Science.gov

Sample records for vacuum diffusion bonding

  1. Vacuum Diffusion Bonding of Flange-foils for X-ray Windows

    SciTech Connect

    Avagyan, Vardan; Mikaelyan, Rafael; Petrosyan, Artush

    2007-01-19

    A vacuum diffusion technology for flange-foil bonding with prevention of the foil oxidation is presented. The application of the technology for the X-ray windows with copper, stainless steel, titan and beryllium foils is discussed. The experimental results for stainless steel-titanium X-ray window are given. The application of the method for the X-ray windows fabrication is proposed.

  2. Diffusion bonding

    NASA Astrophysics Data System (ADS)

    Brown, L. E.

    1993-03-01

    A temperature between 400 and 500 and a pressure between 40 MPa and 160 MPa were indicated by a two-factor, three-level factorial experiment for diffusion bonding of molybdenum sheet substrates. These substrates were sputter ion plated with palladium (0.5 microns) and silver (10 microns) films on the mating surfaces, with the silver used as a bonding interlayer. The palladium acted as an adhesive layer between the silver film and molybdenum substrate. The silver diffusion bonds that resulted were qualitatively characterized at the interfacial regions, and bonds with no visible interface were obtained at 7500X magnification. Correlations were obtained for voids found optically at the silver/silver bonding interface and colored image maps, illustrating bond quality, produced by nondestructive ultrasonic imaging. Above 160 MPa, the bonding process produces samples with a nonuniform load distribution. These samples contained regions with gaps and well-bonded regions at the silver/silver interface, and all had macroscopic deformation of the silver films.

  3. The Effects of Intermediate Layer and Surface Nanocrystallization on the Vacuum Diffusion Bonding of Commercially Pure Titanium

    NASA Astrophysics Data System (ADS)

    Chen, Chunhuan; Liu, Xiaojing; Zhao, Xiujuan; Ren, Ruiming

    Using cooper foil as intermediate layer, commercially pure titanium (CP-Ti) was vacuum diffusion welded after surface nanocrystallization. The effects of the interlayer and SNC treatment on the bonding state were discussed thereafter. The results showed that about 10 ?m nano-structured surface layer was achieved on CP-Ti. Well bonded joint could be obtained by two original CP-Ti samples welded directly at the conditions of 950C welding temperature and 5 MPa pressure. Excellent bonding between nanocrystalline Ti and cooper substrate was achieved at 850C but lots of cavities were observed on the interface when welded at the same temperature as that for two Ti substrates. Surface nanocrystallite utilization could play a role in promoting interface diffusion procedure by surface atoms activation and large amount of diffusion channels. Cu substrate increased the contact area of interlayer to prevent the possible influence of induced surface roughness on diffusion bonding formation.

  4. Diffusion bonding aeroengine components

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, G. A.; Broughton, T.

    1988-10-01

    The use of diffusion bonding processes at Rolls-Royce for the manufacture of titanium-alloy aircraft engine components and structures is described. A liquid-phase diffusion bonding process called activated diffusion bonding has been developed for the manufacture of the hollow titanium wide chord fan blade. In addition, solid-state diffusion bonding is being used in the manufacture of hollow vane/blade airfoil constructions mainly in conjunction with superplastic forming and hot forming techniques.

  5. Method for vacuum fusion bonding

    DOEpatents

    Ackler, Harold D. (Sunnyvale, CA); Swierkowski, Stefan P. (Livermore, CA); Tarte, Lisa A. (Livermore, CA); Hicks, Randall K. (Stockton, CA)

    2001-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  6. Superplastic forming and diffusion bonding

    NASA Astrophysics Data System (ADS)

    Bolo, Claude

    Technology and applications of superplastic forming and diffusion bonding are surveyed. Cycle-calculation and equipment considerations are examined. Emphasis is placed on aeronautical applications of these processes.

  7. [Diffusion bonding of hydroxyapatite ceramics and biometals].

    PubMed

    Yamane, F

    1990-03-01

    To improve the mechanical characteristics of hydroxyapatite (HAP) ceramics, a metal-ceramic composite formed by a solid state direct diffusion bonding system was studied. The joining treatment was carried out of a high vacuum and high temperature, for the bioactive ceramics (HAP) and the following biometals; platinum, gold-platinum alloy, titanium and titanium alloys, zirconium, niobium and aluminium alloy. The effects of the variations of thermal expansion mismatch and the interactive reactions at the interface were investigated by fractographic observation (SEM), X-ray diffraction method and EPMA analysis. On some of these joining combinations, the bonding strength had the same bonding strength as the adhesive materials. The results of interface observations showed that the bonding strength is affected by the interface reactions and the diffusion phenomena. PMID:2135505

  8. Vacuum fusion bonding of glass plates

    DOEpatents

    Swierkowski, Steve P. (Livermore, CA); Davidson, James C. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    2001-01-01

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  9. Vacuum fusion bonding of glass plates

    DOEpatents

    Swierkowski, Steve P. (Livermore, CA); Davidson, James C. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    2000-01-01

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  10. CONVERTIBLE BONDS IN A DEFAULTABLE DIFFUSION MODEL

    E-print Network

    Jeanblanc, Monique

    CONVERTIBLE BONDS IN A DEFAULTABLE DIFFUSION MODEL Tomasz R. Bielecki Department of Applied Research Grant PS12918. #12;2 Convertible Bonds in a Defaultable Diffusion Model 1 Introduction In [4), such as Convertible Bonds (CB), and we provided a rigorous decomposition of a CB into a bond component and a (game

  11. Diffusion bonding of mismatch dental alloys.

    PubMed

    Liu, Honghua; Ni, Jiahua; Wu, Luhai; He, Guo

    2010-04-01

    The diffusion bonding of Ti-6Al-4V and Co-Cr-Mo dental alloys has been investigated in terms of the atoms diffusion, the microstructure evolution, and the bonding strength. The bonding performance reveals asymmetry diffusion profiles for both the Co and Cr in Ti-6Al-4V and the Ti in Co-Cr-Mo alloy. Their diffusion coefficients (Arrhenius relations) have been established based on the experiments. Co and Cr diffusion into Ti-6Al-4V leads to alpha --> beta transformation and the intermetallics-formation. Maximum bonding strength occurs at about 840 degrees C. The bonding joint fails under the shear stress in the Ti-6Al-4V side near the bonding interface in brittle manner. The intermetallics in the diffusion layer together with the unbonded areas and other flaws in the bonding interface are responsible for the shear brittle fracture, which also weaken the bonding strength. PMID:19957358

  12. Diffusion bonding of Stratapax for drill bits

    SciTech Connect

    Middleton, J.N.; Finger, J.T.

    1983-01-01

    A process has been developed for the diffusion bonding of General Electric's Stratapax drill blanks to support studs for cutter assemblies in drill bits. The diffusion bonding process is described and bond strength test data are provided for a variety of materials. The extensive process details, provided in the Appendices, should be sufficient to enable others to successfully build diffusion-bonded drill bit cutter assemblies.

  13. Electrospray emitters For diffusion vacuum pumps

    E-print Network

    Diaz Gmez Maqueo, Pablo (Pablo Ly)

    2011-01-01

    Following similar principles as regular diffusion vacuum pumps, an electrospray emitter is set to produce a jet of charged particles that will drag air molecules out of a volume. To be a feasible concept, the emitted ...

  14. Impulse pressuring diffusion bonding of titanium alloy to stainless steel

    SciTech Connect

    Yuan, X.J. Sheng, G.M. Qin, B.; Huang, W.Z.; Zhou, B.

    2008-07-15

    Impulse pressuring diffusion bonding between a titanium alloy TA17 and an austenitic stainless steel 0Cr18Ni9Ti has been carried out in vacuum. Relationships between the bonding parameters and the tensile strength of the joints were investigated, and the optimum bond parameters were obtained: bonding temperature T = 825 deg. C, maximum impulse pressure P{sub max} = 50 MPa, minimum impulse pressure P{sub min} = 8 MPa, number of impulses N = 30, impulse frequency f = 0.5 Hz. The maximum tensile strength of the joint was 321 MPa and the effective bonding time was only 180 s. The reaction products and the interface structure of the joints were investigated by optical microscopy, scanning electron microscopy (SEM), electron probe microanalysis (EPMA), and X-ray diffraction (XRD). The study revealed the existence of FeTi, Fe{sub 2}Ti, {sigma} phase and {beta}-Ti in the reaction zone. Brittle Fe-Ti intermetallic phases lower the strength and ductility of the impulse pressuring diffusion bonded couples significantly. This technique provides a reliable and efficient bonding method of titanium alloy and stainless steel.

  15. Diffusion bonding of Ti coated Zircaloy-4 and 316-L stainless steel

    SciTech Connect

    Akhter, J.I. Ahmad, M.; Ali, G.

    2009-03-15

    Diffusion bonding of Zircaloy-4 and Type 316-L stainless steel was carried out by coating the joining surfaces with Ti to minimize the interlayer effect. Bonding heat treatments were carried out in vacuum at 1000 deg. C for 4 h and 1050 deg. C for 1 h. The microstructure of the diffusion zone was investigated by scanning electron microscopy and the phases in the diffusion zone were analyzed by energy dispersive spectroscopy. It is observed that Ti coating at the interface produced a dendritic structure in the diffusion zone formed in the Zircaloy-4. The concentration of the dendrites increases with an increase in bonding temperature.

  16. Vacuum pull down method for an enhanced bonding process

    DOEpatents

    Davidson, James C. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    1999-01-01

    A process for effectively bonding arbitrary size or shape substrates. The process incorporates vacuum pull down techniques to ensure uniform surface contact during the bonding process. The essence of the process for bonding substrates, such as glass, plastic, or alloys, etc., which have a moderate melting point with a gradual softening point curve, involves the application of an active vacuum source to evacuate interstices between the substrates while at the same time providing a positive force to hold the parts to be bonded in contact. This enables increasing the temperature of the bonding process to ensure that the softening point has been reached and small void areas are filled and come in contact with the opposing substrate. The process is most effective where at least one of the two plates or substrates contain channels or grooves that can be used to apply vacuum between the plates or substrates during the thermal bonding cycle. Also, it is beneficial to provide a vacuum groove or channel near the perimeter of the plates or substrates to ensure bonding of the perimeter of the plates or substrates and reduce the unbonded regions inside the interior region of the plates or substrates.

  17. Roll diffusion bonding of titanium alloy panels

    NASA Technical Reports Server (NTRS)

    Bennett, J.; De Witt, T. E.; Jones, A. G.; Koeller, F.; Muser, C.

    1968-01-01

    Roll diffusion bonding technique is used for fabricating T-stiffened panel assemblies from titanium alloy. The single unit fabrication exhibits excellent strength characteristics under tensile and compressive loads. This program is applied to structures in which weight/strength ratio and integral construction are important considerations.

  18. Morphology, topography, and hardness of diffusion bonded sialon to AISI 420 at different bonding time

    NASA Astrophysics Data System (ADS)

    Ibrahim, Nor Nurulhuda Md.; Hussain, Patthi; Awang, Mokhtar

    2015-07-01

    Sialon and AISI 420 martensitic stainless steel were diffusion bonded in order to study the effect of bonding time on reaction layer's growth. Joining of these materials was conducted at 1200C under a uniaxial pressure of 17 MPa in a vacuum ranging from 5.0 to 8.010-6 Torr with bonding time varied for 0.5, 2, and 3 h. Thicker reaction layer was formed in longer bonded sample since the elements from sialon could diffuse further into the steel. Sialon retained its microstructure but it was affected at the initial contact with the steel to form the new interface layer. Diffusion layer grew toward the steel and it was segregated with the parent steel as a result of the difference in properties between these regions. The segregation formed a stream-like structure and its depth decreased when the bonding time was increased. The microstructure of the steel transformed into large grain size with precipitates. Prolonging the bonding time produced more precipitates in the steel and reduced the steel thickness as well. Interdiffusions of elements occurred between the joined materials and the concentrations were decreasing toward the steel and vice versa. Silicon easily diffused into the steel because it possessed lower ionization potential compared to nitrogen. Formation of silicide and other compounds such as carbides were detected in the interface layer and steel grain boundary, respectively. These compounds were harmful due to silicide brittleness and precipitation of carbides in the grain boundary might cause intergranular corrosion cracking. Sialon retained its hardness but it dropped very low at the interface layer. The absence of crack at the joint in all samples could be contributed from the ductility characteristic of the reaction layer which compensated the residual stress that was formed upon the cooling process.

  19. Radiant heat source, vacuum bag, provide portable bonding oven

    NASA Technical Reports Server (NTRS)

    Nicholls, A. H.

    1967-01-01

    Portable bonding oven is formed to any desired size or configuration to attach doublers and brackets to the surfaces of large structures. A radiant heat source is used in combination with a heat resistant transport vacuum bag and a black heat absorbing cloth.

  20. Diffusion Bonding Aluminium Alloys and Composites: New Approaches and Modelling

    E-print Network

    Cambridge, University of

    Diffusion Bonding Aluminium Alloys and Composites: New Approaches and Modelling Amir A. Shirzadi of the research, two new methods for TLP diffusion bonding of aluminium-based composites (aluminium alloys diffusion bonding and hot isostatic pressing without encapsulation. It allows the fabrication of intricate

  1. Diffusion bonded columbium panels for the shuttle heat shield.

    NASA Technical Reports Server (NTRS)

    Korb, L. J.; Beuyukian, C. S.; Rowe, J.

    1972-01-01

    Work at North American Rockwell in the development of a satisfactory panel diffusion bonding method for Nb shuttle orbiter heat shield panel designs is reviewed. The topics include the diffusion bonding process, panel fabrication and quality control. A practicable Nb alloy diffusion bonding method, using a Ti foil interleaf, is described and is characterized as one providing a production basis at competitive cost.

  2. Using Diffusion Bonding in Making Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Sager, Frank E.

    2003-01-01

    A technique for the fabrication of piezoelectric actuators that generate acceptably large forces and deflections at relatively low applied voltages involves the stacking and diffusion bonding of multiple thin piezoelectric layers coated with film electrodes. The present technique stands in contrast to an older technique in which the layers are bonded chemically, by use of urethane or epoxy agents. The older chemical-bonding technique entails several disadvantages, including the following: It is difficult to apply the bonding agents to the piezoelectric layers. It is difficult to position the layers accurately and without making mistakes. There is a problem of disposal of hazardous urethane and epoxy wastes. The urethane and epoxy agents are nonpiezoelectric materials. As such, they contribute to the thickness of a piezoelectric laminate without contributing to its performance; conversely, for a given total thickness, the performance of the laminate is below that of a unitary piezoelectric plate of the same thickness. The figure depicts some aspects of the fabrication of a laminated piezoelectric actuator by the present diffusion- bonding technique. First, stock sheets of the piezoelectric material are inspected and tested. Next, the hole pattern shown in the figure is punched into the sheets. Alternatively, if the piezoelectric material is not a polymer, then the holes are punched in thermoplastic films. Then both faces of each punched piezoelectric sheet or thermoplastic film are coated with a silver-ink electrode material by use of a silkscreen printer. The electrode and hole patterns are designed for minimal complexity and minimal waste of material. After a final electrical test, all the coated piezoelectric layers (or piezoelectric layers and coated thermoplastic films) are stacked in an alignment jig, which, in turn, is placed in a curved press for the diffusion-bonding process. In this process, the stack is pressed and heated at a specified curing temperature and pressure for a specified curing time. The pressure, temperature, and time depend on the piezoelectric material selected. At the end of the diffusion-bonding process, the resulting laminated piezoelectric actuator is tested to verify the adequacy of the mechanical output as a function of an applied DC voltage.

  3. Vacuum fusion bonded glass plates having microstructures thereon

    DOEpatents

    Swierkowski, Steve P. (Livermore, CA); Davidson, James C. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    2001-01-01

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  4. Vacuum bag bonding with a high temperature adhesive

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; St. Clair, Terry L.

    1991-01-01

    A novel controlled molecular weight form of LARC-TPI polymide that exhibits an exceptionally high degree of melt flow in the 340-360 C temperature range has been developed. This material has been evaluated as a high-temperature adhesive, and because of its flow, cost-effective vacuum bag/oven processing can be used. Comparison of adhesive performance with higher molecular weight forms bonded at higher pressures shows this novel material to be equal in mechanical strength.

  5. Diffusion bonding of IN 718 to VM 350 grade maraging steel

    NASA Technical Reports Server (NTRS)

    Crosby, S. R.; Biederman, R. R.; Reynolds, C. C.

    1972-01-01

    Diffusion bonding studies have been conducted on IN 718, VM 350 and the dissimilar alloy couple, IN 718 to maraging steel. The experimental processing parameters critical to obtaining consistently good diffusion bonds between IN 718 and VM 350 were determined. Interrelationships between temperature, pressure and surface preparation were explored for short bending intervals under vacuum conditions. Successful joining was achieved for a range of bonding cycle temperatures, pressures and surface preparations. The strength of the weaker parent material was used as a criterion for a successful tensile test of the heat treated bond. Studies of VM-350/VM-350 couples in the as-bonded condition showed a greater yielding and failure outside the bond region.

  6. Low-temperature diffusion bonding of pure aluminum

    NASA Astrophysics Data System (ADS)

    Chen, Haiyan; Cao, Jian; Tian, Xiaoyu; Li, Rui; Feng, Jicai

    2013-10-01

    1 keV argon ion beam was employed to remove the oxide film of pure aluminum before diffusion bonding. A sound joint of pure aluminum was obtained by ion activation-assisted diffusion bonding at the low temperature of , while the high-quality joining of pure aluminum was infeasible by conventional diffusion bonding at the temperature lower than . The residual oxide film ratios of joints decreased with the increase of ion cleaning time. When the specimens were cleaned for 120 min, the joint with the maximum tensile strength of 62.3 MPa and the elongation of 14.1 % was obtained. The argon ion beam etching surface treatment provides a new route for the low-temperature diffusion bonding. The reliable diffusion bonded joint of pure aluminum indicates that low-temperature diffusion bonding is feasible for bulk materials, especially for materials with the outstanding plasticity.

  7. Diffusion bonding between ODS ferritic steel and F82H steel for fusion applications

    NASA Astrophysics Data System (ADS)

    Noh, Sanghoon; Kim, Byungjun; Kasada, Ryuta; Kimura, Akihiko

    2012-07-01

    Diffusion bonding techniques were employed to join high Cr oxide dispersion strengthened (ODS) ferritic steel (Fe-15Cr-2W-0.2Ti-0.35Y2O3) and F82H steel under uni-axial hydrostatic pressure using a high vacuum hot press, and the microstructure and mechanical properties of the joints were investigated. The dissimilar joints were bonded by solid-state diffusion bonding (SSDB) and liquid phase diffusion bonding (LPDB). After bonding process, heat treatments were conducted to utilize the phase transformation of F82H steel for recovering the martensitic structure. Tensile tests with miniaturized specimens were carried out to investigate and compare the bonding strengths of each joint. Microstructure was observed for the bonding interface, and fracture mode was investigated after the tensile tests. LPDB joint of interfacial F82H steel fully recovered to martensite phase by post-joining heat treatments, while SSDB joint had ferrite phases at the interface even after heat treatment, which is considered to be due to decarburization of F82H steel during the bonding process. Therefore it is considered that the insert material plays a role as diffusion barrier of carbon during LPDB process. Microstructure observations and tensile tests of the joints revealed that the LPDB joints possess suitable tensile properties which are comparable to that of F82H steel. This indicates that LPDB is more promising method to bond ODS-FS and F82H steel than SSDB.

  8. Better vacuum by removal of diffusion-pump-oil contaminants

    NASA Technical Reports Server (NTRS)

    Buggele, A. E.

    1975-01-01

    The complex problem of why large space simulation chambers do not realize true ultimate vacuum was investigated. Some contaminating factors affecting diffusion pump performance were identified, and some advances in vacuum distillation-fractionation technology were achieved which resulted in a two-decade-or-more lower ultimate pressure. Data are presented to show the overall or individual contaminating effects of commonly used phthalate ester plasticizers of 390 to 530 molecular weight on diffusion pump performance. Methods for removing contaminants from diffusion pump silicone oil during operation and for reclaiming contaminated oil by high-vacuum molecular distillation are described. Conceptual self-cleansing designs and operating procedures are proposed for modifying large diffusion pumps into high-efficiency distillation devices. The potential exists for application of these technological advancements to other disciplines, such as medicine, biomedical materials, metallurgy, refining, and chemical (diffusion-enrichment) processing.

  9. Signal analysis approach to ultrasonic evaluation of diffusion bond quality

    NASA Astrophysics Data System (ADS)

    Thomas, Graham; Chinn, Diane

    1999-12-01

    Solid state bonds like the diffusion bond are attractive techniques for joining dissimilar materials since they are not prone to the defects that occur with fusion welding. Ultrasonic methods can detect the presence of totally unbonded regions but have difficulty sensing poor bonded areas where the substrates are in intimate contact. Standard ultrasonic imaging is based on amplitude changes in the signal reflected from the bond interface. Unfortunately, amplitude alone is not sensitive to bond quality. We demonstrated that there is additional information in the ultrasonic signal that correlates with bond quality. In our approach, we interrogated a set of dissimilar diffusion bonded samples with broad band ultrasonic signals. The signals were digitally processed and the characteristics of the signals that corresponded to bond quality were determined. These characteristics or features were processed with pattern recognition algorithms to produce predictions of bond quality. The predicted bond quality was then compared with the destructive measurement to assess the classification capability of the ultrasonic technique.

  10. Signal analysis approach to ultrasonic evaluation of diffusion bond quality

    SciTech Connect

    Thomas, Graham; Chinn, Diane

    1999-12-02

    Solid state bonds like the diffusion bond are attractive techniques for joining dissimilar materials since they are not prone to the defects that occur with fusion welding. Ultrasonic methods can detect the presence of totally unbonded regions but have difficulty sensing poor bonded areas where the substrates are in intimate contact. Standard ultrasonic imaging is based on amplitude changes in the signal reflected from the bond interface. Unfortunately, amplitude alone is not sensitive to bond quality. We demonstrated that there is additional information in the ultrasonic signal that correlates with bond quality. In our approach, we interrogated a set of dissimilar diffusion bonded samples with broad band ultrasonic signals. The signals were digitally processed and the characteristics of the signals that corresponded to bond quality were determined. These characteristics or features were processed with pattern recognition algorithms to produce predictions of bond quality. The predicted bond quality was then compared with the destructive measurement to assess the classification capability of the ultrasonic technique.

  11. Creep effects in diffusion bonding of oxygen-free copper

    E-print Network

    Moilanen, Antti

    Diffusion is the transport of atoms or particles through the surrounding material. Various microstructural changes in metals are based on the diffusion phenomena. In solid metals the diffusion is closely related to crystallographic defects. In single-component metals the dominant mechanism of diffusion is the vacancy mechanism. Diffusion bonding is a direct technological application of diffusion. It is an advanced solidstate joining process in which the surfaces of two components are brought to contact with each other and heated under a pressing load in a controlled environment. During the process, the contact surfaces are bonded by atomic diffusion across the interface and as a result, one solid piece is formed. The condition of high temperature and low applied stress combined with relatively long process duration enables the creep effects to take place in bonded metals. Furthermore, creep causes unwanted permanent deformations in the bonded components. Some authors suggest that there could be a threshold fo...

  12. Investigation on the diffusion bonding of tungsten and EUROFER97

    NASA Astrophysics Data System (ADS)

    Basuki, Widodo Widjaja; Aktaa, Jarir

    2011-10-01

    Due to its advantages, tungsten is selected as armor and structural material for use in future fusion power plants. To apply tungsten as structural material, a joint to EUROFER97 is foreseen in current divertor design for which the diffusion bonding is considered in this work. The joining must have acceptable strength and ductility without significant change in microstructures. So far, numerous diffusion bonding experiments without and with post bonding heat treatment (PBHT) are performed at 1050 C for various bonding duration. For the bonding processes without PBHT, the bonding seams obtained are defect free and have a very high tensile strength. However they are brittle due to a thin layer of FeW intermetallic phase and metal carbides. For the bonding processes with PBHT, the bonding specimens fail at the bonding seam.

  13. AN INTERNAL CONVECTIVE HEATING TECHNIQUE FOR DIFFUSION BONDING ARRAYED MICROCHANNEL ARCHITECTURES

    SciTech Connect

    Paul, Brian; Bose, Sumantra; Palo, Daniel R.

    2010-01-08

    Diffusion bonding cycle times can be a large factor in the production cost of metal microchannel devices. The challenge is to significantly minimize bonding cycle times through rapid heating and cooling within the bonding process. A novel method is described which takes advantage of the internal flow passages within microchannel devices for convective heat transfer during the bonding process. The internal convective heating (ICH) technique makes use of heated inert gas to provide the microchannel assembly with rapid and uniform heat input. Results demonstrate that the ICH technique is feasible, capable of producing microchannels with higher dimensional integrity and shorter bonding cycle times than traditional vacuum hot press methods. Results suggest that this may be due to smaller thermal gradients within microchannel devices during the ICH bonding cycle.

  14. Diffusion bonding and brazing of high purity copper for linear collider accelerator structures

    NASA Astrophysics Data System (ADS)

    Elmer, J. W.; Klingmann, J.; van Bibber, K.

    2001-05-01

    Diffusion bonding and brazing of high purity copper were investigated to develop procedures for joining precision machined copper components for the Next Linear Collider (NLC). Diffusion bonds were made over a range of temperatures from 400 C to 1000 C, under two different loading conditions [3.45 kPa (0.5 psi) and 3.45 MPa (500 psi)], and on two different diamond machined surface finishes. Brazes were made using pure silver, pure gold, and gold-nickel alloys, and different heating rates produced by both radiation and induction heating. Braze materials were applied by both physical vapor deposition (PVD) and conventional braze alloy shims. Results of the diffusion bonding experiments showed that bond strengths very near that of the copper base metal could be made at bonding temperatures of 700 C or higher at 3.45 MPa bonding pressure. At lower temperatures, only partial strength diffusion bonds could be made. At low bonding pressures (3.45 kPa), full strength bonds were made at temperatures of 800 C and higher, while no bonding (zero strength) was observed at temperatures of 700 C and lower. Observations of the fracture surfaces of the diffusion bonded samples showed the effects of surface finish on the bonding mechanism. These observations clearly indicate that bonding began by point asperity contact, and flatter surfaces resulted in a higher percentage of bonded area under similar bonding conditions. Results of the brazing experiments indicated that pure silver worked very well for brazing under both conventional and high heating rate scenarios. Similarly, pure silver brazed well for both the PVD layers and the braze alloy shims. The gold and gold-containing brazes had problems, mainly due to the high diffusivity of gold in copper. These problems led to the necessity of overdriving the temperature to ensure melting, the presence of porosity in the joint, and very wide braze joints. Based on the overall findings of this study, a two-step joining method is proposed for fabricating the NLC structures. The structure would be assembled with pure silver braze inserts using a self-aligning step joint design, then the assembly would be vacuum diffusion bonded at 700 C and 3.45 MPa pressure to seal the critical inner portion of the assembly. Finally, during the same furnace cycle, the temperature would be increased to 800 C in order to react the silver with the copper to form a liquid braze alloy that would join and seal the outer portion of the cells together.

  15. Ultrasonic NDT of titanium diffusion bonding with guided waves

    SciTech Connect

    Rose, J.L.; Zhu, W.; Zaidi, M.

    1998-04-01

    An ultrasonic guided wave technique is developed for the NDT of diffusion bonded titanium-to-titanium structures. A three-layer model based on the normal beam experimental results has been proposed. Dispersion curves and wave structure are analyzed to direct the experimental study. Two features related to Lamb waves propagating in diffusion bonded titanium plates, the spectral peak to peak ratios and the wave mode frequency shift, are extracted from the guided wave experimental results for both 2 mm (0.08 in.) and 4 mm (0.16 in.) diffusion bond panels. It is found for some specific modes and frequencies that these two features are sensitive to the diffusion bonding states and, therefore, could be used to distinguish good bond panels from poor bond ones.

  16. Diffusion bonding of 410 stainless steel to copper using a nickel interlayer

    SciTech Connect

    Sabetghadam, H.; Hanzaki, A. Zarei; Araee, A.

    2010-06-15

    In the present work, plates of stainless steel (grade 410) were joined to copper ones through a diffusion bonding process using a nickel interlayer at a temperature range of 800-950 deg. C. The bonding was performed through pressing the specimens under a 12-MPa compression load and a vacuum of 10{sup -4} torr for 60 min. The results indicated the formation of distinct diffusion zones at both Cu/Ni and Ni/SS interfaces during the diffusion bonding process. The thickness of the reaction layer in both interfaces was increased by raising the processing temperature. The phase constitutions and their related microstructure at the Cu/Ni and Ni/SS diffusion bonding interfaces were studied using optical microscopy, scanning electron microscopy, X-ray diffraction and elemental analyses through energy dispersive spectrometry. The resulted penetration profiles were examined using a calibrated electron probe micro-analyzer. The diffusion transition regions near the Cu/Ni and Ni/SS interfaces consist of a complete solid solution zone and of various phases based on (Fe, Ni), (Fe, Cr, Ni) and (Fe, Cr) chemical systems, respectively. The diffusion-bonded joint processed at 900 deg. C showed the maximum shear strength of about 145 MPa. The maximum hardness was obtained at the SS-Ni interface with a value of about 432 HV.

  17. Wafer bonding technology for new generation vacuum MEMS: challenges and promises

    NASA Astrophysics Data System (ADS)

    Dragoi, V.; Pabo, E.

    2015-05-01

    Various MEMS devices are incorporated into consumer electronic devices. A particular category of MEMS require vacuum packaging by wafer bonding with the need to encapsulate vacuum levels of 10-2 mbar or higher with long time stability. The vacuum requirement is limiting the choice of the wafer bonding process and raises significant challenges to the existing investigation methods (metrology) used for results qualification. From the broad range of wafer bonding processes only few are compatible with vacuum applications: fusion bonding, anodic bonding, glass frit bonding and metal-based bonding. The outgassing from the enclosed surfaces after bonding will affect the vacuum level in the cavity: in some cases, a getter material is used inside the device cavity to compensate for this outgassing. Additionally the selected bonding process must be compatible with the devices on the wafers being bonded. This work reviews the principles of vacuum encapsulation using wafer bonding. Examples showing the suitability of each process for specific applications types will be presented. A significant challenge in vacuum MEMS fabrication is the lack of analytical methods needed for process characterization or reliability testing. A short overview of the most used methods and their limitations will be presented. Specific needs to be addressed will be introduced with examples.

  18. Diffusion Bonding of Silicon Carbide for MEMS-LDI Applications

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay; Shpargel, Tarah P.; Kiser, J. Douglas

    2007-01-01

    A robust joining approach is critically needed for a Micro-Electro-Mechanical Systems-Lean Direct Injector (MEMS-LDI) application which requires leak free joints with high temperature mechanical capability. Diffusion bonding is well suited for the MEMS-LDI application. Diffusion bonds were fabricated using titanium interlayers between silicon carbide substrates during hot pressing. The interlayers consisted of either alloyed titanium foil or physically vapor deposited (PVD) titanium coatings. Microscopy shows that well adhered, crack free diffusion bonds are formed under optimal conditions. Under less than optimal conditions, microcracks are present in the bond layer due to the formation of intermetallic phases. Electron microprobe analysis was used to identify the reaction formed phases in the diffusion bond. Various compatibility issues among the phases in the interlayer and substrate are discussed. Also, the effects of temperature, pressure, time, silicon carbide substrate type, and type of titanium interlayer and thickness on the microstructure and composition of joints are discussed.

  19. Diffusion Bonding of Silicon Carbide Ceramics using Titanium Interlayers

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay; Shpargel, Tarah P.; Kiser, James D.

    2006-01-01

    Robust joining approaches for silicon carbide ceramics are critically needed to fabricate leak free joints with high temperature mechanical capability. In this study, titanium foils and physical vapor deposited (PVD) titanium coatings were used to form diffusion bonds between SiC ceramics using hot pressing. Silicon carbide substrate materials used for bonding include sintered SiC and two types of CVD SiC. Microscopy results show the formation of well adhered diffusion bonds. The bond strengths as determined from pull tests are on the order of several ksi, which is much higher than required for a proposed application. Microprobe results show the distribution of silicon, carbon, titanium, and other minor elements across the diffusion bond. Compositions of several phases formed in the joint region were identified. Potential issues of material compatibility and optimal bond formation will also be discussed.

  20. Application of diffusion bonding to electronic interconnection of flatpack leads

    NASA Technical Reports Server (NTRS)

    Korb, R. W.; Lardenoit, V. F.

    1973-01-01

    Diffusion-bonded joints between gold-plated Kovar leads and indium-plated copper circuit pads offer some advantages for electronic circuit packaging. Test results show that consistent high strength bonds stronger than the copper circuit foil are achieved by parallel-gap bonding at relatively low power settings. The bonds are basically formed by the alloying of the gold, indium and copper at the bond interface. Other low melting metals such as tin can also be used; however, tin does not offer the ease of bonding that results in consistent separation of the copper foil during pull testing. The investigation was conducted in three parts consisting of: (1) an evaluation of the physical strength of resulting bonds at ambient and elevated temperature, (2) a metallurgical analysis of bonds using scanning electron microscopy and nondispersive X-ray analysis, and (3) evaluation and development of various schemes for multiple lead flatpack bonding.

  1. Ultrasonic evaluation of beryllium-copper diffusion bonds

    SciTech Connect

    Jamieson, E.E.

    2000-06-08

    A study was performed to compare the effectiveness of several advanced ultrasonic techniques when used to determine the strength of diffusion bonded beryllium-copper, which heretofore have each been applied to only a few material systems. The use of integrated backscatter calculations, frequency domain reflection coefficients, and time-of-flight variance was compared in their ability to characterize the bond strength in a series of beryllium-copper diffusion bond samples having a wide variation in bond quality. Correlation of integrated backscatter calculations and time-of-flight variance with bond strength was good. Some correlation of the slope of the frequency based reflection coefficient was shown for medium and high strength bonds, while its Y-intercept showed moderate correlation for all bond strengths.

  2. Ultrasonic NDE of titanium diffusion bonds using signal phase

    NASA Astrophysics Data System (ADS)

    Escobar-Ruiz, E.; Cawley, P.; Nagy, P. B.; Collison, I.; Wright, D.

    2013-01-01

    Diffusion bonding is a highly advantageous solid-state welding method. However, its full exploitation in titanium components is currently limited by a lack of robust NDE techniques capable of detecting anything but gross bond-line defects. A novel ultrasonic technique has been developed to address this lack of capability. This technique, based on the ultrasonic signal phase, has been demonstrated in a `single-sided' scenario where only one side of the diffusion bond was accessible. Samples with differing degrees of bond quality were evaluated, and excellent agreement was found between the single-sided and double-sided experiments.

  3. Partial transient liquid phase diffusion bonding of Zircaloy-4 to stabilized austenitic stainless steel 321

    SciTech Connect

    Atabaki, M. Mazar; Hanzaei, A. Talebi

    2010-10-15

    An innovative method was applied for bonding Zircaloy-4 to stabilized austenitic stainless steel 321 using an active titanium interlayer. Specimens were joined by a partial transient liquid phase diffusion bonding method in a vacuum furnace at different temperatures under 1 MPa dynamic pressure of contact. The influence of different bonding temperatures on the microstructure, microindentation hardness, joint strength and interlayer thickness has been studied. The diffusion of Fe, Cr, Ni and Zr has been investigated by scanning electron microscopy and energy dispersive spectroscopy elemental analyses. Results showed that control of the heating and cooling rate and 20 min soaking at 1223 K produces a perfect joint. However, solid-state diffusion of the melting point depressant elements into the joint metal causes the solid/liquid interface to advance until the joint is solidified. The tensile strength of all the bonded specimens was found around 480-670 MPa. Energy dispersive spectroscopy studies indicated that the melting occurred along the interface of the bonded specimens as a result of the transfer of atoms between the interlayer and the matrix during bonding. This technique provides a reliable method of bonding zirconium alloy to stainless steel.

  4. Photoinductive imaging studies of Cu-Ni diffusion bonds

    NASA Astrophysics Data System (ADS)

    Mitra, Sreeparna; Ojard, Greg C.; Nakagawa, Norio; Moulder, John C.

    A novel NDE method based on the photoinductive imaging technique is presented for evaluating bond quality. The technique has the advantage of being simple, noncontacting, and sensitive. Conventional eddy current techniques are seen to be insensitive to the quality of bonds in the present set of specimens; however, when combined with thermal wave methods such as photoinductive imaging, it is possible to assess the thermal resistance at the bond interface and hence the bond strength. Photoinductive imaging is argued to be a viable method for evaluating diffusion bond quality.

  5. Diffusion bonding makes strong seal at flanged connector

    NASA Technical Reports Server (NTRS)

    Gitzendanner, L. G.; Laniewski, J. P.; Rathbun, F. O., Jr.

    1966-01-01

    Copper strip seals a high pressure fluid system connector so that it is insensitive to relaxation of the bolt loads. The copper strip is diffusion bonded to the surfaces of the connector flange by application of high pressure and temperature.

  6. Joining of Silicon Carbide: Diffusion Bond Optimization and Characterization

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay

    2008-01-01

    Joining and integration methods are critically needed as enabling technologies for the full utilization of advanced ceramic components in aerospace and aeronautics applications. One such application is a lean direct injector for a turbine engine to achieve low NOx emissions. In the application, several SiC substrates with different hole patterns to form fuel and combustion air channels are bonded to form the injector. Diffusion bonding is a joining approach that offers uniform bonds with high temperature capability, chemical stability, and high strength. Diffusion bonding was investigated with the aid of titanium foils and coatings as the interlayer between SiC substrates to aid bonding. The influence of such variables as interlayer type, interlayer thickness, substrate finish, and processing time were investigated. Optical microscopy, scanning electron microscopy, and electron microprobe analysis were used to characterize the bonds and to identify the reaction formed phases.

  7. Metal honeycomb to porous wireform substrate diffusion bond evaluation

    NASA Technical Reports Server (NTRS)

    Vary, A.; Moorhead, P. E.; Hull, D. R.

    1982-01-01

    Two nondestructive techniques were used to evaluate diffusion bond quality between a metal foil honeycomb and porous wireform substrate. The two techniques, cryographics and acousto-ultrasonics, are complementary in revealing variations of bond integrity and quality in shroud segments from an experimental aircraft turbine engine.

  8. Diffusion-induced water movement within resin-dentin bonds during bonding.

    PubMed

    Hashimoto, Masanori; Tay, Franklin R; Sano, Hidehiko; Kaga, Masayuki; Pashley, David H

    2006-11-01

    It is thought that water-filled channels and nanovoids in resin-dentin bonds represent potential sites for degradation of bonds or hydrolysis of collagen or both. How water gains access to bonded interfaces is not clear. This study evaluated the diffusion-induced water uptake through resin-dentin interfaces during bonding. Two light-cured total-etch adhesive systems (Excite and One-Step Plus) and a chemical-cured adhesive (Amalgambond Plus) were used in this study. Dentin disks were placed in a split-chamber device, and the fluid movement across dentin was measured, with and without a physiological pressure, during bonding procedures and 24 h after bonding. For light-cured adhesives in the experimental groups, a 6 min interval of dark storage was conducted prior to light-curing, to evaluate the diffusion of water through the uncured resin monomers, and to test the effect of prolonged infiltration time of adhesives on water permeability of bonds. Prolonged adhesive infiltration reduced the water permeability of resin-dentin bonds for light-cured adhesives. Water gradients produced by bonding systems contribute to water movement across the dentin-adhesive interfaces during bonding procedures. Differences in chemical formulations for adhesive systems may lead to differences in the extent of diffusion-induced water movement and the amount of water within the resin-dentin bonds. PMID:16649183

  9. Fabrication and Characterization of Diffusion Bonds for Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Halbig, Michael; Singh, Mrityunjay; Martin, Richard E.; Cosgriff, Laura M.

    2007-01-01

    Diffusion bonds of silicon carbide (SiC) were fabricated using several different types of titanium (Ti) based interlayers between the SiC substrates. The interlayers were an alloyed Ti foil, a pure Ti foil, and a physically vapor deposited (PVD) Ti coating. Microscopy was conducted to evaluate the cross-sections of the resulting bonds. Microprobe analysis identified reaction formed phases in the diffusion bonded region. Uniform and well adhered bonds were formed between the SiC substrates. In the case where the alloyed Ti foil or a thick Ti coating (i.e. 20 micron) was used as the interlayer, microcracks and several phases were present in the diffusion bonds. When a thinner interlayer was used (i.e. 10 micron PVD Ti), no microcracks were observed and only two reaction formed phases were present. The two phases were preferred and fully reacted phases that did not introduce thermal stresses or microcracks during the cool-down stage after processing. Diffusion bonded samples were evaluated with the non-destructive evaluation (NDE) methods of pulsed thermography and immersion ultrasonic testing. Joined SiC substrates that were fully bonded and that had simulated bond flaws in the interlayer were also evaluated using immersion ultrasound. Pull testing was conducted on the bonds to determine the tensile strength. To demonstrate the joining approach for a complex multilayered component for a low NOx injector application, the diffusion bonding approach was used to join three 4" diameter SiC discs that contained complex fuel and air flow channels.

  10. Torsion Testing of Diffusion Bonded LIGA Formed Nickel

    SciTech Connect

    Buchheit, T.E.; Christenson, T.R.; Schmale, D.T.

    1999-01-27

    A test technique has been devised which is suitable for the testing of the bond strength of batch diffusion bonded LIGA or DXRL defined structures. The method uses a torsion tester constructed with the aid of LIGA fabrication and distributed torsion specimens which also make use of the high aspect ratio nature of DXRL based processing. Measurements reveal achieved bond strengths of 130MPa between electroplated nickel with a bond temperature of 450 C at 7 ksi pressure which is a sufficiently low temperature to avoid mechanical strength degradation.

  11. Diffusion bonding of the oxide dispersion strengthened steel PM2000

    NASA Astrophysics Data System (ADS)

    Sittel, Wiebke; Basuki, Widodo W.; Aktaa, Jarir

    2013-11-01

    Ferritic oxide dispersion strengthened (ODS) steels are well suited as structural materials, e.g. for claddings in fission reactors and for plasma facing components in fusion power plants due to their high mechanical and oxidation stability at high temperatures and their high irradiation resistance. PM2000 is an iron based ODS ferritic steel with homogeneously distributed nanometric yttria particles. Melting joining techniques are not suitable for such ODS materials because of the precipitation and agglomeration of the oxide particles and hence the loss of their strengthening effect. Solid state diffusion bonding is thus chosen to join PM2000 and is investigated in this work with a focus on oxide particles. The diffusion bonding process is aided by the computational modeling, including the influence of the ODS particles. For modeling the microstructure stability and the creep behavior of PM2000 at various, diffusion bonding relevant temperatures (50-80% Tm) are investigated. Particle distribution (TEM), strength (tensile test) and toughness (Charpy impact test) obtained at temperatures relevant for bonding serve as input for the prediction of optimal diffusion bonding parameters. The optimally bonded specimens show comparable strength and toughness relative to the base material.

  12. Al-Ge Diffusion Bonding for Hermetic Sealing Application

    NASA Astrophysics Data System (ADS)

    Chidambaram, Vivek; Wickramanayaka, Sunil

    2015-07-01

    The high-temperature requirement of Al-Ge eutectic bonding stands as a major obstacle to its wider acceptance for hermetic sealing application in the microelectromechanical systems packaging industry, in particular for temperature-sensitive devices. It has been demonstrated that a reduction in bonding temperature is feasible without compromising the hermeticity. The change in the mode of bonding from eutectic to solid-state diffusion did not have a dramatic impact on the bonding quality. However, this resulted in a substantial increase in bonding time. The shear strength also deteriorated as a result of the decrease in thickness of the reaction interface. However, the shear strength still complied with military standards. It has been confirmed that a hermetic seal could still be achieved without any solidification occurring at the interface. This is feasible since the interdiffusion coefficients of Al in (Ge) phase and Ge in (Al) phase are closer and are comparable to diffusion between solid-solution phases of identical metals such as in Au-Au, Cu-Cu, and Si-Si bonding, which are generally used for such hermetic sealing application. An appropriate stacking mechanism for Al-Ge diffusion bonding is identified to overcome the limitations with respect to surface topography.

  13. Ion diffusion at the bonding interface of undoped YAG/Yb:YAG composite ceramics

    NASA Astrophysics Data System (ADS)

    Fujioka, Kana; Sugiyama, Akira; Fujimoto, Yasushi; Kawanaka, Junji; Miyanaga, Noriaki

    2015-08-01

    Cation diffusion across a boundary between ytterbium (Yb)-doped and undoped yttrium aluminum garnet (YAG) ceramics was examined by electron microprobe analysis (EPMA). Polished Yb:YAG and undoped YAG ceramics were bonded by surface treatment with argon fast atom beam, and then heat-treated at 1400 or 1600 C for 50 h or at 1400 C for 10 h under vacuum. We obtained EPMA mapping images of the bonded samples that clearly showed the bulk and grain-boundary diffusion of Y and Yb ions. The number density profiles showed that the total diffusion distances of Yb and Y ions were almost equal and approximately 2 and 15 ?m at 1400 and 1600 C, respectively, and the dependence of diffusion distance on heating time was weak. The diffusion curves were well modeled by Harrison type B kinetics including bulk and grain-boundary diffusion. In addition, it was found that Si ions added to the samples as a sintering aid might be segregated at the grain boundary by heat treatment, and diffused only along grain boundaries.

  14. Diffusion bonding between W and EUROFER97 using V interlayer

    NASA Astrophysics Data System (ADS)

    Basuki, Widodo Widjaja; Aktaa, Jarir

    2012-10-01

    Diffusion bonding is selected to join W to EUROFER97 for the manufacturing of some components in the fusion technology. A direct bonding does not seem feasible due to the high interfacial residual stress induced by the large mismatch of the coefficient of thermal expansions of both materials to be bonded. To reduce the residual stress, a V plate with a thickness of 1 mm was introduced as an interlayer. The diffusion bonding was conducted at 1050 C for 1 h. The uniaxial applied compression stress was calculated considering the 5% allowable creep deformation on the EUROFER97's side. Investigations on bonded specimens showed defect free interfaces. Microstructure alterations were detected just at the EUROFER97/V interface. A very hard layer assumed to be a ? phase with a thickness of about 4 ?m was found on the EUROFER97's side along the bond interface. A 6 ?m carbide layer containing V2C with also a high hardness value was identified on the V interlayer's side. The impact toughness of the bonded specimens was low, however comparable to that of tungsten especially if the specimens were tested at RT. Tensile test at 550 C showed a relatively high tensile strength of bonded specimens, which achieved about 50% of the tensile strength of EUROFER97.

  15. Diffusion bonding of commercially pure Ni using Cu interlayer

    SciTech Connect

    Rahman, A.H.M.E. Cavalli, M.N.

    2012-07-15

    The concentration dependence of diffusivity in a multi-component diffusion system makes it complicated to predict the concentration profiles of diffusing species. This so called chemical diffusivity can be expressed as a function of thermodynamic and kinetic data. DICTRA software can calculate the concentration profiles using appropriate mobility and thermodynamic data. It can also optimize the diffusivity data using experimental diffusivity data. Then the optimized diffusivity data is stored as mobility data which is a linear function of temperature. In this work, diffusion bonding of commercially pure Ni using Cu interlayers is reported. The mobility parameters of Ni-Cu alloy binary systems were optimized using DICTRA/Thermocalc software from the available self-, tracer and chemical diffusion coefficients. The optimized mobility parameters were used to simulate concentration profiles of Ni-Cu diffusion joints using DICTRA/Thermocalc software. The calculated and experimental concentration profiles agreed well at 1100 Degree-Sign C. Agreement between the simulated and experimental profiles was less good at 1050 Degree-Sign C due to the grain boundary contribution to the overall diffusion. - Highlights: Black-Right-Pointing-Pointer The concentration profiles of Cu in Ni-Cu diffusion joints are modeled. Black-Right-Pointing-Pointer Interdiffusion coefficients in Ni-Cu system are optimized. Black-Right-Pointing-Pointer Optimized interdiffusion coefficients are expressed as mobility parameters. Black-Right-Pointing-Pointer Simulated profiles are comparable with experimental profiles.

  16. Superplastically formed diffusion bonded metallic structure

    NASA Technical Reports Server (NTRS)

    Ko, W. L. (inventor)

    1981-01-01

    A metallic sandwich structure particularly suited for use in aerospace industries comprising a base plate, a cover plate, and an orthogonally corrugated core is described. A pair of core plates formed of a superplastic alloy are interposed between the base plate and the cover plate and bonded. Each of the core plates is characterized by a plurality of protrusions comprising square-based, truncated pyramids uniformly aligned along orthogonally related axes perpendicularly bisecting the legs of the bases of the pyramids and alternately inverted along orthogonally related planes diagonally bisecting the pyramids, whereby an orthogonally corrugated core is provided.

  17. Algorithm for anisotropic diffusion in hydrogen-bonded networks

    E-print Network

    Edoardo Milotti

    2007-04-04

    In this paper I describe a specialized algorithm for anisotropic diffusion determined by a field of transition rates. The algorithm can be used to describe some interesting forms of diffusion that occur in the study of proton motion in a network of hydrogen bonds. The algorithm produces data that require a nonstandard method of spectral analysis which is also developed here. Finally, I apply the algorithm to a simple specific example.

  18. New method to diffusion bond superalloys A. A. Shirzadi and E. R. Wallach

    E-print Network

    Cambridge, University of

    New method to diffusion bond superalloys A. A. Shirzadi and E. R. Wallach A new method for diffusion bonding nickel base and cobalt base superalloys has been developed, which is based on non-chemical oxide removal before the bonding process. Using this method, diffusion bonds were produced in nickel

  19. A local view of bonding and diffusion at metal surfaces

    SciTech Connect

    Feibelman, P.J.

    1996-09-01

    First-principles density functional calculations and corresponding experimental results underline the importance of basic chemical concepts, such as coordination, valence saturation and promotion-hybridization energetics, in understanding bonding and diffusion of atoms at and on metal surfaces. Several examples are reviewed, including outer-layer relaxations of clean hcp(0001) surfaces, liquid-metal-embrittlement energetics, separation energies of metal-adatom dimers, concerted substitutional self-diffusion on fcc(001) surfaces, and adsorption and diffusion barrier sites for adatoms near steps.

  20. Microscopic aspects of interfacial reactions in diffusion bonding processes

    NASA Technical Reports Server (NTRS)

    Shearer, M. P.; Bauer, C. L.

    1976-01-01

    Microscopic aspects of interfacial reactions are discussed, such as interdiffusion, formation of intermetallic phases, generation and annihilation of lattice defects, effect of temperature, grain size, etc., which normally occur in diffusion bonding processes. Relationships between properties and microstructure in thin film couples are examined utilizing a unique combination of contact resistance measurements and characterization by transmission electron microscopy.

  1. Silver plating ensures reliable diffusion bonding of dissimilar metals

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Dissimilar metals are reliably joined by diffusion bonding when the surfaces are electroplated with silver. The process involves cleaning and etching, anodization, silver striking, and silver plating with a conventional plating bath. It minimizes the formation of detrimental intermetallic phases and provides greater tolerance of processing parameters.

  2. Diffusion bonding of iron aluminide Fe{sub 72}Al{sub 28} using a copper interlayer

    SciTech Connect

    Torun, O.; Celikyuerek, I.; Guerler, R.

    2008-07-15

    An Fe{sub 72}Al{sub 28} alloy was diffusion-bonded using a copper interlayer under vacuum at 1075 deg. C for 1 h, 2 h, 4 h and 6 h durations at 3.2 MPa applied pressure. The bond microstructure was found to be composed of the copper rich interlayer, copper rich precipitates and the base metal. SEM-EDS studies indicated major diffusion of aluminium and iron atoms from Fe{sub 72}Al{sub 28} into the copper interlayer and copper atoms from the copper interlayer into the Fe{sub 72}Al{sub 28} matrix. SEM observations of fractured surfaces of the diffusion-bonded samples showed some plastic deformation and signs of good bonding. Cu{sub 3}Al and B{sub 2}-FeAl-based phases were identified by SEM-EDS and X-ray diffraction studies at the bond and on the fracture surfaces of all samples investigated. Good bonding was achieved with a maximum shear strength of 298 MPa which is 65% of the parent material shear strength for a sample diffusion-bonded for 6 h.

  3. Explosive bonding of plates with diffusion barrier interfaces

    NASA Astrophysics Data System (ADS)

    Joshi, V. S.; Banks, M. L.; Krebsbach, J.

    2000-04-01

    Composite plates, with and without, "waves" were made using improved explosive welding techniques. Oriented heat treatment of one surface of a steel-titanium composite introduces brittle intermetallic material at the specific interface. Currently, we are investigating methods to minimize this layer. While "waveless" interfaces revealed minimum intermetallic material; failure of the bond during ballistic impact necessitated production of a semi-compatible diffusion barrier using a fine layer of pure metal. Methods of producing composite plates with different interlayer materials and the effect of variables in optimizing the bond quality is presented.

  4. Explosive Bonding of Plates with Diffusion Barrier Interfaces

    NASA Astrophysics Data System (ADS)

    Joshi, Vasant; Banks, Marvin; Krebsbach, John

    1999-06-01

    Composite plates, with and without, waves were made using improved explosive welding techniques. Oriented heat treatment of one surface of a steel-titanium composite introduces brittle intermetallic material at the specific interface. Currently, we are investigating methods to minimize this layer. While waveless interfaces revealed minimum intermetallic material; failure of the bond during ballistic impact necessitated production of a semi-compatible diffusion barrier using a fine layer of pure metal. Methods of producing composite plates with different interlayer materials and the effect of variables in optimizing the bond quality will be presented.

  5. Diffusion Bonding Aluminium Alloys and Composites: New Approaches and Modelling

    E-print Network

    Shirzadi Ghoshouni, Amir Abbas

    1998-07-10

    temperature of nickel, using Ni-P filler metal, was studied. An explicit finite difference method was employed, using a mass balance technique, to determine the location of the solid/liquid interface. According to their work, at very low heating rates... of the solid/liquid interface when TLP diffusion bonding nickel base metal using a Ni-P 19 at.% interlayer. The well-known Ficks first and second diffusion laws were used as the governing differential equations in order to determine the interface movement...

  6. Microstructural characterization of the Mg/Cu/Al diffusion bonded joint

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Shen, Qiang; Luo, Guoqiang; Wang, Yiyu; Li, Meijuan; Zhang, Lianmeng

    2013-03-01

    A vacuum hot-pressed diffusion bonding method was used to prepare an Mg/Cu/Al laminated composite. Both the Mg/Cu and Al/Cu interfaces were investigated by means of scanning electron microscopy, electron probe microanalysis, X-ray diffraction spectrometer system and Vickers microhardness test. The results showed that two kinds of intermetallic compounds, Al4Cu9 adjacent to the Cu side and Al2Cu adjacent to the Al side, were formed in the interface of Al-Cu. Meanwhile, Mg2Cu was formed at the interface of Mg/Cu. The maximum value of shear strength is 13.1 MPa and the fracture of the joints had taken place at the Mg-Cu interface. The microhardness of the interface increased due to the formation of the intermetallic compounds, which is the main cause leading to poor bond properties.

