Science.gov

Sample records for vacuum plasma spraying

  1. Vacuum plasma spray coating

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Mckechnie, Timothy N.

    1989-01-01

    Currently, protective plasma spray coatings are applied to space shuttle main engine turbine blades of high-performance nickel alloys by an air plasma spray process. Originally, a ceramic coating of yttria-stabilized zirconia (ZrO2.12Y2O3) was applied for thermal protection, but was removed because of severe spalling. In vacuum plasma spray coating, plasma coatings of nickel-chromium-aluminum-yttrium (NiCrAlY) are applied in a reduced atmosphere of argon/helium. These enhanced coatings showed no spalling after 40 MSFC burner rig thermal shock cycles between 927 C (1700 F) and -253 C (-423 F), while current coatings spalled during 5 to 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2.8Y2O3 to the turbine blades of first-stage high-pressure fuel turbopumps utilizing the enhanced NiCrAlY bond-coating process. NiCrAlY bond coating is applied first, with ZrO2.8Y2O3 added sequentially in increasing amounts until a thermal barrier coating is obtained. The enchanced thermal barrier coating has successfully passed 40 burner rig thermal shock cycles.

  2. Rugged Preheaters For Vacuum Plasma Spraying

    NASA Technical Reports Server (NTRS)

    Woodford, William H.; Mckechnie, Timothy N.; Sander, Lewis D.; Power, Christopher A.; Sander, Heather L.; Nguyen, Dalton D.

    1994-01-01

    Electric preheater units built to ensure large workpieces to be coated with metals by vacuum plasma spraying heated uniformly to requisite high temperatures by time plasma torch arrives. Units similar to electrical-resistance ribbon heaters in toasters and in some small portable electric "space" heaters. Nichrome resistance-heating ribbons wrapped around ceramic insulating spools on rings and on plates. Round workpiece placed in middle of ring preheater. Plate preheaters stacked as needed near workpiece.

  3. Alignment Fixtures For Vacuum-Plasma-Spray Gun

    NASA Technical Reports Server (NTRS)

    Woodford, William H.; Mckechnie, Timothy N.; Power, Christopher A.; Daniel, Ronald L., Jr.

    1993-01-01

    Fixtures for alignment of vacuum-plasma-spray guns built. Each fixture designed to fit specific gun and holds small, battery-powered laser on centerline of gun. Laser beam projects small red dot where centerline intersects surface of workpiece to be sprayed. After laser beam positioned on surface of workpiece, fixture removed from gun and spraying proceeds.

  4. Thermal Expansion of Vacuum Plasma Sprayed Coatings

    NASA Technical Reports Server (NTRS)

    Raj, S V.; Palczer, A. R.

    2010-01-01

    Metallic Cu-8%Cr, Cu-26%Cr, Cu-8%Cr-1%Al, NiAl and NiCrAlY monolithic coatings were fabricated by vacuum plasma spray deposition processes for thermal expansion property measurements between 293 and 1223 K. The corrected thermal expansion, (DL/L(sub 0) varies with the absolute temperature, T, as (DL/L(sub 0) = A(T - 293)(sup 3) + BIT - 293)(sup 2) + C(T - 293) + D, where, A, B, C and D are thermal, regression constants. Excellent reproducibility was observed for all of the coatings except for data obtained on the Cu-8%Cr and Cu-26%Cr coatings in the first heat-up cycle, which deviated from those determined in the subsequent cycles. This deviation is attributed to the presence of residual stresses developed during the spraying of the coatings, which are relieved after the first heat-up cycle. In the cases of Cu-8%Cr and NiAl, the thermal expansion data were observed to be reproducible for three specimens. The linear expansion data for Cu-8% Cr and Cu-26%Cr agree extremely well with rule of mixture (ROM) predictions. Comparison of the data for the Cu-8%Cr coating with literature data for Cr and Cu revealed that the thermal expansion behavior of this alloy is determined by the Cu-rich matrix. The data for NiAl and NiCrAlY are in excellent agreement with published results irrespective of composition and the methods used for processing the materials. The implications of these results on coating GRCop-84 copper alloy combustor liners for reusable launch vehicles are discussed.

  5. Removable Mandrels For Vacuum-Plasma-Spray Forming

    NASA Technical Reports Server (NTRS)

    Krotz, Phillip D.; Davis, William M.; Power, Christopher A.; Woodford, William H.; Todd, Douglas M.; Liaw, Yoon K.; Holmes, Richard R.; Zimmerman, Frank R.; Mckechnie, Timothy N.

    1995-01-01

    Improved mandrels developed for use in vacuum-plasma-spray (VPS) forming of refractory metal and ceramic furnace cartridge tubes. Designed so after tubes formed on them by VPS, mandrels shrink away from tubes upon cooling back to room temperature and simply slip out of tube.

  6. Preventing Clogging In A Vacuum Plasma Spray Gun

    NASA Technical Reports Server (NTRS)

    Krotz, Phillip D.; Daniel, Ronald L., Jr.; Davis, William M.

    1994-01-01

    Modification of powder-injection ports enables lengthy, high-temperature deposition operations. Graphite inserts prevent clogging of ports through which copper powder injected into vacuum plasma spray (VPS) gun. Graphite liners eliminate need to spend production time refurbishing VPS gun, reducing cost of production and increasing productivity. Concept also applied to other material systems used for net-shape fabrication via VPS.

  7. Vacuum plasma spray applications on liquid fuel rocket engines

    NASA Technical Reports Server (NTRS)

    Mckechnie, T. N.; Zimmerman, F. R.; Bryant, M. A.

    1992-01-01

    The vacuum plasma spray process (VPS) has been developed by NASA and Rocketdyne for a variety of applications on liquid fuel rocket engines, including the Space Shuttle Main Engine. These applications encompass thermal barrier coatings which are thermal shock resistant for turbopump blades and nozzles; bond coatings for cryogenic titanium components; wear resistant coatings and materials; high conductivity copper, NaRloy-Z, combustion chamber liners, and structural nickel base material, Inconel 718, for nozzle and combustion chamber support jackets.

  8. Vacuum Plasma Spray Forming of Tungsten Lorentz Force Accelerator Components

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank R.

    2001-01-01

    The Vacuum Plasma Spray (VPS) Laboratory at NASA's Marshall Space Flight Center has developed and demonstrated a fabrication technique using the VPS process to form anode sections for a Lorentz force accelerator from tungsten. Lorentz force accelerators are an attractive form of electric propulsion that provides continuous, high-efficiency propulsion at useful power levels for such applications as orbit transfers or deep space missions. The VPS process is used to deposit refractory metals such as tungsten onto a graphite mandrel of the desired shape. Because tungsten is reactive at high temperatures, it is thermally sprayed in an inert environment where the plasma gun melts and accelerates the metal powder onto the mandrel. A three-axis robot inside the chamber controls the motion of the plasma spray torch. A graphite mandrel acts as a male mold, forming the required contour and dimensions of the inside surface of the anode. This paper describes the processing techniques, design considerations, and process development associated with the VPS forming of the Lorentz force accelerator.

  9. Vacuum Plasma Spray Forming of Tungsten Lorentz Force Accelerator Components

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank R.

    2004-01-01

    The Vacuum Plasma Spray (VPS) Laboratory at NASA's Marshall Space Flight Center, working with the Jet Propulsion Laboratory, has developed and demonstrated a fabrication technique using the VPS process to form anode and cathode sections for a Lorentz force accelerator made from tungsten. Lorentz force accelerators are an attractive form of electric propulsion that provides continuous, high-efficiency propulsion at useful power levels for such applications as orbit transfers or deep space missions. The VPS process is used to deposit refractory metals such as tungsten onto a graphite mandrel of the desired shape. Because tungsten is reactive at high temperatures, it is thermally sprayed in an inert environment where the plasma gun melts and deposits the molten metal powder onto a mandrel. A three-axis robot inside the chamber controls the motion of the plasma spray torch. A graphite mandrel acts as a male mold, forming the required contour and dimensions for the inside surface of the anode or cathode of the accelerator. This paper describes the processing techniques, design considerations, and process development associated with the VPS forming of Lorentz force accelerator components.

  10. Young's Moduli of Cold and Vacuum Plasma Sprayed Metallic Coatings

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Pawlik, R.; Loewenthal, W.

    2009-01-01

    Monolithic metallic copper alloy and NiCrAlY coatings were fabricated by either the cold spray (CS) or the vacuum plasma spray (VPS) deposition processes. Dynamic elastic modulus property measurements were conducted on these monolithic coating specimens between 300 K and 1273 K using the impulse excitation technique. The Young's moduli decreased almost linearly with increasing temperature at all temperatures except in the case of the CS Cu-23%Cr-5%Al and VPS NiCrAlY, where deviations from linearity were observed above a critical temperature. It was observed that the Young's moduli for VPS Cu-8%Cr were larger than literature data compiled for Cu. The addition of 1%Al to Cu- 8%Cr significantly increased its Young's modulus by 12 to 17% presumably due to a solid solution effect. Comparisons of the Young s moduli data between two different measurements on the same CS Cu- 23%Cr-5%Al specimen revealed that the values measured in the first run were about 10% higher than those in the second run. It is suggested that this observation is due to annealing of the initial cold work microstructure resulting form the cold spray deposition process.

  11. Vacuum Plasma Spray (VPS) Material Applications for Thruster Components

    NASA Technical Reports Server (NTRS)

    Elam, Sandra; Holmes, Richard; Hickman, Robert

    2006-01-01

    A variety of vacuum plasma spray (VPS) material systems have been successfully applied to injector and thrust chamber components. VPS offers a versatile fabrication process with relatively low costs to produce near net shape parts. The materials available with VPS increase operating margins and improve component life by providing superior thermal and oxidation protection in specific engine environments. Functional gradient materials (FGM) formed with VPS allow thrust chamber liners to be fabricated with GRCop-84 (an alloy of copper, chrome, and niobium) and a protective layer of NiCrAlY on the hot wall. A variety of thrust chamber liner designs have been fabricated to demonstrate the versatility of the process. Hot-fire test results have confirmed the improved durability and high temperature performance of the material systems for thrust chamber liners. Similar FGM s have been applied to provide superior thermal protection on injector faceplates with NiCrAlY and zirconia coatings. The durability of the applied materials has been demonstrated with hot-fire cycle testing on injector faceplates in high temperature environments. The material systems can benefit the components used in booster and main engine propulsion systems. More recent VPS efforts are focused on producing rhenium based material systems for high temperature applications to benefit in-space engines like reaction control system (RCS) thrusters.

  12. Vacuum Plasma Spray (VPS) Material Applications for Thruster Components

    NASA Technical Reports Server (NTRS)

    Elam, Sandra; Holmes, Richard; Hickman, Robert

    2006-01-01

    A variety of vacuum plasma spray (VPS) material systems have been successfully applied to injector and thrust chamber components. VPS offers a versatile fabrication process with relatively low costs to produce near net shape parts. The materials available with VPS increase operating margins and improve component life by providing superior thermal and oxidation protection in specific engine environments. Functional gradient materials (FGM) formed with VPS allow thrust chamber liners to be fabricated with GRCop-84 (an alloy of copper, chrome, and niobium) and a protective layer of NiCrAlY on the hot wall. A variety of thrust chamber liner designs have been fabricated to demonstrate the versatility of the process. Hot-fire test results have confined the improved durability and high temperature performance of the material systems for thrust chamber liners. Similar FGM s have been applied to provide superior thermal protection on injector faceplates with NiCrAlY and zirconia coatings. The durability of the applied materials has been demonstrated with hot-fire cycle testing on injector faceplates in high temperature environments. The material systems can benefit the components used in booster and main engine propulsion systems. More recent VPS efforts are focused on producing rhenium based material systems for high temperature applications to benefit in-space engines like reaction control system (RCS) thrusters.

  13. Vacuum Plasma Spray of Cu-8Cr-4Nb for Advanced Liquid-Fuel Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Zimmerman, F.; Elam, S.; Ellis, D.; Miller, H.; McKechnie, T.; Hickman, R.

    2001-01-01

    Vacuum plasma spray (VPS) formed Cu-8Cr-4Nb alloy, with low oxygen, exhibits higher strength at room and elevated temperature than material formed by extrusion. The VPS formed material exhibits slightly lower ductility than the extruded material. VPS forming of Cu-8Cr-4Nb can be used to produce near net structures with mechanical properties comparable to current extruded material.

  14. Vacuum Plasma Spray Forming of Copper Alloy Liners for Regeneratively Cooled Liquid Rocket Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank

    2003-01-01

    Vacuum plasma spray (VPS) has been demonstrated as a method to form combustion chambers from copper alloys NARloy-Z and GRCop-84. Vacuum plasma spray forming is of particular interest in the forming of CuCrNb alloys such as GRCop-84, developed by NASA s Glenn Research Center, because the alloy cannot be formed using conventional casting and forging methods. This limitation is related to the levels of chromium and niobium in the alloy, which exceed the solubility limit in copper. Until recently, the only forming process that maintained the required microstructure of CrNb intermetallics was powder metallurgy formation of a billet from powder stock, followed by extrusion. This severely limits its usefulness in structural applications, particularly the complex shapes required for combustion chamber liners. This paper discusses the techniques used to form combustion chambers from CuCrNb and NARloy-Z, which will be used in regeneratively cooled liquid rocket combustion chambers.

  15. Vacuum Plasma Spray (VPS) Forming of Solar Thermal Propulsion Components Using Refractory Metals

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank R.; Hissam, David A.; Gerrish, Harold P.; Davis, William M.

    1999-01-01

    The Thermal Spray Laboratory at NASA's Marshall Space Flight Center has developed and demonstrated a fabrication technique using Vacuum Plasma Spray (VPS) to form structural components from a tungsten/rhenium alloy. The components were assembled into an absorber cavity for a fully-functioning, ground test unit of a solar then-nal propulsion engine. The VPS process deposits refractory metal onto a graphite mandrel of the desired shape. The mandrel acts as a male mold, forming the required contour and dimensions of the inside surface of the deposit. Tungsten and tungsten/25% rhenium were used in the development and production of several absorber cavity components. These materials were selected for their high temperature (greater than 25000 C [greater than 4530 F]) strength. Each absorber cavity comprises 3 coaxial shells with two, double-helical flow passages through which the propellant gas flows. This paper describes the processing techniques, design considerations, and process development associated with forming these engine components.

  16. Vacuum Plasma Spray (VPS) Forming of Solar Thermal Propulsion Components Using Refractory Metals

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank; Gerish, Harold; Davis, William; Hissam, D. Andy

    1998-01-01

    The Thermal Spray Laboratory at NASA's Marshall Space Flight Center has developed and demonstrated a fabrication technique using Vacuum Plasma Spray (VPS) to form structural components from a tungsten/rhenium alloy. The components were assembled into an absorption cavity for a fully-functioning, ground test unit of a solar thermal propulsion engine. The VPS process deposits refractory metal onto a graphite mandrel of the desired shape. The mandrel acts as a male mold, forming the required contour and dimensions of the inside surface of the deposit. Tungsten and tungsten/25% rhenium were used in the development and production of several absorber cavity components. These materials were selected for their high temperature (less than 2500 C) strength. Each absorber cavity comprises 3 coaxial shells with two, double-helical flow passages through which the propellant gas flows. This paper describes the processing techniques, design considerations, and process development associated with forming these engine components.

  17. Oxidation Resistance of Vacuum Plasma Sprayed CoNiCrAlY Coatings Modified by Filtered Cathodic Vacuum Arc Deposition Aluminizing

    NASA Astrophysics Data System (ADS)

    Jiang, Jie; Zhao, Huayu; Zhou, Xiaming; Tao, Shunyan; Ding, Chuanxian

    2013-02-01

    The vacuum plasma sprayed CoNiCrAlY coatings are modified by filtered cathodic vacuum arc deposition aluminizing. The microstructure and oxidation resistance of the coatings are investigated. The parabolic law is obeyed for the aluminized coatings after oxidation at 1100 °C for 100 h. Its parabolic kinetic constant is 0.080 mg2/cm4 h, which is lower than that of as-sprayed coatings. The continuous and dense Al2O3 scale is formed earlier due to the increase of Al concentration, and the spinels hardly exist. The oxidation resistance is improved obviously after filtered cathodic vacuum arc deposition aluminizing.

  18. Chemical states and deuterium retention behavior of vacuum plasma sprayed tungsten coatings

    NASA Astrophysics Data System (ADS)

    Niu, Yaran; Suzuki, Sachiko; Zheng, Xuebin; Ding, Chuanxian; Chen, Junling; Wang, Wanjing; Oya, Yasuhisa; Okuno, Kenji

    2011-10-01

    Tungsten (W) coatings were prepared using vacuum plasma spraying (VPS) technology and then the chemical states and retention behaviors of deuterium in VPS-W coatings were analyzed by X-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS). The results showed that chemical reacted oxygen (W-O bonds) and chemisorbed oxygen (O-O bonds) existed both on the surface and interior of tungsten coatings. Oxygen was chemically sputtered during D2+ implantation. Two deuterium desorption stages at the temperature ranges around 300-700 K and 800-1150 K were observed for tungsten coatings. The retention behavior of deuterium in tungsten coatings was greatly different from that of bulk tungsten, which was related to the existence of oxygen.

  19. Net Shaped Component Fabrication of Refractory Metal Alloys using Vacuum Plasma Spraying

    NASA Technical Reports Server (NTRS)

    Sen, S.; ODell, S.; Gorti, S.; Litchford, R.

    2006-01-01

    The vacuum plasma spraying (VPS) technique was employed to produce dense and net shaped components of a new tungsten-rhenium (W-Re) refractory metal alloy. The fine grain size obtained using this technique enhanced the mechanical properties of the alloy at elevated temperatures. The alloy development also included incorporation of thermodynamically stable dispersion phases to pin down grain boundaries at elevated temperatures and thereby circumventing the inherent problem of recrystallization of refractory alloys at elevated temperatures. Requirements for such alloys as related to high temperature space propulsion components will be discussed. Grain size distribution as a function of cooling rate and dispersion phase loading will be presented. Mechanical testing and grain growth results as a function of temperature will also be discussed.

  20. Advanced Vacuum Plasma Spray (VPS) for a Robust, Longlife and Safe Space Shuttle Main Engine (SSME)

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Elam, Sandra K.; McKechnie, Timothy N.; Power, Christopher A.

    2010-01-01

    In 1984, the Vacuum Plasma Spray Lab was built at NASA/Marshall Space Flight Center for applying durable, protective coatings to turbine blades for the space shuttle main engine (SSME) high pressure fuel turbopump. Existing turbine blades were cracking and breaking off after five hot fire tests while VPS coated turbine blades showed no wear or cracking after 40 hot fire tests. Following that, a major manufacturing problem of copper coatings peeling off the SSME Titanium Main Fuel Valve Housing was corrected with a tenacious VPS copper coating. A patented VPS process utilizing Functional Gradient Material (FGM) application was developed to build ceramic lined metallic cartridges for space furnace experiments, safely containing gallium arsenide at 1260 degrees centigrade. The VPS/FGM process was then translated to build robust, long life, liquid rocket combustion chambers for the space shuttle main engine. A 5K (5,000 Lb. thrust) thruster with the VPS/FGM protective coating experienced 220 hot firing tests in pristine condition with no wear compared to the SSME which showed blanching (surface pulverization) and cooling channel cracks in less than 30 of the same hot firing tests. After 35 of the hot firing tests, the injector face plates disintegrated. The VPS/FGM process was then applied to spraying protective thermal barrier coatings on the face plates which showed 50% cooler operating temperature, with no wear after 50 hot fire tests. Cooling channels were closed out in two weeks, compared to one year for the SSME. Working up the TRL (Technology Readiness Level) to establish the VPS/FGM process as viable technology, a 40K thruster was built and is currently being tested. Proposed is to build a J-2X size liquid rocket engine as the final step in establishing the VPS/FGM process TRL for space flight.

  1. Vacuum Plasma Spray of CuCrNb Alloy for Advanced Liquid - Fuel Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank

    2000-01-01

    The copper-8 atomic percent chromium-4 atomic percent niobium (CuCrNb) alloy was developed by Glenn Research Center (formally Lewis Research Center) as an improved alloy for combustion chamber liners. In comparison to NARloy-Z, the baseline (as in Space Shuttle Main Engine) alloy for such liners, CuCrNb demonstrates mechanical and thermophysical properties equivalent to NARloy-Z, but at temperatures 100 C to 150 C (180 F to 270 F) higher. Anticipated materials related benefits include decreasing the thrust cell liner weight 5% to 20%, increasing the service life at least two fold over current combustion chamber design, and increasing the safety margins available to designers. By adding an oxidation and thermal barrier coating to the liner, the combustion chamber can operate at even higher temperatures. For all these benefits, however, this alloy cannot be formed using conventional casting and forging methods because of the levels of chromium and niobium, which exceed their solubility limit in copper. Until recently, the only forming process that maintains the required microstructure of CrNb intermetallics is powder metallurgy formation of a billet from powder stock, followed by extrusion. This severely limits its usefulness in structural applications, particularly the complex shapes required for combustion chamber liners. Vacuum plasma spray (VPS) has been demonstrated as a method to form structural articles including small combustion chambers from the CuCrNb alloy. In addition, an oxidation and thermal barrier layer can be formed integrally on the hot wall of the liner that improve performance and extend service life. This paper discusses the metallurgy and thermomechanical properties of VPS formed CuCrNb versus the baseline powder metallurgy process, and the manufacturing of small combustion chamber liners at Marshall Space Flight Center using the VPS process. The benefits to advanced propulsion initiatives of using VPS to fabricate combustion chamber liners while maintaining the superior CuCrNb properties are also presented.

  2. Nd-Fe-B permanent magnets (thick films) produced by a vacuum-plasma-spraying process

    NASA Astrophysics Data System (ADS)

    Rieger, G.; Wecker, J.; Rodewald, W.; Sattler, W.; Bach, Fr.-W.; Duda, T.; Unterberg, W.

    2000-05-01

    Thick, hard-magnetic Nd-Fe-B films (˜1 mm) were deposited on different substrates (Cu, steel) by a low-pressure plasma-spraying process. The properties of the applied Nd-Fe-B powders (e.g., grain size, composition) and the conditions of the spraying process were optimized with respect to the mechanical and magnetic properties of the films. Film thicknesses up to 1.2 mm were achieved with good adhesive properties (bond strength>40 MPa). Cracks at the interface or within the films during the deposition process could be suppressed by adjusting the temperature profile of the substrate and controlling the deposition rate. Depending on the maximum temperature of the substrate and the thickness of the Nd-Fe-B films, either amorphous or microcrystalline structures were obtained. In general, the magnetic properties were improved by a postdeposition annealing treatment. Coercivities HcJ up to 16 kA/cm and isotropic remanences of about 0.6 T were achieved.

  3. Oxidation Behavior of ZrO2 Reinforced MoSi2 Composite Coatings Fabricated by Vacuum Plasma Spraying Technology

    NASA Astrophysics Data System (ADS)

    Fei, Xiaoai; Niu, Yaran; Ji, Heng; Huang, Liping; Zheng, Xuebin

    2010-09-01

    In this work, MoSi2, MoSi2-20 vol.% ZrO2, MoSi2-40 vol.% ZrO2 (denoted, respectively, as MZ0, MZ2, and MZ4) coatings were fabricated by vacuum plasma spraying technology. The oxidation behavior of the coatings was examined at 500, 1200, and 1500 °C, respectively. Some basic properties of the coatings, including microhardness, porosity, and surface roughness were characterized. The tests at 500 °C showed that the pest oxidation phenomenon of MoSi2 coatings was restrained by the addition of ZrO2. The MZ2 coating exhibited excellent oxidation-resistant behavior both at 1200 and 1500 °C. However, the MZ4 coating presented the impaired oxidation-resistant behavior at 1500 °C, though the comparable oxidation property at 1200 °C was still obtained.

  4. Interaction Studies of Ceramic Vacuum Plasma Spraying for the Melting Crucible Materials

    SciTech Connect

    Jong Hwan Kim; Hyung Tae Kim; Yoon Myung Woo; Ki Hwan Kim; Chan Bock Lee; R. S. Fielding

    2013-10-01

    Candidate coating materials for re-usable metallic nuclear fuel crucibles, TaC, TiC, ZrC, ZrO2, and Y2O3, were plasmasprayed onto a niobium substrate. The microstructure of the plasma-sprayed coatings and thermal cycling behavior were characterized, and U-Zr melt interaction studies were carried out. The TaC and Y2O3 coating layers had a uniform thickness, and high density with only a few small closed pores showing good consolidation, while the ZrC, TiC, and ZrO2 coatings were not well consolidated with a considerable amount of porosity. Thermal cycling tests showed that the adhesion of the TiC, ZrC, and ZrO2 coating layers with niobium was relatively weak compared to the TaC and Y2O3 coatings. The TaC and Y2O3 coatings had better cycling characteristics with no interconnected cracks. In the interaction studies, ZrC and ZrO2 coated rods showed significant degradations after exposure to U-10 wt.% Zr melt at 1600 degrees C for 15 min., but TaC, TiC, and Y2O3 coatings showed good compatibility with U-Zr melt.

  5. Microstructure and failure mechanism in As-deposited, vacuum plasma-sprayed Ti-6Al-4V alloy

    NASA Astrophysics Data System (ADS)

    Salimijazi, H. R.; Coyle, T. W.; Mostaghimi, J.; Leblanc, L.

    2005-06-01

    The microstructure, phase composition, and chemical composition of vacuum plasma-sprayed Ti-6Al-4V alloys were examined in detail using a variety of techniques, including x-ray diffraction, x-ray photoelectron spectroscopy, and transmission electron microscopy. The observed chemistry and structure were related to the conditions under which the deposit was formed and the phase equilibria in the Ti alloy system. The porosity of the deposit was in the range of 3 to 5%. A slight decrease in the Al content and a slight increase in the amount of oxygen and hydrogen was found relative to the starting powder. Within individual splats, a columnar solidification structure can be seen. However, the as-deposited material is ?90% ?? martensite that is present in the form of fine lathes on the order of 500 nm in width surrounded by residual ?-phase. This herringbone structure obscures to some extent the preexisting columnar structure of the as-solidified ?-phase. The material fails at low elongations (˜1%) when tested in tension, with a macroscopic stress-strain curve, which appears to be quite brittle. Examination of the fracture surface, however, reveals a ductile failure mode within individual splats, which is consistent with the structure described above. Sections perpendicular to the fracture surface show that failure occurs at the weak splat boundaries through the development and growth of voids between splats.

  6. Deuterium retention in porous vacuum plasma-sprayed tungsten coating exposed to low-energy, high-flux pure and helium-seeded D plasmas

    NASA Astrophysics Data System (ADS)

    Alimov, V. Kh.; Tyburska, B.; Ogorodnikova, O. V.; Roth, J.; Isobe, K.; Yamanishi, T.

    2011-08-01

    Deuterium retention in porous vacuum plasma-sprayed tungsten coating has been examined after exposure to low-energy, high-flux (1022 D/m2 s) pure D and helium-seeded D plasmas to ion fluences in the range from 1026 to 1027 D/m2 at various temperatures. The methods used were thermal desorption spectroscopy and the D(3He,p)4He nuclear reaction, allowing determination of the D concentration at depths up to 7 ?m. Under exposure to pure D plasma (76 eV D2+) at 340-560 K, the D concentration reaches 0.1-0.2 at.% at depths of several micrometers, while at temperatures above 700 K the D concentration is below 10-2 at.% and deuterium is retained over the whole thickness of the coating. Seeding of 76 eV He+ into the D plasma reduces the D retention at temperatures of 400-600 K. However, at temperatures above 700 K, the D retention becomes comparable to that for pure D plasma exposure.

  7. Plasma spray forming metals, intermetallics, and composites

    NASA Astrophysics Data System (ADS)

    Sampath, Sanjay; Herman, Herbert

    1993-07-01

    Plasma spray processing is a droplet deposition method that combines the steps of melting, rapid solidification, and consolidation into a single step. The versatility of the technology enables the processing of freestanding bulk, near-net shapes of a wide range of alloys, intermetallics, ceramics, and composites, while still retaining the benefits of rapid solidification processing. In particular, it is possible to produce dense forms through vacuum plasma spraying.

  8. Effect of Vacuum Annealing on the Characteristics of Plasma Sprayed Al2O3-13wt.%TiO2 Coatings

    NASA Astrophysics Data System (ADS)

    Jingjing, Zhang; Zehua, Wang; Pinghua, Lin; Hongbin, Yuan; Zehua, Zhou; Shaoqun, Jiang

    2012-09-01

    Adhesion strength is one of the critical properties for plasma-sprayed coating. In this study, the plasma-sprayed Al2O3-13wt.%TiO2/NiCrAl coatings were annealed at 300-900 °C for 6 h in vacuum. The tensile bond strength and porosity of the coatings were investigated. The microstructure and the fracture were studied using optical microscopy, scanning electron spectroscopy, and x-ray diffraction. It was found that the tensile bond strength of coatings increased with the increase of annealing temperature until 500 °C, reaching the maximum value of 41.2 MPa, and then decreased as the annealing temperature continues to increase. All coatings presented a brittle fracture and the fracture occurred inside the ceramic coatings except for the coating annealed at 500 °C, which had a brittle-ductile mixed fracture and the fracture occurred at the interface of bond coating and the substrate.

  9. Functionally graded vacuum plasma sprayed and magnetron sputtered tungsten/EUROFER97 interlayers for joints in helium-cooled divertor components

    NASA Astrophysics Data System (ADS)

    Weber, T.; Stüber, M.; Ulrich, S.; Vaßen, R.; Basuki, W. W.; Lohmiller, J.; Sittel, W.; Aktaa, J.

    2013-05-01

    Two coating technologies, magnetron sputtering and vacuum plasma spraying, have been investigated for their capability in producing functionally graded tungsten/EUROFER97 layers. In a first step, non-graded layers with different mixing ratios were deposited on tungsten substrates and characterized by nanoindentation, macroindentation, X-ray diffraction, transmission, Auger and scanning electron microscopy. The thermal stability of the sprayed layers against heat treatments at 800-1100 °C for 60 min was further analyzed. In a second step, the produced functionally graded layers deposited on tungsten substrates were joined to EUROFER97 bulk-material by diffusion bonding. The bonding and the graded joints were microscopically characterized and exposed to thermal cycles between 20 °C and 650 °C. Results from this study show that both coating technologies are ideal for the synthesis of functionally graded tungsten/EUROFER97 coatings. This is important in providing insights for future development of joints with functionally graded interlayers.

  10. Plasma Spraying Reclaims Compressor Housings

    NASA Technical Reports Server (NTRS)

    Leissler, George W.; Yuhas, John S.

    1991-01-01

    Plasma-spraying process used to build up material in worn and pitted areas. Newly applied material remachined to specified surface contours. Effective technique for addition of metal to out-of-tolerance magnesium-alloy turbine-engine compressor housings.

  11. Feedback enhanced plasma spray tool

    DOEpatents

    Gevelber, Michael Alan; Wroblewski, Donald Edward; Fincke, James Russell; Swank, William David; Haggard, Delon C.; Bewley, Randy Lee

    2005-11-22

    An improved automatic feedback control scheme enhances plasma spraying of powdered material through reduction of process variability and providing better ability to engineer coating structure. The present inventors discovered that controlling centroid position of the spatial distribution along with other output parameters, such as particle temperature, particle velocity, and molten mass flux rate, vastly increases control over the sprayed coating structure, including vertical and horizontal cracks, voids, and porosity. It also allows improved control over graded layers or compositionally varying layers of material, reduces variations, including variation in coating thickness, and allows increasing deposition rate. Various measurement and system control schemes are provided.

  12. ORIGINAL PAPER A Perspective on Plasma Spray Technology

    E-print Network

    Columbia University

    priorities in the plasma spray field. Keywords Surface engineering Á Plasma spraying Á Plasma spray torch ÁORIGINAL PAPER A Perspective on Plasma Spray Technology Armelle Vardelle · Christian Moreau Springer Science+Business Media New York 2014 Abstract Plasma spraying is often assumed to be a mature

  13. Plasma sprayed ceria-containing interlayer

    DOEpatents

    Schmidt, Douglas S.; Folser, George R.

    2006-01-10

    A plasma sprayed ceria-containing interlayer is provided. The interlayer has particular application in connection with a solid oxide fuel cell used within a power generation system. The fuel cell advantageously comprises an air electrode, a plasma sprayed interlayer disposed on at least a portion of the air electrode, a plasma sprayed electrolyte disposed on at least a portion of the interlayer, and a fuel electrode applied on at least a portion of the electrolyte.

  14. Metallurgy and properties of plasma spray formed materials

    NASA Technical Reports Server (NTRS)

    Mckechnie, T. N.; Liaw, Y. K.; Zimmerman, F. R.; Poorman, R. M.

    1992-01-01

    Understanding the fundamental metallurgy of vacuum plasma spray formed materials is the key to enhancing and developing full material properties. Investigations have shown that the microstructure of plasma sprayed materials must evolve from a powder splat morphology to a recrystallized grain structure to assure high strength and ductility. A fully, or near fully, dense material that exhibits a powder splat morphology will perform as a brittle material compared to a recrystallized grain structure for the same amount of porosity. Metallurgy and material properties of nickel, iron, and copper base alloys will be presented and correlated to microstructure.

  15. Vacuum application of thermal barrier plasma coatings

    NASA Technical Reports Server (NTRS)

    Holmes, R. R.; Mckechnie, T. N.

    1988-01-01

    Coatings are presently applied to Space Shuttle Main Engine (SSME) turbine blades for protection against the harsh environment realized in the engine during lift off-to-orbit. High performance nickel, chromium, aluminum, and yttrium (NiCrAlY) alloy coatings, which are applied by atmospheric plasma spraying, crack and spall off because of the severe thermal shock experienced during start-up and shut-down of the engine. Ceramic coatings of yttria stabilized zirconia (ZrO2-Y2O3) were applied initially as a thermal barrier over coating to the NiCrAlY but were removed because of even greater spalling. Utilizing a vacuum plasma spraying process, bond coatings of NiCrAlY were applied in a low pressure atmosphere of argon/helium, producing significantly improved coating-to-blade bonding. The improved coatings showed no spalling after 40 MSFC burner rig thermal shock cycles, cycling between 1700 and -423 F. The current atmospheric plasma NiCrAlY coatings spalled during 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2-Y2O3 to the turbine blades of first stage high-pressure fuel turbopumps utilizing the vacuum plasma process. The improved thermal barrier coating has successfully passed 40 burner rig thermal shock cycles without spalling. Hot firing in an SSME turbine engine is scheduled for the blades. Tooling was installed in preparation for vacuum plasma spray coating other SSME hardware, e.g., the titanium main fuel valve housing (MFVH) and the fuel turbopump nozzle/stator.

  16. Tailoring the Spray Conditions for Suspension Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Joulia, A.; Duarte, W.; Goutier, S.; Vardelle, M.; Vardelle, A.; Rossignol, S.

    2015-01-01

    The plasma spray process using suspensions as liquid feedstock allows the deposition of finely structured coatings with improved properties compared to that of coatings deposited by the conventional plasma spray techniques. The evaporation of the solvent, acceleration, heating, and melting of the fine solid particles within the plasma jet take place in a shorter time, as the substrate is located closer to the plasma torch when a mono-cathode mono-anode plasma torch is used, while the liquid material processing globally consumes more energy than a powder material. Therefore, achieving a coating with the expected properties requires a broad understanding of the process. In this study, a large range of plasma spray conditions have been used to achieve yttria-stabilized zirconia coatings by suspension plasma spraying. The properties of the plasma jet (velocity, enthalpy, and stability) as well as those of droplets (trajectories, number, and size) and particles (velocity) were measured and correlated to the coating microstructure. The operating conditions necessary for obtaining disk-shape splats and achieving homogeneous coatings are described including the plasma jet properties and substrate parameters.

  17. ORIGINAL PAPER A Perspective on Plasma Spray Technology

    E-print Network

    Columbia University

    and research priorities in the plasma spray field. Keywords Surface engineering Á Plasma spraying Á PlasmaORIGINAL PAPER A Perspective on Plasma Spray Technology Armelle Vardelle · Christian Moreau / Published online: 11 December 2014 Ó Springer Science+Business Media New York 2014 Abstract Plasma spraying

  18. Plasma Spray-PVD: A New Thermal Spray Process to Deposit Out of the Vapor Phase

    NASA Astrophysics Data System (ADS)

    von Niessen, Konstantin; Gindrat, Malko

    2011-06-01

    Plasma spray-physical vapor deposition (PS-PVD) is a low pressure plasma spray technology recently developed by Sulzer Metco AG (Switzerland). Even though it is a thermal spray process, it can deposit coatings out of the vapor phase. The basis of PS-PVD is the low pressure plasma spraying (LPPS) technology that has been well established in industry for several years. In comparison to conventional vacuum plasma spraying (VPS) or low pressure plasma spraying (LPPS), the new proposed process uses a high energy plasma gun operated at a reduced work pressure of 0.1 kPa (1 mbar). Owing to the high energy plasma and further reduced work pressure, PS-PVD is able to deposit a coating not only by melting the feed stock material which builds up a layer from liquid splats but also by vaporizing the injected material. Therefore, the PS-PVD process fills the gap between the conventional physical vapor deposition (PVD) technologies and standard thermal spray processes. The possibility to vaporize feedstock material and to produce layers out of the vapor phase results in new and unique coating microstructures. The properties of such coatings are superior to those of thermal spray and electron beam-physical vapor deposition (EB-PVD) coatings. In contrast to EB-PVD, PS-PVD incorporates the vaporized coating material into a supersonic plasma plume. Owing to the forced gas stream of the plasma jet, complex shaped parts such as multi-airfoil turbine vanes can be coated with columnar thermal barrier coatings using PS-PVD. Even shadowed areas and areas which are not in the line of sight of the coating source can be coated homogeneously. This article reports on the progress made by Sulzer Metco in developing a thermal spray process to produce coatings out of the vapor phase. Columnar thermal barrier coatings made of Yttria-stabilized Zircona (YSZ) are optimized to serve in a turbine engine. This process includes not only preferable coating properties such as strain tolerance and erosion resistance but also the simultaneous coverage of multiple air foils.

  19. Coanda-Assisted Spray Manipulation Collar for a Commercial Plasma Spray Gun

    E-print Network

    Smith, Barton L.

    Coanda-Assisted Spray Manipulation Collar for a Commercial Plasma Spray Gun K. Mabey, B.L. Smith, G-assisted Spray Manipulation (CSM) collar was retrofitted to a Praxair SG-100 plasma spray gun. The CSM device makes it possible to change the direction of (vector) the plasma jet and powder without moving the gun

  20. Plasma-Sprayed Coatings on Porous Surfaces

    NASA Technical Reports Server (NTRS)

    Leibert, C. H.

    1986-01-01

    Need for combining benefits of duplex thermal-barrier coatings with film cooling on gas-turbine vanes and blades stimulated development of improved method for plasma spraying these coatings. Method reduces blocking of holes by plasma-sprayed material and at same time reduces base-metal oxidation during coating operation. Features provide potential for increased engine efficiency and power, reduced fuel consumption, use of less costly materials or construction procedures, and extended life and durability.

  1. Underwater plasma spraying and synthesis of coatings

    SciTech Connect

    Verstak, A.A.; Vityaz, P.A.; Smith, R.W.

    1994-12-31

    The paper presents the results of experiments relating to further development of the coating processes, based on utilizing the electric arc thermal plasma jets under water. Water is supposed to be a medium providing unique conditions for plasma behavior, that can be used for new materials processing. There are several issues under investigation: the plasma jet gas dynamics under water, the heat flow from the jet into the substrate, the processes of coatings by underwater plasma spraying and chemical vapor deposition. It is found that the local pressure in the plasma jet under water is under great influence of water column pressure. It directly reduces the plasma velocity, but increases its density. The plasma flow under water should be regarded like a channel with practically total absence of the ambient medium ejection in it. The heat flow from the jet to a plasma spot on the substrate reaches 20--30% of plasma power and concentrates in a spot with 12--17 mm diameter. This allows one to fuse the coating surface layer during spraying or to process the coatings from solid, not fused particles even in the case of refractory materials spraying. The examples are presented for underwater plasma spraying of the low oxidized coatings from metallic titanium, hard thick coatings from titanium carbide, the coatings from partially stabilized zirconia with fused surface layer as well as underwater plasma chemical vapor deposition of diamond coatings.

  2. Creep of plasma sprayed zirconia

    NASA Technical Reports Server (NTRS)

    Firestone, R. F.; Logan, W. R.; Adams, J. W.

    1982-01-01

    Specimens of plasma-sprayed zirconia thermal barrier coatings with three different porosities and different initial particle sizes were deformed in compression at initial loads of 1000, 2000, and 3500 psi and temperatures of 1100 C, 1250 C, and 1400 C. The coatings were stabilized with lime, magnesia, and two different concentrations of yttria. Creep began as soon as the load was applied and continued at a constantly decreasing rate until the load was removed. Temperature and stabilization had a pronounced effect on creep rate. The creep rate for 20% Y2O3-80% ZrO2 was 1/3 to 1/2 that of 8% Y2O3-92% ZrO2. Both magnesia and calcia stabilized ZrO2 crept at a rate 5 to 10 times that of the 20% Y2O3 material. A near proportionality between creep rate and applied stress was observed. The rate controlling process appeared to be thermally activated, with an activation energy of approximately 100 cal/gm mole K. Creep deformation was due to cracking and particle sliding.

  3. Characterization of Plasma Sprayed Beryllium ITER First Wall Mockups

    SciTech Connect

    Castro, Richard G.; Vaidya, Rajendra U.; Hollis, Kendall J.

    1997-12-31

    ITER first wall beryllium mockups, which were fabricated by vacuum plasma spraying the beryllium armor, have survived 3000 thermal fatigue cycles at 1 MW/sq m without damage during high heat flux testing at the Plasma Materials Test Facility at Sandia National Laboratory in New Mexico. The thermal and mechanical properties of the plasma sprayed beryllium armor have been characterized. Results are reported on the chemical composition of the beryllium armor in the as-deposited condition, the through thickness and normal to the through thickness thermal conductivity and thermal expansion, the four-point bend flexure strength and edge-notch fracture toughness of the beryllium armor, the bond strength between the beryllium armor and the underlying heat sink material, and ultrasonic C-scans of the Be/heat sink interface.

  4. Plasma-Spray Metal Coating On Foam

    NASA Technical Reports Server (NTRS)

    Cranston, J.

    1994-01-01

    Molds, forms, and other substrates made of foams coated with metals by plasma spraying. Foam might be ceramic, carbon, metallic, organic, or inorganic. After coat applied by plasma spraying, foam left intact or removed by acid leaching, conventional machining, water-jet cutting, or another suitable technique. Cores or vessels made of various foam materials plasma-coated with metals according to method useful as thermally insulating containers for foods, liquids, or gases, or as mandrels for making composite-material (matrix/fiber) parts, or making thermally insulating firewalls in automobiles.

  5. Thermomechanical processing of plasma sprayed intermetallic sheets

    DOEpatents

    Hajaligol, Mohammad R. (Midlothian, VA); Scorey, Clive (Cheshire, CT); Sikka, Vinod K. (Oak Ridge, TN); Deevi, Seetharama C. (Midlothian, VA); Fleischhauer, Grier (Midlothian, VA); Lilly, Jr., A. Clifton (Chesterfield, VA); German, Randall M. (State College, PA)

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  6. More About Plasma-Spraying Ceramics Onto Smooth Metals

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Doychak, Joseph

    1995-01-01

    Paper presents additional information on fabrication process described in "Plasma-Spraying Ceramics Onto Smooth Metallic Substrates" (LEW-15164). Provides additional information on specific substrate materials advantageously coated in two-stage plasma-spraying process.

  7. Thermophysical properties of plasma sprayed coatings

    NASA Technical Reports Server (NTRS)

    Wilkes, K. E.; Lagedrost, J. F.

    1973-01-01

    Thermophysical properties of plasma sprayed materials were determined for the following plasma sprayed materials: CaO - stabilized ZrO2, Y2O3 - stabilized ZerO2, Al2O3, HfO2 Mo, nichrome, NiAl, Mo-ZrO2, and MoAl2O3 mixtures. In all cases the thermal conductivity of the as-sprayed materials was found to be considerably lower than that of the bulk material. The flash-laser thermal diffusivity technique was used both for diffusivity determination of single-layer materials and to determine the thermal contact resistance at the interface of two-layer specimens.

  8. Current problems in plasma spray processing

    SciTech Connect

    Berndt, C.C.; Brindley, W.; Goland, A.N.; Herman, H.; Houck, D.L.; Jones, K.; Miller, R.A.; Neiser, R.; Riggs, W.; Sampath, S.; Smith, M.; Spanne, P. . Thermal Spray Lab.)

    1991-01-01

    This detailed report summarizes 8 contributions from a thermal spray conference that was held in late 1991 at Brookhaven National Laboratory (Upton, Long Island, NY, USA). The subject of Plasma Spray Processing'' is presented under subject headings of Plasma-particle interactions, Deposit formation dynamics, Thermal properties of thermal barrier coatings, Mechanical properties of coatings, Feed stock materials, Porosity: An integrated approach, Manufacture of intermetallic coatings, and Synchrotron x-ray microtomographic methods for thermal spray materials. Each section is intended to present a concise statement of a specific practical and/or scientific problem, then describe current work that is being performed to investigate this area, and finally to suggest areas of research that may be fertile for future activity.

  9. Current problems in plasma spray processing

    SciTech Connect

    Berndt, C.C.; Brindley, W.; Goland, A.N.; Herman, H.; Houck, D.L.; Jones, K.; Miller, R.A.; Neiser, R.; Riggs, W.; Sampath, S.; Smith, M.; Spanne, P.

    1991-12-31

    This detailed report summarizes 8 contributions from a thermal spray conference that was held in late 1991 at Brookhaven National Laboratory (Upton, Long Island, NY, USA). The subject of ``Plasma Spray Processing`` is presented under subject headings of Plasma-particle interactions, Deposit formation dynamics, Thermal properties of thermal barrier coatings, Mechanical properties of coatings, Feed stock materials, Porosity: An integrated approach, Manufacture of intermetallic coatings, and Synchrotron x-ray microtomographic methods for thermal spray materials. Each section is intended to present a concise statement of a specific practical and/or scientific problem, then describe current work that is being performed to investigate this area, and finally to suggest areas of research that may be fertile for future activity.

  10. Influence of the Spray Angle on the Characteristics of Atmospheric Plasma Sprayed Hard Material Based Coatings

    NASA Astrophysics Data System (ADS)

    Tillmann, Wolfgang; Vogli, Evelina; Krebs, Benjamin

    2008-12-01

    This paper presents an investigation of the influence of the spray angle on thermally sprayed coatings. Spray beads were manufactured with different spray angles between 90 and 20° by means of atmospheric plasma spraying (APS) on heat-treated mild steel (1.0503). WC-12Co and Cr3C2-10(Ni20Cr) powders were employed as feedstock materials. Every spray bead was characterized by a Gaussian fit. This opens the opportunity to analyze the influence of the spray angle on coating properties. Furthermore, metallographic studies of the surface roughness, porosity, hardness, and morphology were carried out and the deposition efficiency as well as the tensile strength was measured. The thermally sprayed coatings show a clear dependence on the spray angle. A decrease in spray angle changes the thickness, width, and form of the spray beads. The coatings become rougher and their quality decreases.

  11. Stress rupture and creep behavior of a low pressure plasma-sprayed NiCoCrAlY coating alloy in air and vacuum

    NASA Technical Reports Server (NTRS)

    Hebsur, M. G.; Miner, R. V.

    1987-01-01

    The creep behavior of a NiCoCrAlY coating alloy in air and vacuum at 660 and 850 C is studied. The microstructure of the coating alloy is described. Analysis of the creep curves reveal that the secondary creep rates, the transition from secondary to tertiary creep, and the strain-to-failure are affected by the environment, preexposure, stress, and temperature. It is observed that the rupture lives of the NiCoCrAlY alloy at 660 and 850 C are greater in air than in vacuum. Several mechanisms that may explain the lack of crack growth from surface-connected pores during tests in air are proposed.

  12. Thermal analysis simulation for a spin-motor used in the advanced main combustion chamber vacuum plasma spray project using the SINDA computer program

    NASA Technical Reports Server (NTRS)

    Mcdonald, Gary H.

    1990-01-01

    One of the many design challenges of this project is predicting the thermal effects due to the environment inside the vacuum chamber on the turntable and spin motor spindle assembly. The objective of the study is to model the spin motor using the computer program System Improved Numerical Differencing Analyzer (SINDA). By formulating the appropriate input information concerning the motor's geometry, coolant flow path, material composition, and bearing and motor winding characteristics, SINDA should predict temperatures at various predefined nodes. From these temperatures, hopefully, one can predict if the coolant flow rate is sufficient or if certain mechanical elements such as bearings, O ring seals, or motor windings will exceed maximum design temperatures.

  13. Improving plasma-sprayed yttria-stabilized zirconia coatings for solid oxide fuel cell electrolytes

    NASA Astrophysics Data System (ADS)

    Syed, A. A.; Ilhan, Z.; Arnold, J.; Schiller, G.; Weckmann, H.

    2006-12-01

    Using a D-optimal design of experiments, the influences of feedstock powder and plasma gases on deposition efficiency, gas tightness, and the electrochemical behavior of vacuum plasma-sprayed yttria-stabilized zirconia for solid oxide fuel cell electrolytes were examined. In-flight particle temperature and velocity, measured by online particle diagnostics, were correlated with plasma and deposit properties. Electrochemical testing of cells was performed to determine the influence of gas tightness and microstructure of electrolyte deposit on cell behavior.

  14. Study of Multi-Function Micro-Plasma Spraying Technology

    NASA Astrophysics Data System (ADS)

    Wang, Liuying; Wang, Hangong; Hua, Shaochun; Cao, Xiaoping

    2007-02-01

    A multi-functional micro-arc plasma spraying system was developed according to aerodynamics and plasma spray theory. The soft switch IGBT (Insulated Gate Bipolar Transistor) invert technique, micro-computer control technique, convergent-divergent nozzle structure and axial powder feeding techniques have been adopted in the design of the micro-arc plasma spraying system. It is not only characterized by a small volume, a light weight, highly accurate control, high deposition efficiency and high reliability, but also has multi-functions in plasma spraying, welding and quenching. The experimental results showed that the system can produce a supersonic flame at a low power, spray Al2O3 particles at an average speed up to 430 m/s, and make nanostructured AT13 coatings with an average bonding strength of 42.7 MPa. Compared to conventional 9M plasma spraying with a higher power, the coatings with almost the same properties as those by conventional plasma spray can be deposited by multi-functional micro-arc plasma spraying with a lower power plasma arc due to an improved power supply design, spray gun structure and powder feeding method. Moreover, this system is suitable for working with thin parts and undertaking on site repairs, and as a result, the application of plasma spraying will be greatly extended.

  15. Vacuum arc plasma mass separator

    NASA Astrophysics Data System (ADS)

    Paperny, V. L.; Krasov, V. I.; Lebedev, N. V.; Astrakchantsev, N. V.; Chernikch, A. A.

    2015-02-01

    The propagation of a metal plasma flow in a transport system with a curvilinear magnetic field was studied experimentally. The flow was generated by a pulsed vacuum arc discharge with a composite (W+Fe) cathode. The ion energy measurements at the transport system output showed that all ion components were accelerated up to equal energies per charge unit, about 150 eV and 320 eV in the outer and inner areas of the curved plasma flow, respectively. The spatial separation of the atoms of the cathode material was measured at the system output by x-ray fluorescence spectrometry. The ions of the lighter element (Fe) were concentrated in the inner part of the cathodic plasma flow deflected by the magnetic field while the distribution of the heavy element (W) was substantially shifted toward the outer area of the flow. The maximum mass separation efficiency reached 45, the effective value being 7.7. Such a system is promising for use in plasma technology for reprocessing spent nuclear fuel, namely for the separation of the heavy radioactive fission product from nuclear waste.

  16. Plasma-Spraying Ceramics Onto Smooth Metallic Substrates

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Brindley, William J.; Rouge, Carl J.; Leissler, George

    1992-01-01

    In fabrication process, plasma-sprayed ceramic coats bonded strongly to smooth metallic surfaces. Principal use of such coats in protecting metal parts in hot-gas paths of advanced gas turbine engines. Process consists of application of initial thin layer of ceramic on smooth surface by low-pressure-plasma spraying followed by application of layer of conventional, low-thermal-conductivity atmospheric-pressure plasma-sprayed ceramic.

  17. Automated Plasma Spray (APS) process feasibility study

    NASA Technical Reports Server (NTRS)

    Fetheroff, C. W.; Derkacs, T.; Matay, I. M.

    1981-01-01

    An automated plasma spray (APS) process was developed to apply two layer (NiCrAlY and ZrO2-12Y2O3) thermal barrier coatings to aircraft and stationary gas turbine engine blade airfoils. The APS process hardware consists of four subsystems: a mechanical positioning subsystem incorporating two interlaced six degree of freedom assemblies (one for coating deposition and one for coating thickness monitoring); a noncoherent optical metrology subsystem (for in process gaging of the coating thickness buildup at specified points on the specimen); a microprocessor based adaptive system controller (to achieve the desired overall thickness profile on the specimen); and commerical plasma spray equipment. Over fifty JT9D first stage aircraft turbine blade specimens, ten W501B utility turbine blade specimens and dozens of cylindrical specimens were coated with the APS process in preliminary checkout and evaluation studies. The best of the preliminary turbine blade specimens achieved an overall coating thickness uniformity of 53 micrometers (2.1 mils), much better than is achievable manually. Comparative evaluations of coating thickness uniformity for manually sprayed and APS coated specimens were performed. One of the preliminary turbine blade evaluation specimens was subjected to a torch test and metallographic evaluation. Some cylindrical specimens coated with the APS process survived up to 2000 cycles in subsequent burner rig testing.

  18. Influence of Cold-Sprayed, Warm-Sprayed, and Plasma-Sprayed Layers Deposition on Fatigue Properties of Steel Specimens

    NASA Astrophysics Data System (ADS)

    Cizek, J.; Matejkova, M.; Dlouhy, I.; Siska, F.; Kay, C. M.; Karthikeyan, J.; Kuroda, S.; Kovarik, O.; Siegl, J.; Loke, K.; Khor, Khiam Aik

    2015-06-01

    Titanium powder was deposited onto steel specimens using four thermal spray technologies: plasma spray, low-pressure cold spray, portable cold spray, and warm spray. The specimens were then subjected to strain-controlled cyclic bending test in a dedicated in-house built device. The crack propagation was monitored by observing the changes in the resonance frequency of the samples. For each series, the number of cycles corresponding to a pre-defined specimen cross-section damage was used as a performance indicator. It was found that the grit-blasting procedure did not alter the fatigue properties of the steel specimens (1% increase as compared to as-received set), while the deposition of coatings via all four thermal spray technologies significantly increased the measured fatigue lives. The three high-velocity technologies led to an increase of relative lives to 234% (low-pressure cold spray), 210% (portable cold spray), and 355% (warm spray) and the deposition using plasma spray led to an increase of relative lives to 303%. The observed increase of high-velocity technologies (cold and warm spray) could be attributed to a combination of homogeneous fatigue-resistant coatings and induction of peening stresses into the substrates via the impingement of the high-kinetic energy particles. Given the intrinsic character of the plasma jet (low-velocity impact of semi/molten particles) and the mostly ceramic character of the coating (oxides, nitrides), a hypothesis based on non-linear coatings behavior is provided in the paper.

  19. Plasma spraying of beryllium and beryllium-aluminum-silver alloys

    SciTech Connect

    Castro, R.G.; Stanek, P.W.; Elliott, K.E.; Jacobson, L.A.

    1993-12-31

    A preliminary investigation on plasma-spraying of beryllium and a beryllium-aluminum 4% silver alloy was done at the Los Alamos National Laboratory`s Beryllium Atomization and Thermal Spray Facility (BATSF). Spherical Be and Be-Al-4%Ag powders, which were produced by centrifugal atomization, were used as feedstock material for plasma-spraying. The spherical morphology of the powders allowed for better feeding of fine (<38 {mu}m) powders into the plasma-spray torch. The difference in the as-deposited densities and deposit efficiencies of the two plasma-sprayed powders will be discussed along with the effect of processing parameters on the as-deposited microstructure of the Be-Al-4%Ag. This investigation represents ongoing research to develop and characterize plasma-spraying of beryllium and beryllium-aluminum alloys for magnetic fusion and aerospace applications.

  20. Structural transformations in thermal spray coatings of Ni/sub 60/Nb/sub 40/ alloy in vacuum annealing

    SciTech Connect

    Borisov, Yu.S.; Korzhik, V.N.; Kunitskii, Ya.A.; Revo, S.L.; Gritiskiv, Ya.P.

    1987-03-01

    This article investigates the crystal-phase transformations and microstructure of the title alloy under conditions of plasma arc spraying and vacuum annealing. The structure is determined to be amorphous with inclusions of niobium dioxide, nickel, and nickel monoxide participating. Oxidation of the niobium during spraying and subsequent precipitation of its oxides in heating changes the sequence of crystallization from the amorphous matrix of stable phases and causes initial precipitation of a phase rich in nickel. Crystallization of the amorphous structure occurs in two phases.

  1. Erosion-resistance of plasma sprayed coatings

    SciTech Connect

    Xia, Z.; Zhang, X.; Song, J.

    1999-12-01

    Cr{sub 3}C{sub 2}/NiCr, ZrO{sub 2}/NiCr, WTiC{sub 2}/NiCr, and X40 were plasma sprayed on the substrate 1Cr18NI9Ti in order to solve the erosion wear at high temperature encountered in the oil-refining industry. A series of properties of the coatings, including their microstructure, hardness, and erosion-behavior, have been tested. The test results show that the properties of the coatings have a significant effect on their erosion-resistant performance. Good erosion-resistant materials need to be hard and tough. Both Cr{sub 3}C{sub 2}/NiCr and X40 have good erosion resistance at elevated temperature.

  2. Solid oxide fuel cell electrolytes produced by a combination of suspension plasma spray and very low pressure plasma spray.

    SciTech Connect

    Slamovich, Elliot; Fleetwood, James; McCloskey, James F.; Hall, Aaron Christopher; Trice, Rodney Wayne

    2010-07-01

    Plasma spray coating techniques allow unique control of electrolyte microstructures and properties as well as facilitating deposition on complex surfaces. This can enable significantly improved solid oxide fuel cells (SOFCs), including non-planar designs. SOFCs are promising because they directly convert the oxidization of fuel into electrical energy. However, electrolytes deposited using conventional plasma spray are porous and often greater than 50 microns thick. One solution to form dense, thin electrolytes of ideal composition for SOFCs is to combine suspension plasma spray (SPS) with very low pressure plasma spray (VLPPS). Increased compositional control is achieved due to dissolved dopant compounds in the suspension that are incorporated into the coating during plasma spraying. Thus, it is possible to change the chemistry of the feed stock during deposition. In the work reported, suspensions of sub-micron diameter 8 mol.% Y2O3-ZrO2 (YSZ) powders were sprayed on NiO-YSZ anodes at Sandia National Laboratories (SNL) Thermal Spray Research Laboratory (TSRL). These coatings were compared to the same suspensions doped with scandium nitrate at 3 to 8 mol%. The pressure in the chamber was 2.4 torr and the plasma was formed from a combination of argon and hydrogen gases. The resultant electrolytes were well adhered to the anode substrates and were approximately 10 microns thick. The microstructure of the resultant electrolytes will be reported as well as the electrolyte performance as part of a SOFC system via potentiodynamic testing and impedance spectroscopy.

  3. Experimental Studies of Spray Deposition on a Flat Surface in a Vacuum Environment

    NASA Technical Reports Server (NTRS)

    Golliher, Eric L.; Yao, S. C.

    2015-01-01

    Cooling of spacecraft components in the space environment is an on-going research effort. The electronics used in modern spacecraft are always changing and the heat flux is increasing. New, one-of-a-kind missions require new approaches to thermal control. In this research, under vacuum conditions, a pulsed water spray impinged on a small disc, while a high speed data acquisition system recorded the temperature histories of this copper disc. The water droplets froze quickly and accumulated on the disc as the spray continued. After the spray stopped, the frozen water that remained on the disc then sublimated into the vacuum environment and cooled the disc. This paper examines two important aspects of this process: 1) the difference in spray start up and shutdown in a vacuum environment versus in a standard atmospheric pressure environment, and 2) the water utilization efficiency in a vacuum environment due to the effects of drop trajectories and drop bouncing on the surface. Both phenomena play a role during spray cooling in a vacuum. This knowledge should help spacecraft designers plan for spray cooling as an option to cool spacecraft electronics, human metabolic generated heat, and heat from other sources.

  4. Corrosion behavior of magnetic ferrite coating prepared by plasma spraying

    SciTech Connect

    Liu, Yi; Wei, Shicheng Tong, Hui; Tian, Haoliang; Liu, Ming; Xu, Binshi

    2014-12-15

    Graphical abstract: The saturation magnetization (M{sub s}) of the ferrite coating is 34.417 emu/g while the M{sub s} value of the ferrite powder is 71.916 emu/g. It can be seen that plasma spray process causes deterioration of the room temperature soft magnetic properties. - Highlights: • Spinel ferrite coatings have been prepared by plasma spraying. • The coating consists of nanocrystalline grains. • The saturation magnetization of the ferrite coating is 34.417 emu/g. • Corrosion behavior of the ferrite coating was examined in NaCl solution. - Abstract: In this study, spray dried spinel ferrite powders were deposited on the surface of mild steel substrate through plasma spraying. The structure and morphological studies on the ferrite coatings were carried out using X-ray diffraction, scanning electron microscope and Raman spectroscopy. It was showed that spray dried process was an effective method to prepare thermal spraying powders. The coating showed spinel structure with a second phase of LaFeO{sub 3}. The magnetic property of the ferrite samples were measured by vibrating sample magnetometer. The saturation magnetization (M{sub s}) of the ferrite coating was 34.417 emu/g. The corrosion behavior of coating samples was examined by electrochemical impedance spectroscopy. EIS diagrams showed three corrosion processes as the coating immersed in 3.5 wt.% NaCl solution. The results suggested that plasma spraying was a promising technology for the production of magnetic ferrite coatings.

  5. THERMAL INTERACTION OF CRYOGEN SPRAY WITH HUMAN SKIN UNDER VACUUM PRESSURES

    E-print Network

    Aguilar, Guillermo

    a pressure cuff to obstruct venous return in the proximal arm to increase the blood flow in the distal upperTHERMAL INTERACTION OF CRYOGEN SPRAY WITH HUMAN SKIN UNDER VACUUM PRESSURES Walfre Franco1 , Jorge-pink color. We have recently demonstrated that with the aid of a local vacuum applied to the lesion site

  6. Characteristic of a triple-cathode vacuum arc plasma source

    SciTech Connect

    Xiang, W.; Li, M.; Chen, L.

    2012-02-15

    In order to generate a better ion beam, a triple-cathode vacuum arc plasma source has been developed. Three plasma generators in the vacuum arc plasma source are equally located on a circle. Each generator initiated by means of a high-voltage breakdown between the cathode and the anode could be operated separately or simultaneously. The arc plasma expands from the cathode spot region in vacuum. In order to study the behaviors of expanding plasma plume generated in the vacuum arc plasma source, a Langmuir probe array is employed to measure the saturated ion current of the vacuum arc plasma source. The time-dependence profiles of the saturated current density of the triple vacuum arc plasma source operated separately and simultaneously are given. Furthermore, the plasma characteristic of this vacuum arc plasma source is also presented in the paper.

  7. Reliability of plasma-sprayed coatings: monitoring the plasma spray process and improving the quality of coatings

    NASA Astrophysics Data System (ADS)

    Fauchais, P.; Vardelle, M.; Vardelle, A.

    2013-06-01

    As for every coating technology, the reliability and reproducibility of coatings are essential for the development of the plasma spraying technology in industrial manufacturing. They mainly depend on the process reliability, equipment and spray booth maintenance, operator training and certification, implementation and use of consistent production practices and standardization of coating testing. This paper deals with the first issue, that is the monitoring and control of the plasma spray process; it does not tackle the coating characterization and testing methods. It begins with a short history of coating quality improvement under plasma spray conditions over the last few decades, details the plasma spray torches used in the industry, the development of the measurements of in-flight and impacting particle parameters and then of sensors. It concludes with the process maps that describe the interrelations between the operating parameters of the spray process, in-flight particle characteristics and coating properties and with the potential of in situ monitoring of the process by artificial neural networks and fuzzy logic methods.

  8. Characterization of plasma sprayed and explosively consolidated simulated lunar soil

    SciTech Connect

    Powell, S.J.; Inal, O.T.; Smith, M.F.

    1997-06-01

    Two methods for the use of lunar materials for the construction of shelters on the Moon are being proposed: explosive consolidation of the soil into structural components and plasma spraying of the soil to join components. The plasma-sprayed coating would also provide protection from the intense radiation. In this work, a mare simulant was plasma-sprayed onto a stainless steel substrate. Deposition of a 0.020 inch coating using power inputs of 23, 25, 27 and 29 kW were compared. Hardness of the coatings increased with each increase of power to the system, while porosity at the interface decreased. All coatings exhibited good adhesion. Simultaneously, an explosively consolidated sample was similarly characterized to afford a comparison of structural features associated with each mode of proposed use.

  9. Plasma sprayed and electrospark deposited zirconium metal diffusion barrier coatings

    SciTech Connect

    Hollis, Kendall J; Pena, Maria I

    2010-01-01

    Zirconium metal coatings applied by plasma spraying and electrospark deposition (ESD) have been investigated for use as diffusion barrier coatings on low enrichment uranium fuel for research nuclear reactors. The coatings have been applied to both stainless steel as a surrogate and to simulated nuclear fuel uranium-molybdenum alloy substrates. Deposition parameter development accompanied by coating characterization has been performed. The structure of the plasma sprayed coating was shown to vary with transferred arc current during deposition. The structure of ESD coatings was shown to vary with the capacitance of the deposition equipment.

  10. Analysis of processes in DC arc plasma torches for spraying that use air as plasma forming gas

    NASA Astrophysics Data System (ADS)

    Frolov, V.; Ivanov, D.; Toropchin, A.

    2014-11-01

    Developed in Saint Petersburg State Polytechnical University technological processes of air-plasma spraying of wear-resistant, regenerating, hardening and decorative coatings used in number of industrial areas are described. The article contains examples of applications of air plasma spraying of coatings as well as results of mathematical modelling of processes in air plasma torches for spraying.

  11. The Role of Spraying Parameters and Inert Gas Shrouding in Hybrid Water-Argon Plasma Spraying of Tungsten and Copper for Nuclear Fusion Applications

    NASA Astrophysics Data System (ADS)

    Mat?jí?ek, J.; Kavka, T.; Bertolissi, G.; Ctibor, P.; Vilémová, M.; Mušálek, R.; Nevrlá, B.

