These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Semaphorin 4D induces vaginal epithelial cell apoptosis to control mouse postnatal vaginal tissue remodeling.  

PubMed

The opening of the mouse vaginal cavity to the skin is a postnatal tissue remodeling process that occurs at approximately five weeks of age for the completion of female genital tract maturation at puberty. The tissue remodeling process is primarily composed of a hormonally triggered apoptotic process predominantly occurring in the epithelium of the distal section of the vaginal cavity. However, the detailed mechanism underlying the apoptotic induction remains to be elucidated. In the present study, it was observed that the majority of BALB/c mice lacking the class 4 semaphorin, semaphorin 4D (Sema4D), developed imperforate vagina and hydrometrocolpos resulting in a perpetually unopened vaginal cavity regardless of a normal estrogen level comparable with that in wild?type (WT) mice. Administration of ??estradiol to infant Sema4D?deficient (Sema4D?/?) mice did not induce precocious vaginal opening, which was observed in WT mice subjected to the same ??estradiol administration, excluding the possibility that the closed vaginal phenotype was due to insufficient estrogen secretion at the time of vaginal opening. In order to assess the role of Sema4D in the postnatal vaginal tissue remodeling process, the expression of Sema4D and its receptor, plexin?B1, was examined as well as the level of apoptosis in the vaginal epithelia of five?week?old WT and Sema4D?/? mice. Immunohistochemical analyses confirmed the localization of Sema4D and plexin?B1 in the mouse vaginal epithelia. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay and immunohistochemistry detecting activated caspase?3 revealed significantly fewer apoptotic cells in situ in the vaginal mucosa of five?week?old Sema4D?/? mice compared with WT mice. The addition of recombinant Sema4D to Sema4D?/? vaginal epithelial cells in culture significantly enhanced apoptosis of the vaginal epithelial cells, demonstrating the apoptosis?inducing activity of Sema4D. The experimental reduction of plexin?B1 expression in vaginal epithelial cells demonstrated the integral role of plexin?B1 in Sema4D?induced apoptotic cell death. These results suggest a non?redundant role of Sema4D in the postnatal tissue remodeling process in five?week?old BALB/c mice, which involves the induction of vaginal epithelial cell apoptosis through Sema4D binding to plexin?B1. PMID:25351707

Ito, Takuji; Bai, Tao; Tanaka, Tetsuji; Yoshida, Kenji; Ueyama, Takashi; Miyajima, Masayasu; Negishi, Takayuki; Kawasaki, Takahiko; Takamatsu, Hyota; Kikutani, Hitoshi; Kumanogoh, Atsushi; Yukawa, Kazunori

2015-02-01

2

Semaphorin 4D induces vaginal epithelial cell apoptosis to control mouse postnatal vaginal tissue remodeling  

PubMed Central

The opening of the mouse vaginal cavity to the skin is a postnatal tissue remodeling process that occurs at approximately five weeks of age for the completion of female genital tract maturation at puberty. The tissue remodeling process is primarily composed of a hormonally triggered apoptotic process predominantly occurring in the epithelium of the distal section of the vaginal cavity. However, the detailed mechanism underlying the apoptotic induction remains to be elucidated. In the present study, it was observed that the majority of BALB/c mice lacking the class 4 semaphorin, semaphorin 4D (Sema4D), developed imperforate vagina and hydrometrocolpos resulting in a perpetually unopened vaginal cavity regardless of a normal estrogen level comparable with that in wild-type (WT) mice. Administration of ?-estradiol to infant Sema4D-deficient (Sema4D?/?) mice did not induce precocious vaginal opening, which was observed in WT mice subjected to the same ?-estradiol administration, excluding the possibility that the closed vaginal phenotype was due to insufficient estrogen secretion at the time of vaginal opening. In order to assess the role of Sema4D in the postnatal vaginal tissue remodeling process, the expression of Sema4D and its receptor, plexin-B1, was examined as well as the level of apoptosis in the vaginal epithelia of five-week-old WT and Sema4D?/? mice. Immunohistochemical analyses confirmed the localization of Sema4D and plexin-B1 in the mouse vaginal epithelia. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay and immunohistochemistry detecting activated caspase-3 revealed significantly fewer apoptotic cells in situ in the vaginal mucosa of five-week-old Sema4D?/? mice compared with WT mice. The addition of recombinant Sema4D to Sema4D?/? vaginal epithelial cells in culture significantly enhanced apoptosis of the vaginal epithelial cells, demonstrating the apoptosis-inducing activity of Sema4D. The experimental reduction of plexin-B1 expression in vaginal epithelial cells demonstrated the integral role of plexin-B1 in Sema4D-induced apoptotic cell death. These results suggest a non-redundant role of Sema4D in the postnatal tissue remodeling process in five-week-old BALB/c mice, which involves the induction of vaginal epithelial cell apoptosis through Sema4D binding to plexin-B1. PMID:25351707

ITO, TAKUJI; BAI, TAO; TANAKA, TETSUJI; YOSHIDA, KENJI; UEYAMA, TAKASHI; MIYAJIMA, MASAYASU; NEGISHI, TAKAYUKI; KAWASAKI, TAKAHIKO; TAKAMATSU, HYOTA; KIKUTANI, HITOSHI; KUMANOGOH, ATSUSHI; YUKAWA, KAZUNORI

2015-01-01

3

Regulation of natural antimicrobial defences in human vaginal epithelial cells  

Microsoft Academic Search

BackgroundThe involvement of natural antimicrobial peptides in infection-associated preterm birth is unknown. Our aim was to assess regulation by granulocyte-macrophage colony-stimulating factor, monocyte-chemotactic-protein-1 (GM-CSF and MCP-1, interleukin-1 (IL) and lipopolysaccharide (LPS) in cultured human vaginal epithelial cells.MethodsVK2\\/E6E7 cells were treated with IL-1, MCP-1 and GM-CSF (20\\/100\\/200\\/500 pg\\/ml and 1 ng\\/ml) at 2 h, 4 h, 6 h and 24 h

C Foster; E Chin-Smith; R Tribe

2011-01-01

4

Cytopathogenic effect of Trichomonas vaginalis on human vaginal epithelial cells cultured in vitro.  

PubMed

In this study we established human vaginal epithelial cells (hVECs) in culture and evaluated their interaction with Trichomonas vaginalis parasites to complement previous studies using other cell types. Primary cultures of hVECs were established. Contaminating fibroblasts were separated from epithelial cells by differential trypsinization. Specific antibody staining revealed that over 92% of cells in hVEC monolayers were epithelial cells. T. vaginalis adhered to hVECs and produced severe cytotoxic effects resulting in obliteration of the monolayer within 24 h. Adherence and cytotoxicity were not observed when T. vaginalis was exposed to human vaginal fibroblasts or bovine vaginal epithelial cells. Likewise, the bovine parasite Tritrichomonas foetus had no cytotoxic effects on hVECs. We concluded that the interaction between T. vaginalis and hVECs is both cell specific (limited to epithelial cells and not vaginal fibroblasts) and species specific (limited to human vaginal cells and not bovine cells). Pretreatment of T. vaginalis with metronidazole or periodate abolished the adhesion of parasites to cell monolayers and the cytotoxic effect, suggesting involvement of carbohydrate-containing molecules in these processes. Different clinical isolates of T. vaginalis caused damage to cultured cells at different rates. Parasites separated from the vaginal cell monolayer by a permeable membrane did not produce a cytopathic effect, suggesting contact-dependent cytotoxicity. PMID:10858237

Gilbert, R O; Elia, G; Beach, D H; Klaessig, S; Singh, B N

2000-07-01

5

Adhesion of Tritrichomonas foetus to bovine vaginal epithelial cells.  

PubMed

An in vitro culture system of bovine vaginal epithelial cells (BVECs) was developed to study the cytopathogenic effects of Tritrichomonas foetus and the role of lipophosphoglycan (LPG)-like cell surface glycoconjugates in adhesion of parasites to host cells. Exposure of BVEC monolayers to T. foetus resulted in extensive damage of monolayers. Host cell disruption was measured quantitatively by a trypan blue exclusion assay and by release of (3)H from [(3)H]thymidine-labeled host cells. Results indicated contact-dependent cytotoxicity of host cells by T. foetus. The cytopathogenic effect was a function of T. foetus density. Metronidazole- or periodate-treated T. foetus showed no damage to BVEC monolayers. A related human trichomonad, Trichomonas vaginalis, showed no cytotoxic effects, indicating species-specific host-parasite interactions. A direct binding assay was developed and used to investigate the role of a major cell surface LPG-like molecule in host-parasite adhesion. The results of competition experiments showed that the binding to BVECs was displaceable, was saturable, and yielded a typical binding curve, suggesting that specific receptor-ligand interactions mediate the attachment of T. foetus to BVECs. Progesterone-treated BVECs showed enhanced parasite binding. T. foetus LPG inhibited the binding of T. foetus to BVECs; the LPG from T. vaginalis and a variety of other glycoconjugates did not. These data imply specificity of LPG on host-parasite adhesion. Periodate-treated parasites showed no adherence to host cells, indicating the involvement of carbohydrate containing molecules in the adhesion process. PMID:10417148

Singh, B N; Lucas, J J; Beach, D H; Shin, S T; Gilbert, R O

1999-08-01

6

Commensal Bacteria Modulate Innate Immune Responses of Vaginal Epithelial Cell Multilayer Cultures  

PubMed Central

The human vaginal microbiome plays a critical but poorly defined role in reproductive health. Vaginal microbiome alterations are associated with increased susceptibility to sexually-transmitted infections (STI) possibly due to related changes in innate defense responses from epithelial cells. Study of the impact of commensal bacteria on the vaginal mucosal surface has been hindered by current vaginal epithelial cell (VEC) culture systems that lack an appropriate interface between the apical surface of stratified squamous epithelium and the air-filled vaginal lumen. Therefore we developed a reproducible multilayer VEC culture system with an apical (luminal) air-interface that supported colonization with selected commensal bacteria. Multilayer VEC developed tight-junctions and other hallmarks of the vaginal mucosa including predictable proinflammatory cytokine secretion following TLR stimulation. Colonization of multilayers by common vaginal commensals including Lactobacillus crispatus, L. jensenii, and L. rhamnosus led to intimate associations with the VEC exclusively on the apical surface. Vaginal commensals did not trigger cytokine secretion but Staphylococcus epidermidis, a skin commensal, was inflammatory. Lactobacilli reduced cytokine secretion in an isolate-specific fashion following TLR stimulation. This tempering of inflammation offers a potential explanation for increased susceptibility to STI in the absence of common commensals and has implications for testing of potential STI preventatives. PMID:22412914

Rose, William A.; McGowin, Chris L.; Spagnuolo, Rae Ann; Eaves-Pyles, Tonyia D.; Popov, Vsevolod L.; Pyles, Richard B.

2012-01-01

7

Oral and Vaginal Epithelial Cell Lines Bind and Transfer Cell-Free Infectious HIV-1 to Permissive Cells but Are Not Productively Infected  

PubMed Central

The majority of HIV-1 infections worldwide are acquired via mucosal surfaces. However, unlike the vaginal mucosa, the issue of whether the oral mucosa can act as a portal of entry for HIV-1 infection remains controversial. To address potential differences with regard to the fate of HIV-1 after exposure to oral and vaginal epithelium, we utilized two epithelial cell lines representative of buccal (TR146) and pharyngeal (FaDu) sites of the oral cavity and compared them with a cell line derived from vaginal epithelium (A431) in order to determine (i) HIV-1 receptor gene and protein expression, (ii) whether HIV-1 genome integration into epithelial cells occurs, (iii) whether productive viral infection ensues, and (iv) whether infectious virus can be transferred to permissive cells. Using flow cytometry to measure captured virus by HIV-1 gp120 protein detection and western blot to detect HIV-1 p24 gag protein, we demonstrate that buccal, pharyngeal and vaginal epithelial cells capture CXCR4- and CCR5-utilising virus, probably via non-canonical receptors. Both oral and vaginal epithelial cells are able to transfer infectious virus to permissive cells either directly through cell-cell attachment or via transcytosis of HIV-1 across epithelial cells. However, HIV-1 integration, as measured by real-time PCR and presence of early gene mRNA transcripts and de novo protein production were not detected in either epithelial cell type. Importantly, both oral and vaginal epithelial cells were able to support integration and productive infection if HIV-1 entered via the endocytic pathway driven by VSV-G. Our data demonstrate that under normal conditions productive HIV-1 infection of epithelial cells leading to progeny virion production is unlikely, but that epithelial cells can act as mediators of systemic viral dissemination through attachment and transfer of HIV-1 to permissive cells. PMID:24857971

Moyes, David L.; Murciano, Celia; Shen, Chengguo; Challacombe, Stephen J.; Naglik, Julian R.

2014-01-01

8

Candida albicans Adhesion to and Invasion and Damage of Vaginal Epithelial Cells: Stage-Specific Inhibition by Clotrimazole and Bifonazole?  

PubMed Central

Clotrimazole and bifonazole are highly effective antifungal agents against mucosal Candida albicans infections. Here we examined the effects of low levels of clotrimazole and bifonazole on the ability of C. albicans to adhere, invade, and damage vaginal epithelial cells. Although adhesion and invasion were not affected, damage was greatly reduced upon azole treatment. This clearly indicates that low levels of azoles influence specific activities of C. albicans during distinct stages of vaginal epithelium infections. PMID:21746947

Wächtler, Betty; Wilson, Duncan; Hube, Bernhard

2011-01-01

9

Cytokine and Chemokine Production by Human Oral and Vaginal Epithelial Cells in Response to Candida albicans  

Microsoft Academic Search

Oropharyngeal and vaginal candidiases are the most common forms of mucosal fungal infections and are primarily caused by Candida albicans, a dimorphic fungal commensal organism of the gastrointestinal and lower female reproductive tracts. Clinical and experimental observations suggest that local immunity is important in host defense against candidiasis. Accordingly, cytokines and chemokines are present at the oral and vaginal mucosa

Chad Steele

2002-01-01

10

Vaginitis.  

PubMed

Bacterial vaginosis, trichomoniasis, and vulvovaginal candidiasis are the most common infectious causes of vaginitis. Bacterial vaginosis occurs when the normal lactobacilli of the vagina are replaced by mostly anaerobic bacteria. Diagnosis is commonly made using the Amsel criteria, which include vaginal pH greater than 4.5, positive whiff test, milky discharge, and the presence of clue cells on microscopic examination of vaginal fluid. Oral and topical clindamycin and metronidazole are equally effective at eradicating bacterial vaginosis. Symptoms and signs of trichomoniasis are not specific; diagnosis by microscopy is more reliable. Features of trichomoniasis are trichomonads seen microscopically in saline, more leukocytes than epithelial cells, positive whiff test, and vaginal pH greater than 5.4. Any nitroimidazole drug (e.g., metronidazole) given orally as a single dose or over a longer period resolves 90 percent of trichomoniasis cases. Sex partners should be treated simultaneously. Most patients with vulvovaginal candidiasis are diagnosed by the presence of vulvar inflammation plus vaginal discharge or with microscopic examination of vaginal secretions in 10 percent potassium hydroxide solution. Vaginal pH is usually normal (4.0 to 4.5). Vulvovaginal candidiasis should be treated with one of many topical or oral antifungals, which appear to be equally effective. Rapid point-of-care tests are available to aid in accurate diagnosis of infectious vaginitis. Atrophic vaginitis, a form of vaginitis caused by estrogen deficiency, produces symptoms of vaginal dryness, itching, irritation, discharge, and dyspareunia. Both systemic and topical estrogen treatments are effective. Allergic and irritant contact forms of vaginitis can also occur. PMID:21524046

Hainer, Barry L; Gibson, Maria V

2011-04-01

11

Reference Gene Selection for qPCR Is Dependent on Cell Type Rather than Treatment in Colonic and Vaginal Human Epithelial Cell Lines  

PubMed Central

The ability of commensal bacteria to influence gene expression in host cells under the influence of pathogenic bacteria has previously been demonstrated, however the extent of this interaction is important for understanding how bacteria can be used as probiotics. Real-time quantitative polymerase chain reaction is the most sensitive tool for evaluating relative changes to gene expression levels. However as a result of its sensitivity an appropriate method of normalisation should be used to account for any variation incurred in preparatory experimental procedures. These variations may result from differences in the amount of starting material, quality of extracted RNA, or in the efficiency of the reverse transcriptase or polymerase enzymes. Selection of an endogenous control gene is the preferred method of normalisation, and ideally a proper validation of the gene's appropriateness for the study in question should be performed. In this study we used quantitative polymerase chain reaction data and applied four different algorithms (geNorm, BestKeeper, NormFinder, and comparative ?Cq) to evaluate eleven different genes as to their suitability as endogenous controls for use in studies involving colonic (HT-29) and vaginal (VK2/E6E7) human mucosal epithelial cells treated with probiotic and pathogenic bacteria. We found phosphoglycerate kinase 1 to be most appropriate for HT-29 cells, and ribosomal protein large P0 to be the best choice for VK2/E6E7 cells. We also showed that use of less stable reference genes can lead to less accurate quantification of expression levels of gene of interest (GOI) and also can result in decreased statistical significance for GOI expression levels when compared to control. Additionally, we found the cell type being analysed had greater influence on reference gene selection than the treatment performed. This study provides recommendations for stable endogenous control genes for use in further studies involving colonic and vaginal cell lines after bacterial challenge. PMID:25526394

Jacobsen, Annette V.; Yemaneab, Bisrat T.; Jass, Jana; Scherbak, Nikolai

2014-01-01

12

Characterization of Human Vaginal Mucosa Cells for Autologous In Vitro Cultured Vaginal Tissue Transplantation in Patients with MRKH Syndrome  

PubMed Central

Mayer-Rokitansky-Küster-Hauser (MRKH) is a rare syndrome characterized by congenital aplasia of the uterus and vagina. The most common procedure used for surgical reconstruction of the neovagina is the McIndoe vaginoplasty, which consists in creation of a vaginal canal covered with a full-thickness skin graft. Here we characterized the autologous in vitro cultured vaginal tissue proposed as alternative material in our developed modified McIndoe vaginoplasty in order to underlie its importance in autologous total vaginal replacement. To this aim human vaginal mucosa cells (HVMs) were isolated from vaginal mucosa of patients affected by MRKH syndrome and characterized with respect to growth kinetics, morphology, PAS staining, and expression of specific epithelial markers by immunofluorescence, Western blot, and qRT-PCR analyses. The presence of specific epithelial markers along with the morphology and the presence of mucified cells demonstrated the epithelial nature of HMVs, important for an efficient epithelialization of the neovagina walls and for creating a functional vaginal cavity. Moreover, these cells presented characteristics of effective proliferation as demonstrated by growth kinetics assay. Therefore, the autologous in vitro cultured vaginal tissue might represent a highly promising and valid material for McIndoe vaginoplasty. PMID:25162002

Nodale, Cristina; D'Amici, Sirio; Maffucci, Diana; Ceccarelli, Simona; Monti, Marco; Benedetti Panici, Pierluigi; Romano, Ferdinando; Angeloni, Antonio; Marchese, Cinzia

2014-01-01

13

Characterization of human vaginal mucosa cells for autologous in vitro cultured vaginal tissue transplantation in patients with MRKH syndrome.  

PubMed

Mayer-Rokitansky-Küster-Hauser (MRKH) is a rare syndrome characterized by congenital aplasia of the uterus and vagina. The most common procedure used for surgical reconstruction of the neovagina is the McIndoe vaginoplasty, which consists in creation of a vaginal canal covered with a full-thickness skin graft. Here we characterized the autologous in vitro cultured vaginal tissue proposed as alternative material in our developed modified McIndoe vaginoplasty in order to underlie its importance in autologous total vaginal replacement. To this aim human vaginal mucosa cells (HVMs) were isolated from vaginal mucosa of patients affected by MRKH syndrome and characterized with respect to growth kinetics, morphology, PAS staining, and expression of specific epithelial markers by immunofluorescence, Western blot, and qRT-PCR analyses. The presence of specific epithelial markers along with the morphology and the presence of mucified cells demonstrated the epithelial nature of HMVs, important for an efficient epithelialization of the neovagina walls and for creating a functional vaginal cavity. Moreover, these cells presented characteristics of effective proliferation as demonstrated by growth kinetics assay. Therefore, the autologous in vitro cultured vaginal tissue might represent a highly promising and valid material for McIndoe vaginoplasty. PMID:25162002

Nodale, Cristina; Vescarelli, Enrica; D'Amici, Sirio; Maffucci, Diana; Ceccarelli, Simona; Monti, Marco; Benedetti Panici, Pierluigi; Romano, Ferdinando; Angeloni, Antonio; Marchese, Cinzia

2014-01-01

14

Epithelial Cells Stem Cells  

E-print Network

Keywords Epithelial Cells Keratins Stem Cells » Prof. Thomas M. Magin Epithelia protect the body, altered cell adhesion and signal- ling. As no molecular therapy for these conditions is available, one that the co-chaperone CHIP can remove mutant aggregated keratins in a cell culture model of EBS, leading

Schüler, Axel

15

Cultivated Vaginal Microbiomes Alter HIV-1 Infection and Antiretroviral Efficacy in Colonized Epithelial Multilayer Cultures  

PubMed Central

There is a pressing need for modeling of the symbiotic and at times dysbiotic relationship established between bacterial microbiomes and human mucosal surfaces. In particular clinical studies have indicated that the complex vaginal microbiome (VMB) contributes to the protection against sexually-transmitted pathogens including the life-threatening human immunodeficiency virus (HIV-1). The human microbiome project has substantially increased our understanding of the complex bacterial communities in the vagina however, as is the case for most microbiomes, very few of the community member species have been successfully cultivated in the laboratory limiting the types of studies that can be completed. A genetically controlled ex vivo model system is critically needed to study the complex interactions and associated molecular dialog. We present the first vaginal mucosal culture model that supports colonization by both healthy and dysbiotic VMB from vaginal swabs collected from routine gynecological patients. The immortalized vaginal epithelial cells used in the model and VMB cryopreservation methods provide the opportunity to reproducibly create replicates for lab-based evaluations of this important mucosal/bacterial community interface. The culture system also contains HIV-1 susceptible cells allowing us to study the impact of representative microbiomes on replication. Our results show that our culture system supports stable and reproducible colonization by VMB representing distinct community state types and that the selected representatives have significantly different effects on the replication of HIV-1. Further, we show the utility of the system to predict unwanted alterations in efficacy or bacterial community profiles following topical application of a front line antiretroviral. PMID:24676219

Pyles, Richard B.; Vincent, Kathleen L.; Baum, Marc M.; Elsom, Barry; Miller, Aaron L.; Maxwell, Carrie; Eaves-Pyles, Tonyia D.; Li, Guangyu; Popov, Vsevolod L.; Nusbaum, Rebecca J.; Ferguson, Monique R.

