analogue quantum computing devices, and their potential application to solve hard optimisation problems. We summarise our benchmarks performed on a "Wave Two" machine by Canadian company D-Wave Systems Inc.

  3. Electromagnetic vacuum of complex media: Dipole emission versus light propagation, vacuum energy, and local field factors

    SciTech Connect

    Donaire, M.

    2011-02-15

    We offer a unified approach to several phenomena related to the electromagnetic vacuum of a complex medium made of point electric dipoles. To this aim, we apply the linear response theory to the computation of the polarization field propagator and study the spectrum of vacuum fluctuations. The physical distinction among the local density of states which enter the spectra of light propagation, total dipole emission, coherent emission, total vacuum energy, and Schwinger-bulk energy is made clear. Analytical expressions for the spectrum of dipole emission and for the vacuum energy are derived. Their respective relations with the spectrum of external light and with the Schwinger-bulk energy are found. The light spectrum and the Schwinger-bulk energy are determined by the Dyson propagator. The emission spectrum and the total vacuum energy are determined by the polarization propagator. An exact relationship of proportionality between both propagators is found in terms of local field factors. A study of the nature of stimulated emission from a single dipole is carried out. Regarding coherent emission, it contains two components. A direct one which is transferred radiatively and directly from the emitter into the medium and whose spectrum is that of external light. And an indirect one which is radiated by induced dipoles. The induction is mediated by one (and only one) local field factor. Regarding the vacuum energy, we find that in addition to the Schwinger-bulk energy the vacuum energy of an effective medium contains local field contributions proportional to the resonant frequency and to the spectral line width.

  4. Enhancement in visible luminescence from nanocomposite ZnO-SiOx thin films due to annealing

    NASA Astrophysics Data System (ADS)

    Kumar, V. V. Siva; Kanjilal, D.

    2014-01-01

    The annealing induced enhancement in visible photoluminescence (PL) from nanocomposite (nc) ZnO-SiOx thin films was investigated. Nc ZnO-SiOx thin films consisting of ZnO nanocrystals in silica matrix were grown by depositing the films using radio frequency (rf) reactive co-sputtering and post-annealing them at temperatures of 350°C and 500°C in high vacuum and air. These films were characterized by Fourier transform infrared (FTIR), (PL) spectroscopy and UV-Vis spectrophotometry measurements. Thin films were also deposited on transmission electron microscopy (TEM) grids in almost identical conditions. The TEM measurement of the thin film deposited on TEM grid shows the formation of ZnO nanocrystals with a size distribution from 3.0 nm to 6.8 nm (+/-0.2 nm) in silica matrix. The UV-Vis spectra of the films show absorption features of ZnO and Zn2SiO4 phases in the films. The visible PL emission intensity and peak width increased in the annealed films. The results suggest increase in the number and size distribution of the ZnO nanocrystals in silica matrix due to the annealing resulting in increase in visible PL emission. The results of vacuum annealed films indicate that these films can be useful in the development of wide band visible light emitting devices using this material.

  5. Effect of short annealing times on the magnetoelectronic properties of Co/Pd-based pseudo-spin-valves.

    PubMed

    Tahmasebi, Taiebeh; Law, Randall; Sbiaa, Rachid; Piramanayagam, S N; Chong, Tow Chong

    2011-03-01

    We investigated the effects of short annealing times on the magnetoelectronic properties of pseudo-spin-valves (PSV) with perpendicular magnetic anisotropy based on Co/Pd multilayers using a contact hot plate. In order to study the time scale at which the degradation of film properties occurs for possible application in perpendicular MgO-based magnetic tunnel junctions (MTJ), the results were compared against our previous study of Co/Pd PSV based on vacuum annealing. With contact annealing for up to 90 s, no significant changes to the current-in-plane giant magnetoresistance (CIP-GMR), interlayer coupling, sheet resistance and layer coercivities were observed for up to 200 degrees C. At 350 degrees C, a 39 to 46% decrease in CIP-GMR was observed for annealing times of 30 to 90 s, respectively, slightly lower than that observed for vacuum annealing at 230 degrees C for 1 h. Similar results were also obtained for interlayer coupling, sheet resistance and layer coercivities, indicating that short annealing times allow for reduced interlayer diffusion at higher temperatures. However, it is clear that significant degradation of GMR performance occurs at 350 degrees C and above even for annealing times as short as 30 s, indicating the potential difficulty of realizing Co/Pd-based perpendicular MgO-MTJ. PMID:21449449

  6. Teaching Optical Phenomena with Tracker

    ERIC Educational Resources Information Center

    Rodrigues, M.; Carvalho, P. Simeo

    2014-01-01

    Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a

  7. Teaching Optical Phenomena with Tracker

    ERIC Educational Resources Information Center

    Rodrigues, M.; Carvalho, P. Simeão

    2014-01-01

    Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a…

  8. Improving Vacuum Cleaners

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Under a Space Act Agreement between the Kirby company and Lewis Research Center, NASA technology was applied to a commercial vacuum cleaner product line. Kirby engineers were interested in advanced operational concepts, such as particle flow behavior and vibration, critical factors to improve vacuum cleaner performance. An evaluation of the company 1994 home care system, the Kirby G4, led to the refinement of the new G5 and future models. Under the cooperative agreement, Kirby had access to Lewis' holography equipment, which added insight into how long a vacuum cleaner fan would perform, as well as advanced computer software that can simulate the flow of air through fans. The collaboration resulted in several successes including fan blade redesign and continuing dialogue on how to improve air-flow traits in various nozzle designs.

  9. VACUUM SEALING MEANS FOR LOW VACUUM PRESSURES

    DOEpatents

    Milleron, N.

    1962-06-12

    S>A vacuum seal is designed in which the surface tension of a thin layer of liquid metal of low vapor pressure cooperates with adjacent surfaces to preclude passages of gases across pressure differentials as low as 10/sup -8/ mm Hg. Mating contiguous surfaces composed of copper, brass, stainless steel, nickel, molybdenum, tungsten, tantalum, glass, quartz, and/or synthetic mica are disposed to provide a maximum tolerance, D, expressed by 2 gamma /P/sub 1/, where gamma is the coefflcient of the surface tension of the metal sealant selected in dynes/cm/sub 2/. Means for heating the surfaces remotely is provided where temperatures drop below about 250 deg C. A sealant consisting of an alloy of gallium, indium, and tin, among other combinations tabulated, is disposed therebetween after treating the surfaces to improve wettability, as by ultrasonic vibrations, the surfaces and sealants being selected according to the anticipated experimental conditions of use. (AEC)

  10. K-130 Cyclotron vacuum system

    NASA Astrophysics Data System (ADS)

    Yadav, R. C.; Bhattacharya, S.; Bhole, R. B.; Roy, Anindya; Pal, Sarbajit; Mallik, C.; Bhandari, R. K.

    2012-11-01

    The vacuum system for K-130 cyclotron has been operational since 1977. It consists of two sub-systems, main vacuum system and beam line vacuum system. The main vacuum system is designed to achieve and maintain vacuum of about 1 × 10-6 mbar inside the 23 m3 volume of acceleration chamber comprising the Resonator tank and the Dee tank. The beam line vacuum system is required for transporting the extracted beam with minimum loss. These vacuum systems consist of diffusion pumps backed by mechanical pumps like roots and rotary pumps. The large vacuum pumps and valves of the cyclotron vacuum system were operational for more than twenty five years. In recent times, problems of frequent failures and maintenance were occurring due to aging and lack of appropriate spares. Hence, modernisation of the vacuum systems was taken up in order to ensure a stable high voltage for radio frequency system and the extraction system. This is required for efficient acceleration and transportation of high intensity ion beam. The vacuum systems have been upgraded by replacing several pumps, valves, gauges and freon units. The relay based control system for main vacuum system has also been replaced by PLC based state of the art control system. The upgraded control system enables inclusion of additional operational logics and safety interlocks into the system. The paper presents the details of the vacuum system and describes the modifications carried out for improving the performance and reliability of the vacuum system.

  11. A vacuum chamber feedthrough

    NASA Technical Reports Server (NTRS)

    Brown, V. D.

    1973-01-01

    Simple and inexpensive microwave feedthrough has been designed which transfers 130 ns, 5kV pulse into vacuum chamber. Feedthrough may be used over wide range and is adaptable to most coaxial cables, since either multistrand or single strand center conductor cable can be used.

  12. Vacuum ultraviolet holography

    NASA Technical Reports Server (NTRS)

    Bjorklund, G. C.; Harris, S. E.; Young, J. F.

    1974-01-01

    The authors report the first demonstration of holographic techniques in the vacuum ultraviolet spectral region. Holograms were produced with coherent 1182 A radiation. The holograms were recorded in polymethyl methacrylate and read out with an electron microscope. A holographic grating with a fringe spacing of 836 A was produced and far-field Fraunhofer holograms of sub-micron particles were recorded.

  13. Topics in vacuum decay

    NASA Astrophysics Data System (ADS)

    Masoumi, Ali

    2013-12-01

    If a theory has more than one classically stable vacuum, quantum tunneling and thermal jumps make the transition between the vacua possible. The transition happens through a first order phase transition started by nucleation of a bubble of the new vacuum. The outward pressure of the truer vacuum makes the bubble expand and consequently eat away more of the old phase. In the presence of gravity this phenomenon gets more complicated and meanwhile more interesting. It can potentially have important cosmological consequences. Some aspects of this decay are studied in this thesis. Solutions with different symmetry than the generically used O(4) symmetry are studied and their actions calculated. Vacuum decay in a spatial vector field is studied and novel features like kinky domain walls are presented. The question of stability of vacua in a landscape of potentials is studied and the possible instability in large dimension of fields is shown. Finally a compactification of the Einstein-Maxwell theory is studied which can be a good lab to understand the decay rates in compactification models of arbitrary dimensions.

  14. Vacuum Kundt waves

    NASA Astrophysics Data System (ADS)

    McNutt, David; Milson, Robert; Coley, Alan

    2013-03-01

    We discuss the invariant classification of vacuum Kundt waves using the Cartan-Karlhede algorithm and determine the upper bound on the number of iterations of the Karlhede algorithm to classify the vacuum Kundt waves (Collins (1991 Class. Quantum Grav. 8 1859-69), Machado Ramos (1996 Class. Quantum Grav. 13 1589)). By choosing a particular coordinate system we partially construct the canonical coframe used in the classification to study the functional dependence of the invariants arising at each iteration of the algorithm. We provide a new upper bound, q ⩽ 4, and show that this bound is sharp by analyzing the subclass of Kundt waves with invariant count beginning with (0, 1,…) to show that the class with invariant count (0, 1, 3, 4, 4) exists. This class of vacuum Kundt waves is shown to be unique as the only set of metrics requiring the fourth covariant derivatives of the curvature. We conclude with an invariant classification of the vacuum Kundt waves using a suite of invariants.

  15. Sorption vacuum trap

    NASA Technical Reports Server (NTRS)

    Barrington, A. E.; Caruso, A. J.

    1970-01-01

    Modified sorption trap for use in high vacuum systems contains provisions for online regeneration of sorbent material. Trap is so constructed that it has a number of encapsulated resistance heaters and a valving and pumping device for removing gases from heated sorbing material. Excessive downtime is eliminated with this trap.

  16. Light-front vacuum

    NASA Astrophysics Data System (ADS)

    Herrmann, Marc; Polyzou, W. N.

    2015-04-01

    The purpose of this work is to understand the relation between the trivial vacuum in light-front field theory and the nontrivial vacuum in canonical representations of quantum field theory and the role of zero-modes in this relation. The role of the underlying field algebra in the definition of the vacuum is exploited to understand these relations. The trivial vacuum defined by an annihilation operator defines a linear functional on the algebra of fields restricted to a light front. This is extended to a linear functional on the algebra of local fields. The extension defines a unitary mapping between the physical representation of the local algebra and a sub-algebra of the light-front Fock algebra. The dynamics appears in the mapping and the structure of the sub-algebra. This correspondence provides a formulation of locality and Poincaré invariance on the light-front Fock space. Zero modes do not appear in the final mapping, but may be needed in the construction of the mapping using a local Lagrangian.

  17. Gas injected vacuum switch

    DOEpatents

    Hardin, K. Dan

    1977-01-01

    The disclosure relates to a gas injected vacuum switch comprising a housing having an interior chamber, a conduit for evacuating the interior chamber, within the chamber an anode and a cathode spaced from the anode, and a detonator for injecting electrically conductive gas into the chamber between the anode and the cathode to provide a current path therebetween.

  18. Vacuum arc deposition devices

    SciTech Connect

    Boxman, R.L.; Zhitomirsky, V.N.

    2006-02-15

    The vacuum arc is a high-current, low-voltage electrical discharge which produces a plasma consisting of vaporized and ionized electrode material. In the most common cathodic arc deposition systems, the arc concentrates at minute cathode spots on the cathode surface and the plasma is emitted as a hypersonic jet, with some degree of contamination by molten droplets [known as macroparticles (MPs)] of the cathode material. In vacuum arc deposition systems, the location and motion of the cathode spots are confined to desired surfaces by an applied magnetic field and shields around undesired surfaces. Substrates are mounted on a holder so that they intercept some portion of the plasma jet. The substrate often provides for negative bias to control the energy of depositing ions and heating or cooling to control the substrate temperature. In some systems, a magnetic field is used to guide the plasma around an obstacle which blocks the MPs. These elements are integrated with a deposition chamber, cooling, vacuum gauges and pumps, and power supplies to produce a vacuum arc deposition system.

  19. Langmuir vacuum and superconductivity

    SciTech Connect

    Veklenko, B. A.

    2012-06-15

    It is shown that, in the 'jelly' model of cold electron-ion plasma, the interaction between electrons and the quantum electromagnetic vacuum of Langmuir waves involves plasma superconductivity with an energy gap proportional to the energy of the Langmuir quantum.

  20. Quantum Annealing for Constrained Optimization

    NASA Astrophysics Data System (ADS)

    Hen, Itay; Spedalieri, Federico M.

    2016-03-01

    Recent advances in quantum technology have led to the development and manufacturing of experimental programmable quantum annealers that promise to solve certain combinatorial optimization problems of practical relevance faster than their classical analogues. The applicability of such devices for many theoretical and real-world optimization problems, which are often constrained, is severely limited by the sparse, rigid layout of the devices' quantum bits. Traditionally, constraints are addressed by the addition of penalty terms to the Hamiltonian of the problem, which, in turn, requires prohibitively increasing physical resources while also restricting the dynamical range of the interactions. Here, we propose a method for encoding constrained optimization problems on quantum annealers that eliminates the need for penalty terms and thereby reduces the number of required couplers and removes the need for minor embedding, greatly reducing the number of required physical qubits. We argue the advantages of the proposed technique and illustrate its effectiveness. We conclude by discussing the experimental feasibility of the suggested method as well as its potential to appreciably reduce the resource requirements for implementing optimization problems on quantum annealers and its significance in the field of quantum computing.

  1. Simulated annealing model of acupuncture

    NASA Astrophysics Data System (ADS)

    Shang, Charles; Szu, Harold

    2015-05-01

    The growth control singularity model suggests that acupuncture points (acupoints) originate from organizers in embryogenesis. Organizers are singular points in growth control. Acupuncture can cause perturbation of a system with effects similar to simulated annealing. In clinical trial, the goal of a treatment is to relieve certain disorder which corresponds to reaching certain local optimum in simulated annealing. The self-organizing effect of the system is limited and related to the person's general health and age. Perturbation at acupoints can lead a stronger local excitation (analogous to higher annealing temperature) compared to perturbation at non-singular points (placebo control points). Such difference diminishes as the number of perturbed points increases due to the wider distribution of the limited self-organizing activity. This model explains the following facts from systematic reviews of acupuncture trials: 1. Properly chosen single acupoint treatment for certain disorder can lead to highly repeatable efficacy above placebo 2. When multiple acupoints are used, the result can be highly repeatable if the patients are relatively healthy and young but are usually mixed if the patients are old, frail and have multiple disorders at the same time as the number of local optima or comorbidities increases. 3. As number of acupoints used increases, the efficacy difference between sham and real acupuncture often diminishes. It predicted that the efficacy of acupuncture is negatively correlated to the disease chronicity, severity and patient's age. This is the first biological - physical model of acupuncture which can predict and guide clinical acupuncture research.

  2. Demonstrations with a Vacuum: Old Demonstrations for New Vacuum Pumps.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1989-01-01

    Explains mechanisms of 19th-century vacuum pumps. Describes demonstrations using the pump including guinea and feather tube, aurora tube, electric egg, Gassiots cascade, air mill, bell in vacuum, density and buoyancy of air, fountain in vacuum, mercury shower, palm and bladder glasses, Bacchus demonstration, pneumatic man-lifter, and Magdeburg…

  3. Demonstrations with a Vacuum: Old Demonstrations for New Vacuum Pumps.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1989-01-01

    Explains mechanisms of 19th-century vacuum pumps. Describes demonstrations using the pump including guinea and feather tube, aurora tube, electric egg, Gassiots cascade, air mill, bell in vacuum, density and buoyancy of air, fountain in vacuum, mercury shower, palm and bladder glasses, Bacchus demonstration, pneumatic man-lifter, and Magdeburg

  4. Magnetic and electric properties of a quantum vacuum

    NASA Astrophysics Data System (ADS)

    Battesti, R.; Rizzo, C.

    2013-01-01

    In this report we show that a vacuum is a nonlinear optical medium and discuss what the optical phenomena are that should exist in the framework of the standard model of particle physics. We pay special attention to the low energy limit. The predicted effects for photons of energy smaller than the electron rest mass are of such a level that none have yet been observed experimentally. Progress in field sources and related techniques seem to indicate that in a few years vacuum nonlinear optics will be accessible to human investigation.

  5. Annealing study of poly(etheretherketone)

    NASA Technical Reports Server (NTRS)

    Cebe, Peggy

    1988-01-01

    Annealing of PEEK has been studied for two materials cold-crystallized from the rubbery amorphous state. The first material is a low molecular weight PEEK; the second is commercially available neat resin. Differential scanning calorimetry was used to monitor the melting behavior of annealed samples. The effect of thermal history on melting behavior is very complex and depends upon annealing temperature, residence time at the annealing temperature, and subsequent scanning rate. Thermal stability of both materials is improved by annealing, and for an annealing temperature near the melting point, the polymer can be stabilized against reorganization during the scan. Variations of density, degree of crystallinity, and X-ray long period were studied as a function of annealing temperature for the commercial material.

  6. Tritium handling in vacuum systems

    SciTech Connect

    Gill, J.T.; Coffin, D.O.

    1986-10-01

    This report provides a course in Tritium handling in vacuum systems. Topics presented are: Properties of Tritium; Tritium compatibility of materials; Tritium-compatible vacuum equipment; and Tritium waste treatment.

  7. Recursive Branching Simulated Annealing Algorithm

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew; Smith, J. Scott; Aronstein, David

    2012-01-01

    This innovation is a variation of a simulated-annealing optimization algorithm that uses a recursive-branching structure to parallelize the search of a parameter space for the globally optimal solution to an objective. The algorithm has been demonstrated to be more effective at searching a parameter space than traditional simulated-annealing methods for a particular problem of interest, and it can readily be applied to a wide variety of optimization problems, including those with a parameter space having both discrete-value parameters (combinatorial) and continuous-variable parameters. It can take the place of a conventional simulated- annealing, Monte-Carlo, or random- walk algorithm. In a conventional simulated-annealing (SA) algorithm, a starting configuration is randomly selected within the parameter space. The algorithm randomly selects another configuration from the parameter space and evaluates the objective function for that configuration. If the objective function value is better than the previous value, the new configuration is adopted as the new point of interest in the parameter space. If the objective function value is worse than the previous value, the new configuration may be adopted, with a probability determined by a temperature parameter, used in analogy to annealing in metals. As the optimization continues, the region of the parameter space from which new configurations can be selected shrinks, and in conjunction with lowering the annealing temperature (and thus lowering the probability for adopting configurations in parameter space with worse objective functions), the algorithm can converge on the globally optimal configuration. The Recursive Branching Simulated Annealing (RBSA) algorithm shares some features with the SA algorithm, notably including the basic principles that a starting configuration is randomly selected from within the parameter space, the algorithm tests other configurations with the goal of finding the globally optimal solution, and the region from which new configurations can be selected shrinks as the search continues. The key difference between these algorithms is that in the SA algorithm, a single path, or trajectory, is taken in parameter space, from the starting point to the globally optimal solution, while in the RBSA algorithm, many trajectories are taken; by exploring multiple regions of the parameter space simultaneously, the algorithm has been shown to converge on the globally optimal solution about an order of magnitude faster than when using conventional algorithms. Novel features of the RBSA algorithm include: 1. More efficient searching of the parameter space due to the branching structure, in which multiple random configurations are generated and multiple promising regions of the parameter space are explored; 2. The implementation of a trust region for each parameter in the parameter space, which provides a natural way of enforcing upper- and lower-bound constraints on the parameters; and 3. The optional use of a constrained gradient- search optimization, performed on the continuous variables around each branch s configuration in parameter space to improve search efficiency by allowing for fast fine-tuning of the continuous variables within the trust region at that configuration point.

  8. An X-ray diffraction and Mössbauer study of interdiffusion phenomena at the interface between Fe and In0.5Ga0.5As (001)

    NASA Astrophysics Data System (ADS)

    Monteverde, F.; Michel, A.; Fnidiki, A.; Eymery, J.-P.

    2003-03-01

    Polycrystalline iron thin films on ion-etched monocrystalline In{0.5}Ga{0.5}As/InP (001) substrates were prepared using ion-beam sputtering deposition. The interface reaction was characterised by X-ray diffraction and conversion electron Mössbauer spectroscopy experiments, after annealing in vacuum for 1 h at temperatures between 350 and 450 °C. Interdiffusion phenomena mainly result in the formation of five new phases, namely metallic-In, InAs, Fe2As, Fe2InxAs{1-x} (0 leq x leq 0.2) and Fe3Ga{2-x}Asx (x = 0.2 - 0.3), in agreement with the predictions of the phase diagrams. InAs results from the decomposition of the semiconductor substrate and remains (001)-textured. The iron-arsenide grains grow into the substrate below the Fe/In{0.5}Ga{0.5}As interface. The In precipitates reach 40 nm in size after 1 h annealing at 450 °C, while the Fe3Ga{2-x}Asx phase appears at 400 450 °C with an either textured or disordered structure. Finally, the overall activation energy for the thermal reaction is calculated to be 1.5 eV in the latter temperature range.

  9. A radiation hard vacuum switch

    DOEpatents

    Boettcher, G.E.

    1988-07-19

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction. 3 figs.

  10. Effect of the surface upon misfit dislocation velocities during the growth and annealing of SiGe/Si (001) heterostructures

    NASA Astrophysics Data System (ADS)

    Stach, E. A.; Hull, R.; Tromp, R. M.; Reuter, M. C.; Copel, M.; LeGoues, F. K.; Bean, J. C.

    1998-02-01

    We have measured the velocity of misfit dislocation threading segments in real time during ultrahigh vacuum (UHV) chemical vapor deposition heteroepitaxial growth of thin SiGe epilayers on Si (001) using ultrahigh vacuum transmission electron microscopy. We observe no measurable difference in dislocation velocities during growth and during post-growth annealing of samples with an atomically clean surface, in contrast to previous observations in the InGaAs/GaAs (001) system. However, dislocations are seen to move approximately three times slower during growth and post-growth UHV annealing than during annealing of samples which have a native oxide present on the surface. We have used post-growth depositions of arsenic and oxygen to investigate the effect of surface condition on dislocation velocities, and discuss possible causes for the increase in dislocation velocities in the presence of a native oxide. These systematic studies suggest a hitherto unappreciated interaction between moving dislocations and the surface in this system.

  11. Insertion device vacuum system designs

    SciTech Connect

    Hoyer, E.

    1988-05-01

    Synchrotron light source insertion device vacuum systems now in operation and systems proposed for the future are reviewed. An overview of insertion devices is given and four generic vacuum chamber designs, transition section design and pumping considerations are discussed. Examples of vacuum chamber systems are presented.

  12. Bakeout Chamber Within Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Taylor, Daniel M.; Soules, David M.; Barengoltz, Jack B.

    1995-01-01

    Vacuum-bakeout apparatus for decontaminating and measuring outgassing from pieces of equipment constructed by mounting bakeout chamber within conventional vacuum chamber. Upgrade cost effective: fabrication and installation of bakeout chamber simple, installation performed quickly and without major changes in older vacuum chamber, and provides quantitative data on outgassing from pieces of equipment placed in bakeout chamber.

  13. Surge-damping vacuum valve

    DOEpatents

    Bullock, Jack C.; Kelly, Benjamin E.

    1980-01-01

    A valve having a mechanism for damping out flow surges in a vacuum system which utilizes a slotted spring-loaded disk positioned adjacent the valve's vacuum port. Under flow surge conditions, the differential pressure forces the disk into sealing engagement with the vacuum port, thereby restricting the flow path to the slots in the disk damping out the flow surge.

  14. Effect of annealing environments on self-organized TiO2 nanotubes for efficient photocatalytic applications.

    PubMed

    Hyam, Rajeshkumar Shankar; Lee, Jongseok; Cho, Eunju; Khim, Jeehyeong; Lee, Haigun

    2012-12-01

    In the present study, amorphous titanium dioxide (TiO2) nanotubes were synthesized by one-step anodization technique and subsequently annealed in different environments to investigate the effect of annealing atmospheres on the formation of different crystalline phases. X-ray Diffraction (XRD) patterns clearly showed the presence of anatase TiO2 phase with various crystallite sizes. The samples annealed in oxygen and air atmospheres at 500 degrees C showed a dominant anatase phase and a small amount of rutile phase, on the other hand, the samples annealed in nitrogen and argon atmospheres and in a vacuum at 500 degrees C contained the anatase phase only. XPS analysis of the samples showed a broadening in the binding energy curves with respect to variation in annealing atmosphere, confirming the variation in surface defects, which in turn affect photocatalytic degradation. The vacuum-annealed sample showed superior photocatalytic degradation efficiency as it had relatively higher pseudo-first order rate constants (k) of 0.009/min. PMID:23447937

  15. Vacuum tool manipulator

    DOEpatents

    Zollinger, William T.

    1993-01-01

    Apparatus for manipulating a vacuum hose in a reactor vessel comprises a housing with two opposing openings, an arm carried by the housing and deployable from a stowed position essentially completely within the housing to an extended position where the arm extends through the two openings in a generally horizontal position. The arm preferably has a two-fingered gripping device for gripping the vacuum hose but may carry a different end effector such as a grinding wheel. The fingers are opened and closed by one air cylinder. A second air cylinder extends the device. A third air cylinder within the housing pivotally pulls the opposing end of the arm into the housing via a pivoting member pivotally connected between the third air cylinder shaft and the arm.

  16. Vacuum tool manipulator

    DOEpatents

    Zollinger, W.T.

    1993-11-23

    Apparatus for manipulating a vacuum hose in a reactor vessel comprises a housing with two opposing openings, an arm carried by the housing and deployable from a stowed position essentially completely within the housing to an extended position where the arm extends through the two openings in a generally horizontal position. The arm preferably has a two-fingered gripping device for gripping the vacuum hose but may carry a different end effector such as a grinding wheel. The fingers are opened and closed by one air cylinder. A second air cylinder extends the device. A third air cylinder within the housing pivotally pulls the opposing end of the arm into the housing via a pivoting member pivotally connected between the third air cylinder shaft and the arm. 6 figures.

  17. Can vacuum energy gravitate?

    NASA Astrophysics Data System (ADS)

    Prasad Datta, Dhurjati

    1995-03-01

    In this essay we discuss an interesting recent development in semiclassical gravity. Using an improved Born-Oppenheimer approximation, the semiclassical reduction of the Wheeler-DeWitt equation turns out to give important insights into the nature and the level of validity of the semi-classical Einstein equations (SCEE). Back reactions from the quantized matter fields in SCEE are shown to be completely determined by adiabatically induced geometricU(N) gauge potentials. The finite energy from the vacuum polarization, in particular, is found to be intimately related to the ‘magnetic’ type geometric gauge potential. As a result the vacuum energy in a universe emerging from a ‘source-free’ flat simply-connected superspace is gauge equivalent to zero, leading to some dramatic consequences.

  18. An automated vacuum system

    SciTech Connect

    Atkins, W.H. ); Vaughn, G.D. ); Bridgman, C. )

    1991-01-01

    Software tools available with the Ground Test Accelerator (GTA) control system provide the capability to express a control problem as a finite state machine. System states and transitions are expressed in terms of accelerator parameters and actions are taken based on state transitions. This is particularly useful for sequencing operations which are modal in nature or are unwieldy when implemented with conventional programming. State diagrams are automatically translated into code which is executed by the control system. These tools have been applied to the vacuum system for the GTA accelerator to implement automatic sequencing of operations. With a single request, the operator may initiate a complete pump-down sequence. He can monitor the progress and is notified if an anomaly occurs requiring intervention. The operator is not required to have detailed knowledge of the vacuum system and is protected from taking inappropriate actions. 1 ref., 6 figs.

  19. Dry vacuum pumps

    NASA Astrophysics Data System (ADS)

    Sibuet, R.

    2008-05-01

    For decades and for ultimate pressure below 1 mbar, oil-sealed Rotary Vane Pumps have been the most popular solution for a wide range of vacuum applications. In the late 80ies, Semiconductor Industry has initiated the development of the first dry roughing pumps. Today SC applications are only using dry pumps and dry pumping packages. Since that time, pumps manufacturers have developed dry vacuum pumps technologies in order to make them attractive for other applications. The trend to replace lubricated pumps by dry pumps is now spreading over many other market segments. For the Semiconductor Industry, it has been quite easy to understand the benefits of dry pumps, in terms of Cost of Ownership, process contamination and up-time. In this paper, Technology of Dry pumps, its application in R&D/industries, merits over conventional pumps and future growth scope will be discussed.

  20. Integrated structure vacuum tube

    NASA Technical Reports Server (NTRS)

    Dimeff, J.; Kerwin, W. J. (Inventor)

    1976-01-01

    High efficiency, multi-dimensional thin film vacuum tubes suitable for use in high temperature, high radiation environments are described. The tubes are fabricated by placing thin film electrode members in selected arrays on facing interior wall surfaces of an alumina substrate envelope. Cathode members are formed using thin films of triple carbonate. The photoresist used in photolithography aids in activation of the cathodes by carbonizing and reacting with the reduced carbonates when heated in vacuum during forming. The finely powdered triple carbonate is mixed with the photoresist used to delineate the cathode locations in the conventional solid state photolithographic manner. Anode and grid members are formed using thin films of refractory metal. Electron flow in the tubes is between grid elements from cathode to anode as in a conventional three-dimensional tube.

  1. Edison's vacuum technology patents

    NASA Astrophysics Data System (ADS)

    Waits, Robert K.

    2003-07-01

    During 1879 Thomas Edison's Menlo Park, New Jersey laboratory developed the means to evacuate glass lamp globes to less than a mTorr in 20 min and in mid-1880 began production of carbon-filament incandescent lamps. Among Edison's nearly 1100 U.S. patents are five for vacuum pump improvements, and at least eight others that are vacuum-related; all applied for between 1880 and 1886. Inspired by an 1878 article by De La Rue and Müller [Philos. Trans. R. Soc. London, Ser. A 169, 155 (1878)] on studies of glow discharges, Edison devised a combination pump using the Geissler pump as a rough pump and the Sprengel pump for continuous exhaustion. Edison's patents described means to control the mercury flow and automate the delivery of the mercury to banks of up to a hundred pumps. Other patents described various means to remove residual gases during lamp processing.

  2. Compact vacuum insulation embodiments

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  3. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  4. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1993-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  5. Compact vacuum insulation embodiments

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  6. Effects of annealing on the ripple texture and mechanical properties of suspended bilayer graphene

    NASA Astrophysics Data System (ADS)

    Annamalai, M.; Mathew, S.; Jamali, M.; Zhan, D.; Palaniapan, M.

    2013-04-01

    Periodic ripples of amplitude ˜15 nm were formed in suspended bilayer graphene after nanoindentation with incremental forces up to 600 nN. The structure was annealed at ˜620 K in high vacuum and the corresponding modifications in the mechanical properties and surface morphology were investigated. The pre-tension of the pristine sample was found to be 1.46 N m-1 and after annealing it was reduced to 0.72 N m-1. The nanometre-sized ripples induced by mechanical excitation were found to be flattened after annealing. Tailoring surface corrugations in bilayer graphene through nanoindentation and thermal engineering of these ripples thus provides an innovative fabrication route for flexible electronic devices and strain sensors.

  7. Exoelectron emission from a clean, annealed magnesium single crystal during oxygen adsorption

    NASA Technical Reports Server (NTRS)

    Ferrante, J.

    1976-01-01

    Exoelectron emission was observed from a clean, annealed Mg (0001) surface during oxygen and chlorine adsorption at pressures of 6.5x10 0.00001- N/sq m and lower. the studies were performed in an ultrahigh vacuum system. The crystals were cleaned by argon ion bombardment and annealed at 300 C. Auger electron spectroscopy was used to verify surface cleanliness, and low energy electron diffraction was used to verify that the surface was annealed. The emission was found to be oxygen arrival rate dependent. Two peaks were observed in the electron emission with exposure. Evidence is presented that the formation of the second peak corresponds to oxidation of the Mg surface. No emission was observed from clean aluminum during adsorption. Results verify that electron emission occurs from a strain free surface simply upon adsorption of oxygen. A qualitative explanation for the mechanisms of emission in terms of chemical effects is presented.

  8. Exoelectron emission from a clean, annealed magnesium single crystal during oxygen adsorption

    NASA Technical Reports Server (NTRS)

    Ferrante, J.

    1976-01-01

    Exoelectron emission has been observed from a clean, annealed Mg (0001) surface during oxygen and chlorine adsorption at pressures of 0.000065 N/sq m and lower. The studies were performed in an ultrahigh vacuum system. The crystals were cleaned by argon-ion bombardment and annealed at 300 C. Auger electron spectroscopy was used to verify surface cleanliness, and low-energy electron diffraction was used to verify that the surface was annealed. The emission was found to be dependent on oxygen arrival rate. Two peaks were observed in the electron emission with exposure. Evidence is presented that the formation of the second peak corresponds to oxidation of the Mg surface. The results verify that electron emission occurs from a strain-free surface simply upon adsorption of oxygen. A qualitative explanation for the mechanisms of emission in terms of chemical effects is presented.

  9. Note: development of fast heating inert gas annealing apparatus operated at atmospheric pressure.

    PubMed

    Das, S C; Majumdar, A; Shripathi, T; Hippler, R

    2012-04-01

    Here, we report the development of a simple, small, fast heating, and portable, homemade, inert gas (Ar) atmospheric annealing setup. Instead of using a conventional heating element, a commercial soldering rod having an encapsulated fast heating heater is used here. The sample holder is made of a block of stainless steel. It takes 200 s to reach 700 °C, and 10 min to cool down. The probability of oxidation or surface contamination has been examined by means of x ray photoelectron spectroscopy of virgin Cu sample after annealing at 600 °C. In addition, we compare the annealing of a hydrogenated carbon nitride film (HCN(x)) in both a conventional vacuum and our newly developed ambient Ar atmosphere setup. PMID:22559595

  10. Thermal annealing induced structural and optical properties of Se72Te25In3 thin films

    NASA Astrophysics Data System (ADS)

    Pathak, H. P.; Shukla, Nitesh; Kumar, Vipin; Dwivedi, D. K.

    2016-05-01

    Thin films of a- Se72Te25In3 were prepared by vacuum evaporation technique in a base pressure of 10-6 Torr on to well cleaned glass substrate. a-Se72Te25In3 thin films were annealed at different temperatures below their crystallization temperatures for 2h. The structural analysis of the films has been investigated using X-ray diffraction technique. The optical absorption spectra of these films were measured in the wavelength range 400-1100 nm in order to derive the absorption coefficient of these films. The optical band gap of as prepared and annealed films as a function of photon energy has been studied. It has been found that the optical band gap decreases with increasing annealing temperatures in the present system.

  11. The LHC Vacuum System

    NASA Astrophysics Data System (ADS)

    Gröbner, O.

    1997-05-01

    The Large Hadron Collider (LHC) at CERN, involves two proton storage rings with colliding beams of 7 TeV. The machine will be housed in the existing LEP tunnel and requires 16 m long superconducting bending magnets. The vacuum chamber will be the inner wall of the cryostat and hence at the temperature of the magnet cold bore, i.e. at 1.9 K and therefore a very good cryo-pump. To reduce the cryogenic power consumption, the heat load from synchrotron radiation and from the image currents in the vacuum chamber will be absorbed on a 'beam screen', which operates between 5 and 20 K, inserted in the magnet cold bore. The design pressure necessary for operation must provide a lifetime of many days and a stringent requirement comes from the power deposition in the superconducting magnet coils due to protons scattered on the residual gas which could lead to a magnet quench. Cryo-pumping of gas on the cold surfaces provides the necessary low gas densities but it must be ensured that the vapour pressure of cryo-sorbed molecules, of which H2 and He would be the most critical species, remains within acceptable limits. The room temperature sections of the LHC, specifically in the experiments, the vacuum must be stable against ion induced desorption and ISR-type 'pressure bumps'.

  12. Critical velocity phenomena and the LTP. [Lunar Transient Phenomena

    NASA Technical Reports Server (NTRS)

    Srnka, L. J.

    1977-01-01

    When the relative velocity between magnetized plasma and neutral gas exceeds a critical value, the gas-plasma interaction is dominated by collective phenomena which rapidly excite and ionize the neutrals. The interaction of the solar wind with a large cloud (between 10 to the 24th and 10 to the 28th power neutrals) vented from the moon should be of this type. Line radiation from such an interaction can yield an apparent lunar surface brightness rivaling reflected sunlight levels over small areas, if the kinetic-energy flow density of the gas is sufficiently high. The aberrated solar-wind flow past the moon would enhance the visibility of such interactions near the lunar sunrise terminator, supporting the statistical studies which indicate that the 'Lunar Transient Phenomena' (anomalous optical phenomena on the moon) are significantly correlated with the position of the terminator on the lunar surface.

  13. Formation of Nanocomposites by Oxidizing Annealing of SiO x and SiO x Films: Ellipsometry and FTIR Analysis.

    PubMed

    Sopinskyy, Mykola V; Vlasenko, Natalya A; Lisovskyy, Igor P; Zlobin, Sergii O; Tsybrii, Zinoviia F; Veligura, Lyudmyla I

    2015-01-01

    The structural-phase transformations induced by air annealing of SiO x and SiO x  < Er,F > films were studied by the combined use of infrared spectroscopy and ellipsometry. The films were prepared using vacuum evaporation of SiO powder and co-evaporation of SiO and ErF3 powders. The annealing took place at moderate temperatures (750 and 1000 °C). It was found that the micro- and macrostructure of the annealed films is similar to the structure of the Si-SiO x nanocomposites obtained by annealing SiO x in vacuum or inert atmosphere and subjected to post-annealing in oxidizing atmosphere. This proves that the phase separation in the non-stoichiometric SiO x films proceeds much faster than their oxidation. The results of the work point at a possibility to simplify the annealing technology by replacing the two-step annealing with one-step in the oxygen-containing environment while maintaining the positive effects. The differences in the structure of the nanocomposites obtained by annealing the SiO x and SiO x  < Er,F > films are explained by the action of Er centers as the promoters for SiO x disproportionation, as well as the enhanced action of F on the processes of disorder-to-order transition and crystallization in amorphous silicon. PMID:26034423

  14. Control of Phase in Tin Sulfide Thin Films Produced via RF-Sputtering of SnS2 Target with Post-deposition Annealing

    NASA Astrophysics Data System (ADS)

    Banai, R. E.; Cordell, J. C.; Lindwall, G.; Tanen, N. J.; Shang, S.-L.; Nasr, J. R.; Liu, Z.-K.; Brownson, J. R. S.; Horn, M. W.

    2016-01-01

    Tin (II) Monosulfide (SnS) has become an interesting new material for thin film photovoltaics. SnS-based devices have achieved limited success in improved solar cell efficiency. While annealing is a typical post-deposition treatment used to improve thin film quality, sulfur volatility is an issue, despite strong Sn-S bonds in tin sulfide compounds. Annealing of sulfur-rich sputtered tin sulfide thin films in a vacuum environment has not been previously reported. In the present work, we investigated the optoelectronic properties, crystallographic phase, and morphology of annealed, sputtered tin sulfide thin films. Specifically, we studied the phase change and improvement in material quality as a result of post-deposition heat treatments. Tin sulfide thin films were sputtered with and without substrate heating. These samples were then annealed between 300°C and 500°C under moderate vacuum (<1 × 10-4 Pa) in the deposition chamber to find the optimal annealing process for producing α-SnS. Significantly improved crystallinity and morphology were seen in sulfur-rich thin films annealed at 400-500°C for 60 min. Annealed films had resistivity in the range of 30-300 Ω-cm. Experimental observations were confirmed by calculated phase diagrams, which show that annealing around 400°C at low pressure is optimal to obtain a phase-pure α-SnS film from an amorphous SnS2 film.