    2013-06-01

    Tungsten-based coatings have potential application in the plasma-facing components in future nuclear fusion reactors. By the combination of refractory tungsten with highly thermal conducting copper, or steel as a construction material, functionally graded coatings can be easily obtained by plasma spraying, and may result in the development of a material with favorable properties. During plasma spraying of these materials in the open atmosphere, oxidation is an important issue, which could have adverse effects on their properties. Among the means to control it is the application of inert gas shrouding, which forms the subject of this study and represents a lower-cost alternative to vacuum or low-pressure plasma spraying, potentially applicable also for spraying of large surfaces or spacious components. It is a continuation of recent studies focused on the effects of various parameters of the hybrid water-argon torch on the in-flight behavior of copper and tungsten powders and the resultant coatings. In the current study, argon shrouding with various configurations of the shroud was applied. The effects of torch parameters, such as power and argon flow rate, and powder morphology were also investigated. Their influence on the particle in-flight behavior as well as the structure, composition and properties of the coatings were quantified. With the help of auxiliary calculations, the mass changes of the powder particles, associated with oxidation and evaporation, were assessed.

  12. Improved Small-Particle Powders for Plasma Spraying

    NASA Technical Reports Server (NTRS)

    Nguyen, QuynhGiao, N.; Miller, Robert A.; Leissler, George W.

    2005-01-01

    Improved small-particle powders and powder-processing conditions have been developed for use in plasma spray deposition of thermal-barrier and environmental barrier coatings. Heretofore, plasma-sprayed coatings have typically ranged in thickness from 125 to 1,800 micrometers. As explained below, the improved powders make it possible to ensure complete coverage of substrates at unprecedently small thicknesses of the order of 25 micrometers. Plasma spraying involves feeding a powder into a hot, high-velocity plasma jet. The individual powder particles melt in the plasma jet as they are propelled towards a substrate, upon which they splat to build up a coating. In some cases, multiple coating layers are required. The size range of the powder particles necessarily dictates the minimum thickness of a coating layer needed to obtain uniform or complete coverage. Heretofore, powder particle sizes have typically ranged from 40 to 70 micrometers; as a result, the minimum thickness of a coating layer for complete coverage has been about 75 micrometers. In some applications, thinner coatings or thinner coating layers are desirable. In principle, one can reduce the minimum complete-coverage thickness of a layer by using smaller powder particles. However, until now, when powder particle sizes have been reduced, the powders have exhibited a tendency to cake, clogging powder feeder mechanisms and feed lines. Hence, the main problem is one of synthesizing smaller-particle powders having desirable flow properties. The problem is solved by use of a process that begins with a spray-drying subprocess to produce spherical powder particles having diameters of less than 30 micrometers. (Spherical-particle powders have the best flow properties.) The powder is then passed several times through a commercial sifter with a mesh to separate particles having diameters less than 15 micrometers. The resulting fine, flowable powder is passed through a commercial fluidized bed powder feeder into a plasma spray jet.

  13. Electroform/Plasma-Spray Laminates for X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Ulmer, Melville P.; Graham, Michael; Vaynman, Semyon

    2007-01-01

    Electroform/plasma-spray laminates have shown promise as lightweight, strong, low-thermal-expansion components for xray optics. The basic idea is to exploit both (1) the well-established art of fabrication of optical components by replication and (2) plasma spraying as a means of reinforcing a thin replica optic with one or more backing layer(s) having tailorable thermomechanical properties. In x-ray optics as in other applications, replication reduces the time and cost of fabrication because grinding and polishing can be limited to a few thick masters, from which many lightweight replicas can thereafter be made. The first step in the fabrication of a component of the type in question is to make a replica optic by electroforming a thin layer of nickel on a master. Through proper control of the electroforming process conditions, it is possible to minimize residual stress and, hence, to minimize distortion in the replica. Next, a powder comprising ceramic particles coated with a metal compatible with the electroformed nickel is plasma-sprayed onto the backside of the nickel replica. Then through several repetitions and variations of the preceding steps or perhaps a small compressive stress, alternating layers of electroformed nickel and plasma-sprayed metal-coated ceramic powder are deposited. The thicknesses of the layers and the composition of the metal-coated ceramic powder are chosen to optimize the strength, areal mass density, and toughness of the finished component. An important benefit of using both electroforming and plasma spraying is the possibility of balancing stresses to a minimum level, which could be zero or perhaps a small net compressive stress designed to enhance the function of the component in its intended application.

  14. Steel surface modification with plasma spraying electrothermal installation using a liquid electrode

    NASA Astrophysics Data System (ADS)

    Khafizov, A. A.; Valiev, R. I.; Shakirov, Yu I.; Valiev, R. A.

    2014-11-01

    Recently, much attention has been paid to different processes using low- temperature plasma, and in particular, the process of plasma spraying. Despite the fact that the plasma spraying method has been established for a relatively long time, there are several unsolved issues in this field that are associated with the choice of the optimal spraying modes. It is connected with the fact that the development of optimal spraying process modes is a rather difficult task, since the problem of creating an optimal design for the plasmatron is not solved yet. In this article the technological plasma plant with liquid electrode is discussed, which provides a plasma spray with a temperature up to 5000°C and lengths up to 100 mm. Engineered installation allows to carry out plasma spraying of steel surface. The process and parameters of plasma spraying optimal modes are examined in the article.

  15. Diagnostic behavior of the Wire Arc Plasma spray process

    NASA Astrophysics Data System (ADS)

    Kowalsky, K. A.; Marantz, D. R.; Neiser, R. A.; Smith, M. F.

    Laser two-focus (L2F) velocimetry has been used to measure particle velocities in the Wire Arc Plasma spray process. Particle velocities were measured for aluminum, stainless steel, and copper feedstock with wire diameters of 1.6 mm and 0.9 mm. The Wire Arc Plasma gun was operated in both a single-gas mode, using air, and in a two-gas mode, using a mixture of argon/35 percent hydrogen as the primary plasma gas with pure argon as the secondary gas. The results indicate that maximum particle velocities are as high as 180 m/s for aluminum sprayed using air and 130 m/s using the argon/hydrogen mixture. The results also show that arc current and wire feed rate have little effect on particle velocity; however, particle velocities increase significantly with decreasing wire diameter and with decreasing density of the feedstock material.

  16. Heat flow and thermal contraction during plasma spray deposition

    NASA Astrophysics Data System (ADS)

    Clyne, T. W.; Gill, S. G.

    Heat flow and thermal contraction during plasma spraying are briefly reviewed, emphasizing heat flux at the surface of a growth deposit and its transport through the deposit and substrate. It is noted that, while heat transfer to particle usually occurs under Newtonian conditions in flight, very good thermal contact is normally established between splat and underlying deposit, so that quenching conditions may well be non-Newtonian. A method for estimating the splat-deposit heat transfer coefficient is outlined, and a numerical model for prediction thermal contraction stresses during spray deposition is described and validated. Data for the spraying of alumina onto a Ti alloy and a FeCrAlY alloy onto stainless steel are given.

  17. Amorphous phase formation in plasma-sprayed hydroxyapatite coatings.

    PubMed

    Gross, K A; Berndt, C C; Herman, H

    1998-03-01

    The amorphous phase content of air plasma-sprayed hydroxyapatite coatings is dependent upon spraying and deposition conditions. X-ray diffraction and optical microscopy were used to investigate the influence of spray parameters on the formation of the amorphous phase. Results show three factors which most influence the formation of the amorphous phase: dehydroxylation of the molten particle during flight, the cooling rate as it impinges onto the metal substrate, and the substrate temperature. Crystalline regions were identified as unmelted particles and elongated recrystallized areas. Amorphous phase regions vary throughout the coating but are more commonly found at the coating-substrate interface, i.e., the regions decrease toward the surface of the coating. Such an inhomogeneous distribution of phase content is expected to affect the clinical process of bone deposition, and therefore successful implant fixation. PMID:9468049

  18. Cathodic Vacuum Arc Plasma of Thallium

    SciTech Connect

    Yushkov, Georgy Yu.; Anders, Andre

    2006-10-02

    Thallium arc plasma was investigated in a vacuum arc ionsource. As expected from previous consideration of cathode materials inthe Periodic Table of the Elements, thallium plasma shows lead-likebehavior. Its mean ion charge state exceeds 2.0 immediately after arctriggering, reaches the predicted 1.60 and 1.45 after about 100 microsecand 150 microsec, respectively. The most likely ion velocity is initially8000 m/s and decays to 6500 m/s and 6200 m/s after 100 microsec and 150microsec, respectively. Both ion charge states and ion velocities decayfurther towards steady state values, which are not reached within the 300microsec pulses used here. It is argued that the exceptionally high vaporpressure and charge exchange reactions are associated with theestablishment of steady state ion values.

  19. The properties and fracture behavior of ion plasma sprayed TiN coating on stainless steel substrate

    NASA Astrophysics Data System (ADS)

    Orlova, Dina V.; Goncharenko, Igor M.; Danilov, Vladimir I.; Lobach, Maxim I.; Danilova, Lidiya V.; Shlyakhova, Galina V.

    2015-10-01

    The wear resistance and fracture behavior of ion plasma sprayed TiN coating were studied; the results are presented. The coating was applied to the stainless steel substrate using a vacuum arc method. The samples were tested by active loading. With varying coating thickness, its characteristics were found to change. Multiple cracking would occur in the deformed sample, with fragment borders aligned normal to the extension axis.

  20. Effects of plasma spray parameters on two layer thermal barrier

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1981-01-01

    The power level and the type of arc gas used during plasma spraying of a two layer thermal barrier system (TBS) were found to affect the life of the system. Life at 1095 C in a cyclic furnace test was improved by about 140 percent by increasing the power during plasma spray applications of the bond and thermal barrier coatings. This improvement is due to increases in the densities of the bond and thermal barrier coatings by 3 and 5 percent, respectively. These increases in densities are equivalent to about 45 and 30 percent reduction in mean porosities, respectively. The addition of hydrogen to the argon arc gas had the same effect as the reduction in power level and caused a reduction in TBS life.

  1. Electrochemical Evaluation of Pyrite Films Prepared by Plasma Spraying

    SciTech Connect

    Guidotti, R.A.; Reinhardt, F.W.

    1998-10-30

    Thermally activated batteries use electrodes that are typically fabricated by cold pressing of powder. In the LiSi/FeS2 system, natural (mineral) pyrite is used for the cathode. In an effort to increase the energy density and specific energy of these batteries, flame and plasma spraying to form thin films of pyrite cathodes were evaluated. The films were deposited on a 304 stainless steel substrate (current collector) and were characterized by scanning electron microscopy and x-ray dlfllaction. The films were electrochemically tested in single cells at 5000C and the petiormance compared to that of standard cells made with cold-pressed powders. The best results were obtained with material deposited by de-arc plasma spraying with a proprietq additive to suppress thermal decomposion of the pyrite.

  2. Mandibular bone response to plasma-sprayed coatings of hydroxyapatite.

    PubMed

    Denissen, H W; Kalk, W; de Nieuport, H M; Maltha, J C; van de Hooff, A

    1990-01-01

    Sintered hydroxyapatite ceramic particles can be applied as a coating on a titanium substrate using a plasma-spraying technique. The biological and mechanical properties of implants with such a coating were studied in the mandible of a dog. The results indicated that a very strong and direct bonding between the hydroxyapatite coating and the mandibular bone developed. The shear strength of the bone/ceramic interface was higher than the interfacial strength between ceramic and titanium substrate. From the radiologic, macroscopic, and microscopic observations it was concluded that the biological properties of plasma-sprayed coatings of hydroxyapatite are the same as those of sintered hydroxyapatite ceramic. As a result of mechanical failure of the coherence of the hydroxyapatite particles at the outer layer of the coating, free particles of hydroxyapatite were observed in the surrounding bone tissue. PMID:2372367

  3. Ultrasonic Spray Drying vs High Vacuum and Microwaves Technology for Blueberries

    NASA Astrophysics Data System (ADS)

    Candia-Muñoz, N.; Ramirez-Bunster, M.; Vargas-Hernández, Y.; Gaete-Garretón, L.

    Interest in high quality foods: good taste and a high content of nutrients with healthy beneficial effects are increasing. Fruits have good properties but, they are lost because the oxidation process, additionally, for different reasons a 40% of harvested fruit are lost. To conserve the fruit properties an ultrasonic assisted spray dryer was developed and tested, comparing its results with microwave-vacuum drying technology. Results did shown taste, color, smell, particle shape and size distribution better than the conventional one. The antioxidants conservation were quite good except in the anthocyanins, in which the microwave and vacuum technology shown best results.

  4. dc-plasma-sprayed electronic-tube device

    DOEpatents

    Meek, T.T.

    1982-01-29

    An electronic tube and associated circuitry which is produced by dc plasma arc spraying techniques is described. The process is carried out in a single step automated process whereby both active and passive devices are produced at very low cost. The circuitry is extremely reliable and is capable of functioning in both high radiation and high temperature environments. The size of the electronic tubes produced are more than an order of magnitude smaller than conventional electronic tubes.

  5. Surface decontamination using a teleoperated vehicle and Kelly spray/vacuum system

    SciTech Connect

    Zollinger, W.T.; Dyches, G.M.

    1990-12-31

    A commercial teleoperated wheeled vehicle was fitted with a modified commercial spray/vacuum decontamination system to allow floor and wall decontamination of an existing process room in one of the chemical separations areas at the Savannah River Site (SRS). Custom end-of-arm tooling was designed to provide sufficient compliance for routine cleaning operations. An operator console was designed to allow complete control of the vehicle base and are movements as well as viewing operations via multiple television monitors. 3 refs.

  6. Surface decontamination using a teleoperated vehicle and Kelly spray/vacuum system

    SciTech Connect

    Zollinger, W.T.; Dyches, G.M.

    1990-01-01

    A commercial teleoperated wheeled vehicle was fitted with a modified commercial spray/vacuum decontamination system to allow floor and wall decontamination of an existing process room in one of the chemical separations areas at the Savannah River Site (SRS). Custom end-of-arm tooling was designed to provide sufficient compliance for routine cleaning operations. An operator console was designed to allow complete control of the vehicle base and are movements as well as viewing operations via multiple television monitors. 3 refs.

  7. Effects of nonthermal electrons on plasma expansion into vacuum

    SciTech Connect

    Bennaceur-Doumaz, D. Bara, D.; Benkhelifa, E.; Djebli, M.

    2015-01-28

    The expansion of semi-infinite plasma into vacuum is analyzed with a hydrodynamic model for cold ions assuming electrons modelled by a kappa-type distribution. Similarly to Mora study of a plasma expansion into vacuum [P. Mora, Phys. Rev. Lett. 90, 185002 (2003)], we formulated empirical expressions for the electric field strength, velocity, and position of the ion front in one-dimensional nonrelativistic, collisionless isothermally expanding plasma. Analytic expressions for the maximum ion energy and the spectrum of the accelerated ions in the plasma were derived and discussed to highlight the electron nonthermal effects on enhancing the ion acceleration in plasma expansion into vacuum.

  8. Enhancement of vacuum polarization effects in a plasma

    E-print Network

    A. Di Piazza; K. Z. Hatsagortsyan; C. H. Keitel

    2007-03-09

    The dispersive effects of vacuum polarization on the propagation of a strong circularly polarized electromagnetic wave through a cold collisional plasma are studied analytically. It is found that, due to the singular dielectric features of the plasma, the vacuum effects on the wave propagation in a plasma are qualitatively different and much larger than those in pure vacuum in the regime when the frequency of the propagating wave approaches the plasma frequency. A possible experimental setup to detect these effects in plasma is described.

  9. Suspension Plasma Spraying of YPSZ Coatings: Suspension Atomization and Injection

    NASA Astrophysics Data System (ADS)

    Rampon, Régine; Filiatre, Claudine; Bertrand, Ghislaine

    2008-03-01

    Among processes evaluated to produce some parts of or the whole solid-oxide fuel cell, Suspension Plasma Spraying (SPS) is of prime interest. Aqueous suspensions of yttria partially stabilized zirconia atomized into a spray by an internal-mixing co-axial twin-fluid atomizer were injected into a DC plasma jet. The dispersion and stability of the suspensions were enhanced by adjusting the amount of dispersant (ammonium salt of polyacrylic acid, PAA). A polyvinyl alcohol (PVA) was further added to the suspension to tailor its viscosity. The PVA also improved the dispersion and stability of the suspensions. The atomization of optimized formulations is described implementing Weber and Ohnesorge dimensionless numbers as well as gas-to-liquid mass ratio (ALR) value. Drop size distributions changed from monomodal distributions at low We to multimodal distributions when We number increases. The viscosity of the suspensions has a clear influence on the drop size distribution and suspension spray pattern. The secondary fragmentation of the drops due to the plasma jet was evidenced and the final size of the sheared drops was shown to depend on the characteristics of the suspension. Rather dense zirconia coatings have been prepared, which is a promising way to produce electrolyte.

  10. Smart coating technology by gas tunnel type plasma spraying

    NASA Astrophysics Data System (ADS)

    Kobayashi, Akira

    2008-10-01

    Nano-science & technology is one of the most important scientific fields, and the material processing using the nano-technology is now advanced towards more precise and controllable smart stage. Regarding thermal processing, plasma system with high precise, has been expected for smart thermal processing. The gas tunnel type plasma system developed by the author exhibits high energy density and also high efficiency. Among the applications to the various thermal processing, one practical application is plasma spraying of ceramics such as A12O3 and ZrO2. The characteristics of these ceramic coatings were superior to the conventional ones. The ZrO2 composite coating has the possibility of the development of high functionally graded TBC (thermal barrier coating). In this study, the performance such as the mechanical properties, thermal behavior and high temperature oxidation resistance of the alumina/zirconia functionally graded TBCs produced by gas tunnel type plasma spraying was investigated and discussed. The results showed that the alumina/zirconia composite system exhibited the improvement of mechanical properties and oxidation resistance. Now, one of the advanced plasma application, a smart coating technology, is expected to obtain the desired characteristics of ceramics with improved corrosion resistance, thermal resistance, and wear resistance.

  11. Effect of vacuum conditions and plasma concentration on the chemical composition and adhesion of vacuum-plasma coatings

    NASA Astrophysics Data System (ADS)

    Borisov, D. P.; Kuznetsov, V. M.; Slabodchikov, V. A.

    2015-11-01

    The paper reports on the chemical composition of titanium nitride (TiN) and silicon (Si) coatings deposited with a new technological vacuum plasma setup which comprises magnetron sputtering systems, arc evaporators, and an efficient plasma generator. It is shown that due to highly clean vacuum conditions and highly clean surface treatment in the gas discharge plasma, both the coating-substrate interface and the coatings as such are almost free from oxygen and carbon. It is found that the coating-substrate interface represents a layer of thickness ? 60 nm formed through vacuum plasma mixing of the coating and substrate materials. The TiN coatings obtained on the new equipment display a higher adhesion compared to brass coatings deposited by industrial technologies via intermediate titanium oxide layers. It is concluded that the designed vacuum plasma equipment allows efficient surface modification of materials and articles by vacuum plasma immersion processes.

  12. Laboratory Experiments on Propagating Plasma Bubbles into Vacuum, Vacuum Magnetic Field, and Background Plasmas

    NASA Astrophysics Data System (ADS)

    Lynn, Alan G.; Zhang, Yue; Gilmore, Mark; Hsu, Scott

    2014-10-01

    We discuss the dynamics of plasma ``bubbles'' as they propagate through a variety of background media. These bubbles are formed by a pulsed coaxial gun with an externally applied magnetic field. Bubble parameters are typically ne ~1020 m-3, Te ~ 5 - 10 eV, and Ti ~ 10 - 15 eV. The structure of the bubbles can range from unmagnetized jet-like structures to spheromak-like structures with complex magnetic flux surfaces. Some of the background media the bubbles interact with are vacuum, vacuum with magnetic field, and other magnetized plasmas. These bubbles exhibit different qualitative behavior depending on coaxial gun parameters such as gas species, gun current, and gun bias magnetic field. Their behavior also depends on the parameters of the background they propagate through. Multi-frame fast camera imaging and magnetic probe data are used to characterize the bubble evolution under various conditions.

  13. Influence of Oxidation Behavior of Feedstock on Microstructure and Ablation Resistance of Plasma-Sprayed Zirconium Carbide Coating

    NASA Astrophysics Data System (ADS)

    Hu, Cui; Ge, Xuelian; Niu, Yaran; Li, Hong; Huang, Liping; Zheng, Xuebin; Sun, Jinliang

    2015-10-01

    Plasma spray is one of the suitable technologies to deposit carbide coatings with high melting point, such as ZrC. However, in the spray processes performed under atmosphere, oxidation of the carbide powder is inevitable. To investigate the influence of the oxidation behavior of feedstock on microstructure and ablation resistance of the deposited coating, ZrC coatings were prepared by atmospheric and vacuum plasma spray (APS and VPS) technologies, respectively. SiC-coated graphite was applied as the substrate. The obtained results showed that the oxidation of ZrC powder in APS process resulted in the formation of ZrO and Zr2O phases. Pores and cracks were more likely to be formed in the as-sprayed APS-ZrC coating. The VPS-ZrC coating without oxides possessed denser microstructure, higher thermal diffusivity, and lower coefficients of thermal expansion as compared with the APS-ZrC coating. A dense ZrO2 layer would be formed on the surface of the VPS-ZrC-coated sample during the ablation process and the substrate can be protected sufficiently after being ablated in high temperature plasma jet. However, the ZrO2 layer, formed by oxidation of the APS-ZrC coating having loose structure, was easy to be washed away by the shearing action of the plasma jet.

  14. Elastic and inelastic effects in compression in plasma-sprayed ceramic coatings

    NASA Astrophysics Data System (ADS)

    Harok, V.; Neufuss, K.

    2001-03-01

    Four-point bend tests of a plasma-sprayed zircon (ZrSiO4) coating are presented, the coating being prepared by atmospheric plasma spraying (APS) spraying onto a titanium alloy substrate, using a water-stabilized plasma (WSP) torch. The mechanical behavior in compression of the coating material is nonlinear, including hysteresis (9% of the maximum strain) and permanent deformation. The effective in-plane Young’s modulus is about 13 GPa for very small strains and doubles for a compressive strain of -0.18%. Possible micromechanisms to explain this behavior are proposed, and some general protocols concerning the testing of plasma-sprayed ceramic coatings are deduced.

  15. Microstructure and abrasion resistance of plasma sprayed titania coatings

    NASA Astrophysics Data System (ADS)

    Ctibor, P.; Neufuss, K.; Chraska, P.

    2006-12-01

    Agglomerated titania nanopowder and a “classical” titania were sprayed by the high throughput water-stabilized plasma (WSP) and thoroughly compared. Optical microscopy with image analysis as well as mercury intrusion porosimetry were used for quantification of porosity. Results indicate that the “nano” coatings in general exhibit finer pores than coatings of the “conventional” micron-sized powders. Mechanical properties such as Vickers microhardness and slurry abrasion response were measured and linked to the structural investigation. Impact of the variation in the slurry composition on wear resistance of tested coatings and on character of the wear damage is discussed. The overall results, however, suggest that the “nano” coatings properties are better only for carefully selected sets of spraying parameters, which seem to have a very important impact.

  16. Post-treatment of Plasma-Sprayed Amorphous Ceramic Coatings by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Chraska, T.; Pala, Z.; Mušálek, R.; Med?ický, J.; Vilémová, M.

    2015-04-01

    Alumina-zirconia ceramic material has been plasma sprayed using a water-stabilized plasma torch to produce free standing coatings. The as-sprayed coatings have very low porosity and are mostly amorphous. The amorphous material crystallizes at temperatures above 900 °C. A spark plasma sintering apparatus has been used to heat the as-sprayed samples to temperatures above 900 °C to induce crystallization, while at the same time, a uniaxial pressure of 80 MPa has been applied to their surface. After such post-treatment, the ceramic samples are crystalline and have very low open porosity. The post-treated material exhibits high hardness and significantly increased flexural strength. The post-treated samples have a microstructure that is best described as nanocomposite with the very small crystallites embedded in an amorphous matrix.

  17. Effects of Feedstock Decomposition and Evaporation on the Composition of Suspension Plasma-Sprayed Coatings

    NASA Astrophysics Data System (ADS)

    Mauer, G.; Schlegel, N.; Guignard, A.; Vaßen, R.; Guillon, O.

    2015-10-01

    Emerging new applications and growing demands of plasma-sprayed coatings have initiated the development of new plasma spray processes. One of them is suspension plasma spraying (SPS). The use of liquid feedstock such as suspensions yields higher flexibility compared to the conventional atmospheric plasma spray processes as even submicron-to nano-sized particles can be processed. This allows achieving particular microstructural features, e.g., porous segmented or columnar-structured thermal barrier coatings. To exploit the potentials of such novel plasma spray processes, the plasma-feedstock interaction must be understood better. In this study, decomposition and evaporation of feedstock material during SPS were investigated, since particular difficulties can occur with respect to stoichiometry and phase composition of the deposits. Plasma conditions were analyzed by optical emission spectroscopy (OES). Experimental results are given, namely for gadolinium zirconate and for lanthanum strontium cobalt ferrite deposition. Moreover, the applied OES approach is validated by comparison with the simpler actinometry method.

  18. Plasma spray nozzle with low overspray and collimated flow

    NASA Technical Reports Server (NTRS)

    Beason, Jr., George P. (Inventor); McKechnie, Timothy N. (Inventor); Power, Christopher A. (Inventor)

    1996-01-01

    An improved nozzle for reducing overspray in high temperature supersonic plasma spray devices comprises a body defining an internal passageway having an upstream end and a downstream end through which a selected plasma gas is directed. The nozzle passageway has a generally converging/diverging Laval shape with its upstream end converging to a throat section and its downstream end diverging from the throat section. The upstream end of the passageway is configured to accommodate a high current cathode for producing an electrical arc in the passageway to heat and ionize the gas flow to plasma form as it moves along the passageway. The downstream end of the nozzle is uniquely configured through the methodology of this invention to have a contoured bell-shape that diverges from the throat to the exit of the nozzle. Coating material in powder form is injected into the plasma flow in the region of the bell-shaped downstream end of the nozzle and the powder particles become entrained in the flow. The unique bell shape of the nozzle downstream end produces a plasma spray that is ideally expanded at the nozzle exit and thus virtually free of shock phenomena, and that is highly collimated so as to exhibit significantly reduced fanning and diffusion between the nozzle and the target. The overall result is a significant reduction in the amount of material escaping from the plasma stream in the form of overspray and a corresponding improvement in the cost of the coating operation and in the quality and integrity of the coating itself.

  19. Plasma-sprayed dual density ceramic turbine seal system

    NASA Technical Reports Server (NTRS)

    Clingman, D. L.; Schechter, B.; Cross, K. R.; Cavanagh, J. R.

    1979-01-01

    Dual density, plasma sprayed ceramic coating systems were investigated for possible application as abradable turbine tip seal systems in small gas turbine engines. Abradability, erosion resistance, internal leakage, and microstructural characterization were investigated for polyester and cenosphere filled zirconium oxide composites. Results indicate the polyester system is more abradable but displays significantly less erosion resistance than the cenosphere system. It is also stated that the absence of significant blade tip damage during abradability testing of both systems suggests additional effort may result in a more nearly optimum balance of abradability and erosion resistance.

  20. Grain-Boundary Grooving of Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings

    E-print Network

    Trice, Rodney W.

    Grain-Boundary Grooving of Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings Engineering, West Lafayette, Indiana 47907 The focus of this study was to determine the mechanisms re- sponsible for the microstructural changes of plasma-sprayed 7 wt% Y2O3­ZrO2 thermal barrier coatings

  1. Characteristics of a Plasma Torch Designed for Very Low Pressure Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Yang, De Ming; Gao, Jianyi

    2012-06-01

    Unlike atmosphere plasma spraying (APS), very low pressure plasma spraying (VLPPS) can only weakly heat the feed materials at the plasma-free region exit of the nozzle. Most current VLPPS methods have adopted a high power plasma gun, which operates at high arc currents up to 2500 A to remedy the lower heating ability, causing a series of problems for both the plasma torch and the associated facility. According to the Kundsen number and pressures distribution inside of the nozzle in a low-pressure environment, a plasma torch was designed with a separated anode and nozzle, and with the powder feed to the plasma jets inside the nozzle intake. In this study, the pressures in the plasma gas intake, in the nozzle intake and outside the plasma torch were measured using an enthalpy probe. For practice, SUS 316 stainless steel coatings were prepared at the plasma currents of 500-600 A, an arc voltage of 50 V and a chamber pressure of 1000 Pa; the results indicated that coatings with an equiaxed microstructure could be deposited in proper conditions.

  2. Phase transformation and wear studies of plasma sprayed yttria stabilized zirconia coatings containing various mol% of yttria

    SciTech Connect

    Aruna, S.T. Balaji, N.; Rajam, K.S.

    2011-07-15

    Plasma sprayable grade zirconia powders doped with various mol% of yttria (0, 2, 3, 4, 6, 8 and 12 mol%) were synthesized by a chemical co-precipitation route. The coprecipitation conditions were adjusted such that the powders possessed good flowability in the as calcined condition and thus avoiding the agglomeration step like spray drying. Identical plasma spray parameters were used for plasma spraying all the powders on stainless steel plates. The powders and plasma sprayed coatings were characterized by X-ray diffractometry, Scanning Electron Microscopy and Raman spectroscopy. Zirconia powders are susceptible to phase transformations when subjected to very high temperatures during plasma spraying and XRD is insensitive to the presence of some non crystalline phases and hence Raman spectroscopy was used as an important tool. The microstructure of the plasma sprayed coatings showed a bimodal distribution containing fully melted and unmelted zones. The microhardness and wear resistance of the plasma sprayed coatings were determined. Among the plasma sprayed coatings, 3 mol% yttria stabilized zirconia coating containing pure tetragonal zirconia showed the highest wear resistance. - Research Highlights: {yields} Preparation plasma sprayable YSZ powders without any agglomeration process and plasma spraying {yields} Phase transformation studies of plasma sprayed YSZ coatings by XRD and Raman spectroscopy {yields} Microstructure of the plasma sprayed coatings exhibited bimodal distribution {yields} Plasma sprayed 3 mol% YSZ coating exhibited the highest wear resistance {yields} Higher wear resistance is due to the higher fracture toughness of tetragonal 3 mol% YSZ phase.

  3. An evaluation of the electric arc spray and (HPPS) processes for the manufacturing of high power plasma spraying MCrAIY coatings

    NASA Astrophysics Data System (ADS)

    Sacriste, D.; Goubot, N.; Dhers, J.; Ducos, M.; Vardelle, A.

    2001-06-01

    The high power plasma torch (PlazJet) can be used to spray refractory ceramics with high spray rates and deposition efficiency. It can provide dense and hard coating with high bond strengths. When manufacturing thermal barrier coatings, the PlazJet gun is well adapted to spraying the ceramic top coat but not the MCrAIY materials that are used as bond coat. Arc spraying can compete with plasma spraying for metallic coatings since cored wires can be used to spray alloys and composites. In addition, the high production rate of arc spraying enables a significant decrease in coating cost. This paper discusses the performances of the PlazJet gun, and a twin-wire are spray system, and compares the properties and cost of MCrAIY coatings made with these two processes. For arc spraying, the use of air or nitrogen as atomizing gas is also investigated.

  4. Engineering the Microstructure of Solution Precursor Plasma-Sprayed Coatings

    NASA Astrophysics Data System (ADS)

    Bertolissi, G.; Chazelas, C.; Bolelli, G.; Lusvarghi, L.; Vardelle, M.; Vardelle, A.

    2012-12-01

    This study examines the fundamental reactions that occur in-flight during the solution precursor plasma spraying (SPPS) of solutions containing Zr- and Y-based salts in water or ethanol solvent. The effect of plasma jet composition (pure Ar, Ar-H2 and Ar-He-H2 mixtures) on the mechanical break-up and thermal treatment of the solution, mechanically injected in the form of a liquid stream, was investigated. Observation of the size evolution of the solution droplets in the plasma flow by means of a laser shadowgraphy technique, showed that droplet break-up was more effective and solvent evaporation was faster when the ethanol-based solution was injected into binary or ternary plasma gas mixtures. In contrast with water-based solutions, residual liquid droplets were always detected at the substrate location. The morphology and structure of the material deposited onto stainless steel substrates during single-scan experiments were characterised by SEM, XRD and micro-Raman spectroscopy and were shown to be closely related to in-flight droplet behaviour. In-flight pyrolysis and melting of the precursor led to well-flattened splats, whereas residual liquid droplets at the substrate location turned into non pyrolysed inclusions. The latter, although subsequently pyrolysed by the plasma heat during the deposition of entire coatings, resulted in porous "sponge-like" structures in the deposit.

  5. Laser glazing of plasma-sprayed zirconia coatings

    NASA Astrophysics Data System (ADS)

    Tsai, H. L.; Tsai, P. C.

    1998-04-01

    A CO2 laser with cylindrical focal lens has been used to glaze the surface layer of plasma-sprayed ZrO2-20wt% Y2O3/MCrAlY coatings. Both a continuous-wave laser and a pulsed laser were used in this study. Different parameter settings for power, travel speed, and pulse frequency were used, and their effects on the melting width, melting depth, coupling efficiency, microstructure, surface roughness, and process defects have been evaluated. Results show that the melting width of the glazed track was slightly smaller than the diameter of the raw beam. The melting depth increased with increasing energy density for both a continuous-wave laser and a pulsed laser. The coupling efficiency as about 40 to 65% for a continuous-wave laser, which increased with increasing laser travel speed, but decreased with an increase in energy density. The power density has no significant effect on coupling efficiency. Defects, such as bubbles or depressions, occur easily with a continuous wave laser. A high-quality glazed layer is successfully produced using a pulsed laser. The surface roughness of the plasma-sprayed ceramic coatings was significantly improved by laser glazing. Surface roughness decreased slightly as the pulse frequency increased for the glazed surface. Based on this study, proper processing parameters have been suggested.

  6. Fully plasma-sprayed compliant backed ceramic turbine seal

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Wisander, D. W. (inventors)

    1981-01-01

    A seal with a high temperature abradable lining material which encircles the tips of turbine blades in turbomachinery was designed. The seal is directed to maintaining the minimum operating clearances between the blade tips and the lining of a high pressure turbine. A low temperature easily decomposable material in powder form is blended with a high temperature oxidation resistant metal powder. The two materials are simultaneously deposited on a substrate formed by the turbine casing. Alternately, the polymer powder may be added to the metal powder during plasma spraying. A ceramic layer is then deposited directly onto the metal-polymer composite. The polymer additive mixed with the metal is then completely volatilized to provide a porous layer between the ceramic layer and the substrate. Thermal stresses are reduced by the porous structure which gives a cushion effect. No brazing is required by using only plasma spraying for depositing both the powders of the metal and polymer material as well as the ceramic powder.

  7. Failure analysis of plasma-sprayed thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Berndt, C. C.; Miller, R. A.

    1984-01-01

    Thermally induced failure processes of plasma-sprayed thermal barrier coatings are examined. Cracking processes give rise to noise which was monitored by acoustic emission (AE) techniques. The sequential failure of coatings was examined from samples which were thermally cycled. Coatings of yttria-stabilized zirconia with and without a NiCrAlZr bond coat were plasma-sprayed onto U700 alloy rod. In some cases the substrate was intentionally overheated during deposition of the thermal protection system to check how this process variable influenced the AE response of the specimen. In this way a qualitative appraisal of how process variables affect coating integrity could be discerned in terms of cracking behavior. Results from up to seven consecutive thermal cycles are reported here. Coating failure was observed in all cases. Failure of the thermal protection system is progressive, since cracking and crack growth were observed prior to ultimate failure. Thus castastrophic failure occurs at some stage when there is a transformation from the microcrack to a macrocrack network.

  8. Relationship Between the Microstructure and Thermal Conductivity of Plasma-Sprayed ZrO2 Coatings

    NASA Astrophysics Data System (ADS)

    Wang, Yongzhe; Wu, Wei; Zheng, Xuebin; Zeng, Yi; Ding, Minju; Zhang, Chenggong

    2011-12-01

    Plasma-sprayed yttria-stabilized zirconia coatings have a complex microstructure consisting of a variety of pores and cracks. These microstructure features which are determined by the spray process are known to influence the thermal conductivity of coatings. In this article, the microstructure features such as total porosity, large pores, and small pores were quantified by means of scanning electron microscopy (SEM) and image analysis, and for each spray process, the particle velocity and particle temperature were measured prior to impact onto the substrate using the online monitoring system (Spray Watch 2i). Multiple linear regression was used to find the relationship between the particle state and the spray gun parameters. The linear regression models were also investigated between the particle state and the microstructure features, in addition, between the microstructure features and the thermal conductivity. The comprehensive correlation of spray process-microstructure-thermal conductivity was established for plasma-sprayed ZrO2 coatings.

  9. Calcium phosphate coating on titanium using laser and plasma spray

    NASA Astrophysics Data System (ADS)

    Roy, Mangal

    Though calcium phosphate (CaP) coated implants are commercially available, its acceptance is still not wide spread due to challenges related to weaker interfacial bonding between metal and ceramic, and low crystallinity of hydroxyapatite (HA). The objectives of this research are to improve interfacial strength, crystallinity, phase purity and bioactivity of CaP coated metallic implants for orthopaedic applications. The rationale is that forming a diffuse and gradient metal-ceramic interface will improve the interfacial strength. Moreover, reducing CaP particles exposure to high temperature during coating preparation, can lead to improvement in both crystallinity and phase purity of CaP. In this study, laser engineered net shaping (LENS(TM)) was used to coat Ti metal with CaP. LENS(TM) processing enabled generation of Ti+TCP (tricalcium phosphate) composite coating with diffused interface, that also increased the coating hardness to 1049+/-112 Hv compared to a substrate hardness of 200+/-15 Hv. In vitro bone cell-material interaction studies confirmed the bioactivity of TCP coatings. Antimicrobial properties of the TCP coatings were improved by silver (Ag) electrodeposition. Along with LENS(TM), radio frequency induction plasma spray, equipped with supersonic plasma nozzle, was used to prepare HA coatings on Ti with improved crystallinity and phase purity. The coating was made of multigrain HA particles of ˜200 nm in size, which consisted of 15--20 nm HA grains. In vitro bone cell-material interaction and in vivo rat model studies confirmed the HA coatings to be bioactive. Furthermore, incorporation of Sr2+ improved bone cell of HA coatings interaction. A combination of LENS(TM) and plasma spray was used to fabricate a compositionally graded HA coatings on Ti where the microstructure varied from pure HA at the surface to pure Ti substrate with a diffused Ti+TCP composite region in between. The plasma spray system was used to synthesize spherical HA nano powder from HA sol, where the production rate was 20 g/h, which is only 16% of the total powder produced. The effects of Sr2+ and Mg2+ doping on bone cell-CaP interaction was further studied with osteoclast cells. Mg2+ doing was found to be an effective way of controlling osteoclast differentiation.

  10. Non-vacuum electron beam welding through a plasma window

    NASA Astrophysics Data System (ADS)

    Hershcovitch, Ady

    2005-12-01

    The plasma window is a novel apparatus that utilizes a stabilized plasma arc as interface between vacuum and atmosphere or pressurized targets without solid material. Additionally, the plasma has a lensing effect on charged particles. This feature enables beam focusing to very small spot sizes and overcoming beam dispersion due to scattering by atmospheric atoms and molecules. Recently, the plasma window was mated to a conventional electron beam welder. And, electron beam welding in atmosphere was accomplished with electron beams of unprecedented low power and energy. Weld quality for the non-vacuum plasma window electron beam welding approached the quality of in-vacuum electron beam welding. Indications exist that electron beam attenuation is lower than theoretically predicted. Results suggest that air boring was achieved with 6-15 mA, 90-150 keV electron beams compared to the previously used kA, MeV electron beams. It may explain the better than expected welding results.

  11. Numerical simulation of alumina spraying in argon-helium plasma jet

    SciTech Connect

    Chang, C.H.

    1992-08-01

    A new numerical model is described for simulating thermal plasmas containing entrained particles, with emphasis on plasma spraying applications. The plasma is represented as a continuum multicomponent chemically reacting ideal gas, while the particles are tracked as discrete Lagrangian entities coupled to the plasma. Computational results are presented from a transient simulation of alumina spraying in a turbulent argon-helium plasma jet in air environment, including torch geometry, substrate, and multiple species with chemical reactions. Particle-plasma interactions including turbulent dispersion have been modeled in a fully self-consistent manner. Interactions between the plasma and the torch and substrate walls are modeled using wall functions. (15 refs.)

  12. Numerical simulation of alumina spraying in argon-helium plasma jet

    SciTech Connect

    Chang, C.H.

    1992-01-01

    A new numerical model is described for simulating thermal plasmas containing entrained particles, with emphasis on plasma spraying applications. The plasma is represented as a continuum multicomponent chemically reacting ideal gas, while the particles are tracked as discrete Lagrangian entities coupled to the plasma. Computational results are presented from a transient simulation of alumina spraying in a turbulent argon-helium plasma jet in air environment, including torch geometry, substrate, and multiple species with chemical reactions. Particle-plasma interactions including turbulent dispersion have been modeled in a fully self-consistent manner. Interactions between the plasma and the torch and substrate walls are modeled using wall functions. (15 refs.)

  13. Residual stresses determination in textured substrates for plasma sprayed coatings

    NASA Astrophysics Data System (ADS)

    Capek, J.; Pala, Z.; Kovarik, O.

    2015-04-01

    In this contribution, we have striven to respond to the desire of obtaining the residual stress tensor in the both cold-rolled and hot-rolled substrates designated for deposition of thermal coatings by plasma spraying. Residual stresses play an important role in the coating adhesion to the substrate and, as such, it is a good practice to analyse them. Prior to spraying, the substrate is often being grit blasted. Residual stresses and texture were quantitatively assessed in both virgin and grit blasted sample employing three attitudes. Firstly without taking preferred orientation into account, secondly from measurements of interplanar lattice spacings of planes with high Miller indices using MoK? radiation. And eventually, by calculating anisotropic elastic constants as a weighted average between single-crystal and X-ray elastic constants with weighting being done according to the amount of textured and isotropic material in the irradiated volume. In the ensuing verification analyses, it was established that the latter approach is suitable for materials with either very strong or very weak presence of texture.

  14. Investigation of plasma flow in vacuum arc with hot cathode

    NASA Astrophysics Data System (ADS)

    Amirov, R.; Vorona, N.; Gavrikov, A.; Lizyakin, G.; Polistchook, V.; Samoylov, I.; Smirnov, V.; Usmanov, R.; Yartsev, I.

    2014-11-01

    One of the crucial problems which appear under development of plasma technology processing of spent nuclear fuel (SNF) is the design of plasma source. The plasma source must use solid SNF as a raw material. This article is devoted to experimental study of vacuum arc with hot cathode made of gadolinium that may consider as the simple model of SNF. This vacuum discharge was investigated in wide range of parameters. During the experiments arc current and voltage, cathode temperature, and heat flux to the cathode were measured. The data on plasma spectrum and electron temperature were obtained. It was shown that external heating of the cathode allows change significantly the main parameters of plasma. It was established by spectral and probe methods that plasma jet in studied discharge may completely consist of single charged ions.

  15. Fully plasma-sprayed compliant backed ceramic turbine seal

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Wisander, D. W. (inventors)

    1982-01-01

    A seal having a high temperature abradable lining material encircling the tips of turbine blades in turbomachinery is discussed. The minimum operating clearances between the blade tips and the lining of a high pressure turbine are maintained. A low temperature easily decomposable material, such as a polymer, in powder form is blended with a high temperature oxidation resistant metal powder. The two materials are simultaneously deposited on a substrate formed by the turbine casing. Alternately, the polymer powder may be added to the metal powder during plasma spraying. A ceramic layer is then deposited directly onto the metal polymer composite. The polymer additive mixed with the metal is then completely volatilized to provide a porous layer between the ceramic layer and the substrate.

  16. Program for plasma-sprayed self-lubricating coatings

    NASA Technical Reports Server (NTRS)

    Walther, G. C.

    1979-01-01

    A method for preparing composite powders of the three coating components was developed and a procedure that can be used in applying uniform coatings of the composite powders was demonstrated. Composite powders were prepared by adjusting particle sizes of the components and employing a small amount of monoaluminum phosphate as an inorganic binder. Quantitative microscopy (image analysis) was found to be a convenient method of characterizing the composition of the multiphase plasma-sprayed coatings. Area percentages and distribution of the components were readily obtained by this method. The adhesive strength of the coating to a nickel-chromium alloy substrate was increased by about 40 percent by a heat treatment of 20 hours at 650 C.

  17. High resolution video monitoring of coating thickness during plasma spraying

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.

    1988-01-01

    A new approach to monitoring the thickness of plasma sprayed coatings during application is described. The method employs a high resolution video camera and width analyzer to accurately measure the dimensions of samples having simple geometries. This approach is best suited for cylindrical or flat substrates but it may also work for selected locations on more complex geometries. Measurement accuracy is a function of specimen dimensions and extent of magnification. Tolerances of plus or minus 0.5 mil (0.13 mm) on final coating thickness can be achieved. Additionally, the plot of cumulative coating thickess versus the number of passes has proven to be a useful diagnostic tool. While the ideal plot is linear, strong deviations from linearity - indicating the need for corrective action - may be observed.

  18. Acoustic emission evaluation of plasma-sprayed thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Berndt, C. C.

    1984-01-01

    Acoustic emission techniques have recently been used in a number of studies to investigate the performance and failure behavior of plasma-sprayed thermal barrier coatings. Failure of the coating is a complex phenomena, especially when the composite nature of the coating is considered in the light of possible failure mechanisms. Thus it can be expected that both the metal and ceramic components (i.e., the bond coat and ceramic overlay) of a composite thermal protection system influence the macroscopic behavior and performance of the coating. The aim of the present work is to summarize the 'state-of-the-art' in terms of this initial work and indicate where future progress may be made.

  19. Plasma Spray-CVD: A New Thermal Spray Process to Produce Thin Films from Liquid or Gaseous Precursors

    NASA Astrophysics Data System (ADS)

    Gindrat, M.; Höhle, H.-M.; von Niessen, K.; Guittienne, Ph.; Grange, D.; Hollenstein, Ch.

    2011-06-01

    New dedicated coating processes which are based on the well-known LPPS™ technology but operating at lower work pressure (100 Pa) are being actively developed. These hybrid technologies contribute to improve the efficiencies in the turbine industry such as aero-engines and land-based gas turbines. They also have a great potential in the domain of new energy concepts in applications like Solid Oxide Fuel Cells, membranes, and photovoltaic with the adoption of new ways of producing coatings by thermal spray. Such processes include Plasma Spray-Thin Film (PS-TF) which gives the possibility to coat thin and dense layers from splats through a classical thermal spray approach but at high velocities (400-800 m/s) and enthalpy (8000-15000 kJ/kg). Plasma Spray-PVD (PS-PVD) which allows producing thick columnar-structured Thermal Barrier Coatings (100-300 ?m) from the vapor phase with the employment of the high enthalpy gun and specific powder feedstock material. On the other hand, the Plasma Spray-CVD (PS-CVD) process uses modified conventional thermal spray components operated below 100 Pa which allows producing CVD-like coatings (<1-10 ?m) at higher deposition rates using liquid or gaseous precursors as feedstock material. The advantages of such thermal spray-enhanced CVD processes are the high ionization degree and high throughput for the deposition of thin layers. In this article, we present an overview of the possibilities and limitations encountered while producing thin film coatings using liquid and gaseous precursors with this new type of low pressure plasma spray equipment and point out the challenges faced to obtain efficient injection and mixing of the precursors in the plasma jet. In particular, SiO x thin films from Hexamethyldisiloxane (HMDSO or C6H18OSi2) can be deposited on wafers at deposition rates of up to 35 nm/s at an efficiency of about 50%. The process was also used for producing metal oxide coatings (Al2O3, ZnO, and SnO2) by evaporating different metals in combination with an oxygen gas flow. The effect of process parameters on the deposition rate, coating build up, uniformity, and quality of the coatings are discussed. An overview of different potential applications of this new technology will be also presented.

  20. Flow characteristic of in-flight particles in supersonic plasma spraying process

    NASA Astrophysics Data System (ADS)

    Wei, Pei; Wei, Zhengying; Zhao, Guangxi; Du, Jun; Bai, Y.

    2015-10-01

    In this paper, a computational model based on supersonic plasma spraying (SAPS) is developed to describe the plasma jet coupled with the injection of carrier gas and particles for SAPS. Based on a high-efficiency supersonic spraying gun, the 3D computational model of spraying gun was built to study the features of plasma jet and its interactions with the sprayed particles. Further the velocity and temperature of in-flight particles were measured by Spray Watch 2i, the shape of in-flight particles was observed by scanning electron microscope. Numerical results were compared with the experimental measurements and a good agreement has been achieved. The flight process of particles in plasma jet consists of three stages: accelerated stage, constant speed stage and decelerated stage. Numerical and experimental indicates that the H2 volume fraction in mixture gas of Ar + H2 should keep in the range of 23-26 %, and the distance of 100 mm is the optimal spraying distance in Supersonic atmosphere plasma spraying. Particles were melted and broken into small child particles by plasma jet and the diameters of most child particles were less than 30 ?m. In general, increasing the particles impacting velocity and surface temperature can decrease the coating porosity.

  1. Vacuum arc plasma thrusters with inductive energy storage driver

    NASA Technical Reports Server (NTRS)

    Schein, Jochen (Inventor); Gerhan, Andrew N. (Inventor); Woo, Robyn L. (Inventor); Au, Michael Y. (Inventor); Krishnan, Mahadevan (Inventor)

    2004-01-01

    An apparatus for producing a vacuum arc plasma source device using a low mass, compact inductive energy storage circuit powered by a low voltage DC supply acts as a vacuum arc plasma thruster. An inductor is charged through a switch, subsequently the switch is opened and a voltage spike of Ldi/dt is produced initiating plasma across a resistive path separating anode and cathode. The plasma is subsequently maintained by energy stored in the inductor. Plasma is produced from cathode material, which allows for any electrically conductive material to be used. A planar structure, a tubular structure, and a coaxial structure allow for consumption of cathode material feed and thereby long lifetime of the thruster for long durations of time.

  2. Influence of internal cold gas flow and of nozzle contour on spray properties of an atmospheric plasma spray torch

    SciTech Connect

    Henne, R.H.; Borck, V.; Mayr, W.; Landes, K.; Reusch, A.

    1995-12-31

    With an automated Laser Doppler Anemometry (LDA) equipment trajectories, distributions and velocities of spray particles were measured operating a plasma spray torch under atmospheric pressure conditions. For this purpose a standard APS torch (PT F4) was used, applying different gas distribution rings and nozzle modifications to study the influence of internal plasma gas flow and of plasma jet formation. The main results are: (1) An inclined injection of the plasma cold gas results in a considerable spin of the plasma jet and a significant deviation of the particle trajectories around the plasma jet center. (2) With a plasma cold gas injection parallel to the torch axis no spin is observable, but torch voltage and the plasma jet enthalpy show considerably diminished values. (3) The flow of injected powder may be split up, if it is injected too fast. (4) In comparison with cylindrical nozzles, specially developed nozzles with a controlled expanding contour, lead to broader temperature profiles across the plasma jet and hence to better melting conditions for the particles.

  3. Process maps for plasma spray: Part 1: Plasma-particle interactions

    SciTech Connect

    GILMORE,DELWYN L.; NEISER JR.,RICHARD A.; WAN,YUEPENG; SAMPATH,SANJAY

    2000-01-26

    This is the first paper of a two part series based on an integrated study carried out at Sandia National Laboratories and the State University of New York at Stony Brook. The aim of the study is to develop a more fundamental understanding of plasma-particle interactions, droplet-substrate interactions, deposit formation dynamics and microstructural development as well as final deposit properties. The purpose is to create models that can be used to link processing to performance. Process maps have been developed for air plasma spray of molybdenum. Experimental work was done to investigate the importance of such spray parameters as gun current, auxiliary gas flow, and powder carrier gas flow. In-flight particle diameters, temperatures, and velocities were measured in various areas of the spray plume. Samples were produced for analysis of microstructures and properties. An empirical model was developed, relating the input parameters to the in-flight particle characteristics. Multi-dimensional numerical simulations of the plasma gas flow field and in-flight particles under different operating conditions were also performed. In addition to the parameters which were experimentally investigated, the effect of particle injection velocity was also considered. The simulation results were found to be in good general agreement with the experimental data.

  4. On plasma jet formation in vacuum arc with composite cathode

    NASA Astrophysics Data System (ADS)

    Shmelev, D. L.; Barengolts, S. A.; Uimanov, I. V.; Tsventoukh, M. M.; Savkin, K. P.

    2015-11-01

    This paper deals with the computer modeling of vacuum arc with composite multicomponent cathode. This arc is typical for certain kind of ion sources, plasma generator and vacuum interrupters. The described hybrid model treats the electrons as an inertialess fluid and ions as macroparticles. The macroparticle dynamic is calculated with the use of particle-incell method. Ion-ion Coulomb collision is considered with the use of Monte Carlo method. The model can simulate vacuum arc as a whole including separate cathode plasma jets, mixing zone, and common plasma column. The dependence of ion angular current distribution on the cathode composition reproduced with the help of developed model agrees well with experimental results.

  5. Plasma sprayed rutile titania-nanosilver antibacterial coatings

    NASA Astrophysics Data System (ADS)

    Gao, Jinjin; Zhao, Chengjian; Zhou, Jingfang; Li, Chunxia; Shao, Yiran; Shi, Chao; Zhu, Yingchun

    2015-11-01

    Rutile titania (TiO2) coatings have superior mechanical properties and excellent stability that make them preferential candidates for various applications. In order to prevent infection arising from bacteria, significant efforts have been focused on antibacterial TiO2 coatings. In the study, titania-nanosilver (TiO2/Ag) coatings with five different kinds of weight percentages of silver nanoparticles (AgNPs) were prepared by plasma spray. The feedstock powders, which had a composition of rutile TiO2 powders containing 1-10,000 ppm AgNPs, were double sintered and deposited on stainless steel substrates with optimized spraying parameters. X-Ray diffraction and scanning electron microscopy were used to analysize the phase composition and surface morphology of TiO2/Ag powders and coatings. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were employed to examine the antibacterial activity of the as-prepared coatings by bacterial counting method. The results showed that silver existed homogeneously in the TiO2/Ag coatings and no crystalline changed happened in the TiO2 structure. The reduction ratios on the TiO2/Ag coatings with 10 ppm AgNPs were as high as 94.8% and 95.6% for E. coli and S. aureus, respectively, and the TiO2/Ag coatings with 100-1000 ppm AgNPs exhibited 100% bactericidal activity against E. coli and S. aureus, which indicated the TiO2/Ag coatings with more than 10 ppm AgNPs had strong antibacterial activity. Moreover, the main factors influencing the antibacterial properties of TiO2/Ag coatings were discussed with grain size and the content of silver as well as the microstructure of the coatings.

  6. Tantalum oxide-based plasma-sprayed environmental barrier coatings

    NASA Astrophysics Data System (ADS)

    Weyant, Christopher M.

    Energy efficiency in gas turbine engines is linked to the high temperature capabilities of materials used in the hot section of the engine. To facilitate a significant increase in engine efficiency, tough structural ceramics have been developed that can handle the thermo-mechanical stresses that gas turbine components experience. Unfortunately, the high-temperature, high-pressure, and high-velocity combustion gases in a gas turbine contain water vapor and/or hydrogen which have been shown to volatilize the protective silica layer on silicon-based ceramics. This degradation leads to significant surface recession in ceramic gas turbine components. In order to maintain their structural integrity, an environmental barrier coating (EBC) could be used to protect ceramics from the harsh gas turbine environment. Due to its coefficient of thermal expansion and phase stability at elevated temperatures, tantalum oxide (Ta2O5) was examined as the base material for an air plasma-sprayed EBC on Si3N 4 ceramics. As-sprayed pure Ta2O5 was comprised of both low-temperature beta-Ta2O5 and high-temperature alpha-Ta 2O5 that was quenched into the structure. Residual stress measurements via X-ray diffraction determined the as-sprayed coating to be in tension and extensive vertical macrocracks were observed in the coating. Heat treatments of the pure coating led to conversion of alpha-Ta2 O5 to beta-Ta2O5, conversion of tensile stresses to compressive, localized buckling of the coating, and significant grain growth which caused microcracking in the coating. The pure coating was found to be an inadequate EBC. Al2O3 was investigated as a solid solution alloying addition designed to enhance the stability of beta-Ta2O 5, and reduce grain growth by slowing grain boundary diffusion. La 2O3 was investigated as an alloying addition designed to form second phase particles which would reduce grain growth through pinning. Al2O3 was successful at both stabilizing beta-Ta 2O5 and reducing grain growth, though AlTaO4 was found to form in the coatings. La2O3 additions led to the formation of LaTa7O19 which also contributed to grain growth reduction. Residual stresses in the alloyed coatings were generally found to be tensile. Microcracks were not observed in coatings that were alloyed with both Al2O3 and La2O3 with the most promising alloy being Ta2O5 + 1.5 wt.% Al 2O3 + 1.5 wt.% La2O3.

  7. Plasma-sprayed coating of hydroxyapatite on metal implants--a review.

    PubMed

    Talib, R J; Toff, M R M

    2004-05-01

    Metal implants such as titanium, stainless steel and Co-Cr-Mo are used for load bearing purposes such as hip joint prostheses, fixing plates and dental root implants. For practical application, plasma-sprayed coatings of hydroxyapatite (HA) on metal implants are applied to promote early formation of strong bonds between metal implant and living bone. Plasma spray coating involves heating of HA material to a semi-molten or molten state and then propels its to a metal substrate. The plasma flame temperature is in the range of 6,000 degrees C to 16,000 degrees C but the surface temperature of the substrate rarely exceeds 150 degrees C. The HA materials are feed into the spray gun in the form of powders. Furthermore, this paper will discuss the processes of plasma-sprayed coating of HA on various types of metal implants. PMID:15468864

  8. The development of beryllium plasma spray technology for the International Thermonuclear Experimental Reactor (ITER)

    SciTech Connect

    Castro, R.G.; Elliott, K.E.; Hollis, K.J.; Bartlett, A.H.; Watson, R.D.

    1999-02-01

    Over the past five years, four international parties, which include the European Communities, Japan, the Russian Federation and the United States, have been collaborating on the design and development of the International Thermonuclear Experimental Reactor (ITER), the next generation magnetic fusion energy device. During the ITER Engineering Design Activity (EDA), beryllium plasma spray technology was investigated by Los Alamos National Laboratory as a method for fabricating and repairing and the beryllium first wall surface of the ITER tokamak. Significant progress has been made in developing beryllium plasma spraying technology for this application. Information will be presented on the research performed to improve the thermal properties of plasma sprayed beryllium coatings and a method that was developed for cleaning and preparing the surface of beryllium prior to depositing plasma sprayed beryllium coatings. Results of high heat flux testing of the beryllium coatings using electron beam simulated ITER conditions will also be presented.

  9. Plasma-sprayed metal-glass fluoride coatings for lubrication to 1170 K (1650 F)

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.

    1974-01-01

    Plasma spray of Nichrome matrix composite contains dispersed glass for oxidation protection and calcium fluoride for lubrication. Coatings can be applied to bearing journals and bearing bores. Coating was easily machinable and had excellent bond strength on substrate metal.

  10. Dynamic Model of the Wire Dispersion Process in Plasma-Arc Spraying

    NASA Astrophysics Data System (ADS)

    Kharlamov, M. Yu.; Krivtsun, I. V.; Korzhyk, V. N.

    2014-02-01

    The dynamic mathematical model is suggested, describing the jet flow of a molten wire material and formation of droplets, i.e. spraying particles, under conditions of plasma-arc wire spraying. Numerical analysis of the processes of formation and detachment of droplets was carried out, and the effect of spraying parameters on the above processes was investigated. It was shown that the size and interval of detachment of the droplets strongly depend on the diameter and feed speed of the anode wire being sprayed, as well as on the plasmatron operation mode.

  11. Numerical analysis of the plasma-produced region in a plasma spraying system

    SciTech Connect

    Matsuo, T.; Sakata, N.; Kato, S.; Nagayama, T.; Fujita, K.

    1999-07-01

    For this study, the Arcjet Plasmodynamic Analysis Code (APAC) developed by Fujita has been significantly modified in order to investigate the physical phenomena of the plasma-produced region in a plasma spraying system. For self-consistent determination of the heating process of working gas, plasma flow, which contains complicated physical phenomena, is obtained by interconnecting flow field analysis with electric field analysis. The main conclusions obtained are summarized as follows: (1) Discharge voltage decreased with discharge current significantly. On the other hand, it increases slightly with hydrogen flow rate. (2) Current density distribution governs physical phenomena in plasma flow. (3) Temperature and velocity distribution at the nozzle exit depend on the discharge current.

  12. Electrocatalytically Active Nickel-Based Electrode Coatings Formed by Atmospheric and Suspension Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Aghasibeig, M.; Mousavi, M.; Ben Ettouill, F.; Moreau, C.; Wuthrich, R.; Dolatabadi, A.

    2014-01-01

    Ni-based electrode coatings with enhanced surface areas, for hydrogen production, were developed using atmospheric plasma spray (APS) and suspension plasma spray (SPS) processes. The results revealed a larger electrochemical active surface area for the coatings produced by SPS compared to those produced by APS process. SEM micrographs showed that the surface microstructure of the sample with the largest surface area was composed of a large number of small cauliflower-like aggregates with an average diameter of 10 ?m.

  13. Life modeling of atmospheric and low pressure plasma-sprayed thermal-barrier coating

    NASA Technical Reports Server (NTRS)

    Miller, R. A.; Argarwal, P.; Duderstadt, E. C.

    1984-01-01

    The cycles-to-failure vs cycle duration data for three different thermal barrier coating systems, which consist of atmospheric pressure plasma-sprayed ZrO2-8 percent Y2O3 over similarly deposited or low pressure plasma sprayed Ni-base alloys, are presently analyzed by means of the Miller (1980) oxidation-based life model. Specimens were tested at 1100 C for heating cycle lengths of 1, 6, and 20 h, yielding results supporting the model's value.

  14. Plasma sprayed ceramic thermal barrier coating for NiAl-based intermetallic alloys

    NASA Technical Reports Server (NTRS)

    Miller, Robert A. (inventor); Doychak, Joseph (inventor)

    1994-01-01

    A thermal barrier coating system consists of two layers of a zirconia-yttria ceramic. The first layer is applied by low pressure plasma spraying. The second layer is applied by conventional atmospheric pressure plasma spraying. This facilitates the attachment of a durable thermally insulating ceramic coating directly to the surface of a highly oxidation resistant NiAl-based intermetallic alloy after the alloy has been preoxidized to promote the formation of a desirable Al2O3 scale.

  15. The spray-drying process is sufficient to inactivate infectious porcine epidemic diarrhea virus in plasma.

    PubMed

    Gerber, Priscilla F; Xiao, Chao-Ting; Chen, Qi; Zhang, Jianqiang; Halbur, Patrick G; Opriessnig, Tanja

    2014-11-01

    Porcine epidemic diarrhea virus (PEDV) is considered an emergent pathogen associated with high economic losses in many pig rearing areas. Recently it has been suggested that PEDV could be transmitted to naïve pig populations through inclusion of spray-dried porcine plasma (SDPP) into the nursery diet which led to a ban of SDPP in several areas in North America and Europe. To determine the effect of spray-drying on PEDV infectivity, 3-week-old pigs were intragastrically inoculated with (1) raw porcine plasma spiked with PEDV (RAW-PEDV-CONTROL), (2) porcine plasma spiked with PEDV and then spray dried (SD-PEDV-CONTROL), (3) raw plasma from PEDV infected pigs (RAW-SICK), (4) spray-dried plasma from PEDV infected pigs (SD-SICK), or (5) spray-dried plasma from PEDV negative pigs (SD-NEG-CONTROL). For the spray-drying process, a tabletop spray-dryer with industry-like settings for inlet and outlet temperatures was used. In the RAW-PEDV-CONTROL group, PEDV RNA was present in feces at day post infection (dpi) 3 and the pigs seroconverted by dpi 14. In contrast, PEDV RNA in feces was not detected in any of the pigs in the other groups including the SD-PEDV-CONTROL group and none of the pigs had seroconverted by termination of the project at dpi 28. This work provides direct evidence that the experimental spray-drying process used in this study was effective in inactivating infectious PEDV in the plasma. Additionally, plasma collected from PEDV infected pigs at peak disease did not contain infectious PEDV. These findings suggest that the risk for PEDV transmission through commercially produced SDPP is minimal. PMID:25281254

  16. Sprayed coatings

    NASA Astrophysics Data System (ADS)

    Steffens, H. D.

    1980-03-01

    Thermal spraying is shown to be an efficient means for the protection of surface areas against elevated temperature, wear, corrosion, hot gas corrosion, and erosion in structural aircraft components. Particularly in jet engines, numerous parts are coated by flame, detonation, or plasma spraying techniques. The applied methods of flame, detonation, and plasma spraying are explained, as well as electric arc spraying. Possibilities for spray coatings which meet aircraft service requirements are discussed, as well as methods for quality control, especially nondestructive test methods. In particular, coating characteristics and properties obtained by different spray methods are described, and special attention is paid to low pressure plasma spraying.

  17. New generation of plasma-sprayed mullite coatings on silicon carbide

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.; Miller, Robert A.; Jacobson, Nathan S.

    1995-01-01

    Mullite is promising as a protective coating for silicon-based ceramics in aggressive high-temperature environments. Conventionally plasma-sprayed mullite on SiC tends to crack and debond on thermal cycling. It is shown that this behavior is due to the presence of amorphous mullite in the conventionally sprayed mullite. Heating the SiC substrate during the plasma spraying eliminated the amorphous phase and produced coatings with dramatically improved properties. The new coating exhibits excellent adherence and crack resistance under thermal cycling between room temperature and 1000 to 1400 C. Preliminary tests showed good resistance to Na2CO3-induced hot corrosion.

  18. Fabrication of copper-based anodes via atmosphoric plasma spraying techniques

    DOEpatents

    Lu, Chun (Monroeville, PA)

    2012-04-24

    A fuel electrode anode (18) for a solid oxide fuel cell is made by presenting a solid oxide fuel cell having an electrolyte surface (15), mixing copper powder with solid oxide electrolyte in a mixing step (24, 44) to provide a spray feedstock (30,50) which is fed into a plasma jet (32, 52) of a plasma torch to melt the spray feed stock and propel it onto an electrolyte surface (34, 54) where the spray feed stock flattens into lamellae layer upon solidification, where the layer (38, 59) is an anode coating with greater than 35 vol. % based on solids volume.

  19. Deuterium retention in plasma spray tungsten coatings exposed to low-energy, high flux D plasma

    NASA Astrophysics Data System (ADS)

    Alimov, V. Kh.; Nakamura, H.; Tyburska-Püschel, B.; Ogorodnikova, O. V.; Roth, J.; Isobe, K.; Yamanishi, T.

    2011-07-01

    Two types of porous plasma spray tungsten coatings deposited onto stainless steel and graphite substrates were exposed to low-energy (76 eV D2+), high-flux (10 22 D/m 2 s) D plasma to ion fluences of (3-4) × 10 26 D/m 2 at various temperatures. Deuterium retention in the W coatings was examined by thermal desorption spectroscopy and the D( 3He,p) 4He nuclear reaction, allowing determination of the D concentration at depths up to 7 ?m. The relatively high D concentration (above 0.1 at.%) at depths of several micrometers observed after D plasma exposure at 340-560 K can be related to accumulation of D 2 molecules in pores, while at temperatures above 600 K deuterium is accumulated mainly in the form of D atoms chemisorbed on the inner pore surfaces. At exposure temperatures above 500 K, the D retention in the plasma spray W coating on graphite substrate increases significantly due to trapping of diffusing D atoms at carbon dangling bonds located at the edge of a graphite crystallite.