2014-01-01

16

Monitoring Vaginal Epithelial Thickness Changes Noninvasively in Sheep Using Optical Coherence Tomography  

PubMed Central

Objective High-resolution optical coherence tomography (OCT), can be used noninvasively to evaluate vaginal morphologic features, including epithelial thickness, to assess this protective barrier in transmission of sexually transmitted infections and to monitor tissue response to topical medications and hormonal fluctuations. We examined the utility of OCT to measure epithelial thickness noninvasively before and after topical treatment with a drug that causes epithelial thinning. Study Design Twelve female sheep were treated with intravaginal placebo (n=4) or nonoxynol-9 (n=8). Vaginal OCT images were obtained before and 24 hours after treatment. Four sheep in the nonoxynol-9 group were also examined on days 3 and 7. Vaginal biopsies were obtained on the last exam day. Epithelial thickness was measured in OCT images and in H&E-stained histological sections from biopsies. Statistical analysis was performed using ANOVA (significance p<0.05). Results Baseline OCT epithelial thickness measurements were similar (85±19 ?m placebo, 78±20 ?m nonoxynol-9; p=0.52). Epithelial thinning was significant after nonoxynol-9 (32±22 ?m) compared to placebo (80±15 ?m) 24 hours after treatment (p<0.0001). In the four nonoxynol-9-treated sheep followed for 7 days, epithelial thickness returned to baseline by day 3, and increased significantly on day 7. Epithelial thickness measurements from histology were not significantly different than OCT (p=0.98 N-9, p=0.93 HEC). Conclusion Drug-induced changes in the epithelium were clearly detectable using OCT imaging. OCT and histology epithelial thickness measurements were similar, validating OCT as a noninvasive method for epithelial thickness measurement, providing an important tool for quantitative and longitudinal monitoring of vaginal epithelial changes. PMID:23333551

VINCENT, Kathleen L.; VARGAS, Gracie; WEI, Jingna; BOURNE, Nigel; MOTAMEDI, Massoud

2013-01-01

17

Automated segmentation algorithm for detection of changes in vaginal epithelial morphology using optical coherence tomography  

PubMed Central

Abstract. We have explored the use of optical coherence tomography (OCT) as a noninvasive tool for assessing the toxicity of topical microbicides, products used to prevent HIV, by monitoring the integrity of the vaginal epithelium. A novel feature-based segmentation algorithm using a nearest-neighbor classifier was developed to monitor changes in the morphology of vaginal epithelium. The two-step automated algorithm yielded OCT images with a clearly defined epithelial layer, enabling differentiation of normal and damaged tissue. The algorithm was robust in that it was able to discriminate the epithelial layer from underlying stroma as well as residual microbicide product on the surface. This segmentation technique for OCT images has the potential to be readily adaptable to the clinical setting for noninvasively defining the boundaries of the epithelium, enabling quantifiable assessment of microbicide-induced damage in vaginal tissue. PMID:23117799

Vincent, Kathleen L.; Vargas, Gracie; Motamedi, Massoud

2012-01-01

18

Automated segmentation algorithm for detection of changes in vaginal epithelial morphology using optical coherence tomography  

NASA Astrophysics Data System (ADS)

We have explored the use of optical coherence tomography (OCT) as a noninvasive tool for assessing the toxicity of topical microbicides, products used to prevent HIV, by monitoring the integrity of the vaginal epithelium. A novel feature-based segmentation algorithm using a nearest-neighbor classifier was developed to monitor changes in the morphology of vaginal epithelium. The two-step automated algorithm yielded OCT images with a clearly defined epithelial layer, enabling differentiation of normal and damaged tissue. The algorithm was robust in that it was able to discriminate the epithelial layer from underlying stroma as well as residual microbicide product on the surface. This segmentation technique for OCT images has the potential to be readily adaptable to the clinical setting for noninvasively defining the boundaries of the epithelium, enabling quantifiable assessment of microbicide-induced damage in vaginal tissue.

Chitchian, Shahab; Vincent, Kathleen L.; Vargas, Gracie; Motamedi, Massoud

2012-11-01

19

Human vaginal epithelium and the epithelial lining of a cyst model constructed from it: a comparative light microscopic and electron microscopic study.  

PubMed

The light microscopic features and keratin filament distribution of human vaginal epithelium resemble those of buccal mucosa. We used vaginal epithelium to establish a human cyst model in immunodeficient mice. To strengthen the view that this experimental cyst is a suitable model to study mucosal diseases, we compared specific light microscopic and ultra-structural features of vaginal epithelium and the epithelial lining of the cyst. Nineteen cyst walls and 6 specimens of vaginal mucosa, which had been used to establish the cysts, were examined. We counted the number of cell layers of 17 cyst linings and the 6 vaginal specimens. Surface keratinisation was evaluated on sections stained with the Picro-Mallory method. To demonstrate intercellular lamellae and membrane coating granules 2 cyst linings were examined ultra-structurally. The epithelium lining of the cyst wall was thinner than that of vaginal mucosa but the surface keratinisation and ultra-structural features of the intercellular lamellae and membrane coating granules were similar. We concluded that vaginal mucosa is a useful substitute for oral mucosa in the cyst model. PMID:11885428

Thompson, I O; van Wyk, C W; Darling, M R

2001-11-01

20

Variations in epithelial Na+ transport and epithelial sodium channel localisation in the vaginal cul-de-sac of the brushtail possum, Trichosurus vulpecula, during the oestrous cycle.  

PubMed

The fluid in the vaginal cul-de-sac of the brushtail possum, Trichosurus vulpecula, is copious at ovulation when it may be involved in sperm transport or maturation, but is rapidly reabsorbed following ovulation. We have used the Ussing short-circuit current (Isc) technique and measurements of transcript and protein expression of the epithelial Na+ channel (ENaC) to determine if variations in electrogenic Na+ transport are associated with this fluid absorption. Spontaneous Isc (-2 during anoestrus, 60-80µAcm-2 in cycling animals) was inhibited by serosal ouabain. Mucosal amiloride (10µmolL-1), an inhibitor of ENaC, had little effect on follicular Isc but reduced luteal Isc by ~35%. This amiloride-sensitive Isc was dependent on mucosal Na+ and the half-maximal inhibitory concentration (IC50)-amiloride (0.95?molL-1) was consistent with ENaC-mediated Na+ absorption. Results from polymerase chain reaction with reverse transcription (RT-PCR) indicate that ?ENaC mRNA is expressed in anoestrous, follicular and luteal phases. However, in follicular animals ?ENaC immunoreactivity in epithelial cells was distributed throughout the cytoplasm, whereas immunoreactivity was restricted to the apical pole of cells from luteal animals. These data suggest that increased Na+ absorption contributes to fluid absorption during the luteal phase and is regulated by insertion of ENaC into the apical membrane of cul-de-sac epithelial cells. PMID:25056576

Alsop, T-A; McLeod, B J; Butt, A G

2014-07-24

21

Morphogenesis of the Polarized Epithelial Cell Phenotype  

Microsoft Academic Search

Polarized epithelial cells play fundamental roles in the ontogeny and function of a variety of tissues and organs in mammals. The morphogenesis of a sheet of polarized epithelial cells (the trophectoderm) is the first over sign of cellular differentiation in early embryonic development. In the adult, polarized epithelial cells line all body cavities and occur in tissues that carry out

Enrique Rodriguez-Boulan; W. James Nelson

1989-01-01

22

Decreased cervical epithelial sensitivity to nonoxynol-9 (N-9) after four daily applications in a murine model of topical vaginal microbicide safety  

PubMed Central

Background The disappointing clinical failures of five topical vaginal microbicides have provided new insights into factors that impact microbicide safety and efficacy. Specifically, the greater risk for human immunodeficiency virus type 1 (HIV-1) acquisition associated with multiple uses of a nonoxynol-9 (N-9)-containing product has highlighted the importance of application frequency as a variable during pre-clinical microbicide development, particularly in animal model studies. Methods To evaluate an association between application frequency and N-9 toxicity, experiments were performed using a mouse model of cervicovaginal microbicide safety. In this model system, changes in cervical and vaginal epithelial integrity, cytokine release, and immune cell infiltration were assessed after single and multiple exposures to N-9. Results After the initial application of N-9 (aqueous, 1%), considerable damage to the cervical epithelium (but not the vaginal epithelium) was observed as early as 10 min post-exposure and up to 8 h post-exposure. Subsequent daily exposures (up to 4 days) were characterized by diminished cervical toxicity relative to single exposures of like duration. Levels of pro-inflammatory cytokines released into the cervicovaginal lumen and the degree of CD14-positive immune cell infiltration proximal to the cervical epithelium were also dependent on the number of N-9 exposures. Conclusions Rather than causing cumulative cervical epithelial damage, repeated applications of N-9 were characterized by decreased sensitivity to N-9-associated toxicity and lower levels of immune cell recruitment. These results provide new insights into the failure of N-9-based microbicides and illustrate the importance of considering multiple exposure protocols in pre-clinical microbicide development strategies. PMID:23025553

2012-01-01

23

Kidney epithelial cells.  

PubMed

Kidney tubules are an essential component of an organism's blood clearance mechanism, recovering essential metabolites from glomerular filtration by active transport. Tubules are subject to injury, usually as the result of ischemia-reperfusion events that damage the polarized tubular cell layer that coats the tubule basement membrane, causing dysfunction and necrosis that is often associated with acute renal failure. However, tubules are capable of self-repair, forming new proximal tubular cells to replace failing or necrotic cells. The origin of the progenitor cells that give rise to new tubular cells is unknown. At one extreme, it is possible that all or a fraction of tubular cells can undergo a form of dedifferentiation and subsequent mitosis to form new tubular cells, or alternatively, it is possible that tubular regeneration follows the stem cell/transit-amplifying cell paradigm described for more rapidly regenerating organ systems. Regardless of the mechanism employed to generate new tubular cells, human tubular cells are readily grown in primary cultures and can recapitulate many of the metabolic, endocrine, and immunological properties attributable to endogenous renal proximal tubules when engrafted into bioartificial devices. PMID:17141057

Smith, Peter L; Buffington, Deborah A; Humes, H David

2006-01-01

24

Progress Towards Drosophila Epithelial Cell Culture  

PubMed Central

Drosophila epithelial research is at the forefront of the field; however, there are no well-characterized epithelial cell lines that could provide a complementary in vitro model for studies conducted in vivo. Here, a protocol is described that produces epithelial cell lines. The method uses genetic manipulation of oncogenes or tumor suppressors to induce embryonic primary culture cells to rapidly progress to permanent cell lines. It is, however, a general method and the type of cells that comprise a given line is not controlled experimentally. Indeed, only a small fraction of the lines produced are epithelial in character. For this reason, additional work needs to be done to develop a more robust epithelial cell-specific protocol. It is expected that Drosophila epithelial cell lines will have great utility for in vitro analysis of epithelial biology, particularly high-throughput analyses such as RNAi screens. PMID:23097097

Simcox, Amanda

2015-01-01

25

Bactericidal activity of culture fluid components of Lactobacillus fermentum strain 90 TS-4 (21) clone 3, and their capacity to modulate adhesion of Candida albicans yeast-like fungi to vaginal epithelial cells.  

PubMed

Antagonistic activities of L. fermentum strain 90 TS-4 (21), L. casei ATCC 27216, and L. acidophilus ATCC 4356 and bactericidal activity of lactobacillus culture fluid towards E. coli strain K12, S. aureus, and S. epidermidis test cultures were studied. The bactericidal effect of L. fermentum strain 90 TS-4 (21) clone 3 culture fluid preparation (pH 6.0) on the test cultures was dose-dependent. Adhesion of C. albicans yeast-like fungi to vaginal epitheliocytes was more pronounced for strains isolated from women with asymptomatic infection than for strains isolated from women with manifest forms. L. fermentum strain 90 TS-4 (21) clone 3 culture fluid preparation modulated adhesion of yeast-like fungi only if the fungal strain was initially highly adherent. PMID:18225764

Anokhina, I V; Kravtsov, E G; Protsenko, A V; Yashina, N V; Yermolaev, A V; Chesnokova, V L; Dalin, M V

2007-03-01

26

Sensory Epithelial Cells Acquire Features of Prosensory Cells Via Epithelial to Mesenchymal Transition  

PubMed Central

Epithelial to mesenchymal transition (EMT) plays a critical role during normal development and in adult tissue repair. It is known that immortalized epithelial cells can undergo an EMT and become cancer stem cells, and that epithelial cells from mouse pancreatic islet and avian inner ear can acquire mesenchymal traits in vitro via EMT. However, it is unclear whether epithelial cells from mammalian sensory system can undergo an EMT and obtain features of stem/progenitor cells. In this study, we used mouse utricle sensory epithelial cells (MUCs) as a mammalian cell model to address this issue. When cultured on 2-dimensional substrates, dissociated MUCs gradually lost their columnar shape and started to expand on the substrate with downregulation of expression of epithelial junction markers and upregulation of genes and proteins that are widely shown in mesenchymal cells. Moreover, MUCs expressed genes and proteins that are usually presented in prosensory epithelial cells and stem cells. These MUCs showed potential to differentiate into epithelial cells via a reverse EMT when they were forced to suspend in culture medium. Our findings reveal that sensory epithelial cells from mammalian tissue can undergo an EMT to become cells expressing features of stem cells that can be induced to become epithelial cells via a reverse EMT. The outcomes of this study may provide a novel approach to generate epithelial progenitors for use in cell replacement therapy to treat a number of human diseases, such as hearing loss and vision loss. PMID:22014028

Zhang, Lei

2012-01-01

27

Epithelial Stem Cells and Tissue Engineered Intestine  

Microsoft Academic Search

The intestinal mucosa has an amazing regenerative capacity, enabling rapid restoration of its physiological functions following injury. The ability to do this resides with the epithelial stem cells located within glandular invaginations in the mucosal surface. Recent advances toward the isolation and characterization of epithelial stem cells has paved the way for exploring novel therapeutic approaches for gastrointestinal disease. Possible

Richard M. Day

2006-01-01

28

Epithelial TRPV1 signaling accelerates gingival epithelial cell proliferation.  

PubMed

Transient receptor potential cation channel subfamily V member 1 (TRPV1), a member of the calcium-permeable thermosensitive transient receptor potential superfamily, is a sensor of thermal and chemical stimuli. TRPV1 is activated by noxious heat (> 43°C), acidic conditions (pH < 6.6), capsaicin, and endovanilloids. This pain receptor was discovered on nociceptive fibers in the peripheral nervous system. TRPV1 was recently found to be expressed by non-neuronal cells, such as epithelial cells. The oral gingival epithelium is exposed to multiple noxious stimuli, including heat and acids derived from endogenous and exogenous substances; however, whether gingival epithelial cells (GECs) express TRPV1 is unknown. We show that both TRPV1 mRNA and protein are expressed by GECs. Capsaicin, a TRPV1 agonist, elevated intracellular Ca(2+) levels in the gingival epithelial cell line, epi 4. Moreover, TRPV1 activation in epi 4 cells accelerated proliferation. These responses to capsaicin were inhibited by a specific TRPV1 antagonist, SB-366791. We also observed GEC proliferation in capsaicin-treated mice in vivo. No effects were observed on GEC apoptosis by epithelial TRPV1 signaling. To examine the molecular mechanisms underlying this proliferative effect, we performed complementary (c)DNA microarray analysis of capsaicin-stimulated epi 4 cells. Compared with control conditions, 227 genes were up-regulated and 232 genes were down-regulated following capsaicin stimulation. Several proliferation-related genes were validated by independent experiments. Among them, fibroblast growth factor-17 and neuregulin 2 were significantly up-regulated in capsaicin-treated epi 4 cells. Our results suggest that functional TRPV1 is expressed by GECs and contributes to the regulation of cell proliferation. PMID:25266715

Takahashi, N; Matsuda, Y; Yamada, H; Tabeta, K; Nakajima, T; Murakami, S; Yamazaki, K

2014-11-01

29

DNA repair in human bronchial epithelial cells  

SciTech Connect

The purpose of this investigation was to compare the response of human cell types (bronchial epithelial cells and fibroblasts and skin fibroblasts) to various DNA damaging agents. Repair of DNA single strand breaks (SSB) induced by 5 krads of X-ray was similar for all cell types; approximately 90% of the DNA SSB were rejoined within one hour. During excision repair of DNA damage from u.v.-radiation, the frequencies of DNA SSB as estimated by the alkaline elution technique, were similar in all cell types. Repair replication as measured by BND cellulose chromatography was also similar in epithelial and fibroblastic cells after u.v.-irradiation. Similar levels of SSB were also observed in epithelial and fibroblastic cells after exposure to chemical carcinogens: 7,12-dimethylbenz(a)anthracene; benzo(a)pyrene diol epoxide (BPDE); or N-methyl-N-nitro-N-nitrosoguanidine. Significant repair replication of BPDE-induced DNA damage was detected in both bronchial epithelial and fibroblastic cells, although the level in fibroblasts was approximately 40% of that in epithelial cells. The pulmonary carcinogen asbestos did not damage DNA. DNA-protein crosslinks induced by formaldehyde were rapidly removed in bronchial cells. Further, epithelial and fibroblastic cells, which were incubated with formaldehyde and the polymerase inhibitor combination of cytosine arabinoside and hydroxyurea, accumulated DNA SSB at approximately equal frequencies. These results should provide a useful background for further investigations of the response of human bronchial cells to various DNA damaging agents.

Fornace, A.J. Jr.; Lechner, J.F.; Grafstrom, R.C.; Harris, C.C.

1982-01-01

30

Epithelial cell polarity and cell junctions in drosophila  

E-print Network

The polarized architecture of epithelial cells and tissues is a fundamental determinant of animal anatomy and physiology. Recent progress made in the genetic and molecular analysis of epithelial polarity and cellular junctions in Drosophila has led...

Tepass, Ulrich; Tanentzapf­ , Guy; Ward, Robert; Fehon, Richard

2001-12-01

31

Regulation of intestinal epithelial cells transcriptome by enteric glial cells: impact on intestinal epithelial barrier functions  

Microsoft Academic Search

BACKGROUND: Emerging evidences suggest that enteric glial cells (EGC), a major constituent of the enteric nervous system (ENS), are key regulators of intestinal epithelial barrier (IEB) functions. Indeed EGC inhibit intestinal epithelial cells (IEC) proliferation and increase IEB paracellular permeability. However, the role of EGC on other important barrier functions and the signalling pathways involved in their effects are currently

Laurianne Van Landeghem; Maxime M Mahé; Raluca Teusan; Jean Léger; Isabelle Guisle; Rémi Houlgatte; Michel Neunlist

2009-01-01

32

Vaginal Cancer  

MedlinePLUS

Vaginal cancer is a rare type of cancer. It is more common in women 60 and older. You are also more likely to get it if you have had a human ... test can find abnormal cells that may be cancer. Vaginal cancer can often be cured in its ...

33

Isolation and Culture of Epithelial Stem Cells  

PubMed Central

In the skin, epithelial stem cells in the hair follicle contribute not only to the generation of a new hair follicle with each hair cycle, but also to the repair of the epidermis during wound healing. When these stem cells are isolated and expanded in culture, they can give rise to hair follicles, sebaceous glands, and epidermis when combined with dermis and grafted back onto Nude mice. In this chapter, we provide a method for isolating hair follicle epithelial stem cells from the skin of adult mice using immunofluorescent labeling to allow for the specific purification of epithelial stem cells by fluorescence-activated cell sorting (FACS). Notably, this method relies exclusively on cell surface markers, making it suitable for use with any strain of mouse and at various stages of the hair cycle. We also provide a detailed protocol for culturing epithelial stem cells isolated by FACS, allowing for analysis using a wide variety of culture assays. Additionally, we provide notes on using cultured cells for specific applications, such as viral manipulation and grafting. These techniques should be useful for directly evaluating stem cell function in normal mice and in mice with skin defects. PMID:19089359

Nowak, Jonathan A.; Fuchs, Elaine

2009-01-01

34

Induction of bone by epithelial cell products  

Microsoft Academic Search

SUMMARY The bones of the head and face of vertebrate embryos only form after their progenitor cells have undergone an inductive interaction with embryonic epithelia. We have investigated whether epithelial cell products can substitute for epithelia in allowing mandibular ecto- mesenchyme to form bone. Mandibular epithelia from embryonic chicks were cultured on Millipore filters for 28 days to allow them

BRTAN K. HALL; R. J. VAN EXAN

35

Characterization of protocadherin-1 expression in primary bronchial epithelial cells: association with epithelial cell differentiation.  

PubMed

Protocadherin-1 (PCDH1) is a novel susceptibility gene for asthma that is expressed in airway epithelium. We aimed to characterize PCDH1 mRNA transcripts and protein expression in primary bronchial epithelial cells and to determine regulation of PCDH1 during mucociliary differentiation. Total RNA and protein were isolated from human primary bronchial epithelial cells. PCDH1 transcripts were characterized by rapid amplification of cDNA ends in bronchial epithelial cells of 4 subjects. PCDH1 expression was quantified by quantitative RT-PCR and Western blotting in bronchial epithelial cells directly ex vivo and after air liquid interface (ALI) or submerged culture. We identified 5 novel exons on the 5' end and 1 exon on the 3' end of PCDH1. Novel transcripts showed major variation in expression of intracellular conserved motifs. Expression levels of PCDH1 transcripts encoding exon 1-2 were 4-fold higher, and transcripts encoding exon 3-4 were 15-fold higher in freshly isolated bronchial epithelial cells than in submerged cultures. PCDH1 mRNA (3- to 8-fold) and protein levels (2- to 3-fold) were strongly up-regulated during mucociliary differentiation of primary bronchial epithelial cells in ALI cultures. In summary, PCDH1 transcripts display remarkable variability in expression of conserved intracellular signaling domains. Enhanced PCDH1 expression levels strongly correlate with differentiation of bronchial epithelial cells. PMID:21982948

Koning, Henk; Sayers, Ian; Stewart, Ceri E; de Jong, Debora; Ten Hacken, Nick H T; Postma, Dirkje S; van Oosterhout, Antoon J M; Nawijn, Martijn C; Koppelman, Gerard H

2012-01-01

36

Bioactive glass modulation of intestinal epithelial cell restitution  

Microsoft Academic Search

Repair of superficial injury to the gastrointestinal mucosa involves the process of restitution, the rapid migration of epithelial cells across damaged areas. The effect of 45S5 bioactive glass on epithelial restitution was assessed using a novel co-culture model incorporating wounded intestinal epithelial cell monolayers and sub-epithelial myofibroblasts to simulate in vivo conditions that occur during superficial mucosal ulceration. Epithelial wound

Syed Raza Moosvi; Richard M. Day

2009-01-01

37

Respiratory epithelial cells orchestrate pulmonary innate immunity  

PubMed Central

The epithelial surfaces of the lungs are in direct contact with the environment and are subjected to dynamic physical forces as airway tubes and alveoli are stretched and compressed during ventilation. Mucociliary clearance in conducting airways, reduction of surface tension in the alveoli, and maintenance of near sterility have been accommodated by the evolution of a multi-tiered innate host-defense system. The biophysical nature of pulmonary host defenses are integrated with the ability of respiratory epithelial cells to respond to and ‘instruct’ the professional immune system to protect the lungs from infection and injury. PMID:25521682

Whitsett, Jeffrey A; Alenghat, Theresa

2015-01-01

38

Systemic and mucosal infection program protective memory CD8 T cells in the vaginal mucosa.  

PubMed

Whether mucosal immunization is required for optimal protective CD8 T cell memory at mucosal surfaces is controversial. In this study, using an adoptive transfer system, we compare the efficacy of two routes of acute lymphocytic choriomeningitis viral infection on the generation, maintenance, and localization of Ag-specific CD8 T cells in tissues, including the vaginal mucosa. Surprisingly, at day 8, i.p. infection results in higher numbers of Ag-specific CD8 T cells in the vaginal mucosa and iliac lymph node, as well as 2-3x more Ag-specific CD8 T cells that coexpress both IFN-gamma and TNF-alpha in comparison to the intranasal route of infection. Expression of the integrin/activation marker CD103 (alphaEbeta7) is low on vaginal mucosal Ag-specific CD8 T cells in comparison to gut mucosal intraepithelial lymphocytes. At memory, no differences are evident in the number, cytokine production, or protective function of Ag-specific CD8 T cells in the vaginal mucosa comparing the two routes of infection. However, differences persist in the cytokine profile of genital tract vs peripheral Ag-specific CD8 T cells. So although the initial route of infection, as well as tissue microenvironment, appear to influence both the magnitude and quality of the effector CD8 T cell response, both systemic and mucosal infection are equally effective in the differentiation of protective memory CD8 T cell responses against vaginal pathogenic challenge. PMID:18056354

Suvas, Pratima Krishna; Dech, Heather M; Sambira, Fleurette; Zeng, Junwei; Onami, Thandi M

2007-12-15

39

Systemic and Mucosal Infection Program Protective Memory CD8 T Cells in the Vaginal Mucosa1  

PubMed Central

Whether mucosal immunization is required for optimal protective CD8 T cell memory at mucosal surfaces is controversial. In this study, using an adoptive transfer system, we compare the efficacy of two routes of acute lymphocytic choriomeningitis viral infection on the generation, maintenance, and localization of Ag-specific CD8 T cells in tissues, including the vaginal mucosa. Surprisingly, at day 8, i.p. infection results in higher numbers of Ag-specific CD8 T cells in the vaginal mucosa and iliac lymph node, as well as 2–3× more Ag-specific CD8 T cells that coexpress both IFN-? and TNF-? in comparison to the intranasal route of infection. Expression of the integrin/activation marker CD103 (?E?7) is low on vaginal mucosal Ag-specific CD8 T cells in comparison to gut mucosal intraepithelial lymphocytes. At memory, no differences are evident in the number, cytokine production, or protective function of Ag-specific CD8 T cells in the vaginal mucosa comparing the two routes of infection. However, differences persist in the cytokine profile of genital tract vs peripheral Ag-specific CD8 T cells. So although the initial route of infection, as well as tissue microenvironment, appear to influence both the magnitude and quality of the effector CD8 T cell response, both systemic and mucosal infection are equally effective in the differentiation of protective memory CD8 T cell responses against vaginal pathogenic challenge. PMID:18056354

Suvas, Pratima Krishna; Dech, Heather M.; Sambira, Fleurette; Zeng, Junwei; Onami, Thandi M.