  15. The Effect of Argon Ambient Pressure and Annealing Time on Bulk MgB2 Superconductor

    NASA Astrophysics Data System (ADS)

    Erdem, Murat; Ozturk, Ozgur; Asikuzun, Elif; Kaya, Seydanur; Safran, Serap; Kilic, Ahmet; Terzioglu, Cabir

    2015-03-01

    The effects of Ar ambient pressure (vacuum, 0B, 10B and 20B) and annealing times (0.5 h and 1 h) on microstructural, superconducting and mechanical properties of bulk superconducting MgB2 are investigated. The samples are produced using the solid state reaction method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements were performed for determination of the crystal structure, and surface morphology of MgB2 samples, respectively. The superconducting properties were studied by AC magnetic susceptibility and DC resistivity measurements. Increasing the Ar pressure decreased the lattice parameters and hence the average grain size. Increasing the annealing time results in larger lattice parameters and larger grain formation. The susceptibility measurements revealed two step transition which is reminiscent of granular superconductors. The intra-grain transition temperature is determined to be 38.4 K for all samples. The inter-grain transition temperatures of 37.2 K is obtained for samples produced under Ar ambient. The samples produced under Ar ambient have better superconducting properties than the ones produced in vacuum. Increasing the annealing time under vacuum further decreases the superconducting properties probably due to Mg loss. This research is supported by Kastamonu University Scientific Research Projects Coordination Department under the Grant No. KUBAP-03/2012-03.

  16. Air bearing vacuum seal assembly

    DOEpatents

    Booth, Rex

    1978-01-01

    An air bearing vacuum seal assembly capable of rotating at the speed of several thousand revolutions per minute using an air cushion to prevent the rotating and stationary parts from touching, and a two stage differential pumping arrangement to maintain the pressure gradient between the air cushion and the vacuum so that the leak rate into the vacuum is, for example, less than 1 .times. 10.sup.-4 Pa m.sup.3 /s. The air bearing vacuum seal has particular application for mounting rotating targets to an evacuated accelerator beam tube for bombardment of the targets with high-power charged particle beams in vacuum.

  17. Vacuum pumping concepts for ETF

    SciTech Connect

    Homeyer, W.G.

    1980-09-01

    The Engineering Test Facility (ETF) poses unique vacuum pumping requirements due to its large size and long burn characteristics. These requirements include torus vacuum pumping initially and between burns and pumping of neutralized gas from divertor collector chambers. It was found that the requirements could be met by compound cryopumps in which molecular sieve 5A is used as the cryosorbent. The pumps, ducts, and vacuum valves required are large but fit with other ETF components and do not require major advances in vacuum pumping technology. Several additional design, analytical, and experimental studies were identified as needed to optimize designs and provide better design definition for the ETF vacuum pumping systems.

  18. Teaching optical phenomena with Tracker

    NASA Astrophysics Data System (ADS)

    Rodrigues, M.; Simeão Carvalho, P.

    2014-11-01

    Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a relatively complex setup. Fortunately, nowadays it is possible to analyse optical phenomena in a simple and quantitative way using the freeware video analysis software ‘Tracker’. In this paper, we show the advantages of video-based experimental activities for teaching concepts in optics. We intend to show: (a) how easy the study of such phenomena can be, even at home, because only simple materials are needed, and Tracker provides the necessary measuring instruments; and (b) how we can use Tracker to improve students’ understanding of some optical concepts. We give examples using video modelling to study the laws of reflection, Snell’s laws, focal distances in lenses and mirrors, and diffraction phenomena, which we hope will motivate teachers to implement it in their own classes and schools.

  19. Highest transmittance and high-mobility amorphous indium gallium zinc oxide films on flexible substrate by room-temperature deposition and post-deposition anneals

    SciTech Connect

    Gadre, Mandar J.; Alford, T. L.

    2011-08-01

    Amorphous indium gallium zinc oxide (a-IGZO) thin films of the highest transmittance reported in literature were initially deposited onto flexible polymer substrates at room temperature. The films were annealed in vacuum, air, and oxygen to enhance their electrical and optical performances. Electrical and optical characterizations were done before and after anneals. A partial reversal of the degradation in electrical properties upon annealing in oxygen was achieved by subjecting the films to subsequent vacuum anneals. A model was developed based on film texture and structural defects which showed close agreement between the measured and calculated carrier mobility values at low carrier concentrations (2-6 x 10{sup 19} cm{sup -3}).

  20. Characterization of nanostructured ZnO thin films deposited through vacuum evaporation

    PubMed Central

    Maldonado, Arturo; Juarez, Héctor; Pacio, Mauricio; Perez, Rene

    2015-01-01

    Summary This work presents a novel technique to deposit ZnO thin films through a metal vacuum evaporation technique using colloidal nanoparticles (average size of 30 nm), which were synthesized by our research group, as source. These thin films had a thickness between 45 and 123 nm as measured by profilometry. XRD patterns of the deposited thin films were obtained. According to the HRSEM micrographs worm-shaped nanostructures are observed in samples annealed at 600 °C and this characteristic disappears as the annealing temperature increases. The films obtained were annealed from 25 to 1000 °C, showing a gradual increase in transmittance spectra up to 85%. The optical band gaps obtained for these films are about 3.22 eV. The PL measurement shows an emission in the red and in the violet region and there is a correlation with the annealing process. PMID:25977868

  1. Mathematical methods of studying physical phenomena

    NASA Astrophysics Data System (ADS)

    Man'ko, Margarita A.

    2013-03-01

    In recent decades, substantial theoretical and experimental progress was achieved in understanding the quantum nature of physical phenomena that serves as the foundation of present and future quantum technologies. Quantum correlations like the entanglement of the states of composite systems, the phenomenon of quantum discord, which captures other aspects of quantum correlations, quantum contextuality and, connected with these phenomena, uncertainty relations for conjugate variables and entropies, like Shannon and Rényi entropies, and the inequalities for spin states, like Bell inequalities, reflect the recently understood quantum properties of micro and macro systems. The mathematical methods needed to describe all quantum phenomena mentioned above were also the subject of intense studies in the end of the last, and beginning of the new, century. In this section of CAMOP 'Mathematical Methods of Studying Physical Phenomena' new results and new trends in the rapidly developing domain of quantum (and classical) physics are presented. Among the particular topics under discussion there are some reviews on the problems of dynamical invariants and their relations with symmetries of the physical systems. In fact, this is a very old problem of both classical and quantum systems, e.g. the systems of parametric oscillators with time-dependent parameters, like Ermakov systems, which have specific constants of motion depending linearly or quadratically on the oscillator positions and momenta. Such dynamical invariants play an important role in studying the dynamical Casimir effect, the essence of the effect being the creation of photons from the vacuum in a cavity with moving boundaries due to the presence of purely quantum fluctuations of the electromagnetic field in the vacuum. It is remarkable that this effect was recently observed experimentally. The other new direction in developing the mathematical approach in physics is quantum tomography that provides a new vision of quantum states. In the tomographic picture of quantum mechanics, the states are identified with fair conditional probability distributions, which contain the same information on the states as the wave function or the density matrix. The mathematical methods of the tomographic approach are based on studying the star-product (associative product) quantization scheme. The tomographic star-product technique provides an additional understanding of the associative product, which is connected with the existence of specific pairs of operators called quantizers and dequantizers. These operators code information on the kernels of all the star-product schemes, including the traditional phase-space Weyl-Wigner-Moyal picture describing the quantum-system evolution. The new equation to find quantizers, if the kernel of the star product of functions is given, is presented in this CAMOP section. For studying classical systems, the mathematical methods developed in quantum mechanics can also be used. The case of paraxial-radiation beams propagating in waveguides is a known example of describing a purely classical phenomenon by means of quantum-like equations. Thus, some quantum phenomenon like the entanglement can be mimicked by the properties of classical beams, for example, Gaussian modes. The mathematical structures and relations to the symplectic symmetry group are analogous for both classical and quantum phenomena. Such analogies of the mathematical classical and quantum methods used in research on quantum-like communication channels provide new tools for constructing a theoretical basis of the new information-transmission technologies. The conventional quantum mechanics and its relation to classical mechanics contain mathematical recipes of the correspondence principle and quantization rules. Attempts to find rules for deriving the quantum-mechanical formalism starting from the classical field theory, taking into account the influence of classical fluctuations of the field, is considered in these papers. The methods to solve quantum equations and formulate the boundary conditions in the problems with singular potentials are connected with the mathematical problems of self-adjointness of the Hamiltonians. The progress and some new results in this direction are reflected in this CAMOP section. The Gaussian states of the photons play an important role in quantum optics. The multimode electromagnetic field and quantum correlations in the Gaussian states are considered in this section. The new results in the statistical properties of the laser radiation discussed here are based on applications of mathematical methods in this traditional domain of physics. It is worth stressing that the universality of the mathematical procedures permitted to consider the physical phenomena in the ocean is on the same footing as the phenomena in the microworld. In this CAMOP section, there are also papers devoted to traditional problems of solving the Schrödinger equation for interesting quantum systems. Recently obtained results related to different domains of theoretical physics are united by applying mathematical methods and tools, that provide new possibilities to better understand the theoretical foundations needed to develop new quantum technologies like quantum computing and quantum communications. The papers are arranged alphabetically by the name of the first author. We are grateful to all authors who accepted our invitation to contribute to this CAMOP section.

  2. Comparing codes for error corrected quantum annealing

    NASA Astrophysics Data System (ADS)

    Mishra, Anurag; Albash, Tameem; Paz, Gerardo; Lidar, Daniel

    2015-03-01

    Previous work on the D-Wave Two (DW2) device has demonstrated the effectiveness of using error correction and suppression for quantum annealers. As the size of a quantum annealer increases, error correction becomes crucial for improved performance. We introduce a new type of code for error correction tailored to the hardware graph of the DW2, discuss the result of benchmarking this code on qubit chains, discuss various new decoding methods, and compare the performance to previous quantum annealing correction schemes.

  3. Undergraduates' understanding of cardiovascular phenomena.

    PubMed

    Michael, Joel A; Wenderoth, Mary Pat; Modell, Harold I; Cliff, William; Horwitz, Barbara; McHale, Philip; Richardson, Daniel; Silverthorn, Dee; Williams, Stephen; Whitescarver, Shirley

    2002-12-01

    Undergraduates students in 12 courses at 8 different institutions were surveyed to determine the prevalence of 13 different misconceptions (conceptual difficulties) about cardiovascular function. The prevalence of these misconceptions ranged from 20 to 81% and, for each misconception, was consistent across the different student populations. We also obtained explanations for the students' answers either as free responses or with follow-up multiple-choice questions. These results suggest that students have a number of underlying conceptual difficulties about cardiovascular phenomena. One possible source of some misconceptions is the students' inability to apply simple general models to specific cardiovascular phenomena. Some implications of these results for teachers of physiology are discussed. PMID:12031940

  4. Dynamical phenomena induced by bottleneck.

    PubMed

    Gasser, I; Werner, B

    2010-10-13

    We study a microscopic follow-the-leader model on a circle of length L with a bottleneck. Allowing large bottleneck strengths we encounter very interesting traffic dynamics. Different types of waves--travelling and standing waves and combinations of both wave types--are observed. The way to find these phenomena requires a good understanding of the complex dynamics of the underlying (nonlinear) equations. Some of the phenomena, like the ponies-on-a-merry-go-round solutions, are mathematically well known from completely different applications. Mathematically speaking we use Poincaré maps, bifurcation analysis and continuation methods beside numerical simulations. PMID:20819821

  5. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  6. Influence of annealing effects on polyaniline for good microstructural modification

    PubMed Central

    Begum, A. Nishara; Dhachanamoorthi, N.; saravanan, M.E. Raja; Jayamurugan, P.; Manoharan, D.; Ponnuswamy, V.

    2013-01-01

    H2SO4 doped polyaniline (PANI) has synthesized by chemical oxidation method. The prepared Polyaniline were annealed at 150 °C, 200 °C and 250 °C for 30 min in vacuum. Crystal size, percentage of crystallinity, total percentage of crystallinity properties of untreated and heat treated PANI samples were studied by using X-ray diffraction pattern. The molecular structure of untreated and heat treated samples were examined by using Fourier transform infrared spectrophotometer. UV study shows π–π* transition of untreated and heat treated of polyaniline were found at 328 and 636 nm. The peak at 636 nm reveals the extension of conjugated polymer. Thermal properties of untreated and heat treated PANI sample measured by using thermo gravimetric analysis and differential scanning calorimetric spectroscopy. PMID:23378673

  7. Influence of annealing effects on polyaniline for good microstructural modification.

    PubMed

    Begum, A Nishara; Dhachanamoorthi, N; Saravanan, M E Raja; Jayamurugan, P; Manoharan, D; Ponnuswamy, V

    2013-02-01

    H(2)SO(4) doped polyaniline (PANI) has synthesized by chemical oxidation method. The prepared Polyaniline were annealed at 150 °C, 200 °C and 250 °C for 30 min in vacuum. Crystal size, percentage of crystallinity, total percentage of crystallinity properties of untreated and heat treated PANI samples were studied by using X-ray diffraction pattern. The molecular structure of untreated and heat treated samples were examined by using Fourier transform infrared spectrophotometer. UV study shows π-π* transition of untreated and heat treated of polyaniline were found at 328 and 636 nm. The peak at 636 nm reveals the extension of conjugated polymer. Thermal properties of untreated and heat treated PANI sample measured by using thermo gravimetric analysis and differential scanning calorimetric spectroscopy. PMID:23378673

  8. Vacuum Rabi spectra of a single quantum emitter.

    PubMed

    Ota, Yasutomo; Ohta, Ryuichi; Kumagai, Naoto; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2015-04-10

    We report the observation of the vacuum Rabi splitting of a single quantum emitter by measuring its direct spontaneous emission into free space. We use a semiconductor quantum dot inside a photonic crystal nanocavity, in conjunction with an appropriate cavity design and filtering with a polarizer and an aperture, enabling the extraction of the inherently weak emitter's signal. The emitter's vacuum Rabi spectra exhibit clear differences from those measured by detecting the cavity photon leakage. Moreover, we observe an asymmetric vacuum Rabi spectrum induced by interference between the emitter and cavity detection channels. Our observations lay the groundwork for accessing various cavity quantum electrodynamics phenomena that manifest themselves only in the emitter's direct spontaneous emission. PMID:25910123

  9. Rapid Annealing Of Amorphous Hydrogenated Carbon

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Pouch, John J.; Warner, Joseph D.

    1989-01-01

    Report describes experiments to determine effects of rapid annealing on films of amorphous hydrogenated carbon. Study represents first efforts to provide information for applications of a-C:H films where rapid thermal processing required. Major finding, annealing causes abrupt increase in absorption and concomitant decrease in optical band gap. Most of change occurs during first 20 s, continues during longer annealing times. Extend of change increases with annealing temperature. Researchers hypothesize abrupt initial change caused by loss of hydrogen, while gradual subsequent change due to polymerization of remaining carbon into crystallites or sheets of graphite. Optical band gaps of unannealed specimens on silicon substrates lower than those of specimens on quartz substrates.

  10. Polymers in a Vacuum

    SciTech Connect

    Deutsch, J. M.

    2007-12-07

    In a variety of situations, isolated polymer molecules are found in a vacuum, and here we examine their properties. Angular momentum conservation is shown to significantly alter the average size of a chain and its conservation is only broken slowly by thermal radiation. For an ideal chain, the time autocorrelation for monomer position oscillates with a period proportional to chain length. The oscillations and damping are analyzed in detail. Short-range repulsive interactions suppress oscillations and speed up relaxation, but stretched chains still show damped oscillatory correlations.

  11. Visualizing Chemical Phenomena in Microdroplets

    ERIC Educational Resources Information Center

    Lee, Sunghee; Wiener, Joseph

    2011-01-01

    Phenomena that occur in microdroplets are described to the undergraduate chemistry community. Droplets having a diameter in the micrometer range can have unique and interesting properties, which arise because of their small size and, especially, their high surface area-to-volume ratio. Students are generally unfamiliar with the characteristics of

  12. Quantum Phenomena Observed Using Electrons

    SciTech Connect

    Tonomura, Akira

    2011-05-06

    Electron phase microscopy based on the Aharonov-Bohm (AB) effect principle has been used to illuminate fundamental phenomena concerning magnetism and superconductivity by visualizing quantitative magnetic lines of force. This paper deals with confirmation experiments on the AB effect, the magnetization process of tiny magnetic heads for perpendicular recording, and vortex behaviors in high-Tc superconductors.

  13. Visualizing Chemical Phenomena in Microdroplets

    ERIC Educational Resources Information Center

    Lee, Sunghee; Wiener, Joseph

    2011-01-01

    Phenomena that occur in microdroplets are described to the undergraduate chemistry community. Droplets having a diameter in the micrometer range can have unique and interesting properties, which arise because of their small size and, especially, their high surface area-to-volume ratio. Students are generally unfamiliar with the characteristics of…

  14. MOLECULAR VACUUM PUMP

    DOEpatents

    Eckberg, E.E.

    1960-09-27

    A multiple molecular vacuum pump capable of producing a vacuum of the order of 10/sup -9/ mm Hg is described. The pump comprises a casing of an aggregate of paired and matched cylindrical plates, a recessed portion on one face of each plate concentrically positioned formed by a radially extending wall and matching the similarly recessed portion of its twin plate of that pair of plates and for all paired and matched plates; a plurality of grooves formed in the radially extending walls of each and all recesses progressing in a spiral manner from their respective starting points out at the periphery of the recess inwardly to the central area; a plurality of rotors rotatably mounted to closely occupy the spaces as presented by the paired and matched recesses between all paired plates; a hollowed drive-shaft perforated at points adjacent to the termini of all spiral grooves; inlet ports at the starting points of all grooves and through all plates at common points to each respectively; and a common outlet passage presented by the hollow portion of the perforated hollowed drive-shaft of the molecular pump. (AEC)

  15. Vacuum vapor deposition

    NASA Technical Reports Server (NTRS)

    Poorman, Richard M. (Inventor); Weeks, Jack L. (Inventor)

    1995-01-01

    A method and apparatus is described for vapor deposition of a thin metallic film utilizing an ionized gas arc directed onto a source material spaced from a substrate to be coated in a substantial vacuum while providing a pressure differential between the source and the substrate so that, as a portion of the source is vaporized, the vapors are carried to the substrate. The apparatus includes a modified tungsten arc welding torch having a hollow electrode through which a gas, preferably inert, flows and an arc is struck between the electrode and the source. The torch, source, and substrate are confined within a chamber within which a vacuum is drawn. When the arc is struck, a portion of the source is vaporized and the vapors flow rapidly toward the substrate. A reflecting shield is positioned about the torch above the electrode and the source to ensure that the arc is struck between the electrode and the source at startup. The electrode and the source may be confined within a vapor guide housing having a duct opening toward the substrate for directing the vapors onto the substrate.

  16. R&D ERL: Vacuum

    SciTech Connect

    Mapes, M.; Smart, L.; Weiss, D.; Steszyn, A.; Todd, R.

    2010-01-01

    The ERL Vacuum systems are depicted in a figure. ERL has eight vacuum volumes with various sets of requirements. A summary of vacuum related requirements is provided in a table. Five of the eight volumes comprise the electron beamline. They are the 5-cell Superconducting RF Cavity, Superconducting e-gun, injection, loop and beam dump. Two vacuum regions are the individual cryostats insulating the 5-cell Superconducting RF Cavity and the Superconducting e-gun structures. The last ERL vacuum volume not shown in the schematic is the laser transport line. The beamline vacuum regions are separated by electropneumatic gate valves. The beam dump is common with loop beamline but is considered a separate volume due to geometry and requirements. Vacuum in the 5-cell SRF cavity is maintained in the {approx}10{sup -9} torr range at room temperature by two 20 l/s ion pumps and in the e-gun SRF cavity by one 60 l/s ion pump. Vacuum in the SRF cavities operated at 2{sup o}K is reduced to low 10{sup -11} torr via cryopumping of the cavity walls. The cathode of the e-gun must be protected from poisoning, which can occur if vacuum adjacent to the e-gun in the injection line exceeds 10-11 torr range in the injection warm beamline near the e-gun exit. The vacuum requirements for beam operation in the loop and beam dump are 10-9 torr range. The beamlines are evacuated from atmospheric pressure to high vacuum level with a particulate free, oil free turbomolecular pumping cart. 25 l/s shielded ion pumps distributed throughout the beamlines maintain the vacuum requirement. Due to the more demanding vacuum requirement of the injection beamline proximate to the e-gun, a vacuum bakeout of the injection beamline is required. In addition, two 200 l/s diode ion pumps and supplemental pumping provided by titanium sublimation pumps are installed in the injection line just beyond the exit of the e-gun. Due to expected gas load a similar pumping arrangement is planned for the beam dump. The cryostat vacuum thermally insulating the SRF cavities need only reduce the convective heat load such that heat loss is primarily radiation through several layers of multi-layer insulation and conductive end-losses which are contained by 5{sup o}K thermal transitions. Prior to cool down rough vacuum {approx}10{sup -5} torr range is established and maintained by a dedicated turbomolecular pump station. Cryopumping by the cold mass and heat shields reduces the insulating vacuum to 10{sup -7} torr range after cool down.

  17. Effect of rapid thermal annealing on pentacene-based thin-film transistors

    NASA Astrophysics Data System (ADS)

    Chou, D. W.; Huang, C. J.; Su, C. M.; Yang, C. F.; Chen, W. R.; Meen, T. H.

    2011-07-01

    The bottom contact pentacene-based thin-film transistor is fabricated, and it is treated by rapid thermal annealing (RTA) with the annealed temperature up to 240 °C for 2 min in the vacuum of 1.3 × 10 -2 torr. The morphology and structure for the pentacene films of OTFTs were examined by scanning electron microscopy and X-ray diffraction technique. The thin-film phase and a very small fraction of single-crystal phase were found in the as-deposited pentacene films. While the annealing temperature increases to 60 °C, the pentacene molecular ordering was significantly improved though the grain size only slightly increased. The device annealed at temperature of 120 °C has optimal electrical properties, being consistent with the experimental results of XRD. The post-annealing treatment results in the enhancement of field-effect mobility in pentacene-based thin-film transistors. The field-effect mobility increases from 0.243 cm 2/V s to 0.62 cm 2/V s. Besides, the threshold voltage of device shifts from -7 V to -3.88 V and the on/off current ratio increases from 4.0 × 10 3 to 8.7 × 10 3.

  18. Annealing effects on structure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Zhang, K. B.; Fu, Z. Y.; Zhang, J. Y.; Wang, W. M.; Lee, S. W.; Niihara, K.

    2011-03-01

    Novel CoCrFeNiTiAlx(x:molar ratio, other elements are equimolar) high-entropy alloys were prepared by vacuum arc melting and these alloys were subsequently annealed at 1000 °C for 2 h. The annealing effects on structure and mechanical properties were investigated. Compared with the as-cast alloys, there are many complex intermetallic phases precipitated from the solid solution matrix in the as-annealed alloys with Al content lower than Al1.0. Only simple BCC solid solution structure appears in the as-annealed Al1.5 and Al2.0 alloys. This kind of alloys exhibit high resistance to anneal softening. Most as-annealed alloys possess even higher Visker hardness than the as-cast ones. The as-annealed Al0.5 alloys shows the highest compressive strength while the Al0 alloy exhibits the best ductility, which is about 2.6 GPa and 13%, respectively. The CoCrFeNiTiAlx high-entropy alloys possess integrated high temperature mechanical property as well.

  19. Neutronic optimization in high conversion Th-{sup 233}U fuel assembly with simulated annealing

    SciTech Connect

    Kotlyar, D.; Shwageraus, E.

    2012-07-01

    This paper reports on fuel design optimization of a PWR operating in a self sustainable Th-{sup 233}U fuel cycle. Monte Carlo simulated annealing method was used in order to identify the fuel assembly configuration with the most attractive breeding performance. In previous studies, it was shown that breeding may be achieved by employing heterogeneous Seed-Blanket fuel geometry. The arrangement of seed and blanket pins within the assemblies may be determined by varying the designed parameters based on basic reactor physics phenomena which affect breeding. However, the amount of free parameters may still prove to be prohibitively large in order to systematically explore the design space for optimal solution. Therefore, the Monte Carlo annealing algorithm for neutronic optimization is applied in order to identify the most favorable design. The objective of simulated annealing optimization is to find a set of design parameters, which maximizes some given performance function (such as relative period of net breeding) under specified constraints (such as fuel cycle length). The first objective of the study was to demonstrate that the simulated annealing optimization algorithm will lead to the same fuel pins arrangement as was obtained in the previous studies which used only basic physics phenomena as guidance for optimization. In the second part of this work, the simulated annealing method was used to optimize fuel pins arrangement in much larger fuel assembly, where the basic physics intuition does not yield clearly optimal configuration. The simulated annealing method was found to be very efficient in selecting the optimal design in both cases. In the future, this method will be used for optimization of fuel assembly design with larger number of free parameters in order to determine the most favorable trade-off between the breeding performance and core average power density. (authors)

  20. Increasing the strength of nanocrystalline steels by annealing: Is segregation necessary?

    PubMed Central

    Renk, O.; Hohenwarter, A.; Eder, K.; Kormout, K.S.; Cairney, J.M.; Pippan, R.

    2015-01-01

    Hardening phenomena in nanocrystalline metals after annealing have been widely reported, and the subject of much recent debate. Solute segregation to grain boundaries and dislocation source hardening have been proposed to cause the strengthening. To shed light on the dominant mechanisms, we present results from mechanical experiments and atom probe tomography on samples with similar grain size but different amounts of solute segregation and different boundary chemistries. PMID:25598694

  1. Ion implantation and laser annealing

    NASA Astrophysics Data System (ADS)

    Three ion implantation and laser annealing projects have been performed by ORNL through the DOE sponsored Seed Money Program. The research has contributed toward improving the characteristics of wear, hardness, and corrosion resistance of some metals and ceramics, as well as the electrical properties of semiconductors. The work has helped to spawn related research, at ORNL and elsewhere, concerning the relationships between microstructure and materials properties. ORNL research has resulted in major advances in extended life and non-corrosive artificial joints (hip and knee), high performance semiconductors, failure resistant ceramics (with potential energy applications), and solar cells. The success of the seed money projects was instrumental in the formation of ORNL's Surface Modification and Characterization Facility (SMAC). More than 60 universities and companies have participated in SMAC programs.

  2. Thermal Stability of RuO2 Thin Films and Effects of Annealing Ambient on Their Reduction Process

    NASA Astrophysics Data System (ADS)

    Kaga, Yukinao; Abe, Yoshio; Sasaki, Midori

    1999-06-01

    RuO2 films prepared by reactive sputtering were annealed in air and vacuum and the changes of their crystal structure, chemical binding state and resistivity were studied.In air, the RuO2 films maintain a rutile structure below 800°C.Crystal grain growth was found above 600°C and the minimum resistivity of 46 µΩcm was obtained at 800°C.The vacuum annealing was conducted with two types of annealing systems, one using an oil diffusion pump and the other using a turbomolecular pump as the main pump.The RuO2 films annealed in the system using the turbomolecular pump were not reduced below 500°C, however, the surface of the films was reduced as low as 200°C in the system using the oil diffusion pump.The difference in the reduction processes was examined on the basis of the thermodynamics of RuO2 and the influence of reducing residual gases in vacuum.

  3. Low partial discharge vacuum feedthrough

    NASA Technical Reports Server (NTRS)

    Benham, J. W.; Peck, S. R.

    1979-01-01

    Relatively discharge free vacuum feedthrough uses silver-plated copper conductor jacketed by carbon filled silicon semiconductor to reduce concentrated electric fields and minimize occurrence of partial discharge.

  4. Vacuum leak detector and method

    DOEpatents

    Edwards, Jr., David

    1983-01-01

    Apparatus and method for detecting leakage in a vacuum system involves a moisture trap chamber connected to the vacuum system and to a pressure gauge. Moisture in the trap chamber is captured by freezing or by a moisture adsorbent to reduce the residual water vapor pressure therein to a negligible amount. The pressure gauge is then read to determine whether the vacuum system is leaky. By directing a stream of carbon dioxide or helium at potentially leaky parts of the vacuum system, the apparatus can be used with supplemental means to locate leaks.

  5. "Un-annealed and Annealed Pd Ultra-Thin Film on SiC Characterized by Scanning Probe Microscopy and X-ray Photoelectron Spectroscopy"

    NASA Technical Reports Server (NTRS)

    Lu, W. J.; Shi, D. T.; Elshot, K.; Bryant, E.; Lafate, K.; Chen, H.; Burger, A.; Collins, W. E.

    1998-01-01

    Pd/SiC has been used as a hydrogen and a hydrocarbon gas sensor operated at high temperature. UHV (Ultra High Vacuum)-Scanning Tunneling Microscopy (STM), Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS) techniques were applied to study the relationship between the morphology and chemical compositions for Pd ultra-thin films on SiC (less than 30 angstroms) at different annealing temperatures. Pd ultra-thin film on 6H-SiC was prepared by the RF sputtering method. The morphology from UHV-STM and AFM shows that the Pd thin film was well deposited on SiC substrate, and the Pd was partially aggregated to round shaped participates at an annealing temperature of 300 C. At 400 C, the amount of surface participates decreases, and some strap shape participates appear. From XPS, Pd2Si was formed on the surface after annealing at 300 C, and all Pd reacted with SiC to form Pd2Si after annealing at 400 C. The intensity of the XPS Pd peak decreases enormously at 400 C. The Pd film diffused into SiC, and the Schottky barrier height has almost no changes. The work shows the Pd sicilides/SiC have the same electronic properties with Pd/SiC, and explains why the Pd/SiC sensor still responds to hydrogen at high operating temperatures.

  6. A Simple Coaxial Ceramic Based Vacuum Window for Vacuum Transmission Line of ICRF System

    NASA Astrophysics Data System (ADS)

    Rathi, D.; Mishra, K.; Goerge, S.; Varia, A.; Kulkarni, S. V.

    2011-12-01

    We present here a simple coaxial RF vacuum window designed for 200 kW power without any design complicacy and is simple to fabricate. It is achieved by sandwiching a UHV grade ceramic disk in between inner and outer straight conductors. The window has been designed and fabricated for use in the VTL section of ICRF system on ADITYA tokamak. The window has been modeled with CST Microwave Studio and transient analysis has been done for different scattering parameters. The window is found to be an excellent leak tight with leak rate better than 1.0×10-9 mbarl/s. Pressure test on window up to a 3 bar atmospheric pressure shows that it can also be used as a gas barrier in transmission lines. Low power VNA test shows a pleasing VSWR and insertion loss less than 1.07 and 0.05 dB respectively in the frequency range of 20-100MHz. Special care has been taken to minimize sharp edges to avoid pre-breakdown phenomena. Partial discharge tests at 50Hz shows an excellent result up to 24 kV peak and the observed discharge magnitude was less than 20 pC. The window shows the ultra high vacuum compatibility and it tested for high RF power at 29 MHz up to 80kW of power. This paper presents the design detail, tests conducted and the results obtained for the vacuum window.

  7. Annealing of Co/Ag multilayers

    NASA Astrophysics Data System (ADS)

    Tosin, G.; Schelp, L. F.; Carara, M.; Schmidt, J. E.; Gomes, A. A.; Baibich, M. N.

    1993-03-01

    We have measured the magnetoresistance and magnetic properties of annealed Co/Ag multilayers. The results show an increase of the magnetoresistance associated to lower interface roughness for these immiscible elements. Higher temperature anneals lead to destruction of the multilayer, but still showing giant magnetoresistance for the composite formed.

  8. Relationship between Yield Point Phenomena and the Nanoindentation Pop-in Behavior of Steel

    SciTech Connect

    Ahn, T.-H.; Oh, C.-S.; Lee, K.; George, Easo P; Han, H. N.

    2012-01-01

    Pop-ins on nanoindentation load-displacement curves of a ferritic steel were correlated with yield drops on its tensile stress-strain curves. To investigate the relationship between these two phenomena, nanoindentation and tensile tests were performed on annealed specimens, prestrained specimens, and specimens aged for various times after prestraining. Clear nanoindentation pop-ins were observed on annealed specimens, which disappeared when specimens were indented right after the prestrain, but reappeared to varying degrees after strain aging. Yield drops in tensile tests showed similar disappearance and appearance, indicating that the two phenomena, at the nano- and macro-scale, respectively, are closely related and influenced by dislocation locking by solutes (Cottrell atmospheres).

  9. Crystal growth and annealing method and apparatus

    DOEpatents

    Gianoulakis, Steven E.; Sparrow, Robert

    2001-01-01

    A method and apparatus for producing crystals that minimizes birefringence even at large crystal sizes, and is suitable for production of CaF.sub.2 crystals. The method of the present invention comprises annealing a crystal by maintaining a minimal temperature gradient in the crystal while slowly reducing the bulk temperature of the crystal. An apparatus according to the present invention includes a thermal control system added to a crystal growth and annealing apparatus, wherein the thermal control system allows a temperature gradient during crystal growth but minimizes the temperature gradient during crystal annealing. An embodiment of the present invention comprises a secondary heater incorporated into a conventional crystal growth and annealing apparatus. The secondary heater supplies heat to minimize the temperature gradients in the crystal during the annealing process. The secondary heater can mount near the bottom of the crucible to effectively maintain appropriate temperature gradients.

  10. Tuning of deep level emission in highly oriented electrodeposited ZnO nanorods by post growth annealing treatments

    NASA Astrophysics Data System (ADS)

    Simimol, A.; Manikandanath, N. T.; Anappara, Aji A.; Chowdhury, Prasanta; Barshilia, Harish C.

    2014-08-01

    Highly dense and c-axis oriented zinc oxide (ZnO) nanorods with hexagonal wurtzite facets were deposited on fluorine doped tin oxide coated glass substrates by a simple and cost-effective electrodeposition method at low bath temperature (80 °C). The as-grown samples were then annealed at various temperatures (TA = 100-500 °C) in different environments (e.g., zinc, oxygen, air, and vacuum) to understand their photoluminescence (PL) behavior in the ultra-violet (UV) and the visible regions. The PL results revealed that the as-deposited ZnO nanorods consisted of oxygen vacancy (VO), zinc interstitial (Zni), and oxygen interstitial (Oi) defects and these can be reduced significantly by annealing in different environments at optimal annealing temperatures. However, the intensity of deep level emission increased for TA greater than the optimized values for the respective environments due to the introduction of various defect centers. For example, for TA ≥ 450 °C in the oxygen and air environments, the density of Oi defects increased, whereas, the green emission associated with VO is dominant in the vacuum annealed (TA = 500 °C) ZnO nanorods. The UV peak red shifted after the post-growth annealing treatments in all the environments and the vacuum annealed sample exhibited highest UV peak intensity. The observations from the PL data are supported by the micro-Raman spectroscopy. The present study gives new insight into the origin of different defects that exist in the electrodeposited ZnO nanorods and how these defects can be precisely controlled in order to get the desired emissions for the opto-electronic applications.

  11. Tuning of deep level emission in highly oriented electrodeposited ZnO nanorods by post growth annealing treatments

    SciTech Connect

    Simimol, A.; Manikandanath, N. T.; Chowdhury, Prasanta; Barshilia, Harish C.; Anappara, Aji A.

    2014-08-21

    Highly dense and c-axis oriented zinc oxide (ZnO) nanorods with hexagonal wurtzite facets were deposited on fluorine doped tin oxide coated glass substrates by a simple and cost-effective electrodeposition method at low bath temperature (80 °C). The as-grown samples were then annealed at various temperatures (T{sub A} = 100–500 °C) in different environments (e.g., zinc, oxygen, air, and vacuum) to understand their photoluminescence (PL) behavior in the ultra-violet (UV) and the visible regions. The PL results revealed that the as-deposited ZnO nanorods consisted of oxygen vacancy (V{sub O}), zinc interstitial (Zn{sub i}), and oxygen interstitial (O{sub i}) defects and these can be reduced significantly by annealing in different environments at optimal annealing temperatures. However, the intensity of deep level emission increased for T{sub A} greater than the optimized values for the respective environments due to the introduction of various defect centers. For example, for T{sub A} ≥ 450 °C in the oxygen and air environments, the density of O{sub i} defects increased, whereas, the green emission associated with V{sub O} is dominant in the vacuum annealed (T{sub A} = 500 °C) ZnO nanorods. The UV peak red shifted after the post-growth annealing treatments in all the environments and the vacuum annealed sample exhibited highest UV peak intensity. The observations from the PL data are supported by the micro-Raman spectroscopy. The present study gives new insight into the origin of different defects that exist in the electrodeposited ZnO nanorods and how these defects can be precisely controlled in order to get the desired emissions for the opto-electronic applications.

  12. ULTRA HIGH VACUUM VALVE

    DOEpatents

    Fry, W.A.

    1962-05-29

    A valve for high vacuum applications such as the CStellarator where chamber pressures as low as 2 x 10/sup -10/ mm Hg are necessary is designed with a line-of-sight path through the valve for visual inspection of the contents of reactants in such chambers. The valve comprises a turnable resilient metal ball having an aperture therethrough, means for selectively turning the ball to rotate the axis of its line-of-sight path, and soft, deformable opposing orifices that are movable relatively toward said ball to seal with opposite ball surfaces upon said movement of said axis of said line-of-sight path. The valve also includes a bellows seal connected between said orifices and internal actuating means that eliminates the requirement for gasketed turnable valve closing stems. (AEC)

  13. LIGO vacuum system study

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey C.; Moore, Boude C.

    1988-01-01

    A laser interferometer gravitational wave observatory (LIGO) is being developed with sensitivities which will have a high probability of detecting gravitational waves from astrophysical sources. A major component of LIGO is a total of 16 km of 1.2 m (48 inch) diameter tube at a pressure of less than 10 to the minus 8th power torr. It will be of 304L stainless steel procured directly from the steel mills with the initial hydrogen content specially reduced. Projections of the outgassing rates of hydrogen and of water vapor as a function of time are given and the uncertainties discussed. Based on these, a preliminary analysis of the vacuum system is presented.

  14. Pseudoredundant vacuum energy

    SciTech Connect

    Batra, Puneet; Hinterbichler, Kurt; Hui, Lam; Kabat, Daniel

    2008-08-15

    We discuss models that can account for today's dark energy. The underlying cosmological constant may be Planck scale but starts as a redundant coupling which can be eliminated by a field redefinition. The observed vacuum energy arises when the redundancy is explicitly broken, say by a nonminimal coupling to curvature. We give a recipe for constructing models, including R+1/R-type models, that realize this mechanism and satisfy all solar system constraints on gravity. A similar model, based on Gauss-Bonnet gravity, provides a technically natural explanation for dark energy and exhibits an interesting seesaw behavior: a large underlying cosmological constant gives rise to both low- and high-curvature solutions. Such models could be statistically favored in the string landscape.

  15. Pseudoredundant vacuum energy

    NASA Astrophysics Data System (ADS)

    Batra, Puneet; Hinterbichler, Kurt; Hui, Lam; Kabat, Daniel

    2008-08-01

    We discuss models that can account for today’s dark energy. The underlying cosmological constant may be Planck scale but starts as a redundant coupling which can be eliminated by a field redefinition. The observed vacuum energy arises when the redundancy is explicitly broken, say by a nonminimal coupling to curvature. We give a recipe for constructing models, including R+1/R-type models, that realize this mechanism and satisfy all solar system constraints on gravity. A similar model, based on Gauss-Bonnet gravity, provides a technically natural explanation for dark energy and exhibits an interesting seesaw behavior: a large underlying cosmological constant gives rise to both low- and high-curvature solutions. Such models could be statistically favored in the string landscape.

  16. THERMOCOUPLE VACUUM GAUGE

    DOEpatents

    Price, G.W.

    1954-08-01

    A protector device is described for use in controlling the pressure within a cyclotron. In particular, an electrical circuit functions to actuate a vacuum pump when a predetermined low pressure is reached and disconnect the pump when the pressure increases abcve a certain value. The principal feature of the control circuit lies in the use of a voltage divider network at the input to a relay control tube comprising two parallel, adjustable resistances wherein one resistor is switched into the circuit when the relay connects the pump to a power source. With this arrangement the relay is energized at one input level received from a sensing element within the cyclotron chamber and is de-energized when a second input level, representing the higher pressure limit, is reached.

  17. Statistical phenomena in particle beams

    SciTech Connect

    Bisognano, J.J.

    1984-09-01

    Particle beams are subject to a variety of apparently distinct statistical phenomena such as intrabeam scattering, stochastic cooling, electron cooling, coherent instabilities, and radiofrequency noise diffusion. In fact, both the physics and mathematical description of these mechanisms are quite similar, with the notion of correlation as a powerful unifying principle. In this presentation we will attempt to provide both a physical and a mathematical basis for understanding the wide range of statistical phenomena that have been discussed. In the course of this study the tools of the trade will be introduced, e.g., the Vlasov and Fokker-Planck equations, noise theory, correlation functions, and beam transfer functions. Although a major concern will be to provide equations for analyzing machine design, the primary goal is to introduce a basic set of physical concepts having a very broad range of applicability.