  20. Plasma sprayed coatings as surface treatments of aluminum adherends

    SciTech Connect

    Davis, G.D.; Whisnant, P.L.; Groff, G.B.; Shaffer, D.K.

    1996-12-31

    Plasma sprayed coatings have been evaluated as surface treatments for aluminum substrates being prepared for adhesive bonding. Blends of an aluminum-silicon alloy and polyester give the best performance. To establish durability performance, wedge tests were done using four common epoxy adhesives without primers. In all cases, the 60%Al-Si/40%polyester coating gave results superior to those of FPL-etched specimens and, in some cases, performance equivalent to PAA specimens. This roughness provides excellent opportunity for mechanical interlocking or physical bonding and allows a complex interphase to be formed as the adhesive penetrates into the coating. Crack growth measurements and subsequent failure analysis using x-ray photoelectron spectroscopy (XPS) indicate that crack propagation occurs within this complex interphase. The results also show that the aluminum and polyester components are synergistic and blends of the two give better performance than either component by itself The aluminum gives strength to the coating while the polyester provides toughness and improves moisture resistance.

  1. A sputtered zirconia primer for improved thermal shock resistance of plasma-sprayed ceramic turbine seals

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Sovey, J.; Allen, G. P.

    1981-01-01

    It is shown that the application of sputtered Y2O3-stabilized ZrO2 (YSZ) primer in plasma-sprayed YSZ ceramic-coated turbine blades results in an improvement, by a factor of 5-6, in the thermal shock life of specimens with a sprayed, porous, Ni-Cr-Al-Y intermediate layer. Species with and without the primer were found to be able to survive 1000 cycles when the intermediate layer was used, but reduced laminar cracking was observed in the specimen with the primer. It is suggested that the sputtered YZS primer-induced properties are due to (1) more effective wetting and adherence of the plasma-sprayed YZS particles to the primer, and (2) the primer's retardation of impinging, molten plasma sprayed particles solidification rates, which result in a less detrimental residual stress distribution.

  2. Effect of heat treatment on the microstructure of plasma-sprayed hydroxyapatite coating.

    PubMed

    Ji, H; Marquis, P M

    1993-01-01

    One of the claimed benefits of plasma-sprayed hydroxyapatite coatings on metal prostheses is the generation of enhanced bone bonding. However, plasma-sprayed hydroxyapatite undergoes a range of transformations during spraying, and the final microstructures produced are complex, with a variety of phases present. The microstructures of plasma-sprayed hydroxyapatite coatings on titanium alloy substrate which have been subjected to post-heat treatment at 950 degrees C have been characterized using transmission electron microscopy. It was demonstrated that heat treatment can modify the coating microstructure and improve adhesion between coating and substrate. The results of chemical analysis revealed an increase in the Ca:P ratios, accompanied by the transformation of calcium phosphate phases from amorphous to crystalline. These transformations are related to phosphorus diffusion into the titanium alloy substrate, which results in the formation of a Ti3P phase. PMID:8381033

  3. Reactive Plasma Nitriding of AL2O3 Powder in Thermal Spray

    NASA Astrophysics Data System (ADS)

    Shahien, Mohammed; Yamada, Motohiro; Yasui, Toshiaki; Fukumoto, Masahiro

    Among advanced ceramics, aluminum nitride (AlN) had attracted much attention in the field of electrical and structural applications due to its outstanding properties. However, it is difficult to fabricate AlN coating by conventional thermal spray processes directly. Due to the thermal decomposition of feedstock AlN powder during spraying without a stable melting phase (which is required for deposition in thermal spray). Reactive plasma spraying (RPS) has been considered as a promising technology for in-situ formation of AlN thermally sprayed coatings. In this study the possibility of fabrication of AlN coating by reactive plasma nitriding of alumina (Al2O3) powder using N2/H2 plasma was investigated. It was possible to fabricate a cubic-AlN (c-AlN) based coating and the fabricated coating consists of c-AlN, ?-Al2O3, Al5O6N and ?-Al2O3. It was difficult to understand the nitriding process from the fabricated coatings. Therefore, the Al2O3 powders were sprayed and collected in water. The microstructure observation of the collected powder and its cross section indicate that the reaction started from the surface. Thus, the sprayed particles were melted and reacted in high temperature reactive plasma and formed aluminum oxynitride which has cubic structure and easily nitride to c-AlN. During the coatings process the particles collide, flatten, and rapidly solidified on a substrate surface. The rapid solidification on the substrate surface due to the high quenching rate of the plasma flame prevents AlN crystal growth to form the hexagonal phase. Therefore, it was possible to fabricate c-AlN/Al2O3 based coatings through reactive plasma nitriding reaction of Al2O3 powder in thermal spray.

  4. T55-L-712 turbine engine compressor housing refurbishment-plasma spray project

    NASA Technical Reports Server (NTRS)

    Leissler, George W.; Yuhas, John S.

    1988-01-01

    A study was conducted to assess the feasibility of reclaiming T55-L-712 turbine engine compressor housings with an 88 wt percent aluminum to 12 wt percent silicon alloy applied by a plasma spray process. Tensile strength testing was conducted on as-sprayed and thermally cycled test specimens which were plasma sprayed with 0.020 to 0.100 in. coating thicknesses. Satisfactory tensile strength values were observed in the as-sprayed tensile specimens. There was essentially no decrease in tensile strength after thermally cycling the tensile specimens. Furthermore, compressor housings were plasma sprayed and thermally cycled in a 150-hr engine test and a 200-hr actual flight test during which the turbine engine was operated at a variety of loads, speeds and torques. The plasma sprayed coating system showed no evidence of degradation or delamination from the compressor housings. As a result of these tests, a procedure was designed and developed for the application of an aluminum-silicon alloy in order to reclaim T55-L-712 turbine engine compressor housings.

  5. Use of plasma sprayed coatings as surface treatments for aluminum adherends

    SciTech Connect

    Davis, G.D.; Whisnant, P.L.; Groff, G.B.

    1996-12-31

    Surface treatments for metal adherends prior to adhesive bonding typically use chromates and/or strong acids and bases. Such materials are hazardous to personnel and harmful to the environment following disposal. To reduce release of these substances into the environment and lower disposal costs, plasma spray treatments are being developed as surface treatments for aluminum adherends. These treatments eliminate liquid and gaseous wastes and provide bond strength and durability comparable to that provided by the conventional chemical treatments. They have other potential advantages of being more suited for repair/refurbishment and less sensitive to metallurgical differences from alloy to alloy. Plasma sprayed coatings are used in a variety of applications where a coating tailored for specific properties is needed that may or may not be chemically or structurally similar to the base substrate. Plasma spraying has been shown to provide excellent high-temperature bond performance with titanium (unlike conventional oxidation treatments) and durability approaching that of phosphoric acid anodization for aluminum. Success has also been reported using other coatings on aluminum, titanium, and steel. Plasma spraying has the important advantage of versatility. A wide range of coatings (metals, ceramics, and polymers) can be deposited onto an equally wide range of substrates, and the coating properties can be optimized for a given application, independent of the substrate. Because of this versatility, plasma-sprayed coatings have been used for wear resistance, thermal barriers, EMI/RF shielding, corrosion resistance, slip/slide resistance, and biocompatibility in addition to adhesion.

  6. Vacuum laser acceleration of relativistic electrons using plasma mirror injectors

    E-print Network

    Thévenet, M; Kahaly, S; Vincenti, H; Vernier, A; Quéré, F; Faure, J

    2015-01-01

    Accelerating particles to relativistic energies over very short distances using lasers has been a long standing goal in physics. Among the various schemes proposed for electrons, vacuum laser acceleration has attracted considerable interest and has been extensively studied theoretically because of its appealing simplicity: electrons interact with an intense laser field in vacuum and can be continuously accelerated, provided they remain at a given phase of the field until they escape the laser beam. But demonstrating this effect experimentally has proved extremely challenging, as it imposes stringent requirements on the conditions of injection of electrons in the laser field. Here, we solve this long-standing experimental problem for the first time by using a plasma mirror to inject electrons in an ultraintense laser field, and obtain clear evidence of vacuum laser acceleration. With the advent of PetaWatt class lasers, this scheme could provide a competitive source of very high charge (nC) and ultrashort rela...

  7. Wear behavior of gas tunnel type plasma sprayed Zr-based metallic glass composite coatings

    NASA Astrophysics Data System (ADS)

    Yugeswaran, S.; Kobayashi, A.; Suresh, K.; Rao, K. P.; Subramanian, B.

    2012-09-01

    Gas tunnel type plasma spraying is a prospective method to produce metallic glass composite coatings with high quality due to its noteworthy feature of process controllability. In this study, Zr55Cu30Al10Ni5 metallic glass composite coatings were produced by gas tunnel type plasma spraying torch under optimum spraying conditions with selected plasma currents. The formation mechanism, sliding, and erosive wear behaviors of the coatings with respect to plasma current was examined. The phase and thermal analyses as well as microstructure of the plasma sprayed coatings produced at different plasma currents were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) techniques. The sliding and erosive wear behaviors of the coatings were studied using a pin-on-disc and a specially designed erosive wear tester, respectively. The results showed that an increase in plasma current increased the crystalline content in the metallic glass composite coatings, which enhanced the hardness and wear resistance of the coatings.

  8. Simple filtered repetitively pulsed vacuum arc plasma source

    SciTech Connect

    Chekh, Yu.; Zhirkov, I. S.; Delplancke-Ogletree, M. P.

    2010-02-15

    A very simple design of cathodic filtered vacuum arc plasma source is proposed. The source without filter has only four components and none of them require precise machining. The source operates in a repetitively pulsed regime, and for laboratory experiments it can be used without water cooling. Despite the simple construction, the source provides high ion current at the filter outlet reaching 2.5% of 400 A arc current, revealing stable operation in a wide pressure range from high vacuum to oxygen pressure up to more than 10{sup -2} mbar. There is no need in complicated power supply system for this plasma source, only one power supply can be used to ignite the arc, to provide the current for the arc itself, to generate the magnetic field in the filter, and provide its positive electric biasing without any additional high power resistance.

  9. Predicting ion charge state distributions of vacuum arc plasmas

    SciTech Connect

    Anders, A.; Schulke, T.

    1996-04-01

    Multiply charged ions are present in vacuum arc plasmas. The ions are produced at cathode spots, and their charge state distributions (CSDs) depend on the cathode material but only little on the arc current or other parameters as long as the current is relatively low and the anode is not actively involved in the plasma production. There are experimental data of ion CSDs available in the literature for 50 different cathode materials. The CSDs can be calculated based on the assumption that thermodynamic equilibrium is valid in the vicinity of the cathode spot, and the equilibrium CSDs `freeze` at a certain distance from the cathode spot (transition to a non-equilibrium plasma). Plasma temperatures and densities at the `freezing points` have been calculated, and, based on the existence of characteristic groups of elements in the Periodic Table, predictions of CSDs can be made for metallic elements which have not yet been used as cathode materials.

  10. Characterization of NbSi2-Al2O3 nanocomposite coatings prepared with plasma spraying mechanically alloyed powders

    NASA Astrophysics Data System (ADS)

    Yazdani, Zohreh; Karimzadeh, Fathallah; Abbasi, Mohammad-Hasan; Amini, Abbas

    2015-07-01

    The present study characterized NbSi2-Al2O3 nanocomposite powders plasma-sprayed on Ti-6Al-4V substrates. The powders were agglomerated to obtain suitable particle sizes for spraying. The agglomerated powders were then plasma-sprayed using atmospheric plasma spraying. The structural transformations of the powders along with the morphological and mechanical changes of the coatings were examined by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, and hardness testing. The results showed that after plasma spraying, the grain size increased, and the lattice strain decreased. However, the grain size of this compound after spraying was still in the nanometer range. The coating was uniform and exhibited good adhesion to the substrate. The microhardness and fracture toughness of the nanocomposite coating were higher than those of a nanostructured NbSi2 coating.

  11. Feasibility study of plasma sprayed Al2O3 coatings as diffusion barrier on CFC components

    NASA Astrophysics Data System (ADS)

    Bobzin, Kirsten; Zhao, Lidong; Kopp, Nils; Warda, Thomas

    2012-12-01

    Carbon fibre reinforced carbon (CFC) materials are increasingly applied as sample carriers in modern furnaces. Only their tendency to react with different metals at high temperatures by C-diffusion is a disadvantage, which can be solved by application of diffusion barriers. Within this study the feasibility of plasma sprayed Al2O3 coatings as diffusion barrier was studied. Al2O3 coatings were prepared by air plasma spraying (APS). The coatings were investigated in terms of their microstructure, bonding to CFC substrates and thermal stability. The results showed that Al2O3 could be well deposited onto CFC substrates. The coatings had a good bonding and thermal shock behavior at 1060°C. At higher temperature of 1270°C, crack network formed within the coating, showing that the plasma sprayed Al2O3 coatings are limited regarding to their application temperatures as diffusion barrier on CFC components.

  12. [Implants with plasma spray coatings of hydroxyapatite: an experimental study in alveolar bone].

    PubMed

    Denissen, H W; de Nieuport, H M; Maltha, J C; Kalk, W; van den Hooff, A

    1989-07-01

    Sintered hydroxyapatite ceramic can be coated to a titanium core by means of a high temperature plasma spray procedure. The biological response of alveolar bone to an implant with such a coating of hydroxyapatite was evaluated in an animal experimental study. The results indicated that the plasma spray coating gave a very strong and direct bonding to cortical alveolar bone. The shear strength between bone and ceramic was greater than the shear strength between ceramic and titanium. From a radiological, macroscopic and microscopic point of view the conclusion could be drawn that the biological properties of a plasma spray coating of hydroxyapatite are the same as the properties of bulk hydroxyapatite ceramic. The outermost layer of the hydroxyapatite coating appeared to be unstable under the experimental conditions. PMID:2561680

  13. Oxidation control in plasma spraying NiCrCoAlY coating

    NASA Astrophysics Data System (ADS)

    Wei, Qi; Yin, Zhiyong; Li, Hui

    2012-04-01

    Atmospheric plasma spraying is usually accompanied by oxidation reactions, which result in the formation of oxides in the coatings. The presence of oxides in metallic coatings is usually undesirable because they cause the coating properties to deteriorate. This study highlights how the high temperature oxidation resistance of plasma sprayed NiCrCoAlY coating is influenced by both the oxidation behavior of NiCrCoAlY particles and by the shrouding gas during the spray process. It is shown that two different oxidation mechanisms are involved in the in-flight oxidation. One is diffusion oxidation, and the other is convective oxidation. The convective oxidation of NiCrCoAlY particles is the dominating oxidation mechanism when the plasma jet is at a distance of 55 mm from the torch nozzle exit; while diffusion oxidation was found to be the dominant mechanism when the spray distance is greater than 55 mm. Oxidation mainly occurs during in-flight and after impact on the substrate. In-flight oxidation is the dominant mechanism for NiCrCoAlY particles in plasma spray. Adding inert-gas shrouding is an effective method for decreasing the oxide content of the NiCrCoAlY coating, which significantly increases the coating's oxidation resistance.

  14. Role of Lamellae Morphology on the Microstructural Development and Mechanical Properties of Small-Particle Plasma-Sprayed Alumina

    E-print Network

    Trice, Rodney W.

    -Particle Plasma-Sprayed Alumina Rodney W. Trice* and K. T. Faber* Department of Materials Science and Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208 The influence of spray parameters on the microstructure and flexural strength of plasma

  15. In Situ Observation of Crack Behavior in Compressively Loaded Plasma-Sprayed 7-wt%-Yttria-Stabilized Zirconia

    E-print Network

    Trice, Rodney W.

    -thermal-conductivity coatings afford higher, more efficient engine operating temperatures. The plasma- spraying techniqueIn Situ Observation of Crack Behavior in Compressively Loaded Plasma-Sprayed 7-wt%-Yttria-Stabilized Zirconia Jonathan P. Levin, Graeme R. Dickinson,* and Rodney W. Trice* School of Materials Engineering

  16. Technical note - Plasma-sprayed ceramic thermal barrier coatings for smooth intermetallic alloys

    NASA Technical Reports Server (NTRS)

    Miller, R. A.; Doychak, J.

    1992-01-01

    A new approach for plasma spray deposition of ceramic thermal barrier coatings directly to smooth substrates is described. Ceramic thermal barrier coatings were directly applied to substrates that had been coated with low-pressure plasma sprayed NiCrAlY bond coats and then centerless ground to simulate a smooth oxidation-resistant substrate. As the high-temperature oxidation behavior of NiAl+Zr is superior to that of MCrALY alloy, the bond coat is not required for oxidation resistance.

  17. Plasma-Sprayed Ceramic Coatings for Barrier Applications Against Molten Uranium Corrosion

    NASA Astrophysics Data System (ADS)

    Ananthapadmanabhan, P. V.; Chakravarthy, Y.; Chaturvedi, Vandana; Thiyagarajan, T. K.; Pragatheeswaran, A.

    2015-07-01

    Ceramic coatings are applied on engineering components for protecting them from large thermal load and hot corrosion. Choices of coating material for protection against hot corrosion by uranium are few, because of its high reactivity. Yttrium oxide has a high melting temperature and is inert towards uranium. Therefore, yttrium oxide coatings are effective as a barrier against hot corrosion by uranium and its alloys. This paper gives a summary of the developmental work on plasma-sprayed yttria coatings for corrosion barrier applications against molten uranium. Results show that plasma-sprayed yttria coatings offer a long-term solution to hot corrosion problems.

  18. Deposition of Lanthanum Strontium Cobalt Ferrite (LSCF) Using Suspension Plasma Spraying for Oxygen Transport Membrane Applications

    NASA Astrophysics Data System (ADS)

    Fan, E. S. C.; Kesler, O.

    2015-08-01

    Suspension plasma spray deposition was utilized to fabricate dense lanthanum strontium cobalt ferrite oxygen separation membranes (OSMs) on porous metal substrates for mechanical support. The as-sprayed membranes had negligible and/or reversible material decomposition. At the longer stand-off distance (80 mm), smooth and dense membranes could be manufactured using a plasma with power below approximately 81 kW. Moreover, a membrane of 55 ?m was observed to have very low gas leakage rates desirable for OSM applications. This thickness could potentially be decreased further to improve oxygen diffusion by using metal substrates with finer surface pores.

  19. Isothermal and cyclic oxidation of an air plasma-sprayed thermal barrier coating system

    SciTech Connect

    Haynes, J.A.; Ferber, M.K.; Porter, W.D.; Rigney, E.D.

    1996-08-01

    Thermogravimetric methods for evaluating bond coat oxidation in plasma-sprayed thermal barrier coating (TBC) systems were assessed by high-temperature testing of TBC systems with air plasma-sprayed (APS) Ni-22Cr-10Al-1Y bond coatings and yttria-stabilized zirconia top coatings. High-mass thermogravimetric analysis (at 1150{sup degrees}C) was used to measure bond coat oxidation kinetics. Furnace cycling was used to evaluate APS TBC durability. This paper describes the experimental methods and relative oxidation kinetics of the various specimen types. Characterization of the APS TBCs and their reaction products is discussed.

  20. Effect of plasma spray parameters on porosity of fly ash deposited coatings

    NASA Astrophysics Data System (ADS)

    Muhammad, M. M.; Jalar, A.; Shamsudin, R.; Isa, M. C.

    2014-09-01

    This paper presents on a study of atmospheric plasma spray parameters using fly ash as a feedstock material to spray onto the mild steel substrates. The experiments were carried out using two level fractional factorial design with four variables namely the primary and carrier gas pressures, powder feed rate and plasma power. The evaluation of response was performed on porosity by using image analysis. The results obtained show that primary gas pressure, powder feed rate and interaction primary gas pressure and carrier gas pressure are most significant factors in affecting the porosity of fly ash deposited coatings.

  1. Development of a plasma sprayed ceramic gas path seal for high pressure turbine application

    NASA Technical Reports Server (NTRS)

    Shiembob, L. T.

    1978-01-01

    Development of the plasma sprayed graded, layered ZRO2/CoCrAlY seal system for gas turbine engine blade tip seal applications up to 1589 K (2400 F) surface temperature was continued. The effect of changing ZRO2/CoCrAlY ratios in the intermediate layers on thermal stresses was evaluated analytically with the goal of identifying the materials combinations which would minimize thermal stresses in the seal system. Three methods of inducing compressive residual stresses in the sprayed seal materials to offset tensile thermal stresses were analyzed. The most promising method, thermal prestraining, was selected based upon potential, feasibility and complexity considerations. The plasma spray equipment was modified to heat, control and monitor the substrate temperature during spraying. Specimens were fabricated and experimentally evaluated to: (1) substantiate the capability of the thermal prestrain method to develop compressive residual stresses in the sprayed structure and (2) define the effect of spraying on a heated substate on abradability, erosion and thermal shock characteristics of the seal system. Thermal stress analysis, including residual stresses and material properties variations, was performed and correlated with thermal shock test results. Seal system performance was assessed and recommendations for further development were made.

  2. Development of a plasma sprayed ceramic gas path seal for high pressure turbine applications

    NASA Technical Reports Server (NTRS)

    Shiembob, L. T.; Hyland, J. F.

    1979-01-01

    Development of the plasma sprayed graded, layered ZrO2/CoCrAlY seal system for gas turbine engine blade tip seal application up to 1589 K (2400 F) surface temperature was continued. Methods of improvement of the cyclic thermal shock resistance of the sprayed zirconia seal system were investigated. The most promising method, reduction of the ceramic thickness and metallic substrate stiffness were selected based upon potential and feasibility. Specimens were fabricated and experimentally evaluated to: (1) substantiate the capacity of the geometry changes to reduce operating stresses in the sprayed structure; and (2) define the abradability, erosion, thermal shock and physical property characteristic for the sprayed ceramic seal system. Thermal stress analysis was performed and correlated with thermal shock test results.

  3. Mechanical, in vitro antimicrobial, and biological properties of plasma-sprayed silver-doped hydroxyapatite coating.

    PubMed

    Roy, Mangal; Fielding, Gary A; Beyenal, Haluk; Bandyopadhyay, Amit; Bose, Susmita

    2012-03-01

    Implant-related infection is one of the key concerns in total joint hip arthroplasties. To reduce bacterial adhesion, we used silver (Ag)/silver oxide (Ag(2)O) doping in plasma sprayed hydroxyapatite (HA) coating on titanium substrate. HA powder was doped with 2.0, 4.0, and 6.0 wt % Ag, heat-treated at 800 °C and used for plasma spray coating using a 30 kW plasma spray system, equipped with supersonic nozzle. Application of supersonic plasma nozzle significantly reduced phase decomposition and amorphous phase formation in the HA coatings as evident by X-ray diffraction (XRD) study and Fourier transformed infrared spectroscopic (FTIR) analysis. Adhesive bond strength of more than 15 MPa ensured the mechanical integrity of the coatings. Resistance against bacterial adhesion of the coatings was determined by challenging them against Pseudomonas aeruginosa (PAO1). Live/dead staining of the adherent bacteria on the coating surfaces indicated a significant reduction in bacterial adhesion due to the presence of Ag. In vitro cell-material interactions and alkaline phosphatase (ALP) protein expressions were evaluated by culturing human fetal osteoblast cells (hFOB). Our results suggest that the plasma-sprayed HA coatings doped with an optimum amount of Ag can have excellent antimicrobial property without altering mechanical property of the Ag-doped HA coatings. PMID:22313742

  4. Plasma-sprayed, self-lubricating coatings for use from cryogenic temperatures to 870 deg C (1600 deg F)

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.

    1975-01-01

    A plasma-sprayed coating is described with good lubricating properties over a wide temperature range. The coating, designated NASA LUBE PS101, contains silver, nichrome, calcium fluoride, and an oxidation protective glass. Oscillating tests were conducted of self-aligning, plain cylindrical bearings, in which the bore was lined with 0.025 cm (0.010 in.) thick coatings of PS101; these were conducted at a radial load of 3.5 x 10 to the 7th power N/sq m (5000 psi) in nitrogen gas at -107 C (-160 F), in vacuum at room temperature, and in air from room temperature to 870 C (1600 F). Friction coefficients were less than 0.25 in all cases and wear rates were low. The coating is not brittle, and it has adequate oxidation resistance in air to at least 870 C.

  5. Modeling of Micro- and Nanoparticle Characteristics in DC Suspension Plasma Spray

    NASA Astrophysics Data System (ADS)

    Shao, Xue-ming; Zhang, Kai; Xiong, Hong-bing

    2015-02-01

    Suspension plasma spray is a promising technology for surface coatings. In this work, a comprehensive numerical model was developed to investigate the multiphase flow of suspension droplets and nanoparticles in direct-current (DC) plasma spraying. A three-dimensional computational model was developed to describe the plasma jet flow fields coupled with the axial injection of suspension droplets in which the zirconia micro- and nanoparticles were dispersed. The suspension droplets were tracked using Lagrangian coordinates, considering particle heating, melting, and evaporation. After evaporation of the solvent surrounding the particle, the nanoparticles were discharged into the plasma flow. In addition to the viscous force exerted by the flow on the micrometer-sized particles, the Brownian force and the Saffman lift force were taken into account. The effects of the noncontinuum on particle momentum transfer and evaporation on heat transfer were also considered. The numerical predictions of gas flow temperature were compared with experimental data and numerical data obtained with a different computational fluid dynamics code. The agreement was reasonable. The trajectories, velocity, and temperature of nanoparticles were calculated, and compared with those of microparticles. The results showed that the Brownian force plays a major role in acceleration and heating of nanoparticles. Compared with the conventional plasma spray process with micrometer-sized feedstock, the nanoparticles in suspension plasma spraying were found to have a wider spatial distribution and higher temperature. The effects of operating parameters, such as the power input to the plasma gas and plasma gas composition, on the gas velocity and temperature were investigated. The parameters that have a significant effect on the heat and momentum transfer to the particles injected in the plasma jet were identified.

  6. Synthesis and Preliminary Tests of Suspension Plasma Spraying of Fine Hydroxyapatite Powder

    NASA Astrophysics Data System (ADS)

    Jaworski, Roman; Pierlot, Christel; Pawlowski, Lech; Bigan, Muriel; Quivrin, Maxime

    2008-12-01

    The synthetic hydroxyapatite (HA, Ca10(PO4)6(OH)2) is a very useful biomaterial for numerous applications in medicine, such as e.g., fine powder for suspension plasma spraying. The powder was synthesized using aqueous solution of ammonium phosphate (H2(PO4)NH4) and calcium nitrate (Ca(NO3) · 4H2O) in the carefully controlled experiments. The synthesized fine powder was characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The powder was formulated into water and alcohol based suspension and used to carry out the initial tests of plasma spraying onto titanium substrate. The phase analysis of sprayed coating was made with the XRD.

  7. Plasma spraying of coatings of iron-base self-fluxing alloy powders

    SciTech Connect

    Borisov, Y.; Nechiporenko, A.; Martsevoy, E.

    1995-12-31

    The paper is dedicated to investigation of the possibility of using the method of air-gas plasma spraying (AGPS) to deposit coatings of iron-base self-fluxing alloy (IBSFA) powders. Mathematical modeling was used to study the effect of process parameters on heating and acceleration of the sprayed particles in a plasma jet. AGPS of the IBSFA powders is found to provide the maximum velocity of the particles equal to 150--200 m/s and the possible overheating above the melting temperature of 300--1,000 K. Investigated is microstructure of the coatings, their phase composition and some of the properties (bond strength, porosity, microhardness), as well as losses in alloying elements caused by oxidation of the particle material during spraying.

  8. The effect of processing parameters on plasma sprayed beryllium for fusion applications

    SciTech Connect

    Castro, R.G.; Stanek, P.W.; Jacobson, L.A.; Cowgill, D.F.; Snead, L.L.

    1993-10-01

    Plasma spraying is being investigated as a potential coating technique for applying thin (0.1--5mm) layers of beryllium on plasma facing surfaces of blanket modules in ITER and also as an in-situ repair technique for repairing eroded beryllium surfaces in high heat flux divertor regions. High density spray deposits (>98% of theoretical density) of beryllium will be required in order to maximize the thermal conductivity of the beryllium coatings. A preliminary investigation was done to determine the effect of various processing parameters (particle size, particle morphology, secondary gas additions and reduced chamber pressure) on the as-deposited density of beryllium. The deposits were made using spherical beryllium feedstock powder which was produced by centrifugal atomization at Los Alamos National Laboratory (LANL). Improvements in the as-deposited densities and deposit efficiencies of the beryllium spray deposits will be discussed along with the corresponding thermal conductivity and outgassing behavior of these deposits.

  9. A Novel Plasma-Sprayed Nanostructured Coating with Agglomerated-Unsintered Feedstock

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Zhao, Yan; Yang, Deming; Gao, Jianyi

    2015-11-01

    In this article, an unusual agglomerated powder of Y2O3-stabilized ZrO2 (YSZ) that did not undergo calcination was introduced as a feedstock for thermal spray deposition using internal injection atmospheric plasma spray (APS) and the very-low-pressure plasma spray (VLPPS) methods at an ambient pressure of 100-150 Pa. The results show that the microstructure of the coating is influenced not only by the spray parameters (such as arc gas composition, ambient pressure, and arc current) but also by the manufacture process of the agglomerates particularly the sintering process. The microstructure of the coating exhibited a bimodal structure if the APS method was used; in this case, the microstructure resembles that of other nanostructured coatings using regular agglomerated-sintered feedstock. A coating having a novel fully nano-equiaxed structure with a microporosity of 10-15% was first successfully deposited using VLPPS with 20Ar-30He SLPM plasma gas flows at a current of 500 A. The experimental results suggest that the nano-scale equiaxed structure in the coating is directly formed from original nanoparticles that had undergone melting, while inside the nozzle they were subsequently solidified on the substrate. The VLPPS method, which offers some unique advantages over the conventional plasma spray process, is generic in nature and can potentially be used to deposit a wide variety of ceramic coatings for diverse applications. The thermal conductivity values of the fully nanostructured and bimodal structured coatings were measured, and the microstructures of the coating both in the as-sprayed state and after heat treatment for 10 h at 1300 °C were investigated.

  10. Simulation of stresses and delamination in a plasma-sprayed thermal barrier system upon thermal cycling

    E-print Network

    Hutchinson, John W.

    resistance, a thermal barrier coating (TBC) that imparts the thermal insulation and a thermally-grown oxideSimulation of stresses and delamination in a plasma-sprayed thermal barrier system upon thermal, Cambridge, MA 02138, USA Received 21 February 2002; received in revised form 14 June 2002 Abstract A thermal

  11. JOURNAL OF MATERIALS SCIENCE 39 (2004) 4171 4178 Air-plasma spraying colloidal solutions

    E-print Network

    Trice, Rodney W.

    2004-01-01

    -Al2O3, which was comprised of spherical powders that had partially sintered. However, lamellae were. One of the disadvantages of the conventional plasma spray process is that powders greater than about of nanosized ceramic powders ZUN CHEN, RODNEY W. TRICE School of Materials Engineering, Purdue University E

  12. A sputtered zirconia primer for improved thermal shock resistance of plasma sprayed ceramic turbine seals

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Sovey, J.; Allen, G. P.

    1981-01-01

    The development of plasma-sprayed yttria stabilized zirconia (YSZ) ceramic turbine blade tip seal components is discussed. The YSZ layers are quite thick (0.040 to 0.090 in.). The service potential of seal components with such thick ceramic layers is cyclic thermal shock limited. The most usual failure mode is ceramic layer delamination at or very near the interface between the plasma sprayed YSZ layer and the NiCrAlY bondcoat. Deposition of a thin RF sputtered YSZ primer to the bondcoat prior to deposition of the thick plasma sprayed YSZ layer was found to reduce laminar cracking in cyclic thermal shock testing. The cyclic thermal shock life of one ceramic seal design was increased by a factor of 5 to 6 when the sputtered YSZ primer was incorporated. A model based on thermal response of plasma sprayed YSZ particles impinging on the bondcoat surface with and without the sputtered YSZ primer provides a basis for understanding the function of the primer.

  13. Fatigue testing of plasma-sprayed thermal barrier coatings, volume 2

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Nagy, A.; Popelar, C. F.

    1990-01-01

    A plasma sprayed thermal barrier coating for diesel engines were fatigue tested. Candidate thermal barrier coating materials were fatigue screened and a data base was generated for the selected candidate material. Specimen configurations are given for the bend fatigue tests, along with test setup, specimen preparation, test matrix and procedure, and data analysis.

  14. Numerical simulation of a negative ion plasma expansion into vacuum

    SciTech Connect

    Garcia, L.G.; Goedert, J.; Figua, H.; Fijalkow, E.; Feix, M.R.

    1997-12-01

    The expansion into vacuum of a one-dimensional, collisionless, negative ion plasma is investigated in the framework of the Vlasov{endash}Poisson model. The basic equations are written in a {open_quotes}new time space{close_quotes} by use of a rescaling transformation and, subsequently, solved numerically through a fully Eulerian code. As in the case of a two species plasma, the time-asymptotic regime is found to be self-similar with the temperature decreasing as t{sup {minus}2}. The numerical results exhibit clearly the physically expected effects produced by the variation of parameters such as initial temperatures, mass ratios and charge of the negative ions. {copyright} {ital 1997 American Institute of Physics.}

  15. Development of a plasma sprayed ceramic gas path seal for high pressure turbine applications

    NASA Technical Reports Server (NTRS)

    Shiembob, L. T.

    1977-01-01

    The plasma sprayed graded layered yittria stabilized zirconia (ZrO2)/metal(CoCrAlY) seal system for gas turbine blade tip applications up to 1589 K (2400 F) seal temperatures was studied. Abradability, erosion, and thermal fatigue characteristics of the graded layered system were evaluated by rig tests. Satisfactory abradability and erosion resistance was demonstrated. Encouraging thermal fatigue tolerance was shown. Initial properties for the plasma sprayed materials in the graded, layered seal system was obtained, and thermal stress analyses were performed. Sprayed residual stresses were determined. Thermal stability of the sprayed layer materials was evaluated at estimated maximum operating temperatures in each layer. Anisotropic behavior in the layer thickness direction was demonstrated by all layers. Residual stresses and thermal stability effects were not included in the analyses. Analytical results correlated reasonably well with results of the thermal fatigue tests. Analytical application of the seal system to a typical gas turbine engine application predicted performance similar to rig specimen thermal fatigue performance. A model for predicting crack propagation in the sprayed ZrO2/CoCrAlY seal system was proposed, and recommendations for improving thermal fatigue resistance were made. Seal system layer thicknesses were analytically optimized to minimize thermal stresses in the abradability specimen during thermal fatigue testing. Rig tests on the optimized seal configuration demonstrated some improvement in thermal fatigue characteristics.

  16. Suspension Plasma Spraying of Sub-micron Silicon Carbide Composite Coatings

    NASA Astrophysics Data System (ADS)

    Mubarok, F.; Espallargas, N.

    2015-06-01

    Thermal spraying of silicon carbide (SiC) material is a challenging task since SiC tends to decompose during atmospheric spraying process. The addition of metal or ceramic binders is necessary to facilitate the bonding of SiC particles, allowing SiC composite coating to be deposited. In the conventional procedures, the binders are added through mechanical mixing of powder constituents, making it difficult to achieve homogeneous distribution. In the new procedure proposed in this work, the binder is delivered as a nano-film of the surface of the individual SiC particles through co-precipitation treatment. Suspension plasma spray (SPS) coating technique has been used with the aim at avoiding the decomposition of SiC typically expected with atmospheric techniques, such as atmospheric plasma spray. The deposited SiC coatings by SPS showed identical SiC phase peak as identified in the suspension feedstock, indicating that the nano-film binder was able to protect SiC particles from decomposition. Further analysis by XPS revealed that SiC particles underwent some minor oxidation. Unfortunately, all the SiC coatings exhibited poor mechanical performance due to low cohesive strength, high porosity, and powdery structure making the coatings vulnerable to grain pull-out. This was due to the absence of sintering process during the spraying process contributing to the low performance of SiC SPS coatings.

  17. Improvement of wear resistance of plasma-sprayed molybdenum blend coatings

    NASA Astrophysics Data System (ADS)

    Ahn, Jeehoon; Hwang, Byoungchul; Lee, Sunghak

    2005-06-01

    The wear resistance of plasma sprayed molybdenum blend coatings applicable to synchronizer rings or piston rings was investigated in this study. Four spray powders, one of which was pure molybdenum and the others blended powders of bronze and aluminum-silicon alloy powders mixed with molybdenum powders, were sprayed on a low-carbon steel substrate by atmospheric plasma spraying. Microstructural analysis of the coatings showed that the phases formed during spraying were relatively homogeneously distributed in the molybdenum matrix. The wear test results revealed that the wear rate of all the coatings increased with increasing wear load and that the blended coatings exhibited better wear resistance than the pure molybdenum coating, although the hardness was lower. In the pure molybdenum coatings, splats were readily fractured, or cracks were initiated between splats under high wear loads, thereby leading to the decrease in wear resistance. On the other hand, the molybdenum coating blended with bronze and aluminum-silicon alloy powders exhibited excellent wear resistance because hard phases such as CuAl2 and Cu9Al4 formed inside the coating.

  18. Optimization of Atmospheric Plasma Spray Process Parameters using a Design of Experiment for Alloy 625 coatings

    NASA Astrophysics Data System (ADS)

    Azarmi, F.; Coyle, T. W.; Mostaghimi, J.

    2008-03-01

    Alloy 625 is a Ni-based superalloy which is often a good solution to surface engineering problems involving high temperature corrosion, wear, and thermal degradation. Coatings of alloy 625 can be efficiently deposited by thermal spray methods such as Air Plasma Spraying. As in all thermal spray processes, the final properties of the coatings are determined by the spraying parameters. In the present study, a D-optimal experimental design was used to characterize the effects of the APS process parameters on in-flight particle temperature and velocity, and on the oxide content and porosity in the coatings. These results were used to create an empirical model to predict the optimum deposition conditions. A second set of coatings was then deposited to test the model predictions. The optimum spraying conditions produced a coating with less than 4% oxide and less than 2.5% porosity. The process parameters which exhibited the most important effects directly on the oxide content in the coating were particle size, spray distance, and Ar flow rate. The parameters with the largest effects directly on porosity were spray distance, particle size, and current. The particle size, current, and Ar flow rate have an influence on particle velocity and temperature but spray distance did not have a significant effect on either of those characteristics. Thus, knowledge of the in-flight particle characteristics alone was not sufficient to control the final microstructure. The oxidation index and the melting index incorporate all the parameters that were found to be significant in the statistical analyses and correlate well with the measured oxide content and porosity in the coatings.

  19. Compositional Development as a Function of Spray Distance in Unshrouded/Shrouded Plasma-Sprayed Cr3C2-NiCr Coatings

    NASA Astrophysics Data System (ADS)

    Matthews, S.

    2015-02-01

    Thermal spraying of Cr3C2-NiCr composites generates varying degrees of carbide dissolution into the Ni binder. During high-temperature exposure, the carbide dissolution zones precipitate high concentrations of small carbides which develop into finely structured networks. This raises the possibility of producing unique tailored carbide composite structures through the generation of controlled carbide dissolution and appropriate heat treatment. The first step in this process is to produce a supersaturated Ni-Cr-C solid solution from which the carbide phase could be precipitated. In a previous work, a broad range of plasma parameters were trialed to assess their effect on the degree of carbide dissolution at a fixed spray distance of 100 mm. The current two-part work builds on the most promising plasma parameters from those trials. Part 2 of this article series investigated the effect of spray distance on the compositional development in Cr3C2-NiCr coatings during high-energy plasma spraying. The coating compositions were analyzed in detail and quantified through Rietveld fitting of the coating XRD patterns. Coating microstructural features were correlated with the observed variations in composition. The effect of the spray parameters and spray distance on the equilibrium coating compositions is discussed.

  20. Absorption and Decomposition of CO2 by Active Ferrites Prepared by Atmospheric Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Li, Shaowei; He, Zhida; Zheng, Yanjun; Chen, Changfeng

    2015-10-01

    Active ferrites, which play an important role in the catalytic decomposition of CO2, have been fabricated by atmospheric plasma spraying to incorporate FeO and anoxic iron oxide [Fe3O4-? (0 < ? < 1)]. The complexity of phase composition, especially the presence of FeO, gives the resulting powder a greater ability to decompose CO2 when compared to hydrogen-reduced Fe3O4 or Fe2O3 particles. Spraying distance is found to play an important role in modulating the decomposition ability of the powders, while elevated temperatures can also enhance the catalytic decomposition of CO2.

  1. An electron microscopy study of the effect of Ce on plasma sprayed bronze coatings

    NASA Astrophysics Data System (ADS)

    Wensheng, Li; Wang, S. C.; Ma, Chao; Zhiping, Wang

    2012-07-01

    The Cu-Al eutectoid alloy is an excellent material for mould due to its superior low friction. The conventional sand casting technique, however, is not feasible to fabricate high Al bronze because of high hardness and brittleness. Plasma arc spray has been used to produce high Al/Fe bronze coatings for mould. The inherent impurities such as H, O, N, S during the spray, however, may affect the coating's mechanical strength. One approach is to utilise the active rare earth Ce to clean up these impurities. The study is to investigate the effect of Ce on the microstructure, which has few reported in the literature.

  2. Comparison of Physical-chemical and Mechanical Properties of Chlorapatite and Hydroxyapatite Plasma Sprayed Coatings

    PubMed Central

    Demnati, Imane; Grossin, David; Marsan, Olivier; Bertrand, Ghislaine; Collonges, Gérard; Combes, Christèle; Parco, Maria; Braceras, Inigo; Alexis, Joel; Balcaen, Yannick; Rey, Christian

    2015-01-01

    Chlorapatite can be considered a potential biomaterial for orthopaedic applications. Its use as plasma-sprayed coating could be of interest considering its thermal properties and particularly its ability to melt without decomposition unlike hydroxyapatite. Chlorapatite (ClA) was synthesized by a high-temperature ion exchange reaction starting from commercial stoichiometric hydroxyapatites (HA). The ClA powder showed similar characteristics as the original industrial HA powder, and was obtained in the monoclinic form. The HA and ClA powders were plasma-sprayed using a low-energy plasma spraying system with identical processing parameters. The coatings were characterized by physical-chemical methods, i.e. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy, including distribution mapping of the main phases detected such as amorphous calcium phosphate (ACP), oxyapatite (OA), and HA or ClA. The unexpected formation of oxyapatite in ClA coatings was assigned to a side reaction with contaminating oxygenated species (O2, H2O). ClA coatings exhibited characteristics different from HA, showing a lower content of oxyapatite and amorphous phase. Although their adhesion strength was found to be lower than that of HA coatings, their application could be an interesting alternative, offering, in particular, a larger range of spraying conditions without formation of massive impurities. PMID:25893015

  3. The durability of adhesively bonded titanium: Performance of plasma-sprayed polymeric coating pretreatments

    SciTech Connect

    Jackson, F.; Dillard, J.; Dillard, D.

    1996-12-31

    The role of a surface treatment of an adherend is to promote highly stable adhesive-adherend interactions; high stability is accomplished by making the chemistry of the adherend and adhesive compatible. The common surface preparations used to enhance durability include grit blasting, chromic acid or sodium hydroxide anodization, and other chemical treatments for titanium. As interest has grown in the development of environmentally benign surface treatments, other methods have been explored. In this study, plasma-sprayed polymeric materials have been evaluated as a surface coating pretreatment for adhesively bonding titanium alloy. Polyimide and polyether powders were plasm-sprayed onto grit-blasted titanium-6Al-4V. The alloy was adhesively bonded using a high performance polyimide adhesive. The coating was characterized using surface sensitive analytical measurements. The durability performance of the plasma-sprayed adherends was compared to the performance for chromic acid anodized titanium. Among the plasma-sprayed coatings, a LaRC-TPI polyimide-based coating exhibited performance comparable to that for chromic acid anodized specimens.

  4. Carbon Nanotubes Reinforced Al-11 wt% Si Alloy via Plasma Spray

    NASA Astrophysics Data System (ADS)

    Moosa, Ahmed A.; Mohamed, Mohamed I.; Ismael, Mustafa K.

    2015-10-01

    In this work, multi-walled carbon nanotubes (MWCNTs) with different portions (0.5, l, 2, 4) wt% were added to a gas atomized Al-ll wt% Si powder. The Al-ll wt% /MWCNTS nanocomposite powder was examined by FESEM, Raman spectroscopy, X-ray diffraction (XRD). Air plasma spraying (APS) was used to spray Al-ll wt% Si/MwCNTs nanocomposite powder on aluminum alloy AA6082-T6 substrates. Al-ll wt% Si/MWCNTs nanocomposite coating layer was examined using FESEM/EDS, Raman spectroscopy, XRD and HRTEM. SEM/EDS showed that Al4C3 is formed at the interface e between the coating layer and the substrate in Al-ll wt% Si/4 wt% MWCNTs plasma spray coating. The adhesion test showed good adhesion in the ranges 5-l5 MPa between the coating layer and the substrate. Microhardness test of the air plasma sprayed (APS) Al-ll wt% Si/MWNTs nanocomposite layer is increased with the MWCNTs wt%.

  5. What Do We Know, What are the Current Limitations of Suspension Plasma Spraying?

    NASA Astrophysics Data System (ADS)

    Fauchais, P.; Vardelle, M.; Vardelle, A.; Goutier, S.

    2015-10-01

    Nano-structured coatings should exhibit better properties than micro-structured coatings because of a high volume fraction of internal interfaces. Since the mid-nineties a large body of works have been devoted to suspension and solution plasma spraying for the deposition of finely and even nanometer-structured coatings. The aim of this paper is to take stock of our present knowledge in the field of suspension plasma spraying that is, at the moment, essentially used for oxide ceramic coatings. It will first tackle the injection of the suspension in the plasma jet and the behavior of nano or sub-micro-meter particles processed in the plasma jet core involving the liquid breakup and vaporization that releases the solid particles from the solvent droplets. It will, then, deal with the plasma torches and liquid feeding systems available to suspension spraying. It will finally discuss the key characteristics of suspensions (solvent, dispersant, and particle morphologies), designing of coating microstructure, and potential industrial applications, with the developments requested to cope with these applications.

  6. Mechanical Properties of Yttria- and Ceria-Stabilized Zirconia Coatings Obtained by Suspension Plasma Spraying

    NASA Astrophysics Data System (ADS)

    ?atka, Leszek; Cattini, Andrea; Chicot, Didier; Paw?owski, Lech; Kozerski, Stefan; Petit, Fabrice; Denoirjean, Alain

    2013-03-01

    Plasma generated by the SG-100 torch was applied to spray suspension formulated with the use of ZrO2 + 8 wt.% Y2O3 (8YSZ) and ZrO2 + 24 wt.% CeO2 + 2.5 wt.% Y2O3 (24CeYSZ) as solid phases. The suspensions were formulated with the use of 20 wt.% solid phase, 40 wt.% water, and 40 wt.% ethanol. The plasma spray parameters were optimized by keeping constant: (a) the electric power of 40 kW and (b) the working gas compositions of 45 slpm for Ar and 5 slpm for H2. On the other hand, the spray distance was varied from 40 to 60 mm and the torch linear speed was varied from 300 to 500 mm/s. The coatings were sprayed onto stainless steel substrates, and their thicknesses were in the range from 70 to 110 ?m. The coating microstructures were analyzed with a scanning electron microscope. Mechanical properties were tested with the different methods including the indentation and scratch tests. The indentation test, carried out with various loads ranging from 100 to 10,000 mN, enabled to determine elastic modulus and Martens microhardness. Young's modulus of the coatings was in the range of 71-107 GPa for 8YSZ and 68-130 GPa for 24CeYSZ coatings. The scratch test enabled the authors to find the scratch macrohardness.

  7. The effects of plasma spray parameters and atmosphere on the properties and microstructure of WC-Co coatings

    NASA Astrophysics Data System (ADS)

    Ghosh, D.; Lamy, D.; Sopkow, T.; Smuga-Otto, I.

    Wear- and corrosion-resistant coatings deposited by plasma spray process are increasingly used in severe environments in resource industries, such as oil and gas, oil sands, mining, pulp and paper, etc. While there is a large volume of literature in the area of plasma spray coatings, comparatively few papers deal with the co-relation between coating properties and microstructure as a function of plasma spray processing parameters. In this study, the effect of some plasma spray processing variables and atmosphere (air or inert gas) on the microstructure and the properties of WC-Co coatings were studied. The properties of the coatings measured include: microhardness, porosity by image analysis, wear resistance by dry sand/rubber wheel abrasion test (ASTM G 65-91) and corrosion properties by AC impedance technique. Phase analyses of the coatings were also performed by X-ray diffraction. From the above, optimized coatings were developed for oil and gas industry applications.

  8. Plasma-Etching of Spray-Coated Single-Walled Carbon Nanotube Films for Biointerfaces

    NASA Astrophysics Data System (ADS)

    Kim, Joon Hyub; Lee, Jun-Yong; Min, Nam Ki

    2012-08-01

    We present an effective method for the batch fabrication of miniaturized single-walled carbon nanotube (SWCNT) film electrodes using oxygen plasma etching. We adopted the approach of spray-coating for good adhesion of the SWCNT film onto a pre-patterned Pt support and used O2 plasma patterning of the coated films to realize efficient biointerfaces between SWCNT surfaces and biomolecules. By these approaches, the SWCNT film can be easily integrated into miniaturized electrode systems. To demonstrate the effectiveness of plasma-etched SWCNT film electrodes as biointerfaces, Legionella antibody was selected as analysis model owing to its considerable importance to electrochemical biosensors and was detected using plasma-etched SWCNT film electrodes and a 3,3',5,5'-tetramethyl-benzidine dihydrochloride/horseradish peroxidase (TMB/HRP) catalytic system. The response currents increased with increasing concentration of Legionella antibody. This result indicates that antibodies were effectively immobilized on plasma-etched and activated SWCNT surfaces.

  9. Synthesis of NiCr2O4 spinel coatings with high emissivity by plasma spraying

    NASA Astrophysics Data System (ADS)

    Zhu, Zhen-Qi; Cheng, Xu-Dong; Ye, Wei-Ping; Min, Jie

    2012-03-01

    Air plasma spraying (APS) was used to produce high emissivity coatings with a NiCr2O4 spinel structure. The relationship between the emissivity and the crystal structure was investigated. X-ray diffraction (XRD) analyses show that NiCr2O4 spinel has been fabricated with the space group Fd3 m. Scanning electron microscope (SEM) photographs show that the coating consists of a laminated structure with homogeneous grains and high porosity because of the unique feature of plasma spraying. The emissivity measurement and Fourier transformation infrared radiation (FT-IR) spectra show that NiCr2O4 has a high emissivity of about 0.91 because of its special spinel structure. APS is a suitable method to produce high emissivity coatings.

  10. Self-lubricating plasma-sprayed composites for sliding contact bearings to 900 C

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.

    1974-01-01

    Plasma-sprayed composites which have good oxidation-resistance and self-lubricating characteristics to 900 C were developed. The composites are a Nichrome matrix containing dispersed glass for oxidation protection and calcium fluoride for lubrication. They are applied to bearing surfaces in layers about 0.050 cm thick by plasma-spraying; the layers are then machined to a thickness of 0.025 cm. Oscillating bearing tests were performed in air to 900 C at unit radial loads up to 3.5 times 10 to the 7th power Newtons per square meter (5000 psi) and a thrust load of 1960 Newtons (440 lb). Bearings with a composite liner in the bore were in good condition after over 50,000 oscillating cycles accumulated during repeated bearing temperature cycles between 25 and 900 C.

  11. COMPARISON OF THERMAL PROPERTIES OF THERMAL BARRIER COATING DEPOSITED ON IN738 USING STANDARD AIR PLASMA SPRAY WITH 100HE PLASMA SPRAY SYSTEM

    SciTech Connect

    Uppu, N.; Mensah, P.F.; Ofori, D.

    2006-07-01

    A typical blade material is made of Nickel super alloy and can bear temperatures up to 950°C. But the operating temperature of a gas turbine is above the melting point of super alloy nearly at 1500°C. This could lead to hot corrosions, high temperature oxidation, creep, thermal fatigue may takes place on the blade material. Though the turbine has an internal cooling system, the cooling is not adequate to reduce the temperature of the blade substrate. Therefore to protect the blade material as well as increase the efficiency of the turbine, thermal barrier coatings (TBCs) must be used. A TBC coating of 250 ?m thick can reduce the temperature by up to 200° C. Air Plasma Spray Process (APS) and High Enthalpy Plasma Spray Process (100HE) were the processes used for coating the blades with the TBCs. Because thermal conductivity increases with increase in temperature, it is desired that these processes yield very low thermal conductivities at high temperatures in order not to damage the blade. An experiment was carried out using Flash line 5000 apparatus to compare the thermal conductivity of both processes.The apparatus could also be used to determine the thermal diffusivity and specific heat of the TBCs. 75 to 2800 K was the temperature range used in the experimentation. It was found out that though 100HE has high deposition efficiency, the thermal conductivity increases with increase in temperatures whiles APS yielded low thermal conductivities.

  12. Monitoring Delamination of Plasma-Sprayed Thermal Barrier Coatings by Reflectance-Enhanced Luminescence

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Bencic, Timothy J.

    2006-01-01

    Highly scattering plasma-sprayed thermal barrier coatings (TBCs) present a challenge for optical diagnostic methods to monitor TBC delamination because scattering attenuates light transmitted through the TBC and usually degrades contrast between attached and delaminated regions of the TBC. This paper presents a new approach where reflectance-enhanced luminescence from a luminescent sublayer incorporated along the bottom of the TBC is used to identify regions of TBC delamination. Because of the higher survival rate of luminescence reflecting off the back surface of a delaminated TBC, the strong scattering exhibited by plasma-sprayed TBCs actually accentuates contrast between attached and delaminated regions by making it more likely that multiple reflections of luminescence off the back surface occur before exiting the top surface of the TBC. A freestanding coating containing sections designed to model an attached or delaminated TBC was prepared by depositing a luminescent Eu-doped or Er-doped yttria-stabilized zirconia (YSZ) luminescent layer below a plasma-sprayed undoped YSZ layer and utilizing a NiCr backing layer to represent an attached substrate. For specimens with a Eu-doped YSZ luminescent sublayer, luminescence intensity maps showed excellent contrast between unbacked and NiCr-backed sections even at a plasma-sprayed overlayer thickness of 300 m. Discernable contrast between unbacked and NiCr-backed sections was not observed for specimens with a Er-doped YSZ luminescent sublayer because luminescence from Er impurities in the undoped YSZ layer overwhelmed luminescence originating form the Er-doped YSZ sublayer.

  13. Tailored plasma sprayed MCrAlY coatings for aircraft gas turbine applications

    NASA Technical Reports Server (NTRS)

    Pennisi, F. J.; Gupta, D. K.

    1981-01-01

    Eighteen plasma sprayed coating systems, nine based on the NiCoCrAly chemistry and nine based on the CoCrAly composition, were evaluated to identify coating systems which provide equivalent or superior life to that shown by the electron beam physical vapor deposited NiCoCrAly and CoCrAly coatings respectively. NiCoCrAly type coatings were examined on a single crystal alloy and the CoCrAly based coatings were optimized on the B1900+ Hf alloy. Cyclic burner rig oxidation and hot corrosion and tensile ductility tests used to evaluate the various coating candidates. For the single crystal alloy, a low pressure chamber plasma sprayed NiCoCrAly + Si coating exhibited a 2x oxidation life improvement at 1394 K (2050 F) over the vapor deposited NiCoCrAly material while showing equivalent tensile ductility. A silicon modified low pressure chamber plasma sprayed CoCrAly coating was found to be more durable than the baseline vapor deposited CoCrAly coating on the B1900+ Hf alloy.

  14. The Solution Precursor Plasma Spray (SPPS) Process: A Review with Energy Considerations

    NASA Astrophysics Data System (ADS)

    Jordan, Eric H.; Jiang, Chen; Gell, Maurice

    2015-07-01

    Solution precursor plasma spray (SPPS) is a coating deposition process that uses conventional plasma spray equipment, and solution precursors, rather than ceramic or metal powders, as starting materials. Because the process is exposed to oxygen at high temperatures, nearly all coatings, to date, are oxide ceramics. In this review, both the advantages and the disadvantages of the SPPS process and some comparisons made to the suspension plasma spray (SPS) process will be discussed. The advantages of the SPPS process include rapid exploration of compositions and fabrication of advanced coatings with unique microstructural features. Examples presented span densities from porous thermal barrier coatings (TBCs) to dense TiO2 coatings. Two TBCs are in an advanced development stage: (1) a low thermal conductivity YSZ TBC and (2) a high-temperature yttrium aluminum garnet TBC. As for disadvantages, there are (1) the additional development work for each new precursor and (2) a lower standoff distance and deposition rate than the APS process, related to the evaporation of the solvent. The SPS process shares the same disadvantages. In developing new coatings, a number of factors should be considered and understood, which would help to shorten future development efforts. Future directions of the SPPS process will also be discussed.

  15. Void Formation and Spatial Distribution in Plasma Sprayed Nd-Fe-B Coatings

    NASA Astrophysics Data System (ADS)

    Gan, Jo Ann; Berndt, Christopher C.; Wong, Yat Choy; Wang, James

    2013-03-01

    Formation of voids is inevitable in plasma sprayed coatings and the role of voids on coating properties has long been established. In fact, the void content within coatings is adjusted by optimizing the process parameters to obtain coatings with desirable performance. Quantification of voids via image analysis allows determination of not only the void content within a coating, but also the spatial distribution of the voids. Void content in plasma sprayed neodymium iron boron (Nd-Fe-B) coatings was adjusted by changing the standoff distance, and was found to vary from 1.8 to 8.2%. Spatial distribution parameters, which include nearest neighbor distance ( d min), mean near neighbor distance ( d mean), and nearest neighbor angle (?n), were determined via the Dirichlet tessellation method. Coefficient of variation (COV) values of d min and d mean allow determination of inhomogeneity and degree of clustering of the voids within a coating. The ?n values reveal the anisotropic behavior of voids within plasma sprayed coatings. The influence of void content and its spatial distribution within the coatings on the microhardness and elastic modulus of coatings was determined.

  16. The Solution Precursor Plasma Spray (SPPS) Process: A Review with Energy Considerations

    NASA Astrophysics Data System (ADS)

    Jordan, Eric H.; Jiang, Chen; Gell, Maurice

    2015-10-01

    Solution precursor plasma spray (SPPS) is a coating deposition process that uses conventional plasma spray equipment, and solution precursors, rather than ceramic or metal powders, as starting materials. Because the process is exposed to oxygen at high temperatures, nearly all coatings, to date, are oxide ceramics. In this review, both the advantages and the disadvantages of the SPPS process and some comparisons made to the suspension plasma spray (SPS) process will be discussed. The advantages of the SPPS process include rapid exploration of compositions and fabrication of advanced coatings with unique microstructural features. Examples presented span densities from porous thermal barrier coatings (TBCs) to dense TiO2 coatings. Two TBCs are in an advanced development stage: (1) a low thermal conductivity YSZ TBC and (2) a high-temperature yttrium aluminum garnet TBC. As for disadvantages, there are (1) the additional development work for each new precursor and (2) a lower standoff distance and deposition rate than the APS process, related to the evaporation of the solvent. The SPS process shares the same disadvantages. In developing new coatings, a number of factors should be considered and understood, which would help to shorten future development efforts. Future directions of the SPPS process will also be discussed.

  17. Mechanical and Tribological Behavior of Ni(Al)-Reinforced Nanocomposite Plasma Spray Coatings

    NASA Astrophysics Data System (ADS)

    Movahedi, B.

    2014-02-01

    The mechanical and tribological behavior and microstructural evolutions of the Ni(Al)-reinforced nanocomposite plasma spray coatings were studied. At first, the feedstock Ni(Al)-15 wt.% (Al2O3-13% TiO2) nanocomposite powders were prepared using low-energy mechanical milling of the pure Ni and Al powders as well as Al2O3-13% TiO2 nanoparticle mixtures. The characteristics of the powder particles and the prepared coatings depending on their microstructures were examined in detail. The results showed that the feedstock powders after milling contained only ?-Ni solid solution with no trace of the intermetallic phase. However, under the air plasma spraying conditions, the NiAl intermetallic phase in the ?-Ni solid solution matrix appeared. The lack of nickel aluminide formation during low-energy ball milling is beneficial hence, the exothermic reaction can occur between Ni and Al during plasma spraying, improving the adhesive strength of the nanocomposite coatings. The results also indicated that the microhardness of the ?-Ni phase was 3.91 ± 0.23 GPa and the NiAl intermetallic phase had a mean microhardness of 5.69 ± 0.12 GPa. The high microhardness of the nanocomposite coatings must be due to the presence of the reinforcing nanoparticles. Due to the improvement in mechanical properties, the Ni(Al) nanocomposite coatings showed significant modifications in wear resistance with low frictional coefficient.

  18. On characterisation of wire-arc-plasma-sprayed Ni on alumina substrate

    SciTech Connect

    Laik, A.; Chakravarthy, D.P.; Kale, G.B. . E-mail: gbkale@apsara.barc.ernet.in

    2005-08-15

    A study was carried out on metal-ceramic bonding produced by the technique of wire-arc-plasma spraying of Ni on Al{sub 2}O{sub 3} substrate. The Ni layer and the Ni/Al{sub 2}O{sub 3} interface were characterised using optical and electro-optic techniques. The plasma-deposited Ni layer shows a uniform lamellar microstructure throughout the cross-section. The metal-ceramic interface was found to be well bonded with no pores, flaws or cracks in the as-sprayed condition. The optical metallography and concentration profiles established with the help of an electron probe microanalyser confirmed the absence of any intermediate phase at the interface. An annealing treatment at 1273 K for 24 h on the plasma-coated samples did not result in formation of any intermetallic compound or spinel at the Ni/Al{sub 2}O{sub 3} interface. This indicates that the oxygen picked up by Ni during the spraying operation is less than the threshold value required to form the spinel NiAl{sub 2}O{sub 4}.

  19. Copper-titanium diboride coatings obtained by plasma spraying reactive micropellets

    NASA Astrophysics Data System (ADS)

    Legoux, J. G.; Dallaire, S.

    1993-09-01

    Electrotribological applications require materials with both high electrical conductivity and wear resisance. For this purpose, a copper- base plasma sprayed coating containing titanium diboride particles was developed. The process for fabricating this CU- TiB2 coating consists of plasma spraying reactive powders that contain a Cu- Ti alloy and boron. The reaction between the copper alloy and boron proceeds in different steps going from solid- state diffusion of titanium and copper to the synthesis of TiB2 in a liquid below 1083 ‡C. Plasma sprayed copper coatings contain finer TiB2 crystals than Cu- TiB2 materials synthesized in a furnace at 1200 ‡C. Coatings with 25 vol% TiB2 have hardnesses that are comparable to Cu- Co- Be and Cu- Ni- Be alloys and to Cu- W and Cu- Mo alloys used in spot welding. Their low electrical resistivity of 52 ?? cm could be increased by lowering the oxygen content with coatings and controlling the formation of TiB2 clusters, the titanium content in solution in copper remaining low after the synthesis reaction.

  20. Columnar-Structured Mg-Al-Spinel Thermal Barrier Coatings (TBCs) by Suspension Plasma Spraying (SPS)

    NASA Astrophysics Data System (ADS)

    Schlegel, N.; Ebert, S.; Mauer, G.; Vaßen, R.

    2015-01-01

    The suspension plasma spraying (SPS) process has been developed to permit the feeding of sub-micrometer-sized powder into the plasma plume. In contrast to electron beam-physical vapor deposition and plasma spray-physical vapor deposition, SPS enables the cost-efficient deposition of columnar-structured coatings. Due to their strain tolerance, these coatings play an important role in the field of thermal barrier coatings (TBCs). In addition to the cost-efficient process, attention was turned to the TBC material. Nowadays, yttria partially stabilized zirconia (YSZ) is used as standard TBC material. However, its long-term application at temperatures higher than 1200 °C is problematic. At these high temperatures, phase transitions and sintering effects lead to the degradation of the TBC system. To overcome those deficits of YSZ, Mg-Al-spinel was chosen as TBC material. Even though it has a lower melting point (~2135 °C) and a higher thermal conductivity (~2.5 W/m/K) than YSZ, Mg-Al-spinel provides phase stability at high temperatures in contrast to YSZ. The Mg-Al-spinel deposition by SPS resulted in columnar-structured coatings, which have been tested for their thermal cycling lifetime. Furthermore, the influence of substrate cooling during the spraying process on thermal cycling behavior, phase composition, and stoichiometry of the Mg-Al-spinel has been investigated.

  1. A high-current pulsed cathodic vacuum arc plasma source

    NASA Astrophysics Data System (ADS)

    Oates, T. W. H.; Pigott, J.; Mckenzie, D. R.; Bilek, M. M. M.

    2003-11-01

    Cathodic vacuum arcs (CVAs) are well established as a method for producing metal plasmas for thin film deposition and as a source of metal ions. Fundamental differences exist between direct current (dc) and pulsed CVAs. We present here results of our investigations into the design and construction of a high-current center-triggered pulsed CVA. Power supply design based on electrolytic capacitors is discussed and optimized based on obtaining the most effective utilization of the cathode material. Anode configuration is also discussed with respect to the optimization of the electron collection capability. Type I and II cathode spots are observed and discussed with respect to cathode surface contamination. An unfiltered deposition rate of 1.7 nm per pulse, at a distance of 100 mm from the source, has been demonstrated. Instantaneous plasma densities in excess of 1×1019 m-3 are observed after magnetic filtering. Time averaged densities an order of magnitude greater than common dc arc densities have been demonstrated, limited by pulse repetition rate and filter efficiency.

  2. The evolution of ion charge states in cathodic vacuum arc plasmas: a review

    SciTech Connect

    Anders, Andre

    2011-12-18

    Cathodic vacuum arc plasmas are known to contain multiply charged ions. 20 years after “Pressure Ionization: its role in metal vapour vacuum arc plasmas and ion sources” appeared in vol. 1 of Plasma Sources Science and Technology, it is a great opportunity to re-visit the issue of pressure ionization, a non-ideal plasma effect, and put it in perspective to the many other factors that influence observable charge state distributions, such as the role of the cathode material, the path in the density-temperature phase diagram, the “noise” in vacuum arc plasma as described by a fractal model approach, the effects of external magnetic fields and charge exchange collisions with neutrals. A much more complex image of the vacuum arc plasma emerges putting decades of experimentation and modeling in perspective.

  3. Noise power spectra of inductively coupled plasma mass spectrometry using a cooled spray chamber

    NASA Astrophysics Data System (ADS)

    Pollmann, D.; Pilger, C.; Hergenröder, R.; Leis, F.; Tschöpel, P.; Broekaert, J. A. C.