2009-01-01

40

The Human Airway Epithelial Basal Cell Transcriptome  

PubMed Central

Background The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. Methodology/Principal Findings Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the “human airway basal cell signature” as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. Conclusion/Significance The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem/progenitor cells of the human airway epithelium. PMID:21572528

Wang, Rui; Zwick, Rachel K.; Ferris, Barbara; Witover, Bradley; Salit, Jacqueline; Crystal, Ronald G.

2011-01-01

41

Mesenchymal cells are required for functional development of thymic epithelial cells  

Microsoft Academic Search

Epithelial-mesenchymal interactions have essential roles in thymus organogenesis. Mesenchymal cells are known to be required for epithelial cell proliferation. However, the contribution of mesenchymal cells to thymic epithelial cell differentiation is still unclear. In the present study, we have investigated the roles of mesenchymal cells in functional development of epithelial cells in the thymus anlage in patch (ph) mutant mice,

Manami Itoi; Noriyuki Tsukamoto; Hisahiro Yoshida; Takashi Amagai

2007-01-01

42

Cell mechanics of alveolar epithelial cells (AECs) and macrophages (AMs)  

Microsoft Academic Search

Cell mechanics provides an integrated view of many biological phenomena which are intimately related to cell structure and function. Because breathing constitutes a sustained motion synonymous with life, pulmonary cells are normally designed to support permanent cyclic stretch without breaking, while receiving mechanical cues from their environment. The authors study the mechanical responses of alveolar cells, namely epithelial cells and

Sophie Féréol; Redouane Fodil; Gabriel Pelle; Bruno Louis; Daniel Isabey

2008-01-01

43

Chronic inflammatory cells with epithelial cell characteristics in teleost fishes.  

PubMed

Certain cells that participate in the chronic inflammatory response of teleost fishes have many features typical of epithelioid cells of mammals. Such features include high metabolic activity, frequent phagolysosomes, and cytoplasmic interdigitations between adjacent cells; however, the epithelioid granulomas formed in response to certain diseases in teleost fishes also have several features associated with epithelial cells. Cases of ulcerative mycosis or acid-fast bacterial infection in Atlantic menhaden (Brevoortia tyrannus), fungal infection in silver perch (Bairdiella chrysoura), and mycobacteriosis in Mozambique tilapia (Oreochromis mossambicus) had epithelioid cells that were joined together by well-formed desmosomes with tonofilaments. "Mature granulomas" of the ulcerative mycosis-infected menhaden stained positively for cytokeratin, a cytoskeletal protein that is considered to be highly specific for epithelial cells. The consistent presence of these heretofore unrecognized epithelial features suggest that they may be characteristic of certain types of cells participating in piscine chronic inflammation. PMID:2686148

Noga, E J; Dykstra, M J; Wright, J F

1989-09-01

44

Epithelial Cell Plasticity in Development and Tumor Progression  

Microsoft Academic Search

Various mechanisms of epithelial cell plasticity in morphogenesis have been studied at the genetic and molecular levels. Several control genes have been identified including genes encoding transcription factors and growth factor receptors. These mechanisms may be reactivated during the progression of carcinomas. One of the mechanisms underlying epithelial plasticity is the epithelial–mesenchymal transition. This process has been extensively studied using

Jean Paul Thiery; Dominique Chopin

1999-01-01

45

Original article Immortalized goat milk epithelial cell lines  

E-print Network

Original article Immortalized goat milk epithelial cell lines replicate CAEV at high level Laila epithelial cells were isolated from CAEV-uninfected goats and three cell lines designated TIGMEC-1, TIGMEC-2 and TIGMEC-3 were established. The three cell lines retained their morphological characteristics

Paris-Sud XI, Université de

46

Rhinovirus Replication Causes RANTES Production in Primary Bronchial Epithelial Cells  

Microsoft Academic Search

The mechanisms by which rhinovirus (RV) infections produce lower airway symptoms in asthmatic indi- viduals are not fully established. To determine effects of RV infection on lung epithelial cells, primary hu- man bronchial epithelial (BE) cells were infected with either RV16 or RV49, and viral replication, cell vi- ability, and cell activation were measured. Both viral serotypes replicated in BE

Mary K. Schroth; Elizabeth Grimm; Paula Frindt; Dawn M. Galagan; Shin-Ichi Konno; Robert Love; James E. Gern

1999-01-01

47

Vaginal Immunization to Elicit Primary T-Cell Activation and Dissemination  

PubMed Central

Primary T-cell activation at mucosal sites is of utmost importance for the development of vaccination strategies. T-cell priming after vaginal immunization, with ovalbumin and CpG oligodeoxynucleotide adjuvant as model vaccine formulation, was studied in vivo in hormone-synchronized mice and compared to the one induced by the nasal route. Twenty-four hours after both vaginal or nasal immunization, antigen-loaded dendritic cells were detected within the respective draining lymph nodes. Vaginal immunization elicited a strong recruitment of antigen-specific CD4+ T cells into draining lymph nodes that was more rapid than the one observed following nasal immunization. T-cell clonal expansion was first detected in iliac lymph nodes, draining the genital tract, and proliferated T cells disseminated towards distal lymph nodes and spleen similarly to what observed following nasal immunization. T cells were indeed activated by the antigen encounter and acquired homing molecules essential to disseminate towards distal lymphoid organs as confirmed by the modulation of CD45RB, CD69, CD44 and CD62L marker expression. A multi-type Galton Watson branching process, previously used for in vitro analysis of T-cell proliferation, was applied to model in vivo CFSE proliferation data in draining lymph nodes 57 hours following immunization, in order to calculate the probabilistic decision of a cell to enter in division, rest in quiescence or migrate/die. The modelling analysis indicated that the probability of a cell to proliferate was higher following vaginal than nasal immunization. All together these data show that vaginal immunization, despite the absence of an organized mucosal associated inductive site in the genital tract, is very efficient in priming antigen-specific CD4+ T cells and inducing their dissemination from draining lymph nodes towards distal lymphoid organs. PMID:24349003

Pettini, Elena; Prota, Gennaro; Ciabattini, Annalisa; Boianelli, Alessandro; Fiorino, Fabio; Pozzi, Gianni; Vicino, Antonio; Medaglini, Donata

2013-01-01

48

Migration Mechanisms: Corneal Epithelial Tissue and Dissociated Cells  

Microsoft Academic Search

The migratory mechanism of intact bovine corneal epithelial tissue and individual corneal epithelial cells over synthetic surfaces in vitro were compared. In migrating tissue, adhesion between component cells was demonstrated by immunostaining for desmoplakin and identification of desmosomes by electron microscopy. The apparent intermeshing of microtubules within the tissue and interdigitation of cytoplasmic membranes showed the close association of cells.

B. A. Dalton; J. G. Steele

2001-01-01

49

Quercetin Blocks Airway Epithelial Cell Chemokine Expression  

PubMed Central

Quercetin (3,3?,4?,5,7-pentahydroxyflavone), a dietary flavonoid, is an inhibitor of phosphatidylinositol (PI) 3-kinase and potent antioxidant. We hypothesized that quercetin blocks airway epithelial cell chemokine expression via PI 3-kinase–dependent mechanisms. Pretreatment with quercetin and the PI 3–kinase inhibitor LY294002 each reduced TNF-?–induced IL-8 and monocyte chemoattractant protein (MCP)-1 (also called CCL2) expression in cultured human airway epithelial cells. Quercetin also inhibited TNF-?–induced PI 3-kinase activity, Akt phosphorylation, intracellular H2O2 production, NF-?B transactivation, IL-8 promoter activity, and steady-state mRNA levels, consistent with the notion that quercetin inhibits chemokine expression by attenuating NF-?B transactivation via a PI 3-kinase/Akt-dependent pathway. Quercetin also reduced TNF-?–induced chemokine secretion in the presence of the transcriptional inhibitor actinomycin D, while inducing phosphorylation of eukaryotic translation initiation factor (eIF)-2?, suggesting that quercetin attenuates chemokine expression by post-transcriptional as well as transcriptional mechanisms. Finally, we tested the effects of quercetin in cockroach antigen–sensitized and –challenged mice. These mice show MCP-1–dependent airways hyperresponsiveness and inflammation. Quercetin significantly reduced lung MCP-1 and methacholine responsiveness. We conclude that quercetin blocks airway cell chemokine expression via transcriptional and post-transcriptional pathways. PMID:16794257

Nanua, Suparna; Zick, Suzanna M.; Andrade, Juan E.; Sajjan, Umadevi S.; Burgess, John R.; Lukacs, Nicholas W.; Hershenson, Marc B.

2006-01-01

50

Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation  

SciTech Connect

Cellular senescence suppresses cancer by arresting cells at risk for malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation, and branching morphogenesis. Further, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts--the ability to alter epithelial differentiation--that might also explain the loss of tissue function and organization that is a hallmark of aging.

Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

2004-07-14

51

[Recurrent cystitis and vaginitis: role of biofilms and persister cells. From pathophysiology to new therapeutic strategies.  

PubMed

Recurrent vaginitis and cystitis are a daily challenge for the woman and the physician. The recurrence worsens the symptoms' severity, increases comorbidities, both pelvic (provoked vestibulodynia, bladder pain syndrome, levator ani hyperactivity, introital dyspareunia, obstructive constipation, chronic pelvic pain) and cerebral (neuroinflammation and depression), increases health costs, worsens the quality of life. Antibiotics increase the risk of bacterial resistences and devastate the ecosystems: intestinal, vaginal and mucocutaneous. Pathogenic biofilms are the (still) neglected etiology of recurrences. Biofilms are structured communities of bacteria and yeasts, protected by a self-produced polymeric matrix adherent to a living or inert structures, such as medical devices. Biofims can be intra or extracellular. Pathogens live in a resting state in the deep biofilm layers as "persister cells", resistant to antibiotics and host defences and ready to re-attack the host. The paper updates the evidence on biofilms and introduces new non-antibiotic strategies of preventing and modulating recurrent vaginitis and cystitis. PMID:25245998

Graziottin, A; Zanello, P P; D'Errico, G

2014-10-01

52

Silk film topography directs collective epithelial cell migration.  

PubMed

The following study provides new insight into how surface topography dictates directed collective epithelial cell sheet growth through the guidance of individual cell movement. Collective cell behavior of migrating human corneal limbal-epithelial cell sheets were studied on highly biocompatible flat and micro-patterned silk film surfaces. The silk film edge topography guided the migratory direction of individual cells making up the collective epithelial sheet, which resulted in a 75% increase in total culture elongation. This was due to a 3-fold decrease in cell sheet migration rate efficiency for movement perpendicular to the topography edge. Individual cell migration direction is preferred in the parallel approach to the edge topography where localization of cytoskeletal proteins to the topography's edge region is reduced, which results in the directed growth of the collective epithelial sheet. Findings indicate customized biomaterial surfaces may be created to direct both the migration rate and direction of tissue epithelialization. PMID:23185573

Lawrence, Brian D; Pan, Zhi; Rosenblatt, Mark I

2012-01-01

53

Investigations by Cell-Mediated Immunologic Tests and Therapeutic Trials With Thymopentin in Vaginal Mycoses  

PubMed Central

Objective: According to unsatisfactory therapeutic results in patients with chronically recurrent vaginal candidosis, we investigated if immunologic patient factors could be found and treated. Methods: In 42 women with chronically recurrent and 20 women with acute Candida albicans vulvovaginitis, as well as 14 women with C. glabrata vaginitis, the following investigations were carried out: identification of yeast species; quantification of T lymphocytes and their subpopulations in sera; proliferation tests of T lymphocytes in vitro; treatment of 18 patients with chronically recurrent vaginal candidosis with the synthetic T-lymphocyte- stimulator thymopentin; and, finally, control of the above-mentioned parameters in the clinical course. Results: Women with C. albicans vulvovaginitis showed fewer T lymphocytes and subpopulations in the peripheral blood than healthy women. Only the number of non-specific killer (NK) cells, however, was significantly lower in cases of acute C. albicans vulvovaginitis. In women with C. glabrata vaginitis, the number of T lymphocytes in the blood was within the normal range. In vitro proliferation tests using mitogens, bacterial antigens, and commercially available candida antigens with and without addition of thymopentin were carried out on the T lymphocytes of women with chronically recurrent C. albicans vulvovaginitis. These tests revealed no significant differences compared with the other patients with C. albicans infections. The patients were treated with thymopentin. Those women who revealed an increase of initially low numbers of T-helper cells recovered from vaginal candidosis after thymopentin treatment. Conclusions: The peripheral T lymphocytes may be diminished in patients with chronically recurrent C. albicans vaginitis, and immunologic treatment can reduce the relapse rate. PMID:18476097

Koldovsky, Ursula

1996-01-01

54

Dedifferentiation of committed epithelial cells into stem cells in vivo  

PubMed Central

Summary Cellular plasticity contributes to the regenerative capacity of plants, invertebrates, teleost fishes, and amphibians. In vertebrates, differentiated cells are known to revert into replicating progenitors, but these cells do not persist as stable stem cells. We now present evidence that differentiated airway epithelial cells can revert into stable and functional stem cells in vivo. Following the ablation of airway stem cells, we observed a surprising increase in the proliferation of committed secretory cells. Subsequent lineage tracing demonstrated that the luminal secretory cells had dedifferentiated into basal stem cells. Dedifferentiated cells were morphologically indistinguishable from stem cells and they functioned as well as their endogenous counterparts to repair epithelial injury. Indeed, single secretory cells clonally dedifferentiated into multipotent stem cells when they were cultured ex vivo without basal stem cells. In contrast, direct contact with a single basal stem cell was sufficient to prevent secretory cell dedifferentiation. In analogy to classical descriptions of amphibian nuclear reprogramming, the propensity of committed cells to dedifferentiate was inversely correlated to their state of maturity. This capacity of committed cells to dedifferentiate into stem cells may play a more general role in the regeneration of many tissues and in multiple disease states, notably cancer. PMID:24196716

Tata, Purushothama Rao; Mou, Hongmei; Pardo-Saganta, Ana; Zhao, Rui; Prabhu, Mythili; Prabhu, Mythili; Law, Brandon M.; Vinarsky, Vladimir; Cho, Josalyn L.; Breton, Sylvie; Sahay, Amar; Medoff, Benjamin D.; Rajagopal, Jayaraj

2014-01-01

55

Dedifferentiation of committed epithelial cells into stem cells in vivo.  

PubMed

Cellular plasticity contributes to the regenerative capacity of plants, invertebrates, teleost fishes and amphibians. In vertebrates, differentiated cells are known to revert into replicating progenitors, but these cells do not persist as stable stem cells. Here we present evidence that differentiated airway epithelial cells can revert into stable and functional stem cells in vivo. After the ablation of airway stem cells, we observed a surprising increase in the proliferation of committed secretory cells. Subsequent lineage tracing demonstrated that the luminal secretory cells had dedifferentiated into basal stem cells. Dedifferentiated cells were morphologically indistinguishable from stem cells and they functioned as well as their endogenous counterparts in repairing epithelial injury. Single secretory cells clonally dedifferentiated into multipotent stem cells when they were cultured ex vivo without basal stem cells. By contrast, direct contact with a single basal stem cell was sufficient to prevent secretory cell dedifferentiation. In analogy to classical descriptions of amphibian nuclear reprogramming, the propensity of committed cells to dedifferentiate is inversely correlated to their state of maturity. This capacity of committed cells to dedifferentiate into stem cells may have a more general role in the regeneration of many tissues and in multiple disease states, notably cancer. PMID:24196716

Tata, Purushothama Rao; Mou, Hongmei; Pardo-Saganta, Ana; Zhao, Rui; Prabhu, Mythili; Law, Brandon M; Vinarsky, Vladimir; Cho, Josalyn L; Breton, Sylvie; Sahay, Amar; Medoff, Benjamin D; Rajagopal, Jayaraj

2013-11-14

56

Regulation of intestinal epithelial cells transcriptome by enteric glial cells: impact on intestinal epithelial barrier functions  

PubMed Central

Background Emerging evidences suggest that enteric glial cells (EGC), a major constituent of the enteric nervous system (ENS), are key regulators of intestinal epithelial barrier (IEB) functions. Indeed EGC inhibit intestinal epithelial cells (IEC) proliferation and increase IEB paracellular permeability. However, the role of EGC on other important barrier functions and the signalling pathways involved in their effects are currently unknown. To achieve this goal, we aimed at identifying the impact of EGC upon IEC transcriptome by performing microarray studies. Results EGC induced significant changes in gene expression profiling of proliferating IEC after 24 hours of co-culture. 116 genes were identified as differentially expressed (70 up-regulated and 46 down-regulated) in IEC cultured with EGC compared to IEC cultured alone. By performing functional analysis of the 116 identified genes using Ingenuity Pathway Analysis, we showed that EGC induced a significant regulation of genes favoring both cell-to-cell and cell-to-matrix adhesion as well as cell differentiation. Consistently, functional studies showed that EGC induced a significant increase in cell adhesion. EGC also regulated genes involved in cell motility towards an enhancement of cell motility. In addition, EGC profoundly modulated expression of genes involved in cell proliferation and cell survival, although no clear functional trend could be identified. Finally, important genes involved in lipid and protein metabolism of epithelial cells were shown to be differentially regulated by EGC. Conclusion This study reinforces the emerging concept that EGC have major protective effects upon the IEB. EGC have a profound impact upon IEC transcriptome and induce a shift in IEC phenotype towards increased cell adhesion and cell differentiation. This concept needs to be further validated under both physiological and pathophysiological conditions. PMID:19883504

2009-01-01

57

Documentation of angiotensin II receptors in glomerular epithelial cells  

NASA Technical Reports Server (NTRS)

Angiotensin II decreases glomerular filtration rate, renal plasma flow, and glomerular capillary hydraulic conductivity. Although angiotensin II receptors have been demonstrated in mesangial cells and proximal tubule cells, the presence of angiotensin II receptors in glomerular epithelial cells has not previously been shown. Previously, we have reported that angiotensin II caused an accumulation of cAMP and a reorganization of the actin cytoskeleton in cultured glomerular epithelial cells. Current studies were conducted to verify the presence of angiotensin II receptors by immunological and non-peptide receptor ligand binding techniques and to ascertain the activation of intracellular signal transduction in glomerular epithelial cells in response to angiotensin II. Confluent monolayer cultures of glomerular epithelial cells were incubated with angiotensin II, with or without losartan and/or PD-123,319 in the medium. Membrane vesicle preparations were obtained by homogenization of washed cells followed by centrifugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membrane proteins followed by multiscreen immunoblotting was used to determine the presence of angiotensin II receptor type 1 (AT1) or type 2 (AT2). Angiotensin II-mediated signal transduction in glomerular epithelial cells was studied by measuring the levels of cAMP, using radioimmunoassay. Results obtained in these experiments showed the presence of both AT1 and AT2 receptor types in glomerular epithelial cells. Angiotensin II was found to cause an accumulation of cAMP in glomerular epithelial cells, which could be prevented only by simultaneous use of losartan and PD-123,319, antagonists for AT1 and AT2, respectively. The presence of both AT1 and AT2 receptors and an increase in cAMP indicate that glomerular epithelial cells respond to angiotensin II in a manner distinct from that of mesangial cells or proximal tubular epithelial cells. Our results suggest that glomerular epithelial cells participate in angiotensin II-mediated control of the glomerular filtration barrier.

Sharma, M.; Sharma, R.; Greene, A. S.; McCarthy, E. T.; Savin, V. J.; Cowley, A. W. (Principal Investigator)

1998-01-01

58

Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells  

PubMed Central

Malignant progression in cancer requires populations of tumor-initiating cells (TICs) endowed with unlimited self renewal, survival under stress, and establishment of distant metastases. Additionally, the acquisition of invasive properties driven by epithelial-mesenchymal transition (EMT) is critical for the evolution of neoplastic cells into fully metastatic populations. Here, we characterize 2 human cellular models derived from prostate and bladder cancer cell lines to better understand the relationship between TIC and EMT programs in local invasiveness and distant metastasis. The model tumor subpopulations that expressed a strong epithelial gene program were enriched in highly metastatic TICs, while a second subpopulation with stable mesenchymal traits was impoverished in TICs. Constitutive overexpression of the transcription factor Snai1 in the epithelial/TIC-enriched populations engaged a mesenchymal gene program and suppressed their self renewal and metastatic phenotypes. Conversely, knockdown of EMT factors in the mesenchymal-like prostate cancer cell subpopulation caused a gain in epithelial features and properties of TICs. Both tumor cell subpopulations cooperated so that the nonmetastatic mesenchymal-like prostate cancer subpopulation enhanced the in vitro invasiveness of the metastatic epithelial subpopulation and, in vivo, promoted the escape of the latter from primary implantation sites and accelerated their metastatic colonization. Our models provide new insights into how dynamic interactions among epithelial, self-renewal, and mesenchymal gene programs determine the plasticity of epithelial TICs. PMID:22505459

Celià-Terrassa, Toni; Meca-Cortés, Óscar; Mateo, Francesca; Martínez de Paz, Alexia; Rubio, Nuria; Arnal-Estapé, Anna; Ell, Brian J.; Bermudo, Raquel; Díaz, Alba; Guerra-Rebollo, Marta; Lozano, Juan José; Estarás, Conchi; Ulloa, Catalina; ?lvarez-Simón, Daniel; Milà, Jordi; Vilella, Ramón; Paciucci, Rosanna; Martínez-Balbás, Marian; García de Herreros, Antonio; Gomis, Roger R.; Kang, Yibin; Blanco, Jerónimo; Fernández, Pedro L.; Thomson, Timothy M.

2012-01-01

59

Uranium induces apoptosis in lung epithelial cells  

PubMed Central

Uranium is a naturally occurring radioactive material present everywhere in the environment. It is toxic because of its chemical or radioactive properties. Uranium enters environment mainly from mines and industry and cause threat to human health by accumulating in lungs as a result of inhalation. In our previous study, we have shown the effectiveness of antioxidant system response to the oxidative stress induced by uranyl acetate (UA) in rat lung epithelial (LE) cells. As part of our continuing studies; here, we investigated the mechanism underlying when LE cells are exposed to different concentration of UA. Oxidative stress may lead to apoptotic signaling pathways. LE cells treated with 0.25, 0.5 and 1 mM of UA results in dose and time-dependent increase in activity of both caspases-3 and -8. Increase in the concentration of cytochrome-c oxidase in cytosol was seen in LE cells treated with 1 mM UA as a result of mitochondria membrane permeability. The cyto-chrome-c leakage may trigger the apoptotic pathway. TUNEL assay performed in LE cells treated with 1 mM of UA showed significant incorporation of dNTPs in the nucleus after 24 h. In the presence of the caspase inhibitors, we observed the significant decrease in the activity of caspases-8 and -3 in 0.5 and 1 mM UA-treated LE cells. PMID:19096828

Periyakaruppan, Adaikkappan; Sarkar, Shubhashish; Ravichandran, Prabakaran; Sadanandan, Bindu; Sharma, Chidananda S.; Ramesh, Vani; Hall, Joseph C.; Thomas, Renard; Wilson, Bobby L.