  7. Joining of Silicon Carbide Through the Diffusion Bonding Approach

    NASA Technical Reports Server (NTRS)

    Halbig, Michael .; Singh, Mrityunjay

    2009-01-01

    In order for ceramics to be fully utilized as components for high-temperature and structural applications, joining and integration methods are needed. Such methods will allow for the fabrication the complex shapes and also allow for insertion of the ceramic component into a system that may have different adjacent materials. Monolithic silicon carbide (SiC) is a ceramic material of focus due to its high temperature strength and stability. Titanium foils were used as an interlayer to form diffusion bonds between chemical vapor deposited (CVD) SiC ceramics with the aid of hot pressing. The influence of such variables as interlayer thickness and processing time were investigated to see which conditions contributed to bonds that were well adhered and crack free. Optical microscopy, scanning electron microscopy, and electron microprobe analysis were used to characterize the bonds and to identify the reaction formed phases.

  8. An investigation on microstructure evolution and mechanical properties during liquid state diffusion bonding of Al2024 to Ti6Al4V

    SciTech Connect

    Samavatian, Majid; Halvaee, Ayoub; Amadeh, Ahmad Ali; Khodabandeh, Alireza

    2014-12-15

    Joining mechanism of Ti/Al dissimilar alloys was studied during liquid state diffusion bonding process using Cu/Sn/Cu interlayer at 510 C under vacuum of 7.5 10{sup ?5} Torr for various bonding times. The microstructure and compositional changes in the joint zone were analyzed by scanning electron microscopy equipped with energy dispersive spectroscopy and X-ray diffraction. Microhardness and shear strength tests were also applied to study the mechanical properties of the joints. It was found that with an increase in bonding time, the elements of interlayer diffused into the parent metals and formed various intermetallic compounds at the interface. Diffusion process led to the isothermal solidification and the bonding evolution in the joint zone. The results from mechanical tests showed that microhardness and shear strength values have a straight relation with bonding time so that the maximum shear strength of joint was obtained for a bond made with 60 min bonding time. - Highlights: Liquid state diffusion bonding of Al2024 to Ti6Al4V was performed successfully. Diffusion of the elements caused the formation of various intermetallics at the interface. Microhardness and shear strength values have a straight relation with bonding time. The maximum shear strength reached to 36 MPa in 60 min bonding time.

  9. Mo/Ti Diffusion Bonding for Making Thermoelectric Devices

    NASA Technical Reports Server (NTRS)

    Sakamoto, Jeffrey; Kisor, Adam; Caillat, Thierry; Lara, Liana; Ravi, Vilupanur; Firdosy, Samad; Fleuiral, Jean-Pierre

    2007-01-01

    An all-solid-state diffusion bonding process that exploits the eutectoid reaction between molybdenum and titanium has been developed for use in fabricating thermoelectric devices based on skutterudite compounds. In essence, the process is one of heating a flat piece of pure titanium in contact with a flat piece of pure molybdenum to a temperature of about 700 C while pushing the pieces together with a slight pressure [a few psi (of the order of 10 kPa)]. The process exploits the energy of mixing of these two metals to form a strong bond between them. These two metals were selected partly because the bonds formed between them are free of brittle intermetallic phases and are mechanically and chemically stable at high temperatures. The process is a solution of the problem of bonding hot-side metallic interconnections (denoted hot shoes in thermoelectric jargon) to titanium-terminated skutterudite n and p legs during the course of fabrication of a unicouple, which is the basic unit cell of a thermoelectric device (see figure). The hot-side operating temperature required for a skutterudite thermoelectric device is 700 C. This temperature precludes the use of brazing to attach the hot shoe; because brazing compounds melt at lower temperatures, the hot shoe would become detached during operation. Moreover, the decomposition temperature of one of the skutterudite compounds is 762 C; this places an upper limit on the temperature used in bonding the hot shoe. Molybdenum was selected as the interconnection metal because the eutectoid reaction between it and the titanium at the ends of the p and n legs has characteristics that are well suited for this application. In addition to being suitable for use in the present bonding process, molybdenum has high electrical and thermal conductivity and excellent thermal stability - characteristics that are desired for hot shoes of thermoelectric devices. The process takes advantage of the chemical potential energy of mixing between molybdenum and titanium. These metals have a strong affinity for each other. They are almost completely soluble in each other and remain in the solid state at temperatures above the eutectoid temperature of 695 C. As a result, bonds formed by interdiffusion of molybdenum and titanium are mechanically stable at and well above the original bonding temperature of about 700 C. Inasmuch as the bonds are made at approximately the operating temperature, thermomechanical stresses associated with differences in thermal expansion are minimized.

  10. Diffusion limited cluster aggregation with irreversible flexible bonds

    E-print Network

    Sujin Babu; Jean-Christophe Gimel; Taco Nicolai

    2008-01-29

    Irreversible diffusion limited cluster aggregation (DLCA) of hard spheres was simulated using Brownian cluster dynamics. Bound spheres were allowed to move freely within a specified range, but no bond breaking was allowed. The structure and size distribution of the clusters was investigated before gelation. The pair correlation function and the static structure factor of the gels were determined as a function of the volume fraction and time. Bond flexibility led to local densification of the clusters and the gels, with a certain degree of order. At low volume fractions densification of the clusters occurred during their growth, but at higher volume fractions it occurred mainly after gelation. At very low volume fractions, the large scale structure (fractal dimension), size distribution and growth kinetics of the clusters was found to be close to that known for DLCA with rigid bonds. Restructuring of the gels continued for long times, indicating that aging processes in systems with strong attraction do not necessarily involve bond breaking. The mean square displacement of particles in the gels was determined. It is shown to be highly heterogeneous and to increase with decreasing volume fraction.

  11. Simultaneous Bayesian reconstruction of diffusivity and bond potentials using path integrals

    E-print Network

    Levine, Alex J.

    Simultaneous Bayesian reconstruction of diffusivity and bond potentials using path integrals Joshua requires fewer data and allows simultaneous inference of both complex bond potentials and diffusivity spectroscopy (DFS) has been used to distort bonds. The resulting responses, in the form of rupture forces, work

  12. Diffusion Bonding and Characterization of a Dispersion Strengthened Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Cooke, Kavian Omar

    Aluminum metal matrix composites (Al-MMC's) containing silicon carbide or alumina particle reinforcements are used extensively in automotive and aircraft industries. The addition of a reinforcing phase has led to significant improvements in the mechanical properties of these alloys. However, despite substantial improvements in the properties, the lack of a reliable joining method has restricted their full potential. The differences in physical and metallurgical properties between the ceramic phase and the Al-MMC, prevents the successful application of the fusion welding processes, conventionally used for joining monolithic aluminum alloys. Therefore, alternative techniques that prevent microstructural changes in the base metal need to be developed. In this study, the transient liquid phase diffusion bonding and eutectic bonding of a particle reinforced Al 6061-MMC was investigated to identify a method that could control particle segregation within the joint and increase the final joint strength. The results showed that TLP bonding using Ni-foil was possible at 600C for 10 minutes using a pressure of 0.01 MPa. However, characterization of the bond interface showed a wide particle segregated zone due to the "pushing effect" of the solid/liquid interface during isothermal solidification stage of bonding. The presence of this particle segregated zone was shown to cause low joint strengths. In order to overcome these problems, TLP bonding was performed using electrodeposited coatings of Ni and Ni-Al 2O3 as a way of controlling the volume of eutectic liquid formed at the joint. Theoretical and experimental work showed that the use of thin coatings was successful in reducing the width of the segregated zone formed at the joint and this had the effect of increasing joint shear strength values. Furthermore, lower bonding temperature could also be used as a method of reducing particle segregation and therefore, a Cu-Sn interlayer was used to form a eutectic bond. The experimental results showed that particle segregation could be prevented, but lower joint shear strengths were obtained. Comparative analysis indicated that when Ni-Al2O3 coating was used, shear strength of 92% of the base metal strength was achievable. In comparison, when Ni coating, Ni-foil and Cu-Sn interlayers were used, the maximum joint strengths achievable were 84% 62% and 60% respectively.

  13. Diffusion of co-sputtered metals as bonding materials for 3D interconnects during thermal treatments.

    PubMed

    Hsu, S Y; Chen, H Y; Chen, K N

    2012-03-01

    Diffusion behaviors of co-sputtered metals during thermal treatments were investigated, where these co-sputtered metals can be used as bonding materials for 3D Interconnects. In this paper, we report the diffusion behaviors and discuss the diffusion mechanisms of co-sputtered metals before and after annealing. Atom and vacancy volume, vacancy formation energy, and activation energy are proposed to explain the diffusion direction and diffusion rate among different co-sputtered metals. Based on the excellent bonding performance of this method, Cu/metal co-sputtering bonding is considered as a potential candidate for advanced bonding technology. PMID:22755075

  14. The diffusion bonding of silicon carbide and boron carbide using refractory metals

    SciTech Connect

    Cockeram, B.V.

    1999-10-01

    Joining is an enabling technology for the application of structural ceramics at high temperatures. Metal foil diffusion bonding is a simple process for joining silicon carbide or boron carbide by solid-state, diffusive conversion of the metal foil into carbide and silicide compounds that produce bonding. Metal diffusion bonding trials were performed using thin foils (5 {micro}m to 100 {micro}m) of refractory metals (niobium, titanium, tungsten, and molybdenum) with plates of silicon carbide (both {alpha}-SiC and {beta}-SiC) or boron carbide that were lapped flat prior to bonding. The influence of bonding temperature, bonding pressure, and foil thickness on bond quality was determined from metallographic inspection of the bonds. The microstructure and phases in the joint region of the diffusion bonds were evaluated using SEM, microprobe, and AES analysis. The use of molybdenum foil appeared to result in the highest quality bond of the metal foils evaluated for the diffusion bonding of silicon carbide and boron carbide. Bonding pressure appeared to have little influence on bond quality. The use of a thinner metal foil improved the bond quality. The microstructure of the bond region produced with either the {alpha}-SiC and {beta}-SiC polytypes were similar.

  15. Microstructure and mechanical properties of diffusion bonded W/steel joint using V/Ni composite interlayer

    SciTech Connect

    Liu, W.S.; Cai, Q.S. Ma, Y.Z.; Wang, Y.Y.; Liu, H.Y.; Li, D.X.

    2013-12-15

    Diffusion bonding between W and steel using V/Ni composite interlayer was carried out in vacuum at 1050 C and 10 MPa for 1 h. The microstructural examination and mechanical property evaluation of the joints show that the bonding of W to steel was successful. No intermetallic compound was observed at the steel/Ni and V/W interfaces for the joints bonded. The electron probe microanalysis and X-ray diffraction analysis revealed that Ni{sub 3}V, Ni{sub 2}V, Ni{sub 2}V{sub 3} and NiV{sub 3} were formed at the Ni/V interface. The tensile strength of about 362 MPa was obtained for as-bonded W/steel joint and the failure occurred at W near the V/W interface. The nano-indentation test across the joining interfaces demonstrated the effect of solid solution strengthening and intermetallic compound formation in the diffusion zone. - Highlights: Diffusion bonding of W to steel was realized using V/Ni composite interlayer. The interfacial microstructure of the joint was clarified. Several VNi intermetallic compounds were formed in the interface region. The application of V/Ni composite interlayer improved the joining quality.

  16. Theoretical and experimental analyses of atom diffusion characteristics on wire bonding interfaces

    NASA Astrophysics Data System (ADS)

    Li, Junhui; Fuliang, Wang; Han, Lei; Zhong, Jue

    2008-07-01

    The features of ultrasonic bonding interface were inspected by using a high resolution transmission electron microscope. Stress of ultrasonic bonding interface was analysed by the finite elements simulation. Results show that the high stress of bonding interface was caused by ultrasonic vibration, which increased the dislocation density inside the metal crystalline lattice which provides the fast diffusion channels, and provided driving force for atom inter-diffusion. 'Short-circuit diffusion' during ultrasonic bonding is more prominent than crystal diffusion. For the given ultrasonic bonding parameters, depth of atom diffusion at Au/Al interface of ultrasonic bonding was about 100-300 nm in several ten milliseconds, which forms the bonding strength of 0.65 N, and it is an inter-metallic compound of AuAl2. These will be helpful for further analysis.

  17. Diffusion Bonding of Stainless Steel to Copper with Tin Bronze and Gold Interlayers

    NASA Astrophysics Data System (ADS)

    Xiong, Jiang-Tao; Xie, Qing; Li, Jing-Long; Zhang, Fu-Sheng; Huang, Wei-Dong

    2012-01-01

    Vacuum diffusion bonding of stainless steel to copper was carried out at a temperature ranging from 830 to 950 C under an axial pressure of 3 MPa for 60 min with three kinds of interlayer metals: tin-bronze (TB) foil, Au foil, and TB-Au composite interlayer. The results showed that the grain boundary wetting was formed within the steel adjacent to the interface due to the contact melting between TB and Au when TB-Au composite interlayer was used. The grain boundary wetting could occur at a relatively low temperature of 830 C and becomes significant with the increase of temperature. The tensile strength of the joint with TB-Au was higher than that with TB or Au interlayer separately and could be 228 MPa at the joining temperature of 850 C. Furthermore, the axial compression ratio of the specimen joined at 850 C was approximately 1.2%. Therefore, a reliable and precise joining of stainless steel to copper could be realized by diffusion bonding with the TB-Au composite interlayer at a comparatively low temperature.

  18. On the Formation of a Diffusion Bond from Cold-Spray Coatings

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Birbilis, Nick; Zhang, Ming-Xing

    2012-05-01

    To understand the development of diffusion bonding, which can increase the bonding strength, three different cold-sprayed coating/substrate systems were investigated, Ni/Cu, Cu/Cu, and Al/Mg, by annealing at increased temperatures for various times. The formation of intermetallic compounds in the Al/Mg system reduced the bonding strength dramatically. In Cu/Cu and Ni-Cu, diffusion bonds developed at lower temperatures as Ni-Cu forms an isomorphous system, which increased the bonding strength effectively. However, higher temperature annealing reduced bonding strength ultimately because of the Kirkendall pores.

  19. The metallurgical integrity of the frit vent assembly diffusion bond

    SciTech Connect

    Ulrich, G.B.

    1994-06-01

    Iridium alloy clad vent sets (CVSs) are now being made by Energy Systems at the Oak Ridge Y-12 Plant. These CVSs are being made for the US Department of Energy`s (NE-53) General Purpose Heat Source- Radioisotope Thermoelectric Generator (GPHS-RTG) program, which is to supply electrical power for the National Aeronautics and Space Administration`s Cassini mission to Saturn. A GPHS-RTG has 72 CVSs. Each CVS encapsulates one {sup 238}PuO{sub 2} fuel pellet. The helium gas produced from the alpha decay of the {sup 238}Pu is vented through a nominal 0.45-mm-diam hole in the vent cup of each CVS. A frit vent assembly that is electron beam welded over the vent hole allows helium gas to escape but prevents plutonia fines from exiting. The metallurgical integrity of frit vent assemblies produced by Martin Marietta Energy Systems, Inc. (Energy Systems) were compared with those produced earlier by EG&G-Mound Applied Technology, Inc. (EG&G-MAT). Scanning electron microscope (SEM) photographs were taken (at magnifications of from 126X to 1,000X) of the starting frit vent powder and the diffusion-bonded powder in finished frit vent assemblies produced by Energy Systems and EG&G-MAT. Frit vent assemblies also were metallographically prepared and visually examined/photographed at magnifications of from 50X to 1,000X. The SEM and metallographic examinations of the particle-to-particle and particle-to-foil component diffusion bonds indicated that the Energy Systems-produced and EG&G-MAT-produced frit vent assemblies have comparable metallurgical integrity. Statistical analysis of the Energy Systems production data shows that the frit vent manufacturing yield is 91%.

  20. The metallurgical integrity of the frit vent assembly diffusion bond

    NASA Astrophysics Data System (ADS)

    Ulrich, G. B.

    1994-06-01

    Iridium alloy clad vent sets (CVS's) are now being made by Energy Systems at the Oak Ridge Y-12 Plant. These CVS's are being made for the US Department of Energy's (NE-53) General Purpose Heat Source- Radioisotope Thermoelectric Generator (GPHS-RTG) program, which is to supply electrical power for the National Aeronautics and Space Administration's Cassini mission to Saturn. A GPHS-RTG has 72 CVS'. Each CVS encapsulates one (238)PuO2 fuel pellet. The helium gas produced from the alpha decay of the (238)Pu is vented through a nominal 0.45-mm-diam hole in the vent cup of each CVS. A frit vent assembly that is electron beam welded over the vent hole allows helium gas to escape but prevents plutonia fines from exiting. The metallurgical integrity of frit vent assemblies produced by Martin Marietta Energy Systems, Inc. (Energy Systems) were compared with those produced earlier by EG&G-Mound Applied Technology, Inc. (EG&G-MAT). Scanning electron microscope (SEM) photographs were taken (at magnifications of from 126x to 1,000x) of the starting frit vent powder and the diffusion-bonded powder in finished frit vent assemblies produced by Energy Systems and EG&G-MAT. Frit vent assemblies also were metallographically prepared and visually examined/photographed at magnifications of from 50x to 1,000x. The SEM and metallographic examinations of the particle-to-particle and particle-to-foil component diffusion bonds indicated that the Energy Systems-produced and EG&G-MAT-produced frit vent assemblies have comparable metallurgical integrity. Statistical analysis of the Energy Systems production data shows that the frit vent manufacturing yield is 91%.

  1. Microstructures of diffusion bonded SiC ceramics using Ti and Mo interlayers

    NASA Astrophysics Data System (ADS)

    Jung, Yang-Il; Kim, Sun-Han; Kim, Hyun-Gil; Park, Jeong-Yong; Kim, Weon-Ju

    2013-10-01

    SiC plates were diffusion bonded using metallic interlayers of Ti and Mo foils. For the joining, a uniaxial pressure of ?7 MPa was applied at 1400 C for 1 h in a vacuum. The interfacial microstructures along with their atomic compositions of the SiC/SiC joints were analyzed. For the Ti interlayer, Ti was converted into a Ti3SiC2 phase owing to the diffusion of silicon and carbon from the SiC part. A crystallographic orientation relationship was found between the SiC and Ti3SiC2 grains. At the middle of the Ti interlayer, a TiSi2 phase also existed, forming a dual-phase region. For the Mo interlayer, the diffusion of silicon into Mo induced the formation of the Mo5Si3C phase at the SiC/Mo interface. An unreacted metallic phase was still observed in the middle of the Mo insert. The shear strengths of the joints were 67 MPa and 76 MPa for the Ti and Mo interlayers, respectively.

  2. Effects of Pulse Current on Transient Liquid Phase (TLP) Diffusion Bonding of SiCp/2024Al Composites Sheet Using Mixed Al, Cu, and Ti Powder Interlayer

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Jiang, Shaosong; Zhang, Kaifeng

    2012-09-01

    The effects of pulse current on transient liquid phase (TLP) diffusion bonding of SiCp/2024Al composites sheet were investigated at 853 K (580 C) using a mixed slurry of Al, Cu, and Ti powder interlayer. The process parameters were as follows: the pulse current density of 1.15 102 A/mm2, the original pressure of 0.5 MPa, the vacuum of 1.3 10-3 Pa, and the bonding time from 15 to 60 minutes. Moreover, the bonding mechanism in correlation with the microstructural and mechanical properties variation was analyzed.

  3. Structural dynamics of hydrogen bonded methanol oligomers: Vibrational transient hole burning studies of spectral diffusion

    E-print Network

    Fayer, Michael D.

    diffusion. Identifying the relative importance of hydrogen bond length and orientational relaxation dynamicsStructural dynamics of hydrogen bonded methanol oligomers: Vibrational transient hole burning studies of spectral diffusion I. R. Piletic, K. J. Gaffney, and M. D. Fayer Department of Chemistry

  4. FINITE VOLUME APPROXIMATION OF THE EFFECTIVE DIFFUSION MATRIX: THE CASE OF INDEPENDENT BOND

    E-print Network

    Caputo, Pietro

    FINITE VOLUME APPROXIMATION OF THE EFFECTIVE DIFFUSION MATRIX: THE CASE OF INDEPENDENT BOND with independent jump rates across nearest neighbour bonds of the lattice. We show that the in#12;nite volume e#11] ; b 2 E d g ; is speci#12;ed by the jump rates across the nearest neighbour bonds b 2 E d , with E d

  5. Modeling and experimental evaluation of the diffusion bonding of the oxide dispersion strengthened steel PM2000

    NASA Astrophysics Data System (ADS)

    Sittel, Wiebke; Basuki, Widodo W.; Aktaa, Jarir

    2015-10-01

    A modeling based optimization process of the solid state diffusion bonding is presented for joining ferritic oxide dispersion strengthened steels PM2000. An optimization study employing varying bonding temperatures and pressures results in almost the same strength and toughness of the bonded compared to the as received material. TEM investigations of diffusion bonded samples show a homogeneous distribution of oxide particles at the bonding seam similar to that in the bulk. Hence, no loss in strength or creep resistance due to oxide particle agglomeration is found, as verified by the mechanical properties observed for the joint.

  6. Leakage rates and thermal requirements for the diffusion bonding of microchannel arrays via internal convective heating

    SciTech Connect

    Bose, Sumantra; Palo, Daniel R.; Paul, Brian

    2007-07-24

    Diffusion bonding cycle times can be a large cost factor in the production of metal microchannel devices. The challenge is to significantly minimize this cost by reducing the bonding cycle time through rapid and uniform heating and cooling within the bonding process. Heating rates in diffusion bonding processes are typically limited by the need to minimize thermal gradients during bonding. A novel method is described which takes advantage of the internal flow passages within microchannel devices for convective heat transfer during the bonding process. The internal convective heating (ICH) technique makes use of heated inert gas to provide the microchannel assembly with rapid and uniform heat input. This paper will demonstrate the ability to effectively diffusion bond microchannel laminae using the ICH method by investigating the leakage rates.

  7. Interface characteristics in diffusion bonding of Fe3Al with Cr18-Ni8 stainless steel.

    PubMed

    Wang, Juan; Li, Yajiang; Yin, Yansheng

    2005-05-01

    Fe3Al and Cr18-Ni8 stainless steel were diffusion-bonded in vacuum and a Fe3Al/Cr18-Ni8 interface with reaction layer was formed. Microstructure in the reaction layer at Fe3Al/Cr18-Ni8 interface was analyzed by means of scanning electron microscope (SEM) and electron probe micro-analyzer (EPMA). The growth of reaction layer with heating temperature (T) and holding time (t) was researched. The results indicate that FeAl, Fe3Al, Ni3Al, and alpha-Fe (Al) solid solution are formed in the reaction layer. These phases are favorable to promote the element diffusion and to accelerate the formation of the reaction layer at Fe3Al/Cr18-Ni8 interface. The growth of reaction layer obeys the parabolic law and its thickness (X) is expressed by X2 = 7.5 x 10(-4)exp(-83.59/RT)(t - t0). PMID:15797414

  8. Molecular dynamics simulation of diffusion bonding of Al-Cu interface

    NASA Astrophysics Data System (ADS)

    Li, Chang; Li, Dongxu; Tao, Xiaoma; Chen, Hongmei; Ouyang, Yifang

    2014-09-01

    The effects of temperature on diffusion bonding of Al-Cu interface have been investigated by using molecular dynamics (MD) technique with the embedded atomic method (EAM) potentials. The simulated results indicate that the Cu atoms predominantly diffuse into the Al side in the process of diffusion bonding, and the thickness of the interfacial region depends on temperature, with higher temperatures resulting in larger thickness. In the course of diffusion bonding, the interfacial region became disordered. In addition, the Cu atoms diffuse at low ratios but can deeply diffuse into the interior of Al, and the Al atoms diffuse at high ratios but hardly diffuse into the interior of Cu. The results show that the appropriate temperature range for diffusion bonding of Al-Cu interface is 750-800 K, and the diffusion activation energies of Al and Cu are 0.77 eV and 0.50 eV, respectively. Finally, in this work, three diffusion mechanisms of Cu atoms in Al lattice have been found and the main diffusion mechanism is the nearest neighbor hopping mechanism.

  9. The application of diffusion bonding in the manufacture of aeroengine components

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, J. A.

    Rolls-Royce has developed and optimized diffusion bonding processes for the manufacture of advanced titanium alloy aeroengine structures and components. Both categories of the joining technique - 'liquid-phase' and 'solid-state' - are being applied in the production of both static fabrications and complex rotating parts. In order to utilize diffusion bonding processes in a production environment, the process parameters which contribute to consistent formation of joints of the required strength have been critically examined. Process variables include temperature, pressure, time, surface roughness and, in the case of liquid-phase diffusion bonding, interlayer composition, density and thickness. Mechanical testing (tensile, impact and fatigue) complemented by metallography has predominantly been used to identify the permitted variations in the processes for the realistic and economical production manufacture of high quality lightweight aeroengine fabrications. The development of a high integrity bond via optimized diffusion bonding processes has been fundamental to the development of Rolls-Royce's unique wide chord fan design concept.

  10. Lateral diffusion of receptor-ligand bonds in membrane adhesion zones: Effect of thermal membrane roughness

    E-print Network

    H. Krobath; G. J. Schuetz; R. Lipowsky; T. R. Weikl

    2007-03-19

    The adhesion of cells is mediated by membrane receptors that bind to complementary ligands in apposing cell membranes. It is generally assumed that the lateral diffusion of mobile receptor-ligand bonds in membrane-membrane adhesion zones is slower than the diffusion of unbound receptors and ligands. We find that this slowing down is not only caused by the larger size of the bound receptor-ligand complexes, but also by thermal fluctuations of the membrane shape. We model two adhering membranes as elastic sheets pinned together by receptor-ligand bonds and study the diffusion of the bonds using Monte Carlo simulations. In our model, the fluctuations reduce the bond diffusion constant in planar membranes by a factor close to 2 in the biologically relevant regime of small bond concentrations.

  11. Process optimization for diffusion bonding of tungsten with EUROFER97 using a vanadium interlayer

    NASA Astrophysics Data System (ADS)

    Basuki, Widodo Widjaja; Aktaa, Jarir

    2015-04-01

    Solid-state diffusion bonding is a selected joining technology to bond divertor components consisting of tungsten and EUROFER97 for application in fusion power plants. Due to the large mismatch in their coefficient of thermal expansions, which leads to serious thermally induced residual stresses after bonding, a thin vanadium plate is introduced as an interlayer. However, the diffusion of carbon originated from EUROFER97 in the vanadium interlayer during the bonding process can form a vanadium carbide layer, which has detrimental influences on the mechanical properties of the joint. For optimal bonding results, the thickness of this layer and the residual stresses has to be decreased sufficiently without a significant reduction of material transport especially at the vanadium/tungsten interface, which can be achieved by varying the diffusion bonding temperature and duration. The investigation results show that at a sufficiently low bonding temperature of 700 C and a bonding duration of 4 h, the joint reaches a reasonable high ductility and toughness especially at elevated test temperature of 550 C with elongation to fracture of 20% and mean absorbed Charpy impact energy of 2 J (using miniaturized Charpy impact specimens). The strength of the bonded materials is about 332 MPa at RT and 291 MPa at 550 C. Furthermore, a low bonding temperature of 700 C can also help to avoid the grain coarsening and the alteration of the grain structure especially of the EUROFER97 close to the bond interface.

  12. Light-induced hydrogen evolution from hydrogenated amorphous silicon: Hydrogen diffusion by formation of bond centered hydrogen

    NASA Astrophysics Data System (ADS)

    Tanimoto, H.; Arai, H.; Mizubayashi, H.; Yamanaka, M.; Sakata, I.

    2014-02-01

    The light-induced hydrogen evolution (LIHE) from amorphous (a-) Si:H by the order of at. % is observed during white light soaking (WLS) of 100-400 mW/cm2 at 350-500 K or ultra violet light soaking (UVLS) of 30-120 mW/cm2 at 305-320 K in a vacuum. The thermal desorption spectroscopy indicates that LIHE originated from bonded hydrogen takes place through the diffusion of light-induced mobile hydrogen (LIMH) with the activation energy of 0.5 eV. LIMH is assigned to bond centered hydrogen and the hydrogen diffusion process becomes prominent when LIMH can leave from a-Si:H such under light soaking in a vacuum above room temperature. For H2 in microvoids, the hydrogen evolution rate is governed by the surface barrier and its activation energy of 1.0 eV in dark decreases to 0.4 eV under WLS or UVLS.

  13. Developing A Laser Shockwave Model For Characterizing Diffusion Bonded Interfaces

    SciTech Connect

    James A. Smith; Jeffrey M. Lacy; Barry H. Rabin

    2014-07-01

    12. Other advances in QNDE and related topics: Preferred Session Laser-ultrasonics Developing A Laser Shockwave Model For Characterizing Diffusion Bonded Interfaces 41st Annual Review of Progress in Quantitative Nondestructive Evaluation Conference QNDE Conference July 20-25, 2014 Boise Centre 850 West Front Street Boise, Idaho 83702 James A. Smith, Jeffrey M. Lacy, Barry H. Rabin, Idaho National Laboratory, Idaho Falls, ID ABSTRACT: The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) which is assigned with reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU. The new LEU fuel is based on a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to complete the fuel qualification process, the laser shock technique is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. The Laser Shockwave Technique (LST) is being investigated to characterize interface strength in fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However the deposition of laser energy into the containment layer on specimens surface is intractably complex. The shock wave energy is inferred from the velocity on the backside and the depth of the impression left on the surface from the high pressure plasma pulse created by the shock laser. To help quantify the stresses and strengths at the interface, a finite element model is being developed and validated by comparing numerical and experimental results for back face velocities and front face depressions with experimental results. This paper will report on initial efforts to develop a finite element model for laser shock.

  14. Diffusion bonding and its application to manufacturing. [for joining of metal parts

    NASA Technical Reports Server (NTRS)

    Spurgeon, W. M.

    1972-01-01

    In its simplest form diffusion bonding is accomplished by placing clean metal surfaces together under a sufficient load and heating. The natural interatomic attractive force between atoms transforms the interface into a natural grain boundary. Therefore, in principle, the properties of the bond area are identical to those of the parent metal. Other advantages of diffusion bonding over conventional methods of bonding include freedom from residual stresses, excessive deformation, foreign metals, or changed crystal structures. Stainless steels, nickel-base superalloys, and aluminum alloys have all been successfully joined. Complex hardware, including integrated flueric devices, jet engine servovalves, and porous woven structures have been fabricated. The processing involved is discussed, along with such theoretical considerations as the role of metal surfaces, the formation of metal contact junctions, and the mechanisms of material transport in diffusion bonding.

  15. Diffusion Bonding of Microduplex Stainless Steel and Ti Alloy with and without Interlayer: Interface Microstructure and Strength Properties

    NASA Astrophysics Data System (ADS)

    Kundu, S.; Sam, S.; Mishra, B.; Chatterjee, S.

    2014-01-01

    The interface microstructure and strength properties of solid state diffusion bonding of microduplex stainless steel (MDSS) to Ti alloy (TiA) with and without a Ni alloy (NiA) intermediate material were investigated at 1173 K (900 C) for 0.9 to 5.4 ks in steps of 0.9 ks in vacuum. The effects of bonding time on the microstructure of the bonded joint have been analyzed by light optical microscopy and scanning electron microscopy in the backscattered mode. In the direct bonded joints of MDSS and TiA, the layer-wise ? phase and the ? + FeTi phase mixture were observed at the bond interface when the joint was processed for 2.7 ks and above holding times. However, when NiA was used as an intermediate material, the results indicated that TiNi3, TiNi, and Ti2Ni are formed at the NiA-TiA interface, and the irregular shaped particles of Fe22Mo20Ni45Ti13 have been observed within the TiNi3 intermetallic layer. The stainless steel-NiA interface is free from intermetallics and the layer of austenitic phase was observed at the stainless steel side. A maximum tensile strength of ~520 MPa, shear strength of ~405 MPa, and impact toughness of ~18 J were obtained for the directly bonded joint when processed for 2.7 ks. However, when nickel base alloy was used as an intermediate material in the same materials, the bond tensile and shear strengths increase to ~640 and ~479 MPa, respectively, and the impact toughness to ~21 J when bonding was processed for 4.5 ks. Fracture surface observations in scanning electron microscopy using energy dispersive spectroscopy demonstrate that in MDSS-TiA joints, failure takes place through the FeTi + ? phase when bonding was processed for 2.7 ks; however, failure takes place through ? phase for the diffusion joints processed for 3.6 ks and above processing times. However, in MDSS-NiA-TiA joints, the fracture takes place through NiTi2 layer at the NiA-TiA interface for all bonding times.

  16. In-process oxidation protection in fluxless brazing or diffusion bonding of aluminum alloys

    NASA Technical Reports Server (NTRS)

    Okelly, K. P.; Featherston, A. B.

    1974-01-01

    Aluminum is cleaned of its oxide coating and is sealed immediately with polymeric material which makes it suitable for fluxless brazing or diffusion bonding. Time involved between cleaning and brazing is no longer critical factor.

  17. Strength, acoustic evaluation and metallurgy of diffusion bonds

    SciTech Connect

    Buck, O.; Ojard, G.C.

    1993-10-01

    This paper discusses our efforts on two model systems to determine the bond strength, its correlation to acoustic NDE and the metallurgy involved in the process. Results indicate that the total acoustic energy, reflected from the original interface, can differentiate between the various bond strengths achieved. However, depending on types of materials to be joined, the atomistic processes, leading to a variety of microstructures in the bond planes, can become quite complex and strongly dominate the mechanical properties of such bonds. Origin of failure initiating defects is discussed.

  18. Method of fluxless brazing and diffusion bonding of aluminum containing components

    NASA Technical Reports Server (NTRS)

    Featherston, A. B.; Okelly, K. P. (inventors)

    1976-01-01

    A method of diffusion bonding and fluxless brazing of aluminum containing components is reported. The aluminum surfaces are freed of any aluminum oxide coating and are coated with a polymeric sealer which can be thermally removed leaving essentially no residue. The polymeric sealer is being removed in a substantially oxygen free environment, and the aluminum components are then being brazed or diffusion bonded without the use of a flux to remove oxide coating.

  19. Pulsed Plasma-Assisted Diffusion Bonding of ODS-FeCrAl Alloys

    SciTech Connect

    Tatlock, Gordon J; Dyadko, Dr. Eugene G.; Dryepondt, Sebastien N; Wright, Ian G

    2007-01-01

    The successful joining of ODS alloy PM2000 rods by pulsed plasma-assisted diffusion bonding is reported. During secondary recrystallisation after joining, the alloy grains grew across the original interface, which was then marked only by a row of remnant alumina particles. These did not appear to act as pinning sites for the grain boundaries, which moved easily past them, leaving a strong diffusion bond.

  20. Differential expansion provides pressure for diffusion bonding of large diameter rings

    NASA Technical Reports Server (NTRS)

    1966-01-01

    External pressure band is used to bond aluminum alloy collars to large diameter, stainless steel rings. The band contracts while cooling and exerts pressure on the joint between the silver plated surfaces of the ring and collar which expand toward the band. This diffusion bonding by differential expansion minimizes aluminum deformation.

  1. Microstructural characterisation of stainless steel-titanium interfaces in diffusion bonded joints

    NASA Astrophysics Data System (ADS)

    Srikanth, V.; Laik, A.; Vishwanadh, B.; Shirzadi, A. A.; Dey, G. K.

    2015-06-01

    A detailed characterization of stainless steel -titanium joints, produced by Ga-assisted diffusion bonding, has been carried out. The joints bonded with Ni-interlayer showed the formation of thin layers of intermetallic compounds Fe2Ti and NiTi2 at the interface, while those bonded directly showed formation of Fe2Ti and FeTi. Additionally, the formation of a eutectoid layer of ?-Ti and Ni2Ti, on the Ti side of the interface was noticed.

  2. Diffusion bonding of beryllium to CuCrZr for ITER applications.

    SciTech Connect

    Cadden, Charles H.; Puskar, Joseph David; Goods, Steven Howard

    2008-08-01

    Low temperature diffusion bonding of beryllium to CuCrZr was investigated for fusion reactor applications. Hot isostatic pressing was accomplished using various metallic interlayers. Diffusion profiles suggest that titanium is effective at preventing Be-Cu intermetallics. Shear strength measurements suggest that acceptable results were obtained at temperatures as low as 540C.

  3. Concurrent solid state diffusion bonding and superplastic forming of aluminum alloy 7475

    SciTech Connect

    Sunwoo, A.; Lum, R.; Vandervoort, R.

    1995-01-01

    Earlier studies on diffusion bonding (DB) of Al alloys have focused mostly in extrinsically changing the bonding conditions through the use of interlayers, surface etching, or environment. The problem with focusing on the extrinsic conditions only is that the benefits of the DB process are not fully utilized and instead, it can create problems for the base alloy. The approach we have taken to study solid state diffusion bondability of Al alloy is to utilize the intrinsic behavior of superplastic material. Beginning with this preprocessed material, we used a unique method, to obtain diffusion bonding concurrently with superplastic forming to achieve ductile, oxide-free bonds at significantly lower pressures and temperature in an argon atmosphere.

  4. Diffusion bonding of a superplastic Inconel 718SPF superalloy by electroless nickel plating

    SciTech Connect

    Yeh, M.S.; Chang, C.B.; Chuang, T.H.

    2000-02-01

    Although intimate contact can be obtained for diffusion bonding of a superplastic Inconel 718SPF superalloy under a low pressure of 7 MPa, the precipitates formed at the interface retarded achievement of a sound joint. The shear strength was only 41.5 MPa for an overlap length of 12 T (T = 1.3 mm, sheet thickness). The diffusion bondability of t his Inconel 718SPF superalloy was enhanced by electroless nickel plating. In this situation, the bonding shear strength increased to 70.4 MPa for the same overlap length of 12 T under the same bonding condition, regardless of the roughness of the surface to be bonded. Upon decreasing the overlap length from 12 to 6T, the bonding strength remained constant.

  5. Bulk diffusion of 1D exclusion process with bond disorder

    E-print Network

    A. Faggionato

    2010-03-30

    Given a doubly infinite sequence of positive numbers {c_k: k in Z} satisfying a LLN with limit A, we consider the nearest-neighbor simple exclusion process on Z where c_k is the probability rate of jumps between k and k+1. If A is infinite we require an additional minor technical condition. By extending a method developed by K. Nagy, we show that the diffusively rescaled process has hydrodynamic behavior described by the heat equation with diffusion constant 1/A. In particular, the process has diffusive behavior for finite A and subdiffusive behavior for infinite A.

  6. The effect of hydrogen bonds on diffusion mechanism of water inside single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chen, Qu; Wang, Qi; Liu, Ying-Chun; Wu, Tao

    2014-06-01

    Nanopores can serve as a molecule channel for transport of fluid, where water diffusion differs remarkably from that of simple particles. Hydrogen bonds play an essential role in the diffusion anomaly. Detailed investigations are carried out on the systems of rigid (6, 6), (7, 7), (8, 8), (9, 9), and (10, 10) armchair carbon nanotubes, solvated with Lennard-Jones water fluids. The role of hydrogen bonds is examined by diffusivity statistics and animation snapshots. It is found that in small (6,6) CNT, hydrogen bonds tend to aggregate water into a wire and lead to rapid collective drift. Confinement can stabilize the hydrogen bond of water molecules and enhance its lifetime. In relatively smaller CNTs, the diffusion mechanism could be altered by the temperature. Moreover, in larger nanotubes hydrogen bonding network allows the water to form regional concentrated clusters. This allows water fluid in extremely low density exhibit rather slow self-diffusion motion. This fundamental study attempts to provide insights in understanding nanoscale delivery system in aqueous solution.

  7. The effect of hydrogen bonding on diffusion across model membranes: consideration of the number of H-bonding groups.

    PubMed

    Du Plessis, J; Pugh, W J; Judefeind, A; Hadgraft, J

    2001-05-01

    The diffusion of a series of phenols across simple silicone membranes impregnated with either octanol or toluene was studied. These solvents are taken up and saturate the membrane. The presence of the solvents in a solid membrane allows them to interact with any permeant that cross the membrane. This membrane was used to simulate a bio-membrane, e.g. the skin, capable of hydrogen bonding with the permeant. As the number of H-bonding groups was increased the flux across both the octanol and toluene impregnated membranes decreased. However, deconvolution of the data showed that for the octanol impregnated membrane the diffusion coefficient (Dm) decreased significantly with the number of H-bonding groups. This was not the case for the toluene impregnated membrane. Furthermore the spatial configuration of the -OH groups around the aromatic ring had a significant effect on the decrease in Dm. These findings have considerable implications in understanding the absorption of permeants across bio-membranes capable of H-bonding. PMID:11297897

  8. Diffusion bonding titanium to stainless steel using Nb/Cu/Ni multi-interlayer

    SciTech Connect

    Li Peng; Li Jinglong; Xiong Jiangtao; Zhang Fusheng; Raza, Syed Hamid

    2012-06-15

    By using Nb/Cu/Ni structure as multi-interlayer, diffusion bonding titanium to austenitic stainless steel has been conducted. The effects of bonding temperature and bonding time on the interfacial microstructure were analyzed by scanning electron microscope equipped with energy dispersive spectroscope, and the joint strength was evaluated by tensile test. The results showed that Ni atoms aggregated at the Cu-Nb interface, which promoted Cu solution in Nb. This phenomenon forms a Cu-Nb solution strengthening effect. However, such effect would decay by using long bonding time that dilutes Ni atom aggregation, or be suppressed by using high bonding temperature that embrittles the Cu-Nb interface due to the formation of large grown intermetallic compounds. The sound joint was obtained by promoted parameters as 850 Degree-Sign C for 30-45 min, under which a bonding strength around 300 MPa could be obtained. - Highlights: Black-Right-Pointing-Pointer Titanium was diffusion bonded to stainless steel using Nb/Cu/Ni multi-interlayer. Black-Right-Pointing-Pointer The effects of bonding parameters on microstructure and joint strength were studied. Black-Right-Pointing-Pointer Nickel aggregation promotes Cu solution in Nb which can strengthen the joint. Black-Right-Pointing-Pointer The sound joint with strength of around 300 MPa was obtained by promoted parameters.

  9. A three-mask process for fabricating vacuum-sealed capacitive micromachined ultrasonic transducers using anodic bonding.

    PubMed

    Yamaner, F Yal?n; Zhang, Xiao; Oralkan, mer

    2015-05-01

    This paper introduces a simplified fabrication method for vacuum-sealed capacitive micromachined ultrasonic transducer (CMUT) arrays using anodic bonding. Anodic bonding provides the established advantages of wafer-bondingbased CMUT fabrication processes, including process simplicity, control over plate thickness and properties, high fill factor, and ability to implement large vibrating cells. In addition to these, compared with fusion bonding, anodic bonding can be performed at lower processing temperatures, i.e., 350C as opposed to 1100C; surface roughness requirement for anodic bonding is more than 10 times more relaxed, i.e., 5-nm rootmean- square (RMS) roughness as opposed to 0.5 nm for fusion bonding; anodic bonding can be performed on smaller contact area and hence improves the fill factor for CMUTs. Although anodic bonding has been previously used for CMUT fabrication, a CMUT with a vacuum cavity could not have been achieved, mainly because gas is trapped inside the cavities during anodic bonding. In the approach we present in this paper, the vacuum cavity is achieved by opening a channel in the plate structure to evacuate the trapped gas and subsequently sealing this channel by conformal silicon nitride deposition in the vacuum environment. The plate structure of the fabricated CMUT consists of the single-crystal silicon device layer of a silicon-on-insulator wafer and a thin silicon nitride insulation layer. The presented fabrication approach employs only three photolithographic steps and combines the advantages of anodic bonding with the advantages of a patterned metal bottom electrode on an insulating substrate, specifically low parasitic series resistance and low parasitic shunt capacitance. In this paper, the developed fabrication scheme is described in detail, including process recipes. The fabricated transducers are characterized using electrical input impedance measurements in air and hydrophone measurements in immersion. A representative design is used to demonstrate immersion operation in conventional, collapse-snapback, and collapse modes. In collapsemode operation, an output pressure of 1.67 MPa pp is shown at 7 MHz on the surface of the transducer for 60-Vpp, 3-cycle sinusoidal excitation at 30-V dc bias. PMID:25965687

  10. Dentin diffusion of HEMA released from etch-and-rinse and self-etch bonding systems.

    PubMed

    Rathke, Andreas; Alt, Andreas; Gambin, Nadin; Haller, Bernd

    2007-12-01

    The aim of this in vitro study was to determine the diffusion of 2-hydroxyethyl methacrylate (HEMA) released from different bonding systems (BS) through dentin. Occlusal cavities with a remaining dentin thickness (RDT) of 0.5 mm (n=90) and 0.25 mm (n=80), respectively, were prepared in dentin discs of non-carious human molars. Artificial pulp chambers were attached to the pulpal side of each dentin disc. Bonding systems were applied with (Clearfil SE Bond, OptiBond FL, OptiBond Solo Plus) or without (AdheSE, Adper Prompt L-Pop, Clearfil SE Bond, OptiBond FL, OptiBond Solo Plus Self Etch, Xeno III) prior phosphoric acid etching. HEMA was detected by gas chromatography/mass spectrometry (n=10 per BS and RDT). The highest mean HEMA concentration was found in the 0.25 mm RDT group treated with OptiBond FL (13.3 microg) and the lowest mean HEMA concentration was detected in the 0.5 mm RDT group treated with AdheSE (0.5 microg). At 0.25 mm RDT the quantities of HEMA recovered in the artificial pulp chambers were significantly higher than at 0.5 mm RDT, except for Clearfil SE Bond. Etching with phosphoric acid increased the detected HEMA quantities compared with self-etch BS. In deep cavity preparations, etching with phosphoric acid should be avoided in favor of the use of self-etch BS. PMID:18028061

  11. Diffusion Bonding of Silicon Carbide for a Micro-Electro-Mechanical Systems Lean Direct Injector

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay; Shpargel, Tarah P.; Kiser, James D.

    2006-01-01

    Robust approaches for joining silicon carbide (SiC) to silicon carbide sub-elements have been developed for a micro-electro-mechanical systems lean direct injector (MEMS LDI) application. The objective is to join SiC sub-elements to form a leak-free injector that has complex internal passages for the flow and mixing of fuel and air. Previous bonding technology relied upon silicate glass interlayers that were not uniform or leak free. In a newly developed joining approach, titanium foils and physically vapor deposited titanium coatings were used to form diffusion bonds between SiC materials during hot pressing. Microscopy results show the formation of well adhered diffusion bonds. Initial tests show that the bond strength is much higher than required for the component system. Benefits of the joining technology are fabrication of leak free joints with high temperature and mechanical capability.

  12. Diffusion welding. [heat treatment of nickel alloys following single step vacuum welding process

    NASA Technical Reports Server (NTRS)

    Holko, K. H. (inventors)

    1974-01-01

    Dispersion-strengthened nickel alloys are sanded on one side and chemically polished. This is followed by a single-step welding process wherein the polished surfaces are forced into intimate contact at 1,400 F for one hour in a vacuum. Diffusion, recrystallization, and grain growth across the original weld interface are obtained during postheating at 2,150 F for two hours in hydrogen.

  13. Joint design for improved fatigue life of diffusion-bonded box-stiffened panels

    NASA Technical Reports Server (NTRS)

    Davis, R. C.; Moses, P. L.; Kanenko, R. S.

    1985-01-01

    Simple photoelastic models were used to identify a cross-section geometry that would eliminate the severe stress concentrations at the bond line between box stiffeners diffusion bonded to a panel skin. Experimental fatigue-test data from titanium test specimens quantified the allowable stress in terms of cycle life for various joint geometries. It is shown that the effect of stress concentration is reduced and an acceptable fatigue life is achieved.

  14. Three-dimensional electrically interconnected nanowire networks formed by diffusion bonding.

    PubMed

    Gu, Zhiyong; Ye, Hongke; Bernfeld, Adam; Livi, Kenneth J T; Gracias, David H

    2007-01-30

    We demonstrate a new strategy to bond nanowires (NWs) using diffusion bonding of gold (Au). The strategy was used to form very large scale, electrically interconnected 3D NW networks composed of both homogeneous and heterogeneous (multisegmented) NWs. The size of the networks ranged from tens of micrometers to millimeters. We have measured the electrical characteristics of the networks and explored one application of the networks in 3D spatial chemical sensing. PMID:17240999

  15. Reaction-diffusion analysis for one-step plasma etching and bonding of microfluidic devices

    SciTech Connect

    Rosso, Michel; Steijn, Volkert van; Smet, Louis C. P. M. de; Sudhoelter, Ernst J. R.; Kreutzer, Michiel T.; Kleijn, Chris R.

    2011-04-25

    A self-similar reaction front develops in reactive ion etching when the ions penetrate channels of shallow height h. This relates to the patterning of microchannels using a single-step etching and bonding, as described by Rhee et al. [Lab Chip 5, 102 (2005)]. Experimentally, we report that the front location scales as x{sub f{approx}}ht{sup 1/2} and the width is time-invariant and scales as {delta}{approx}h. Mean-field reaction-diffusion theory and Knudsen diffusion give a semiquantitative understanding of these observations and allow optimization of etching times in relation to bonding requirements.

  16. Transient liquid phase diffusion bonding of Udimet 720 for Stirling power converter applications

    NASA Technical Reports Server (NTRS)

    Mittendorf, Donald L.; Baggenstoss, William G.

    1992-01-01

    Udimet 720 has been selected for use on Stirling power converters for space applications. Because Udimet 720 is generally considered susceptible to strain age cracking if traditional fusion welding is used, other joining methods are being considered. A process for transient liquid phase diffusion bonding of Udimet 720 has been theoretically developed in an effort to eliminate the strain age crack concern. This development has taken into account such variables as final grain size, joint homogenization, joint efficiency related to bonding aid material, bonding aid material application method, and thermal cycle.

  17. Transient liquid phase diffusion bonding of Udimet 720 for Stirling power converter applications

    NASA Astrophysics Data System (ADS)

    Mittendorf, Donald L.; Baggenstoss, William G.

    Udimet 720 has been selected for use on Stirling power converters for space applications. Because Udimet 720 is generally considered susceptible to strain age cracking if traditional fusion welding is used, other joining methods are being considered. A process for transient liquid phase diffusion bonding of Udimet 720 has been theoretically developed in an effort to eliminate the strain age crack concern. This development has taken into account such variables as final grain size, joint homogenization, joint efficiency related to bonding aid material, bonding aid material application method, and thermal cycle.

  18. Directional diffusion and void formation at a Si (001) bonded wafer interface

    NASA Astrophysics Data System (ADS)

    Esser, R. H.; Hobart, K. D.; Kub, F. J.

    2002-08-01

    Low-temperature hydrophobic bonding is an enabling technology allowing the fabrication of device structures. Current research into improvement of hydrophobic bonding has focused on the elimination of thermally generated voids. It has been observed that a regular grid etched into the bonding interface can eliminate the thermally generated voids. By manipulation of patterns etched into the bond interface, it was possible to ascertain that the diffusion of interfacial gasses that form the thermally generated voids is enhanced along the <110> directions. This is shown by an analysis of the void density at various locations in relation to the etched trenches at the bonded interface. Void density between trenches is shown to be 12% of the void density near trenches but nto along a <110> direction.

  19. TEM and HRTEM characterization of TiAl diffusion bonds using Ni/Al nanolayers.

    PubMed

    Simes, Snia; Viana, Filomena; Ramos, Ana S; Vieira, Maria T; Vieira, Manuel F

    2015-02-01

    Diffusion bonding of TiAl alloys can be enhanced by the use of reactive nanolayer thin films as interlayers. Using these interlayers, it is possible to reduce the conventional bonding conditions (temperature, time, and pressure) and obtain sound and reliable joints. The microstructural characterization of the diffusion bond interfaces is a fundamental step toward understanding and identifying the bonding mechanisms and relating them to the strength of the joints. The interface of TiAl samples joined using Ni/Al nanolayers was characterized by transmission electron microscopy and scanning transmission electron microscopy. Microstructural characterization of the bond revealed that the interfaces consist of several thin layers of different composition and grain size (nanometric and micrometric). The bonding temperature (800, 900, or 1,000C) determines the grain size and thickness of the layers present at the interface. Phase identification by high-resolution transmission electron microscopy combined with fast Fourier transform and electron energy-loss spectroscopy analyses reveals the presence of several intermetallic compounds: AlTiNi, NiAl, and Al2TiNi. For bonds produced at 800 and 900C, nanometric grains of Ti were detected at the center of the interface. PMID:25170561

  20. Effect of Bonding Temperature on Phase Transformation of Diffusion-Bonded Joints of Duplex Stainless Steel and Ti-6Al-4V Using Nickel and Copper as Composite Intermediate Metals

    NASA Astrophysics Data System (ADS)

    Kundu, Sukumar; Thirunavukarasu, Gopinath; Chatterjee, Subrata; Mishra, Brajendra

    2015-12-01

    In the present study, the effect of bonding temperature on phase transformation of diffusion-bonded joints of duplex stainless steel (DSS) and Ti-6Al-4V (Ti64) using simultaneously both nickel (Ni) and copper (Cu) interlayers was investigated in the temperature range of 1148 K to 1223 K (875 C to 950 C) insteps of 25 K (25 C) for 60 minutes under 4 MPa uniaxial pressure in vacuum. Interfaces were characterized by scanning electron microscopy and interdiffusion of the chemical species across the diffusion interfaces were witnessed by electron probe microanalysis. At 1148 K (875 C), layer-wise Cu4Ti, Cu2Ti, Cu4Ti3, CuTi, and CuTi2 phases were observed at the Cu-Ti64 interface; however, DSS-Ni and Ni-Cu interfaces were free from any intermetallic. At 1173 K and 1198 K (900 C and 925 C), Cu interlayer could not restrict the diffusion of atoms from Ti64 to Ni, and vice versa; and Ni-Ti-based intermetallics were formed at the Ni-Cu interface and throughout the Cu zone as well; however, at 1223 K (950 C), both Ni and Cu interlayers could not inhibit the diffusion of atoms from Ti64 to DSS, and vice versa. The maximum shear strength of ~377 MPa was obtained for the diffusion couple processed at 1148 K (875 C) and strength of the bonded joints gradually decreased with the increasing bonding temperature due to the widening of brittle intermetallics at the diffusion zone. Fracture path indicated that failure took place through the Cu4Ti intermetallic at the Cu-Ti64 interface when bonding was processed at 1148 K (875 C). When bonding was processed at 1173 K and 1198 K (900 C and 925 C), fracture took place through the Ni3Ti intermetallic at the Ni-(Ni + Cu + Ti64 diffusion reaction) interface; however, at 1223 K (950 C), fracture morphology indicated the brittle nature and the fracture took place apparently through the ? phase at the DSS-(DSS + Ni + Cu + Ti64 diffusion reaction) interface.