    1994-07-01

    The influence of the spray chamber temperature and the related aerosol water loading on ArO + as typical spectral interference in inductively coupled plasma mass spectrometry (ICP-MS) is studied. Therefore, the noise power spectra for the ArO + have been measured by use of fast Fourier transform (FFT) analysis. A Meinhard nebulizer and a GMK nebulizer were used in connection with a cooled spray chamber at a temperature of 5-25°C. It could be found that the relative standard deviation of the analyte signal in ICP-MS was improved by cooling the spray chamber. The noise power spectra showed that especially the white noise goes down when the spray chamber is cooled. The overall white noise with the GMK nebulizer is shown to be higher in the case of an Al 2O 3 slurry than in the case of an AlCl 3 solution, containing both 400 ?g/ml Al. The pumping pulse rates are clearly visible in the noise amplitude spectra, but their amplitudes decrease at the presence of an impactor bead m the GMK nebulizer. Shifts of the noise band around 355 Hz were shown to occur as a result of the power level and the outer gas flow as well.

  4. Carbide Dissolution/Carbon Loss as a Function of Spray Distance in Unshrouded/Shrouded Plasma Sprayed Cr3C2-NiCr Coatings

    NASA Astrophysics Data System (ADS)

    Matthews, S.

    2015-02-01

    Thermal spraying of Cr3C2-NiCr composites generates varying degrees of carbide dissolution into the Ni binder. During high-temperature exposure, the carbide dissolution zones precipitate high concentrations of small carbides which develop into finely structured networks. This raises the possibility of producing unique tailored carbide composite structures through the generation of controlled carbide dissolution and appropriate heat treatment. The first step in this process is to produce a supersaturated Ni-Cr-C solid solution from which the carbide phase could be precipitated. In a previous work, a broad range of plasma parameters were trialed to assess their effect on the degree of carbide dissolution at a fixed spray distance of 100 mm. The current two-part work builds on the most promising plasma parameters from those trials. In Part 1 of this two-part article series, the effect of spray distance on the extent of carbide dissolution and carbon loss during high energy plasma spraying was investigated. The effectiveness of solid shield and gas shrouding is contrasted, and the mechanisms by which they influence the degree of decarburization discussed.

  5. An investigation of particle trajectories and melting in an air plasma sprayed zirconia

    SciTech Connect

    Neiser, R.A.; Roemer, T.J.

    1996-12-31

    The partially stabilized zirconia powders used to plasma spray thermal barrier coatings typically exhibit broad particle-size distributions. There are conflicting reports in the literature about the extent of injection-induced particle-sizing effects in air plasma-sprayed materials. If significant spatial separation of finer and coarser particles in the jet occurs, then one would expect it to play an important role in determining the microstructure and properties of deposits made from powders containing a wide range of particle sizes. This paper presents the results of a study in which a commercially available zirconia powder was fractionated into fine, medium, and coarse cuts and sprayed at the same torch conditions used for the ensemble powder. Diagnostic measurements of particle surface temperature, velocity, and number-density distributions in the plume for each size-cut and for the ensemble powder are reported. Deposits produced by traversing the torch back and forth to produce a raised bead were examined metallographically to study their shape and location with respect to the torch centerline and to look at their internal microstructure. The results show that, for the torch conditions used in this study, the fine, medium, and coarse size-cuts all followed the same mean trajectory. No measureable particle segregation effects were observed. Considerable differences in coatings microstructure were observed. These differences can be explained by the different particle properties measured in the plume.

  6. Characterization of Microstructure and Thermal Properties of YSZ Coatings Obtained by Axial Suspension Plasma Spraying (ASPS)

    NASA Astrophysics Data System (ADS)

    Ganvir, Ashish; Curry, Nicholas; Björklund, Stefan; Markocsan, Nicolaie; Nylén, Per

    2015-10-01

    The paper aims at demonstrating various microstructures which can be obtained using the suspension spraying technique and their respective significance in enhancing the thermal insulation property of a thermal barrier coating. Three different types of coating microstructures are discussed which were produced by the Axial Suspension Plasma Spraying. Detailed characterization of coatings was then performed. Optical and scanning electron microscopy were utilized for microstructure evaluations; x-ray diffraction for phase analysis; water impregnation, image analysis, and mercury intrusion porosimetry for porosity analysis, and laser flash analysis for thermal diffusivity measurements were used. The results showed that Axial Suspension Plasma Spraying can generate vertically cracked, porous, and feathery columnar-type microstructures. Pore size distribution was found in micron, submicron, and nanometer range. Higher overall porosity, the lower density of vertical cracks or inter-column spacing, and higher inter-pass porosity favored thermal insulation property of the coating. Significant increase in thermal diffusivity and conductivity was found at higher temperature, which is believed to be due to the pore rearrangement (sintering and pore coarsening). Thermal conductivity values for these coatings were also compared with electron beam physical vapor deposition (EBPVD) thermal barrier coatings from the literature and found to be much lower.

  7. Column formation in suspension plasma-sprayed coatings and resultant thermal properties.

    SciTech Connect

    Van Every, K.; Krane, M. J. M.; Trice, R. W.; Wang, H.; Porter, W.; Besser, M.; Sordelet, D.; Ilavsky, J.; Almer, J.

    2011-06-01

    The suspension plasma spray (SPS) process was used to produce coatings from yttria-stabilized zirconia (YSZ) powders with median diameters of 15 {micro}m and 80 nm. The powder-ethanol suspensions made with 15-{micro}m diameter YSZ particles formed coatings with microstructures typical of the air plasma spray (APS) process, while suspensions made with 80-nm diameter YSZ powder yielded a coarse columnar microstructure not observed in APS coatings. To explain the formation mechanisms of these different microstructures, a hypothesis is presented which relates the dependence of YSZ droplet flight paths on droplet diameter to variations in deposition behavior. The thermal conductivity (k th) of columnar SPS coatings was measured as a function of temperature in the as-sprayed condition and after a 50 h, 1200 C heat treatment. Coatings produced from suspensions containing 80 nm YSZ particles at powder concentrations of 2, 8, and 11 wt.% exhibited significantly different k th values. These differences are connected to microstructural variations between the SPS coatings produced by the three suspension formulations. Heat treatment increased the k th of the coatings generated from suspensions containing 2 and 11 wt.% of 80 nm YSZ powder, but this k th increase was less than has been observed in APS coatings.

  8. Column Formation in Suspension Plasma-Sprayed Coatings and Resultant Thermal Properties

    SciTech Connect

    Van Every, Kent; Krane, Matthew; Trice, Rodney; Wang, Hsin; Porter, Wallace D; Besser, Matthew; Sordelet, Daniel; Ilavsky, Dr. Jan; Almer, Jon

    2011-01-01

    The suspension plasma spray (SPS) process was used to produce coatings from yttria-stabilized zirconia (YSZ) powders with median diameters of 15 {micro}m and 80 nm. The powder-ethanol suspensions made with 15-{micro}m diameter YSZ particles formed coatings with microstructures typical of the air plasma spray (APS) process, while suspensions made with 80-nm diameter YSZ powder yielded a coarse columnar microstructure not observed in APS coatings. To explain the formation mechanisms of these different microstructures, a hypothesis is presented which relates the dependence of YSZ droplet flight paths on droplet diameter to variations in deposition behavior. The thermal conductivity (k th) of columnar SPS coatings was measured as a function of temperature in the as-sprayed condition and after a 50 h, 1200 C heat treatment. Coatings produced from suspensions containing 80 nm YSZ particles at powder concentrations of 2, 8, and 11 wt.% exhibited significantly different k th values. These differences are connected to microstructural variations between the SPS coatings produced by the three suspension formulations. Heat treatment increased the k th of the coatings generated from suspensions containing 2 and 11 wt.% of 80 nm YSZ powder, but this k th increase was less than has been observed in APS coatings.

  9. Fabrication of gas turbine water-cooled composite nozzle and bucket hardware employing plasma spray process

    DOEpatents

    Schilke, Peter W. (4 Hempshire Ct., Scotia, NY 12302); Muth, Myron C. (R.D. #3, Western Ave., Amsterdam, NY 12010); Schilling, William F. (301 Garnsey Rd., Rexford, NY 12148); Rairden, III, John R. (6 Coronet Ct., Schenectady, NY 12309)

    1983-01-01

    In the method for fabrication of water-cooled composite nozzle and bucket hardware for high temperature gas turbines, a high thermal conductivity copper alloy is applied, employing a high velocity/low pressure (HV/LP) plasma arc spraying process, to an assembly comprising a structural framework of copper alloy or a nickel-based super alloy, or combination of the two, and overlying cooling tubes. The copper alloy is plamsa sprayed to a coating thickness sufficient to completely cover the cooling tubes, and to allow for machining back of the copper alloy to create a smooth surface having a thickness of from 0.010 inch (0.254 mm) to 0.150 inch (3.18 mm) or more. The layer of copper applied by the plasma spraying has no continuous porosity, and advantageously may readily be employed to sustain a pressure differential during hot isostatic pressing (HIP) bonding of the overall structure to enhance bonding by solid state diffusion between the component parts of the structure.

  10. Neutron and X-ray diffraction of plasma-sprayed zirconia-yttria thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Shankar, N. R.; Herman, H.; Singhal, S. P.; Berndt, C. C.

    1984-01-01

    ZrO2-7.8mol. pct. YO1.5, a fused powder, and ZrO2-8.7mol. pct. YO1.5, a prereacted powder, were plasma-sprayed onto steel substrates. Neutron diffraction and X-ray diffraction of the as-received powder, the powder plasma sprayed into water, as-sprayed coatings, and coatings heat-treated for 10 and 100 h were carried out to study phase transformations and ordering of the oxygen ions on the oxygen sublattice. The as-received fused powder has a much lower monoclinic percentage than does the pre-reacted powder, this resulting in a much lower monoclinic percentage in the coating. Heat treatment increases the percentages of the cubic and monoclinic phases, while decreasing the tetragonal content. An ordered tetragonal phase is detected by the presence of extra neutron diffraction peaks. These phase transformations and ordering will result in volume changes. The implications of these transformations on the performance of partially stabilized zirconia thermal barrier coatings is discussed.

  11. Nano Structured Plasma Spray Coating for Wear and High Temperature Corrosion Resistance Applications

    NASA Astrophysics Data System (ADS)

    Ghosh, D.; Shukla, A. K.; Roy, H.

    2014-04-01

    The nano structured coating is a major challenge today to improve the different mechanical properties, wear and high temperature corrosion resistance behaviour of different industrial alloys. This paper is a review on synthesis of nano powder, plasma spraying methods, techniques of nano structured coating by plasma spray method, mechanical properties, tribological properties and high temperature corrosion behaviour of nano structured coating. Nano structured coatings of ceramic powders/composites are being developed for wide variety of applications like boiler, turbine and aerospace industries, which requires the resistance against wear, corrosion, erosion etc. The nano sized powders are subjected to agglomeration by spray drying, after which nano structured coating can be successfully applied over the substrate. Nano structured coating shows improved mechanical wear resistance and high temperature corrosion resistance. The significant improvement of wear and corrosion resistance is mainly attributed to formation of semi molten nano zones in case of nano structured coatings. The future scope of application of nano structured coating has also been highlighted in this paper.

  12. Characterization of Microstructure and Thermal Properties of YSZ Coatings Obtained by Axial Suspension Plasma Spraying (ASPS)

    NASA Astrophysics Data System (ADS)

    Ganvir, Ashish; Curry, Nicholas; Björklund, Stefan; Markocsan, Nicolaie; Nylén, Per

    2015-06-01

    The paper aims at demonstrating various microstructures which can be obtained using the suspension spraying technique and their respective significance in enhancing the thermal insulation property of a thermal barrier coating. Three different types of coating microstructures are discussed which were produced by the Axial Suspension Plasma Spraying. Detailed characterization of coatings was then performed. Optical and scanning electron microscopy were utilized for microstructure evaluations; x-ray diffraction for phase analysis; water impregnation, image analysis, and mercury intrusion porosimetry for porosity analysis, and laser flash analysis for thermal diffusivity measurements were used. The results showed that Axial Suspension Plasma Spraying can generate vertically cracked, porous, and feathery columnar-type microstructures. Pore size distribution was found in micron, submicron, and nanometer range. Higher overall porosity, the lower density of vertical cracks or inter-column spacing, and higher inter-pass porosity favored thermal insulation property of the coating. Significant increase in thermal diffusivity and conductivity was found at higher temperature, which is believed to be due to the pore rearrangement (sintering and pore coarsening). Thermal conductivity values for these coatings were also compared with electron beam physical vapor deposition (EBPVD) thermal barrier coatings from the literature and found to be much lower.

  13. On plasma expansion in vacuum Pierre Degond, Celine Parzani, Marie-Hel`ene Vignal

    E-print Network

    Vignal, Marie-Hélène

    the cathode. This plasma undergoes a thermal expansion towards the anode while the electrons are emitted from of electrodes: the cathode is located at ¯x = 0 and the anode at ¯x = L. A plasma constituted of ionsOn plasma expansion in vacuum Pierre Degond, C´eline Parzani, Marie-H´el`ene Vignal Abstract

  14. Vacuum 73 (2004) 475480 Application of high-power plasma gun for thermal cycle testing

    E-print Network

    Ghoniem, Nasr M.

    2004-01-01

    Research Institute, Osaka University, Osaka 567-0047, Japan Abstract A high-power hollow-cathode plasma-gunVacuum 73 (2004) 475­480 Application of high-power plasma gun for thermal cycle testing. Instead, a high power plasma gun was used to deliver the required hot working gas at a flow rate of 60 l

  15. Plasma mass-charge composition of a vacuum arc with deuterium saturated zirconium cathode

    NASA Astrophysics Data System (ADS)

    Yushkov, G. Yu.; Nikolaev, A. G.; Frolova, V. P.; Oks, E. M.; Rumyantsev, G. S.; Barengolts, S. A.

    2014-12-01

    An experimental study of the mass-charge composition of a vacuum arc plasma with zirconium cathode saturated with deuterium is carried out. It is shown that this system provides effective generation of deuterium ions with an integral fraction of about 60% per pulse of an arc current. The deuterium content in a vacuum arc plasma is maximum in the initial stage of discharge burning and considerably decreases during the first 150 ?s of an arc current pulse. The cathode deuteration also leads to decreasing average ion charge of metallic substrate in the plasma of a vacuum arc discharge.

  16. Method for minimizing decarburization and other high temperature oxygen reactions in a plasma sprayed material

    DOEpatents

    Lenling, William J. (Madison, WI); Henfling, Joseph A. (Bosque Farms, NM); Smith, Mark F. (Albuquerque, NM)

    1993-06-08

    A method is disclosed for spray coating material which employs a plasma gun that has a cathode, an anode, an arc gas inlet, a first powder injection port, and a second powder injection port. A suitable arc gas is introduced through the arc gas inlet, and ionization of the arc gas between the cathode and the anode forms a plasma. The plasma is directed to emenate from an open-ended chamber defined by the boundary of the anode. A coating is deposited upon a base metal part by suspending a binder powder within a carrier gas that is fed into the plasma through the first powder injection port; a material subject to degradation by high temperature oxygen reactions is suspended within a carrier gas that is fed into the plasma through the second injection port. The material fed through the second injection port experiences a cooler portion of the plasma and has a shorter dwell time within the plasma to minimize high temperature oxygen reactions. The material of the first port and the material of the second port intermingle within the plasma to form a uniform coating having constituent percentages related to the powder-feed rates of the materials through the respective ports.

  17. Vapors and Droplets Mixture Deposition of Metallic Coatings by Very Low Pressure Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Vautherin, B.; Planche, M.-P.; Bolot, R.; Quet, A.; Bianchi, L.; Montavon, G.

    2014-04-01

    In recent years, the very low pressure plasma-spraying (VLPPS) process has been intensely developed and implemented to manufacture thin, dense and finely structured ceramic coatings for various applications, such as Y2O3 for diffusion barriers, among other examples. This paper aims at presenting developments carried out on metallic coatings. Aluminum was chosen as a demonstrative material due to its "moderate" vaporization enthalpy (i.e., 38.23 KJ cm-3) compared to the one of copper (i.e., 55.33 KJ cm-3), cobalt (i.e., 75.03 KJ cm-3), or even tantalum (i.e., 87.18 KJ cm-3). The objective of this work is primarily to better understand the behavior of a solid precursor injected into the plasma jet leading to the formation of vapors and to better control the factors affecting the coating structure. Nearly dense aluminum coatings were successfully deposited by VLPPS at 100 Pa with an intermediate power plasma torch (i.e., Sulzer Metco F4 type gun with maximum power of 45 kW). Optical emission spectroscopy (OES) was implemented to study and analyze the vapor behavior into the plasma jet. Simplified CFD modeling allowed better understanding of some of the thermo-physical mechanisms. The effect of powder-size distribution, substrate temperature and spray distance were studied. The phase composition and microstructural features of the coatings were characterized by XRD and SEM. Moreover, Vickers microhardness measurements were implemented.

  18. Plasma Spray-Physical Vapor Deposition (PS-PVD) of Ceramics for Protective Coatings

    NASA Technical Reports Server (NTRS)

    Harder, Bryan J.; Zhu, Dongming

    2011-01-01

    In order to generate advanced multilayer thermal and environmental protection systems, a new deposition process is needed to bridge the gap between conventional plasma spray, which produces relatively thick coatings on the order of 125-250 microns, and conventional vapor phase processes such as electron beam physical vapor deposition (EB-PVD) which are limited by relatively slow deposition rates, high investment costs, and coating material vapor pressure requirements. The use of Plasma Spray - Physical Vapor Deposition (PS-PVD) processing fills this gap and allows thin (< 10 microns) single layers to be deposited and multilayer coatings of less than 100 microns to be generated with the flexibility to tailor microstructures by changing processing conditions. Coatings of yttria-stabilized zirconia (YSZ) were applied to NiCrAlY bond coated superalloy substrates using the PS-PVD coater at NASA Glenn Research Center. A design-of-experiments was used to examine the effects of process variables (Ar/He plasma gas ratio, the total plasma gas flow, and the torch current) on chamber pressure and torch power. Coating thickness, phase and microstructure were evaluated for each set of deposition conditions. Low chamber pressures and high power were shown to increase coating thickness and create columnar-like structures. Likewise, high chamber pressures and low power had lower growth rates, but resulted in flatter, more homogeneous layers

  19. An analytical and experimental study of plasma spraying of alumina: Final program and abstracts

    SciTech Connect

    Varacalle, D.J. Jr.

    1988-01-01

    As part of an investigation of the the dynamics that occur in the plume of a typical thermal spray torch, an analytical and experimental study of the plasma spraying of alumina is being performed; preliminary results are reported here. Numerical models of the physical processes in the torch column and plume were used to determine the temperature and flow fields. Computer simulations of particle injection (15, 34, and 53 ..mu..m alumina particles) are also presented. The alumina experiments were conducted at a 35 kW power level using a 100 scfh argon and 15 scfh hydrogen gas mixture for two alumina powders. The quality of the coatings is discussed with respect to porosity, sample metallography, and microhardness. 6 refs., 5 figs., 1 tab.

  20. Failure during thermal cycling of plasma-sprayed thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Berndt, C. C.; Herman, H.

    1983-01-01

    The thermal cycling behavior of plasma-sprayed ZrO2-12 wt pct Y2O3 coatings was studied. Coatings were produced with and without bond coats of Ni-Cr-Al-Zr and in some cases the substrates were heated to above the optimum temperature prior to spraying. The coatings (attached to the substrate) were thermal cycled to 1200 C and their cracking behavior was followed by acoustic emission (AE) techniques. It was possible to examine the failure mechanisms by statistical analysis of the AE data and to evaluate the influence of preheating and bond coating. It is shown that the AE spectrum changes when a bond coat is used because of the presence of microcracks which, in turn, dissipate energy and improve the coating integrity. The preheating effect is reflected by a decrease in the peak count rate and an increase in the temperature at which AE activity is initiated.

  1. Plasma Spray Deposition of Lanthanum Phosphate and Phase Structure of the Resultant Coatings

    NASA Astrophysics Data System (ADS)

    Pragatheeswaran, A.; Ananthapadmanabhan, P. V.; Chakravarthy, Y.; Chaturvedi, Vandana; Bhandari, Subhankar; Ramachandran, K.

    2015-10-01

    Plasma-sprayed lanthanum phosphate coatings were prepared on stainless steel substrates at different input powers from 16 to 24 kW. Coatings were characterized by x-ray diffraction, scanning electron microscopy, and Fourier transformed infrared spectroscopy. Results showed that the as-sprayed coatings consist of lanthanum ortho (LaPO4), poly(La2P4O13), and oxy(La3PO7) phosphates. Subsequent heat treatment of the coatings resulted in the recombination of the La-polyphosphate and La-oxyphosphate to form LaPO4. SEM images of microstructure of the coatings and coating-substrate interface showed micro-cracks, voids, and porosity that were found to decrease with deposition power.

  2. Titanium Dioxide Coating Prepared by Use of a Suspension-Solution Plasma-Spray Process

    NASA Astrophysics Data System (ADS)

    Du, Lingzhong; Coyle, Thomas W.; Chien, Ken; Pershin, Larry; Li, Tiegang; Golozar, Mehdi

    2015-08-01

    Titanium dioxide coatings were prepared from titanium isopropoxide solution containing nano TiO2 particles by use of a plasma-spray process. The effects of stand-off distance on coating composition and microstructure were investigated and compared with those for pure solution precursor and a water-based suspension of TiO2. The results showed that the anatase content of the coating increased with increasing stand-off distance and the rate of deposition decreased with increasing spray distance. Anatase nanoparticles in solution were incorporated into the coatings without phase transformation whereas most of the TiO2 in the precursor solution was transformed into rutile. The microstructure of preserved anatase particles bound by rutile improved the efficiency of deposition of the coating. The amount of anatase phase can be adjusted by variation of the ratio of solution to added anatase TiO2 nanoparticles.

  3. Laser Cladding to Improve Oxidation Behavior of Air Plasma-Sprayed Ni-20Cr Coating on Stainless Steel Substrate

    NASA Astrophysics Data System (ADS)

    Rauf, M. Mudassar; Shahid, Muhammad; Nusair Khan, A.; Mehmood, K.

    2015-09-01

    Air plasma-sprayed Ni-20Cr coating on stainless steel (AISI-304) substrate was re-melted using CO2 laser to remove the inherent defects, i.e., porosity, splat boundaries, and oxides of air plasma-sprayed coating. The (1) uncoated, (2) air plasma-sprayed, and (3) laser-re-melted specimens were exposed to cyclic oxidation at 900 °C for a hundred cycles run. The oxidation products were characterized using XRD and SEM. Weight changes were determined after every 4th cycle; Uncoated samples showed severe oxidation indicated by substantial weight loss, whereas air plasma-coated samples demonstrated noticeable weight gain. However, oxidation resistance of laser-cladded samples was found to be significantly improved as the samples showed negligible weight change; porosity within the coating was minimized with an improvement in interface quality causing reduction in delamination damage.

  4. Thermal Shock Properties of Yttria-Stabilized Zirconia Coatings Deposited Using Low-Energy Very Low Pressure Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Zhang, Nannan; Bolot, Rodolphe; Liao, Hanlin; Coddet, Christian

    2015-08-01

    Yttria-stabilized zirconia (YSZ) coatings have been frequently used as a thermal protective layer on the metal or alloy component surfaces. In the present study, ZrO2-7%Y2O3 thermal barrier coatings (TBCs) were successfully deposited by DC (direct current) plasma spray process under very low pressure conditions (less than 1 mbar) using low-energy plasma guns F4-VB and F100. The experiments were performed to evaluate the thermal shock resistance of different TBC specimens which were heated to 1373 K at a high-temperature cycling furnace and held for 0.5 h, followed by air cooling at room temperature for 0.2 h. For comparison, a corresponding atmospheric plasma spray (APS) counterpart was also elaborated to carry out the similar experiments. The results indicated that the very low pressure plasma spray (VLPPS) coatings displayed better thermal shock resistance. Moreover, the failure mechanism of the coatings was elucidated.

  5. Ideal plasma response to vacuum magnetic fields with resonant magnetic perturbations in non-axisymmetric tokamaks

    NASA Astrophysics Data System (ADS)

    Kim, Kimin; Ahn, J.-W.; Scotti, F.; Park, J.-K.; Menard, J. E.

    2015-10-01

    Ideal plasma shielding and amplification of resonant magnetic perturbations in non-axisymmetric tokamak is presented by field line tracing simulation with full ideal plasma response, compared to measurements of divertor lobe structures. Magnetic field line tracing simulations in NSTX with toroidal non-axisymmetry indicate the ideal plasma response can significantly shield/amplify and phase shift the vacuum resonant magnetic perturbations. Ideal plasma shielding for n???=???3 mode is found to prevent magnetic islands from opening as consistently shown in the field line connection length profile and magnetic footprints on the divertor target. It is also found that the ideal plasma shielding modifies the degree of stochasticity but does not change the overall helical lobe structures of the vacuum field for n???=???3. Amplification of vacuum fields by the ideal plasma response is predicted for low toroidal mode n???=???1, better reproducing measurements of strong striation of the field lines on the divertor plate in NSTX.

  6. Accuracy and Roughness of TiN Coatings Deposited by Vacuum Arc Plasma

    NASA Astrophysics Data System (ADS)

    Budilov, V.; Ramazanov, K.; Yagafarov, I.; Vafin, R.

    2015-11-01

    Nitride coatings were deposited by vacuum arc plasma in an atmosphere of argon and nitrogen using different deposition conditions of part location and configuration, angle between plasma flow and processing surface. The coating thickness, part dimensions and surface roughness were measured before and after coating deposition. The type of part poor shape precision after coating deposition by vacuum arc plasma was defined. An impact of coating deposition by vacuum arc discharge on the part dimensional and form accuracy was revealed. The effect of parts location on dimensional and radial surfaces form accuracy was induced. The effect of coating surface polythickness on part dimensional and form accuracy for parts with different stiffness was defined. The impact of part location area and parts quantity on coating thickness, surface roughness, dimensional and form accuracy of part was revealed. The coating thickness distribution law, parts quality class and accuracy degree after vacuum ion plasma coating deposition were assigned.

  7. An investigation of environmental influence on the creep behavior of a low pressure plasma sprayed NiCoCrAlY alloy

    NASA Technical Reports Server (NTRS)

    Hebsur, M. G.; Miner, R. V.

    1985-01-01

    Low pressure sprayed MCrAlY overlay coatings are currently being used on advanced single crystal superalloy blades for gas turbine engines. Many studies were made on the influence of coatings on the mechanical properties of superalloys in oxidizing or hot-corroding environments, but very few on the properties of the bulk coating alloy itself. The creep behavior of a typical NiCoCrAlY alloyd (PWA 276) was studied in air and vacuum. The as-received low pressure plasma sprayed NiCoCrAlY plates were heat treated for 4 h at 1080 C followed by 32 h at 870 C, the heat treatment applied to coated superalloy parts. Standard creep specimens 12.7 mm long and 3.2 mm in diameter were then machined. Constant load creep-rupture tests were performed in air and vacuum at 650, 850, and 1050 C and various initial stresses. In addition, some specimens were preoxidized at 1050 C for 100 h prior to testing. Results are briefly discussed.

  8. Limiter/vacuum system for plasma impurity control and exhaust in tokamaks

    SciTech Connect

    Abdou, M.; Brooks, J.; Mattas, R.

    1980-01-01

    A detailed design of a limiter/vacuum system for plasma impurity control and exhaust has been developed for the STARFIRE tokamak power plant. It is shown that the limiter/vacuum concept is a very attractive option for power reactors. It is relatively simple and inexpensive and deserves serious experimental verification.

  9. Metallurgical characterization of plasma-sprayed tungsten carbide-cobalt coatings

    SciTech Connect

    Rangaswamy, S.

    1987-01-01

    Four commercial WC-Co powders prepared from different manufacturing techniques and having variations in binder metal content (11-20% wt), and WC grain size (1-15 ..mu.. m). Using identical process parameters, these powders were plasma sprayed, and the resulting coatings were characterized for changes in chemistry, phase content, and microstructural parameters. Finally, the coatings were evaluated for resistance to abrasion, sliding wear, particle erosion, and cavitation erosion. It was found that, in all cases, the plasma-spray process resulted in substantial loss of carbon leading to a decrease in the monocarbide content and an increase in subcarbides such as W/sub 2/C, and WC/sub 1-x/. The combined effects of carbon loss and high temperatures in the plasma resulted in the formation of several Co/sub x/ W/sub y/C/sub z/ phases, among which Co/sub 3/W/sub 3/C was predominant. The extent to which such reactions occur was found to depend on several factors including starting chemistry, powder size, initial phase content, and carbide grain size. In general, finer size powders containing coarser WC grains tend to lose more carbon, whereas powders containing W/sub 2/C tend to lose somewhat less carbon. Wear properties of WC-Co coatings depend on porosity, carbon content, mean diameter of carbide grains and mean free path of the matrix phase in the microstructure.

  10. Microstructure investigation of plasma sprayed alumina 13 weight percent titania coatings from nanocrystalline feed powders

    NASA Astrophysics Data System (ADS)

    Goberman, Daniel George

    The development of constituent phases and microstructure in air plasma sprayed alumina (Al2O3) thirteen weight percent titania (TiO2) coatings from reconstituted nanocrystalline feed powder (nanopowder) was investigated as a function of processing conditions and compared to a conventional coating created from micron-sized feed powder. The microstructure of the nanopowder coating was found to consist of a mixture of two distinct regions; one was completely melted and quenched as splats, and the other partially melted with a particulate microstructure retained from the starting powder. The melted regions predominantly consisted of gamma-Al2O 3 with dissolved Ti4+ that varied in morphology and size from a few nanometers to several microns. Based upon these experimental observations, a theory is developed that explains the mechanism behind the morphological differences observed across the melted splat structures. In addition, differences between the melted structures in the nanopowder coatings and the conventional coating are explained using this theory. The partially melted regions were found to be primarily submicrometer-sized alpha-Al2O 3 particles in an amorphous TiO2 matrix containing small amounts of gamma-Al2O3 with dissolved Ti4+ . For the nanopowder coatings, the ratio of the melted splat microstructure to the particulate microstructure and thus the ratio of the gamma-Al 2O3 to alpha-Al2O3 can be controlled by a plasma spray parameter, defined as the critical plasma spray parameter (CPSP). The conventional coating microstructure was insensitive to CPSP, consisting primarily of fully melted splats. The ability to vary the microstructure of the nanopowder coating through CPSP has resulted in bimodal distributions of microstructure and grain size that have allowed these coatings to significantly surpass the conventional coating in several measures of mechanical properties.

  11. Phase stability and biological property evaluation of plasma sprayed hydroxyapatite coatings for orthopedic and dental applications.

    PubMed

    Vahabzadeh, Sahar; Roy, Mangal; Bandyopadhyay, Amit; Bose, Susmita

    2015-04-01

    In this work we have investigated the effects of strontium (Sr) dopant on in vitro protein release kinetics and in vivo osteogenic properties of plasma sprayed hydroxyapatite (HA) coatings, along with their dissolution behavior. Plasma sprayed HA coatings are widely used in load-bearing implants. Apart from osseointegration, the new generation of HA coating is expected to deliver biomolecules and/or drugs that can induce osteoinduction. This paper reports the preparation of crystalline and amorphous HA coatings on commercially pure titanium (Cp-Ti) using inductively coupled radio frequency (RF) plasma spray, and their stability at different solution pH. Coatings prepared at 110 mm working distance from the nozzle showed an average Ca ion release of 18 and 90 ppm in neutral and acidic environments, respectively. Decreasing the working distance to 90 mm resulted in the formation of a coating with less crystalline HA and phases with higher solubility products, and consequently higher dissolution over 32 days. A 92% release of a model protein bovine serum albumin (BSA) in phosphate buffer with pH of 7.4 was measured for Sr-doped HA (Sr-HA) coating, while only a 72% release could be measured for pure HA coating. Distortion of BSA during adsorption on coatings revealed a strong interaction between the protein and the coating, with an increase in ?-helix content. Osteoid formation was found on Sr-HA implants as early as 7 weeks post implantation compared to HA coated and uncoated Ti implants. After 12 weeks post implantation, osteoid new bone was formed on HA implants; whereas, bone mineralization started on Sr-HA samples. While no osteoid was formed on bare Ti surfaces, bone was completely mineralized on HA and Sr-HA coatings after 16 weeks post implantation. Our results show that both phase stability and chemistry can have a significant influence toward in vitro and in vivo response of HA coatings on Ti implants. PMID:25638672

  12. Air Boring and Non-Vacuum Electron Beam Welding with a Plasma Window

    NASA Astrophysics Data System (ADS)

    Hershcovitch, Ady

    2004-11-01

    The Plasma Window is a novel apparatus that utilizes a stabilized plasma arc as an interface between vacuum and atmosphere or pressurized targets without solid material. In addition to sustaining a vacuum atmosphere interface, the plasma has a lensing effect on charged particles. The plasma current generates an azimuthal magnetic field, which exerts a radial Lorentz force on charged particles moving parallel to the current channel. With proper orientation of the current direction, the Lorentz force is radially inward. This feature can be used to focus beams to a very small spot size and to overcome beam dispersion due to scattering by atmospheric atoms and molecules. Earlier results have been the following: Vacuum (pressure of ˜ 10-6 Torr) was successfully separated from atmosphere and from a gas target pressurized up to 9 bar. A 2 MeV proton beam was propagated from vacuum through the plasma window into atmospheric pressure with no measurable energy loss or beam degradation. X-rays from a light source and 90-175 KeV electron beams were transmitted from vacuum through the plasma window to atmosphere. Recently, electron beam welding in atmosphere (by an electron beam passing from vacuum through a plasma window) was accomplished with electron beams of unprecedented low power. Weld quality for the non-vacuum plasma window electron beam welding matched the quality of in-vacuum electron beam welding. Indications exist that electron beam attenuation is lower than theoretically predicted. Results strongly suggest that air boring was achieved with 15 - 40 mA, 90 - 150 KeV electron beams compared to the previously used kA MeV electron beams. It may explain the better than expected welding results.

  13. Generation of boron plasma in vacuum arc with lanthanum hexaboride cathode

    NASA Astrophysics Data System (ADS)

    Nikolaev, A. G.; Oks, E. M.; Frolova, V. P.; Yushkov, G. Yu.

    2015-09-01

    The mass-charge composition of vacuum-arc plasma in discharge with lanthanum hexaboride cathode has been experimentally studied. It is established that this cathode material ensures the generation of plasma with high (up to 90%) content of boron ions. Temporal variation of the plasma composition and boron ion fraction during discharge pulse and changes in the mass-charge composition of plasma with increasing pressure in the region of discharge operation have been studied.

  14. Characterization of Nanostructured NbSi2 Intermetallic Coatings Obtained by Plasma Spraying of Mechanically Alloyed Powders

    NASA Astrophysics Data System (ADS)

    Yazdani, Zohreh; Karimzadeh, Fathallah; Abbasi, Mohammad-Hasan

    2015-08-01

    Nanostructured NbSi2 powders plasma sprayed on to Ti-6Al-4V substrates were characterized in this research. After preparation of the nanostructured NbSi2 powders by mechanical alloying of an Nb-Si powder mixture, agglomeration was performed to obtain a particle size suitable for spraying. The agglomerated powders were then sprayed by atmospheric plasma spraying. Structural transformation of the powders and morphological and mechanical changes of the coatings were examined by use of x-ray diffraction analysis, scanning electron microscopy, energy dispersive spectroscopy, and microhardness testing. During milling, NbSi2 intermetallic with a grain size of approximately 15 nm was gradually formed. After plasma spraying, a coating of hardness 550 ± 8 HV with a uniform nanocrystalline structure, low oxide content, low porosity, and a good adhesion to the substrate was obtained. No phase change occurred after spraying and the NbSi2 compound remained nanostructured with a grain size of approximately 82 nm.

  15. Texture growth processing of plasma-sprayed Y-Ba-Cu-O superconducting deposits

    SciTech Connect

    Wang, H.; Herman, H. ); Wiesmann, H.J.; Zhu, Y.; Xu, Y.; Sabatini, R.L.; Suenaga, M. )

    1990-12-03

    A partial melt/texture growth process has been applied to plasma-sprayed YBa{sub 2}Cu{sub 3}O{sub 7{minus}{ital x}} deposits. The length of the aligned grains is in the range 300--500 {mu}m. Small-angle grain boundaries with a misorientation between 3{degree} and 5{degree} are commonly observed. The critical current density, using a four-probe method with continuous direct current, is in excess of 5000 A/cm{sup 2} under an applied field of 1 T at 77 K.

  16. Solid oxide fuel cell electrolytes produced via very low pressure suspension plasma spray and electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Fleetwood, James D.

    Solid oxide fuel cells (SOFCs) are a promising element of comprehensive energy policies due to their direct mechanism for converting the oxidization of fuel, such as hydrogen, into electrical energy. Both very low pressure plasma spray and electrophoretic deposition allow working with high melting temperature SOFC suspension based feedstock on complex surfaces, such as in non-planar SOFC designs. Dense, thin electrolytes of ideal composition for SOFCs can be fabricated with each of these processes, while compositional control is achieved with dissolved dopant compounds that are incorporated into the coating during deposition. In the work reported, sub-micron 8 mole % Y2O3-ZrO2 (YSZ) and gadolinia-doped ceria (GDC), powders, including those in suspension with scandium-nitrate dopants, were deposited on NiO-YSZ anodes, via very low pressure suspension plasma spray (VLPSPS) at Sandia National Laboratories' Thermal Spray Research Laboratory and electrophoretic deposition (EPD) at Purdue University. Plasma spray was carried out in a chamber held at 320 - 1300 Pa, with the plasma composed of argon, hydrogen, and helium. EPD was characterized utilizing constant current deposition at 10 mm electrode separation, with deposits sintered from 1300 -- 1500 °C for 2 hours. The role of suspension constituents in EPD was analyzed based on a parametric study of powder loading, powder specific surface area, polyvinyl butyral (PVB) content, polyethyleneimine (PEI) content, and acetic acid content. Increasing PVB content and reduction of particle specific surface area were found to eliminate the formation of cracks when drying. PEI and acetic acid content were used to control suspension stability and the adhesion of deposits. Additionally, EPD was used to fabricate YSZ/GDC bilayer electrolyte systems. The resultant YSZ electrolytes were 2-27 microns thick and up to 97% dense. Electrolyte performance as part of a SOFC system with screen printed LSCF cathodes was evaluated with peak power densities as high as 520 mW/cm2 at 800 °C for YSZ and 350 mW/cm 2 at 800 °C for YSZ/GDC bilayer electrolytes.

  17. Non-Linear Mechanical Behavior of Plasma Sprayed Alumina Under Mechanical and Thermal Loading

    NASA Astrophysics Data System (ADS)

    Musalek, Radek; Matejicek, Jiri; Vilemova, Monika; Kovarik, Ondrej

    2010-01-01

    Mechanical response of plasma sprayed ceramic coatings to mechanical and thermal loading of various extents was studied. Coated samples were subjected to four-point bending (4PB), with coatings loaded in tension and compression, respectively. Thermal loading was provided by heating the samples, while stresses were generated by thermal mismatch between the coatings and substrates. In both cases, cyclic loading was applied. Non-linear behavior and significant hysteresis were observed, indicating inelastic phenomena taking place. The tests were complemented by structural observations in SEM and indentation tests. Relevant structural features and possible mechanisms underlying this behavior are discussed.

  18. Vacuum arc plasma thrusters with inductive energy storage driver

    NASA Technical Reports Server (NTRS)

    Krishnan, Mahadevan (Inventor)

    2009-01-01

    A plasma thruster with a cylindrical inner and cylindrical outer electrode generates plasma particles from the application of energy stored in an inductor to a surface suitable for the formation of a plasma and expansion of plasma particles. The plasma production results in the generation of charged particles suitable for generating a reaction force, and the charged particles are guided by a magnetic field produced by the same inductor used to store the energy used to form the plasma.

  19. Plasma Sprayed Ni-Al Coatings for Safe Ending Heat Exchanger Tubes

    SciTech Connect

    Allen, M.L.; Berndt, C.C.; Otterson, D.

    1998-11-01

    Brookhaven National Laboratory (BNL) has developed thermally conductive composite liners for corrosion and scale protection in heat exchanger tubes exposed to geothermal brine. The liners cannot withstand roller expansion to connect the tubes to the tubesheet. It is not possible to line the ends of the tubes with the same material after roller expansion due to the nature of the current liner application process. It was requested that BNL evaluate plasma sprayed Ni-Al coatings for safe ending heat exchanger tubes exposed to geothermal brine. The tubes of interest had an internal diameter of 0.875 inches. It is not typical to thermal spray small diameter components or use such small standoff distances. In this project a nozzle extension was developed by Zatorski Coating Company to spray the tube ends as well as flat coupons for testing. Four different Ni-Al coatings were investigated. One of these was a ductilized Ni-AlB material developed at Oak Ridge National Laboratory. The coatings were examined by optical and scanning electron microscopy. In addition, the coatings were analyzed by X-ray diffraction and subjected to corrosion, tensile adhesion, microhardness and field tests in a volcanic pool in New Zealand.

  20. High Temperature Multilayer Environmental Barrier Coatings Deposited Via Plasma Spray-Physical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Harder, Bryan James; Zhu, Dongming; Schmitt, Michael P.; Wolfe, Douglas E.

    2014-01-01

    Si-based ceramic matrix composites (CMCs) require environmental barrier coatings (EBCs) in combustion environments to avoid rapid material loss. Candidate EBC materials have use temperatures only marginally above current technology, but the addition of a columnar oxide topcoat can substantially increase the durability. Plasma Spray-Physical Vapor Deposition (PS-PVD) allows application of these multilayer EBCs in a single process. The PS-PVD technique is a unique method that combines conventional thermal spray and vapor phase methods, allowing for tailoring of thin, dense layers or columnar microstructures by varying deposition conditions. Multilayer coatings were deposited on CMC specimens and assessed for durability under high heat flux and load. Coated samples with surface temperatures ranging from 2400-2700F and 10 ksi loads using the high heat flux laser rigs at NASA Glenn. Coating morphology was characterized in the as-sprayed condition and after thermomechanical loading using electron microscopy and the phase structure was tracked using X-ray diffraction.

  1. Suspension Plasma Spray Fabrication of Nanocrystalline Titania Hollow Microspheres for Photocatalytic Applications

    NASA Astrophysics Data System (ADS)

    Ren, Kun; Liu, Yi; He, Xiaoyan; Li, Hua

    2015-10-01

    Hollow inorganic microspheres with controlled internal pores in close-cell configuration are usually constructed by submicron-sized particles. Fast and efficient large-scale production of the microspheres with tunable sizes yet remains challenging. Here, we report a suspension plasma spray route for making hollow microspheres from nano titania particles. The processing permits most nano particles to retain their physiochemical properties in the as-sprayed microspheres. The microspheres have controllable interior cavities and mesoporous shell of 1-3 ?m in thickness. Spray parameters and organic content in the starting suspension play the key role in regulating the efficiency of accomplishing the hollow sphere structure. For the ease of collecting the spheres for recycling use, ferriferous oxide particles were used as additives to make Fe3O4-TiO2 hollow magnetic microspheres. The spheres can be easily recycled through external magnetic field collection after each time use. Photocatalytic anti-bacterial activities of the hollow spheres were assessed by examining their capability of degrading methylene blue and sterilizing Escherichia coli bacteria. Excellent photocatalytic performances were revealed for the hollow spheres, giving insight into their potential versatile applications.

  2. Suspension Plasma Spray Fabrication of Nanocrystalline Titania Hollow Microspheres for Photocatalytic Applications

    NASA Astrophysics Data System (ADS)

    Ren, Kun; Liu, Yi; He, Xiaoyan; Li, Hua

    2015-09-01

    Hollow inorganic microspheres with controlled internal pores in close-cell configuration are usually constructed by submicron-sized particles. Fast and efficient large-scale production of the microspheres with tunable sizes yet remains challenging. Here, we report a suspension plasma spray route for making hollow microspheres from nano titania particles. The processing permits most nano particles to retain their physiochemical properties in the as-sprayed microspheres. The microspheres have controllable interior cavities and mesoporous shell of 1-3 ?m in thickness. Spray parameters and organic content in the starting suspension play the key role in regulating the efficiency of accomplishing the hollow sphere structure. For the ease of collecting the spheres for recycling use, ferriferous oxide particles were used as additives to make Fe3O4-TiO2 hollow magnetic microspheres. The spheres can be easily recycled through external magnetic field collection after each time use. Photocatalytic anti-bacterial activities of the hollow spheres were assessed by examining their capability of degrading methylene blue and sterilizing Escherichia coli bacteria. Excellent photocatalytic performances were revealed for the hollow spheres, giving insight into their potential versatile applications.

  3. PLASMA SPRAYED Ni-Al COATINGS FOR SAFE ENDING HEAT EXCHANGER TUBES

    SciTech Connect

    ALLAN,M.L.; OTTERSON,D.; BERNDT,C.C.

    1998-11-01

    Brookhaven National Laboratory (BNL) has developed thermally conductive composite liners for corrosion and scale protection in heat exchanger tubes exposed to geothermal brine. The liners cannot withstand roller expansion to connect the tubes to the tubesheet. It is not possible to line the ends of the tubes with the same material after roller expansion due to the nature of the current liner application process. It was requested that BNL evaluate plasma sprayed Ni-Al coatings for safe ending heat exchanger tubes exposed to geothermal brine. The tubes of interest had an internal diameter of 0.875 inches. It is not typical to thermal spray small diameter components or use such small standoff distances. In this project a nozzle extension was developed by Zatorski Coating Company to spray the tube ends as well as flat coupons for testing. Four different Ni-Al coatings were investigated. One of these was a ductilized Ni-AIB material developed at Oak Ridge National Laboratory. The coatings were examined by optical and scanning electron microscopy. In addition, the coatings were analyzed by X-ray diffraction and subjected to corrosion, tensile adhesion, microhardness and field tests in a volcanic pool in New Zealand. It was determined that the Ni-Al coatings could be applied to a depth of two inches on the tube ends. When sprayed on flat coupons the coatings exhibited relatively high adhesion strength and microhardness. Polarization curves showed that the coating performance was variable. Measured corrosion potentials indicated that the Ni-Al coatings are active towards steel coated with thermally conductive polymers, thereby suggesting preferential corrosion. Corrosion also occurred on the coated coupons tested in the volcanic pool. This may have been exacerbated by the difficulty in applying a uniform coating to the coupon edges. The Ni-Al coatings applied to the tubes had significant porosity and did not provide adequate corrosion protection. This is associated with the short standoff distance and is not a reflection of the normal quality of plasma sprayed coatings. Even if coating porosity could be reduced, the coupling of an alloy coating to a polymer-based barrier coating in the same electrolyte is not recommended. Therefore, polymer coatings that can be field applied to the tube ends after roller expansion should be sought.

  4. The use of a macroscopic formulation describing the effects of dynamic compaction and porosity on plasma sprayed copper

    SciTech Connect

    Arrigoni, M.; Boustie, M.; Bolis, C.; Berthe, L.; Barradas, S.; Jeandin, M.

    2008-04-15

    Coatings processed by thermal deposition techniques involve porosity. The Laser adhesion test developed for testing bond strength of a coating on its substrate requires a good knowledge of shock wave propagation in such media. Experiments carried out on plasma sprayed copper samples, about 14% porous, with velocity interferometer system for any reflector measurements display the discrepancy of previously used models. Hence, a one-dimensional formulation of the compaction process, based on a simple P-{alpha} model, is proposed to improve the correlation between experimental and computed data signals obtained on a plasma sprayed copper under dynamic loading. Besides, this improvement allows the estimation of the bond strength of a plasma sprayed copper on aluminum substrate.

  5. Post-plasma-spraying heat treatment of the HA coating/Ti-6A1-4V implant system.

    PubMed

    Filiaggi, M J; Pilliar, R M; Coombs, N A

    1993-02-01

    The metal/ceramic interface that constitutes an important part of the plasma-sprayed HA-coated Ti-6A1-4V system may, in fact, represent the "weak link" in the implant design. A post-plasma-spray heat treatment to enhance chemical bonding at the metal/ceramic interface and, hence, improve the mechanical properties (interface fracture toughness and tensile coating adhesion strength) of the plasma-sprayed implant system does show promise. In preliminary heat treatment studies, however, any improvements realized were lost due to the chemical instability of the coating in a moisture-laden environment, with a concomitant loss in bonding properties. This deterioration in properties appears to be related to environmentally assisted crack growth as influenced by processing conditions. Still, an ability to improve HA/Ti-6A1-4V bonding through enhanced diffusion bonding was demonstrated, warranting further heat treatment studies involving atmosphere control during processing. PMID:8436575

  6. The Impact of Electrode Configuration on Characteristics of Vacuum Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Liu, Wenzheng; Zhang, Dejin; Kong, Fei

    2012-02-01

    Generation characteristics of vacuum discharge plasma are very important for the applied research of metal plasma. The vacuum discharge electrode configuration and the cathode material affect the generation characteristics of the metal plasma which consists of metal ions coming from cathode and generated by vacuum discharge. In this research, the generation characteristics of the metal plasma generated by vacuum discharge are discussed for four patterns of electrode configurations, i.e. cone-mesh electrode setup, cone-cross line electrode setup, cone-line electrode setup and cone-ring electrode setup. Characteristics of the metal plasma, such as electron density, electron temperature, space potential, ion energy, are measured by the probe method for discussing the impacts of different electrode configurations on the density of generated metal plasma. Moreover, the diffusion velocities of the metal plasma are measured for cathode materials of Pb, Al, and Cu, respectively. The experimental results indicate that the plasma generated by the discharge of cone-ring electrode configuration possesses the maximum density and the metal plasma generated by the Al cathode possesses the fastest diffusion velocity and the highest kinetic energy.

  7. Robust Low Cost Liquid Rocket Combustion Chamber by Advanced Vacuum Plasma Process

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Elam, Sandra; McKechnie, Timothy; Hickman, Robert; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    Next-generation, regeneratively cooled rocket engines require materials that can meet high temperatures while resisting the corrosive oxidation-reduction reaction of combustion known as blanching, the main cause of engine failure. A project was initiated at NASA-Marshal Space Flight Center (MSFC) to combine three existing technologies to build and demonstrate an advanced liquid rocket engine combustion chamber that would provide a 100 mission life. Technology developed in microgravity research to build cartridges for space furnaces was utilized to vacuum plasma spray (VPS) a functional gradient coating on the hot wall of the combustion liner as one continuous operation, eliminating any bondline between the coating and the liner. The coating was NiCrAlY, developed previously as durable protective coatings on space shuttle high pressure fuel turbopump (HPFTP) turbine blades. A thermal model showed that 0.03 in. NiCrAlY applied to the hot wall of the combustion liner would reduce the hot wall temperature 200 F, a 20% reduction, for longer life. Cu-8Cr-4Nb alloy, which was developed by NASA-Glenn Research Center (GRC), and which possesses excellent high temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability, was utilized as the liner material in place of NARloy-Z. The Cu-8Cr-4Nb material exhibits better mechanical properties at 650 C (1200 F) than NARloy-Z does at 538 C (1000 F). VPS formed Cu-8Cr-4Nb combustion chamber liners with a protective NiCrAlY functional gradient coating have been hot fire tested, successfully demonstrating a durable coating for the first time. Hot fire tests along with tensile and low cycle fatigue properties of the VPS formed combustion chamber liners and witness panel specimens are discussed.

  8. Robust Low Cost Aerospike/RLV Combustion Chamber by Advanced Vacuum Plasma Process

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Ellis, David; McKechnie

    1999-01-01

    Next-generation, regeneratively cooled rocket engines will require materials that can withstand high temperatures while retaining high thermal conductivity. At the same time, fabrication techniques must be cost efficient so that engine components can be manufactured within the constraints of a shrinking NASA budget. In recent years, combustion chambers of equivalent size to the Aerospike chamber have been fabricated at NASA-Marshall Space Flight Center (MSFC) using innovative, relatively low-cost, vacuum-plasma-spray (VPS) techniques. Typically, such combustion chambers are made of the copper alloy NARloy-Z. However, current research and development conducted by NASA-Lewis Research Center (LeRC) has identified a Cu-8Cr-4Nb alloy which possesses excellent high-temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability. In fact, researchers at NASA-LeRC have demonstrated that powder metallurgy (P/M) Cu-8Cr-4Nb exhibits better mechanical properties at 1,200 F than NARloy-Z does at 1,000 F. The objective of this program was to develop and demonstrate the technology to fabricate high-performance, robust, inexpensive combustion chambers for advanced propulsion systems (such as Lockheed-Martin's VentureStar and NASA's Reusable Launch Vehicle, RLV) using the low-cost, VPS process to deposit Cu-8Cr-4Nb with mechanical properties that match or exceed those of P/M Cu-8Cr-4Nb. In addition, oxidation resistant and thermal barrier coatings can be incorporated as an integral part of the hot wall of the liner during the VPS process. Tensile properties of Cu-8Cr-4Nb material produced by VPS are reviewed and compared to material produced previously by extrusion. VPS formed combustion chamber liners have also been prepared and will be reported on following scheduled hot firing tests at NASA-Lewis.

  9. Robust Low Cost Liquid Rocket Combustion Chamber by Advanced Vacuum Plasma Process

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Elam, Sandra; Ellis, David L.; McKechnie, Timothy; Hickman, Robert; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Next-generation, regeneratively cooled rocket engines will require materials that can withstand high temperatures while retaining high thermal conductivity. Fabrication techniques must be cost efficient so that engine components can be manufactured within the constraints of shrinking budgets. Three technologies have been combined to produce an advanced liquid rocket engine combustion chamber at NASA-Marshall Space Flight Center (MSFC) using relatively low-cost, vacuum-plasma-spray (VPS) techniques. Copper alloy NARloy-Z was replaced with a new high performance Cu-8Cr-4Nb alloy developed by NASA-Glenn Research Center (GRC), which possesses excellent high-temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability. Functional gradient technology, developed building composite cartridges for space furnaces was incorporated to add oxidation resistant and thermal barrier coatings as an integral part of the hot wall of the liner during the VPS process. NiCrAlY, utilized to produce durable protective coating for the space shuttle high pressure fuel turbopump (BPFTP) turbine blades, was used as the functional gradient material coating (FGM). The FGM not only serves as a protection from oxidation or blanching, the main cause of engine failure, but also serves as a thermal barrier because of its lower thermal conductivity, reducing the temperature of the combustion liner 200 F, from 1000 F to 800 F producing longer life. The objective of this program was to develop and demonstrate the technology to fabricate high-performance, robust, inexpensive combustion chambers for advanced propulsion systems (such as Lockheed-Martin's VentureStar and NASA's Reusable Launch Vehicle, RLV) using the low-cost VPS process. VPS formed combustion chamber test articles have been formed with the FGM hot wall built in and hot fire tested, demonstrating for the first time a coating that will remain intact through the hot firing test, and with no apparent wear. Material physical properties and the hot firing tests are reviewed.

  10. Plasma modeling of MFTF-B and the sensitivity to vacuum conditions

    SciTech Connect

    Porter, G.D.; Rensink, M.

    1984-09-12

    The Mirror Fusion Test Facility (MFTF-B) is a large tandem mirror device currently under construction at Lawrence Livermore National Laboratory. The completed facility will consist of a large variety of components. Specifically, the vacuum vessel that houses the magnetic coils is basically a cylindrical vessel 60 m long and 11 m in diameter. The magnetics system consists of some 28 superconducting coils, each of which is located within the main vacuum vessel. Twenty of these coils are relatively simple solenoidal coils, but the remaining eight are of a more complicated design to provide an octupole component to certain regions of the magnetic field. The vacuum system is composed of a rough vacuum chain, used to evacuate the vessel from atmospheric pressure, and a high vacuum system, used to maintain good vacuum conditions during a plasma shot. High vacuum pumping is accomplished primarily by cryogenic panels cooled to 4.5/sup 0/K. The MFTF-B coil set is shown together with typical axial profiles of magnetic field (a), electrostatic potential (b), and plasma density (c). The plasma is divided into nine regions axially, as labelled on the coil set in Figure 1. The central cell, which is completely azimuthally symmetric, contains a large volume plasma that is confined by a combination of the magnetic fields and the electrostatic potentials in the yin-yang cell.

  11. Plasma Sprayed Pour Tubes and Other Melt Handling Components for Use in Gas Atomization

    SciTech Connect

    Byrd, David; Rieken, Joel; Heidloff, Andy; Besser, Matthew; Anderson, Iver

    2011-04-01

    Ames Laboratory has successfully used plasma sprayed ceramic components made from yttria stabilized zirconia as melt pouring tubes for gas atomization for many years. These tubes have proven to be strong, thermal shock resistant and versatile. Various configurations are possible both internally and externally. Accurate dimensions are achieved internally with a machined fugitive graphite mandrel and externally by diamond grinding. The previous study of the effect of spray parameters on density was extended to determine the effect of the resulting density on the thermal shock characteristics on down-quenching and up-quenching. Encouraging results also prompted investigation of the use of plasma spraying as a method to construct a melt pour exit stopper that is mechanically robust, thermal shock resistant, and not susceptible to attack by reactive melt additions. The Ames Laboratory operates two close-coupled high pressure gas atomizers. These two atomizers are designed to produce fine and coarse spherical metal powders (5{mu} to 500{mu} diameter) of many different metals and alloys. The systems vary in size, but generally the smaller atomizer can produce up to 5 kg of powder whereas the larger can produce up to 25 kg depending on the charge form and density. In order to make powders of such varying compositions, it is necessary to have melt systems capable of heating and containing the liquid charge to the desired superheat temperature prior to pouring through the atomization nozzle. For some metals and alloys this is not a problem; however for some more reactive and/or high melting materials this can pose unique challenges. Figure 1 is a schematic that illustrates the atomization system and its components.

  12. Reactive Plasma Spraying of Fine Al2O3/AlN Feedstock Powder

    NASA Astrophysics Data System (ADS)

    Shahien, Mohammed; Yamada, Motohiro; Yasui, Toshiaki; Fukumoto, Masahiro

    2013-12-01

    Reactive plasma spraying (RPS) is a promising technology for in situ formation of aluminum nitride (AlN) coatings. Recently, AlN-based coatings were fabricated by RPS of alumina (Al2O3) powder in N2/H2 thermal plasma. This study investigated the feasibility of RPS of a fine Al2O3/AlN mixture and the influence of the plasma gases (N2, H2) on the nitriding conversion, and coating microstructure and properties. Thick AlN/Al2O3 coatings with high nitride content were successfully fabricated. The coatings consist of h-AlN, c-AlN, Al5O6N, ?-Al2O3, and a small amount of ?-Al2O3. Use of fine particles enhanced the nitriding conversion and the melting tendency by increasing the surface area. Furthermore, the AlN additive improved the AlN content in the coatings. Increasing the N2 gas flow rate improved the nitride content and complete crystal growth to the h-AlN phase, and enhanced the coating thickness. On the other hand, though the H2 gas is required for plasma nitriding of the Al2O3 particles, increasing its flow rate decreased the nitride content and the coating thickness. Remarkable influence of the plasma gases on the coating composition, microstructure, and properties was observed during RPS of the fine particles.

  13. Isothermal Oxidation Behavior of Supersonic Atmospheric Plasma-Sprayed Thermal Barrier Coating System

    NASA Astrophysics Data System (ADS)

    Bai, Yu; Ding, Chunhua; Li, Hongqiang; Han, Zhihai; Ding, Bingjun; Wang, Tiejun; Yu, Lie

    2013-10-01

    In this work, Y2O3 stabilized zirconia-based thermal barrier coatings (TBCs) were deposited by conventional atmospheric plasma spraying (APS) and high efficiency supersonic atmospheric plasma spraying (SAPS), respectively. The effect of Al2O3 layer stability on the isothermal growth behavior of thermally grown oxides (TGOs) was studied. The results revealed that the Al2O3 layer experienced a three-stage change process, i.e., (1) instantaneous growth stage, (2) steady-state growth stage, and (3) depletion stage. The thickness of Al2O3 scale was proved to be an important factor for the growth rate of TGOs. The SAPS-TBCs exhibited a higher Al2O3 stability and better oxidation resistance as compared with the APS-TBCs. Additionally, it was found that inner oxides, especially nucleated on the top of the crest, continually grew and swallowed the previously formed Al2O3 layer, leading to the granulation and disappearance of continuous Al2O3 scale, which was finally replaced by the mixed oxides and spinel.

  14. Method of forming a plasma sprayed interconnection layer on an electrode of an electrochemical cell

    DOEpatents

    Spengler, C.J.; Folser, G.R.; Vora, S.D.; Kuo, L.; Richards, V.L.

    1995-06-20

    A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO{sub 3} particles doped with an element selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by plasma spraying doped LaCrO{sub 3} powder, preferably compensated with chromium as Cr{sub 2}O{sub 3} and/or dopant element, preferably by plasma arc spraying; and, (C) heating the doped and compensated LaCrO{sub 3} layer to about 1100 C to 1300 C to provide a dense, substantially gas-tight, substantially hydration-free, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the unselected portion of the air electrode, and a fuel electrode can be applied to the solid electrolyte, to provide an electrochemical cell. 6 figs.

  15. Fabrication and Wear Behavior of Nanostructured Plasma-Sprayed 6061Al-SiCp Composite Coating

    NASA Astrophysics Data System (ADS)

    Tailor, Satish; Mohanty, R. M.; Sharma, V. K.; Soni, P. R.

    2014-10-01

    6061Al powder with 15 wt.% SiC particulate (SiCp) reinforcement was mechanically alloyed (MA) in a high-energy attrition mill. The MA powder was then plasma sprayed onto weathering steel (Cor-Ten A242) substrate using an atmospheric plasma spray process. Results of particle size analysis and scanning electron microscopy show that the addition of SiC particles as the reinforcement influences on the matrix grain size and morphology. XRD studies revealed embedment of SiCp in the MA-processed composite powder, and nanocrystals in the MA powder and the coating. Microstructural studies showed a uniform distribution of reinforced SiC particles in the coating. The porosity level in the coating was as low as 2% while the coating hardness was increased to 232VHN. The adhesion strength of the coatings was high and this was attributed to higher degree of diffusion at the interface. The wear rate in the coatings was evaluated using a pin-on-disk type tribometer and found to decrease by 50% compared to the 6061Al matrix coating. The wear mechanism in the coating was delamination and oxidative type.

  16. Thermal shock behavior of alumina/MoSi2 plasma sprayed laminated composites

    SciTech Connect

    Castro, R. G.; Petrovic, J. J.; Vaidya, R. U.; Mendoza, D.

    2001-01-01

    Alumina (Al{sub 2}O{sub 3}) is very susceptible to thermal shock, which leads to strength degradation. By reinforcing Al{sub 2}O{sub 3} with molybdenum disilicide (MoSi{sub 2}) layers, the tolerance to damage caused by thermal shock can be improved. The thermal shock resistance of plasma sprayed Al{sub 2}O{sub 3}/MoSi{sub 2} laminated composites were investigated. Three laminate microstructures having different layer thickness were fabricated by atmospheric plasma spraying while maintaining a 50/50-volume fraction. Quenching experiments done on 4-point bend bars showed a gradual decrease in the strength as the change in temperature ({Delta}T) increased. Thermal shock resistant parameters (R{prime} and R-quadruple prime) provided a representative numerical value of the thermal shock resistance for the laminated composites. The corresponding material properties for the different microstructures were determined experimentally in order to calculate the R{prime} and R quadruple prime values. The intermediate layered composite showed the highest R-quadruple prime va1ue at 1061 {micro}m, while the thin layered composite had the highest R{prime} value at 474 W/m.

  17. Effect of aluminum phosphate additions on composition of three-component plasma-sprayed solid lubricant

    NASA Technical Reports Server (NTRS)

    Jacobson, T. P.; Young, S. G.

    1982-01-01

    Image analysis (IA) and electron microprobe X-ray analysis (EMXA) were used to characterize a plasma-sprayed, self-lubricating coating, NASA LUBE PS106, specified by weight percent as 35NiCr-35Ag-30CaF2. To minimize segregation of the powder mixture during the plasma-spraying procedure, monoaluminum phosphate was added to form agglomerate particles. Three concentrations of AlPO4 were added to the mixtures: 1.25, 2.5, and 6.25 percent by weight. Analysis showed that 1.25 wt% AlPO4 yielded a CaF2 deficiency, 2.5 wt% kept the coating closest to specification, and 6.25 wt% yielded excess CaF2 as well as more impurities and voids and a deficiency in silver. Photomicrographs and X-ray maps are presented. The methods of IA and EMXA complement each other, and the reasonable agreement in the results increases the confidence in determining the coating composition.

  18. Method of forming a plasma sprayed interconnection layer on an electrode of an electrochemical cell

    DOEpatents

    Spengler, Charles J. (Murrysville, PA); Folser, George R. (Lower Burrell, PA); Vora, Shailesh D. (Monroeville, PA); Kuo, Lewis (Monroeville, PA); Richards, Von L. (Anyola, IN)

    1995-01-01

    A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO.sub.3 particles doped with an element selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by plasma spraying doped LaCrO.sub.3 powder, preferably compensated with chromium as Cr.sub.2 O.sub.3 and/or dopant element, preferably by plasma arc spraying; and, (C) heating the doped and compensated LaCrO.sub.3 layer to about 1100.degree. C. to 1300.degree. C. to provide a dense, substantially gas-tight, substantially hydration-free, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the unselected portion of the air electrode, and a fuel electrode can be applied to the solid electrolyte, to provide an electrochemical cell.

  19. Better Quality Control: Stochastic Approaches to Optimize Properties and Performance of Plasma-Sprayed Coatings

    NASA Astrophysics Data System (ADS)

    Heimann, Robert B.

    2010-06-01

    Statistical design of experiment (SDE) methodology applied to design and performance testing of plasma-sprayed coatings follows an evolutionary path, usually starting with classic multiparameter screening designs (Plackett-Burman), and progressing through factorial (Taguchi) to limited response surface designs (Box-Behnken). Modern designs of higher dimensionality, such as central composite and D-optimal designs, will provide results with higher predictive power. Complex theoretical models relying on evolutionary algorithms, and application of artificial neuronal networks (ANNs) and fuzzy logic control (FLC) allow estimating the behavior of the complex plasma spray environment through validation either by key experiments or first-principle calculations. In this review, paper general principles of SDE will be discussed and examples be given that underscore the different powers of prediction of individual statistical designs. Basic rules of ANN and FLC will be briefly touched on, and their potential for increased reliability of coating performance through stringent quality control measures assessed. Salient features will be reviewed of studies performed to optimize thermal coating properties and processes reported in the pertinent literature between 2000 and the present.

  20. Sintering and Interface Strain Tolerance of Plasma-Sprayed Thermal and Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Leissler, George W.; Miller, Robert A.

    2003-01-01

    Ceramic thermal and environmental barrier coatings will be more aggressively designed to protect gas turbine engine hot section SiC/SiC Ceramic Matrix Composite (CMC) components in order to meet future engine higher fuel efficiency and lower emission goals. A coating system consisting of a zirconia-based oxide topcoat (thermal barrier) and a mullite/BSAS silicate inner coat (environmental barrier) is often considered a model system for the CMC applications. However, the coating sintering, and thermal expansion mismatch between the zirconia oxide layer and the silicate environmental barrier/CMC substrate will be of major concern at high temperature and under thermal cycling conditions. In this study, the sintering behavior of plasma-sprayed freestanding zirconia-yttria-based thermal barrier coatings and mullite (and/or barium-strontium-aluminosilicate, i.e., BSAS) environmental barrier coatings was determined using a dilatometer in the temperature range of 1200-1500 C. The effects of test temperature on the coating sintering kinetics were systematically investigated. The plasma-sprayed zirconia-8wt.%yttria and mullite (BSAS) two-layer composite coating systems were also prepared to quantitatively evaluate the interface strain tolerance of the coating system under thermal cycling conditions based on the dilatomentry. The cyclic response of the coating strain tolerance behavior and interface degradation as a function of cycle number will also be discussed.