2009-01-01

60

Epithelial Cell Rests of Malassez Contain Unique Stem Cell Populations Capable of Undergoing Epithelial–Mesenchymal Transition  

PubMed Central

The epithelial cell rests of Malassez (ERM) are odontogenic epithelial cells located within the periodontal ligament matrix. While their function is unknown, they may support tissue homeostasis and maintain periodontal ligament space or even contribute to periodontal regeneration. We investigated the notion that ERM contain a subpopulation of stem cells that could undergo epithelial–mesenchymal transition and differentiate into mesenchymal stem-like cells with multilineage potential. For this purpose, ERM collected from ovine incisors were subjected to different inductive conditions in vitro, previously developed for the characterization of bone marrow mesenchymal stromal/stem cells (BMSC). We found that ex vivo-expanded ERM expressed both epithelial (cytokeratin-8, E-cadherin, and epithelial membrane protein-1) and BMSC markers (CD44, CD29, and heat shock protein-90?). Integrin ?6/CD49f could be used for the enrichment of clonogenic cell clusters [colony-forming units-epithelial cells (CFU-Epi)]. Integrin ?6/CD49f-positive-selected epithelial cells demonstrated over 50- and 7-fold greater CFU-Epi than integrin ?6/CD49f-negative cells and unfractionated cells, respectively. Importantly, ERM demonstrated stem cell-like properties in their differentiation capacity to form bone, fat, cartilage, and neural cells in vitro. When transplanted into immunocompromised mice, ERM generated bone, cementum-like and Sharpey's fiber-like structures. Additionally, gene expression studies showed that osteogenic induction of ERM triggered an epithelial–mesenchymal transition. In conclusion, ERM are unusual cells that display the morphological and phenotypic characteristics of ectoderm-derived epithelial cells; however, they also have the capacity to differentiate into a mesenchymal phenotype and thus represent a unique stem cell population within the periodontal ligament. PMID:22122577

Xiong, Jimin; Mrozik, Krzysztof; Gronthos, Stan

2012-01-01

61

T-cell costimulatory capacity of oral and skin epithelial cells in vitro: presence of suppressive activity in supernatants from skin epithelial cell cultures.  

PubMed

Oral Langerhans cells (LC) have better T-cell costimulatory capacity than skin LC. In this study factors affecting this capacity have been assessed in a mixed epithelial cell lymphocyte reaction (MELR) assay. Flow cytometry analysis of freshly recovered cells revealed major histocompatibility complex (MHC) class II molecule expression on 7.5% of the oral epithelial cells and 9.7% of the skin epithelial cells. Monoclonal anti class II antibodies significantly reduced the T-cell proliferation in the MELR. Pretreatment of skin epithelial cells with interleukin-1beta, tumour necrosis factor-alpha or interferon (IFN)-gamma did not affect the MELR proliferation, but incubation with IFNgamma significantly suppressed the T-cell response. Transfer of supernatants from cultures of skin epithelial cells and allogeneic T cells to cultures of oral epithelial cells and T cells resulted in a reduced T-cell proliferation while supernatants from oral epithelial cells and T cells did not reduce proliferation. The higher proliferation in cultures of T cells and oral epithelial cells than in cultures containing skin epithelial cells may be due to the presence of a suppressive factor in the skin epithelial cell suspensions. PMID:14871193

Hasséus, B; Jontell, M; Bergenholtz, G; Dahlgren, U I

2004-02-01

62

Cholecystokinin octapeptide antagonizes apoptosis in human retinal pigment epithelial cells  

PubMed Central

Although cholecystokinin octapeptide-8 is important for neurological function, its neuroprotective properties remain unclear. We speculated that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against oxidative injury. In this study, retinal pigment epithelial cells were treated with peroxynitrite to induce oxidative stress. Peroxynitrite triggered apoptosis in these cells, and increased the expression of Fas-associated death domain, Bax, caspa-se-8 and Bcl-2. These changes were suppressed by treatment with cholecystokinin octapeptide-8. These results suggest that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against apoptosis induced by peroxynitrite. PMID:25221599

Liu, Yuan; Zhang, Yueling; Gu, Zhaohui; Hao, Lina; Du, Juan; Yang, Qian; Li, Suping; Wang, Liying; Gong, Shilei

2014-01-01

63

Fungal glycan interactions with epithelial cells in allergic airway disease.  

PubMed

Human exposure to fungi results in a wide range of health outcomes, from invasive disease or allergy to immune tolerance. Inhaled fungi contact airway epithelial cells as an early event, and this host:fungal interaction can shape the eventual immunological outcome. Emerging evidence points to exposure to fungal cell wall carbohydrates in the development of allergic airway disease. Herein, we describe determinants of fungal allergenicity, and review the responses of airway epithelial cells to fungal carbohydrates. A greater understanding of the recognition of and response to fungal carbohydrates by airway epithelial cells may lead to the development of targeted therapies that ameliorate allergic airway disease. PMID:23602359

Roy, René M; Klein, Bruce S

2013-08-01

64

Quantitative Assessment of Cytosolic Salmonella in Epithelial Cells  

PubMed Central

Within mammalian cells, Salmonella enterica serovar Typhimurium (S. Typhimurium) inhabits a membrane-bound vacuole known as the Salmonella-containing vacuole (SCV). We have recently shown that wild type S. Typhimurium also colonizes the cytosol of epithelial cells. Here we sought to quantify the contribution of cytosolic Salmonella to the total population over a time course of infection in different epithelial cell lines and under conditions of altered vacuolar escape. We found that the lysosomotropic agent, chloroquine, acts on vacuolar, but not cytosolic, Salmonella. After chloroquine treatment, vacuolar bacteria are not transcriptionally active or replicative and appear degraded. Using a chloroquine resistance assay, in addition to digitonin permeabilization, we found that S. Typhimurium lyses its nascent vacuole in numerous epithelial cell lines, albeit with different frequencies, and hyper-replication in the cytosol is also widespread. At later times post-infection, cytosolic bacteria account for half of the total population in some epithelial cell lines, namely HeLa and Caco-2 C2Bbe1. Both techniques accurately measured increased vacuole lysis in epithelial cells upon treatment with wortmannin. By chloroquine resistance assay, we also determined that Salmonella pathogenicity island-1 (SPI-1), but not SPI-2, the virulence plasmid nor the flagellar apparatus, was required for vacuolar escape and cytosolic replication in epithelial cells. Together, digitonin permeabilization and the chloroquine resistance assay will be useful, complementary tools for deciphering the mechanisms of SCV lysis and Salmonella replication in the epithelial cell cytosol. PMID:24400108

Knodler, Leigh A.; Nair, Vinod; Steele-Mortimer, Olivia

2014-01-01

65

Cell mechanics of alveolar epithelial cells (AECs) and macrophages (AMs).  

PubMed

Cell mechanics provides an integrated view of many biological phenomena which are intimately related to cell structure and function. Because breathing constitutes a sustained motion synonymous with life, pulmonary cells are normally designed to support permanent cyclic stretch without breaking, while receiving mechanical cues from their environment. The authors study the mechanical responses of alveolar cells, namely epithelial cells and macrophages, exposed to well-controlled mechanical stress in order to understand pulmonary cell response and function. They discuss the principle, advantages and limits of a cytoskeleton-specific micromanipulation technique, magnetic bead twisting cytometry, potentially applicable in vivo. They also compare the pertinence of various models (e.g., rheological; power law) used to extract cell mechanical properties and discuss cell stress/strain hardening properties and cell dynamic response in relation to the structural tensegrity model. Overall, alveolar cells provide a pertinent model to study the biological processes governing cellular response to controlled stress or strain. PMID:18565804

Féréol, Sophie; Fodil, Redouane; Pelle, Gabriel; Louis, Bruno; Isabey, Daniel

2008-11-30

66

Epithelial cells as alternative human biomatrices for comet assay  

PubMed Central

The comet assay is a valuable experimental tool aimed at mapping DNA damage in human cells in vivo for environmental and occupational monitoring, as well as for therapeutic purposes, such as storage prior to transplant, during tissue engineering, and in experimental ex vivo assays. Furthermore, due to its great versatility, the comet assay allows to explore the use of alternative cell types to assess DNA damage, such as epithelial cells. Epithelial cells, as specialized components of many organs, have the potential to serve as biomatrices that can be used to evaluate genotoxicity and may also serve as early effect biomarkers. Furthermore, 80% of solid cancers are of epithelial origin, which points to the importance of studying DNA damage in these tissues. Indeed, studies including comet assay in epithelial cells have either clear clinical applications (lens and corneal epithelial cells) or examine genotoxicity within human biomonitoring and in vitro studies. We here review improvements in determining DNA damage using the comet assay by employing lens, corneal, tear duct, buccal, and nasal epithelial cells. For some of these tissues invasive sampling procedures are needed. Desquamated epithelial cells must be obtained and dissociated prior to examination using the comet assay, and such procedures may induce varying amounts of DNA damage. Buccal epithelial cells require lysis enriched with proteinase K to obtain free nucleosomes. Over a 30 year period, the comet assay in epithelial cells has been little employed, however its use indicates that it could be an extraordinary tool not only for risk assessment, but also for diagnosis, prognosis of treatments and diseases. PMID:25506353

Rojas, Emilio; Lorenzo, Yolanda; Haug, Kristiane; Nicolaissen, Bjørn; Valverde, Mahara

2014-01-01

67

Maintenance and Distribution of Epithelial Stem/Progenitor Cells after Corneal Reconstruction Using Oral Mucosal Epithelial Cell Sheets  

PubMed Central

We assessed the maintenance and distribution of epithelial stem/progenitor cells after corneal reconstruction using tissue-engineered oral mucosal cell sheets in a rat model. Oral mucosal biopsy specimens were excised from green fluorescent protein (GFP) rats and enzymatically treated with Dispase II. These cells were cultured on inserts with mitomycin C-treated NIH/3T3 cells, and the resulting cell sheets were harvested. These tissue-engineered cell sheets from GFP rats were transplanted onto the eyes of a nude rat limbal stem cell deficiency model. Eight weeks after surgery, ocular surfaces were completely covered by the epithelium with GFP-positive cells. Transplanted corneas expressed p63 in the basal layers and K14 in all epithelial layers. Epithelial cells harvested from the central and peripheral areas of reconstructed corneas were isolated for a colony-forming assay, which showed that the colony-forming efficiency of the peripheral epithelial cells was significantly higher than that of the central epithelial cells 8 weeks after corneal reconstruction. Thus, in this rat model, the peripheral cornea could maintain more stem/progenitor cells than the central cornea after corneal reconstruction using oral mucosal epithelial cell sheets. PMID:25343456

Soma, Takeshi; Hayashi, Ryuhei; Sugiyama, Hiroaki; Tsujikawa, Motokazu; Kanayama, Shintaro; Oie, Yoshinori; Nishida, Kohji

2014-01-01

68

Candida albicans interactions with epithelial cells and mucosal immunity  

PubMed Central

Candida albicans interactions with epithelial cells are critical for commensal growth, fungal pathogenicity and host defence. This review will outline our current understanding of C. albicans-epithelial interactions and will discuss how this may lead to the induction of a protective mucosal immune response. PMID:21801848

Naglik, Julian R.; Moyes, David L; Wächtler, Betty; Hube, Bernhard

2011-01-01

69

Tracking the intermediate stages of epithelial-mesenchymal transition in epithelial stem cells and cancer  

PubMed Central

Epithelial-mesenchymal transition (EMT) is an essential developmental program that becomes reactivated in adult tissues to promote the progression of cancer. EMT has been largely studied by examining the beginning epithelial state or the ending mesenchymal state without studying the intermediate stages. Recent studies using trophoblast stem (TS) cells paused in EMT have defined the molecular and epigenetic mechanisms responsible for modulating the intermediate “metastable” stages of EMT. Targeted inactivation of MAP3K4, knockdown of CBP or overexpression of SNAI1 in TS cells induced similar metastable phenotypes. These TS cells exhibited epigenetic changes in the histone acetylation landscape that cause loss of epithelial maintenance while preserving self-renewal and multipotency. A similar phenotype was found in claudin-low breast cancer cells with properties of EMT and stemness. This intersection between EMT and stemness in TS cells and claudin-low metastatic breast cancer demonstrates the usefulness of developmental EMT systems to understand EMT in cancer. PMID:21862874

Johnson, Gary L

2011-01-01

70

Serum-Induced Differentiation of Human Meibomian Gland Epithelial Cells  

PubMed Central

Purpose. We hypothesize that culturing immortalized human meibomian gland epithelial cells in serum-containing medium will induce their differentiation. The purpose of this investigation was to begin to test our hypothesis, and explore the impact of serum on gene expression and lipid accumulation in human meibomian gland epithelial cells. Methods. Immortalized and primary human meibomian gland epithelial cells were cultured in the presence or absence of serum. Cells were evaluated for lysosome and lipid accumulation, polar and neutral lipid profiles, and gene expression. Results. Our results support our hypothesis that serum stimulates the differentiation of human meibomian gland epithelial cells. This serum-induced effect is associated with a significant increase in the expression of genes linked to cell differentiation, epithelium development, the endoplasmic reticulum, Golgi apparatus, vesicles, and lysosomes, and a significant decrease in gene activity related to the cell cycle, mitochondria, ribosomes, and translation. These cellular responses are accompanied by an accumulation of lipids within lysosomes, as well as alterations in the fatty acid content of polar and nonpolar lipids. Of particular importance, our results show that the molecular and biochemical changes of immortalized human meibomian gland epithelial cells during differentiation are analogous to those of primary cells. Conclusions. Overall, our findings indicate that immortalized human meibomian gland epithelial cells may serve as an ideal preclinical model to identify factors that control cellular differentiation in the meibomian gland. PMID:24867579

Sullivan, David A.; Liu, Yang; Kam, Wendy R.; Ding, Juan; Green, Karin M.; Shaffer, Scott A.; Hatton, Mark P.; Liu, Shaohui

2014-01-01

71

Cell Cycle Arrest by Kynurenine in Lens Epithelial Cells  

PubMed Central

Purpose Indolemine 2,3-dioxygenase (IDO)-mediated oxidation of tryptophan produces kynurenines (KYNs), which may play a role in cataract formation. The molecular mechanisms by which KYNs cause cellular changes are poorly understood. The effects of KYNs on mouse lens epithelial cells by overexpression of human IDO were investigated. Methods Lens epithelial cells (mLECs) derived from human IDO-overexpressing hemizygous transgenic (hemTg) and wild-type (Wt) mice were used. IDO activity was measured by quantifying kynurenine (KYN) by HPLC. KYN-mediated protein modifications were detected by immunocytochemistry and measured by ELISA. Cell proliferation and apoptosis were measured with commercially available kits. Cell distribution between cell cycle phases was examined with flow cytometric analysis. Immunoprecipitation followed by LC/MS was used to identify kynurenine-modified proteins. Results mLECs derived from hemTg animals exhibited considerable IDO immunoreactivity and enzyme activity, which were barely detectable in Wt mLECs. KYN and KYN-mediated protein modification were detected in hemTg but not in Wt mLECs; the modified proteins were myosin II and ?/?-actin. HemTg mLECs displayed reduced viability and proliferation. Cell cycle analysis of hemTg mLEC cultures showed approximately a twofold increase in cells at G2/M or in both phases, relative to Wt mLECs. Blocking IDO activity with 1-methyl-d,l-tryptophan in hemTg mLECs prevented KYN formation, KYN-mediated protein modification, and G2/M arrest. Conclusions Excess IDO activity in mLECs results in KYN production, KYN-mediated modification of myosin II and ?/?-actin, and cell cycle perturbation. Modification of myosin II and ?-actin by KYN may interfere with cytokinesis, leading to defective epithelial cell division and thus a decreased number of fiber cells. PMID:18676626

Mailankot, Maneesh; Smith, Dawn; Howell, Scott; Wang, Benlian; Jacobberger, James W.; Stefan, Tammy; Nagaraj, Ram H.

2008-01-01

72

Desmosomal adhesion regulates epithelial morphogenesis and cell positioning  

Microsoft Academic Search

Desmosomes are intercellular junctions of epithelia and are of widespread importance in the maintenance of tissue architecture. We provide evidence that desmosomal adhesion has a function in epithelial morphogenesis and cell-type-specific positioning. Blocking peptides corresponding to the cell adhesion recognition (CAR) sites of desmosomal cadherins block alveolar morphogenesis by epithelial cells from mammary lumen. Desmosomal CAR-site peptides also disrupt positional

Sarah K. Runswick; Mike J. O'Hare; Louise Jones; Charles H. Streuli; David R. Garrod

2001-01-01

73

Genetics and epithelial cell dysfunction in cystic fibrosis  

SciTech Connect

This book examines the advances being made in the study of the physiology, cell biology, and molecular genetics of cystic fibrosis. Emphasis is placed on various areas of research that involve epithelial cells (e.g., the CF-specific phenotypes exhibited by epithelial cells, abnormalities in epithelium ion transport, chloride channel regulation in CF epithelial.) Coverage is presented on the current status of CF, including data on the incidence of the disease, its mode of inheritance, chromosomal localization, genetic heterogeneity, and screening and management.

Riordan, J.R.; Buchwald, M.

1987-01-01

74

Alignment of cell division axes in directed epithelial cell migration  

NASA Astrophysics Data System (ADS)

Cell division is an essential dynamic event in tissue remodeling during wound healing, cancer and embryogenesis. In collective migration, tensile stresses affect cell shape and polarity, hence, the orientation of the cell division axis is expected to depend on cellular flow patterns. Here, we study the degree of orientation of cell division axes in migrating and resting epithelial cell sheets. We use microstructured channels to create a defined scenario of directed cell invasion and compare this situation to resting but proliferating cell monolayers. In experiments, we find a strong alignment of the axis due to directed flow while resting sheets show very weak global order, but local flow gradients still correlate strongly with the cell division axis. We compare experimental results with a previously published mesoscopic particle based simulation model. Most of the observed effects are reproduced by the simulations.

Marel, Anna-Kristina; Podewitz, Nils; Zorn, Matthias; Oskar Rädler, Joachim; Elgeti, Jens

2014-11-01

75

Vaginal Pessary  

MedlinePLUS

... normal. Your vaginal discharge may also develop an odor. Certain vaginal gels can help with these side ... more often may also help with foul-smelling odor. Vaginal irritation is another possible side effect. Women ...

76

Microfluidic approaches for epithelial cell layer culture and characterisation.  

PubMed

In higher eukaryotes, epithelial cell layers line most body cavities and form selective barriers that regulate the exchange of solutes between compartments. In order to fulfil these functions, the cells assume a polarised architecture and maintain two distinct plasma membrane domains, the apical domain facing the lumen and the basolateral domain facing other cells and the extracellular matrix. Microfluidic biochips offer the unique opportunity to establish novel in vitro models of epithelia in which the in vivo microenvironment of epithelial cells is precisely reconstituted. In addition, analytical tools to monitor biologically relevant parameters can be directly integrated on-chip. In this review we summarise recently developed biochip designs for culturing epithelial cell layers. Since endothelial cell layers, which line blood vessels, have similar barrier functions and polar organisation as epithelial cell layers, we also discuss biochips for culturing endothelial cell layers. Furthermore, we review approaches to integrate tools to analyse and manipulate epithelia and endothelia in microfluidic biochips; including methods to perform electrical impedance spectroscopy; methods to detect substances undergoing trans-epithelial transport via fluorescence, spectrophotometry, and mass spectrometry; techniques to mechanically stimulate cells via stretching and fluid flow-induced shear stress; and methods to carry out high-resolution imaging of vesicular trafficking using light microscopy. Taken together, this versatile microfluidic toolbox enables novel experimental approaches to characterise epithelial monolayers. PMID:24668405

Thuenauer, Roland; Rodriguez-Boulan, Enrique; Römer, Winfried

2014-07-01

77

Stimulating Vaginal Repair in Rats Through Skeletal Muscle–Derived Stem Cells Seeded on Small Intestinal Submucosal Scaffolds  

PubMed Central

OBJECTIVES Grafts are used for vaginal repair after prolapse, but their use to carry stem cells to regenerate vaginal tissue has not been reported. In this study, we investigated whether 1) muscle-derived stem cells (MDSC) grown on small intestinal submucosa (SIS) generate smooth-muscle cells (SMC) in vitro and upon implantation in a rat model of vaginal defects; 2) express markers applicable to the in-vivo detection of vaginal endogenous stem cells; and 3) stimulate the repair of the vagina. METHODS Mouse MDSC grown on monolayer, SIS, or polymeric mesh, were tested for cell differentiation by immunocytochemistry, Western blot and real-time polymerase chain reaction (PCR). Stem cell markers were screened by DNA microarrays followed by real-time PCR, immunocytochemistry, and Western blot. Rats that underwent hysterectomy and partial vaginectomy were left as such or implanted in the vagina with 4’,6-Diamidino-2-Phenylindole (DAPI)–labeled MDSC on SIS, or SIS without MDSC, immunosuppressed, and killed at 2–8 weeks. Immunofluorescence, hematoxylin-eosin, and Masson trichrome were applied to tissue sections. RESULTS Muscle-derived stem cell cultures on monolayer and on scaffolds differentiate into SMC, as shown by ?-smooth muscle actin (ASMA), calponin, and smoothelin markers. Muscle-derived stem cells express embryonic stem cell markers Oct-4 and nanog. Dual DAPI/ASMA fluorescence indicated MDSC conversion to SMC. Muscle-derived stem cells/SIS stimulated vaginal tissue repair, including keratin-5 positive epithelium formation and prevented fibrosis at 4 and 8 weeks. Oct-4+ putative endogenous stem cells were identified. CONCLUSION Muscle-derived stem cells/SIS implants stimulate vaginal tissue repair in the rat, thus autologous MDSC on scaffolds may be a promising approach for the treatment of vaginal repair. PMID:19622991

Ho, Matthew H.; Heydarkhan, Sanaz; Vernet, Dolores; Kovanecz, Istvan; Ferrini, Monica G.; Bhatia, Narender N.; Gonzalez-Cadavid, Nestor F.

2011-01-01

78

Epithelial stem cell mutations that promote squamous cell carcinoma metastasis.  

PubMed

Squamous cell carcinomas (SCCs) originate in stratified epithelia, with a small subset becoming metastatic. Epithelial stem cells are targets for driver mutations that give rise to SCCs, but it is unknown whether they contribute to oncogenic multipotency and metastasis. We developed a mouse model of SCC by targeting two frequent genetic mutations in human SCCs, oncogene Kras(G12D) activation and Smad4 deletion, to mouse keratin 15-expressing (K15+) stem cells. We show that transgenic mice developed multilineage tumors, including metastatic SCCs. Among cancer stem cell-enriched (CSC-enriched) populations, those with increased side population (SP) cells correlated with epithelial-mesenchymal transition (EMT) and lung metastasis. We show that microRNA-9 (miR-9) contributed to SP expansion and metastasis, and miR-9 inhibition reduced the number of SP cells and metastasis. Increased miR-9 was detected in metastatic human primary SCCs and SCC metastases, and miR-9-transduced human SCC cells exhibited increased invasion. We identified ?-catenin as a predominant miR-9 target. Increased miR-9 in human SCC metastases correlated with ?-catenin loss but not E-cadherin loss. Our results demonstrate that stem cells with Kras(G12D) activation and Smad4 depletion can produce tumors that are multipotent and susceptible to EMT and metastasis. Additionally, tumor initiation and metastatic properties of CSCs can be uncoupled, with miR-9 regulating the expansion of metastatic CSCs. PMID:23999427

White, Ruth A; Neiman, Jill M; Reddi, Anand; Han, Gangwen; Birlea, Stanca; Mitra, Doyel; Dionne, Laikuan; Fernandez, Pam; Murao, Kazutoshi; Bian, Li; Keysar, Stephen B; Goldstein, Nathaniel B; Song, Ningjing; Bornstein, Sophia; Han, Zheyi; Lu, Xian; Wisell, Joshua; Li, Fulun; Song, John; Lu, Shi-Long; Jimeno, Antonio; Roop, Dennis R; Wang, Xiao-Jing

2013-10-01

79

Epithelial stem cell mutations that promote squamous cell carcinoma metastasis  

PubMed Central

Squamous cell carcinomas (SCCs) originate in stratified epithelia, with a small subset becoming metastatic. Epithelial stem cells are targets for driver mutations that give rise to SCCs, but it is unknown whether they contribute to oncogenic multipotency and metastasis. We developed a mouse model of SCC by targeting two frequent genetic mutations in human SCCs, oncogene KrasG12D activation and Smad4 deletion, to mouse keratin 15–expressing (K15+) stem cells. We show that transgenic mice developed multilineage tumors, including metastatic SCCs. Among cancer stem cell–enriched (CSC-enriched) populations, those with increased side population (SP) cells correlated with epithelial-mesenchymal transition (EMT) and lung metastasis. We show that microRNA-9 (miR-9) contributed to SP expansion and metastasis, and miR-9 inhibition reduced the number of SP cells and metastasis. Increased miR-9 was detected in metastatic human primary SCCs and SCC metastases, and miR-9–transduced human SCC cells exhibited increased invasion. We identified ?-catenin as a predominant miR-9 target. Increased miR-9 in human SCC metastases correlated with ?-catenin loss but not E-cadherin loss. Our results demonstrate that stem cells with KrasG12D activation and Smad4 depletion can produce tumors that are multipotent and susceptible to EMT and metastasis. Additionally, tumor initiation and metastatic properties of CSCs can be uncoupled, with miR-9 regulating the expansion of metastatic CSCs. PMID:23999427

White, Ruth A.; Neiman, Jill M.; Reddi, Anand; Han, Gangwen; Birlea, Stanca; Mitra, Doyel; Dionne, Laikuan; Fernandez, Pam; Murao, Kazutoshi; Bian, Li; Keysar, Stephen B.; Goldstein, Nathaniel B.; Song, Ningjing; Bornstein, Sophia; Han, Zheyi; Lu, Xian; Wisell, Joshua; Li, Fulun; Song, John; Lu, Shi-Long; Jimeno, Antonio; Roop, Dennis R.; Wang, Xiao-Jing

2013-01-01

80

Alveolar Epithelial Cells Undergo Epithelial-to-Mesenchymal Transition in Response to Endoplasmic Reticulum Stress*  

PubMed Central

Expression of mutant surfactant protein C (SFTPC) results in endoplasmic reticulum (ER) stress in type II alveolar epithelial cells (AECs). AECs have been implicated as a source of lung fibroblasts via epithelial-to-mesenchymal transition (EMT); therefore, we investigated whether ER stress contributes to EMT as a possible mechanism for fibrotic remodeling. ER stress was induced by tunicamyin administration or stable expression of mutant (L188Q) SFTPC in type II AEC lines. Both tunicamycin treatment and mutant SFTPC expression induced ER stress and the unfolded protein response. With tunicamycin or mutant SFTPC expression, phase contrast imaging revealed a change to a fibroblast-like appearance. During ER stress, expression of epithelial markers E-cadherin and Zonula occludens-1 decreased while expression of mesenchymal markers S100A4 and ?-smooth muscle actin increased. Following induction of ER stress, we found activation of a number of pathways, including MAPK, Smad, ?-catenin, and Src kinase. Using specific inhibitors, the combination of a Smad2/3 inhibitor (SB431542) and a Src kinase inhibitor (PP2) blocked EMT with maintenance of epithelial appearance and epithelial marker expression. Similar results were noted with siRNA targeting Smad2 and Src kinase. Together, these studies reveal that induction of ER stress leads to EMT in lung epithelial cells, suggesting possible cross-talk between Smad and Src kinase pathways. Dissecting pathways involved in ER stress-induced EMT may lead to new treatment strategies to limit fibrosis. PMID:21757695

Tanjore, Harikrishna; Cheng, Dong-Sheng; Degryse, Amber L.; Zoz, Donald F.; Abdolrasulnia, Rasul; Lawson, William E.; Blackwell, Timothy S.