  18. Thermodynamic constraints on fluctuation phenomena.

    PubMed

    Maroney, O J E

    2009-12-01

    The relationships among reversible Carnot cycles, the absence of perpetual motion machines, and the existence of a nondecreasing globally unique entropy function form the starting point of many textbook presentations of the foundations of thermodynamics. However, the thermal fluctuation phenomena associated with statistical mechanics has been argued to restrict the domain of validity of this basis of the second law of thermodynamics. Here we demonstrate that fluctuation phenomena can be incorporated into the traditional presentation, extending rather than restricting the domain of validity of the phenomenologically motivated second law. Consistency conditions lead to constraints upon the possible spectrum of thermal fluctuations. In a special case this uniquely selects the Gibbs canonical distribution and more generally incorporates the Tsallis distributions. No particular model of microscopic dynamics need be assumed. PMID:20365152

  19. Control Dewar Secondary Vacuum Container

    SciTech Connect

    Rucinski, R.; /Fermilab

    1993-10-04

    This engineering note provides background information regarding the control dewar secondary vacuum container. The secondary vacuum container has it's origin with the CDP control dewar design. The name secondary vacuum container replaced the CDP term 'Watt can' which was named after Bob Watt (SLAC), a PAC/DOE review committee member who participated in a review of CDP and recommended a secondary vacuum enclosure. One of the most fragile parts of the control dewar design is the ceramic electrical feed throughs located in the secondary vacuum container. The secondary vacuum container is provided to guard against potential leaks in these ceramic insulating feed throughs. The secondary vacuum container has a pumping line separate from the main solenoid/control dewar insulating vacuum. This pumping line is connected to the inlet of the turbo pump for initial pumpdown. Under normal operation the container is isolated. Should a feedthrough develop a small leak, alternate pumping arrangements for the secondary vacuum container could be arranged. The pressure in the secondary vacuum container should be kept in a range that the breakdown voltage is kept at a maximum. The breakdown voltage is known to be a function of pressure and is described by a Paschen curve. I cannot find a copy of the curve at this time, but from what I remember, the breakdown voltage is a minimum somewhere around 10-3 torr. Ideally the pressure in the secondary vacuum can should be kept very low, around 10 E-6 or 10 E-7 torr for maximum breakdown voltage. If however a leak developed and this was not possible, then one could operate at a pressure higher than the minima point.

  20. Mathematical Modeling of Diverse Phenomena

    NASA Technical Reports Server (NTRS)

    Howard, J. C.

    1979-01-01

    Tensor calculus is applied to the formulation of mathematical models of diverse phenomena. Aeronautics, fluid dynamics, and cosmology are among the areas of application. The feasibility of combining tensor methods and computer capability to formulate problems is demonstrated. The techniques described are an attempt to simplify the formulation of mathematical models by reducing the modeling process to a series of routine operations, which can be performed either manually or by computer.

  1. New phenomena searches at CDF

    SciTech Connect

    Soha, Aron; /UC, Davis

    2006-04-01

    The authors report on recent results from the Collider Detector at Fermilab (CDF) experiment, which is accumulating data from proton-antiproton collisions with {radical}s = 1.96 TeV at Run II of the Fermilab Tevatron. The new phenomena being explored include Higgs, Supersymmetry, and large extra dimensions. They also present the latest results of searches for heavy objects, which would indicate physics beyond the Standard Model.

  2. Bubbling phenomena of biharmonic maps

    NASA Astrophysics Data System (ADS)

    Nakauchi, Nobumitsu; Urakawa, Hajime

    2015-12-01

    In this paper, by using Moser's iteration technique, we will show that every sequence in the totality of biharmonic maps between two compact Riemannian manifolds (M, g) and (N, h) with m-energies (m = dim M ≥ 3) and L2-norm of the tension fields which are bounded above by any positive constant C, causes the bubbling phenomena, which is a generalization of the one for harmonic maps.

  3. Noise Induced Phenomena: a Sampler

    NASA Astrophysics Data System (ADS)

    Wio, Horacio S.; Lindenberg, Katja

    2003-03-01

    Fluctuations or noise have played a changing role in the history of science. Historically, we can identify three views of noise. In the first, up to the end of the 19th century, noise was considered a nuisance to be avoided or eliminated. This is still the implication of the definition of the word noise in any standard dictionary. A second stage dates from the beginning of the 20th century, when it became clear from the study of fluctuations via Onsager relations and fluctuation-dissipation relations that one can obtain useful information about a physical system from its fluctuations. The third stage started about three decades ago, and is marked by the realization that noise can actually play a central role in inducing new phenomena. Examples where noise leads to organized behavior include stochastic resonance, noise-induced phase transitions, noise-induced pattern formation, and noise-induced transport. In this minicourse we sample some such noise-induced phenomena. While many of these fluctuation-induced phenomena involve temporal fluctuations, spatial fluctuations (disorder) can also play a similar organizing role. We briefly illustrate this scenario as well.

  4. Effects of thermal annealing on the evolution of He bubbles in zirconia

    NASA Astrophysics Data System (ADS)

    Kong, Shuyan; Velisa, Gihan; Debelle, Aurélien; Yang, Tengfei; Wang, Chenxu; Thomé, Lionel; Xue, Jianming; Yan, Sha; Wang, Yugang

    2014-05-01

    Single crystals of yttria-stabilized zirconia were implanted with 100 keV He ions at two fluences of 9 × 1016 and 3 × 1017 cm-2 (5 and 17 He at.%). In order to investigate the effect of thermal annealing on the evolution of both zirconia lattice and implanted He, the samples were annealed at several temperatures ranging from 500 °C to 1400 °C. Three complementary analysis techniques, RBS/C, AFM and TEM were used to study structural damage and surface morphology of the crystal before and after implantation. Results show different He evolution phenomena under the two implantation fluences. It is inferred that, at the lower fluence, the migration and agglomeration of He ions lead to bubble formation after annealing. These bubbles jack up sample surface causing the deformation of surface region and the damage level of surface region increase accordingly. As the temperature continues to increase, He gradually releases and the damage recovers. However, at the higher fluence, the He concentration is sufficient to induce bubble precipitation without annealing. He release and damage recovering is less efficient upon annealing.

  5. Vacuum enhanced cutaneous biopsy instrument

    DOEpatents

    Collins, Joseph

    2000-01-01

    A syringe-like disposable cutaneous biopsy instrument equipped with a tubular blade at its lower end, and designed so that a vacuum is created during use, said vacuum serving to retain undeformed a plug of tissue cut from a patient's skin.

  6. Multipurpose Vacuum Induction Processing System

    NASA Astrophysics Data System (ADS)

    Govindaraju, M.; Kulkarni, Deepak; Balasubramanian, K.

    2012-11-01

    Multipurpose vacuum processing systems are cost effective; occupy less space, multiple functional under one roof and user friendly. A multipurpose vacuum induction system was designed, fabricated and installed in a record time of 6 months time at NFTDC Hyderabad. It was designed to function as a) vacuum induction melting/refining of oxygen free electronic copper/pure metals, b) vacuum induction melting furnace for ferrous materials c) vacuum induction melting for non ferrous materials d) large vacuum heat treatment chamber by resistance heating (by detachable coil and hot zone) e) bottom discharge vacuum induction melting system for non ferrous materials f) Induction heat treatment system and g) directional solidification /investment casting. It contains provision for future capacity addition. The attachments require to manufacture multiple shaped castings and continuous rod casting can be added whenever need arises. Present capacity is decided on the requirement for 10years of development path; presently it has 1.2 ton liquid copper handling capacity. It is equipped with provision for capacity addition up to 2 ton liquid copper handling capacity in future. Provision is made to carry out the capacity addition in easy steps quickly. For easy operational maintenance and troubleshooting, design was made in easily detachable sections. High vacuum system is also is detachable, independent and easily movable which is first of its kind in the country. Detailed design parameters, advantages and development history are presented in this paper.

  7. Purifying Aluminum by Vacuum Distillation

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1985-01-01

    Proposed method for purifying aluminum employs one-step vacuum distillation. Raw material for process impure aluminum produced in electrolysis of aluminum ore. Impure metal melted in vacuum. Since aluminum has much higher vapor pressure than other constituents, boils off and condenses on nearby cold surfaces in proportions much greater than those of other constituents.

  8. Breather cloth for vacuum curing

    NASA Technical Reports Server (NTRS)

    Reed, M. W.

    1979-01-01

    Finely-woven nylon cloth that has been treated with Teflon improves vacuum adhesive bonding of coatings to substrates. Cloth is placed over coating; entire assembly, including substrate, coating, and cloth, is placed in plastic vacuum bag for curing. Cloth allows coating to "breathe" when bag is evacuated. Applications include bonding film coatings to solar concentrators and collectors.

  9. Vacuum Enhanced Cutaneous Biopsy Instrument

    SciTech Connect

    Collins, Joseph

    1999-06-25

    A syringe-like disposable cutaneous biopsy instrument equipped with a tubular blade at its lower end, and designed so that a vacuum is created during use, said vacuum serving to retain undeformed a plug of tissue cut from a patient's skin.

  10. Vacuum flash evaporated polymer composites

    DOEpatents

    Affinito, J.D.; Gross, M.E.

    1997-10-28

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  11. Vacuum flash evaporated polymer composites

    DOEpatents

    Affinito, John D.; Gross, Mark E.

    1997-01-01

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  12. Vacuum Gas Tungsten Arc Welding

    NASA Technical Reports Server (NTRS)

    Weeks, J. L.; Todd, D. T.; Wooten, J. R.

    1997-01-01

    A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures.

  13. Vacuum requirements for LAMPF II

    SciTech Connect

    Neuffer, D.

    1984-08-01

    The LAMPF II accelerator will require sufficient vacuum to prevent beam loss or beam blowup within the time the beam is in the accelerator. Because this time is quite short (tau < 0.03 s), the vacuum requirements should be somewhat less strict than for the long-time storage machines, such as the ISR (tau greater than or equal to 10/sup 5/ s). In this note, we catalog various vacuum limitations for LAMPF II and outline vacuum-system parameters that meet these limitations. The pressure P less than or equal to 10/sup -7/ T should be adequate for LAMPF II, and a fairly simple vacuum system should obtain P less than or equal to 10/sup -8/ T.

  14. The AGS Booster vacuum systems

    SciTech Connect

    Hseuh, H.C.

    1989-01-01

    The AGS Booster is a synchrotron for the acceleration of both protons and heavy ions. The design pressure of low 10{sup {minus}11} mbar is required to minimize beam loss of the partially stripped heavy ions. To remove contaminants and to reduce outgassing, the vacuum chambers and the components located in them will be chemically cleaned, vacuum fired, baked then treated with nitric oxide. The vacuum sector will be insitu baked to a minimum of 200{degree}C and pumped by the combination of sputter ion pumps and titanium sublimation pumps. This paper describes the design and the processing of this ultra high vacuum system, and the performance of some half-cell vacuum chambers. 9 refs., 7 figs.

  15. Miniature ion-sorption vacuum pump with CNT field-emission electron source

    NASA Astrophysics Data System (ADS)

    Grzebyk, T.; Górecka-Drzazga, A.

    2013-01-01

    Generation and maintenance of the high vacuum in the MEMS-type (micro-electro-mechanical system) microsystems and vacuum nanoelectronics devices remain a major problem today. The phenomena of gas desorption from the surface of a microcavity and outgassing of materials limit the vacuum to the level of about 10-1 Pa. In this paper, a new MEMS-type micropump for generating a high vacuum in a microcavity is presented. The main component of the ion-sorption micropump is a carbon nanotube (CNT) field-emission electron source. Test structures of the electron source with electrophoretically deposited CNT have been fabricated and measured. A satisfactory value of the emission current and a low turn-on voltage have been obtained. The elaborated electron source has been applied to the micropump structure; it has enabled us to achieve a vacuum level below 10-3 Pa.

  16. Precision Laser Annealing of Focal Plane Arrays

    SciTech Connect

    Bender, Daniel A.; DeRose, Christopher; Starbuck, Andrew Lea; Verley, Jason C.; Jenkins, Mark W.

    2015-09-01

    We present results from laser annealing experiments in Si using a passively Q-switched Nd:YAG microlaser. Exposure with laser at fluence values above the damage threshold of commercially available photodiodes results in electrical damage (as measured by an increase in photodiode dark current). We show that increasing the laser fluence to values in excess of the damage threshold can result in annealing of a damage site and a reduction in detector dark current by as much as 100x in some cases. A still further increase in fluence results in irreparable damage. Thus we demonstrate the presence of a laser annealing window over which performance of damaged detectors can be at least partially reconstituted. Moreover dark current reduction is observed over the entire operating range of the diode indicating that device performance has been improved for all values of reverse bias voltage. Additionally, we will present results of laser annealing in Si waveguides. By exposing a small (<10 um) length of a Si waveguide to an annealing laser pulse, the longitudinal phase of light acquired in propagating through the waveguide can be modified with high precision, <15 milliradian per laser pulse. Phase tuning by 180 degrees is exhibited with multiple exposures to one arm of a Mach-Zehnder interferometer at fluence values below the morphological damage threshold of an etched Si waveguide. No reduction in optical transmission at 1550 nm was found after 220 annealing laser shots. Modeling results for laser annealing in Si are also presented.

  17. Embedding parameters for Quantum Annealing

    NASA Astrophysics Data System (ADS)

    Venturelli, Davide

    Many optimization problems are defined on highly connected graphs and many interesting physical spin-glass systems are featuring long-range interactions. One method to solve for the optimum/ground state is quantum annealing (QA). Most architectures for QA devices, manufactured or proposed, are based on optimizing Hamiltonians having spins connected in a non-complete graph, with nodes with a small maximum degree, compared to the requirements. To overcome this limitation 'embedding' is employed: the native graph is 'tiled' with ferromagnetic chains of spins that now are meant to represent the logical binary variables. While it is known how the strength of the ferromagnetic bonds can ensure that the classical Ising ground state of the embedded system can be univocally mapped to the ground state of the original system, there is very little study on the impact of these parameters on QA. Programmers have taken conservative choices for the parameters and the common practices can be improved. Starting from the physics of connected ferromagnetic Ising chains, we will review several parameter choices and discuss previous and new results obtained on the D-Wave 2X machine, on carefully designed problems that allow to isolate and evaluate the role of connectivity in embedded systems.

  18. Crystal growth behaviour in Au-ZnO nanocomposite under different annealing environments and photoswitchability

    SciTech Connect

    Mishra, Y. K.; Adelung, R.; Chakravadhanula, V. S. K.; Hrkac, V.; Kienle, L.; Jebril, S.; Agarwal, D. C.; Avasthi, D. K.; Mohapatra, S.

    2012-09-15

    The growth of gold nanoparticles and ZnO nanorods in atom beam co-sputtered Au-ZnO nanocomposite (NC) system by annealing at two different ambient conditions is demonstrated in this work. Annealing in a furnace at 600 Degree-Sign C (air environment) confirmed the formation of ZnO nanorods surrounded with Au nanoparticles. In-situ annealing inside a transmission electron microscope (TEM) led to the formation of gold nanocrystals with different polygonal shapes. TEM micrographs were obtained in real time at intermediate temperatures of 300 Degree-Sign C, 420 Degree-Sign C, and 600 Degree-Sign C under vacuum. The growth mechanisms of Au nanocrystals and ZnO nanorods are discussed in the framework of Au-Zn eutectic and Zn-melting temperatures in vacuum and air, respectively. Current-voltage responses of Au-ZnO NC nanorods in dark as well as under light illumination have been investigated and photoswitching in Au-ZnO NC system is reported. The photoswitching has been discussed in terms of Au-ZnO band-diagram.

  19. Annealing Effects on Contact Properties of Aluminum Doped Zinc Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Low, Ke Bin; Gong, Hao; Chor, Eng Fong

    Aluminum Zinc Oxide (AZO) thin films are grown on glass substrates by RF Magnetron Sputtering using a single target of zinc oxide (99 wt%) and aluminum oxide (1 wt%) with argon as the plasma. Photolithographic process is then performed on the films in order to obtain a Transmission Line Model structure (TLM) of the metal contact system, namely aluminum and gold. The specific contact resistivity, ρc, of these two metal-semiconductor systems, which will undergo different rapid thermal annealing (RTA) environment, are determined. X-Ray diffraction patterns for these samples are obtained to investigate phase formations or micro-structural changes so as to justify for the differences in specific contact resistivity obtained for these contact systems. The different RTA environment are simulated by purging either nitrogen or argon gas, with a pressure of 40 psi at a temperature of 400°C for 60 s and annealing in vacuum (10-6 Torr) also at the same temperature and duration. One-dimensional TLM (1D-TLM) measurements are performed on the TLM structures to obtain the specific contact resistivity, ρc. Results show that aluminum contacts on AZO without RTA give the lowest ρc as compared to those in other environment, while gold contacts on AZO annealed in vacuum yield the lowest ρc. Adhesion of aluminum contacts on AZO is good even when subjected to ultrasonic bath test but not true for the case of gold contact, which adheres poorly on AZO films.

  20. Vacuum ultraviolet and infrared spectra of condensed methyl acetate on cold astrochemical dust analogs

    SciTech Connect

    Sivaraman, B.; Nair, B. G.; Mason, N. J.; Lo, J.-I.; Cheng, B.-M.; Kundu, S.; Davis, D.; Prabhudesai, V.; Krishnakumar, E.; Raja Sekhar, B. N.

    2013-12-01

    Following the recent report of the first identification of methyl acetate (CH{sub 3}COOCH{sub 3}) in the interstellar medium (ISM), we have carried out vacuum ultraviolet (VUV) and infrared (IR) spectroscopy studies on methyl acetate from 10 K until sublimation in an ultrahigh vacuum chamber simulating astrochemical conditions. We present the first VUV and IR spectra of methyl acetate relevant to ISM conditions. Spectral signatures clearly showed molecular reorientation to have started in the ice by annealing the amorphous ice formed at 10 K. An irreversible phase change from amorphous to crystalline methyl acetate ice was found to occur between 110 K and 120 K.

  1. Correlated randomness and switching phenomena

    NASA Astrophysics Data System (ADS)

    Stanley, H. E.; Buldyrev, S. V.; Franzese, G.; Havlin, S.; Mallamace, F.; Kumar, P.; Plerou, V.; Preis, T.

    2010-08-01

    One challenge of biology, medicine, and economics is that the systems treated by these serious scientific disciplines have no perfect metronome in time and no perfect spatial architecture-crystalline or otherwise. Nonetheless, as if by magic, out of nothing but randomness one finds remarkably fine-tuned processes in time and remarkably fine-tuned structures in space. Further, many of these processes and structures have the remarkable feature of “switching” from one behavior to another as if by magic. The past century has, philosophically, been concerned with placing aside the human tendency to see the universe as a fine-tuned machine. Here we will address the challenge of uncovering how, through randomness (albeit, as we shall see, strongly correlated randomness), one can arrive at some of the many spatial and temporal patterns in biology, medicine, and economics and even begin to characterize the switching phenomena that enables a system to pass from one state to another. Inspired by principles developed by A. Nihat Berker and scores of other statistical physicists in recent years, we discuss some applications of correlated randomness to understand switching phenomena in various fields. Specifically, we present evidence from experiments and from computer simulations supporting the hypothesis that water’s anomalies are related to a switching point (which is not unlike the “tipping point” immortalized by Malcolm Gladwell), and that the bubbles in economic phenomena that occur on all scales are not “outliers” (another Gladwell immortalization). Though more speculative, we support the idea of disease as arising from some kind of yet-to-be-understood complex switching phenomenon, by discussing data on selected examples, including heart disease and Alzheimer disease.

  2. Vacuum plasma spray coating

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Mckechnie, Timothy N.

    1989-01-01

    Currently, protective plasma spray coatings are applied to space shuttle main engine turbine blades of high-performance nickel alloys by an air plasma spray process. Originally, a ceramic coating of yttria-stabilized zirconia (ZrO2.12Y2O3) was applied for thermal protection, but was removed because of severe spalling. In vacuum plasma spray coating, plasma coatings of nickel-chromium-aluminum-yttrium (NiCrAlY) are applied in a reduced atmosphere of argon/helium. These enhanced coatings showed no spalling after 40 MSFC burner rig thermal shock cycles between 927 C (1700 F) and -253 C (-423 F), while current coatings spalled during 5 to 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2.8Y2O3 to the turbine blades of first-stage high-pressure fuel turbopumps utilizing the enhanced NiCrAlY bond-coating process. NiCrAlY bond coating is applied first, with ZrO2.8Y2O3 added sequentially in increasing amounts until a thermal barrier coating is obtained. The enchanced thermal barrier coating has successfully passed 40 burner rig thermal shock cycles.

  3. NCSX Vacuum Vessel Fabrication

    SciTech Connect

    Viola, M. E.; Brown, T.; Heitzenroeder, P.; Malinowski, F.; Reiersen, W.; Sutton, L.; Goranson, P.; Nelson, B.; Cole, M.; Manuel, M.; McCorkle, D.

    2005-10-07

    The National Compact Stellarator Experiment (NCSX) is being constructed at the Princeton Plasma Physics Laboratory (PPPL) in conjunction with the Oak Ridge National Laboratory (ORNL). The goal of this experiment is to develop a device which has the steady state properties of a traditional stellarator along with the high performance characteristics of a tokamak. A key element of this device is its highly shaped Inconel 625 vacuum vessel. This paper describes the manufacturing of the vessel. The vessel is being fabricated by Major Tool and Machine, Inc. (MTM) in three identical 120º vessel segments, corresponding to the three NCSX field periods, in order to accommodate assembly of the device. The port extensions are welded on, leak checked, cut off within 1" of the vessel surface at MTM and then reattached at PPPL, to accommodate assembly of the close-fitting modular coils that surround the vessel. The 120º vessel segments are formed by welding two 60º segments together. Each 60º segment is fabricated by welding ten press-formed panels together over a collapsible welding fixture which is needed to precisely position the panels. The vessel is joined at assembly by welding via custom machined 8" (20.3 cm) wide spacer "spool pieces." The vessel must have a total leak rate less than 5 X 10-6 t-l/s, magnetic permeability less than 1.02μ, and its contours must be within 0.188" (4.76 mm). It is scheduled for completion in January 2006.

  4. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-10-27

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.

  5. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases therebetween are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and variious laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels.

  6. Gravitational anomaly and transport phenomena.

    PubMed

    Landsteiner, Karl; Megías, Eugenio; Pena-Benitez, Francisco

    2011-07-01

    Quantum anomalies give rise to new transport phenomena. In particular, a magnetic field can induce an anomalous current via the chiral magnetic effect and a vortex in the relativistic fluid can also induce a current via the chiral vortical effect. The related transport coefficients can be calculated via Kubo formulas. We evaluate the Kubo formula for the anomalous vortical conductivity at weak coupling and show that it receives contributions proportional to the gravitational anomaly coefficient. The gravitational anomaly gives rise to an anomalous vortical effect even for an uncharged fluid. PMID:21797593

  7. Phenomena and Diosignes of Aratous

    NASA Astrophysics Data System (ADS)

    Avgoloupis, S. I.

    2013-01-01

    Aratous (305-240B.C.) was a singular intellectual, writer and poet which engage himself to compose a very interesting astronomical poet, using the "Dactylous sixstage' style, the formal style of the ancient Greek Epic poetry. This astronomic poem of Aratous "Phenomena and Diosignes" became very favorite reading during the Alexandrine, the Romman and the Byzandin eras as well and had received many praises from significant poets and particularly from Hipparchous and from Theonas from Alexandria, an astronomer of 4rth century A.C.(in Greeks)

  8. Vacuum Brazing of Accelerator Components

    NASA Astrophysics Data System (ADS)

    Singh, Rajvir; Pant, K. K.; Lal, Shankar; Yadav, D. P.; Garg, S. R.; Raghuvanshi, V. K.; Mundra, G.

    2012-11-01

    Commonly used materials for accelerator components are those which are vacuum compatible and thermally conductive. Stainless steel, aluminum and copper are common among them. Stainless steel is a poor heat conductor and not very common in use where good thermal conductivity is required. Aluminum and copper and their alloys meet the above requirements and are frequently used for the above purpose. The accelerator components made of aluminum and its alloys using welding process have become a common practice now a days. It is mandatory to use copper and its other grades in RF devices required for accelerators. Beam line and Front End components of the accelerators are fabricated from stainless steel and OFHC copper. Fabrication of components made of copper using welding process is very difficult and in most of the cases it is impossible. Fabrication and joining in such cases is possible using brazing process especially under vacuum and inert gas atmosphere. Several accelerator components have been vacuum brazed for Indus projects at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore using vacuum brazing facility available at RRCAT, Indore. This paper presents details regarding development of the above mentioned high value and strategic components/assemblies. It will include basics required for vacuum brazing, details of vacuum brazing facility, joint design, fixturing of the jobs, selection of filler alloys, optimization of brazing parameters so as to obtain high quality brazed joints, brief description of vacuum brazed accelerator components etc.

  9. Vacuum energy and cosmological evolution

    NASA Astrophysics Data System (ADS)

    Solà, Joan

    2014-07-01

    An expanding universe is not expected to have a static vacuum energy density. The so-called cosmological constant Λ should be an approximation, certainly a good one for a fraction of a Hubble time, but it is most likely a temporary description of a true dynamical vacuum energy variable that is evolving from the inflationary epoch to the present day. We can compare the evolving vacuum energy with a Casimir device where the parallel plates slowly move apart ("expand"). The total vacuum energy density cannot be measured, only the effect associated to the presence of the plates, and then also their increasing separation with time. In the universe there is a nonvanishing spacetime curvature R as compared to Minkowskian spacetime that is changing with the expansion. The vacuum energy density must change accordingly, and we naturally expect δΛ˜R˜H2. A class of dynamical vacuum models that trace such rate of change can be constructed. They are compatible with the current cosmological data, and conveniently extended can account for the complete cosmic evolution from the inflationary epoch till the present days. These models are very close to the ΛCDM model for the late universe, but very different from it at the early times. Traces of the inherent vacuum dynamics could be detectable in our recent past.

  10. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 6 2014-10-01 2014-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  11. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  12. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 6 2012-10-01 2012-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  13. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  14. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  15. Influence of annealing temperature on structural and optical properties of nanocrystalline Platinum octaethylporphyrin (PtOEP) thin films

    NASA Astrophysics Data System (ADS)

    Abuelwafa, A. A.; El-Denglawey, A.; Dongol, M.; El-Nahass, M. M.; Soga, T.

    2015-11-01

    Thermal evaporation technique was used to prepare the Platinum octaethylporphyrin (PtOEP) thin films at room temperature. The deposited films were studied before and after thermal annealing at 373 and 473 K for 3 h under vacuum (10-3 Pa). The film structure, surface morphologies and molecular structure were investigated as a function of annealing temperature by X-ray Diffraction (XRD), Field-Emission Scanning Electron Microscopy (FESEM) and Fourier-transform infrared techniques (FT-IR) respectively. The results confirmed that the as-deposited and annealed films have nanostructural features. Optical constants of the as-deposited and annealed films have been obtained in the wavelength range 200-1100 nm by using spectrophotometric measurements. Analysis of the spectra of absorption coefficient showed indirect allowed transition and optical energy gap found to decrease with increase in annealing temperature. The dispersion of refractive index at the normal dispersion (λ > 600 nm) was discussed in terms of single oscillator model of Wemple-Didomenico. Based on generalized Miller's rule the third order non-linear susceptibility, χ(3) and nonlinear refractive index, n2 were estimated and studied at lower photon energy and showing lower value for the annealed film.

  16. Annealing behavior of high permeability amorphous alloys

    SciTech Connect

    Rabenberg, L.

    1980-06-01

    Effects of low temperature annealing on the magnetic properties of the amorphous alloy Co/sub 71/ /sub 4/Fe/sub 4/ /sub 6/Si/sub 9/ /sub 6/B/sub 14/ /sub 4/ were investigated. Annealing this alloy below 400/sup 0/C results in magnetic hardening; annealing above 400/sup 0/C but below the crystallization temperature results in magnetic softening. Above the crystallization temperature the alloy hardens drastically and irreversibly. Conventional and high resolution transmission electron microscopy were used to show that the magnetic property changes at low temperatures occur while the alloy is truly amorphous. By imaging the magnetic microstructures, Lorentz electron microscopy has been able to detect the presence of microscopic inhomogeneities in this alloy. The low temperature annealing behavior of this alloy has been explained in terms of atomic pair ordering in the presence of the internal molecular field. Lorentz electron microscopy has been used to confirm this explanation.

  17. Enthalpy relaxation and annealing effect in polystyrene.

    PubMed

    Sakatsuji, Waki; Konishi, Takashi; Miyamoto, Yoshihisa

    2013-07-01

    The effects of thermal history on the enthalpy relaxation in polystyrene are studied by differential scanning calorimetry. The temperature dependence of the specific heat in the liquid and the glassy states, that of relaxation time, and the exponent of the Kohlrausch-Williams-Watts function are determined by measurements of the thermal response against sinusoidal temperature variation. A phenomenological model equation previously proposed to interpret the memory effect in the frozen state is applied to the enthalpy relaxation and the evolution of entropy under a given thermal history is calculated. The annealing below the glass transition temperature produces two effects on enthalpy relaxation: the decay of excess entropy with annealing time in the early stage of annealing and the increase in relaxation time due to physical aging in the later stage. The crossover of these effects is reflected in the variation of temperature of the maximum specific heat observed in the heating process after annealing and cooling. PMID:23944484

  18. Enthalpy relaxation and annealing effect in polystyrene

    NASA Astrophysics Data System (ADS)

    Sakatsuji, Waki; Konishi, Takashi; Miyamoto, Yoshihisa

    2013-07-01

    The effects of thermal history on the enthalpy relaxation in polystyrene are studied by differential scanning calorimetry. The temperature dependence of the specific heat in the liquid and the glassy states, that of relaxation time, and the exponent of the Kohlrausch-Williams-Watts function are determined by measurements of the thermal response against sinusoidal temperature variation. A phenomenological model equation previously proposed to interpret the memory effect in the frozen state is applied to the enthalpy relaxation and the evolution of entropy under a given thermal history is calculated. The annealing below the glass transition temperature produces two effects on enthalpy relaxation: the decay of excess entropy with annealing time in the early stage of annealing and the increase in relaxation time due to physical aging in the later stage. The crossover of these effects is reflected in the variation of temperature of the maximum specific heat observed in the heating process after annealing and cooling.

  19. Atom probe, AFM, and STM studies on vacuum-fired stainless steels.

    PubMed

    Stupnik, A; Frank, P; Leisch, M

    2009-04-01

    The surface morphology of grades 304L and 316LN stainless steels, after low-temperature bake-out process and vacuum annealing, has been studied by atomic force microscopy (AFM) and scanning tunnelling microscopy (STM). The local elemental composition on the surface before and after thermal treatment has been investigated by atom probe (AP) depth profiling measurements. After vacuum annealing, AFM and STM show significant changes in the surface structure and topology. Recrystallization and surface reconstruction is less pronounced on the 316LN stainless steel. AP depth profiling analyses result in noticeable nickel enrichment on the surface of grade 304L samples. Since hydrogen recombination is almost controlled by surface structure and composition, a strong influence on the outgassing behaviour by the particular surface microstructure can be deduced. PMID:19167824

  20. Vacuum applications of metal foams

    NASA Technical Reports Server (NTRS)

    Kendall, B. R. F.

    1980-01-01

    Several vacuum applications of copper foams in the density range 2-5% and pore sizes of 0.5-0.7 mm are discussed, such as a foreline hydrocarbon trap in a mechanical vacuum pump, a molecular-flow resistor, a diffuser, and a water injector. Other suggested applications include the use of foam copper in the form of an externally heated plug to remove traces of oxygen from inert gases bled into a vacuum system through a stainless steel line and the use of the porous surface for minimizing release of secondary electrons from electrodes in the path of charged particle beams.

  1. Visual phenomena, disturbances, and hallucinations.

    PubMed

    Adamczyk, D T

    1996-01-01

    The visual system and its processing of sensory information can be affected in a variety of ways that may be either normal or associated with numerous disorders and diseases. Visual images produced by the intrinsic components of the eyes are often normal and are known as entoptic phenomena. In contrast, the visual system may be disrupted by various disorders and pathologic processes, which can result in metamorphopsia, transient loss of vision, and positive scotomas. Such disruptions can be secondary to retinal and optic nerve disease, migraines associated with visual auras, and cerebrovascular and neurologic diseases; they can also be side effects of certain drugs. In addition, the visual system may process incoming sensory information in such a way that what is seen is perceived incorrectly, i.e. illusion; or the visual system may produce images of things not really there, i.e. hallucination. Various types of visual phenomena, disturbances, and hallucinations are discussed. The numerous visual presentations need to be differentiated so that appropriate treatment, management, and patient education can be rendered. PMID:8972508

  2. Uranium Pyrophoricity Phenomena and Prediction

    SciTech Connect

    DUNCAN, D.R.

    2000-04-20

    We have compiled a topical reference on the phenomena, experiences, experiments, and prediction of uranium pyrophoricity for the Hanford Spent Nuclear Fuel Project (SNFP) with specific applications to SNFP process and situations. The purpose of the compilation is to create a reference to integrate and preserve this knowledge. Decades ago, uranium and zirconium fires were commonplace at Atomic Energy Commission facilities, and good documentation of experiences is surprisingly sparse. Today, these phenomena are important to site remediation and analysis of packaging, transportation, and processing of unirradiated metal scrap and spent nuclear fuel. Our document, bearing the same title as this paper, will soon be available in the Hanford document system [Plys, et al., 2000]. This paper explains general content of our topical reference and provides examples useful throughout the DOE complex. Moreover, the methods described here can be applied to analysis of potentially pyrophoric plutonium, metal, or metal hydride compounds provided that kinetic data are available. A key feature of this paper is a set of straightforward equations and values that are immediately applicable to safety analysis.

  3. Annealed CVD molybdenum thin film surface

    DOEpatents

    Carver, Gary E.; Seraphin, Bernhard O.

    1984-01-01

    Molybdenum thin films deposited by pyrolytic decomposition of Mo(CO).sub.6 attain, after anneal in a reducing atmosphere at temperatures greater than 700.degree. C., infrared reflectance values greater than reflectance of supersmooth bulk molybdenum. Black molybdenum films deposited under oxidizing conditions and annealed, when covered with an anti-reflecting coating, approach the ideal solar collector characteristic of visible light absorber and infrared energy reflector.

  4. Error suppression and correction for quantum annealing

    NASA Astrophysics Data System (ADS)

    Lidar, Daniel

    While adiabatic quantum computing and quantum annealing enjoy a certain degree of inherent robustness against excitations and control errors, there is no escaping the need for error correction or suppression. In this talk I will give an overview of our work on the development of such error correction and suppression methods. We have experimentally tested one such method combining encoding, energy penalties and decoding, on a D-Wave Two processor, with encouraging results. Mean field theory shows that this can be explained in terms of a softening of the closing of the gap due to the energy penalty, resulting in protection against excitations that occur near the quantum critical point. Decoding recovers population from excited states and enhances the success probability of quantum annealing. Moreover, we have demonstrated that using repetition codes with increasing code distance can lower the effective temperature of the annealer. References: K.L. Pudenz, T. Albash, D.A. Lidar, ``Error corrected quantum annealing with hundreds of qubits'', Nature Commun. 5, 3243 (2014). K.L. Pudenz, T. Albash, D.A. Lidar, ``Quantum annealing correction for random Ising problems'', Phys. Rev. A. 91, 042302 (2015). S. Matsuura, H. Nishimori, T. Albash, D.A. Lidar, ``Mean Field Analysis of Quantum Annealing Correction''. arXiv:1510.07709. W. Vinci et al., in preparation.

  5. Natural phenomena hazards, Hanford Site, Washington

    SciTech Connect

    Conrads, T.J.

    1998-09-29

    This document presents the natural phenomena hazard loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, and supports development of double-shell tank systems specifications at the Hanford Site in south-central Washington State. The natural phenomena covered are seismic, flood, wind, volcanic ash, lightning, snow, temperature, solar radiation, suspended sediment, and relative humidity.

  6. Influence of in-situ annealing ambient on p-type conduction in dual ion beam sputtered Sb-doped ZnO thin films

    SciTech Connect

    Pandey, Sushil Kumar; Kumar Pandey, Saurabh; Awasthi, Vishnu; Mukherjee, Shaibal; Gupta, M.; Deshpande, U. P.

    2013-08-12

    Sb-doped ZnO (SZO) films were deposited on c-plane sapphire substrates by dual ion beam sputtering deposition system and subsequently annealed in-situ in vacuum and in various proportions of O{sub 2}/(O{sub 2} + N{sub 2})% from 0% (N{sub 2}) to 100% (O{sub 2}). Hall measurements established all SZO films were p-type, as was also confirmed by typical diode-like rectifying current-voltage characteristics from p-ZnO/n-ZnO homojunction. SZO films annealed in O{sub 2} ambient exhibited higher hole concentration as compared with films annealed in vacuum or N{sub 2} ambient. X-ray photoelectron spectroscopic analysis confirmed that Sb{sup 5+} states were more preferable in comparison to Sb{sup 3+} states for acceptor-like Sb{sub Zn}-2V{sub Zn} complex formation in SZO films.

  7. Comparative study of the performance of quantum annealing and simulated annealing

    NASA Astrophysics Data System (ADS)

    Nishimori, Hidetoshi; Tsuda, Junichi; Knysh, Sergey

    2015-01-01

    Relations of simulated annealing and quantum annealing are studied by a mapping from the transition matrix of classical Markovian dynamics of the Ising model to a quantum Hamiltonian and vice versa. It is shown that these two operators, the transition matrix and the Hamiltonian, share the eigenvalue spectrum. Thus, if simulated annealing with slow temperature change does not encounter a difficulty caused by an exponentially long relaxation time at a first-order phase transition, the same is true for the corresponding process of quantum annealing in the adiabatic limit. One of the important differences between the classical-to-quantum mapping and the converse quantum-to-classical mapping is that the Markovian dynamics of a short-range Ising model is mapped to a short-range quantum system, but the converse mapping from a short-range quantum system to a classical one results in long-range interactions. This leads to a difference in efficiencies that simulated annealing can be efficiently simulated by quantum annealing but the converse is not necessarily true. We conclude that quantum annealing is easier to implement and is more flexible than simulated annealing. We also point out that the present mapping can be extended to accommodate explicit time dependence of temperature, which is used to justify the quantum-mechanical analysis of simulated annealing by Somma, Batista, and Ortiz. Additionally, an alternative method to solve the nonequilibrium dynamics of the one-dimensional Ising model is provided through the classical-to-quantum mapping.

  8. Photo annealing effect on p-doped inverted organic solar cell

    SciTech Connect

    Lafalce, Evan; Toglia, Patrick; Lewis, Jason E.; Jiang, Xiaomei

    2014-06-28

    We report the transient positive photo annealing effect in which over 600% boost of power conversion efficiency was observed in inverted organic photovoltaic devices (OPV) made from P3HT/PCBM by spray method, after 2 hrs of constant solar AM 1.5 irradiation at low temperature. This is opposite to usual photodegradation of OPV, and cannot be explained by thermal activation alone since the mere temperature effect could only account for 30% of the enhancement. We have investigated the temperature dependence, cell geometry, oxygen influence, and conclude that, for p-doped active layer at room temperature, the predominant mechanism is photo-desorption of O{sub 2}, which eliminates electron traps and reduces space charge screening. As temperature decreases, thermal activation and deep trap-state filling start to show noticeable effect on the enhancement of photocurrent at intermediate low temperature (T = 125 K). At very low temperature, the dominant mechanism for photo annealing is trap-filling, which significantly reduces recombination between free and trapped carriers. At all temperature, photo annealing effect depends on illumination direction from cathode or anode. We also explained the large fluctuation of photocurrent by the capture/reemit of trapped electrons from shallow electron traps of O{sub 2}{sup -} generated by photo-doping. Our study has demonstrated the dynamic process of photo-doping and photo-desorption, and shown that photo annealing in vacuum can be an efficient method to improve OPV device efficiency.

  9. Thermal annealing effects on ZnO films grown on graphene buffered Si substrates.

    PubMed

    Pak, Sang Woo; Cho, Seong Gook; Lee, Dong Uk; Kim, Eun Kyu

    2014-11-01

    ZnO films deposited on SiO2/Si substrate with a graphene single layer (GSL) were studied by using an ultra-high vacuum sputter. The as-prepared films were annealed at temperature ranges from 500 degrees C to 800 degrees C for 1 min under ambient N2 gas. When the annealing temperature was increased up to 800 degrees C, the root mean square roughness of the ZnO/Si sample surface decreased down to 3.4 nm, and the grain sizes increased about 50.8 nm with a clear grain boundary. From the photoluminescence (PL) spectra, the high intensity of near-band-edge UV emission at 380 nm (3.26 eV) and the broad band emission between 450 and 650 nm, known as the visible defect related PL band, decreased with increasing annealing temperature up to 800 degrees C. The ZnO thin films on the growth on the GSL and post-annealing at 700 degrees C for 1 min under ambient N2 gas had the best structural and optical properties. PMID:25958607

  10. The local crystallization in nanoscale diamond-like carbon films during annealing

    SciTech Connect

    Kolpakov, A. Ya. Poplavsky, A. I.; Galkina, M. E.; Gerus, J. V.; Manokhin, S. S.

    2014-12-08

    The local crystallization during annealing at 600 °C in nanoscale diamond-like carbon coatings films grown by pulsed vacuum-arc deposition method was observed using modern techniques of high-resolution transmission electron microscopy. The crystallites formed by annealing have a face-centred cubic crystal structure and grow in the direction [01{sup ¯}1{sup ¯}] as a normal to the film surface. The number and size of the crystallites depend on the initial values of the intrinsic stresses before annealing, which in turn depend on the conditions of film growth. The sizes of crystallites are 10 nm for films with initial compressive stresses of 3 GPa and 17 nm for films with initial compressive stresses of 12 GPa. Areas of local crystallization arising during annealing have a structure different from the graphite. Additionally, the investigation results of the structure of nanoscale diamond-like carbon coatings films using Raman spectroscopy method are presented, which are consistent with the transmission electron microscopy research results.

  11. Investigation into the optoelectrical properties of tungsten oxide thin films annealed in an oxygen air

    SciTech Connect

    Arfaoui, A.; Ouni, B. Touihri, S.; Mannoubi, T.