  1. Continuous spray forming of functionally gradient materials

    SciTech Connect

    McKechnie, T.N.; Richardson, E.H.

    1995-12-01

    Researchers at Plasma Processes Inc. have produced a Functional Gradient Material (FGM) through advanced vacuum plasma spray processing for high heat flux applications. Outlined in this paper are the manufacturing methods used to develop a four component functional gradient material of copper, tungsten, boron, and boron nitride. The FGM was formed with continuous gradients and integral cooling channels eliminating bondlines and providing direct heat transfer from the high temperature exposed surface to a cooling medium. Metallurgical and x-ray diffraction analyses of the materials formed through innovative VPS (vacuum plasma spray) processing are also presented. Applications for this functional gradient structural material range from fusion reactor plasma facing components to missile nose cones to boilers.

  2. Arc-Cathode Coupling in the Modeling of a Conventional DC Plasma Spray Torch

    NASA Astrophysics Data System (ADS)

    Alaya, M.; Chazelas, C.; Mariaux, G.; Vardelle, A.

    2015-01-01

    The plasma torch is the basis of the plasma spray process and understanding of the electric arc dynamics within the plasma torch is necessary for better control of torch and process instabilities. Numerical simulation is a useful tool for investigating the effect of the torch geometry and operating parameters on the electric arc characteristics provided that the model of arc dynamics is reliable and the boundary conditions of the computational domain are well founded. However, such a model should also address the intricate transient and 3D interactions between the electrically conducting fluid and electromagnetic, thermal, and acoustics phenomena. Especially, the description of the electrode regions where the electric arc connects with solid material is an important part of a realistic model of the plasma torch operation as the properties of electric arcs at atmospheric pressure depend not only on the arc plasma medium, but also on the electrodes. This paper describes the 3D and time-dependent numerical simulation of a plasma arc and is focused on the cathode boundary conditions. This model was used to investigate the differences in arc characteristics when the cathode is included into the numerical domain and coupled with the arc. The magnetic and thermal coupling between the cathode and arc made it possible to get rid of the current density boundary condition at the cathode tip that is delicate to predetermine. It also allowed a better prediction of the cathode flow jet generated by the pumping action induced by the interaction of the self-magnetic field with the electric current and so it allowed a better description of the dynamics of arc. It should be a necessary step in the development of a fully predictive model of DC plasma torch operation.

  3. Effect of Substrate and Its Shape on in-Flight Particle Characteristics in Suspension Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Pourang, K.; Moreau, C.; Dolatabadi, A.

    2015-11-01

    Obtaining a uniform coating on curved mechanical parts such as gas turbine blades is one of the industrial challenges in suspension plasma spraying. Through a three dimensional numerical analysis, this study is aimed at providing a better understanding of the effect of substrate curvature on in-flight particle temperature, velocity, and trajectory. The high temperature and high velocity plasma flow is simulated inside the plasma torch using a uniform volumetric heat source in the energy equation. The suspension of yttria-stabilized zirconia particles is molded as a multicomponent droplet while catastrophic breakup regime is considered for simulating the secondary break up when the suspension interacts with the plasma flow. A two-way coupled Eulerian-Lagrangian approach along with a stochastic discrete model was used to track the particle trajectory. Particle size distribution in the vicinity of the substrate at different stand-off distances has been investigated. The results show that sub-micron particles obtain higher velocity and temperature compared to the larger particles. However, due to the small Stokes number associated with sub-micron particles, they are more sensitive to the change of the gas flow streamlines in the vicinity of a curved substrate.

  4. Improvement of Coating Properties in Three-Cathode Atmospheric Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Kopp, N.; Warda, T.; Petkovi?, I.; Zimmermann, S.; Hartz-Behrend, K.; Landes, K.; Forster, G.; Kirner, S.; Marqués, J.-L.; Schein, J.; Prehm, J.; Möhwald, K.; Bach, Fr.-W.

    2013-04-01

    The main aim of this study is to improve the coating properties of three-cathode atmospheric plasma-sprayed coatings with respect to porosity and residual stresses. This was done by means of numerical simulation coupled with advanced diagnostic methods. A numerical model for the triple injection of alumina feedstock, as well as acceleration and heating of the powder particles in the characteristic threefold symmetrical plasma jet cross section produced by a three-cathode-plasma torch, was developed. The modeling results for the standard injector's position "0" were calculated and experimentally verified by laser Doppler anemometry. Based on the criteria defined for the concentrated feedstock transport and homogeneous thermal treatment of powder particles in the plasma jet, the optimal injection position was found. In the next step, a previously developed, coupled CFD-FEM-simulation model was used for simulations of the coating build-up, describing flattening, solidification, and deformation due to shrinkage for alumina particles on a rough substrate surface.

  5. Materials Science and Engineering A316 (2001) 110 Instrumented spherical micro-indentation of plasma-sprayed

    E-print Network

    Suresh, Subra

    2001-01-01

    Materials Science and Engineering A316 (2001) 1­10 Instrumented spherical micro-indentation of plasma-sprayed coatings J. Alcala´ a, *, F. Gaudette a , S. Suresh a , S. Sampath b a Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA b Center

  6. Formation of Expanded Austenite on a Cold-Sprayed AISI 316L Coating by Low-Temperature Plasma Nitriding

    NASA Astrophysics Data System (ADS)

    Adachi, Shinichiro; Ueda, Nobuhiro

    2015-07-01

    Low-temperature plasma nitriding at temperatures below 450 °C is commonly applied to austenitic stainless steels to enhance wear resistance, while maintaining corrosion resistance, by forming expanded austenite (known as the S-phase). In this work, low-temperature plasma nitriding of cold-sprayed AISI 316L coatings was examined. A cold-spray technique was developed to produce metal coatings with less oxidation. However, the cold-sprayed AISI 316L coating obtained by use of nitrogen gas as propellant contained many interconnected pores and cracks, and was, consequently, unsuitable as an anticorrosive coating. Therefore, laser post-treatment was used to modify the coating and increase its density to similar to that of bulk steel. The anticorrosive performance of this coating on a carbon steel substrate in NaCl solution was substantially improved. Subsequent low-temperature plasma nitriding enhanced the wear resistance by two orders of magnitude. It is concluded that cold-sprayed AISI 316L coatings treated by laser post-treatment and subsequent low-temperature plasma nitriding could be used as protective coatings under severe wear and corrosion conditions.

  7. Influence of NH4Cl Powder Addition for Fabrication of Aluminum Nitride Coating in Reactive Atmospheric Plasma Spray Process

    NASA Astrophysics Data System (ADS)

    Shahien, Mohammed; Yamada, Motohiro; Yasui, Toshiaki; Fukumoto, Masahiro

    2011-01-01

    Reactive plasma spray is the key to fabricating aluminum nitride (AlN) thermally sprayed coatings. It was possible to fabricate AlN/Al composite coatings using atmospheric plasma spray process through plasma nitriding of Al powders (Al 30 ?m). The nitriding reaction and the AlN content could be improved by controlling the spray distance and the feedstock powder particle size. Increasing the spray distance and/or using smaller particle size of Al powders improved the in-flight nitriding reaction. However, it was difficult to fabricate thick and dense AlN coatings with an increase in the spray distance and/or when using fine particles. Thus, the coatings thickness was suppressed because of the complete nitriding of some particles (formation of AlN particles) during flight, which prevents the particle deposition. Furthermore, the excessive vaporization of Al fine particles (due to increased particle temperature) decreased the deposition efficiency. To fabricate thick AlN coatings in the reactive plasma spray process, improving the nitriding reaction of the large Al particles at short spray distance is required to decrease the vaporization of Al particles during flight. This study investigated the influence of adding ammonium chloride (NH4Cl) powders on the nitriding process of large Al powders and on the microstructure of the fabricated coatings. It was possible to fabricate thick AlN coatings at 100 mm spray distance with small addition of NH4Cl powders to the Al feedstock powders (30 ?m). Addition of NH4Cl to the starting Al powders promoted the formation of AlN through changing the reaction path to vapor-phase nitridation chlorination-nitridation sequences as confirmed by the thermodynamic analysis of possible intermediate reactions. This changes the nitriding reaction to a mild way, so it is more controlled with no explosive mode and with relatively low heating rates. Thus, NH4Cl acts as a catalyst, nitrogen source, and diluent agent. Furthermore, the evolved gases from the sublimation or decomposition of NH4Cl can prevent the Al particles coalescing after melting.

  8. The expansion of a plasma into a vacuum - Basic phenomena and processes and applications to space plasma physics

    NASA Technical Reports Server (NTRS)

    Wright, K. H., Jr.; Stone, N. H.; Samir, U.

    1983-01-01

    In this review attention is called to basic phenomena and physical processes involved in the expansion of a plasma into a vacuum, or the expansion of a plasma into a more tenuous plasma, in particular the fact that upon the expansion, ions are accelerated and reach energies well above their thermal energy. Also, in the process of the expansion a rarefaction wave propagates into the ambient plasma, an ion front moves into the expansion volume, and discontinuities in plasma parameters occur. The physical processes which cause the above phenomena are discussed, and their possible application is suggested for the case of the distribution of ions and electrons (hence plasma potential and electric fields) in the wake region behind artificial and natural obstacles moving supersonically in a rarefied space plasma. To illustrate this, some in situ results are reexamined. Directions for future work in this area via the utilization of the Space Shuttle and laboratory work are also mentioned.

  9. Structure Analyses of Organic Thin Films Prepared by a Plasma Enhanced Vacuum Evaporation

    NASA Astrophysics Data System (ADS)

    Sugimoto, Ryousuke; Osada, Kousuke; Kurata, Masahiko; Matsumoto, Hiroyuki; Iwamori, Satoru; Noda, Kazutoshi

    Organic thin films were prepared with pyromellitic dianhydride (PMDA) and oxydianiline (ODA) by vacuum evaporation with or without argon plasma, and molecular structures and surface morphologies of the PMDA, ODA, polyamic acid (PAA) and polyimide (PI) thin films were analyzed. The surface roughness decreased due to the plasma during the deposition. Oxygen content of the PMDA thin film prepared with the plasma decreased compared to that without the plasma. However, the PMDA thin film prepared with the plasma had a hydrophilic surface compared to that without the plasma. All of these organic thin films prepared with the plasma had hydrophilic surfaces compared to those without the plasma. Surface roughness of these thin films has a smaller effect on the wettability than hydrophilic moieties.

  10. A Seemingly Simple Task: Filling a Solenoid Volume in Vacuum with Dense Plasma

    SciTech Connect

    Anders, Andre; Kauffeldt, Marina; Roy, Prabir; Oks, Efim

    2010-06-24

    Space-charge neutralization of a pulsed, high-current ion beam is required to compress and focus the beam on a target for warm dense matter physics or heavy ion fusion experiments. We described attempts to produce dense plasma in and near the final focusing solenoid through which the ion beam travels, thereby providing an opportunity for the beam to acquire the necessary charge-compensating electrons. Among the options are plasma injection from four pulsed vacuum arc sources located outside the solenoid, and using a high current (> 4 kA) pulsed vacuum arc plasma from a ring cathode near the edge of the solenoid. The plasma distribution is characterized by photographic means and by an array of movable Langmuir probes. The plasma is produced at several cathode spots distributed azimuthally on the ring cathode. Beam neutralization and compression are accomplished, though issues of density, uniformity, and pulse-to-pulse reproducibly remain to be solved.

  11. Study of High Density Plasma Spray Parameters Using Plasma Coaxial Accelerator

    NASA Astrophysics Data System (ADS)

    El-Gamal, H. A.; Hassouba, M. A.; El-Tayeb, H. A.; Abdul-Moname, M.

    Plasma accelerator was used for the deposition of a material powder placed at a breach. A capacitor bank of 46.26 mF charged to 3 kV (208.17 J) gave a peak current of 8.8 kA after 15 ms. Plasma inductance varied between 3 mH and 1.5 mH while the plasma resistance varied between 5 mW and 300 mW within one shot, while the electron temperature and plasma density near the substrate measured with a double electric probe was about 3 eV and 2.7 ×1013 cm-3, respectively. Carbon plasma velocity at the muzzle was 6.0 cm/ms which agrees with calculations. The deposited graphite powder showed mostly a homogeneous distribution of clusters. The total efficiency of the system, considering both the internal and kinetic energy, was found to be 10.9%.

  12. High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma.

    PubMed

    Vodopyanov, A V; Golubev, S V; Khizhnyak, V I; Mansfeld, D A; Nikolaev, A G; Oks, E M; Savkin, K P; Vizir, A V; Yushkov, G Yu

    2008-02-01

    A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 micros, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed. PMID:18315170

  13. Characterization of gas tunnel type plasma sprayed hydroxyapatite-nanostructure titania composite coatings

    NASA Astrophysics Data System (ADS)

    Yugeswaran, S.; Kobayashi, A.; Ucisik, A. Hikmet; Subramanian, B.

    2015-08-01

    Hydroxyapatite (HA) can be coated onto metal implants as a ceramic biocompatible coating to bridge the growth between implants and human tissue. Meanwhile many efforts have been made to improve the mechanical properties of the HA coatings without affecting its bioactivity. In the present study, nanostructure titania (TiO2) was mixed with HA powder and HA-nanostructure TiO2 composite coatings were produced by gas tunnel type plasma spraying torch under optimized spraying conditions. For this purpose, composition of 10 wt% TiO2 + 90 wt% HA, 20 wt% TiO2 + 80 wt% HA and 30 wt% TiO2 + 70 wt% HA were selected as the feedstock materials. The phase, microstructure and mechanical properties of the coatings were characterized. The obtained results validated that the increase in weight percentage of nanostructure TiO2 in HA coating significantly increased the microhardness, adhesive strength and wear resistance of the coatings. Analysis of the in vitro bioactivity and cytocompatibility of the coatings were done using conventional simulated body fluid (c-SBF) solution and cultured green fluorescent protein (GFP) labeled marrow stromal cells (MSCs) respectively. The bioactivity results revealed that the composite coating has bio-active surface with good cytocompatibility.

  14. Advanced Microscopic Study of Suspension Plasma-Sprayed Zirconia Coatings with Different Microstructures

    NASA Astrophysics Data System (ADS)

    Soko?owski, Pawe?; Paw?owski, Lech; Dietrich, Dagmar; Lampke, Thomas; Jech, David

    2015-09-01

    The present paper is focused on the characterization of the differences between two microstructures that can be obtained using SPS technology, namely (i) columnar and (ii) two-zone microstructure including lamellas and fine unmelted particulates. The optimization of spray parameters was made, and the advanced microstructural studies of obtained coatings were performed. The work was focused on zirconia stabilized by yttria (YSZ, ZrO2 + 14 wt.% Y2O3) and both by yttria and ceria (YCSZ, ZrO2 + 24 wt.% CeO2 + 2.5 wt.% Y2O3) which are frequently used as thermal barrier coatings. Two types of microstructure were achieved using two different plasma torches, namely SG-100 of Praxair and Triplex of Oerlikon Metco. The microstructure of prepared coatings was analyzed using scanning electron microscopy with secondary electrons detector and backscattered electrons. Energy dispersive spectroscopy was performed to analyze the chemical composition of sprayed coatings. By electron backscatter diffraction grain shape, size, and crystal orientation were determined. The analysis enabled the discussion of the coatings growth mechanism. Finally, the Shape From Shading technique was applied to recreate and to analyze 3D views of coatings' topographies, and using laser confocal microscopy, the surface roughness was examined.

  15. Thermo-mechanical behaviour of plasma sprayed yttria stabilized zirconia thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Soltani, Reza

    Thermally sprayed ceramic coatings deposited from agglomerated feedstock powder have often demonstrated improved properties relative to coatings produced from conventional powders. These types of coatings have been reported to exhibit better wear resistance and higher adhesion strength compared to conventional deposits. In order to apply these types of coatings on turbine blades and diesel engine combustion chambers, the thermo-mechanical properties of plasma sprayed yttria stabilized zirconia coating were investigated. Creep strains and creep rates were measured using free standing thick coatings (3 mm) loaded in the four-point bend configuration at a range of temperatures (from 800 to 1200°C in air) and loads (27 to 49 N). Creep exponents and activation energy of the coatings were measured and the results were compared. Under the same test conditions the coating produced from agglomerated feedstock showed a lower creep strain than that produced from conventional powders. The creep strain of deposits was correlated to the microstructure of the coating. A model was developed to predict creep behaviour of coatings based on the thickness of splats. The results showed that the creep resistance is directly proportional to the splat thickness; the thicker the splat the higher is the creep resistance. The effect of splat interface on physical and mechanical properties of zirconia, such as thermal conductivity and elastic modulus of coatings, was investigated, too. It was shown that the high density of splat interfaces results in a lower thermal conductivity and elastic modulus.

  16. Effect of Sintering on Mechanical and Physical Properties of Plasma-Sprayed Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    The effect of sintering on mechanical and physical properties of free-standing plasma-sprayed ZrO2-8 wt% Y2O3 thermal barrier coatings (TBCs) was determined by annealing them at 1316 C in air. Mechanical and physical properties of the TBCs, including strength, modes I and II fracture toughness, elastic modulus, Poisson s response, density, microhardness, fractography, and phase stability, were determined at ambient temperature as a function of annealing time ranging from 0 to 500 h. All mechanical and physical properties, except for the amount of monoclinic phase, increased significantly in 5 to 100 h and then reached a plateau above 100 h. Annealing resulted in healing of microcracks and pores and in grain growth, accompanying densification of the TBC s body due to the sintering effect. However, an inevitable adverse effect also occurred such that the desired lower thermal conductivity and good expansivity, which makes the TBCs unique in thermal barrier applications, were degraded upon annealing. A model was proposed to assess and quantify all the property variables in response to annealing in a normalized scheme. Directionality of as-sprayed TBCs appeared to have an insignificant effect on their properties, as determined via fracture toughness, microhardness, and elastic modulus measurements.

  17. Young's modulus and fatigue behavior of plasma-sprayed alumina coatings

    NASA Astrophysics Data System (ADS)

    Ková?ík, O.; Siegl, J.; Nohava, J.; Chráska, P.

    2005-06-01

    The fatigue behavior and Young’s modulus of plasma-sprayed gray alumina on low-carbon steel substrates were investigated. The investigation of the properties of composites that were defined as “coating-substrate” composites included measurements of the microhardness profile, the residual stress on the top of the coating, and the residual stress profile in the substrate. Fatigue samples were periodically loaded as a cantilever beam on a special testing machine. Failed samples were observed with a scanning electron microscope to determine the failure processes in the coating. The Young’s modulus of the coating was measured by the four-point bending method. Samples were tested both in tension and compression under low (300 N) and high (800 N) loads. The authors’ experiments revealed that the average fatigue lives of coated specimens were nearly two times longer than those of the uncoated specimens. The measurements of Young’s modulus of the coating yielded values that varied between 27 and 53 GPa, with an average value of 43 GPa. Loading in tension caused a decrease in the Young’s modulus of the coating, while loading in compression led to an increase in Young’s modulus. The increase in the lifetime of coated samples was likely due to compressive residual stresses in the substrate, originating during the spray process. The failure of the coating was due to several processes, among which the most important were splat cracking, splat debonding, and the coalescence of cracks through the voids in the coating.

  18. Sliding Wear Response of Nanostructured YSZ Suspension Plasma-Sprayed Coating

    NASA Astrophysics Data System (ADS)

    Kossman, S.; Chicot, D.; Decoopman, X.; Iost, A.; van Gorp, A.; Meillot, E.; Puchi-Cabrera, E. S.; Santana, Y. Y.; Staia, M. H.

    2014-12-01

    Nanostructured yttria-stabilized zirconia coatings for applications in high-temperature environments can be deposited by suspension plasma spraying (SPS) techniques. The present research has been conducted in order to study the sliding wear response of a SPS ZrO2-8% mol. Y2O3 coating (75 ?m in thickness) deposited onto a Haynes 230 substrate, using pin-on-disc tests. Some of the coated samples were subsequently heat-treated for 1 h at 300 and 600 °C. Samples characterization prior and after the wear tests was carried out by SEM, EDS, XRD and optical profilometry techniques. Instrumented indentation was employed to determine elastic modulus and hardness. The results have shown that the as-sprayed and heat-treated samples experienced severe wear (10-13 m3/Nm) and the worst wear performance corresponded to the sample heat treated at 600 °C. Such a behavior could be related to both the structural changes that took place during heat treatment and the nature and level of the residual stresses in the coatings. In general, the morphologies of the wear tracks observed by SEM have shown a smoothing of the surface, brittle fracture, smearing and grain pull-out.

  19. Miniature pulsed vacuum arc plasma gun and apparatus for thin-film fabrication

    DOEpatents

    Brown, Ian G. (Berkeley, CA); MacGill, Robert A. (Richmond, CA); Galvin, James E. (Emmeryville, CA); Ogletree, David F. (El Cerrito, CA); Salmeron, Miquel (El Cerrito, CA)

    1998-01-01

    A miniature (dime-size in cross-section) vapor vacuum arc plasma gun is described for use in an apparatus to produce thin films. Any conductive material can be layered as a film on virtually any substrate. Because the entire apparatus can easily be contained in a small vacuum chamber, multiple dissimilar layers can be applied without risk of additional contamination. The invention has special applications in semiconductor manufacturing.

  20. Miniature pulsed vacuum arc plasma gun and apparatus for thin-film fabrication

    DOEpatents

    Brown, I.G.; MacGill, R.A.; Galvin, J.E.; Ogletree, D.F.; Salmeron, M.

    1998-11-24

    A miniature (dime-size in cross-section) vapor vacuum arc plasma gun is described for use in an apparatus to produce thin films. Any conductive material can be layered as a film on virtually any substrate. Because the entire apparatus can easily be contained in a small vacuum chamber, multiple dissimilar layers can be applied without risk of additional contamination. The invention has special applications in semiconductor manufacturing. 8 figs.

  1. Use of Polycarbonate Vacuum Vessels in High-Temperature Fusion-Plasma Research

    SciTech Connect

    B. Berlinger, A. Brooks, H. Feder, J. Gumbas, T. Franckowiak and S.A. Cohen

    2012-09-27

    Magnetic fusion energy (MFE) research requires ultrahigh-vacuum (UHV) conditions, primarily to reduce plasma contamination by impurities. For radiofrequency (RF)-heated plasmas, a great benefit may accrue from a non-conducting vacuum vessel, allowing external RF antennas which avoids the complications and cost of internal antennas and high-voltage high-current feedthroughs. In this paper we describe these and other criteria, e.g., safety, availability, design flexibility, structural integrity, access, outgassing, transparency, and fabrication techniques that led to the selection and use of 25.4-cm OD, 1.6-cm wall polycarbonate pipe as the main vacuum vessel for an MFE research device whose plasmas are expected to reach keV energies for durations exceeding 0.1 s

  2. Microwave reflections from a vacuum ultraviolet laser produced plasma sheet

    E-print Network

    Scharer, John E.

    is attractive because of its short turn on/off time, high reflectivity, and because it has negligible inertia close to that from a metal plate. The optically generated plasma in this experiment has a high plasma density making it useful for the reflection of higher frequency microwaves and has a turn-on time of on 10

  3. Determination of the Mechanical Properties of Plasma-Sprayed Hydroxyapatite Coatings Using the Knoop Indentation Technique

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Fahad; Wang, James; Berndt, Christopher

    2015-06-01

    The microhardness and elastic modulus of plasma-sprayed hydroxyapatite coatings were evaluated using Knoop indentation on the cross section and on the top surface. The effects of indentation angle, testing direction, measurement location and applied load on the microhardness and elastic modulus were investigated. The variability and distribution of the microhardness and elastic modulus data were statistically analysed using the Weibull modulus distribution. The results indicate that the dependence of microhardness and elastic modulus on the indentation angle exhibits a parabolic shape. Dependence of the microhardness values on the indentation angle follows Pythagoras's theorem. The microhardness, Weibull modulus of microhardness and Weibull modulus of elastic modulus reach their maximum at the central position (175 µm) on the cross section of the coatings. The Weibull modulus of microhardness revealed similar values throughout the thickness, and the Weibull modulus of elastic modulus shows higher values on the top surface compared to the cross section.

  4. Influence of plasma spraying deposition process on optical properties of hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Belka, Rados?aw; Kowalski, Szymon; ?órawski, Wojciech; Sucha?ska, Ma?gorzata

    2015-09-01

    Hydroxyapatite (HAp) is a well-known bioceramic, nonorganic material of the bones of the vertebrate responsible for their mechanical durability. In human bones it occupies 60-80 % of the volume depending on a number of factors. Synthetic HAp is valued in bone endoprosthetic to its high biocompatibility. It is widely used to fill cavities of bone and as the coating of bone implants to increase their biocompatibility and adhesion to bone surface. In this paper a diffuse reflectance spectra of plasma-spraying deposited hydroxyapatite were presented and compared with pure powder samples. Optical band gap were estimated basing on Kubelka-Munk functions and Tauc plot extrapolation. We found that deposition process affects the value of band gap.

  5. Creep of plasma-sprayed-ZrO2 thermal-barrier coatings

    NASA Technical Reports Server (NTRS)

    Firestone, R. F.; Logan, W. R.; Adams, J. W.; Bill, R. C., Jr.

    1982-01-01

    Specimens of plasma-sprayed-zirconia thermal-barrier coatings with three different porosities and different initial particle sizes were deformed in compression at initial loads of 6900, 13,800, and 24,100 kPa (1000, 2000, and 3500 psi) and temperatures of 1100, 1250, and 1400 C. The coatings were stabilized with lime, MgO, and two different concentrations of Y2O3. Creep began as soon as the load was applied and continued at a constantly decreasing rate until the load was removed. Temperature and stabilization had a pronounced effect on creep rate while the stress, particle size, and porosity had a lesser effect. Creep deformation was due to cracking and particle sliding.

  6. Diffusion research between Ni 3Al coating and titanium alloy produced by plasma spraying process

    NASA Astrophysics Data System (ADS)

    Wang, Wenming; Yang, Bin; Du, Lingzhong; Zhang, Weigang

    2010-03-01

    A Ni 3Al coating was prepared by plasma spraying technique on the surface of titanium alloy. Ni-Al mixed powders, coatings and reaction products were investigated by scanning electron microscope, EDS, DSC and XRD. A tight bonding between the coating and the substrate was formed. The X-ray diffraction analysis of the patterns showed that the coating not only had Ni 3Al phase, but also had NiO and Al 2O 3 phase microcontent. Comparing Ni coated Al to Ni 3Al at 900 °C, the diffusion was stronger and the diffusion layer was thicker. A minute pore structure was formed at 1200 °C in the front edge of solid-state reaction layer. So Ni 3Al restrained the solid-state reaction of the coating with the substrate, and as a whole weakened the entry of oxygen atoms into the substrate and quenched the out-diffusion of titanium.

  7. Features of plasma sprayed beryllium armor for the ITER first wall

    NASA Astrophysics Data System (ADS)

    Nygren, R. E.; Youchison, D. L.; Hollis, K. J.

    2007-08-01

    Two water-cooled mockups with CuCrZr heat sinks and plasma sprayed beryllium (PS Be) armor, 5 and 10 mm thick respectively, were fabricated at Los Alamos National Laboratory and thermally cycled at Sandia at 1 and 2 MW/m 2. The castellated surface of the CuCrZr mechanically locked the armor. The resulting PS Be morphology controlled cracking during thermal cycling. Post test examinations showed transverse cracks perpendicular to the surface of the armor that would relieve thermal stresses but not degrade heat transfer. The mockups and two others previously produced for the European Fusion Development Agreement had somewhat porous armor, with a thermal conductivity estimated to be about 1/4 that of fully dense beryllium, due to the low (600-650 °C) substrate temperature during deposition specifically requested by EFDA to avoid subsequent heat treating of CuCrZr. Some melting of the armor was expected and observed in the tests.

  8. Mechanical Properties of Air Plasma Sprayed Environmental Barrier Coating (EBC) Materials

    NASA Technical Reports Server (NTRS)

    Richards, Bradley; Zhu, Dongming; Ghosn, Louis; Wadley, Haydn

    2015-01-01

    Development work in Environmental Barrier Coatings (EBCs) for Ceramic Matrix Composites (CMCs) has focused considerably on the identification of materials systems and coating architectures to meet application needs. The evolution of these systems has occurred so quickly that modeling efforts and requisite data for modeling lag considerably behind development. Materials property data exists for many systems in the bulk form, but the effects of deposition on the critical properties of strength and fracture behavior are not well studied. We have plasma sprayed bulk samples of baseline EBC materials (silicon, ytterbium disilicate) and tested the mechanical properties of these materials to elicit differences in strength and toughness. We have also endeavored to assess the mixed-mode fracture resistance, Gc, of silicon in a baseline EBC applied to SiCSiC CMC via four point bend test. These results are compared to previously determined properties of the comparable bulk material.

  9. Preparation and antibacterial effect of plasma sprayed wollastonite coatings loading silver

    NASA Astrophysics Data System (ADS)

    li, Baoe; Liu, Xuanyong; Cao, Cong; Meng, Fanhao; Dong, Yuqi; Cui, Ting; Ding, Chuanxian

    2008-11-01

    In this work, the plasma sprayed wollastonite coating was soaked in 5 wt% AgNO 3 solution at room temperature to load silver for improving its antibacterial effect. The surface characteristics of the silver-loaded coating were investigated by SEM, EDS and XRD. The release rate of silver from the coating was measured by ICP-OES in deionized water. The osteotoxicity of the silver-loaded coating was evaluated by in vitro cell culturing test. The antibacterial activity against Staphylococcus aureus was examined by Zone of Inhibition test. The results showed that the loaded silver reacted with the wollastonite coating to form silver silicate, which ensured a sustained release of silver in deionized water for as long as 50 days. The antibacterial activity and cell culturing tests confirmed that the silver released from silver-loaded wollastonite coating had strong inhibition against the growth of S. aureus, while they did not exhibit any adverse effects on the osteoblasts proliferation.

  10. Electrochemical polarisation studies on plasma-sprayed nickel-based superalloy

    NASA Astrophysics Data System (ADS)

    Khan, M. Adam

    2015-08-01

    The plasma-sprayed NiCr-Cr2O3 and Al2O3-40 % TiO2 powders are deposited as coating on nickel-based superalloy. The electrochemical polarisation studies were carried out with 1.0 M H2SO4 solution as a corrosive medium. The corrosion current density of the coated sample was found to be decreased and exhibits better corrosion resistance than bare metal. The characterisation studies on the exposed sample result reveal that the bare metal has undergone severe intergranular attack and segregation on austenitic phase. The corrosion products formed are in the form of sulphides, and contribution of sulphur was noticed through EDS analysis.

  11. Low Pressure Plasma Sprayed Overlay Coatings for GRCop-84 Combustion Chamber Liners for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Barrett, C.; Ghosn, L. J.; Lerch, B.; Robinson,; Thorn, G.

    2005-01-01

    An advanced Cu-8(at.%)Cr-4%Nb alloy developed at NASA's Glenn Research Center, and designated as GRCop-84, is currently being considered for use as combustor chamber liners and nozzle ramps in NASA s future generations of reusable launch vehicles (RLVs). However, past experience has shown that unprotected copper alloys undergo an environmental attack called "blanching" in rocket engines using liquid hydrogen as fuel and liquid oxygen as the oxidizer. Potential for sulfidation attack of the liners in hydrocarbon-fueled engines is also of concern. Protective overlay coatings alloys are being developed for GRCop-84. The development of this coatings technology has involved a combination of modeling, coatings development and characterization, and process optimization. Coatings have been low pressure plasma sprayed on GRCop-84 substrates of various geometries and shapes. Microstructural, mechanical property data and thermophysical results on the coated substrates are presented and discussed.

  12. Wide-temperature-spectrum self-lubricating coatings prepared by plasma spraying

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.

    1979-01-01

    Self-lubricating, multicomponent coatings, which lubricate over a wide range of operating conditions, are described. The coatings were successfully applied by plasma-spraying mixed powders onto superalloy substrates. They were evaluated in friction and wear experiments, and in sliding contact bearing tests. These coatings are wear resistant by virtue of their self lubricating characteristics rather than because of extreme hardness; a further benefit is low friction. Experiments with simple pin on disk sliding specimens and oscillating plain cylindrical bearing tests were performed to evaluate the tribological properties of the coatings. It was shown that coatings of nichrome, glass and calcium fluoride are self-lubricating from about 500 to 900 C, but give high friction at the lower temperatures. The addition of silver to the coating composition improved the low temperature bearing properties and resulted in coatings which are self-lubricating from cryogenic temperatures to at least 870 C; they are therefore, wide temperature spectrum, self-lubricating compositions.

  13. Synthesis, characterization and physical properties of Al-Cu-Fe quasicrystalline plasma sprayed coatings

    SciTech Connect

    Daniel, S.

    1995-11-09

    Our lab has been working with plasma spraying of both high pressure gas atomized (HPGA) and cast and crushed quasicrystal powders. A major component of this research includes comparative studies of PAS coatings formed with starting powders prepared by both techniques. In addition, a thorough investigation of the effects of starting powder particle size on coating microstructure is included. During the course of the overall research, an interest developed in forming Al-Cu-Fe materials with finer grain sizes. Therefore, a brief study was performed to characterize the effect of adding boron to Al-Cu-Fe materials prepared by different techniques. In addition to characterizing the microstructural features of the above materials, oxidation and wear behavior was also examined.

  14. Rapid sample preconcentration by spray deposition for electrothermal vaporization inductively coupled plasma spectrometry

    NASA Astrophysics Data System (ADS)

    Alary, Jean-François; Salin, Eric D.

    1995-06-01

    The deposition of aqueous sample in an electrothermal vaporization unit (ETV) is implemented by spraying onto a graphite tube heated at 160°C. The water is evaporated continuously and vented by a flow of argon, leaving the analytes on the inner walls of the graphite cuvet. The analytes are later atomized at high temperature and directly to an inductively coupled plasma for atomic emission spectrometry (ICP-AES). The effects of observation height, argon flow in the furnace unit at atomization, and plasma energy on the signal-to-noise ratio were studied. The combination of the advantages of ETV with a sample volume of 1 ml provides detection limits for Cd (0.06 ng/ml), Pb (0.3 ng/ml), Zn (0.02 ng/ml) and Cu (0.04 ng/ml) which are an improvement of two orders of magnitude when compared with conventional nebulization. Moreover, the ETV allows a more convenient interface to the plasma than similar direct sample insertion (DSI) experiments.

  15. Induction Plasma Sprayed Nano Hydroxyapatite Coatings on Titanium for Orthopaedic and Dental Implants

    PubMed Central

    Roy, Mangal; Bandyopadhyay, Amit; Bose, Susmita

    2011-01-01

    This paper reports preparation of a highly crystalline nano hydroxyapatite (HA) coating on commercially pure titanium (Cp-Ti) using inductively coupled radio frequency (RF) plasma spray and their in vitro and in vivo biological response. HA coatings were prepared on Ti using normal and supersonic plasma nozzles at different plate powers and working distances. X-ray diffraction (XRD) and Fourier transformed infrared spectroscopic (FTIR) analysis show that the normal plasma nozzle lead to increased phase decomposition, high amorphous calcium phosphate (ACP) phase formation, and severe dehydroxylation of HA. In contrast, coatings prepared using supersonic nozzle retained the crystallinity and phase purity of HA due to relatively short exposure time of HA particles in the plasma. In addition, these coatings exhibited a microstructure that varied from porous and glassy structure at the coating-substrate interface to dense HA at the top surface. The microstructural analysis showed that the coating was made of multigrain HA particles of ~200 nm in size, which consisted of recrystallized HA grains in the size range of 15– 20 nm. Apart from the type of nozzle, working distance was also found to have a strong influence on the HA phase decomposition, while plate power had little influence. Depending on the plasma processing conditions, a coating thickness between 300 and 400 ?m was achieved where the adhesive bond strengths were found to be between 4.8 MPa to 24 MPa. The cytotoxicity of HA coatings was examined by culturing human fetal osteoblast cells (hFOB) on coated surfaces. In vivo studies, using the cortical defect model in rat femur, evaluated the histological response of the HA coatings prepared with supersonic nozzle. After 2 weeks of implantation, osteoid formation was evident on the HA coated implant surface, which could indicate early implant- tissue integration in vivo. PMID:21552358

  16. Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings.

    PubMed

    Fielding, Gary A; Roy, Mangal; Bandyopadhyay, Amit; Bose, Susmita

    2012-08-01

    Infection in primary total joint prostheses is estimated to occur in up to 3% of all surgery. As a measure to improve the antimicrobial properties of implant materials silver (Ag) was incorporated into plasma sprayed hydroxyapatite (HA) coatings. To offset potential cytotoxic effects of Ag in the coatings strontium (Sr) was also added as a binary dopant. HA powder was doped with 2.0 wt.% Ag(2)O, 1.0 wt.% SrO and was then heat treated at 800 °C. Titanium substrates were coated using a 30 kW plasma spray system equipped with a supersonic nozzle. X-ray diffraction confirmed the phase purity and high crystallinity of the coatings. Samples were evaluated for mechanical stability by adhesive bond strength testing. The results show that the addition of dopants did not affect the overall bond strength of the coatings. The antibacterial efficacies of the coatings were tested against Pseudomonas aeruginosa. Samples that contained the Ag(2)O dopant were found to be highly effective against bacterial colonization. In vitro cell-material interactions using human fetal osteoblast cells were characterized by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay for cell viability, field emission scanning electron microscopy for cell morphology and confocal imaging for the important differentiation marker alkaline phosphatase (ALP). Our results showed evidence of cytotoxic effects of the Ag-HA coatings, characterized by poor cellular morphology and cell death and nearly complete loss of functional ALP activity. The addition of SrO to the Ag-HA coatings was able to effectively offset these negative effects and improve performance compared with pure HA-coated samples. PMID:22487928

  17. Deposition of nanostructured photocatalytic zinc ferrite films using solution precursor plasma spraying

    SciTech Connect

    Dom, Rekha; Sivakumar, G.; Hebalkar, Neha Y.; Joshi, Shrikant V.; Borse, Pramod H.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Highly economic solution precursor route capable of producing films/coating even for mass scale production. Black-Right-Pointing-Pointer Pure spinel phase ZnFe{sub 2}O{sub 4} porous, immobilized films deposited in single step. Black-Right-Pointing-Pointer Parameter optimization yields access to nanostructuring in SPPS method. Black-Right-Pointing-Pointer The ecofriendly immobilized ferrite films were active under solar radiation. Black-Right-Pointing-Pointer Such magnetic system display advantage w.r.t. recyclability after photocatalyst extraction. -- Abstract: Deposition of pure spinel phase, photocatalytic zinc ferrite films on SS-304 substrates by solution precursor plasma spraying (SPPS) has been demonstrated for the first time. Deposition parameters such as precursor solution pH, concentration, film thickness, plasma power and gun-substrate distance were found to control physico-chemical properties of the film, with respect to their crystallinity, phase purity, and morphology. Alkaline precursor conditions (7 < pH {<=} 10) were found to favor oxide film formation. The nanostructured films produced under optimized conditions, with 500 mM solution at pH {approx} 8.0, yielded pure cubic phase ZnFe{sub 2}O{sub 4} film. Very high/low precursor concentrations yielded mixed phase, less adherent, and highly inhomogeneous thin films. Desired spinel phase was achieved in as-deposited condition under appropriately controlled spray conditions and exhibited a band gap of {approx}1.9 eV. The highly porous nature of the films favored its photocatalytic performance as indicated by methylene blue de-coloration under solar radiation. These immobilized films display good potential for visible light photocatalytic applications.

  18. Fireside Corrosion Behavior of HVOF and Plasma-Sprayed Coatings in Advanced Coal/Biomass Co-Fired Power Plants

    NASA Astrophysics Data System (ADS)

    Hussain, T.; Dudziak, T.; Simms, N. J.; Nicholls, J. R.

    2013-06-01

    This article presents a systematic evaluation of coatings for advanced fossil fuel plants and addresses fireside corrosion in coal/biomass-derived flue gases. A selection of four candidate coatings: alloy 625, NiCr, FeCrAl and NiCrAlY were deposited onto superheaters/reheaters alloy (T91) using high-velocity oxy-fuel (HVOF) and plasma spraying. A series of laboratory-based fireside corrosion exposures were carried out on these coated samples in furnaces under controlled atmosphere for 1000 h at 650 °C. The tests were carried out using the "deposit-recoat" test method to simulate the environment that was anticipated from air-firing 20 wt.% cereal co-product mixed with a UK coal. The exposures were carried out using a deposit containing Na2SO4, K2SO4, and Fe2O3 to produce alkali-iron tri-sulfates, which had been identified as the principal cause of fireside corrosion on superheaters/reheaters in pulverized coal-fired power plants. The exposed samples were examined in an ESEM with EDX analysis to characterize the damage. Pre- and post-exposure dimensional metrologies were used to quantify the metal damage in terms of metal loss distributions. The thermally sprayed coatings suffered significant corrosion attack from a combination of aggressive combustion gases and deposit mixtures. In this study, all the four plasma-sprayed coatings studied performed better than the HVOF-sprayed coatings because of a lower level of porosity. NiCr was found to be the best performing coating material with a median metal loss of ~87 ?m (HVOF sprayed) and ~13 ?m (plasma sprayed). In general, the median metal damage for coatings had the following ranking (in the descending order: most to the least damage): NiCrAlY > alloy 625 > FeCrAl > NiCr.

  19. Thin film synthesis using miniature pulsed metal vapor vacuum arc plasma guns

    SciTech Connect

    Godechot, X.; Salmeron, M.B.; Ogletree, D.F.; Galvin, J.E.; MacGill, R.A.; Dickinson, M.R.; Yu, K.M.; Brown, I.G.

    1990-04-01

    Metallic coatings can be fabricated using the intense plasma generated by the metal vapor vacuum arc. We have made and tested an embodiment of vacuum arc plasma source that operates in a pulsed mode, thereby acquiring precise control over the plasma flux and so also over the deposition rate, and that is in the form of a miniature plasma gun, thereby allowing deposition of metallic thin films to be carried out in confined spaces and also allowing a number of such guns to be clustered together. The plasma is created at the cathode spots on the metallic cathode surface, and is highly ionized and of directed energy a few tens of electron volts. Adhesion of the film to the substrate is thus good. Virtually all of the solid metals of the Periodic Table can be used, including highly refractory metals like tantalum and tungsten. Films, including multilayer thin films, can be fabricated of thickness from Angstroms to microns. We have carried out preliminary experiments using several different versions of miniature, pulsed, metal vapor vacuum arc plasma guns to fabricate metallic thin films and multilayers. Here we describe the plasma guns and their operation in this application, and present examples of some of the thin film structures we have fabricated, including yttrium and platinum films of thicknesses from a few hundred Angstroms up to 1 micron and an yttrium-cobalt multilayer structure of layer thickness about 100 Angstroms. 33 refs., 5 figs.

  20. The effect of thermal aging on the thermal conductivity of plasma sprayed and EB-PVD thermal barrier coatings

    SciTech Connect

    Dinwiddie, R.B.; Beecher, S.C.; Porter, W.D.; Nagaraj, B.A.

    1996-05-01

    Thermal barrier coatings (TBCs) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBCs is of primary importance. Electron beam-physical vapor deposition (EV-PVD) and air plasma spraying (APS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The density of the APS coatings was controlled by varying the spray parameters. The low density APS yttria-partially stabilized zirconia (yttria-PSZ) coatings yielded a thermal conductivity that is lower than both the high density APS coatings and the EB-PVD coatings. The thermal aging of both fully and partially stabilized zirconia are compared. The thermal conductivity of the coatings permanently increases upon exposure to high temperatures. These increases are attributed to microstructural changes within the coatings. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the EB-PVD coatings are less susceptible to thermal aging effects, results suggest that they typically have a higher thermal conductivity than APS coatings before thermal aging. The increases in thermal conductivity due to thermal aging for plasma sprayed partially stabilized zirconia have been found to be less than for plasma sprayed fully stabilized zirconia coatings.

  1. Charge separation effects in magnetized electron-ion plasma expansion into a vacuum

    E-print Network

    Kazumi Nishimura; Edison Liang; S. Peter Gary

    2003-07-25

    Charge separation effects in the expansion of magnetized relativistic electron-ion plasmas into a vacuum are examined using 2-1/2-dimensional particle-in-cell plasma simulations. The electrostatic field at the plasma surface decelerates electrons and accelerates ions. A fraction of the surface electrons are trapped and accelerated by the pondermotive force of the propagating electromagnetic pulse, a mechanism we call the DRPA (diamagnetic relativistic pulse accelerator). This charge separation is enhanced as the initial plasma temperature is decreased. The overall energy gain of the plasma particles through the expansion strongly depends on the initial plasma temperature. Moreover, the electrons become relatively less energized and the ions more energized as the plasma temperature decreases.

  2. Fore-Vacuum Plasma Electron Gun of Ribbon Beam

    NASA Astrophysics Data System (ADS)

    Burdovitsin, Viktor; Burachevsky, Yurii; Oks, Efim; Fedorov, Michael

    2003-06-01

    Plasma electron gun for ribbon beam generation was designed on the basis of glow discharge with hollow cathode. Electrons were extracted through emission hole in the anode from plasma boundary, stabilized by metal mesh, and accelerated by the voltage applied between the anode and extractor. Electron beam was of 25 cm width, 1 cm thickness. Beam current and energy were of 0.1-1 A and 2-6 keV respectively, at gas pressure of 10 - 60 mTorr. Maximum parameters are defined mostly by the acceleration gap geometry. Current density distribution along the beam width depends on the gas pressure and total beam current. At pressures higher than 30 mTorr local current maximums appear in the electron beam. They look as streams, and their positions are determined by the anode mesh deviation from flatness, but they are always at the edges of the beam. Our experiments show that in the absence of electron emission plasma density distribution in a hollow cathode maintains maximums at edges but their amounts are not more than 5 percents. At the same time, local beam maximums are about two times more. It means there is another reason of non-uniformity. We believe this intensifying is caused by gas ionization in the acceleration gap and back-stream ion flow to discharge plasma. Recharging in plasma, these ions increase plasma density and that, in its turn, leads to stream intensifying and so on. Local plasma density growth is balanced by ion diffusion from this excite zone. Lower pressure, lower ion back flow and lower plasma non-uniformity.

  3. Contamination due to memory effects in filtered vacuum arc plasma deposition systems

    SciTech Connect

    Martins, D.R.; Salvadori, M.C.; Verdonck, P.; Brown, I.G.

    2002-08-13

    Thin film synthesis by filtered vacuum arc plasma deposition is a widely used technique with a number of important emerging technological applications. A characteristic feature of the method is that during the deposition process not only is the substrate coated by the plasma, but the plasma gun itself and the magnetic field coil and/or vacuum vessel section constituting the macroparticle filter are also coated to some extent. If then the plasma gun cathode is changed to a new element, there can be a contamination of the subsequent film deposition by sputtering from various parts of the system of the previous coating species. We have experimentally explored this effect and compared our results with theoretical estimates of sputtering from the SRIM (Stopping and Range of Ions in Matter) code. We find film contamination of order 10-4 - 10-3, and the memory of the prior history of the deposition hardware can be relatively long-lasting.

  4. Contamination due to memory effects in filtered vacuum arc plasma deposition systems

    NASA Astrophysics Data System (ADS)

    Martins, D. R.; Salvadori, M. C.; Verdonck, P.; Brown, I. G.

    2002-09-01

    Thin film synthesis by filtered vacuum arc plasma deposition is a widely used technique with a number of important emerging technological applications. A characteristic feature of the method is that during the deposition process not only is the substrate coated by the plasma, but the plasma gun itself and the magnetic field coil and/or vacuum vessel section constituting the macroparticle filter are also coated to some extent. If then the plasma gun cathode is changed to a new element, there can be a contamination of the subsequent film deposition by sputtering from various parts of the system of the previous coating species. We have experimentally explored this effect and compared our results with theoretical estimates of sputtering from the stopping and range of ions in matter code. We find film contamination of the order of 10-4-10-3, and the memory of the prior history of the deposition hardware can be relatively long lasting.

  5. The Effect of Plasma Spraying on the Microstructure and Aging Kinetics of the Al-Si Matrix Alloy and Al-Si/SiC Composites

    NASA Astrophysics Data System (ADS)

    Altunpak, Yahya; Akbulut, Hatem; Üstel, Fatih

    2010-02-01

    The Al-Si (LM 13)-based matrix alloy reinforced with SiC particles containing 10, 20, and 30 vol.% SiC particles were spray-formed onto Al-Si substrates. The sprayed samples were directly subjected to a standard aging treatment (T551). From the experiments, it was observed that the high rate of solidification resulted in very fine silicon particles which were observed as continuous islands in the matrix and each island exhibited several very fine silicon crystals. Analysis showed that plasma-spraying caused an increased solid solubility of the silicon in the aluminum matrix. DSC measurements in the permanent mold-cast Al-Si matrix alloy and plasma-sprayed Al-Si matrix alloy showed that plasma-spraying causes an increase in the amount of GP-zone formation owing to the very high rate solidification after plasma-spraying. In the plasma-sprayed Al-Si/SiC composites GP zones were suppressed, since particle-matrix interfaces act as a sink for vacancies during quenching from high plasma process temperature. Introduction of SiC particles to the Al-Si age-hardenable alloy resulted in a decrease in the time required to reach plateau matrix hardness owing to acceleration of aging kinetics by ceramic SiC particles.

  6. Resonant mode for a dc plasma spray torch by means of pressure-voltage coupling: application to synchronized liquid injection

    NASA Astrophysics Data System (ADS)

    Krowka, J.; Rat, V.; Coudert, J. F.

    2013-06-01

    Electric arc instabilities in dc plasma torches result in non-homogeneous treatment of nanosized solid particles injected into the plasma jets. In the particular case of suspension plasma spraying, large discrepancies in the particles trajectories and thermal histories make the control of coating properties more difficult to achieve. In this paper, a new approach of arc dynamics highlights the existence of different resonant modes and the possibility of their coupling. This study leads us to design a special plasma torch working in a very regular pulsed regime. Then, an innovative injection system based on the drop-on-demand method synchronized with the plasma oscillations is presented as an efficient method to control the dynamics of plasma/particles interactions.

  7. Hot corrosion behavior of low pressure plasma sprayed NiCoCrAlY+Ta coatings on nickel base superalloys

    SciTech Connect

    Frances, M.; Steinmetz, P.; Steinmetz, J.; Duret, C.; Mevrel, R.

    1985-11-01

    The hot corrosion behavior of NiCoCrAlY+Ta coatings obtained by low-pressure plasma spraying has been investigated (type I hot corrosion with T = 850/sup 0/C). These coatings have been deposited on two nickel-base superalloys and on a cast alloy of the same composition as the coating. Comparison of the cyclic oxidation behavior at 850/sup 0/C between the sprayed coating and the cast alloy shows that the sprayed material exhibits a satisfactory and higher resistance than the cast alloy. In the latter case, repeated spalling of the oxide scale results from fractures often associated with Y-rich oxide protrusions. Hot corrosion experiments (salt-spraying test with T = 850/sup 0/C and thermal cycling in air every hour) have been conducted on two cast alloys, NiCoCrAl+Ta and NiCoCrAlY+Ta. The Y-containing alloy has a better corrosion resistance than the other alloy which is subject to extensive oxide spallation. In both cases, morphologies typical of basic fluxing processes, involving Cr, Al, Y, and Ta can be observed in highly attacked zones. Finally, tests on plasma sprayed coatings show a high resistance to hot corrosion of these coatings, regardless of the substrate used: a fine adherent alumina layer is formed, and only a limited fluxing of Cr, Al, and Y takes place. The quite different results obtained on cast and sprayed alloys imply that data relative to cast alloys can be unreliable when one wants to predict high temperature behavior and especially lifetimes of overlay coatings.

  8. Radio frequency (RF) suspension plasma sprayed ultra-fine hydroxyapatite (HA)/zirconia composite powders.

    PubMed

    Kumar, Rajendra; Cheang, P; Khor, K A

    2003-07-01

    Ultra-fine hydroxyapatite (HA)/ZrO(2) composite powders was synthesised by radio frequency (RF) induction suspension plasma spray. A wet suspension of HA/ZrO(2) was employed as feedstock. The suspension was injected axially into the RF plasma to produce the nano-composite powders, which were subsequently accumulated in cyclone collectors. The particle size and morphology was resolved by using the Zeta potential nano-particle size analyser, scanning electron microscopy, transmission electron microscopy, field emission microscopy techniques. The phase composition, phase concentration, and, molecular structure of the powders were characterised using differential scanning calorimetry, Fourier transform infra-red and X-ray diffractometry with quantitative phase analysis empowered by the Rietveld method. Results indicated that nano-size, spherical HA/ZrO(2) composite powders were produced with varying morphological features that depend on the thermal treatment. Calcium zirconate (CaZrO(3)) was produced as a byproduct whose biocompatibility is not well documented. Results also showed that the HA decomposed into alpha and beta-TCP due to decreasing Ca/P ratio with the formation of CaZrO(3). PMID:12726715

  9. Preparation of Nanocomposite GDC/LSCF Cathode Material for IT-SOFC by Induction Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Shen, Yan; Almeida, Veronica Alexandra B.; Gitzhofer, François

    2011-01-01

    Homogeneous mixtures of Ce0.8Gd0.2O1.9 (GDC) and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) nanopowders were successfully synthesized using induction plasma by axial injection of a solution. The resulting nanocomposite powders consisted of two kinds of nanopowders with different mass ratio of GDC/LSCF, such as 3/7 and 6/4. The morphological features, crystallinity, and the phases of the synthesized powders were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), local energy-dispersive x-ray spectroscopy (EDS) analysis, and x-ray diffraction (XRD). The nanopowders are almost globular in shape with a diameter smaller than 100 nm and their BET specific areas are around 20 m2 g-1. The GDC and LSCF phases are well distributed in the nanopowders. In addition, suspensions, made with the as-synthesized composite nanopowders and ethanol, were used to deposit cathode coatings using suspension plasma spray (SPS). Micro-nanostructures of the coatings are discussed. The coatings are homogeneous and porous (51% porosity) with cauliflower structures.

  10. Laser-plasma-based vacuum-ultraviolet light source for tunable single-photon ionization

    NASA Astrophysics Data System (ADS)

    Borghese, Antonio; di Palma, Tonia M.

    2007-08-01

    Vacuum-UV radiation from Xe jet-target laser-produced plasmas has been produced, spectrally dispersed, and efficiently focused onto a line-shaped interaction volume by adopting an embedded-in-the-chamber spectrograph geometry. Time-resolved 2D Rayleigh light scattering imaging has been carried out for visualizing the gas jet-laser plasma interaction and optimizing the emission intensity and the spectral resolution. We have calibrated the measured photon fluxes, reaching values higher than 1013 photons/pulse cm2 nm in the 100-200 nm wavelength range within the first 20 ns from the laser pulse onset. The vacuum-UV light source is predicted to enable sensitive and selective single-photon ionization for time-of-flight mass spectrometry and similar vacuum-UV spectroscopy applications.

  11. Structure, mechanical performance and electrochemical characterization of plasma sprayed SiO 2/Ti-reinforced hydroxyapatite biomedical coatings

    NASA Astrophysics Data System (ADS)

    Morks, M. F.; Fahim, N. F.; Kobayashi, A.

    2008-12-01

    For achieving an excellent bioactivity and mechanical properties, silica and titanium-reinforced hydroxyapatite composite coatings were deposited onto 304 SUS substrate by using a gas-tunnel plasma spraying system. A commercial HA powder of average size 10-45 ?m was blended with fused amorphous silica and titanium powders with HA:SiO 2:Ti wt.% ratios of 75:15:10 respectively. The mixed powders have been plasma sprayed at various plasma gas flow rates (Ar) of 120, 140, 160 and 170 l/min. The morphologies and structure of the resulting coatings were investigated by scanning electron microscope, X-ray diffraction and electron dispersive spectroscopy. Hardness, abrasive wear resistance and adhesive bonding strength properties of the as-sprayed composite coatings were investigated. Silica and titanium provide reinforcement via increasing the bonding strength of HA particles and abrasion resistance. A heat treatment for the sprayed coatings was carried out at a temperature of 650 °C for 2 h in ambient oxygen and the change in the phase structure was analysed by X-ray diffraction. The results showed a formation of TiO 2 (rutile) phase due to titanium oxidation at 650 °C. On the other hand, the heat treatment enhanced the crystallinity of HA coating by transferring the non-apatite tri-calcium phosphate phase into apatite phase. The corrosion resistance measurement by polarization method confirmed the improvement of corrosion resistance of the composite HA/SiO 2/Ti coatings compared with the pure HA. However, the annealed samples showed lower corrosion resistance compared with as-sprayed samples.

  12. Cavitation-erosion of thermal sprayed hardfacing coatings

    SciTech Connect

    Guo, X.

    1988-01-01

    An investigation has been carried out on the cavitation-erosion behavior of thermal sprayed WC-Co and Tribaloy (T-400) coatings. The thermal spray processes used were air and vacuum plasma spraying and hypersonic flame or Jet Kote spraying. The principal goals of this work were to investigate the influence of the three types of spray processes on the coating microstructure and cavitation-erosion behavior. It was found that spray atmosphere is a critical parameter in thermal spraying of WC-Co coatings. For the case of WC-Co materials, decomposition and dissolution of the carbide occur during air plasma and Jet Kote spraying processes, while no apparent decomposition and dissolution of the carbide were observed for vacuum plasma spraying. Tribaloy coatings produced by these three spray processes showed metastable mixtures of amorphous and microcrystalline phases, as well as supersaturated solid solution due to rapid solidification. Upon the heat treatment (at 1175 C for 5 minutes), these metastable phases were transformed to more stable phases. Laser treatment gave a dense coating surface structure, pore-free and crack-free surfaces, and resulted in significantly improved cavitation-erosion resistance. The main factors leading to enhanced cavitation-erosion resistance of the Tribaloy coatings are: (i) high coating density; (ii) high proportion of Laves phase; (iii) stress-induced phase transformation; and (iv) a low level of microstructural defects. The corrosive aspects of cavitation-erosion and electrochemical measurements showed that porosity was the predominant factor influencing cavitation-corrosion and corrosion behaviors.

  13. Theory of coherent transition radiation generated at a plasma-vacuum interface

    SciTech Connect

    Schroeder, Carl B.; Esarey, Eric; van Tilborg, Jeroen; Leemans, Wim P.

    2003-06-26

    Transition radiation generated by an electron beam, produced by a laser wakefield accelerator operating in the self-modulated regime, crossing the plasma-vacuum boundary is considered. The angular distributions and spectra are calculated for both the incoherent and coherent radiation. The effects of the longitudinal and transverse momentum distributions on the differential energy spectra are examined. Diffraction radiation from the finite transverse extent of the plasma is considered and shown to strongly modify the spectra and energy radiated for long wavelength radiation. This method of transition radiation generation has the capability of producing high peak power THz radiation, of order 100 (mu)J/pulse at the plasma-vacuum interface, which is several orders of magnitude beyond current state-of-the-art THz sources.

  14. Sterilization of dielectric containers using a fore-vacuum pressure plasma-cathode electron source

    NASA Astrophysics Data System (ADS)

    Zolotukhin, D.; Burdovitsini, V.; Oks, E.; Tyunkov, A.; Yushkov, Yu

    2015-11-01

    We describe our work on sterilization of 10 ml glass and 60 ml plastic cylindrical containers using a fore-vacuum pressure, plasma-cathode, electron beam source. Beam plasma is formed inside the vessel by injection of a low-energy electron beam at 3 - 6 keV energy and current of 50 mA, at a working gas (air) pressure of 8 Pa. The gas composition was tracked by a quadrupole gas analyzer type RGA-100. As a test biological object for sterilization we used E. coli ATCC 25922 bacteria, the inner surface of each vessel was inoculated with a bacterial suspension. We find a smooth dependence of the degree of sterilization on the total energy density injected into the vessel. The efficacy of sterilization of container inner surfaces using a fore-vacuum pressure, plasma-cathode e-beam source of relatively low energy (a few keV) electrons is thus demonstrated.

  15. Generation of high charge state platinum ions on vacuum arc plasma heated by gyrotron radiation.

    PubMed

    Yushkov, G Yu; Vodopyanov, A V; Nikolaev, A G; Izotov, I V; Savkin, K P; Golubev, S V; Oks, E M

    2014-02-01

    The hybrid high charge metal ion source based on vacuum arc plasma heated by gyrotron radiation into simple magnetic trap has been developed. Two types of magnetic traps were used: a mirror configuration and a cusp one with inherent "minimum-B" structure. Pulsed high power (>100 kW) gyrotrons with frequency 37.5 GHz and 75 GHz were used for heating the vacuum arc plasma injected into the traps. Two different ways were used for injecting the metal plasma-axial injection by a miniature arc source located on-axis near the microwave window, and simultaneous radial injection by a number of sources mounted radially at the midplane of the traps. This article represents all data gathered for platinum ions, thus making comparison of the experimental results obtained with different traps and injections convenient and accurate. PMID:24593607

  16. An Assessment of the Residual Stresses in Low Pressure Plasma Sprayed Coatings on an Advanced Copper Alloy

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Ghosn, L. J.; Agarwal, A.; Lachtrupp, T. P.

    2002-01-01

    Modeling studies were conducted on low pressure plasma sprayed (LPPS) NiAl top coat applied to an advanced Cu-8(at.%)Cr-4%Nb alloy (GRCop-84) substrate using Ni as a bond coat. A thermal analysis suggested that the NiAl and Ni top and bond coats, respectively, would provide adequate thermal protection to the GRCop-84 substrate in a rocket engine operating under high heat flux conditions. Residual stress measurements were conducted at different depths from the free surface on coated and uncoated GRCop-84 specimens by x-ray diffraction. These data are compared with theoretically estimated values assessed by a finite element analysis simulating the development of these stresses as the coated substrate cools down from the plasma spraying temperature to room temperature.

  17. Preliminary study of cyclic thermal shock resistance of plasma-sprayed zirconium oxide turbine outer air seal shrouds

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Wisander, D. W.

    1977-01-01

    Several experimental concepts representing potential high pressure turbine seal material systems were subjected to cyclic thermal shock exposures similar to those that might be encountered under severe engine start-up and shut-down sequences. All of the experimental concepts consisted of plasma-sprayed yttria stabilized ZrO2 on the high temperature side of the blade tip seal shroud. Between the ZrO2 and a cooled, dense metal backing, various intermediate layer concepts intended to mitigate thermal stresses were incorporated. Performance was judged on the basis of the number of thermal shock cycles required to cause loss of seal material through spallation. The most effective approach was to include a low modulus, sintered metal pad between the ZrO2 and the metallic backing. It was also found that reducing the density of the ZrO2 layer significantly improved the performance of specimens with plasma-sprayed metal/ceramic composite intermediate layers.

  18. Fabrication of ceramic substrate-reinforced and free forms by mandrel plasma spraying metal-ceramic composites

    NASA Technical Reports Server (NTRS)

    Quentmeyer, R. J.; Mcdonald, G.; Hendricks, R. C.

    1985-01-01

    Components fabricated of, or coated with, ceramics have lower parasitic cooling requirements. Techniques are discussed for fabricating thin-shell ceramic components and ceramic coatings for applications in rocket or jet engine environments. Thin ceramic shells with complex geometric forms involving convolutions and reentrant surfaces were fabricated by mandrel removal. Mandrel removal was combined with electroplating or plasma spraying and isostatic pressing to form a metal support for the ceramic. Rocket engine thrust chambers coated with 0.08 mm (3 mil) of ZrO2-8Y2O3 had no failures and a tenfold increase in engine life. Some measured mechanical properties of the plasma-sprayed ceramic are presented.

  19. Plasma-sprayed metal-glass and metal-glass fluoride coatings for lubrication to 900 C

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.

    1973-01-01

    Plasma-sprayed composites, which have good oxidation-resistance and self-lubricating characteritics to 900 C, were developed. The composites are a nichrome matrix containing dispersed glass for oxidation protection and calcium fluoride for lubrication; they are applied to bearing surfaces by plasma spraying layers about 0.050 centimeters thick which are then machined to 0.025 centimeters. Oscillating bearing tests were performed in air to 900 C at unit radial loads up to 3.5 x 10 to the 7th power N/sq M (5000 psi) and a thrust load of 1960N (440 lbs). Bearings with a composite liner in the bore were in good condition after over 50,000 oscillating cycles accumulated during repeated, bearing temperatures cycles between 25 and 900 C.

  20. Plasma-sprayed metal-glass and metal-glass fluoride coatings for lubrication to 900 C

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.

    1974-01-01

    Plasma-sprayed composites, which have good oxidation resistance and self-lubricating characteristics to 900 C, were developed. The composites are a nichrome matrix containing dispersed glass for oxidation protection and calcium fluoride for lubrication; they are applied to bearing surfaces by plasma spraying layers about 0.050 cm thick which are then machined to 0.025 cm. Oscillating bearing tests were performed in air to 900 C at unit radial loads up to 5000 psi and a thrust load of 440 lb. Bearings with a composite liner in the bore were in good condition after over 50,000 oscillating cycles accumulated during repeated bearing temperature cycles between 25 and 900 C.

  1. Failure of thick, low density air plasma sprayed thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Helminiak, Michael Aaron

    This research was directed at developing fundamental understandings of the variables that influence the performance of air plasma sprayed (APS) yttria-stabilized zirconia (YSZ) thermal barrier coatings (TBC). Focus was placed on understanding how and why each variable influenced the performance of the TBC system along with how the individual variables interacted with one another. It includes research on the effect of surface roughness of NiCoCrAlY bond coats deposited by argon-shrouded plasma spraying, the interdiffusion behavior of bond coats coupled to commercial superalloys, and the microstructural and compositional control of APS topcoats to maximize the coating thicknesses that can be applied without spallation. The specimens used for this research were prepared by Praxair Surface Technologies and have been evaluated using cyclic oxidation and thermal shock tests. TBC performance was sensitive to bond coat roughness with the rougher bond coats having improved cyclic performance than the smoother bond coats. The explanation being the rough bond coat surface hindered the propagation of the delamination cracks. The failure mechanisms of the APS coatings were found to depend on a combination of the topcoat thickness, topcoat microstructure and the coefficient of thermal expansion (CTE) mismatch between the superalloy and topcoat. Thinner topcoats tended to fail at the topcoat/TGO interface due to bond coat oxidation whereas thicker topcoats failed within the topcoat due to the strain energy release rate of the thicker coating exceeding the fracture strength of the topcoat. Properties of free-standing high and conventional purity YSZ topcoats of both a lowdensity (LD) and dense-vertically fissure (DVF) microstructures were evaluated. The densification rate and phase evolution were sensitive to the YSZ purity and the starting microstructure. Increasing the impurity content resulted in enhanced sintering and phase decomposition rates, with the exception of the conventional-purity DVF which exhibited a density decrease during sintering. A combination of the DVF and LD topcoat microstructures (dual TBC) resulted in significant increase in cyclic durability. A 1275 mum thick dual TBC coating was found to have a comparable furnace cyclic life to that of a 100 im LD TBC.