2011-01-01

81

Vaginal transmission of SIV: assessing infectivity and hormonal influences in macaques inoculated with cell-free and cell-associated viral stocks.  

PubMed

Cell associated and cell-free simian immunodeficiency virus (SIV) were used to investigate transmission of SIV across the vaginal mucosa of rhesus macaques. The intact vaginal epithelium was found to be a strong but penetrable barrier to cell-free SIV infection. We found that 10,000-fold more cell-free SIV was needed to infect 100% of the macaques by the vaginal route when compared to the dose needed to infect 100% by the intravenous (i.v.) route. Like cell-free SIV, cell-associated SIV was an efficient means of transmission if given by the i.v. route; as few as 2 SIV-infected peripheral blood mononuclear cells (PBMC) were infectious inoculum. However, macaques were resistant to cell-associated SIV when exposed by the vaginal route; 10,000 SIV-infected PBMC failed to infect vaginally inoculated macaques. It was also found that vaginal transmission of cell-free SIV to macaques increased during the luteal phase of the menstrual cycle compared to the follicular phase. Results with this animal model predict that cell-free human immunodeficiency virus (HIV) is likely to be the more efficient mode of HIV vaginal transmission and that susceptibility may vary during the menstrual cycle. PMID:9581895

Sodora, D L; Gettie, A; Miller, C J; Marx, P A

1998-04-01

82

mAChRs activation induces epithelial-mesenchymal transition on lung epithelial cells  

PubMed Central

Background Epithelial-mesenchymal transition (EMT) has been proposed as a mechanism in the progression of airway diseases and cancer. Here, we explored the role of acetylcholine (ACh) and the pathway involved in the process of EMT, as well as the effects of mAChRs antagonist. Methods Human lung epithelial cells were stimulated with carbachol, an analogue of ACh, and epithelial and mesenchymal marker proteins were evaluated using western blot and immunofluorescence analyses. Results Decreased E-cadherin expression and increased vimentin and ?-SMA expression induced by TGF-?1 in alveolar epithelial cell (A549) were significantly abrogated by the non-selective mAChR antagonist atropine and enhanced by the acetylcholinesterase inhibitor physostigmine. An EMT event also occurred in response to physostigmine alone. Furthermore, ChAT express and ACh release by A549 cells were enhanced by TGF-?1. Interestingly, ACh analogue carbachol also induced EMT in A549 cells as well as in bronchial epithelial cells (16HBE) in a time- and concentration-dependent manner, the induction of carbachol was abrogated by selective antagonist of M1 (pirenzepine) and M3 (4-DAMP) mAChRs, but not by M2 (methoctramine) antagonist. Moreover, carbachol induced TGF-?1 production from A549 cells concomitantly with the EMT process. Carbachol-induced EMT occurred through phosphorylation of Smad2/3 and ERK, which was inhibited by pirenzepine and 4-DAMP. Conclusions Our findings for the first time indicated that mAChR activation, perhaps via M1 and M3 mAChR, induced lung epithelial cells to undergo EMT and provided insights into novel therapeutic strategies for airway diseases in which lung remodeling occurs. PMID:24678619

2014-01-01

83

CUX1/Wnt signaling regulates Epithelial Mesenchymal Transition in EBV infected epithelial cells  

SciTech Connect

Idiopathic pulmonary fibrosis (IPF) is a refractory and lethal interstitial lung disease characterized by alveolar epithelial cells apoptosis, fibroblast proliferation and extra-cellular matrix protein deposition. EBV, localised to alveolar epithelial cells of pulmonary fibrosis patients is associated with a poor prognosis. A strategy based on microarray-differential gene expression analysis to identify molecular drivers of EBV-associated lung fibrosis was utilized. Alveolar epithelial cells were infected with EBV to identify genes whose expression was altered following TGF{beta}1-mediated lytic phase. EBV lytic reactivation by TGF{beta}1 drives a selective alteration in CUX1 variant (a) (NCBI accession number NM{sub 1}81552) expression, inducing activation of non-canonical Wnt pathway mediators, implicating it in Epithelial Mesenchymal Transition (EMT), the molecular event underpinning scar production in tissue fibrosis. The role of EBV in EMT can be attenuated by antiviral strategies and inhibition of Wnt signaling by using All-Trans Retinoic Acids (ATRA). Activation of non-canonical Wnt signaling pathway by EBV in epithelial cells suggests a novel mechanism of EMT via CUX1 signaling. These data present a framework for further description of the link between infectious agents and fibrosis, a significant disease burden.

Malizia, Andrea P.; Lacey, Noreen [Clinical Research Centre, School of Medicine and Medical Science, University College Dublin. 21, Nelson Street. Dublin, 7. Ireland (Ireland)] [Clinical Research Centre, School of Medicine and Medical Science, University College Dublin. 21, Nelson Street. Dublin, 7. Ireland (Ireland); Walls, Dermot [School of Biotechnology, Dublin City University. Dublin, 9. Ireland (Ireland)] [School of Biotechnology, Dublin City University. Dublin, 9. Ireland (Ireland); Egan, Jim J. [Advanced Lung Disease and Lung Transplant Program, Mater Misericordiae University Hospital. 44, Eccles Street. Dublin, 7. Ireland (Ireland)] [Advanced Lung Disease and Lung Transplant Program, Mater Misericordiae University Hospital. 44, Eccles Street. Dublin, 7. Ireland (Ireland); Doran, Peter P., E-mail: peter.doran@ucd.ie [Clinical Research Centre, School of Medicine and Medical Science, University College Dublin. 21, Nelson Street. Dublin, 7. Ireland (Ireland)

2009-07-01

84

Mechanisms of lead transport in two intestinal epithelial cell lines  

E-print Network

through the intestinal epithelium. Using two established intestinal epithelial cell lines, IEC-6 and Caco-2, we studied the effects of temperature, metabolic inhibitors, sulfhydryl group modifiers, blocking of integrins with the tripeptide Arginine...

Dekaney, Christopher Matthew

1996-01-01

85

[Epithelial cells as sentinels in mucosal immune barrier].  

PubMed

The mucosal surface of the body is exposed to a vast array of exogenous antigens and microorganisms. Epithelial cells evoke minimal immune response to food ingredients and commensal bacteria, while they release an array of antimicrobial peptides and CXC chemokines in response to bacterial invasion or inflammatory stimuli. The mucosal antigens are transported from the gut lumen to organized lymphoid follicles by specialized epithelial M cells residing in follicle-associated epithelium (FAE). An alternative pathway of antigen uptake with neonatal Fc receptor (FcRn) is also reported. Furthermore, intestinal dendritic cells underneath epithelium directly take up luminal antigens, where epithelial fractalkine expression plays a critical role in the guidance of dendrite extrusion. Epithelial cells express polymeric Ig receptor (pIgR) that is essential for the luminal secretion of dimeric IgA produced in the lamina propria. Furthermore, soluble factors released by mucosal epithelial cells condition dendritic cells, which in turn promote Th2 response. These multiple lines of evidence clearly suggest the significant role of epithelial cells at the front line of mucosal immune defense. PMID:16505599

Hase, Koji; Ohno, Hiroshi

2006-02-01

86

Cell volume regulation in epithelial physiology and cancer  

PubMed Central

The physiological function of epithelia is transport of ions, nutrients, and fluid either in secretory or absorptive direction. All of these processes are closely related to cell volume changes, which are thus an integrated part of epithelial function. Transepithelial transport and cell volume regulation both rely on the spatially and temporally coordinated function of ion channels and transporters. In healthy epithelia, specific ion channels/transporters localize to the luminal and basolateral membranes, contributing to functional epithelial polarity. In pathophysiological processes such as cancer, transepithelial and cell volume regulatory ion transport are dys-regulated. Furthermore, epithelial architecture and coordinated ion transport function are lost, cell survival/death balance is altered, and new interactions with the stroma arise, all contributing to drug resistance. Since altered expression of ion transporters and channels is now recognized as one of the hallmarks of cancer, it is timely to consider this especially for epithelia. Epithelial cells are highly proliferative and epithelial cancers, carcinomas, account for about 90% of all cancers. In this review we will focus on ion transporters and channels with key physiological functions in epithelia and known roles in the development of cancer in these tissues. Their roles in cell survival, cell cycle progression, and development of drug resistance in epithelial cancers will be discussed. PMID:24009588

Pedersen, Stine F.; Hoffmann, Else K.; Novak, Ivana

2013-01-01

87

Specific glycosphingolipids mediate epithelial-to-mesenchymal transition of human and mouse epithelial cell lines  

PubMed Central

Epithelial-to-mesenchymal cell transition (EMT) is a basic process in embryonic development and cancer progression. The present study demonstrates involvement of glycosphingolipids (GSLs) in the EMT process by using normal murine mammary gland NMuMG, human normal bladder HCV29, and human mammary carcinoma MCF7 cells. Treatment of these cells with d-threo-1-(3?,4?-ethylenedioxy)phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (EtDO-P4), the glucosylceramide (GlcCer) synthase inhibitor, which depletes all GSLs derived from GlcCer, (i) down-regulated expression of a major epithelial cell marker, E-cadherin; (ii) up-regulated expression of mesenchymal cell markers vimentin, fibronectin, and N-cadherin; (iii) enhanced haptotactic cell motility; and (iv) converted epithelial to fibroblastic morphology. These changes also were induced in these cell lines with TGF-?, which is a well-documented EMT inducer. A close association between specific GSL changes and EMT processes induced by EtDO-P4 or TGF-? is indicated by the following findings: (i) The enhanced cell motility of EtDO-P4-treated cells was abrogated by exogenous addition of GM2 or Gg4, but not GM1 or GM3, in all 3 cell lines. (ii) TGF-? treatment caused changes in the GSL composition of cells. Notably, Gg4 or GM2 was depleted or reduced in NMuMG, and GM2 was reduced in HCV29. (iii) Exogenous addition of Gg4 inhibited TGF-?-induced changes of morphology, motility, and levels of epithelial and mesenchymal markers. These observations indicate that specific GSLs play key roles in defining phenotypes associated with EMT and its reverse process (i.e., mesenchymal-to-epithelial transition). PMID:19380734

Guan, Feng; Handa, Kazuko; Hakomori, Sen-itiroh

2009-01-01

88

Proteoglycan Synthesis and Golgi Organization in Polarized Epithelial Cells  

PubMed Central

A large number of complex glycosylation mechanisms take place in the Golgi apparatus. In epithelial cells, glycosylated protein molecules are transported to both the apical and the basolateral surface domains. Although the prevailing view is that the Golgi apparatus provides the same lumenal environment for glycosylation of apical and basolateral cargo proteins, there are indications that proteoglycans destined for the two opposite epithelial surfaces are exposed to different conditions in transit through the Golgi apparatus. We will here review data relating proteoglycan and glycoprotein synthesis to characteristics of the apical and basolateral secretory pathways in epithelial cells. PMID:22941419

Akslen-Hoel, Linn K.; Grøndahl, Frøy; Kjos, Ingrid; Prydz, Kristian

2012-01-01

89

Interaction of bacteria and bacterial toxins with intestinal epithelial cells  

Microsoft Academic Search

The epithelium of the intestinal tract is a key barrier between the external environment and the internal body environment.\\u000a Intestinal epithelial cells are targets for luminal bacteria and viruses and must discriminate between pathogenic and nonpathogenic\\u000a commensal organisms. Pathogenic bacteria and their secreted products influence epithelial cell function and induce diarrhea\\u000a by numerous mechanisms that range from an effect on

Asma Nusrat; Shanthi V. Sitaraman; Andrew Neish

2001-01-01

90

A new culture medium for human skin epithelial cells  

Microsoft Academic Search

Summary  A new culture medium, NCTC 168, has been designed for human skin epithelial cells. This medium formulation was developed,\\u000a by combining and testing at various concentrations, components of media NCTC 135 and 163, since a 1?1 mixture of these two\\u000a media with 10% horse serum supplement was found to promote epithelial cell outgrowth from human skin explants. The buffer\\u000a system

Floyd M. Price; Richard F. Camalier; Raymond Gantt; William G. Taylor; Gilbert H. Smith; Katherine K. Sanford

1980-01-01

91

Effects of feminine hygiene products on the vaginal mucosal biome  

PubMed Central

Background Over-the-counter (OTC) feminine hygiene products come with little warning about possible side effects. This study evaluates in-vitro their effects on Lactobacillus crispatus, which is dominant in the normal vaginal microbiota and helps maintain a healthy mucosal barrier essential for normal reproductive function and prevention of sexually transmitted infections and gynecologic cancer. Methods A feminine moisturizer (Vagisil), personal lubricant, and douche were purchased OTC. A topical spermicide (nonoxynol-9) known to alter the vaginal immune barrier was used as a control. L. crispatus was incubated with each product for 2 and 24h and then seeded on agar for colony forming units (CFU). Human vaginal epithelial cells were exposed to products in the presence or absence of L. crispatus for 24h, followed by epithelium-associated CFU enumeration. Interleukin-8 was immunoassayed and ANOVA was used for statistical evaluation. Results Nonoxynol-9 and Vagisil suppressed Lactobacillus growth at 2h and killed all bacteria at 24h. The lubricant decreased bacterial growth insignificantly at 2h but killed all at 24h. The douche did not have a significant effect. At full strength, all products suppressed epithelial viability and all, except the douche, suppressed epithelial-associated CFU. When applied at non-toxic dose in the absence of bacteria, the douche and moisturizer induced an increase of IL-8, suggesting a potential to initiate inflammatory reaction. In the presence of L. crispatus, the proinflammatory effects of the douche and moisturizer were countered, and IL-8 production was inhibited in the presence of the other products. Conclusion Some OTC vaginal products may be harmful to L. crispatus and alter the vaginal immune environment. Illustrated through these results, L. crispatus is essential in the preservation of the function of vaginal epithelial cells in the presence of some feminine hygiene products. More research should be invested toward these products before they are placed on the market. PMID:24009546

Fashemi, Bisiayo; Delaney, Mary L.; Onderdonk, Andrew B.; Fichorova, Raina N.

2013-01-01

92

Characterization of epithelial cell shedding from human small intestine  

Microsoft Academic Search

Intestinal epithelial cells migrate from the base of the crypt to the villi where they are shed. However, little is known about the cell shedding process. We have studied the role of apoptosis and wound healing mechanisms in cell shedding from human small intestinal epithelium. A method preparing paraffin sections of human small intestine that preserves cell shedding was developed.

Tim F Bullen; Sharon Forrest; Fiona Campbell; Andrew R Dodson; Michael J Hershman; D Mark Pritchard; Jerrold R Turner; Marshall H Montrose; Alastair J M Watson

2006-01-01

93

Can Vaginal Cancer Be Prevented?  

MedlinePLUS

... kidneys, and several other organs. Find and treat pre-cancerous conditions Most vaginal squamous cell cancers are believed to start out as pre-cancerous changes, called vaginal intraepithelial neoplasia or VAIN . ...

94

Epimorphin Functions as a Key Morphoregulator for Mammary Epithelial Cells  

SciTech Connect

Hepatocyte growth factor (HGF) and EGF have been reported to promote branching morphogenesis of mammary epithelial cells. We now show that it is epimorphin that is primarily responsible for this phenomenon. In vivo, epimorphin was detected in the stromal compartment but not in lumenal epithelial cells of the mammary gland; in culture, however, a subpopulation of mammary epithelial cells produced significant amounts of epimorphin. When epimorphin-expressing epithelial cell clones were cultured in collagen gels they displayed branching morphogenesis in the presence of HGF, EGF, keratinocyte growth factor, or fibroblast growth factor, a process that was inhibited by anti-epimorphin but not anti-HGF antibodies. The branch length, however, was roughly proportional to the ability of the factors to induce growth. Accordingly, epimorphin-negative epithelial cells simply grew in a cluster in response to the growth factors and failed to branch. When recombinant epimorphin was added to these collagen gels, epimorphin-negative cells underwent branching morphogenesis. The mode of action of epimorphin on morphogenesis of the gland, however, was dependent on how it was presented to the mammary cells. If epimorphin was overexpressed in epimorphin-negative epithelial cells under regulation of an inducible promoter or was allowed to coat the surface of each epithelial cell in a nonpolar fashion, the cells formed globular, alveoli-like structures with a large central lumen instead of branching ducts. This process was enhanced also by addition of HGF, EGF, or other growth factors and was inhibited by epimorphin antibodies. These results suggest that epimorphin is the primary morphogen in the mammary gland but that growth factors are necessary to achieve the appropriate cell numbers for the resulting morphogenesis to be visualized.

Hirai, H.; Lochter, A.; Galosy, S.; Koshida, S.; Niwa, S.; Bissell, M.J.

1997-10-13

95

Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties  

PubMed Central

The epithelial compartment of the human breast comprises two distinct lineages: the luminal epithelial and the myoepithelial lineage. We have shown previously that a subset of the luminal epithelial cells could convert to myoepithelial cells in culture signifying the possible existence of a progenitor cell. We therefore set out to identify and isolate the putative precursor in the luminal epithelial compartment. Using cell surface markers and immunomagnetic sorting, we isolated two luminal epithelial cell populations from primary cultures of reduction mammoplasties. The major population coexpresses sialomucin (MUC+) and epithelial-specific antigen (ESA+) whereas the minor population has a suprabasal position and expresses epithelial specific antigen but no sialomucin (MUC?/ESA+). Two cell lines were further established by transduction of the E6/E7 genes from human papilloma virus type 16. Both cell lines maintained a luminal epithelial phenotype as evidenced by expression of the tight junction proteins, claudin-1 and occludin, and by generation of a high transepithelial electrical resistance on semipermeable filters. Whereas in clonal cultures, the MUC+/ESA+ epithelial cell line was luminal epithelial restricted in its differentiation repertoire, the suprabasal-derived MUC?/ESA+ epithelial cell line was able to generate itself as well as MUC+/ESA+ epithelial cells and Thy-1+/?-smooth muscle actin+ (ASMA+) myoepithelial cells. The MUC?/ESA+ epithelial cell line further differed from the MUC+/ESA+ epithelial cell line by the expression of keratin K19, a feature of a subpopulation of epithelial cells in terminal duct lobular units in vivo. Within a reconstituted basement membrane, the MUC+/ESA+ epithelial cell line formed acinus-like spheres. In contrast, the MUC?/ESA+ epithelial cell line formed elaborate branching structures resembling uncultured terminal duct lobular units both by morphology and marker expression. Similar structures were obtained by inoculating the extracellular matrix-embedded cells subcutaneously in nude mice. Thus, MUC?/ESA+ epithelial cells within the luminal epithelial lineage may function as precursor cells of terminal duct lobular units in the human breast. PMID:11914275

Gudjonsson, Thorarinn; Villadsen, René; Nielsen, Helga Lind; Rønnov-Jessen, Lone; Bissell, Mina J.; Petersen, Ole William

2002-01-01

96

Regulated Mucin Secretion from Airway Epithelial Cells  

PubMed Central

Secretory epithelial cells of the proximal airways synthesize and secrete gel-forming polymeric mucins. The secreted mucins adsorb water to form mucus that is propelled by neighboring ciliated cells, providing a mobile barrier which removes inhaled particles and pathogens from the lungs. Several features of the intracellular trafficking of mucins make the airway secretory cell an interesting comparator for the cell biology of regulated exocytosis. Polymeric mucins are exceedingly large molecules (up to 3?×?106?Da per monomer) whose folding and initial polymerization in the ER requires the protein disulfide isomerase Agr2. In the Golgi, mucins further polymerize to form chains and possibly branched networks comprising more than 20 monomers. The large size of mucin polymers imposes constraints on their packaging into transport vesicles along the secretory pathway. Sugar side chains account for >70% of the mass of mucins, and their attachment to the protein core by O-glycosylation occurs in the Golgi. Mature polymeric mucins are stored in large secretory granules ?1??m in diameter. These are translocated to the apical membrane to be positioned for exocytosis by cooperative interactions among myristoylated alanine-rich C kinase substrate, cysteine string protein, heat shock protein 70, and the cytoskeleton. Mucin granules undergo exocytic fusion with the plasma membrane at a low basal rate and a high stimulated rate. Both rates are mediated by a regulated exocytic mechanism as indicated by phenotypes in both basal and stimulated secretion in mice lacking Munc13-2, a sensor of the second messengers calcium and diacylglycerol (DAG). Basal secretion is induced by low levels of activation of P2Y2 purinergic and A3 adenosine receptors by extracellular ATP released in paracrine fashion and its metabolite adenosine. Stimulated secretion is induced by high levels of the same ligands, and possibly by inflammatory mediators as well. Activated receptors are coupled to phospholipase C by Gq, resulting in the generation of DAG and of IP3 that releases calcium from apical ER. Stimulated secretion requires activation of the low affinity calcium sensor Synaptotagmin-2, while a corresponding high affinity calcium sensor in basal secretion is not known. The core exocytic machinery is comprised of the SNARE proteins VAMP8, SNAP23, and an unknown Syntaxin protein, together with the scaffolding protein Munc18b. Common and distinct features of this exocytic system in comparison to neuroendocrine cells and neurons are highlighted. PMID:24065956

Adler, Kenneth B.; Tuvim, Michael J.; Dickey, Burton F.

2013-01-01

97

BMP4 induces an epithelial-mesenchymal transition-like response in adult airway epithelial cells.  