  1. Effect of Bonding Temperature on Phase Transformation of Diffusion-Bonded Joints of Duplex Stainless Steel and Ti-6Al-4V Using Nickel and Copper as Composite Intermediate Metals

    NASA Astrophysics Data System (ADS)

    Kundu, Sukumar; Thirunavukarasu, Gopinath; Chatterjee, Subrata; Mishra, Brajendra

    2015-09-01

    In the present study, the effect of bonding temperature on phase transformation of diffusion-bonded joints of duplex stainless steel (DSS) and Ti-6Al-4V (Ti64) using simultaneously both nickel (Ni) and copper (Cu) interlayers was investigated in the temperature range of 1148 K to 1223 K (875 C to 950 C) insteps of 25 K (25 C) for 60 minutes under 4 MPa uniaxial pressure in vacuum. Interfaces were characterized by scanning electron microscopy and interdiffusion of the chemical species across the diffusion interfaces were witnessed by electron probe microanalysis. At 1148 K (875 C), layer-wise Cu4Ti, Cu2Ti, Cu4Ti3, CuTi, and CuTi2 phases were observed at the Cu-Ti64 interface; however, DSS-Ni and Ni-Cu interfaces were free from any intermetallic. At 1173 K and 1198 K (900 C and 925 C), Cu interlayer could not restrict the diffusion of atoms from Ti64 to Ni, and vice versa; and Ni-Ti-based intermetallics were formed at the Ni-Cu interface and throughout the Cu zone as well; however, at 1223 K (950 C), both Ni and Cu interlayers could not inhibit the diffusion of atoms from Ti64 to DSS, and vice versa. The maximum shear strength of ~377 MPa was obtained for the diffusion couple processed at 1148 K (875 C) and strength of the bonded joints gradually decreased with the increasing bonding temperature due to the widening of brittle intermetallics at the diffusion zone. Fracture path indicated that failure took place through the Cu4Ti intermetallic at the Cu-Ti64 interface when bonding was processed at 1148 K (875 C). When bonding was processed at 1173 K and 1198 K (900 C and 925 C), fracture took place through the Ni3Ti intermetallic at the Ni-(Ni + Cu + Ti64 diffusion reaction) interface; however, at 1223 K (950 C), fracture morphology indicated the brittle nature and the fracture took place apparently through the ? phase at the DSS-(DSS + Ni + Cu + Ti64 diffusion reaction) interface.

  2. The Breathing Orbital Valence Bond Method in Diffusion Monte Carlo: C-H Bond Dissociation ofAcetylene

    SciTech Connect

    Domin, D.; Braida, Benoit; Lester Jr., William A.

    2008-05-30

    This study explores the use of breathing orbital valence bond (BOVB) trial wave functions for diffusion Monte Carlo (DMC). The approach is applied to the computation of the carbon-hydrogen (C-H) bond dissociation energy (BDE) of acetylene. DMC with BOVB trial wave functions yields a C-H BDE of 132.4 {+-} 0.9 kcal/mol, which is in excellent accord with the recommended experimental value of 132.8 {+-} 0.7 kcal/mol. These values are to be compared with DMC results obtained with single determinant trial wave functions, using Hartree-Fock orbitals (137.5 {+-} 0.5 kcal/mol) and local spin density (LDA) Kohn-Sham orbitals (135.6 {+-} 0.5 kcal/mol).

  3. Thermomechanical analysis of diffusion-bonded tungsten/EUROFER97 with a vanadium interlayer

    NASA Astrophysics Data System (ADS)

    Basuki, Widodo Widjaja; Dahm, Ralf; Aktaa, Jarir

    2014-12-01

    Earlier basic investigations revealed that diffusion bonding between tungsten and RAFM-steel at a relatively low temperature using a thin low-activation vanadium interlayer having a CTE between that of the parent materials can significantly reduce the residual stresses and produce defect-free bond interfaces. The joint has a high strength as well as sufficient ductility and toughness especially at the test temperature of about 550 C. To apply this knowledge in fusion power plants, particularly in divertors, an acceptable lifetime of such structural joints is required, since they are exposed to high thermomechanical cyclic loading. To simulate the possible operational conditions of a He-cooled divertor, diffusion-bonded specimens are loaded by thermal cycling in a temperature range between 350 C and 500 C and a constant tensile stress based on the calculation of the internal pressure of the divertor thimble. The aim of this experimental work is to check the resistance of the diffusion-bonded W/EUROFER97 against ratcheting during thermomechanical loading and analyze the evolution of microstructures of the joint especially along the bond interfaces.

  4. Role of Hydrogen-Bonding in Nonelectrolyte Diffusion through Dense Artificial Membranes

    PubMed Central

    Gary-Bobo, C. M.; DiPolo, R.; Solomon, A. K.

    1969-01-01

    The diffusion of two series of alcohols and amides through complex cellulose acetate membranes was studied. The thin dense part of these membranes behaves as a nonporous layer of low water content. In this layer, called the skin, the solute diffusion coefficients, ?, depend upon size, steric configuration, and the partition coefficient, K8, between membrane and bathing solution. From the experimental values of ? and K8, the over-all friction, f, experienced by the solutes in the membrane was computed. It was found that f depends upon the chemical nature of the solute and is related to hydrogen-bonding ability. In the coarse, porous layer of the cellulose acetate membrane, diffusion occurs mainly through aqueous channels. In this instance also the hydrogen-bonding ability of the solute seems to exercise a smaller but significant influence. PMID:5806595

  5. Role of hydrogen-bonding in nonelectrolyte diffusion through dense artificial membranes.

    PubMed

    Gary-Bobo, C M; DiPolo, R; Solomon, A K

    1969-09-01

    The diffusion of two series of alcohols and amides through complex cellulose acetate membranes was studied. The thin dense part of these membranes behaves as a nonporous layer of low water content. In this layer, called the skin, the solute diffusion coefficients, omega, depend upon size, steric configuration, and the partition coefficient, K(8), between membrane and bathing solution. From the experimental values of omega and K(8), the over-all friction, f, experienced by the solutes in the membrane was computed. It was found that f depends upon the chemical nature of the solute and is related to hydrogen-bonding ability. In the coarse, porous layer of the cellulose acetate membrane, diffusion occurs mainly through aqueous channels. In this instance also the hydrogen-bonding ability of the solute seems to exercise a smaller but significant influence. PMID:5806595

  6. Compositionally graded Ti-Ni alloys prepared by diffusion bonding.

    PubMed

    Lim, Jin-Hwan; Kim, Min-Soo; Noh, Jung-Pil; Kim, Yeon-Wook; Nam, Tae-Hyun

    2014-12-01

    A Ti-Ni alloy compositionally graded along the thickness direction in order to obtain a shape change over a wide temperature range, which is beneficial to the actuator for precise position control, was prepared by spark plasma sintering (SPS) after stacking Ti-Ni alloy ribbons in the sequence of Ti-51Ni, Ti-50Ni, Ti-49Ni and Ti-48Ni (at%) followed by annealing. Then, the microstructure and martensitic transformation behavior were investigated by using FE-SEM, DSC and thermal cycling tests under a constant load. The inter-ribbon defects observed after SPS due to insufficient diffusional bonding between the ribbons were eliminated by post-SPS annealing at 1023 K for 36 ks. The compositionally graded sample showed compositional variation of 1.5 at% Ti along the thickness direction (- 120 ?m) and a martensitic transformation temperature window as large as 91 K on cooling and 79 K on heating. A recoverable elongation of 0.9% was obtained under a stress of 80 MPa and the deformation rate, which is defined as the ratio of the recoverable elongation to the temperature range where the elongation occurred was 0.015%/K in the compositionally graded sample. PMID:25971007

  7. Effect of Bonding Time on Interfacial Reaction and Mechanical Properties of Diffusion-Bonded Joint Between Ti-6Al-4V and 304 Stainless Steel Using Nickel as an Intermediate Material

    NASA Astrophysics Data System (ADS)

    Thirunavukarasu, Gopinath; Kundu, Sukumar; Mishra, Brajendra; Chatterjee, Subrata

    2014-04-01

    In the current study, solid-state diffusion bonding between Ti-6Al-4V (TiA) and 304 stainless steel (SS) using pure nickel (Ni) of 200- ?m thickness as an intermediate material was carried out in vacuum. Uniaxial compressive pressure and temperature were kept at 4 MPa and 1023 K (750 C), respectively, and the bonding time was varied from 30 to 120 minutes in steps of 15 minutes. Scanning electron microscopy images, in backscattered electron mode, revealed the layerwise Ti-Ni-based intermetallics like either Ni3Ti or both Ni3Ti and NiTi at titanium alloy-nickel (TiA/Ni) interface, whereas nickel-stainless steel (Ni/SS) interface was free from intermetallic phases for all the joints. Chemical composition of the reaction layers was determined by energy dispersive spectroscopy (SEM-EDS) and confirmed by X-ray diffraction study. Maximum tensile strength of ~382 MPa along with ~3.7 pct ductility was observed for the joints processed for 60 minutes. It was found that the extent of diffusion zone at Ni/SS interface was greater than that of TiA/Ni interface. From the microhardness profile, fractured surfaces, and fracture path, it was demonstrated that the failure of the joints was initiated and propagated apparently at TiA/Ni interface near Ni3Ti intermetallic for bonding time less than 90 minutes, and through Ni for bonding time 90 minutes and greater.

  8. Development and analysis of diffusion bonding techniques for LBE-cooled spallation targets

    NASA Astrophysics Data System (ADS)

    Nelson, A. T.; Hosemann, P.; Maloy, S. A.

    2012-12-01

    Spallation sources incorporating solid targets may be driven to utilize liquid metal coolants by neutronics or temperature concerns. If tungsten is chosen as the target material, it will require cladding given its poor performance under irradiation. One option to meet this need are ferritic/martensitic stainless steel alloys. This study investigates possible diffusion bonding techniques suitable to clad tungsten targets with HT9, a high chromium stainless steel familiar to the nuclear industry. A test bonding matrix was performed to identify bonding conditions and process parameters suitable for the three material systems of interest (HT9/Ta, HT9/W, and HT9/HT9). Temperatures of 900 and 1060 C were investigated along with bonding pressures of 7 and 70 MPa. A nominal soak time of 3 h was used for all tests. Three interlayers were investigated: pure nickel, Ni-6P, and vanadium. Finally, different surface preparation techniques for the tungsten were explored in order to gage their effect on the bond quality. Following joining, the bonds were characterized using an array of microscopy and micromechanical techniques to determine the resulting interface character. The nickel and NiP coatings were found to stabilize austenite at the HT9 surface during bonding, while the vanadium remained generally inert given good solubility in each of the three systems. Intermetallic formation is also a significant concern at elevated bonding temperatures as FeTa, FeW, NiTa, and NiW each rapidly form during interdiffusion. Multiple failures were observed through crack propagation parallel to the interface along the intermetallic phases. Differing contraction rates among the base materials also resulted in brittle fracture within the tungsten during cooling from bonding temperatures. Bonding performed at 900 C under 70 MPa for 3 h with the inclusion of a vanadium interlayer was found to be superior of the conditions explored in this work.

  9. Microstructure of Diffusion-Bonded Mg-Ag-Al Multilayer Composite Materials

    NASA Astrophysics Data System (ADS)

    Wang, Yiyu; Luo, Guoqiang; Zhang, Jian; Shen, Qiang; Zhang, Lianmeng

    2013-03-01

    Mg-Al bonded composite materials expand Mg and Al alloys' applications by combining their unique performances together. However, the formation of Mg-Al intermetallic compounds in interface zone of Mg/Al directly-bonded joint seriously obstructs its further development. To solve this problem, Mg-Ag-Al multilayer composite materials have been successfully prepared by diffusion bonding technology. The effect of key process parameter (bonding temperature) on microstructure of this material has been mainly investigated. The results show that Mg and Al were well bonded by using silver interlayer when the bonding temperature exceeded 370C. But Mg17Al12 and Mg2Al3 compounds were formed in the interface zone at temperatures higher than 420C. By means of controlling the bonding temperature (380 C-420 C), silver interlayer effectively restrained the generation of Mg-Al intermetallic compounds, and Mg-Ag intermetallic compounds (Mg3Ag, MgAg) were formed in the interface zone instead.

  10. Diffusion Bonding of ?(TiAl) Alloys: Influence of Composition, Microstructure, and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Herrmann, Dirk; Appel, Fritz

    2009-08-01

    The metallurgical factors governing the solid-state diffusion bonding of TiAl alloys have been characterized using scanning electron microscopy together with energy-dispersive X-ray (EDX) spectroscopy and electron backscattered diffraction (EBSD) analysis. The investigations were performed on TiAl alloys with various compositions and microstructures, which had been thoroughly mechanically characterized. The process zone of the bonds typically consists of a fine-grained layer of ? 2(Ti3Al) phase at the former contact plane, followed by relatively large, defect-free ?(TiAl) grains and a region of deformed parent material. The evolution of the process zone involves phase transformation and recrystallization processes, which are triggered by asperity deformation at the contact plane and the unavoidable contamination of the diffusion couple with oxygen and nitrogen. The structural details depend on the alloy composition and the bonding conditions. In the final section of the article, technical aspects, including the tensile strength of diffusion bonds, will be discussed.

  11. Bond lifetime and diffusion coefficient in colloids with short-range interactions.

    PubMed

    Ndong Mintsa, E; Germain, Ph; Amokrane, S

    2015-03-01

    We use molecular dynamics simulations to study the influence of short-range structures in the interaction potential between hard-sphere-like colloidal particles. Starting from model potentials and effective potentials in binary mixtures computed from the Ornstein-Zernike equations, we investigate the influence of the range and strength of a possible tail beyond the usual core repulsion or the presence of repulsive barriers. The diffusion coefficient and mean "bond" lifetimes are used as indicators of the effect of this structure on the dynamics. The existence of correlations between the variations of these quantities with the physical parameters is discussed to assess the interpretation of dynamics slowing down in terms of long-lived bonds. We also discuss the question of a universal behaviour determined by the second virial coefficient B ((2)) and the interplay of attraction and repulsion. While the diffusion coefficient follows the B ((2)) law for purely attractive tails, this is no longer true in the presence of repulsive barriers. Furthermore, the bond lifetime shows a dependence on the physical parameters that differs from that of the diffusion coefficient. This raises the question of the precise role of bonds on the dynamics slowing down in colloidal gels. PMID:25813606

  12. Effect of Bonding Temperature on Interfacial Reaction and Mechanical Properties of Diffusion-Bonded Joint Between Ti-6Al-4V and 304 Stainless Steel Using Nickel as an Intermediate Material

    NASA Astrophysics Data System (ADS)

    Thirunavukarasu, Gopinath; Kundu, Sukumar; Mishra, Brajendra; Chatterjee, Subrata

    2014-04-01

    An investigation was carried out on the solid-state diffusion bonding between Ti-6Al-4V (TiA) and 304 stainless steel (SS) using pure nickel (Ni) of 200- ?m thickness as an intermediate material prepared in vacuum in the temperature range from 973 K to 1073 K (700 C to 800 C) in steps of 298 K (25 C) using uniaxial compressive pressure of 3 MPa and 60 minutes as bonding time. Scanning electron microscopy images, in backscattered electron mode, had revealed existence of layerwise Ti-Ni-based intermetallics such as either Ni3Ti or both Ni3Ti and NiTi at titanium alloy-nickel (TiA/Ni) interface, whereas nickel-stainless steel (Ni/SS) diffusion zone was free from intermetallic phases for all joints processed. Chemical composition of the reaction layers was determined in atomic percentage by energy dispersive spectroscopy and confirmed by X-ray diffraction study. Room-temperature properties of the bonded joints were characterized using microhardness evaluation and tensile testing. The maximum hardness value of ~800 HV was observed at TiA/Ni interface for the bond processed at 1073 K (800 C). The hardness value at Ni/SS interface for all the bonds was found to be ~330 HV. Maximum tensile strength of ~206 MPa along with ~2.9 pct ductility was obtained for the joint processed at 1023 K (750 C). It was observed from the activation study that the diffusion rate at TiA/Ni interface is lesser than that at the Ni/SS interface. From microhardness profile, fractured surfaces and fracture path, it was demonstrated that failure of the joints was initiated and propagated apparently at the TiA/Ni interface near Ni3Ti intermetallic phase.

  13. Contributions of atomic diffusion and plastic deformation to the plasma surface activation assisted diffusion bonding of zirconium-based bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Chen, H. Y.; Cao, J.; Song, X. G.; Feng, J. C.

    2012-05-01

    A mathematical model was established to estimate the contributions of atomic diffusion and plastic deformation to the diffusion bonding of zirconium-based bulk metallic glasses. Additionally, the surface state was introduced into the model since oxide film is the main barrier to atomic bonding across interface. The model calculation displayed that the contribution of plastic deformation to void closure was six orders of magnitude higher than atomic diffusion. The joints with ion etching before bonding were achieved to verify the model. The experimental strength of joints had a sound fit with the theoretical strength calculated by the model.

  14. Diffusion Bonding Beryllium to Reduced Activation Ferritic Martensitic Steel: Development of Processes and Techniques

    NASA Astrophysics Data System (ADS)

    Hunt, Ryan Matthew

    Only a few materials are suitable to act as armor layers against the thermal and particle loads produced by magnetically confined fusion. These candidates include beryllium, tungsten, and carbon fiber composites. The armor layers must be joined to the plasma facing components with high strength bonds that can withstand the thermal stresses resulting from differential thermal expansion. While specific joints have been developed for use in ITER (an experimental reactor in France), including beryllium to CuCrZr as well as tungsten to stainless steel interfaces, joints specific to commercially relevant fusion reactors are not as well established. Commercial first wall components will likely be constructed front Reduced Activation Ferritic Martensitic (RAFM) steel, which will need to be coating with one of the three candidate materials. Of the candidates, beryllium is particularly difficult to bond, because it reacts during bonding with most elements to form brittle intermetallic compounds. This brittleness is unacceptable, as it can lead to interface crack propagation and delamination of the armor layer. I have attempted to overcome the brittle behavior of beryllium bonds by developing a diffusion bonding process of beryllium to RAFM steel that achieves a higher degree of ductility. This process utilized two bonding aids to achieve a robust bond: a. copper interlayer to add ductility to the joint, and a titanium interlayer to prevent beryllium from forming unwanted Be-Cu intermetallics. In addition, I conducted a series of numerical simulations to predict the effect of these bonding aids on the residual stress in the interface. Lastly, I fabricated and characterized beryllium to ferritic steel diffusion bonds using various bonding parameters and bonding aids. Through the above research, I developed a process to diffusion bond beryllium to ferritic steel with a 150 M Pa tensile strength and 168 M Pa shear strength. This strength was achieved using a Hot Isostatic Pressing (HIP) process (at a temperature between 700 C and 750 C for 2 hours at 103 M Pa) with 10 mu m of titanium and 20 mum of copper deposited between substrates. Without the copper and titanium interlayers, the bond formed an intermetallic that lead to fracture from internal residual stresses. Also, slowing the rate of cooling and adding an intermediate hold temperature during cool-down significantly increased bond strength. These beneficial effects were confirmed by the numerical simulations, which showed reduced residual stress resulting from all bonding techniques. Both metals interlayers, as well as the reduced cooling rate were critical in overcoming the otherwise brittle quality of the beryllium to ferritic steel joint. However, the introduced interlayers are not an ideal solution to the problem. They introduced both Be-Ti and Cu-Ti compounds, which proved to be the eventual failure location in the bond. Further optimization of this joint is necessary, and can potentially be achieved with variation of cooling rates. To make the joint ready for implementation will require larger scale fabrication to verify reliability and to test the joint under operational loads.

  15. Effects of interface bonding and defects on boron diffusion at Si/SiO2 interface

    NASA Astrophysics Data System (ADS)

    Kim, Geun-Myeong; Oh, Young Jun; Chang, K. J.

    2013-12-01

    We perform first-principles density functional calculations to find the migration pathway and barrier for B diffusion at the Si/SiO2 interface. For various interface models, in which crystalline ?-quartz or amorphous silica (a-SiO2) is placed on Si, we examine stable and metastable configurations of B-related defects which play a role in B diffusion. While a substitutional B alone is immobile in Si, it tends to diffuse to the interface via an interstitialcy mechanism in the presence of a self-interstitial and then changes into an interstitial B in oxide via a kick-out mechanism, leaving the self-interstitial at the interface. At the defect-free interface, where bridging O atoms are inserted to remove interface dangling bonds, an interstitial B prefers to intervene between the interface Si and bridging O atoms and subsequently diffuses through the hollow space or along the network of the Si-O-Si bonds in oxide. The overall migration barriers are calculated to be 2.02-2.12 eV at the Si/?-quartz interface, while they lie in the range of 2.04 0.44 eV at the Si/a-SiO2 interface, similar to that in ?-quartz. The migration pathway and barrier are not significantly affected by interface defects such as suboxide bond and O protrusion, while dangling bonds in the suboxide region can increase the migration barrier by about 1.5 eV. The result that the interface generally does not hinder the B diffusion from Si to SiO2 assists in understanding the underlying mechanism for B segregation which commonly occurs at the Si/SiO2 interface.

  16. Evaluation of Cu as an interlayer in Be/F82H diffusion bonds for ITER TBM R.M. Hunt a,

    E-print Network

    Abdou, Mohamed

    Evaluation of Cu as an interlayer in Be/F82H diffusion bonds for ITER TBM R.M. Hunt a, , S.H. Goods has been investigated as a potential interlayer material for diffusion bonds between beryllium as a diffusion barrier and copper as a bonding aid and strain accommodating layer [2,8]. This has the benefit

  17. Diffusion bonding/superplastic forming of Ti-6Al-6V-2Sn/SUS 304 stainless steel/Ti-6Al-6V-2Sn

    NASA Astrophysics Data System (ADS)

    Shyu, J. S.; Chuang, T. H.

    1996-02-01

    The superplasticity of the Ti- 6Al- 6V- 2Sn alloy for different temperatures was evaluated by single-sheet free blowing. The optimal superplastic temperature for the Ti- 6Al- 6V- 2Sn alloy was found to be 850 C. Diffusion bonding of Ti- 6Al- 6V- 2Sn and 304 stainless steel was carried out in a vacuum. The interface of both bonded alloys was examined by EPMA. The concentration profile of Ni exhibited a peak at the interlayer and a valley adjacent it, whereas that of Cr exhibited a peak where Ni showed the valley. X- ray diffraction (XRD) analyses showed that the Fe 2 Ti, NiTi, and CrMn Intermetallic compounds and the Cr element formed at the interface. The thickness profiles of the blown specimens were measured and compared with theoretical calculations.

  18. Fabrication and Design Aspects of High-Temperature Compact Diffusion Bonded Heat Exchangers

    SciTech Connect

    Mylavarapu, Sai K.; Sun, Xiaodong; Christensen, Richard N.; Glosup, Richard E.; Unocic, Raymond R

    2012-01-01

    The very high temperature reactor (VHTR), using gas-cooled reactor technology, is one of the six reactor concepts selected by the Generation IV International Forum and is anticipated to be the reactor type for the next generation nuclear plant (NGNP). In this type of reactor with an indirect power cycle system, a high-temperature and high integrity intermediate heat exchanger (IHX) with high effectiveness is required to efficiently transfer the core thermal output to secondary fluid for electricity production, process heat, or hydrogen cogeneration. The current Technology Readiness Level status issued by NGNP to all components associated with the IHX for reactor core outlet temperatures of 750-800oC is 3 on a scale of 1 to 10 with 10 being the most ready. At present, there is no proven high-temperature IHX concept for VHTRs. Amongst the various potential IHX concepts available, diffusion bonded heat exchangers (henceforth called printed circuit heat exchangers, or PCHEs) appear promising for NGNP applications. The design and fabrication of this key component of NGNP is the primary focus of this paper. In the current study, two PCHEs were fabricated using Alloy 617 plates and will be experimentally investigated for their thermal-hydraulic performance in a high-temperature helium test facility (HTHF). The HTHF was primarily designed and constructed to test the thermal-hydraulic performance of PCHEs The test facility is primarily of Alloy 800H construction and is designed to facilitate experiments at temperatures and pressures up to 800oC and 3 MPa, respectively. The PCHE fabrication related processes, i.e., photochemical machining and diffusion bonding are briefly discussed for Alloy 617 plates. Diffusion bonding of Alloy 617 plates with and without a Ni interlayer is discussed. Furthermore, preliminary microstructural and mechanical characterization studies of representative diffusion bonded Alloy 617 specimens are presented.

  19. Influence of silicon dangling bonds on germanium thermal diffusion within SiO{sub 2} glass

    SciTech Connect

    Barba, D.; Martin, F.; Ross, G. G.; Cai, R. S.; Wang, Y. Q.; Demarche, J.; Terwagne, G.; Rosei, F.

    2014-03-17

    We study the influence of silicon dangling bonds on germanium thermal diffusion within silicon oxide and fused silica substrates heated to high temperatures. By using scanning electron microscopy and Rutherford backscattering spectroscopy, we determine that the lower mobility of Ge found within SiO{sub 2}/Si films can be associated with the presence of unsaturated SiO{sub x} chemical bonds. Comparative measurements obtained by x-ray photoelectron spectroscopy show that 10% of silicon dangling bonds can reduce Ge desorption by 80%. Thus, the decrease of the silicon oxidation state yields a greater thermal stability of Ge inside SiO{sub 2} glass, which could enable to considerably extend the performance of Ge-based devices above 1300?K.

  20. Influence of silicon dangling bonds on germanium thermal diffusion within SiO2 glass

    NASA Astrophysics Data System (ADS)

    Barba, D.; Cai, R. S.; Demarche, J.; Wang, Y. Q.; Terwagne, G.; Rosei, F.; Martin, F.; Ross, G. G.

    2014-03-01

    We study the influence of silicon dangling bonds on germanium thermal diffusion within silicon oxide and fused silica substrates heated to high temperatures. By using scanning electron microscopy and Rutherford backscattering spectroscopy, we determine that the lower mobility of Ge found within SiO2/Si films can be associated with the presence of unsaturated SiOx chemical bonds. Comparative measurements obtained by x-ray photoelectron spectroscopy show that 10% of silicon dangling bonds can reduce Ge desorption by 80%. Thus, the decrease of the silicon oxidation state yields a greater thermal stability of Ge inside SiO2 glass, which could enable to considerably extend the performance of Ge-based devices above 1300 K.

  1. Diffusion Bonding of 17-4 Precipitation Hardening Stainless Steel to Ti Alloy With and Without Ni Alloy Interlayer: Interface Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Kundu, S.; Anand, G.; Chatterjee, S.

    2013-05-01

    In the present study, the diffusion bonding of 17-4 precipitation hardening stainless steel to Ti alloy with and without nickel alloy as intermediate material was carried out in the temperature range of 1073 K to 1223 K (800 C to 950 C) in steps of 298 K (25 C) for 60 minutes in vacuum. The effects of bonding temperature on interfaces microstructures of bonded joint were analyzed by light optical and scanning electron microscopy. In the case of directly bonded stainless steel and titanium alloy, the layerwise ?-Fe + ?, ?, FeTi + ?, FeTi + ?-Ti phase, and phase mixture were observed at the bond interface. However, when nickel alloy was used as an interlayer, the interfaces indicate that Ni3Ti, NiTi, and NiTi2 are formed at the nickel alloy-titanium alloy interface and the PHSS-nickel alloy interface is free from intermetallics up to 1148 K (875 C) and above this temperature, intermetallics were formed. The irregular-shaped particles of Fe5Cr35Ni40Ti15 have been observed within the Ni3Ti intermetallic layer. The joint tensile and shear strength were measured; a maximum tensile strength of ~477 MPa and shear strength of ~356.9 MPa along with ~4.2 pct elongation were obtained for the direct bonded joint when processed at 1173 K (900 C). However, when nickel base alloy was used as an interlayer in the same materials at the bonding temperature of 1148 K (875 C), the bond tensile and shear strengths increase to ~523.6 and ~389.6 MPa, respectively, along with 6.2 pct elongation.

  2. Plasmid DNA mono-ion complex stabilized by hydrogen bond for in vivo diffusive gene delivery.

    PubMed

    Asayama, Shoichiro; Nohara, Atsushi; Negishi, Yoichi; Kawakami, Hiroyoshi

    2015-04-13

    Our original concept of the mono-ion complex (MIC) between plasmid DNA (pDNA) and a monocationic biocompatible polymer has been stabilized by hydrogen bond formation. To form the hydrogen bond with pDNA, ?-amide-pentylimidazolium end-modified poly(ethylene glycol), that is, APe-Im-PEG, has been synthesized. Agarose gel retardation assay and circular dichroism measurement have revealed that the MIC between pDNA and APe-Im-PEG has been stabilized by the hydrogen bond between pDNA and the ?-amide group and that the stable MIC has surprisingly further migrated into gel, as compared with naked pDNA. The rise of melting temperature suggests that the specific hydrogen bond forms between an adenine-thymine base pair and the ?-amide group. The resulting pDNA MIC with APe-Im-PEG has enhanced gene expression by intramuscular administration in mice, as compared with a poly(ethylenimine) polyion complex (PIC). These results suggest that the pDNA MIC is diffusive in vivo administration site, as compared with pDNA PICs. Our methodology for MIC stabilization by a ?-amide group is expected to offer superior supramolecular systems to those by ubiquitous PICs for in vivo diffusive gene delivery. PMID:25749015

  3. TEM Observation of the Ti Interlayer Between SiC Substrates During Diffusion Bonding

    NASA Technical Reports Server (NTRS)

    Tsuda, Hiroshi; Mori, Shigeo; Halbig, Michael C.; Singh, Mori

    2012-01-01

    Diffusion bonding was carried out to join SiC to SiC substrates using titanium interlayers. In this study, 10 m and 20 m thick physical vapor deposited (PVD) Ti surface coatings, and 10 and 20 m thick Ti foils were used. Diffusion bonding was performed at 1250 C for PVD Ti coatings and 1200 C for Ti foil. This study investigates the microstructures of the phases formed during diffusion bonding through TEM and selected-area diffraction analysis of a sample prepared with an FIB, which allows samples to be taken from the reacted area. In all samples, Ti3SiC2, Ti5Si3Cx and TiSi2 phases were identified. In addition, TiC and unknown phases also appeared in the samples in which Ti foils were used as interlayers. Furthermore, Ti3SiC2 phases show high concentration and Ti5Si3Cx formed less when samples were processed at a higher temperature and thinner interlayer samples were used. It appears that the formation of microcracks is caused by the presence of intermediate phase Ti5Si3Cx, which has anisotropic thermal expansion, and by the presence of an unidentified Ti-Si-C ternary phase with relatively low Si content.

  4. Visible to vacuum-UV range optical absorption of oxygen dangling bonds in amorphous SiO{sub 2}

    SciTech Connect

    Skuja, Linards; Kajihara, Koichi; Hirano, Masahiro; Hosono, Hideo

    2011-11-15

    Synthetic silica glass with an optical absorption spectrum dominated by oxygen dangling bonds (nonbridging oxygen hole centers, or NBOHCs) and having negligible (<1%) contribution from the usually copresent Si dangling bonds (E'-centers), was prepared by room temperature ultraviolet photobleaching of high SiOH content (''wet'') silica, irradiated by F{sub 2} laser (7.9 eV) at T = 80 K. This allowed us to obtain the up-to-now controversial optical absorption spectrum of NBOHC in the ultraviolet and vacuum-ultraviolet (UV-VUV) region of the spectrum and to show that it is semicontinuous from 4 to 7.8 eV and cannot be represented by a pair of distinct Gaussian bands. Since NBOHC is one of the main UV-VUV range optical absorbers in silica, its spectral shape provides a tool to disentangle contributions of different color centers to optical losses in this spectral region.

  5. Formation of Nitrogen-Pearlite in the Diffusion Bonding of Sialon to 316L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Hussain, P.; Mamat, O.; Mohammad, M.; Jaafar, W. M. N. W.

    2010-03-01

    The objective of this study is to investigate the interface reaction and diffusion bonding between 316L stainless steel and sialon. Bonding was carried out in a hot press at 1250 C under the pressure of 15 MN/m2 for 1 hour and was cooled slowly in the furnace to prevent the mismatch between the sialon and the steel. Scanning Electron microscopy (SEM) revealed the interdiffusion and intereaction between the steel and the sialon. The elements diffusing into sialon were illustrated by the Energy Dispersive Spectrometer (EDS) analysis where the presence of Fe, Cr, Ni and Mn are significant. The formation of nitrogen pearlite can be described as a result of the reaction between the stainless steel and the silicon nitride component of sialon which release nitrogen. Mechanical behavior of the nitrogen diffused layer was also investigated using microhardness tester and at the reaction layer an increase in hardness was observed. Conclusion can be deduced that the formation of nitrogen pearlite in the stainless steel is quite significant especially on joining sialon to as-received nitrogen-free austenite stainless steel. The formation of nitrogen pearlite could be understood by the diffusion of nitrogen into the stainless steel. Thus, the continuous precipitates form lamellar nitrogen pearlite.

  6. Fabrication and Design Aspects of High-Temperature Compact Diffusion Bonded Heat Exchangers

    SciTech Connect

    Sai K. Mylavarapu; Richard N. Christensen; Raymond R. Unocic; Richard E. Glosup; Mike W. Patterson

    2012-08-01

    The Very High Temperature Reactor (VHTR) using gas-cooled reactor technology is anticipated to be the reactor type for the Next Generation Nuclear Plant (NGNP). In this reactor concept with an indirect power cycle system, a high-temperature and high integrity Intermediate Heat Exchanger (IHX) with high effectiveness is required to efficiently transfer the core thermal output to a secondary fluid for electricity generation, hydrogen production, and/or industrial process heat applications. At present, there is no proven IHX concept for VHTRs. The current Technology Readiness Level (TRL) status issued by NGNP to all components associated with the IHX for reduced nominal reactor outlet temperatures of 750800 degrees C is 3 on a 110 scale, with 10 indicating omplete technological maturity. Among the various potential IHX concepts available, diffusion bonded heat exchangers (henceforth called printed circuit heat exchangers, or PCHEs) appear promising for NGNP applications. The design and fabrication of this key component of NGNP with Alloy 617, a candidate high-temperature structural material for NGNP applications, are the primary focus of this paper. In the current study, diffusion bonding of Alloy 617 has been demonstrated, although the optimum diffusion bonding process parameters to engineer a quasi interface-free joint are yet to be determined. The PCHE fabrication related processes, i.e., photochemical etching and diffusion bonding are discussed for Alloy 617 plates. In addition, the authors experiences with these non-conventional machining and joining techniques are discussed. Two PCHEs are fabricated using Alloy 617 plates and are being experimentally investigated for their thermal-hydraulic performance in a High-Temperature Helium Facility (HTHF). The HTHF is primarily of Alloy 800H construction and is designed to facilitate experiments at temperatures and pressures up to 800 degrees C and 3 MPa, respectively. Furthermore, some preliminary microstructural and mechanical property characterization studies of representative diffusion bonded Alloy 617 specimens are presented. The characterization studies are restricted and less severe from an NGNP perspective but provide sufficient confidence to ensure safe operation of the heat exchangers in the HTHF. The test results are used to determine the design operating conditions for the PCHEs fabricated.

  7. Microstructural characteristics of HIP-bonded monolithic nuclear fuels with a diffusion barrier

    NASA Astrophysics Data System (ADS)

    Jue, Jan-Fong; Keiser, Dennis D.; Breckenridge, Cynthia R.; Moore, Glenn A.; Meyer, Mitchell K.

    2014-05-01

    Due to the limitation of maximum uranium load achievable by dispersion fuel type, the Global Threat Reduction Initiative is developing an advanced monolithic fuel to convert US high-performance research reactors to low-enriched uranium. Hot-isostatic-press (HIP) bonding was the single process down-selected to bond monolithic U-Mo fuel meat to aluminum alloy cladding. A diffusion barrier was applied to the U-Mo fuel meat by roll-bonding process to prevent extensive interaction between fuel meat and aluminum-alloy cladding. Microstructural characterization was performed on fresh fuel plates fabricated at Idaho National Laboratory. Interfaces between the fuel meat, the cladding, and the diffusion barrier, as well as between the U-10Mo fuel meat and the Al-6061 cladding, were characterized by scanning electron microscopy. Preliminary results indicate that the interfaces contain many different phases while decomposition, second phases, and chemical banding were also observed in the fuel meat. The important attributes of the HIP-bonded monolithic fuel are: diffusion barrier with a thickness of 25 ?m. A transverse cross section that exhibits relatively equiaxed grains with an average grain diameter of 10 ?m. Chemical banding, in some areas more than 100 ?m in length, that is very pronounced in longitudinal (i.e., rolling) direction with Mo concentration varying from 7-13 wt.%. Decomposed areas containing plate-shaped low-Mo phase. A typical Zr/cladding interaction layer with a thickness of 1-2 ?m. A visible UZr2 bearing layer with a thickness of 1-2 ?m. Mo-rich precipitates (mainly Mo2Zr, forming a layer in some areas) followed by a Mo-depleted sub-layer between the visible UZr2-bearing layer and the U-Mo matrix. No excessive interaction between cladding and the uncoated fuel edge. Cladding-to-cladding bonding that exhibits no cracks or porosity with second phases high in Mg, Si, and O decorating the bond line. Some of these attributes might be critical to the irradiation performance of monolithic U-10Mo nuclear fuel. There are several issues or concerns that warrant more detailed study, such as precipitation along the cladding-to-cladding bond line, chemical banding, uncovered fuel-zone edge, and the interaction layer between the U-Mo fuel meat and zirconium. Future post-irradiation examination results will focus, among other things, on identifying in-reactor failure mechanisms and, eventually, directing further fresh fuel characterization efforts.

  8. Microstructural Characteristics of HIP-bonded Monolithic Nuclear Fuels with a Diffusion Barrier

    SciTech Connect

    Jan-Fong Jue; Dennis D. Keiser, Jr.; Cynthia R. Breckenridge; Glenn A. Moore; Mitchell K. Meyer

    2014-05-01

    Due to the limitation of maximum uranium load achievable by dispersion fuel type, the Global Threat Reduction Initiative (GTRI) is developing an advanced monolithic fuel to convert US high performance research reactors to low-enriched uranium. Hot-isostatic-press bonding was the single process down-selected to bond monolithic U-Mo fuel meat to aluminum alloy cladding. A diffusion barrier was applied to the UMo fuel meat by roll-bonding process to prevent extensive interaction between fuel meat and aluminum-alloy cladding. Microstructural characterization was performed on fresh fuel plates fabricated at Idaho National Laboratory. Interfaces between fuel meat, cladding, and diffusion barrier, as well as U10Mo fuel meat and Al6061 cladding were characterized by scanning electron microscopy. Preliminary results indicate that the interfaces contain many different phases while decomposition, second phases, and chemical banding were also observed in the fuel meat. The important attributes of the HIP-bonded monolithic fuel are A typical Zr diffusion barrier of thickness 25 m Transverse cross section that exhibits relatively equiaxed grains with an average grain diameter of 10 m Chemical banding, in some areas more than 100 m in length, that is very pronounced in longitudinal (i.e., rolling) direction with Mo concentration varying from 713 wt% Decomposed areas containing plate-shaped low-Mo phase A typical Zr/cladding interaction layer of thickness 1-2 m A visible UZr2 bearing layer of thickness 1-2 m Mo-rich precipitates (mainly Mo2Zr, forming a layer in some areas) followed by a Mo-depleted sub-layer between the visible UZr2-bearing layer and the UMo matrix No excessive interaction between cladding and the uncoated fuel edge Cladding-to-cladding bonding that exhibits no cracks or porosity with second phases high in Mg, Si, and O decorating the bond line. Some of these attributes might be critical to the irradiation performance of monolithic U-10Mo nuclear fuel. There are several issues or concerns that warrant more detailed study, such as precipitation along cladding-to-cladding bond line, chemical banding, uncovered fuel-zone edge, and interaction layer between UMo fuel meat and zirconium. Future post-irradiation examination results will focus, among other things, on identifying in-reactor failure mechanisms and, eventually, directing further fresh fuel characterization efforts.

  9. Diffusion bonding of commercially pure titanium to low carbon steel using a silver interlayer

    SciTech Connect

    Atasoy, Evren; Kahraman, Nizamettin

    2008-10-15

    Titanium and low carbon steel plates were joined through diffusion bonding using a silver interlayer at various temperatures for various diffusion times. In order to determine the strength of the resulting joints, tensile-shear tests and hardness tests were applied. Additionally, optical, scanning electron microscopy examinations and energy dispersive spectrometry elemental analyses were carried out to determine the interface properties of the joint. The work showed that the highest interface strength was obtained for the specimens joined at 850 deg. C for 90 min. It was seen from the hardness results that the highest hardness value was obtained for the interlayer material and the hardness values on the both sides of the interlayer decreased gradually as the distance from the joint increased. In energy dispersive spectrometry analyses, it was seen that the amount of silver in the interlayer decreased markedly depending on the temperature rise. In addition, increasing diffusion time also caused some slight decrease in the amount of silver.

  10. Diffusion ordered spectroscopy for resolution of double bonded cis, trans-isomers

    NASA Astrophysics Data System (ADS)

    Chaudhari, Sachin Rama; Suryaprakash, N.

    2012-06-01

    NMR spectroscopic separation of double bonded cis- and trans-isomers, that have different molecular shapes but identical mass have been carried out using Diffusion Ordered Spectroscopy (DOSY). The mixtures of fumaric acid and maleic acid, that have similar hydrodynamic radii, have resolved been 'on the basis of their diffusion coefficients arising due to their different tendencies to associate with micelles or reverse micelles. Sodium dodecyl sulfate (SDS) and Dioctyl sulfosuccinate sodium salt (AOT) have been used as the media to mimic the chromatographic conditions, modify the average mobility and to achieve differential diffusion rates. The best separation of the components has been achieved by Dioctyl sulfosuccinate sodium salt (AOT) in D2O solution.

  11. Verification of the effect of surface preparation on Hot Isostatic Pressing diffusion bonding joints of CLAM steel

    NASA Astrophysics Data System (ADS)

    Zhao, Yanyun; Li, Chunjing; Huang, Bo; Liu, Shaojun; Huang, Qunying

    2014-12-01

    Hot Isostatic Pressing (HIP) diffusion bonding with CLAM steel is the primary candidate fabrication technique for the first wall (FW) of DFLL-TBM. Surface state is one of the key factors for the joints quality. The effect of surface state prepared with grinder and miller on HIP diffusion bonding joints of CLAM steel was investigated. HIP diffusion bonding was performed at 140 MPa and 1373 K within 3 h. The mechanical properties of the joints were investigated with instrumented Charpy V-notch impact tests and the microstructures of the joints were analyzed with scanning electron microscopy (SEM). The results showed that the milled samples with fine surface roughness were more suitable for CLAM steel HIP diffusion bonding.

  12. Diffusion bonding of Al7075 alloy to titanium aluminum vanadate alloy

    NASA Astrophysics Data System (ADS)

    Alhazaa, Abdulaziz Nasser

    The aluminum alloy (Al7075) and titanium alloy (Ti-6Al-4V) are used in a variety of applications in the aerospace industry. However, the high cost of Ti-6Al-4V alloy has been a major factor which has limited its use and therefore, the ability to join Al7075 alloy to Ti-6Al-4V alloy can provide a product that is less costly, but retains the high strength and light weight properties necessary for the transport industry. However, the large difference in the physical properties between these two alloys prevents the use of conventional joining techniques such as fusion welding to join these dissimilar alloys. Therefore, the diffusion bonding technique was used to join Al7075 alloy to Ti-6Al-4V alloy with the objective of minimizing microstructural changes of the two alloys during the bonding process. In this thesis, solid state and liquid phase bonding processes were undertaken. Solid state bonding was employed without interlayers and was successful at 510C and 7 MPa. The bond interface showed an absence of the oxides due to the dissolution of oxygen into the titanium solution. Bonds made using copper interlayers at a temperature sufficient enough to form eutectic liquid formation between copper and aluminum were produced. The intermetallics theta(Al2Cu), S(Al2CuMg) and T(Al2Mg3Zn3) were identified at the aluminum interface while Cu3Ti2 intermetallic was identified at the titanium interface. Bonds made using tin based alloys interlayers and copper coatings were successful and gave the highest shear strength. The eutectic formation on the Al7075 alloy was responsible for joint formation at the aluminum interface while the formation of Sn3Ti5 intermetallic was responsible for the joint formation at titanium interface. The corrosion rate of the bonds decreased with increasing bonding time for joints made using the tin based interlayer in 3% NaCl solution. However, the presence of copper within the joint increased the corrosion rate of the bonds and this was attributed to the corrosive effect of copper in the Al7075 alloy.

  13. Molecular Dynamics Study of the Disruption of H-BONDS by Water Molecules and its Diffusion Behavior in Amorphous Cellulose

    NASA Astrophysics Data System (ADS)

    Liao, Ruijin; Zhu, Mengzhao; Zhou, Xin; Zhang, Fuzhou; Yan, Jiaming; Zhu, Wenbin; Gu, Chao

    2012-06-01

    Hydrolysis is an important component of the aging of cellulose, and it severely affects the insulating performance of cellulosic materials. The diffusion behavior of water molecules in amorphous cellulose and their destructive effect on the hydrogen bonding structure of cellulose were investigated by molecular dynamics. The change in the hydrogen bonding structure indicates that water molecules have a considerable effect on the hydrogen bonding structure within cellulose: both intermolecular and intramolecular hydrogen bonds decreased with an increase in ingressive water molecules. Moreover, the stabilities of the cellulose molecules were disrupted when the number of intermolecular hydrogen bonds declined to a certain degree. Both the free volumes of amorphous cells and water molecule-cellulose interaction affect the diffusion of water molecules. The latter, especially the hydrogen bonding interaction between water molecules and cellulose, plays a predominant role in the diffusion behavior of water molecules in the models of which the free volume rarely varies. The diffusion coefficient of water molecules has an excellent correlation with water molecule-cellulose interaction and the average hydrogen bonds between each water molecule and cellulose; however, this relationship was not apparent between the diffusion coefficient and free volume.

  14. Fine pitch Cu/Sn solid state diffusion bonding for advanced three-dimensional chip stacking

    NASA Astrophysics Data System (ADS)

    Zhang, Wenqi

    2015-03-01

    Three-dimensional (3D) integration requires vertical stacking of dies while forming permanent electrical and mechanical connections between the input/output pins of the devices. How to enable stacking thermal sensitive devices at low temperature gains interest. This paper presents a systematic study of Cu/Sn bonding at 150-200 C, during which intermetallic compounds were formed by solid state inter-diffusion. It was found that below the lower-limit pressure of 20 MPa it was hard to make good contact between the rough joint surfaces and hence electrical connection was lost. However, beyond the upper-limit of 150 MPa Sn squeezed out leading to electrical shorting between adjacent bumps. Oxides removal was another key factor for good bonding. Finally, this Cu/Sn solid state diffusion bonding together with Cu through-silicon-via (TSV) was used for making die to die vertical interconnection. The measured resistance of single Cu/Sn solder joint and Cu TSV was in the range of 12-25 m?.

  15. Optimizing Diffusion Bonding Parameters in AA6061-T6 Aluminum and AZ80 Magnesium Alloy Dissimilar Joints

    NASA Astrophysics Data System (ADS)

    Joseph Fernandus, M.; Senthilkumar, T.; Balasubramanian, V.; Rajakumar, S.

    2012-11-01

    The main difficulty when joining magnesium (Mg) and aluminum (Al) alloys by fusion welding lies in the formation of oxide films and brittle intermetallic in the bond region which affects the integrity of the joints. However, diffusion bonding is a suitable process to join these two materials as no such characteristic defects are produced at the joints. The diffusion bonding process parameters such as bonding temperature, bonding pressure, holding time, and surface roughness of the specimen play a major role in determining the joint strength. In this investigation, an attempt was made to develop empirical relationships to predict the strengths of diffusion bonded AZ80 magnesium and AA6061 aluminum alloys dissimilar joints from the process parameters based on central composite factorial design. Response surface methodology was applied to optimize the process parameters to attain the maximum shear strength and bonding strength of the joint. From this investigation, it was found that the bonds produced with the temperature of 405.87 C, pressure of 7.87 MPa, holding time of 29.02 min and surface roughness of 0.10 ?m exhibited maximum shear strength and bonding strength of 57.70 and 76.90 MPa, respectively. The intermetallic formation at the interface was identified.

  16. Examination of superplastic forming combined with diffusion bonding for titanium: Perspective from experience

    NASA Astrophysics Data System (ADS)

    Sanders, Daniel G.; Ramulu, Mamidala

    2004-12-01

    Superplastic forming (SPF) combined with diffusion bonding (DB) has been used successfully for the fabrication of titanium aerospace hardware. Many of these applications have been for military aircraft, whereby a complex built-up structure has been replaced with monolithic parts. Several methods for applying the two- and four-sheet titanium SPF/DB processes have been devised, including the welding of sheets prior to forming and the use of silk-screened stop-off (yttria) to prevent bonding where it is undesirable. Very little progress has been made in the past few years toward understanding and modeling the SPF/DB process using constitutive equations and data by laboratory testing. Concerns that engineers face in designing for fatigue life, acceptable design loads, and damage tolerance are currently being studied, but the database is very limited. This is a summary of past work found in the literature and forms the foundation for additional research.

  17. An investigation of diffusion bonding under super-plastic condition for Ti-6A-4V Titanium alloys

    NASA Astrophysics Data System (ADS)

    Lin, Zhao-Rong; Zhang, Zhong-Yuan; Huang, Wei-Dong

    1993-08-01

    Based on current theories of diffusion and creep cavity closure at high temperatures, a theoretical analysis of diffusion bonding under super-plastic condition for Ti-6A-4V titanium alloy is carried out. The diffusion bonding is mainly described as a two-stage process: (1) The shrinkage process of cavities with shape change from elliptical to cylindrical; (2) In the second stage, the radii of the cylindrical cavities are reduced and eliminated. In this paper, a mathematical model is established in order to predict the bonding quality which is affected by technological parameters, such as temperature, pressure, bonding time, etc. Meanwhile, reasonable technological parameters are chosen from theoretical analysis. The theoretical analysis is in good agreement with experimental results.

  18. Structural properties of superplastically formed/diffusion-bonded orthogonally corrugated core sandwich plates

    NASA Technical Reports Server (NTRS)

    Ko, W. L.

    1980-01-01

    This paper describes a new superplastically formed/diffusion-bonded (SPF/DB) orthogonally corrugated sandwich structure, and presents formulae and the associated plots for evaluating the effective elastic constants for the core of this new sandwich structure. Comparison of structural properties of this new sandwich structure with the conventional honeycomb core sandwich structure was made under the condition of equal sandwich density. It was found that the SPF/DB orthogonally corrugated sandwich core has higher transverse shear stiffness than the conventional honeycomb sandwich core. However, the former has lower stiffness in the sandwich core thickness direction than the latter.

  19. Elastic constants for superplastically formed/diffusion-bonded corrugated sandwich core

    NASA Technical Reports Server (NTRS)

    Ko, W. L.

    1980-01-01

    Formulas and associated graphs for evaluating the effective elastic constants for a superplastically formed/diffusion bonded (SPF/DB) corrugated sandwich core, are presented. A comparison of structural stiffnesses of the sandwich core and a honeycomb core under conditions of equal sandwich core density was made. The stiffness in the thickness direction of the optimum SPF/DB corrugated core (that is, triangular truss core) is lower than that of the honeycomb core, and that the former has higher transverse shear stiffness than the latter.

  20. Diffusion Bonding of Ti-6Al-4V Sheet with Ti-6Al-4V Foam for Biomedical Implant Applications

    NASA Astrophysics Data System (ADS)

    Hamilton, Brittany; Oppenheimer, Scott; Dunand, David C.; Lewis, Daniel

    2013-12-01

    Advanced metallic bone implants are designed to have a porous surface to improve osseointegration and reduce risks of loosening. An alternative approach to existing surface treatments to create a porous surface is to bond separately produced metallic foams onto the implant. To assess the feasibility of this approach, a Ti-6Al-4V foam was diffusion bonded onto bulk Ti-6Al-4V in an argon atmosphere at temperatures between 1173 K and 1223 K (900 C and 950 C) for times between 45 and 75 minutes. These specimens were tested in tension to determine bond quality: failures occurred in the foam, indicating a strong diffusion-bonded interface. The quality of the bond was confirmed by metallographic studies, indicating that this approach, which can also be applied to creating of sandwich with porous cores, is successful.

  1. A first principles molecular dynamics study of vibrational spectral diffusion and hydrogen bond dynamics in liquid methanol

    NASA Astrophysics Data System (ADS)

    Yadav, Vivek K.; Karmakar, Anwesa; Choudhuri, Jyoti Roy; Chandra, Amalendu

    2012-10-01

    We present a first principles theoretical study of vibrational spectral diffusion and hydrogen bond dynamics in liquid methanol at room temperature. The dynamics of spectral diffusion of OD modes of deuterated methanol reveals two times scales: a short time scale of about 120 fs and a longer time scale of about 3.2 ps. A damped oscillation is also found at around 120-180 fs. Calculations of power spectrum of relative velocities and hydrogen bond correlation functions reveal that the short time dynamics originates from intermolecular motion of hydrogen bonded methanol pairs while the long time relaxation corresponds to the breaking dynamics of hydrogen bonds. The quantitative details of the time constants are found to depend on the frequency of tagged OD bonds.

  2. Water Dimer Diffusion on Pd{111} Assisted by an H-Bond Donor-Acceptor Tunneling Exchange V. A. Ranea,1,* A. Michaelides,2

    E-print Network

    Alavi, Ali

    Water Dimer Diffusion on Pd{111} Assisted by an H-Bond Donor-Acceptor Tunneling Exchange V. A{111} demonstrates how H-bonding interactions can assist adsorbate diffusion and is another example functional theory calculations, a novel mechanism for the diffusion of water dimers on metal surfaces

  3. Diffusion Bonding Technology of Tungsten and SiC/SiC Composites for Nuclear Applications

    NASA Astrophysics Data System (ADS)

    Kishimoto, Hirotatsu; Shibayama, Tamaki; Abe, Takahiro; Shimoda, Kazuya; Kawamura, Satoshi; Kohyama, Akira

    2011-10-01

    Silicon carbide (SiC) is a candidate for the structural material in the next generation nuclear plants. Use of SiC/SiC composites is expected to increase the operation temperature of system over 1000 C. For the high temperature system, refractory metals are planned to be used for several components. Tungsten is a candidate of armor on the divertor component in fusion, and is planned to be used for an upper-end plug of SiC/SiC fuel pin in a Gas cooled Fast Reactor (GFR). Joining technique of the SiC/SiC composites and tungsten is an important issue for nuclear systems in future. Nano-Infiltration and Transient Eutectoid (NITE) method is able to provide dense stable and high strength SiC/SiC composites having high resistance against pressure at elevated temperature, a diffusion bonding technique is usable to join the materials. Present research produces a NITE-SiC/SiC composite and tungsten as the similar dimension as a projected cladding tube of fuel pin for GFR using diffusion bonding, and investigated microstructure and mechanical properties.

  4. Low-distortion, high-strength bonding of thermoplastic microfluidic devices employing case-II diffusion-mediated permeant activation.