    2014-12-15

    Tungsten oxide (WO{sub x}) thin film have been deposited onto glass substrates using the thermal vacuum evaporation technique, monitored by an annealing process in a variable oxygen atmosphere. Analysis by X-ray diffraction and Raman spectroscopy showed the structural changes from orthorhombic to monoclinic which depend on the annealing temperature and the oxygen content. AFM study shows that the increase of oxygen content leads to a decrease of the root-mean-square from 94.64 nm to 2 nm. Ellipsometric measurements have been used to evaluate the optical constants. Further, it is found that when the oxygen content increases, the band gap of the annealed layer varies from 3.01 eV to 3.52 eV by against, the Urbach energy decreases. The AC conductivity plot showed a universal power law according to the Jonscher model. Moreover, at high frequency semiconductor-to-metallic behavior has been observed. Finally, the effect of annealing in oxygen atmosphere on their structural modifications, morphological, optical properties and electrical conductivity are reported.

  12. Application of Seismic Design Requirements to Cold Vacuum Drying (CVD) Facility Structures and Systems and Components

    SciTech Connect

    CREA, B.A.

    1999-11-15

    The methodology followed in assignment of Performance Class (PC) for Natural Phenomena Hazards (NPH) seismic loads for Cold Vacuum Drying Facility (CVDF) Structures, Systems and Components is defined. The loading definition associated with each PC and structure, system and component is then defined.

  13. Vacuum system pump down analysis

    SciTech Connect

    Rohrdanz, D.R.

    1990-08-01

    My assignment on the SP-100 Vacuum Vessel Vacuum System Team was to perform a transient pump down analysis for the vacuum vessel that will house the SP-100 reactor during testing. Pump down time was calculated for air and helium. For all cases the proposed vacuum system will be able to pump down the vessel within the required time. The use of a larger rotary piston pump (DUO250) improves the pump down time by 35 minutes and therefore should be considered. The 6-inch duct for the roughing line is optimal, however, because all cases are well below the 24 hour time frame, the 4-inch duct is sufficient. The use of the single turbomolecular pump during pump down is sufficient. A pump down with helium in the vessel and a helium inleakage delays the time to achieve the base pressure marginally and is acceptable.

  14. Alumina barrier for vacuum brazing

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.

    1980-01-01

    Heating platens of vacuum-brazing press will not stick to workpiece if aluminum oxide "paper" is interposed. Paper does not disintegrate in press, will not contaminate braze alloy, and helps form smoothly contoured, regular fillet at brazed edges.

  15. Vacuum lamination of photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Burger, D. R.

    1982-01-01

    Vacuum lamination of terrestrial photovoltaic modules is a new high volume process requiring new equipment and newly develop materials. Equipment development, materials research, and some research in related fields and testing methods are discussed.

  16. Thermodynamics of decaying vacuum cosmologies

    SciTech Connect

    Lima, J.A.

    1996-08-01

    The thermodynamic behavior of decaying vacuum cosmologies is investigated within a manifestly covariant formulation. Such a process corresponds to a continuous, irreversible energy flow from the vacuum component to the created matter constituents. It is shown that if the specific entropy per particle remains constant during the process, the equilibrium relations are preserved. In particular, if the vacuum decays into photons, the energy density {rho} and average number density of photons {ital n} scale with the temperature as {rho}{approximately}{ital T}{sup 4} and {ital n}{approximately}{ital T}{sup 3}. The temperature law is determined and a generalized Planckian-type form of the spectrum, which is preserved in the course of the evolution, is also proposed. Some consequences of these results for decaying vacuum FRW-type cosmologies as well as for models with {open_quote}{open_quote}adiabatic{close_quote}{close_quote} photon creation are discussed. {copyright} {ital 1996 The American Physical Society.}

  17. APS storage ring vacuum system

    SciTech Connect

    Niemann, R.C.; Benaroya, R.; Choi, M.; Dortwegt, R.J.; Goeppner, G.A.; Gonczy, J.; Krieger, C.; Howell, J.; Nielsen, R.W.; Roop, B.; Wehrle, R.B.

    1990-01-01

    The Advanced Photon Source synchrotron radiation facility, under construction at the Argonne National Laboratory, incorporates a large ring for the storage of 7 GeV positrons for the generation of photon beams for the facility's experimental program. The Storage Ring's 1104 m circumference is divided into 40 functional sectors. The sectors include vacuum, beam transport, control, acceleration and insertion device components. The vacuum system, which is designed to operate at a pressure of 1 n Torr, consists of 240 connected sections, the majority of which are fabricated from an aluminum alloy extrusion. The sections are equipped with distributed NeG pumping, photon absorbers with lumped pumping, beam position monitors, vacuum diagnostics and valving. The details of the vacuum system design, selected results of the development program and general construction plans are presented. 11 refs., 6 figs., 3 tabs.

  18. Effects of annealing atmosphere and temperature on properties of ZnO thin films on porous silicon grown by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kim, Min Su; Kim, Tae Hoon; Kim, Do Yoeb; Lee, Dong-Yul; Kim, Sung-O.; Leem, Jae-Young

    2012-04-01

    Zinc oxide (ZnO) thin films were grown on porous silicon (PS) by plasma-assisted molecular beam epitaxy (PA-MBE). The thin films were annealed in various atmospheres such as argon, nitrogen, and vacuum, and their structural and optical properties were investigated by scanning electron microscopy, X-ray diffraction, and photoluminescence. The ZnO thin films grown on PS showed a mountain-range-like surface morphology, whereas those grown on Si showed a typical 3D island surface structure. The thin films grown on PS exhibited only one diffraction peak at 34°, whereas those grown on Si showed shoulders of the ZnO (002) diffraction peaks at around 33°; this implies an excellent c-axis preferred orientation and a better crystal quality when PS was used. Large crystals were partially formed at an annealing temperature of 700°C. The films annealed in a vacuum showed nanorod-like ZnO crystals, whereas those annealed in nitrogen and oxygen showed irregularly shaped crystals. It was confirmed that the structural and optical properties of the thin films were enhanced by the annealing process. In particular, relatively large changes in the full width at half maximum of the ZnO (002) diffraction peaks and UV emission peaks, indicating enhanced structural and optical properties, respectively, were observed when the thin films were annealed in argon.

  19. UV photoemission study of amorphous n-C 36H 74 films and their annealing process

    NASA Astrophysics Data System (ADS)

    Seki, Kazuhiko; Ueno, Nobuo; Inokuchi, Hiroo

    1994-05-01

    Amorphous films of hexatriacontane n-C 36H 74 were prepared by vacuum evaporation on low-temperature substrates (≈ 80 K), and their electronic structure including the change at annealing was studied by UV photoemission spectroscopy. The spectra of as deposited films were similar to those of molten state, but indicate a smaller degree of disorder. Upon annealing, the spectra changed drastically, reflecting the change of unoccupied states, with sharp change at ≈ 268 K corresponding to crystallization. The change was discussed with reference to reported structural studies by vibrational spectroscopies. The results show that the appearance of fine structures in unoccupied states requires not only extended (all-trans) chains but also regular intermolecular arrangements.

  20. Particle bonding, annealing response, and mechanical properties of dynamically consolidated type 304 stainless steel powders

    NASA Astrophysics Data System (ADS)

    Wright, R. N.; Korth, G. E.; Flinn, J. E.

    1989-11-01

    The nature of interparticle bonding in explosively consolidated, centrifugally atomized (CA), and vacuum gas-atomized (VGA) Type 304 stainless steel powders has been examined. Stress waves with sufficient amplitude to produce full density do not necessarily produce metallurgical bonds between particles; the local strain and strain rate are found to determine the degree of local heating and, in turn, the degree of particle fusion. Particle interaction is found to be limited to nearest neighbors. The as-consolidated CA material has approximately twice the ultimate tensile strength of mill-annealed wrought Type 304 stainless steel. Consolidated CA powder has a higher defect density than VGA powder consolidated under the same conditions; however, the VGA material recrystallizes at a lower temperature due to a lower concentration of carbides. Annealing explosively consolidated material produced from either powder results in sintering, improved particle bonding, and greater ductility.

  1. Improved electron collection in fullerene via caesium iodide or carbonate by means of annealing in inverted organic solar cells

    NASA Astrophysics Data System (ADS)

    El Jouad, Zouhair; Louarn, Guy; Praveen, Thappily; Predeep, Padmanabhan; Cattin, Linda; Bernède, Jean-Christian; Addou, Mohammed; Morsli, Mustapha

    2014-05-01

    Inverted organic photovoltaic cells (IOPVCs), based on the planar heterojunction C60/CuPc, were grown using MoO3 as anode buffer layer and CsI or Cs2CO3 as cathode buffer layer (CBL), the cathode being an ITO coated glass. Work functions, Φf, of treated cathode were estimated using the cyclic voltammetry method. It is shown that Φf of ITO covered with a Cs compounds is decreased. This decrease is amplified by the annealing. It is shown that the thermal deposition under vacuum of the CBL induces a partial decomposition of the caesium compounds. In parallel, the formation of a compound with the In of ITO is put in evidence. This reaction is amplified by annealing, which allows obtaining IOPVCs with improved efficiency. The optimum annealing conditions is 150 °C for 5 min.

  2. Few layer graphene synthesis via SiC decomposition at low temperature and low vacuum

    NASA Astrophysics Data System (ADS)

    Kayali, Emre; Mercan, Elif; Emre Oren, Ersin; Cambaz Buke, Goknur

    2016-04-01

    Based on the large-scale availability and good electrical properties, the epitaxial graphene (EG) on SiC exhibits a big potential for future electronic devices. However, it is still necessary to work continuously on lowering the formation temperature and vacuum values of EG while improving the quality and increasing the lateral size to fabricate high-performance electronic devices at reduced processing costs. In this study, we investigated the effect of the presence of Mo plate and hydrogen atmosphere as well as the vacuum annealing durations on SiC decomposition. Our studies showed that the graphene layers can be produced at lower annealing temperatures (1200 °C) and vacuum values (10-4 Torr) in the presence of Mo plate and hydrogen. For high quality continuous graphene formation, Mo plate should be in contact with SiC. If there is a gap between Mo and SiC, non-wetting oxide droplets on few layer graphene (FLG) are recorded. Moreover, it is found that the morphology of these islands can be controlled by changing the annealing time and atmosphere conditions, and applying external disturbances such as vibration.

  3. Cold cathode vacuum gauging system

    DOEpatents

    Denny, Edward C.

    2004-03-09

    A vacuum gauging system of the cold cathode type is provided for measuring the pressure of a plurality of separate vacuum systems, such as in a gas centrifuge cascade. Each casing is fitted with a gauge tube assembly which communicates with the vacuum system in the centrifuge casing. Each gauge tube contains an anode which may be in the form of a slender rod or wire hoop and a cathode which may be formed by the wall of the gauge tube. The tube is provided with an insulated high voltage connector to the anode which has a terminal for external connection outside the vacuum casing. The tube extends from the casing so that a portable magnet assembly may be inserted about the tube to provide a magnetic field in the area between the anode and cathode necessary for pressure measurements in a cold cathode-type vacuum gauge arrangement. The portable magnetic assembly is provided with a connector which engages the external high voltage terminal for providing power to the anode within in the gauge tube. Measurement is made in the same manner as the prior cold cathode gauges in that the current through the anode to the cathode is measured as an indication of the pressure. By providing the portable magnetic assembly, a considerable savings in cost, installation, and maintenance of vacuum gauges for pressure measurement in a gas centrifuge cascade is realizable.

  4. Technical specification for vacuum systems

    SciTech Connect

    Khaw, J.

    1987-01-01

    The vacuum systems at the Stanford Linear Accelerator Center (SLAC) are primarily of all-metal construction and operate at pressures from 10/sup -5/ to 10/sup -11/ Torr. The primary gas loads during operation result from thermal desorption and beam-induced desorption from the vacuum chamber walls. These desorption rates can be extremely high in the case of hydrocarbons and other contaminants. These specifications place a major emphasis on eliminating contamination sources. The specifications and procedures have been written to insure the cleanliness and vacuum integrity of all SLAC vacuum systems, and to assist personnel involved with SLAC vacuum systems in choosing and designing components that are compatible with existing systems and meet the quality and reliability of SLAC vacuum standards. The specification includes requirements on design, procurement, fabrication, chemical cleaning, clean room practices, welding and brazing, helium leak testing, residual gas analyzer testing, bakeout, venting, and pumpdown. Also appended are specifications regarding acceptable vendors, isopropyl alcohol, bakeable valve cleaning procedure, mechanical engineering safety inspection, notes on synchrotron radiation, and specifications of numerous individual components. (LEW)

  5. Edge conduction in vacuum glazing

    SciTech Connect

    Simko, T.M.; Collins, R.E.; Beck, F.A.; Arasteh, D.

    1995-03-01

    Vacuum glazing is a form of low-conductance double glazing using in internal vacuum between the two glass sheets to eliminate heat transport by gas conduction and convection. An array of small support pillars separates the sheets; fused solder glass forms the edge seal. Heat transfer through the glazing occurs by radiation across the vacuum gap, conduction through the support pillars, and conduction through the bonded edge seal. Edge conduction is problematic because it affects stresses in the edge region, leading to possible failure of the glazing; in addition, excessive heat transfer because of thermal bridging in the edge region can lower overall window thermal performance and decrease resistance to condensation. Infrared thermography was used to analyze the thermal performance of prototype vacuum glazings, and, for comparison, atmospheric pressure superwindows. Research focused on mitigating the edge effects of vacuum glazings through the use of insulating trim, recessed edges, and framing materials. Experimentally validated finite-element and finite-difference modeling tools were used for thermal analysis of prototype vacuum glazing units and complete windows. Experimental measurements of edge conduction using infrared imaging were found to be in good agreement with finite-element modeling results for a given set of conditions. Finite-element modeling validates an analytic model developed for edge conduction.

  6. Unidentified phenomena - Unusual plasma behavior?

    NASA Astrophysics Data System (ADS)

    Avakian, S. V.; Kovalenok, V. V.

    1992-06-01

    The paper describes observations of a phenomenon belonging to the UFO category and the possible causes of these events. Special attention is given to an event which occurred during the night of September 19-20, 1974, when a huge 'star' was observed over Pertrozavodsk (Russia), consisting of a bright-white luminous center, emitting beams of light, and a less bright light-blue shell. The star gradually formed a cometlike object with a tail consisting of beams of light and started to descend. It is suggested that this event was related to cosmic disturbances caused by an occurrence of unusually strong solar flares. Other examples are presented that relate unusual phenomena observed in space to the occurrence of strong magnetic turbulence events.

  7. Earthquake prediction with electromagnetic phenomena

    NASA Astrophysics Data System (ADS)

    Hayakawa, Masashi

    2016-02-01

    Short-term earthquake (EQ) prediction is defined as prospective prediction with the time scale of about one week, which is considered to be one of the most important and urgent topics for the human beings. If this short-term prediction is realized, casualty will be drastically reduced. Unlike the conventional seismic measurement, we proposed the use of electromagnetic phenomena as precursors to EQs in the prediction, and an extensive amount of progress has been achieved in the field of seismo-electromagnetics during the last two decades. This paper deals with the review on this short-term EQ prediction, including the impossibility myth of EQs prediction by seismometers, the reason why we are interested in electromagnetics, the history of seismo-electromagnetics, the ionospheric perturbation as the most promising candidate of EQ prediction, then the future of EQ predictology from two standpoints of a practical science and a pure science, and finally a brief summary.

  8. Emergent Phenomena at Oxide Interfaces

    SciTech Connect

    Hwang, H.Y.

    2012-02-16

    Transition metal oxides (TMOs) are an ideal arena for the study of electronic correlations because the s-electrons of the transition metal ions are removed and transferred to oxygen ions, and hence the strongly correlated d-electrons determine their physical properties such as electrical transport, magnetism, optical response, thermal conductivity, and superconductivity. These electron correlations prohibit the double occupancy of metal sites and induce a local entanglement of charge, spin, and orbital degrees of freedom. This gives rise to a variety of phenomena, e.g., Mott insulators, various charge/spin/orbital orderings, metal-insulator transitions, multiferroics, and superconductivity. In recent years, there has been a burst of activity to manipulate these phenomena, as well as create new ones, using oxide heterostructures. Most fundamental to understanding the physical properties of TMOs is the concept of symmetry of the order parameter. As Landau recognized, the essence of phase transitions is the change of the symmetry. For example, ferromagnetic ordering breaks the rotational symmetry in spin space, i.e., the ordered phase has lower symmetry than the Hamiltonian of the system. There are three most important symmetries to be considered here. (i) Spatial inversion (I), defined as r {yields} -r. In the case of an insulator, breaking this symmetry can lead to spontaneous electric polarization, i.e. ferroelectricity, or pyroelectricity once the point group belongs to polar group symmetry. (ii) Time-reversal symmetry (T) defined as t {yields} -t. In quantum mechanics, the time-evolution of the wave-function {Psi} is given by the phase factor e{sup -iEt/{h_bar}} with E being the energy, and hence time-reversal basically corresponds to taking the complex conjugate of the wave-function. Also the spin, which is induced by the 'spinning' of the particle, is reversed by time-reversal. Broken T-symmetry is most naturally associated with magnetism, since the spin operator changes sign with T-operation. (iii) Gauge symmetry (G), which is associated with a change in the phase of the wave-function as {Psi} {yields} e{sup i{theta}}{Psi}. Gauge symmetry is connected to the law of charge conservation, and broken G-symmetry corresponds to superconductivity/superfluidity. To summarize, the interplay among these electronic degrees of freedom produces various forms of symmetry breaking patterns of I, T, and G, leading to novel emergent phenomena, which can appear only by the collective behavior of electrons and cannot be expected from individual electrons. Figure 1 shows this schematically by means of several representative phenomena. From this viewpoint, the interfaces of TMOs offer a unique and important laboratory because I is already broken by the structure itself, and the detailed form of broken I-symmetry can often be designed. Also, two-dimensionality usually enhances the effects of electron correlations by reducing their kinetic energy. These two features of oxide interfaces produce many novel effects and functions that cannot be attained in bulk form. Given that the electromagnetic responses are a major source of the physical properties of solids, and new gauge structures often appear in correlated electronic systems, we put 'emergent electromagnetism' at the center of Fig. 1.

  9. Nanoscale Phenomena in Oxide Heterostructures

    NASA Astrophysics Data System (ADS)

    Sulpizio, Joseph A.; Ilani, Shahal; Irvin, Patrick; Levy, Jeremy

    2014-07-01

    Recent advances in creating complex oxide heterostructures, interfaces formed between two different transition-metal oxides, have heralded a new era of materials and physics research, enabling a uniquely diverse set of coexisting physical properties to be combined with an ever-increasing degree of experimental control. These systems have exhibited varied phenomena such as superconductivity, magnetism, and ferroelasticity, all of which are gate tunable, demonstrating their promise for fundamental discovery and technological innovation. To fully exploit this richness, it is necessary to understand and control the physics on the smallest scales, making the use of nanoscale probes essential. Using the prototypical LaAlO3/SrTiO3 interface as a guide, we explore the exciting developments in the physics of oxide-based heterostructures, with a focus on nanostructures and the nanoscale probes employed to unravel their complex behavior.

  10. Onset phenomena in MPD thrusters

    NASA Technical Reports Server (NTRS)

    Barnett, J. W.; Jahn, R. G.

    1985-01-01

    An experimental study has clarified some aspects of MPD thruster onset phenomena. The steep increase in terminal voltage that occurs as the onset current is approached may have different causes, depending on the propellant injection geometry. For propellant injection at the cathode radius, terminal voltage increase corresponds to a growing anode fall voltage; for injection at a larger radius, the increase is related to the back emf in the near-cathode plasma. The formation of the onset current pattern within the arc has been mapped experimentally as the thruster responds to an input current step which rises from below onset to the onset value. The appearance of terminal voltage hash at onset correlates with the extension into the exhaust region of a significant fraction of the arc current.

  11. Interfacial phenomena in petroleum recovery

    SciTech Connect

    Morrow, N.R. . New Mexico Petroleum Recovery Research Center)

    1991-01-01

    Oil recovery from porous sedimentary rocks depends mainly on the overall efficiency with which oil is displaced by some other fluid. The fraction of the reservoir swept by the displacing fluid depends on the combined effect of injection patterns, mobility ratio, and reservoir heterogeneity, which together determine volumetric sweep efficiency. Interfacial phenomena in porous rocks lie at the heart of oil recovery because they determine the fraction of oil that moves from the swept region toward a producing well. Detailed studies of displacement efficiency from pore spaces, commonly referred to as microscopic displacement efficiency, were first reported over 70 years ago. Over the past 15 years or so, there has been a resurgence of interest in developing a more quantitative understanding of displacement mechanisms. Microscopic displacement efficiency is determined by the interactions of rock pore geometry and interface boundary conditions. These interactions constitute what is known as reservoir wettability.

  12. In-vessel phenomena -- CORA

    SciTech Connect

    Ott, L.J.; van Rij, W.I.

    1991-01-01

    Experiment-specific models have been employed since 1986 by Oak Ridge National Laboratory (ORNL) severe accident analysis programs for the purpose of boiling water reactor experimental planning and optimum interpretation of experimental results. The large integral tests performed to date, which start from an initial undamaged core state, have involved significantly different-from-prototypic boundary and experimental conditions because of either normal facility limitations or specific experimental constraints. These experiments (ACRR: DF-4, NRU: FLHT-6, and CORA) were designed to obtain specific phenomenological information such as the degradation and interaction of prototypic components and the effects on melt progression of control-blade materials and channel boxes. Applications of ORNL models specific to the KfK CORA-16 and CORA-17 experiments are discussed and significant findings from the experimental analyses such as the following are presented: applicability of available Zircaloy oxidation kinetics correlations; influence of cladding strain on Zircaloy oxidation; influence of spacer grids on the structural heatup; and the impact of treating the gaseous coolant as a gray interacting medium. The experiment-specific models supplement and support the systems-level accident analysis codes. They allow the analyst to accurately quantify the observed experimental phenomena and to compensate for the effect of known uncertainties. They provide a basis for the efficient development of new models for phenomena that are currently not modeled (such as material interactions). They can provide validated phenomenological models (from the results of the experiments) as candidates for incorporation in the systems-level whole-core'' codes.

  13. Pulsed and continuous wave solid phase laser annealing of electrodeposited CuInSe2 thin films

    NASA Astrophysics Data System (ADS)

    Bhatia, Ashish; Meadows, Helen; Crossay, Alexandre; Dale, Phillip J.; Scarpulla, Michael A.

    2012-10-01

    Cu(In,Ga)Se2 (CIGS) thin film photovoltaic absorber layers are primarily synthesized by vacuum based techniques at industrial scale. In this work, we investigate non-vacuum film synthesis by electrochemical deposition coupled with pulsed laser annealing (PLA) and or continuous wave laser annealing (CWLA) using 1064 nm laser. PLA results indicate that at high fluence (>=100 mJ/cm2) CuInSe2 films melt and dewet on both Mo and Cu substrates. In the submelt PLA regime (<=70 mJ/cm2) no change in XRD results is recorded. However CWLA at 50 W/cm2 for up to 45 s does not result in melting or dewetting of the film. XRD and Raman data indicate more than 80% reduction in full width at half maximum (FWHM) in their respective main peaks for annealing time of 15 s or more. No other secondary phases are observed in XRD or Raman spectrum. These results might help us in setting up the foundation for processing CIGS through an entirely non-vacuum process.

  14. Effects of annealing, acid and alcoholic beverages on Fe1+yTe0.6Se0.4

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Taen, T.; Tsuchiya, Y.; Shi, Z. X.; Tamegai, T.

    2013-01-01

    We have systematically investigated and compared different methods to induce superconductivity in the iron chalcogenide Fe1+yTe0.6Se0.4, including annealing in a vacuum, N2, O2 and I2 atmospheres and immersing samples into acid and alcoholic beverages. Vacuum and N2 annealing are proved to be ineffective in inducing superconductivity in a Fe1+yTe0.6Se0.4 single crystal. Annealing in O2 and I2 and immersion in acid and alcoholic beverages can induce superconductivity by oxidizing the excess Fe in the sample. Superconductivity in O2 annealed samples is of a bulk nature, while I2, acid and alcoholic beverages can only induce superconductivity near the surface. By comparing the different effects of O2, I2, acid and alcoholic beverages we propose a scenario to explain how the superconductivity is induced in the non-superconducting as-grown Fe1+yTe0.6Se0.4.

  15. Origin of reverse annealing effect in hydrogen-implanted silicon

    SciTech Connect

    Di, Zengfeng; Nastasi, Michael A; Wang, Yongqiang

    2009-01-01

    In contradiction to conventional damage annealing, thermally annealed H-implanted Si exhibits an increase in damage or reverse annealing behavior, whose mechanism has remained elusive. On the basis of quantitative high resolution transmission electron microscopy combined with channeling Rutherford backscattering analysis, we conclusively elucidate that the reverse annealing effect is due to the nucleation and growth of hydrogen-induce platelets. Platelets are responsible for an increase in the height and width the channeling damage peak following increased isochronal anneals.

  16. Thickness dependent hierarchical meso/nano scale morphologies of a metal-containing block copolymer thin film induced by hybrid annealing and their pattern transfer abilities.

    SciTech Connect

    Ramanathan, M.; Darling, S. B.; Center for Nanoscale Materials

    2009-01-01

    In this paper we describe dewetting phenomena in organic (polystyrene, PS)/inorganic (polyferrocenyldimethylsilane, PFS) block copolymer thin films. Mesoscale dendritic structures are induced when the spin-cast thin film of this polymer is subjected to so-called hybrid annealing, which involves both thermal and solvent annealing. We show that the development and arrangement of these mesoscale dendritic structures depends on the initial film thickness in addition to the annealing time. Importantly, there are two criteria that must be fulfilled to achieve these mesoscale morphologies: (i) the film has to be subjected to hybrid annealing, i.e. either only thermal or only solvent annealing does not produce any notable mesostructures and (ii) both PS and PFS blocks must be present during the thermal and solvent annealing procedures; if one of the blocks, for instance PS, is removed before annealing then there is no mesostructure. Various possible mechanisms for the formation of these structures are discussed and results indicate that the PFS block dominates the structure formation. We also observe a ring- or worm-like nanostructure which develops only when the film is subjected to hybrid annealing at a particular film thickness. Apart from these results, here we demonstrate that mesoscale structures can be successfully transferred onto underlying substrates.

  17. Vacuum-Gauge Connection For Shipping Container

    NASA Technical Reports Server (NTRS)

    Henry, Robert H.

    1990-01-01

    External connector enables measurement of vacuum in stored part. Remote-readout connector added to shipping container and connected to thermo-couple vacuum gauge in vacuum-insulated cryogenic line packed in container. Enables monitoring of condition of vacuum without opening container.

  18. Synthesis of Hermite polynomial excited squeezed vacuum states from two separate single-mode squeezed vacuum states

    NASA Astrophysics Data System (ADS)

    Zhang, Hao-liang; Yuan, Hong-chun; Hu, Li-yun; Xu, Xue-xiang

    2015-12-01

    A projection synthesis scheme for generating Hermite polynomial excited squeezed vacuum states (HPESVSs, non-Gaussian quantum states) is proposed. Injecting two separate single-mode squeezed vacuum states into a beam splitter and counting the photons in one of the output channels (conditional measurement or post-detection), the conditional state in the other channel is just the HPESVS. The success probability, related to a Legendre polynomial form, is obtained analytically and analyzed numerically in detail. To exhibit the nonclassical effects of this conditional state, we also present the photon-number distribution, sub-Poissionian distribution, anti-bunching effect, quadrature squeezing effect, and Wigner function, respectively. The results show that by tuning the interaction parameters, a wide range of nonclassical phenomena can be created.

  19. Improving Simulated Annealing by Replacing Its Variables with Game-Theoretic Utility Maximizers

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Bandari, Esfandiar; Tumer, Kagan

    2001-01-01

    The game-theory field of Collective INtelligence (COIN) concerns the design of computer-based players engaged in a non-cooperative game so that as those players pursue their self-interests, a pre-specified global goal for the collective computational system is achieved as a side-effect. Previous implementations of COIN algorithms have outperformed conventional techniques by up to several orders of magnitude, on domains ranging from telecommunications control to optimization in congestion problems. Recent mathematical developments have revealed that these previously developed algorithms were based on only two of the three factors determining performance. Consideration of only the third factor would instead lead to conventional optimization techniques like simulated annealing that have little to do with non-cooperative games. In this paper we present an algorithm based on all three terms at once. This algorithm can be viewed as a way to modify simulated annealing by recasting it as a non-cooperative game, with each variable replaced by a player. This recasting allows us to leverage the intelligent behavior of the individual players to substantially improve the exploration step of the simulated annealing. Experiments are presented demonstrating that this recasting significantly improves simulated annealing for a model of an economic process run over an underlying small-worlds topology. Furthermore, these experiments reveal novel small-worlds phenomena, and highlight the shortcomings of conventional mechanism design in bounded rationality domains.

  20. Ordering Phenomena in Undercooled Alloys

    SciTech Connect

    Fultz, Brent

    1997-07-17

    Much of the work performed under this grant was devoted to using modern ideas in kinetics to understand atom movements in metallic alloys far from thermodynamic equilibrium. Kinetics arguments were based explicitly on the vacancy mechanism for atom movements. The emphasis was on how individual atom movements are influenced by the local chemical environment of the moving atom, and how atom movements cause changes in the local chemical environments. The author formulated a kinetic master equation method to treat atom movements on a crystal lattice with a vacancy mechanism. Some of these analyses [3,10,16] are as detailed as any treatment of the statistical kinetics of atom movements in crystalline alloys. Three results came from this work. Chronologically they were (1) A recognition that tracking time dependencies is not necessarily the best way to study kinetic phenomena. If multiple order parameters can be measured in a material, the ''kinetic path'' through the space spanned by these order parameters maybe just as informative about the chemical factors that affect atom movements [2,3,5-7,9-11,14-16,18,19,21,23,24,26,36,37]. (2) Kinetic paths need not follow the steepest gradient of the free energy function (this should be well-known), and for alloys far from equilibrium the free energy function can be almost useless in describing kinetic behavior. This is why the third result surprised me. (3) In cluster approximations with multiple order parameters, saddle points are common features of free energy functions. Interestingly, kinetic processes stall or change time scale when the kinetic path approaches a state at a saddle point in the free energy function, even though these states exist far from thermodynamic equilibrium. The author calls such a state a ''pseudostable'' (falsely stable) state [6,21,26]. I have also studied these phenomena by more ''exact'' Monte Carlo simulations. The kinetic paths showed features similar to those found in analytical theories. The author found that a microstructure with interfaces arranged in space as a periodic minimal surface is a probably an alloy at a saddle point in its free energy function [21,26,37].

  1. Electromechanical phenomena in semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Lew Yan Voon, L. C.; Willatzen, M.

    2011-02-01

    Electromechanical phenomena in semiconductors are still poorly studied from a fundamental and an applied science perspective, even though significant strides have been made in the last decade or so. Indeed, most current electromechanical devices are based on ferroelectric oxides. Yet, the importance of the effect in certain semiconductors is being increasingly recognized. For instance, the magnitude of the electric field in an AlN/GaN nanostructure can reach 1-10 MV/cm. In fact, the basic functioning of an (0001) AlGaN/GaN high electron mobility transistor is due to the two-dimensional electron gas formed at the material interface by the polarization fields. The goal of this review is to inform the reader of some of the recent developments in the field for nanostructures and to point out still open questions. Examples of recent work that involves the piezoelectric and pyroelectric effects in semiconductors include: the study of the optoelectronic properties of III-nitrides quantum wells and dots, the current controversy regarding the importance of the nonlinear piezoelectric effect, energy harvesting using ZnO nanowires as a piezoelectric nanogenerator, the use of piezoelectric materials in surface acoustic wave devices, and the appropriateness of various models for analyzing electromechanical effects. Piezoelectric materials such as GaN and ZnO are gaining more and more importance for energy-related applications; examples include high-brightness light-emitting diodes for white lighting, high-electron mobility transistors, and nanogenerators. Indeed, it remains to be demonstrated whether these materials could be the ideal multifunctional materials. The solutions to these and other related problems will not only lead to a better understanding of the basic physics of these materials, but will validate new characterization tools, and advance the development of new and better devices. We will restrict ourselves to nanostructures in the current article even though the measurements and calculations of the bulk electromechanical coefficients remain challenging. Much of the literature has focused on InGaN/GaN, AlGaN/GaN, ZnMgO/ZnO, and ZnCdO/ZnO quantum wells, and InAs/GaAs and AlGaN/AlN quantum dots for their optoelectronic properties; and work on the bending of nanowires have been mostly for GaN and ZnO nanowires. We hope the present review article will stimulate further research into the field of electromechanical phenomena and help in the development of applications.

  2. EDITORIAL: Quantum phenomena in Nanotechnology Quantum phenomena in Nanotechnology

    NASA Astrophysics Data System (ADS)

    Loss, Daniel

    2009-10-01

    Twenty years ago the Institute of Physics launched the journal Nanotechnology from its publishing house based in the home town of Paul Dirac, a legendary figure in the development of quantum mechanics at the turn of the last century. At the beginning of the 20th century, the adoption of quantum mechanical descriptions of events transformed the existing deterministic world view. But in many ways it also revolutionised the progress of research itself. For the first time since the 17th century when Francis Bacon established inductive reasoning as the means of advancing science from fact to axiom to law, theory was progressing ahead of experiments instead of providing explanations for observations that had already been made. Dirac's postulation of antimatter through purely theoretical investigation before its observation is the archetypal example of theory leading the way for experiment. The progress of nanotechnology and the development of tools and techniques that enabled the investigation of systems at the nanoscale brought with them many fascinating observations of phenomena that could only be explained through quantum mechanics, first theoretically deduced decades previously. At the nanoscale, quantum confinement effects dominate the electrical and optical properties of systems. They also render new opportunities for manipulating the response of systems. For example, a better understanding of these systems has enabled the rapid development of quantum dots with precisely determined properties, which can be exploited in a range of applications from medical imaging and photovoltaic solar cells to quantum computation, a radically new information technology being currently developed in many labs worldwide. As the first ever academic journal in nanotechnology, {\\it Nanotechnology} has been the forum for papers detailing progress of the science through extremely exciting times. In the early years of the journal, the investigation of electron spin led to the formulation of quantum cellular automata, a new paradigm for computing as reported by Craig S Lent and colleagues (Lent C S, Tougaw P D, Porod W and Bernstein G H 1993 Nanotechnology 4 49-57). The increasingly sophisticated manipulation of spin has been an enduring theme of research throughout this decade, providing a number of interesting developments such as spin pumping (Cota E, Aguado R, Creffield C E and Platero G 2003 Nanotechnology 14 152-6). The idea of spin qubits, proposed by D Loss and D P DiVincenzo (1998 Phys. Rev. A 57 120), developed into an established option for advancing research in quantum computing and continues to drive fruitful avenues of research, such as the integrated superconductive magnetic nanosensor recently devised by researchers in Italy (Granata C, Esposito E, Vettoliere A, Petti L and Russo M 2008 Nanotechnology 19 275501). The device has a spin sensitivity in units of the Bohr magneton of 100 spin Hz-1/2 and has large potential for applications in the measurement of nanoscale magnetization and quantum computing. The advance of science and technology at the nanoscale is inextricably enmeshed with advances in our understanding of quantum effects. As Nanotechnology celebrates its 20th volume, research into fundamental quantum phenomena continues to be an active field of research, providing fertile pasture for developing nanotechnologies.

  3. Measurement of partial pressures in vacuum technology and vacuum physics

    NASA Technical Reports Server (NTRS)

    Huber, W. K.

    1986-01-01

    It is pointed out that the measurement of gaseous pressures of less than 0.0001 torr is based on the ionization of gas atoms and molecules due to collisions with electrons. The particle density is determined in place of the pressure. The ionization cross sections for molecules of various gases are discussed. It is found that the true pressure in a vacuum system cannot be determined with certainty if it is unknown which gas is present. Effects of partial pressure determination on the condition of the vacuum system are discussed together with ion sources, systems of separation, and ion detection.

  4. VACUUM TRAP AND VALVE COMBINATION

    DOEpatents

    Milleron, N.; Levenson, L.

    1963-02-19

    This patent relates to a vacuum trap and valve combination suitable for use in large ultra-high vacuum systems. The vacuum trap is a chamber having an inlet and outlet opening which may be made to communicate with a chamber to be evacuated and a diffusion pump, respectively. A valve is designed to hermeticaliy seal with inlet opening and, when opened, block the line-of- sight'' between the inlet and outlet openings, while allowing a large flow path between the opened vaive and the side walls of the trap. The interior of the trap and the side of the valve facing the inlet opening are covered with an impurity absorbent, such as Zeolite or activated aluminum. Besides the advantage of combining two components of a vacuum system into one, the present invention removes the need for a baffle between the pump and the chamber to be evacuated. In one use of a specific embodiment of this invention, the transmission probability was 45 and the partial pressure of the pump fluid vapor in the vacuum chamber was at least 100 times lower than its vapor pressure. (AEC)

  5. Reduce costs with vacuum excavation

    SciTech Connect

    Vitale, S.A.

    1983-09-01

    Although vacuum excavation equipment and methods are in their infancy, this developing technology offers tremendous promise for the future. The author explains Brooklyn Union Gas Co.'s experience with five vacuum trucks and the procedures that are used. In recent years, the higher cost of natural gas has increased the need for gas utilities to reduce their operating expenses. One way, which has been successful at Brooklyn Union Gas, is the use of vacuum excavation. Although vacuum excavation equipment and techniques are in their infancy, this developing technology offers substantial savings today and tremendous promise for the future. Brooklyn Union started its vacuum digging program by locating keyhole cutoffs--small surface openings ranging from 1 ft by 1 ft to 1 1/2 ft by 1 1/2 ft (0.3 m to 0.45 m square). It is no easy task to accurately locate a service that was installed 60 years ago. Reading the street indications, locating an existing curb valve or repair opening, gaining access to the building, making a physical lineup, and using an M-scope, plus any other tools available, have produced a high success rate.

  6. Probability distribution of the vacuum energy density

    SciTech Connect

    Duplancic, Goran; Stefancic, Hrvoje; Glavan, Drazen

    2010-12-15

    As the vacuum state of a quantum field is not an eigenstate of the Hamiltonian density, the vacuum energy density can be represented as a random variable. We present an analytical calculation of the probability distribution of the vacuum energy density for real and complex massless scalar fields in Minkowski space. The obtained probability distributions are broad and the vacuum expectation value of the Hamiltonian density is not fully representative of the vacuum energy density.

  7. Monitoring of Transient Lunar Phenomena

    NASA Astrophysics Data System (ADS)

    Barker, Timothy; Farber, Ryan; Ahrendts, Gary

    2014-06-01

    Transient Lunar Phenomena (TLP’s) are described as short-lived changes in the brightness of areas on the face of the Moon. TLP research is characterized by the inability to substantiate, reproduce, and verify findings. Our current research includes the analysis of lunar images taken with two Santa Barbara Instrument Group (SBIG) ST8-E CCD cameras mounted on two 0.36m Celestron telescopes. On one telescope, we are using a sodium filter, and on the other an H-alpha filter, imaging approximately one-third of the lunar surface. We are focusing on two regions: Hyginus and Ina. Ina is of particular interest because it shows evidence of recent activity (Schultz, P., Staid, M., Pieters, C. Nature, Volume 444, Issue 7116, pp. 184-186, 2006). A total of over 50,000 images have been obtained over approximately 35 nights and visually analyzed to search for changes. As of March, 2014, no evidence of TLPs has been found. We are currently developing a Matlab program to do image analysis to detect TLPs that might not be apparent by visual inspection alone.

  8. WESF natural phenomena hazards survey

    SciTech Connect

    Wagenblast, G.R., Westinghouse Hanford

    1996-07-01

    A team of engineers conducted a systematic natural hazards phenomena (NPH) survey for the 225-B Waste Encapsulation and Storage Facility (WESF). The survey is an assessment of the existing design documentation to serve as the structural design basis for WESF, and the Interim Safety Basis (ISB). The lateral force resisting systems for the 225-B building structures, and the anchorages for the WESF safety related systems were evaluated. The original seismic and other design analyses were technically reviewed. Engineering judgment assessments were made of the probability of NPH survival, including seismic, for the 225-B structures and WESF safety systems. The method for the survey is based on the experience of the investigating engineers,and documented earthquake experience (expected response) data.The survey uses knowledge on NPH performance and engineering experience to determine the WESF strengths for NPH resistance, and uncover possible weak links. The survey, in general, concludes that the 225-B structures and WESF safety systems are designed and constructed commensurate with the current Hanford Site design criteria.

  9. Understanding empathy and related phenomena.

    PubMed

    Shamasundar, C

    1999-01-01

    Over a period of time, the author arrived at a few tentative postulates concerning empathy and related processes based on some of his experiences and observations. The central theme of these postulates is, firstly, that interpersonal interaction is an interaction of the personal-space fields. Secondly, empathy, therapeutic benefit, and the professional stress are all related to the same process of interpersonal interaction. This interaction takes place as an enmeshment of personal spaces of the interacting individuals, and involves transfer of a wide range of information in the affective, cognitive, and other areas. This is because the personal spaces have fieldlike qualities analogous to what Kurt Lewin described. Thus, such phenomena as empathy, therapeutic benefit, professional stress are all consequences of the same process. It is possible to substantiate these postulates by diverse evidences in the published literature. The natural consequences of such an interpersonal interaction are empathic understanding, transfer of mood states (like hope, distress or expectancy), affective states (like anxiety, sadness, anger or hostility), ideas, images and even attitudes and values, etc. This phenomenon of transfer can explain such processes as therapeutic benefit in individual and group settings, professional stress, shared delusions, and even experimenter bias. Whether one becomes aware of such transferred information or not depends upon the intent and sensitivity of the participants. PMID:10415993

  10. Computational multiqubit tunnelling in programmable quantum annealers

    NASA Astrophysics Data System (ADS)

    Boixo, Sergio; Smelyanskiy, Vadim N.; Shabani, Alireza; Isakov, Sergei V.; Dykman, Mark; Denchev, Vasil S.; Amin, Mohammad H.; Smirnov, Anatoly Yu; Mohseni, Masoud; Neven, Hartmut

    2016-01-01

    Quantum tunnelling is a phenomenon in which a quantum state traverses energy barriers higher than the energy of the state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational multiqubit tunnelling has not yet been observed, and a theory of co-tunnelling under high- and low-frequency noises is lacking. Here we show that 8-qubit tunnelling plays a computational role in a currently available programmable quantum annealer. We devise a probe for tunnelling, a computational primitive where classical paths are trapped in a false minimum. In support of the design of quantum annealers we develop a nonperturbative theory of open quantum dynamics under realistic noise characteristics. This theory accurately predicts the rate of many-body dissipative quantum tunnelling subject to the polaron effect. Furthermore, we experimentally demonstrate that quantum tunnelling outperforms thermal hopping along classical paths for problems with up to 200 qubits containing the computational primitive.