PubMed

Bone morphogenetic proteins (BMPs) are critical morphogens and play key roles in epithelial-mesenchymal transitions (EMTs) during embryogenesis. BMP4 is required for early mesoderm formation and also regulates morphogenesis and epithelial cell differentiation in developing lungs. While, BMP signalling pathways are activated during lung inflammation in adult mice, the role of BMPs in adult lungs remains unclear. We hypothesised that BMPs are involved in remodelling processes in adult lungs and investigated effects of BMP4 on airway epithelial cells. BEAS-2B cell growth decreased in the presence of BMP4. Cells acquired a mesenchymal-like morphology with downregulation of adherens junction proteins and increased cell motility. Changes in extracellular matrix-related gene expression occurred with BMP4 treatment including upregulation of collagens, fibronectin and tenascin C. We conclude that the activity of BMP4 in EMT during development is recapitulated in adult airway epithelial cells and suggest that this activity may contribute to inflammation and fibrosis in vivo. PMID:18365875

Molloy, Emer L; Adams, Aine; Moore, J Bernadette; Masterson, Joanne C; Madrigal-Estebas, Laura; Mahon, Bernard P; O'Dea, Shirley

2008-02-01

98

The Epithelial Cell in Lung Health and Emphysema Pathogenesis  

PubMed Central

Cigarette smoking is the primary cause of the irreversible lung disease emphysema. Historically, inflammatory cells such as macrophages and neutrophils have been studied for their role in emphysema pathology. However, recent studies indicate that the lung epithelium is an active participant in emphysema pathogenesis and plays a critical role in the lung’s response to cigarette smoke. Tobacco smoke increases protease production and alters cytokine expression in isolated epithelial cells, suggesting that these cells respond potently even in the absence of a complete inflammatory program. Tobacco smoke also acts as an immunosuppressant, reducing the defense function of airway epithelial cells and enhancing colonization of the lower airways. Thus, the paradigm that emphysema is strictly an inflammatory-cell based disease is shifting to consider the involvement of resident epithelial cells. Here we review the role of epithelial cells in lung development and emphysema. To better understand tobacco-epithelial interactions we performed microarray analyses of RNA from human airway epithelial cells exposed to smoke extract for 24 hours. These studies identified differential regulation of 425 genes involved in diverse biological processes, such as apoptosis, immune function, cell cycle, signal transduction, proliferation, and antioxidants. Some of these genes, including VEGF, glutathione peroxidase, IL-13 receptor, and cytochrome P450, have been previously reported to be altered in the lungs of smokers. Others, such as pirin, cathepsin L, STAT1, and BMP2, are shown here for the first time to have a potential role in smoke-associated injury. These data broaden our understanding of the importance of epithelial cells in lung health and cigarette smoke-induced emphysema. PMID:19662102

Mercer, Becky A.; Lemaître, Vincent; Powell, Charles A.; D’Armiento, Jeanine

2009-01-01

99

DA-6034 Induces [Ca2+]i Increase in Epithelial Cells  

PubMed Central

DA-6034, a eupatilin derivative of flavonoid, has shown potent effects on the protection of gastric mucosa and induced the increases in fluid and glycoprotein secretion in human and rat corneal and conjunctival cells, suggesting that it might be considered as a drug for the treatment of dry eye. However, whether DA-6034 induces Ca2+ signaling and its underlying mechanism in epithelial cells are not known. In the present study, we investigated the mechanism for actions of DA-6034 in Ca2+ signaling pathways of the epithelial cells (conjunctival and corneal cells) from human donor eyes and mouse salivary gland epithelial cells. DA-6034 activated Ca2+-activated Cl- channels (CaCCs) and increased intracellular calcium concentrations ([Ca2+]i) in primary cultured human conjunctival cells. DA-6034 also increased [Ca2+]i in mouse salivary gland cells and human corneal epithelial cells. [Ca2+]i increase of DA-6034 was dependent on the Ca2+ entry from extracellular and Ca2+ release from internal Ca2+ stores. Interestingly, these effects of DA-6034 were related to ryanodine receptors (RyRs) but not phospholipase C/inositol 1,4,5-triphosphate (IP3) pathway and lysosomal Ca2+ stores. These results suggest that DA-6034 induces Ca2+ signaling via extracellular Ca2+ entry and RyRs-sensitive Ca2+ release from internal Ca2+ stores in epithelial cells. PMID:24757369

Yang, Yu-Mi; Park, Soonhong; Ji, HyeWon; Kim, Tae-im; Kim, Eung Kweon; Kang, Kyung Koo

2014-01-01

100

Epithelial progenitor 1, a novel factor associated with epithelial cell growth and differentiation  

PubMed Central

The growth and renewal of epithelial tissue is a highly orchestrated and tightly regulated process occurring in different tissue types under a variety of circumstances. We have been studying the process of pancreatic regeneration in mice. We have identified a cell surface protein, named EP1, which is expressed on the duct epithelium during pancreatic regeneration. Whereas it is not detected in the pancreas of normal mice, it is found in the intestinal epithelium of normal adult mice, as well as during pancreatic repair following cerulein-induced destruction of the acinar tissue. The distinctive situations in which EP1 is expressed, all of which share in common epithelial cell growth in the gastrointestinal tract, suggest that EP1 is involved in the growth and renewal of epithelial tissues in both the intestine and the pancreas. PMID:20960269

Kritzik, Marcie R.; Lago, Cory U.; Kayali, Ayse G.; Arnaud-Dabernat, Sandrine; Liu, Guoxun; Zhang, You-Qing; Hua, Hong; Fox, Howard S.

2014-01-01

101

Probiotics promote endocytic allergen degradation in gut epithelial cells  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Knockdown of A20 compromised the epithelial barrier function. Black-Right-Pointing-Pointer The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Black-Right-Pointing-Pointer Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. Black-Right-Pointing-Pointer Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

Song, Chun-Hua [Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou (China)] [Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou (China); Liu, Zhi-Qiang [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China) [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Huang, Shelly [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada)] [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Zheng, Peng-Yuan, E-mail: medp7123@126.com [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China)] [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Yang, Ping-Chang, E-mail: yangp@mcmaster.ca [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada)] [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada)

2012-09-14

102

Intestinal Epithelial Cells Secrete Exosome-like Vesicles  

Microsoft Academic Search

Background & Aims: Given the observations that intestinal epithelial cells (IECs) can present antigens to CD4+ T lymphocytes and that professional antigen-presenting cells secrete exosomes (antigen-presenting vesicles), we hypothesized that IECs may secrete exosomes carrying molecules implicated in antigen presentation, which may be able to cross the basement membrane and convey immune information to noncontiguous immune cells. Methods: Human IEC

Guillaume Van Niel; Graça Raposo; Céline Candalh; Muriel Boussac; Robert Hershberg; Nadine Cerf-Bensussan; Martine Heyman

2001-01-01

103

Cholera toxin stimulation of human mammary epithelial cells in culture  

SciTech Connect

Addition of cholera toxin to human mammary epithelial cultures derived from reduction mammoplasties and primary carcinomas greatly stimulated cell growth and increased the number of times the cells could be successfully subcultured. Other agents known to increase intracellular cAMP levels were also growth stimulatory. The increased growth potential conferred by cholera toxin enhances the usefulness of this cell culture system.

Stampfer, M.R.

1982-06-01

104

Phototoxic aptamers selectively enter and kill epithelial cancer cells  

Microsoft Academic Search

The majority of cancers arise from malignant epithe- lial cells. We report the design of synthetic oligo- nucleotides (aptamers) that are only internalized by epithelial cancer cells and can be precisely acti- vated by light to kill such cells. Specifically, photo- toxic DNA aptamers were selected to bind to unique short O-glycan-peptide signatures on the surface of breast, colon, lung,

Catia S. M. Ferreira; Melissa C. Cheung; Sotiris Missailidis; Stuart Bisland; Jean Gariepy

2009-01-01

105

Altered microRNA expression profile during epithelial wound repair in bronchial epithelial cells  

PubMed Central

Background Airway epithelial cells provide a protective barrier against environmental particles including potential pathogens. Epithelial repair in response to tissue damage is abnormal in asthmatic airway epithelium in comparison to the repair of normal epithelium after damage. The complex mechanisms coordinating the regulation of the processes involved in wound repair requires the phased expression of networks of genes. Small non-coding RNA molecules termed microRNAs (miRNAs) play a critical role in such coordinated regulation of gene expression. We aimed to establish if the phased expression of specific miRNAs is correlated with the repair of mechanically induced damage to the epithelium. Methods To investigate the possible involvement of miRNA in epithelial repair, we analyzed miRNA expression profiles during epithelial repair in a cell culture model using TaqMan-based quantitative real-time PCR in a TaqMan Low Density Array format. The expression of 754 miRNA genes at seven time points in a 48-hour period during the wound repair process was profiled using the bronchial epithelial cell line 16HBE14o- growing in monolayer. Results The expression levels of numerous miRNAs were found to be altered during the wound repair process. These miRNA genes were clustered into 3 different patterns of expression that correlate with the further regulation of several biological pathways involved in wound repair. Moreover, it was observed that expression of some miRNA genes were significantly altered only at one time point, indicating their involvement in a specific stage of the epithelial wound repair. Conclusions In summary, miRNA expression is modulated during the normal repair processes in airway epithelium in vitro suggesting a potential role in regulation of wound repair. PMID:24188858

2013-01-01

106

Change in cell shape is required for matrix metalloproteinase-induced epithelial-mesenchymal transition of mammary epithelial cells  

SciTech Connect

Cell morphology dictates response to a wide variety of stimuli, controlling cell metabolism, differentiation, proliferation, and death. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells acquire migratory characteristics, and in the process convert from a 'cuboidal' epithelial structure into an elongated mesenchymal shape. We had shown previously that matrix metalloproteinase-3 (MMP3) can stimulate EMT of cultured mouse mammary epithelial cells through a process that involves increased expression of Rac1b, a protein that stimulates alterations in cytoskeletal structure. We show here that cells treated with MMP-3 or induced to express Rac1b spread to cover a larger surface, and that this induction of cell spreading is a requirement of MMP-3/Rac1b-induced EMT. We find that limiting cell spreading, either by increasing cell density or by culturing cells on precisely defined micropatterned substrata, blocks expression of characteristic markers of EMT in cells treated with MMP-3. These effects are not caused by general disruptions in cell signaling pathways, as TGF-{beta}-induced EMT is not affected by similar limitations on cell spreading. Our data reveal a previously unanticipated cell shape-dependent mechanism that controls this key phenotypic alteration and provide insight into the distinct mechanisms activated by different EMT-inducing agents.

Nelson, Celeste M.; Khauv, Davitte; Bissell, Mina J.; Radisky, Derek C.

2008-06-26

107

Porphyromonas gingivalis Fimbriae Bind to Cytokeratin of Epithelial Cells  

PubMed Central

The adherence of Porphyromonas gingivalis to host cells is likely a prerequisite step in the pathogenesis of P. gingivalis-induced periodontal disease. P. gingivalis binds to and invades epithelial cells, and fimbriae are shown to be involved in this process. Little is known regarding epithelial receptor(s) involved in binding of P. gingivalis fimbriae. Using an overlay assay with purified P. gingivalis fimbriae as a probe, two major epithelial cell proteins with masses of 50 and 40 kDa were identified by immunoblotting with fimbria-specific antibodies. Iodinated purified fimbriae also bound to the same two epithelial cell proteins. An affinity chromatography technique was utilized to isolate and purify the epithelial components to which P. gingivalis fimbriae bind. Purified fimbriae were coupled to CNBr-activated Sepharose-4B, and the solubilized epithelial cell extract proteins bound to the immobilized fimbriae were isolated from the column. A major 50-kDa component and a minor 40-kDa component were purified and could be digested with trypsin, suggesting that they were proteins. These affinity-eluted 50- and 40-kDa proteins were then subjected to amino-terminal sequencing, and no sequence could be determined, suggesting that these proteins have blocked amino-terminal residues. CNBr digestion of the 50-kDa component resulted in an internal sequence homologous to that of Keratin I molecules. Further evidence that P. gingivalis fimbriae bind to cytokeratin molecule(s) comes from studies showing that multicytokeratin rabbit polyclonal antibodies cross-react with the affinity-purified 50-kDa epithelial cell surface component. Also, binding of purified P. gingivalis fimbriae to epithelial components can be inhibited in an overlay assay by multicytokeratin rabbit polyclonal antibodies. Furthermore, we showed that biotinylated purified fimbriae bind to purified human epidermal keratin in an overlay assay. These studies suggest that the surface-accessible epithelial cytokeratins may act as receptor(s) for P. gingivalis fimbriae. We hypothesize that adherence of P. gingivalis fimbriae to cytokeratin may be important for colonization of oral mucous membranes and possibly also for activation of epithelial cells. PMID:11748168

Sojar, Hakimuddin T.; Sharma, Ashu; Genco, Robert J.

2002-01-01

108

Differentiation of porcine mesenchymal stem cells into epithelial cells as a potential therapeutic application to facilitate epithelial regeneration.  

PubMed

Epithelial denudation is one of the characteristics of chronic asthma. To restore its functions, the airway epithelium has to rapidly repair the injuries and regenerate its structure and integrity. Mesenchymal stem cells (MSCs) have the ability to differentiate into many cell lineages. However, the differentiation of MSCs into epithelial cells has not been fully studied. Here, we examined the differentiation of MSCs into epithelial cells using three different media compositions with various growth supplementations. The MSCs were isolated from porcine bone marrow by density gradient centrifugation. The isolated MSCs were CD11(-) CD34(-) CD45(-) CD44(+) CD90(+) and CD105(+) by immunostaining and flow cytometry. MSCs were stimulated with EpiGRO (Millipore), BEpiCM (ScienCell) and AECGM (PromoCell) media for 5 and 10?days, and epithelial differentiation was assessed by qPCR (keratin 14, 18 and EpCAM), fluorometry (cytokeratin 7-8, cytokeratin 14-15-16-19 and EpCAM), western blot analysis (pancytokeratin, EpCAM) and flow cytometry (cytokeratin 7-8, cytokeratin 14-15-16-19 and EpCAM). The functional marker MUC1 was also assessed after 10?days of air-liquid interface (ALI) culture in optimized media. Cells cultured in BEpiCM containing fibroblast growth factor and prostaglandin E2 showed the highest expression of the epithelial markers: CK7-8 (85.90%); CK-14-15-16-19 (10.14%); and EpCAM (64.61%). The cells also expressed functional marker MUC1 after ALI culture. The differentiated MSCs when cultured in BEpiCM medium ex vivo in a bioreactor on a decellularized trachea for 10?days retained the epithelial-like phenotype. In conclusion, porcine bone marrow-derived MSCs demonstrate commitment to the epithelial lineage and might be a potential therapy for facilitating the repair of denuded airway epithelium. Copyright © 2013 John Wiley & Sons, Ltd. PMID:23696537

Kokubun, Kelsey; Pankajakshan, Divya; Kim, Min-Jung; Agrawal, Devendra K

2013-05-21

109

Epithelial Cell Adhesion Molecule (Ep-CAM) Modulates Cell-Cell Interactions Mediated by Classic Cadherins  

Microsoft Academic Search

The contribution of noncadherin-type, Ca 2 1 - independent cell-cell adhesion molecules to the organi- zation of epithelial tissues is, as yet, unclear. A homo- philic, epithelial Ca 2 1 -independent adhesion molecule (Ep-CAM) is expressed in most epithelia, benign or malignant proliferative lesions, or during embryogene- sis. Here we demonstrate that ectopic Ep-CAM, when expressed in cells interconnected by

Sergey V. Litvinov; Maarten Balzar; Manon J. Winter; Hellen A. M. Bakker; Inge H. Briaire-de Bruijn; Frans Prins; Gert Jan Fleuren; Sven O. Warnaar

1997-01-01

110

Cell-adhesion molecule uvomorulin is localized in the intermediate junctions of adult intestinal epithelial cells  

Microsoft Academic Search

Uvomorulin is a cell-adhesion molecule implicated in the compaction process of mouse preimplantation embryos and the aggregation of embryonal carcinoma cells. A rabbit antiserum against purified uvomorulin also reacts with epithelial cells of various adult tissues. In this study, we investigated the localization of uvomorulin on adult intestinal epithelial cells using electron micro- scopic analyses. Uvomorulin was shown to exhibit

K. Boller; D. VESTWEBER; R. KEMLER

1985-01-01

111

Increased epithelial stem cell traits in advanced endometrial endometrioid carcinoma  

Microsoft Academic Search

BACKGROUND: It has been recognized cancer cells acquire characters reminiscent of those of normal stem cells, and the degree of stem cell gene expression correlates with patient prognosis. Lgr5(+) or CD133(+) epithelial stem cells (EpiSCs) have recently been identified and these cells are susceptible to neoplastic transformation. It is unclear, however, whether genes enriched in EpiSCs also contribute in tumor

Shing-Jyh Chang; Tao-Yeuan Wang; Chan-Yen Tsai; Tzu-Fang Hu; Margaret Dah-Tsyr Chang; Hsei-Wei Wang

2009-01-01

112

Stem Cell Reports Single-Cell Analysis of Proxy Reporter Allele-Marked Epithelial Cells  

E-print Network

Stem Cell Reports Resource Single-Cell Analysis of Proxy Reporter Allele-Marked Epithelial Cells Establishes Intestinal Stem Cell Hierarchy Ning Li,1 Maryam Yousefi,1,5 Angela Nakauka-Ddamba,1 Rajan Jain,2 development of targeted murine reporter alleles as proxies for intestinal stem cell activity has led

Jensen, Shane T.

113

Nipah Virus Entry and Egress from Polarized Epithelial Cells  

PubMed Central

Highly pathogenic Nipah virus (NiV) infections are transmitted via airway secretions and urine, commonly via the respiratory route. Epithelial surfaces represent important replication sites in both primary and systemic infection phases. NiV entry and spread from polarized epithelial cells therefore determine virus entry and dissemination within a new host and influence virus shedding via mucosal surfaces in the respiratory and urinary tract. To date, there is no knowledge regarding the entry and exit sites of NiV in polarized epithelial cells. In this report, we show for the first time that NiV can infect polarized kidney epithelial cells (MDCK) from both cell surfaces, while virus release is primarily restricted to the apical plasma membrane. Substantial amounts of basolateral infectivity were detected only after infection with high virus doses, at time points when the integrity of the cell monolayer was largely disrupted as a result of cell-to-cell fusion. Confocal immunofluorescence analyses of envelope protein distribution at early and late infection stages suggested that apical virus budding is determined by the polarized sorting of the NiV matrix protein, M. Studies with stably M-expressing and with monensin-treated cells furthermore demonstrated that M protein transport is independent from the glycoproteins, implying that the M protein possesses an intrinsic apical targeting signal. PMID:23283941

Lamp, Boris; Dietzel, Erik; Kolesnikova, Larissa; Sauerhering, Lucie; Erbar, Stephanie; Weingartl, Hana

2013-01-01

114

AN IN VITRO MODEL FOR MURINE URETERIC EPITHELIAL CELLS  

EPA Science Inventory

This report presents a model developed to study growth and differentiation of primary cultures of ureteric epithelial cells from embryonic C57BL/6N mouse urinary tracts. Single cells were resuspended in medium and plated onto transwells coated with collagen IV and laminin. Basa...

115

Effect of Helicobacter pylori on gastric epithelial cells  

PubMed Central

The gastrointestinal epithelium has cells with features that make them a powerful line of defense in innate mucosal immunity. Features that allow gastrointestinal epithelial cells to contribute in innate defense include cell barrier integrity, cell turnover, autophagy, and innate immune responses. Helicobacter pylori (H. pylori) is a spiral shape gram negative bacterium that selectively colonizes the gastric epithelium of more than half of the world’s population. The infection invariably becomes persistent due to highly specialized mechanisms that facilitate H. pylori’s avoidance of this initial line of host defense as well as adaptive immune mechanisms. The host response is thus unsuccessful in clearing the infection and as a result becomes established as a persistent infection promoting chronic inflammation. In some individuals the associated inflammation contributes to ulcerogenesis or neoplasia. H. pylori has an array of different strategies to interact intimately with epithelial cells and manipulate their cellular processes and functions. Among the multiple aspects that H. pylori affects in gastric epithelial cells are their distribution of epithelial junctions, DNA damage, apoptosis, proliferation, stimulation of cytokine production, and cell transformation. Some of these processes are initiated as a result of the activation of signaling mechanisms activated on binding of H. pylori to cell surface receptors or via soluble virulence factors that gain access to the epithelium. The multiple responses by the epithelium to the infection contribute to pathogenesis associated with H. pylori. PMID:25278677

Alzahrani, Shatha; Lina, Taslima T; Gonzalez, Jazmin; Pinchuk, Irina V; Beswick, Ellen J; Reyes, Victor E

2014-01-01

116

Transcriptional PROFILING OF MUCOCILIARY DIFFERENTIATION IN HUMAN AIRWAY EPITHELIAL CELLS  

EPA Science Inventory

When cultured at an air-liquid interface (ALI) in the appropriate medium, primary human airway epithelial cells form a polarized, pseudostratified epithelium composed of ciliated and mucus-secreting cells. This culture system provides a useful tool for the in vitro study of...

117

Oxidized alginate hydrogels as niche environments for corneal epithelial cells.  

PubMed

Chemical and biochemical modification of hydrogels is one strategy to create physiological constructs that maintain cell function. The aim of this study was to apply oxidised alginate hydrogels as a basis for development of a biomimetic niche for limbal epithelial stem cells that may be applied to treating corneal dysfunction. The stem phenotype of bovine limbal epithelial cells (LEC) and the viability of corneal epithelial cells (CEC) were examined in oxidised alginate gels containing collagen IV over a 3-day culture period. Oxidation increased cell viability (P???0.05) and this improved further with addition of collagen IV (P???0.01). Oxidised gels presented larger internal pores (diameter: 0.2-0.8 µm) than unmodified gels (pore diameter: 0.05-0.1 µm) and were significantly less stiff (P???0.001), indicating that an increase in pore size and a decrease in stiffness contributed to improved cell viability. The diffusion of collagen IV from oxidised alginate gels was similar to that of unmodified gels suggesting that oxidation may not affect the retention of extracellular matrix proteins in alginate gels. These data demonstrate that oxidised alginate gels containing corneal extracellular matrix proteins can influence corneal epithelial cell function in a manner that may impact beneficially on corneal wound healing therapy. PMID:24142706

Wright, Bernice; De Bank, Paul A; Luetchford, Kim A; Acosta, Fernando R; Connon, Che J

2014-10-01

118

Clindamycin Vaginal  

MedlinePLUS

... an infection caused by an overgrowth of harmful bacteria in the vagina). Clindamycin is in a class ... works by slowing or stopping the growth of bacteria. Vaginal clindamycin cannot be used to treat vaginal ...

119

Epithelial Cell Reconstruction and Visualization of the Developing Drosophila Wing Imaginal Disc  

E-print Network

the individual epithelial cells of the wing imaginal disc of Drosophila melanogaster. To date, 3D epithelial cellEpithelial Cell Reconstruction and Visualization of the Developing Drosophila Wing Imaginal Disc fly Drosophila melanogaster and to specify the apicolateral cell boundaries on the reconstructed

Breen, David E.

120

Ex vivo comparison of microbicide efficacies for preventing HIV-1 genomic integration in intraepithelial vaginal cells.  

PubMed

Vaginally applied microbicides hold promise as a strategy to prevent sexual HIV transmission. Several nonspecific microbicides, including the polyanion cellulose sulfate, have been evaluated in large-scale clinical trials but have failed to show significant efficacy. These findings have prompted a renewed search for preclinical testing systems that can predict negative outcomes of microbicide trials. Moreover, the pipeline of potential topical microbicides has been expanded to include antiretroviral agents, such as reverse transcriptase, fusion, and integrase inhibitors. Using a novel ex vivo model of vaginal HIV-1 infection, we compared the prophylactic potentials of two forms of the fusion inhibitor T-20, the CCR5 antagonist TAK-778, the integrase inhibitor 118-D-24, and cellulose sulfate (Ushercell). The T-20 peptide with free N- and C-terminal amino acids was the most efficacious compound, causing significantly greater inhibition of viral genomic integration in intraepithelial vaginal leukocytes, measured by an optimized real-time PCR assay, than the more water-soluble N-acetylated T-20 peptide (Fuzeon) (50% inhibitory concentration [IC50], 0.153 microM versus 51.2 microM [0.687 ng/ml versus 230 ng/ml]; P<0.0001). In contrast, no significant difference in IC50s was noted in peripheral blood cells (IC50, 13.58 microM versus 7.57 microM [61 ng/ml versus 34 ng/ml]; P=0.0614). Cellulose sulfate was the least effective of all the compounds tested (IC50, 1.8 microg/ml). These results highlight the merit of our model for screening the mucosal efficacies of novel microbicides and their formulations and potentially rank ordering candidates for clinical evaluation. PMID:19949052

McElrath, M Juliana; Ballweber, Lamar; Terker, Andrew; Kreger, Allison; Sakchalathorn, Polachai; Robinson, Barry; Fialkow, Michael; Lentz, Gretchen; Hladik, Florian

2010-02-01

121

Vaginal type-II mucosa is an inductive site for primary CD8(+) T-cell mucosal immunity.  