    PubMed

    Wallow, Thomas I; Morales, Alfredo M; Simmons, Blake A; Hunter, Marion C; Krafcik, Karen Lee; Domeier, Linda A; Sickafoose, Shane M; Patel, Kamlesh D; Gardea, Andy

    2007-12-01

    We demonstrate a new method for joining thermoplastic surfaces to produce microfluidic devices. The method takes advantage of the sharply defined permeation boundary of case-II diffusion to generate dimensionally controlled, activated bonding layers at the surfaces being joined. The technique is capable of producing bonds that exhibit cohesive failure, while preserving the fidelity of fine features in the bonding interface. This approach is uniquely suited to production of layered microfluidic structures, as it allows the bond-forming interface between plastic parts to be precisely manipulated at micrometre length scales. Distortions in microfluidic device channels are limited to the size scale of the permeant-swollen layer; 6 microm deep channels are routinely produced with no detectable cross-sectional distortions. Conventional thermal diffusion bonding of identical parts yields less strongly bonded microfluidic structures with increasingly severe dimensional compressions as bonding temperatures approach the thermoplastic glass-transition temperature: a preliminary rheological analysis is consistent with the observed compressions. The bond-enhancing procedure is easily integrated in standard process flows, uses inexpensive reagents, and requires no specialized equipment. PMID:18030407

  5. A Comparison Between Cold-Welded and Diffusion-Bonded Al/Cu Bimetallic Rods Produced by ECAE Process

    NASA Astrophysics Data System (ADS)

    Eslami, P.; Karimi Taheri, A.; Zebardast, M.

    2013-10-01

    In this research, the application of equal channel angular extrusion process to produce both the cold-welded and diffusion-bonded Al/Cu bimetallic rods is assessed. The joints shear strength for both of the methods are measured and compared. The microstructure examinations were also carried out using scanning electron microscope equipped with EDX system and x-ray diffraction analysis. The results exhibit that the strength of the bond in cold-welded specimens is dependent on the amount of stretch and pressure at the materials interface. But in the diffusion-bonded specimens, it is depended on the struggle between the oxidation rate of the mating surfaces accompanied by inter-metallic compounds formation and the aluminum and copper atoms ability to diffuse in the joint interface.

  6. Subnanosecond bulk damage thresholds of single-crystal YAG and diffusion-bonded YAG structures at 1 micron

    NASA Astrophysics Data System (ADS)

    Stultz, Robert D.; Yokoyama, Karen E.; Lurier, Jeanette; Ushinsky, Michael; Farley, Robert W.; Rogers, Mark E.; Foran, Brendan J.; Thomas, Michael D.; Griffin, Andrew J.

    2011-12-01

    Laser bulk damage thresholds were measured for both single-crystal YAG and for diffusion-bonded YAG structures using 600 picosecond pulses at 1064 nm. The tested samples included 3-layer sandwich structures with doped cores of various thicknesses. An undoped-YAG end cap was diffusion-bonded on one end of each of the sandwiches. The 1064 nm laser source was focused to a 13 micron diameter spot at the boundary region between the core and the undoped endcap. Measurements included the evaluation of single- and multiple-pulse damage thresholds at single sites, as well as thresholds for continuous 90%-overlap scans. The single-site thresholds at the diffusion-bonded boundary were close to that of single-crystal YAG. However, the continuous scans revealed isolated microscopic sites where the damage threshold was as much as 4 times lower than that of single-crystal YAG.

  7. Strength and fracture behaviour of diffusion bonded joints in Al-Li (8090) alloy. III - Peel strength

    NASA Astrophysics Data System (ADS)

    Dunford, D. V.; Partridge, P. G.

    1992-11-01

    Peel strengths at room temperature and under superplastic forming conditions at 530 C were measured for diffusion-bonded joints in Al-Li 8090 alloy sheet. The bonds were made in the solid state, or via a transient liquid phase using interlayers. The effect of strain rate, sheet thickness and heat treatment were investigated. The significance of these results for the testing of DB joints and for their use in DB/SPF structures is discussed.

  8. Maskless RGB color patterning of vacuum-deposited small molecule OLED displays by diffusion of luminescent dopant molecules.

    PubMed

    Kajiyama, Yoshitaka; Kajiyama, Koichi; Aziz, Hany

    2015-06-29

    A maskless RGB color patterning technique based on diffusion of luminescent dopant molecules is proposed here for vacuum-deposited small molecule OLED displays. The proposed maskless color patterning technique enables us to overcome challenging issues in OLED display manufacturing arising from shadow mask limitations. This approach utilizes selective diffusion of luminescent dopant molecules from a donor substrate to an acceptor substrate. Results show that sufficiently high doping levels can be achieved through this technique and that devices with performance similar to those produced by standard co-deposition can be easily produced. Red, green and blue OLEDs are successfully fabricated side by side on one substrate using this technique. PMID:26191677

  9. Application of superplastically formed and diffusion bonded aluminum to a laminar flow control leading edge

    NASA Technical Reports Server (NTRS)

    Goodyear, M. D.

    1987-01-01

    NASA sponsored the Aircraft Energy Efficiency (ACEE) program in 1976 to develop technologies to improve fuel efficiency. Laminar flow control was one such technology. Two approaches for achieving laminar flow were designed and manufactured under NASA sponsored programs: the perforated skin concept used at McDonnell Douglas and the slotted design used at Lockheed-Georgia. Both achieved laminar flow, with the slotted design to a lesser degree (JetStar flight test program). The latter design had several fabrication problems concerning springback and adhesive flow clogging the air flow passages. The Lockheed-Georgia Company accomplishments is documented in designing and fabricating a small section of a leading edge article addressing a simpler fabrication method to overcome the previous program's manufacturing problems, i.e., design and fabrication using advanced technologies such as diffusion bonding of aluminum, which has not been used on aerospace structures to date, and the superplastic forming of aluminum.

  10. The influence of bond-rigidity and cluster diffusion on the self-diffusion of hard spheres with square-well interaction

    E-print Network

    Sujin Babu; Jean Christophe Gimel; Taco Nicolai; C. De Michele

    2007-11-02

    Hard spheres interacting through a square-well potential were simulated using two different methods: Brownian Cluster Dynamics (BCD) and Event Driven Brownian Dynamics (EDBD). The structure of the equilibrium states obtained by both methods were compared and found to be almost the identical. Self diffusion coefficients ($D$) were determined as a function of the interaction strength. The same values were found using BCD or EDBD. Contrary the EDBD, BCD allows one to study the effect of bond rigidity and hydrodynamic interaction within the clusters. When the bonds are flexible the effect of attraction on $D$ is relatively weak compared to systems with rigid bonds. $D$ increases first with increasing attraction strength, and then decreases for stronger interaction. Introducing intra-cluster hydrodynamic interaction weakly increases $D$ for a given interaction strength. Introducing bond rigidity causes a strong decrease of $D$ which no longer shows a maximum as function of the attraction strength.

  11. The effect of the nature of H-bonding groups on diffusion through PDMS membranes saturated with octanol and toluene.

    PubMed

    Du Plessis, Jeanetta; Pugh, W John; Judefeind, Anja; Hadgraft, Jonathan

    2002-02-01

    The permeation of a series of structurally related compounds across silicone membranes (PDMS) was studied. The PDMS was saturated either with toluene, to mimic a functionally inert barrier, or octanol, to mimic the polar/hydrogen bonding environment of the stratum corneum lipid barrier. Phenol, salicylic acid, benzoic acid, anisole, phenylethanol and benzyl alcohol were chosen in an attempt to relate permeation to their different H-bonding capabilities. The flux was lower through the octanol system suggesting retardation by polar/H-bonding interactions. Separation of the permeability coefficient into its thermodynamic (partition coefficient) and kinetic (diffusion coefficient) terms suggests that the effect of altering polarity within the membrane has a greater impact on the diffusion of permeant rather than its chemical potential within the membrane. PMID:11803132

  12. Dynamics of hydrogen bonds and vibrational spectral diffusion in liquid methanol from first principles simulations with dispersion corrected density functional

    NASA Astrophysics Data System (ADS)

    Kumar Yadav, Vivek; Chandra, Amalendu

    2013-03-01

    The effects of dispersion interactions on the dynamics of hydrogen bonds and vibrational spectral diffusion in liquid methanol are investigated through first principles simulations with a dispersion corrected density functional. Calculations are done at two different temperatures of 300 and 350 K and the results are compared with those of an earlier study where no such dispersion corrections were included. It is found that inclusion of dispersion interactions slightly increases the number of molecules held through non-hydrogen-bonded dispersion interactions in the neighborhood which, in turn, makes the dynamics faster. The inclusion of dispersion corrections gives rise to a faster hydrogen bond dynamics compared to the case when no such dispersion corrections are made. Also, the time scale of vibrational spectral diffusion obtained with the dispersion corrected density functional is found to be in better agreement with experiments.

  13. Transient Liquid-Phase Diffusion Bonding of Aluminum Metal Matrix Composite Using a Mixed Cu-Ni Powder Interlayer

    NASA Astrophysics Data System (ADS)

    Maity, Joydeep; Pal, Tapan Kumar

    2012-07-01

    In the present study, the transient liquid-phase diffusion bonding of an aluminum metal matrix composite (6061-15 wt.% SiCp) has been investigated for the first time using a mixed Cu-Ni powder interlayer at 560 C, 0.2 MPa, for different holding times up to 6 h. The microstructure of the isothermally solidified zone contains equilibrium precipitate CuAl2, metastable precipitate Al9Ni2 in the matrix of ?-solid solution along with the reinforcement particles (SiC). On the other hand, the microstructure of the central bond zone consists of equilibrium phases such as NiAl3, Al7Cu4Ni and ?-solid solution along with SiC particles (without any segregation) and the presence of microporosities. During shear test, the crack originates from microporosities and propagates along the interphase interfaces resulting in poor bond strength for lower holding times. As the bonding time increases, with continual diffusion, the structural heterogeneity is diminished, and the microporosities are eliminated at the central bond zone. Accordingly, after 6-h holding, the microstructure of the central bond zone mainly consists of NiAl3 without any visible microporosity. This provides a joint efficiency of 84% with failure primarily occurring through decohesion at the SiC particle/matrix interface.

  14. Bonding and diffusion of nitrogen in the InSbN alloys fabricated by two-step ion implantation

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Zhang, D. H.; Chen, X. Z.; Jin, Y. J.; Li, J. H.; Liu, C. J.; Wee, A. T. S.; Zhang, Sam; Ramam, A.

    2012-07-01

    We report bonding and diffusion behavior of nitrogen incorporated into InSb wafer by two-step implantation. Three nitrogen-containing regions, i.e., a surface accumulation region, a uniform region, and a tail region, were observed in the samples after post annealing. X-ray photoelectron spectroscopy measurements at different depths reveal that majority of the nitrogen forms In-N bonds in the uniform region but exists as interstitial defects in the tail region. The diffusion coefficients of nitrogen in InSb were obtained by fitting the modified Fick's law with experimental data and the activation energy of 0.55 0.04 eV extracted confirms the interstitial dominating diffusion of nitrogen in the InSb wafer.

  15. Method for producing components with internal architectures, such as micro-channel reactors, via diffusion bonding sheets

    DOEpatents

    Alman, David E. (Corvallis, OR); Wilson, Rick D. (Corvallis, OR); Davis, Daniel L. (Albany, OR)

    2011-03-08

    This invention relates to a method for producing components with internal architectures, and more particularly, this invention relates to a method for producing structures with microchannels via the use of diffusion bonding of stacked laminates. Specifically, the method involves weakly bonding a stack of laminates forming internal voids and channels with a first generally low uniaxial pressure and first temperature such that bonding at least between the asperites of opposing laminates occurs and pores are isolated in interfacial contact areas, followed by a second generally higher isostatic pressure and second temperature for final bonding. The method thereby allows fabrication of micro-channel devices such as heat exchangers, recuperators, heat-pumps, chemical separators, chemical reactors, fuel processing units, and combustors without limitation on the fin aspect ratio.

  16. Diffuse reflectance infrared spectroscopic identification of dispersant/particle bonding mechanisms in functional inks.

    PubMed

    Deiner, L Jay; Farjami, Elaheh

    2015-01-01

    In additive manufacturing, or 3D printing, material is deposited drop by drop, to create micron to macroscale layers. A typical inkjet ink is a colloidal dispersion containing approximately ten components including solvent, the nano to micron scale particles which will comprise the printed layer, polymeric dispersants to stabilize the particles, and polymers to tune layer strength, surface tension and viscosity. To rationally and efficiently formulate such an ink, it is crucial to know how the components interact. Specifically, which polymers bond to the particle surfaces and how are they attached? Answering this question requires an experimental procedure that discriminates between polymer adsorbed on the particles and free polymer. Further, the method must provide details about how the functional groups of the polymer interact with the particle. In this protocol, we show how to employ centrifugation to separate particles with adsorbed polymer from the rest of the ink, prepare the separated samples for spectroscopic measurement, and use Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS) for accurate determination of dispersant/particle bonding mechanisms. A significant advantage of this methodology is that it provides high level mechanistic detail using only simple, commonly available laboratory equipment. This makes crucial data available to almost any formulation laboratory. The method is most useful for inks composed of metal, ceramic, and metal oxide particles in the range of 100 nm or greater. Because of the density and particle size of these inks, they are readily separable with centrifugation. Further, the spectroscopic signatures of such particles are easy to distinguish from absorbed polymer. The primary limitation of this technique is that the spectroscopy is performed ex-situ on the separated and dried particles as opposed to the particles in dispersion. However, results from attenuated total reflectance spectra of the wet separated particles provide evidence for the validity of the DRIFTS measurement. PMID:25993049

  17. Diffusion bonding of CMSX-4 to UDIMET 720 using PVD-coated interfaces and HIP

    SciTech Connect

    Larker, R.; Ockborn, J.; Selling, B.

    1999-07-01

    There is an increasing interest in development of manufacturing methods for Dual Property BLISKs (BLaded dISKs), consisting of creep resistant airfoils and fatigue resistant disks bonded together by a durable joint. Optimum heat treatments are, however, very different for creep resistant single crystal CMSX-4 and fatigue resistant polycrystalline Udimet 720 selected in this study, but fortunately the first aging treatment for CMSX-4 (1140 C, 2-6h, AC) is similar to the partial solution treatment of U 720 HS2 (1115 C, 4h, OQ). Based on this, diffusion bonding was performed by HIP at 1120 C and 200 MPa argon pressure for 4 h, followed by cooling to 400 C. Subsequently, a shortened Udimet 720 HS2 two-step aging treatment was adopted by heating to 650 C for 6 h followed by cooling to 400 C, heating to 760 C for 2 h, and finally cooling to R.T. under remaining HIP pressure. Plasma etching followed by thin (80 nm) PVD coating with either nickel or titanium were used to clean and protect the polished surfaces before joining. The selection of coatings was governed by the possibility to reduce oxidized nickel by flushing with hydrogen at 330 C during evacuation of the HIP capsules, and by the large solubility of oxygen in titanium. Hot tensile testing was performed at 750 C on both joined and reference materials subjected to the modified heat treatment. Initially solution treated Udimet 720 and CMSX-4 comprised the reference materials. The testing showed that joints with Ni-PV coatings were almost as strong as Udimet 720 (although with very limited elongation), while the joints with Ti-PVD coatings were weaker.

  18. Evaluation of Cu as an interlayer in Be/F82H diffusion bonds for ITER TBM

    NASA Astrophysics Data System (ADS)

    Hunt, R. M.; Goods, S. H.; Ying, A.; Dorn, C. K.; Abdou, M.

    2011-10-01

    Copper has been investigated as a potential interlayer material for diffusion bonds between beryllium and Reduced Activation Ferritic/Martensitic (RAFM) steel. Utilizing Hot Isostatic Pressing (HIP), copper was directly bonded to a RAFM steel, F82H, at 650 C, 700 C, 750 C, 800 C and 850 C, under 103 MPa for 2 h. Interdiffusion across the bonded interface was limited to 1 ?m or less, even at the highest HIP'ing temperature. Through mechanical testing it was found that samples HIP'ed at 750 C and above remain bonded up to 211 MPa under tensile loading, at which point ductile failure occurred in the bulk copper. As titanium will be used as a barrier layer to prevent the formation of brittle Be/Cu intermetallics, additional annealing studies were performed on copper samples coated with a titanium thin film to study Ti/Cu interdiffusion characteristics. Samples were heated to temperatures between 650 C and 850 C for 2 h in order to mimic the range of likely HIP temperatures. A correlation was drawn between HIP temperature and diffusion depth for use in determining the minimum Ti film thickness necessary to block diffusion in the Be/F82H joint.

  19. The Structure and Properties of Diffusion Assisted Bonded Joints in 17-4 PH, Type 347, 15-5 PH and Nitronic 40 Stainless Steels

    NASA Technical Reports Server (NTRS)

    Wigley, D. A.

    1981-01-01

    Diffusion assisted bonds are formed in 17-4 PH, 15-5 PH, type 347 and Nitronic 40 stainless steels using electrodeposited copper as the bonding agent. The bonds are analyzed by conventional metallographic, electron microprobe analysis, and scanning electron microscopic techniques as well as Charpy V-notch impact tests at temperatures of 77 and 300 K. Results are discussed in terms of a postulated model for the bonding process.

  20. Effects of interface bonding and defects on boron diffusion at Si/SiO{sub 2} interface

    SciTech Connect

    Kim, Geun-Myeong; Oh, Young Jun; Chang, K. J.

    2013-12-14

    We perform first-principles density functional calculations to find the migration pathway and barrier for B diffusion at the Si/SiO{sub 2} interface. For various interface models, in which crystalline ?-quartz or amorphous silica (a-SiO{sub 2}) is placed on Si, we examine stable and metastable configurations of B-related defects which play a role in B diffusion. While a substitutional B alone is immobile in Si, it tends to diffuse to the interface via an interstitialcy mechanism in the presence of a self-interstitial and then changes into an interstitial B in oxide via a kick-out mechanism, leaving the self-interstitial at the interface. At the defect-free interface, where bridging O atoms are inserted to remove interface dangling bonds, an interstitial B prefers to intervene between the interface Si and bridging O atoms and subsequently diffuses through the hollow space or along the network of the Si-O-Si bonds in oxide. The overall migration barriers are calculated to be 2.022.12?eV at the Si/?-quartz interface, while they lie in the range of 2.04??0.44?eV at the Si/a-SiO{sub 2} interface, similar to that in ?-quartz. The migration pathway and barrier are not significantly affected by interface defects such as suboxide bond and O protrusion, while dangling bonds in the suboxide region can increase the migration barrier by about 1.5?eV. The result that the interface generally does not hinder the B diffusion from Si to SiO{sub 2} assists in understanding the underlying mechanism for B segregation which commonly occurs at the Si/SiO{sub 2} interface.

  1. Indirect Versus Direct Heating of Sheet Materials: Superplastic Forming and Diffusion Bonding Using Lasers

    NASA Astrophysics Data System (ADS)

    Jocelyn, Alan; Kar, Aravinda; Fanourakis, Alexander; Flower, Terence; Ackerman, Mike; Keevil, Allen; Way, Jerome

    2010-06-01

    Many from within manufacturing industry consider superplastic forming (SPF) to be high tech, but it is often criticized as too complicated, expensive, slow and, in general, an unstable process when compared to other methods of manipulating sheet materials. Perhaps, the fundamental cause of this negative perception of SPF, and also of diffusion bonding (DB), is the fact that the current process of SPF/DB relies on indirect sources of heating to produce the conditions necessary for the material to be formed. Thus, heat is usually derived from the electrically heated platens of hydraulic presses, to a lesser extent from within furnaces and, sometimes, from heaters imbedded in ceramic moulds. Recent evaluations of these isothermal methods suggest they are slow, thermally inefficient and inappropriate for the process. In contrast, direct heating of only the material to be formed by modern, electrically efficient, lasers could transform SPF/DB into the first choice of designers in aerospace, automotive, marine, medical, architecture and leisure industries. Furthermore, variable temperature direct heating which, in theory, is possible with a laser beam(s) may provide a means to control material thickness distribution, a goal of enormous importance as fuel efficient, lightweight structures for transportation systems are universally sought. This paper compares, and contrasts, the two systems and suggests how a change to laser heating might be achieved.

  2. Diffuse lymphatic leakage after continuous vacuum-assisted closure therapy for thoracic wound infection after rib stabilization.

    PubMed

    Dackam, Sandrine; Furrer, Katarzyna; Haug, Martin; Lardinois, D

    2015-01-01

    Vacuum-assisted closure (VAC) therapy is a useful tool in the management of a wide spectrum of complex wounds in cardiothoracic surgery. It promotes healing through the application of a controlled and localized negative pressure on porous polyurethane absorbent foams. Known advantages of the VAC therapy are the acceleration of wound healing, stimulation of granulation tissue and reduced tissue edema. Despite its excellent properties, some related complications after and during the therapy have been reported. We report the case of a 47-year-old female with a thoracic wound infection after rib stabilization, managed with open surgery and VAC therapy, which was complicated by a diffuse lymphatic leakage. This is the first case described of diffuse lymphatic leakage followed by partial necrosis of the breast after continuous VAC therapy. We recommend the application of a lower pressure level of this device for complex wounds of the chest wall near the breast. PMID:26675995

  3. Diffuse lymphatic leakage after continuous vacuum-assisted closure therapy for thoracic wound infection after rib stabilization

    PubMed Central

    Dackam, Sandrine; Furrer, Katarzyna; Haug, Martin; Lardinois, D.

    2015-01-01

    Vacuum-assisted closure (VAC) therapy is a useful tool in the management of a wide spectrum of complex wounds in cardiothoracic surgery. It promotes healing through the application of a controlled and localized negative pressure on porous polyurethane absorbent foams. Known advantages of the VAC therapy are the acceleration of wound healing, stimulation of granulation tissue and reduced tissue edema. Despite its excellent properties, some related complications after and during the therapy have been reported. We report the case of a 47-year-old female with a thoracic wound infection after rib stabilization, managed with open surgery and VAC therapy, which was complicated by a diffuse lymphatic leakage. This is the first case described of diffuse lymphatic leakage followed by partial necrosis of the breast after continuous VAC therapy. We recommend the application of a lower pressure level of this device for complex wounds of the chest wall near the breast. PMID:26675995

  4. Diffusion Bonding Behavior and Characterization of Joints Made Between 316L Stainless Steel Alloy and AZ31 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Elthalabawy, Waled Mohamed

    The 316L austenitic stainless steel and AZ31 magnesium alloy have physical and mechanical properties which makes these alloys suitable in a number of high technology based industries such as the aerospace and automotive sectors. However, for these alloys to be used in engineering applications, components must be fabricated and joined successfully. The differences in the physical and metallurgical properties between these two alloys prevents the use of conventional fusion welding processes commonly employed in aerospace and transport industry. Therefore, alternative techniques need to be developed and diffusion bonding technology is a process that has considerable potential to join these two dissimilar alloys. In this research work both solid-state and transient liquid phase (TLP) bonding processes were applied. The solid-state bonding of 316L steel to AZ31 magnesium alloy was possible at a bonding temperature of 550C for 120 minutes using a pressure of 1.3 MPa. The interface characterization of the joint showed a thin intermetallic zone rich in Fe-Al was responsible for providing a metallurgical bond. However, low joint shear strengths were recorded and this was attributed to the poor surface to surface contact. The macro-deformation of the AZ31 alloy prevented the use of higher bonding pressures and longer bonding times. In order to overcome these problems, the TLP bonding process was implemented using pure Cu and Ni foils as interlayers which produced a eutectic phase at the bonding temperature. This research identified the bonding mechanism through microstructural and differential scanning calorimetry investigations. The microstructural characterization of the TLP joints identified intermetallics which became concentrated along the 316L steel/AZ31 bond interface due to the "pushing effect" of the solid/liquid interface during isothermal solidification stage of bonding. The size and concentration of the intermetallics had a noticeable effect on the final joint strength properties. TLP bonding using electrodeposited coatings of Cu and Ni were used as a way of controlling the volume of eutectic liquid formed at the joint. Theoretical and experimental work showed that the use of thin coatings was successful in reducing the size and amount of intermetallics formed at the joint and this had the effect on increasing joint shear strength values.

  5. Development of a Low-Cost Process for Manufacturing of Ti-Metal Matrix Composite by Roll-Diffusion Bonding

    NASA Astrophysics Data System (ADS)

    Testani, C.; Ferraro, F.

    2010-06-01

    Composite materials with titanium-alloy matrix are currently the class of material with the highest specific resistance at temperatures up to 800 C. The main hurdle to their application is their final cost. Even if it is clear that the costs of constituent materials are decreasing due to volume production effects, the production processing costs remain high due to the batch production approach. Centro Sviluppo Materialis (CSM) efforts have focused on the manufacturing process in order to obtain an innovative solution to reduce the manufacturing costs with respect to the hot isostatic pressing (HIP) process that represents the standard production process for this class of materials. The new approach can allow a cost reduction of about 40%; this result was obtained by developing an experimental diffusion bonding plant for co-rolling at high temperature in a superplastic rolling regime, sheets of titanium alloy and monofilament silicon carbide fabrics. The experimental pilot plant was proposed for patent with RM2006A000261 in May 2006. This paper describes the manufacturing phases and process results. Moreover, has been shown that the diffusion in the solid state was obtained in a process window that was at least 100 times faster than that of HIP. High-temperature tensile tests were carried out on specimens machined from metallic matrix composite materials produced with the roll-diffusion bonding (RDB) process. The samples produced were also submitted to electrochemical dissolution tests of the metallic matrix in order to verify the geometric integrity of the fibers inside the matrix after the bonding phase. The results achieved as well as the process knowledge acquired with the CSM pilot plant are the base for further development of industrial application of the titanium roll-diffusion bonding.

  6. Superplastic forming and diffusion bonding of rapidly solidified, dispersion strengthened aluminum alloys for elevated temperature structural applications

    NASA Technical Reports Server (NTRS)

    Ting, E. Y.; Kennedy, J. R.

    1989-01-01

    Rapidly solidified alloys, based upon the Al-Fe-V-Si system and designed for elevated temperature applications, were evaluated for superplasticity and diffusion bonding behavior. Alloys with 8, 16, 27, and 36 volume percent silicide dispersoids were produced; dispersoid condition was varied by rolling at 300, 400, and 500 C (572, 752, and 932 F). Superplastic behavior was evaluated at strain rates from 1 x 10(exp -6)/s to 8.5/s at elevated temperatures. The results indicate that there was a significant increase in elongation at higher strain rates and at temperatures above 600 C (1112 F). However, the exposure of the alloys to temperatures greater than 600 C (1112 F) resulted in the coarsening of the strengthening dispersoid and the degradation of mechanical properties. Diffusion bonding was possible using low gas pressure at temperatures greater than 600 C (1112 F) which also resulted in degraded properties. The bonding of Al-Fe-V-Si alloys to 7475 aluminum alloy was performed at 516 C (960 F) without significant degradation in microstructure. Bond strengths equal to 90 percent that of the base metal shear strength were achieved. The mechanical properties and microstructural characteristics of the alloys were investigated.

  7. MEASUREMENT OF ADHESION STRENGTH OF SOLID-STATE DIFFUSION BONDING BETWEEN NICKEL AND COPPER BY MEANS OF LASER SHOCK SPALLATION METHOD

    SciTech Connect

    Satou, M.; Akamatsu, H.; Hasegawa, A.

    2009-12-28

    Coating and bonding techniques between different materials are essential to the field of technology. Bond mechanism is of interest from scientific point of view. A well-established method to make bonding between unalloyed nickel and copper was utilized, that was solid-state diffusion bonding at elevated temperatures. Irradiation by Nd:YAG laser with 7ns-pulse width created shock wave that caused tensile stress after reflection at free surface. The adhesion strength was determined by the critical laser power that caused exfoliation of the bonding interface.

  8. Preparation and Bond Properties of Thermal Barrier Coatings on Mg Alloy with Sprayed Al or Diffused Mg-Al Intermetallic Interlayer

    NASA Astrophysics Data System (ADS)

    Fan, Xizhi; Wang, Ying; Zou, Binglin; Gu, Lijian; Huang, Wenzhi; Cao, Xueqiang

    2014-02-01

    Sprayed Al or diffused Mg-Al layer was designed as interlayer between the thermal barrier coatings (TBCs) and Mg alloy substrate. The effects of the interlayer on the bond properties of the coats were investigated. Al layers were prepared by arc spraying and atmospheric plasma spraying (APS), respectively. Mg-Al diffused layer was obtained after the heat treatment of the sprayed sample (Mg alloy with APS Al coat) at 400 C. The results show that sprayed Al interlayer does not improve the bond stability of TBCs. The failure of the TBCs on Mg alloy with Al interlayer occurs mainly due to the low strength of Al layer. Mg-Al diffused layer improves corrosion resistance of substrate and the bond interface. The TBCs on Mg alloy with Mg-Al diffused interlayer shows better bond stability than the sample of which the TBCs is directly sprayed on Mg alloy substrate by APS.

  9. Intermolecular hydrogen bonding of steroid compounds: PFG NMR diffusion study, cold-spray ionization (CSI)-MS and X-ray analysis.

    PubMed

    Shikii, Kazuaki; Seki, Hiroko; Sakamoto, Shigeru; Sei, Yoshihisa; Utsumi, Hiroaki; Yamaguchi, Kentaro

    2005-07-01

    An extensive analysis of hydrogen bonding of steroid compounds in diluted solution is preformed by pulsed field gradient (PFG) NMR and cold-spray ionization (CSI)-MS, in the solid state by X-ray crystallographic analysis. The formation of hydrogen bond interaction are quantified and discussed. Although X-ray analysis in the crystalline state and CSI-MS measurement in solution suggested that the observed diffusion coefficient D(obs) of the steroid compounds may vary in accordance with the number of hydrogen bonds, the actual observed D(obs) value determined from the diffusion studies diminished constantly without correlation on the decreasing numbers of hydrogen bonds. Comparison of two different calibration profiles of calculated molecular volume (V(cal)) vs. D(obs), which are obtained from compounds possessing no hydrogen bonding and the steroid compounds, formation of a chain structure (cluster) based on intermolecular hydrogen bonding of the steroid compounds is unambiguously confirmed. PMID:15997137

  10. An investigation on diffusion bonding of aluminum to copper using equal channel angular extrusion process

    PubMed Central

    Eslami, P.; Taheri, A. Karimi

    2011-01-01

    A new method for production of bimetallic rods, utilizing the equal channel angular extrusion (ECAE) process has been introduced before by previous researchers, but no attempt has been made to assess the effect of different temperatures and holding times in order to achieve a diffusional bond between the mating surfaces. In present research copper sheathed aluminum rods have been ECAEed at room temperature and subsequently held at a constant ECAE pressure, at different temperatures and holding times to produce a diffusional bond between the copper sheath and the aluminum core. The bonding quality of the joints was examined by shear strength test and a sound bonding interface was achieved. Based on the results, a bonding temperature of 200C and holding time of 6080min yielded the highest shear strength value. PMID:21760654

  11. An investigation on diffusion bonding of aluminum to copper using equal channel angular extrusion process.

    PubMed

    Eslami, P; Taheri, A Karimi

    2011-06-30

    A new method for production of bimetallic rods, utilizing the equal channel angular extrusion (ECAE) process has been introduced before by previous researchers, but no attempt has been made to assess the effect of different temperatures and holding times in order to achieve a diffusional bond between the mating surfaces. In present research copper sheathed aluminum rods have been ECAEed at room temperature and subsequently held at a constant ECAE pressure, at different temperatures and holding times to produce a diffusional bond between the copper sheath and the aluminum core. The bonding quality of the joints was examined by shear strength test and a sound bonding interface was achieved. Based on the results, a bonding temperature of 200C and holding time of 60-80min yielded the highest shear strength value. PMID:21760654

  12. Microstructure of Reaction Zone Formed During Diffusion Bonding of TiAl with Ni/Al Multilayer

    NASA Astrophysics Data System (ADS)

    Simes, Snia; Viana, Filomena; Koak, Mustafa; Ramos, A. Sofia; Vieira, M. Teresa; Vieira, Manuel F.

    2012-05-01

    In this article, the characterization of the interfacial structure of diffusion bonding a TiAl alloy is presented. The joining surfaces were modified by Ni/Al reactive multilayer deposition as an alternative approach to conventional diffusion bonding. TiAl substrates were coated with alternated Ni and Al nanolayers. The nanolayers were deposited by dc magnetron sputtering with 14 nm of period (bilayer thickness). Joining experiments were performed at 900 C for 30 and 60 min with a pressure of 5 MPa. Cross sections of the joints were prepared for characterization of their interfaces by scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), high resolution TEM (HRTEM), energy dispersive x-ray spectroscopy (EDS), and electron backscatter diffraction (EBSD). Several intermetallic compounds form at the interface, assuring the bonding of the TiAl. The interface can be divided into three distinct zones: zone 1 exhibits elongated nanograins, very small equiaxed grains are observed in zone 2, while zone 3 has larger equiaxed grains. EBSD analysis reveals that zone 1 corresponds to the intermetallic Al2NiTi and AlNiTi, and zones 2 and 3 to NiAl.

  13. Comparison of structural behavior of superplastically formed/diffusion-bonded sandwich structures and honeycomb core sandwich structures

    NASA Technical Reports Server (NTRS)

    Ko, W. L.

    1980-01-01

    A superplasticity formed/diffusion-bonded (SPF/DB) orthogonally corrugated core sandwich structure is discussed and its structural behavior is compared to that of a conventional honeycomb core sandwich structure. The stiffness and buckling characteristics of the two types of sandwich structures are compared under conditions of equal structural density. It is shown that under certain conditions, the SPF/DB orthogonally corrugated core sandwich structure is slightly more efficient than the optimum honeycomb core (square-cell core) sandwich structure. However, under different conditions, this effect can be reversed.

  14. Deformation of Bi-PST crystals of TiAl produced by diffusion bonding[Polysynthetically Twinned

    SciTech Connect

    Imamura, D. Hoshikawa, H.; Kishida, K.; Inui, H.; Yamaguchi, M.

    1999-07-01

    Diffusion bonded bi-PST crystals of three different series were prepared and they were deformed in tension at room temperature. Yield stress and elongation exhibited by bi-PST crystals consisting of component crystals with the lamellar microstructure aligned along the tensile axis do not significantly differ from those of component crystals. Plastic strain incompatibility at the interface exerts a strong influence on the deformation behavior of bi-PST crystals when the incompatibility activates additional information modes which are much harder than deformation modes operative in each component crystal.

  15. Interfacial Microstructure and Mechanical Strength of 93W/Ta Diffusion-Bonded Joints with Ni Interlayer

    NASA Astrophysics Data System (ADS)

    Luo, Guoqiang; Zhang, Jian; Li, Meijuan; Wei, Qinqin; Shen, Qiang; Zhang, Lianmeng

    2013-02-01

    93W alloy and Ta metal were successfully diffusion bonded using a Ni interlayer. Ni4W was found at the W-Ni interface, and Ni3Ta and Ni2Ta were formed at the Ni-Ta interface. The shear strength of the joints increases with increasing holding time, reaching a value of 202 MPa for a joint prepared using a 90-minute holding time at 1103 K (830 C) and 20 MPa. The fracture of this joint occurred within the Ni/Ta interface.

  16. Transient Liquid Phase Diffusion Bonding of Magnesium Alloy (Mg-AZ31) to Titanium Alloy (Ti-6Al-4V)

    NASA Astrophysics Data System (ADS)

    Atieh, Anas Mahmoud

    The magnesium alloy Mg-AZ31 and titanium alloy Ti-6Al-4V have physical characteristics and mechanical properties that makes it attractive for a wide range of engineering applications in the aerospace and automotive industries. However, the differences in melting temperature and coefficient of thermal expansion hinder the use of traditional fusion welding techniques. Transient liquid phase (TLP) bonding of magnesium alloy Mg-AZ31 and titanium alloy Ti-6Al- 4V was performed and different interlayer types and configurations were used to facilitate joint formation. The joining of these alloys using Ni foils was successful at a bonding temperature of 515C, bonding pressure 0.2 MPa, for bonding time of 5 minutes. At the Ni/Mg-AZ31 bond interface, the formation of a eutectic liquid between Mg and Ni was observed. The formation of Mg2Ni and Mg3AlNi2 were identified along the bond interface resulting in an isothermally solidified joint. At the Ni/Ti-6Al-4V interface, the solid-state diffusion process results in joint formation. The use of double Ni-Cu sandwich joint resulted in further enhancement in joint formation and this produced joints with greater shear strength values. The configuration of Mg-AZ31/Cu- Ni/Ti-6Al-4V or Mg-AZ31/Ni-Cu/Ti-6Al-4V influence the mechanism of bonding and the type of intermetallics formed within the joint. The application of thin Ni electrodeposited coatings resulted in further enhancements of joint quality due to better surface-to-surface contact and a reduction in the formation of intermetallics at the joint. The effect of Cu nano-particles in the coatings was found to decrease the eutectic zone width and this resulted in an increase the shear strength of the joints. The highest shear strength of 69 MPa was possible with bonds made using coatings containing Cu nano-particle dispersion.

  17. The effect of hydrogen bonding on the diffusion of water in n-alkanes and n-alcohols measured with a novel single microdroplet method

    PubMed Central

    Su, Jonathan T.; Duncan, P. Brent; Momaya, Amit; Jutila, Arimatti; Needham, David

    2010-01-01

    While the StokesEinstein (SE) equation predicts that the diffusion coefficient of a solute will be inversely proportional to the viscosity of the solvent, this relation is commonly known to fail for solutes, which are the same size or smaller than the solvent. Multiple researchers have reported that for small solutes, the diffusion coefficient is inversely proportional to the viscosity to a fractional power, and that solutes actually diffuse faster than SE predicts. For other solvent systems, attractive solute-solvent interactions, such as hydrogen bonding, are known to retard the diffusion of a solute. Some researchers have interpreted the slower diffusion due to hydrogen bonding as resulting from the effective diffusion of a larger complex of a solute and solvent molecules. We have developed and used a novel micropipette technique, which can form and hold a single microdroplet of water while it dissolves in a diffusion controlled environment into the solvent. This method has been used to examine the diffusion of water in both n-alkanes and n-alcohols. It was found that the polar solute water, diffusing in a solvent with which it cannot hydrogen bond, closely resembles small nonpolar solutes such as xenon and krypton diffusing in n-alkanes, with diffusion coefficients ranging from 12.510?5 cm2?s for water in n-pentane to 1.1510?5 cm2?s for water in hexadecane. Diffusion coefficients were found to be inversely proportional to viscosity to a fractional power, and diffusion coefficients were faster than SE predicts. For water diffusing in a solvent (n-alcohols) with which it can hydrogen bond, diffusion coefficient values ranged from 1.7510?5 cm2?s in n-methanol to 0.36410?5 cm2?s in n-octanol, and diffusion was slower than an alkane of corresponding viscosity. We find no evidence for solute-solvent complex diffusion. Rather, it is possible that the small solute water may be retarded by relatively longer residence times (compared to non-H-bonding solvents) as it moves through the liquid. PMID:20113048

  18. The effect of hydrogen bonding on the diffusion of water in n-alkanes and n-alcohols measured with a novel single microdroplet method.

    PubMed

    Su, Jonathan T; Duncan, P Brent; Momaya, Amit; Jutila, Arimatti; Needham, David

    2010-01-28

    While the Stokes-Einstein (SE) equation predicts that the diffusion coefficient of a solute will be inversely proportional to the viscosity of the solvent, this relation is commonly known to fail for solutes, which are the same size or smaller than the solvent. Multiple researchers have reported that for small solutes, the diffusion coefficient is inversely proportional to the viscosity to a fractional power, and that solutes actually diffuse faster than SE predicts. For other solvent systems, attractive solute-solvent interactions, such as hydrogen bonding, are known to retard the diffusion of a solute. Some researchers have interpreted the slower diffusion due to hydrogen bonding as resulting from the effective diffusion of a larger complex of a solute and solvent molecules. We have developed and used a novel micropipette technique, which can form and hold a single microdroplet of water while it dissolves in a diffusion controlled environment into the solvent. This method has been used to examine the diffusion of water in both n-alkanes and n-alcohols. It was found that the polar solute water, diffusing in a solvent with which it cannot hydrogen bond, closely resembles small nonpolar solutes such as xenon and krypton diffusing in n-alkanes, with diffusion coefficients ranging from 12.5x10(-5) cm(2)/s for water in n-pentane to 1.15x10(-5) cm(2)/s for water in hexadecane. Diffusion coefficients were found to be inversely proportional to viscosity to a fractional power, and diffusion coefficients were faster than SE predicts. For water diffusing in a solvent (n-alcohols) with which it can hydrogen bond, diffusion coefficient values ranged from 1.75x10(-5) cm(2)/s in n-methanol to 0.364x10(-5) cm(2)/s in n-octanol, and diffusion was slower than an alkane of corresponding viscosity. We find no evidence for solute-solvent complex diffusion. Rather, it is possible that the small solute water may be retarded by relatively longer residence times (compared to non-H-bonding solvents) as it moves through the liquid. PMID:20113048

  19. Dynamics of supercritical methanol of varying density from first principles simulations: Hydrogen bond fluctuations, vibrational spectral diffusion, and orientational relaxation

    NASA Astrophysics Data System (ADS)

    Yadav, Vivek Kumar; Chandra, Amalendu

    2013-06-01

    A first principles study of the dynamics of supercritical methanol is carried out by means of ab initio molecular dynamics simulations. In particular, the fluctuation dynamics of hydroxyl stretch frequencies, hydrogen bonds, dangling hydroxyl groups, and orientation of methanol molecules are investigated for three different densities at 523 K. Apart from the dynamical properties, various equilibrium properties of supercritical methanol such as the local density distributions and structural correlations, hydrogen bonding aspects, frequency-structure correlations, and dipole distributions of methanol molecules are also investigated. In addition to the density dependence of various equilibrium and dynamical properties, their dependencies on dispersion interactions are also studied by carrying out additional simulations using a dispersion corrected density functional for all the systems. It is found that the hydrogen bonding between methanol molecules decreases significantly as we move to the supercritical state from the ambient one. The inclusion of dispersion interactions is found to increase the number of hydrogen bonds to some extent. Calculations of the frequency-structure correlation coefficient reveal that a statistical correlation between the hydroxyl stretch frequency and the nearest hydrogen-oxygen distance continues to exist even at supercritical states of methanol, although it is weakened with increase of temperature and decrease of density. In the supercritical state, the frequency time correlation function is found to decay with two time scales: One around or less than 100 fs and the other in the region of 250-700 fs. It is found that, for supercritical methanol, the times scales of vibrational spectral diffusion are determined by an interplay between the dynamics of hydrogen bonds, dangling OD groups, and inertial rotation of methanol molecules and the roles of these various components are found to vary with density of the supercritical solvent. Effects of system size on the calculated structural and dynamical properties are also investigated in the present study.

  20. Brazing process using'al-Si filler alloy reliably bonds aluminum parts

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Johnson, W. R.

    1966-01-01

    Brazing process employs an aluminum-silicon filler alloy for diffusion bonding of aluminum parts in a vacuum or inert gas atmosphere. This process is carried out at temperatures substantially below those required in conventional process and produces bonds of greater strength and reliability.

  1. Effect of High Temperature Storage in Vacuum, Air, and Humid Conditions on Degradation of Gold/Aluminum Wire Bonds in PEMs

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2006-01-01

    Microcircuits encapsulated in three plastic package styles were stored in different environments at temperatures varying from 130 C to 225 C for up to 4,000 hours in some cases. To assess the effect of oxygen, the parts were aged at high temperatures in air and in vacuum chambers. The effect of humidity was evaluated during long-term highly accelerated temperature and humidity stress testing (HAST) at temperatures of 130 C and 150 C. High temperature storage testing of decapsulated microcircuits in air, vacuum, and HAST chambers was carried out to evaluate the role of molding compounds in the environmentally-induced degradation and failure of wire bonds (WB). This paper reports on accelerating factors of environment and molding compound on WB failures. It has been shown that all environments, including oxygen, moisture, and the presence of molding compounds reduce time-to-failures compared to unencapsulated devices in vacuum conditions. The mechanism of the environmental effect on KB degradation is discussed.

  2. NMR spectra and translational diffusion of protons in crystals with hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Timokhin, V. M.; Garmash, V. M.; Tarasov, V. P.

    2015-07-01

    Investigation of proton transport in hydrogen-bond crystals at low temperatures is currently one of important problems in the semiconductor physics. With the use of the NMR spectra of wide-band-gap hydrogen-bond crystals grown in H2O and D2O solutions, we have succeeded in finding a direct proof of the presence of protons in the mobile phase, determined their activation energy in good agreement with the spectra of thermally stimulated depolarization currents and with the infrared spectra, and, as a result, clarified the mechanism of proton transport and tunneling.

  3. M3B2 and M5B3 Formation in Diffusion-Affected Zone During Transient Liquid Phase Bonding Single-Crystal Superalloys

    NASA Astrophysics Data System (ADS)

    Sheng, Naicheng; Hu, Xiaobing; Liu, Jide; Jin, Tao; Sun, Xiaofeng; Hu, Zhuangqi

    2015-04-01

    Precipitates in the diffusion-affected zone (DAZ) during transient liquid phase bonding (TLP) single-crystal superalloys were observed and investigated. Small size and dendritic-shaped precipitates were identified to be M3B2 borides and intergrowth of M3B2/M5B3 borides. The orientation relationships among M3B2, M5B3, and matrix were determined using transmission electron microscope (TEM). Composition characteristics of these borides were also analyzed by TEM energy-dispersive spectrometer. Because this precipitating phenomenon deviates from the traditional parabolic transient liquid phase bonding model which assumed a precipitates free DAZ during TLP bonding, some correlations between the deviation of the isothermal solidification kinetics and these newly observed precipitating behaviors were discussed and rationalized when bonding the interlayer containing the high diffusivity melting point depressant elements and substrates of low solubility.

  4. Diauxic growth and microstructure of grain interfaces in thermal bonding Yb:LuAG/LuAG ceramic

    NASA Astrophysics Data System (ADS)

    Zhou, Chunlin; Jiang, Benxue; Fan, Jintai; Mao, Xiaojian; Zhang, Long; Fang, Yongzheng

    2015-07-01

    Transparent composite Lutetium aluminum garnet (LuAG) ceramics were successfully synthesized by thermal diffusion bonding method. Three isothermal holding temperature of 1450C, 1600C, 1780C for 10h under vacuum were used to study the changes of bonding interface morphology, Optical microscope, SEM and laser interferometer (GPI-XP,zygo) study show that diauxic growth of grain interface appears when the thermal bonding holding temperature increased. The sintering mechanism of diauxic growth of grain interface during the thermal diffusion bonding was also discussed using diffusion theory. The diauxic growth of grain interface provides us the possibility to get high quality composite laser ceramics as we designed.

  5. An ab initio molecular dynamics study of the hydrogen bonded structure, dynamics and vibrational spectral diffusion of water in the ion hydration shell of a superoxide ion

    NASA Astrophysics Data System (ADS)

    Choudhuri, Jyoti Roy; Chandra, Amalendu

    2014-12-01

    We present a first principles simulation study of vibrational spectral diffusion and hydrogen bond dynamics in aqueous solution of a superoxide ion. It is found that the OD modes in the hydration shell have different stretching frequencies than the bulk water. The dynamical aspects of vibrational spectral diffusion of hydration shell water molecules reveal three time scales: A short-time relaxation (?100 fs) corresponding to the dynamics of intact ion-water hydrogen bonds, a slower relaxation (?4.2 ps) corresponding to the lifetimes of ion-water hydrogen bonds and a third longer time scale (?30 ps) corresponding to the escape dynamics of water from the anion hydration shell. However, when the vibrational spectral diffusion is calculated over all the OD modes, only two time scales of ?200 fs and ?2.4 ps are found without the slowest component of ?30 ps.

  6. Effect of electron energy distribution functions on plasma generated vacuum ultraviolet in a diffusion plasma excited by a microwave surface wave

    SciTech Connect

    Zhao, J. P.; Chen, L.; Funk, M.; Sundararajan, R.; Nozawa, T.; Samukawa, S.

    2013-07-15

    Plasma generated vacuum ultraviolet (VUV) in diffusion plasma excited by a microwave surface wave has been studied by using dielectric-based VUV sensors. Evolution of plasma VUV in the diffusion plasma as a function of the distance from the power coupling surface is investigated. Experimental results have indicated that the energy and spatial distributions of plasma VUV are mainly controlled by the energy distribution functions of the plasma electrons, i.e., electron energy distribution functions (EEDFs). The study implies that by designing EEDF of plasma, one could be able to tailor plasma VUV in different applications such as in dielectric etching or photo resist smoothing.

  7. Evaluation of superplastic forming and co-diffusion bonding of Ti-6Al-4V titanium alloy expanded sandwich structures

    NASA Technical Reports Server (NTRS)

    Arvin, G. H.; Israeli, L.; Stolpestad, J. H.; Stacher, G. W.

    1981-01-01

    The application of the superplastic forming/diffusion bonding (SPF/DB) process to supersonic cruise research is investigated. The capability of an SPF/DB titanium structure to meet the structural requirements of the inner wing area of the NASA arrow-wing advanced supersonic transport design is evaluated. Selection of structural concepts and their optimization for minimum weight, SPF/DB process optimization, fabrication of representative specimens, and specimen testing and evaluation are described. The structural area used includes both upper and lower wing panels, where the upper wing panel is used for static compression strength evaluation and the lower panel, in tension, is used for fracture mechanics evaluations. The individual test specimens, cut from six large panels, consist of 39 static specimens, 10 fracture mechanics specimens, and one each full size panel for compression stability and fracture mechanics testing. Tests are performed at temperatures of -54 C (-65 F), room temperature, and 260 C (500 F).

  8. Role of large-scale slip in mode II fracture of bimaterial interface produced by diffusion bonding

    NASA Astrophysics Data System (ADS)

    Fox, M. R.; Ghosh, A. K.

    2001-08-01

    Bimaterial interfaces present in diffusion-bonded (and in-situ) composites are often not flat interfaces. The unevenness of the interface can result not only from interface reaction products but also from long-range waviness associated with the surfaces of the component phases bonded together. Experimental studies aimed at determining interface mechanical properties generally ignore the departure in the local stress due to waviness and assume a theoretically flat interface. Furthermore, the commonly used testing methods involving superimposed tension often renders the interface so extremely brittle that if microplastic effects were present it becomes impossible to perceive them. This article examines the role of waviness of the interface and microplastic effects on crack initiation. To do this, a test was selected that provides significant stability against crack growth by superimposing compressive stresses. Mode II interface fracture was studied for NiAl/Mo model laminates using a recently developed asymmetrically loaded shear (ALS) interface shear test. The ALS test may be viewed as opposite of the laminate bend test. In the bend test, shear at the interface is created via tension on one surface of the bend, while in the ALS test, shear is created by compression on one side of the interface relative to the other. Normal to the interface, near the crack tip, an initially compressive state is replaced by slight tension due to Poissons expansion of the unbonded part of the compressed beam.

  9. Influence of hydrogen bonding effects on methanol and water diffusivities in acid-base polymer blend membranes of sulfonated poly(ether ether ketone) and base tethered polysulfone.

    PubMed

    Mahajan, Chetan V; Ganesan, Venkat

    2013-05-01

    Atomistic molecular dynamics simulations were used to study the water and methanol diffusivities in acid-base polymer blend membranes consisting of sulfonated poly(ether ether ketone) (SPEEK) and polysulfone tethered with different bases (2-amino-benzimidazole, 5-amino-benzotriazole, and 1H-perimidine). Consistent with experimental trends, methanol and water diffusivities in all the SPEEK-based systems were found to be lower than those in Nafion. When the base group attached to the polysulfone was varied, the methanol diffusivities were found to exhibit the same trends as observed in the experimentally measured crossover current densities. Such trends were however observed only when we explicitly accounted for hydrogen bonding interactions between the hydrogen attached to the nitrogen of the base and the oxygen of the sulfonate of SPEEK. Furthermore, in almost all cases, methanol diffusivities were found to be highly correlated with the pore sizes of the membranes, which, in the case of blends, were found to be influenced by the strength of parasitic hydrogen bonding interactions between the sulfone oxygen of polysulfone and H(N-base). The influence of pore sizes on the methanol diffusivity behavior was rationalized by using both the coordination behavior and the residence time distributions of methanol in various regions of pores. Together, our results unravel the physicochemical origins of methanol diffusivities in acid-base blend membranes and highlight the crucial role played by the hydrogen bonding interactions in influencing methanol transport in acid-base polymer blend membranes. PMID:23551224

  10. Localized heating and bonding technique for MEMS packaging

    NASA Astrophysics Data System (ADS)

    Cheng, Yu-Ting

    Localized heating and bonding techniques have been developed for hermetic and vacuum packaging of MEMS devices, including silicon-to-glass fusion, silicon-gold eutectic, and silicon-to-glass bonding using PSG, indium, aluminum, and aluminum/silicon alloy as the intermediate layer. Line shaped phosphorus-doped polysilicon or gold films are used as resistive microheaters to provide enough thermal energy for bonding. The bonding processes are conducted in the common environment of room temperature and atmospheric pressure and can achieve bonding strength comparable to the fracture toughness of bulk silicon in less than 10 minutes. About 5 watts of input power is needed for localized bonding which can seal a 500 x 500 mum2 area. The total input power is determined by the thermal properties of bonding materials, including the heat capacity and latent heat. Two important bonding results are obtained: (1) The surface step created by the electrical interconnect line can be planarized by reflowing the metal solder. (2) Small applied pressure, less than 1MPa, for intimate contact reduces mechanical damage to the device substrate. This new class of bonding technology has potential applications for MEMS fabrication and packaging that require low temperature processing at the wafer level, excellent bonding strength and hermetic sealing characteristics. A hermetic package based on localized aluminum/silicon-to-glass bonding has been successfully fabricated. Less than 0.2 MPa contact pressure with 46mA input current for two parallel 3.5mum wide polysilicon on-chip microheaters can create as high as 700C bonding temperature and achieve a strong and reliable bond in 7.5 minutes. Accelerated testing in an autoclave shows some packages survive more than 450 hours under 3 atm, 100%RH and 128C. Premature failure has been attributed to some unbonded regions on the failed samples. The bonding yield and reliability have been improved by increasing bonding time and applied pressure. Finally, vacuum encapsulation of folded-beam comb-drive mu-resonators used as pressure monitors has been demonstrated using localized aluminum/silicon-to-glass bonding. With 3.4 watt heating power, 0.2MPa applied contact pressure, and 90 minutes wait time before bonding, vacuum encapsulation can be achieved with the same vacuum level as the packaging environment which is about 25 mtorr. Metal coating used as diffusion barrier and a longer wait time before bonding are used to improve the vacuum level of the package. Long-term measurement of the Q of un-annealed vacuum-packaged mu-resonators, illustrates stable operation after 19 weeks.

  11. Fabrication and evaluation of enhanced diffusion bonded titanium honeycomb core sandwich panels with titanium aluminide face sheets

    NASA Technical Reports Server (NTRS)

    Hoffmann, E. K.; Bird, R. K.; Bales, T. T.