  11. Quantum annealing correction for random Ising problems

    NASA Astrophysics Data System (ADS)

    Pudenz, Kristen L.; Albash, Tameem; Lidar, Daniel A.

    2015-04-01

    We demonstrate that the performance of a quantum annealer on hard random Ising optimization problems can be substantially improved using quantum annealing correction (QAC). Our error correction strategy is tailored to the D-Wave Two device. We find that QAC provides a statistically significant enhancement in the performance of the device over a classical repetition code, improving as a function of problem size as well as hardness. Moreover, QAC provides a mechanism for overcoming the precision limit of the device, in addition to correcting calibration errors. Performance is robust even to missing qubits. We present evidence for a constructive role played by quantum effects in our experiments by contrasting the experimental results with the predictions of a classical model of the device. Our work demonstrates the importance of error correction in appropriately determining the performance of quantum annealers.

  12. Black anneal marking with pulsed fiber lasers

    NASA Astrophysics Data System (ADS)

    Murphy, T.; Harrison, P.; Norman, S.

    2015-07-01

    High contrast marking of metals is used in a wide range of industries. Fiber laser marking of these metals provides non-contact marking with no consumables, offering many advantages over traditional methods of metal marking. The laser creates a permanent mark on the material surface combining heat and oxygen with no noticeable ablation. The focussed beam of the fiber laser in combination with precision control of the heat input is able to treat small areas of the material surface evenly and consistently, which is critical for producing black anneal marks. The marks are highly legible which is ideal for marking serial numbers or small data matrices where traceability is required. This paper reports the experimental study for producing black anneal marks on various grades of stainless steel using fiber lasers. The influence of metal surface finish, beam quality, spot size diameter and pulse duration are investigated for producing both smooth and decorative anneal marks.

  13. Hydrogen Annealing Of Single-Crystal Superalloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Schaeffer, John C.; Murphy, Wendy

    1995-01-01

    Annealing at temperature equal to or greater than 2,200 degrees F in atmosphere of hydrogen found to increase ability of single-crystal superalloys to resist oxidation when subsequently exposed to oxidizing atmospheres at temperatures almost as high. Supperalloys in question are principal constituents of hot-stage airfoils (blades) in aircraft and ground-based turbine engines; also used in other high-temperature applications like chemical-processing plants, coal-gasification plants, petrochemical refineries, and boilers. Hydrogen anneal provides resistance to oxidation without decreasing fatigue strength and without need for coating or reactive sulfur-gettering constituents. In comparison with coating, hydrogen annealing costs less. Benefits extend to stainless steels, nickel/chromium, and nickel-base alloys, subject to same scale-adhesion and oxidation-resistance considerations, except that scale is chromia instead of alumina.

  14. Computational multiqubit tunnelling in programmable quantum annealers

    PubMed Central

    Boixo, Sergio; Smelyanskiy, Vadim N.; Shabani, Alireza; Isakov, Sergei V.; Dykman, Mark; Denchev, Vasil S.; Amin, Mohammad H.; Smirnov, Anatoly Yu; Mohseni, Masoud; Neven, Hartmut

    2016-01-01

    Quantum tunnelling is a phenomenon in which a quantum state traverses energy barriers higher than the energy of the state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational multiqubit tunnelling has not yet been observed, and a theory of co-tunnelling under high- and low-frequency noises is lacking. Here we show that 8-qubit tunnelling plays a computational role in a currently available programmable quantum annealer. We devise a probe for tunnelling, a computational primitive where classical paths are trapped in a false minimum. In support of the design of quantum annealers we develop a nonperturbative theory of open quantum dynamics under realistic noise characteristics. This theory accurately predicts the rate of many-body dissipative quantum tunnelling subject to the polaron effect. Furthermore, we experimentally demonstrate that quantum tunnelling outperforms thermal hopping along classical paths for problems with up to 200 qubits containing the computational primitive. PMID:26739797

  15. Computational multiqubit tunnelling in programmable quantum annealers.

    PubMed

    Boixo, Sergio; Smelyanskiy, Vadim N; Shabani, Alireza; Isakov, Sergei V; Dykman, Mark; Denchev, Vasil S; Amin, Mohammad H; Smirnov, Anatoly Yu; Mohseni, Masoud; Neven, Hartmut

    2016-01-01

    Quantum tunnelling is a phenomenon in which a quantum state traverses energy barriers higher than the energy of the state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational multiqubit tunnelling has not yet been observed, and a theory of co-tunnelling under high- and low-frequency noises is lacking. Here we show that 8-qubit tunnelling plays a computational role in a currently available programmable quantum annealer. We devise a probe for tunnelling, a computational primitive where classical paths are trapped in a false minimum. In support of the design of quantum annealers we develop a nonperturbative theory of open quantum dynamics under realistic noise characteristics. This theory accurately predicts the rate of many-body dissipative quantum tunnelling subject to the polaron effect. Furthermore, we experimentally demonstrate that quantum tunnelling outperforms thermal hopping along classical paths for problems with up to 200 qubits containing the computational primitive. PMID:26739797

  16. Quantum annealing correction with minor embedding

    NASA Astrophysics Data System (ADS)

    Vinci, Walter; Albash, Tameem; Paz-Silva, Gerardo; Hen, Itay; Lidar, Daniel A.

    2015-10-01

    Quantum annealing provides a promising route for the development of quantum optimization devices, but the usefulness of such devices will be limited in part by the range of implementable problems as dictated by hardware constraints. To overcome constraints imposed by restricted connectivity between qubits, a larger set of interactions can be approximated using minor embedding techniques whereby several physical qubits are used to represent a single logical qubit. However, minor embedding introduces new types of errors due to its approximate nature. We introduce and study quantum annealing correction schemes designed to improve the performance of quantum annealers in conjunction with minor embedding, thus leading to a hybrid scheme defined over an encoded graph. We argue that this scheme can be efficiently decoded using an energy minimization technique provided the density of errors does not exceed the per-site percolation threshold of the encoded graph. We test the hybrid scheme using a D-Wave Two processor on problems for which the encoded graph is a two-level grid and the Ising model is known to be NP-hard. The problems we consider are frustrated Ising model problem instances with "planted" (a priori known) solutions. Applied in conjunction with optimized energy penalties and decoding techniques, we find that this approach enables the quantum annealer to solve minor embedded instances with significantly higher success probability than it would without error correction. Our work demonstrates that quantum annealing correction can and should be used to improve the robustness of quantum annealing not only for natively embeddable problems but also when minor embedding is used to extend the connectivity of physical devices.

  17. Ex situ elaborated proximity mesoscopic structures for ultrahigh vacuum scanning tunneling spectroscopy

    SciTech Connect

    Stolyarov, V. S.; Cren, T. Debontridder, F.; Brun, C.; Veshchunov, I. S.; Skryabina, O. V.; Rusanov, A. Yu.; Roditchev, D.

    2014-04-28

    We apply ultrahigh vacuum Scanning Tunneling Spectroscopy (STS) at ultra-low temperature to study proximity phenomena in metallic Cu in contact with superconducting Nb. In order to solve the problem of Cu-surface contamination, Cu(50 nm)/Nb(100 nm) structures are grown by respecting the inverted order of layers on SiO{sub 2}/Si substrate. Once transferred into vacuum, the samples are cleaved at the structure-substrate interface. As a result, a contamination-free Cu-surface is exposed in vacuum. It enables high-resolution STS of superconducting correlations induced by proximity from the underlying superconducting Nb layer. By applying magnetic field, we generate unusual proximity-induced superconducting vortices and map them with a high spatial and energy resolution. The suggested method opens a way to access local electronic properties of complex electronic mesoscopic devices by performing ex situ STS under ultrahigh vacuum.

  18. Investigation of Fe/Al interface as a function of annealing temperature using XPS

    NASA Astrophysics Data System (ADS)

    Brajpuriya, R.; Shripathi, T.

    2009-04-01

    This article describes the systemic investigation of the interface chemical and electronic properties of ultrathin Fe/Al multilayer structure (MLS) as a function of annealing temperature. For this purpose electron beam evaporated [Fe/Al] ×15 ML samples have been prepared under ultrahigh vacuum conditions. The chemical and electronic information of the interfaces at different depth has been obtained from XPS technique. The core level study show a gradual change in the nature of the electronic bonding at the interface as a result of annealing. In particular, the MLS annealed at 200 °C and 400 °C clearly show shifts in the binding energy position of Fe-2p 3 /2 core line towards higher energy and Al-2p 3 /2 core line towards lower energy side as compared to as-deposited sample, suggesting the formation of FeAl alloy phase at the interface. Another important finding with annealing is that the intensity of peak corresponding to pure Al-2p increases and that of Fe-2p decreases as compared to as-deposited case. The increase in intensity of Al-2p core line suggests the migration of Al atoms towards the surface owing to annealing induced inter-diffusion. The corresponding valence band spectra show appreciable changes in the Fe-3d as well as Al-3s density of states due to strong hybridization of sp-d states at the Fermi level as a result of charge transfer and also provide strong evidence for FeAl alloy formation.

  19. Annealing Increases Stability Of Iridium Thermocouples

    NASA Technical Reports Server (NTRS)

    Germain, Edward F.; Daryabeigi, Kamran; Alderfer, David W.; Wright, Robert E.; Ahmed, Shaffiq

    1989-01-01

    Metallurgical studies carried out on samples of iridium versus iridium/40-percent rhodium thermocouples in condition received from manufacturer. Metallurgical studies included x-ray, macroscopic, resistance, and metallographic studies. Revealed large amount of internal stress caused by cold-working during manufacturing, and large number of segregations and inhomogeneities. Samples annealed in furnace at temperatures from 1,000 to 2,000 degree C for intervals up to 1 h to study effects of heat treatment. Wire annealed by this procedure found to be ductile.

  20. Rock melting tool with annealer section

    DOEpatents

    Bussod, Gilles Y.; Dick, Aaron J.; Cort, George E.

    1998-01-01

    A rock melting penetrator is provided with an afterbody that rapidly cools a molten geological structure formed around the melting tip of the penetrator to the glass transition temperature for the surrounding molten glass-like material. An annealing afterbody then cools the glass slowly from the glass transition temperature through the annealing temperature range to form a solid self-supporting glass casing. This allows thermally induced strains to relax by viscous deformations as the molten glass cools and prevents fracturing of the resulting glass liner. The quality of the glass lining is improved, along with its ability to provide a rigid impermeable casing in unstable rock formations.

  1. Impedances of Laminated Vacuum Chambers

    SciTech Connect

    Burov, A.; Lebedev, V.; /Fermilab

    2011-06-22

    First publications on impedance of laminated vacuum chambers are related to early 70s: those are of S. C. Snowdon [1] and of A. G. Ruggiero [2]; fifteen years later, a revision paper of R. Gluckstern appeared [3]. All the publications were presented as Fermilab preprints, and there is no surprise in that: the Fermilab Booster has its laminated magnets open to the beam. Being in a reasonable mutual agreement, these publications were all devoted to the longitudinal impedance of round vacuum chambers. The transverse impedance and the flat geometry case were addressed in more recent paper of K. Y. Ng [4]. The latest calculations of A. Macridin et al. [5] revealed some disagreement with Ref. [4]; this fact stimulated us to get our own results on that matter. Longitudinal and transverse impendances are derived for round and flat laminated vacuum chambers. Results of this paper agree with Ref. [5].

  2. Coupled quintessence and vacuum decay

    SciTech Connect

    Costa, F. E. M.; Alcaniz, J. S.

    2008-04-15

    We discuss observational consequences of a class of cosmological models characterized by the dilution of pressureless matter attenuated with respect to the usual a{sup -3} scaling due to the decay of vacuum energy. We carry out a joint statistical analysis of observational data from the new gold sample of 182 SNe Ia, recent estimates of the cosmic microwave background shift parameter, and baryon acoustic oscillations measurements from the SDSS to show that such models favor the decay of vacuum only into the dark matter sector, and that the separately conserved baryons cannot be neglected. In order to explore ways to more fundamentally motivate these models, we also derive a coupled scalar field version for this general class of vacuum decay scenarios.

  3. Microscale Digital Vacuum Electronic Gates

    NASA Technical Reports Server (NTRS)

    Manohara, Harish (Inventor); Mojarradi, Mohammed M. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement microscale digital vacuum electronic gates. In one embodiment, a microscale digital vacuum electronic gate includes: a microscale field emitter that can emit electrons and that is a microscale cathode; and a microscale anode; where the microscale field emitter and the microscale anode are disposed within at least a partial vacuum; where the microscale field emitter and the microscale anode are separated by a gap; and where the potential difference between the microscale field emitter and the microscale anode is controllable such that the flow of electrons between the microscale field emitter and the microscale anode is thereby controllable; where when the microscale anode receives a flow of electrons, a first logic state is defined; and where when the microscale anode does not receive a flow of electrons, a second logic state is defined.

  4. D-Zero Vacuum System

    SciTech Connect

    Wintercorn, S.J.; /Fermilab

    1986-04-07

    The system pumping speed was calculated by taking the reciprocal of the sum of the reciprocal pump speed and the reciprocal line conductances. The conductances of the pipe were calculated from the following formulas taken from the Varian vacuum manual. This report updates the original to reflect the pumping curves and basic vacuum system characteristics for the purchased components and installed piping of the D-Zero vacuum system. The system consists of two Edward's E2M275 two stage mechanical pumps, a Leybold-Heraeus WSU2000 Blower and three Varian 4' diffusion pumps (one for each cryostat). Individual pump and system pumping speed curves and a diagram of the system is included.

  5. Performance of quantum annealing in solving optimization problems: A review

    NASA Astrophysics Data System (ADS)

    Suzuki, S.

    2015-02-01

    Quantum annealing is one of the optimization method for generic optimization problems. It uses quantum mechanics and is implemented by a quantum computer ideally. At the earlier stage, several numerical experiments using conventional computers have provided results showing that quantum annealing produces an answer faster than simulated annealing, a classical counterpart of quantum annealing. Later, theoretical and numerical studies have shown that there are drawbacks in quantum annealing. The power of quantum annealing is still an open problem. What makes quantum annealing a hot topic now is that a quantum computer based on quantum annealing is manufactured and commercialized by a Canadian company named D-Wave Systems. In the present article, we review the study of quantum annealing, focusing mainly on its power.

  6. Observation of Celestial Phenomena in Ancient China

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochun

    Because of the need for calendar-making and portent astrology, the Chinese were diligent and meticulous observers of celestial phenomena. China has maintained the longest continuous historical records of celestial phenomena in the world. Extraordinary or abnormal celestial events were particularly noted because of their astrological significance. The historical records cover various types of celestial phenomena, which include solar and lunar eclipses, sunspots, "guest stars" (novae or supernovae as we understand today), comets and meteors, and all kinds of planetary phenomena. These records provide valuable historical data for astronomical studies today.

  7. Microstructural and conductivity changes induced by annealing of ZnO:B thin films deposited by chemical vapour deposition.

    PubMed

    David, C; Girardeau, T; Paumier, F; Eyidi, D; Lacroix, B; Papathanasiou, N; Tinkham, B P; Gurin, P; Marteau, M

    2011-08-24

    Zinc oxide (ZnO) thin films have attracted much attention in recent years due to progress in crystal growth for a large variety of technological applications including optoelectronics and transparent electrodes in solar cells. Boron (B)-doped ZnO thin films are deposited by low pressure chemical vapour deposition (LPCVD) on Si(100). These films exhibit a strong (002) texture with a pyramidal grain structure. The ZnO films were annealed after growth; the annealing temperature and the atmosphere appear to strongly impact the layer conductivity. This work will first present the modification of the physical properties (carrier concentration, mobility) extracted from the simulation of layer reflection in the infrared range. At low annealing temperatures the mobility increases slightly before decreasing drastically above a temperature close to 250 C. The chemical and structural evolution (XPS, x-ray diffraction) of the films was also studied to identify the relationship between microstructural modifications and the variations observed in the film conductivity. An in situ XRD study during annealing has been performed under air and low pressure conditions. As observed for electrical properties, the microstructural modifications shift to higher temperatures for vacuum annealing. PMID:21813967

  8. THE EFFECT OF POST-IRRADATION ANNEALING ON STACKING FAULT TETRAHEDRA IN NEUTRON-IRRADIATED OFHC COPPER

    SciTech Connect

    Edwards, Danny J.; Singh, Bachu N.; Eldrup, M.

    2003-09-03

    Two irradiation experiments have been completed wherein two sets of tensile specimens of OFHC copper were irradiated with fission neutrons, one set at 200 degrees C and the other at 250 degrees C. Post-irradiation annealing in vacuum was then used to evaluate the change in the defect microstructure, including vacancy-type SFT, voids, and dislocation loops. Individual samples within each set were given one annealing exposure at 300, 350, 400, 450, 500, or 550 degrees C for 2 hours. The fine-scale defect microstructure was characterized by transmission electron microscopy (TEM) to compare the defect size and spatial distribution at each annealing temperature and reference the results to that measured in the as-irradiated condition. Based on the change in the SFT size distributions, post-irradiation annealing led to a preferential removal of the smaller sized SFT, but did not lead to a general coarsening as might be expected from an Oswald ripening scenario. The issue of whether the SFT produced during irradiation are all structurally perfect is still being investigated at the time of this report, however, the images of the SFT appeared more perfect after annealing at 300 degrees C and higher. Further analysis is being performed to determine whether intermediate stages of SFT formation exist in the as-irradiated condition.

  9. Thermal annealing and magnetic anisotropy of NiFe thin films on n+-Si for spintronic device applications

    NASA Astrophysics Data System (ADS)

    Lu, Q. H.; Huang, R.; Wang, L. S.; Wu, Z. G.; Li, C.; Luo, Q.; Zuo, S. Y.; Li, J.; Peng, D. L.; Han, G. L.; Yan, P. X.

    2015-11-01

    To ensure that the magnetic metal electrodes can meet the requirements of the spin injection, NiFe films prepared both on HfO2 dielectric layer and n+-Si directly by sputtering deposition, and treated by conventional furnace annealing and/or high vacuum magnetic field annealing were investigated. It was found that thermal annealing at 250 C improved the crystalline quality and reduced surface roughness of the NiFe films, thus enhancing its saturation magnetization intensity. The 100 nm thick NiFe films had too large coercive force and saturation magnetization intensity in vertical direction to meet the requirements of Hanle curve detection. While, 30 nm thick NiFe films showed paramagnetic hysteresis loops in vertical direction, and the magnetization intensity of the sample after annealing at 250 C for 30 min was less than 2% to the parallel when the external magnetic field was given between 10 Oe. This was preferred to Hanle curve detection. The thin HfO2 dielectric layer between metal and Si partially suppressed the diffusion of Ni in NiFe into Si substrate and formation of NiSi, greatly enhancing the saturation magnetization intensity of the Al/NiFe/HfO2/Si sample by thermal annealing. Those results suggest that Al/NiFe/HfO2/Si structure, from the point view of magnetic electrodes, would be suitable for spin injection and detection applications.

  10. Impact of rapid thermal annealing on structural, optical and electrical properties of DC sputtered doped and co-doped ZnO thin film

    NASA Astrophysics Data System (ADS)

    Gupta, Chandan Ashis; Mangal, Sutanu; Singh, Udai P.

    2014-01-01

    We report a crucial change in structural properties which dramatically modified optical and electrical properties in annealed aluminium-boron and gallium-aluminum co-doped ZnO thin films grown using DC magnetron sputtering. Under vacuum, ambient films were annealed at 600 °C for 2 min and it was found that the transmission of annealed samples improved compared to pristine, doped, and co-doped ZnO thin films. The X-ray diffraction (XRD) patterns of pristine films exhibits a preferable growth orientation in <002> phases, however, after annealing signature of other peaks became prominent. Moreover, slender increase in crystallite size was also observed from XRD analysis. The surface morphology was studied using scanning electron microscopy (SEM). The surface morphology exhibits different structure which depending on the growth temperature was discussed in detail. The electrical properties viz. resistivity, mobility, and carrier concentration of both pristine and annealed ZnO thin films were measured at room temperature. An enhancement in the electrical properties of doped and co-doped ZnO thin films was noted after annealing. More significantly, it was found that annealed thin films showed the resistivity of the order ˜10-4 ohm cm with the enhanced optical transmittance. Such a transparent and conducting zinc-oxide thin film can be used as a window layer in solar cell.

  11. Violating Bell's inequalities in vacuum

    SciTech Connect

    Reznik, Benni; Retzker, Alex; Silman, Jonathan

    2005-04-01

    We employ an approach wherein the ground state entanglement of a relativistic free scalar field is directly probed in a controlled manner. The approach consists of having a pair of initially nonentangled detectors locally interact with the vacuum for a finite duration T, such that the two detectors remain causally disconnected, and then analyzing the resulting detector mixed state. We show that the correlations between arbitrarily far-apart regions of the vacuum cannot be reproduced by a local hidden-variable model, and that as a function of the distance L between the regions, the entanglement decreases at a slower rate than {approx}exp[-(L/cT){sup 3}].

  12. Vacuum Plasma Spraying Replaces Electrodeposition

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Power, Chris; Burns, David H.; Daniel, Ron; Mckechnie, Timothy N.

    1992-01-01

    Vacuum plasma spraying used to fabricate large parts with complicated contours and inner structures, without uninspectable welds. Reduces time, and expense of fabrication. Wall of combustion chamber built up inside of outer nickel-alloy jacket by plasma spraying. Particles of metal sprayed partially melted in plasma gun and thrown at supersonic speed toward deposition surface. Vacuum plasma-spray produces stronger bond between the grooves and covering layer completing channels and wall of combustion chamber. In tests, bond withstood pressure of 20 kpsi, three times allowable limit by old method.

  13. Vacuum Cleaner Fan Being Improved

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    1997-01-01

    As part of the technology utilization program at the NASA Lewis Research Center, efforts are underway to transfer aerospace technologies to new areas of practical application. One such effort involves using advanced computational fluid dynamics (CFD) codes for turbomachinery to analyze the internal fluid dynamics of low-speed fans and blowers. This year, the Kirby Company in Cleveland, Ohio, approached NASA with a request for technologies that could help them improve their vacuum cleaners. Of particular interest to Kirby is the high-frequency blade-passing noise generation of their vacuum cleaner fan at low airflow rates.

  14. Method for vacuum fusion bonding

    DOEpatents

    Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.

    2001-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  15. Improved zircon fission-track annealing model based on reevaluation of annealing data

    SciTech Connect

    Guedes, Sandro; Moreira, Pedro A.F.P.; Devanathan, Ram; Weber, William J; Hadler, Julio C

    2013-01-01

    The thermal recovery (annealing) of mineral structure modified by the passage of fission fragments has long been studied by the etching technique. In minerals like apatite and zircon, the annealing kinetics are fairly well constrained from the hour to the million-year timescale and have been described by empirical and semi-empirical equations. On the other hand, laboratory experiments, in which ion beams interact with minerals and synthetic ceramics, have shown that there is a threshold temperature beyond which thermal recovery impedes ion-induced amorphization. In this work, it is assumed that this behavior can be extended to the annealing of fission tracks in minerals. It is proposed that there is a threshold temperature, T0, beyond which fission tracks are erased within a time t0, which is independent of the current state of lattice deformation. This implies that iso-annealing curves should converge to a fanning point in the Arrhenius pseudo-space (ln t vs. 1/T). Based on the proposed hypothesis, and laboratory and geological data, annealing equations are reevaluated. The geological timescale estimations of a model arising from this study are discussed through the calculation of partial annealing zone and closure temperature, and comparison with geological sample constraints found in literature. It is shown that the predictions given by this model are closer to field data on closure temperature and partial annealing zone than predictions given by previous models.

  16. Improved zircon fission-track annealing model based on reevaluation of annealing data

    SciTech Connect

    Guedes, S.; Moreira, Pedro; Devanathan, Ramaswami; Weber, William J.; Hadler, J. C.

    2012-11-10

    The thermal recovery (annealing) of mineral structure modified by the passage of fission fragments has long been studied by the etching technique. In minerals like apatite and zircon, the annealing kinetics are fairly well constrained from the hour to the million-year timescale and have been described by empirical and semi-empirical equations. On the other hand, laboratory experiments, in which ion beams interact with minerals and synthetic ceramics, have shown that there is a threshold temperature beyond which thermal recovery impedes ion-induced amorphization. In this work, it is assumed that this behavior can be extended to the annealing of fission tracks in minerals. It is proposed that there is a threshold temperature, T 0, beyond which fission tracks are erased within a time t 0, which is independent of the current state of lattice deformation. This implies that iso-annealing curves should converge to a fanning point in the Arrhenius pseudo-space (ln t vs. 1/T). Based on the proposed hypothesis, and laboratory and geological data, annealing equations are reevaluated. The geological timescale estimations of a model arising from this study are discussed through the calculation of partial annealing zone and closure temperature, and comparison with geological sample constraints found in literature. It is shown that the predictions given by this model are closer to field data on closure temperature and partial annealing zone than predictions given by previous models.

  17. Macroscopic, freestanding, and tubular graphene architectures fabricated via thermal annealing.

    PubMed

    Nguyen, Duc Dung; Suzuki, Seiya; Kato, Shuji; To, Bao Dong; Hsu, Chia Chen; Murata, Hidekazu; Rokuta, Eiji; Tai, Nyan-Hwa; Yoshimura, Masamichi

    2015-03-24

    Manipulation of individual graphene sheets/films into specific architectures at macroscopic scales is crucially important for practical uses of graphene. We present herein a versatile and robust method based on annealing of solid carbon precursors on nickel templates and thermo-assisted removal of poly(methyl methacrylate) under low vacuum of ∼0.6 Pa for fabrication of macroscopic, freestanding, and tubular graphene (TG) architectures. Specifically, the TG architectures can be obtained as individual and woven tubes with a diameter of ∼50 μm, a wall thickness in the range of 2.1-2.9 nm, a density of ∼1.53 mg·cm(-3), a thermal stability up to 600 °C in air, an electrical conductivity of ∼1.48 × 10(6) S·m(-1), and field emission current densities on the order of 10(4) A·cm(-2) at low applied electrical fields of 0.6-0.7 V·μm(-1). These properties show great promise for applications in flexible and lightweight electronics, electron guns, or X-ray tube sources. PMID:25738973

  18. Surface electroluminescence phenomena correlated with trapping parameters of insulating polymers

    NASA Astrophysics Data System (ADS)

    Zhang, Guan-Jun; Yang, Kai; Dong, Ming; Zhao, Wen-Bin; Yan, Zhang

    2007-12-01

    Electroluminescence (EL) phenomena are closely linked to the space charge and degradation in insulating polymers, and dominated by the luminescence and trap centers. EL emission has been promising in defining the onset of electrical aging and in the investigation of dissipation mechanisms. Generally, polymeric degradation reveals the increment of the density of luminescence and trap centers, so a fundamental study is proposed to correlate the EL emission of insulating polymers and their trapping parameters. A sensitive photon counting system is constructed to detect the weak EL. The time- and phase-resolved EL characteristics from different polymers (LDPE, PP and PTFE) are investigated with a planar electrode configuration under stepped ac voltage in vacuum. In succession, each sample is charged with exposing to multi-needle corona discharge, and then its surface potential decay is continuously recorded at a constant temperature. Based on the isothermal relaxation current theory, the energy level and density of both electron and hole trap distribution in the surface layer of each polymer is obtained. It is preliminarily concluded that EL phenomena are strongly affected by the trap properties, and for different polymers, its EL intensity is in direct contrast to its surface trap density, and this can be qualitatively explained by the trapping and detrapping sequence of charge carriers in trap centers with different energy level.

  19. X-ray reflectivity measurements of vacuum deposited thin films

    SciTech Connect

    Chason, M.; Chason, E.

    1992-12-31

    X-ray reflectivity using energy dispersive X-ray detection, a nondestructive probe of surface roughness over the region of {approximately} 1--50 {Angstrom}, has been used to investigate the characteristicsof vacuum deposited thin films. With a surface roughness sensitivity better than 1 {Angstrom} X-ray reflectivity is sensitive to interfaces between different materials for sample thicknesses up to approximately2000 {Angstrom} (depending on material density). We have investigated discrete Cr/Al deposits on quartz substrates and determined the surface roughness at the interfaces. We have also monitored the evolution ofthe Cr/Al interface following annealing. The experimental data is presented and discussed. The use of the technique for studying thin film deposits is addressed.

  20. X-ray reflectivity measurements of vacuum deposited thin films

    SciTech Connect

    Chason, M. ); Chason, E. )

    1992-01-01

    X-ray reflectivity using energy dispersive X-ray detection, a nondestructive probe of surface roughness over the region of [approximately] 1--50 [Angstrom], has been used to investigate the characteristicsof vacuum deposited thin films. With a surface roughness sensitivity better than 1 [Angstrom] X-ray reflectivity is sensitive to interfaces between different materials for sample thicknesses up to approximately2000 [Angstrom] (depending on material density). We have investigated discrete Cr/Al deposits on quartz substrates and determined the surface roughness at the interfaces. We have also monitored the evolution ofthe Cr/Al interface following annealing. The experimental data is presented and discussed. The use of the technique for studying thin film deposits is addressed.

  1. Unraveling Quantum Annealers using Classical Hardness

    PubMed Central

    Martin-Mayor, Victor; Hen, Itay

    2015-01-01

    Recent advances in quantum technology have led to the development and manufacturing of experimental programmable quantum annealing optimizers that contain hundreds of quantum bits. These optimizers, commonly referred to as ‘D-Wave’ chips, promise to solve practical optimization problems potentially faster than conventional ‘classical’ computers. Attempts to quantify the quantum nature of these chips have been met with both excitement and skepticism but have also brought up numerous fundamental questions pertaining to the distinguishability of experimental quantum annealers from their classical thermal counterparts. Inspired by recent results in spin-glass theory that recognize ‘temperature chaos’ as the underlying mechanism responsible for the computational intractability of hard optimization problems, we devise a general method to quantify the performance of quantum annealers on optimization problems suffering from varying degrees of temperature chaos: A superior performance of quantum annealers over classical algorithms on these may allude to the role that quantum effects play in providing speedup. We utilize our method to experimentally study the D-Wave Two chip on different temperature-chaotic problems and find, surprisingly, that its performance scales unfavorably as compared to several analogous classical algorithms. We detect, quantify and discuss several purely classical effects that possibly mask the quantum behavior of the chip. PMID:26483257

  2. Annealing of gold nanostructures sputtered on polytetrafluoroethylene

    NASA Astrophysics Data System (ADS)

    Siegel, Jakub; Krajcar, Robert; Kolská, Zdeňka; Hnatowicz, Vladimír; Švorčík, Václav

    2011-11-01

    Gold nanolayers sputtered on polytetrafluoroethylene (PTFE) surface and their changes induced by post-deposition annealing at 100°C to 300°C are studied. Changes in surface morphology and roughness are examined by atomic force microscopy, electrical sheet resistance by two point technique, zeta potential by electrokinetic analysis and chemical composition by X-ray photoelectron spectroscopy (XPS) in dependence on the gold layer thickness. Transition from discontinuous to continuous gold coverage takes place at the layer thicknesses 10 to 15 nm and this threshold remains practically unchanged after the annealing at the temperatures below 200°C. The annealing at 300°C, however, leads to significant rearrangement of the gold layer and the transition threshold increases to 70 nm. Significant carbon contamination and the presence of oxidized structures on gold-coated samples are observed in XPS spectra. Gold coating leads to a decrease in the sample surface roughness. Annealing at 300°C of pristine PTFE and gold-coated PTFE results in significant increase of the sample surface roughness.

  3. Annealing of gold nanostructures sputtered on polytetrafluoroethylene

    PubMed Central

    2011-01-01

    Gold nanolayers sputtered on polytetrafluoroethylene (PTFE) surface and their changes induced by post-deposition annealing at 100°C to 300°C are studied. Changes in surface morphology and roughness are examined by atomic force microscopy, electrical sheet resistance by two point technique, zeta potential by electrokinetic analysis and chemical composition by X-ray photoelectron spectroscopy (XPS) in dependence on the gold layer thickness. Transition from discontinuous to continuous gold coverage takes place at the layer thicknesses 10 to 15 nm and this threshold remains practically unchanged after the annealing at the temperatures below 200°C. The annealing at 300°C, however, leads to significant rearrangement of the gold layer and the transition threshold increases to 70 nm. Significant carbon contamination and the presence of oxidized structures on gold-coated samples are observed in XPS spectra. Gold coating leads to a decrease in the sample surface roughness. Annealing at 300°C of pristine PTFE and gold-coated PTFE results in significant increase of the sample surface roughness. PMID:22078024

  4. Unraveling Quantum Annealers using Classical Hardness.

    PubMed

    Martin-Mayor, Victor; Hen, Itay

    2015-01-01

    Recent advances in quantum technology have led to the development and manufacturing of experimental programmable quantum annealing optimizers that contain hundreds of quantum bits. These optimizers, commonly referred to as 'D-Wave' chips, promise to solve practical optimization problems potentially faster than conventional 'classical' computers. Attempts to quantify the quantum nature of these chips have been met with both excitement and skepticism but have also brought up numerous fundamental questions pertaining to the distinguishability of experimental quantum annealers from their classical thermal counterparts. Inspired by recent results in spin-glass theory that recognize 'temperature chaos' as the underlying mechanism responsible for the computational intractability of hard optimization problems, we devise a general method to quantify the performance of quantum annealers on optimization problems suffering from varying degrees of temperature chaos: A superior performance of quantum annealers over classical algorithms on these may allude to the role that quantum effects play in providing speedup. We utilize our method to experimentally study the D-Wave Two chip on different temperature-chaotic problems and find, surprisingly, that its performance scales unfavorably as compared to several analogous classical algorithms. We detect, quantify and discuss several purely classical effects that possibly mask the quantum behavior of the chip. PMID:26483257

  5. Unraveling Quantum Annealers using Classical Hardness

    NASA Astrophysics Data System (ADS)

    Martin-Mayor, Victor; Hen, Itay

    2015-10-01

    Recent advances in quantum technology have led to the development and manufacturing of experimental programmable quantum annealing optimizers that contain hundreds of quantum bits. These optimizers, commonly referred to as ‘D-Wave’ chips, promise to solve practical optimization problems potentially faster than conventional ‘classical’ computers. Attempts to quantify the quantum nature of these chips have been met with both excitement and skepticism but have also brought up numerous fundamental questions pertaining to the distinguishability of experimental quantum annealers from their classical thermal counterparts. Inspired by recent results in spin-glass theory that recognize ‘temperature chaos’ as the underlying mechanism responsible for the computational intractability of hard optimization problems, we devise a general method to quantify the performance of quantum annealers on optimization problems suffering from varying degrees of temperature chaos: A superior performance of quantum annealers over classical algorithms on these may allude to the role that quantum effects play in providing speedup. We utilize our method to experimentally study the D-Wave Two chip on different temperature-chaotic problems and find, surprisingly, that its performance scales unfavorably as compared to several analogous classical algorithms. We detect, quantify and discuss several purely classical effects that possibly mask the quantum behavior of the chip.

  6. Surface Chemistry, Friction, and Wear Properties of Untreated and Laser-Annealed Surfaces of Pulsed-Laser-Deposited WS(sub 2) Coatings

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Wheeler, Donald R.; Zabinski, Jeffrey S.

    1996-01-01

    An investigation was conducted to examine the surface chemistry, friction, and wear behavior of untreated and annealed tungsten disulfide (WS2) coatings in sliding contact with a 6-mm-diameter 440C stainless-steel ball. The WS2 coatings and annealing were performed using the pulsed-laser-deposition technique. All sliding friction experiments were conducted with a load of 0.98 N (100 g), an average Hertzian contact pressure of 0.44 GPa, and a constant rotating speed of 120 rpm. The sliding velocity ranged from 31 to 107 mm/s because of the range of wear track radii involved in the experiments. The experiment was performed at room temperature in three environments: ultrahigh vacuum (vacuum pressure, 7X(exp -10) Pa), dry nitrogen (relative humidity, less than 1 percent), and humid air (relative humidity, 15 to 40 percent). Analytical techniques, including scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), x-ray photo electron spectroscopy (XPS), surface profilometry, and Vickers hardness testing, were used to characterize the tribological surfaces of WS2 coatings. The results of the investigation indicate that the laser annealing decreased the wear of a WS2 coating in an ultrahigh vacuum. The wear rate was reduced by a factor of 30. Thus, the laser annealing increased the wear life and resistance of the WS2 coating. The annealed WS 2 coating had a low coefficient of friction (less than O.1) and a low wear rate ((10(exp -7) mm(exp 3)/N-m)) both of which are favorable in an ultrahigh vacuum.

  7. Vacuum-injection-molding processing

    SciTech Connect

    Kramer, D.P.; Massey, R.T.

    1982-01-01

    An improved processing technique for the manufacture of glass or glass-ceramic headers has been developed. Vacuum-injection molding is a relatively easy processing technique that has been used successfully in the fabrication of several different advantages in certain applications over the present fabrication process which uses glass preforms.

  8. Plates for vacuum thermal fusion

    DOEpatents

    Davidson, James C.; Balch, Joseph W.

    2002-01-01

    A process for effectively bonding arbitrary size or shape substrates. The process incorporates vacuum pull down techniques to ensure uniform surface contact during the bonding process. The essence of the process for bonding substrates, such as glass, plastic, or alloys, etc., which have a moderate melting point with a gradual softening point curve, involves the application of an active vacuum source to evacuate interstices between the substrates while at the same time providing a positive force to hold the parts to be bonded in contact. This enables increasing the temperature of the bonding process to ensure that the softening point has been reached and small void areas are filled and come in contact with the opposing substrate. The process is most effective where at least one of the two plates or substrates contain channels or grooves that can be used to apply vacuum between the plates or substrates during the thermal bonding cycle. Also, it is beneficial to provide a vacuum groove or channel near the perimeter of the plates or substrates to ensure bonding of the perimeter of the plates or substrates and reduce the unbonded regions inside the interior region of the plates or substrates.

  9. Cleaner Vacuum-Bag Curing

    NASA Technical Reports Server (NTRS)

    Clemons, J. M.; Penn, B. G.; Ledbetter, Frank E., III; Daniels, J. G.

    1987-01-01

    Improvement upon recommended procedures saves time and expense. Autoclave molding in vacuum bag cleaner if adhesive-backed covering placed around caul plate as well as on mold plate. Covering easy to remove after curing and leaves caul plate free of resin deposits.

  10. Vacuum barrier for excimer lasers

    DOEpatents

    Shurter, R.P.

    1992-09-15

    A barrier for separating the vacuum area of a diode from the pressurized gas area of an excimer laser. The barrier is a composite material comprising layers of a metal such as copper, along with layers of polyimide, and a matrix of graphite fiber yarns impregnated with epoxy. The barrier is stronger than conventional foil barriers, and allows greater electron throughput. 3 figs.

  11. Vacuum barrier for excimer lasers

    DOEpatents

    Shurter, Roger P.

    1992-01-01

    A barrier for separating the vacuum area of a diode from the pressurized gas area of an excimer laser. The barrier is a composite material comprising layers of a metal such as copper, along with layers of polyimide, and a matrix of graphite fiber yarns impregnated with epoxy. The barrier is stronger than conventional foil barriers, and allows greater electron throughput.

  12. Vacuum-insulated catalytic converter

    DOEpatents

    Benson, David K.

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  13. Degassing procedure for ultrahigh vacuum

    NASA Technical Reports Server (NTRS)

    Moore, B. C.

    1979-01-01

    Calculations based on diffusion coefficients and degassing rates for stainless-steel vacuum chambers indicate that baking at lower temperatures for longer periods give lower ultimate pressures than rapid baking at high temperatures. Process could reduce pressures in chambers for particle accelerators, fusion reactors, material research, and other applications.

  14. Quantum Vacuum Structure and Cosmology

    SciTech Connect

    Rafelski, Johann; Labun, Lance; Hadad, Yaron; Chen, Pisin; /Taiwan, Natl. Taiwan U. /KIPAC, Menlo Park /SLAC

    2011-12-05

    Contemporary physics faces three great riddles that lie at the intersection of quantum theory, particle physics and cosmology. They are: (1) The expansion of the universe is accelerating - an extra factor of two appears in the size; (2) Zero-point fluctuations do not gravitate - a matter of 120 orders of magnitude; and (3) The 'True' quantum vacuum state does not gravitate. The latter two are explicitly problems related to the interpretation and the physical role and relation of the quantum vacuum with and in general relativity. Their resolution may require a major advance in our formulation and understanding of a common unified approach to quantum physics and gravity. To achieve this goal we must develop an experimental basis and much of the discussion we present is devoted to this task. In the following, we examine the observations and the theory contributing to the current framework comprising these riddles. We consider an interpretation of the first riddle within the context of the universe's quantum vacuum state, and propose an experimental concept to probe the vacuum state of the universe.