PubMed

The structured lymphoid tissues are considered the only inductive sites where primary T-cell immune responses occur. The naïve T cells in structured lymphoid tissues, once being primed by antigen-bearing dendritic cells, differentiate into memory T cells and traffic back to the mucosal sites through the bloodstream. Contrary to this belief, here we show that the vaginal type-II mucosa itself, despite the lack of structured lymphoid tissues, can act as an inductive site during primary CD8(+) T-cell immune responses. We provide evidence that the vaginal mucosa supports both the local immune priming of naïve CD8(+) T cells and the local expansion of antigen-specific CD8(+) T cells, thereby demonstrating a different paradigm for primary mucosal T-cell immune induction. PMID:25600442

Wang, Yichuan; Sui, Yongjun; Kato, Shingo; Hogg, Alison E; Steel, Jason C; Morris, John C; Berzofsky, Jay A

2015-01-01

122

Composition and Formation of Intercellular Junctions in Epithelial Cells  

NSDL National Science Digital Library

The polarized nature of epithelial cells is manifested by the nonrandom partitioning of organelles within the cells, the concentration of intercellular junctions at one pole, and the asymmetric distribution of proteins and lipids within the plasma membrane. These features allow epithelia to fulfill their specific tasks, such as targeted uptake and secretion of molecules and the segregation of different tissue compartments. The accessibility ofDrosophila melanogaster and Caenorhabditis elegans to genetic and cell biological analyses, combined with the study of mammalian cells in culture, provides an ideal basis for understanding the mechanisms that control the establishment and maintenance of epithelial cell polarity and tissue integrity. Here, we focus on some of the best-studied junctions and membrane-associated protein complexes and their relation to cell polarity. Comparisons between fly, worm, and vertebrate epithelia reveal marked similarities with respect to the molecules used, and pronounced differences in the organization of the junctions themselves.

Elisabeth Knust (Heinrich-Heine Universität Düsseldorf;Institut für Genetik); Olaf Bossinger (Heinrich-Heine Universität Düsseldorf;Institut für Genetik)

2002-12-06

123

Nasal Epithelial Cells Can Act as a Physiological Surrogate for Paediatric Asthma Studies  

PubMed Central

Introduction Differentiated paediatric epithelial cells can be used to study the role of epithelial cells in asthma. Nasal epithelial cells are easier to obtain and may act as a surrogate for bronchial epithelium in asthma studies. We assessed the suitability of nasal epithelium from asthmatic children to be a surrogate for bronchial epithelium using air-liquid interface cultures. Methods Paired nasal and bronchial epithelial cells from asthmatic children (n?=?9) were differentiated for 28 days under unstimulated and IL-13-stimulated conditions. Morphological and physiological markers were analysed using immunocytochemistry, transepithelial-electrical-resistance, Quantitative Real-time-PCR, ELISA and multiplex cytokine/chemokine analysis. Results Physiologically, nasal epithelial cells from asthmatic children exhibit similar cytokine responses to stimulation with IL-13 compared with paired bronchial epithelial cells. Morphologically however, nasal epithelial cells differed significantly from bronchial epithelial cells from asthmatic patients under unstimulated and IL-13-stimulated conditions. Nasal epithelial cells exhibited lower proliferation/differentiation rates and lower percentages of goblet and ciliated cells when unstimulated, while exhibiting a diminished and varied response to IL-13. Conclusions We conclude that morphologically, nasal epithelial cells would not be a suitable surrogate due to a significantly lower rate of proliferation and differentiation of goblet and ciliated cells. Physiologically, nasal epithelial cells respond similarly to exogenous stimulation with IL-13 in cytokine production and could be used as a physiological surrogate in the event that bronchial epithelial cells are not available. PMID:24475053

McBrien, Michael E.; Skibinski, Grzegorz; Shields, Michael D; Heaney, Liam G.

2014-01-01

124

Overexpression of c-myc induces epithelial mesenchymal transition in mammary epithelial cells.  

PubMed

The c-myc gene is frequently overexpressed in human breast cancer and its target genes are involved in tumorigenesis. Epithelial mesenchymal transitions (EMT), where cells undergo a developmental switch from a polarized epithelial phenotype to a highly motile mesenchymal phenotype, are associated with invasion and motility of cancer cells. Basal E-cadherin expression was down-regulated in c-myc overexpressing MCF10A (c-myc-MCF10A) cells compared to GFP-overexpressing MCF10A (GFP-MCF10A) cells, while N-cadherin was distinctly increased in c-myc-MCF10A cells. Given that glycogen synthase kinase-3beta (GSK-3beta) and the snail axis have key roles in E-cadherin deregulation during EMT, we investigated the role of GSK-3beta/snail signaling pathways in the induction of EMT by c-myc overexpression. In contrast to GFP-MCF10A cells, both the transcriptional activity and the ubiquitination-dependent protein stability of snail were enhanced in c-myc-MCF10A cells, and this was reversed by GSK-3beta overexpression. We also found that c-myc overexpression inhibits GSK-3beta activity through activation of extracellular signal-regulated kinase (ERK). Inhibition of ERK by dominant negative mutant transfection or chemical inhibitor significantly suppressed snail gene transcription. These results suggest that c-myc overexpression during transformation of mammary epithelial cells (MEC) is involved in EMTs via ERK-dependent GSK-3beta inactivation and subsequent snail activation. PMID:20144848

Cho, Kyoung Bin; Cho, Min Kyong; Lee, Won Young; Kang, Keon Wook

2010-07-28

125

Mammary epithelial cell interactions with fibronectin stimulate epithelial-mesenchymal transition  

PubMed Central

In the mammary gland, the stromal extracellular matrix (ECM) undergoes dramatic changes during development and in tumorigenesis. For example, normal adult breast tissue is largely devoid of the ECM protein fibronectin (FN) whereas high FN levels have been detected in the stroma of breast tumors. FN is an established marker for epithelial-mesenchymal transition (EMT), which occurs during development and has been linked to cancer. During EMT, epithelial cell adhesion switches from cell-cell contacts to mainly cell-ECM interactions raising the possibility that FN may have a role in promoting this transition. Using MCF-10A mammary epithelial cells, we show that exposure to exogenous FN induces an EMT response including up-regulation of the EMT markers FN, Snail, N-cadherin, vimentin, the matrix metalloprotease MMP2, ?-smooth muscle actin, and phospho-Smad2 as well as acquisition of cell migratory behavior. FN-induced EMT depends on Src kinase and ERK/MAP kinase signaling but not on the immediate early gene EGR-1. FN initiates EMT under serum-free conditions; this response is partially reversed by a TGF? neutralizing antibody suggesting that FN enhances the effect of endogenous TGF?. EMT marker expression is up-regulated in cells on a fragment of FN containing the integrin-binding domain but not other domains. Differences in gene expression between FN and MG are maintained with addition of a sub-threshold level of TGF?1. Together, these results show that cells interacting with FN are primed to respond to TGF?. The ability of FN to induce EMT shows an active role for the stromal ECM in this process and supports the notion that the increased levels of FN observed in breast tumors facilitate tumorigenesis. PMID:23624917

Park, Jeongsook; Schwarzbauer, Jean E.

2014-01-01

126

Aneuploidy, oncogene amplification and epithelial to mesenchymal transition define spontaneous transformation of murine epithelial cells  

PubMed Central

Human epithelial cancers are defined by a recurrent distribution of specific chromosomal aneuploidies, a trait less typical for murine cancer models induced by an oncogenic stimulus. After prolonged culture, mouse epithelial cells spontaneously immortalize, transform and become tumorigenic. We assessed genome and transcriptome alterations in cultures derived from bladder and kidney utilizing spectral karyotyping, array CGH, FISH and gene expression profiling. The results show widespread aneuploidy, yet a recurrent and tissue-specific distribution of genomic imbalances, just as in human cancers. Losses of chromosome 4 and gains of chromosome 15 are common and occur early during the transformation process. Global gene expression profiling revealed early and significant transcriptional deregulation. Chromosomal aneuploidy resulted in expression changes of resident genes and consequently in a massive deregulation of the cellular transcriptome. Pathway interrogation of expression changes during the sequential steps of transformation revealed enrichment of genes associated with DNA repair, centrosome regulation, stem cell characteristics and aneuploidy. Genes that modulate the epithelial to mesenchymal transition and genes that define the chromosomal instability phenotype played a dominant role and were changed in a directionality consistent with loss of cell adhesion, invasiveness and proliferation. Comparison with gene expression changes during human bladder and kidney tumorigenesis revealed remarkable overlap with changes observed in the spontaneously transformed murine cultures. Therefore, our novel mouse models faithfully recapitulate the sequence of genomic and transcriptomic events that define human tumorigenesis, hence validating them for both basic and preclinical research. PMID:23619298

Padilla-Nash, Hesed M.; McNeil, Nicole E.

2013-01-01

127

Cholinergic epithelial cell with chemosensory traits in murine thymic medulla.  

PubMed

Specialized epithelial cells with a tuft of apical microvilli ("brush cells") sense luminal content and initiate protective reflexes in response to potentially harmful substances. They utilize the canonical taste transduction cascade to detect "bitter" substances such as bacterial quorum-sensing molecules. In the respiratory tract, most of these cells are cholinergic and are approached by cholinoceptive sensory nerve fibers. Utilizing two different reporter mouse strains for the expression of choline acetyltransferase (ChAT), we observed intense labeling of a subset of thymic medullary cells. ChAT expression was confirmed by in situ hybridization. These cells showed expression of villin, a brush cell marker protein, and ultrastructurally exhibited lateral microvilli. They did not express neuroendocrine (chromogranin A, PGP9.5) or thymocyte (CD3) markers but rather thymic epithelial (CK8, CK18) markers and were immunoreactive for components of the taste transduction cascade such as G?-gustducin, transient receptor potential melastatin-like subtype 5 channel (TRPM5), and phospholipase C?2. Reverse transcription and polymerase chain reaction confirmed the expression of G?-gustducin, TRPM5, and phospholipase C?2. Thymic "cholinergic chemosensory cells" were often in direct contact with medullary epithelial cells expressing the nicotinic acetylcholine receptor subunit ?3. These cells have recently been identified as terminally differentiated epithelial cells (Hassall's corpuscle-like structures in mice). Contacts with nerve fibers (identified by PGP9.5 and CGRP antibodies), however, were not observed. Our data identify, in the thymus, a previously unrecognized presumptive chemosensitive cell that probably utilizes acetylcholine for paracrine signaling. This cell might participate in intrathymic infection-sensing mechanisms. PMID:25300645

Panneck, Alexandra Regina; Rafiq, Amir; Schütz, Burkhard; Soultanova, Aichurek; Deckmann, Klaus; Chubanov, Vladimir; Gudermann, Thomas; Weihe, Eberhard; Krasteva-Christ, Gabriela; Grau, Veronika; Del Rey, Adriana; Kummer, Wolfgang

2014-12-01

128

The Epithelial-to-Mesenchymal Transition and Cancer Stem Cells  

Microsoft Academic Search

\\u000a The epithelial-to-mesenchymal transition (EMT) is a developmental process which is reactivated during carcinoma progression,\\u000a providing tumor cells with enhanced migratory properties, the capacity to invade the stroma, and the ability to metastasize.\\u000a Tumor cells undergoing EMT also acquire stem cell characteristics, suggesting that there is crosstalk between pathways promoting\\u000a EMT and self-renewal, and that the EMT process contributes to the

Jonas Fuxe

129

Epithelial Ovarian Cancer Cells Secrete Functional Fas Ligand1  

Microsoft Academic Search

The Fas\\/Fas ligand (FasL) system has been suggested to play an im- portant role in the establishment of an immune privilege status of the tumor by inducing Fas-mediated apoptosis in tumor-specific lymphocytes. However, the role of cell surface-expressed FasL in tumor cell protection has recently become controversial. In this study, we have demonstrated that ascites-derived epithelial ovarian cancer cells lack

Vikki M. Abrahams; Shawn L. Straszewski; Marijke Kamsteeg; Bozena Hanczaruk; Peter E. Schwartz; Thomas J. Rutherford; Gil Mor

2003-01-01

130

Epithelial cell adhesion and gastrointestinal colonization of Lactobacillus in poultry.  

PubMed

Administration of probiotic Lactobacillus cultures is an important alternative to the use of antibiotic growth promoters and has been demonstrated to improve animal health, growth performance, and preharvest food safety in poultry production. Whereas gastrointestinal colonization is thought to be critical to their probiotic functionality, factors important to Lactobacillus colonization in chickens are not well understood. In this study we investigate epithelial cell adhesion in vitro and colonization of Lactobacillusin vivo in broiler chickens. Adhesion of Lactobacillus cultures to epithelial cells was evaluated using the chicken LMH cell line. Lactobacillus cultures were able adhere effectively to LMH cells relative to Bacillus subtilis and Salmonella Typhimurium. Epithelial cell adhesion was similar for Lactobacillus crispatus TDCC 75, L. cristpatus TDCC 76, and Lactobacillus gallinarum TDCC 77, and all 3 were more adherent than L. gallinarum TDCC 78. However, when colonization was evaluated in the ileum and cecum of broiler chicks, L. crispatus TDCC 75 and L. gallinarum TDCC 77 were more persistent than L. crispatus TDCC 76 and L. gallinarum TDCC 78. The reduction of growth in medium supplemented with oxgal was greater for L. gallinarum TDCC 78 than L. gallinarum TDCC 77, suggesting that whereas adhesion was similar for the 2 strains, the difference in colonization between L. gallinarum strains may be due in part to their bile sensitivity. This study demonstrates that whereas adhesion to epithelial cells may be important in predicting gastrointestinal colonization, other factors including bile tolerance may also contribute to the colonization of Lactobacillus in poultry. Additionally, the chicken LMH cell line is expected to provide a platform for investigating mechanisms of Lactobacillus adhesion to epithelial tissue and evaluating the probiotic potential Lactobacillus in poultry. PMID:25239531

Spivey, Megan A; Dunn-Horrocks, Sadie L; Duong, Tri

2014-11-01

131

Cytotoxic effects of air freshener biocides in lung epithelial cells.  

PubMed

This study evaluated the cytotoxicity of mixtures of citral (CTR) and either benzisothiazolinone (BIT, Mix-CTR-BIT) or triclosan (TCS, Mix-CTR-TCS) in human A549 lung epithelial cells. We investigated the effects of various mix ratios of these common air freshener ingredients on cell viability, cell proliferation, reactive oxygen species (ROS) generation, and DNA damage. Mix-CTR-BIT and Mix-CTR-TCS significantly decreased the viability of lung epithelial cells and inhibited cell growth in a dose-dependent manner. In addition, both mixtures increased ROS generation, compared to that observed in control cells. In particular, cell viability, growth, and morphology were affected upon increase in the proportion of BIT or TCS in the mixture. However, comet analysis showed that treatment of cells with Mix-CTR-BIT or Mix-CTR-TCS did not increase DNA damage. Taken together, these data suggested that increasing the content of biocides in air fresheners might induce cytotoxicity, and that screening these compounds using lung epithelial cells may contribute to hazard assessment. PMID:24273871

Kwon, Jung-Taek; Lee, Mimi; Seo, Gun-Baek; Kim, Hyun-Mi; Shim, Ilseob; Lee, Doo-Hee; Kim, Taksoo; Seo, Jung Kwan; Kim, Pilje; Choi, Kyunghee

2013-09-01

132

Immunohistochemical demonstration of airway epithelial cell markers of guinea pig.  

PubMed

The guinea pig (Cavea porcellus) is a mammalian non-rodent species in the Caviidae family. The sensitivity of the respiratory system and the susceptibility to infectious diseases allows the guinea pig to be a useful model for both infectious and non-infectious lung diseases such as asthma and tuberculosis. In this report, we demonstrated for the first time, the major cell types and composition in the guinea pig airway epithelium, using cell type-specific markers by immunohistochemical staining using the commercial available immunological reagents that cross-react with guinea pig. Our results revealed the availability of antibodies cross-reacting with airway epithelial cell types of basal, non-ciliated columnar, ciliated, Clara, goblet and alveolar type II cells, as well as those cells expressing Mucin 5AC, Mucin 2, Aquaporin 4 and Calcitonin Gene Related Peptide. The distribution of these various cell types were quantified in the guinea pig airway by immunohistochemical staining and were comparable with morphometric studies using an electron microscopy assay. Moreover, this study also demonstrated that goblet cells are the main secretory cell type in the guinea pig's airway, distinguishing this species from rats and mice. These results provide useful information for the understanding of airway epithelial cell biology and mechanisms of epithelial-immune integration in guinea pig models. PMID:21705035

Li, Yong; Wang, Jing; He, Hai Yan; Ma, Ling Jie; Zeng, Jin; Deng, Guang Cun; Liu, Xiaoming; Engelhardt, John F; Wang, Yujiong

2011-10-01

133

Immunohistochemical demonstration of airway epithelial cell markers of Guinea pig  

PubMed Central

The guinea pig (Cavea porcellus) is a mammalian non-rodent species in the Caviidae family. The sensitivity of the respiratory system and the susceptibility to infectious diseases allows the guinea pig to be a useful model for both infectious and non-infectious lung diseases such as asthma and tuberculosis. In this report, we demonstrated for the first time, the major cell types and composition in the guinea pig airway epithelium, using cell type-specific markers by immunohistochemical staining using the commercial available immunological reagents that cross-react with guinea pig. Our results revealed the availability of antibodies cross-reacting with airway epithelial cell types of basal, non-ciliated columnar, ciliated, Clara, goblet and alveolar type II cells, as well as those cells expressing Mucin 5AC, Mucin 2, Aquaporin 4 and Calcitonin Gene Related Peptide. The distribution of these various cell types were quantified in the guinea pig airway by immunohistochemical staining and were comparable with morphometric studies using an electron microscopy assay. Moreover, this study also demonstrated that goblet cells are the main secretory cell type in the guinea pig's airway, distinguishing this species from rats and mice. These results provide useful information for the understanding of airway epithelial cell biology and mechanisms of epithelial–immune integration in guinea pig models. PMID:21705035

Li, Yong; Wang, Jing; He, Hai Yan; Ma, Ling Jie; Zeng, Jin; Deng, Guang Cun; Liu, Xiaoming; Engelhardt, John F.; Wang, Yujiong

2013-01-01

134

[Stem cell factor production from cultured nasal epithelial cells--effect on SCF production by drugs].  

PubMed

We studied whether epithelial cells cultured in serum-free medium contained other cells or not, there were differences in SCF production from cultured nasal epithelial cells between groups of nonallergic and allergic patients, and among degrees of serum mite-CAP RAST classes of allergic patients, and how drugs inhibited SCF production. As a result, no other contaminating cells except mast cell existed in cultured cells. There was a significant difference in SCF production of cultured cells between nonallergic and class 1-2, 3-4, 5-6, and between class 1-2 and 3-4, 5-6 of mite CAP-RAST class. Cyclosporin, prednisolone, fluticasone, ketotifen, and clemastine inhibited SCF production from cultured epithelial cells, but cromoglicate and suplatast did not. Inhibition means the reduction of SCF from cells, not the growth of cultured nasal epithelial cells. PMID:11905054

Koyama, Mamoru; Otsuka, Hirokuni; Kusumi, Taeko; Yamauchi, Yoko

2002-02-01

135

Human nasal and tracheo-bronchial respiratory epithelial cell culture.  

PubMed

Human airway epithelial (hAE) cell cultures are instrumental for studying basic and applied aspects of respiratory tract biology, disease, and therapy. When primary epithelial cells from the human nasal passages or tracheo-bronchial airways are grown on porous supports at an air-liquid interface (ALI) they undergo mucociliary differentiation, reproducing both the in vivo morphology and key physiologic processes. These cultures are useful for studying basic biology, disease pathogenesis, gene therapy and aerosol administration of drugs. This chapter gives detailed protocols for tissue procurement, cell isolation, production of complex media, and cell culture initiation and maintenance needed for hAE cell ALI cultures with non-proprietary reagents. PMID:23097104

Fulcher, M Leslie; Randell, Scott H

2013-01-01

136

Bile Salts and Nuclear Receptors in Biliary Epithelial Cell Pathophysiology  

E-print Network

Bile Salts and Nuclear Receptors in Biliary Epithelial Cell Pathophysiology by Dr. Nicolas Chignard family for their support and affection. I am indebted to my father for his constant support and precious secretion through cAMP 11 2.4. Bile salts control VPAC1 expression through nuclear receptors 13 2

Boyer, Edmond

137

Basolateral membrane K+ channels in renal epithelial cells.  

PubMed

The major function of epithelial tissues is to maintain proper ion, solute, and water homeostasis. The tubule of the renal nephron has an amazingly simple structure, lined by epithelial cells, yet the segments (i.e., proximal tubule vs. collecting duct) of the nephron have unique transport functions. The functional differences are because epithelial cells are polarized and thus possess different patterns (distributions) of membrane transport proteins in the apical and basolateral membranes of the cell. K(+) channels play critical roles in normal physiology. Over 90 different genes for K(+) channels have been identified in the human genome. Epithelial K(+) channels can be located within either or both the apical and basolateral membranes of the cell. One of the primary functions of basolateral K(+) channels is to recycle K(+) across the basolateral membrane for proper function of the Na(+)-K(+)-ATPase, among other functions. Mutations of these channels can cause significant disease. The focus of this review is to provide an overview of the basolateral K(+) channels of the nephron, providing potential physiological functions and pathophysiology of these channels, where appropriate. We have taken a "K(+) channel gene family" approach in presenting the representative basolateral K(+) channels of the nephron. The basolateral K(+) channels of the renal epithelia are represented by members of the KCNK, KCNJ, KCNQ, KCNE, and SLO gene families. PMID:22338089

Hamilton, Kirk L; Devor, Daniel C

2012-05-01

138

Metabolic cooperativity between epithelial cells and adipocytes of mice  

SciTech Connect

We have demonstrated that glycogen and lipid synthesis in adipocytes is modulated by the lactational state and that this modulation in mammary adipocytes requires the presence of the adjacent epithelial cells. Glycogen and lipid synthesis from (/sup 14/C)glucose was measured in mammary fat pads cleared of epithelium, in abdominal fat pads, and in adipocytes from both sources and from intact mammary gland of mature virgin, pregnant, and lactating mice. Accumulation of glycogen, the activity of glycogen synthase, and the lipogenic rate in abdominal and mammary adipocytes remained high during pregnancy but decreased to insignificant levels by early lactation. The depressant effects of lactation were observed solely in those mammary adipocytes isolated from intact glands. The presence of mammary epithelial cells was also required to effect the stimulated lipogenesis in mammary adipocytes during pregnancy. We conclude that the metabolic activity of adipocytes is modulated both during pregnancy and lactation to channel nutrients to the mammary epithelial cell. The fact that the changes occur in mammary adipocytes only when epithelial cells are present indicates that local as well as systemic factors are operating in these modulations.

Bartley, J.C.; Emerman, J.T.; Bissell, M.J.

1981-01-01

139

Basolateral membrane K+ channels in renal epithelial cells  

PubMed Central

The major function of epithelial tissues is to maintain proper ion, solute, and water homeostasis. The tubule of the renal nephron has an amazingly simple structure, lined by epithelial cells, yet the segments (i.e., proximal tubule vs. collecting duct) of the nephron have unique transport functions. The functional differences are because epithelial cells are polarized and thus possess different patterns (distributions) of membrane transport proteins in the apical and basolateral membranes of the cell. K+ channels play critical roles in normal physiology. Over 90 different genes for K+ channels have been identified in the human genome. Epithelial K+ channels can be located within either or both the apical and basolateral membranes of the cell. One of the primary functions of basolateral K+ channels is to recycle K+ across the basolateral membrane for proper function of the Na+-K+-ATPase, among other functions. Mutations of these channels can cause significant disease. The focus of this review is to provide an overview of the basolateral K+ channels of the nephron, providing potential physiological functions and pathophysiology of these channels, where appropriate. We have taken a “K+ channel gene family” approach in presenting the representative basolateral K+ channels of the nephron. The basolateral K+ channels of the renal epithelia are represented by members of the KCNK, KCNJ, KCNQ, KCNE, and SLO gene families. PMID:22338089

Devor, Daniel C.