    1989-01-01

    A joining process was developed for fabricating lightweight, high temperature sandwich panels for aerospace applications using Ti-14Al-21Nb face sheets and Ti-3Al-2.5V honeycomb core. The process, termed Enhanced Diffusion Bonding (EDB), relies on the formation of a eutectic liquid through solid-state diffusion at elevated temperatures and isothermal solidification to produce joints in thin-gage titanium and titanium aluminide structural components. A technique employing a maskant on the honeycomb core was developed which permitted electroplating a controlled amount of EDB material only on the edges of the honeycomb core in order to minimize the structural weight and metallurgical interaction effects. Metallurgical analyses were conducted to determine the interaction effects between the EDB materials and the constituents of the sandwich structure following EDB processing. The initial mechanical evaluation was conducted with butt joint specimens tested at temperatures from 1400 - 1700 F. Further mechanical evaluation was conducted with EDB sandwich specimens using flatwise tension tests at temperatures from 70 - 1100 F and edgewise compression tests at ambient temperature.

  12. Furnace brazing under partial vacuum

    NASA Technical Reports Server (NTRS)

    Mckown, R. D.

    1979-01-01

    Brazing furnace utilizing partial-vacuum technique reduces tooling requirements and produces better bond. Benefit in that partial vacuum helps to dissociate metal oxides that inhibit metal flow and eliminates heavy tooling required to hold parts together during brazing.

  13. Investigation on W/Fe diffusion bonding using Ti foil and Ti powder interlayer by SPS

    NASA Astrophysics Data System (ADS)

    Chen, Hong-Yu; Luo, Lai-Ma; Zhang, Jun; Zan, Xiang; Zhu, Xiao-Yong; Luo, Guang-Nan; Wu, Yu-Cheng

    2015-12-01

    W/steel composites are being developed for potential application in He gas-cooled divertors and plasma-facing components in fusion reactors. In this study, the dissimilar metal joints between W and Fe were fabricated at 950C via spark plasma sintering method with Ti foil (Ti-F) and Ti powder (Ti-P) as the interlayer under Ar atmosphere for 5min at 57MPa. Microscopic structures of the W/Fe diffusion joints with Ti-F and Ti-P were investigated and compared via field-emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. Thermal cycling tests were employed to measure the thermal stability of different types of W/Ti/Fe samples. The hardness distribution across joining interfaces was also determined. After thermal cycling tests, a crack occurred along the W/Ti-P interface in the W/Ti-P/Fe samples, whereas the W/Ti-F/Fe samples were intact at the interfaces. Results revealed that Ti-F is more suitable as an interlayer than Ti-P, and the interfaces of the W/Ti-F/Fe samples have better thermal stability than those of the W/Ti-P/Fe ones.

  14. Diffusion bonding of SiC/Ti-6Al-4V composite to Ti-6Al-4V alloy and fracture behaviour of joint

    NASA Astrophysics Data System (ADS)

    Fukumoto, S.; Hirose, A.; Kobayashi, K. F.

    1993-06-01

    Continuous SiC fiber reinforced Ti-6Al-4V composites were diffusion bonded to Ti-6Al-4V alloy. Bondability and the fracture mechanism of the joint were investigated. The joint strength increased with bonding time, and was a maximum at 850 MN/sq m for Vf = 30 percent composite and 650 MN/sq m for Vf = 45 percent composite. The bonding was completed sooner for Vf = 30 percent composite than for Vf = 45 percent composite. In Vf = 30 percent composite, the maximum joint strength was about 85 percent of the tensile strength of Ti-6Al-4V. The void ratio at the interface between matrix and Ti-6AI-4V alloy decreased as bonding time increased. The joint strength was controlled by the bonding between the composite matrix and the Ti-6Al-4V alloy. The maximum joint strength was 100-150 MN/sq m higher than the strength simply calculated from the area fraction of the bonded matrix/Ti-6Al-4V interface. Fibers were debonded from the matrix and the defects were produced around fibers, so the state of stress at the bond interface is triaxial owing to the defects and/or restraint of fibers. This may be the reason for the higher measured strength.

  15. Effect of Processing Temperature on the Texture and Shear Mechanical Properties of Diffusion Bonded Ti-6Al-4V Multilayer Laminates

    NASA Astrophysics Data System (ADS)

    Cepeda-Jimnez, Carmen M.; Orozco-Caballero, Alberto; Sarkeeva, Aigul; Kruglov, Aleksey; Lutfullin, Ramil; Ruano, Oscar A.; Carreo, Fernando

    2013-10-01

    Two multilayer materials based on Ti-6Al-4V alloy have been processed by diffusion bonding at two different temperatures [1023 K and 1173 K (750 C and 900 C)]. The influence of the processing temperature on microstructure, texture, and mechanical properties of the two multilayer materials has been analyzed. Scanning electron microscopy, X-ray diffraction, electron backscatter diffraction, and shear tests have been used as experimental techniques. The multilayer laminate processed at the lowest temperature of 1023 K (750 C) exhibits mainly transversal texture in the longitudinal plane, which provides an anisotropic mechanical behavior, showing higher shear modulus and maximum shear strength under one of the shear test directions considered. In contrast, diffusion bonding at 1173 K (900 C) leads to basal/transversal texture because of the partial ? ? ? ? ? transformation, which provides more isotropic mechanical properties. Accordingly, this laminate shows similar shear modulus and maximum shear strength in different shear test orientations.

  16. Highly efficient double-ended diffusion-bonded Nd:YVO4 1525-nm eye-safe Raman laser under direct 880-nm pumping

    NASA Astrophysics Data System (ADS)

    Chen, X. H.; Zhang, X. Y.; Wang, Q. P.; Li, P.; Liu, Z. J.; Cong, Z. H.; Li, L.; Zhang, H. J.

    2012-03-01

    A highly efficient 880-nm diode-pumped actively Q-switched eye-safe laser at 1525 nm with a double-ended diffusion-bonded YVO4-Nd:YVO4-YVO4 crystal as the self-Raman medium is demonstrated. As high as 19.2% diode-to-Stokes optical conversion efficiency is obtained with an absorbed pump power of 5.2 W at a pulse repetition rate of 20 kHz.

  17. Microstructure and mechanical properties of AlMgB14-TiB2 associated with metals prepared by the field-assisted diffusion bonding sintering process

    NASA Astrophysics Data System (ADS)

    Zhuang, Lei; Lei, Yu; Chen, Shaoping; Hu, Lifang; Meng, Qingsen

    2015-02-01

    AlMgB14-TiB2 composites were prepared using the field-assisted diffusion bonding sintering process (FDB) at 1400 C under a pressure of 50 MPa for 8 min, and then bonded to Nb and Mo plates. The microstructure of the bonded joints was analyzed using SEM, EDS and XRD techniques, allowing for the phase composition and elemental distribution characteristics of the joint interface to be studied. The shear strength and wear properties were also investigated. The results show that AlMgB14-30 wt.% TiB2 composites can be strongly bonded to Nb and Mo metals, forming dense uniform diffusion layers, with an average width above 200 ?m. The shear strength of the Nb joints is higher than that of the Mo joints. The results from XRD analysis indicate that the main phase of the fractures of the AlMgB14-TiB2 + Nb and the AlMgB14-TiB2 + Mo is MoB4 and NbB2, respectively. The wear test results show that AlMgB14 decomposes into AlMg2O4 and Al2O3 at 600 C, which can influence the friction and wear properties of AlMgB14-TiB2 composites.

  18. Direct diffusion bonding of Ti{sub 3}SiC{sub 2} and Ti{sub 3}AlC{sub 2}

    SciTech Connect

    Yin Xiaohui; Li Meishuan; Xu Jingjun; Zhang Jie; Zhou Yanchun

    2009-06-03

    Two typical layered ternary compounds, Ti{sub 3}SiC{sub 2} and Ti{sub 3}AlC{sub 2}, were joined directly by solid-state diffusion bonding method. By various bonding tests at 1100-1300 deg. C for 30-120 min under 10-30 MPa, and characterizing the microstructure and diffusion reactive phases of the joints by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and X-ray diffraction (XRD), the optimal condition for direct joining of Ti{sub 3}SiC{sub 2} and Ti{sub 3}AlC{sub 2} was obtained. Strong joints of Ti{sub 3}SiC{sub 2}/Ti{sub 3}AlC{sub 2} can be achieved via diffusion bonding, which is attributed to remarkable interdiffusion of Si and Al at the joint interface. The shear strength of the Ti{sub 3}SiC{sub 2}/Ti{sub 3}AlC{sub 2} joints was determined.

  19. Diffusion Monte Carlo Study of Bond Dissociation Energies for BH2, B(OH)2, BCl2, and BCl

    NASA Astrophysics Data System (ADS)

    Li, Hui-ran; Cheng, Xin-lu; Zhang, Hong

    2012-02-01

    On basis of bond dissociation energies (BDEs) for BH2, B(OH)2, BCl2, and BCl, the diffusion Monte Carlo (DMC) method is applied to explore the BDEs of HB-H, HOB-OH, ClB-Cl, and B-Cl. The effect of the choice of orbitals, as well as the backflow transformation, is studied. The Slater-Jastrow DMC algorithm gives BDEs of 359.10.12 kJ/mol for HB-H, 410.50.50 kJ/mol for HOB-OH, 357.81.46 kJ/mol for ClB-Cl, and 504.50.96 kJ/mol for B-Cl using B3PW91 orbitals and similar BDEs when B3LYP orbitals are used. DMC with backflow corrections (BF-DMC) gives a HB-H BDE of 369.90.12 kJ/mol which is close to one of the available experimental value (375.8 kJ/mol). In the case of HOB-OH BDE, the BF-DMC calculation is 446.01.84 kJ/mol that is closer to the experimental BDE. The BF-DMC BDE for ClB-Cl is 343.22.34 kJ/mol and the BF-DMC B-Cl BDE is 523.30.33 kJ/mol, which are close to the experimental BDEs, 341.9 and 530.0 kJ/mol, respectively.

  20. Breather cloth for vacuum curing

    NASA Technical Reports Server (NTRS)

    Reed, M. W.

    1979-01-01

    Finely-woven nylon cloth that has been treated with Teflon improves vacuum adhesive bonding of coatings to substrates. Cloth is placed over coating; entire assembly, including substrate, coating, and cloth, is placed in plastic vacuum bag for curing. Cloth allows coating to "breathe" when bag is evacuated. Applications include bonding film coatings to solar concentrators and collectors.

  1. Characterization of Transient Liquid-Phase Bonded Joints in a Copper-Beryllium Alloy with Silver-base Interlayer

    NASA Astrophysics Data System (ADS)

    Mazar Atabaki, M.

    2012-06-01

    Transient liquid-phase diffusion bonding was employed to join copper-beryllium alloy using three silver-base interlayers. The bonding process was carried out at different temperatures under argon and vacuum atmospheres for various hold times. Interfacial microstructures were examined by scanning electron microscopy. Microhardness, tensile, and fatigue tests were used for evaluating the mechanical properties. Maximum tensile strength of 156.45 MPa was obtained for bonds processed at 780 C. Fatigue strength of bonds fabricated in vacuum was higher than those of bonds prepared in argon atmosphere. The diffusion of the main elements from the interlayers into the base metal was the main controlling factor pertaining to the microstructural evolution of the joint interface.

  2. Comparison of Diffusion Coefficients of Aryl Carbonyls and Aryl Alcohols in Hydroxylic Solvents. Evidence that the Diffusion of Ketyl Radicals in Hydrogen-Bonding Solvents is Not Anomalous?

    SciTech Connect

    Autrey, S Thomas ); Camaioni, Donald M. ); Kandanarachchi, Pramod H.; Franz, James A. )

    2000-12-01

    The diffusion coefficients of a benzyl-, sec-phenethyl-, and diphenylmethyl alcohol and the corresponding aryl carbonyls (benzaldehyde, acetophenone and benzophenone) were measured by Taylor's dispersion method in both ethyl and isopropyl alcohol. The experimental values are compared to published transient grating measurements of the corresponding aryl ketyl radicals (benzyl-, sec-phenethyl-, and diphenylmethyl-ketyl radical). In general, the diffusion coefficient of the aryl alcohols and the corresponding aryl ketyl radicals are equivalent within experimental error. This work shows that the diffusion of ketyl radicals is not anomalously slow and that aryl alcohols are significantly better models than the corresponding aryl ketones for analyzing the diffusion of aryl ketyl radicals in both ethyl and isopropyl alcohol. Empirical estimates of the diffusion coefficients of aryl alcohols using the Spernol-Wirtz and Wilke-Chang modifications to the Stokes-Einstein diffusion equation do not adequately account for the interactions between the aryl ketyl radicals or aryl alcohols with the hydroxylic solvents ethyl and isopropyl alcohol. The excellent agreement between the experimental diffusion coefficients of the aryl alcohols and the corresponding ketyl radicals show that the transient grating method can provide accurate estimates for the diffusion coefficients of transient species. This is especially important when a stable model is not available, for example the pyranyl radical.

  3. Characterization of a diffusion-bonded Al-Mg alloy/SiC interface by high resolution and analytical electron microscopy

    NASA Astrophysics Data System (ADS)

    Ratnaparkhi, P. L.; Howe, J. M.

    1994-03-01

    The interfacial structure of a diffusion-bonded Al-4.55 at. pct Mg/SiC interface was examined by conventional and high-resolution transmission electron microscopy. Formation of Mg2Si, MgO, and Al2MgO4 was observed. The monoclinic Mg2Si phase formed at the Al/SiC interface, while the oxides MgO and Al2MgO4 formed at the monoclinic Mg2Si/Al interface. It is shown that the formation of these phases can be predicted using simple thermodynamic criteria such as the relative bond strengths between Al, Si, C, O, and Mg. In addition, precipitation of some equilibrium Al8Mg5 precipitate was also observed at the interface. The interfacial structure observed in the Al-Mg/SiC system is contrasted with that observed in the pure Al/SiC system.

  4. In Situ Characterization of NiTi/Ti6Al4V Joints During Reaction-Assisted Diffusion Bonding Using Ni/Ti Multilayers

    NASA Astrophysics Data System (ADS)

    Cavaleiro, A. J.; Ramos, A. S.; Braz Fernandes, F. M.; Schell, N.; Vieira, M. T.

    2014-05-01

    Reaction-assisted diffusion bonding process of NiTi and Ti6Al4V was studied in situ. For this purpose, experiments were carried out at the High Energy Materials Science beamline (P-07) at PETRA-III (DESY). Ni/Ti multilayer thin films 2.5 ?m thick with 12 and 25 nm modulation periods were directly deposited by magnetron sputtering onto the materials being joined. The NiTi and Ti6Al4V coated parts were placed with the films facing each other in a dilatometer equipped with Kapton windows for the x-ray beams. Microjoining was promoted by applying a 10 MPa pressure and inductively heating the materials, while simultaneously acquiring x-ray diffraction scans across the bond interface. Sound joints were produced at 750 C. The formation of the NiTi2 phase could not be avoided.

  5. Chemical insight from density functional modeling of molecular adsorption: Tracking the bonding and diffusion of anthracene derivatives on Cu(111) with molecular orbitals.

    PubMed

    Wyrick, Jonathan; Einstein, T L; Bartels, Ludwig

    2015-03-14

    We present a method of analyzing the results of density functional modeling of molecular adsorption in terms of an analogue of molecular orbitals. This approach permits intuitive chemical insight into the adsorption process. Applied to a set of anthracene derivates (anthracene, 9,10-anthraquinone, 9,10-dithioanthracene, and 9,10-diselenonanthracene), we follow the electronic states of the molecules that are involved in the bonding process and correlate them to both the molecular adsorption geometry and the species' diffusive behavior. We additionally provide computational code to easily repeat this analysis on any system. PMID:25770496

  6. Chemical insight from density functional modeling of molecular adsorption: Tracking the bonding and diffusion of anthracene derivatives on Cu(111) with molecular orbitals

    SciTech Connect

    Wyrick, Jonathan; Bartels, Ludwig; Einstein, T. L.

    2015-03-14

    We present a method of analyzing the results of density functional modeling of molecular adsorption in terms of an analogue of molecular orbitals. This approach permits intuitive chemical insight into the adsorption process. Applied to a set of anthracene derivates (anthracene, 9,10-anthraquinone, 9,10-dithioanthracene, and 9,10-diselenonanthracene), we follow the electronic states of the molecules that are involved in the bonding process and correlate them to both the molecular adsorption geometry and the species diffusive behavior. We additionally provide computational code to easily repeat this analysis on any system.

  7. Chemical insight from density functional modeling of molecular adsorption: Tracking the bonding and diffusion of anthracene derivatives on Cu(111) with molecular orbitals

    NASA Astrophysics Data System (ADS)

    Wyrick, Jonathan; Einstein, T. L.; Bartels, Ludwig

    2015-03-01

    We present a method of analyzing the results of density functional modeling of molecular adsorption in terms of an analogue of molecular orbitals. This approach permits intuitive chemical insight into the adsorption process. Applied to a set of anthracene derivates (anthracene, 9,10-anthraquinone, 9,10-dithioanthracene, and 9,10-diselenonanthracene), we follow the electronic states of the molecules that are involved in the bonding process and correlate them to both the molecular adsorption geometry and the species' diffusive behavior. We additionally provide computational code to easily repeat this analysis on any system.

  8. Nickel nanoparticles-assisted diffusion brazing of stainless steel 316 for microfluidic applications

    NASA Astrophysics Data System (ADS)

    Tiwari, Santosh K.

    Transient liquid-phase diffusion brazing is used in precision, hermetic joining applications as a replacement for diffusion bonding to reduce cycle times, reduce bonding pressure and improve yields. Studies showed that the interlayer used in diffusion brazing can be detrimental due to the use of melting point depressants (MPDs). The goal of this study was to investigate the role of nanoparticles and their size distribution in reducing bonding temperature of stainless steel surfaces for Microfluidic applications, as nanoparticles have inherently lower melting point and higher diffusivity than that of their bulk counterpart. The conventional interlayer has been replaced by a nickel nanoparticle (NiNP) film without any MPDs for diffusion brazing of stainless steel 316L laminae. Brazing was carried out in a uni-axial vacuum hot press at temperatures 750C, 800C, 900C and 1000C; at a bonding pressure of 10 MPa; at a heating rate of 10C/min and dwell times of 1 and 2 hrs at each temperature. Comparison among the conventionally diffusion bonded, diffusion brazed and NiNP diffusion brazed samples is made with regard to microstructural evolution, diffusional profile and bond strength. Taken together, the results show that NiNP-assisted diffusion brazed samples have continuous bond line with low void fraction and high shear strength compared to conventionally diffusion bonded and brazed samples. Also, comparing within the NiNP diffusion brazed group, the samples brazed at 900C have the best results. Effect of particle size on diffusion brazing of stainless steel 316 was also studied with the help of two different sets of nanoparticles (N1: average particle size of 46.7+/-6.2 nm and N2: average particle size 8.8+/-0.9 nm.) Results showed that the sample brazed with 8.8 nm particles indicated better results with a more homogeneous bondline structure. The findings of this work have positive implications for the economics of NP-assisted diffusion brazing.

  9. Effect of Prebonding Anneal on the Microstructure Evolution and Cu-Cu Diffusion Bonding Quality for Three-Dimensional Integration

    NASA Astrophysics Data System (ADS)

    Peng, L.; Lim, D. F.; Zhang, L.; Li, H. Y.; Tan, C. S.

    2012-09-01

    Electroplated copper (Cu) films are often annealed during back-end processes to stabilize grain growth in order to improve their electrical properties. The effect of prebonding anneal and hence the effective initial grain size of the Cu films on the final bond quality are studied using a 300-nm-thick Cu film that was deposited on a 200-mm silicon (Si) wafer and bonded at 300C. As compared with the control wafer pair with a prebonding anneal at 300C for 1 h in N2, the wafer pair without a prebonding anneal showed greater improvement in void density based on c-mode scanning acoustic microscopy (c-SAM). Dicing yield and shear strength were also enhanced when a prebonding anneal was not applied. This improvement is due to substantial grain growth of smaller Cu grains during the bonding process, which leads to a stronger Cu-Cu bond. Our work has identified a Cu-Cu bonding process with a lower total thermal budget, which is seen as a favorable option for future three-dimensional (3D) integrated circuit (IC) technology.

  10. Division and microstructure feature in the interface transition zone of Fe3Al/Q235 diffusion bonding.

    PubMed

    Li, Yajiang; Wang, Juan; Yin, Yansheng; Ma, Haijun

    2005-08-15

    The microstructure near a diffusion interface was studied by means of scanning electron microscopy and electron probe microscopy, and the results indicated that the interface transition zone of Fe3Al/Q235 dissimilar materials was composed of a diffusion interface, a mixed transition region, and A/B transition regions at the sides of the interface. Microstructures of the interface and base materials were interlaced to form the microstructure of layer characteristic. With increased heating temperature and holding time, the width of the Fe3Al/Q235 interface transition zone increased and the microstructure gradually became coarse. The microhardness in the diffusion transition zone was decreased and there was a peak value at the diffusion interface. The distribution of Al, Fe, and Cr in the interface transition zone was increased or decreased monotonically with some local concentration fluctuation. There was nearly no change in the concentration of C element near the interface. PMID:15927622

  11. Lateral diffusion of molecules partitioned into silica-bound alkyl chains:? influence of chain length and bonding density.

    PubMed

    Hansen, R L; Harris, J M

    1996-09-01

    Lateral diffusion of a hydrophobic fluorescent molecule partitioned into monomeric alkyl chains bound to a planar silica substrate was measured as a function of chain density and chain length. Measurement of fluorescence recovery after patterned photobleaching was used to observe the diffusional relaxation of a concentration profile of probe molecules over distances of micrometers. The diffusion rate of the probe molecule partitioned into C-18 chains decreased with decreasing chain coverage. As the chain length was reduced from C-18 to C-8 and C-4, the rate of diffusion also decreased. These results, when combined with results from a previous study of the effect of overlaying solvent on diffusion rate (Hansen, R. L.; Harris, J. M. Anal. Chem. 1995, 67, 492-498), are consistent with a domain model for long-range transport of partitioned molecules through the bound ligands. Fluorescence recovery experiments in which diffusion is monitored over a distance of micrometers offer a unique means to probe long-range structure of surface-immobilized alkyl chains. PMID:21619357

  12. Epidermal permeability-penetrant structure relationships: 4, QSAR of permeant diffusion across human stratum corneum in terms of molecular weight, H-bonding and electronic charge.

    PubMed

    Pugh, W J; Degim, I T; Hadgraft, J

    2000-03-20

    Principal components analysis (PCA) and multivariate regression analysis (MRA) are used to assess the predictors of permeant diffusion across human stratum corneum. Log(D/h), was estimated from logk(p)+0.024-0.59 logK(oct), where D=diffusion coefficient (cm(2)/h), h=path length (cm), k(p) permeability coefficient (cm/h), K(oct)=partition coefficient (octanol/water). Molecular weight (MW) with (1) scaled H-bonding parameters alpha and beta, or (2) summed modulus of partial charge from molecular modelling were tested as predictors of (D/h). Charge may be computed for any molecule, whilst alpha and beta values are generally unavailable for molecules of biological interest. PCA suggests a dominant permeation pathway since 93% of data variation is in PC1 of log(D/h), MW and charge and 82% in PC1 of log(D/h), MW, alpha and beta. MRA using MW, alpha and beta is unsatisfactory because of collinearity amongst predictors. The best predictor was the product MW*charge. Similarity of the eigenvectors in PCA and normalised coefficients in MRA indicates that charge and MW are equally important predictors of diffusion. PMID:10704807

  13. The characteristics of atmospheric ice nuclei measured at the top of Huangshan (the Yellow Mountains) in Southeast China using a newly built static vacuum water vapor diffusion chamber

    NASA Astrophysics Data System (ADS)

    Jiang, Hui; Yin, Yan; Su, Hang; Shan, Yunpeng; Gao, Renjie

    2015-02-01

    A newly built static vacuum water vapor diffusion chamber was built to measure the concentration of ice nuclei (INs) at the top of Huangshan (the Yellow Mountains) in Southeast China. The experiments were conducted under temperatures between - 15 C and - 23 C and supersaturations with respect to ice between 4% and 25%. The results show that the average IN concentration was in the range of 0.27 to 7.02 L- 1, when the temperature was varied from - 15 C to - 23 C. The changes in IN concentrations with time were correlated with the change of number concentration of the aerosol particles of 0.5-20 ?m in diameter. The square correlation coefficients (R2) between IN and coarse aerosol particles (0.5-20 ?m in diameter) were all higher than 0.60, much higher than that (0.10) between IN and smaller particles (0.01-0.5 ?m). The concentration of ice nuclei at 14:00 LST was significantly higher than that at 08:00 LST, which is correlated with the diurnal variation of the concentration of aerosol particles. A parametric equation was developed based on measurements to represent the variations of IN concentration with temperature and supersaturation.

  14. A Stable Diffusion-Bonded Tm:YLF Bulk Laser with High Power Output at a Wavelength of 1889.5 nm

    NASA Astrophysics Data System (ADS)

    Duan, Xiao-Ming; Ding, Yu; Yao, Bao-Quan; Dai, Tong-Yu; Li, Ying-Yi; Jia, Fu-Li

    2014-07-01

    A high power diode-pumped diffusion-bonded Tm:YLF laser operating at 1889.5 nm with a FWHM linewidth of less than 0.1 nm is reported. A Brewster plate and two FabryPerot etalons are inserted in the laser cavity for spectral narrowing and stabilization. Under an incident pump power of 136.8 W, 46.1 W of output power is achieved, corresponding to an optical-to-optical conversion efficiency of 33.7% and a slope efficiency of 42.8%. The laser wavelength shift of only 0.07 nm with the incident pump power from 20.1 W to 136.8 W is observed. The M2 factor at maximum output power is calculated to be 2.3 in the x-axis and 2.0 in the y-axis, respectively.

  15. Role of the Si-Si bond stability in the first stages of Ti diffusion on a Si(1 1 1) 2 1 surface. A periodic DFT study

    NASA Astrophysics Data System (ADS)

    Aez, Rafael; Sierraalta, Anibal; San-Miguel, Miguel A.; Sanz, Javier Fdez.

    2013-05-01

    A periodic Density Functional Theory (DFT) study, using Generalized Gradient Approximation (GGA), of the Ti deposition on a clean 2 1 reconstructed Si (1 1 1) surface was carried out. Results indicate that as in the case of the Si(0 0 1) surface, a TiSi monolayer is formed at 6.8 1014 Ti atom cm-2 which shows its high reactivity in presence of Ti even at RT. However, the TiSi interface on the Si(1 1 1) presents Ti-Ti and Si-Si interactions forming atom rows in a zigzag arrangement. Ti deposition on the TiSi interface suggests that remaining Si-Si bonds on the surface could play a very important role in the Ti diffusion on the Si surface.

  16. Range-separated approach to the RPA correlation applied to van der Waals bond and to diffusion of defects

    NASA Astrophysics Data System (ADS)

    Bruneval, Fabien

    2013-03-01

    The Random Phase Approximation (RPA) is a promising approximation to the exchange-correlation energy of Density Functional Theory (DFT), since it contains the van der Waals (vdW) interaction and yields a potential with the correct band gap. However, its calculation is computationally very demanding. We apply a range separation concept to RPA and demonstrate how it drastically speeds up the calculations without loss of accuracy. The scheme is succesfully applied to a layered system subjected to weak vdW attraction and to address the controversy of the self-diffusion in silicon. We calculate the formation and migration energies of self-interstitials and vacancies taking into account atomic relaxations. The obtained activation energies deviate significantly from the earlier calculations that were affected by the band gap problem and challenge some of the experimental interpretations: the diffusion of vacancies and interstitials have almost the same activation energy.

  17. Range-Separated Approach to the RPA Correlation Applied to the van der Waals Bond and to Diffusion of Defects

    NASA Astrophysics Data System (ADS)

    Bruneval, Fabien

    2012-06-01

    The random-phase approximation (RPA) is a promising approximation to the exchange-correlation energy of density functional theory, since it contains the van der Waals (vdW) interaction and yields a potential with the correct band gap. However, its calculation is computationally very demanding. We apply a range-separation concept to RPA and demonstrate how it drastically speeds up the calculations without loss of accuracy. The scheme is then successfully applied to a layered system subjected to weak vdW attraction and is used to address the controversy of the self-diffusion in silicon. We calculate the formation and migration energies of self-interstitials and vacancies taking into account atomic relaxations. The obtained activation energies deviate significantly from the earlier calculations and challenge some of the experimental interpretations: the diffusion of vacancies and interstitials has almost the same activation energy.

  18. Diffusion of a self-interstitial atom in an ultrathin fcc film bonded to a rigid substrate

    NASA Astrophysics Data System (ADS)

    Shodja, Hossein M.; Tabatabaei, Maryam; Pahlevani, Ladan; Ostadhossein, Alireza

    2013-04-01

    The determination of the interstitial sites and saddle points corresponding to the diffusion of an interstitial atom in ultrathin face-centered cubic (fcc) film is of particular interest. The outcome is strongly influenced not only by the orientation of the free surface but also by the location of the defect with respect to the free surface and film-rigid substrate interface. In this article, an atomic-scale simulation is conducted to analyze the effects of depth on the out-of-plane interstitial mechanism of diffusion. To ensure reasonable accuracy and numerical convergence, the atomic interaction up to the second-nearest neighbor is considered. The ab initio examination of the above-mentioned problem associated with thin films requires a large supercell and is computationally time consuming. However, for the sake of demonstration, the values of the barrier height energy pertinent to a diffusing self-interstitial atom in the bulk material are computed using both the first principles density functional theory (DFT) and the developed technique, indicating reasonable correspondence.

  19. High heat load properties of actively cooled W/CuCrZr mock-ups by cladding and diffusion bonding with a two-step process

    NASA Astrophysics Data System (ADS)

    Li, Jun; Yang, Jian-Feng; Chen, Jun-Ling

    2011-11-01

    The surface of W was grooved into an arc wave surface, on which a Cu layer was then clad at 1150-1200 C to form a pre-joining clad sample. The clad sample was then diffusion bonded to a CuCrZr at 450 C to form an actively cooled mock-up. The thermal response and thermal fatigue properties were investigated by active cooling technology. The results showed that no cracks and voids occurred at the interface of W/CuCrZr mock-ups after thermal response test with a heat flux from 0 to 10 MW/m 2, which survived up to 200 cycles under 10 MW/m 2. The residual stresses of the mock-up were estimated by Finite Element Analysis. The simulation results indicated that the residual stresses were more beneficial to crack arrest for the mock-up using an arc wave interface instead of a flat interface. This technique provides an available method of bonding W to CuCrZr.

  20. Strong bonding between sputtered bioglass-ceramic films and Ti-substrate implants induced by atomic inter-diffusion post-deposition heat-treatments

    NASA Astrophysics Data System (ADS)

    Stan, G. E.; Popa, A. C.; Galca, A. C.; Aldica, G.; Ferreira, J. M. F.

    2013-09-01

    Bioglasses (BG) are the inorganic materials exhibiting the highest indices of bioactivity. Their appliance as films for bio-functionalization of metallic implant surfaces has been regarded as an optimal solution for surpassing their limited bulk mechanical properties. This study reports on magnetron sputtering of alkali-free BG thin films by varying the target-to-substrate working distance, which proved to play an important role in determining the films properties. Post deposition heat-treatments at temperatures slightly above the glass transformation temperature were then applied to induce inter-diffusion processes at the BG/titanium substrate interface and strengthening the bonding as determined by pull-out adherence measurements. The morphological and structural features assessed by SEM-EDS, XRD, and FTIR revealed a good correlation between the formations of inter-metallic titanium silicide phases and the films bonding strength. The highest mean value of pull-out adherence (60.3 4.6 MPa), which is adequate even for load-bearing biomedical applications, was recorded for films deposited at a working distance of 35 mm followed by a heat-treatment at 750 C for 2 h in air. The experimental findings are explained on the basis of structural, compositional and thermodynamic considerations.

  1. Structural changes and diffusion of vacancy clusters in diamond and paracyclophane cycloaddition: Insights into unusual carbon bonding

    NASA Astrophysics Data System (ADS)

    Slepetz, Brad M.

    High energy irradiation of diamond produces point defects that are observable by spectroscopy. While many defects have been confirmed such as the monovacancy V1, the divacancy V2, and various interstitials, most remain unidentified. The prediction of the properties of these defects through computational modeling is an important ally in solving these mysteries. Computational work on smaller vacancy clusters Vn in diamond had previously been performed with n up to 14 but these were always done with assumptions about that structures of the low energy clusters. A novel generational algorithm has allowed for the identification of the low energy clusters without structural bias. By going beyond n=14 insights have been made into the structural optimizations of large voids in carbon materials, which is important in helping describe Carbide-derived carbons (CDCs) at the atomistic level. Studying the mechanism of V2 formation has uncovered multiple stable non-contiguous divacancy structures with high spin that may be found in the ESR. The unique environment of vacancy clusters, within the rigid framework of the diamond lattice, gives rise to unusual carbon-carbon bond lengths. Molecular analogous where this kind of bonding can be found are rare but paracylophanes---which undergo [4+4] cycloaddition, spanning the spectrum of sp2 to sp3-hybridized carbon---are one example. This process mimics the diamond-to-graphite transition, the modeling of which offers valuable insight.

  2. Patterning and bonding of TiNi shape memory thin film for fabrication of micropump

    NASA Astrophysics Data System (ADS)

    Makino, Eiji; Mitsuya, Takashi; Nakatsuji, Tae; Shibata, Takayuki

    1999-03-01

    In order to develop a micropump driven by shape memory actuation, we require a TiNi diaphragm structure with a cap to act as a chamber for applying bias pressure to the diaphragm. With the purpose of realizing such a structure, we studied the photoetching of TiNi thin film on a Si substrate and two bonding processes-diffusion bonding and anodic bonding- for patterning and assembling. TiNi thin film deposited on Si substrates by flash evaporation was etched in HF/HNO3/H2O solutions using negative photoresist masks. HF:HNO3:H2O equals 1:1:4 solution proved capable of etching it at a rate of about 30 nm/s without etching of the Si substrate. Patterned TiNi thin film of 6 micrometers in thickness on a Si substrate was diffusion bonded to another Si substrate coated with the same TiNi thin film at a thickness of 300 nm. Bonding was conducted in a vacuum at a bonding pressure of 210 MPa. TiNi-TiNi diffusion bonding was obtained at temperatures of more than 300 degrees C. A 4-point bending test revealed that the bond strength of specimens bonded at 400 degrees C was 15-20 MPa. Anodic bonding was conducted between TiNi thin film on a Si substrate and a Pyrex 7740 glass substrate at an applied voltage of 600 V. Two substrates were bonded in nitrogen ambient at temperatures of more than 350 degrees C, giving a bond strength of about 15 MPa at 400 degrees C bonding.

  3. Bonding thermoplastic polymers

    DOEpatents

    Wallow, Thomas I. (Fremont, CA); Hunter, Marion C. (Livermore, CA); Krafcik, Karen Lee (Livermore, CA); Morales, Alfredo M. (Livermore, CA); Simmons, Blake A. (San Francisco, CA); Domeier, Linda A. (Danville, CA)

    2008-06-24

    We demonstrate a new method for joining patterned thermoplastic parts into layered structures. The method takes advantage of case-II permeant diffusion to generate dimensionally controlled, activated bonding layers at the surfaces being joined. It is capable of producing bonds characterized by cohesive failure while preserving the fidelity of patterned features in the bonding surfaces. This approach is uniquely suited to production of microfluidic multilayer structures, as it allows the bond-forming interface between plastic parts to be precisely manipulated at micrometer length scales. The bond enhancing procedure is easily integrated in standard process flows and requires no specialized equipment.

  4. Diffusion Monte Carlo applied to weak interactions - hydrogen bonding and aromatic stacking in (bio-)molecular model systems

    NASA Astrophysics Data System (ADS)

    Fuchs, M.; Ireta, J.; Scheffler, M.; Filippi, C.

    2006-03-01

    Dispersion (Van der Waals) forces are important in many molecular phenomena such as self-assembly of molecular crystals or peptide folding. Calculating this nonlocal correlation effect requires accurate electronic structure methods. Usual density-functional theory with generalized gradient functionals (GGA-DFT) fails unless empirical corrections are added that still need extensive validation. Quantum chemical methods like MP2 and coupled cluster are more accurate, yet limited to rather small systems by their unfavorable computational scaling. Diffusion Monte Carlo (DMC) can provide accurate molecular total energies and remains feasible also for larger systems. Here we apply the fixed-node DMC method to (bio-)molecular model systems where dispersion forces are significant: (dimethyl-) formamide and benzene dimers, and adenine-thymine DNA base pairs. Our DMC binding energies agree well with data from coupled cluster (CCSD(T)), in particular for stacked geometries where GGA-DFT fails qualitatively and MP2 predicts too strong binding.

  5. Vacuum force

    NASA Astrophysics Data System (ADS)

    Han, Yongquan

    2015-03-01

    To study on vacuum force, we must clear what is vacuum, vacuum is a space do not have any air and also ray. There is not exist an absolute the vacuum of space. The vacuum of space is relative, so that the vacuum force is relative. There is a certain that vacuum vacuum space exists. In fact, the vacuum space is relative, if the two spaces compared to the existence of relative vacuum, there must exist a vacuum force, and the direction of the vacuum force point to the vacuum region. Any object rotates and radiates. Rotate bend radiate- centripetal, gravity produced, relative gravity; non gravity is the vacuum force. Gravity is centripetal, is a trend that the objects who attracted wants to Centripetal, or have been do Centripetal movement. Any object moves, so gravity makes the object curve movement, that is to say, the radiation range curve movement must be in the gravitational objects, gravity must be existed in non vacuum region, and make the object who is in the region of do curve movement (for example: The earth moves around the sun), or final attracted in the form gravitational objects, and keep relatively static with attract object. (for example: objects on the earth moves but can't reach the first cosmic speed).

  6. Plates for vacuum thermal fusion

    DOEpatents

    Davidson, James C. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    2002-01-01

    A process for effectively bonding arbitrary size or shape substrates. The process incorporates vacuum pull down techniques to ensure uniform surface contact during the bonding process. The essence of the process for bonding substrates, such as glass, plastic, or alloys, etc., which have a moderate melting point with a gradual softening point curve, involves the application of an active vacuum source to evacuate interstices between the substrates while at the same time providing a positive force to hold the parts to be bonded in contact. This enables increasing the temperature of the bonding process to ensure that the softening point has been reached and small void areas are filled and come in contact with the opposing substrate. The process is most effective where at least one of the two plates or substrates contain channels or grooves that can be used to apply vacuum between the plates or substrates during the thermal bonding cycle. Also, it is beneficial to provide a vacuum groove or channel near the perimeter of the plates or substrates to ensure bonding of the perimeter of the plates or substrates and reduce the unbonded regions inside the interior region of the plates or substrates.

  7. Vacuum die attach for integrated circuits

    DOEpatents

    Schmitt, E.H.; Tuckerman, D.B.

    1991-09-10

    A thin film eutectic bond for attaching an integrated circuit die to a circuit substrate is formed by coating at least one bonding surface on the die and substrate with an alloying metal, assembling the die and substrate under compression loading, and heating the assembly to an alloying temperature in a vacuum. A very thin bond, 10 microns or less, which is substantially void free, is produced. These bonds have high reliability, good heat and electrical conduction, and high temperature tolerance. The bonds are formed in a vacuum chamber, using a positioning and loading fixture to compression load the die, and an IR lamp or other heat source. For bonding a silicon die to a silicon substrate, a gold silicon alloy bond is used. Multiple dies can be bonded simultaneously. No scrubbing is required. 1 figure.

  8. Vacuum die attach for integrated circuits

    DOEpatents

    Schmitt, Edward H. (Livermore, CA); Tuckerman, David B. (Livermore, CA)

    1991-01-01

    A thin film eutectic bond for attaching an integrated circuit die to a circuit substrate is formed by coating at least one bonding surface on the die and substrate with an alloying metal, assembling the die and substrate under compression loading, and heating the assembly to an alloying temperature in a vacuum. A very thin bond, 10 microns or less, which is substantially void free, is produced. These bonds have high reliability, good heat and electrical conduction, and high temperature tolerance. The bonds are formed in a vacuum chamber, using a positioning and loading fixture to compression load the die, and an IR lamp or other heat source. For bonding a silicon die to a silicon substrate, a gold silicon alloy bond is used. Multiple dies can be bonded simultaneously. No scrubbing is required.

  9. Microstructural evolution during transient liquid phase bonding of Inconel 738LC using AMS 4777 filler alloy

    SciTech Connect

    Jalilvand, V.; Omidvar, H.; Shakeri, H.R.; Rahimipour, M.R.

    2013-01-15

    IN-738LC nickel-based superalloy was joined by transient liquid phase diffusion bonding using AMS 4777 filler alloy. The bonding process was carried out at 1050 Degree-Sign C under vacuum atmosphere for various hold times. Microstructures of the joints were studied by optical and scanning electron microscopy. Continuous centerline eutectic phases, characterized as nickel-rich boride, chromium-rich boride and nickel-rich silicide were observed at the bonds with incomplete isothermal solidification. In addition to the centerline eutectic products, precipitation of boron-rich particles was observed in the diffusion affected zone. The results showed that, as the bonding time was increased to 75 min, the width of the eutectic zone was completely removed and the joint was isothermally solidified. Homogenization of isothermally solidified joints at 1120 Degree-Sign C for 300 min resulted in the elimination of intermetallic phases formed at the diffusion affected zone and the formation of significant {gamma} Prime precipitates in the joint region. - Highlights: Black-Right-Pointing-Pointer TLP bonding of IN-738LC superalloy was performed using AMS 4777 filler alloy. Black-Right-Pointing-Pointer Insufficient diffusion time resulted in the formation of eutectic product. Black-Right-Pointing-Pointer Precipitation of B-rich particles was observed within the DAZ. Black-Right-Pointing-Pointer The extent of isothermal solidification increased with increasing holding time. Black-Right-Pointing-Pointer Homogenizing of joints resulted in the dissolution of DAZ intermetallics.

  10. Fusion bonding and alignment fixture

    DOEpatents

    Ackler, Harold D. (Sunnyvale, CA); Swierkowski, Stefan P. (Livermore, CA); Tarte, Lisa A. (Livermore, CA); Hicks, Randall K. (Stockton, CA)

    2000-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all the components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  11. Bent Bonds and Multiple Bonds.

    ERIC Educational Resources Information Center

    Robinson, Edward A.; Gillespie, Ronald J.

    1980-01-01

    Considers carbon-carbon multiple bonds in terms of Pauling's bent bond model, which allows direct calculation of double and triple bonds from the length of a CC single bond. Lengths of these multiple bonds are estimated from direct measurements on "bent-bond" models constructed of plastic tubing and standard kits. (CS)

  12. Superplastic forming and diffusion bonding

    NASA Astrophysics Data System (ADS)

    1992-11-01

    This paper reports on a fabrication method known as the Sutton Core Process (SCP) which enables weight reduction of aircraft components without compromising their physical or mechanical properties. The SCP is basically a four-sheet process in which two sheets (core sheets) are employed to form internal supports and a second pair of sheets (cover skins) form the outer part configuration.

  13. Vacuum Technology

    SciTech Connect

    Biltoft, P J

    2004-10-15

    The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.

  14. Vacuum mechatronics

    NASA Technical Reports Server (NTRS)

    Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo

    1989-01-01

    The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.

  15. Vacuum Virtues

    ERIC Educational Resources Information Center

    Rathey, Allen

    2007-01-01

    Upright vacuums, like cars, vary in quality, features and performance. Like automobiles, some uprights are reliable, others may be problematic, and some become a problem as a result of neglect or improper use. So, how do education institutions make an informed choice and, having done so, ensure that an upright vacuum goes the distance? In this

  16. Method of bonding silver to glass and mirrors produced according to this method

    DOEpatents

    Pitts, John R. (Golden, CO); Thomas, Terence M. (Arvada, CO); Czanderna, Alvin W. (Lakewood, CO)

    1985-01-01

    A method for adhering silver to a glass substrate for producing mirrors includes attaining a silicon enriched substrate surface by reducing the oxygen therein in a vacuum and then vacuum depositing a silver layer onto the silicon enriched surface. The silicon enrichment can be attained by electron beam bombardment, ion beam bombardment, or neutral beam bombardment. It can also be attained by depositing a metal, such as aluminum, on the substrate surface, allowing the metal to oxidize by pulling oxygen from the substrate surface, thereby leaving a silicon enriched surface, and then etching or eroding the metal oxide layer away to expose the silicon enriched surface. Ultraviolet rays can be used to maintain dangling silicon bonds on the enriched surface until covalent bonding with the silver can occur. This disclosure also includes encapsulated mirrors with diffusion layers built therein. One of these mirrors is assembled on a polymer substrate.

  17. Method of bonding silver to glass and mirrors produced according to this method

    DOEpatents

    Pitts, J.R.; Thomas, T.M.; Czanderna, A.W.

    1984-07-31

    A method for adhering silver to a glass substrate for producing mirrors includes attaining a silicon enriched substrate surface by reducing the oxygen therein in a vacuum and then vacuum depositing a silver layer onto the silicon enriched surface. The silicon enrichment can be attained by electron beam bombardment, ion beam bombardment, or neutral beam bombardment. It can also be attained by depositing a metal, such as aluminum, on the substrate surface, allowing the metal to oxidize by pulling oxygen from the substrate surface, thereby leaving a silicon enriched surface, and then etching or eroding the metal oxide layer away to expose the silicon enriched surface. Ultraviolet rays can be used to maintain dangling silicon bonds on the enriched surface until covalent bonding with the silver can occur. This disclosure also includes encapsulated mirrors with diffusion layers built therein. One of these mirrors is assembled on a polymer substrate.

  18. A Study on the Breakdown Mechanism of an Electroless-Plated Ni(P) Diffusion Barrier for Cu/Sn/Cu 3D Interconnect Bonding Structures

    NASA Astrophysics Data System (ADS)

    Lee, Byunghoon; Jeon, Haseok; Jeon, Seong-Jae; Kwon, Kee-Won; Lee, Hoo-Jeong

    2012-01-01

    This study examined the thermal stability of an electroless-plated Ni(P) barrier layer inserted between Sn and Cu in the bonding structure of Cu/Sn/Cu for three-dimensional (3D) interconnect applications. A combination of transmission electron microscopy (TEM) and scanning electron microscopy allowed us to fully characterize the bonding morphology of the Cu/Ni(P)/Sn/Ni(P)/Cu joints bonded at various temperatures. The barrier suppressed Cu and Sn interdiffusion very effectively up to 300C; however, an interfacial reaction between Ni(P) and Sn led to gradual decomposition into Ni3P and Ni3Sn4. Upon 350C bonding, the interfacial reaction brought about complete disintegration of the barrier in local areas, which allowed unhindered interdiffusion between Cu and Sn.

  19. A Study of the Effect of Nanosized Particles on Transient Liquid Phase Diffusion Bonding Al6061 Metal-Matrix Composite (MMC) Using Ni/Al2O3 Nanocomposite Interlayer

    NASA Astrophysics Data System (ADS)

    Cooke, Kavian O.

    2012-06-01

    Transient liquid phase (TLP) diffusion bonding of Al-6061 containing 15 vol pct alumina particles was carried out at 873 K (600 C) using electrodeposited nanocomposite coatings as the interlayer. Joint formation was attributed to the solid-state diffusion of Ni into the Al-6061 alloy followed by eutectic formation and isothermal solidification of the joint region. An examination of the joint region using an electron probe microanalyzer (EPMA), transmission electron microscopy (TEM), wavelength-dispersive spectroscopy (WDS), and X-ray diffraction (XRD) showed the formation of intermetallic phases such as Al3Ni, Al9FeNi, and Ni3Si within the joint zone. The result indicated that the incorporation of 50 nm Al2O3 dispersions into the interlayer can be used to improve the joint significantly.

  20. Heat-shrinkable film improves adhesive bonds

    NASA Technical Reports Server (NTRS)

    Johns, J. M.; Reed, M. W.

    1980-01-01

    Pressure is applied during adhesive bonding by wrapping parts in heat-shrinkable plastic film. Film eliminates need to vacuum bag or heat parts in expensive autoclave. With procedure, operators are trained quickly, and no special skills are required.

  1. Vacuum Waves

    E-print Network

    Paul S. Wesson

    2012-12-11

    As an example of the unification of gravitation and particle physics, an exact solution of the five-dimensional field equations is studied which describes waves in the classical Einstein vacuum. While the solution is essentially 5D in nature, the waves exist in ordinary 3D space, and may provide a way to test for an extra dimension.

  2. Sticker Bonding.

    ERIC Educational Resources Information Center

    Frazier, Laura Corbin

    2000-01-01

    Introduces a science activity on the bonding of chemical compounds. Assigns students the role of either a cation or anion and asks them to write the ions they may bond with. Assesses students' understanding of charge, bonding, and other concepts. (YDS)

  3. Bond Issues.

    ERIC Educational Resources Information Center

    Pollack, Rachel H.

    2000-01-01

    Notes trends toward increased borrowing by colleges and universities and offers guidelines for institutions that are considering issuing bonds to raise money for capital projects. Discussion covers advantages of using bond financing, how use of bonds impacts on traditional fund raising, other cautions and concerns, and some troubling aspects of

  4. On a model of calculating bond strength

    NASA Technical Reports Server (NTRS)

    Yue, A. S.; Yang, T. T.; Lin, T. S.

    1976-01-01

    Diffusion bonding is a fabricating process to join the fibers and a matrix together forming a composite. The efficiency of the bonding process depends on temperature, time, and pressure. Based on a simplified pair potential model, an expression for the bond-energy at the fiber-matrix interface is formulated in terms of the above-mentioned three parameters. From this expression and the mean atomic distance, the bond-strength between the fibers and the matrix can be calculated.

  5. Healing of the Interface Between Splashed Particles and Underlying Bulk Coating and Its Influence on Isothermal Oxidation Behavior of LPPS MCrAlY Bond Coat

    NASA Astrophysics Data System (ADS)

    Zhang, Bang-Yan; Shi, Jing; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2015-04-01

    The thermally grown oxide formed on the bond coat surface plays an important role in determining the lifetime of thermal barrier coatings (TBCs). The splashed particles on the thermally sprayed MCrAlY bond coat surface are weakly bonded to the underlying bulk coating, leading to the formation of mixed oxides and contributing to the TBC failure. In this study, the healing behavior of the weakly bonded interface between splashed particles and underlying MCrAlY bulk coating deposited by low pressure plasma spraying was examined, and the influence of interface healing on the isothermal oxidation behavior of the bond coat was discussed. Results show that the granular particles resulting from splashing of molten droplets were exposed on smooth splats which make up the surface of bulk coating. After the pre-diffusion treatment in vacuum, the small granular splashed particles are immersed into the bulk coating resulting from the element diffusion on the interface between splashed particles and underlying bulk coating. After the vacuum heat treatment, the formation of mixed oxides was effectively restrained due to the healing of the splashed particle/underlying bulk coating interface.

  6. Diffusion controlled hydrogen atom abstraction from tertiary amines by the benzyloxyl radical. The importance of C-H/N hydrogen bonding.

    PubMed

    Salamone, Michela; Anastasi, Gloria; Bietti, Massimo; DiLabio, Gino A

    2011-01-21

    The rate constants for H-atom abstraction (k(H)) from 1,4-cyclohexadiene (CHD), triethylamine (TEA), triisobutylamine (TIBA), and DABCO by the cumyloxyl (CumO()) and benzyloxyl (BnO()) radicals were measured. Comparable k(H) values for the two radicals were obtained in their reactions with CHD and TIBA whereas large increases in k(H) for TEA and DABCO were found on going from CumO() to BnO(). These differences are attributed to the rate-determining formation of BnO() C-H/amine N lone-pair H-bonded complexes. PMID:21141985

  7. Femtosecond 2DIR spectroscopy of the nitrile stretching vibration of thiocyanate anions in liquid-to-supercritical heavy water. Spectral diffusion and libration-induced hydrogen-bond dynamics.

    PubMed

    Czurlok, Denis; von Domaros, Michael; Thomas, Martin; Gleim, Jeannine; Lindner, Jrg; Kirchner, Barbara; Vhringer, Peter

    2015-11-28

    Femtosecond two-dimensional infrared (2DIR) spectroscopy was carried out to study the dynamics of vibrational spectral diffusion of the nitrile stretching vibration of thiocyanate anions (S-C[triple bond, length as m-dash]N(-)) dissolved in liquid-to-supercritical heavy water (D2O). The 2DIR line shapes were used to extract through a nodal slope analysis quantitative information about the correlation function for temporal fluctuations of the CN-stretching frequency. The inverse nodal slope could be fitted phenomenologically by a simple double-exponential decay whose predominant component had a time constant ranging between 300 fs and 1 ps depending on the temperature. The temperature dependence is interpreted in terms of solvent structural fluctuations that are driven by the librational motions of the D2O molecules located in the first solvation shell of the anion. Complementary molecular dynamics simulations of the SCN(-)/D2O system indicate that the breaking and making of hydrogen-bonds between the terminal N-atom of the anion and the D2O molecules are induced by the same solvent-shell librational degrees of freedom that drive the vibrational line broadening dynamics seen in the 2DIR experiment. PMID:26486475

  8. 1MSE 2090: Introduction to Materials Science Chapter 5, Diffusion Diffusion -how do atoms move through solids?

    E-print Network

    Zhigilei, Leonid V.

    diffusion is generally faster than vacancy diffusion because bonding of interstitials to the surrounding1 1MSE 2090: Introduction to Materials Science Chapter 5, Diffusion Diffusion - how do atoms move through solids? Diffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities The mathematics

  9. Vacuum deposition and curing of liquid monomers

    DOEpatents

    Affinito, J.D.

    1993-11-09

    The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of standard polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.

  10. Vacuum deposition and curing of liquid monomers

    DOEpatents

    Affinito, J.D.

    1995-03-07

    The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of ``standard`` polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal or oxide may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.

  11. Vacuum deposition and curing of liquid monomers

    DOEpatents

    Affinito, John D. (Kennewick, WA)

    1995-01-01

    The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of "standard" polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal or oxide may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.

  12. Vacuum deposition and curing of liquid monomers

    DOEpatents

    Affinito, John D. (Richland, WA)

    1993-01-01

    The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of "standard" polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.

  13. Vacuum plasma spray coating

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Mckechnie, Timothy N.

    1989-01-01

    Currently, protective plasma spray coatings are applied to space shuttle main engine turbine blades of high-performance nickel alloys by an air plasma spray process. Originally, a ceramic coating of yttria-stabilized zirconia (ZrO2.12Y2O3) was applied for thermal protection, but was removed because of severe spalling. In vacuum plasma spray coating, plasma coatings of nickel-chromium-aluminum-yttrium (NiCrAlY) are applied in a reduced atmosphere of argon/helium. These enhanced coatings showed no spalling after 40 MSFC burner rig thermal shock cycles between 927 C (1700 F) and -253 C (-423 F), while current coatings spalled during 5 to 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2.8Y2O3 to the turbine blades of first-stage high-pressure fuel turbopumps utilizing the enhanced NiCrAlY bond-coating process. NiCrAlY bond coating is applied first, with ZrO2.8Y2O3 added sequentially in increasing amounts until a thermal barrier coating is obtained. The enchanced thermal barrier coating has successfully passed 40 burner rig thermal shock cycles.