  15. Vacuum Flushing of Sewer Solids

    EPA Science Inventory

    The vacuum sewer and tank cleaning (flushing) technology removes sewer solids from urban drainage systems, such as storage tanks and pipes. This technology is both effective and inexpensive. In addition, it can be considered a true green technology. It operates under atmospheri...

  16. HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM

    SciTech Connect

    Dr. M.A. Ebadian

    2000-01-13

    The purpose of the project is to increase the productivity and economics of existing vacuum blasting technology. This technology is used to remove radioactive contamination, PCB's and lead-base paint and provides worker and environmental protection by continuously recycling the blast media and the full containment of the dust generated in the process.

  17. High-Efficiency Small Molecule-Based Bulk-Heterojunction Solar Cells Enhanced by Additive Annealing.

    PubMed

    Li, Lisheng; Xiao, Liangang; Qin, Hongmei; Gao, Ke; Peng, Junbiao; Cao, Yong; Liu, Feng; Russell, Thomas P; Peng, Xiaobin

    2015-09-30

    Solvent additive processing is important in optimizing an active layer's morphology and thus improving the performance of organic solar cells (OSCs). In this study, we find that how 1,8-diiodooctane (DIO) additive is removed plays a critical role in determining the film morphology of the bulk heterojunction OSCs in inverted structure based on a porphyrin small molecule. Different from the cases reported for polymer-based OSCs in conventional structures, the inverted OSCs upon the quick removal of the additive either by quick vacuuming or methanol washing exhibit poorer performance. In contrast, the devices after keeping the active layers in ambient pressure with additive dwelling for about 1 h (namely, additive annealing) show an enhanced power conversion efficiency up to 7.78% with a large short circuit current of 19.25 mA/cm(2), which are among the best in small molecule-based solar cells. The detailed morphology analyses using UV-vis absorption spectroscopy, grazing incidence X-ray diffraction, resonant soft X-ray scattering, and atomic force microscopy demonstrate that the active layer shows smaller-sized phase separation but improved structure order upon additive annealing. On the contrary, the quick removal of the additive either by quick vacuuming or methanol washing keeps the active layers in an earlier stage of large scaled phase separation. PMID:26355348

  18. Microstructural dependence of annealing temperature in magnetron-sputtered Al-Si-Cu films

    NASA Astrophysics Data System (ADS)

    Liang, Ming-Kaan; Ling, Yong-Chien

    1993-09-01

    The effect of sputtering temperature, sputtering bias, and annealing temperature upon the sheet resistance, WO3 formation at the Al-Si-Cu/Ti-W interface, and diffraction intensity of the Al2Cu precipitates of magnetron-sputtered Al-Si-Cu films were investigated. Statistical methods and microcharacterization techniques were applied to study these effects. Statistical analysis verifies the effect of annealing temperature on the measured sheet resistance. Annealing temperature alone is the dominant factor upon the WO3 formation at the Al-Si-Cu/Ti-W interface and the Al2Cu (211) plane diffraction intensity. Annealed samples are of higher sheet resistance. Increase in sheet resistance is ascribed to the formation of interfacial WO3. Reduced electromigration is related to the formation of Al2Cu precipitates. Secondary ion mass spectrometry (SIMS) analysis of the as-deposited sample depicts the presence of an excess amount of oxygen atoms at the surface and the Al-Si-Cu/Ti-W and Ti-W/Ti interfaces. Rutherford backscattering spectrometry and SIMS analyses reveal the outdiffusion of W from the Ti-W layer toward the Al-Si-Cu layer, the presence of Si nodules at the Al-Si-Cu/Ti-W interface, and the formation of Ti silicides at the Ti/Si interface. These phenomena are confirmed by transmission electron microscopy, energy dispersive x-ray analysis, and scanning electron microscopy analyses. It is concluded that interfacial oxygen, which reacts with W to form WO3 upon annealing, warrants further reduction to yield films of better sheet resistance.

  19. HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM

    SciTech Connect

    William S. McPhee

    1999-05-31

    The objective of this project is to improve the productivity and lower the expense of existing vacuum blasting technology. This technology is used to remove radioactive contamination, PCBs, and lead-based paint and provides worker protection by continuously recycling the material and dust for the decontamination tasks. The proposed work would increase the cleaning rate and provide safe and cost-effective decontamination of the DOE sites. This work focuses on redesigning and improving existing vacuum blasting technology including blast head nozzles, ergonomic handling of the blast head by reducing its weight; brush-ring design, vacuum level regulator, efficiency of the dust separator, and operational control sensors. The redesign is expected to enhance the productivity and economy of the vacuum blasting system by at least 50% over current vacuum blasting systems. There are three phases in the project. Phase I consists of developing and testing mathematical models. Phase II consists of pre-prototype design and fabrication and pre-prototype unit testing. Phase III consists of prototype design and field verification testing. In phase I, mathematical models are developed and analyzed for the nozzle, blast head, wind curtain, and dust separator, first as individual devices and then combined as an integrated model. This allows study of respective airflow and design parameters. The Contractor shall, based on the results of the mathematical modeling studies, design experimental models of the components and test these models. In addition, the Contractor shall develop sensors to detect the relationship of the blast head to the blast surfaces and controls to minimize the dependency on an operator's skill and judgment to obtain optimum positioning, as well as real-time characterization sensors to determine as the blast head is moving the depth to which coatings must be removed, thereby improving production and minimizing waste. In phase II, the Contractor shall design and construct a pre-prototype of the nozzle, blast head with wind curtain, sensors, and dust separator and test this system to assess the performance of the new design under controlled conditions at the contractor's facility. In phase III, the Contractor shall design and construct a prototype of the High Productivity Vacuum Blasting System, based on the results of the pre-prototype design and testing performed. This unit will be a full-scale prototype and will be tested at a designated Department of Energy (DOE) facility. Based on the results, the system performance, the productivity, and the economy of the improved vacuum blasting system will be evaluated.

  20. PREFACE Integrability and nonlinear phenomena Integrability and nonlinear phenomena

    NASA Astrophysics Data System (ADS)

    Gómez-Ullate, David; Lombardo, Sara; Mañas, Manuel; Mazzocco, Marta; Nijhoff, Frank; Sommacal, Matteo

    2010-10-01

    Back in 1967, Clifford Gardner, John Greene, Martin Kruskal and Robert Miura published a seminal paper in Physical Review Letters which was to become a cornerstone in the theory of integrable systems. In 2006, the authors of this paper received the AMS Steele Prize. In this award the AMS pointed out that `In applications of mathematics, solitons and their descendants (kinks, anti-kinks, instantons, and breathers) have entered and changed such diverse fields as nonlinear optics, plasma physics, and ocean, atmospheric, and planetary sciences. Nonlinearity has undergone a revolution: from a nuisance to be eliminated, to a new tool to be exploited.' From this discovery the modern theory of integrability bloomed, leading scientists to a deep understanding of many nonlinear phenomena which is by no means reachable by perturbation methods or other previous tools from linear theories. Nonlinear phenomena appear everywhere in nature, their description and understanding is therefore of great interest both from the theoretical and applicative point of view. If a nonlinear phenomenon can be represented by an integrable system then we have at our disposal a variety of tools to achieve a better mathematical description of the phenomenon. This special issue is largely dedicated to investigations of nonlinear phenomena which are related to the concept of integrability, either involving integrable systems themselves or because they use techniques from the theory of integrability. The idea of this special issue originated during the 18th edition of the Nonlinear Evolution Equations and Dynamical Systems (NEEDS) workshop, held at Isola Rossa, Sardinia, Italy, 16-23 May 2009 (http://needs-conferences.net/2009/). The issue benefits from the occasion offered by the meeting, in particular by its mini-workshops programme, and contains invited review papers and contributed papers. It is worth pointing out that there was an open call for papers and all contributions were peer reviewed according to the standards of the journal. The selection of papers in this issue aims to bring together recent developments and findings, even though it consists of only a fraction of the impressive developments in recent years which have affected a broad range of fields, including the theory of special functions, quantum integrable systems, numerical analysis, cellular automata, representations of quantum groups, symmetries of difference equations, discrete geometry, among others. The special issue begins with four review papers: Integrable models in nonlinear optics and soliton solutions Degasperis [1] reviews integrable models in nonlinear optics. He presents a number of approximate models which are integrable and illustrates the links between the mathematical and applicative aspects of the theory of integrable dynamical systems. In particular he discusses the recent impact of boomeronic-type wave equations on applications arising in the context of the resonant interaction of three waves. Hamiltonian PDEs: deformations, integrability, solutions Dubrovin [2] presents classification results for systems of nonlinear Hamiltonian partial differential equations (PDEs) in one spatial dimension. In particular he uses a perturbative approach to the theory of integrability of these systems and discusses their solutions. He conjectures universality of the critical behaviour for the solutions, where the notion of universality refers to asymptotic independence of the structure of solutions (at the point of gradient catastrophe) from the choice of generic initial data as well as from the choice of a generic PDE. KP solitons in shallow water Kodama [3] presents a survey of recent studies on soliton solutions of the Kadomtsev-Petviashvili (KP) equation. A large variety of exact soliton solutions of the KP equation are presented and classified. The study includes numerical analysis of the stability of the found solution as well as numerical simulations of the initial value problems which indicate that a certain class of initial waves approach asymptotically these exact solutions of the KP equation. The author discusses an application of the theory to the problem of the resonant interaction of solitary waves appearing in the reflection of an obliquely incident wave onto a vertical wall, known as the Mach reflection problem in shallow water. A beautiful explanation of the problem was presented in a swimming pool experiment during NEEDS 2009. Smooth and peaked solitons of the CH equation Holm and Ivanov [4] discuss the relations between smooth and peaked soliton solutions for the Camassa-Holm (CH) shallow water wave equation in one spatial dimension. They first present the derivation of the soliton solution for the CH equation by means of inverse scattering transform (IST); the solution is obtained in a form that admits the peakon limit. The canonical Hamiltonian formulation of the CH equation in action-angle variables is recovered using the scattering data. The authors review some of the geometric properties of the CH equation and conclude their review with the higher dimensional generalization of the dispersionless CH equation, known as EPDiff. They also consider the possible extensions of their approach in three open problems. Regular contributions to this issue cover a wide range of topics related to integrable systems. Let us briefly illustrate some of the topics covered by this issue. One of the main topics is the study of hierarchies of integrable equations. The multifaceted idea of integrability of a particular PDE includes an approach whose aim is to find an infinite set of independent conserved quantities, much in the spirit of Liouville integrability in classical mechanics. The existence of these conserved quantities in involution, or of the corresponding infinite set of commuting symmetries, leads to an infinite set of commuting flows; i.e., to the construction of a hierarchy of compatible PDEs with respect to an infinite set of times. Obviously one can generalize or adapt this construction to different settings like the integro-differential, discrete or super-symmetric ones. The emphasis is usually to find auxiliary linear systems defining an infinite set of linear commuting flows whose solutions, if some asymptotic conditions are imposed, are named wave or Baker-Akhiezer functions. These linear flows determine the so called Lax equations, another infinite set of commuting equations whose compatibility leads to the so called Zakharov-Shabat system. An alternative description of the hierarchies is achieved with the use of the bilinear equations directly linked with the tau-function description of the hierarchy. There are two paradigmatic integrable hierarchies, namely the KP and 2-dimensional Toda lattice (2DTL). These hierarchies are treated within this volume in three contributions. In particular, Takasaki [5] reconsiders the extended Toda hierarchy of Carlet, Dubrovin and Zhang in the light of Ogawa's 2 + 1D extension of the 1D Toda hierarchy. It turns out that the former may be thought of as some sort of dimensional reduction of the latter. This explains the structure of the bilinear formalism proposed by Milanov. Carlet and Manas [6] study the 2-component KP and 2D Toda hierarchies and solve explicitly several implicit constraints present in the usual Lax formulation of the hierarchy, thus identifying a set of free dependent variables for such hierarchies. Finally, the KP hierarchy is considered in the paper by Lin et al [7], which explores the extended flows of a q-deformed modified KP hierarchy leading to the introduction of self-consistent sources. By a combination of the dressing method and the method of variation of constants, the authors are able through a dressing approach to find a scheme for the construction of solutions of the corresponding integrable equations with self-consistent sources. The study of dispersionless integrable hierarchies is an active field of research, and this special issue includes two papers devoted to the subject. Konopelchenko et al [8] describe critical and degenerate critical points of a scalar function which obeys the Euler-Poisson-Darboux equation in terms of the hodograph solutions of the dispersionless coupled Korteweg-de Vries hierarchies. Finally, Bogdanov [9] considers 2-component integrable generalizations of the dispersionless 2D Toda lattice hierarchy connected with non-Hamiltonian vector fields, similar to the Manakov-Santini hierarchy generalizing the dKP hierarchy. He presents the simplest 2-component generalization of the dispersionless 2DTL equation, being its differential reduction analogous to the Dunajski interpolating system. Some papers in the issue are concerned with methods to construct solutions of integrable systems, while others place more emphasis on studying properties of specific solutions of applicative interest. Among the first approach, the paper by Kaup and van Gorder [10] describes perturbation theory applied to the Inverse Scattering Transform in 3x eigenvalue problems of Zakharov-Shabat's type. Schiebold [11] studies a projection method to construct solutions of the Ablowitz-Kaup-Newell-Segur (AKNS) system, which enables her to write explicit N-soliton solutions in closed form. An example of the second kind is the paper by Biondini and Wang [12], who study in detail the behaviour of line soliton solutions of the 2DTL, describing their directions and amplitudes and also the richness of their interactions, which include resonant soliton interactions and web structure. An important field of study in integrable systems relates to the singularity structure of the solutions to nonlinear equations. When all movable singularities are poles, the system is said to have the Painleve property. The solutions may be multivalued but they can be analytically continued to meromorphic functions on the universal cover of the punctured Riemann sphere (the punctures being the fixed singularities) and the spectral curve is an affine algebraic curve. Benes and Previato [13] study the connection between the Painleve property and algebras of differential operators, extending an approach initiated by Flaschka. Solutions to some integrable systems can be constructed in terms of analytic objects associated to a spectral algebraic curve. It is therefore of interest to study the Riemann surfaces of algebraic functions, a program illustrated in the paper by Braden and Northover [14], who have implemented some algorithms for this purpose in a popular symbolic computation software. In the paper by Zhilinski [15], the critical points of the energy momentum map in classical Hamiltonian problems with nontrivial monodromy are shown to form regular lattices. The quantum mechanical counterpart has similar lattices for the joint spectrum of the commuting observables. Some examples are given in which these points form special geometric patterns. Claeys [16] uses analytic techniques and Riemann-Hilbert problems to study the asymptotic behaviour when x and t tend to infinity of a solution to the second member of the Painleve I hierarchy, which arises in multicritical string model theory and random matrix theory. This solution is conjectured to describe the universal asymptotics for Hamiltonian perturbations of hyperbolic equations near the point of gradient catastrophe for the unperturbed equation. Darboux and Backlund transformations were born more than a century ago in the context of the geometric theory of surfaces. In the past few decades they have become a useful element in the theory of integrability, with applications in different guises. Typically, they appear in dressing methods that show how to construct new interesting solutions from known simple ones. A few of the contributed papers to the issue make use of these transformations as one of their fundamental objects. Liu et al [17] use iterated Darboux transformations to construct compact representations of the multi-soliton solutions to the derivative nonlinear Schroedinger (DNLS) equation. Ragnisco and Zullo [18] construct Backlund transformations for the trigonometric classical Gaudin magnet in the partially anisotropic (xxz) case, identifying the subcase of transformations that preserve the real character of the variables. The recently discovered exceptional polynomials are complete polynomial systems that satisfy Sturm-Liouville problems but differ from the classical families of Hermite, Laguerre and Jacobi. Gomez-Ullate et al [19] prove that the families of exceptional orthogonal polynomials known to date can be obtained from the classical ones via a Darboux transformation, which becomes a useful tool to derive some of their properties. Integrability in the context of classical mechanics is associated to the existence of a sufficient number of conserved quantities, which allows sometimes an explicit integration of the equations of motion. This is the case for the motion of the Chaplygin sleigh, a rigid body motion on a fluid with nonholonomic constraints studied in the paper by Fedorov and Garcia-Naranjo [20], who derive explicit solutions and study their asymptotic behaviour. In connection with classical mechanics, some techniques of KAM theory have been used by Procesi [21] to derive normal forms for the NLS equation in its Hamiltonian formulation and prove existence and stability of quasi-periodic solutions in the case of periodic boundary conditions. Algebraic and group theoretic aspects of integrability are covered in a number of papers in the issue. The quest for symmetries of a system of differential equations usually allows us to reduce the order or the number of equations or to find special solutions possesing that symmetry, but algebraic aspects of integrable systems encompass a wide and rich spectrum of techniques, as evidenced by the following contributions. Muriel and Romero [22] perform a systematic study of all second order nonlinear ODEs that are linearizable by generalized Sundman and point transformations, showing that the two classes are inequivalent and providing an explicit characterization thereof. Lie algebras are also prominent in the work of Gerdjikov et al [23], where a class of integrable PDEs associated to symmetric spaces is studied in detail. In their approach, systems of nonlinear integrable PDEs are obtained as reductions of generic integrable systems corresponding to Lax operators with matrix coefficients. The reduction here is carried out using a reduction group which reflects symmetries of the Lax operator. These symmetries allow also a characterization of the corresponding Riemann-Hilbert data. Habibullin [24] employs algebraic techniques to study discrete chains of differential-difference equations that are Darboux integrable, i.e. that admit a certain number of nontrivial first integrals. Musso [25] provides a unified algebraic framework for the rational, trigonometric and elliptic Gaudin models. The results are achieved using a generalization of the Gaudin algebras and of the so-called coproduct method. Odesskii and Sokolov [26] present a classification of all infinite (1+1)-dimensional hydrodynamic-type chains of shift one. They establish a one-to-one correspondence between integrable chains and infinite triangular Gibbons-Tsarev (GT) systems and thus reduce the classification problem to a description of all GT-systems. In Korff's paper [27] we find a study of various algebraic and combinatorial structures that emerge in the statistical vertex model with infinite spin, an integrable model associated to a certain quantum affine algebra. In the crystal limit, this model is connected with the WZNW model in conformal field theory. The motivation for some of the submitted contributions arises also from field theories in theoretical physics. Ferreira et al [28] construct soliton solutions with non-zero topological charges to the Skyrme-Faddeev model in Yang-Mills theory. Using techniques of differential geometry and complex analysis, Manton and Rink [29] explore vortex solutions on hyperbolic surfaces extending an approach by Witten. These solutions can be interpreted as self-dual SU(2) Yang-Mills fields on R4. Shah and Woodhouse [30] use the Penrose-Ward correspondence from twistor theory to relate generalized anti self-duality equations to certain isomonodromic problems whose solutions are expressed in terms of generalized hypergeometric functions. Applications of integrable systems and nonlinear phenomena in other fields are also present in some of the papers. Kanna et al [31] study the collision of soliton solutions to coherently coupled NLS equations using a variant of the Hirota bilinearization method. Their results have applications in pulse shaping in nonlinear optics. Calogero et al [32] present examples of systems of ODEs with quadratic nonlinearities that could describe rate equations in chemical dynamics. They derive explicit conditions on the parameters of the problem for which the solutions are periodic and isochronous. Ablowitz and Haut [33] study the motion of large amplitude water waves with surface tension using asymptotic expansions and providing a comparison with experimental results. This issue is the result of the collaboration of many individuals. We would like to thank the editors and staff of the Journal of Physics A: Mathematical and Theoretical for their enthusiastic support and efficient help during the preparation of this issue. A key factor has been the work of many anonymous referees who performed careful analysis and scrutiny of the research papers submitted to this issue, often making remarks which helped to improve their quality and readability. They carried out dedicated, altruistic work with a very high standard and this issue would not exist without their contribution. Finally, we would like to thank the authors who responded to our open call, sending us their most recent results and sharing with us the enthusiasm and interest for this fascinating field of research. We hope that this collection of papers will provide a good overview for anyone interested in recent developments in the field of integrability and nonlinear phenomena. [1] Integrable models in nonlinear optics and soliton solutions Degasperis A [2] Hamiltonian PDEs: deformations, integrability, solutions Dubrovin B [3] Smooth and peaked solitons of the CH equation Holm D D and Ivanov R I [4] KP solitons in shallow water Kodama Y [5] Two extensions of 1D Toda hierarchy Takasaki K [6] On the Lax representation of the 2-component KP and 2D Toda hierarchies Guido Carlet and Manuel Manas [7] The q-deformed mKP hierarchy with self-consistent sources, Wronskian solutions and solitons Lin R L, Peng H and Manas M [8] Hodograph solutions of the dispersionless coupled KdV hierarchies, critical points and the Euler-Poisson-Darboux equation Konopelchenko B, Martinez Alonso L and E Medina [9] Non-Hamiltonian generalizations of the dispersionless 2DTL hierarchy Bogdanov L V [10] Squared eigenfunctions and the perturbation theory for the nondegenerate N x N operator: a general outline Kaup D J and Van Gorder R A [11] The noncommutative AKNS system: projection to matrix systems, countable superposition and soliton-like solutions Schiebold C [12] On the soliton solutions of the two-dimensional Toda lattice Biondini G and Wang D [13] Differential algebra of the Painleve property Benes G N and Previato E [14] Klein's curve Braden H W and Northover T P [15] Quantum monodromy and pattern formation Zhilinskii B [16] A symptotics for a special solution to the second member of the Painleve I hierarchy Claeys T [17] Darboux transformation for a two-component derivative nonlinear Schroedinger equation Ling L and Liu Q P [18] Backlund transformations as exact integrable time discretizations for the trigonometric Gaudin model Ragnisco O and Zullo F [19] Exceptional orthogonal polynomials and the Darboux transformation Gomez-Ullate D, Kamran N and Milson R [20] The hydrodynamic Chaplygin sleigh Fedorov Y N and Garcia-Naranjo L C [21] A normal form for beam and non-local nonlinear Schroedinger equations Procesi M [22] Nonlocal transformations and linearization of second-order ordinary differential equations Muriel and Romero J L [23] Reductions of integrable equations on A.III-type symmetric spaces Gerdjikov V S, Mikhailov A V and Valchev T I [24] On Darboux-integrable semi-discrete chains Habibullin I, Zheltukhina N and Sakieva A [25] Loop coproducts, Gaudin models and Poisson coalgebras Musso F [26] Classification of integrable hydrodynamic chains Odesskii A V and Sokolov V V [27] Noncommutative Schur polynomials and the crystal limit of the Uq sl(2)-vertex model Korff C [28] Axially symmetric soliton solutions in a Skyrme-Faddeev-type model with Gies's extension Ferreira L A, Sawado N and Toda K [29] Vortices on hyperbolic surfaces Manton N S and Rink N A [30] Multivariate hypergeometric cascades, isomonodromy problems and Ward ansatze Shah M R and Woodhouse N J M [31] Coherently coupled bright optical solitons and their collisions Kanna T, Vijayajayanthi M and Lakshmanan M [32] Isochronous rate equations describing chemical reactions Calogero F, Leyvraz F and Sommacal M [33] Asymptotic expansions for solitary gravity-capillary waves in two and three dimensions Ablowitz M J and Haut T S

  1. Nonequilibrium phenomena in high Landau levels

    NASA Astrophysics Data System (ADS)

    Dmitriev, I. A.; Mirlin, A. D.; Polyakov, D. G.; Zudov, M. A.

    2012-10-01

    Developments in the physics of 2D electron systems during the last decade revealed a new class of nonequilibrium phenomena in the presence of a moderately strong magnetic field. The hallmark of these phenomena is magnetoresistance oscillations generated by the external forces that drive the electron system out of equilibrium. The rich set of dramatic phenomena of this kind, discovered in high-mobility semiconductor nanostructures, includes, in particular, microwave radiation-induced resistance oscillations and zero-resistance states, as well as Hall field-induced resistance oscillations and associated zero-differential resistance states. The experimental manifestations of these phenomena and the unified theoretical framework for describing them in terms of a quantum kinetic equation are reviewed. This survey also contains a thorough discussion of the magnetotransport properties of 2D electrons in the linear-response regime, as well as an outlook on future directions, including related nonequilibrium phenomena in other 2D electron systems.

  2. Understanding the Physics of changing mass phenomena

    NASA Astrophysics Data System (ADS)

    Ellermeijer, A. L.

    2008-05-01

    Changing mass phenomena, like a falling chain or a bungee jumper, might give surprising results, even for experienced physicists. They have resulted in hot discussions in journals, in which for instance Physics professors claim the impossibility of an acceleration larger then g in case of a bungee jumper. These phenomena are also interesting as topics for challenging student projects, and used as such by Dutch high school students. I will take these phenomena as the context in which I like to demonstrate the possibilities of ICT in the learning process of physics. Especially dynamical modeling enables us to describe these phenomena in an elegant way and with knowledge of high school mathematics. Furthermore tools for video-analysis and data from measurements with sensors allow us to study the phenomena in experiments. This example demonstrates the level of implementation of ICT in Physics Education in The Netherlands [1].

  3. Cold-Cathodes for Sensors and Vacuum Microelectronics

    SciTech Connect

    Siegal, M.P.; Sullivan, J.P.; Tallant, D.R.; Simpson, R.L.; DiNardo, N.J.; Mercer, T.W.; Martinez-Miranda, L.J.

    1998-05-01

    The aim of this laboratory-directed research and development project was to study amorphous carbon (a-C) thin films for eventual cold-cathode electron emitter applications. The development of robust, cold-cathode emitters are likely to have significant implications for modern technology and possibly launch a new industry: vacuum micro-electronics (VME). The potential impact of VME on Sandia`s National Security missions, such as defense against military threats and economic challenges, is profound. VME enables new microsensors and intrinsically radiation-hard electronics compatible with MOSFET and IMEM technologies. Furthermore, VME is expected to result in a breakthrough technology for the development of high-visibility, low-power flat-panel displays. This work covers four important research areas. First, the authors studied the nature of the C-C bonding structures within these a-C thin films. Second, they determined the changes in the film structures resulting from thermal annealing to simulate the effects of device processing on a-C properties. Third, they performed detailed electrical transport measurements as a function of annealing temperature to correlate changes in transport properties with structural changes and to propose a model for transport in these a-C materials with implications on the nature of electron emission. Finally, they used scanning atom probes to determine important aspects on the nature of emission in a-C.

  4. Flash lamp annealing of tungsten surfaces marks a new way to optimized slow positron yields

    NASA Astrophysics Data System (ADS)

    Anwand, W.; Johnson, J. M.; Butterling, M.; Wagner, A.; Skorupa, W.; Brauer, G.

    2013-06-01

    Tungsten in the form of a mono-crystalline foil with an optimum thickness of about 2 μm is often used as a positron moderator in mono-energetic positron beams with 22Na positron sources. The efficiency of such a moderator strongly depends on its prior heat treatment, i.e. an annealing procedure with considerable difficulty at temperatures of about 2000 °C under vacuum conditions. Flash lamp annealing (FLA) has been tested as new method to quickly anneal W foils in order to produce easy manageable, low-cost moderators with a high efficiency. With FLA, just the surface of a W foil is heated above the melting point (3422°C) within 1 to 3 ms, i.e. without melting the whole foil volume. In this way, a surface cleaning is reached connected with a considerable increase in the positron diffusion length. Conventional polycrystalline W foils of 9 μm ± 25% thickness, heat treated by FLA, were characterized and tested as positron moderators. First promising tests result in a moderator efficiency of ~3*10-4 and clearly demonstrate that FLA is also applicable to tungsten meshes.

  5. Improved electromagnetic microwave absorption of the annealed pre-sintered precursor of Mn-Zn ferrite

    NASA Astrophysics Data System (ADS)

    You, Caiyin; Fan, Xiaodong; Tian, Na; He, Jun

    2015-05-01

    The pre-sintered precursor of the Mn-Zn ferrites was used as starting materials to make a material with good electromagnetic microwave absorption. X-ray photoelectron spectra (XPS) analyses show that more Mn2+ and Zn2+ moved to the surface of particles to form non-stoichiometric (Mn, Zn)Fe2O4 ferrite under annealing with a partial H2, improving the electromagnetic impedance matching. Regarding the original precursor, the lowest reflection loss is about -2.9 dB at 6.3 GHz for a 5 mm thick absorber. After vacuum annealing, the lowest reflection loss is around -34.8 dB at 5.9 GHz for 4 mm thick absorber. The lowest reflection loss of -47.6 dB was obtained at 13.2 GHz with a 1.85 mm thick absorber after annealing under a partial H2. This work proposes a simple way to make a good electromagnetic microwave absorption material starting from the pre-sintered precursor of Mn-Zn ferrites.

  6. Peculiarities of the Structural Phase Transformations during Annealing of Doped Titanium-Nitride Coatings

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, S. V.; Korotaev, A. D.; Pinzhin, Yu. P.; Borisov, D. P.

    2013-05-01

    conjunction with microhardness measurements, a study has been performed of changes in the structural phase state and properties of titanium-nitride based coatings during annealings in vacuum to a temperature of 1573 K. It is shown that in coatings with submicron-size grains fragmented into nanosized subgrains, the magnitudes of local residual elastic stresses associated with elastoplastic curvature of the crystal lattice in regions of excess density of residual dislocations of one sign or with grain-boundary stress concentrators are of defining significance. It is established that in such coatings at high annealing temperatures (≥1373 K) grain coarsening and recovery of the intragrain defect structure develop non-uniformly while retaining high values of the density of the dislocations forming it and maintaining the low-angle boundaries at moderate lattice curvature. For annealings of nanocrystalline coatings, it is established that the intensity of precipitation of second-phase particles based on the doping elements has a defining influence on the hardness, characteristics of the structural state, and level of local stresses of titanium nitride nanocrystals.

  7. Processing of silicon solar cells by ion implantation and laser annealing

    NASA Technical Reports Server (NTRS)

    Minnucci, J. A.; Matthei, K. W.; Greenwald, A. C.

    1981-01-01

    Methods to improve the radiation tolerance of silicon cells for spacecraft use are described. The major emphasis of the program was to reduce the process-induced carbon and oxygen impurities in the junction and base regions of the solar cell, and to measure the effect of reduced impurity levels on the radiation tolerance of cells. Substrates of 0.1, 1.0 and 10.0 ohm-cm float-zone material were used as starting material in the process sequence. High-dose, low-energy ion implantation was used to form the junction in n+p structures. Implant annealing was performed by conventional furnace techniques and by pulsed laser and pulsed electron beam annealing. Cells were tested for radiation tolerance at Spire and NASA-LeRC. After irradiation by 1 MeV electrons to a fluence of 10 to the 16th power per sq cm, the cells tested at Spire showed no significant process induced variations in radiation tolerance. However, for cells tested at Lewis to a fluence of 10 to the 15th power per sq cm, ion-implanted cells annealed in vacuum by pulsed electron beam consistently showed the best radiation tolerance for all cell resistivities.

  8. Influence of annealing condition and multicycle AlGaAs/GaAs structures on the Al0.26Ga0.74As surface morphology

    NASA Astrophysics Data System (ADS)

    Wei, Wenzhe; Wang, Yi; Guo, Xiang; Luo, Zijiang; Zhao, Zhen; Zhou, Haiyue; Ding, Zhao

    2015-08-01

    The influence of annealing temperature, As4 beam equivalent pressure and multi-runs growth on AlGaAs/GaAs structures was investigated. The real space ultrahigh vacuum scanning tunneling microscopy images showed that AlGaAs/GaAs surface morphology greatly depends on annealing conditions and initial state of surface. The reasons of the surface phenomenon are proposed, and a physical model was proposed to explain why the multi-runs growth structures can increase AlGaAs surface roughness. The reasonable preparation conditions for AlGaAs/GaAs structures were proposed.

  9. Special Orientation Relationships of CuZr2 in the Annealed Zr64.5Cu35.5 Metallic Glass

    NASA Astrophysics Data System (ADS)

    Yu, Pengfei; Zhang, Lijun; Cheng, Hu; Zhang, Huan; Jing, Qin; Ma, Mingzhen; Liaw, Peter K.; Li, Gong; Liu, Riping

    2015-05-01

    The amorphous Zr64.5Cu35.5 alloy ribbon was prepared and annealed in a high vacuum furnace at 645 K (372 °C) for different times. It was found that the main crystallization phases in the alloy ribbon are CuZr2 and CuZr3. The grains of CuZr2 show special orientation relationships. The grains in opposite dendrites show the same orientation, and adjacent dendrites behave as a twinlike orientation with a (103) twin plane. The CuZr3 with a superstructure is discovered in annealed ZrCu metallic glasses.

  10. Consideration on Isochronal Anneal Technique: From Measurement to Physics

    SciTech Connect

    Flament, O.; Fleetwood, D.M.; Leray, J.L.; Paillet, P.

    1999-03-09

    The isochronal anneal technique used to predict isothermal anneal behavior of MOS devices is analyzed as a function of experimental parameters. The effects of detrapping of trapped holes and compensating electrons are discussed.

  11. Ultrathin gate valve for high vacuum operation

    NASA Technical Reports Server (NTRS)

    Ugiansky, R. J.

    1971-01-01

    Thin, compact, high-vacuum gate valve used to join two vacuum systems together demonstrates multiple operation reliability. Valve measurements and non-protruding handle make valve usable in confined areas.

  12. Ultra-high molecular sink vacuum chamber

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.; Yager, S. P.

    1970-01-01

    Double-wall vacuum chamber can be separated from the remainder of the system and pumped by ultra-clean techniques. Ultrahigh vacuum is maintained by the cryogenic effect of a cold wall and titanium chemisorption.

  13. Vacuum casting of thick polymeric films

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Moacanin, J.

    1979-01-01

    Bubble formation and layering, which often plague vacuum-evaporated films, are prevented by properly regulating process parameters. Vacuum casting may be applicable to forming thick films of other polymer/solvent solutions.

  14. Electron bombardment improves vacuum chamber efficiency

    NASA Technical Reports Server (NTRS)

    Przybyszewski, J.; Swiker, M. A.; Watson, J.

    1965-01-01

    Bombardment of vacuum chamber walls by an electron gun within the chamber achieves greater efficiency with less cost. The ultimate vacuum reached using the gun is greater than the system design level.

  15. Gravitational vacuum polarization. II. Energy conditions in the Boulware vacuum

    SciTech Connect

    Visser, M.

    1996-10-01

    Building on techniques developed in the preceding paper, I investigate the various pointwise and averaged energy conditions for the quantum stress-energy tensor corresponding to a conformally coupled massless scalar field in the Boulware vacuum. I work in the test-field limit, restrict attention to the Schwarzschild geometry, and invoke a mixture of analytical and numerical techniques. In contradistinction to the case of the Hartle-Hawking vacuum, wherein violations of the energy conditions were confined to the region between the event horizon and the unstable photon orbit, I show that in the Boulware vacuum (1) all standard (pointwise and averaged) energy conditions are violated throughout the exterior region, all the way from spatial infinity down to the event horizon, and (2) outside the event horizon the standard pointwise energy conditions are violated in a maximal manner: They are violated at all points and for all null or timelike vectors. (The region inside the event horizon is considerably messier and of dubious physical relevance. Nevertheless, the standard pointwise energy conditions seem to be violated even inside the event horizon.) I argue that this is highly suggestive evidence, pointing to the fact that general self-consistent solutions of semiclassical quantum gravity might {ital not} satisfy the energy conditions and may in fact for certain quantum fields and certain quantum states violate {ital all} the energy conditions. {copyright} {ital 1996 The American Physical Society.}

  16. Novel Non-Vacuum Fabrication of Solid State Lithium Ion Battery Components

    SciTech Connect

    Oladeji, I.; Wood, D. L.; Wood, III, D. L.

    2012-10-19

    The purpose of this Cooperative Research and Development Agreement (CRADA) between Oak Ridge National Laboratory (ORNL) and Planar Energy Devices, Inc. was to develop large-scale electroless deposition and photonic annealing processes associated with making all-solid-state lithium ion battery cathode and electrolyte layers. However, technical and processing difficulties encountered in 2011 resulted in the focus of the CRADA being redirected solely to annealing of the cathode thin films. In addition, Planar Energy Devices de-emphasized the importance of annealing of the solid-state electrolytes within the scope of the project, but materials characterization of stabilized electrolyte layers was still of interest. All-solid-state lithium ion batteries are important to automotive and stationary energy storage applications because they would eliminate the problems associated with the safety of the liquid electrolyte in conventional lithium ion batteries. However, all-solid-state batteries are currently produced using expensive, energy consuming vacuum methods suited for small electrode sizes. Transition metal oxide cathode and solid-state electrolyte layers currently require about 30-60 minutes at 700-800°C vacuum processing conditions. Photonic annealing requires only milliseconds of exposure time at high temperature and a total of <1 min of cumulative processing time. As a result, these processing techniques are revolutionary and highly disruptive to the existing lithium ion battery supply chain. The current methods of producing all-solid-state lithium ion batteries are only suited for small-scale, low-power cells and involve high-temperature vacuum techniques. Stabilized LiNixMnyCozAl1-x-y-zO2 (NMCA) nanoparticle films were deposited onto stainless steel substrates using Planar Energy Devices’ streaming process for electroless electrochemical deposition (SPEED). Since successful SPEED trials were demonstrated by Planar Energy Devices with NMCA prior to 2010, this high-voltage (i.e. 5 V) cathode material was the focus of the project. ORNL had also shown in prior work that photonic annealing can be used to anneal conventionally coated cathode metal oxide structures into the active crystalline phase. Planar Energy Devices also had demonstrated SPEED with solid electrolyte layers consisting of LiGaAlSPO4 prior to the start of the project.

  17. Switching Circuit for Shop Vacuum System

    NASA Technical Reports Server (NTRS)

    Burley, R. K.

    1987-01-01

    No internal connections to machine tools required. Switching circuit controls vacuum system draws debris from grinders and sanders in machine shop. Circuit automatically turns on vacuum system whenever at least one sander or grinder operating. Debris safely removed, even when operator neglects to turn on vacuum system manually. Pickup coils sense alternating magnetic fields just outside operating machines. Signal from any coil or combination of coils causes vacuum system to be turned on.

  18. Spectra of thermoprogrammed annealing of photoinduced color centers

    NASA Astrophysics Data System (ADS)

    Glazkova, N. I.; Mikhaylov, R. V.; Kuznetsov, V. N.

    2015-04-01

    The kinetics of photoinduced formation and thermoprogrammed annealing of color centers in photochromic rutile ceramics has been studied in situ with the aid of a specially designed attachment for a spectrofluorimeter. Using a regime of constant heating rate, the spectra of color center annealing have been measured and the energy depths of hole traps responsible for the annealing of these centers have been determined.

  19. AUTOMATED MALLEABLE ANNEALING OVENS SLOWLY HEAT AND COOL CASTINGS AS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AUTOMATED MALLEABLE ANNEALING OVENS SLOWLY HEAT AND COOL CASTINGS AS THEY MOVE IN BINS ALONG TRACKS IN THE OVEN BOTTOM IN THE MALLEABLE ANNEALING BUILDING. THIS PROCESS TRANSFORMS BRITTLE WHITE IRON CASTINGS INTO SOFTER, STRONGER MALLEABLE IRON. - Stockham Pipe & Fittings Company, Malleable Annealing Building, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  20. Vacuum template synthesis of multifunctional nanotubes with tailored nanostructured walls.

    PubMed

    Filippin, A Nicolas; Macias-Montero, Manuel; Saghi, Zineb; Idígoras, Jesús; Burdet, Pierre; Barranco, Angel; Midgley, Paul; Anta, Juan A; Borras, Ana

    2016-01-01

    A three-step vacuum procedure for the fabrication of vertical TiO2 and ZnO nanotubes with three dimensional walls is presented. The method combines physical vapor deposition of small-molecules, plasma enhanced chemical vapor deposition of inorganic functional thin films and layers and a post-annealing process in vacuum in order to remove the organic template. As a result, an ample variety of inorganic nanotubes are made with tunable length, hole dimensions and shapes and tailored wall composition, microstructure, porosity and structure. The fabrication of multishell nanotubes combining different semiconducting oxides and metal nanoparticles is as well explored. This method provides a feasible and reproducible route for the fabrication of high density arrays of vertically alligned nanotubes on processable substrates. The emptying mechanism and microstructure of the nanotubes have been elucidated through SEM, STEM, HAADF-STEM tomography and energy dispersive X-ray spectroscopy. In this article, as a proof of concept, it is presented the straightforward integration of ZnO nanotubes as photoanode in a photovoltaic cell and as a photonic oxygen gas sensor. PMID:26860367

  1. Vacuum template synthesis of multifunctional nanotubes with tailored nanostructured walls

    NASA Astrophysics Data System (ADS)

    Filippin, A. Nicolas; Macias-Montero, Manuel; Saghi, Zineb; Idígoras, Jesús; Burdet, Pierre; Barranco, Angel; Midgley, Paul; Anta, Juan A.; Borras, Ana

    2016-02-01

    A three-step vacuum procedure for the fabrication of vertical TiO2 and ZnO nanotubes with three dimensional walls is presented. The method combines physical vapor deposition of small-molecules, plasma enhanced chemical vapor deposition of inorganic functional thin films and layers and a post-annealing process in vacuum in order to remove the organic template. As a result, an ample variety of inorganic nanotubes are made with tunable length, hole dimensions and shapes and tailored wall composition, microstructure, porosity and structure. The fabrication of multishell nanotubes combining different semiconducting oxides and metal nanoparticles is as well explored. This method provides a feasible and reproducible route for the fabrication of high density arrays of vertically alligned nanotubes on processable substrates. The emptying mechanism and microstructure of the nanotubes have been elucidated through SEM, STEM, HAADF-STEM tomography and energy dispersive X-ray spectroscopy. In this article, as a proof of concept, it is presented the straightforward integration of ZnO nanotubes as photoanode in a photovoltaic cell and as a photonic oxygen gas sensor.