  2. Structure and electronic properties features of amorphous chalhogenide semiconductor films prepared by ion-plasma spraying

    SciTech Connect

    Korobova, N. Timoshenkov, S.; Almasov, N.; Prikhodko, O.; Tsendin, K.

    2014-10-21

    Structure of amorphous chalcogenide semiconductor glassy As-S-Se films, obtained by high-frequency (HF) ion-plasma sputtering has been investigated. It was shown that the length of the atomic structure medium order and local structure were different from the films obtained by thermal vacuum evaporation. Temperature dependence of dark conductivity, as well as the dependence of the spectral transmittance has been studied. Conductivity value was determined at room temperature. Energy activation conductivity and films optical band gap have been calculated. Temperature and field dependence of the drift mobility of charge carriers in the HF As-S-Se films have been shown. Bipolarity of charge carriers drift mobility has been confirmed. Absence of deep traps for electrons in the As{sub 40}Se{sub 30}S{sub 30} spectrum of localized states for films obtained by HF plasma ion sputtering was determined. Bipolar drift of charge carriers was found in amorphous As{sub 40}Se{sub 30}S{sub 30} films obtained by ion-plasma sputtering of high-frequency, unlike the films of these materials obtained by thermal evaporation.

  3. Use of vacuum arc plasma guns for a metal puff Z-pinch system

    SciTech Connect

    Rousskikh, A. G.; Zhigalin, A. S.; Oreshkin, V. I.; Chaikovsky, S. A.; Labetskaya, N. A.; Baksht, R. B.

    2011-09-15

    The performance of a metal puff Z-pinch system has been studied experimentally. In this type of system, the initial cylindrical shell 4 cm in diameter was produced by ten plasma guns. Each gun initiates a vacuum arc operating between magnesium electrodes. The net current of the guns was 80 kA. The arc-produced plasma shell was compressed by using a 450-kA, 450-ns driver, and as a result, a plasma column 0.3 cm in diameter was formed. The electron temperature of the plasma reached 400 eV at an average ion concentration of 1.85 {center_dot} 10{sup 18} cm{sup -3}. The power of the Mg K-line radiation emitted by the plasma for 15-30 ns was 300 MW/cm.

  4. Enhanced cycle capacity retention of plasma-sprayed SiOx nanocomposite powders for negative electrode of lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Kambara, Makoto; Oda, Nobuhiko; Homma, Keiichiro

    2015-01-01

    Core-shell SiOx nanocomposite powders have been produced in a single continuous plasma spray process. The addition of CH4 at appropriate amounts during plasma spraying of SiO was found to be quite effective in promoting the reduction of SiO and thus increasing the crystalline Si amount after the disproportionation reaction. The half-coin cell assembled using these powders for the negative electrode has exhibited a stable capacity higher than 1000 mAh/g with the coulombic efficiency of around 99.3%, both of which are higher values than those of the cell with raw SiO. Electrochemical analysis has revealed that the resistance at the SiOx particle surface decreases potentially with Li2O formation from the beginning of the first lithiation. The decrease in the resistance is further enhanced by the addition of CH4, although more volume change is expected because of the increased crystalline Si phase content. As a result, the core-shell SiO nanocomposite produced by plasma spraying with CH4 becomes advantageous in attaining high capacity and high retention efficiency simultaneously.

  5. Method of forming a leak proof plasma sprayed interconnection layer on an electrode of an electrochemical cell

    DOEpatents

    Kuo, Lewis J. H. (Monroeville, PA); Vora, Shailesh D. (Monroeville, PA)

    1995-01-01

    A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an electrode structure of an electrochemical cell by: (A) providing an electrode structure; (B) forming on a selected portion of the electrode surface, an interconnection layer having the general formula La.sub.1-x M.sub.x Cr.sub.1-y N.sub.y O.sub.3, where M is a dopant selected from the group of Ca, Sr, Ba, and mixtures thereof, and where N is a dopant selected from the group of Mg, Co, Ni, Al, and mixtures thereof, and where x and y are each independently about 0.075-0.25, by thermally spraying, preferably plasma arc spraying, a flux added interconnection spray powder, preferably agglomerated, the flux added powder comprising flux particles, preferably including dopant, preferably (CaO).sub.12. (Al.sub.2 O.sub.3).sub.7 flux particles including Ca and Al dopant, and LaCrO.sub.3 interconnection particles, preferably undoped LaCrO.sub.3, to form a dense and substantially gas-tight interconnection material bonded to the electrode structure by a single plasma spraying step; and, (C) heat treating the interconnection layer at from about 1200.degree. to 1350.degree. C. to further densify and heal the micro-cracks and macro-cracks of the thermally sprayed interconnection layer. The result is a substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode structure. The electrode structure can be an air electrode, and a solid electrolyte layer can be applied to the unselected portion of the air electrode, and further a fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell for generation of electrical power.

  6. Method of forming a leak proof plasma sprayed interconnection layer on an electrode of an electrochemical cell

    DOEpatents

    Kuo, L.J.H.; Vora, S.D.

    1995-02-21

    A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an electrode structure of an electrochemical cell by: (A) providing an electrode structure; (B) forming on a selected portion of the electrode surface, an interconnection layer having the general formula La{sub 1{minus}x}M{sub x}Cr{sub 1{minus}y}N{sub y}O{sub 3}, where M is a dopant selected from the group of Ca, Sr, Ba, and mixtures thereof, and where N is a dopant selected from the group of Mg, Co, Ni, Al, and mixtures thereof, and where x and y are each independently about 0.075--0.25, by thermally spraying, preferably plasma arc spraying, a flux added interconnection spray powder, preferably agglomerated, the flux added powder comprising flux particles, preferably including dopant, preferably (CaO){sub 12}(Al{sub 2}O{sub 3}){sub 7} flux particles including Ca and Al dopant, and LaCrO{sub 3} interconnection particles, preferably undoped LaCrO{sub 3}, to form a dense and substantially gas-tight interconnection material bonded to the electrode structure by a single plasma spraying step; and (C) heat treating the interconnection layer at from about 1,200 to 1,350 C to further densify and heal the micro-cracks and macro-cracks of the thermally sprayed interconnection layer. The result is a substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode structure. The electrode structure can be an air electrode, and a solid electrolyte layer can be applied to the unselected portion of the air electrode, and further a fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell for generation of electrical power. 4 figs.

  7. Coherent forward stimulated Brillouin scattering of a spatially incoherent laser beam in a plasma and its effect on beam spray

    E-print Network

    Grech, M; Pesme, D; Weber, S; Tikhonchuk, V T

    2008-01-01

    A statistical model for forward stimulated Brillouin scattering (FSBS) is developed for a spatially incoherent, monochromatic, laser beam propagating in a plasma. A threshold for the average power in a speckle is found, well below the self-focusing one, above which the laser beam spatial incoherence can not prevent the coherent growth of FSBS. Three-dimensional simulations confirm its existence and reveal the onset of beam spray above it. From these results, we propose a new figure of merit for the control of the propagation through a plasma of a spatially incoherent laser beam.

  8. Continuous spray forming of functionally gradient materials

    SciTech Connect

    McKechnie, T.N.; Richardson, E.H.; Watson, R.D.

    1995-12-31

    Researchers at Plasma Processes Inc. have produced a Functional Gradient Material (FGM) through advanced vacuum plasma spray processing for high heat flux applications. Outlined in this paper are the manufacturing methods used to develop a four component functional gradient material of copper, tungsten, boron, and boron nitride. The FGM was formed with continuous gradients and integral cooling channels eliminating bondlines and providing direct heat transfer from the high temperature exposed surface to a cooling medium. Metallurgical and X-ray diffraction analyses of the materials formed through innovative VPS processing are also presented. Applications for this functional gradient structural material range from fusion reactor plasma facing components to missile nose cones to boilers.

  9. Effect of substrate preheating temperature and coating thickness on residual stress in plasma sprayed hydroxyapatite coating

    NASA Astrophysics Data System (ADS)

    Tang, Dapei

    2015-07-01

    A thermal-mechanical coupling model was developed based on thermal-elastic- plastic theory according the special process of plasma spraying Hydroxyapatite (HA) coating upon Ti-6Al-4V substrate. On the one hand, the classical Fourier transient heat conduction equation was modified by introducing the effect item of deformation on temperature, on the other hand, the Johnson-Cook model, suitable for high temperature and high strain rate conditions, was used as constitutive equation after considering temperature softening effect, strain hardening effect and strain rate reinforcement effect. Based on the above coupling model, the residual stress field within the HA coating was simulated by using finite element method (FEM). Meanwhile, the substrate preheating temperature and coating thickness on the influence of residual stress components were calculated, respectively. The failure modes of coating were also preliminary analyzed. In addition, in order to verify the reliability of calculation, the material removal measurement technique was applied to determine the residual stress of HA coating near the interface. Some important conclusions are obtained.

  10. Plasma-Sprayed Thermal Barrier Coatings with Enhanced Splat Bonding for CMAS and Corrosion Protection

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Yao, Shu-Wei; Wang, Li-Shuang; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2015-10-01

    The infiltration of molten CMAS in thermal barrier coatings (TBCs) at high temperature is significantly affected by the microstructure of the ceramic coating. Enhancing the bonding ratio between splats can reduce the interconnected pores and suppress the infiltration of the molten CMAS into the coating. In this study, a dual-layered (DL) TBC with the dense 8YSZ on the top of the conventional porous 8YSZ was proposed to enhance CMAS corrosion of atmospheric plasma-sprayed YSZ. The dense YSZ coating with improved lamellar bonding was deposited at a higher deposition temperature. The microstructure of the coatings before and after CMAS attack test was characterized by scanning electron microscopy. It was clearly revealed that by adjusting the microstructure and applying a dense ceramic layer with the improved interface bonding on the top of porous TBC, the infiltration of CMAS into porous YSZ coating can be effectively suppressed. Moreover, by designing DL TBCs, the thermal conductivity of the TBC system exhibits a limited increase. Thus with the design of DL structure, the TBCs with high CMAS corrosion resistance and low thermal conductivity can be achieved.

  11. Sintering and Creep Behavior of Plasma-Sprayed Zirconia and Hafnia Based Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1998-01-01

    The sintering and creep of plasma-sprayed ceramic thermal barrier coatings under high temperature conditions are complex phenomena. Changes in thermomechanical and thermophysical properties and in the stress response of these coating systems as a result of the sintering and creep processes are detrimental to coating thermal fatigue resistance and performance. In this paper, the sintering characteristics of ZrO2-8wt%y2O3, ZrO2-25wt%CeO2-2.5wt%Y2O3, ZrO2-6w%NiO- 9wt%Y2O3, ZrO2-6wt%Sc2O3-2wt%y2O3 and HfO2-27wt%y2O3 coating materials were investigated using dilatometry. It was found that the HfO2-Y2O3 and baseline ZrO2-Y2O3 exhibited the best sintering resistance, while the NiO-doped ZrO2-Y2O3 showed the highest shrinkage strain rates during the tests. Higher shrinkage strain rates of the coating materials were also observed when the specimens were tested in Ar+5%H2 as compared to in air. This phenomenon was attributed to an enhanced metal cation interstitial diffusion mechanism under the reducing conditions. It is proposed that increased chemical stability of coating materials will improve the material sintering resistance.

  12. Low cycle fatigue behavior of a plasma-sprayed coating material

    SciTech Connect

    Gayda, J.; Gabb, T.P.; Miner, R.V. Jr.

    1986-01-01

    Single crystal nickel-base superalloys employed in turbine blade applications are often used with a plasma spray coating for oxidation and hot corrosion resistance. These coatings may also affect fatigue life of the superalloy substrate. As part of a large program to understand the fatigue behavior of coated single crystals, fully reversed, total strain controlled fatigue tests were run on a free standing NiCoCrAlY coating alloy, PWA 276, at 0.1 Hz. Fatigue tests were conducted at 650 C, where the NiCoCrAlY alloy has modest ductility, and at 1050 C, where it is extremely ductile, showing tensile elongation in excess of 100 percent. At the lower test temperature, deformation induced disordering softened the NiCoCrAlY alloy, while at the higher test temperature cyclic hardening was observed which was linked to gradual coarsening of the two phase microstructure. Fatigue life of the NiCoCrAlY alloy was significantly longer at the higher temperature. Further, the life of the NiCoCrAlY alloy exceeds that of coated, /001/-oriented PWA 1480 single crystals at 1050 C, but at 650 C the life of the coated crystal is greater than that of the NiCoCrAlY alloy on a total strain basis.

  13. Air jet erosion test on plasma sprayed surface by varying erodent impingement pressure and impingement angle

    NASA Astrophysics Data System (ADS)

    Behera, Ajit; Behera, Asit; Mishra, S. C.; Pani, S.; Parida, P.

    2015-02-01

    Fly-ash premixed with quartz and illmenite powder in different weight proportions are thermal sprayed on mild steel and copper substrates at various input power levels of the plasma torch ranging from 11 kW to 21 kW DC. The erosion test has done using Air Jet erosion test Reg (As per ASTM G76) with silica erodent typically 150-250 pm in size. Multiple tests were performed at increasing the time duration from 60 sec to 180 sec with increasing pressure (from 1 bar to 2.5 bar) and angle (60° & 90°). This study reveals that the impact velocity and impact angle are two most significant parameters among various factors influencing the wear rate of these coatings. The mechanisms and microstructural changes that arise during erosion wear are studied by using SEM. It is found that, when erodent are impacting the fresh un-eroded surface, material removal occurs by the continuous evolution of craters on the surface. Upper layer splats are removed out after 60 sec and second layer splat erosion starts. Based on these observations Physical models are developed. Some graphs plotted between mass loss-rate versus time period/impact Pressure/impact Angle gives good correlation with surface features observed.

  14. New Material Concepts for the Next Generation of Plasma-Sprayed Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Stöver, D.; Pracht, G.; Lehmann, H.; Dietrich, M.; Döring, J.-E.; Vaßen, R.

    2004-03-01

    In application as a thermal barrier coating (TBC), partially stabilized zirconia (Zr) approaches some limits of performance. To further enhance the efficiency of gas turbines, higher temperature capability and a longer lifetime of the coating are needed for the next generation of TBCs. This paper presents the development of new materials and concepts for application as TBC. Materials whose compositions have the pyrochlore structure or doped Zr are presented in contrast with new concepts like nanolayers between the top and bond coat, metal-glass composites, and double-layer structures. In the last concept, the new compositions are used in a combination with Zr, as a double, multi, or graded layer coating. In this case, the benefits of Zr will be combined with the promising properties of the new top coating. In the case of metal-glass composites, the paper will be focused on the influences of different plasma spraying processes on the microstructure. The performance of all these different coating systems has been evaluated by burner rig tests. The results will be presented and discussed.

  15. Microstructural design of functionally graded coatings composed of suspension plasma sprayed hydroxyapatite and bioactive glass.

    PubMed

    Cattini, Andrea; Bellucci, Devis; Sola, Antonella; Paw?owski, Lech; Cannillo, Valeria

    2014-04-01

    Various bioactive glass/hydroxyapatite (HA) functional coatings were designed by the suspension plasma spraying (SPS) technique. Their microstructure, scratch resistance, and apatite-forming ability in a simulated body fluid (SBF) were compared. The functional coatings design included: (i) composite coating, that is, randomly distributed constituent phases; (ii) duplex coating with glass top layer onto HA layer; and (iii) graded coating with a gradual changing composition starting from pure HA at the interface with the metal substrate up to pure glass on the surface. The SPS was a suitable coating technique to produce all the coating designs. The SBF tests revealed that the presence of a pure glass layer on the working surface significantly improved the reactivity of the duplex and graded coatings, but the duplex coating suffered a relatively low scratch resistance because of residual stresses. The graded coating therefore provided the best compromise between mechanical reliability and apatite-forming ability in SBF. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 551-560, 2014. PMID:24123895

  16. Quasistatic vs. Dynamic Modulus Measurements Of Plasma-Sprayed Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Morscher, G. N.; Choi, S. R.

    2002-01-01

    Plasma-sprayed 8wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) have been demonstrated to exhibit nonlinear hysteretic elastic behavior by quasistatic cyclic compression and cylindrical punch indentation measurements. In particular, the instantaneous (tangential) elastic modulus increases with applied stress and exhibits significant hysteresis during cycling. Sound velocity (dynamic) measurements also show an increase in TBC modulus with applied compressive stress, but in contrast show no significant hysteresis for the modulus during cycling. The nonlinear elastic behavior of the TBCs evidenced by these tests is attributed to coating compaction and internal sliding. The differences between the quasistatic and dynamic measurements are explained by the relative absence of the effect of internal sliding in the dynamic modulus measurements. By incorporating short load reversals into the larger loading cycle and measuring the instantaneous modulus at the start of each load reversal, the effects of internal sliding can be substantially reduced in the quasistatic measurements, and the resulting modulus values show good agreement with the modulus values determined by dynamic sound velocity measurements.

  17. Process-Property Relationship for Air Plasma-Sprayed Gadolinium Zirconate Coatings

    NASA Astrophysics Data System (ADS)

    Dwivedi, Gopal; Tan, Yang; Viswanathan, Vaishak; Sampath, Sanjay

    2015-02-01

    The continuous need of elevating operating temperature of gas turbine engines has introduced several challenges with the current state-of-the-art yttria-stabilized zirconia (YSZ)-based thermal barrier coatings (TBCs), requiring examination of new TBC material with high temperature phase stability, lower thermal conductivity, and resistance to environmental ash particles. Gadolinium zirconate (Gd2Zr2O7) (GDZ) has been shown to meet many of these requirements, and has, in fact, been successfully implemented in to engine components. However, several fundamental issues related to the process-ability, toughness, and microstructural differences for GDZ when compared to equivalent YSZ coating. This study seeks to critically address the process-structure-property correlations for plasma-sprayed GDZ coating subjected to controlled parametric exploration. Use of in-flight diagnostics coupled with in situ and ex situ coating property monitoring allows examination and comparison of the process-property interplay and the resultant differences between the two TBC compositions. The results indicate that it is feasible to retain material chemistry and fabricate relevant microstructures of interest with GDZ with concomitant performance advantages such as low conductivity, mechanical compliance, sintering resistance, and suppression of environmentally induced damage from ash particles. This study provides a framework for optimal design and manufacturing of emergent multi-layer and multi-material TBCs.

  18. The low cycle fatigue behavior of a plasma-sprayed coating material

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Miner, R. V., Jr.

    1986-01-01

    Single crystal nickel-base superalloys employed in turbine blade applications are often used with a plasma spray coating for oxidation and hot corrosion resistance. These coatings may also affect fatigue life of the superalloy substrate. As part of a large program to understand the fatigue behavior of coated single crystals, fully reversed, total strain controlled fatigue tests were run on a free standing NiCoCrAlY coating alloy, PWA 276, at 0.1 Hz. Fatigue tests were conducted at 650 C, where the NiCoCrAlY alloy has modest ductility, and at 1050 C, where it is extremely ductile, showing tensile elongation in excess of 100 percent. At the lower test temperature, deformation induced disordering softened the NiCoCrAlY alloy, while at the higher test temperature cyclic hardening was observed which was linked to gradual coarsening of the two phase microstructure. Fatigue life of the NiCoCrAlY alloy was significantly longer at the higher temperature. Further, the life of the NiCoCrAlY alloy exceeds that of coated, /001/-oriented PWA 1480 single crystals at 1050 C, but at 650 C the life of the coated crystal is greater than that of the NiCoCrAlY alloy on a total strain basis.

  19. Plasma Sprayed Bondable Stainless Surface (BOSS) Coatings for Corrosion Protection and Adhesion Treatments

    NASA Technical Reports Server (NTRS)

    Davis, G. D.; Groff, G. B.; Rooney, M.; Cooke, A. V.; Boothe, R.

    1995-01-01

    Plasma-sprayed Bondable Stainless Surface (BOSS) coatings are being developed under the Solid Propulsion Integrity Program's (SPIP) Bondlines Package. These coatings are designed as a steel case preparation treatment prior to insulation lay-up. Other uses include the exterior of steel cases and bonding surfaces of nozzle components. They provide excellent bondability - rubber insulation and epoxy bonds fail cohesively within the polymer - for both fresh surfaces and surfaces having undergone natural and accelerated environmental aging. They have passed the MSFC requirements for protection of inland and sea coast environment. Because BOSS coatings are inherently corrosion resistant, they do not require preservation by greases or oils. The reduction/elimination of greases and oils, known bondline degraders, can increase SRM reliability, decrease costs by reducing the number of process steps, and decrease environmental pollution by reducing the amount of methyl chloroform used for degreasing and thus reduce release of the ozone-depleting chemical in accordance with the Clean Air Act and the Montreal Protocol. The coatings can potential extend the life of RSRM case segments and nozzle components by eliminating erosion due to multiple grit blasting during each use cycle and corrosion damage during marine recovery. Concurrent work for the Air Force show that other BOSS coatings give excellent bondline strength and durability for high-performance structures of aluminum and titanium.

  20. Effect of electron energy distribution functions on plasma generated vacuum ultraviolet in a diffusion plasma excited by a microwave surface wave

    SciTech Connect

    Zhao, J. P.; Chen, L.; Funk, M.; Sundararajan, R.; Nozawa, T.; Samukawa, S.

    2013-07-15

    Plasma generated vacuum ultraviolet (VUV) in diffusion plasma excited by a microwave surface wave has been studied by using dielectric-based VUV sensors. Evolution of plasma VUV in the diffusion plasma as a function of the distance from the power coupling surface is investigated. Experimental results have indicated that the energy and spatial distributions of plasma VUV are mainly controlled by the energy distribution functions of the plasma electrons, i.e., electron energy distribution functions (EEDFs). The study implies that by designing EEDF of plasma, one could be able to tailor plasma VUV in different applications such as in dielectric etching or photo resist smoothing.

  1. Effect of Carbon Black on Dielectric and Microwave Absorption Properties of Carbon Black/Cordierite Plasma-Sprayed Coatings

    NASA Astrophysics Data System (ADS)

    Su, Jinbu; Zhou, Wancheng; Liu, Yi; Qing, Yuchang; Luo, Fa; Zhu, Dongmei

    2015-06-01

    Carbon black (CB)/cordierite composite coatings with different CB contents were fabricated by a multi-function micro-plasma spraying system developed by the Second Artillery Engineering College. Scanning electron microscopy was employed to investigate the microstructure of the spray-dried powders and as-sprayed coatings. The complex permittivities of the coatings and powders with different CB contents were investigated at the frequency of 8.2-12.4 GHz. The results show that both real and imaginary part of the permittivity increase with increasing CB content, which can be ascribed to the increase of the number of micro-capacitors and the polarization centers. Reflection loss of the as-sprayed coatings with different CB contents and thicknesses was calculated according to the transmission line theory. The coating with 4.54% CB content and 3.0 mm thickness shows optical microwave absorption with a minimum reflection loss of -23.90 dB at 10.13 GHz and reflection loss less than -9 dB over the whole investigated frequency.

  2. Vacuum 65 (2002) 415425 Plasma spraying of micro-composite thermal barrier coatings

    E-print Network

    Ghoniem, Nasr M.

    2002-01-01

    measurements across the coating thickness. A one-dimensional series heat transfer model was developed, and wear damage. In the aerospace industry, the TBCs are used primarily to protect austenitic superalloy. Development of thick TBC (up to 3 mm) with improved mechanical properties is critical to operation at a higher

  3. The effects of plasma exposure and vacuum ultraviolet irradiation on photopatternable low-k dielectric materials

    SciTech Connect

    Nichols, M. T.; Mavrakakis, K.; Shohet, J. L.; Lin, Q.

    2013-09-14

    The effects of plasma exposure and vacuum-ultraviolet (VUV) irradiation on photopatternable low-k (PPLK) dielectric materials are investigated. In order to examine these effects, current-voltage measurements were made on PPLK materials before and after exposure to a variety of inert plasma-exposure conditions. In order to examine the effects of photon irradiation alone, PPLK samples were also exposed to monochromatic synchrotron radiation with 10 eV photon energy. It was found that plasma exposure causes significant degradation in electrical characteristics, resulting in increased leakage-currents and decreased breakdown voltage. X-ray photoelectron spectroscopy measurements also show appreciable carbon loss near the sample surface after plasma exposure. Conversely, VUV exposure was found to increase breakdown voltage and reduce leakage-current magnitudes.

  4. On the ion front of a plasma expanding into a vacuum

    SciTech Connect

    Allen, J. E.; University College, Oxford, Oxford OX1 4BH ; Perego, M.

    2014-03-15

    Calculations are reported on the expansion of a plasma into a vacuum, using a model of cold ions and Boltzmann electrons. The initial distribution of the ions at the edge of the plasma greatly affects the subsequent expansion. An initial abrupt drop of ion density leads to an expansion in which the abrupt drop is maintained. A finite slope, however, leads to the formation of a peak of ion density at the ion front. The subsequent behaviour may lead to wave breaking and the formation of multi-valued ion velocity distributions.

  5. Measurements and simulations of shock wave generated plasma-vacuum interface

    SciTech Connect

    Kaganovich, D.; Helle, M. H.; Gordon, D. F.; Ting, A.

    2011-12-15

    A controlled gradient gas jet was designed, constructed, and tested at the Naval Research Laboratory for the generation of high density and sharp gradient plasma regions. The gas jet uses a laser-generated shock wave to control the density gradient at the vacuum and neutral gas interface. The length scale of the laser produced plasma density gradient is fully controlled by the strength of the shock wave and can be varied continuously from100 {mu}m for a weak shock to under 20 {mu}m in case of strong shock wave as verified by the experimental results and simulations.

  6. Apparatus for spectroenergetic studies of plasma light sources in the vacuum UV

    NASA Astrophysics Data System (ADS)

    Bedrin, A. G.; Zhilin, A. N.; El'Ts, V. K.; Vorypaev, G. G.; Golybev, E. M.

    2006-02-01

    A diagnostic apparatus has been created for investigating the spectroenergetic characteristics of powerful pulsed plasma radiators in the VUV region. Spectral selection of the radiation is carried out by a set of gaseous and crystalline light filters. The apparatus consists of a diagnostic probe with a pyroelectric photodetector and a vacuum chamber for its energy calibration by means of a Planck radiator based on a capillary discharge. A technique has been developed for spectroenergetic measurements.

  7. The novel use of waste animal bone from New Zealand agricultural sources as a feedstock for forming plasma sprayed hydroxyapatite coatings on biomedical implant materials.

    PubMed

    Mucalo, M R; Foster, D L; Wielage, B; Steinhaeuser, S; Mucha, H; Knighton, D; Kirby, J

    2004-01-01

    This study presents the feasibility of using animal bone-derived hydroxyapatite (HAP) as feedstock powders for plasma spraying. Bovine, cervine and ovine bone from abattoirs was boiled in a pressure cooker to remove blood, fat and adhering meat tissue. The bone was then placed in a muffler furnace, pyrolyzed at approximately 1000 degrees C to remove collagen and resid-ual organics, cooled and subsequently ground to a powder then digested in nitric acid. Sodium hydroxide was added to the digest to reprecipitate the HAP. Ageing of the precipitate followed by filtration, extensive washing and drying produced the white powder used as the feedstock. X-ray diffractometry (XRD) and Fourier transform infrared spectroscopy (FTIR) confirmed the powder to be poorly crystalline HAP with low-level carbonate. Out of several batches of the sieved powders, one batch was plasma sprayed to produce adherent HAP coatings; therefore, demonstrating that animal bone-derived HAP powders can be seri-ously considered as a feedstock powder, subject to the powder being processed for the correct rheological characteristics for easy flowing within the plasma spray flow lines. The phase composition of the successful plasma sprayed HAP coatings on both stainless steel and titanium were found by XRD to be mainly HAP with minor contributions from á -tricalcium phosphate, tetra-calcium phosphate and CaO; therefore, demonstrating that feedstock decomposition on its passage through the plasma spray torch was insignificant under the conditions employed. Scanning electron microscopy (SEM) micrographs of the coatings indicated that their morphology featured the classical heterogeneous and splat-like appearance expected of plasma sprayed coatings. Young's modulus and Vicker's microhardness tests conducted on the coatings revealed values in the range, respectively, 22-87 GPa and 166-287 (HV200 ) indicating high strength plasma spray HAP coatings had been produced from the feedstock powder. PMID:20803443

  8. Influence of Plasma Remelting on the Microstructure and Cavitation Resistance of Arc-Sprayed Fe-Mn-Cr-Si Alloy

    NASA Astrophysics Data System (ADS)

    Pukasiewicz, A. G. M.; Alcover, P. R. C.; Capra, A. R.; Paredes, R. S. C.

    2014-01-01

    Surface remelting is an important technique for modifying the microstructure of thermally sprayed coatings as it reduces the porosity and promotes a metallurgical bond between substrate and coating. Many studies have been carried out in the field of materials selection and surface engineering in an attempt to reduce cavitation damage. In this work, an Fe-Mn-Cr-Si alloy was deposited by arc spraying and then remelted by a plasma-transferred arc process. The base metal was a soft martensitic stainless steel. The influence of remelting current on coating and base metal microstructure and cavitation resistance was studied. The use of a lower mean current and a pulsed arc reduced the thickness of the heat-affected zone. In specimens remelted with constant arc current, dendrites were aligned parallel to the path followed by the plasma torch; while in those remelted with a pulsed plasma arc, the alignment of the microstructure was disrupted. The use of a higher peak current in pulsed-current plasma transferred arc remelting reduced mass loss due to cavitation. Fe-Mn-Cr-Si coatings exhibited cavitation-induced hardening, with martensite formation during cavitation tests. This transformation helps to increase the cavitation resistance of the remelted coating compared with the soft martensitic stainless steel base metal.

  9. Observation of THz emission from a laser-plasma accelerated electron bunch crossing a plasma-vacuum boundary

    SciTech Connect

    Leemans, W.P.; Geddes, C.G.R.; Faure, J.; Toth, Cs.; van Tilborg, J.; Schroeder, C.B.; Esarey, E.; Fubiani, G.; Auerbach, D.; Marcelis, B.; Carnahan, M.A.; Kaindl, R.A.; Byrd, J.; Martin, M.C.

    2003-04-15

    Coherent radiation in the 0.3 - 3 THz range has been generated from femto second electron bunches at a plasma-vacuum boundary via transition radiation. The bunches produced by a laser-plasma accelerator contained 1.5 nC of charge. The THz energy per pulse within a limited 30 mrad collection angle was 3.5 nJ and scaled quadratically with bunch charge, consistent with coherent emission. Modeling indicates that this broadband source produces about 0.3 muJ per pulse within a 100 mrad angle, and that increasing the transverse plasma size and electron beam energy could provide more than 100 muj/pulse.

  10. Evaluation of the behavior of shrouded plasma spray coatings in the platen superheater of coal-fired boilers

    SciTech Connect

    Sidhu, B.S.; Prakash, S.

    2006-06-15

    Nickel- and cobalt-based coatings were formulated by a shrouded plasma spray process on boiler tube steels, namely, ASTM-SA210-grade A1 (GrA1), ASTM-SA213-T-11 (T11), and ASTM-SA213-T-22 (T22). The Ni-22Cr-10A1-1Y alloy powder was sprayed as a bond in each case before the final coating. The degradation behavior of the bared and coated steels was studied in the platen superheater of the coal-fired boiler. The samples were inserted through the soot blower dummy points with the help of stainless steel wires. The coatings were found to be effective in increasing resistance to degradation in the given boiler environment. The maximum protection was observed in the case of Stellite-6 (St-6) coating.

  11. Parametric Appraisal of Process Parameters for Adhesion of Plasma Sprayed Nanostructured YSZ Coatings Using Taguchi Experimental Design

    PubMed Central

    Mantry, Sisir; Mishra, Barada K.; Chakraborty, Madhusudan

    2013-01-01

    This paper presents the application of the Taguchi experimental design in developing nanostructured yittria stabilized zirconia (YSZ) coatings by plasma spraying process. This paper depicts dependence of adhesion strength of as-sprayed nanostructured YSZ coatings on various process parameters, and effect of those process parameters on performance output has been studied using Taguchi's L16 orthogonal array design. Particle velocities prior to impacting the substrate, stand-off-distance, and particle temperature are found to be the most significant parameter affecting the bond strength. To achieve retention of nanostructure, molten state of nanoagglomerates (temperature and velocity) has been monitored using particle diagnostics tool. Maximum adhesion strength of 40.56?MPa has been experimentally found out by selecting optimum levels of selected factors. The enhanced bond strength of nano-YSZ coating may be attributed to higher interfacial toughness due to cracks being interrupted by adherent nanozones. PMID:24288490

  12. The Structure and Properties of Plasma Sprayed Iron Oxide Doped Manganese Cobalt Oxide Spinel Coatings for SOFC Metallic Interconnectors

    NASA Astrophysics Data System (ADS)

    Puranen, Jouni; Lagerbom, Juha; Hyvärinen, Leo; Kylmälahti, Mikko; Himanen, Olli; Pihlatie, Mikko; Kiviaho, Jari; Vuoristo, Petri

    2011-01-01

    Manganese cobalt oxide spinel doped with Fe2O3 was studied as a protective coating on ferritic stainless steel interconnects. Chromium alloying causes problems at high operation temperatures in such oxidizing conditions where chromium compounds evaporate and poison the cathode active area, causing the degradation of the solid oxide fuel cell. In order to prevent chromium evaporation, these interconnectors need a protective coating to block the chromium evaporation and to maintain an adequate electrical conductivity. Thermal spraying is regarded as a promising way to produce dense and protective layers. In the present work, the ceramic Mn-Co-Fe oxide spinel coatings were produced by using the atmospheric plasma spray process. Coatings with low thickness and low amount of porosity were produced by optimizing deposition conditions. The original spinel structure decomposed because of the fast transformation of solid-liquid-solid states but was partially restored by using post-annealing treatment.

  13. Deposition of Functional Coatings Based on Intermetallic Systems TiAl on the Steel Surface by Vacuum Arc Plasma

    NASA Astrophysics Data System (ADS)

    Budilov, V.; Vardanyan, E.; Ramazanov, K.

    2015-11-01

    Laws governing the formation of intermetallic phase by sequential deposition of nano-sized layers coatings from vacuum arc plasma were studied. Mathematical modeling process of deposition by vacuum arc plasma was performed. In order to identify the structural and phase composition of coatings and to explain their physical and chemical behaviour XRD studies were carried out. Production tests of the hardened punching tools were performed.

  14. Surface oxidation of GaN(0001): Nitrogen plasma-assisted cleaning for ultrahigh vacuum applications

    SciTech Connect

    Gangopadhyay, Subhashis; Schmidt, Thomas Kruse, Carsten; Figge, Stephan; Hommel, Detlef; Falta, Jens

    2014-09-01

    The cleaning of metal-organic vapor-phase epitaxial GaN(0001) template layers grown on sapphire has been investigated. Different procedures, performed under ultrahigh vacuum conditions, including degassing and exposure to active nitrogen from a radio frequency nitrogen plasma source have been compared. For this purpose, x-ray photoelectron spectroscopy, reflection high-energy electron diffraction, and scanning tunneling microscopy have been employed in order to assess chemical as well as structural and morphological surface properties. Initial degassing at 600?°C under ultrahigh vacuum conditions only partially eliminates the surface contaminants. In contrast to plasma assisted nitrogen cleaning at temperatures as low as 300?°C, active-nitrogen exposure at temperatures as high as 700?°C removes the majority of oxide species from the surface. However, extended high-temperature active-nitrogen cleaning leads to severe surface roughening. Optimum results regarding both the removal of surface oxides as well as the surface structural and morphological quality have been achieved for a combination of initial low-temperature plasma-assisted cleaning, followed by a rapid nitrogen plasma-assisted cleaning at high temperature.

  15. Characterization of Plasma Jet in Plasma Spray-Physical Vapor Deposition of YSZ Using a <80 kW Shrouded Torch Based on Optical Emission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Qing-Yu; Peng, Xiao-Zhuang; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2015-08-01

    During plasma spray-physical vapor deposition (PS-PVD) of yttria-stabilized zirconia (YSZ) coatings, evaporation of the YSZ powder is essential, but quite difficult when using a commercial <80 kW plasma torch. In this study, a shrouded plasma torch was examined to improve the YSZ evaporation. The plasma characteristics were diagnosed using optical emission spectroscopy. Results showed that the electron number density in the plasma jet was maintained at an order of magnitude of 1014 cm-3, indicating local thermal equilibrium of the plasma jet. Compared with a conventional torch, the shrouded torch resulted in much higher plasma temperature and much lower electron number density. With the shrouded torch, more energy of the plasma was transferred to the YSZ material, leading to more evaporation of the YSZ powder and thereby a much higher deposition rate of the YSZ coating. These results show that use of a shrouded torch is a simple and effective approach to improve the evaporation of feedstock material during PS-PVD.

  16. Vacuum ultraviolet photon fluxes in argon-containing inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Radovanov, S. B.; Persing, H. M.; Wang, S.; Culver, C. L.; Boffard, J. B.; Lin, C. C.; Wendt, A. E.

    2013-09-01

    Vacuum ultraviolet (VUV) photons emitted from excited atomic states are ubiquitous in material processing plasmas. Damage of materials is induced by energy transfer from the VUV photons to the surface, causing disorder in the surface region, surface reactions, and affecting bonds in the material bulk. Monitoring of the surface flux of VUV photons from inductively coupled plasmas (ICP) and its dependence on discharge parameters is thus highly desirable. Results of non-invasive, direct windowless VUV detection using a photosensitive diode will be presented. Relative VUV fluxes were also obtained using a sodium salicylate coating on the inside of a vacuum window, converting VUV into visible light detected through the vacuum window. The coating is sensitive to wavelengths in the range 80-300 nm, while the photodiode is only sensitive to wavelengths below 120 nm. In argon the VUV emissions are primarily produced by spontaneous decay from 3p5 4 s resonance levels (1s2,1s4) and may be reabsorbed by ground state atoms. Real-time resonance level concentrations were measured and used to predict the VUV photon flux at the detector for a range of different ICP pressures, powers, and for various admixtures of Ar with N2, and H2. This work was supported in part by NSF grant PHY-1068670.

  17. High-speed thermal imaging of yttria-stabilized zirconia droplet impinging on substrate in plasma spraying

    SciTech Connect

    Shinoda, Kentaro; Murakami, Hideyuki; Kuroda, Seiji; Oki, Sachio; Takehara, Kohsei; Etoh, Takeharu Goji

    2007-05-07

    The authors have developed an in situ monitoring system that captures the impacting phenomena of plasma-sprayed particles at 1x10{sup 6} frames/s. The system clearly captured deformation and cooling processes of an yttria-stabilized zirconia droplet of 50 {mu}m in diameter impinging at 170 m/s on a smooth quartz glass substrate kept at room temperature. The images show that the liquid sheet jetting out sideways from the droplet detached from the substrate and kept on spreading without disintegration until its maximum extent. While the sheet was spreading, the center region of the flattened droplet cooled down much more rapidly.

  18. Dry sliding wear behavior of ceramic-metal composite coatings prepared by plasma spraying of self-reacting powders

    NASA Astrophysics Data System (ADS)

    Dong, Yanchun; Yan, Dianran; He, Jining; Li, Xiangzhi; Zhang, Jianxin

    2006-09-01

    Ceramic-metal composite (CMC) coatings were deposited on the surface of Fe-0.14 0.22 wt.% C steel by plasma spraying of self-reacting Fe2O3-Al composite powders. The dry sliding friction and wear character of the CMC coatings are investigated in this paper. The wear resistance of the CMC coatings was significantly better than that of Al2O3 coatings under the same sliding wear conditions. The tough metal, which is dispersed in the ceramic matrix, obviously improved the toughness of the CMC coatings. Wear mechanisms of the CMC coatings were identified as a combination of abrasive and adhesive wear.

  19. Some adhesion/cohesion characteristics of plasma-sprayed ZrO2-Y2O3 under tensile loading

    NASA Technical Reports Server (NTRS)

    Mullen, Robert L.; Vlcek, Brian L.; Hendricks, Robert C.; Mcdonald, Glen

    1987-01-01

    A set of 12.7 mm diameter stainless steel tubes were coated with ceramic and expanded. The bond cast was 0.08 to 0.13 mm NiCrAlY with 0.38 mm of ZrO2-8Y2O3 ceramic. Upon pressurization, the tube substrate yielded and overstressed the coatings in tension. The coatings cracked (i.e., they failed) but did not come off the tube. These results demonstrate that tensile failure of plasma-sprayed coatings is not catastrophic as is compressive failure, which leads to spallation.

  20. Highly crystalline MP-1 hydroxylapatite coating. Part I: In vitro characterization and comparison to other plasma-sprayed hydroxylapatite coatings.

    PubMed

    Burgess, A V; Story, B J; La, D; Wagner, W R; LeGeros, J P

    1999-08-01

    A novel pressurized hydrothermal post-plasma-spray process, referred to as MP-1, has been developed to convert the crystalline non-HA and amorphous components of plasma-sprayed hydroxylapatite coating back into crystalline HA. No detrimental effects are observed on the strength of either the base metal or the coating. X-ray diffraction (XRD) and FTIR analysis, surface roughness, shear adhesion strength and calcium solubility testing were conducted on Calcitite coated samples before and after treatment with this process. Other commercially available coatings were also studied using XRD and solubility testing. Quantitative XRD data show that the MP-1 treatment increases the average crystalline HA content of the Calcitite coating from 77% to 96%, while the amorphous content decreases from 21% to 4%. Other commercially available dental implant coatings ranged in crystalline HA content from 45% to 73%, with amorphous phase content ranging from 29% to 62%. FTIR spectra for treated coatings were significantly more well defined, and showed an increase in peak separation and intensity. Surface roughness and shear adhesion strength were not affected by the treatment. In vitro solubility testing revealed that for all coatings there is an initial introduction of calcium into solution over the first 2 h of testing; however, the amount of calcium dissolved was significantly lower for the MP-1 coating. Under a pH and temperature representative of normal physiologic conditions, the rate of calcium dissolution for the MP-1 coating was significantly lower than that of the other commercial HA coatings. In increasingly acidic conditions, the MP-1 coating was compared to the Calcitite coating and was found to have a significantly slower rate of calcium release. The MP-1 treatment enhances typical HA coatings by increasing the crystalline HA content at the expense of the plasma-spray-induced soluble phases without a reduction in the strength of the coating. The resulting coatings exhibit significantly decreased in vitro solubility over a wide range of pH. The results of this solubility testing suggest that the treated coating may show significantly enhanced in vivo stability, even under the extreme conditions encountered during periods of infection or rigorous detoxification procedures. The significant differences between plasma-sprayed HA coatings reported here underscore the need for industry and academic researchers to raise the level of discourse and understanding of HA coatings. By offering consistent and accurate descriptions of coating compositions and methods of analysis, meaningful comparisons between different HA coatings can be made. PMID:10551067

  1. High energy density capacitors for vacuum operation with a pulsed plasma load

    NASA Technical Reports Server (NTRS)

    Guman, W. J.

    1976-01-01

    Results of the effort of designing, fabricating, and testing of a 40 joules/lb (88.2 joules/Kg) high voltage energy storage capacitor suitable for operating a pulsed plasma thruster in a vacuum environment for millions of pulses are presented. Using vacuum brazing and heli-arc welding techniques followed by vacuum and high pressure helium leak tests it was possible to produce a hermetically sealed relatively light weight enclosure for the dielectric system. An energy density of 40 joules/lb was realized with a KF-polyvinylidene fluoride dielectric system. One capacitor was D.C. life tested at 4 KV (107.8 joules/lb) for 2,000 hours before it failed. Another exceeded 2,670 hours without failure at 38.3 joules/lb. Pulse life testing in a vacuum exceeded 300,000 discharges with testing still in progress. The D.C. life test data shows a small decrease in capacitance and an increase in dissipation factor with time. Heat transfer from the load to the capacitor must also be considered besides the self-heat generated by the capacitor.

  2. Characterization of consolidated and plasma sprayed aluminum/iron oxide thermites by SEM (secondary electron microscopy), AES (Auger electron spectroscopy), and EDS (energy dispersive spectroscopy)

    SciTech Connect

    Foose, D.S.; Kelly, M.D.; Haws, L.D.; Moddeman, W.E.

    1988-01-01

    Secondary electron microscopy (SEM), Auger electron spectroscopy (AES) and energy dispersive spectroscopy (EDS) were used to characterize two types of aluminum/Fe/sub 3/O/sub 4/ thermites, the first prepared by consolidating the powders into a pellet and the second prepared by spraying the powders in an Ar plasma. The aim was to examine the chemistry of these materials, with particular emphasis on the interfacial region of the fuel and oxidizer. The consolidated thermite was composed of spheroidal iron oxide particles distributed throughout a continuous aluminum metal phase whereas the plasma sprayed thermite was composed of two continuous phases, one being an iron oxide phase and the other being an aluminum metal phase. A comparison of an iron oxide-aluminum metal interface of each showed a greater degree of intermixing of the phases in the plasma sprayed thermite than in the consolidated one. 2 refs., 6 figs.

  3. Shear viscosity of the gluon plasma in the stochastic-vacuum approach

    E-print Network

    Dmitri Antonov

    2009-05-20

    Shear viscosity of the gluon plasma in SU(3) YM theory is calculated nonperturbatively, within the stochastic vacuum model. The result for the ratio of the shear viscosity to the entropy density, proportional to the squared chromo-magnetic gluon condensate and the fifth power of the correlation length of the chromo-magnetic vacuum, falls off with the increase of temperature. At temperatures larger than the deconfinement critical temperature by a factor of 2, this fall-off is determined by the sixth power of the temperature-dependent strong-coupling constant and yields an asymptotic approach to the conjectured lower bound of 1/(4\\pi), achievable in {\\cal N}=4 SYM theory. As a by-product of the calculation, we find a particular form of the two-point correlation function of gluonic field strengths, which is the only one consistent with the Lorentzian shape of the shear-viscosity spectral function.

  4. Metal vapor plasma behavior during vacuum arc remelting of alloy 718

    SciTech Connect

    Zanner, F.J.; Maguire, M.C.; Williamson, R.L. ); Adasczik, C.B. ); Roberts, R.R. ); Strohecker, R. )

    1992-01-01

    A production vacuum arc remelt (VAR) furnace was modified to enable direct viewing of the metal vapor arc and molten electrode tip during melting of 432 mm dia. alloy 718 electrodes into 508 mm dia. ingots. Diffuse and constricted arcing conditions were characterized using high speed cinematography, standard video format, and monochromatic imaging. Constricted arcing was observed while melting electrodes contaminated with oxide slag of the type used for refractory linings in vacuum induction furnaces. Monochromatic imaging was used in visualize the ion distribution in the arc plasma; these images clearly showed whether the arc operated in a diffuse or constricted model. Diffuse arc melting conditions were very similar to those previously reported in the literature for smaller laboratory sized melts.

  5. Metal vapor plasma behavior during vacuum arc remelting of alloy 718

    SciTech Connect

    Zanner, F.J.; Maguire, M.C.; Williamson, R.L.; Adasczik, C.B.; Roberts, R.R.; Strohecker, R.

    1992-05-01

    A production vacuum arc remelt (VAR) furnace was modified to enable direct viewing of the metal vapor arc and molten electrode tip during melting of 432 mm dia. alloy 718 electrodes into 508 mm dia. ingots. Diffuse and constricted arcing conditions were characterized using high speed cinematography, standard video format, and monochromatic imaging. Constricted arcing was observed while melting electrodes contaminated with oxide slag of the type used for refractory linings in vacuum induction furnaces. Monochromatic imaging was used in visualize the ion distribution in the arc plasma; these images clearly showed whether the arc operated in a diffuse or constricted model. Diffuse arc melting conditions were very similar to those previously reported in the literature for smaller laboratory sized melts.

  6. Vacuum arc plasma generation and thin film deposition from a TiB2 cathode

    NASA Astrophysics Data System (ADS)

    Zhirkov, Igor; Petruhins, Andrejs; Naslund, Lars-Ake; Kolozsvári, Szilard; Polcik, Peter; Rosen, Johanna

    2015-11-01

    We have studied the utilization of TiB2 cathodes for thin film deposition in a DC vacuum arc system. We present a route for attaining a stable, reproducible, and fully ionized plasma flux of Ti and B by removal of the external magnetic field, which leads to dissipation of the vacuum arc discharge and an increased active surface area of the cathode. Applying a magnetic field resulted in instability and cracking, consistent with the previous reports. Plasma analysis shows average energies of 115 and 26 eV, average ion charge states of 2.1 and 1.1 for Ti and B, respectively, and a plasma ion composition of approximately 50% Ti and 50% B. This is consistent with measured resulting film composition from X-ray photoelectron spectroscopy, suggesting a negligible contribution of neutrals and macroparticles to the film growth. Also, despite the observations of macroparticle generation, the film surface is very smooth. These results are of importance for the utilization of cathodic arc as a method for synthesis of metal borides.

  7. Ultraviolet Light (UV) Inactivation of Porcine Parvovirus in Liquid Plasma and Effect of UV Irradiated Spray Dried Porcine Plasma on Performance of Weaned Pigs

    PubMed Central

    Polo, Javier; Rodríguez, Carmen; Ródenas, Jesús; Russell, Louis E.; Campbell, Joy M.; Crenshaw, Joe D.; Torrallardona, David; Pujols, Joan

    2015-01-01

    A novel ultraviolet light irradiation (UV-C, 254 nm) process was designed as an additional safety feature for manufacturing of spray dried porcine plasma (SDPP). In Exp. 1, three 10-L batches of bovine plasma were inoculated with 105.2±0.12 tissue culture infectious dose 50 (TCID50) of porcine parvovirus (PPV) per mL of plasma and subjected to UV-C ranging from 0 to 9180 J/L. No viable PPV was detected in bovine plasma by micro-titer assay in SK6 cell culture after UV-C at 2295 J/L. In Exp. 2, porcine plasma was subjected to UV-C (3672 J/L), then spray dried and mixed in complete mash diets. Diets were a control without SDPP (Control), UV-C SDPP either at 3% (UVSDPP3) or 6% (UVSDPP6) and non-UV-C SDPP at 3% (SDPP3) or 6% (SDPP6). Diets were fed ad libitum to 320 weaned pigs (26 d of age; 16 pens/diet; 4 pigs/pen) for 14 d after weaning and a common diet was fed d 15 to 28. During d 0 to 14, pigs fed UVSDPP3, UVSDPP6, or SDPP6 had higher (P < 0.05) weight gain and feed intake than control. During d 0 to 28, pigs fed UVSDPP3 and UVSDPP6 had higher (P < 0.05) weight gain and feed intake than control and SDPP3, and SDPP6 had higher (P < 0.05) feed intake than control. Also, pigs fed UVSDPP had higher (P < 0.05) weight gain than pigs fed SDPP. In conclusion, UV-C inactivated PPV in liquid plasma and UVSDPP used in pig feed had no detrimental effects on pig performance. PMID:26171968

  8. Effect of Substrates Temperatures on the Spreading Behavior of Plasma-Sprayed Ni and Ni-20 wt.% Cr Splats

    NASA Astrophysics Data System (ADS)

    Zhang, Yongang; Hyland, Margaret; Tran, Anh Tuyet; Matthews, Steven

    2015-07-01

    In the formation of plasma-sprayed splats, the spreading behavior of molten droplets is essential for forming desirable lamella with good adhesion to the substrate. To understand the effect of the active element chromium on droplet spreading, pure Ni and Ni-20 wt.% (Ni20Cr) alloyed powders were plasma sprayed on mirror-polished 304 stainless steel substrates heated to different temperatures (below 200 °C). The substrate heating resulted in very little change in the surface roughness. However, there was a measureable change in the surface chemistry of the outermost few nanometers, which became increasingly enriched in Fe at higher temperatures. The splat morphologies were characterized and the transition temperatures were estimated. The results show that the transition from splashed to disk splats was not solely dependent on the temperature of the substrate. In some cases, some splashing still occurred to a measureable extent even at relatively high substrate temperatures, even above temperatures at which adsorbates (moisture) were totally removed from the surface. The splashing behavior could be correlated to a combination of the change in the surface chemistry of the substrate and the presence of active elements in the coating materials.

  9. Atomized BaF2-CaF7 for Better-Flowing Plasma-Spray Feedstock

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Stanford, Malcolm K.

    2008-01-01

    Atomization of a molten mixture of BaF2 and CaF2 has been found to be superior to crushing of bulk solid BaF2- CaF2 as a means of producing eutectic BaF2-CaF2 powder for use as an ingredient of the powder feedstock of a high-temperature solid lubricant material known as PS304. Developed to reduce friction and wear in turbomachines that incorporate foil air bearings, PS304 is applied to metal substrates by plasma spraying. The constituents of PS304 are: a) An alloy of 80 weight percent Ni and 20 weight percent Cr, b) Cr2O3, c) Ag, and d) The BaF2-CaF2 eutectic, specifically, 62 weight percent BaF2 and 38 weight percent CaF2. The superiority of atomization as a means of producing the eutectic BaF2-CaF2 powder lies in (1) the shapes of the BaF2-CaF2 particles produced and (2) the resulting flow properties of the PS304 feedstock powder: The particles produced through crushing are angular, whereas those produced through atomization are more rounded. PS304 feedstock powder containing the more rounded BaF2-CaF2 particles flows more freely and more predictably, as is preferable for plasma spraying.

  10. Characterization and formation mechanism of nano-structured hydroxyapatite coatings deposited by the liquid precursor plasma spraying process.

    PubMed

    Huang, Yi; Song, Lei; Huang, Tao; Liu, Xiaoguang; Xiao, Yanfeng; Wu, Yao; Wu, Fang; Gu, Zhongwei

    2010-10-01

    Nano-structured hydroxyapatite (HA) coatings were deposited on the Ti-6Al-4V alloy substrate by the liquid precursor plasma spraying (LPPS) process. The thermal behavior of the HA liquid precursor was analyzed to interpret the phase change and structure transformation during the formation process of the nano-structured HA coatings. The phase composition, structure and morphology of the nano-structured HA coatings were characterized by x-ray diffraction (XRD), scanning electron microscope (SEM) and Fourier transform infrared (FTIR) spectroscopy. The XRD spectra showed that the coatings deposited by the LPPS process mainly consisted of the HA phase and the crystallite size was measured to be 56 nm. The SEM observation showed that the as-deposited LPPS coatings had small splat size, and nano-scale HA particles were found in certain regions of the coating surface. The FTIR spectroscopy showed the strong presence of the OH(-) group in the as-deposited LPPS coatings, indicating a superior structural integrity. In addition, the coatings deposited by the LPPS process were also carbonated HA coatings. The results indicate that the LPPS process is a promising plasma spraying technique for depositing nano-structured HA coatings with unique microstructural features that are desirable for improving the biological performance of the HA coatings. PMID:20876965

  11. Osteoconductivity and osteoinductivity of porous hydroxyapatite coatings deposited by liquid precursor plasma spraying: in vivo biological response study.

    PubMed

    Huang, Yi; He, Jing; Gan, Lu; Liu, Xiaoguang; Wu, Yao; Wu, Fang; Gu, Zhong-wei

    2014-12-01

    The beneficial effect of a porous structure on the biological functions of calcium phosphate bulk ceramic or scaffold has been well documented. Nevertheless, the effect of a porous structure on the in vivo performance of hydroxyapatite (HA) coatings has been rarely reported, partly due to the difficulty in synthesizing porous HA coatings suitable for commercial applications. In this study, we have carried out a systematic in vivo study of porous HA-coated Ti implants (with and without surface modification) prepared by the liquid precursor plasma spraying process, in terms of its osteoconductivity and osteoinductivity. The results suggest the clear advantage of the porous structure over the dense structure, despite the pore structure (about 48% porosity and less than 100 ?m average pore size) being far from the ideal pore structure reported for bulk ceramic. The porous HA-coated implant significantly promotes early bone ingrowth at the pre-generated defective region, and early fixation at the bone-implant interface, especially at early implantation time (one month), showing about 120% and 40% increases respectively over those of the dense HA-coated implants prepared by the conventional atmospheric plasma spraying process. Moreover, the porous structure can be readily used to incorporate collagen/rh-BMP2, which demonstrates clear ectopic bone formation. Overall, the results suggest the augmentation of bone ingrowth is significant for HA coatings with a porous structure, which is critical for the early fixation and long-term stability of medical implants. PMID:25384201

  12. A plasma spray process for the manufacture of long-fiber reinforced Ti-6Al-4V composite monotapes

    NASA Astrophysics Data System (ADS)

    Valente, T.; Bartuli, C.

    1994-03-01

    A fabrication method for titanium matrix composite monotapes reinforced by long SiC fibers is described. The plasma spray technique, carried out in an inert atmosphere, was used to deposit the metal matrix onto previously arranged continuous fibers. Major benefits are due to a controlled operating environment (the entire process is performed in a neutral gas atmosphere) and to the high solidification rate of the melted material. The formation of deleterious brittle reaction products between the fiber and matrix is therefore limited. Plasma spraying, normally used as a coating technique, was modified to produce a long composite monotape. This required a suitable arrangement of the fiber, placed onto a cylindrical substrate, and the identification of suitable operating conditions, as described in the present work. The results of characterization tests performed on the tape, with special reference to the quality of the fiber/matrix interface, are summarized. Results of preliminary diffusion bonding experiments carried out by means of a hot pressing system are also reported.

  13. [Pull-out strength and bone tissue reaction of plasma-sprayed hydroxyapatite coatings with different thicknesses or substrates].

    PubMed

    Ukegawa, Y

    1992-07-01

    Synthetic hydroxyapatite has been reported to have good histocompatibility, while metal to have good mechanical properties in vivo. This author coated hydroxyapatite on SUS316L stainless steel and titanium rods, using plasma-spraying techniques. Then they were implanted into tubular bones of five dogs. The pull-out strength of hydroxyapatite-coated metals was found to be stronger than that of non-coated metals and increased with passage of the time. After four weeks postoperatively, the coating layer fractured between hydroxyapatite and the metal by the pull-out test. A numerous new bone in contact with hydroxyapatite was observed. Fifty microns is found to be an ideal thickness of the coating layer. The pull-out strength of hydroxyapatite-coated titanium was higher, comparing to that of hydroxyapatite-coated SUS316L stainless steel. These results suggested that perovskite and rutile existed at the interface between hydroxyapatite and titanium after plasma-spraying and made hydroxyapatite to bond tightly to the titanium. Synthetic perovskite showed no pathological reactions to canine bone tissue. PMID:1512481

  14. Mechanisms for the formation and transport of ion fluxes in the plasma of a high-current vacuum spark

    SciTech Connect

    Dolgov, A. N.; Zemchenkova, N. V.; Klyachin, N. A.; Prokhorovich, D. E.

    2010-09-15

    The processes of ion flux formation in the plasma of a high-current vacuum spark were investigated experimentally. It is shown that multicharged ions are generated in the neck formed in the erosion products of the inner electrode. The plasma escaping from the neck region plays a role of a piston dragging particles of the cold peripheral plasma into ambient space. As the discharge current increases, the flux of the evaporated electrode material grows, the degree of ionization of the plasma produced decreases, and the efficiency of plasma heating caused by the pinching effect is reduced.

  15. The Plasma Porthole: a windowless vacuum-pressure interface with various accelerator applications

    NASA Astrophysics Data System (ADS)

    Gerber, W.; Lanza, R. C.; Hershcovitch, A.; Stefan, P.; Castle, C.; Johnson, E.

    1999-06-01

    The Plasma Porthole is a stabilized plasma arc used as an interface between accelerator vacuum and pressurized targets. There is no solid material introduced into the beam and thus it is also capable of transmitting a charged particle beam with low loss and of sustaining high beam currents without damage. We are examining its use for a high pressure windowless deuterium target for fast neutron production. Measurements on a prototype system with a 3 mm diameter opening have shown that pressure differences of more than 2.5 atmospheres can be sustained with an input pressure of ˜10-6 torr. The system is capable of scaling to higher pressure differences and larger apertures. Some examples of applications to high current accelerators such as the ATW, APT, and various spallation sources will be discussed. Other applications are windows for synchrotron sources and for electron beam welding.

  16. A Plasma Window for Transmission of Radiation and Particle Beams from Vacuum to Atmosphere for Various Applications

    NASA Astrophysics Data System (ADS)

    Hershcovitch, Ady

    1997-11-01

    Many industrial and scientific processes like electron beam melting and welding, material modification by ion implantation, dry etching, and micro-fabrication, as well as generation of synchrotron radiation are performed almost exclusively in vacuum nowadays, since the electron and ion guns and their extractors must be kept at a reasonably high vacuum. Consequently, there are numerous drawbacks, among which are low production rates due to required pumping time, limits the vacuum volume sets on the size of target objects. In a small number of applications like non-vacuum electron beam welding, and various processes involving UV and x-ray radiation, thin vacuum walls or long stages of differential pumping are used. But, the resultant degradations of particle and radiation beams severely limit those applications. A novel apparatus, which utilized a short plasma arc, was successfully used to maintain a pressure of 7.6 x exp(-6) Torr in a vacuum chamber with a 2.36mm aperture to atmosphere, i.e., a plasma was successfully used to "plug" a hole to atmosphere while maintaining a reasonably high vacuum in the chamber. Successful transmission of charged particle beams from a vacuum through the plasma to atmosphere was accomplished. More details can be found in A. Hershcovitch, J. Appl. Physics 78, p. 5283 (1995). In addition to sustaining a vacuum atmosphere interface, the plasma has very strong lensing effect on charged particles. The plasma current generates an azimuthal magnetic field which exerts a radial Lorentz on charged particles moving parallel to the current channel. With proper orientation of the current direction, the Lorentz force is radially inward. This feature can be used to focus in beams to a very small spot size, and to overcome beam dispersion due to scattering by atmospheric atoms and molecules. Relatively hot plasma at the atmosphere boundary rarefies the atmospheric gases to further enhance particle beam propagation to the materials to target. Recent experimental results, with a plasma window coupled to a venturi, show a factor of three further enhancement in vacuum-atmosphere separation.

  17. Microstructure and properties of in-flight rare-earth doped thermal barrier coatings prepared by suspension plasma spray

    NASA Astrophysics Data System (ADS)

    Gong, Stephanie

    Thermal barrier coatings with lower thermal conductivity improve the efficiency of gas turbine engines by allowing higher operating temperatures. Recent studies were shown that coatings containing a pair of rare-earth oxides with equal molar ratio have lower thermal conductivity and improved sintering resistance compared to the undoped 4-4.5 mol.% yttria-stabilized zirconia (YSZ). In the present work, rare-earth doped coatings were fabricated via suspension plasma spray by spraying YSZ powder-ethanol suspensions that contained dissolved rare-earth nitrates. The compositions of the coatings determined by inductively coupled plasma mass spectroscopy verified that 68 +/- 8% of the rare-earth nitrates added into the suspension was incorporated into the coatings. Two coatings containing different concentrations of the same dopant pair (Nd2O3/Yb2O3), and three coatings having similar concentrations of different dopant pairs (Nd 2O3/Yb2O3, Nd2O3/Gd 2O3, and Gd2O3/Yb2O 3) were produced and compared. The effect of dopant concentration and dopant pair type on the microstructure and properties of the coatings in the as-sprayed and heat treated conditions were investigated using XRD, SEM, TEM, STEM-EDX, and the laser flash method. The cross-sectional morphology of all coatings displayed columnar structure. The porosity content of the coating was found to increase with increasing dopant concentration, but did not significantly change with dopant pairs. Similarly, increasing the Nd2O3/Yb2O 3 concentration lowered the thermal conductivity of the as-sprayed coatings. Although the effect of changing dopant pair type is not as significant as increasing the dopant concentration, the coating that contained Gd2O 3/Yb2O3 exhibited the lowest conductivity compared to coatings that had other dopant pairs. Thermal conductivity measurement performed on the heat treated coatings indicated a larger conductivity increase for the rare-earth doped coatings. A detailed study on the microstructural change of the coatings after various heat treatments at 1200°C and 1300°C showed evidence of crack healing and grain growth. Comparison between the rare-earth dopant distribution of a selected coating before and after a 1300°C/50 hr heat treatment suggests the possibility of dopant rearrangement, which can further increase the thermal conductivity. An explanation on the difference in the properties of the rare-earth doped coatings produced by SPS and conventional processes was discussed.

  18. Effect of Liquid Feed-Stock Composition on the Morphology of Titanium Dioxide Films Deposited by Thermal Plasma Spray.

    PubMed

    Adán, C; Marugán, J; van Grieken, R; Chien, K; Pershin, L; Coyle, T; Mostaghimi, J

    2015-09-01

    Titanium dioxide coatings were deposited on the surface of titanium foils by Thermal Plasma Spray (TPS) process. Three different TiO2 coatings were prepared using the commercial TiO2-P25 nanopowder and titanium isopropoxide precursor solution as feed-stocks. Structure and morphology of the TiO2-P25 powder and the plasma sprayed coatings were analyzed by X-ray diffraction (XRD), Raman spectroscopy, N2 adsorption-desorption isotherms, UV-visible spectroscopy and Scanning Electron Microscopy (SEM). XRD and Raman results indicate that the TiO2 coatings were composed of an anatase/rutile mixture that is conditioned by the suspension composition used to be sprayed. Coatings prepared from TiO2-P25 nanoparticles in water suspension (NW-P25) and titanium isopropoxide solution suspension (NSP-P25) are incorporated into the coatings without phase transformation and their anatase/rutile ratio percentage remains very similar to the starting TiO2-P25 powder. On the contrary, when titanium isopropoxide solution is used for spraying (SP), the amount of rutile increases in the final TiO2 coating. SEM analysis also reveals different microstructure morphology, coating thickness, density and porosity of the three TiO2 films that depend significantly on the type of feed-stock employed. Interestingly, we have observed the role of titanium isopropoxide in the formation of more porous and cohesive layers of TiO2. The NSP-P25 coating, prepared with a mix of titanium isopropoxide solution based on TiO2 nanoparticles, presents higher deposition efficiencies and higher coating thickness than the film prepared with nanoparticles suspended in water (NW-P25) or with titanium isopropoxide solutions (SP). This is due to the precursor solution is acting as the cement between TiO2 nanoparticles, improving the cohesive strength of the coating. In sum, NSP-P25 and NW-P25 coatings display a good photocatalytic potential, based on their light absorption properties and mechanical stability. Band gap of the nanoparticulated coatings displays a light absorption at wavelengths below 379 and 399 nm for NW-P25 and NSP-P25 respectively. On the contrary, the SP coating, despite to present lower band-gap value, has bad cohesive properties with surface crackings that makes it mechanically unstable. Therefore, mixtures of P25 nanoparticles with titanium isopropoxide as feed-stock materials can produce promising photocatalytic coatings. PMID:26716224

  19. A plasma window for transmission of particle beams and radiation from vacuum to atmosphere for various applications

    NASA Astrophysics Data System (ADS)

    Hershcovitch, Ady

    1998-05-01

    Many industrial and scientific processes like ion material modification, electron beam melting, and welding, as well as generation of synchrotron radiation are performed exclusively in vacuum nowadays, since electron guns, ion guns, their extractors, and accelerators must be kept at a reasonably high vacuum. Consequently, there are numerous limitations, among which are low production rates due to required pumping time, limits on the size of target objects, and degradation of particle beams and radiation through foils or differentially pumped sections. A novel apparatus, which utilized a short plasma arc, was successfully used to provide a vacuum-atmosphere interface as an alternative to differential pumping. Successful transmission of charged particle beams from a vacuum through the plasma to atmosphere was accomplished. Included in the article are a theoretical framework, experimental results, and possible applications for this novel interface.