  14. High-temperature adhesives for bonding polyimide film. [bonding Kapton film for solar sails

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; Slemp, W. S.; St.clair, T. L.

    1980-01-01

    Experimental polyimide resins were developed and evaluated as potential high temperature adhesives for bonding Kapton polyimide film. Lap shear strengths of Kapton/Kapton bonds were obtained as a function of test temperature, adherend thickness, and long term aging at 575 K (575 F) in vacuum. Glass transition temperatures of the polyimide/"Kapton" bondlines were monitored by thermomechanical analysis.

  15. Low temperature GRISM direct bonding

    NASA Astrophysics Data System (ADS)

    Kalkowski, Gerhard; Harnisch, Gerd; Grabowski, Kevin; Benkenstein, Tino; Ehrhardt, Sascha; Zeitner, Uwe; Risse, Stefan

    2015-09-01

    For spectroscopy in space, GRISM elements -obtained by patterning gratings on a prism surface - are gaining increasing interest. Originally developed as dispersive elements for insertion into an imaging light path without deflecting the beam, they are progressively found in sophisticated multi stage dispersion optics. We report on GRISM manufacturing by joining the individual functional elements -prisms and gratings - to suitable components. Fused silica was used as glass material and the gratings were realized by e-beam lithography und dry etching. Alignment of the grating dispersion direction to the prism angle was realized by passive adjustment. Materials adapted bonds of high transmission, stiffness and strength were obtained at temperatures of about 200C in vacuum by hydrophilic direct bonding. Examples for bonding uncoated as well as coated fused silica surfaces are given. The results illustrate the great potential of hydrophilic glass direct bonding for manufacturing transmission optics to be used under highly demanding environmental conditions, as typical in space.

  16. Origin of the diffuse vibrational signature of a cyclic intramolecular proton bond: Anharmonic analysis of protonated 1,8-disubstituted naphthalene ions

    NASA Astrophysics Data System (ADS)

    DeBlase, Andrew F.; Bloom, Steven; Lectka, Thomas; Jordan, Kenneth D.; McCoy, Anne B.; Johnson, Mark A.

    2013-07-01

    We analyze the structures and spectral signatures of the cyclic intramolecular proton bond, N-H+-A, A = O and F, formed when an excess proton is added to derivatives of the 1,8-disubstituted naphthalene scaffold. These compounds provide a quasi-rigid framework with which to study the spectral complexity often associated with the N-H+-A entity. Vibrational spectra were obtained by monitoring photodissociation of weakly bound H2 adducts of the mass-selected ions cooled close to 10 K. Several bands across the 900-3500 cm-1 spectral range were traced to involvement of the bridging proton by their telltale shifts upon selective H/D isotopic substitution at that position. We account for the complex patterns that occur near the expected locations of the NH stretching fundamentals in the context of background levels mixing with a "bright" zero-order state through cubic terms in the potential energy expansion. Thus, this system provides a detailed picture of one of the mechanisms behind the line broadening often displayed by embedded excess protons. It does so in a sufficiently sparse density of states regime that many discrete transitions are observed in the vicinity of the harmonic stretching transition involving displacement of the trapped proton.

  17. Ultra-low birefringence dodecagonal vacuum glass cell

    E-print Network

    Brakhane, Stefan; Meschede, Dieter; Moon, Geol; Robens, Carsten; Alberti, Andrea

    2015-01-01

    We eport on an ultra-low birefringence dodecagonal glass cell for ultra-high vacuum applications. The epoxy-bonded trapezoidal windows of the cell are made of SF57 glass, which exhibits a very low stress-induced birefringence. We characterize the birefringence $\\Delta n$ of each window with the cell under vacuum conditions, obtaining values around $\

  18. THE VACUUM/STEAM/VACUUM PROCESS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Vacuum/Steam/Vacuum surface intervention pilot plant process was developed. The process was developed for chicken, hot dogs, fruits and vegetables, and catfish. Optimum process conditions were determined as nominally, 138 C saturated steam, vacuum and steam times of 0.1 s except that the final...

  19. Rapid bonding of Pyrex glass microchips.

    PubMed

    Akiyama, Yoshitake; Morishima, Keisuke; Kogi, Atsuna; Kikutani, Yoshikuni; Tokeshi, Manabu; Kitamori, Takehiko

    2007-03-01

    A newly developed vacuum hot press system has been specially designed for the thermal bonding of glass substrates in the fabrication process of Pyrex glass microchemical chips. This system includes a vacuum chamber equipped with a high-pressure piston cylinder and carbon plate heaters. A temperature of up to 900 degrees C and a force of as much as 9800 N could be applied to the substrates in a vacuum atmosphere. The Pyrex substrates bonded with this system under different temperatures, pressures, and heating times were evaluated by tensile strength tests, by measurements of thickness, and by observations of the cross-sectional shapes of the microchannels. The optimal bonding conditions of the Pyrex glass substrates were 570 degrees C for 10 min under 4.7 N/mm(2) of applied pressure. Whereas more than 16 h is required for thermal bonding with a conventional furnace, the new system could complete the whole bonding processes within just 79 min, including heating and cooling periods. Such improvements should considerably enhance the production rate of Pyrex glass microchemical chips. Whereas flat and dust-free surfaces are required for conventional thermal bonding, especially without long and repeated heating periods, our hot press system could press a fine dust into glass substrates so that even the areas around the dust were bonded. Using this capability, we were able to successfully integrate Pt/Ti thin film electrodes into a Pyrex glass microchip. PMID:17370301

  20. Performance tests of large thin vacuum windows

    SciTech Connect

    Hall Crannell

    2011-02-01

    Tests of thin composition vacuum windows of the type used for the Tagger in Hall B at the Thomas Jefferson National Accelerator Facility are described. Three different tests have been performed. These include: (1) measurement of the deformation and durability of a window under long term (>8 years) almost continuous vacuum load, (2) measurement of the deformation as a function of flexing of the window as it is cycled between vacuum and atmosphere, and (3) measurement of the relative diffusion rate of gas through a variety of thin window membranes.

  1. Diffusion Geometry Diffusion Geometry

    E-print Network

    Hirn, Matthew

    Diffusion Geometry Diffusion Geometry for High Dimensional Data Matthew J. Hirn July 3, 2013 #12;Diffusion Geometry Introduction Embedding of closed curve Figure: Left: A closed, non-self-intersecting curve in 3 dimensions. Right: Its embedding as a circle. #12;Diffusion Geometry Introduction Cartoon

  2. Solid-state bonding of single-crystals of Ni(111)/Al2O3(0001)

    NASA Astrophysics Data System (ADS)

    Wan, C.; Dupeux, M.

    1993-09-01

    Some fundamental aspects of the solid state bonding process between single crystals of alumina and nickel were studied. It was shown that a model formerly developed to account for the kinetics of diffusion bonding between two metals can be adapted to the case of a metal-ceramic couple. A coincidence site lattice calculation proved that one of the crystallographic relative orientations often mentioned in literature was certainly energetically favourable. With this relative orientation, several nickel-alumina bicrystals have been produced by solid state bonding under secondary vacuum. The influence of operating conditions such as contact pressure and annealing duration has been explored and compared with the calculated results of the bonding kinetics model. Characterization of the solid-state bonded interface was undertaken by optical microscopy and scanning as well as transmission electron microscopy. Observations prove that the initial imposed crystallographic relative orientation was maintained during the solid-state bonding process, and that the synthetic alumina-nickel interface obtained by this technique was free from reaction layer at the usual TEM scale.

  3. The Vacuum Bubble Nucleation

    SciTech Connect

    Lee, Bum-Hoon; Lee, Wonwoo

    2009-07-10

    We study the nucleation of a vacuum bubble via the vacuum-to-vacuum tunneling transition in curved spacetime. We consider Coleman-de Luccia's semiclassical approximation at zero temperature in pure Einstein theory of gravity and the theory with nonminimal coupling. We discuss the dynamics of a nucleated vacuum bubble.

  4. Natural vacuum electronics

    NASA Technical Reports Server (NTRS)

    Leggett, Nickolaus

    1990-01-01

    The ambient natural vacuum of space is proposed as a basis for electron valves. Each valve is an electron controlling structure similiar to a vacuum tube that is operated without a vacuum sustaining envelope. The natural vacuum electron valves discussed offer a viable substitute for solid state devices. The natural vacuum valve is highly resistant to ionizing radiation, system generated electromagnetic pulse, current transients, and direct exposure to space conditions.

  5. Physical Nature of Hydrogen Bond

    E-print Network

    Zhyganiuk, I V

    2015-01-01

    The physical nature and the correct definition of hydrogen bond (H-bond) are considered.\\,\\,The influence of H-bonds on the thermodynamic, kinetic, and spectroscopic properties of water is analyzed.\\,\\,The conventional model of H-bonds as sharply directed and saturated bridges between water molecules is incompatible with the behavior of the specific volume, evaporation heat, and self-diffusion and kinematic shear viscosity coefficients of water. On the other hand, it is shown that the variation of the dipole moment of a water molecule and the frequency shift of valence vibrations of a hydroxyl group can be totally explained in the framework of the electrostatic model of H-bond.\\,\\,At the same time, the temperature dependences of the heat capacity of water in the liquid and vapor states clearly testify to the existence of weak H-bonds.\\,\\,The analysis of a water dimer shows that the contribution of weak H-bonds to its ground state energy is approximately 4--5 times lower in comparison with the energy of electr...

  6. Flip chip electrical interconnection by selective electroplating and bonding

    E-print Network

    Lin, Liwei

    the interconnection and device substrates to en- hance the ion diffusion during the final electroplating and bondingFlip chip electrical interconnection by selective electroplating and bonding L.-W. Pan, P. Yuen, L of flip-chip, selective elec- troplating and bonding. The electrical interconnection lines are built

  7. Indian Vacuum Society: The Indian Vacuum Society

    NASA Astrophysics Data System (ADS)

    Saha, T. K.

    2008-03-01

    The Indian Vacuum Society (IVS) was established in 1970. It has over 800 members including many from Industry and R & D Institutions spread throughout India. The society has an active chapter at Kolkata. The society was formed with the main aim to promote, encourage and develop the growth of Vacuum Science, Techniques and Applications in India. In order to achieve this aim it has conducted a number of short term courses at graduate and technician levels on vacuum science and technology on topics ranging from low vacuum to ultrahigh vacuum So far it has conducted 39 such courses at different parts of the country and imparted training to more than 1200 persons in the field. Some of these courses were in-plant training courses conducted on the premises of the establishment and designed to take care of the special needs of the establishment. IVS also regularly conducts national and international seminars and symposia on vacuum science and technology with special emphasis on some theme related to applications of vacuum. A large number of delegates from all over India take part in the deliberations of such seminars and symposia and present their work. IVS also arranges technical visits to different industries and research institutes. The society also helped in the UNESCO sponsored post-graduate level courses in vacuum science, technology and applications conducted by Mumbai University. The society has also designed a certificate and diploma course for graduate level students studying vacuum science and technology and has submitted a syllabus to the academic council of the University of Mumbai for their approval, we hope that some colleges affiliated to the university will start this course from the coming academic year. IVS extended its support in standardizing many of the vacuum instruments and played a vital role in helping to set up a Regional Testing Centre along with BARC. As part of the development of vacuum education, the society arranges the participation of expert members on the subject to deliver lectures and take part in devising courses in the universities. IVS publishes a quarterly called the `Bulletin of Indian Vacuum Society' since its inception, in which articles on vacuum and related topics are published. NIRVAT, news, announcements, and reports are the other features of the Bulletin. The articles in the Bulletin are internationally abstracted. The Bulletin is distributed free to all the members of the society. The society also publishes proceedings of national/international symposia and seminars, manuals, lecture notes etc. It has published a `Vacuum Directory' containing very useful information on vacuum technology. IVS has also set up its own website http://www.ivsnet.org in January 2002. The website contains information about IVS, list of members, list of EC members, events and news, abstracts of articles published in the `Bulletin of Indian Vacuum Society', utilities, announcements, reports, membership and other forms which can be completed online and also gives links to other vacuum societies. Our Society has been a member of the executive council of the International Union of Vacuum Science, Techniques and Applications (IUVSTA) and its various committees since 1970. In 1983 IVS conducted an International Symposium on Vacuum Technology and Nuclear Applications in BARC, Mumbai, under the sponsorship of IUVSTA. In 1987 IVS arranged the Triennial International Conference on Thin Films in New Delhi, where more than 200 foreign delegates participated. IVS also hosted the IUVSTA Executive Council Meeting along with the conference. The society organized yet again an International Conference on Vacuum Science and Technology and SRS Vacuum Systems at CAT, Indore in1995. IVS arranges the prestigious Professor Balakrishnan Memorial Lecture in memory of its founder vice-president. Leading scientists from India and abroad in the field are invited to deliver the talks. So far 23 lectures have been held in this series. IVS has instituted the `IVS- Professor D Y Phadke Memorial Prize' in memory of our founder presid

  8. Pi Bond Orders and Bond Lengths

    ERIC Educational Resources Information Center

    Herndon, William C.; Parkanyi, Cyril

    1976-01-01

    Discusses three methods of correlating bond orders and bond lengths in unsaturated hydrocarbons: the Pauling theory, the Huckel molecular orbital technique, and self-consistent-field techniques. (MLH)

  9. Cosmology of Vacuum

    E-print Network

    V. Burdyuzha; G. Vereshkov

    2007-12-29

    Shortly the vacuum component of the Universe from the geometry point of view and from the point of view of the standard model of physics of elementary particles is discussed. Some arguments are given to the calculated value of the cosmological constant (Zeldovich approximation). A new component of space vacuum (the gravitational vacuum condensate) is involved the production of which has fixed time in our Universe. Also the phenomenon of vacuum selforganization must be included in physical consideration of the Universe evolution.

  10. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E. (Albuquerque, NM)

    1990-01-01

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  11. Investing in Bonds

    E-print Network

    Johnson, Jason; Polk, Wade

    2002-08-12

    Bonds, which are issued by governments and corporations, can be an important part of one's investment portfolio. U.S. government bonds, municipal bonds, zero-coupon bonds and other types are described. Also learn strategies for coping with inflation...

  12. The Classical Vacuum.

    ERIC Educational Resources Information Center

    Boyer, Timothy H.

    1985-01-01

    The classical vacuum of physics is not empty, but contains a distinctive pattern of electromagnetic fields. Discovery of the vacuum, thermal spectrum, classical electron theory, zero-point spectrum, and effects of acceleration are discussed. Connection between thermal radiation and the classical vacuum reveals unexpected unity in the laws of

  13. Basics of Fidelity Bonding.

    ERIC Educational Resources Information Center

    Kahn, Steven P.

    Fidelity bonds are important for an agency to hold to protect itself against any financial loss that can result from dishonest acts by its employees. Three types of fidelity bonds are available to an agency: (1) public official bonds; (2) dishonesty bonds; and (3) faithful performance bonds. Public official bonds are required by state law to be

  14. Functionally graded vacuum plasma sprayed and magnetron sputtered tungsten/EUROFER97 interlayers for joints in helium-cooled divertor components

    NASA Astrophysics Data System (ADS)

    Weber, T.; Stber, M.; Ulrich, S.; Vaen, R.; Basuki, W. W.; Lohmiller, J.; Sittel, W.; Aktaa, J.

    2013-05-01

    Two coating technologies, magnetron sputtering and vacuum plasma spraying, have been investigated for their capability in producing functionally graded tungsten/EUROFER97 layers. In a first step, non-graded layers with different mixing ratios were deposited on tungsten substrates and characterized by nanoindentation, macroindentation, X-ray diffraction, transmission, Auger and scanning electron microscopy. The thermal stability of the sprayed layers against heat treatments at 800-1100 C for 60 min was further analyzed. In a second step, the produced functionally graded layers deposited on tungsten substrates were joined to EUROFER97 bulk-material by diffusion bonding. The bonding and the graded joints were microscopically characterized and exposed to thermal cycles between 20 C and 650 C. Results from this study show that both coating technologies are ideal for the synthesis of functionally graded tungsten/EUROFER97 coatings. This is important in providing insights for future development of joints with functionally graded interlayers.

  15. Wafer bonding for optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Wu, Yew-Chung Sermon

    A periodic GaAs wafer-bonded structure has been proposed for quasi-phase-matched (QPM) second harmonic generation (SHG). The basic bonding technology involves elevated temperatures and pressures, which can lead to unacceptable optical losses and poor device performance. Three sources of optical losses were first found in this study: (1) decomposition at the exposed surface, (2) interfacial defects between the bonded wafers, and (3) bulk defects within the wafers. Bulk and surface defects were studied by measuring the optical transmission through single GaAs. It was found that an increase in bonding temperature and/or time led to an increase in the bulk and surface defects. An increase in the free hole concentration (thermal conversion) is though to be the major cause of the optical losses by a free carrier absorption mechanism. Since it was difficult to eliminate free-carrier and interfacial defect losses once they have formed because of diffusion kinetic limitations, processing conditions that minimized their formation were sought. In contrast, defects on the external surfaces caused by arsenic depletion resulting from incongruent evaporation were easily eliminated by repolishing. Interfacial defects were studied by introducing artificial voids into the interface region by bonding topographically-patterned GaAs wafers to unpatterned wafers. We found that the filling of these artificial voids depended strongly on the magnitude of the height of the surface irregularities on the wafer interfaces, as well as on temperature and time. Typically, when bonding temperature and time were increased, the interfacial defect density decreased. After bonding, two kinds of features corresponding to the newly bonded areas were observed by IR microscopy. These two features, having diamond and dendrite geometries, were shown to depend on both surface energy anisotropy and growth rate anisotropy. An investigation of the relationship between bonding conditions (temperature, time and pressure) and optical losses (resulting from bulk, interfacial and surface defects), has led to the development of an optimized process for preparing periodic GaAs structures useful in quasi-phase-matched second harmonic generation applications. With this bonding process, low optical loss (~0.1-0.3%/interface) wafer-bonded (110) structures (containing up to 40 layers) for practical device applications were first fabricated in this study.

  16. Simulations of diffusive lithium evaporation onto the NSTX vessel walls

    E-print Network

    Budny, Robert

    P2-80 Simulations of diffusive lithium evaporation onto the NSTX vessel walls D. P. Stotler a,, C the diffusive evaporation of lithium into a helium filled NSTX vacuum vessel is described and validated against- tation of the vacuum vessel, the elastic scattering process, and a kinetic description of the evaporated

  17. Vacuum pump aids ejectors

    SciTech Connect

    Nelson, R.E.

    1982-12-01

    The steam ejector/vacuum pump hybrid system has been operating satisfactorily since the summer of 1981. This system has essentially been as troublefree as the all-ejector system and, of course, has provided a substantial cost savings. Construction is currently under way to convert the vacuum system of another crude still which is equipped with steam ejectors and barometric condensers to the hybrid system of steam ejectors, surface condensers, and vacuum pumps. This current project is even more financially attractive because it allows a dirty water cooling tower which serves the barometric condensers to be shut down. Providing a vacuum for crude distillation vacuum towers with this hybrid system is by no means the only application of this technique. Any vacuum system consisting of all steam ejectors would be a candidate for this hybrid system and the resulting savings in energy.

  18. Glass-bonded quasi-phase-matched gallium arsenide crystals for nonlinear wavelength conversion into the mid-infrared

    NASA Astrophysics Data System (ADS)

    Mason, Paul D.; McBrearty, Euan J.; Orchard, David A.; Harris, Michael R.; Lewis, Keith L.

    2004-12-01

    Non-linear optical (NLO) devices for wavelength conversion of laser sources into the mid-infrared waveband (such as optical parametric oscillators) require the provision of non-linear materials. Quasi-phase matched (QPM) gallium arsenide crystals represent a promising alternative NLO material (high non-linear coefficient, low-optical loss) to conventional birefringent chalcopyrite crystals for use in the mid to far-infrared. To date, several approaches have been investigated to produce QPM GaAs crystals, including diffusion and fusion wafer bonding, orientation patterned growth and total internal reflection techniques. However, these require ultra-clean processing environments, relatively high bonding temperatures or are limited in crystal aperture. We present an approach to developing QPM GaAs crystals based on bonding using an index-matched chalcogenide glass. The glass-bonding (GBGaAs) technique forms low-loss bonds at moderate temperature and has several advantages over existing approaches. In particular, the technique is tolerant to GaAs wafer thickness variations and surface defects, and has the potential to produce large-aperture crystals. The glass-bonding process involves coating individual GaAs wafers with a thin-film of glass, deposited by RF sputtering, and then bonding assembled stacks of coated wafers in a vacuum oven under carefully controlled temperature and pressure conditions to form a single composite structure. To date, GBGaAs crystals consisting of up to 40 layers have been produced and optical losses per layer of less than 0.1% have been achieved. An outline of the production process for manufacturing GBGaAs crystals will be described together with details of optical assessment procedures. The impact of glass purity, sputtering conditions and pressing conditions on optical absorption levels will be reported. Techniques to minimise optical loss in fabricated crystals will be discussed.

  19. Physical Vacuum in Superconductors

    E-print Network

    Clovis Jacinto de Matos

    2009-08-31

    Although experiments carried out by Jain et al. showed that the Cooper pairs obey the strong equivalence principle, The measurement of the Cooper pairs inertial mass by Tate et al. revealed an anomalous excess of mass. In the present paper we interpret these experimental results in the framework of an electromagnetic model of dark energy for the superconductors' vacuum. We argue that this physical vacuum is associated with a preferred frame. Ultimately from the conservation of energy for Cooper pairs we derive a model for a variable vacuum speed of light in the superconductors physical vacuum in relation with a possible breaking of the weak equivalence principle for Cooper pairs.

  20. Vacuum probe surface sampler

    NASA Technical Reports Server (NTRS)

    Zahlava, B. A. (inventor)

    1973-01-01

    A vacuum probe surface sampler is described for rapidly sampling relatively large surface areas which possess relatively light loading densities of micro-organism, drug particles or the like. A vacuum head with a hollow handle connected to a suitable vacuum source is frictionally attached to a cone assembly terminating in a flared tip adapted to be passed over the surface to be sampled. A fine mesh screen carried by the vacuum head provides support for a membrane filter which collects the microorganisms or other particles. The head assembly is easily removed from the cone assembly without contacting the cone assembly with human hands.

  1. A Road Map to Extreme High Vacuum

    SciTech Connect

    Ganapati Rao Myneni

    2007-06-20

    Ultimate pressure of a well-designed vacuum system very much depends on pretreatments, processing and the procedures [1,2]. Until now much attention has been paid in minimizing hydrogen outgassing from the chamber material. However, procedures and processing deserves further scrutiny than hitherto given so far. For reducing the gas load, high sensitivity helium leak detection techniques with sensitivities better than 1 10-12 Torr l/sec need to be used. Effects that are induced by vacuum instrumentation need to be reduced in order to obtain accurate pressure measurements. This presentation will discuss: clean assembly procedures, metal sponges for cryosorption pumping of hydrogen to extreme high vacuum, low cost surface diffusion barriers for reducing the hydrogen gas load, cascade pumping, sensitive helium leak detection techniques and the use of modified extractor and residual gas analyzers. Further, alternative back up pumping systems based on active NEGs [3] for turbo molecular pumps will be presented.

  2. Vacuum deposition and curing of liquid monomers apparatus

    DOEpatents

    Affinito, John D. (Kennewick, WA)

    1996-01-01

    The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of "standard" polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal or oxide may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.

  3. Vacuum deposition and curing of liquid monomers apparatus

    DOEpatents

    Affinito, J.D.

    1996-08-20

    The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of ``standard`` polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal or oxide may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface. 3 figs.

  4. Bonding Diamond To Metal In Electronic Circuits

    NASA Technical Reports Server (NTRS)

    Jacquez, Andrew E.

    1993-01-01

    Improved technique for bonding diamond to metal evolved from older technique of soldering or brazing and more suitable for fabrication of delicate electronic circuits. Involves diffusion bonding, developed to take advantage of electrically insulating, heat-conducting properties of diamond, using small diamond bars as supports for slow-wave transmission-line structures in traveling-wave-tube microwave amplifiers. No fillets or side coats formed because metal bonding strips not melted. Technique also used to mount such devices as transistors and diodes electrically insulated from, but thermally connected to, heat sinks.

  5. Chemical Bonds II

    ERIC Educational Resources Information Center

    Sanderson, R. T.

    1972-01-01

    The continuation of a paper discussing chemical bonding from a bond energy viewpoint, with a number of examples of single and multiple bonds. (Part I appeared in volume 1 number 3, pages 16-23, February 1972.) (AL)

  6. Tungsten diffusion in olivine

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.; Van Orman, J. A.

    2014-03-01

    Diffusion of tungsten has been characterized in synthetic forsterite and natural olivine (Fo90) under dry conditions. The source of diffusant was a mixture of magnesium tungstate and olivine powders. Experiments were prepared by sealing the source material and polished olivine under vacuum in silica glass ampoules with solid buffers to buffer at NNO or IW. Prepared capsules were annealed in 1 atm furnaces for times ranging from 45 min to several weeks, at temperatures from 1050 to 1450 C. Tungsten distributions in the olivine were profiled by Rutherford Backscattering Spectrometry (RBS). The following Arrhenius relation is obtained for W diffusion in forsterite: D=1.010-8exp(-36528 kJ mol/RT) m s Diffusivities for the synthetic forsterite and natural Fe-bearing olivine are similar, and tungsten diffusion in olivine shows little dependence on crystallographic orientation or oxygen fugacity. The slow diffusivities measured for W in olivine indicate that Hf-W ages in olivine-metal systems will close to diffusive exchange at higher temperatures than other chronometers commonly used in cosmochronology, and that tungsten isotopic signatures will be less likely to be reset by subsequent thermal events.

  7. 29 CFR 2580.412-20 - Use of existing bonds, separate bonds and additional bonding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...bonds, separate bonds and additional bonding. 2580.412-20 Section 2580...DEPARTMENT OF LABOR TEMPORARY BONDING RULES UNDER THE EMPLOYEE RETIREMENT INCOME SECURITY ACT OF 1974 TEMPORARY BONDING RULES General Bond Rules ...

  8. 29 CFR 2580.412-20 - Use of existing bonds, separate bonds and additional bonding.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...bonds, separate bonds and additional bonding. 2580.412-20 Section 2580...DEPARTMENT OF LABOR TEMPORARY BONDING RULES UNDER THE EMPLOYEE RETIREMENT INCOME SECURITY ACT OF 1974 TEMPORARY BONDING RULES General Bond Rules ...

  9. A simple flow analysis of diffuser-getter-diffuser systems

    SciTech Connect

    Klein, J. E.; Howard, D. W.

    2008-07-15

    Tritium clean-up systems typically deploy gas processing technologies between stages of palladium-silver (Pd/Ag) diffusers/permeators. The number of diffusers positioned before and after a gas clean-up process to obtain optimal system performance will vary with feed gas inert composition. A simple method to analyze optimal diffuser configuration is presented. The method assumes equilibrium across the Pd/Ag tubes and system flows are limited by diffuser vacuum pump speeds preceding or following the clean-up process. A plot of system feed as a function of inert feed gas composition for various diffuser configuration allows selection of a diffuser configuration for maximum throughput based on feed gas composition. (authors)

  10. Effect of Holding Time on Microstructure and Properties of Transient Liquid-Phase-Bonded Joints of a Single Crystal Alloy

    NASA Astrophysics Data System (ADS)

    Chai, Lu; Huang, Jihua; Hou, Jinbao; Lang, Bo; Wang, Li

    2015-06-01

    Experimental investigations have been done to verify the effects of hold time during transient liquid-phase bonding on joint microstructure and mechanical properties of a nickel-based single crystal superalloy. The superalloy was bonded at 1473-1513 K for 0.25-12 h in vacuum environment. A set of parameters, 1513 K for 10 h, was determined as the optimum bonding condition. SEM results revealed that the joint without the completion of isothermal solidification is comprised of four different distinct regions, namely, rapid solidification zone (RSZ), isothermal solidification zone (ISZ), diffusion zone, and base metal. EBSD data indicated that the ISZ across the centerline of the bond has an undifferentiated crystallographic orientation being the same as the base metal. At increasing hold times at 1513 K, RSZ and also borides would disappear and result in an improvement of mechanical properties. Mechanical property tests at elevated temperatures have been done to determine the joints' quality. High-temperature creep rupture strength (for 100 h at 1373 K) and tensile strength (at 1273 K) of the joints could both attain 90% of those of the base metal.

  11. Photon acceleration in vacuum

    E-print Network

    J. T. Mendonca; M. Marklund; P. K. Shukla; G. Brodin

    2006-08-16

    A new process associated with the nonlinear optical properties of the electromagnetic vacuum, as predicted by quantum electrodynamics, is described. This can be called photon acceleration in vacuum, and corresponds to the frequency shift that takes place when a given test photon interacts with an intense beam of background radiation.

  12. Working in a Vacuum

    ERIC Educational Resources Information Center

    Rathey, Allen

    2005-01-01

    In this article, the author discusses several myths about vacuum cleaners and offers tips on evaluating and purchasing this essential maintenance tool. These myths are: (1) Amps mean performance; (2) Everyone needs high-efficiency particulate air (HEPA): (3) Picking up a "bowling ball" shows cleaning power; (4) All vacuum bags are the same; (5)

  13. Vacuum Energy Decay

    E-print Network

    Enrique lvarez; Roberto Vidal

    2011-11-09

    The problem of the vacuum energy decay is studied through the analysis of the vacuum survival amplitude ${\\mathcal A}(z, z')$. Transition amplitudes are computed for finite time-span, $Z\\equiv z^\\prime-z$, and their {\\em late time} behavior is discussed up to first order in the coupling constant, $\\l$.

  14. Vacuuming radioactive sludge

    SciTech Connect

    2006-10-16

    Vacuuming an estimated 55 cubic yards of radioactive sludge from the floor of Hanford's K East Basin was a complicated process. Workers stood on grates suspended above the 20-foot deep basin and manipulated vacuuming equipment at the end of long poles--using underwater cameras to guide their work.

  15. Microfabricated triggered vacuum switch

    DOEpatents

    Roesler, Alexander W. (Tijeras, NM); Schare, Joshua M. (Albuquerque, NM); Bunch, Kyle (Albuquerque, NM)

    2010-05-11

    A microfabricated vacuum switch is disclosed which includes a substrate upon which an anode, cathode and trigger electrode are located. A cover is sealed over the substrate under vacuum to complete the vacuum switch. In some embodiments of the present invention, a metal cover can be used in place of the trigger electrode on the substrate. Materials used for the vacuum switch are compatible with high vacuum, relatively high temperature processing. These materials include molybdenum, niobium, copper, tungsten, aluminum and alloys thereof for the anode and cathode. Carbon in the form of graphitic carbon, a diamond-like material, or carbon nanotubes can be used in the trigger electrode. Channels can be optionally formed in the substrate to mitigate against surface breakdown.

  16. Cryogenic vacuum tight adhesive

    NASA Astrophysics Data System (ADS)

    Anashkin, O. P.; Keilin, V. E.; Patrikeev, V. M.

    1999-12-01

    A synthetic adhesive for vacuum tight joints at cryogenic temperatures has been developed. It consists of three components, the main component being epoxy silicone organic resin. The joints made with the adhesive remain vacuum tight at liquid helium temperature, including superfluid helium. It was found possible to connect different materials with the adhesive (copper and stainless steel with each other, aluminum, aluminum alloys, fiberglass, etc.). The joints withstood thermal shock tests of ten repeated sharps cooling to liquid nitrogen temperature and heating in hot water. Using the adhesive a lot of different vacuum tight low temperature joints have been made. More than fifteen years of wide application of this adhesive in vacuum tight cryogenic joints proved its high reliability. Some designs of vacuum tight cryogenic joints are presented and the technique of their manufacturing is described.

  17. Vacuum tunneling in gravity

    NASA Astrophysics Data System (ADS)

    Cho, Y. M.; Pak, D. G.

    2011-08-01

    Topologically non-trivial vacuum structures in gravity models with Cartan variables (vielbein and contortion) are considered. We study the possibility of vacuum spacetime tunneling in Einstein gravity assuming that the vielbein may play a fundamental role in quantum gravitational phenomena. It has been shown that in the case of RP3 space topology, the tunneling between non-trivial topological vacuums can be realized by means of Eguchi-Hanson gravitational instanton. In the Riemann-Cartan geometric approach to quantum gravity, the vacuum tunneling can be provided by means of contortion quantum fluctuations. We define a double self-duality condition for the contortion and give explicit self-dual configurations which can contribute to vacuum tunneling amplitude.

  18. Effect of Ti, Nb, and Ti + Nb Coatings on the Bond Strength-Structure Relationship in Al/Al2O3 Joints

    NASA Astrophysics Data System (ADS)

    Ksiazek, Marzanna; Richert, Maria; Tchorz, Aam; Boron, Lukasz

    2012-05-01

    There is a growing interest in metal-ceramic bonding for wide range of applications in electronic devices and high technology industry for fabrication of metal matrix composites and bonding of ceramic components to metals. The object of the work was to study the effect of Ti, Nb, and Ti + Nb thin films deposited by PVD method on alumina substrates on structure and bond strength properties of Al/Al2O3 joints. The joints were fabricated using the results of a wetting experiment and the sessile drop method at a temperature of 1223 K in a vacuum of 0.2 MPa for 30 min of contact. The structure of the metal/ceramic interface was investigated using scanning electron microscopy. The elemental distribution at the metal-ceramic interface was analyzed using energy dispersive x-ray spectroscopy. Transmission electron microscopy was also used to investigate some aspects of the metal/ceramic interface. The bond strength properties of joints were measured using shear test. The shear strength results demonstrated significant improvement of shear strength of Al/Al2O3 joints due to the application of Ti + Nb thin film on alumina substrate. Microstructural investigations of the interface indicated that Al/coating/Al2O3 couples have diffusion transition interface which influences the strengthening of these joints. A conclusion could be drawn that the presence of thin film layers changes the character of interaction and leads to the formation of new reaction products in the bonding layer.

  19. diffusion-fundamentals The Open-Access Journal for the Basic Principles of Diffusion Theory, Experiment and Application

    E-print Network

    Schuck, Gtz

    1010 H+ -Diffusion, symmetr. H-bond (TD) ~0.3 4 1009 The method allowing us to isolate specificdiffusion-fundamentals The Open-Access Journal for the Basic Principles of Diffusion Theory, Experiment and Application www.diffusion-fundamentals.org, ISSN 1862-4138; 2005-2010 Diffusion Fundamentals

  20. Housing protects laser in vacuum

    NASA Technical Reports Server (NTRS)

    Canali, V. G.

    1978-01-01

    Airtight housing encloses laser for easy alinement and operation in high-vacuum chamber. Beam is transmitted through window into vacuum chamber. Flexible line runs through vacuum chamber to outside, maintaining laser enclosure at atmospheric pressure.

  1. Compact waves in microscopic nonlinear diffusion.

    PubMed

    Hurtado, P I; Krapivsky, P L

    2012-06-01

    We analyze the spread of a localized peak of energy into vacuum for nonlinear diffusive processes. In contrast with standard diffusion, the nonlinearity results in a compact wave with a sharp front separating the perturbed region from vacuum. In d spatial dimensions, the front advances as t^{1/(2+da)} according to hydrodynamics, with a the nonlinearity exponent. We show that fluctuations in the front position grow as ?t^{?}?, where ?<1/2+da is an exponent that we measure and ? is a random variable whose distribution we characterize. Fluctuating corrections to hydrodynamic profiles give rise to an excess penetration into vacuum, revealing scaling behaviors and robust features. We also examine the discharge of a nonlinear rarefaction wave into vacuum. Our results suggest the existence of universal scaling behaviors at the fluctuating level in nonlinear diffusion. PMID:23005044

  2. The quantum vacuum

    E-print Network

    G. S. Paraoanu

    2014-12-12

    The vacuum is the lowest energy state of a field in a certain region of space. This definition implies that no particles can be present in the vacuum state. In classical physics, the only features of vacuum are those of its geometry. For example, in the general theory of relativity the geometry is a dynamical structure that guides the motion of matter, and, in turn, it is bent and curved by the presence of matter. Other than this, the classical vacuum is a structure void of any physical properties, since classically properties are strictly associated with physical objects such as particles and finite-amplitude fields. The situation is very different in quantum physics. As I will show in this paper, the difference stems from the fact that in quantum physics the properties are not strictly tied to objects. We know for example that physical properties come into existence - as values of observables - only when the object is measured. Thus, quantum physics allows us to detach properties from objects. This has consequences: one does not need pre-existing real objects to create actual properties, and indeed under certain perturbations the quantum vacuum produces observable effects such as energy shifts and creation of particles. An open question is if by necessity the vacuum comes with an embedded geometry, and if it is possible to construct viable physical theories in which geometry is detached from the vacuum.

  3. Evading death by vacuum

    E-print Network

    A. Barroso; P. M. Ferreira; I. P. Ivanov; Rui Santos; Joo P. Silva

    2013-03-15

    In the Standard Model, the Higgs potential allows only one minimum at tree-level. But the open possibility that there might be two scalar doublets enriches the vacuum structure, allowing for the risk that we might now be in a metastable state, which we dub the panic vacuum. Current experiments at the LHC are probing the Higgs particle predicted as a result of the spontaneous symmetry breaking. Remarkably, in the two Higgs model with a softly broken U(1) symmetry, the LHC experiments already preclude panic vacuum solutions.

  4. Thermophoretic vacuum wand

    DOEpatents

    Klebanoff, Leonard Elliott (San Ramon, CA); Rader, Daniel John (Lafayette, CA)

    2001-01-01

    A thermophoretic vacuum wand that is particularly suited for transporting articles in a cleanroom environment so that potential particle contaminants in the air do not become adhered to the surface of the article is described. The wand includes a housing having a platen with a front surface with suction port(s) through the platen; a vacuum source for applying a negative pressure to the suction port(s); and heating device for the object. Heating the article when it is held by the vacuum wand affords thermophoretic protection that effectively prevents particles in the air from depositing onto the article.

  5. Thermophoretic vacuum wand

    DOEpatents

    Klebanoff, Leonard Elliott (San Ramon, CA); Rader, Daniel John (Lafayette, CA)

    2000-01-01

    A thermophoretic vacuum wand that is particularly suited for transporting articles in a cleanroom environment so that potential particle contaminants in the air do not become adhered to the surface of the article is described. The wand includes a housing having a platen with a front surface with suction port(s) through the platen; a vacuum source for applying a negative pressure to the suction port(s); and heating device for the object. Heating the article when it is held by the vacuum wand affords thermophoretic protection that effectively prevents particles in the air from depositing onto the article.

  6. Vacuum-driven Metamorphosis

    E-print Network

    Parker, L; Parker, Leonard; Raval, Alpan

    1999-01-01

    We show that nonperturbative vacuum effects can produce a vacuum-driven transition from a matter-dominated universe to one in which the effective equation of state is that of radiation plus cosmological constant. The actual material content of the universe after the transition remains that of non-relativistic matter. This metamorphosis of the equation of state can be traced to nonperturbative vacuum effects that cause the scalar curvature to remain nearly constant at a well-defined value after the transition, and is responsible for the observed acceleration of the recent expansion of the universe.

  7. Vacuum-driven Metamorphosis

    E-print Network

    Leonard Parker; Alpan Raval

    1999-08-26

    We show that nonperturbative vacuum effects can produce a vacuum-driven transition from a matter-dominated universe to one in which the effective equation of state is that of radiation plus cosmological constant. The actual material content of the universe after the transition remains that of non-relativistic matter. This metamorphosis of the equation of state can be traced to nonperturbative vacuum effects that cause the scalar curvature to remain nearly constant at a well-defined value after the transition, and is responsible for the observed acceleration of the recent expansion of the universe.

  8. Hydrogen bond dynamics in bulk alcohols

    SciTech Connect

    Shinokita, Keisuke; Cunha, Ana V.; Jansen, Thomas L. C.; Pshenichnikov, Maxim S.

    2015-06-07

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamicsquantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquidalcoholshas attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups.

  9. Hydrogen bond dynamics in bulk alcohols

    NASA Astrophysics Data System (ADS)

    Shinokita, Keisuke; Cunha, Ana V.; Jansen, Thomas L. C.; Pshenichnikov, Maxim S.

    2015-06-01

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamics-quantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquidalcoholshas attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups.

  10. Hydrogen bond dynamics in bulk alcohols.

    PubMed

    Shinokita, Keisuke; Cunha, Ana V; Jansen, Thomas L C; Pshenichnikov, Maxim S

    2015-06-01

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamics-quantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquid--alcohols--has attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups. PMID:26049470

  11. Bonding soft rubber or plasticized elastomers to metal

    NASA Technical Reports Server (NTRS)

    Clemons, J. M.; Ledbetter, F. E., III; White, W. T.

    1980-01-01

    Approach using bond-cover coat of unplasticized rubber between soft rubber and adhesive eliminates diffusion problem. Approach is useful in making improved seals in automobile engines, industrial and public plumbing, and in other areas using soft-rubber-to-metal bonds. Seals and gaskets made this way would not have to be replaced very often, reducing cost of maintenance.

  12. Cation Diffusion in Fluorapatite

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.

    2002-12-01

    Diffusion of manganese and uranium has been characterized in natural and synthetic fluorapatite under dry conditions. The source of diffusant for Mn experiments were mixtures of ground synthetic or natural fluorapatite and MnO powder, heated in sealed silica glass capsules prior to diffusion anneals. Mn experiments were run by sealing source and apatite in silica glass capsules under vacuum, and annealing capsules in 1 atm furnaces for times ranging from thirty minutes to a few months, at temperatures from 650 to 1050C. The Mn distributions in the apatite were profiled by Rutherford Backscattering Spectrometry (RBS). The following Arrhenius relation is obtained for Mn diffusion in natural Durango fluorapatite, for diffusion parallel to c: DMn = 5.4x10-7exp(-288 kJ mol-1/RT)m2sec-1. Mn diffusion normal to c appears to be similar to diffusion parallel to c, and diffusivities in natural and synthetic fluorapatite are the same within experimental uncertainties. Uranium diffusion experiments were run with a U-doped microcrystalline apatite source, made through solid-state reaction of UO2, CaF2 and Ca3(PO4)2 under buffered (NNO) conditions. The source and apatite specimens were loaded into Pt capsules, then sealed under vacuum in silica glass capsules with a solid buffer (NNO). Preliminary results over the temperature range 1150-1250C yield the following Arrhenius relation: DU = 1.4x10-2exp(-511 kJ mol-1/RT)m2sec-1. Diffusivities of Mn are comparable to those of Sr (Cherniak and Ryerson, 1993), and slightly slower than Pb (Cherniak et al., 1991) in apatite. The ionic radii for divalent Mn, Sr, and Pb are 0.90, 1.21 and 1.23 , respectively, in 7-fold coordination (Shannon, 1976), and 1.00, 1.31, and 1.35 in 9-fold. The similar diffusion rates for Sr and Mn, despite their significant differences in cationic radii, suggest that cation size does not exert strong influence on diffusion of divalent cations in apatite, a finding consistent with that observed for the trivalent REE. Cation charge, however, does seem to more significantly influence diffusivities in apatite. U diffusion is about 4 orders of magnitude slower than Mn diffusion, and about 2 orders of magnitude slower than REE diffusion (Cherniak, 2000). Further, these results suggest that the activation energy for U diffusion is significantly higher than those for divalent cations or trivalent REE. Cherniak et al. (1991) GCA 55, 1663-1673; Cherniak and Ryerson (1993) GCA 57, 4653-4662; Cherniak (2000) GCA 64, 3871-3885; Shannon (1976) Acta Cryst. A32, 751-767.

  13. Collapse of vacuum bubbles in a vacuum

    SciTech Connect

    Ng, Kin-Wang; Wang, Shang-Yung

    2011-02-15

    We revisit the dynamics of a false vacuum bubble in a background de Sitter spacetime. We find that there exists a large parameter space that allows the bubble to collapse into a black hole or to form a wormhole. This may have interesting implications for the creation of a baby universe in the laboratory, the string landscape where the bubble nucleation takes place among a plenitude of metastable vacua, and the inflationary physics.

  14. Adhesive bonding between polyamide and steel

    NASA Astrophysics Data System (ADS)

    Vettegren', V. I.; Bashkarev, A. Ya.; Savitskii, A. V.; Shcherbakov, I. P.; Sytov, V. V.; Mamalimov, R. I.

    2015-08-01

    Fluorescence and IR absorption spectra are taken of coatings obtained by applying polyamide 6 powder on a steel substrate heated above the polymer melting point and subsequently cooling to room temperature. It follows from the coating spectra that the energy of a ?* ? n transition in the CO bonds of polyamide decreases. Simultaneously, the maximum of a band assigned to the deformation vibrations of NH bonds shifts toward longer wavelengths. These effects are explained by the formation of coordination bonds between Fe2+ ions having diffused from the steel into the polymer and nitrogen atoms entering into polyamide 6 molecules. As a result, a coordination-compound-saturated diffusion layer up to 100 m thick arises near the steel surface. Coordination compounds squeeze the framework of the polyamide 6 molecule roughly by 0.06%. Eventually, a polyamide layer that is stronger than the surroundings appears at the polyamide 6steel interface.

  15. Bonded ultrasonic transducer and method for making

    DOEpatents

    Dixon, Raymond D. (Los Alamos, NM); Roe, Lawrence H. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1995-01-01

    An ultrasonic transducer is formed as a diffusion bonded assembly of piezoelectric crystal, backing material, and, optionally, a ceramic wear surface. The mating surfaces of each component are silver films that are diffusion bonded together under the application of pressure and heat. Each mating surface may also be coated with a reactive metal, such as hafnium, to increase the adhesion of the silver films to the component surfaces. Only thin silver films are deposited, e.g., a thickness of about 0.00635 mm, to form a substantially non-compliant bond between surfaces. The resulting transducer assembly is substantially free of self-resonances over normal operating ranges for taking resonant ultrasound measurements.

  16. Bonded ultrasonic transducer and method for making

    DOEpatents

    Dixon, R.D.; Roe, L.H.; Migliori, A.

    1995-11-14

    An ultrasonic transducer is formed as a diffusion bonded assembly of piezoelectric crystal, backing material, and, optionally, a ceramic wear surface. The mating surfaces of each component are silver films that are diffusion bonded together under the application of pressure and heat. Each mating surface may also be coated with a reactive metal, such as hafnium, to increase the adhesion of the silver films to the component surfaces. Only thin silver films are deposited, e.g., a thickness of about 0.00635 mm, to form a substantially non-compliant bond between surfaces. The resulting transducer assembly is substantially free of self-resonances over normal operating ranges for taking resonant ultrasound measurements. 12 figs.

  17. Mathematical Aspects of Vacuum Energy on Quantum Graphs

    E-print Network

    G. Berkolaiko; J. M. Harrison; J. H. Wilson

    2008-06-13

    We use quantum graphs as a model to study various mathematical aspects of the vacuum energy, such as convergence of periodic path expansions, consistency among different methods (trace formulae versus method of images) and the possible connection with the underlying classical dynamics. We derive an expansion for the vacuum energy in terms of periodic paths on the graph and prove its convergence and smooth dependence on the bond lengths of the graph. For an important special case of graphs with equal bond lengths, we derive a simpler explicit formula. The main results are derived using the trace formula. We also discuss an alternative approach using the method of images and prove that the results are consistent. This may have important consequences for other systems, since the method of images, unlike the trace formula, includes a sum over special ``bounce paths''. We succeed in showing that in our model bounce paths do not contribute to the vacuum energy. Finally, we discuss the proposed possible link between the magnitude of the vacuum energy and the type (chaotic vs. integrable) of the underlying classical dynamics. Within a random matrix model we calculate the variance of the vacuum energy over several ensembles and find evidence that the level repulsion leads to suppression of the vacuum energy.

  18. Quantum vacuum fluctuations

    E-print Network

    Serge Reynaud; Astrid Lambrecht; Cyriaque Genet; Marc-Thierry Jaekel

    2001-06-19

    The existence of irreducible field fluctuations in vacuum is an important prediction of quantum theory. These fluctuations have many observable consequences, like the Casimir effect which is now measured with good accuracy and agreement with theory, provided that the latter accounts for differences between real experiments and the ideal situation considered by Casimir. But the vacuum energy density calculated by adding field mode energies is much larger than the density observed around us through gravitational phenomena. This ``vacuum catastrophe'' is one of the unsolved problems at the interface between quantum theory on one hand, inertial and gravitational phenomena on the other hand. It is however possible to put properly formulated questions in the vicinity of this paradox. These questions are directly connected to observable effects bearing upon the principle of relativity of motion in quantum vacuum.

  19. Welding space vacuum technology

    NASA Technical Reports Server (NTRS)

    Johnson, R. Barry

    1991-01-01

    The objective was to assist the EH 42 Division in putting together a vacuum system that could attain the desired pressure and be large enough to accommodate the gas-metal arc (GMA) welding fixture apparatus. A major accomplishment was the design and fabrication of the controller/annunciator for the 4' by 8' system. It contains many safety features such as thermocouple set point relays that will only allow inlet and exit gas and vacuum valves to be operated at pre-selected system pressures, and a fail safe mode for power interruptions and operator mistakes. It is felt that significant progress was made in this research effort to weld in a vacuum environment. With continued efforts to increase the pump speeds for vacuum chambers and further studies on weld fixtures and gas inlet pressures, the NASA program will be successful.

  20. Vacuum Camera Cooler

    NASA Technical Reports Server (NTRS)

    Laugen, Geoffrey A.

    2011-01-01

    Acquiring cheap, moving video was impossible in a vacuum environment, due to camera overheating. This overheating is brought on by the lack of cooling media in vacuum. A water-jacketed camera cooler enclosure machined and assembled from copper plate and tube has been developed. The camera cooler (see figure) is cup-shaped and cooled by circulating water or nitrogen gas through copper tubing. The camera, a store-bought "spy type," is not designed to work in a vacuum. With some modifications the unit can be thermally connected when mounted in the cup portion of the camera cooler. The thermal conductivity is provided by copper tape between parts of the camera and the cooled enclosure. During initial testing of the demonstration unit, the camera cooler kept the CPU (central processing unit) of this video camera at operating temperature. This development allowed video recording of an in-progress test, within a vacuum environment.

  1. Cosmology of gravitational vacuum

    E-print Network

    V. Burdyuzha; G. Vereshkov; J. Pacheco

    2007-12-29

    Production of gravitational vacuum defects and their contribution to the energy density of our Universe are discussed. These topological microstructures (defects) could be produced in the result of creation of the Universe from "nothing" when a gravitational vacuum condensate has appeared. They must be isotropically distributed over the isotropic expanding Universe. After Universe inflation these microdefects are smoothed, stretched and broken up. A part of them could survive and now they are perceived as the structures of Lambda-term and an unclustered dark matter. It is shown that the parametrization noninvariance of the Wheeler-De Witt equation can be used to describe phenomenologically vacuum topological defects of different dimensions (worm-holes, micromembranes, microstrings and monopoles). The mathematical illustration of these processes may be the spontaneous breaking of the local Lorentz-invariance of the quasi-classical equations of gravity. Probably the gravitational vacuum condensate has fixed time in our Universe. Besides, 3-dimensional topological defects renormalize Lambda-term.

  2. Vacuum Vessel Remote Handling

    E-print Network

    , seismic, etc.) Preliminary FEA analysis performed - Linear, static stress analysis - Linear, transient Vacuum Vessel - Design requirements - Design concept and features - Analysis to date - Status and summary Replacement Time Estimates - Balance of RH Equipment Design and analysis are consistent with pre

  3. Slippery diffusion-limited aggregation Clair R. Seager1,

    E-print Network

    Weeks, Eric R.

    can translationally diffuse over the surface of the other. By contrast, shear-rigid bonding createsSlippery diffusion-limited aggregation Clair R. Seager1, * and Thomas G. Mason2, 1 Department attractions in liquids form irreversible "slippery" bonds that are not shear-rigid. Through event

  4. TFTR diagnostic vacuum controller

    SciTech Connect

    Olsen, D.; Persons, R.

    1981-01-01

    The TFTR diagnostic vacuum controller (DVC) provides in conjunction with the Central Instrumentation Control and Data Acquisition System (CICADA), control and monitoring for the pumps, valves and gauges associated with each individual diagnostic vacuum system. There will be approximately 50 systems on TFTR. Two standard versions of the controller (A and B) wil be provided in order to meet the requirements of two diagnostic manifold arrangements. All pump and valve sequencing, as well as protection features, will be implemented by the controller.

  5. Vacuum self-magnetization?

    SciTech Connect

    Perez Rojas, H.; Rodriguez Querts, E.

    2006-06-19

    We study vacuum properties in a strong magnetic field as the zero temperature and zero density limit of quantum statistics. For charged vector bosons (W bosons) the vacuum energy density diverges for B > B{sub c} = m{sub w}{sup 2}/e, leading to vacuum instability. A logarithmic divergence of vacuum magnetization is found for B = Bc, which suggests that if the magnetic field is large enough, it is self-consistently maintained, and this mechanism actually prevents B from reaching the critical value Bc. For virtual neutral vector bosons bearing an anomalous magnetic moment, the instability of the ground state for B > B{sub c}{sup '} = m{sub n}{sup 2}/q also leads to the vacuum energy density divergence for fields B > B{sub c}{sup '} and to the magnetization divergence for B B{sub c}{sup '}. The possibility of virtual electron-positron pairs bosonization in strong magnetic field and the applicability of the neutral bosons model to describe the virtual positronium behavior in a magnetic field are discussed. We conjecture that this could lead to vacuum self-magnetization in QED.

  6. Hydroxide-catalyzed bonding

    NASA Technical Reports Server (NTRS)

    Gwo, Dz-Hung (Inventor)

    2003-01-01

    A method of bonding substrates by hydroxide-catalyzed hydration/dehydration involves applying a bonding material to at least one surface to be bonded, and placing the at least one surface sufficiently close to another surface such that a bonding interface is formed between them. A bonding material of the invention comprises a source of hydroxide ions, and may optionally include a silicate component, a particulate filling material, and a property-modifying component. Bonding methods of the invention reliably and reproducibly provide bonds which are strong and precise, and which may be tailored according to a wide range of possible applications. Possible applications for bonding materials of the invention include: forming composite materials, coating substrates, forming laminate structures, assembly of precision optical components, and preparing objects of defined geometry and composition. Bonding materials and methods of preparing the same are also disclosed.

  7. VACUUM SYSTEMS PHYSICS 359E

    E-print Network

    Landstreet, John D.

    VACUUM SYSTEMS PHYSICS 359E September 28, 2004 INTRODUCTION In this laboratory, you will familiarize yourself with the principles of simple vacuum systems and their use. You will measure the pumping.) VACUUM SYSTEMS AND COMPONENTS In one way or another vacuum techniques appear in most fields of modern

  8. Reliable aluminum contact formation by electrostatic bonding

    NASA Astrophysics Data System (ADS)

    Krpti, T.; Pap, A. E.; Radnczi, Gy; Beke, B.; Brsony, I.; Frjes, P.