  2. Vacuum-deposited diphenyl-diketo-pyrrolopyrrole solar cell structures

    NASA Astrophysics Data System (ADS)

    Georgieva, G.; Dobrikov, G.; Heinrichova, P.; Karashanova, D.; Dimov, D.; Vala, M.; Weiter, M.; Zhivkov, I.

    2016-03-01

    Photoelectrical parameters were measured of solar cell ITO|PEDOT:PSS|composite| Al samples. The active composite film was deposited in vacuum by co-evaporation of 3,6-bis(5-(benzofuran-2-yl)thiophen-2-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (DPP(TBFu)2) and fullerene (C60). Additional DPP(TBFu)2:C60 composite films were studied by spectroscopy in the ultraviolet and visible region (UV-VIS) and scanning electron microscopy (SEM). It was found that solvent annealing (SVA) of composite DPP(TBFu)2:C60 vacuum-deposited films with tetrahydrofuran vapors improves the solar cell parameters by increasing the efficiency more than tenfold. This could be related to the more homogenized structure of the SVA composite film, as observed by SEM. The increased light absorption, as shown by UV-VIS spectroscopy, around the peak at 350 nm contributed to the better SVA solar cell performance. Photogeneration in the samples follows a monomolecular mechanism.

  3. Vacuum template synthesis of multifunctional nanotubes with tailored nanostructured walls

    PubMed Central

    Filippin, A. Nicolas; Macias-Montero, Manuel; Saghi, Zineb; Idígoras, Jesús; Burdet, Pierre; Barranco, Angel; Midgley, Paul; Anta, Juan A.; Borras, Ana

    2016-01-01

    A three-step vacuum procedure for the fabrication of vertical TiO2 and ZnO nanotubes with three dimensional walls is presented. The method combines physical vapor deposition of small-molecules, plasma enhanced chemical vapor deposition of inorganic functional thin films and layers and a post-annealing process in vacuum in order to remove the organic template. As a result, an ample variety of inorganic nanotubes are made with tunable length, hole dimensions and shapes and tailored wall composition, microstructure, porosity and structure. The fabrication of multishell nanotubes combining different semiconducting oxides and metal nanoparticles is as well explored. This method provides a feasible and reproducible route for the fabrication of high density arrays of vertically alligned nanotubes on processable substrates. The emptying mechanism and microstructure of the nanotubes have been elucidated through SEM, STEM, HAADF-STEM tomography and energy dispersive X-ray spectroscopy. In this article, as a proof of concept, it is presented the straightforward integration of ZnO nanotubes as photoanode in a photovoltaic cell and as a photonic oxygen gas sensor. PMID:26860367

  4. 14 CFR 25.1433 - Vacuum systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Vacuum systems. 25.1433 Section 25.1433... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment 25.1433 Vacuum systems. There... discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe....

  5. 14 CFR 29.1433 - Vacuum systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Vacuum systems. 29.1433 Section 29.1433... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment 29.1433 Vacuum systems. (a... the discharge lines from the vacuum air pump when the delivery temperature of the air becomes...

  6. Ion pump provides increased vacuum pumping speed

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Multiple-cell ion pumps with increased vacuum pumping speed are used for producing ultrahigh vacuums in vacuum tubes and mass spectrometers. The pump has eight cathode-anode magnetron cells arranged in a cylinder which increase the surface area of the cathode.

  7. 14 CFR 29.1433 - Vacuum systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Vacuum systems. 29.1433 Section 29.1433... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1433 Vacuum systems. (a.... (b) Each vacuum air system line and fitting on the discharge side of the pump that might...

  8. 46 CFR 154.804 - Vacuum protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Vacuum protection. 154.804 Section 154.804 Shipping... Systems § 154.804 Vacuum protection. (a) Except as allowed under paragraph (b) of this section, each cargo tank must have a vacuum protection system meeting paragraph (a)(1) of this section and either...

  9. 14 CFR 29.1433 - Vacuum systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vacuum systems. 29.1433 Section 29.1433... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1433 Vacuum systems. (a... the discharge lines from the vacuum air pump when the delivery temperature of the air becomes...

  10. 46 CFR 154.804 - Vacuum protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Vacuum protection. 154.804 Section 154.804 Shipping... Systems § 154.804 Vacuum protection. (a) Except as allowed under paragraph (b) of this section, each cargo tank must have a vacuum protection system meeting paragraph (a)(1) of this section and either...

  11. Utilize Vacuum Forming to Make Interdisciplinary Connections

    ERIC Educational Resources Information Center

    Love, Tyler S.; Valenza, Frank

    2011-01-01

    The concept of vacuum forming has been around since the 19th century, despite not being fully utilized in industry until the 1950s. In the past, industrial arts classes have used vacuum-forming projects to concentrate solely on the manufacturing process and the final product. However, vacuum forming is not just an old industrial arts activity; it…

  12. 14 CFR 25.1433 - Vacuum systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Vacuum systems. 25.1433 Section 25.1433... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There... discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe....

  13. 14 CFR 29.1433 - Vacuum systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Vacuum systems. 29.1433 Section 29.1433... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1433 Vacuum systems. (a... the discharge lines from the vacuum air pump when the delivery temperature of the air becomes...

  14. 14 CFR 25.1433 - Vacuum systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vacuum systems. 25.1433 Section 25.1433... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There... discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe....

  15. Utilize Vacuum Forming to Make Interdisciplinary Connections

    ERIC Educational Resources Information Center

    Love, Tyler S.; Valenza, Frank

    2011-01-01

    The concept of vacuum forming has been around since the 19th century, despite not being fully utilized in industry until the 1950s. In the past, industrial arts classes have used vacuum-forming projects to concentrate solely on the manufacturing process and the final product. However, vacuum forming is not just an old industrial arts activity; it

  16. 14 CFR 29.1433 - Vacuum systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Vacuum systems. 29.1433 Section 29.1433... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1433 Vacuum systems. (a.... (b) Each vacuum air system line and fitting on the discharge side of the pump that might...

  17. Synchronization Phenomena and Epoch Filter of Electroencephalogram

    NASA Astrophysics Data System (ADS)

    Matani, Ayumu

    Nonlinear electrophysiological synchronization phenomena in the brain, such as event-related (de)synchronization, long distance synchronization, and phase-reset, have received much attention in neuroscience over the last decade. These phenomena contain more electrical than physiological keywords and actually require electrical techniques to capture with electroencephalography (EEG). For instance, epoch filters, which have just recently been proposed, allow us to investigate such phenomena. Moreover, epoch filters are still developing and would hopefully generate a new paradigm in neuroscience from an electrical engineering viewpoint. Consequently, electrical engineers could be interested in EEG once again or from now on.

  18. Radiation reaction in quantum vacuum

    NASA Astrophysics Data System (ADS)

    Seto, Keita

    2015-02-01

    Since the development of the radiating electron theory by P. A. M. Dirac in 1938 [P. A. M. Dirac, Proc. R. Soc. Lond. A 167, 148 (1938)], many authors have tried to reformulate this model, called the "radiation reaction". Recently, this equation has become important for ultra-intense laser-electron (plasma) interactions. In our recent research, we found a stabilized model of the radiation reaction in quantum vacuum [K. Seto et al., Prog. Theor. Exp. Phys. 2014, 043A01 (2014)]. It led us to an updated Fletcher-Millikan charge-to-mass ratio including radiation. In this paper, I will discuss the generalization of our previous model and the new equation of motion with the radiation reaction in quantum vacuum via photon-photon scatterings and also introduce the new tensor d{E}^{μ ν α β }/dm, as the anisotropy of the charge-to-mass ratio.

  19. High performance portable vacuum suitcase

    NASA Astrophysics Data System (ADS)

    Firpo, G.; Buatier de Mongeot, F.; Boragno, C.; Valbusa, U.

    2005-02-01

    We have developed and tested a vacuum suitcase which allows to transport samples under ultrahigh vacuum (UHV) conditions. The suitcase is pumped by a new performant pumping system based on a getter pump, and it reaches an ultimate pressure lower than 3×10-11mbar, which is 2 orders of magnitude better than in the existing projects. Furthermore it has no need for a continuos power supply, no electric or magnetic field, low weight, low cost, and compactness. In order to transfer the sample from the suitcase to the main experimental chamber, in a short time (about 1h) and under UHV conditions, we have also developed a turbo pumped buffer chamber equipped with a cold trap.

  20. In-vacuum exposure shutter

    DOEpatents

    Johnson, Terry A.; Replogle, William C.; Bernardez, Luis J.

    2004-06-01

    An in-vacuum radiation exposure shutter device can be employed to regulate a large footprint light beam. The shutter device includes (a) a source of radiation that generates an energy beam; (2) a shutter that includes (i) a frame defining an aperture toward which the energy beam is directed and (ii) a plurality of blades that are secured to the frame; and (3) device that rotates the shutter to cause the plurality of blades to intercept or allow the energy beam to travel through the aperture. Each blade can have a substantially planar surface and the plurality of blades are secured to the frame such that the planar surfaces of the plurality of blades are substantially parallel to each other. The shutter device is particularly suited for operation in a vacuum environment and can achieve shuttering speeds from about 0.1 second to 0.001 second or faster.

  1. HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM

    SciTech Connect

    William S. McPhee

    2001-08-31

    The Department of Energy (DOE) needs improved technologies to decontaminate large areas of both concrete and steel surfaces. The technology should have high operational efficiency, minimize exposures to workers, and produce low levels of secondary waste. In order to meet the DOE's needs, an applied research and development project for the improvement of a current decontamination technology, Vacuum Blasting, is proposed. The objective of this project is to improve the productivity and lower the expense of the existing vacuum blasting technology which has been widely used in DOE sites for removing radioactive contamination, PCBs, and lead-based paint. The proposed work would increase the productivity rate and provide safe and cost-effective decontamination of the DOE sites.

  2. Ultrahigh vacuum and low-temperature cleaning of oxide surfaces using a low-concentration ozone beam

    SciTech Connect

    Pratt, A.; Graziosi, P.; Bergenti, I.; Dediu, A.; Prezioso, M.; Yamauchi, Y.

    2014-07-15

    We present a novel method of delivering a low-concentration (<15%) ozone beam to an ultra-high vacuum environment for the purpose of cleaning and dosing experimental samples through oxidation processing. The system described is safe, low-cost, and practical and overcomes the limitations of ozone transport in the molecular flow environment of high or ultrahigh vacuum whilst circumventing the use of pure ozone gas which is potentially highly explosive. The effectiveness of this method in removing surface contamination is demonstrated through comparison of high-temperature annealing of a simple oxide (MgO) in ozone and oxygen environments as monitored using quadrupole mass spectroscopy and Auger electron spectroscopy. Additionally, we demonstrate the potential of ozone for obtaining clean complex oxide surfaces without the need for high-temperature annealing which may significantly alter surface structure.

  3. Ultrahigh vacuum and low-temperature cleaning of oxide surfaces using a low-concentration ozone beam

    NASA Astrophysics Data System (ADS)

    Pratt, A.; Graziosi, P.; Bergenti, I.; Prezioso, M.; Dediu, A.; Yamauchi, Y.

    2014-07-01

    We present a novel method of delivering a low-concentration (<15%) ozone beam to an ultra-high vacuum environment for the purpose of cleaning and dosing experimental samples through oxidation processing. The system described is safe, low-cost, and practical and overcomes the limitations of ozone transport in the molecular flow environment of high or ultrahigh vacuum whilst circumventing the use of pure ozone gas which is potentially highly explosive. The effectiveness of this method in removing surface contamination is demonstrated through comparison of high-temperature annealing of a simple oxide (MgO) in ozone and oxygen environments as monitored using quadrupole mass spectroscopy and Auger electron spectroscopy. Additionally, we demonstrate the potential of ozone for obtaining clean complex oxide surfaces without the need for high-temperature annealing which may significantly alter surface structure.

  4. Ultrahigh vacuum and low-temperature cleaning of oxide surfaces using a low-concentration ozone beam.

    PubMed

    Pratt, A; Graziosi, P; Bergenti, I; Prezioso, M; Dediu, A; Yamauchi, Y

    2014-07-01

    We present a novel method of delivering a low-concentration (<15%) ozone beam to an ultra-high vacuum environment for the purpose of cleaning and dosing experimental samples through oxidation processing. The system described is safe, low-cost, and practical and overcomes the limitations of ozone transport in the molecular flow environment of high or ultrahigh vacuum whilst circumventing the use of pure ozone gas which is potentially highly explosive. The effectiveness of this method in removing surface contamination is demonstrated through comparison of high-temperature annealing of a simple oxide (MgO) in ozone and oxygen environments as monitored using quadrupole mass spectroscopy and Auger electron spectroscopy. Additionally, we demonstrate the potential of ozone for obtaining clean complex oxide surfaces without the need for high-temperature annealing which may significantly alter surface structure. PMID:25085182

  5. Annealing Vs. Invasion in Phage λ Recombination

    PubMed Central

    Stahl, M. M.; Thomason, L.; Poteete, A. R.; Tarkowski, T.; Kuzminov, A.; Stahl, F. W.

    1997-01-01

    Genetic recombination catalyzed by λ's Red pathway was studied in rec(+) and recA mutant bacteria by examining both intracellular λ DNA and mature progeny particles. Recombination of nonreplicating phage chromosomes was induced by double-strand breaks delivered at unique sites in vivo. In rec(+) cells, cutting only one chromosome gave nearly maximal stimulation of recombination; the recombinants formed contained relatively short hybrid regions, suggesting strand invasion. In contrast, in recA mutant cells, cutting the two parental chromosomes at non-allelic sites was required for maximal stimulation; the recombinants formed tended to be hybrid over the entire region between the two cuts, implying strand annealing. We conclude that, in the absence of RecA and the presence of non-allelic DNA ends, the Red pathway of λ catalyzes recombination primarily by annealing. PMID:9383045

  6. A guided simulated annealing method for crystallography.

    PubMed

    Chou, C I; Lee, T K

    2002-01-01

    A new optimization algorithm, the guided simulated annealing method, for use in X-ray crystallographic studies is presented. In the traditional simulated annealing method, the search for the global minimum of a cost function is only determined by the ratio of energy change to the temperature. This method designs a new quality function to guide the search for a minimum. Using a multiresolution process, the method is much more efficient in finding the global minimum than the traditional method. Results for two large molecules, isoleucinomycin (C(60)H(102)N(6)O(18)) and an alkyl calix (C(72)H(112)O(8). 4C(2)H(6)O), with different space groups are reported. PMID:11752762

  7. QCD Vacuum Topology and Glueballs

    SciTech Connect

    Forkel, Hilmar

    2004-12-02

    We outline a comprehensive study of spin-0 glueball properties which, in particular, keeps track of the topological gluon structure. Specifically, we implement (semi-hard) topological instanton physics as well as topological charge screening in the QCD vacuum into the operator product expansion (OPE) of the glueball correlators. A realistic instanton size distribution and the (gauge-invariant) renormalization of the instanton contributions are also implemented. Predictions for 0++ and 0-+ glueball properties are presented.

  8. The statistics of vacuum geometry

    NASA Astrophysics Data System (ADS)

    Duncan, Melissa; Gu, Wei; He, Yang-Hui; Zhou, Da

    2014-06-01

    We investigate the vacuum moduli space of supersymmetric gauge theories en masse by probing the space of such vacua from a statistical standpoint. Using quiver gauge theories with = 1 supersymmetry as a testing ground, we sample over a large number of vacua as algebraic varieties, computing explicitly their dimension, degree and Hilbert series. We study the distribution of these geometrical quantities, and also address the question of how likely it is for the moduli space to be Calabi-Yau.

  9. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, Gordon E.

    1998-01-01

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging.

  10. Shock, Post-Shock Annealing, and Post-Annealing Shock in Ureilites

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    2006-01-01

    The thermal and shock histories of ureilites can be divided into four periods: 1) formation, 2) initial shock, 3) post-shock annealing, and 4) post-annealing shock. Period 1 occurred approx.4.55 Ga ago when ureilites formed by melting chondritic material. Impact events during period 2 caused silicate darkening, undulose to mosaic extinction in olivines, and the formation of diamond, lonsdaleite, and chaoite from indigenous carbonaceous material. Alkali-rich fine-grained silicates may have been introduced by impact injection into ureilites during this period. About 57% of the ureilites were unchanged after period 2. During period 3 events, impact-induced annealing caused previously mosaicized olivine grains to become aggregates of small unstrained crystals. Some ureilites experienced reduction as FeO at the edges of olivine grains reacted with C from the matrix. Annealing may also be responsible for coarsening of graphite in a few ureilites, forming euhedral-appearing, idioblastic crystals. Orthopyroxene in Meteorite Hills (MET) 78008 may have formed from pigeonite by annealing during this period. The Rb-Sr internal isochron age of approx.4.0 Ga for MET 78008 probably dates the annealing event. At this late date, impacts are the only viable heat source. About 36% of ureilites experienced period 3 events, but remained unchanged afterwards. During period 4, approx.7% of the ureilites were shocked again, as is evident in the polymict breccia, Elephant Moraine (EET) 83309. This rock contains annealed mosaicized olivine aggregates composed of small individual olivine crystals that exhibit undulose extinction. Ureilites may have formed by impact-melting chondritic material on a primitive body with heterogeneous O isotopes. Plagioclase was preferentially lost from the system due to its low impedance to shock compression. Brief melting and rapid burial minimized the escape of planetary-type noble gases from the ureilitic melts. Incomplete separation of metal from silicates during impact melting left ureilites with relatively high concentrations of trace siderophile elements.

  11. Cosmic vacuum and galaxy formation

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.

    2006-04-01

    It is demonstrated that the protogalactic perturbations must enter the nonlinear regime before the red shift z≈ 1; otherwise they would be destroyed by the antigravity of the vacuum dark energy at the subsequent epoch of the vacuum domination. At the zrrV={M/[(8π/3)ρV]}1/3, where M is the mass of a given over-density and ρV is the vacuum density. The criterion provides a new relation between the largest mass condensations and their spatial scales. All the real large-scale systems follow this relation definitely. It is also shown that a simple formula is possible for the key quantity in the theory of galaxy formation, namely the initial amplitude of the perturbation of the gravitational potential in the protogalactic structures. The amplitude is time independent and given in terms of the Friedmann integrals, which are genuine physical characteristics of the cosmic energies. The results suggest that there is a strong correspondence between the global design of the Universe as a whole and the cosmic structures of various masses and spatial scales.

  12. Improved Aerogel Vacuum Thermal Insulation

    NASA Technical Reports Server (NTRS)

    Ruemmele, Warren P.; Bue, Grant C.

    2009-01-01

    An improved design concept for aerogel vacuum thermal-insulation panels calls for multiple layers of aerogel sandwiched between layers of aluminized Mylar (or equivalent) poly(ethylene terephthalate), as depicted in the figure. This concept is applicable to both the rigid (brick) form and the flexible (blanket) form of aerogel vacuum thermal-insulation panels. Heretofore, the fabrication of a typical aerogel vacuum insulating panel has involved encapsulation of a single layer of aerogel in poly(ethylene terephthalate) and pumping of gases out of the aerogel-filled volume. A multilayer panel according to the improved design concept is fabricated in basically the same way: Multiple alternating layers of aerogel and aluminized poly(ethylene terephthalate) are assembled, then encapsulated in an outer layer of poly(ethylene terephthalate), and then the volume containing the multilayer structure is evacuated as in the single-layer case. The multilayer concept makes it possible to reduce effective thermal conductivity of a panel below that of a comparable single-layer panel, without adding weight or incurring other performance penalties. Implementation of the multilayer concept is simple and relatively inexpensive, involving only a few additional fabrication steps to assemble the multiple layers prior to evacuation. For a panel of the blanket type, the multilayer concept, affords the additional advantage of reduced stiffness.

  13. Running Jobs in the Vacuum

    NASA Astrophysics Data System (ADS)

    McNab, A.; Stagni, F.; Ubeda Garcia, M.

    2014-06-01

    We present a model for the operation of computing nodes at a site using Virtual Machines (VMs), in which VMs are created and contextualized for experiments by the site itself. For the experiment, these VMs appear to be produced spontaneously "in the vacuum" rather having to ask the site to create each one. This model takes advantage of the existing pilot job frameworks adopted by many experiments. In the Vacuum model, the contextualization process starts a job agent within the VM and real jobs are fetched from the central task queue as normal. An implementation of the Vacuum scheme, Vac, is presented in which a VM factory runs on each physical worker node to create and contextualize its set of VMs. With this system, each node's VM factory can decide which experiments' VMs to run, based on site-wide target shares and on a peer-to-peer protocol in which the site's VM factories query each other to discover which VM types they are running. A property of this system is that there is no gate keeper service, head node, or batch system accepting and then directing jobs to particular worker nodes, avoiding several central points of failure. Finally, we describe tests of the Vac system using jobs from the central LHCb task queue, using the same contextualization procedure for VMs developed by LHCb for Clouds.

  14. Annealing studies of highly doped boron superlattices

    SciTech Connect

    Jackman, T. E.; Houghton, D. C.; Jackman, J. A.; Denhoff, M. W.; Kechang, S.; McCaffrey, J.; Rockett, A.

    1989-09-01

    Coevaporation of B/sub 2/ O/sub 3/ during silicon molecular-beam epitaxy at growth temperatures (/ital T//sub /ital G// ) varying from 540 to 800 /degree/C has been used to prepare superlattice structures (/ital pipi/'s) of varying boron concentration (3/times/10/sup 18/ --3/times/10/sup 20/ B cm/sup /minus/3/). The superlattices were subsequently subjected to various annealing procedures and the layers were examined by secondary ion mass spectrometry, electrochemical profiling, and cross-sectional transmission electron microscopy. A significant redistribution of boron was observed even before annealing for /ital T//sub /ital G// /gt/700 /degree/C and high boron concentrations. In addition, significant oxygen was incorporated for /ital T//sub /ital G// /le/700 /degree/C, with a growth rate of 0.5 nm s/sup /minus/1/ and a B/sub 2/ O/sub 3/ flux of 2/times/10/sup 13/ cm/sup /minus/2/ s/sup /minus/1/. After annealing, the boron diffusion coefficients were determined for the layers and found to vary significantly with /ital T//sub /ital G//.

  15. Annealing of Solar Cells and Other Thin Film Devices

    NASA Technical Reports Server (NTRS)

    Escobar, Hector; Kuhlman, Franz; Dils, D. W.; Lush, G. B.; Mackey, Willie R. (Technical Monitor)

    2001-01-01

    Annealing is a key step in most semiconductor fabrication processes, especially for thin films where annealing enhances performance by healing defects and increasing grain sizes. We have employed a new annealing oven for the annealing of CdTe-based solar cells and have been using this system in an attempt to grow US on top of CdTe by annealing in the presence of H2S gas. Preliminary results of this process on CdTe solar cells and other thin-film devices will be presented.

  16. Perspective: Emergent magnetic phenomena at interfaces

    SciTech Connect

    Suzuki, Yuri

    2015-06-01

    The discovery of emergent magnetic phenomena is of fundamental and technological interest. This perspective highlights recent promising examples of emergent ferromagnetism at complex oxide interfaces in the context of spin based electronics.

  17. Frustration Phenomena in Paired-Associate Learning

    ERIC Educational Resources Information Center

    Champion, R. A.; And Others

    1972-01-01

    Two experiments were designed to detect frustration phenomena hitherto only observed in subhuman animals, frustration being defined as the omission of the response item after a correct anticipation in a partial reinforcement schedule. (Authors)

  18. Canister storage building natural phenomena design loads

    SciTech Connect

    Tallman, A.M.

    1996-02-01

    This document presents natural phenomena hazard (NPH) loads for use in the design and construction of the Canister Storage Building (CSB), which will be located in the 200 East Area of the Hanford Site.

  19. Compactified Vacuum in Ten Dimensions.

    NASA Astrophysics Data System (ADS)

    Wurmser, Daniel

    1987-09-01

    Since the 1920's, theories which unify gravity with the other fundamental forces have called for more than the four observed dimensions of space-time. According to such a theory, the vacuum consists of flat four-dimensional space-time described by the Minkowski metric M ^4 and a "compactified" space B. The dimensions of B are small, and the space can only be observed at distance scales smaller than the present experimental limit. These theories have had serious difficulties. The equations of gravity severely restrict the possible choices for the space B. The allowed spaces are complicated and difficult to study. The vacuum is furthermore unstable in the sense that a small perturbation causes the compactified dimensions to expand indefinitely. There is an addition a semi-classical argument which implies that the compactified vacuum be annihilated by virtual black holes. It follows that a universe with compactified extra dimensions could not have survived to the present. These results were derived by applying the equations of general relativity to spaces of more than four dimensions. The form of these equations was assumed to be unchanged by an increase in the number of dimensions. Recently, it has been proposed that gravity in more than four dimensions may involve terms of higher order in the curvature as well as the linear terms present in ordinary general relativity. I illustrate the effect of such terms by considering the example B = S^6 where S ^6 is the six-dimensional sphere. Only when the extra terms are included is this choice of the compactified space allowed. I explore the effect of a small perturbation on such a vacuum. The ten-dimensional spherically symmetric potential is examined, and I determine conditions under which the formation of virtual black holes is forbidden. The example M^4 times S^6 is still plagued by the semi -classical instability, but this result does not hold in general. The requirement that virtual black holes be forbidden provides a test for any theory which predicts a compactified vacuum.

  20. High throughput vacuum chemical epitaxy

    NASA Astrophysics Data System (ADS)

    Fraas, L. M.; Malocsay, E.; Sundaram, V.; Baird, R. W.; Mao, B. Y.; Lee, G. Y.

    1990-10-01

    We have developed a vacuum chemical epitaxy (VCE) reactor which avoids the use of arsine and allows multiple wafers to be coated at one time. Our vacuum chemical epitaxy reactor closely resembles a molecular beam epitaxy system in that wafers are loaded into a stainless steel vacuum chamber through a load chamber. Also as in MBE, arsenic vapors are supplied as reactant by heating solid arsenic sources thereby avoiding the use of arsine. However, in our VCE reactor, a large number of wafers are coated at one time in a vacuum system by the substitution of Group III alkyl sources for the elemental metal sources traditionally used in MBE. Higher wafer throughput results because in VCE, the metal-alkyl sources for Ga, Al, and dopants can be mixed at room temperature and distributed uniformly though a large area injector to multiple substrates as a homogeneous array of mixed element molecular beams. The VCE reactor that we have built and that we shall describe here uniformly deposits films on 7 inch diameter substrate platters. Each platter contains seven two inch or three 3 inch diameter wafers. The load chamber contains up to nine platters. The vacuum chamber is equipped with two VCE growth zones and two arsenic ovens, one per growth zone. Finally, each oven has a 1 kg arsenic capacity. As of this writing, mirror smooth GaAs films have been grown at up to 4 μm/h growth rate on multiple wafers with good thickness uniformity. The background doping is p-type with a typical hole concentration and mobility of 1 × 10 16/cm 3 and 350 cm 2/V·s. This background doping level is low enough for the fabrication of MESFETs, solar cells, and photocathodes as well as other types of devices. We have fabricated MESFET devices using VCE-grown epi wafers with peak extrinsic transconductance as high as 210 mS/mm for a threshold voltage of - 3 V and a 0.6 μm gate length. We have also recently grown AlGaAs epi layers with up to 80% aluminum using TEAl as the aluminum alkyl source. The AlGaAs layer thickness and aluminum content uniformity appear excellent.

  1. Simulated annealing with probabilistic analysis for solving traveling salesman problems

    NASA Astrophysics Data System (ADS)

    Hong, Pei-Yee; Lim, Yai-Fung; Ramli, Razamin; Khalid, Ruzelan

    2013-09-01

    Simulated Annealing (SA) is a widely used meta-heuristic that was inspired from the annealing process of recrystallization of metals. Therefore, the efficiency of SA is highly affected by the annealing schedule. As a result, in this paper, we presented an empirical work to provide a comparable annealing schedule to solve symmetric traveling salesman problems (TSP). Randomized complete block design is also used in this study. The results show that different parameters do affect the efficiency of SA and thus, we propose the best found annealing schedule based on the Post Hoc test. SA was tested on seven selected benchmarked problems of symmetric TSP with the proposed annealing schedule. The performance of SA was evaluated empirically alongside with benchmark solutions and simple analysis to validate the quality of solutions. Computational results show that the proposed annealing schedule provides a good quality of solution.

  2. Vacuum Technology and Standardization-An Update

    NASA Astrophysics Data System (ADS)

    Akram, H. M.; Rashid, H.

    2011-06-01

    Vacuum technology has been vital for the progress in almost every field of modern industrial & scientific research and technological developments. Research in this field is therefore important for the rapid progress in other sophisticated technologies. The modern society require precise know-how of vacuum metrology for its complex and sophisticated manufacturing processes and research activities. Accuracy in vacuum measurements is therefore an essential need for every application. The required accuracy is achieved with the help of well-calibrated vacuum gauges and this is possible only, if there exist proper vacuum standards of required range and accuracy. In this paper, a brief review of recently developed different vacuum standards, namely Standard Mercury Manometer, Standard Volume Expansion System and Standard Orifice Flow System will be presented, employed for the calibration of low, medium and high vacuum gauges respectively. Our recently developed standards are simple in design, least in vibration & degassing rate with desired accuracy, ease of operation and cost effective.

  3. Rotary bayonets for cryogenic and vacuum service

    SciTech Connect

    Rucinski, R.A.; Dixon, K.D.; Krasa, R.; Krempetz, K.J.; Mulholland, G.T.; Trotter, G.R.; Urbin, J.B.

    1993-07-01

    Rotary bayonets were designed, tested, and installed for liquid nitrogen, liquid argon, and vacuum service. This paper will present the design, testing, and service record for two sizes of vacuum jacketed cryogenic rotary bayonets and two sizes of vacuum service rotary bayonets. Materials used in construction provide electrical isolation across the bayonet joint. The joint permits 360 degrees of rotation between the male and female pipe sections while maintaining integrity of service. Assemblies using three such joints were built to allow end connection points to be translated through at least 1 meter of horizontal travel while kept in service. Vacuum jacketed sizes built in-house at Fermi National Accelerator Laboratory are 1-1/2 in. inner pipe size, 3 in. vacuum jacket, and 4 in. inner pipe size, 6 in. vacuum jacket The single wall vacuum service bayonets are in 4 in. and 6 in. pipe sizes. The bayonets have successfully been in active service for over one year.

  4. Annealing effects on the bonding structures, optical and mechanical properties for radio frequency reactive sputtered germanium carbide films

    NASA Astrophysics Data System (ADS)

    Hu, C. Q.; Zhu, J. Q.; Zheng, W. T.; Han, J. C.

    2009-01-01

    The effects of thermal annealing in vacuum on the bonding structures, optical and mechanical properties for germanium carbide (Ge 1- xC x) thin films, deposited by radio frequency (RF) reactive sputtering of pure Ge(1 1 1) target in a CH 4/Ar mixture discharge, are investigated. We find that there are no significant changes in the bonding structure of the films annealed below 300 °C. The fraction of Ge-H bonds for the film annealed at temperatures ( Ta) above 300 °C decreases, whereas that of C-H bonds show a decrease only when Ta exceeds 400 °C. The out-diffusion of hydrogen promotes the formation of Ge-C bonds at Ta above 400 °C and thus leads to a substantial increase in the compressive stress and hardness for the film. The refractive indices and optical gaps for Ge 1- xC x films are almost constant against Ta, which can be ascribed to the unchanged ratios of Ge/C and sp 2-C/sp 3-C concentrations. Furthermore, we also find that the excellent optical transmission for an antireflection Ge 1- xC x double-layer film on ZnS substrate is still maintained after annealing at 700 °C.

  5. Experimental Studies of Light Emission Phenomena in Superconducting RF Cavitites

    SciTech Connect

    Anthony, P.L.; Delayen, J.R.; Fryberger, D.; Goree, W.S.; Mammosser, J.; Szalata, Z.M.; II, J.G.Weisend /SLAC

    2009-08-04

    Experimental studies of light emission phenomena in superconducting RF cavities, which we categorize under the general heading of cavity lights, are described. The cavity lights data, which were obtained using a small CCD video camera, were collected in a series of nine experimental runs ranging from {approx} 1/2 to {approx} 2 h in duration. The video data were recorded on a standard VHS tape. As the runs progressed, additional instrumentation was added. For the last three runs a LabVIEW controlled data acquisition system was included. These runs furnish evidence for several, possibly related, light emission phenomena. The most intriguing of these is what appear to be small luminous objects {le} 1.5 mm in size, freely moving about in the vacuum space, generally without wall contact, as verified by reflections of the tracks in the cavity walls. In addition, on a number of occasions, these objects were observed to bounce off of the cavity walls. The wall-bounce aspect of most of these events was clearly confirmed by pre-bounce and post-bounce reflections concurrent with the tracks. In one of the later runs, a mode of behavior was observed that was qualitatively different from anything observed in the earlier runs. Perhaps the most perplexing aspect of this new mode was the observation of as many as seven luminous objects arrayed in what might be described as a macromolecular formation, coherently moving about in the interior of the cavity for extended periods of time, evidently without any wall contact. It is suggested that these mobile luminous objects are without explanation within the realm of established physics. Some remarks about more exotic theoretical possibilities are made, and future plans are discussed.

  6. Effects of a modular two-step ozone-water and annealing process on silicon carbide graphene

    NASA Astrophysics Data System (ADS)

    Webb, Matthew J.; Polley, Craig; Dirscherl, Kai; Burwell, Gregory; Palmgren, Pâl; Niu, Yuran; Lundstedt, Anna; Zakharov, Alexei A.; Guy, Owen J.; Balasubramanian, Thiagarajan; Yakimova, Rositsa; Grennberg, Helena

    2014-08-01

    By combining ozone and water, the effect of exposing epitaxial graphene on silicon carbide to an aggressive wet-chemical process has been evaluated after high temperature annealing in ultra high vacuum. The decomposition of ozone in water produces a number of oxidizing species, however, despite long exposure times to the aqueous-ozone environment, no graphene oxide was observed after the two-step process. The systems were comprehensively characterized before and after processing using Raman spectroscopy, core level photoemission spectroscopy, and angle resolved photoemission spectroscopy together with low energy electron diffraction, low energy electron microscopy, and atomic force microscopy. In spite of the chemical potential of the aqueous-ozone reaction environment, the graphene domains were largely unaffected raising the prospect of employing such simple chemical and annealing protocols to clean or prepare epitaxial graphene surfaces.

  7. Effects of a modular two-step ozone-water and annealing process on silicon carbide graphene

    SciTech Connect

    Webb, Matthew J. Lundstedt, Anna; Grennberg, Helena; Polley, Craig; Niu, Yuran; Zakharov, Alexei A.; Balasubramanian, Thiagarajan; Dirscherl, Kai; Burwell, Gregory; Guy, Owen J.; Palmgren, Pål; Yakimova, Rositsa

    2014-08-25

    By combining ozone and water, the effect of exposing epitaxial graphene on silicon carbide to an aggressive wet-chemical process has been evaluated after high temperature annealing in ultra high vacuum. The decomposition of ozone in water produces a number of oxidizing species, however, despite long exposure times to the aqueous-ozone environment, no graphene oxide was observed after the two-step process. The systems were comprehensively characterized before and after processing using Raman spectroscopy, core level photoemission spectroscopy, and angle resolved photoemission spectroscopy together with low energy electron diffraction, low energy electron microscopy, and atomic force microscopy. In spite of the chemical potential of the aqueous-ozone reaction environment, the graphene domains were largely unaffected raising the prospect of employing such simple chemical and annealing protocols to clean or prepare epitaxial graphene surfaces.

  8. Microstructure evolution during annealing of TiAl/NiCoCrAl multilayer composite prepared by EB-PVD

    SciTech Connect

    Zhang, Rubing; Zhang, Deming; Chen, Guiqing; Wang, Yuesheng

    2014-07-01

    TiAl/NiCoCrAl laminate composite sheet with a thickness of 0.4–0.6 mm as well as a dimension of 150 mm × 100 mm was fabricated successfully by using electron beam physical vapor deposition (EB-PVD) method. The annealing treatment was processed at 1123 and 1323 K for 3 h in a high vacuum atmosphere, respectively. The phase composition and microstructure of TiAl/NiCoCrAl microlaminated sheet have been analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Based on the sheet characterization and results of the microstructure evolution during annealing treatment process, the diffusion mechanism of interfacial reaction in TiAl/NiCoCrAl microlaminate was investigated and discussed.

  9. Long-term microstructural stability of oxide-dispersion strengthened Eurofer steel annealed at 800 °C

    NASA Astrophysics Data System (ADS)

    Zilnyk, K. D.; Sandim, H. R. Z.; Bolmaro, R. E.; Lindau, R.; Möslang, A.; Kostka, A.; Raabe, D.

    2014-05-01

    Oxide-dispersion strengthened ferritic martensitic steels such as ODS-Eurofer grade are good candidates for structural applications in future fusion power reactors. Long-term annealing treatments in vacuum were carried out in cold-rolled samples (80% reduction in thickness) from 1 h up to 4320 h (6 months) at 800 °C, i.e. the maximum temperature in the ferritic phase field, to follow its softening behavior. The microstructural stability of this steel was mapped using several characterization techniques including scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction, Vickers microhardness testing, X-ray diffraction texture measurements, low-temperature electrical resistivity, and magnetic coercive field measurements. ODS-Eurofer steel displays good microstructural stability. Discontinuous recrystallization occurs at the early stages of annealing resulting in a low volume fraction of recrystallized grains. Extended recovery is the predominant softening mechanism at this temperature for longer times.

  10. A combined ion-sputtering and electron-beam annealing device for the in vacuo postpreparation of scanning probes

    NASA Astrophysics Data System (ADS)

    Eder, Georg; Schlögl, Stefan; Macknapp, Klaus; Heckl, Wolfgang M.; Lackinger, Markus

    2011-03-01

    We describe the setup, characteristics, and application of an in vacuo ion-sputtering and electron-beam annealing device for the postpreparation of scanning probes (e.g., scanning tunneling microscopy (STM) tips) under ultrahigh vacuum (UHV) conditions. The proposed device facilitates the straightforward implementation of a common two-step cleaning procedure, where the first step consists of ion-sputtering, while the second step heals out sputtering-induced defects by thermal annealing. In contrast to the standard way, no dedicated external ion-sputtering gun is required with the proposed device. The performance of the described device is demonstrated by SEM micrographs and energy dispersive x-ray characterization of electrochemically etched tungsten tips prior and after postprocessing.

  11. Effect of annealing atmosphere on the structure and luminescence of Sn-implanted SiO{sub 2} layers

    SciTech Connect

    Lopes, J.M.J.; Zawislak, F.C.; Fichtner, P.F.P.; Lovey, F.C.; Condo, A.M.

    2005-01-10

    Sn nanoclusters are synthesized in 180 nm SiO{sub 2} layers after ion implantation and heat treatment. Annealings in N{sub 2} ambient at high temperatures (T{>=}700 deg. C) lead to the formation of Sn nanoclusters of different sizes in metallic and in oxidized phases. High-resolution transmission electron microscopy (TEM) analyses revealed that the formed larger nanoparticles are composed by a Sn metallic core and a SnO{sub x} shell. The corresponding blue-violet photoluminescence (PL) presents low intensity. However, for heat treatments in vacuum, the PL intensity is increased by a factor of 5 and the TEM data show a homogeneous size distribution of Sn nanoclusters. The low intensity of PL for the N{sub 2} annealed samples is associated with Sn oxidation.

  12. Vacuum Variable Medium Temperature Blackbody

    NASA Astrophysics Data System (ADS)

    Morozova, S. P.; Parfentiev, N. A.; Lisiansky, B. E.; Melenevsky, U. A.; Gutschwager, B.; Monte, C.; Hollandt, J.

    2010-09-01

    This article describes the vacuum variable medium-temperature blackbody (VMTBB) constructed to serve as a highly stable reference source with an aperture diameter of 20 mm in the temperature range from 150 °C to 430 °C under medium-vacuum conditions (10-3 Pa) and in a reduced background environment (liquid-nitrogen-cooled shroud). The VMTBB was realized for the calibration facility at the PTB in the field of reduced background radiation thermometry under vacuum. This facility is intended for performing radiometric and radiation thermometric measurements under vacuum conditions in the temperature range from -173 °C to 430 °C and spectral emissivity measurements in the temperature range from 0 °C to 600 °C without atmospheric interferences. It is difficult to realize a precision blackbody with high emissivity for temperatures above 400 °C. Cavities of such blackbodies are normally made of copper and coated by a paint with high emissivity. But any paint put on copper does not survive several cycles of heating to temperatures up to 450 °C. As a result of investigations at PTB, a special procedure of coating the surface of the cavity by paint with high emissivity has been developed. The cavity surface is coated by chemical nickel plating before covering it by a paint with high emissivity. The general concept and the design of the VMTBB are given. For realization of good temperature uniformity along the complete radiating cavity, a three module design is used consisting of a heat exchanger and two stages of temperature control of the cavity, based on two precision PID controllers. The temperature of the cavity is determined by 15 precision Pt resistance thermometers. Six of them are used for the VMTBB cavity and heat exchanger temperature control, and the others are used for the cavity temperature measurement and correction. A description of the temperature control and measurement system of the VMTBB is presented. Optical ray tracing with a Monte Carlo method (STEEP 3) indicated that the effective emissivity of this blackbody cavity is not worse than 0.9994. Tests of the VMTBB were carried out at the PTB facility, and the radiation of the VMTBB was measured in comparison to the vacuum variable low-temperature blackbody (VLTBB) in the temperature range from 150 °C to 170 °C with the vacuum infrared standard radiation thermometer (VIRST). The temperature uniformity of the blackbody from the bottom to the front of the cavity is better than ±100 mK in the whole temperature range. The stability of the temperature of the blackbody is within 50 mK in the whole temperature range.