  20. Sheath expansion and plasma dynamics in the presence of electrode evaporation: Application to a vacuum circuit breaker

    NASA Astrophysics Data System (ADS)

    Sarrailh, P.; Garrigues, L.; Hagelaar, G. J. M.; Boeuf, J. P.; Sandolache, G.; Rowe, S.

    2009-09-01

    During the postarc dielectric recovery phase in a vacuum circuit breaker, a cathode sheath forms and expels the plasma from the electrode gap. The success or failure of current breaking depends on how efficiently the plasma is expelled from the electrode gap. The sheath expansion in the postarc phase can be compared to sheath expansion in plasma immersion ion implantation except that collisions between charged particles and atoms generated by electrode evaporation may become important in a vacuum circuit breaker. In this paper, we show that electrode evaporation plays a significant role in the dynamics of the sheath expansion in this context not only because charged particle transport is no longer collisionless but also because the neutral flow due to evaporation and temperature gradients may push the plasma toward one of the electrodes. Using a hybrid model of the nonequilibrium postarc plasma and cathode sheath coupled with a direct simulation Monte Carlo method to describe collisions between heavy species, we present a parametric study of the sheath and plasma dynamics and of the time needed for the sheath to expel the plasma from the gap for different values of plasma density and electrode temperatures at the beginning of the postarc phase. This work constitutes a preliminary step toward understanding and quantifying the risk of current breaking failure of a vacuum arc.

  1. Erosion-corrosion of as-plasma-sprayed and laser-remelted NiCrAlY bond coats in working conditions of a coal-fired boiler

    SciTech Connect

    Sidhu, B.S.; Prakash, S.

    2008-01-15

    Ni-22Cr-10Al-1Y plasma spray coating has been formulated on boiler tube steels. namely, low-carbon steel ASTM SA210-Grade A1. 1Cr-0.5Mo steel ASTM SA213-T-11, and 2.25Cr-1Mo steel ASTM SA213-T-22. The coated steels also have been laser-remelted using a Nd:YAG laser. The degradation behavior of as-sprayed and laser-remelted coatings have been evaluated in actual conditions in a coal-fired boiler for 1,000 h at 755{sup o}C. The laser remelting has been found to be effective to increase the degradation resistance of plasma-sprayed boiler steels. ASTM SA213-T-22-coated and laser-remelted steel has proved to be most effective in resistance to degrading species.

  2. Constrained sintering of an air-plasma-sprayed thermal barrier coating A.C.F. Cocks a,*, N.A. Fleck b

    E-print Network

    Fleck, Norman A.

    Constrained sintering of an air-plasma-sprayed thermal barrier coating A.C.F. Cocks a,*, N.A. Fleck of the zirconia. Recently, Fleck and Cocks [5] have developed a sintering model for APS material. They assumed response. The Fleck and Cocks [5] model includes the feature that the TBC increases in modulus as sintering

  3. IMPACT OF GLUTAMINE AND SPRAY-DRIED PLASMA ON GROWTH PERFORMANCE, SMALL INTESTINAL MORPHOLOGY, AND IMMUNE RESPONSES IN ESCHERICHIA COLI K88+ CHALLENGED WEANED PIGS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A total of 40 barrows (5.32 +/- 0.3 kg) weaned at 17 +/- 2 days of age were used to investigate the effects of feeding glutamine (GLN) and spray-dried plasma (SDP) diets on E. coli K88+ LT/STb**+ challenged pigs. Pigs were allotted in a RCBD to four dietary treatments which included: positive contr...

  4. Probe characterization of high-current driven metal plasma in a vacuum-arc rail gun

    SciTech Connect

    Vijayan, T.; Roychowdhury, P.; Venkatramani, N.

    2004-10-15

    The characteristics of metal plasma launched by high-current electric arc in a vacuum-arc rail gun are determined by employing electrical and magnetic probes. These measurements are validated by results from theoretical simulations. The arc coupled nonlinear circuit equations are solved simultaneously with the Newtonian arc motion and revealed the undercritically damped behavior of the arc current identical to the arc-current signal recorded by the Rogowski magnetic probe. Similarly the arc velocity and displacement derived from the signatures of B-dot probes are shown to concur closely with the results of JxB propulsion from simulation. The heating of plasma is formulated in a three-electron population regime with direct arc energy coupling through magnetohydrodynamic, ion-acoustic, Coulomb, and neutral interactions. This results in high temperature (T{sub e}) of hundreds of eV in the arc as revealed by the simulation. Hence T{sub e} of the rapidly cooling and equilibrating plasma that emerged from the muzzle is high around 80-90 eV, which is confirmed by Langmuir electric probe measurements. Density n{sub e} of this metal plasma is shown to be in the range 4x10{sup 21}-6x10{sup 21} m{sup -3} and includes multiple ion charge states. The exit velocity of the plasma measured by a pair of Langmuir probes is close to 2.2x10{sup 6} cm/s and matched well with the arc velocity determined by the B-dot probes and the results from simulation.

  5. Degradation behavior of Ni{sub 3}Al plasma-sprayed boiler tube steels in an energy generation system

    SciTech Connect

    Sidhu, B.S.; Prakash, S.

    2005-06-01

    Boiler steels, namely, low-C steel, ASTM-SA210-Grade A1 (GrA1), 1Cr-0.5Mo steel, ASTM-SA213-T-11 (T11) and 2.25Cr-1Mo steel, ASTM-SA213-T-22 (T22) were plasma sprayed with Ni3Al. The alloy powder was prepared by mixing Ni and Al in the stoichiometric ratio of 3 to 1. The Ni-22Cr-10Al-1Y alloy powder was used as a bond coat, with a 150{mu} m thick layer sprayed onto the surface before applying the 200{mu}m coating of Ni{sub 3}Al. Exposure studies have been performed in the platen superheater zone of a coal-fired boiler at around 755{sup o}C for 10 cycles, each of 100 h duration. The protection to the base steel was minimal for the three steels. Scale spallation and the formation of a porous and nonadherent NiO scale were probably the main reasons for the lack of protection. In the case of T22-coated steel, cracks in the coatings have been observed after the first 100 h exposure cycle.

  6. Thermal Aging Behavior of Axial Suspension Plasma-Sprayed Yttria-Stabilized Zirconia (YSZ) Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Zhao, Yuexing; Wang, Liang; Yang, Jiasheng; Li, Dachuan; Zhong, Xinghua; Zhao, Huayu; Shao, Fang; Tao, Shunyan

    2015-02-01

    7.5YSZ thermal barrier coatings (TBCs) were deposited onto the stainless steel substrates using axial suspension plasma spraying (ASPS). Free-standing coatings were isothermally aged in air from 1200 to 1600 °C for 24 h and at 1550 °C for 20 to 100 h, respectively. Thermal aging behavior such as phase composition, microstructure evolutions, grain growth, and mechanical properties for thermal-aged coatings were investigated. Results show that the as-sprayed metastable tetragonal (t'-ZrO2) phase decomposes into equilibrium tetragonal (t-ZrO2) and cubic (c-ZrO2) phases during high-temperature exposures. Upon further cooling, the c-ZrO2 may be retained or transform into another metastable tetragonal (t?-ZrO2) phase, and tetragonal ? monoclinic phase transformation occurred after 1550 °C/40 h aging treatment. The coating exhibits a unique structure with segmentation cracks and micro/nano-size grains, and the grains grow gradually with increasing aging temperature and time. In addition, the hardness ( H) and Young's modulus ( E) significantly increased as a function of temperature due to healing of pores or cracks and grain growth of the coating. And a nonmonotonic variation is found in the coatings thermal aged at a constant temperature (1550 °C) with prolonged time, this is a synergetic effect of coating sintering and m-ZrO2 phase formation.

  7. Comparison of surface vacuum ultraviolet emissions with resonance level number densities. I. Argon plasmas

    SciTech Connect

    Boffard, John B. Lin, Chun C.; Culver, Cody; Wang, Shicong; Wendt, Amy E.; Radovanov, Svetlana; Persing, Harold

    2014-03-15

    Vacuum ultraviolet (VUV) photons emitted from excited atomic states are ubiquitous in material processing plasmas. The highly energetic photons can induce surface damage by driving surface reactions, disordering surface regions, and affecting bonds in the bulk material. In argon plasmas, the VUV emissions are due to the decay of the 1s{sub 4} and 1s{sub 2} principal resonance levels with emission wavelengths of 104.8 and 106.7?nm, respectively. The authors have measured the number densities of atoms in the two resonance levels using both white light optical absorption spectroscopy and radiation-trapping induced changes in the 3p{sup 5}4p?3p{sup 5}4s branching fractions measured via visible/near-infrared optical emission spectroscopy in an argon inductively coupled plasma as a function of both pressure and power. An emission model that takes into account radiation trapping was used to calculate the VUV emission rate. The model results were compared to experimental measurements made with a National Institute of Standards and Technology-calibrated VUV photodiode. The photodiode and model results are in generally good accord and reveal a strong dependence on the neutral gas temperature.

  8. Characterization and durability testing of plasma-sprayed zirconia-yttria and hafnia-yttria thermal barrier coatings. Part 1: Effect of spray parameters on the performance of several lots of partially stabilized zirconia-yttria powder

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Leissler, George W.; Jobe, J. Marcus

    1993-01-01

    Initial experiments conducted on thermal barrier coatings prepared in the newly upgraded research plasma spray facility and the burner rig test facilities are discussed. Part 1 discusses experiments which establish the spray parameters for three baseline zirconia-yttria coatings. The quality of five similar coating lots was judged primarily by their response to burner rig exposure supplemented by data from other sources such as specimen characterizations and thermal diffusivity measurements. After allowing for burner rig variability, although there appears to be an optimum density (i.e., optimum microstructure) for maximum burner rig life, the distribution tends to be rather broad about the maximum. In Part 2, new hafnia-yttria-based coatings were evaluated against both baseline and alternate zirconia-yttria coatings. The hafnia-yttria coatings and the zirconia-yttria coatings that were prepared by an alternate powder vendor were very sensitive to plasma spray parameters, in that high-quality coatings were only obtained when certain parameters were employed. The reasons for this important observation are not understood. Also not understood is that the first of two replicate specimens sprayed for Part 1 consistently performed better than the second specimen. Subsequent experiments did not display this spray order affect, possibly because a chiller was installed in the torch cooling water circuit. Also, large changes in coating density were observed after switching to a new lot of electrodes. Analyses of these findings were made possible, in part, because of the development of a sensitive density measurement technique described herein in detail. The measured thermal diffusivities did not display the expected strong relationship with porosity. This surprising result was believed to have been caused by increased microcracking of the denser coatings on the stainless steel substrates.

  9. Friction and wear of plasma-sprayed coatings containing cobalt alloys from 25 deg to 650 deg in air

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.; Jacobson, T. P.

    1980-01-01

    Four different compositions of self-lubricating, plasma-sprayed, composite coatings with calcium fluoride dispersed throughout cobalt alloy-silver matrices were evaluated on a friction and wear apparatus. In addition, coatings of the cobalt alloys alone and of one coating with a nickel alloy-silver matrix were evaluated for comparison. The wear specimens consisted of two, diametrically opposed, flat rub shoes sliding on the coated, cylindrical surface of a rotating disk. Two of the cobalt composite coatings gave a friction coefficient of about 0.25 and low wear at room temperature, 400 and 650 C. Wear rates were lower than those of the cobalt alloys alone or the nickel alloy composite coating. However, oxidation limited the maximum useful temperature of the cobalt composite coating to about 650 C compared to about 900 C for the nickel composite coating.

  10. Splat formation during plasma spraying for 8 mol% yttria-stabilized zirconia droplets impacting on stainless steel substrate

    NASA Astrophysics Data System (ADS)

    Wei, Pei; Wei, Zhengying; Li, Suli; Tan, Chao; Du, Jun

    2014-12-01

    In this paper, the formation of 8 mol% yttria-stabilized zirconia (8YSZ) droplet impacting on stainless substrate during SAPS and APS has been analyzed by numerical simulation and experiments. The objective of the study was to establish the predictable relationships between the coating properties and various parameters of plasma spraying process. A mathematic model of single droplet deposition process was developed, the influence of solidification was considered in the governing equations. The model considered the following factors: surface tension, thermal contact resistance between droplet and substrate, viscosity, impacting velocity, and temperature of droplet. Dimensionless number Reynolds number, Weber number, Ohnesorge number and Biot number were used to explain the phenomena of splashing. The critical values of triggering splashing were analyzed quantitatively for 8YSZ droplets. The numerical results agreed well with the experiment data.

  11. High-temperature erosion of plasma-sprayed, yttria-stabilized zirconia in a simulated turbine environment

    NASA Technical Reports Server (NTRS)

    Hanschuh, R. F.

    1984-01-01

    A series of rig calibration and high temperature tests simulating gas path seal erosion in turbine engines were performed at three impingement angles and at three downstream locations. Plasma sprayed, yttria stablized zirconia specimens were tested. Steady state erosion curves presented for 19 test specimens indicate a brittle type of material erosion despite scanning electron microscopy evidence of plastic deformation. Steady state erosion results were not sensitive to downstream location but were sensitive to impingement angle. At difference downstream locations specimen surface temperature varied from 1250 to 1600 C (2280 to 2900 F) and particle velocity varied from 260 to 320 m/s (850 to 1050 ft/s). The mass ratio of combustion products to erosive grit material was typically 240.

  12. La2Zr2O7 (LZ) Coatings by Liquid Feedstock Plasma Spraying: The Role of Precursors

    NASA Astrophysics Data System (ADS)

    Duarte, William; Rossignol, Sylvie; Vardelle, Michel

    2014-12-01

    Solution precursor plasma spraying (SPPS) is an innovative process for obtaining finely structured coatings from metallic salt solutions. Lanthanum and zirconium precursors were studied to understand their influence on lanthanum zirconate (La2Zr2O7) synthesis by SPPS. Thermal analysis revealed that the nature of the precursor and the solvent affected mixture decomposition by changing the decomposition temperature. The surface tensions of precursor solutions in various media were investigated and revealed the influence of the nature of the counter-cation. Different solutions of precursor mixtures were used to obtain La2Zr2O7 splats on metallic substrates. A decrease in solution surface tension led to an increase in splat size. Coating mechanisms by SPPS are governed by the nature of the precursors and solvents.

  13. Friction and wear of plasma-sprayed coatings containing cobalt alloys from 25 deg to 650 deg in air

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.; Jacobson, T. P.

    1979-01-01

    Four different compositions of self-lubricating, plasma-sprayed, composite coatings with calcium fluoride dispersed throughout cobalt alloy-silver matrices were evaluated on a friction and wear apparatus. In addition, coatings of the cobalt alloys alone and one coating with a nickel alloy-silver matrix were evaluated for comparison. The wear specimens consisted of two, diametrically opposed, flat rub shoes sliding on the coated, cylindrical surface of a rotating disk. Two of the cobalt composite coatings gave a friction coefficient of about 0.25 and low wear at room temperature, 400 and 650 C. Wear rates were lower than those of the cobalt alloys alone or the nickel alloy composite coating. However, oxidation limited the maximum useful temperature of the cobalt composite coating to about 650 C compared to about 900 C for the nickel composite coating.

  14. Induction of osteoconductivity by BMP-2 gene modification of mesenchymal stem cells combined with plasma-sprayed hydroxyapatite coating

    NASA Astrophysics Data System (ADS)

    Wu, Jiang; Guo, Ying-qiang; Yin, Guang-fu; Chen, Huai-qing; Kang, Yunqing

    2008-11-01

    Success in bone implant depends greatly on the composition and surface features of the implant. The surface-modification measures not only favor the implant's osteoconductivity, but also promote both bone anchoring and biomechanical stability. This paper reports an approach to combine a hydroxyapatite (HA) coated substrate with a cellular vehicle for the delivery of bone morphogenetic protein-2 (BMP-2) synergistically enhancing the osteoconductivity of implant surfaces. We examined the attachment, growth and osteoinductive activity of transfected BMP-producing bone marrow mesenchymal stem cells (BMSCs) on a plasma-sprayed HA coated substrate. It was found that the HA coated substrate could allow the attachment and growth of BMP-2 gene modified BMSCs, and this combined application synergistically enhanced osteconductivity of the substrate surface. This synergistic method may be of osseointegration value in orthopedic and dental implant surgery.

  15. Plasma and cold sprayed aluminum carbon nanotube composites: Quantification of nanotube distribution and multi-scale mechanical properties

    NASA Astrophysics Data System (ADS)

    Bakshi, Srinivasa Rao

    Carbon nanotubes (CNT) could serve as potential reinforcement for metal matrix composites for improved mechanical properties. However dispersion of carbon nanotubes (CNT) in the matrix has been a longstanding problem, since they tend to form clusters to minimize their surface area. The aim of this study was to use plasma and cold spraying techniques to synthesize CNT reinforced aluminum composite with improved dispersion and to quantify the degree of CNT dispersion as it influences the mechanical properties. Novel method of spray drying was used to disperse CNTs in Al-12 wt.% Si prealloyed powder, which was used as feedstock for plasma and cold spraying. A new method for quantification of CNT distribution was developed. Two parameters for CNT dispersion quantification, namely Dispersion parameter (DP) and Clustering Parameter (CP) have been proposed based on the image analysis and distance between the centers of CNTs. Nanomechanical properties were correlated with the dispersion of CNTs in the microstructure. Coating microstructure evolution has been discussed in terms of splat formation, deformation and damage of CNTs and CNT/matrix interface. Effect of Si and CNT content on the reaction at CNT/matrix interface was thermodynamically and kinetically studied. A pseudo phase diagram was computed which predicts the interfacial carbide for reaction between CNT and Al-Si alloy at processing temperature. Kinetic aspects showed that Al4C3 forms with Al-12 wt.% Si alloy while SiC forms with Al-23wt.% Si alloy. Mechanical properties at nano, micro and macro-scale were evaluated using nanoindentation and nanoscratch, microindentation and bulk tensile testing respectively. Nano and micro-scale mechanical properties (elastic modulus, hardness and yield strength) displayed improvement whereas macro-scale mechanical properties were poor. The inversion of the mechanical properties at different scale length was attributed to the porosity, CNT clustering, CNT-splat adhesion and Al 4C3 formation at the CNT/matrix interface. The Dispersion parameter (DP) was more sensitive than Clustering parameter (CP) in measuring degree of CNT distribution in the matrix.

  16. Tracing ultrafast dynamics of strong fields at plasma-vacuum interfaces with longitudinal proton probing

    SciTech Connect

    Abicht, F.; Braenzel, J.; Koschitzki, Ch.; Schnürer, M.; Priebe, G.; Andreev, A. A.; Nickles, P. V.; Sandner, W.

    2014-07-21

    If regions of localized strong fields at plasma-vacuum interfaces are probed longitudinally with laser accelerated proton beams their velocity distribution changes sensitively and very fast. Its measured variations provide indirectly a higher temporal resolution as deduced from deflection geometries which rely on the explicit temporal resolution of the proton beam at the position of the object to probe. With help of reasonable models and comparative measurements changes of proton velocity can trace the field dynamics even at femtosecond time scale. In longitudinal probing, the very low longitudinal emittance together with a broad band kinetic energy distribution of laser accelerated protons is the essential prerequisite of the method. With a combination of energy and one-dimensional spatial resolution, we resolve fast field changes down to 100 fs. The used pump probe setup extends previous schemes and allows discriminating simultaneously between electric and magnetic fields in their temporal evolution.

  17. Ion Species and Charge States of Vacuum Arc Plasma with Gas Feed and Longitudinal Magnetic Field

    SciTech Connect

    Oks, Efim; Anders, Andre

    2010-06-23

    The evolution of copper ion species and charge state distributions is measured for a long vacuum arc discharge plasma operated in the presence of a longitudinal magnetic field of several 10 mT and working gas (Ar). It was found that changing the cathode-anode distance within 20 cm as well as increasing the gas pressure did not affect the arc burning voltage and power dissipation by much. In contrast, burning voltage and power dissipation were greatly increased as the magnetic field was increased. The longer the discharge gap the greater was the fraction of gaseous ions and the lower the fraction of metal ions, while the mean ion charge state was reduced. It is argued that the results are affected by charge exchange collisions and electron impact ionization.

  18. Neutron Generation in a Vacuum Diode with Laser-plasma Source of Deuterons

    NASA Astrophysics Data System (ADS)

    Kozlovskij, K. I.; Vovchenko, E. D.; Isaev, A. A.

    The generation of neutrons in a coaxial vacuum diode with laser-plasma source of deuteron on anode and outer hollow cylindrical cathode is investigated. The experiments were carried out at accelerating voltages in the diode gap of UA ? 280 kV for two configurations of the electrode system: the cathode made from magnetic NdFeB compound material, providing suppression of electrons stray currents in the accelerating gap, and an aluminum A1 cathode. For the magnetic field inductance on the axis of the NdFeB cathode about B ? 0.4 on the D(d, n)3He reaction the maximum neutron output in the total solid angle Q = 5×107 neutrons per pulse was received. The absence of magnetic insulation reduced the accelerating voltage on the diode gap and the neutrons output.

  19. Vacuum ultraviolet emission from microwave Ar-H{sub 2} plasmas

    SciTech Connect

    Espinho, S.; Felizardo, E.; Tatarova, E.; Dias, F. M.; Ferreira, C. M.

    2013-03-18

    Vacuum ultraviolet emission from Ar-H{sub 2} wave driven microwave (2.45 GHz) plasmas operating at low pressures (0.1-1 mbar) has been investigated. The emitted spectra show the presence of the Ar resonance lines at 104.8 and 106.7 nm and of the Lyman-{alpha},{beta} atomic lines at 121.6 nm and 102.6 nm, respectively. The increase of the hydrogen amount in the mixture results in an abrupt increase of the Werner and Lyman molecular bands intensity. The Lyman-{beta} intensity shows little changes in the range of 5%-30% of hydrogen in the mixture while the Lyman-{alpha} intensity tends to decrease as the percentage of hydrogen increases.

  20. Emission characteristics of kerosene-air spray combustion with plasma assistance

    NASA Astrophysics Data System (ADS)

    Liu, Xingjian; He, Liming; Zeng, Hao; Jin, Tao; Chen, Yi; Zhang, Yihan; Liu, Pengfei

    2015-09-01

    A plasma assisted combustion system for combustion of kerosene-air mixtures was developed to study emission levels of O2, CO2, CO, and NOx. The emission measurement was conducted by Testo 350-Pro Flue Gas Analyzer. The effect of duty ratio, feedstock gas flow rate and applied voltage on emission performance has been analyzed. The results show that O2 and CO emissions reduce with an increase of applied voltage, while CO2 and NOx emissions increase. Besides, when duty ratio or feedstock gas flow rate decreases, the same emission results would appear. The emission spectrum of the air plasma of plasma assisted combustion actuator was also registered to analyze the kinetic enhancement effect of plasma, and the generation of ozone was believed to be the main factor that plasma makes a difference in our experiment. These results are valuable for the future optimization of kerosene-fueled aircraft engine when using plasma assisted combustion devices to exert emission control.

  1. Boron Ion Implantation into Silicon by Use of the Boron Vacuum-Arc Plasma Generator

    SciTech Connect

    Williams, J. M.; Klepper, C. C.; Chivers, D. J.; Hazelton, R. C.; Moschella, J. J.; Keitz, M. D.

    2006-11-13

    This paper continues with presentation of experimental work pertaining to use of the boron vacuum arc (a.k.a. cathodic arc) plasma generator for boron doping in semiconductor silicon, particularly with a view to the problems associated with shallow junction doping. Progress includes development of an excellent and novel macroparticle filter and subsequent ion implantations. An important perceived issue for vacuum arc generators is the production of copious macroparticles from cathode material. This issue is more important for cathodes of materials such as carbon or boron, for which the particles are not molten or plastic, but instead are elastic, and tend to recoil from baffles used in particle filters. The present design starts with two vanes of special orientation, so as to back reflect the particles, while steering the plasma between the vanes by use of high countercurrents in the vanes. Secondly, behind and surrounding the vanes is a complex system of baffles that has been designed by a computer-based strategy to ultimately trap the particles for multiple bounces. The statistical transmittance of particles is less than 5 per coulomb of boron ions transmitted at a position just a few centimeters outside the filter. This value appears adequate for the silicon wafer application, but improvement is easily visualized as wafers will be situated much further away when they are treated in systems. A total of 11 silicon samples, comprising an area of 250 cm2, have been implanted. Particles were not detected. Sample biases ranged from 60 to 500 V. Boron doses ranged from 5 x 1014 to 5 x 1015/cm2. Exposure times ranged from 20 to 200 ms for average transmitted boron current values of about 125 mA. SIMS concentration profiles from crystalline material are presented. The results appear broadly favorable in relation to competitive techniques and will be discussed. It is concluded that doubly charged boron ions are not present in the plume.

  2. High-pressure arcs as vacuum-atmosphere interface and plasma lens for nonvacuum electron beam welding machines, electron beam melting, and nonvacuum ion material modification

    NASA Astrophysics Data System (ADS)

    Hershcovitch, Ady

    1995-11-01

    Atmospheric pressure plasmas can be used to provide a vacuum-atmosphere interface as an alternative to differential pumping. Vacuum-atmosphere interface utilizing a cascade arc discharge was successfully demonstrated and a 175 keV electron beam was successfully propagated from vacuum through such a plasma interface and out into atmospheric pressure. Included in the article are a theoretical framework, experimental results, and possible applications for this novel interface.

  3. Effects of the magnetic field over the nanometric growth morphology on the material synthesis in a liquid spray thermal plasma reactor

    NASA Astrophysics Data System (ADS)

    Beiras, L.; Torrente, G.; Puerta, J.; Blanco, F.

    2014-05-01

    It is possible that the magnetic field affect the growth morphology of the materials at nanometric scale while there are synthesized. In this work is developed a thermal plasma reactor in fluidized bed assisted by magnetic mirror for material synthesis using a liquid spray. An aluminum solution is carrier in the plasma reactor with a without magnetic external magnetic field applied. We found from the characterization of material synthesized that: Aluminum nanowire and alumina nanofiber are generated when the external magnetic mirror is applied to the thermal plasma reactor.

  4. Characterization and durability testing of plasma-sprayed zirconia-yttria and hafnia-yttria thermal barrier coatings. Part 2: Effect of spray parameters on the performance of several hafnia-yttria and zirconia-yttria coatings

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Leissler, George W.

    1993-01-01

    This is the second of two reports which discuss initial experiments on thermal barrier coatings prepared and tested in newly upgraded plasma spray and burner rig test facilities at LeRC. The first report, part 1, describes experiments designed to establish the spray parameters for the baseline zirconia-yttria coating. Coating quality was judged primarily by the response to burner rig exposure, together with a variety of other characterization approaches including thermal diffusivity measurements. That portion of the study showed that the performance of the baseline NASA coating was not strongly sensitive to processing parameters. In this second part of the study, new hafnia-yttria coatings were evaluated with respect to both baseline and alternate zirconia-yttria coatings. The hafnia-yttria and the alternate zirconia-yttria coatings were very sensitive to plasma-spray parameters in that high-quality coatings were obtained only when specific parameters were used. The reasons for this important observation are not understood.

  5. Formation of Ultrananocrystalline Diamond/Amorphous Carbon Composite Films in Vacuum Using Coaxial Arc Plasma Gun

    NASA Astrophysics Data System (ADS)

    Hanada, Kenji; Yoshida, Tomohiro; Nakagawa, You; Yoshitake, Tsuyoshi

    2010-12-01

    Ultrananocrystalline diamond (UNCD)/nonhydrogenated amorphous carbon (a-C) composite films were grown in vacuum using a coaxial arc plasma gun. From the X-ray diffraction measurement, the UNCD crystallite size was estimated to be 1.6 nm. This size is dramatically reduced from that (2.3 nm) of UNCD/hydrogenated amorphous carbon (a-C:H) composite films grown in a hydrogen atmosphere. The sp3/(sp3 + sp2) value, which was estimated from the X-ray photoemission spectrum, was also reduced to be 41%. A reason for it might be the reduction in the UNCD crystallite size. From the near-edge X-ray absorption fine-structure (NEXAFS) spectrum, it was found that the ?*C=C and ?*C?C bonds are preferentially formed instead of the ?*C-H bonds in the UNCD/a-C:H films. Since the extremely small UNCD crystallites (1.6 nm) correspond to the nuclei of diamond, we consider that UNCD crystallite formation should be due predominantly to nucleation. The supersaturated condition required for nucleation is expected to be realized in the deposition using the coaxial arc plasma gun.

  6. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap

    SciTech Connect

    Nikolaev, A. G.; Savkin, K. P.; Oks, E. M.; Vizir, A. V.; Yushkov, G. Yu.; Vodopyanov, A. V.; Izotov, I. V.; Mansfeld, D. A.

    2012-02-15

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent ''minimum-B'' structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap - axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 {mu}s) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  7. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap.

    PubMed

    Nikolaev, A G; Savkin, K P; Oks, E M; Vizir, A V; Yushkov, G Yu; Vodopyanov, A V; Izotov, I V; Mansfeld, D A

    2012-02-01

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent "minimum-B" structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap--axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 ?s) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams. PMID:22380156

  8. PLASMA SPRAYED FUNCTIONALLY GRADED AND LAYERED MoSi2-A1203 COMPOSITES FOR HIGH TEMPERATURE SENSOR SHEATH APPLICATION

    SciTech Connect

    R. VAIDYA; ET AL

    2001-01-01

    Protective sensor sheaths are required in the glass industry for sensors that are used to measure various properties of the melt. Molten glass presents an extremely corrosive elevated temperature environment, in which only a few types of materials can survive. Molybdenum disilicide (MoSi{sub 2}) has been shown to possess excellent corrosion resistance in molten glass, and is thus a candidate material for advanced sensor sheath applications. Plasma spray-forming techniques were developed to fabricate molybdenum dilicide-alumina (Al{sub 2}O{sub 3}) laminate and functionally graded composite tubes with mechanical properties suitable for sensor sheath applications. These functionally graded materials (FGMs) were achieved by manipulating the powder hoppers and plasma torch translation via in-house created computer software. Molybdenum disilicide and alumina are thermodynamically stable elevated temperature materials with closely matching thermal expansion coefficients. Proper tailoring of the microstructure of these MoSi{sub 2}-Al{sub 2}O{sub 3} composites can result in improved strength, toughness, and thermal shock resistance. This study focuses on the mechanical performance of these composite microstructures.

  9. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids

    NASA Astrophysics Data System (ADS)

    Jablonowski, H.; Bussiahn, R.; Hammer, M. U.; Weltmann, K.-D.; von Woedtke, Th.; Reuter, S.

    2015-12-01

    Plasma medicine utilizes the combined interaction of plasma produced reactive components. These are reactive atoms, molecules, ions, metastable species, and radiation. Here, ultraviolet (UV, 100-400 nm) and, in particular, vacuum ultraviolet (VUV, 10-200 nm) radiation generated by an atmospheric pressure argon plasma jet were investigated regarding plasma emission, absorption in a humidified atmosphere and in solutions relevant for plasma medicine. The energy absorption was obtained for simple solutions like distilled water (dH2O) or ultrapure water and sodium chloride (NaCl) solution as well as for more complex ones, for example, Rosewell Park Memorial Institute (RPMI 1640) cell culture media. As moderate stable reactive oxygen species, hydrogen peroxide (H2O2) was studied. Highly reactive oxygen radicals, namely, superoxide anion (O2•-) and hydroxyl radicals (•OH), were investigated by the use of electron paramagnetic resonance spectroscopy. All species amounts were detected for three different treatment cases: Plasma jet generated VUV and UV radiation, plasma jet generated UV radiation without VUV part, and complete plasma jet including all reactive components additionally to VUV and UV radiation. It was found that a considerable amount of radicals are generated by the plasma generated photoemission. From the experiments, estimation on the low hazard potential of plasma generated VUV radiation is discussed.

  10. Plasma sputtering robotic device for in-situ thick coatings of long, small diameter vacuum tubesa)

    NASA Astrophysics Data System (ADS)

    Hershcovitch, A.; Blaskiewicz, M.; Brennan, J. M.; Custer, A.; Dingus, A.; Erickson, M.; Fischer, W.; Jamshidi, N.; Laping, R.; Liaw, C.-J.; Meng, W.; Poole, H. J.; Todd, R.

    2015-05-01

    A novel robotic plasma magnetron mole with a 50 cm long cathode was designed, fabricated, and operated. The reason for this endeavor is to alleviate the problems of unacceptable resistive heating of stainless steel vacuum tubes in the BNL Relativistic Heavy Ion Collider (RHIC). The magnetron mole was successfully operated to copper coat an assembly containing a full-size, stainless steel, cold bore, RHIC magnet tubing connected to two types of RHIC bellows, to which two additional pipes made of RHIC tubing were connected. To increase the cathode lifetime, a movable magnet package was developed, and the thickest possible cathode was made, with a rather challenging target to substrate (de facto anode) distance of less than 1.5 cm. Achieving reliable steady state magnetron discharges at such a short cathode to anode gap was rather challenging, when compared to commercial coating equipment, where the target to substrate distance is 10's cm; 6.3 cm is the lowest experimental target to substrate distance found in the literature. Additionally, the magnetron developed during this project provides unique omni-directional uniform coating. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water were fed through a cable bundle. The umbilical cabling system is driven by a motorized spool. Excellent coating adhesion was achieved. Measurements indicated that well-scrubbed copper coating reduced secondary electron yield to 1, i.e., the problem of electron clouds can be eliminated. Room temperature RF resistivity measurement indicated that a 10 ?m copper coated stainless steel RHIC tube has a conductivity close to that of pure copper tubing. Excellent coating adhesion was achieved. The device details and experimental results are described.

  11. Plasma Sputtering Robotic Device for In-Situ Thick Coatings of Long, Small Diameter Vacuum Tubes

    NASA Astrophysics Data System (ADS)

    Hershcovitch, Ady

    2014-10-01

    A novel robotic plasma magnetron mole with a 50 cm long cathode was designed fabricated & operated. Reason for this endeavor is to alleviate the problems of unacceptable ohmic heating of stainless steel vacuum tubes and of electron clouds, due to high secondary electron yield (SEY), in the BNL Relativistic Heavy Ion Collider (RHIC). The magnetron mole was successfully operated to copper coat an assembly containing a full-size, stainless steel, cold bore, RHIC magnet tubing connected to two types of RHIC bellows, to which two additional pipes made of RHIC tubing were connected. To increase cathode lifetime, movable magnet package was developed, and thickest possible cathode was made, with a rather challenging target to substrate (de facto anode) distance of less than 1.5 cm. Achieving reliable steady state magnetron discharges at such a short cathode to anode gap was rather challenging, when compared to commercial coating equipment, where the target to substrate distance is 10's cm; 6.3 cm is the lowest experimental target to substrate distance found in the literature. Additionally, the magnetron developed during this project provides unique omni-directional uniform coating. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water were fed through a cable bundle. The umbilical cabling system is driven by a motorized spool. Excellent coating adhesion was achieved. Measurements indicated that well-scrubbed copper coating reduced SEY to 1, i.e., the problem of electron clouds can be eliminated. Room temperature RF resistivity measurement indicated that 10 ?m Cu coated stainless steel RHIC tube has conductivity close to that of pure copper tubing. Excellent coating adhesion was achieved. Device detail and experimental results will be presented. Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH1-886 with the US Department of Energy.

  12. Plasma sputtering robotic device for in-situ thick coatings of long, small diameter vacuum tubes

    SciTech Connect

    Hershcovitch, A. Blaskiewicz, M.; Brennan, J. M.; Fischer, W.; Liaw, C.-J.; Meng, W.; Todd, R.; Custer, A.; Dingus, A.; Erickson, M.; Jamshidi, N.; Laping, R.; Poole, H. J.

    2015-05-15

    A novel robotic plasma magnetron mole with a 50?cm long cathode was designed, fabricated, and operated. The reason for this endeavor is to alleviate the problems of unacceptable resistive heating of stainless steel vacuum tubes in the BNL Relativistic Heavy Ion Collider (RHIC). The magnetron mole was successfully operated to copper coat an assembly containing a full-size, stainless steel, cold bore, RHIC magnet tubing connected to two types of RHIC bellows, to which two additional pipes made of RHIC tubing were connected. To increase the cathode lifetime, a movable magnet package was developed, and the thickest possible cathode was made, with a rather challenging target to substrate (de facto anode) distance of less than 1.5?cm. Achieving reliable steady state magnetron discharges at such a short cathode to anode gap was rather challenging, when compared to commercial coating equipment, where the target to substrate distance is 10's cm; 6.3?cm is the lowest experimental target to substrate distance found in the literature. Additionally, the magnetron developed during this project provides unique omni-directional uniform coating. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water were fed through a cable bundle. The umbilical cabling system is driven by a motorized spool. Excellent coating adhesion was achieved. Measurements indicated that well-scrubbed copper coating reduced secondary electron yield to 1, i.e., the problem of electron clouds can be eliminated. Room temperature RF resistivity measurement indicated that a 10??m copper coated stainless steel RHIC tube has a conductivity close to that of pure copper tubing. Excellent coating adhesion was achieved. The device details and experimental results are described.

  13. An investigation of the electrical behavior of thermally-sprayed aluminum oxide

    SciTech Connect

    Swindeman, C.J.; Seals, R.D.; White, R.L.; Murray, W.P.; Cooper, M.H.

    1996-09-01

    Electrical properties of plasma-sprayed aluminum oxide coatings were measured at temperatures up to 600 C. High purity (> 99.5 wt% pure Al{sub 2}O{sub 3}) alumina powders were plasma-sprayed on stainless steel substrates over a range of power levels, using two gun configurations designed to attain different spray velocities. Key electrical properties were measured to evaluate the resultant coatings as potential insulating materials for electrostatic chucks (ESCs) being developed for semiconductor manufacturing. Electrical resistivity of all coatings was measured under vacuum upon heating and cooling over a temperature range of 20 to 600 C. Dielectric constants were also measured under the same test conditions. X-ray diffraction was performed to examine phase formation in the coatings. Results show the important of powder composition and careful selection and control of spray conditions for optimizing electrical behavior in plasma-sprayed aluminum oxide, and point to the need for further studies to characterize the relationship between high temperature electrical properties, measured plasma-spray variables, and specific microstructural and compositional coating features.

  14. Vacuum arc with a distributed cathode spot as a plasma source for plasma separation of spent nuclear fuel and radioactive waste

    NASA Astrophysics Data System (ADS)

    Amirov, R. Kh.; Vorona, N. A.; Gavrikov, A. V.; Lizyakin, G. D.; Polishchuk, V. P.; Samoilov, I. S.; Smirnov, V. P.; Usmanov, R. A.; Yartsev, I. M.

    2015-10-01

    Results from experimental studies of a vacuum arc with a distributed cathode spot on the heated cathode are presented. Such an arc can be used as a plasma source for plasma separation of spent nuclear fuel and radioactive waste. The experiments were performed with a gadolinium cathode, the properties of which are similar to those of an uranium arc cathode. The heat flux from the plasma to the cathode (and its volt equivalent) at discharge voltages of 4-15 V and discharge currents of 44-81 A, the radial distribution of the emission intensity of gadolinium atoms and singly charged ions in the arc channel at a voltage of 4.3 V, and the plasma electron temperature behind the anode were measured. The average charge of plasma ions at arc voltages of 3.5-8 V and a discharge current of 52 A and the average rate of gadolinium evaporation in the discharge were also determined.

  15. LTE (local thermodynamic equilibrium) and non-LTE gas temperatures in loaded and unloaded plasmas during spraying of NiAl powders

    SciTech Connect

    Eddy, T.L.; Detering, B.A.; Wilson, G.C. )

    1990-01-01

    The purpose of this research is to contribute to the science of the complex particle plasma interaction in the plasma spray process. The relationship between the chaotic torch, the nonequilibrium plasma, the accelerating vaporizing particle, and the particle substrate interaction must be understood to relate coating characteristics to process parameters. This will lead to improved models, scalability, and appropriate monitoring and control of the process. This work focuses on the nonequilibrium plasma plume through which the particles must pass. Present models are based on the best knowledge available, but do not predict particle size, velocity, and surface temperatures that are consistent with experiments. Plasmas at pressures at and below atmospheric have been shown to deviate from local thermodynamic equilibrium (LTE). 15 refs., 5 figs.

  16. On-line control of the plasma spraying process by monitoring the temperature, velocity, and trajectory of in-flight particles

    SciTech Connect

    Moreau, C.; Gougeon, P.; Lamontagne, M.; Lacasse, V.; Vaudreuil, G.; Cielo, P.

    1994-12-31

    This paper describes a new optical sensing device for on-line monitoring of the temperature, velocity and trajectory of in-flight particles during industrial coating production. Thermal radiation emitted by the in-flight particles is collected by a small and robust sensing head that can be attached to the plasma gun providing continuous monitoring of the spray process. The collected radiation is transmitted through optical fibers to a detection cabinet located away from the dusty environment around the operating plasma gun. On-line measurement of the particle velocity, temperature and trajectory can provide an efficient diagnostic tool to maintain optimum spraying conditions leading to a better reproducibility of the coating properties.

  17. On well-posedness of the plasma-vacuum interface problem: the case of non-elliptic interface symbol

    E-print Network

    Trakhinin, Yuri

    2015-01-01

    We consider the plasma-vacuum interface problem in a classical statement when in the plasma region the flow is governed by the equations of ideal compressible magnetohydrodynamics, while in the vacuum region the magnetic field obeys the div-curl system of pre-Maxwell dynamics. The local-in-time existence and uniqueness of the solution to this problem in suitable anisotropic Sobolev spaces was proved in [P. Secchi, Y. Trakhinin, Nonlinearity 27 (2014), 105-169], provided that at each point of the initial interface the plasma density is strictly positive and the magnetic fields on either side of the interface are not collinear. The non-collinearity condition appears as the requirement that the symbol associated to the interface is elliptic. We now consider the case when this symbol is not elliptic and study the linearized problem, provided that the unperturbed plasma and vacuum non-zero magnetic fields are collinear on the interface. We prove a basic a priori $L^2$ estimate for this problem under the (generaliz...

  18. Characterisations Of Al{sub 2}O{sub 3}-13% Wt TiO{sub 2} Deposition On Mild Steel Via Plasma Spray Method

    SciTech Connect

    Yusoff, N. H.; Isa, M. C.; Daud, A. R.

    2011-01-17

    To date, plasma sprayed alumina titania have been widely used as wear resistance coatings in textile, machinery and printing industries. Previous studies showed that the coating microstructures and properties were strongly depended on various parameters such as ceramic composition, grain size powders and spray parameters, thus, influencing the melting degree of the alumina titania during the deposition process. The aim of this study focuses on the evolution of the micron sizes of alumina-13%wt titania at different plasma spray power, ranging from 20kW to 40kW. It was noted that the coating porosity of alumina-13%wt titania were decreased from 6.2% to 4% by increasing the plasma power from 20 to 40 kW. At lower power value, partially melted powders were deposited, generating over 6% porosity within the microstructures. Percentage of porosity about 5.6% gave the best ratio of bi-modal structures, providing the highest microhardness value. Furthermore, the effect of microstructure and porosity formation on wear resistance was also discussed. Coatings with less porosity exhibited better resistance to wear, in which the wear resistance of coated mild steel possessed only {approx}5 x 10{sup -4} cm{sup 3}/Nm with 4% of porosity.

  19. Character of laser-glazed, plasma-sprayed zirconia coatings on stainless steel substrata

    NASA Technical Reports Server (NTRS)

    Fischman, G. S.; Chen, C. H.; Rigsbee, J. M.; Brown, S. D.

    1985-01-01

    Partially stabilized zirconia was applied as coatings to 316L stainless steel substrata using an 80-kw arc-plasma unit. Some of these coating-substrate systems were subsequently glazed using a 10 kw CO2 continuous-wavelength laser. SEM was used to characterize the microstructures of the coatings and coating-substrate interfaces. Results are reported and discussed.

  20. Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi

    NASA Astrophysics Data System (ADS)

    Ang, Andrew Siao Ming; Berndt, Christopher C.; Sesso, Mitchell L.; Anupam, Ameey; S, Praveen; Kottada, Ravi Sankar; Murty, B. S.

    2015-02-01

    High entropy alloys (HEAs) represent a new class of materials that present novel phase structures and properties. Apart from bulk material consolidation methods such as casting and sintering, HEAs can also be deposited as a surface coating. In this work, thermal sprayed HEA coatings are investigated that may be used as an alternative bond coat material for a thermal barrier coating system. Nanostructured HEAs that were based on AlCoCrFeNi and MnCoCrFeNi were prepared by ball milling and then plasma sprayed. Splat studies were assessed to optimise the appropriate thermal spray parameters and spray deposits were prepared. After mechanical alloying, aluminum-based and manganese-based HEA powders revealed contrary prominences of BCC and FCC phases in their X-ray diffraction patterns. However, FCC phase was observed as the major phase present in both of the plasma-sprayed AlCoCrFeNi and MnCoCrFeNi coatings. There were also minor oxide peaks detected, which can be attributed to the high temperature processing. The measured porosity levels for AlCoCrFeNi and MnCoCrFeNi coatings were 9.5 ± 2.3 and 7.4 ± 1.3 pct, respectively. Three distinct phase contrasts, dark gray, light gray and white, were observed in the SEM images, with the white regions corresponding to retained multicomponent HEAs. The Vickers hardness (HV0.3kgf) was 4.13 ± 0.43 and 4.42 ± 0.60 GPa for AlCoCrFeNi and MnCoCrFeNi, respectively. Both type of HEAs coatings exhibited anisotropic mechanical behavior due to their lamellar, composite-type microstructure.

  1. Magnetic field effects on secondary electrons emitted during ion implantation in vacuum arc plasmas

    NASA Astrophysics Data System (ADS)

    Tan, I. H.; Ueda, M.; Dallaqua, R. S.; Rossi, J. O.

    2006-01-01

    Aluminum ions produced in a vacuum arc system with a straight magnetic duct were implanted in a copper sample oriented with its surface parallel to the plasma stream and magnetic field. One Faraday cup measured the secondary electrons emitted normally to the sample's surface, while another cup was oriented to detect electrons that flow along the field lines. Large negative spikes coincident with high voltage pulses are seen in the perpendicular cup's current when the field is absent. These spikes correspond to emitted secondary electrons as shown by their energies, measured by operating the cup as a retarding potential analyzer. A secondary electron emission coefficient of 0.53 was measured at -2.5 kV. When a 12.5 mT magnetic field is applied, these spikes are not seen, neither in the perpendicular cup's current, showing that secondary electrons were magnetically suppressed, nor in the longitudinal cup's current, indicating that a virtual cathode was formed near the electrode's surface.

  2. Coherent forward stimulated-brillouin scattering of a spatially incoherent laser beam in a plasma and its effect on beam spray.

    PubMed

    Grech, M; Riazuelo, G; Pesme, D; Weber, S; Tikhonchuk, V T

    2009-04-17

    A statistical model for forward stimulated-Brillouin scattering is developed for a spatially incoherent, monochromatic, laser beam propagating in a plasma. The threshold above which the laser beam spatial incoherence cannot prevent the coherent growth of forward stimulated-Brillouin scattering is computed. It is found to be well below the threshold for self-focusing. Three-dimensional simulations confirm its existence and reveal the onset of beam spray above it. From these results, we propose a new figure of merit for the control of propagation through a plasma of a spatially incoherent laser beam. PMID:19518639

  3. Coherent Forward Stimulated-Brillouin Scattering of a Spatially Incoherent Laser Beam in a Plasma and Its Effect on Beam Spray

    SciTech Connect

    Grech, M.; Riazuelo, G.; Pesme, D.; Weber, S.; Tikhonchuk, V. T.

    2009-04-17

    A statistical model for forward stimulated-Brillouin scattering is developed for a spatially incoherent, monochromatic, laser beam propagating in a plasma. The threshold above which the laser beam spatial incoherence cannot prevent the coherent growth of forward stimulated-Brillouin scattering is computed. It is found to be well below the threshold for self-focusing. Three-dimensional simulations confirm its existence and reveal the onset of beam spray above it. From these results, we propose a new figure of merit for the control of propagation through a plasma of a spatially incoherent laser beam.

  4. A passive measurement of dissociated atom densities in atmospheric pressure air discharge plasmas using vacuum ultraviolet self-absorption spectroscopy

    SciTech Connect

    Laity, George; Fierro, Andrew; Dickens, James; Neuber, Andreas; Frank, Klaus

    2014-03-28

    We demonstrate a method for determining the dissociation degree of atmospheric pressure air discharges by measuring the self-absorption characteristics of vacuum ultraviolet radiation from O and N atoms in the plasma. The atom densities are determined by modeling the amount of radiation trapping present in the discharge, without the use of typical optical absorption diagnostic techniques which require external sources of probing radiation into the experiment. For an 8.0?mm spark discharge between needle electrodes at atmospheric pressure, typical peak O atom densities of 8.5?×?10{sup 17}?cm{sup ?3} and peak N atom densities of 9.9?×?10{sup 17}?cm{sup ?3} are observed within the first ?1.0?mm of plasma near the anode tip by analyzing the OI and NI transitions in the 130.0–132.0?nm band of the vacuum ultraviolet spectrum.

  5. High temperature tensile and creep behaviour of low pressure plasma-sprayed Ni-Co-Cr-Al-Y coating alloy

    NASA Technical Reports Server (NTRS)

    Hebsur, M. G.; Miner, R. V.

    1986-01-01

    The high temperature tensile and creep behavior of low pressure plasma-sprayed plates of a typical Ni-Co-Cr-Al-Y alloy has been studied. From room temperature to 800 K, the Ni-Co-Cr-Al-Y alloy studied has nearly a constant low ductility and a high strength. At higher temperatures, it becomes weak and highly ductile. At and above 1123 K, the behavior is highly dependent on strain rate and exhibits classic superplastic characteristics with a high ductility at intermediate strain rates and a strain rate sensitivity of about 0.5. At either higher or lower strain rates, the ductility decreases and the strain rate sensitivities are about 0.2. In the superplastic deformation range, the activation energy for creep is 120 + or - 20 kJ/mol, suggesting a diffusion-aided grain boundary sliding mechanism. Outside the superplastic range, the activation energy for creep is calculated to be 290 + or - 20 kJ/mol.

  6. Surface silver-doping of biocompatible glasses to induce antibacterial properties. Part II: Plasma sprayed glass-coatings.

    PubMed

    Miola, M; Ferraris, S; Di Nunzio, S; Robotti, P F; Bianchi, G; Fucale, G; Maina, G; Cannas, M; Gatti, S; Massé, A; Vitale Brovarone, C; Verné, E

    2009-03-01

    A 57% SiO(2), 3% Al(2)O(3), 34% CaO and 6% Na(2)O glass (SCNA) has been produced in form of powders and deposited by plasma spray on titanium alloy and stainless steel substrates. The obtained coatings have been subjected to a patented ion-exchange treatment to introduce silver ions in the surface inducing an antibacterial behavior. Silver surface-enriched samples have been characterized by means of X-ray diffraction, SEM observation, EDS analysis, in vitro bioactivity tests, leaching tests by GFAAS (graphite furnace atomic adsorption spectroscopy) analyses, cells adhesion and proliferation, and antibacterial tests using Staphylococcus Aureus strain. In vitro tests results showed that the modified samples acquired an antimicrobial action against tested bacteria maintaining unaffected the biocompatibility of the glass. Furthermore the ion-exchange treatment can be successfully applied to glass-coated samples without affecting the properties of the coatings; the simplicity and reproducibility of the method make it suitable for glass or glass-ceramic coatings of different composition in order to produce coated devices for bone healing and/or prostheses, able to reduce bacterial colonization and infections risks. PMID:18987953

  7. Thermal barrier coating life and isothermal oxidation of low-pressure plasma-sprayed bond coat alloys

    NASA Technical Reports Server (NTRS)

    Brindley, W. J.; Miller, R. A.

    1990-01-01

    The paper investigates the isothermal oxidation kinetics of Ni-35Cr-6Al-0.95Y, Ni-18Cr-12Al-0.3Y, and Ni-16Cr-6Al-0.3Y low-pressure plasma-sprayed bond coat alloys and examines the effect of these alloys on the thermal barrier coating (TBC) cyclic life. TBC life was examined by cycling substrates coated with the different bond coats and a ZrO2-7 wt pct Y2O3 TBC in an air-rich burner rig flame between 1150 C and room temperature. The oxidation kinetics of the three bond coat alloys was examined by isothermal oxidation of monolithic NJiCrAlY coupons at 1083 C. The Ni-35Cr-6Al-0.95Y alloy exhibits comparatively high isothermal oxidation weight gains and provides the longest TBC life, whereas the Ni-16Cr-6Al-0.3Y alloy had the lowest weight gains and provided the shortest TBC life. The results show that, although bond coat oxidation is known to have a strong detrimental effect on TBC life, it is not the only bond coat factor that determines TBC life.

  8. Improvement of the oxidation resistance of superalloys by low-pressure, plasma-sprayed MCrAlYTa coatings. I

    SciTech Connect

    Huntz, A.M.; Boumaza, A.; Moulin, G.

    1988-10-01

    The oxidation behavior of two superalloys (CMSX2 and IN100) protected by low-plasma-pressure-sprayed MCrAlYTa coatings (M = Co, Ni) was studied with emphasis on the kinetics and microstructural aspects. The oxidation behavior of each alloy (substrate and coating) was studied separately in order to obtain a better understanding of the oxidation mechanism of duplex systems (coated substrate) under both isothermal and cyclic conditions (mainly at 1100/degrees/C and in 1 atm O/sub 2/). Although all these systems develop an alumina scale, differences were observed as a result of several factors: (1) the coating and substrate composition, thus the presence, amount and distribution of addition elements (Y, Ta, Ti, C, ...); (2) the interdiffusion phenomena that induce microstructural modifications; and (3) the porosity amount and roughness of the coating. The system that appears to be the most resistant against cyclic oxidation consists of CoNiCrAlYTa-coated IN100. This cannot be explained by the present study. Further work was conducted, particularly on the oxidation stresses, as described and discussed in paper II.

  9. Plasma-sprayed zirconia bond coat as an intermediate layer for hydroxyapatite coating on titanium alloy substrate.

    PubMed

    Chou, Bang-Yen; Chang, Edward

    2002-06-01

    This study aims to strengthen the bonding at HA coating/Ti-6Al-4V interface by adding an intermediate ZrO(2) bond coat between them. The bonding strength of the HA/ZrO(2) coating was evaluated with the separately prepared HA coating as control. The phase, microstructure and chemistry, and surface roughness of the plasma-sprayed two-layer HA/ZrO(2) coating on Ti-6A1-4V substrate were investigated by X-ray diffractometry, scanning electron microscopy, and surfcorder, respectively. Experimental results indicate that the bonding strength increases from 28.6+/-3.22 MPa for HA coating to 36.2+/-3.02 MPa for HA/ZrO(2) composite coating. Elemental analysis employed on the surface of ZrO(2) bond coat, on which the HA top coat was first dissolved completely in HCl acid, reveals the sign of diffusion of calcium ions from HA to ZrO(2) bond coat. In addition, rougher surface morphology provided by ZrO(2) bond coat is also considered to aid in the bonding at HA/ZrO(2) interface. Similar coating system done by other researchers is compared and discussed. PMID:15348589

  10. Wear resistance and microstructural properties of Ni–Al/h-BN/WC–Co coatings deposited using plasma spraying

    SciTech Connect

    Hsiao, W.T.; Su, C.Y.; Huang, T.S.; Liao, W.H.

    2013-05-15

    Hexagonal boron nitride (h-BN) and tungsten carbide cobalt (WC–Co) were added to nickel aluminum alloy (Ni–Al) and deposited as plasma sprayed coatings to improve their tribological properties. The microstructure of the coatings was analyzed using a scanning electron microscope (SEM). Following wear test, the worn surface morphologies of the coatings were analyzed using a SEM to identify their fracture modes. The results of this study demonstrate that the addition of h-BN and WC–Co improved the properties of the coatings. Ni–Al/h-BN/WC–Co coatings with high hardness and favorable lubrication properties were deposited. - Highlights: • We mixed Ni–Al, h-BN and WC–Co powders and deposited them as composite coatings. • Adding WC–Co was found to increase the hardness and reduce the wear volume loss. • Adding h-BN was found to decrease the hardness and reduce the friction coefficient. • This composite coating was shown to have improved wear properties at 850 °C.

  11. Microstructural Characteristics of Y2O3-MgO Composite Coatings Deposited by Suspension Plasma Spray

    NASA Astrophysics Data System (ADS)

    Muoto, Chigozie K.; Jordan, Eric H.; Gell, Maurice; Aindow, Mark

    2012-12-01

    Dense composite Y2O3-MgO coatings have been deposited by suspension plasma spray. Ethanol-based suspensions of powders synthesized by thermal decomposition of precursor solutions containing yttrium nitrate (Y[n]) and magnesium nitrate (Mg[n]) or magnesium acetate (Mg[a]) were selected as the feedstock; this gave powders with both phases in each particle, to inhibit phase segregation during solvent evaporation. The influence of powder characteristics on the microstructures of the coatings was investigated. The Y[n]Mg[a] suspension was more stable, with a better dispersion of the component phases than the Y[n]Mg[n] suspension. The coatings deposited using each suspension type exhibited lamellar structures comprising Y2O3 and MgO phases in wavy alternating streaks, with unmelted/semi-melted particles entrapped in the lamellae; this indicates that phase segregation still occurred in the molten state. Eutectic structures were formed in the coating generated using the Y[n]Mg[a] suspension, resulting from improved mixing of the component phases in the suspension powder.

  12. Thermal Shock and Ablation Behavior of Tungsten Nozzle Produced by Plasma Spray Forming and Hot Isostatic Pressing

    NASA Astrophysics Data System (ADS)

    Wang, Y. M.; Xiong, X.; Zhao, Z. W.; Xie, L.; Min, X. B.; Yan, J. H.; Xia, G. M.; Zheng, F.

    2015-08-01

    Tungsten nozzle was produced by plasma spray forming (PSF, relative density of 86 ± 2%) followed by hot isostatic pressing (HIPing, 97 ± 2%) at 2000 °C and 180 MPa for 180 min. Scanning electron microscope, x-ray diffractometer, Archimedes method, Vickers hardness, and tensile tests have been employed to study microstructure, phase composition, density, micro-hardness, and mechanical properties of the parts. Resistance of thermal shock and ablation behavior of W nozzle were investigated by hot-firing test on solid rocket motor (SRM). Comparing with PSF nozzle, less damage was observed for HIPed sample after SRM test. Linear ablation rate of nozzle made by PSF was (0.120 ± 0.048) mm/s, while that after HIPing reduced to (0.0075 ± 0.0025) mm/s. Three types of ablation mechanisms including mechanical erosion, thermophysical erosion, and thermochemical ablation took place during hot-firing test. The order of degree of ablation was nozzle throat > convergence > dilation inside W nozzle.

  13. Microstructural Healing with Interfacial Reaction Layers on the Adhesive Strength Enhancement of Plasma-Sprayed Hydroxyapatite Coatings

    NASA Astrophysics Data System (ADS)

    Yang, Chung-Wei; Lui, Truan-Sheng

    The effect of hydrothermal crystallization and adding reinforced intermediate layers on improving the tensile adhesion of plasma-sprayed HA coatings (HAC) was investigated. The experimental results show that the index of crystallinity (IOC) and phase purity of hydrothermally-treated HAC (HT-HAC) are increased by the low-temperature hydrothermal treatment. The microstructural healing effect with nano-size HA crystallites is significant to diminish the defects and prevent mechanical strength degradation for the HT-HAC. XPS analysis demonstrates that hydrothermal crystallization helps to promote the interfacial Ti-OH chemical reaction. HA composite coatings with CP-Ti and ZrO2 intermediate layers provide another strengthening effect compared with the hydrothermal-heating method. The inter-diffusion of Ca results in a chemical bonding at the HA/ZrO2 interface, which results in the increase of the adhesive strength of composite coatings. The fracture behavior is different between the crystallization-induced HAC and the composite coatings. The HT-HAC remains on the substrate with an evident cohesive failure. The adhesive failure occurred at HA/intermediate layers for composite coatings. Failures with less percentage area of interfacial fracture are indicative of a higher strength of a coating.

  14. Double-Layer Gadolinium Zirconate/Yttria-Stabilized Zirconia Thermal Barrier Coatings Deposited by the Solution Precursor Plasma Spray Process

    NASA Astrophysics Data System (ADS)

    Jiang, Chen; Jordan, Eric H.; Harris, Alan B.; Gell, Maurice; Roth, Jeffrey

    2015-08-01

    Advanced thermal barrier coatings (TBCs) with lower thermal conductivity, increased resistance to calcium-magnesium-aluminosilicate (CMAS), and improved high-temperature capability, compared to traditional yttria-stabilized zirconia (YSZ) TBCs, are essential to higher efficiency in next generation gas turbine engines. Double-layer rare-earth zirconate/YSZ TBCs are a promising solution. From a processing perspective, solution precursor plasma spray (SPPS) process with its unique and beneficial microstructural features can be an effective approach to obtaining the double-layer microstructure. Previously durable low-thermal-conductivity YSZ TBCs with optimized layered porosity, called the inter-pass boundaries (IPBs) were produced using the SPPS process. In this study, an SPPS gadolinium zirconate (GZO) protective surface layer was successfully added. These SPPS double-layer TBCs not only retained good cyclic durability and low thermal conductivity, but also demonstrated favorable phase stability and increased surface temperature capabilities. The CMAS resistance was evaluated with both accumulative and single applications of simulated CMAS in isothermal furnaces. The double-layer YSZ/GZO exhibited dramatic improvement in the single application, but not in the continuous one. In addition, to explore their potential application in integrated gasification combined cycle environments, double-layer TBCs were tested under high-temperature humidity and encouraging performance was recorded.

  15. Deposition and characterization of plasma sprayed Ni-5A1/ magnesia stabilized zirconia based functionally graded thermal barrier coating

    NASA Astrophysics Data System (ADS)

    Baig, M. N.; Khalid, F. A.

    2014-06-01

    Thermal barrier coatings (TBCs) are employed to protect hot section components in industrial and aerospace gas turbine engines. Conventional TBCs frequently fail due to high residual stresses and difference between coefficient of thermal expansion (CTE) of the substrate & coatings. Functionally graded thermal barrier coatings (FG-TBCs) with gradual variation in composition have been proposed to minimize the problem. In this work, a five layered functionally graded thermal barrier coating system was deposited by atmospheric plasma spray (APS) technique on Nimonic 90 substrates using Ni-5Al as bond coat (BC) and magnesia stabilized zirconia as top coat (TC). The coatings were characterized by SEM, EDS, XRD & optical profilometer. Microhardness and coefficient of thermal expansion of the five layers deposited as individual coatings were also measured. The deposited coating system was oxidized at 800°C. SEM analysis showed that five layers were successfully deposited by APS to produce a FG-TBC. The results also showed that roughness (Ra) of the individual layers decreased with an increase in TC content in the coatings. It was found that microhardness and CTE values gradually changed from bond coat to cermet layers to top coat. The oxidized coated sample revealed parabolic behavior and changes in the surface morphology and composition of coating.

  16. Analysis of Plasma-Sprayed Thermal Barrier Coatings With Homogeneous and Heterogeneous Bond Coats Under Spatially Uniform Cyclic Thermal Loading

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Pindera, Marek-Jerzy; Aboudi, Jacob

    2003-01-01

    This report summarizes the results of a numerical investigation into the spallation mechanism in plasma-sprayed thermal barrier coatings observed under spatially-uniform cyclic thermal loading. The analysis focuses on the evolution of local stress and inelastic strain fields in the vicinity of the rough top/bond coat interface during thermal cycling, and how these fields are influenced by the presence of an oxide film and spatially uniform and graded distributions of alumina particles in the metallic bond coat aimed at reducing the top/bond coat thermal expansion mismatch. The impact of these factors on the potential growth of a local horizontal delamination at the rough interface's crest is included. The analysis is conducted using the Higher-Order Theory for Functionally Graded Materials with creep/relaxation constituent modeling capabilities. For two-phase bond coat microstructures, both the actual and homogenized properties are employed in the analysis. The results reveal the important contributions of both the normal and shear stress components to the delamination growth potential in the presence of an oxide film, and suggest mixed-mode crack propagation. The use of bond coats with uniform or graded microstructures is shown to increase the potential for delamination growth by increasing the magnitude of the crack-tip shear stress component.

  17. The efficacy of post porosity plasma protection against vacuum-ultraviolet damage in porous low-k materials

    SciTech Connect

    Lionti, K.; Volksen, W.; Darnon, M.; Magbitang, T.; Dubois, G.

    2015-03-21

    As of today, plasma damage remains as one of the main challenges to the reliable integration of porous low-k materials into microelectronic devices at the most aggressive node. One promising strategy to limit damage of porous low-k materials during plasma processing is an approach we refer to as post porosity plasma protection (P4). In this approach, the pores of the low-k material are filled with a sacrificial agent prior to any plasma treatment, greatly minimizing the total damage by limiting the physical interactions between plasma species and the low-k material. Interestingly, the contribution of the individual plasma species to the total plasma damage is not fully understood. In this study, we investigated the specific damaging effect of vacuum-ultraviolet (v-UV) photons on a highly porous, k?=?2.0 low-k material and we assessed the P4 protective effect against them. It was found that the impact of the v-UV radiation varied depending upon the v-UV emission lines of the plasma. More importantly, we successfully demonstrated that the P4 process provides excellent protection against v-UV damage.

  18. The efficacy of post porosity plasma protection against vacuum-ultraviolet damage in porous low-k materials

    NASA Astrophysics Data System (ADS)

    Lionti, K.; Darnon, M.; Volksen, W.; Magbitang, T.; Dubois, G.

    2015-03-01

    As of today, plasma damage remains as one of the main challenges to the reliable integration of porous low-k materials into microelectronic devices at the most aggressive node. One promising strategy to limit damage of porous low-k materials during plasma processing is an approach we refer to as post porosity plasma protection (P4). In this approach, the pores of the low-k material are filled with a sacrificial agent prior to any plasma treatment, greatly minimizing the total damage by limiting the physical interactions between plasma species and the low-k material. Interestingly, the contribution of the individual plasma species to the total plasma damage is not fully understood. In this study, we investigated the specific damaging effect of vacuum-ultraviolet (v-UV) photons on a highly porous, k = 2.0 low-k material and we assessed the P4 protective effect against them. It was found that the impact of the v-UV radiation varied depending upon the v-UV emission lines of the plasma. More importantly, we successfully demonstrated that the P4 process provides excellent protection against v-UV damage.