    2015-07-01

    The paper presents a detailed study of a reliable method developed for aluminum fusion wafer bonding assisted by the electrostatic force evolving during the anodic bonding process. The IC-compatible procedure described allows the parallel formation of electrical and mechanical contacts, facilitating a reliable packaging of electromechanical systems with backside electrical contacts. This fusion bonding method supports the fabrication of complex microelectromechanical systems (MEMS) and micro-opto-electromechanical systems (MOEMS) structures with enhanced temperature stability, which is crucial in mechanical sensor applications such as pressure or force sensors. Due to the applied electrical potential of??-1000?V the Al metal layers are compressed by electrostatic force, and at the bonding temperature of 450?C intermetallic diffusion causes aluminum ions to migrate between metal layers.

  9. Vacuum energy of Schrdinger operators on metric graphs

    E-print Network

    J. M. Harrison; K. Kirsten

    2012-01-18

    We present an integral formulation of the vacuum energy of Schr\\"odinger operators on finite metric graphs. Local vertex matching conditions on the graph are classified according to the general scheme of Kostrykin and Schrader. While the vacuum energy of the graph can contain finite ambiguities the Casimir force on a bond with compactly supported potential is well defined. The vacuum energy is determined from the zeta function of the graph Schr\\"odinger operator which is derived from an appropriate secular equation via the argument principle. A quantum graph has an associated probabilistic classical dynamics which is generically both ergodic and mixing. The results therefore present an analytic formulation of the vacuum energy of this quasi-one-dimensional quantum system which is classically chaotic.

  10. ISABELLE vacuum systems

    SciTech Connect

    Halama, H J

    1980-01-01

    The Intersecting Storage Accelerator (ISABELLE) consists of two rings having a circumference of 3.8 km each. In these rings superconducting magnets, held at 4 K, bend and focus the proton beam which is accelerated up to 400 GeV. Due to very different pressure requirements, ISABELLE has two completely independent vacuum systems. One, which operates at 1 x 10/sup -11/ Torr, provides a very clean environment for the circulating proton beam. Here only ion and titanium sublimation pumps are used to provide the vacuum. The other system maintains superconducting magnet vessels at a pressure below 1 x 10/sup -4/ Torr, since at this pressure the gas conduction becomes negligible. In this so-called insulating vacuum system, turbomolecular pumps pump the inadvertent small helium leaks. Other gases are cryocondensed on the cold surfaces of the cryogenic system. The basic element of ISABELLE known as Full Cell containing 45 meters of beam tube, 8 pumping stations, 8 superconducting magnets and complete instrumentation has been constructed, leak checked and tested. All design parameters have been achieved in both vacuum systems. The two vacuum systems are described with particular emphasis on the influence of superconducting magnets in the selection of materials and UHV components.

  11. Nanocrystal-enabled solid state bonding.

    SciTech Connect

    San Diego State University, San Diego, CA; Puskar, Joseph David; Tikare, Veena; Garcia Cardona, Cristina; Reece, Mark; Brewer, Luke N.; Holm, Elizabeth Ann

    2010-10-01

    In this project, we performed a preliminary set of sintering experiments to examine nanocrystal-enabled diffusion bonding (NEDB) in Ag-on-Ag and Cu-on-Cu using Ag nanoparticles. The experimental test matrix included the effects of material system, temperature, pressure, and particle size. The nanoparticle compacts were bonded between plates using a customized hot press, tested in shear, and examined post mortem using microscopy techniques. NEDB was found to be a feasible mechanism for low-temperature, low-pressure, solid-state bonding of like materials, creating bonded interfaces that were able to support substantial loads. The maximum supported shear strength varied substantially within sample cohorts due to variation in bonded area; however, systematic variation with fabrication conditions was also observed. Mesoscale sintering simulations were performed in order to understand whether sintering models can aid in understanding the NEDB process. A pressure-assisted sintering model was incorporated into the SPPARKS kinetic Monte Carlo sintering code. Results reproduce most of the qualitative behavior observed in experiments, indicating that simulation can augment experiments during the development of the NEDB process. Because NEDB offers a promising route to low-temperature, low-pressure, solid-state bonding, we recommend further research and development with a goal of devising new NEDB bonding processes to support Sandia's customers.

  12. Vacuum Packaging of MEMS With Multiple Internal Seal Rings

    NASA Technical Reports Server (NTRS)

    Hayworth, Ken; Yee, Karl; Shcheglov, Kirill; Bae, Youngsam; Wiberg, Dean; Peay, Chris; Challoner, Anthony

    2008-01-01

    A proposed method of design and fabrication of vacuum-packaged microelectromechanical systems (MEMS) and of individual microelectromechanical devices involves the use of multiple internal seal rings (MISRs) in conjunction with vias (through holes plated with metal for electrical contacts). The proposed method is compatible with mass production in a wafer-level fabrication process, in which the dozens of MEMS or individual microelectromechanical devices on a typical wafer are simultaneously vacuum packaged by bonding a capping wafer before the devices are singulated (cut apart by use of a dicing saw). In addition to being compatible with mass production, the proposed method would eliminate the need for some complex and expensive production steps and would yield more reliable vacuum seals. Conventionally, each MEMS or individual microelectromechanical device is fabricated as one of many identical units on a device wafer. Vacuum packaging is accomplished by bonding the device wafer to a capping wafer with metal seal rings (one ring surrounding each unit) that have been formed on the capping wafer. The electrical leads of each unit are laid out on what would otherwise be a flat surface of the device wafer, against which the seal ring is to be pressed for sealing. The resulting pattern of metal lines and their insulating oxide coverings presents a very rough and uneven surface, upon which it is difficult to pattern the sealing metal. Consequently, the seal is prone to leakage unless additional costly and complex planarization steps are performed before patterning the seal ring and bonding the wafers.

  13. Essays on corporate bonds

    E-print Network

    Bao, Jack (Jack C.)

    2009-01-01

    This thesis consists of three empirical essays on corporate bonds, examining the role of both credit risk and liquidity. In the first chapter, I test the ability of structural models of default to price corporate bonds in ...

  14. Particle/substrate interaction in the cold-spray bonding process

    E-print Network

    Grujicic, Mica

    , atomic inter-diffusion is not expected to play a significant role in particle/substrate bonding. This canC2 148 9 Particle/substrate interaction in the cold-spray bonding process M. GRUJICIC, Clemson in this chapter to the problem of particle/substrate interactions and bonding during cold spray. The actual

  15. Improving Vacuum Cleaners

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Under a Space Act Agreement between the Kirby company and Lewis Research Center, NASA technology was applied to a commercial vacuum cleaner product line. Kirby engineers were interested in advanced operational concepts, such as particle flow behavior and vibration, critical factors to improve vacuum cleaner performance. An evaluation of the company 1994 home care system, the Kirby G4, led to the refinement of the new G5 and future models. Under the cooperative agreement, Kirby had access to Lewis' holography equipment, which added insight into how long a vacuum cleaner fan would perform, as well as advanced computer software that can simulate the flow of air through fans. The collaboration resulted in several successes including fan blade redesign and continuing dialogue on how to improve air-flow traits in various nozzle designs.

  16. Diffusely Reflecting Paints Containing TFE

    NASA Technical Reports Server (NTRS)

    Shai, M. C.; Schutt, J. B.

    1985-01-01

    Highly reflective, diffused coatings developed by incorporating polytetrafluoroethylene (TFE) pigment with alcohol-soluble binders. Alcohol and binder mixed together in blender before adding TFE. TFE preferably outgassed in mechanical-pump vacuum for typical interval of 4 hours before adding to liquid. Like wetting agent, vacuum treatment helps to prevent clumping of TFE and eases dispersion throughout mixture. Mixture blended for 3 to 5 minutes before used. Coatings useful on reflectance-standard surfaces for calibrating radiometric instruments in both laboratory and field. Paints washable and usable as optical reference surfaces.

  17. Partial Transient Liquid-Phase Bonding, Part I: A Novel Selection Procedure for Determining Ideal Interlayer Combinations, Validated Against Al2O3 PTLP Bonding Experience

    NASA Astrophysics Data System (ADS)

    Cook, Grant O.; Sorensen, Carl D.

    2013-12-01

    Partial transient liquid-phase (PTLP) bonding is a bonding process that can bond hard-to-join materials, such as ceramics. The process uses a multi-layer interlayer composed of a thick refractory core and thin diffusant layers on each side. Upon heating, the diffusant material melts, and diffusion occurs until the liquid isothermally solidifies. Selecting interlayer materials is a key problem in producing strong, reliable PTLP bonds; materials are usually selected empirically or system by system. This article presents a novel selection procedure that provides a generalized, comprehensive, first-principles-based approach. Components of the selection procedure are linked directly to key characteristics of PTLP bonding. A filtering routine that provides structure for the selection procedure is summarized in this article and detailed in a companion article. Specific capabilities of the routine, such as non-symmetric bonds, add to its effectiveness in identifying additional PTLP bond candidates. By way of example, output from the selection procedure, in conjunction with sessile drop data, is used to analyze all Al2O3 PTLP bonds in the current literature. All analyzed bonds are included in various outputs from the selection procedure, validating its comprehensiveness. Also, Al2O3 PTLP bonds are analyzed as a whole, leading to the identification of important trends that result in increased bond strength. Finally, additional interlayer combinations for PTLP bonding of Al2O3 are presented based on output from the selection procedure and existing sessile drop data.

  18. Electrostatic Levitator Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Optical ports ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (beam passes through the window at left), positioning lasers (one port is at center), and lamps to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  19. Acrylic mechanical bond tests

    SciTech Connect

    Wouters, J.M.; Doe, P.J.

    1991-02-01

    The tensile strength of bonded acrylic is tested as a function of bond joint thickness. 0.125 in. thick bond joints were found to posses the maximum strength while the acceptable range of joints varied from 0.063 in. to almost 0.25 in. Such joints are used in the Sudbury Neutrino Observatory.

  20. Semipermanent sealing of leaks in high vacuum systems

    NASA Technical Reports Server (NTRS)

    Christian, J. D.; Gilbreath, W. P.

    1974-01-01

    Silicone-rubber adhesive is applied externally to seal hair-line cracks in sections of high vacuum system while system is partially evacuated. No pretreatment of surface is required since adhesive will be drawn into crack while diffusion or ion pump is off.

  1. Grief and Elective Abortion: Breaking the Emotional Bond?

    ERIC Educational Resources Information Center

    Peppers, Larry G.

    1988-01-01

    Used maternal-infant bonding as theoretical framework to examine grief and elective abortion in 80 women who terminated their pregnancies either by vacuum aspiration, dilitation and evacuation, or intrauterine induction. Found grief associated with elective abortion to be symptomatically similar to grief experienced following involuntary

  2. Bonding of reinforced Teflon to metals

    NASA Technical Reports Server (NTRS)

    Laiacona, F. P. (inventor)

    1971-01-01

    Reinforced FEP Teflon composite material is bonded to a metal substrate by applying a thin layer of copper on the metal surface and disposing irregularly shaped copper particles on the coated surface. The reinforced Teflon is then assembled in contact with the particles, and the assembly is heated under pressure at an elevated temperature below the melting point of the Teflon. A diffusion bond stronger than the reinforced Teflon component is produced, thus enabling the fabrication of self-lubricating bodies with relatively high strength.

  3. Diffusion of highly charged cations in olivine

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.; Watson, E. B.; Liang, Y.

    2012-12-01

    Diffusion of tungsten, titanium and phosphorus have been measured in natural iron-bearing olivine (~Fo90) and synthetic forsterite. Experiments were run under buffered conditions (with iron-wustite or Ni-NiO buffers) in 1-atm furnaces. The sources of diffusant for experiments were MgWO4 for tungsten diffusion, Mg2TiO4 for Ti diffusion, and AlPO4 for P diffusion; in all cases these compounds were pre-reacted at high temperature with Mg2SiO4 or Fe-bearing olivine prior to diffusion anneals. Samples were placed with the source materials in noble metal or silica capsules, which were sealed under vacuum in silica glass ampoules with solid buffers. Rutherford backscattering spectrometry (RBS) was used to measure depth profiles for all sets of experiments; measurements of P were also made with Nuclear Reaction Analysis using the 31P(?,p)34S reaction. These new data suggest marked differences among diffusivities of these cations, with titanium diffusion faster than diffusion of tungsten, but slower than diffusion of phosphorus over the conditions investigated. Diffusivities of all of these elements appear significantly slower than those of divalent cations in olivine. These results will be discussed in context with extant diffusion data for major, trace and minor elements in olivine. The effects of oxygen fugacity and olivine composition on diffusion, and potential implications for diffusion mechanisms will also be considered.

  4. Prospective bonding applications

    NASA Astrophysics Data System (ADS)

    Ancenay, H.; Benazet, D.

    1981-07-01

    Adhesive bonding in industry and in the laboratory is surveyed and prospects for its wider utilization are assessed. The economic impact of bonding technology on industry is discussed. Research is reviewed, centering on the development of nondestructive testing and inspection techniques. Traditional (wood) as well as new materials susceptible to bonding are considered. Applications in construction and civil engineering, in aeronautics, and in the automobile industry are covered. The use of glues in mechanical constructions, in assembling cylindrical parts, and in metal-metal bonding are examined. Hybrid assembling and bonding of composite materials are included.

  5. Chemical Bonding, Interfaces and Defects in Hafnium Oxide/Germanium Oxynitride Gate Stacks on Ge (100)

    SciTech Connect

    Oshima, Yasuhiro; Sun, Yun; Kuzum, Duygu; Sugawara, Takuya; Saraswat, Krishna C.; Pianetta, Piero; McIntyre, Paul C.; /Stanford U., Materials Sci. Dept.

    2008-10-31

    Correlations among interface properties and chemical bonding characteristics in HfO{sub 2}/GeO{sub x}N{sub y}/Ge MIS stacks were investigated using in-situ remote nitridation of the Ge (100) surface prior to HfO{sub 2} atomic layer deposition (ALD). Ultra thin ({approx}1.1 nm), thermally stable and aqueous etch-resistant GeO{sub x}N{sub y} interfaces layers that exhibited Ge core level photoelectron spectra (PES) similar to stoichiometric Ge{sub 3}N{sub 4} were synthesized. To evaluate GeO{sub x}N{sub y}/Ge interface defects, the density of interface states (D{sub it}) was extracted by the conductance method across the band gap. Forming gas annealed (FGA) samples exhibited substantially lower D{sub it} ({approx} 1 x 10{sup 12} cm{sup -2} eV{sup -1}) than did high vacuum annealed (HVA) and inert gas anneal (IGA) samples ({approx} 1x 10{sup 13} cm{sup -2} eV{sup -1}). Germanium core level photoelectron spectra from similar FGA-treated samples detected out-diffusion of germanium oxide to the HfO{sub 2} film surface and apparent modification of chemical bonding at the GeO{sub x}N{sub y}/Ge interface, which is related to the reduced D{sub it}.

  6. The quantum vacuum

    E-print Network

    Paraoanu, G S

    2014-01-01

    The vacuum is the lowest energy state of a field in a certain region of space. This definition implies that no particles can be present in the vacuum state. In classical physics, the only features of vacuum are those of its geometry. For example, in the general theory of relativity the geometry is a dynamical structure that guides the motion of matter, and, in turn, it is bent and curved by the presence of matter. Other than this, the classical vacuum is a structure void of any physical properties, since classically properties are strictly associated with physical objects such as particles and finite-amplitude fields. The situation is very different in quantum physics. As I will show in this paper, the difference stems form the fact that in quantum physics the properties are not strictly tied to objects. We know for example that physical properties come into existence - as values of observables - only when the object is measured. Thus, quantum physics allows us to detach properties from objects. This has cons...

  7. The vacuum conservation theorem

    E-print Network

    E. Minguzzi

    2015-02-28

    A version of the vacuum conservation theorem is proved which does not assume the existence of a time function nor demands stronger properties than the dominant energy condition. However, it is shown that a stronger stable version plays a role in the study of compact Cauchy horizons.

  8. Langmuir vacuum and superconductivity

    SciTech Connect

    Veklenko, B. A.

    2012-06-15

    It is shown that, in the 'jelly' model of cold electron-ion plasma, the interaction between electrons and the quantum electromagnetic vacuum of Langmuir waves involves plasma superconductivity with an energy gap proportional to the energy of the Langmuir quantum.

  9. The vacuum conservation theorem

    NASA Astrophysics Data System (ADS)

    Minguzzi, E.

    2015-03-01

    A version of the vacuum conservation theorem is proved which does not assume the existence of a time function nor demands stronger properties than the dominant energy condition. However, it is shown that a stronger stable version plays a role in the study of compact Cauchy horizons.

  10. Is our vacuum stable?

    E-print Network

    E. I. Guendelman; J. Portnoy

    2000-04-04

    The stability of our vacuum is analyzed and several aspects concerning this question are reviewed. 1) In the standard Glashow-Weinberg-Salam (GWS) model we review the instability towards the formation of a bubble of lower energy density and how the rate of such bubble formation process compares with the age of the Universe for the known values of the GWS model. 2) We also review the recent work by one of us (E.I.G) concerning the vacuum instability question in the context of a model that solves the cosmological constant problem. It turns out that in such model the same physics that solves the cosmological constant problem makes the vacuum stable. 3) We review our recent work concerning the instability of elementary particle embedded in our vacuum, towards the formation of an infinite Universe. Such process is not catastrophic. It leads to a "bifurcation type" instability in which our Universe is not eaten by a bubble (instead a baby universe is born). This universe does not replace our Universe rather it disconnects from it (via a wormhole) after formation.

  11. Topics in vacuum decay

    NASA Astrophysics Data System (ADS)

    Masoumi, Ali

    2013-12-01

    If a theory has more than one classically stable vacuum, quantum tunneling and thermal jumps make the transition between the vacua possible. The transition happens through a first order phase transition started by nucleation of a bubble of the new vacuum. The outward pressure of the truer vacuum makes the bubble expand and consequently eat away more of the old phase. In the presence of gravity this phenomenon gets more complicated and meanwhile more interesting. It can potentially have important cosmological consequences. Some aspects of this decay are studied in this thesis. Solutions with different symmetry than the generically used O(4) symmetry are studied and their actions calculated. Vacuum decay in a spatial vector field is studied and novel features like kinky domain walls are presented. The question of stability of vacua in a landscape of potentials is studied and the possible instability in large dimension of fields is shown. Finally a compactification of the Einstein-Maxwell theory is studied which can be a good lab to understand the decay rates in compactification models of arbitrary dimensions.

  12. Hydrogen multicentre bonds

    NASA Astrophysics Data System (ADS)

    Janotti, Anderson; van de Walle, Chris G.

    2007-01-01

    The concept of a chemical bond stands out as a major development in the process of understanding how atoms are held together in molecules and solids. Lewis' classical picture of chemical bonds as shared-electron pairs evolved to the quantum-mechanical valence-bond and molecular-orbital theories, and the classification of molecules and solids in terms of their bonding type: covalent, ionic, van der Waals and metallic. Along with the more complex hydrogen bonds and three-centre bonds, they form a paradigm within which the structure of almost all molecules and solids can be understood. Here, we present evidence for hydrogen multicentre bonds-a generalization of three-centre bonds-in which a hydrogen atom equally bonds to four or more other atoms. When substituting for oxygen in metal oxides, hydrogen bonds equally to all the surrounding metal atoms, becoming fourfold coordinated in ZnO, and sixfold coordinated in MgO. These multicentre bonds are remarkably strong despite their large hydrogen-metal distances. The calculated local vibration mode frequency in MgO agrees with infrared spectroscopy measurements. Multicoordinated hydrogen also explains the dependence of electrical conductivity on oxygen partial pressure, resolving a long-standing controversy on the role of point defects in unintentional n-type conductivity of ZnO (refs 8-10).

  13. Vacuum application of thermal barrier plasma coatings

    NASA Technical Reports Server (NTRS)

    Holmes, R. R.; Mckechnie, T. N.

    1988-01-01

    Coatings are presently applied to Space Shuttle Main Engine (SSME) turbine blades for protection against the harsh environment realized in the engine during lift off-to-orbit. High performance nickel, chromium, aluminum, and yttrium (NiCrAlY) alloy coatings, which are applied by atmospheric plasma spraying, crack and spall off because of the severe thermal shock experienced during start-up and shut-down of the engine. Ceramic coatings of yttria stabilized zirconia (ZrO2-Y2O3) were applied initially as a thermal barrier over coating to the NiCrAlY but were removed because of even greater spalling. Utilizing a vacuum plasma spraying process, bond coatings of NiCrAlY were applied in a low pressure atmosphere of argon/helium, producing significantly improved coating-to-blade bonding. The improved coatings showed no spalling after 40 MSFC burner rig thermal shock cycles, cycling between 1700 and -423 F. The current atmospheric plasma NiCrAlY coatings spalled during 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2-Y2O3 to the turbine blades of first stage high-pressure fuel turbopumps utilizing the vacuum plasma process. The improved thermal barrier coating has successfully passed 40 burner rig thermal shock cycles without spalling. Hot firing in an SSME turbine engine is scheduled for the blades. Tooling was installed in preparation for vacuum plasma spray coating other SSME hardware, e.g., the titanium main fuel valve housing (MFVH) and the fuel turbopump nozzle/stator.

  14. Vacuum requirements for RHIC

    SciTech Connect

    Rhoades-Brown, M.J.; Harrison, M.

    1991-12-01

    In this note the lifetime due to inelastic scattering of beam and residual gas ions is calculated in units of pressure (Torr). In addition, the transverse emittance growth due to elastic scattering is expressed in units of pressure. The definition of inelastic scattering includes both capture of an electron from a residual gas ion and central nuclear collisions between beam ion and gas atom. Emittance growth via elastic scattering is a simple consequence of multiple Coulomb scattering. Is is important to note that in an accelerator only the density of residual gas atoms is relevant to the machine operation. The measure of this density is the vacuum gauge, where this gauge is calibrated in pressure units at some known temperature T{sub G}. The vacuum unit or pressure is of course temperature dependent, and thus when quoting vacuum requirements for RHIC it is vital to state the temperature at which the pressure is computed. It might be necessary to scale any computed gas density to the pressure appropriate for the measurement with the vacuum gauge. Typically, the vacuum gauge operates at room temperature {approximately}300{degree}K. An explanation on how to rescale pressure as a function of temperature is given in the text. This note assumes the residual gas density in the so-called warm section (300{degree}K) of RHIC to be composed of 90% H{sub 2}, 5% CH{sub 4} and 5% CO. The gas in the cold section (5{degree}K) is assumed to be 100% He. The beam ions are taken to be {sup 197}Au{sup 79+}.

  15. Demonstrations with a Vacuum: Old Demonstrations for New Vacuum Pumps.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1989-01-01

    Explains mechanisms of 19th-century vacuum pumps. Describes demonstrations using the pump including guinea and feather tube, aurora tube, electric egg, Gassiots cascade, air mill, bell in vacuum, density and buoyancy of air, fountain in vacuum, mercury shower, palm and bladder glasses, Bacchus demonstration, pneumatic man-lifter, and Magdeburg

  16. Tritium handling in vacuum systems

    SciTech Connect

    Gill, J.T.; Coffin, D.O.

    1986-10-01

    This report provides a course in Tritium handling in vacuum systems. Topics presented are: Properties of Tritium; Tritium compatibility of materials; Tritium-compatible vacuum equipment; and Tritium waste treatment.

  17. Vacuum Energy in Quantum Graphs

    E-print Network

    Wilson, Justin

    2007-07-14

    We calculate the vacuum energy in quantum graphs. Vacuum energy arose in quantum physics but has an independent mathematical interest as a functional carrying information about the eigenvalue spectrum of a system. A quantum graph is a metric graph...

  18. Dielectric Theory of the Vacuum

    E-print Network

    J. X. Zheng-Johansson

    2006-12-11

    The vacuum is proposed to be a dielectric medium constituted of neutral but polarizable vacuuons based on overall experimental observations in separate publications. In the present paper I formally develop the dielectric theory for this dielectric vacuum.

  19. Quantum diffusion

    E-print Network

    Roumen Tsekov

    2011-04-20

    Quantum diffusion is studied via dissipative Madelung hydrodynamics. Initially the wave packet spreads ballistically, than passes for an instant through normal diffusion and later tends asymptotically to a sub-diffusive law. It is shown that the apparent quantum diffusion coefficient is not a universal physical parameter since it depends on the initial wave packet preparation. The overdamped quantum diffusion of an electron in the field of a periodic potential is also investigated; in this case the wave packet spreads logarithmically in time. Thermo-quantum diffusion of heavier particles as hydrogen, deuterium and tritium atoms in periodic potentials is studied and a simple estimate of the tunneling effect is obtained in the frames of a quasi-equilibrium semiclassical approach. The effective thermo-quantum temperature is also discussed in relation to the known temperature dependence of muon diffusivity in solids.

  20. A radiation hard vacuum switch

    DOEpatents

    Boettcher, G.E.

    1988-07-19

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction. 3 figs.

  1. Difficult to process? Vacuum it!

    SciTech Connect

    Eckles, A.J.

    1997-09-01

    Recent improvements in vacuum processing have broadened the technology`s use in the chemical process industries, running the gamut from vacuum distillation and evaporation, degassing, freeze drying, vapor deposition and etching, to vacuum filtrations. The paper discusses process improvements, attaining liquid distribution, medium-vacuum processing, falling-film evaporators, wiped-film evaporators, short-path evaporators, evaporation and crystallization, filtration, drying, refrigeration, freeze drying, degassing, semiconductor processing, pumps and their selection, and leak testing.

  2. The diffusion welding of 7075Al-3%SiC particles reinforced composites

    NASA Astrophysics Data System (ADS)

    Aydin, M.; Grler, R.; Trker, M.

    2009-02-01

    A group of 3% SiC particle reinforced Al-7075 alloys was diffusion joined at 560C between 1 h and 2 h durations under 2 MPa applied pressure in a vacuum of 2 10-3 Pa. Optical microscopy and SEM-EDS studies were used to characterise the weldment and the fracture surfaces of all samples investigated. A non-planar interface formation was observed at the bond interface. The maximum shear strength of 137 MPa was obtained with the composite 7075-3% SiC joined for two hours, which is 92% of the shear strength of the parent material. The fracture surface of the 7075-3% SiC composites displayed a non-planar fracture surfaces with some plastic deformation.

  3. Flash vacuum pyrolysis of lignin model compounds

    SciTech Connect

    Cooney, M.J.; Britt, P.F.; Buchanan, A.C. III

    1997-03-01

    Despite the extensive research into the pyrolysis of lignin, the underlying chemical reactions that lead to product formation are poorly understood. Detailed mechanistic studies on the pyrolysis of biomass and lignin under conditions relevant to current process conditions could provide insight into utilizing this renewable resource for the production of chemicals and fuel. Currently, flash or fast pyrolysis is the most promising process to maximize the yields of liquid products (up to 80 wt %) from biomass by rapidly heating the substrate to moderate temperatures, typically 500{degrees}C, for short residence times, typically less than two seconds. To provide mechanistic insight into the primary reaction pathways under process relevant conditions, we are investigating the flash vacuum pyrolysis (FVP) of lignin model compounds that contain a {beta}-ether. linkage and {alpha}- or {gamma}-alcohol, which are key structural elements in lignin. The dominant products from the FVP of PhCH{sub 2}CH{sub 2}OPh (PPE), PhC(OH)HCH{sub 2}OPh, and PhCH{sub 2}CH(CH{sub 2}OH)OPh at 500{degrees}C can be attributed to homolysis of the weakest bond in the molecule (C-O bond) or 1,2-elimination. Surprisingly, the hydroxy-substituent dramatically increases the decomposition of PPE. It is proposed that internal hydrogen bonding is accelerating the reaction.

  4. Portable vacuum object handling device

    DOEpatents

    Anderson, Gordon H. (Los Alamos, NM)

    1983-08-09

    The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object.

  5. Casimir effect and vacuum energy

    E-print Network

    Cyriaque Genet; Astrid Lambrecht; Serge Reynaud

    2002-10-25

    Vacuum fluctuations have observable consequences, like the Casimir force appearing between two mirrors in vacuum. This force is now measured with good accuracy and agreement with theory. We discuss the meaning and consequences of these statements by emphasizing their relation with the problem of vacuum energy, one of the main unsolved problems at the interface between gravitational and quantum theory.

  6. E ective geometry Casimir vacuum

    E-print Network

    Visser, Matt

    E#11;ective geometry in the Casimir vacuum Matt Visser Physics Department Washington University- hibit anomalous propagation in the Casimir vac- uum (the quantum vacuum between perfectly conducting the Casimir vacuum: A region of empty space delimited by two per- fectly conducting parallel plates

  7. Cu-Cu direct bonding achieved by surface method at room temperature

    SciTech Connect

    Utsumi, Jun; Ichiyanagi, Yuko

    2014-02-20

    The metal bonding is a key technology in the processes for the microelectromechanical systems (MEMS) devices and the semiconductor devices to improve functionality and higher density integration. Strong adhesion between surfaces at the atomic level is crucial; however, it is difficult to achieve close bonding in such a system. Cu films were deposited on Si substrates by vacuum deposition, and then, two Cu films were bonded directly by means of surface activated bonding (SAB) at room temperature. The two Cu films, with the surface roughness Ra about 1.3nm, were bonded by using SAB at room temperature, however, the bonding strength was very weak in this method. In order to improve the bonding strength between the Cu films, samples were annealed at low temperatures, between 323 and 473 K, in air. As the result, the Cu-Cu bonding strength was 10 times higher than that of the original samples without annealing.

  8. Compact vacuum insulation embodiments

    DOEpatents

    Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

    1992-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  9. Compact vacuum insulation

    DOEpatents

    Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

    1993-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  10. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  11. Compact vacuum insulation embodiments

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  12. Electrostatic Levitator Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Optical prots ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (the beam passes through the window at left), poisitioning lasers (one port is at center), and lamps (arc lamp at right), and to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  13. Electrostatic Levitator Vacuum Chambers

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Optical prots ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (the beam passes through the window at left), poisitioning lasers (one port is at center), and lamps (such as the deuterium arc lamp at right), and to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  14. Vacuum tool manipulator

    DOEpatents

    Zollinger, W.T.

    1993-11-23

    Apparatus for manipulating a vacuum hose in a reactor vessel comprises a housing with two opposing openings, an arm carried by the housing and deployable from a stowed position essentially completely within the housing to an extended position where the arm extends through the two openings in a generally horizontal position. The arm preferably has a two-fingered gripping device for gripping the vacuum hose but may carry a different end effector such as a grinding wheel. The fingers are opened and closed by one air cylinder. A second air cylinder extends the device. A third air cylinder within the housing pivotally pulls the opposing end of the arm into the housing via a pivoting member pivotally connected between the third air cylinder shaft and the arm. 6 figures.

  15. Vacuum tool manipulator

    DOEpatents

    Zollinger, William T. (3927 Almon Dr., Martinez, GA 30907)

    1993-01-01

    Apparatus for manipulating a vacuum hose in a reactor vessel comprises a housing with two opposing openings, an arm carried by the housing and deployable from a stowed position essentially completely within the housing to an extended position where the arm extends through the two openings in a generally horizontal position. The arm preferably has a two-fingered gripping device for gripping the vacuum hose but may carry a different end effector such as a grinding wheel. The fingers are opened and closed by one air cylinder. A second air cylinder extends the device. A third air cylinder within the housing pivotally pulls the opposing end of the arm into the housing via a pivoting member pivotally connected between the third air cylinder shaft and the arm.

  16. Vacuum Structure and Potential

    E-print Network

    J. X. Zheng-Johansson

    2007-04-02

    Based on overall experimental observations, especially the pair processes, I developed a model structure of the vacuum along with a basic-particle formation scheme begun in 2000 (with collaborator P-I Johansson). The model consists in that the vacuum is, briefly, filled of neutral but polarizable vacuuons, consisting each of a p-vaculeon and n- vaculeon of charges $+e$ and $-e$ of zero rest masses but with spin motions, assumed interacting each other with a Coulomb force. The model has been introduced in full in a book (Nova Sci, 2005) and referred to in a number of journal/E-print papers. I outline in this easier accessible paper the detailed derivation of the model and a corresponding quantitative determination of the vacuuon size.

  17. Dry vacuum pumps

    NASA Astrophysics Data System (ADS)

    Sibuet, R.

    2008-05-01

    For decades and for ultimate pressure below 1 mbar, oil-sealed Rotary Vane Pumps have been the most popular solution for a wide range of vacuum applications. In the late 80ies, Semiconductor Industry has initiated the development of the first dry roughing pumps. Today SC applications are only using dry pumps and dry pumping packages. Since that time, pumps manufacturers have developed dry vacuum pumps technologies in order to make them attractive for other applications. The trend to replace lubricated pumps by dry pumps is now spreading over many other market segments. For the Semiconductor Industry, it has been quite easy to understand the benefits of dry pumps, in terms of Cost of Ownership, process contamination and up-time. In this paper, Technology of Dry pumps, its application in R&D/industries, merits over conventional pumps and future growth scope will be discussed.

  18. Femtosecond dynamics in hydrogen-bonded solvents

    SciTech Connect

    Castner, E.W. Jr.; Chang, Y.J.

    1993-09-01

    We present results on the ultrafast dynamics of pure hydrogen-bonding solvents, obtained using femtosecond Fourier-transform optical-heterodyne-detected, Raman-induced Kerr effect spectroscopy. Solvent systems we have studied include the formamides, water, ethylene glycol, and acetic acid. Inertial and diffusive motions are clearly resolved. We comment on the effect that such ultrafast solvent motions have on chemical reactions in solution.

  19. Bonded semiconductor substrate

    DOEpatents

    Atwater, Jr.; Harry A. (South Pasadena, CA), Zahler; James M. (Pasadena, CA)

    2010-07-13

    Ge/Si and other nonsilicon film heterostructures are formed by hydrogen-induced exfoliation of the Ge film which is wafer bonded to a cheaper substrate, such as Si. A thin, single-crystal layer of Ge is transferred to Si substrate. The bond at the interface of the Ge/Si heterostructures is covalent to ensure good thermal contact, mechanical strength, and to enable the formation of an ohmic contact between the Si substrate and Ge layers. To accomplish this type of bond, hydrophobic wafer bonding is used, because as the invention demonstrates the hydrogen-surface-terminating species that facilitate van der Waals bonding evolves at temperatures above 600.degree. C. into covalent bonding in hydrophobically bound Ge/Si layer transferred systems.

  20. The vacuum energy crisis

    E-print Network

    Alexander Vilenkin

    2006-05-09

    The smallness of the vacuum energy density and its near coincidence with the average matter density of the universe are naturally explained by anthropic selection. An alternative explanation, based on the cyclic model of Steinhardt and Turok, does not address the coincidence problem and is therefore less convincing. This article appeared in ``Science'' (4 May 2006) as a ``perspective'' for Steinhardt and Turok's paper in the same issue (astro-ph/0605173).

  1. The ITER vacuum systems

    NASA Astrophysics Data System (ADS)

    Day, C.; Murdoch, D.

    2008-05-01

    ITER is a large vacuum facility which comprises many service, diagnostic and monitoring vacuum sub-systems as well as three large cryogenic pumping systems for evacuation and maintenance of the required pressure levels. Control of the gas throughput is one of the key issues affecting the performance and achievable burn time of a fusion reactor. The main pumping systems are the torus exhaust pumping, the cryopumps for the neutral beam injection systems for plasma heating, and the cryopumps for the ITER cryostat. All customized cryosorption pumps are force-cooled with supercritical helium and share a similar modular design of cryosorption pumping panels. For regeneration of the cryopumps as well as for roughing down the system volumes prior to operation, four identical sets of forepump trains are used. This paper will focus on the areas of the ITER vacuum systems which require customized developments and cannot rely on commercial solutions. The complex pumps have been tailored for the very specific applications and requirements at ITER, especially characterised by the need to be tritium compatible. An outline of the development path which was needed to come up with a sound design for the ITER cryopumps is given. The way of development is culminating in the manufacturing of 1:1 scale prototypes, which will be extensively tested in dedicated test facilities to ensure compatibility with all design requirements.

  2. The LHC Vacuum System

    NASA Astrophysics Data System (ADS)

    Grbner, O.

    1997-05-01

    The Large Hadron Collider (LHC) at CERN, involves two proton storage rings with colliding beams of 7 TeV. The machine will be housed in the existing LEP tunnel and requires 16 m long superconducting bending magnets. The vacuum chamber will be the inner wall of the cryostat and hence at the temperature of the magnet cold bore, i.e. at 1.9 K and therefore a very good cryo-pump. To reduce the cryogenic power consumption, the heat load from synchrotron radiation and from the image currents in the vacuum chamber will be absorbed on a 'beam screen', which operates between 5 and 20 K, inserted in the magnet cold bore. The design pressure necessary for operation must provide a lifetime of many days and a stringent requirement comes from the power deposition in the superconducting magnet coils due to protons scattered on the residual gas which could lead to a magnet quench. Cryo-pumping of gas on the cold surfaces provides the necessary low gas densities but it must be ensured that the vapour pressure of cryo-sorbed molecules, of which H2 and He would be the most critical species, remains within acceptable limits. The room temperature sections of the LHC, specifically in the experiments, the vacuum must be stable against ion induced desorption and ISR-type 'pressure bumps'.

  3. Chemical bonding technology

    NASA Technical Reports Server (NTRS)

    Plueddemann, E.

    1986-01-01

    Primers employed in bonding together the various material interfaces in a photovoltaic module are being developed. The approach develops interfacial adhesion by generating actual chemical bonds between the various materials bonded together. The current status of the program is described along with the progress toward developing two general purpose primers for ethylene vinyl acetate (EVA), one for glass and metals, and another for plastic films.

  4. Vacuum plasma spray applications on liquid fuel rocket engines

    NASA Technical Reports Server (NTRS)

    Mckechnie, T. N.; Zimmerman, F. R.; Bryant, M. A.

    1992-01-01

    The vacuum plasma spray process (VPS) has been developed by NASA and Rocketdyne for a variety of applications on liquid fuel rocket engines, including the Space Shuttle Main Engine. These applications encompass thermal barrier coatings which are thermal shock resistant for turbopump blades and nozzles; bond coatings for cryogenic titanium components; wear resistant coatings and materials; high conductivity copper, NaRloy-Z, combustion chamber liners, and structural nickel base material, Inconel 718, for nozzle and combustion chamber support jackets.

  5. Development and evaluation of vacuum pressure gauge components from carbon and graphite

    NASA Technical Reports Server (NTRS)

    Benson, D. K.; Beitel, G. A.

    1972-01-01

    A prototype all carbon triode ultrahigh vacuum gage was fabricated and tested. The gage exhibited a sensitivity of 3.7 per torr for nitrogen and an X-ray background approximately 0.1 as large as would be expected of a metal gage of the same design. The gage made from these materials, showed good sensitivity and durability. A practical technique was developed for bonding carbon components together without metal fasteners. The bond is made with a cross-linked phenolic resin which is converted to vitreous carbon by a careful pyrolysis procedure. The resulting bonds are strong, electrically conductive, and can withstand repeated excursions to 2500 K in vacuum. Measurements of adsorption and outgassing characteristics of four refractory carbons have confirmed that such materials are suitable for use in ultrahigh vacuum and that some are superior refractory metals in man respects.

  6. Bonding and Sealing Evaluations for Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    1997-01-01

    Several different cryogenic tank concepts are being considered for reusable launch vehicles (RLV'S) . Though different tank concepts are being considered, many will require that the cryogenic insulation be evacuated and be bonded to a structure. In this work, an attempt was made to evaluate the effectiveness of maintaining a vacuum on a specimen where foam or honeycomb core was encased within Gr/Ep. In addition to these tests, flatwise adhesion pull off tests were performed at room temperature with PR 1664, EA 9394, FM-300, Crest 3170, and HT 435 adhesives. The materials bonded included Gr/Ep, Gr/BMI, Al, and stainless steel facesheets, and Ti honeycomb, Hexcel honeycomb, and Rohacell foam core materials.

  7. Transient liquid phase bonding of ferritic oxide dispersion strengthened alloys

    NASA Astrophysics Data System (ADS)

    Krishnardula, Venu Gopal

    2006-04-01

    Oxide dispersion strengthened (ODS) alloys possess excellent properties including resistance to oxidation, corrosion, creep and thermal fatigue. In addition, ferritic ODS alloys exhibit resistance to void swelling and are of particular interest to the nuclear industry. The present study involves the joining of fuel cans to end caps that will be utilized in the nuclear industry. Mechanically alloyed (MA) ODS alloys possess coarse columnar grain structure strengthened with nanosize yttria dispersoids. In that past, fusion welding techniques resulted in microstructural disruption leading to poor joints. This work investigated joining of two ferritic MA ODS alloys, MA956 and PM2000, using; (a) Transient liquid phase (TLP) bonding and (b) Solid-state diffusion bonding. TLP bonds were prepared with MA956 and PM2000 in the unrecrystallized and recrystallized conditions using electron beam physical vapor deposited (EBPVD) boron thin films as interlayers. The use of thin interlayers reduced the amount of substrate dissolution and minimized the bondline microstructural disruption. Different bond orientations were also investigated. Successful bonds with better microstructural continuity were obtained when substrates were joined in the unrecrystallized condition followed by post bond recrystallization heat treatment with the substrate faying surface aligned along the working (extrusion or rolling) direction than when substrates were aligned perpendicular to the working direction. This was attributed to the number of yttria stringers cut by the bondline, which is less when the substrate faying surface is lying parallel to the working direction than when the substrate faying surface is lying perpendicular to the working direction. Solid-state diffusion bonding was conducted using MA956 and PM2000 in the unrecrystallized and recrystallized conditions. Bonding occurred only when an unrecrystallized substrate was involved. Bonding occurred at unusually low stresses. This may be attributed to the grain boundary diffusion, owing to submicron grain size of the unrecrystallized substrates. Post bond heat treatment was conducted in order to induce recrystallization in the bonds. Room temperature mechanical testing was conducted on the bonds and the bulk. Bond shear strengths and tensile strengths of up to 80% and 110% of bulk, respectively, were obtained. Defects in the bulk material such as porosity and unwanted fine grain formation were observed. Pore formation at the bondline during post bond heat treatment seems to decrease the bond strength. These defects were attributed to prior thermomechanical history of the materials.

  8. Chemical Bonding, again ionic bonding (in salts): transfer of e-

    E-print Network

    Zakarian, Armen

    Chemical Bonding, again ionic bonding (in salts): transfer of e- covalent bonding (organic molecules, non-metals): sharing e- metallic bonding: electron pooling (delocalization) Lewis electron 3A 4A 5A 6A 7A 8A 2 3 (exceptions) #12;Ionic Bonding Model See sample problem 9.1 4Na + O2 ! 2Na2O

  9. Self diffusion of reversibly aggregating spheres

    E-print Network

    Sujin Babu; Jean Christophe Gimel; Taco Nicolai

    2007-05-10

    Reversible diffusion limited cluster aggregation of hard spheres with rigid bonds was simulated and the self diffusion coefficient was determined for equilibrated systems. The effect of increasing attraction strength was determined for systems at different volume fractions and different interaction ranges. It was found that the slowing down of the diffusion coefficient due to crowding is decoupled from that due to cluster formation. The diffusion coefficient could be calculated from the cluster size distribution and became zero only at infinite attraction strength when permanent gels are formed. It is concluded that so-called attractive glasses are not formed at finite interaction strength.

  10. The dissociative bond.

    PubMed

    Gordon, Nirit

    2013-01-01

    Dissociation leaves a psychic void and a lingering sense of psychic absence. How do 2 people bond while they are both suffering from dissociation? The author explores the notion of a dissociative bond that occurs in the aftermath of trauma--a bond that holds at its core an understanding and shared detachment from the self. Such a bond is confined to unspoken terms that are established in the relational unconscious. The author proposes understanding the dissociative bond as a transitional space that may not lead to full integration of dissociated knowledge yet offers some healing. This is exemplified by R. Prince's (2009) clinical case study. A relational perspective is adopted, focusing on the intersubjective aspects of a dyadic relationship. In the dissociative bond, recognition of the need to experience mutual dissociation can accommodate a psychic state that yearns for relationship when the psyche cannot fully confront past wounds. Such a bond speaks to the need to reestablish a sense of human relatedness and connection when both parties in the relationship suffer from disconnection. This bond is bound to a silence that becomes both a means of protection against the horror of traumatic memory and a way to convey unspoken gestures toward the other. PMID:23282044

  11. Chemical Bonds I

    ERIC Educational Resources Information Center

    Sanderson, R. T.

    1972-01-01

    Chemical bonding is discussed from a bond energy, rather than a wave mechanics, viewpoint. This approach is considered to be more suitable for the average student. (The second part of the article will appear in a later issue of the journal.) (AL)

  12. Mother-Child Bonding.

    ERIC Educational Resources Information Center

    Pearce, Joseph Chilton

    1994-01-01

    Examines the nature of mother-child bonding from the prenatal stage through early infancy, discussing how the mother's actions, even before birth, stimulate her child's senses. Explains the crucial role that physical contact, breastfeeding, and visual stimuli have on mother-child bonding in human and animal newborns. (MDM)

  13. Forming and bonding techniques for high-strength aluminum alloys

    NASA Astrophysics Data System (ADS)

    Friedrich, Horst E.

    1995-02-01

    This article highlights the continued preference for aluminum as a structural material for aircraft, where demands for high performance coupled with the need for weight reduction have led to the use of high-strength aluminum alloys. The ever-increasing demand for a high level of integration of complex structural components calls for the development of appropriate manufacturing processes. As an example, superplastic forming is discussed, combined with innovative bonding techniques such as diffusion bonding and adhesive spot welding.

  14. Ultrasonically bonded value assembly

    NASA Technical Reports Server (NTRS)

    Salvinski, R. J. (inventor)

    1975-01-01

    A valve apparatus capable of maintaining a fluid-tight seal over a relatively long period of time by releasably bonding a valve member to its seat is described. The valve member is bonded or welded to the seat and then released by the application of the same energy to the bond joint. The valve member is held in place during the bonding by a clamping device. An appropriate force device can activate the opening and closing of the valve member. Various combinations of material for the valve member and valve seat can be utilized to provide an adequate sealing bond. Aluminum oxide, stainless steel, inconel, tungsten carbide as hard materials and copper, aluminum, titanium, silver, and gold as soft materials are suggested.

  15. Shape Bonding method

    NASA Technical Reports Server (NTRS)

    Pontius, James T. (Inventor)

    2010-01-01

    The present invention is directed to a method of bonding at least two surfaces together. The methods step of the present invention include applying a strip of adhesive to a first surface along a predefined outer boundary of a bond area and thereby defining a remaining open area there within. A second surface, or gusset plate, is affixed onto the adhesive before the adhesive cures. The strip of adhesive is allowed to cure and then a second amount of adhesive is applied to cover the remaining open area and substantially fill a void between said first and second surfaces about said bond area. A stencil may be used to precisely apply the strip of adhesive. When the strip cures, it acts as a dam to prevent overflow of the subsequent application of adhesive to undesired areas. The method results in a precise bond area free of undesired shapes and of a preferred profile which eliminate the drawbacks of the prior art bonds.

  16. Wood Bond Testing

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A joint development program between Hartford Steam Boiler Inspection Technologies and The Weyerhaeuser Company resulted in an internal bond analyzer (IBA), a device which combines ultrasonics with acoustic emission testing techniques. It is actually a spinoff from a spinoff, stemming from a NASA Lewis invented acousto-ultrasonic technique that became a system for testing bond strength of composite materials. Hartford's parent company, Acoustic Emission Technology Corporation (AET) refined and commercialized the technology. The IBA builds on the original system and incorporates on-line process control systems. The IBA determines bond strength by measuring changes in pulsar ultrasonic waves injected into a board. Analysis of the wave determines the average internal bond strength for the panel. Results are displayed immediately. Using the system, a mill operator can adjust resin/wood proportion, reduce setup time and waste, produce internal bonds of a consistent quality and automatically mark deficient products.

  17. Fokker-Planck . . . Diffusion . . .

    E-print Network

    Fokker-Planck . . . Diffusion . . . Diffusion- . . . Application: . . . Summary and . . . First #12;Fokker-Planck . . . Diffusion . . . Diffusion- . . . Application: . . . Summary and . . . Topics: 1. Fokker-Planck transport equation 2. Diffusion approximation 3. Diffusion-convection transport

  18. Low-temperature vacuum hermetic wafer-level package for uncooled microbolometer FPAs

    NASA Astrophysics Data System (ADS)

    Garcia-Blanco, S.; Topart, P.; Desroches, Y.; Caron, J. S.; Williamson, F.; Alain, C.; Jerominek, H.

    2008-02-01

    Micro-Electro-Mechanical Systems (MEMS) packaging constitutes most of the cost of such devices. For the integration of MEMS with microelectronics systems to be widespread, a drastic reduction of the overall price is required. Wafer-level-packaging allows a fundamental reduction of the packaging cost by combining wafer-level microfabrication techniques with wafer-to-wafer bonding. To achieve the vacuum atmosphere required for the operation of many MEMS devices, bonding techniques such as anodic bonding, eutectic bonding, fusion bonding and gold to gold thermocompression bonding have been utilized, which require relatively high temperatures (>300C) being in some cases incompatible with MEMS and microelectronics devices. Furthermore, to maintain vacuum integrity over long periods of time, getters requiring high activation temperatures are usually employed. INO has developed a hybrid wafer-level micropackaging technology based on low temperature fluxless solder joints in which the micropackaged MEMS device is not exposed to a temperature over 150C. The micropackages have been designed for 160120 microbolometer FPAs. Ceramic spacers are patterned by standard microfabrication techniques followed by laser micromachining. AR-coated floatzone silicon IR windows are patterned with a solderable layer. Both, microbolometer dies and windows are soldered to the ceramic tray by a combination of solder paste stencil printing, reflow and fluxless flip-chip bonding. A low temperature getter is also introduced to control outgassing of moisture and CO II during the lifetime of the package. Vacuum sealing is carried out by locally heating the vacuum port after bake out of the micropackages. In this paper, the vacuum integrity of micropackaged FPA dies will be reported. Base pressures as low as 5 mTorr and equivalent flow rates at room temperature of 410 -14 Torr.l/s without getter incorporation have been demonstrated using integrated micro-pressure gauges. A study of the influence of different packaging parameters on the lifetime of micropackages will be presented.

  19. Polymers in a Vacuum

    SciTech Connect

    Deutsch, J. M.

    2007-12-07

    In a variety of situations, isolated polymer molecules are found in a vacuum, and here we examine their properties. Angular momentum conservation is shown to significantly alter the average size of a chain and its conservation is only broken slowly by thermal radiation. For an ideal chain, the time autocorrelation for monomer position oscillates with a period proportional to chain length. The oscillations and damping are analyzed in detail. Short-range repulsive interactions suppress oscillations and speed up relaxation, but stretched chains still show damped oscillatory correlations.

  20. Polymers in a vacuum

    E-print Network

    J. M. Deutsch

    2007-06-13

    In a variety of situations, isolated polymer molecules are found in a vacuum and here we examine their properties. Angular momentum conservation is shown to significantly alter the average size of a chain and its conservation is only broken slowly by thermal radiation. The time autocorrelation for monomer position oscillates with a characteristic time proportional to chain length. The oscillations and damping are analyzed in detail. Short range repulsive interactions suppress oscillations and speed up relaxation but stretched chains still show damped oscillatory time correlations.

  1. What is vacuum?

    E-print Network

    Peter Rowlands

    2008-10-01

    Vacuum can be defined with exact mathematical precision as the state which remains when a fermion, with all its special characteristics, is created out of absolutely nothing. The definition leads to a special form of relativistic quantum mechanics, which only requires the construction of a creation operator. This form of quantum mechanics is especially powerful for analytic calculation, at the same time as explaining, from first principles, many aspects of the Standard Model of particle physics. In particular, the characteristics of the weak, strong and electric interactions can be derived from the structure of the creation operator itself.

  2. Avoiding Death by Vacuum

    E-print Network

    A. Barroso; P. M. Ferreira; I. Ivanov; R. Santos; Joao P. Silva

    2013-05-08

    The two-Higgs doublet model (2HDM) can have two electroweak breaking, CP-conserving, minima. The possibility arises that the minimum which corresponds to the known elementary particle spectrum is metastable, a possibility we call the "panic vacuum". We present analytical bounds on the parameters of the softly broken Peccei-Quinn 2HDM which are necessary and sufficient conditions to avoid this possibility. We also show that, for this particular model, the current LHC data already tell us that we are necessarily in the global minimum of the theory, regardless of any cosmological considerations about the lifetime of the false vacua.

  3. Diffusion and phase transformation on interface between substrate and NiCrAlY in Y-PSZ thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Chen, H.; Jin, Z.; Liu, C.; Zhou, K.

    2004-12-01

    NiCrAlY/Y2O3-Y-PSZ (yttria-partially stabilized zirconia) thermal barrier coatings were developed on a superalloy (Ni-10Co-9Cr-7W-5Al, wt.%) surface. The superalloys were first coated with a bond coat of Ni-19Cr-8Al-0.5Y (wt.%) alloy that was deposited by low-pressure plasma spraying and then covered with a top coat of ZrO2-8wt.%Y2O3 by air plasma spraying. The microstructure near the interface was analyzed using an optical microscope, a scanning electron microscope, microhardness measurements, and x-ray diffraction, and the phases of composition were measured using an electron probe microanalyzer after exposure at 1100C for different times in air or a vacuum. The reaction processes also were simulated using diffusion-controlled transformation (DICTRA) software in which diffusion was considered as being only the ? phase, and the ?? phase was treated as spheroidal particles in ?. From the authors results, it can be concluded that a ??-phase layer is observed at the interface between substrate and bond coat, and its thickness increases with increasing exposure times in air at 1100 C. This layer showed good cohesion with the substrate and bond coat. It can also be concluded that the formation of the ??-phase layer can be predicted from DICTRA simulation. The simulation also shows the same trend of the composition profiles as experimental data.

  4. Vacuum system of the cyclotrons in VECC, Kolkata

    SciTech Connect

    Roy, Anindya; Bhole, R.B.; Akhtar, J.; Yadav, R.C.; Pal, Sarbajit; Sarkar, D.; Bhandari, R.K. E-mail: rbb@vecc.gov.in E-mail: yadav@vecc.gov.in E-mail: dsarkar@vecc.gov.in

    2011-07-01

    The vacuum system of the K=130 Room Temperature Cyclotron (RTC) (operational since 1978) has been recently modernized and the same of the K{sub bend}=520 Superconducting Cyclotron (SCC), currently under commissioning, is being deployed for remote monitoring and control. The vacuum system of RTC is designed to achieve and maintain vacuum level of 2 X 10{sup -6} mbar inside 23 m{sup 3} volume of Resonator tank and DEE tank. This has been upgraded by replacing several valves, Freon units, gauges and pumps. The relay based manual control system has been replaced by PLC based automated system. The SCC vacuum system also has an elaborate arrangement comprising of turbo molecular pumping modules with associated isolation valves and characteristic gauges. This paper describes essential elements, typically used to obtain high (1X10{sup -7} mbar) vacuum using rotary pumps, diffusion pumps and cold traps/turbo-molecular pumps and other system components such as valves, gauges and baffles. The supervisory control methodology/scheme of both the vacuum systems, developed in-house using EPICS (Experimental Physics and Industrial Control System), a standard open-source software tool for designing distributed control system, is also elaborated here. (author)

  5. R&D ERL: Vacuum

    SciTech Connect

    Mapes, M.; Smart, L.; Weiss, D.; Steszyn, A.; Todd, R.