  13. Measurement of the accumulation of water ice on optical components in cryogenic vacuum environments

    NASA Astrophysics Data System (ADS)

    Moeller, Trevor M.; Smith, L. Montgomery; Collins, Frank G.; Labello, Jesse M.; Rogers, James P.; Lowry, Heard S.; Crider, Dustin H.

    2012-10-01

    An experiment was performed to study and measure the deposition of water (H2O) ice on optical component surfaces under high-vacuum cryogenic conditions. Water was introduced into a cryogenic vacuum chamber via a hydrated molecular sieve zeolite housed in a valved external chamber, through an effusion cell, and impinged upon a quartz-crystal microbalance (QCM) and first-surface gold-plated mirror. A laser and photodiode setup external to the vacuum chamber monitored the multiple-beam interference reflectance of the ice-mirror configuration while the QCM measured the mass deposition. Data acquired and analyzed from this experiment indicate that water ice under these conditions accumulates on optical component surfaces as a thin film up to thicknesses over 45 microns and can be detected and measured by nonintrusive optical methods based upon multiple-beam interference phenomena. The QCM, a well-established measurement technique, was used to validate the interferometer.

  14. Radiation damage annealing mechanisms and possible low temperature annealing in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.

    1980-01-01

    Deep level transient spectroscopy and the Shockley-Read-Hall recombination theory are used to identify the defect responsible for reverse annealing in 2 ohm-cm n+/p silicon solar cells. This defect, with energy level at Ev + 0.30 eV, has been tentatively identified as a boron-oxygen-vacancy complex. It has been also determined by calculation that the removal of this defect could result in significant annealing at temperatures as low as 200 C for 2 ohm-cm and lower resistivity cells.

  15. Effect of annealing temperature on structure and electrical properties of topological insulator Bi2Te3

    NASA Astrophysics Data System (ADS)

    Urkude, R. R.; Palikundwar, U. A.

    2016-05-01

    Bi2Te3 samples were prepared by precipitation method. The samples were annealed in evacuated quartz tubes and were treated at different temperature for different duration of time. Effects of annealing temperature and time on the structure of Bi2Te3 were studied in detail. The Bi2Te3 samples annealed at temperature 300°C and 450°C for 48Hrs, 72Hrs and 96Hrs were selected for the present study. The structure of Bi2Te3 and related phases were investigated by the X-ray powder diffraction technique. Morphology and chemical compositions of the samples were investigated by scanning electron microscope and energy dispersive X-ray spectroscopy respectively. All the samples were indexed in rhombohedral crystal structure, with a space group R-3m. The structure consists of repeated quintuple layers of atoms, Te2-Bi-Te1-Bi-Te2 stacking along the z-axis of the unit cell. Electrical properties of the sample annealed at 300°C for 96Hrs was evaluated by measurements of the electrical resistivity and magnetoresistance. The magnetoresistance data at low temperature (1.5 to 50 K) were analyzed to investigate weak antilocalization (WAL) effect. MR data followed the Hikami-Larkin-Nagaoka (HLN) equation with a fit parameter α close to -1 as expected for topological surface states at 1.5 K, but for other temperatures the small oscillations were observed which may be due to the phenomena like Shubnikov-de Hass effect.

  16. Effect of thermal annealing on structure and optical band gap of amorphous Se{sub 72}Te{sub 25}Sb{sub 3} thin films

    SciTech Connect

    Dwivedi, D. K. Pathak, H. P. Shukla, Nitesh; Kumar, Vipin

    2014-04-24

    Thin films of a−Se{sub 72}Te{sub 25}Sb{sub 3} were prepared by vacuum evaporation technique in a base pressure of 10{sup −6} Torr on to well cleaned glass substrate. a−Se{sub 72}Te{sub 25}Sb{sub 3} thin films were annealed at different temperatures below their crystallization temperatures for 2h. The structural analysis of the films has been investigated using X-ray diffraction technique. The optical band gap of as prepared and annealed films as a function of photon energy in the wavelength range 400–1100 nm has been studied. It has been found that the optical band gap decreases with increasing annealing temperatures in the present system.

  17. The effect of low temperature thermal annealing on the magnetic properties of Heusler Ni-Mn-Sn melt-spun ribbons

    NASA Astrophysics Data System (ADS)

    Llamazares, J. L. Sánchez; Quintana-Nedelcos, A.; Ríos-Jara, D.; Sánchez-Valdes, C. F.; García-Fernández, T.; García, C.

    2016-03-01

    We report the effect of low temperature vacuum annealing (823 K; 550 °C) on the elemental chemical composition, structural phase transition temperatures, phase structure, and magnetic properties of Ni50.6Mn36.3Sn13.1 as-solidified ribbons. Their elemental chemical composition, highly oriented columnar-like microstructure and single-phase character (L21-type crystal structure for austenite) remain unchanged after this low temperature annealing. Annealed ribbons show a reduction of interatomic distances which lead to a small change in the characteristic phase transition temperatures (~3-6 K) but to a significant rise of ~73 and 63% in the saturation magnetization of the martensite and austenite phases, respectively, that can be strictly ascribed to the strengthening of ferromagnetic interactions due to the change in interatomic distances.

  18. Wet/Dry Vacuum Cleaner

    NASA Technical Reports Server (NTRS)

    Reimers, Harold; Andampour, Jay; Kunitser, Craig; Thomas, Ike

    1995-01-01

    Vacuum cleaner collects and retains dust, wet debris, and liquids. Designed for housekeeping on Space Station Freedom, it functions equally well in normal Earth Gravity or in microgravity. Generates acoustic noise at comfortably low levels and includes circuitry that reduces electromagnetic interference to other electronic equipment. Draws materials into bag made of hydrophobic sheet with layers of hydrophilic super-absorbing pads at downstream end material. Hydrophilic material can gel many times its own weight of liquid. Blower also provides secondary airflow to cool its electronic components.

  19. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, G.E.

    1998-04-14

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by chemical vapor deposition (CVD) or diamond-like carbon (DLC) deposition are disclosed. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 14 figs.

  20. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, G.E.

    1998-03-10

    A cold cathode vacuum discharge tube, and method for making same, are disclosed with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 15 figs.

  1. Ultra high vacuum seal arrangement

    DOEpatents

    Flaherty, Robert

    1981-01-01

    Arrangement for demountably sealing two concentric metallic tubes in an ultra high vacuum system which facilitates remote actuation. A tubular seal includes integral spaced lips which circumferentially engage the metallic tubes. The lips plastically deform the metallic tubes by mechanical forces resulting from a martensite to austenite transformation of the tubular seal upon application of a predetermined temperature. The sealing force is released upon application of another temperature which causes a transformation from the stronger austenite to the weaker martensite. Use of a dual acting sealing ring and driving ring circumferentially contacting the sealing ring is particularly applicable to sealing larger diameter concentric metallic members.

  2. Case study: Vacuuming for VOCs

    SciTech Connect

    Das, A.; Mazowiecki, C.R.

    1996-06-01

    The soil-vapor extraction system, which draws VOC-laden vapors from the subsurface, has become a popular remediation tool. The soil-vapor extraction (SVE) system, also know as {open_quotes}venting,{close_quotes} has proven to be a popular and cost-effective choice to remediate sites contaminated with volatile organic compounds (VOCs) in the vadose zone. The SVE system includes airflow in the subsurface by applying a vacuum through extraction wells. The system is described in this article, with a report on performance monitoring included.

  3. Laser-triggered vacuum switch

    DOEpatents

    Brannon, P.J.; Cowgill, D.F.

    1990-12-18

    A laser-triggered vacuum switch has a material such as a alkali metal halide on the cathode electrode for thermally activated field emission of electrons and ions upon interaction with a laser beam, the material being in contact with the cathode with a surface facing the discharge gap. The material is preferably a mixture of KCl and Ti powders. The laser may either shine directly on the material, preferably through a hole in the anode, or be directed to the material over a fiber optic cable. 10 figs.

  4. Laser-triggered vacuum switch

    DOEpatents

    Brannon, Paul J.; Cowgill, Donald F.

    1990-01-01

    A laser-triggered vacuum switch has a material such as a alkali metal halide on the cathode electrode for thermally activated field emission of electrons and ions upon interaction with a laser beam, the material being in contact with the cathode with a surface facing the discharge gap. The material is preferably a mixture of KCl and Ti powders. The laser may either shine directly on the material, preferably through a hole in the anode, or be directed to the material over a fiber optic cable.

  5. Extraordinary vacuum black string solutions

    SciTech Connect

    Kim, Hyeong-Chan; Lee, Jungjai

    2008-01-15

    In addition to the boosted static solution there are two other classes of stationary stringlike solutions of the vacuum Einstein equation in (4+1) dimensions. Each class is characterized by three parameters of mass, tension, and momentum flow along the fifth coordinate. We analyze the metric properties of one of the two classes, which was previously assumed to be naked singular, and show that the solution spectrum contains black string and wormhole in addition to the known naked singularity as the momentum flow to mass ratio increases. Interestingly, there does not exist new zero momentum solution in these cases.

  6. Photoluminescence probing of interface evolution with annealing in InGa(N)As/GaAs single quantum wells

    NASA Astrophysics Data System (ADS)

    Shao, Jun; Qi, Zhen; Zhao, H.; Zhu, Liang; Song, Yuxin; Chen, Xiren; Zha, F.-X.; Guo, Shaoling; Wang, S. M.

    2015-10-01

    The effects of thermal annealing on the interfaces of InGa(N)As/GaAs single quantum wells (SQWs) are investigated by excitation-, temperature-, and magnetic field-dependent photoluminescence (PL). The annealing at 750 °C results in more significant blueshift and narrowing to the PL peak than that at 600 °C. Each of the PL spectra can be reproduced with two PL components: (i) the low-energy component (LE) keeps energetically unchanged, while the high-energy component (HE) moves up with excitation and shows at higher energy for the In0.375Ga0.625As/GaAs but crosses over with the LE at a medium excitation power for the In0.375Ga0.625N0.012As0.988/GaAs SQWs. The HE is broader than the corresponding LE, the annealing at 750 °C narrows the LE and HE and shrinks their energetic separation; (ii) the PL components are excitonic, and the InGaNAs shows slightly enhanced excitonic effects relative to the InGaAs SQW; (iii) no typical S-shape evolution of PL energy with temperature is detectable, and similar blueshift and narrowing are identified for the same annealing. The phenomena are mainly from the interfacial processes. Annealing improves the intralayer quality, enhances the interfacial In-Ga interdiffusion, and reduces the interfacial fluctuation. The interfacial interdiffusion does not change obviously by the small N content and hence similar PL-component narrowing and blueshift are observed for the SQWs after a nominally identical annealing. Comparison with previous studies is made and the PL measurements under different conditions are shown to be effective for probing the interfacial evolution in QWs.

  7. Annealing texture of nanostructured IF steel

    SciTech Connect

    Jamaati, Roohollah

    2015-08-15

    In the present work, the evolution of annealing texture in nanostructured interstitial free steel fabricated via accumulative roll bonding (ARB) process was investigated. Textural evolution after post-annealing of ARB-processed samples was evaluated using X-ray diffraction. There were several texture transitions in the γ-fiber and ζ-fiber during ARB and post-annealing treatment. It was found that with increasing the number of ARB cycles, the volume fraction of the low angle grain boundary decreased and the high angle grain boundary fraction increased. Also, the shear texture was dominant after the first cycle, while for other samples, the rolling texture was dominant. The one-cycle sample clearly indicated a weak α-fiber and γ-fiber and a relatively strong ζ-fiber. In addition, during the recrystallization and before the grain growth, the intensity of α-fiber and γ-fiber decreased, the intensity of ζ-fiber increased, and the intensity of (011)〈100〉 orientation in the ε-fiber and η-fiber increased. Moreover, it was concluded that the transition from the rolling texture to the shear one was a sign of occurrence of the recrystallization (before the grain growth). Finally, with increasing the number of ARB cycles, the intensity of rolling and shear textures saturated and a stable texture formed. - Highlights: • There were texture transitions in the γ-fiber and ζ-fiber. • When the number of cycles increased, the low angle grain boundaries decreased. • The shear texture was dominant after the first cycle. • Transition from rolling texture to shear one was a sign of recrystallization. • With increasing the number of ARB cycles, a stable texture formed.

  8. Investigating the students' understanding of surface phenomena

    NASA Astrophysics Data System (ADS)

    Hamed, Kastro Mohamad

    1999-11-01

    This study investigated students' understanding of surface phenomena. The main purpose for conducting this research endeavor was to understand how students think about a complex topic about which they have little direct or formal instruction. The motivation for focusing on surface phenomena stemmed from an interest in integrating research and education. Despite the importance of surfaces and interfaces in research laboratories, in technological applications, and in everyday experiences, no previous systematic effort was done on pedagogy related to surface phenomena. The design of this research project was qualitative, exploratory, based on a Piagetian semi-structured clinical piloted interview, focused on obtaining a longitudinal view of the intended sample. The sampling was purposeful and the sample consisted of forty-four undergraduate students at Kansas State University. The student participants were enrolled in physics classes that spanned a wide academic spectrum. The data were analyzed qualitatively. The main themes that emerged from the analysis were: (a) students used analogies when confronted with novel situations, (b) students mixed descriptions and explanations, (c) students used the same explanation for several phenomena, (d) students manifested difficulties transferring the meaning of vocabulary across discipline boundaries, (e) in addition to the introductory chemistry classes, students used everyday experiences and job-related experiences as sources of knowledge, and (f) students' inquisitiveness and eagerness to investigate and discuss novel phenomena seemed to peak about the time students were enrolled in second year physics classes.

  9. Anomalous Light Phenomena vs. Bioelectric Brain Activity

    NASA Astrophysics Data System (ADS)

    Teodorani, M.; Nobili, G.

    We present a research proposal concerning the instrumented investigation of anomalous light phenomena that are apparently correlated with particular mind states, such as prayer, meditation or psi. Previous research by these authors demonstrate that such light phenomena can be monitored and measured quite efficiently in areas of the world where they are reported in a recurrent way. Instruments such as optical equipment for photography and spectroscopy, VLF spectrometers, magnetometers, radar and IR viewers were deployed and used massively in several areas of the world. Results allowed us to develop physical models concerning the structural and time-variable behaviour of light phenomena, and their kinematics. Recent insights and witnesses have suggested to us that a sort of "synchronous connection" seems to exist between plasma-like phenomena and particular mind states of experiencers who seem to trigger a light manifestation which is very similar to the one previously investigated. The main goal of these authors is now aimed at the search for a concrete "entanglement-like effect" between the experiencer's mind and the light phenomena, in such a way that both aspects are intended to be monitored and measured simultaneously using appropriate instrumentation. The goal of this research project is twofold: a) to verify quantitatively the existence of one very particular kind of mind-matter interaction and to study in real time its physical and biophysical manifestations; b) to repeat the same kind of experiment using the same test-subject in different locations and under various conditions of geomagnetic activity.

  10. Optimised simulated annealing for Ising spin glasses

    NASA Astrophysics Data System (ADS)

    Isakov, S. V.; Zintchenko, I. N.; Rønnow, T. F.; Troyer, M.

    2015-07-01

    We present several efficient implementations of the simulated annealing algorithm for Ising spin glasses on sparse graphs. In particular, we provide a generic code for any choice of couplings, an optimised code for bipartite graphs, and highly optimised implementations using multi-spin coding for graphs with small maximum degree and discrete couplings with a finite range. The latter codes achieve up to 50 spin flips per nanosecond on modern Intel CPUs. We also compare the performance of the codes to that of the special purpose D-Wave devices built for solving such Ising spin glass problems.

  11. Fabrication of Nb-Doped TiO2 Transparent Conducting Films by Postdeposition Annealing under Nitrogen Atmosphere

    NASA Astrophysics Data System (ADS)

    Okazaki, Sohei; Ohkubo, Junpei; Nakao, Shoichiro; Hirose, Yasushi; Hitosugi, Taro; Hasegawa, Tetsuya

    2012-11-01

    Here, we report that highly conductive polycrystalline anatase Nb-doped TiO2 (TNO) thin films can be prepared via crystallization of amorphous precursors under N2 atmosphere. An optimized TNO film on a glass substrate exhibited a low resistivity of 8.4 ×10-4 Ω cm and an absorbance of 6% at a wavelength of 460 nm. These transport and optical properties were comparable to those of TNO films fabricated by vacuum annealing. This demonstrates the potential of TNO as an electrode for GaN-based light-emitting diodes.

  12. Vacuum drying of oak wood

    SciTech Connect

    Fohr, J.P.; Chakir, A.; Arnaud, G.; Peuty, M.A. du

    1995-12-31

    Vacuum drying, i.e., drying under absolute gas pressure of about 10{sup 4} Pa, is an efficient means of reducing the process period and of producing good quality wood. The authors will examine here continuous vacuum drying where the plank surfaces are kept at a constant temperature, which remains above the boiling point, and moisture flowing to the surface is extracted from the kiln. They have carried out an experimental study of oak drying under such conditions. The drying rate and moisture content profile of the sample (40 mm thick) are recorded during the whole drying period. A model of continuous drying is established from general conservation equations with the main approximation that the air is rapidly extracted. The two constitutive equations of the model which describe temperature and water content fields are of a diffusive type and coupled through coefficients. The adequate boundary equation is not a convective one, but expresses a hygroscopic equilibrium between the vapor in the chamber and the wood surface. The mass diffusive coefficient can be adjusted to the drying rates through capillary pressure and bound water diffusion functions. The wood heterogeneity (seasonal growth) is the main factor of discrepancy in these functions. The simulated drying rates correspond with the experimental ones.

  13. Vacuum Attachment for XRF Scanner

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F.; Kaiser, Bruce

    2005-01-01

    Vacuum apparatuses have been developed for increasing the range of elements that can be identified by use of x-ray fluorescent (XRF) scanners of the type mentioned in the two immediately preceding articles. As a consequence of the underlying physical principles, in the presence of air, such an XRF scanner is limited to analysis of chlorine and elements of greater atomic number. When the XRF scanner is operated in a vacuum, it extends the range of analysis to lower atomic numbers - even as far as aluminum and sodium. Hence, more elements will be available for use in XRF labeling of objects as discussed in the two preceding articles. The added benefits of the extended capabilities also have other uses for NASA. Detection of elements of low atomic number is of high interest to the aerospace community. High-strength aluminum alloys will be easily analyzed for composition. Silicon, a major contaminant in certain processes, will be detectable before the process is begun, possibly eliminating weld or adhesion problems. Exotic alloys will be evaluated for composition prior to being placed in service where lives depend on them. And in the less glamorous applications, such as bolts and fasteners, substandard products and counterfeit items will be evaluated at the receiving function and never allowed to enter the operation

  14. Obsessional phenomena and the concept of intentionality.

    PubMed

    Schwartz, J E

    1977-01-01

    Obsessional phenomena exist in a variety of character types. The particular phenomena may be of limited value in total personality assessment. Some speculative links are made between obsessional phenomena and preanal developmental steps. It is suggested that the concept of intentionality of thought and action be examined in these patients to distinguish obsessionals with core conflicts that are primarily neurotic and triadic, from those with more significant, earlier difficulty in the oral period. The concept of intentionality is related to self-object distinction, the use of projections, the sense of self, pathologic ego-superego condensation, and the existence of the ability to tolerate and recognize aggressiveness within. More accurate and rapid diagnostic distinction among obsessionals has implications for different treatment approaches. PMID:914451

  15. The making of extraordinary psychological phenomena.

    PubMed

    Lamont, Peter

    2012-01-01

    This article considers the extraordinary phenomena that have been central to unorthodox areas of psychological knowledge. It shows how even the agreed facts relating to mesmerism, spiritualism, psychical research, and parapsychology have been framed as evidence both for and against the reality of the phenomena. It argues that these disputes can be seen as a means through which beliefs have been formulated and maintained in the face of potentially challenging evidence. It also shows how these disputes appealed to different forms of expertise, and that both sides appealed to belief in various ways as part of the ongoing dispute about both the facts and expertise. Finally, it shows how, when a formal Psychology of paranormal belief emerged in the twentieth century, it took two different forms, each reflecting one side of the ongoing dispute about the reality of the phenomena. PMID:25363382

  16. Theories of dynamical phenomena in sunspots

    NASA Technical Reports Server (NTRS)

    Thomas, J. H.

    1981-01-01

    Attempts that have been made to understand and explain observed dynamical phenomena in sunspots within the framework of magnetohydrodynamic theory are surveyed. The qualitative aspects of the theory and physical arguments are emphasized, with mathematical details generally avoided. The dynamical phenomena in sunspots are divided into two categories: aperiodic (quasi-steady) and oscillatory. For each phenomenon discussed, the salient observational features that any theory should explain are summarized. The two contending theoretical models that can account for the fine structure of the Evershed motion, namely the convective roll model and the siphon flow model, are described. With regard to oscillatory phenomena, attention is given to overstability and oscillatory convection, umbral oscillations and flashes. penumbral waves, five-minute oscillations in sunspots, and the wave cooling of sunspots.

  17. Robot design for a vacuum environment

    NASA Technical Reports Server (NTRS)

    Belinski, S.; Trento, W.; Imani-Shikhabadi, R.; Hackwood, S.

    1987-01-01

    The cleanliness requirements for many processing and manufacturing tasks are becoming ever stricter, resulting in a greater interest in the vacuum environment. Researchers discuss the importance of this special environment, and the development of robots which are physically and functionally suited to vacuum processing tasks. Work is in progress at the Center for robotic Systems in Microelectronics (CRSM) to provide a robot for the manufacture of a revolutionary new gyroscope in high vacuum. The need for vacuum in this and other processes is discussed as well as the requirements for a vacuum-compatible robot. Finally, researchers present details on work done at the CRSM to modify an existing clean-room compatible robot for use at high vacuum.

  18. Advanced Photon Source accelerator ultrahigh vacuum guide

    SciTech Connect

    Liu, C.; Noonan, J.

    1994-03-01

    In this document the authors summarize the following: (1) an overview of basic concepts of ultrahigh vacuum needed for the APS project, (2) a description of vacuum design and calculations for major parts of APS, including linac, linac waveguide, low energy undulator test line, positron accumulator ring (PAR), booster synchrotron ring, storage ring, and insertion devices, and (3) cleaning procedures of ultrahigh vacuum (UHV) components presently used at APS.

  19. [Rarely occurring complications in vacuum extraction].

    PubMed

    Tarina, F; Lipenský, S; Viciánová, L; Hubinská, M

    1985-01-01

    The authors report on two seldom observed complications of vacuum extraction, infraction or fracture of the parietal bone of newborn. They healed up without sequels in the further psychomotoric development. The authors consider vacuum extraction as a contribution to obstetric operation practise. They recommend smaller cups with a maximum diameter of 40 mm and a suction vacuum only to 0,6 kp/cm2 (0,06 M Pa) to be used. PMID:3993263

  20. Annealing furnace for III-V semiconductor devices

    NASA Astrophysics Data System (ADS)

    O'Connor, J. M.; Hier, H. S.; Ketchum, R. M.

    1986-02-01

    A furnace for annealing ion implantation damage in III-V semiconductors has been built and tested. Designed for research applications, the furnace can accommodate odd shapes of material up to 2 in. in diameter. Samples are loaded onto a novel cantilevered support and are not moved during the annealing operation, facilitating proximity annealing techniques. Both chambers of this dual chambered system are O-ring sealed for added safety during annealing in an arsine gas ambient. Electron mobilities between 4400 and 4600 cm2/V s at 300 K are routinely measured for 21017 cm-3 gallium arsenide material annealed in this sytem. The system has been used to anneal indium phosphide as well as gallium arsenide wafers.

  1. Study on thermal annealing of cadmium zinc telluride (CZT) crystals

    SciTech Connect

    Yang, G.; Bolotnikov, A.E.; Fochuk, P.M.; Camarda, G.S.; Cui, Y.; Hossain, A.; Kim, K.; Horace, J.; McCall, B.; Gul, R.; Xu, L.; Kopach, O.V.; and James, R.B.

    2010-08-01

    Cadmium Zinc Telluride (CZT) has attracted increasing interest with its promising potential as a room-temperature nuclear-radiation-detector material. However, different defects in CZT crystals, especially Te inclusions and dislocations, can degrade the performance of CZT detectors. Post-growth annealing is a good approach potentially to eliminate the deleterious influence of these defects. At Brookhaven National Laboratory (BNL), we built up different facilities for investigating post-growth annealing of CZT. Here, we report our latest experimental results. Cd-vapor annealing reduces the density of Te inclusions, while large temperature gradient promotes the migration of small-size Te inclusions. Simultaneously, the annealing lowers the density of dislocations. However, only-Cd-vapor annealing decreases the resistivity, possibly reflecting the introduction of extra Cd in the lattice. Subsequent Te-vapor annealing is needed to ensure the recovery of the resistivity after removing the Te inclusions.

  2. Modeling of fundamental phenomena in welds

    SciTech Connect

    Zacharia, T.; Vitek, J.M.; Goldak, J.A.; DebRoy, T.A.; Rappaz, M.; Bhadeshia, H.K.D.H.

    1993-12-31

    Recent advances in the mathematical modeling of fundamental phenomena in welds are summarized. State-of-the-art mathematical models, advances in computational techniques, emerging high-performance computers, and experimental validation techniques have provided significant insight into the fundamental factors that control the development of the weldment. The current status and scientific issues in the areas of heat and fluid flow in welds, heat source metal interaction, solidification microstructure, and phase transformations are assessed. Future research areas of major importance for understanding the fundamental phenomena in weld behavior are identified.

  3. Incorporating interfacial phenomena in solidification models

    NASA Technical Reports Server (NTRS)

    Beckermann, Christoph; Wang, Chao Yang

    1994-01-01

    A general methodology is available for the incorporation of microscopic interfacial phenomena in macroscopic solidification models that include diffusion and convection. The method is derived from a formal averaging procedure and a multiphase approach, and relies on the presence of interfacial integrals in the macroscopic transport equations. In a wider engineering context, these techniques are not new, but their application in the analysis and modeling of solidification processes has largely been overlooked. This article describes the techniques and demonstrates their utility in two examples in which microscopic interfacial phenomena are of great importance.

  4. Coping with noise in programmable quantum annealers

    NASA Astrophysics Data System (ADS)

    Perdomo-Ortiz, Alejandro

    Solving real-world applications with quantum annealing algorithms requires overcoming several challenges, ranging from translating the computational problem at hand to the quantum-machine language, to tuning several other parameters of the quantum algorithm that have a significant impact on performance of the device. In this talk, we discuss these challenges, strategies developed to enhance performance, and also a more efficient implementation of several applications. For example, in http://arxiv.org/abs/1503.05679 we proposed an method to measure residual systematic biases in the programmable parameters of large-scale quantum annealers. Although the method described there works from a practical point of view, a few questions were left unanswered. One of these puzzles was the observation of a broad distribution in the estimated effective qubit temperatures throughout the device . In this talk, we will present our progress in understanding these puzzles and how these new insights allow for a more effective bias correction protocol. We will present the impact of these new parameter setting and bias correction protocols in the performance of hard discrete optimization problems and in the successful implementation of quantum-assisted machine-learning algorithms.

  5. Annealing Would Improve beta" - Alumina Solid Electrolyte

    NASA Technical Reports Server (NTRS)

    Williams, Roger; Homer, Margie; Ryan, Margaret; Cortez, Roger; Shields, Virgil; Kisor, Adam

    2003-01-01

    A pre-operational annealing process is under investigation as a potential means of preventing a sudden reduction of ionic conductivity in a Beta"-alumina solid electrolyte (BASE) during use. On the basis of tests, the sudden reduction of ionic conductivity, followed by a slow recovery, has been found to occur during testing of the solid electrolyte and electrode components of an alkali metal thermal-to-electric converter (AMTEC) cell. At this time, high-temperature tests of limited duration have indicated the superiority of the treated BASE, but reproducible tests over thousands of hours are necessary to confirm that microcracking has been eliminated. The ionic conductivity of the treated BASE is also measured to be higher than untreated BASE at 1,073 K in low-pressure sodium vapor. Microcracking resulting in loss of conductivity was not observed with treated BASE in one high-temperature experiment, but this result must be duplicated over very long testing times to be sure of the effect. Shorter annealing times (10 to 20 hours) were found to result in significantly less loss of mass; it may be necessary for the packed powder mixture to evolve some Na2O before the Na2O can leave the ceramic.

  6. Magnetic field annealing for improved creep resistance

    SciTech Connect

    Brady, Michael P.; Ludtka, Gail M.; Ludtka, Gerard M.; Muralidharan, Govindarajan; Nicholson, Don M.; Rios, Orlando; Yamamoto, Yukinori

    2015-12-22

    The method provides heat-resistant chromia- or alumina-forming Fe-, Fe(Ni), Ni(Fe), or Ni-based alloys having improved creep resistance. A precursor is provided containing preselected constituents of a chromia- or alumina-forming Fe-, Fe(Ni), Ni(Fe), or Ni-based alloy, at least one of the constituents for forming a nanoscale precipitate MaXb where M is Cr, Nb, Ti, V, Zr, or Hf, individually and in combination, and X is C, N, O, B, individually and in combination, a=1 to 23 and b=1 to 6. The precursor is annealed at a temperature of 1000-1500.degree. C. for 1-48 h in the presence of a magnetic field of at least 5 Tesla to enhance supersaturation of the M.sub.aX.sub.b constituents in the annealed precursor. This forms nanoscale M.sub.aX.sub.b precipitates for improved creep resistance when the alloy is used at service temperatures of 500-1000.degree. C. Alloys having improved creep resistance are also disclosed.

  7. LASOS-laser annealed silicon on sapphire

    NASA Astrophysics Data System (ADS)

    Yaron, G.; Hess, L. D.

    1980-03-01

    Laser annealing techniques were successfully incorporated into standard MOS/SOS processing to increase transistor channel mobility and processing yield. Silicon islands were photolithographically defined and chemically etched (by KOH) on standard SOS wafers. The islands were exposed to radiation from an excimer laser (2490-A wavelength) having a pulse duration of 25 ns, a beam size in the range of 0.1-0.2 sq cm, and an energy density in the range of 0.5 - 1.0 J/sq cm. Using standard processing techniques MOS transistors were fabricated and characterized. It was found that exposure at an energy density of about 0.80 J/sq cm results in rounding the Si island edges, thus eliminating the 'V'-shaped groove profile of the gate oxide and improving Al step coverage. The electrical characteristics of MOS transistors fabricated over laser annealed islands exhibited a 30-percent increase in channel mobility with a small negative shift (less than 0.2 V) in the transistor threshold voltage.

  8. Vacuum Technology Considerations For Mass Metrology

    PubMed Central

    Abbott, Patrick J.; Jabour, Zeina J.

    2011-01-01

    Vacuum weighing of mass artifacts eliminates the necessity of air buoyancy correction and its contribution to the measurement uncertainty. Vacuum weighing is also an important process in the experiments currently underway for the redefinition of the SI mass unit, the kilogram. Creating the optimum vacuum environment for mass metrology requires careful design and selection of construction materials, plumbing components, pumping, and pressure gauging technologies. We review the vacuum technology1 required for mass metrology and suggest procedures and hardware for successful and reproducible operation. PMID:26989593

  9. Attractor Explosions and Catalyzed Vacuum Decay

    SciTech Connect

    Green, Daniel; Silverstein, Eva; Starr, David

    2006-05-05

    We present a mechanism for catalyzed vacuum bubble production obtained by combining moduli stabilization with a generalized attractor phenomenon in which moduli are sourced by compact objects. This leads straightforwardly to a class of examples in which the Hawking decay process for black holes unveils a bubble of a different vacuum from the ambient one, generalizing the new endpoint for Hawking evaporation discovered recently by Horowitz. Catalyzed vacuum bubble production can occur for both charged and uncharged bodies, including Schwarzschild black holes for which massive particles produced in the Hawking process can trigger vacuum decay. We briefly discuss applications of this process to the population and stability of metastable vacua.

  10. Cold vacuum drying facility design requirements

    SciTech Connect

    IRWIN, J.J.

    1999-07-01

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified.

  11. APS Storage Ring vacuum chamber fabrication

    SciTech Connect

    Goeppner, G.A.

    1990-01-01

    The 1104-m circumference Advanced Photon Source Storage Ring Vacuum System is composed of 240 individual sections, which are fabricated from a combination of aluminum extrusions and machined components. The vacuum chambers will have 3800 weld joints, each subject to strict vacuum requirements, as well as a variety of related design criteria. The vacuum criteria and chamber design are reviewed, including a discussion of the weld joint geometries. The critical fabrication process parameters for meeting the design requirements are discussed. The experiences of the prototype chamber fabrication program are presented. Finally, the required facilities preparation for construction activity is briefly described. 6 refs., 6 figs., 1 tab.

  12. Electrical Strength of Multilayer Vacuum Insulators

    SciTech Connect

    Harris, J R; Kendig, M; Poole, B; Sanders, D M; Caporaso, G J

    2008-07-01

    The electrical strength of vacuum insulators is a key constraint in the design of particle accelerators and pulsed power systems. Vacuum insulating structures assembled from alternating layers of metal and dielectric can result in improved performance compared to conventional insulators, but previous attempts to optimize their design have yielded seemingly inconsistent results. Here, we present two models for the electrical strength of these structures, one assuming failure by vacuum arcing between adjacent metal layers and the other assuming failure by vacuum surface flashover. These models predict scaling laws which are in agreement with the experimental data currently available.

  13. Quantum vacuum noise in physics and cosmology.

    PubMed

    Davies, P. C. W.

    2001-09-01

    The concept of the vacuum in quantum field theory is a subtle one. Vacuum states have a rich and complex set of properties that produce distinctive, though usually exceedingly small, physical effects. Quantum vacuum noise is familiar in optical and electronic devices, but in this paper I wish to consider extending the discussion to systems in which gravitation, or large accelerations, are important. This leads to the prediction of vacuum friction: The quantum vacuum can act in a manner reminiscent of a viscous fluid. One result is that rapidly changing gravitational fields can create particles from the vacuum, and in turn the backreaction on the gravitational dynamics operates like a damping force. I consider such effects in early universe cosmology and the theory of quantum black holes, including the possibility that the large-scale structure of the universe might be produced by quantum vacuum noise in an early inflationary phase. I also discuss the curious phenomenon that an observer who accelerates through a quantum vacuum perceives a bath of thermal radiation closely analogous to Hawking radiation from black holes, even though an inertial observer registers no particles. The effects predicted raise very deep and unresolved issues about the nature of quantum particles, the role of the observer, and the relationship between the quantum vacuum and the concepts of information and entropy. (c) 2001 American Institute of Physics. PMID:12779491

  14. Vacuum mixing increases productivity saves energy

    SciTech Connect

    Haring, B.I.

    1985-11-01

    Rexnord Chemical Products, Inc. produces clear caulking, architectural sealants and other commercial building materials at its 42,000 sq ft plant in Pottstown, PA. Clear caulking is made by mixing together thermoplastic rubber, powdered resins, stabilizers, adhesion promoters and other additives. The materials have a high viscosity, more than 500,000 centipoise. The older manufacturing technology required more than 16 hours of mixing to produce a 150 gallon batch. It took hours of continuous mixing to break down agglomerates formed during the initial mixing cycle. The plant discussed the problem with mixer manufacturers and one suggested processing the batch with a double planetary mixer under vacuum. Mixing materials under vacuum produces a more thorough dispersion, with fewer and smaller agglomerates. Mixing under vacuum can also decrease processing time. The 200-gallon double planetary mixer chosen can mix highly viscous materials because of its stirrer blade design and rotation. Plant personnel developed a successful procedure for processing the caulking under vacuum. The mixer tank is charged with 100 lb of thermoplastic rubber and an equal quantity of resin. After charging, a full vacuum of 29 inches is pulled. The vacuum of valve is closed, the pump shut off and the variable-speed, 40-hp motor set on the slow speed. Rexnord increased production of clear window caulking by approximately 50% by switching from an older manufacturing process to vacuum mixing technology. The vacuum processing sharply decreased the amount of mixing time and produced substantial energy savings. Mixing under vacuum also helped improve product quality.

  15. Film holder for curved vacuum platen

    NASA Technical Reports Server (NTRS)

    Maciel, A., Jr.; Hauber, C. E.

    1972-01-01

    Vacuum apparatus for holding photographic film of various widths against cylindrically curved patens is discussed. Construction details and method of operation are explained. Illustration of equipment is provided.

  16. Complementary resistive switching of annealed Ti/Cu2O/Ti stacks

    NASA Astrophysics Data System (ADS)

    Wang, Hao-Yu; Jou, Shyankay; Huang, Bohr-Ran; Song, Wan-Jhen; Mao, Tzu-Zing

    2016-04-01

    Ti/Cu2O/Ti stacks with 25-nm-thick Cu2O layers were produced by sputter deposition and lift-off processes utilizing three photolithographic masks. Subsequent annealing of the Ti/Cu2O/Ti stacks at 250 °C in a vacuum induced interfacial reactions between the Ti and Cu2O layers and converted the Ti/Cu2O/Ti stacks to a Ti/TiO x /Cu/TiO x /Ti structure. This pentalayered stack resembled a pair of antiserial Ti/TiO x /Cu and Cu/TiO x /Ti resistive switching devices and, therefore, demonstrated complementary resistive switching behaviors.

  17. A laboratory flash furnace for strand annealing simulation

    NASA Astrophysics Data System (ADS)

    Page, J. H. R.

    1995-08-01

    The economic production of CRML steels depends on the use of continuous annealing. Successful development of improved CRML steels, the compositions of which have moved to lower carbon contents, is critically dependent on the rate of heating and its effect on transformation characteristics. As a result, accurate simulation of annealing conditions, particularly the heating rate, is essential. With this in mind, European Electrical Steels set criteria for a laboratory annealing facility that would, das far as was practicable, reproduce day- to- day continuous furnace operation. This paper outlines the design criteria, construction, and operation of the resulting annealing facility.

  18. Entanglement in the Bogoliubov vacuum

    SciTech Connect

    Poulsen, U.V.; Meyer, T.; Lewenstein, M.

    2005-06-15

    We analyze the entanglement properties of the Bogoliubov vacuum, which is obtained as a second-order approximation to the ground state of an interacting Bose-Einstein condensate. We work on one- and two-dimensional lattices and study the entanglement between two groups of lattice sites as a function of the geometry of the configuration and the strength of the interactions. As our measure of entanglement we use the logarithmic negativity, supplemented by an algorithmic check [G. Giedke et al., Phys. Rev. Lett. 87, 167904 (2001)] for bound entanglement where appropriate. The short-range entanglement is found to grow approximately linearly with the group sizes and to be favored by strong interactions. Conversely, long-range entanglement is favored by relatively weak interactions. No examples of bound entanglement are found.

  19. TRIUMF cyclotron vacuum system refurbishing

    NASA Astrophysics Data System (ADS)

    Sekachev, I.

    2008-03-01

    The cyclotron at TRIUMF was commissioned to full energy in 1974. The volume of the cyclotron vacuum tank is about 100 m3 and it operates at 5×10-8 Torr pressure during beam production. The pumping is mainly based on a Phillips B-20 cryogenerator (Stirling cycle 4-cylinder engine). The cryogenerator supplies helium gas at 16 K and 70 K to cryopanels in the tank. The decreasing reliability of the B-20 and demanding maintenance requirements triggered the decision to completely overhaul or replace the cryogenerator. Replacement with the LINDE-1630 helium refrigerator was found to be the most attractive (technically and economically) option. The details of the proposal with installation of the helium refrigerator and with a continuous flow liquid nitrogen shield cooling system are presented.

  20. Advanced light source vacuum policy and vacuum guidelines for beamlines and experiment endstations

    SciTech Connect

    Hussain, Z.

    1995-08-01

    The purpose of this document is to: (1) Explain the ALS vacuum policy and specifications for beamlines and experiment endstations. (2) Provide guidelines related to ALS vacuum policy to assist in designing beamlines which are in accordance with ALS vacuum policy. This document supersedes LSBL-116. The Advanced Light Source is a third generation synchrotron radiation source whose beam lifetime depends on the quality of the vacuum in the storage ring and the connecting beamlines. The storage ring and most of the beamlines share a common vacuum and are operated under ultra-high-vacuum (UHV) conditions. All endstations and beamline equipment must be operated so as to avoid contamination of beamline components, and must include proper safeguards to protect the storage ring vacuum from an accidental break in the beamline or endstation vacuum systems. The primary gas load during operation is due to thermal desorption and electron/photon induced desorption of contaminants from the interior of the vacuum vessel and its components. The desorption rates are considerably higher for hydrocarbon contamination, thus considerable emphasis is placed on eliminating these sources of contaminants. All vacuum components in a beamline and endstation must meet the ALS vacuum specifications. The vacuum design of both beamlines and endstations must be approved by the ALS Beamline Review Committee (BRC) before vacuum connections to the storage ring are made. The vacuum design is first checked during the Beamline Design Review (BDR) held before construction of the beamline equipment begins. Any deviation from the ALS vacuum specifications must be approved by the BRC prior to installation of the equipment on the ALS floor. Any modification that is incorporated into a vacuum assembly without the written approval of the BRC is done at the user`s risk and may lead to rejection of the whole assembly.