  19. Effects of Humidity On the Flow Characteristics of PS304 Plasma Spray Feedstock Powder Blend

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.; DellaCorte, Christopher

    2002-01-01

    The effects of environmental humidity on the flow characteristics of PS304 feedstock have been investigated. Angular and spherical BaF2-CaF2 powder was fabricated by comminution and by atomization, respectively. The fluorides were added incrementally to the nichrome, chromia, and silver powders to produce PS304 feedstock. The powders were dried in a vacuum oven and cooled to a Tom temperature under dry nitrogen. The flow of the powder was studied from 2 to 100 percent relative humidity (RH) The results suggest that the feedstock flow is slightly degraded with increasing humidity below 66 percent RH and is more affected above 66 percent RH. There was no flow above 88 percent RH. Narrower particle size distributions of the angular fluorides allowed flow up to 95 percent RH. These results offer guidance that enhances the commercial potential for this material system.

  20. Formation Model of Cathode Surface Structure in Contact with Plasma Flows of High-current Low-inductance Vacuum Spark

    NASA Astrophysics Data System (ADS)

    Sarantsev, S. A.

    This paper presents a model describing formation of a submicron surface structure on electrodes of high-current low-inductance vacuum spark. The model is based on the development of the Kelvin-Helmholtz instability, which occurs at the boundary of tangential discontinuity between plasma and melt. This model has been used to determine the most probable lengths of instability waves, the rate of which conforms to the available sizes of structural elements on electrodes surface.

  1. Plasma Spray Physical Vapor Deposition of La1- x Sr x Co y Fe1- y O3-? Thin-Film Oxygen Transport Membrane on Porous Metallic Supports

    NASA Astrophysics Data System (ADS)

    Jarligo, Maria Ophelia; Mauer, Georg; Bram, Martin; Baumann, Stefan; Vaßen, Robert

    2014-01-01

    Plasma spray physical vapor deposition (PS-PVD) is a very promising route to manufacture ceramic coatings, combining the efficiency of thermal spray processes and characteristic features of thin PVD coatings. Recently, this technique has been investigated to effectively deposit dense thin films of perovskites particularly with the composition of La0.58Sr0.4Co0.2Fe0.8O3-? (LSCF) for application in gas separation membranes. Furthermore, asymmetric type of membranes with porous metallic supports has also attracted research attention due to the advantage of good mechanical properties suitable for use at high temperatures and high permeation rates. In this work, both approaches are combined to manufacture oxygen transport membranes made of gastight LSCF thin film by PS-PVD on porous NiCoCrAlY metallic supports. The deposition of homogenous dense thin film is challenged by the tendency of LSCF to decompose during thermal spray processes, irregular surface profile of the porous metallic substrate and crack and pore-formation in typical ceramic thermal spray coatings. Microstructure formation and coating build-up during PS-PVD as well as the annealing behavior at different temperatures of LSCF thin films were investigated. Finally, measurements of leak rates and oxygen permeation rates at elevated temperatures show promising results for the optimized membranes.

  2. The Influence of Temperature on Frictional Behavior of Plasma-Sprayed NiAl-Cr2O3 Based Self-Adaptive Nanocomposite Coatings

    NASA Astrophysics Data System (ADS)

    Ramazani, M.; Ashrafizadeh, F.; Mozaffarinia, R.

    2013-10-01

    Frictional behavior of nano and hybrid-structured NiAl-Cr2O3-Ag-CNT-WS2 adaptive self-lubricant coatings was evaluated at a range of temperatures, from room temperature to 700 °C. For this purpose, hybrid structured (HS) and nanostructured (NS) composite powders with the same nominal compositions were prepared by spray drying and heat treatment techniques. A series of HS and NS coating samples were deposited on steel substrate by an atmospheric plasma spraying process. The tribological behavior of both coatings was studied from room temperature to 700 °C at 100° intervals using a custom designed high temperature wear test machine. Scanning electron microscopy was employed for the evaluation of the composite coatings and worn surfaces. Experimental results indicated that the hybrid coating had inferior tribological properties when compared to the nanostructured coating, showing the attractive frictional behavior on the basis of low friction and high wear resistance; the NS coating possessed a more stable friction coefficient in the temperature range of 25-700 °C against alumina counterface. Microstructural examinations revealed more uniformity in NS plasma-sprayed coatings.

  3. Filling the vacuum chamber of a technological system with homogeneous plasma using a stationary glow discharge

    SciTech Connect

    Metel, A. S. Grigoriev, S. N.; Melnik, Yu. A.; Panin, V. V.

    2009-12-15

    Experimental study of a glow discharge with electrostatic confinement of electrons is carried out in the vacuum chamber volume V {approx} 0.12 m{sup 3} of a technological system 'Bulat-6' in argon pressure range 0.005-5 Pa. The chamber is used as a hollow cathode of the discharge with the inner surface area S {approx} 1.5 m{sup 2}. It is equipped with two feedthroughs, which make it possible to immerse in the discharge plasma interchangeable anodes with surface area S{sub a} ranging from {approx}0.001 to {approx}0.1 m{sup 2}, as well as floating electrodes isolated from both the chamber and the anode. Dependences of the cathode fall U{sub c} = 0.4-3 kV on the pressure p at a constant discharge current in the range I = 0.2-2 A proved that aperture of the electron escape out of the electrostatic trap is equal to the sum S{sub o} = S{sub a} + S{sub f} of the anode surface S{sub a} and the floating electrode surface S{sub f}. The sum S{sub o} defines the lower limit p{sub o} of the pressure range, in which U{sub c} is independent of p. At p < p{sub o} the cathode fall U{sub c} grows up dramatically, when the pressure decreases, and the pressure p tends to the limit p{sup ex}, which is in fact the discharge extinction pressure. At p {approx} p{sup ex} electrons emitted by the cathode and the first generation of fast electrons produced in the cathode sheath spend almost all their energy up to 3 keV on heating the anode and the floating electrode up to 600-800{sup o}C and higher. In this case the gas in the chamber is being ionized by the next generations of electrons produced in the cathode sheath, their energy being one order of magnitude lower. When S{sub a} < (2m/M){sup 1/2}S, where m is the electron mass and M is the ion mass, the anode may be additionally heated by plasma electrons accelerated by the anode fall of potential U{sub a} up to 0.5 kV.

  4. Irradiation of orderly multiline spectra from linear plasma formed by vacuum discharge capillary

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Hayasi, Yasuomi; Germer, Rudolf; Ojima, Hidenori; Takayama, Kazuyoshi; Ido, Hideaki

    2005-03-01

    The fundamental experiments for measuring soft x-ray characteristics from the vacuum capillary are described. These experiments are primarily performed in order to generate intense soft x rays. The generator consists of a high-voltage power supply, a polarity-inversion ignitron pulse generator, a turbomolecular pump, and a radiation tube with a capillary. A high-voltage condenser of 200 nF in the pulse generator is charged up to 20 kV by the power supply, and the electric charges in the condenser are discharged to the capillary in the tube after closing the ignitron. During the discharge, weakly ionized plasma forms on the inner and outer sides of a capillary. In the present work, the pump evacuates air from the tube with a pressure of about 1 mPa, and a demountable capillary was developed in order to measure x-ray spectra according to changes in the capillary length. In this capillary, the anode (target) and cathode elements can be changed corresponding to the objectives. The capillary diameter is 2.0 mm, and the length is adjusted from 1 to 50 mm. When a capillary with aluminum anode and cathode electrodes was employed, both the cathode voltage and the discharge current almost displayed damped oscillations. The peak values of the voltage and current increased when the charging voltage was increased, and their maximum values were -11.5 kV and 4.7 kA, respectively. The x-ray durations observed by a 1.6 ?m aluminum filter were less than 30 ?s. In the spectrum measurement, we observed orderly multi-line spectra. The line photon energies seldom varied according to changes in the condenser charging voltage and to changes in the electrode element. The line number decreased with corresponding decreases in the capillary length.

  5. Modification of Plasma-sprayed TiO2 Coatings Characteristics via Controlling the In-flight Temperature and Velocity of the Powder Particles

    NASA Astrophysics Data System (ADS)

    Cizek, Jan; Dlouhy, Ivo; Siska, Filip; Khor, Khiam Aik

    2014-12-01

    The study presents a comprehensive research on the plasma spray fabrication of TiO2 coatings with microstructural properties adjustable via controlling the respective in-flight properties of the feedstock particles. The in-flight properties can be, in return, governed by tuning the plasma system spray parameters. By determining and linking the two interrelationships, a connection between the important coating characteristics (composition, microstructure, surface and mechanical properties) to the plasma system settings was established. It was shown that by changing the values of six parameters representing the flexibility of the plasma system, the temperatures and velocities of the particles within the jet can be altered from 2125 to 2830 K and 137 to 201 m s-1, respectively. The values of the in-flight temperature critically influenced the efficiency of the coating build-up (values ranging from 8 to 84 ?m per 1 torch pass) and the content of anatase phase in the fabricated coatings (0-5.8%), while the in-flight velocity of the TiO2 particles was found to be connected to the porosity of the coatings (ranging from 14.4 to 26.2%) and the adhesion strength at the coating-substrate interface (2.6 × difference).

  6. Plasma spraying method for forming diamond and diamond-like coatings

    DOEpatents

    Holcombe, C.E.; Seals, R.D.; Price, R.E.

    1997-06-03

    A method and composition is disclosed for the deposition of a thick layer of diamond or diamond-like material. The method includes high temperature processing wherein a selected composition including at least glassy carbon is heated in a direct current plasma arc device to a selected temperature above the softening point, in an inert atmosphere, and is propelled to quickly quenched on a selected substrate. The softened or molten composition crystallizes on the substrate to form a thick deposition layer comprising at least a diamond or diamond-like material. The selected composition includes at least glassy carbon as a primary constituent and may include at least one secondary constituent. Preferably, the secondary constituents are selected from the group consisting of at least diamond powder, boron carbide (B{sub 4}C) powder and mixtures thereof. 9 figs.

  7. Plasma spraying method for forming diamond and diamond-like coatings

    DOEpatents

    Holcombe, Cressie E. (Farragut, TN); Seals, Roland D. (Oak Ridge, TN); Price, R. Eugene (Knoxville, TN)

    1997-01-01

    A method and composition for the deposition of a thick layer (10) of diamond or diamond-like material. The method includes high temperature processing wherein a selected composition (12) including at least glassy carbon is heated in a direct current plasma arc device to a selected temperature above the softening point, in an inert atmosphere, and is propelled to quickly quenched on a selected substrate (20). The softened or molten composition (18) crystallizes on the substrate (20) to form a thick deposition layer (10) comprising at least a diamond or diamond-like material. The selected composition (12) includes at least glassy carbon as a primary constituent (14) and may include at least one secondary constituent (16). Preferably, the secondary constituents (16) are selected from the group consisting of at least diamond powder, boron carbide (B.sub.4 C) powder and mixtures thereof.

  8. Determination of Scattering and Absorption Coefficients for Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Spuckler, Charles M.; Markham, James R.

    2009-01-01

    The temperature dependence of the scattering and absorption coefficients for a set of freestanding plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) was determined at temperatures up to 1360 C in a wavelength range from 1.2 micrometers up to the 8YSZ absorption edge. The scattering and absorption coefficients were determined by fitting the directional-hemispherical reflectance and transmittance values calculated by a four-flux Kubelka Munk method to the experimentally measured hemispherical-directional reflectance and transmittance values obtained for five 8YSZ thicknesses. The scattering coefficient exhibited a continuous decrease with increasing wavelength and showed no significant temperature dependence. The scattering is primarily attributed to the relatively temperature-insensitive refractive index mismatch between the 8YSZ and its internal voids. The absorption coefficient was very low (less than 1 per centimeter) at wavelengths between 2 micrometers and the absorption edge and showed a definite temperature dependence that consisted of a shift of the absorption edge to shorter wavelengths and an increase in the weak absorption below the absorption edge with increasing temperature. The shift in the absorption edge with temperature is attributed to strongly temperature-dependent multiphonon absorption. While TBC hemispherical transmittance beyond the absorption edge can be predicted by a simple exponential decrease with thickness, below the absorption edge, typical TBC thicknesses are well below the thickness range where a simple exponential decrease in hemispherical transmittance with TBC thickness is expected. [Correction added after online publication August 11, 2009: "edge to a shorter wavelengths" has been updated as edge to shorter wavelengths."

  9. Development of Plasma-Sprayed Molybdenum Carbide-Based Anode Layers with Various Metal Oxides for SOFC

    NASA Astrophysics Data System (ADS)

    Faisal, N. H.; Ahmed, R.; Katikaneni, S. P.; Souentie, S.; Goosen, M. F. A.

    2015-09-01

    Air plasma-sprayed (APS) coatings provide an ability to deposit a range of novel fuel cell materials at competitive costs. This work develops three separate types of composite anodes (Mo-Mo2C/Al2O3, Mo-Mo2C/ZrO2, Mo-Mo2C/TiO2) using a combination of APS process parameters on Hastelloy®X for application in intermediate temperature proton-conducting solid oxide fuel cells. Commercially available carbide of molybdenum powder catalyst (Mo-Mo2C) and three metal oxides (Al2O3, ZrO2, TiO2) was used to prepare three separate composite feedstock powders to fabricate three different anodes. Each of the modified composition anode feedstock powders included a stoichiometric weight ratio of 0.8:0.2. The coatings were characterized by scanning electron microscopy, energy dispersive spectroscopy, x-ray diffraction, nanoindentation, and conductivity. We report herein that three optimized anode layers of thicknesses between 200 and 300 µm and porosity as high as 20% for Mo-Mo2C/Al2O3 (250-µm thick) and Mo-Mo2C/TiO2 (300 µm thick) and 17% for Mo-Mo2C/ZrO2 (220-µm thick), controllable by a selection of the APS process parameters with no addition of sacrificial pore-forming material. The nanohardness results indicate the upper layers of the coatings have higher values than the subsurface layers in coatings with some effect of the deposition on the substrate. Mo-Mo2C/ZrO2 shows high electrical conductivity.

  10. Magnesium plasma diagnostics by heated probe and characterization of the Mg thin films deposited by thermionic vacuum arc technology

    NASA Astrophysics Data System (ADS)

    Vladoiu, Rodica; Mandes, Aurelia; Dinca Balan, Virginia; Prodan, Gabriel; Kudrna, Pavel; Tichý, Milan

    2015-06-01

    The aim of this paper is to report on magnesium plasma diagnostics and to investigate the properties of thin Mg films deposited on Si and glass substrates by using thermionic vacuum arc (TVA) technology. TVA is an original deposition method using a combination of anodic arc and powerful electron gun system (up to 600?W) for the growth of thin films from solid precursors under a vacuum of 10-6Torr. Due to the comparatively high deposition rate as well as comparatively high plasma potential—around 0.5?kV—plasma diagnostics were carried out by a heated probe that prevents layer deposition on the probe surface. The estimated value of electron density was in the order of 1.0??×??1016m-3 and the electron temperature varied between 4??×??104 and 1.2??×??105?K (corresponding to two different discharge conditions). The thin Mg films were investigated using SEM images and TEM analyses provided with HR-TEM and SAED facilities. According to the SAED patterns the structure of the films can be indexed as two forms: hexagonal structure for Mg and cubic structure for MgO; the peak value of grain size distribution was 91.29?nm in diameter for Mg TVA/Si and 61.06?nm for Mg TVA/Gl.

  11. Co-Doping of Air Plasma-Sprayed Yttria-and Ceria-Stabilized Zirconia for Thermal Barrier Applications

    E-print Network

    Trice, Rodney W.

    CeSZ coatings. Dilato- meter measurements showed that 2 mol% Yb31 co-doped 7.6YSZ and 12CeSZ coatingsSZ coating. As-sprayed 2Yb/ 7.6YSZ and 2Yb/12CeSZ coatings had slightly lower thermal conductivity than their baseline counterparts in the as-sprayed condition; after 100 h at 12001C, their conductivity increased

  12. Thermal residual stresses near the interface between plasma-sprayed hydroxyapatite coating and titanium substrate: finite element analysis and synchrotron radiation measurements.

    PubMed

    Cofino, B; Fogarassy, P; Millet, P; Lodini, A

    2004-07-01

    Plasma-sprayed hydroxyapatite (HA) coatings on titanium alloy are often used in prosthetic implants. The metallic substrate gives the implant good mechanical strength which is combined with good biocompatibility and osteointegration of the ceramic coating. However, the interface between the HA coating and titanium alloy substrate is an area of critical weakness when compared with the interlamellar cohesive strength of the HA coating structure. Knowledge of the stresses in materials near the interface seems to be an important step in understanding why failure occurs. Synchrotron radiation, using Beamline BM16 at the European Synchrotron Radiation Facility (Grenoble, France), has been used to determine local stresses near the interface, down to 10 microm in resolution, between a plasma-sprayed HA coating and a titanium alloy substrate. This experimental determination of residual stresses is compared with the results found by a finite element analysis modeling the thermal effects of the plasma-spraying process. Residual stresses have been found in deposited ceramic near the interface due to a thermal properties mismatch of the materials. If the plane stress state is assumed, meaning the perpendicular component of residual stress is ignored (sigma(z) = 0), then the synchrotron residual stress measurements should be interpreted as mainly compressive in the ceramic coating. This is in contradiction with the coefficient of thermal expansion mismatch; therefore, the simplified plane stresses assumption seems to be inappropriate for the deposited morphology characterized by pores and a network of microcracks. The detailed finite element analysis model, taking into account the real morphology of the coating and the real three-dimensional stress field distribution, allowed the estimation of sigma(z), leading to a more accurate interpretation of synchrotron measurements, which is validated by the experimental results. PMID:15174105

  13. Antistatic sprays

    NASA Technical Reports Server (NTRS)

    Ming, James E.

    1989-01-01

    Antistatic sprays from several different manufacturers are examined. The sprays are examined for contamination potential (i.e., outgassing and nonvolatile residue), corrosiveness on an aluminum mirror surface, and electrostatic effectiveness. In addition, the chemical composition of the antistatic sprays is determined by infrared spectrophotometry, mass spectrometry, and ultraviolet spectrophotometry. The results show that 12 of the 17 antistatic sprays examined have a low contamination potential. Of these sprays, 7 are also noncorrosive to an aluminum surface. And of these, only 2 demonstrate good electrostatic properties with respect to reducing voltage accumulation; these sprays did not show a fast voltage dissipation rate however. The results indicate that antistatic sprays can be used on a limited basis where contamination potential, corrosiveness, and electrostatic effectiveness is not critical. Each application is different and proper evaluation of the situation is necessary. Information on some of the properties of some antistatic sprays is presented in this document to aid in the evaluation process.

  14. Ion Species and Charge States of Vacuum Arc Plasma with Gas Feed and Longitudinal Magnetic Field

    E-print Network

    Oks, Efim

    2010-01-01

    close to the cathode region, where plasma is produced fromNear the cathode, the density of metal plasma is much higherplasma and its interaction with gas atoms and external fields. The results have also relevance to the cathode

  15. Development of Electromagnetically Pulled-Out Gas Plasma (EPOP) Gun for Medium Vacuum and its Fundamental Discharge Characteristics

    NASA Astrophysics Data System (ADS)

    Yanagita, Taichiro; Tanoue, Hideto; Kamiya, Masao; Suda, Yoshiyuki; Takikawa, Hirofumi; Taki, Makoto; Hasegawa, Yushi; Ishikawa, Takeshi

    Electromagnetically pulled-out gas plasma (EPOP) gun was developed, which will be applied to the filtered arc deposition system in order to enhance the nitriding of preparing thin film under medium vacuum. A hot cathode of tungsten (W) filament was employed and DC discharge was generated between the cathode and anode (SUS304). The distance of electrodes was 100 mm. Electromagnetic coils were placed around the cathode, anode and plasma pulled-out duct, separately. Experimental pressure was 0.1 Pa. The following results were obtained. Ignition voltage became lower when the same direction magnetic field was axially applied to the cathode and anode. Minimum voltage for sustaining the discharge became lower when the magnetic filed was applied to the anode. With increasing discharge voltage, the discharge current increased dramatically for the discharge voltage less than 50 V and increased gradually for the voltage more than that. The plasma between the cathode and anode was able to be pulled out to the process chamber by applying magnetic field perpendicular to the discharge axis. The amount of pulled-out plasma increased with increasing the filament current and magnetic flux density for plasma pulling-out.

  16. Microstructure and properties of TiC Fe36Ni cermet coatings by reactive plasma spraying using sucrose as carbonaceous precursor

    NASA Astrophysics Data System (ADS)

    Zhu, Jinglei; Huang, Jihua; Wang, Haitao; Zhang, Shouquan; Zhang, Hua; Zhao, Xingke

    2008-08-01

    This study is aimed to introduce an innovative precursor pyrolysis process to prepare Ti-Fe-Ni-C compound powder and to discuss and evaluate the relationship between microstructure and properties of TiC-Fe36Ni cermet coatings in-situ synthesized by reactive plasma spraying (RPS) of these compound powders. The main characteristic of the pyrolysis process is that sucrose (C12H22O11) is used as a source of carbon as well as a binder to bind reactive constituent particles. The compound powder with high bonding strength can avoid the problem that reactive constituent particles are separated during spraying. The TiC-Fe36Ni cermet coatings present typical splat-like morphology of thermally sprayed coatings and consist of two different areas: one is a composite reinforcement area where spherical fine TiC particles (100-500 nm) homogeneously distribute within the Fe36Ni matrix; the other is an area of TiC accumulation. The surface hardness of the coatings reaches about 90 ± 2 (HR15N). The maximum and average microhardness values of the coatings are 1930 HV 0.2 (Vicker Hardness) and 1640 HV 0.2, respectively. The average bonding strength of the coatings is about 62.3 MPa. The wear resistance property of the coatings is much more than that of Ni60 alloys coatings.

  17. Experimental verification of the method for detection of water microleakages in plasma vacuum chambers by using the hydroxyl spectrum

    SciTech Connect

    Antipenkov, A. B.; Afonin, O. N.; Ochkin, V. N.; Savinov, S. Yu.; Tskhai, S. N.

    2012-03-15

    Experimental determination of the sensitivity of the method for detection of water microleakages in the cooling systems of the plasma vacuum chambers of complex electrophysical devices (such as tokamaks, fuel elements of nuclear reactors, and plasmachemical reactors) is considered. It was shown that the spectroscopic method for detection of water microleakages by using the hydroxyl radiation spectrum makes it possible to detect leakages at a level of 10{sup -5} Pa m{sup 3} s{sup -1}. The spatial resolution of the method allows one to localize defects with an accuracy of several centimeters.

  18. Roles of plasma-generated vacuum-ultraviolet photons and oxygen radicals in damaging nanoporous low-k films

    SciTech Connect

    Lee, Joe; Graves, David B.

    2013-07-15

    One important class of low-k materials used as interconnect dielectrics employs methyl groups added to nanoporous SiO{sub 2} matrices. These carbon-doped oxide materials are known to be susceptible to damage from plasma species during various stages of plasma processing. Two key active species generated in O{sub 2} plasma are oxygen (O) radicals and vacuum-ultraviolet (VUV) photons. These species are known to cause carbon loss, resulting in damaging increases in dielectric constant throughout the film. However, the mechanisms through which this damage is incurred are poorly understood. By capping the substrate in different ways during plasma exposure, it is possible to expose films to either photons alone or O atoms alone. The authors report measurements of damage induced by VUV photons only, O radicals only, and the combination of O radicals and photons. Through HF stripping, they note that carbon extraction from photons and from radicals yields different outcomes; the profile of carbon concentration within the modified region is different for each case. Damage from photons alone can be modeled and model predictions are in good agreement with measurements. Damage from O atoms alone can only be modeled if it is assumed that the near-surface region has a significantly reduced diffusivity compared to the bulk of the film. Experiment and model agree that both photons alone and O radicals alone damage the material by removing carbon. When radicals and photons are present simultaneously during plasma exposure, however, more C removal appears to be occurring in the model than experimentally observed. Remarkably, if only radicals are exposed to the film after short (10-30 s) plasma exposures, very little additional damage is incurred during this radical-only exposure. The most straightforward interpretation of these results appears to be that photons combine synergistically with radicals in the pores to narrow the pores, thereby reducing film diffusivity in the C-poor, plasma-damaged regions.

  19. Titanium Dioxide Coatings Sprayed by a Water-Stabilized Plasma Gun (WSP) with Argon and Nitrogen as the Powder Feeding Gas: Differences in Structural, Mechanical and Photocatalytic Behavior

    NASA Astrophysics Data System (ADS)

    Ctibor, P.; Pala, Z.; Sedlá?ek, J.; Štengl, V.; Píš, I.; Zahoranová, T.; Nehasil, V.

    2012-06-01

    Titanium dioxide coatings were sprayed by a water-stabilized plasma gun to form robust self-supporting bodies with a photocatalytically active surface. Agglomerated nanometric powder was used as a feedstock. In one case argon was used as a powder-feeding as well as coating-cooling gas whereas in the other case nitrogen was used. Stainless steel was used as a substrate and the coatings were released after the cooling. Over one millimeter thick self-supporting bodies were studied by XRD, HR-TEM, XPS, Raman spectroscopy, UV-VIS spectrophotometry and photocatalytic tests. Selected tests were done at the surface as well as at the bottom side representing the contact surface with the substrate during the spray process. Porosity was studied by image analysis on polished cross sections where also microhardness was measured. The dominant phase present in the sprayed samples was rutile, whereas anatase was only a minor component. The hydrogen content in the nitrogen-assisted coating was higher, but the character of the optical absorption edge remained the same for both samples. Photoelectron spectroscopy revealed differences in the character of the O1s peak between both samples. The photocatalytic activity was tested by decomposition of acetone at UV illumination, whereas also the end products—CO and CO2—were monitored. The nitrogen-assisted coating was revealed as a more efficient photocatalyst. Certain aspects of a thermal post-treatment on the coatings are discussed as well. Color and electrical conductivity are markedly changed at annealing at 760 °C, whereas only very small changes of the as-sprayed coating character correspond to annealing at 500 °C.

  20. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E. (Albuquerque, NM)

    1990-01-01

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  1. Defect detection in multi-layered, plasma sprayed zirconia by time resolved infrared radiometry: A comparison between analytical and experimental methods

    SciTech Connect

    Happoldt, P.G.; Ellingson, W.A.; Gardiner, T.; Krueger, J.

    1994-12-31

    Caterpillar has been pursuing the development of plasma sprayed thick thermal barrier coatings in order to achieve lower fuel consumption for heavy duty diesel truck engines. One critical aspect of this work is the development of a nondestructive means for evaluation of coating/substrate bond integrity and detection of flaws in the coating. Analytical and experimental methods were used to study a series of test specimens consisting of plasma sprayed layers of NiCrAlY/ZrO{sub 2} of various compositions. The coatings were seeded with artificial defects and were sprayed on steel disks. Two types of defects were used: flat bottomed holes drilled in the steel substrate and patches of room temperature vulcanizing silicone within the coatings. Defect sizes ranged from 0.1 to 10 mm and were at depths below the coating surface from 0.6 to 3.6 mm. The method of time resolved infrared radiometry was used with two different heat sources, an acetylene torch and a high intensity lamp, to inspect the coatings. The torch allowed excellent sensitivity at depths of less than 2 mm and the lamp revealed flaws through the full coating thickness. Two analytical models were developed to study heat flow in the test specimens: a finite element model and an electrical analog model. Results from the two models were compared to check consistency and the finite element model results were compared with experimental results. The finite element code was chosen for further development due to its greater flexibility and ease of use.

  2. Influence of the spray velocity on arc-sprayed coating structures

    NASA Astrophysics Data System (ADS)

    Steffens, H.-D.; Nassenstein, K.

    1999-09-01

    Thermal spray processes such as plasma spraying and HVOF have gained markets due to a steady process of development of materials and equipment. One disadvantage of thermal spray processes is that costs must be competitive compared to techniques such as PTA and electroplating. In order to reduce costs, the more economical spray processes like conventional wire flame spraying, as well as arc spraying, are becoming more popular. There are modern arc spray gun designs on the market that meet the requirements of modern coating properties, for example aviation overhaul applications as well as the processing of cored wires. Nevertheless, the physical basis of arc spraying is well known. The aim of the present investigation is to show how the influence of spray velocity (not particle velocity) affects coating structure with respect to arc spray parameters.

  3. Detection of segmentation cracks in top coat of thermal barrier coatings during plasma spraying by non-contact acoustic emission method

    NASA Astrophysics Data System (ADS)

    Ito, Kaita; Kuriki, Hitoshi; Araki, Hiroshi; Kuroda, Seiji; Enoki, Manabu

    2014-06-01

    Numerous cracks can be observed in the top coat of thermal barrier coatings (TBCs) deposited by the atmospheric plasma spraying (APS) method. These cracks can be classified into vertical and horizontal ones and they have opposite impact on the properties of TBCs. Vertical cracks reduce the residual stress in the top coat and provide strain tolerance. On the contrary, horizontal cracks trigger delamination of the top coat. However, monitoring methods of cracks generation during APS are rare even though they are strongly desired. Therefore, an in situ, non-contact and non-destructive evaluation method for this objective was developed in this study with the laser acoustic emission (AE) technique by using laser interferometers as a sensor. More AE events could be detected by introducing an improved noise reduction filter and AE event detection procedures with multiple thresholds. Generation of vertical cracks was successfully separated from horizontal cracks by a newly introduced scanning pattern of a plasma torch. Thus, generation of vertical cracks was detected with certainty by this monitoring method because AE events were detected only during spraying and a positive correlation was observed between the development degree of vertical cracks and the total AE energy in one experiment.

  4. Investigation of Crack Propagation Behavior of Atmospheric Plasma-Sprayed Thermal Barrier Coatings under Uniaxial Tension Using the Acoustic Emission Technique

    NASA Astrophysics Data System (ADS)

    Wang, L.; Liu, C. G.; Zhong, X. H.; Zhao, Y. X.; Zhao, H. Y.; Yang, J. S.; Tao, S. Y.; Wang, Y.

    2015-02-01

    Uniaxial tension is a common technique to characterize the adhesive strength of plasma-sprayed thermal barrier coatings (TBCs). In this work, the crack initiation, growth, and propagation behavior of atmospheric plasma-sprayed TBCs during uniaxial tension testing was investigated using the acoustic emission (AE) technique, x-ray diffraction analysis, scanning electron microscopy, and the finite-element method (FEM). The experimental results indicated that the position of crack initiation was usually located within the ceramic layer, and the crack tended to propagate along the tension direction, with some key horizontal cracks reaching the metallic layer/ceramic layer interface, after which vertical cracks initiating at the middle and lower segments of the horizontal cracks propagated along the interface. When some critical cracks were formed at the interface and a series of assembled splats separated from the coating, the coating failed completely. The AE signal could be divided into three typical stages, corresponding to the three stages of the stress-stain curve under uniaxial tension. Detailed analysis of the AE signal associated with the failure behavior was performed. The dynamic propagation patterns of the key cracks in the ceramic layer during the tension process were simulated using the FEM, whose results further confirmed the conclusions drawn from the experimental results.

  5. Adding high time resolution to charge-state-specific ion energy measurements for pulsed copper vacuum arc plasmas

    E-print Network

    Tanaka, Koichi; Zhou, Xue; Anders, André

    2015-01-01

    Charge-state-resolved ion energy-time-distributions of pulsed Cu arc plasma were obtained by using direct (time dependent) acquisition of the ion detection signal from a commercial ion mass-per-charge and energy-per-charge analyzer. We find a shift of energies of Cu2+, Cu3+ and Cu4+ ions to lower values during the first few hundred microseconds after arc ignition, which is evidence for particle collisions in the plasma. The generation of Cu1+ ions in the later part of the pulse, measured by the increase of Cu1+ signal intensity and an associated slight reduction of the mean charge state point to charge exchange reactions between ions and neutrals. At the very beginning of the pulse, when the plasma expands into vacuum and the plasma potential strongly fluctuates, ions with much higher energy (over 200 eV) were observed. Early in the pulse, the ion energies observed are approximately proportional to the ion charge state, and we conclude that the acceleration mechanism is primarily based on acceleration in an e...

  6. Study of metallic powder behavior in very low pressure plasma spraying (VLPPS) — Application to the manufacturing of titanium–aluminum coatings

    SciTech Connect

    Vautherin, B.; Planche, M.-P.; Montavon, G.; Lapostolle, F.; Quet, A.; Bianchi, L.

    2015-08-28

    In this study, metallic materials made of aluminum and titanium were manufactured implementing very low pressure plasma spraying (VLPPS). Aluminum was selected at first as a demonstrative material due to its rather low vaporization enthalpy (i.e., 381.9 kJ·mol?¹). Developments were then carried out with titanium which exhibits a higher vaporization enthalpy (i.e., 563.6 kJ·mol?¹). Optical emission spectroscopy (OES) was implemented to analyze the behavior of each solid precursor (metallic powders) when it is injected into the plasma jet under very low pressure (i.e., in the 150 Pa range). Besides, aluminum, titanium and titanium–aluminum coatings were deposited in the same conditions implementing a stick-cathode plasma torch operated at 50 kW, maximum power. Coating phase compositions were identified by X-Ray Diffraction (XRD). Coating elementary compositions were quantified by Glow Discharge Optical Emission Spectroscopy (GDOES) and Energy Dispersive Spectroscopy (EDS) analyses. The coating structures were observed by Scanning Electron Microscopy (SEM). The coating void content was determined by Ultra-Small Angle X-ray Scattering (USAXS). The coatings exhibit a two-scale structure corresponding to condensed vapors (smaller scale) and solidified areas (larger scale). Titanium–aluminum sprayed coatings, with various Ti/Al atomic ratios, are constituted of three phases: metastable ?-Ti, Al and metastable ??-Ti?Al. This latter is formed at elevated temperature in the plasma flow, before being condensed. Its rather small fraction, impeded by the rather small amount of vaporized Ti, does not allow modifying however the coating hardness.

  7. Numerical simulation of cathode plasma dynamics in magnetically insulated vacuum transmission lines

    SciTech Connect

    Thoma, C.; Genoni, T. C.; Welch, D. R.; Rose, D. V.; Clark, R. E.; Miller, C. L.; Stygar, W. A.; Kiefer, M. L.

    2015-03-15

    A novel algorithm for the simulation of cathode plasmas in particle-in-cell codes is described and applied to investigate cathode plasma evolution in magnetically insulated transmission lines (MITLs). The MITL electron sheath is modeled by a fully kinetic electron species. Electron and ion macroparticles, both modeled as fluid species, form a dense plasma which is initially localized at the cathode surface. Energetic plasma electron particles can be converted to kinetic electrons to resupply the electron flux at the plasma edge (the “effective” cathode). Using this model, we compare results for the time evolution of the cathode plasma and MITL electron flow with a simplified (isothermal) diffusion model. Simulations in 1D show a slow diffusive expansion of the plasma from the cathode surface. But in multiple dimensions, the plasma can expand much more rapidly due to anomalous diffusion caused by an instability due to the strong coupling of a transverse magnetic mode in the electron sheath with the expanding resistive plasma layer.

  8. Vacuum ultra-violet damage and damage mitigation for plasma processing of highly porous organosilicate glass dielectrics

    NASA Astrophysics Data System (ADS)

    de Marneffe, J.-F.; Zhang, L.; Heyne, M.; Lukaszewicz, M.; Porter, S. B.; Vajda, F.; Rutigliani, V.; el Otell, Z.; Krishtab, M.; Goodyear, A.; Cooke, M.; Verdonck, P.; Baklanov, M. R.

    2015-10-01

    Porous organosilicate glass thin films, with k-value 2.0, were exposed to 147 nm vacuum ultra-violet (VUV) photons emitted in a Xenon capacitive coupled plasma discharge. Strong methyl bond depletion was observed, concomitant with a significant increase of the bulk dielectric constant. This indicates that, besides reactive radical diffusion, photons emitted during plasma processing do impede dielectric properties and therefore need to be tackled appropriately during patterning and integration. The detrimental effect of VUV irradiation can be partly suppressed by stuffing the low-k porous matrix with proper sacrificial polymers showing high VUV absorption together with good thermal and VUV stability. In addition, the choice of an appropriate hard-mask, showing high VUV absorption, can minimize VUV damage. Particular processing conditions allow to minimize the fluence of photons to the substrate and lead to negligible VUV damage. For patterned structures, in order to reduce VUV damage in the bulk and on feature sidewalls, the combination of both pore stuffing/material densification and absorbing hard-mask is recommended, and/or the use of low VUV-emitting plasma discharge.

  9. Plasma behavior in vacuum coating using hot hollow cathode: a literature survey and proposal for experiment

    SciTech Connect

    Kuo, Y.S.

    1984-01-26

    As revealed in recent papers concerning sputtering deposition, the plasma behavior in a sputtering device is closely associated with its coating performance. The same may hold true for the hot hollow cathode (HHC) deposition. The plasma behavior of a HHC coating device seems to have received relatively meager research, however. A literature study has been conducted on the HHC coating technology, taking special consideration of the plasma conditions in the HHC coating chamber. As a result of this study, it is proposed to do two types of experiments, and try to correlate their results. The first type is the silver coating experiments using the voltage bias applied to the stainless steel substrates as an independent variable. The deposition rates and substrate ion current are to be monitored. The coatings obtained will be examined for their metallographic structure and the compositional depth profiling at their coating-substrate interfaces. The second type is the plasma characterization experiments, which include two different categories; the Langmuir (electrostatic) probe measurement of plasma characteristics, and the ion collector type of measurement to mass- and energy-analyze the ionic, and hopefully also the (energetic) neutral, species in the plasma. Both these categories will make measurement under HHC gun operation, with and without the evaporation of the evaporant metal silver. It is understood that the Langmuir probe study has a priority to the ion-collector category, since the latter has been done by the Japanese Ulvac group. The use of an auxiliary anode to enhance the plasma is to be investigated with both the coating experiments and the plasma characterization experiments (such as the Langmuir probe measurements).

  10. Oxymetazoline Nasal Spray

    MedlinePLUS

    Afrin® Nasal Spray ... Anefrin® Nasal Spray ... Dristan® Nasal Spray ... Mucinex® Nasal Spray ... Nostrilla® Nasal Spray ... Vicks Sinex® Nasal Spray ... Zicam® Nasal Spray ... Oxymetazoline nasal spray is used to relieve nasal discomfort caused by colds, allergies, and hay fever. It is also used to ...

  11. Predictors of Plasma DDT and DDE Concentrations among Women Exposed to Indoor Residual Spraying for Malaria Control in the South African Study of Women and Babies (SOWB)

    PubMed Central

    Bornman, Riana M.S.; Archer, Janet I.; Kudumu, Mwenda O.; Travlos, Gregory S.; Wilson, Ralph E.; Longnecker, Matthew P.

    2014-01-01

    Background: Few studies have examined predictors of DDT (dichlorodiphenyltrichloroethane) and DDE (dichlorodiphenyldichloroethylene) levels among residents in homes sprayed with DDT for malaria control with the aim of identifying exposure-reduction strategies. Methods: The present analysis included 381 women enrolled in the Study of Women and Babies (SOWB) during 2010–2011, from eight South African villages in the Limpopo Province, South Africa. Indoor residual spraying (IRS) occurred in half of the villages. Questionnaires regarding various demographic and medical factors were administered and blood samples were obtained. We classified the women into three exposure groups by type of residence: unsprayed village (n = 175), IRS village in household with a low likelihood of DDT use (non-DDT IRS household, n = 106), IRS village in household with a high likelihood of DDT use (DDT IRS household, n = 100). We used multivariable models of natural log-transformed DDT plasma levels (in micrograms per liter) and DDE (in micrograms per liter) to identify predictors for each group. Results: Median levels of DDT and DDE among women in unsprayed villages were 0.3 [interquartile range (IQR): 0.1–0.9] and 1.7 (IQR: 0.7–5.5), respectively. Median levels of DDT and DDE among women in DDT IRS households were 2.6 (IQR: 1.1–6.6) and 8.5 (IQR: 4.7–18.0), respectively. In unsprayed villages, women with water piped to the yard, rather than a public tap, had 73% lower DDT (95% CI: –83, –57%) and 61% lower DDE (95% CI: –74, –40%) levels. In DDT IRS households, women who reported taking more than six actions to prepare their home before IRS (e.g., covering water and food) had 40% lower DDT levels (95% CI: –63, –0.3%) than women who took fewer than four actions. Conclusion: The predictors of DDT and DDE plasma levels identified in the present study may inform interventions aimed at decreasing exposure. Among households where DDT is likely to be used for IRS, education regarding home preparations may provide an interventional target. Citation: Whitworth KW, Bornman RM, Archer JI, Kudumu MO, Travlos GS, Wilson RE, Longnecker MP. 2014. Predictors of plasma DDT and DDE concentrations among women exposed to indoor residual spraying for malaria control in the South African Study of Women and Babies (SOWB). Environ Health Perspect 122:545–552;?http://dx.doi.org/10.1289/ehp.1307025 PMID:24577839

  12. Effect of Ti-Al cathode composition on plasma generation and plasma transport in direct current vacuum arc

    SciTech Connect

    Zhirkov, I. Petruhins, A.; Dahlqvist, M.; Ingason, A. S.; Rosen, J.; Eriksson, A. O.

    2014-03-28

    DC arc plasma from Ti, Al, and Ti{sub 1-x}Al{sub x} (x?=?0.16, 0.25, 0.50, and 0.70) compound cathodes was characterized with respect to plasma chemistry and charge-state-resolved ion energy. Scanning electron microscopy, X-ray diffraction, and Energy-dispersive X-ray spectroscopy of the deposited films and the cathode surfaces were used for exploring the correlation between cathode-, plasma-, and film composition. Experimental work was performed at a base pressure of 10{sup ?6}?Torr, to exclude plasma-gas interaction. The plasma ion composition showed a reduction of Al of approximately 5 at. % compared to the cathode composition, while deposited films were in accordance with the cathode stoichiometry. This may be explained by presence of neutrals in the plasma/vapour phase. The average ion charge states (Ti?=?2.2, Al?=?1.65) were consistent with reference data for elemental cathodes, and approximately independent on the cathode composition. On the contrary, the width of the ion energy distributions (IEDs) were drastically reduced when comparing the elemental Ti and Al cathodes with Ti{sub 0.5}Al{sub 0.5}, going from??150 and ?175?eV to ?100 and ?75?eV for Ti and Al ions, respectively. This may be explained by a reduction in electron temperature, commonly associated with the high energy tail of the IED. The average Ti and Al ion energies ranged between ?50 and ?61?eV, and ?30 and ?50?eV, respectively, for different cathode compositions. The attained energy trends were explained by the velocity rule for compound cathodes, which states that the most likely velocities of ions of different mass are equal. Hence, compared to elemental cathodes, the faster Al ions will be decelerated, and the slower Ti ions will be accelerated when originating from compound cathodes. The intensity of the macroparticle generation and thickness of the deposited films were also found to be dependent on the cathode composition. The presented results may be of importance for choice of cathodes for thin film depositions involving compound cathodes.

  13. Development of High Power Vacuum Tubes for Accelerators and Plasma Heating

    NASA Astrophysics Data System (ADS)

    Srivastava, Vishnu

    2012-11-01

    High pulsed power magnetrons and klystrons for medical and industrial accelerators, and high CW power klystrons and gyrotrons for plasma heating in tokamak, are being developed at CEERI. S-band 2.0MW pulsed tunable magnetrons of centre frequency 2856MHz and 2998 MHz were developed, and S-band 2.6MW pulsed tunable magnetron is being developed for medical LINAC, and 3MW pulsed tunable magnetron is being developed for industrial accelerator. S-band (2856MHz), 5MW pulsed klystron was developed for particle accelerator, and S-band 6MW pulsed klystron is under development for 10MeV industrial accelerator. 350MHz, 100kW (CW) klystron is being developed for proton accelerator, and C-band 250kW (CW) klystron is being developed for plasma heating. 42GHz, 200kW (CW/Long pulse) gyrotron is under development for plasma heating. Plasma filled tubes are also being developed for switching. 25kV/1kA and 40kV/3kA thyratrons were developed for high voltage high current switching in pulse modulators for magnetrons and klystrons. 25kV/3kA Pseudospark switch of current rise time of 1kA/|a-sec and pulse repetition rate of 500Hz is being developed. Plasma assisted high power microwave device is also being investigated.

  14. Defect detection in multi-layered, plasma sprayed zirconia by time resolved infrared radiometry: A comparison between analytical and experimental methods

    SciTech Connect

    Happoldt, P.G.; Ellingson, W.A.; Gardiner, T.; Krueger, J.

    1994-04-01

    Analytical and experimental methods were used to study a series of test specimens consisting of plasma sprayed layers of NiCrA1Y/ZrO{sub 2} of various compositions.The coatings were seeded with artificial defects and were sprayed on steel disks. Two types of defects were used: flat bottomed holes drilled in the steel substrate and patches of room temperature vulcanizing silicone within the coatings. Defect sizes ranged from 0.1 to 10 mm and were at depths below the coating surface from 0.6 to 3.6 min. The method of time resolved infrared radiometry was used with two different heat sources, an acetylene torch and a high intensity lamp, to inspect the coatings. The torch allowed excellent sensitivity at depths of less than 2 mm and the lamp revealed flaws through the full coating thickness. Two analytical models were developed to study beat flow in the test specimens: a finite element model and an electrical analog model. Results from the two models were compared to check consistency and the finite element model results were compared with experimental results. The finite element code was chosen for further development due to its greater flexibility and ease of use.

  15. Preparation and Ablation Properties of Y2SiO5 Coating for SiC-Coated C/C Composites by Supersonic Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-Ping; Fu, Qian-Gang; Zhuang, Lei; Li, He-Jun; Sun, Can

    2015-08-01

    Y2SiO5 coating was prepared on the surface of SiC-coated C/C composites by supersonic plasma spraying at different powers of 35, 40, 45, and 50 kW. The microstructures and phase compositions were characterized by scanning electron microscopy and x-ray diffraction, respectively. Roughness of the coating was measured by a confocal laser scanning microscope. Bonding force between Y2SiO5 outer coating and SiC inner coating was measured by a scratch tester. The results show that Y2SiO5 coating prepared at the spraying power of 45 kW possesses the biggest deposition rate, minimum surface roughness (Ra = 11.12 ?m), and maximum bonding force (up to 28 N). The linear and mass ablation rates of Y2SiO5 coating prepared at 45 kW are 2.6 ?m/s and 0.031 mg cm-2 s-1 in the heat flux of 2.38 MW/m2 under oxyacetylene torch. During ablation, a glassy layer of SiO2 + Y2O3 was formed, acting as a barrier to high-speed gas flow of oxyacetylene flame.

  16. Adding high time resolution to charge-state-specific ion energy measurements for pulsed copper vacuum arc plasmas

    NASA Astrophysics Data System (ADS)

    Tanaka, Koichi; Han, Liang; Zhou, Xue; Anders, André

    2015-08-01

    Charge-state-resolved ion energy-time distributions of pulsed Cu arc plasma were obtained by using direct (time-dependent) acquisition of the ion detection signal from a commercial ion mass-per-charge and energy-per-charge analyzer. We find a shift of energies of Cu2+, Cu3+ and Cu4+ ions to lower values during the first few hundred microseconds after arc ignition, which is evidence for particle collisions in the plasma. The generation of Cu+ ions in the later part of the pulse, measured by the increase of Cu+ signal intensity and an associated slight reduction of the mean charge state, points to charge exchange reactions between ions and neutrals. At the very beginning of the pulse, when the plasma expands into vacuum and the plasma potential strongly fluctuates, ions with much higher energy (over 200?eV) are observed. Early in the pulse, the ion energies observed are approximately proportional to the ion charge state, and we conclude that the acceleration mechanism is primarily based on acceleration in an electric field. This field is directed away from the cathode, indicative of a potential hump. Measurements by a floating probe suggest that potential structures travel, and ions moving in the traveling field can gain high energies up to a few hundred electron-volts. Later in the pulse, the approximate proportionality is lost, which is related to increased smearing out of different energies due to collisions with neutrals, and/or to a change of the acceleration character from electrostatic to ‘gas-dynamic’, i.e. dominated by pressure gradient.

  17. Test of prototype ITER vacuum ultraviolet spectrometer and its application to impurity study in KSTAR plasmas.

    PubMed

    Seon, C R; Hong, J H; Jang, J; Lee, S H; Choe, W; Lee, H H; Cheon, M S; Pak, S; Lee, H G; Biel, W; Barnsley, R

    2014-11-01

    To optimize the design of ITER vacuum ultraviolet (VUV) spectrometer, a prototype VUV spectrometer was developed. The sensitivity calibration curve of the spectrometer was calculated from the mirror reflectivity, the grating efficiency, and the detector efficiency. The calibration curve was consistent with the calibration points derived in the experiment using the calibrated hollow cathode lamp. For the application of the prototype ITER VUV spectrometer, the prototype spectrometer was installed at KSTAR, and various impurity emission lines could be measured. By analyzing about 100 shots, strong positive correlation between the O VI and the C IV emission intensities could be found. PMID:25430310

  18. On the fine-structure constant in a plasma model of the fluctuating vacuum substratum

    NASA Technical Reports Server (NTRS)

    Cragin, B. L.

    1986-01-01

    The existence of an intimate connection between the quivering motion of electrons and positrons (Zitterbewegung), predicted by the Dirac equation, and the zero-point fluctuations of the vacuum is suggested. The nature of the proposed connection is discussed quantitatively, and an approximate self-consistency relation is derived, supplying a purely mathematical expression that relates the dimensionless coupling strengths (fine-structure constants) alpha sub e and alpha sub g of electromagnetism and gravity. These considerations provide a tentative explanation for the heretofore puzzling number 1/alpha sub e of about 137.036 and suggest that attempts to unify gravity with the electroweak and strong interactions will ultimately prove successful.

  19. Development of a Thermal Transport Database for Air Plasma Sprayed ZrO2 ? Y2O3 Thermal Barrier Coatings

    SciTech Connect

    Wang, Hsin; Dinwiddie, Ralph Barton; Porter, Wallace D

    2010-01-01

    Thermal Diffusivities of Air Plasma Sprayed (APS) thermal barrier coatings (TBCs) are measured by the laser flash method. The data are used to calculate thermal conductivity of TBCs when provided with density and specific heat data. Due to the complicated microstructure and other processing related parameters, thermal diffusivity of TBCs can vary as much as three to four fold. Data collected from over 200 free-standing ZrO2 7-8 wt%Y2O3 TBCs are presented. The large database gives a clear picture of the expected band of thermal diffusivity values. When this band is used as reference for thermal diffusivity of a specific TBC, the thermal transport property of TBC can be more precisely described. The database is intended to serve researchers and manufacturers of TBCs as a valuable source for evaluating their coatings.

  20. Impression creep behavior of atmospheric plasma sprayed and hot pressed MoSi{sub 2}/Si{sub 3}N{sub 4}

    SciTech Connect

    Hollis, K.J.; Butt, D.P.; Castro, R.G.

    1997-09-01

    The use of MoSi{sub 2} as a high temperature oxidation resistant structural material is hindered by its poor elevated temperature creep resistance. The addition of second phase Si{sub 3}N{sub 4} holds promise for improving the creep properties of MoSi{sub 2} without decreasing oxidation resistance. The high temperature impression creep behavior of atmospheric plasma sprayed (APS) and hot pressed (HP) MoSi{sub 2}/Si{sub 3}N{sub 4} composites was investigated. Values for steady state creep rates, creep activation energies, and creep stress exponents were measured. Grain boundary sliding and splat sliding were found to be the dominant creep mechanisms for the APS samples while grain boundary sliding and plastic deformation were found to be the dominant creep mechanisms for the HP samples.

  1. Numerical Study of the Relative Importance of Turbulence, Particle Size and Density, and Injection Parameters on Particle Behavior During Thermal Plasma Spraying

    SciTech Connect

    Williamson, Richard L; Fincke, James Russell; Chang, Chong Hyuck

    2002-03-01

    Numerical modeling is used to systematically examine the effects of turbulence, injection, and particle characteristics on particle behavior during thermal plasma spraying. Using the computer program LAVA (Idaho National Engineering and Environmental Laboratory, Idaho Falls, ID), a steady-state plasma jet typical of a commercial torch at normal operating conditions is first developed. Then, assuming a single particle composition (ZrO2) and injection location, real world complexity (e.g., turbulent dispersion, particle size and density, injection velocity, and direction) is introduced "one phenomenon at a time" to distinguish and characterize its effect and enable comparisons of separate effects. A final calculation then considers all phenomena simultaneously, to enable further comparisons. Investigating each phenomenon separately provides valuable insight into particle behavior. For the typical plasma jet and injection conditions considered, particle dispersion in the injection direction is most significantly affected by (in order of decreasing importance): particle size distribution, injection velocity distribution, turbulence, and injection direction distribution or particle density distribution. Only the distribution of injection directions and turbulence affect dispersion normal to the injection direction and are of similar magnitude in this study. With regards to particle velocity and temperature, particle size is clearly the dominant effect.

  2. Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions

    E-print Network

    Harilal, S. S.

    Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and atmosphere environments using identical laser fluences in order to better understand the differ- ences in an ambient atmosphere environment, the impact of low-pressure envi- ronments is also important for certain

  3. Properties of a vacuum ultraviolet laser created plasma sheet for a microwave reflector

    E-print Network

    Scharer, John E.

    illustrate that a plasma sheet generated using a linear hollow cathode immersed in a magnetic field yields a much faster turn-on and turn-off time (7,,= 10 ns, rorr= 1 p s) compared with a hollow cathode system

  4. Time-Resolved Analysis of High-Power-Laser Produced Plasma Expansion in Vacuum

    SciTech Connect

    Aliverdiev, A.; Batani, D.; Dezulian, R.; Malka, V.; Vinci, T.; Koenig, M.; Benuzzi-Mounaix, A.

    2005-05-16

    Here we consider the results of an experimental investigation of the temporal evolution of plasmas produced by high power laser irradiation of various types of target materials. The experiment was performed at the LULI Laboratory (Ecole Polytechnique, Paris). We have developed a method to analyze time-resolved streak-camera images and analyzed a number of results obtained with various materials.

  5. Development of Extreme Ultraviolet Radiation Source using Laser Triggered Vacuum Spark Discharge Plasma

    SciTech Connect

    Watanabe, Masato; Yamada, Junzaburo; Zhu Qiushi; Hotta, Eiki

    2009-01-21

    A laser triggerd discharge produced Sn plasma light source has been developed. Experimental parameters such as electrode separation and laser irradiation power are varied to optimize EUV emission power. It is clear that the maximum EUV radiation was occurred in the position where the pinch was observed.

  6. Measuring of plasma properties induced by non-vacuum electron beam welding

    SciTech Connect

    Reisgen, U.; Schleser, M.; Abdurakhmanov, A.; Gumenyuk, A.

    2012-01-15

    Electron beam plasma measurement was realised by means of DIABEAM system invented by ISF RWTH Aachen. The Langmuir probe method is used for measurement. The relative simplicity of the method and the possibility of dispersion of high power on the probe allow its application for the investigation of high-power electron beams. The key element of the method is a rotating thin tungsten wire, which intersects the beam transversely on its axis and collects part of the current by itself. The signals, which are registered in the DIABEAM as a voltage, were taken in the form of amplitude. The conversion of the probe current into the distribution along the beam radius was realised using the Abel's method. A voltage-current characteristic was built for the beam current. The local electron density as well as the electron temperature, the floating potential and the plasma potential were measured and calculated by means of this characteristic.

  7. Particle in cell simulation of a radiofrequency plasma jet expanding in vacuum

    SciTech Connect

    Charles, C. Hawkins, R.; Boswell, R. W.

    2015-03-02

    The effect of a pressure gradient (?133?Pa–0.133?Pa) on electron and ion energy distributions in a radiofrequency (rf at 13.56?MHz) argon plasma jet is studied using a 1D-3v Particle In Cell (PIC) simulation. The PIC domain is three times that of the 0.018?m long plasma cavity and the total simulation time is 1?ms. Ion heating and acceleration up to a drift velocity about 2000?m s{sup ?1} are measured along the jet's main expansion axis. Elastic and charge exchange ion-neutral collisions histograms computed at equilibrium during 0.74 ms show that charge exchange collisions act as the main neutral heating mechanism.

  8. Effects of plasma and vacuum-ultraviolet exposure on the mechanical properties of low-k porous organosilicate glass

    SciTech Connect

    Guo, X.; Shohet, J. L.; Jakes, J. E.; Banna, S.; Nishi, Y.

    2014-07-28

    The effects of plasma exposure and vacuum-ultraviolet (VUV) irradiation on the mechanical properties of low-k porous organosilicate glass (SiCOH) dielectric films were investigated. Nanoindentation measurements were made on SiCOH films before and after exposure to an electron-cyclotron-resonance plasma or a monochromatic synchrotron VUV beam, to determine the changes of film hardness, elastic modulus, and crack threshold due to these exposures. This permits the effects of ion bombardment and photon bombardment to be analyzed separately. The role of energetic ions was examined with a variety of inert plasma-exposure conditions. The role of VUV photons was analyzed as a function of synchrotron photon energy. It was found that both energetic ions and VUV photons with energies larger than the bond energy of the Si-O bond cause a significant increase in film hardness along with a smaller increase in elastic modulus and crack threshold. Differential Fourier transform infrared spectra and x-ray photoemission spectroscopy results show that the energetic ions affect the SiCOH properties mainly through physical bombardment, during which the ions transfer their momentum to the Si-O-Si backbone and transform them into more energetically stable Si-O-Si network structures. This results in the Si-O-Si network structures becoming densified. VUV photons assist reaction that increase the number of bridging O{sub 3}?Si-O-Si?O{sub 3} bonds and deplete nonbridging O{sub 3}?Si-O and C-Si?O{sub 3} bonds. This increased degree of cross linking in porous organosilicate dielectrics can substantially enhance their hardness and elastic modulus while showing no significant film shrinkage or densification.

  9. Nitroglycerin Spray

    MedlinePLUS

    ... have coronary artery disease (narrowing of the blood vessels that supply blood to the heart). The spray ... called vasodilators. It works by relaxing the blood vessels so the heart does not need to work ...

  10. Production of neutrals and their and effects on the ion chargestates in cathodic vacuum arc plasmas

    SciTech Connect

    Anders, Andre; Oks, Efim M.; Yushkov, Georgy Yu.

    2007-05-23

    Cathodic arc plasmas are considered fully ionized and theycontain multiply charged ions, yet, gaseous and metal neutrals can bepresent. It is shown that they can cause a significant reduction of theion charge states as measured far from the cathode spots. Several cathodematerials were used to study the evolution the mean ion charge state as afunction of time after arc ignition. The type of cathode material, arccurrent amplitude, intentionally increased background gas, additionalsurfaces placed near the plasma flow, and other factors influence thedegree of charge state reduction because all of these factors influencethe density of neutrals. In all cases, it was found that the mean ioncharge state follows an exponential decay of first order, Q(t) = A *exp(t/tau) + Qss, where A is a parameter describing the importance of thedecay, tau is the characteristic decay time, and Qss is a steady-statevalue approached for continuous arc operation. The extrapolated valuesQ(t-->0) indicate surprisingly high mean charge states as produced atcathode spots and not "skewed" by charge exchange collisions withneutrals.

  11. Lu2O3-SiO2-ZrO2 Coatings for Environmental Barrier Application by Solution Precursor Plasma Spraying and Influence of Precursor Chemistry

    NASA Astrophysics Data System (ADS)

    Darthout, Émilien; Quet, Aurélie; Braidy, Nadi; Gitzhofer, François

    2014-02-01

    As environmental barrier coatings are subjected to thermal stress in gas turbine engines, the introduction of a secondary phase as zircon (ZrSiO4) is likely to increase the stress resistance of Lu2Si2O7 coatings generated by induction plasma spraying using liquid precursors. In a first step, precursor chemistry effect is investigated by the synthesis of ZrO2-SiO2 nanopowders by induction plasma nanopowder synthesis technique. Tetraethyl orthosilicate (TEOS) as silicon precursor and zirconium oxynitrate and zirconium ethoxide as zirconium precursors are mixed in ethanol and produce a mixture of tetragonal zirconia and amorphous silica nanoparticles. The use of zirconium ethoxide precursor results in zirconia particles with diameter below 50 nm because of exothermic thermal decomposition of the ethoxide and its high boiling point with respect to solvent, while larger particles are formed when zirconium oxynitrate is employed. The formation temperature of zircon from zirconia and silica oxides is found at 1425 °C. Second, coatings are synthesized in Lu2O3-ZrO2-SiO2 system. After heat treatment, the doping effect of lutetium on zirconia grains totally inhibits the zircon formation. Dense coatings are obtained with the use of zirconium ethoxide because denser particles with a homogeneous diameter distribution constitute the coating.

  12. The dissociation of NZP (Ca{sub 0.5}Sr{sub 0.5}Zr{sub 4}P{sub 6}O{sub 24}) during plasma spraying[Sodium Zirconium Phosphate

    SciTech Connect

    Trice, R.W.; Brewer, L.N.; Faber, K.T.

    2000-04-01

    Sodium zirconium phosphate (NaZr{sub 2}P{sub 3}O{sub 12} or NZP) was first systematically evaluated in the early 1980s by Roy and co-workers, who demonstrated its extremely low coefficient of thermal expansion (CTE). It was later shown that other group IA and IIA atoms can be ionically substituted into the NZP crystal structure to adjust the CTE. As a result of their low and tailorable CTEs, NZP's have potential use as a protective coating for silicon-based ceramics and carbon-carbon composites. One technique for the application of ceramic coatings employs plasma-spraying. In this process, powders are injected into a plasma flame, melted, and propelled onto a substrate. The resulting coating microstructure is typically composed of thin lamellae (from each melted particle) stacked on top of one another during each pass of the torch. In the current research, NZP has been plasma-sprayed using the recently patented small particle plasma-spray process. The microstructure was then analyzed using transmission electron microscopy and x-ray diffraction to identify the phases in the complex coating that resulted.

  13. Azelastine Nasal Spray

    MedlinePLUS

    Astelin® Nasal Spray ... Astepro® Nasal Spray ... Azelastine comes as a nasal spray. Azelastine usually is sprayed in each nostril two times a day. Follow the directions on your prescription label carefully, and ask ...

  14. Absolute atomic oxygen and nitrogen densities in radio-frequency driven atmospheric pressure cold plasmas: Synchrotron vacuum ultra-violet high-resolution Fourier-transform absorption measurements

    SciTech Connect

    Niemi, K.; O'Connell, D.; Gans, T.; Oliveira, N. de; Joyeux, D.; Nahon, L.; Booth, J. P.

    2013-07-15

    Reactive atomic species play a key role in emerging cold atmospheric pressure plasma applications, in particular, in plasma medicine. Absolute densities of atomic oxygen and atomic nitrogen were measured in a radio-frequency driven non-equilibrium plasma operated at atmospheric pressure using vacuum ultra-violet (VUV) absorption spectroscopy. The experiment was conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Measurements were carried out in plasmas operated in helium with air-like N{sub 2}/O{sub 2} (4:1) admixtures. A maximum in the O-atom concentration of (9.1 {+-} 0.7) Multiplication-Sign 10{sup 20} m{sup -3} was found at admixtures of 0.35 vol. %, while the N-atom concentration exhibits a maximum of (5.7 {+-} 0.4) Multiplication-Sign 10{sup 19} m{sup -3} at 0.1 vol. %.

  15. Development of vacuum ultraviolet absorption spectroscopy system for wide measurement range of number density using a dual-tube inductively coupled plasma light source.

    PubMed

    Kuwahara, Akira; Matsui, Makoto; Yamagiwa, Yoshiki

    2012-12-01

    A vacuum ultraviolet absorption spectroscopy system for a wide measurement range of atomic number densities is developed. Dual-tube inductively coupled plasma was used as a light source. The probe beam profile was optimized for the target number density range by changing the mass flow rate of the inner and outer tubes. This system was verified using cold xenon gas. As a result, the measurement number density range was extended from the conventional two orders to five orders of magnitude. PMID:23277970

  16. Development of vacuum ultraviolet absorption spectroscopy system for wide measurement range of number density using a dual-tube inductively coupled plasma light source

    SciTech Connect

    Kuwahara, Akira; Matsui, Makoto; Yamagiwa, Yoshiki

    2012-12-15

    A vacuum ultraviolet absorption spectroscopy system for a wide measurement range of atomic number densities is developed. Dual-tube inductively coupled plasma was used as a light source. The probe beam profile was optimized for the target number density range by changing the mass flow rate of the inner and outer tubes. This system was verified using cold xenon gas. As a result, the measurement number density range was extended from the conventional two orders to five orders of magnitude.

  17. A radiation hard vacuum switch

    DOEpatents

    Boettcher, G.E.

    1988-07-19

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction. 3 figs.

  18. Nickel-chromium plasma spray coatings: A way to enhance degradation resistance of boiler tube steels in boiler environment

    SciTech Connect

    Sidhu, B.S.; Prakash, S.

    2006-03-15

    Boiler tube steels, namely low carbon steel ASTM-SA210-Grade A1 (GrA1), 1Cr-0.5Mo steel ASTM-SA213-T-11 (T11), and 2.25Cr-1Mo steel ASTM-SA213-T-22 (T22), were used as substrate steels. Ni-22Cr-10AI-1Y powder was sprayed as a bond coat 150 {mu}m thick before a 200 {mu}m final coating of Ni-20Cr was applied. Coatings were characterized prior to testing in the environment of a coal fired boiler. The uncoated and coated steels were inserted in the platen superheater zone of a coal fired boiler at around 755{sup o}C for 10 cycles, each 100 h. Coated steels showed lower degradation (erosion-corrosion) rate than uncoated steels showed. The lowest rate was observed in the case of Ni-20Cr coated T11 steel. Among the uncoated steels, the observed rate of degradation was the lowest for the T22 steel.

  19. Apparatus For Metal/Inert-Gas Welding In Vacuum

    NASA Technical Reports Server (NTRS)

    Stocks, C. O.

    1994-01-01

    Metal/inert-gas welding-torch assembly operates in vacuum. Plasma generated in interior chamber and focused onto workpiece in vacuum. Pinch rollers feed wire to weld puddle. Controlled flow of plasma reduces dispersal in vacuum, preventing extinction.

  20. The Microstructure Stability of Atmospheric Plasma-Sprayed MnCo2O4 Coating Under Dual-Atmosphere (H2/Air) Exposure

    NASA Astrophysics Data System (ADS)

    Hu, Ying-Zhen; Li, Cheng-Xin; Zhang, Shan-Lin; Yang, Guan-Jun; Luo, Xiao-Tao; Li, Chang-Jiu

    2015-11-01

    Based on the specific structure of tubular solid oxide fuel cells, good chemical, microstructural, and phase stabilities for the protective coating are required in both the oxidizing and reducing environments. In this work, MnCo2O4 coatings were deposited onto porous Ni50Cr50-Al2O3 substrate by atmospheric plasma spray. The coated samples were tested at 800 °C with the coating exposed in air environment and the substrate in H2 environment. Reducing and pre-oxidizing treatments were performed prior to the stability test. The microstructural stability, phase composition, and electrical properties of the tested coatings were investigated. The surface morphology exhibited an excellent surface stability, and no obvious crystal coarsening was observed. With enhancement of the testing duration, the area-specific resistance presented a decreasing trend attributed to increase in the contact interface and densification of the upper layer. The cross-section views presented a dense upper layer and a relatively porous bottom layer. The x-ray diffraction results also indicated a single MnCo2O4 phase in the upper layer exposed to air environment and a reduced phase structure in the bottom layer from the substrate side. The evolution mechanism between the oxidation frontier and the reduction interface was then discussed.