    2010-01-01

    The ERL Vacuum systems are depicted in a figure. ERL has eight vacuum volumes with various sets of requirements. A summary of vacuum related requirements is provided in a table. Five of the eight volumes comprise the electron beamline. They are the 5-cell Superconducting RF Cavity, Superconducting e-gun, injection, loop and beam dump. Two vacuum regions are the individual cryostats insulating the 5-cell Superconducting RF Cavity and the Superconducting e-gun structures. The last ERL vacuum volume not shown in the schematic is the laser transport line. The beamline vacuum regions are separated by electropneumatic gate valves. The beam dump is common with loop beamline but is considered a separate volume due to geometry and requirements. Vacuum in the 5-cell SRF cavity is maintained in the {approx}10{sup -9} torr range at room temperature by two 20 l/s ion pumps and in the e-gun SRF cavity by one 60 l/s ion pump. Vacuum in the SRF cavities operated at 2{sup o}K is reduced to low 10{sup -11} torr via cryopumping of the cavity walls. The cathode of the e-gun must be protected from poisoning, which can occur if vacuum adjacent to the e-gun in the injection line exceeds 10-11 torr range in the injection warm beamline near the e-gun exit. The vacuum requirements for beam operation in the loop and beam dump are 10-9 torr range. The beamlines are evacuated from atmospheric pressure to high vacuum level with a particulate free, oil free turbomolecular pumping cart. 25 l/s shielded ion pumps distributed throughout the beamlines maintain the vacuum requirement. Due to the more demanding vacuum requirement of the injection beamline proximate to the e-gun, a vacuum bakeout of the injection beamline is required. In addition, two 200 l/s diode ion pumps and supplemental pumping provided by titanium sublimation pumps are installed in the injection line just beyond the exit of the e-gun. Due to expected gas load a similar pumping arrangement is planned for the beam dump. The cryostat vacuum thermally insulating the SRF cavities need only reduce the convective heat load such that heat loss is primarily radiation through several layers of multi-layer insulation and conductive end-losses which are contained by 5{sup o}K thermal transitions. Prior to cool down rough vacuum {approx}10{sup -5} torr range is established and maintained by a dedicated turbomolecular pump station. Cryopumping by the cold mass and heat shields reduces the insulating vacuum to 10{sup -7} torr range after cool down.

  6. LHC vacuum system

    E-print Network

    Grbner, Oswald

    1999-01-01

    The Large Hadron Collider (LHC) project, now in the advanced construction phase at CERN, comprises two proton storage rings with colliding beams of 7-TeV energy. The machine is housed in the existing LEP tunnel with a circumference of 26.7 km and requires a bending magnetic field of 8.4 T with 14-m long superconducting magnets. The beam vacuum chambers comprise the inner 'cold bore' walls of the magnets. These magnets operate at 1.9 K, and thus serve as very good cryo-pumps. In order to reduce the cryogenic power consumption, both the heat load from synchrotron radiation emitted by the proton beams and the resistive power dissipation by the beam image currents have to be absorbed on a 'beam screen', which operates between 5 and 20 K and is inserted inside the vacuum chamber. The design of this beam screen represents a technological challenge in view of the numerous and often conflicting requirements and the very tight mechanical tolerances imposed. The synchrotron radiation produces strong outgassing from the...

  7. The LHC Vacuum System

    E-print Network

    Grbner, Oswald

    1998-01-01

    The Large Hadron Collider (LHC) at CERN, involves two proton storage rings with colliding beams of 7 TeV. The machine will be housed in the existing LEP tunnel and requires 16 m long superconducting b ending magnets. The vacuum chamber will be the inner wall of the cryostat and hence at the temperature of the magnet cold bore, i.e. at 1.9 K and therefore a very good cryopump. To reduce the cryogeni c power consumption, the heat load from synchrotron radiation and from the image currents in the vacuum chamber will be absorbed on a 'beam screen', which operates between 5 and 20 K, inserted in the magnet cold bore. The design pressure necessary for operation must provide a lifetime of several days and a further stringent requirement comes from the power deposition in the superconducting magnet coils due to protons scattered on the residual gas which could lead to a magnet quench. Cryopumping of gas on the cold surfaces provides the necessary low gas densities but it must be ensured that the vapour pressure of cr...

  8. Changing MFTF vacuum environment

    SciTech Connect

    Margolies, D.; Valby, L.

    1982-12-01

    The Mirror Fusion Test Facility (MFTF) vacuum vessel will be about 60m long and 10m in diameter at the widest point. The allowable operating densities range from 2 x 10/sup 9/ to 5 x 10/sup 10/ particles per cc. The maximum leak rate of 10/sup -6/ tl/sec is dominated during operation by the deliberately injected cold gas of 250 tl/sec. This gas is pumped by over 1000 square meters of cryopanels, external sorption pumps and getters. The design and requirements have changed radically over the past several years, and they are still not in final form. The vacuum system design has also changed, but more slowly and less radically. This paper discusses the engineering effort necessary to meet these stringent and changing requirements. Much of the analysis of the internal systems has been carried out using a 3-D Monte Carlo computer code, which can estimate time dependent operational pressures. This code and its use will also be described.

  9. Solid state bonding of beryllium-copper for an ITER first wall application

    SciTech Connect

    Odegard, B.C. Jr.; Cadden, C.H.

    1998-02-01

    Several different joint assemblies were evaluated in support of a manufacturing technology for diffusion bonding a beryllium armor tile to a copper alloy heat sink for fusion reactor applications. Because beryllium reacts with all but a few elements to form intermetallic compounds, this study considered several different surface treatments as a means of both inhibiting these reactions and promoting a good diffusion bond between the two substrates. A diffusion bonded assemblies used aluminum or an aluminum-beryllium composite (AlBeMet-150) as the interfacial material in contact with beryllium. In most cases, explosive bonding was utilized as a technique for joining the copper alloy heat sink to an aluminum or AlBeMet-150 substrate, which was subsequently diffusion bonded to an aluminum coated beryllium tile. In this approach, a 250 {micro}m thick titanium foil was used as a diffusion barrier between the copper and aluminum to prevent the formation of Cu-Al intermetallic phases. In all cases, a hot isostatic pressing (HIP) furnace was used in conjunction with canned assemblies in order to minimize oxidation and apply sufficient pressure on the assembly for excellent metal-to-metal contact and subsequent bonding. Several different processing schedules were evaluated during the course of this study; bonded assemblies were produced that failed outside the bond area indicating a 100% joint efficiency.

  10. Portable vacuum object handling device

    DOEpatents

    Anderson, G.H.

    1983-08-09

    The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object. 1 fig.

  11. Free radicals created by plasmas cause autohesive bonding in polymers

    SciTech Connect

    Awaja, Firas; McKenzie, David R.; Zhang Shengnan; James, Natalie

    2011-05-23

    We find that plasma immersion ion implantation of polymer surfaces enhances their autohesive bond strength when pressed together by more than a factor of five. Both polymerising (CH{sub 4}/O{sub 2}) and nonpolymerising (Ar) plasmas are effective. There is currently no satisfactory theory for predicting this remarkable phenomenon. We propose that free radicals created by the plasma treatment process diffuse to the interface and cause covalent bonds to form. This theory predicts the dependence of bond strength on plasma bias voltage, treatment time, and autohesive process conditions.

  12. Wafer-Level Thermocompression Bonds

    E-print Network

    Tsau, Christine H.

    Thermocompression bonding of gold is a promising technique for achieving low temperature, wafer-level bonding without the application of an electric field or complicated pre-bond cleaning procedure. The presence of a ductile ...

  13. Vacuum energy, spectral determinant and heat kernel asymptotics of graph Laplacians with general vertex matching conditions

    E-print Network

    J. M. Harrison; K. Kirsten

    2010-03-16

    We consider Laplace operators on metric graphs, networks of one-dimensional line segments (bonds), with matching conditions at the vertices that make the operator self-adjoint. Such quantum graphs provide a simple model of quantum mechanics in a classically chaotic system with multiple scales corresponding to the lengths of the bonds. For graph Laplacians we briefly report results for the spectral determinant, vacuum energy and heat kernel asymptotics of general graphs in terms of the vertex matching conditions.

  14. Ceramic-to-metal bonding for pressure transducers

    NASA Technical Reports Server (NTRS)

    Mackenzie, J. D.

    1984-01-01

    A solid-state diffusion technique involving the placement of a gold foil between INCONEL X-750 and a machinable glass-ceramic "MACOR" was shown to be successful in bonding these two materials. This technique was selected after an exhaustive literature search on ceramic-metal bonding methods. Small expansion mismatch between the Inconel and the MACOR resulted in fracture of the MACOR when the bonded body was subjected to tensile stress of 535 psi. The bonded parts were submitted to a cyclic loading test in an air atmosphere at 1 Hz from 0 to 60 KPa. Failure was observed after 700,000 cycles at 650 C. Ceramic-Inconel bonding was not achieved with this method for boron nitride and silica glass.

  15. New Phases of Hydrogen-Bonded Systems at Extreme Conditions

    SciTech Connect

    Manaa, M R; Goldman, N; Fried, L E

    2006-10-23

    We study the behavior of hydrogen-bonded systems under high-pressure and temperature. First principle calculations of formic acid under isotropic pressure up to 70 GPa reveal the existence of a polymerization phase at around 20 GPa, in support of recent IR, Raman, and XRD experiments. In this phase, covalent bonding develops between molecules of the same chain through symmetrization of hydrogen bonds. We also performed molecular dynamics simulations of water at pressures up to 115 GPa and 2000 K. Along this isotherm, we are able to define three different phases. We observe a molecular fluid phase with superionic diffusion of the hydrogens for pressure 34 GPa to 58 GPa. We report a transformation to a phase dominated by transient networks of symmetric O-H hydrogen bonds at 95-115 GPa. As in formic acid, the network can be attributed to the symmetrization of the hydrogen bond, similar to the ice VII to ice X transition.

  16. Vacuum leak detector and method

    DOEpatents

    Edwards, Jr., David (7 Brown's La., Bellport, NY 11713)

    1983-01-01

    Apparatus and method for detecting leakage in a vacuum system involves a moisture trap chamber connected to the vacuum system and to a pressure gauge. Moisture in the trap chamber is captured by freezing or by a moisture adsorbent to reduce the residual water vapor pressure therein to a negligible amount. The pressure gauge is then read to determine whether the vacuum system is leaky. By directing a stream of carbon dioxide or helium at potentially leaky parts of the vacuum system, the apparatus can be used with supplemental means to locate leaks.

  17. Vacuum metastability with black holes

    NASA Astrophysics Data System (ADS)

    Burda, Philipp; Gregory, Ruth; Moss, Ian G.

    2015-08-01

    We consider the possibility that small black holes can act as nucleation seeds for the decay of a metastable vacuum, focussing particularly on the Higgs potential. Using a thin-wall bubble approximation for the nucleation process, which is possible when generic quantum gravity corrections are added to the Higgs potential, we show that primordial black holes can stimulate vacuum decay. We demonstrate that for suitable parameter ranges, the vacuum decay process dominates over the Hawking evaporation process. Finally, we comment on the application of these results to vacuum decay seeded by black holes produced in particle collisions.

  18. Origin of anomalous diffusion in iron mononitride thin films

    NASA Astrophysics Data System (ADS)

    Tayal, Akhil; Gupta, Mukul; Gupta, Ajay; Rajput, P.; Stahn, J.

    2015-08-01

    In this work we aim to resolve the counterintuitive diffusion behavior of Fe and N atoms in an iron mononitride (FeN) thin film. It was observed that in spite of their larger size, Fe atoms tend to diffuse more rapidly than smaller N atoms. This only happens in the N-rich region of the Fe-N phase diagram; in N-poor regions, the N diffusion coefficient is orders of magnitude larger than that of Fe. Detailed self-diffusion measurements performed in FeN thin films reveal that the diffusion mechanism of Fe and N is different: Fe atoms diffuse through a complex process which, in addition to volume diffusion, is predominantly controlled by fast grain boundary diffusion. On the other hand, N atoms diffuse through a classical volume diffusion process. Observed results are explained in terms of stronger Fe-N (than Fe-Fe) bonds generally predicted theoretically for mononitride compositions of transition metals.

  19. On Asymmetric Diffusional Solidification During Transient Liquid Phase Bonding

    NASA Astrophysics Data System (ADS)

    Ghobadi Bigvand, A.; Ojo, Olanrewaju A.

    2014-04-01

    The underlying cause of asymmetric diffusion solidification which alters microstructure during transient liquid phase bonding under low temperature gradient was studied. A new solute-conserving asymmetric numerical model coupled with experimental verification showed that a transition from bi-directional to unidirectional solidification, under a constant temperature gradient, is controlled by competition between liquid and solid-state diffusion at one of the two liquid-solid interfaces. This mechanistic understanding would aid a more effective use of the process.

  20. Invisibility cloaking in the diffusive-light limit (presentation video)

    NASA Astrophysics Data System (ADS)

    Schittny, Robert; Kadic, Muamer; Wegener, Martin

    2014-09-01

    Albert Einstein's theory of relativity imposes stringent limitations to making macroscopic objects invisible with respect to electromagnetic light waves propagating in vacuum. These limitations are not relevant though for propagation of light in diffusive media like fog or milk because the effective energy speed is significantly lower than in vacuum due to multiple scattering events. Here, by exploiting the close mathematical analogy between the electrostatic or near-field limit of optics on the one hand and light diffusion on the other hand, we design, fabricate, and characterize simple core-shell cloaking structures for diffusive light propagation in cylindrical and spherical geometry.

  1. Diffuse radiation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A diffuse celestial radiation which is isotropic at least on a course scale were measured from the soft X-ray region to about 150 MeV, at which energy the intensity falls below that of the galactic emission for most galactic latitudes. The spectral shape, the intensity, and the established degree of isotropy of this diffuse radiation already place severe constraints on the possible explanations for this radiation. Among the extragalactic theories, the more promising explanations of the isotropic diffuse emission appear to be radiation from exceptional galaxies from matter antimatter annihilation at the boundaries of superclusters of galaxies of matter and antimatter in baryon symmetric big bang models. Other possible sources for extragalactic diffuse gamma radiation are discussed and include normal galaxies, clusters of galaxies, primordial cosmic rays interacting with intergalactic matter, primordial black holes, and cosmic ray leakage from galaxies.

  2. Control Dewar Secondary Vacuum Container

    SciTech Connect

    Rucinski, R.; /Fermilab

    1993-10-04

    This engineering note provides background information regarding the control dewar secondary vacuum container. The secondary vacuum container has it's origin with the CDP control dewar design. The name secondary vacuum container replaced the CDP term 'Watt can' which was named after Bob Watt (SLAC), a PAC/DOE review committee member who participated in a review of CDP and recommended a secondary vacuum enclosure. One of the most fragile parts of the control dewar design is the ceramic electrical feed throughs located in the secondary vacuum container. The secondary vacuum container is provided to guard against potential leaks in these ceramic insulating feed throughs. The secondary vacuum container has a pumping line separate from the main solenoid/control dewar insulating vacuum. This pumping line is connected to the inlet of the turbo pump for initial pumpdown. Under normal operation the container is isolated. Should a feedthrough develop a small leak, alternate pumping arrangements for the secondary vacuum container could be arranged. The pressure in the secondary vacuum container should be kept in a range that the breakdown voltage is kept at a maximum. The breakdown voltage is known to be a function of pressure and is described by a Paschen curve. I cannot find a copy of the curve at this time, but from what I remember, the breakdown voltage is a minimum somewhere around 10-3 torr. Ideally the pressure in the secondary vacuum can should be kept very low, around 10 E-6 or 10 E-7 torr for maximum breakdown voltage. If however a leak developed and this was not possible, then one could operate at a pressure higher than the minima point.

  3. Vacuum ultraviolet photoionization of carbohydrates and nucleotides

    SciTech Connect

    Shin, Joong-Won; Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872 ; Bernstein, Elliot R.

    2014-01-28

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5{sup ?}-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2nm photons are associated with endocyclic CC and CO ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.

  4. Vacuum ultraviolet photoionization of carbohydrates and nucleotides

    NASA Astrophysics Data System (ADS)

    Shin, Joong-Won; Bernstein, Elliot R.

    2014-01-01

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5'-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C-C and C-O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.

  5. Detecting Defective Solder Bonds

    NASA Technical Reports Server (NTRS)

    Paulson, R.; Barney, J.; Decker, H. J.

    1984-01-01

    Method is noncontact and nondestructive. Technique detects solder bonds in solar array of other large circuit board, using thermal-imaging camera. Board placed between heat lamp and camera. Poor joints indiated by "cold" spots on the infrared image.

  6. Gold Thermocompression Wafer Bonding

    E-print Network

    Spearing, S. Mark

    Thermocompression bonding of gold is a promising technique for the fabrication and packaging microelectronic and MEMS devices. The use of a gold interlayer and moderate temperatures and pressures results in a hermetic, ...

  7. Characterization of anodic bonding

    E-print Network

    Tudryn, Carissa Debra, 1978-

    2004-01-01

    Anodic bonding is a common process used in MicroElectroMechanical Systems (MEMS) device fabrication and packaging. Polycrystalline chemical vapor deposited (CVD) silicon carbide (SiC) is emerging as a new MEMS device and ...

  8. Cleaning of a thermal vacuum chamber with shrouds in place

    NASA Technical Reports Server (NTRS)

    Bond, William R.

    1992-01-01

    In February, 1991, a failure of a rotary booster pump caused the diffusion pumps to backstream into a 10 ft x 15 ft thermal vacuum chamber. Concerns existed about the difficulty of removing and reinstalling the shrouds without causing leaks. The time required for the shroud removal was also of concern. These concerns prompted us to attempt to clean the chamber without removing the shrouds.

  9. Water's Hydrogen Bond Strength

    E-print Network

    Martin Chaplin

    2007-06-10

    Water is necessary both for the evolution of life and its continuance. It possesses particular properties that cannot be found in other materials and that are required for life-giving processes. These properties are brought about by the hydrogen bonded environment particularly evident in liquid water. Each liquid water molecule is involved in about four hydrogen bonds with strengths considerably less than covalent bonds but considerably greater than the natural thermal energy. These hydrogen bonds are roughly tetrahedrally arranged such that when strongly formed the local clustering expands, decreasing the density. Such low density structuring naturally occurs at low and supercooled temperatures and gives rise to many physical and chemical properties that evidence the particular uniqueness of liquid water. If aqueous hydrogen bonds were actually somewhat stronger then water would behave similar to a glass, whereas if they were weaker then water would be a gas and only exist as a liquid at sub-zero temperatures. The overall conclusion of this investigation is that water's hydrogen bond strength is poised centrally within a narrow window of its suitability for life.

  10. Stress analysis and failure of the bond interface of a metal matrix component

    E-print Network

    Pamel, Michele Lynn

    1995-01-01

    of a monolithic fitting diffusion bonded onto a MMC laminate. Analyses performed with the finite element algorithm suggest that the bondline between the composite and fitting is the weakest portion of the structure for every combination of material...

  11. Diffusion pump oils based on neutral oil

    SciTech Connect

    Artem'eva, V.P.; Gorbacheva, S.G.; Kucheryavaya, N.N.; Orlova, S.N.; Potanina, V.A.

    1983-09-01

    VM-1 and VM-5 mineral oils used as working fluids in high vacuum pumps are obtained by high-vacuum distillation of a pharmaceutical white oil produced in Balkhany lube crude which is in limited supply and therefore must be replaced by a new raw material. An investigation of a napthenic neutral oil containing 90% saturated hydrocarbons demonstrated the feasibility of this oil as a raw material for the production of diffusion oil pumps. The characteristics of the diffusion pump oil VM-8 obtained by this processing scheme are listed. The oil was tested on NVD-015 pumps. The favorable results have made it possible to develop and approve specifications for diffusion pump oils in VM-8 and VM-9.

  12. 30 CFR 281.33 - Bonds and bonding requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Resources 2 2011-07-01 2011-07-01 false Bonds and bonding requirements. 281.33 Section 281.33 Mineral Resources...CONTINENTAL SHELF Financial Considerations 281.33 Bonds and bonding requirements. (a) When the leasing notice...

  13. 30 CFR 281.33 - Bonds and bonding requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Resources 2 2010-07-01 2010-07-01 false Bonds and bonding requirements. 281.33 Section 281.33 Mineral Resources...CONTINENTAL SHELF Financial Considerations 281.33 Bonds and bonding requirements. (a) When the leasing notice...

  14. Vacuum enhanced cutaneous biopsy instrument

    DOEpatents

    Collins, Joseph (St. Petersburg, FL)

    2000-01-01

    A syringe-like disposable cutaneous biopsy instrument equipped with a tubular blade at its lower end, and designed so that a vacuum is created during use, said vacuum serving to retain undeformed a plug of tissue cut from a patient's skin.

  15. Vacuum flash evaporated polymer composites

    DOEpatents

    Affinito, John D. (Kennewick, WA); Gross, Mark E. (Pasco, WA)

    1997-01-01

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  16. mixing tube vent to vacuum

    E-print Network

    Wilson, Rachel

    mixing tube vent to vacuum main air tube (ID = 6 mm) valve (Cole Palmer 01380-02) a 0 10 20 30 40 after placing an odor into the device vacuum line. (c) Command to the valve, created from binary random

  17. Statistical mechanics of the vacuum

    E-print Network

    Christian Beck

    2012-03-01

    The vacuum is full of virtual particles which exist for short moments of time. In this paper we construct a chaotic model of vacuum fluctuations associated with a fundamental entropic field that generates an arrow of time. The dynamics can be physically interpreted in terms of fluctuating virtual momenta. This model leads to a generalized statistical mechanics that distinguishes fundamental constants of nature.

  18. Multipurpose Vacuum Induction Processing System

    NASA Astrophysics Data System (ADS)

    Govindaraju, M.; Kulkarni, Deepak; Balasubramanian, K.

    2012-11-01

    Multipurpose vacuum processing systems are cost effective; occupy less space, multiple functional under one roof and user friendly. A multipurpose vacuum induction system was designed, fabricated and installed in a record time of 6 months time at NFTDC Hyderabad. It was designed to function as a) vacuum induction melting/refining of oxygen free electronic copper/pure metals, b) vacuum induction melting furnace for ferrous materials c) vacuum induction melting for non ferrous materials d) large vacuum heat treatment chamber by resistance heating (by detachable coil and hot zone) e) bottom discharge vacuum induction melting system for non ferrous materials f) Induction heat treatment system and g) directional solidification /investment casting. It contains provision for future capacity addition. The attachments require to manufacture multiple shaped castings and continuous rod casting can be added whenever need arises. Present capacity is decided on the requirement for 10years of development path; presently it has 1.2 ton liquid copper handling capacity. It is equipped with provision for capacity addition up to 2 ton liquid copper handling capacity in future. Provision is made to carry out the capacity addition in easy steps quickly. For easy operational maintenance and troubleshooting, design was made in easily detachable sections. High vacuum system is also is detachable, independent and easily movable which is first of its kind in the country. Detailed design parameters, advantages and development history are presented in this paper.

  19. Detecting leaks in vacuum bags

    NASA Technical Reports Server (NTRS)

    Carlstrom, E. E.

    1980-01-01

    Small leaks in vacuum bag can be readily detected by eye, using simple chemical reaction: combination of ammonia and acetic acid vapors to produce cloudy white smoke. Technique has been successfully used to test seam integrity and to identify minute pinholes in vacuum bag used in assembly of ceramic-tile heat shield for Space Shuttle Orbiter.

  20. Vacuum Gas Tungsten Arc Welding

    NASA Technical Reports Server (NTRS)

    Weeks, J. L.; Todd, D. T.; Wooten, J. R.

    1997-01-01

    A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures.

  1. Vacuum flash evaporated polymer composites

    DOEpatents

    Affinito, J.D.; Gross, M.E.

    1997-10-28

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  2. Purifying Aluminum by Vacuum Distillation

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1985-01-01

    Proposed method for purifying aluminum employs one-step vacuum distillation. Raw material for process impure aluminum produced in electrolysis of aluminum ore. Impure metal melted in vacuum. Since aluminum has much higher vapor pressure than other constituents, boils off and condenses on nearby cold surfaces in proportions much greater than those of other constituents.

  3. Cosmology with decaying vacuum energy

    SciTech Connect

    Freese, K.; Adams, F.; Frieman, J.; Mottola, E.

    1987-09-01

    Motivated by recent attempts to solve the cosmological constant problem, we examine the observational consequences of a vacuum energy density which decays in time. For all times later than t approx. 1 sec, the ratio of the vacuum to the total energy density of the universe must be small. Although the vacuum cannot provide the ''missing mass'' required to close the universe today, its presence earlier in the history of the universe could have important consequences. We discuss restrictions on the vacuum energy arising from primordial nucleosynthesis, the microwave and gamma ray background spectra, and galaxy formation. A small vacuum component at the era of nucleosynthesis, 0.01 < rho/sub vac//rho/sup rad/ < 0.1, increase the number of allowed neutino species to N/sup nu/ > 5, but in some cases would severely distort the microwave spectrum. 9 refs., 3 figs.

  4. Spacetime structure and vacuum entanglement

    E-print Network

    Eduardo Martin-Martinez; Alexander R. H. Smith; Daniel R. Terno

    2015-07-09

    We study the role that both vacuum fluctuations and vacuum entanglement of a scalar field play in identifying the spacetime topology, which is not prescribed from first principles---neither in general relativity or quantum gravity. We analyze how the entanglement and observable correlations acquired between two particle detectors are sensitive to the spatial topology of spacetime. We examine the detector's time evolution to all orders in perturbation theory and then study the phenomenon of vacuum entanglement harvesting in Minkowski spacetime and two flat topologically distinct spacetimes constructed from identifications of the Minkowski space. We show that, for instance, if the spatial topology induces a preferred direction, this direction may be inferred from the dependence of correlations between the two detectors on their orientation. We therefore show that vacuum fluctuations and vacuum entanglement harvesting makes it, in principle, possible to distinguish spacetimes with identical local geometry that differ only in their topology.

  5. Acid diffusion through polymer films

    NASA Astrophysics Data System (ADS)

    Zhang, P. Linda; Eckert, Andrew R.; Willson, C. Grant; Webber, Stephen E.; Byers, Jeffrey D.

    1997-07-01

    In order to perform 0.2 micrometer processes, one needs to study the diffusion of photoacid generators within the photoresist system, since diffusion during post exposure bake time has an influence on the critical dimension (CD). We have developed a new method to study the diffusion of photoacid generators within a polymer film. This new method is based on monitoring the change of the fluorescence intensity of a pH- sensitive fluorescent dye caused by the reaction with photoacid. A simplified version of this experiment has been conducted by introducing acid vapor to quench the fluorescence intensity of this pH sensor. A thin polymer film is spin cast onto the sensor to create a barrier to the acid diffusion process. During the acid diffusion process, the fluorescence intensity of this pH sensor is measured in situ, using excitation and emission wavelengths at 466 nm and 516 nm, respectively. Fluoresceinamine, the pH sensitive fluorescent dye, is covalently bonded onto the treated quartz substrate to form a single dye layer. Poly(hydroxystyrene) (Mn equals 13k, Tg equals 180 degrees Celsius) in PGMEA (5% - 18% by weight) is spin cast onto this quartz substrate to form films with varying thickness. The soft bake time is 60 seconds at 90 degrees Celsius and a typical film has a thickness of 1.4 micrometers. Trifluoroacetic acid is introduced into a small chamber while the fluorescence from this quartz window is observed. Our study focuses on finding the diffusion constant of the vaporized acid (trifluoroacetic acid) in the poly(hydroxystyrene) polymer film. By applying the Fick's second law, (It - Io)/(I(infinity ) - Io) equals erfc [L/(Dt)1/2] is obtained. The change of fluorescence intensity with respect to the diffusion time is monitored. The above equation is used for the data analysis, where L represents the film thickness and t represents the average time for the acid to diffuse through the film. The diffusion constant is calculated to be at the order of 10-10 cm2/s to 10-12 cm2/s. All the experiments are conducted at room temperature and are valid only for acid vapor. With different film thickness, it was found that the acid diffuses through the film with a similar diffusion constant. The diffusion is faster with increased solvent residue in the film (controlled by spin coating speed). The theoretical computer modeling of the local acid concentration with respect to acid diffusion is also performed.

  6. Mullite/Mo interfaces formed by Intrusion bonding

    SciTech Connect

    Bartolome, Jose F.; Diaz, Marcos; Moya, Jose S.; Saiz, Eduardo; Tomsia, Antoni P.

    2003-04-30

    The microstructure and strength of Mo/mullite interfaces formed by diffusion bonding at 1650 C has been analyzed. Interfacial metal-ceramic interlocking contributes to flexural strength of approx. 140 MPa as measured by 3 point bending. Saturation of mullite with MoO2 does not affect the interfacial strength.

  7. Adhesive for composite bonding

    SciTech Connect

    Lyon, R.E.; Walkup, C.M.; Matthews, J.T.

    1989-11-27

    Adhesive bonding is a viable option for structural joining of carbon fiber reinforced epoxy composites. Recent examples from laboratory programs include a composite tube joined to a flared composite collar (skirt) to provide a means for mechanical attachment. Another application involves adhesive bonding of a close-tolerance composite ring to the inside of a tapered, cylindrical composite penetrator case in order to provide a load bearing surface for prestressing the internal package. The adhesive bond in both of these applications is the critical load bearing component and must sustain large shearing stresses in order to maintain the structural integrity and viability of the part. The ideal adhesive would be a low viscosity (<10 poise) liquid with a long pot life, good wetting characteristics and high ultimate shear strength when cured at moderate (<50{degree}C) temperature. An adhesive with these characteristics would allow for the production of defect-free bonds by capillary wetting or squeezing flow of the adhesive into the narrow (.005{double prime}) annular space between the concentric composite parts. Since adhesives possessing these characteristics were not known to be available commercially, candidate materials were evaluated for this application. In this paper we present bond shear strength data and selected physical properties for some epoxy adhesive formulations. 7 refs., 5 figs., 2 tabs.

  8. Strength of Chemical Bonds

    NASA Technical Reports Server (NTRS)

    Christian, Jerry D.

    1973-01-01

    Students are not generally made aware of the extraordinary magnitude of the strengths of chemical bonds in terms of the forces required to pull them apart. Molecular bonds are usually considered in terms of the energies required to break them, and we are not astonished at the values encountered. For example, the Cl2 bond energy, 57.00 kcal/mole, amounts to only 9.46 x 10(sup -20) cal/molecule, a very small amount of energy, indeed, and impossible to measure directly. However, the forces involved in realizing the energy when breaking the bond operate over a very small distance, only 2.94 A, and, thus, f(sub ave) approx. equals De/(r - r(sub e)) must be very large. The forces involved in dissociating the molecule are discussed in the following. In consideration of average forces, the molecule shall be assumed arbitrarily to be dissociated when the atoms are far enough separated so that the potential, relative to that of the infinitely separated atoms, is reduced by 99.5% from the potential of the molecule at the equilibrium bond length (r(sub e)) for Cl2 of 1.988 A this occurs at 4.928 A.

  9. Space simulation ultimate pressure lowered two decades by removal of diffusion pump oil contaminants during operation

    NASA Technical Reports Server (NTRS)

    Buggele, A. E.

    1973-01-01

    The complex problem why large space simulation chambers do not realize the true ultimate vacuum was investigated. Some contaminating factors affecting diffusion pump performance have been identified and some advances in vacuum/distillation/fractionation technology have been achieved which resulted in a two decade or more lower ultimate pressure. Data are presented to show the overall or individual contaminating effect of commonly used phthalate ester plasticizers of 390 to 530 molecular weight on diffusion pump performance. Methods for removing contaminants from diffusion pump silicone oil during operation and reclaiming contaminated oil by high vacuum molecular distillation are described.

  10. Vacuum energy and cosmological evolution

    E-print Network

    Joan Sola

    2014-03-03

    An expanding universe is not expected to have a static vacuum energy density. The so-called cosmological constant $\\Lambda$ should be an approximation, certainly a good one for a fraction of a Hubble time, but it is most likely a temporary description of a true dynamical vacuum energy variable that is evolving from the inflationary epoch to the present day. We can compare the evolving vacuum energy with a Casimir device where the parallel plates slowly move apart ("expand"). The total vacuum energy density cannot be measured, only the effect associated to the presence of the plates, and then also their increasing separation with time. In the universe there is a nonvanishing spacetime curvature $R$ as compared to Minkowskian spacetime that is changing with the expansion. The vacuum energy density must change accordingly, and we naturally expect $\\delta\\Lambda\\sim R\\sim H^2$. A class of dynamical vacuum models that trace such rate of change can be constructed. They are compatible with the current cosmological data, and conveniently extended can account for the complete cosmic evolution from the inflationary epoch till the present days. These models are very close to the $\\Lambda$CDM model for the late universe, but very different from it at the early times. Traces of the inherent vacuum dynamics could be detectable in our recent past.

  11. Vacuum Brazing of Accelerator Components

    NASA Astrophysics Data System (ADS)

    Singh, Rajvir; Pant, K. K.; Lal, Shankar; Yadav, D. P.; Garg, S. R.; Raghuvanshi, V. K.; Mundra, G.

    2012-11-01

    Commonly used materials for accelerator components are those which are vacuum compatible and thermally conductive. Stainless steel, aluminum and copper are common among them. Stainless steel is a poor heat conductor and not very common in use where good thermal conductivity is required. Aluminum and copper and their alloys meet the above requirements and are frequently used for the above purpose. The accelerator components made of aluminum and its alloys using welding process have become a common practice now a days. It is mandatory to use copper and its other grades in RF devices required for accelerators. Beam line and Front End components of the accelerators are fabricated from stainless steel and OFHC copper. Fabrication of components made of copper using welding process is very difficult and in most of the cases it is impossible. Fabrication and joining in such cases is possible using brazing process especially under vacuum and inert gas atmosphere. Several accelerator components have been vacuum brazed for Indus projects at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore using vacuum brazing facility available at RRCAT, Indore. This paper presents details regarding development of the above mentioned high value and strategic components/assemblies. It will include basics required for vacuum brazing, details of vacuum brazing facility, joint design, fixturing of the jobs, selection of filler alloys, optimization of brazing parameters so as to obtain high quality brazed joints, brief description of vacuum brazed accelerator components etc.

  12. Enhanced diffusion of phosphorus at grain boundaries

    NASA Technical Reports Server (NTRS)

    Cheng, L. J.; Shyu, C. M.; Stika, K. M.; Daud, T.; Crotty, G. T.

    1982-01-01

    Enhanced diffusion of phosphorus at grain boundaries in cast polycrystalline photovoltaic materials (Wacker, HEM, and Semix) was studied. It was found that the enhancements for the three materials were the same, indicating that the properties of boundaries are similar, even though they were grown by different techniques. In addition, it was observed that grain boundaries capable of enhancing the diffusion always have strong recombination activities. Both phenomena could be related to dangling bonds existing at the boundaries. The present study gives the first evidence that incoherent second order twins of 111/115-plane type are diffusion-active.

  13. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-10-27

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.

  14. Compact vacuum insulation

    DOEpatents

    Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

    1992-01-01

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases therebetween are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and variious laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels.

  15. NCSX Vacuum Vessel Fabrication

    SciTech Connect

    Viola, M. E.; Brown, T.; Heitzenroeder, P.; Malinowski, F.; Reiersen, W.; Sutton, L.; Goranson, P.; Nelson, B.; Cole, M.; Manuel, M.; McCorkle, D.

    2005-10-07

    The National Compact Stellarator Experiment (NCSX) is being constructed at the Princeton Plasma Physics Laboratory (PPPL) in conjunction with the Oak Ridge National Laboratory (ORNL). The goal of this experiment is to develop a device which has the steady state properties of a traditional stellarator along with the high performance characteristics of a tokamak. A key element of this device is its highly shaped Inconel 625 vacuum vessel. This paper describes the manufacturing of the vessel. The vessel is being fabricated by Major Tool and Machine, Inc. (MTM) in three identical 120 vessel segments, corresponding to the three NCSX field periods, in order to accommodate assembly of the device. The port extensions are welded on, leak checked, cut off within 1" of the vessel surface at MTM and then reattached at PPPL, to accommodate assembly of the close-fitting modular coils that surround the vessel. The 120 vessel segments are formed by welding two 60 segments together. Each 60 segment is fabricated by welding ten press-formed panels together over a collapsible welding fixture which is needed to precisely position the panels. The vessel is joined at assembly by welding via custom machined 8" (20.3 cm) wide spacer "spool pieces." The vessel must have a total leak rate less than 5 X 10-6 t-l/s, magnetic permeability less than 1.02?, and its contours must be within 0.188" (4.76 mm). It is scheduled for completion in January 2006.

  16. Bonding and Integration Technologies for Silicon Carbide Based Injector Components

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay

    2008-01-01

    Advanced ceramic bonding and integration technologies play a critical role in the fabrication and application of silicon carbide based components for a number of aerospace and ground based applications. One such application is a lean direct injector for a turbine engine to achieve low NOx emissions. Ceramic to ceramic diffusion bonding and ceramic to metal brazing technologies are being developed for this injector application. For the diffusion bonding, titanium interlayers (PVD and foils) were used to aid in the joining of silicon carbide (SiC) substrates. The influence of such variables as surface finish, interlayer thickness (10, 20, and 50 microns), processing time and temperature, and cooling rates were investigated. Microprobe analysis was used to identify the phases in the bonded region. For bonds that were not fully reacted an intermediate phase, Ti5Si3Cx, formed that is thermally incompatible in its thermal expansion and caused thermal stresses and cracking during the processing cool-down. Thinner titanium interlayers and/or longer processing times resulted in stable and compatible phases that did not contribute to microcracking and resulted in an optimized microstructure. Tensile tests on the joined materials resulted in strengths of 13-28 MPa depending on the SiC substrate material. Non-destructive evaluation using ultrasonic immersion showed well formed bonds. For the joining technology of brazing Kovar fuel tubes to silicon carbide, preliminary development of the joining approach has begun. Various technical issues and requirements for the injector application are addressed.

  17. Steel bonded dense silicon nitride compositions and method for their fabrication

    DOEpatents

    Landingham, R.L.; Shell, T.E.

    1985-05-20

    A two-stage bonding technique for bonding high density silicon nitride and other ceramic materials to stainless steel and other hard metals, and multilayered ceramic-metal composites prepared by the technique are disclosed. The technique involves initially slurry coating a surface of the ceramic material at about 1500/sup 0/C in a vacuum with a refractory material and the stainless steel is then pressure bonded to the metallic coated surface by brazing it with nickel-copper-silver or nickel-copper-manganese alloys at a temperature in the range of about 850/sup 0/ to 950/sup 0/C in a vacuum. The two-stage bonding technique minimizes the temperature-expansion mismatch between the dissimilar materials.

  18. Steel bonded dense silicon nitride compositions and method for their fabrication

    DOEpatents

    Landingham, Richard L. (Livermore, CA); Shell, Thomas E. (Tracy, CA)

    1987-01-01

    A two-stage bonding technique for bonding high density silicon nitride and other ceramic materials to stainless steel and other hard metals, and multilayered ceramic-metal composites prepared by the technique are disclosed. The technique involves initially slurry coating a surface of the ceramic material at about 1500.degree. C. in a vacuum with a refractory material and the stainless steel is then pressure bonded to the metallic coated surface by brazing it with nickel-copper-silver or nickel-copper-manganese alloys at a temperature in the range of about 850.degree. to 950.degree. C. in a vacuum. The two-stage bonding technique minimizes the temperature-expansion mismatch between the dissimilar materials.

  19. ?-Hole aerogen bonding interactions.

    PubMed

    Bauz, Antonio; Frontera, Antonio

    2015-09-23

    In this manuscript we combine high level ab initio calculations (RI-MP2/aug-cc-pVTZ) and the analysis of several crystal structures to demonstrate the existence of ?-hole aerogen bonding interactions in Xe(iv) compounds. The ability of XeF4 and Xe(OMe)4 to interact with electron rich molecules is rationalized using several computational tools, including molecular electrostatic potential surfaces, energetic and geometric features of the complexes and "atoms in molecules" (AIM) and Natural Bond Orbital (NBO) analyses. We have found support for the ?-hole interaction involving the xenon atom from the solid state architecture of several X-ray structures retrieved from the crystal structural depot. Particularly, ?-hole aerogen bonding interactions are quite common in the solid state of Xe(iv) compounds. PMID:26252726

  20. Insurance and bonding

    SciTech Connect

    Katzman, M.T.

    1989-01-01

    Societal risk management in industrial democracies relies upon mechanisms of prior restraint rather than on responsibility for the consequence of accidents. The evolution of risk management from one based upon private, voluntary standard of risk management from one based upon private, voluntary standard setting to one based upon restraint is reviewed. While insurance and bonding historically have played a major role in private management of catastrophic risks, their role has been underutilized in the current, restraint-based mode. The conditions under the insurance and bonding that can serve as a tool for risk regulation are illustrated in the arena of toxic pollution risks. 45 refs., 1 fig.

  1. Qualifying Energy Conservation Bonds

    E-print Network

    Briggs, J.

    2013-01-01

    ) of the interest cost associated with the transaction Typical effective interest rates anywhere from 0%-2% depending on credit strength Bond issuance or private placement is acceptable 2 What are QECBs ESL-KT-13-12-39 CATEE 2013: Clean Air Through Energy... Bonds (QECBs) CATEE Conference December 18, 2013 ESL-KT-13-12-39 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Originally authorized by the Energy Improvement & Extension Act of 2008 American Recovery...

  2. Water vapor diffusion membrane development

    NASA Technical Reports Server (NTRS)

    Tan, M. K.

    1976-01-01

    A total of 18 different membranes were procured, characterized, and tested in a modified bench-scale vapor diffusion water reclamation unit. Four membranes were selected for further studies involving membrane fouling. Emphasis was placed on the problem of flux decline due to membrane fouling. This is discussed in greater details under "Summary and Discussion on Membrane Fouling Studies" presented in pages 47-51. The system was also investigated for low temperature application on wash-water where the permeated water is not recovered but vented into space vacuum.

  3. Demonstrating Diffusion

    ERIC Educational Resources Information Center

    Foy, Barry G.

    1977-01-01

    Two demonstrations are described. Materials and instructions for demonstrating movement of molecules into cytoplasm using agar blocks, phenolphthalein, and sodium hydroxide are given. A simple method for demonstrating that the rate of diffusion of a gas is inversely proportional to its molecular weight is also presented. (AJ)

  4. Defusing Diffusion

    ERIC Educational Resources Information Center

    Dou, Remy; Hogan, DaNel; Kossover, Mark; Spuck, Timothy; Young, Sarah

    2013-01-01

    Diffusion has often been taught in science courses as one of the primary ways by which molecules travel, particularly within organisms. For years, classroom teachers have used the same common demonstrations to illustrate this concept (e.g., placing drops of food coloring in a beaker of water). Most of the time, the main contributor to the motion

  5. Bond dissociation energies and bond orders for some astrophysical molecules

    NASA Astrophysics Data System (ADS)

    Reddy, R. R.; Viswanath, R.

    1989-06-01

    The bond dissociation energies for various astrophysically important diatomic molecules have been determined using a formula in which bond dissociation energies are the sum of the geometric average of the component bond energies and 32.058 times the Pauling electronegativity difference. Bond orders are estimated according to the formula of Reddy et al. (1985, 1987). The results confirm the definition of bond order given by Politzer (1969). The estimated bond energies are found to agree well with previous values and to give an error of 8 percent, as compared to the error of 26.8 percent found using Pauling's (1960) equation.

  6. The crack problem in bonded nonhomogeneous materials

    NASA Technical Reports Server (NTRS)

    Erdogan, Fazil; Kaya, A. C.; Joseph, P. F.

    1988-01-01

    The plane elasticity problem for two bonded half planes containing a crack perpendicular to the interface was considered. The effect of very steep variations in the material properties near the diffusion plane on the singular behavior of the stresses and stress intensity factors were studied. The two materials were thus, assumed to have the shear moduli mu(o) and mu(o) exp (Beta x), x=0 being the diffusion plane. Of particular interest was the examination of the nature of stress singularity near a crack tip terminating at the interface where the shear modulus has a discontinuous derivative. The results show that, unlike the crack problem in piecewise homogeneous materials for which the singularity is of the form r/alpha, 0 less than alpha less than 1, in this problem the stresses have a standard square-root singularity regardless of the location of the crack tip. The nonhomogeneity constant Beta has, however, considerable influence on the stress intensity factors.

  7. Nonlinear Diffusion. Porous Medium and Fast Diffusion.

    E-print Network

    Moroz, Vitaly

    Nonlinear Diffusion. Porous Medium and Fast Diffusion. From Analysis to Physics and Geometry Juan Swansea, July 2008 Juan L. V´azquez - Nonlinear Diffusion. Porous Medium and Fast Diffusion Equations ­ p. 1/?? #12;Introduction Main topic after 1981: Nonlinear Diffusion Juan L. V´azquez - Nonlinear

  8. Non-Brownian molecular self-diffusion in bulk water

    E-print Network

    Janez Stepinik; Ale Mohori?; Igor Sera

    2010-10-06

    The paper presents the velocity autocorrelation spectrum of bulk water measured by a new technique of NMR modulated gradient spin echo method. This technique is unprecedented for the spectrum measurement in the frequency interval between a few Hz to about 100 kHz with respect to directness and clarity of results and shows that a simple model of Brownian self-diffusion is not applicable to describe the diffusion dynamics of water molecules. The observed temperature dependant spectra of water show the existence of a slow chain-like dynamics in water, which we explain by coupling of diffusing molecule to broken bonds in the hydrogen bond network.

  9. Alumina barrier for vacuum brazing

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.

    1980-01-01

    Heating platens of vacuum-brazing press will not stick to workpiece if aluminum oxide "paper" is interposed. Paper does not disintegrate in press, will not contaminate braze alloy, and helps form smoothly contoured, regular fillet at brazed edges.

  10. Vacuum lamination of photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Burger, D. R.

    1982-01-01

    Vacuum lamination of terrestrial photovoltaic modules is a new high volume process requiring new equipment and newly develop materials. Equipment development, materials research, and some research in related fields and testing methods are discussed.

  11. APS storage ring vacuum system

    SciTech Connect

    Niemann, R.C.; Benaroya, R.; Choi, M.; Dortwegt, R.J.; Goeppner, G.A.; Gonczy, J.; Krieger, C.; Howell, J.; Nielsen, R.W.; Roop, B.; Wehrle, R.B.

    1990-01-01

    The Advanced Photon Source synchrotron radiation facility, under construction at the Argonne National Laboratory, incorporates a large ring for the storage of 7 GeV positrons for the generation of photon beams for the facility's experimental program. The Storage Ring's 1104 m circumference is divided into 40 functional sectors. The sectors include vacuum, beam transport, control, acceleration and insertion device components. The vacuum system, which is designed to operate at a pressure of 1 n Torr, consists of 240 connected sections, the majority of which are fabricated from an aluminum alloy extrusion. The sections are equipped with distributed NeG pumping, photon absorbers with lumped pumping, beam position monitors, vacuum diagnostics and valving. The details of the vacuum system design, selected results of the development program and general construction plans are presented. 11 refs., 6 figs., 3 tabs.

  12. Microwave Induced Direct Bonding of Single Crystal Silicon Wafers

    NASA Technical Reports Server (NTRS)

    Budraa, N. K.; Jackson, H. W.; Barmatz, M.

    1999-01-01

    We have heated polished doped single-crystal silicon wafers in a single mode microwave cavity to temperatures where surface to surface bonding occurred. The absorption of microwaves and heating of the wafers is attributed to the inclusion of n-type or p-type impurities into these substrates. A cylindrical cavity TM (sub 010) standing wave mode was used to irradiate samples of various geometry's at positions of high magnetic field. This process was conducted in vacuum to exclude plasma effects. This initial study suggests that the inclusion of impurities in single crystal silicon significantly improved its microwave absorption (loss factor) to a point where heating silicon wafers directly can be accomplished in minimal time. Bonding of these substrates, however, occurs only at points of intimate surface to surface contact. The inclusion of a thin metallic layer on the surfaces enhances the bonding process.

  13. Cold cathode vacuum gauging system

    DOEpatents

    Denny, Edward C. (Knoxville, TN)

    2004-03-09

    A vacuum gauging system of the cold cathode type is provided for measuring the pressure of a plurality of separate vacuum systems, such as in a gas centrifuge cascade. Each casing is fitted with a gauge tube assembly which communicates with the vacuum system in the centrifuge casing. Each gauge tube contains an anode which may be in the form of a slender rod or wire hoop and a cathode which may be formed by the wall of the gauge tube. The tube is provided with an insulated high voltage connector to the anode which has a terminal for external connection outside the vacuum casing. The tube extends from the casing so that a portable magnet assembly may be inserted about the tube to provide a magnetic field in the area between the anode and cathode necessary for pressure measurements in a cold cathode-type vacuum gauge arrangement. The portable magnetic assembly is provided with a connector which engages the external high voltage terminal for providing power to the anode within in the gauge tube. Measurement is made in the same manner as the prior cold cathode gauges in that the current through the anode to the cathode is measured as an indication of the pressure. By providing the portable magnetic assembly, a considerable savings in cost, installation, and maintenance of vacuum gauges for pressure measurement in a gas centrifuge cascade is realizable.

  14. Technical specification for vacuum systems

    SciTech Connect

    Khaw, J.

    1987-01-01

    The vacuum systems at the Stanford Linear Accelerator Center (SLAC) are primarily of all-metal construction and operate at pressures from 10/sup -5/ to 10/sup -11/ Torr. The primary gas loads during operation result from thermal desorption and beam-induced desorption from the vacuum chamber walls. These desorption rates can be extremely high in the case of hydrocarbons and other contaminants. These specifications place a major emphasis on eliminating contamination sources. The specifications and procedures have been written to insure the cleanliness and vacuum integrity of all SLAC vacuum systems, and to assist personnel involved with SLAC vacuum systems in choosing and designing components that are compatible with existing systems and meet the quality and reliability of SLAC vacuum standards. The specification includes requirements on design, procurement, fabrication, chemical cleaning, clean room practices, welding and brazing, helium leak testing, residual gas analyzer testing, bakeout, venting, and pumpdown. Also appended are specifications regarding acceptable vendors, isopropyl alcohol, bakeable valve cleaning procedure, mechanical engineering safety inspection, notes on synchrotron radiation, and specifications of numerous individual components. (LEW)

  15. Photochemical tissue bonding

    DOEpatents

    Redmond, Robert W. (Brookline, MA); Kochevar, Irene E. (Charlestown, MA)

    2012-01-10

    Photochemical tissue bonding methods include the application of a photosensitizer to a tissue and/or tissue graft, followed by irradiation with electromagnetic energy to produce a tissue seal. The methods are useful for tissue adhesion, such as in wound closure, tissue grafting, skin grafting, musculoskeletal tissue repair, ligament or tendon repair and corneal repair.

  16. Dialogic Bonds and Boundaries.

    ERIC Educational Resources Information Center

    Khawaja, Mabel

    A study of literature cannot be divorced from cultural contexts, nor can it ignore the humanist vision in interpreting literary texts. To discover dialogic bonds and boundaries between the reader and the text, or the writer and the audience, English classes should have two objectives: (1) to explore the diversity of perspectives, and (2) to relate

  17. Flax Fiber - Interfacial Bonding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measured flax fiber physical and chemical properties potentially impact bonding and thus stress transfer between the matrix and fiber within composites. These first attempts at correlating flax fiber quality and biofiber composites contain the initial steps towards identifying key flax fiber charac...

  18. Selective Permeability Jackie Bonds

    E-print Network

    Alford, Simon

    ;Selective Permeability What Selective permeability means that the cell membrane has some control overSelective Permeability Jackie Bonds January 23, 2012 Neus 586 Monday, January 30, 2012 #12 what can cross it, so that only certain molecules either enter or leave the cell. Monday, January 30

  19. Effect of ZnO on the interfacial bonding between Na 2O-B 2O 3-SiO 2 vitrified bond and diamond

    NASA Astrophysics Data System (ADS)

    Wang, P. F.; Li, Zh. H.; Li, J.; Zhu, Y. M.

    2009-08-01

    Diamond composites were prepared by sintering diamond grains with low melting Na 2O-B 2O 3-SiO 2 vitrified bonds in air. The influence of ZnO on the wettability and flowing ability of Na 2O-B 2O 3-SiO 2 vitrified bonds was characterized by wetting angle, the interfacial bonding states between diamond grains and the vitrified bonds were observed by scanning electron microscope (SEM), and the micro-scale bonding mechanism in the interfaces was investigated by means of energy-dispersive spectrometer (EDS), Fourier transform infrared (FTIR) spectrometer and X-ray photoelectron spectroscopy (XPS). The experimental results showed that ZnO facilitated the dissociation of boron/silicon-oxygen polyhedra and the formation of larger amount of non-bridging oxygen in the glass network, which resulted in the increase of the vitrified bonds' wettability and the formation of -C dbnd O, -O-H and -C-H bonds on the surface of diamond grains. B and Si diffused from the vitrified bonds to the interface, and C-C, C-O, C dbnd O and C-B bond formed on the surface of sintered diamond grains during sintering process, by which the interfacial bonding between diamond grains and the vitrified bonds was strengthened.

  20. Joining of alumina by vacuum brazing

    NASA Astrophysics Data System (ADS)

    Heikinheimo, Liisa; Siren, Mika; Kauppinen, Pentti

    1993-08-01

    The active brazing method for diffusion bonding of ceramics to metals is addressed. This method is very flexible compared to the traditional Mo-manganese coating with subsequent brazing that includes four process steps: in active brazing the process is done in one step. The joint properties are favorable, the residual stress build up is limited if the braze is correctly selected and the thermal cycle is controlled, and the resulting strength and leak tightness are good. In experimental work the joinability of alumina to titanium and Ni superalloys was studied by wetting experiments, nondestructive test and shear strength measurements. The spreading of the braze is affected not only by the surface conditions of mating materials but also by the type of the brazing alloy. The Ag-Cu base alloys give better wetting, strength and leak tightness properties than the Ag base alloys. A shear test method was developed for the mechanical testing of metal-ceramic joints. However, the sample geometry affects the measured values, namely a smaller specimen size provides better results. The correlation between the C-SAM results, which describe the ratio between the true bonded area and unbonded area, and measured shear strength values is presented. The dependence between the measured strength and the area of the joint defects becomes obvious and should be studied in more detail.