2012-01-01

140

Entry and Release of Measles Virus Are Polarized in Epithelial Cells  

Microsoft Academic Search

The initial site of virus replication during measles infection is in the epithelial cells of the respiratory tract. We have investigated measles virus infection of two types of polarized epithelial cells to determine if entry and\\/or release of the virus is confined to either the apical or the basolateral plasma membrane. The Caco-2 line of human intestinal epithelial cells and

Dianna M. Blau; Richard W. Compans

1995-01-01

141

Lactobacillus equigenerosi Strain Le1 Invades Equine Epithelial Cells  

PubMed Central

Lactobacillus equigenerosi strain Le1, a natural inhabitant of the equine gastrointestinal tract, survived pH 3.0 and incubation in the presence of 1.5% (wt/vol) bile salts for at least 2 h. Strain Le1 showed 8% cell surface hydrophobicity, 60% auto-aggregation, and 47% coaggregation with Clostridium difficile C6. Only 1% of the cells adhered to viable buccal epithelial cells and invaded the cells within 20 min after contact. Preincubation of strain Le1 in a buffer containing pronase prevented adhesion to viable epithelial cells. Preincubation in a pepsin buffer delayed invasion from 20 min to 1 h. Strain Le1 did not adhere to nonviable epithelial cells. Administration of L. equigenerosi Le1 (1 × 109 CFU per 50 kg body weight) to healthy horses did not increase white blood cell numbers. Differential white blood cell counts and aspartate aminotransferase levels remained constant. Glucose, lactate, cholesterol, and urea levels remained constant during administration with L. equigenerosi Le1 but decreased during the week after administration. PMID:22504808

Botha, Marlie; Botes, Marelize; Loos, Ben; Smith, Carine

2012-01-01

142

Acid Production by Vaginal Flora In Vitro Is Consistent with the Rate and Extent of Vaginal Acidification  

PubMed Central

Perinatally, and between menarche and menopause, increased levels of estrogen cause large amounts of glycogen to be deposited in the vaginal epithelium. During these times, the anaerobic metabolism of the glycogen, by the epithelial cells themselves and/or by vaginal flora, causes the vagina to become acidic (pH ?4). This study was designed to test whether the characteristics of acid production by vaginal flora in vitro can account for vaginal acidity. Eight vaginal Lactobacillus isolates from four species—L. gasseri, L. vaginalis, L. crispatus, and L. jensenii—acidified their growth medium to an asymptotic pH (3.2 to 4.8) that matches the range seen in the Lactobacillus-dominated human vagina (pH 3.6 to 4.5 in most women) (B. Andersch, L. Forssman, K. Lincoln, and P. Torstensson, Gynecol. Obstet. Investig. 21:19–25, 1986; L. Cohen, Br. J. Vener. Dis. 45:241–246, 1969; J. Paavonen, Scand. J. Infect. Dis. Suppl. 40:31–35, 1983; C. Tevi-Bénissan, L. Bélec, M. Lévy, V. Schneider-Fauveau, A. Si Mohamed, M.-C. Hallouin, M. Matta, and G. Grésenguet, Clin. Diagn. Lab. Immunol. 4:367–374, 1997). During exponential growth, all of these Lactobacillus species acidified their growth medium at rates on the order of 106 protons/bacterium/s. Such rates, combined with an estimate of the total number of lactobacilli in the vagina, suggest that vaginal lactobacilli could reacidify the vagina at the rate observed postcoitally following neutralization by the male ejaculate (W. H. Masters and V. E. Johnson, Human sexual response, p. 93, 1966). During bacterial vaginosis (BV), there is a loss of vaginal acidity, and the vaginal pH rises to >4.5. This correlates with a loss of lactobacilli and an overgrowth of diverse bacteria. Three BV-associated bacteria, Gardnerella vaginalis, Prevotella bivia, and Peptostreptococcus anaerobius, acidified their growth medium to an asymptotic pH (4.7 to 6.0) consistent with the characteristic elevated vaginal pH associated with BV. Together, these observations are consistent with vaginal flora, rather than epithelial cells, playing a primary role in creating the acidity of the vagina. PMID:10496892

Boskey, E. R.; Telsch, K. M.; Whaley, K. J.; Moench, T. R.; Cone, R. A.

1999-01-01

143

Collective and single cell behavior in epithelial contact inhibition  

PubMed Central

Control of cell proliferation is a fundamental aspect of tissue physiology central to morphogenesis, wound healing, and cancer. Although many of the molecular genetic factors are now known, the system level regulation of growth is still poorly understood. A simple form of inhibition of cell proliferation is encountered in vitro in normally differentiating epithelial cell cultures and is known as “contact inhibition.” The study presented here provides a quantitative characterization of contact inhibition dynamics on tissue-wide and single cell levels. Using long-term tracking of cultured Madin-Darby canine kidney cells we demonstrate that inhibition of cell division in a confluent monolayer follows inhibition of cell motility and sets in when mechanical constraint on local expansion causes divisions to reduce cell area. We quantify cell motility and cell cycle statistics in the low density confluent regime and their change across the transition to epithelial morphology which occurs with increasing cell density. We then study the dynamics of cell area distribution arising through reductive division, determine the average mitotic rate as a function of cell size, and demonstrate that complete arrest of mitosis occurs when cell area falls below a critical value. We also present a simple computational model of growth mechanics which captures all aspects of the observed behavior. Our measurements and analysis show that contact inhibition is a consequence of mechanical interaction and constraint rather than interfacial contact alone, and define quantitative phenotypes that can guide future studies of molecular mechanisms underlying contact inhibition. PMID:22228306

Puliafito, Alberto; Hufnagel, Lars; Neveu, Pierre; Streichan, Sebastian; Sigal, Alex; Fygenson, D. Kuchnir; Shraiman, Boris I.

2012-01-01

144

Radical-Containing Ultrafine Particulate Matter Initiates Epithelial-to-Mesenchymal Transitions in Airway Epithelial Cells  

PubMed Central

Environmentally persistent free radicals (EPFRs) in combustion-generated particulate matter (PM) are capable of inducing pulmonary pathologies and contributing to the development of environmental asthma. In vivo exposure of infant rats to EPFRs demonstrates their ability to induce airway hyperresponsiveness to methacholine, a hallmark of asthma. However, the mechanisms by which combustion-derived EPFRs elicit in vivo responses remain elusive. In this study, we used a chemically defined EPFR consisting of approximately 0.2 ?m amorphrous silica containing 3% cupric oxide with the organic pollutant 1,2-dichlorobenzene (DCB-230). DCB-230 possesses similar radical content to urban-collected EPFRs but offers several advantages, including lack of contaminants and chemical uniformity. DCB-230 was readily taken up by BEAS-2B and at high doses (200 ?g/cm2) caused substantial necrosis. At low doses (20 ?g/cm2), DCB-230 particles caused lysosomal membrane permeabilization, oxidative stress, and lipid peroxidation within 24 hours of exposure. During this period, BEAS-2B underwent epithelial-to-mesenchymal transition (EMT), including loss of epithelial cell morphology, decreased E-cadherin expression, and increased ?–smooth muscle actin (?-SMA) and collagen I production. Similar results were observed in neonatal air–liquid interface culture (i.e., disruption of epithelial integrity and EMT). Acute exposure of infant mice to DCB-230 resulted in EMT, as confirmed by lineage tracing studies and evidenced by coexpression of epithelial E-cadherin and mesenchymal ?-SMA proteins in airway cells and increased SNAI1 expression in the lungs. EMT in neonatal mouse lungs after EPFR exposure may provide an explanation for epidemiological evidence supporting PM exposure and increased risk of asthma. PMID:23087054

Thevenot, Paul T.; Saravia, Jordy; Jin, Nili; Giaimo, Joseph D.; Chustz, Regina E.; Mahne, Sarah; Kelley, Matthew A.; Hebert, Valeria Y.; Dellinger, Barry; Dugas, Tammy R.; DeMayo, Francesco J.

2013-01-01

145

Bidirectional entry of poliovirus into polarized epithelial cells.  

PubMed Central

The interactions of viruses with polarized epithelial cells are of some significance to the pathogenesis of disease because these cell types comprise the primary barrier to many virus infections and also serve as the sites for virus release from the host. Poliovirus-epithelial cell interactions are of particular interest since this virus is an important enteric pathogen and the host cell receptor has been identified. In this study, poliovirus was observed to adsorb to both the apical and basolateral surfaces of polarized monkey kidney (Vero C1008) and human intestinal (Caco-2) epithelial cells but exhibited preferential binding to the basolateral surfaces of both cell types. Localization of the poliovirus receptor by a receptor-specific monoclonal antibody (D171) revealed a similar distribution predominantly on basolateral membranes, and treatment of cells with antibody D171 inhibited virus adsorption to both membrane surfaces. Poliovirus was able to initiate infection with similar efficiency following adsorption to either surface, and infection was blocked at both surfaces by D171, indicating that functional receptor molecules are expressed on both surfaces at sufficient density to mediate efficient infection at the apical and basolateral plasma membranes. Poliovirus infection resulted in a decrease in transepithelial resistance which was inhibited by prior treatment with monoclonal antibody D171 and occurred prior to other visible cytopathic effects. These results have interesting implications for viral pathogenesis in the human gut. Images PMID:8380076

Tucker, S P; Thornton, C L; Wimmer, E; Compans, R W

1993-01-01

146

Myosin-X functions in polarized epithelial cells  

PubMed Central

Myosin-X (Myo10) is an unconventional myosin that localizes to the tips of filopodia and has critical functions in filopodia. Although Myo10 has been studied primarily in nonpolarized, fibroblast-like cells, Myo10 is expressed in vivo in many epithelia-rich tissues, such as kidney. In this study, we investigate the localization and functions of Myo10 in polarized epithelial cells, using Madin-Darby canine kidney II cells as a model system. Calcium-switch experiments demonstrate that, during junction assembly, green fluorescent protein–Myo10 localizes to lateral membrane cell–cell contacts and to filopodia-like structures imaged by total internal reflection fluorescence on the basal surface. Knockdown of Myo10 leads to delayed recruitment of E-cadherin and ZO-1 to junctions, as well as a delay in tight junction barrier formation, as indicated by a delay in the development of peak transepithelial electrical resistance (TER). Although Myo10 knockdown cells eventually mature into monolayers with normal TER, these monolayers do exhibit increased paracellular permeability to fluorescent dextrans. Importantly, knockdown of Myo10 leads to mitotic spindle misorientation, and in three-dimensional culture, Myo10 knockdown cysts exhibit defects in lumen formation. Together these results reveal that Myo10 functions in polarized epithelial cells in junction formation, regulation of paracellular permeability, and epithelial morphogenesis. PMID:22419816

Liu, Katy C.; Jacobs, Damon T.; Dunn, Brian D.; Fanning, Alan S.; Cheney, Richard E.

2012-01-01

147

Lung Epithelial Cells Induce Both Phenotype Alteration and Senescence in Breast Cancer Cells  

PubMed Central

Purpose The lung is one of the most common sites of breast cancer metastasis. While metastatic seeding is often accompanied by a dormancy-promoting mesenchymal to epithelial reverting transitions (MErT), we aimed to determine whether lung epithelial cells can impart this phenotype on aggressive breast cancer cells. Methods Co-culture experiments of normal lung epithelial cell lines (SAEC, NHBE or BEAS-2B) and breast cancer cell lines (MCF-7 or MDA-MB-231) were conducted. Flow cytometry analysis, immunofluorescence staining for E-cadherin or Ki-67 and senescence associated beta-galactosidase assays assessed breast cancer cell outgrowth and phenotype. Results Co-culture of the breast cancer cells with the normal lung cells had different effects on the epithelial and mesenchymal carcinoma cells. The epithelial MCF-7 cells were increased in number but still clustered even if in a slightly more mesenchymal-spindle morphology. On the other hand, the mesenchymal MDA-MB-231 cells survived but did not progressively grow out in co-culture. These aggressive carcinoma cells underwent an epithelial shift as indicated by cuboidal morphology and increased E-cadherin. Disruption of E-cadherin expressed in MDA-MB-231 using shRNA prevented this phenotypic reversion in co-culture. Lung cells limited cancer cell growth kinetics as noted by both (1) some of the cells becoming larger and positive for senescence markers/negative for proliferation marker Ki-67, and (2) Ki-67 positive cells significantly decreasing in MDA-MB-231 and MCF-7 cells after co-culture. Conclusions Our data indicate that normal lung epithelial cells can drive an epithelial phenotype and suppress the growth kinetics of breast cancer cells coincident with changing their phenotypes. PMID:25635394

Furukawa, Masashi; Wheeler, Sarah; Clark, Amanda M.; Wells, Alan

2015-01-01

148

Salmonella enterica: living a double life in epithelial cells.  

PubMed

Intracellular bacterial pathogens can occupy a membrane-bound vacuole or live freely within the cytosol of mammalian cells. Many studies have shown that the enteric bacterium, Salmonella enterica serovar Typhimurium (S. Typhimurium), is a vacuolar pathogen. Recent data, however, have revealed that within epithelial cells there are subpopulations of vacuolar and cytosolic Salmonella. Release from the Salmonella-containing vacuole leads to transcriptional reprogramming of bacteria and their robust replication in the cytosol. Eventually, epithelial cell death via pyroptosis results in cell lysis, proinflammatory cytokine release and escape of the cytosolic bacteria into the extracellular space, providing a potential mechanism of dissemination. This review focuses on the current understanding of this newly described intracellular population of Salmonella. PMID:25461569

Knodler, Leigh A

2014-11-11

149

COMPARISON OF PM-INDUCED GENE EXPRESSION PROFILES BETWEEN BRONCHIAL EPITHELIAL CELLS AND NASAL EPITHELIAL CELLS IN HUMAN  

EPA Science Inventory

Epidemiologic studies have linked exposures to particulate matter (PM) and increased pulmonary mortality and morbidity. Bronchial epithelial cells (BEC) are the primary target of PM. PM exposure induces a wide array of biological responses in BEC. Primary human BEC, however, need...

150

Cyclosporin A Promotes Hair Epithelial Cell Proliferation and Modulates Protein Kinase C Expression and Translocation in Hair Epithelial Cells  

Microsoft Academic Search

Cyclosporin A is an immunosuppressive agent known to cause hirsutism. The mechanisms of action that cause hirsutism have not been fully elucidated, however. We have previously reported that several selective protein kinase C inhibitors promote the growth of murine hair epithelial cells and stimulate anagen induction. In this paper, we report on an investigation of the mechanisms of action of

Tomoya Takahashi; Ayako Kamimura

2001-01-01

151

Human renal epithelial cells produce the long pentraxin PTX3  

Microsoft Academic Search

Human renal epithelial cells produce the long pentraxin PTX3.BackgroundPentraxin 3 (PTX3) is a prototypic long pentraxin with structural similarities in the C-terminal domain to the classical short pentraxins C-reactive protein (CRP) and serum amyloid P component. PTX3 is suggested to play an important role in the innate resistance against pathogens, regulation of inflammatory reactions, and clearance of apoptotic cells. Unlike

Alma J. Nauta; SIMONE DE HAIJ; BARBARA BOTTAZZI; ALBERTO MANTOVANI; Maria C. Borrias; JAN ATEN; MARIA PIA RASTALDI; Mohamed R. Daha; CEES VAN KOOTEN; ANJA ROOS

2005-01-01

152

Generation of Stratified Squamous Epithelial Progenitor Cells from Mouse Induced Pluripotent Stem Cells  

PubMed Central

Background Application of induced pluripotent stem (iPS) cells in regenerative medicine will bypass ethical issues associated with use of embryonic stem cells. In addition, patient-specific IPS cells can be useful to elucidate the pathophysiology of genetic disorders, drug screening, and tailor-made medicine. However, in order to apply iPS cells to mitotic tissue, induction of tissue stem cells that give rise to progeny of the target organ is required. Methodology/Principal Findings We induced stratified epithelial cells from mouse iPS cells by co-culture with PA6 feeder cells (SDIA-method) with use of BMP4. Clusters of cells positive for the differentiation markers KRT1 or KRT12 were observed in KRT14-positive colonies. We successfully cloned KRT14 and p63 double-positive stratified epithelial progenitor cells from iPS-derived epithelial cells, which formed stratified epithelial sheets consisting of five- to six-polarized epithelial cells in vitro. When these clonal cells were cultured on denuded mouse corneas, a robust stratified epithelial layer was observed with physiological cell polarity including high levels of E-cadherin, p63 and K15 expression in the basal layer and ZO-1 in the superficial layer, recapitulating the apico-basal polarity of the epithelium in vivo. Conclusions/Significance These results suggest that KRT14 and p63 double-positive epithelial progenitor cells can be cloned from iPS cells in order to produce polarized multilayer epithelial cell sheets. PMID:22174914

Yoshida, Satoru; Yasuda, Miyuki; Miyashita, Hideyuki; Ogawa, Yoko; Yoshida, Tetsu; Matsuzaki, Yumi; Tsubota, Kazuo; Okano, Hideyuki; Shimmura, Shigeto

2011-01-01

153

Microscopic and ultrastructural modifications of postmenopausal atrophic vaginal mucosa after fractional carbon dioxide laser treatment.  

PubMed

Vaginal atrophy occurring during menopause is closely related to the dramatic decrease in ovarian estrogens due to the loss of follicular activity. Particularly, significant changes occur in the structure of the vaginal mucosa, with consequent impairment of many physiological functions. In this study, carried out on bioptic vaginal mucosa samples from postmenopausal, nonestrogenized women, we present microscopic and ultrastructural modifications of vaginal mucosa following fractional carbon dioxide (CO2) laser treatment. We observed the restoration of the vaginal thick squamous stratified epithelium with a significant storage of glycogen in the epithelial cells and a high degree of glycogen-rich shedding cells at the epithelial surface. Moreover, in the connective tissue constituting the lamina propria, active fibroblasts synthesized new components of the extracellular matrix including collagen and ground substance (extrafibrillar matrix) molecules. Differently from atrophic mucosa, newly-formed papillae of connective tissue indented in the epithelium and typical blood capillaries penetrating inside the papillae, were also observed. Our morphological findings support the effectiveness of fractional CO2 laser application for the restoration of vaginal mucosa structure and related physiological trophism. These findings clearly coupled with striking clinical relief from symptoms suffered by the patients before treatment. PMID:25410301

Zerbinati, Nicola; Serati, Maurizio; Origoni, Massimo; Candiani, Massimo; Iannitti, Tommaso; Salvatore, Stefano; Marotta, Francesco; Calligaro, Alberto

2015-01-01

154

Cell-cell contacts with epithelial cells modulate the phenotype of human macrophages.  

PubMed

Interactions of macrophages with epithelium represent one of the pathways involved in regulating local immune mechanisms. We studied the effect of cell-cell contact with an epithelial monolayer on the phenotype of macrophages. Human monocytes and THP-1 macrophages were co-cultured with monolayers of human bronchial epithelial cells (HBECs), the alveolar type II-like cell line A549, renal adenocarcinoma epithelial cells (RA), and the lung fibroblast strain HFL-1. The expression of CD11b, CD14, CD54, and HLA-DR was measured by immunocytochemistry and flow cytometry and showed epithelial cell induction of CD54 and HLA-DR in monocytes and of all antigens in THP-1 cells. Co-culture with fibroblasts did not change the phenotype of macrophages. Separation by a filter insert inhibited most of the effects. Culture supernatants did not induce prominent phenotypic changes. Cell-cell contacts with epithelium appear to be of importance in regulating the phenotype of macrophages. PMID:11580100

Striz, I; Slavcev, A; Kalanin, J; Jaresová, M; Rennard, S I

2001-08-01

155

Role of Epithelial-Stem Cell Interactions during Dental Cell Differentiation*  

PubMed Central

Epithelial-mesenchymal interactions regulate the growth and morphogenesis of ectodermal organs such as teeth. Dental pulp stem cells (DPSCs) are a part of dental mesenchyme, derived from the cranial neural crest, and differentiate into dentin forming odontoblasts. However, the interactions between DPSCs and epithelium have not been clearly elucidated. In this study, we established a mouse dental pulp stem cell line (SP) comprised of enriched side population cells that displayed a multipotent capacity to differentiate into odontogenic, osteogenic, adipogenic, and neurogenic cells. We also analyzed the interactions between SP cells and cells from the rat dental epithelial SF2 line. When cultured with SF2 cells, SP cells differentiated into odontoblasts that expressed dentin sialophosphoprotein. This differentiation was regulated by BMP2 and BMP4, and inhibited by the BMP antagonist Noggin. We also found that mouse iPS cells cultured with mitomycin C-treated SF2-24 cells displayed an epithelial cell-like morphology. Those cells expressed the epithelial cell markers p63 and cytokeratin-14, and the ameloblast markers ameloblastin and enamelin, whereas they did not express the endodermal cell marker Gata6 or mesodermal cell marker brachyury. This is the first report of differentiation of iPS cells into ameloblasts via interactions with dental epithelium. Co-culturing with dental epithelial cells appears to induce stem cell differentiation that favors an odontogenic cell fate, which may be a useful approach for tooth bioengineering strategies. PMID:22298769

Arakaki, Makiko; Ishikawa, Masaki; Nakamura, Takashi; Iwamoto, Tsutomu; Yamada, Aya; Fukumoto, Emiko; Saito, Masahiro; Otsu, Keishi; Harada, Hidemitsu; Yamada, Yoshihiko; Fukumoto, Satoshi

2012-01-01

156

Estradiol Increases Mucus Synthesis in Bronchial Epithelial Cells  

PubMed Central

Airway epithelial mucus hypersecretion and mucus plugging are prominent pathologic features of chronic inflammatory conditions of the airway (e.g. asthma and cystic fibrosis) and in most of these conditions, women have worse prognosis compared with male patients. We thus investigated the effects of estradiol on mucus expression in primary normal human bronchial epithelial cells from female donors grown at an air liquid interface (ALI). Treatment with estradiol in physiological ranges for 2 weeks caused a concentration-dependent increase in the number of PAS-positive cells (confirmed to be goblet cells by MUC5AC immunostaining) in ALI cultures, and this action was attenuated by estrogen receptor beta (ER-?) antagonist. Protein microarray data showed that nuclear factor of activated T-cell (NFAT) in the nuclear fraction of NHBE cells was increased with estradiol treatment. Estradiol increased NFATc1 mRNA and protein in ALI cultures. In a human airway epithelial (1HAE0) cell line, NFATc1 was required for the regulation of MUC5AC mRNA and protein. Estradiol also induced post-translational modification of mucins by increasing total fucose residues and fucosyltransferase (FUT-4, -5, -6) mRNA expression. Together, these data indicate a novel mechanism by which estradiol increases mucus synthesis in the human bronchial epithelium. PMID:24964096

Tam, Anthony; Wadsworth, Samuel; Dorscheid, Delbert; Man, Shu-Fan Paul; Sin, Don D.

2014-01-01

157

Estradiol increases mucus synthesis in bronchial epithelial cells.  

PubMed

Airway epithelial mucus hypersecretion and mucus plugging are prominent pathologic features of chronic inflammatory conditions of the airway (e.g. asthma and cystic fibrosis) and in most of these conditions, women have worse prognosis compared with male patients. We thus investigated the effects of estradiol on mucus expression in primary normal human bronchial epithelial cells from female donors grown at an air liquid interface (ALI). Treatment with estradiol in physiological ranges for 2 weeks caused a concentration-dependent increase in the number of PAS-positive cells (confirmed to be goblet cells by MUC5AC immunostaining) in ALI cultures, and this action was attenuated by estrogen receptor beta (ER-?) antagonist. Protein microarray data showed that nuclear factor of activated T-cell (NFAT) in the nuclear fraction of NHBE cells was increased with estradiol treatment. Estradiol increased NFATc1 mRNA and protein in ALI cultures. In a human airway epithelial (1HAE0) cell line, NFATc1 was required for the regulation of MUC5AC mRNA and protein. Estradiol also induced post-translational modification of mucins by increasing total fucose residues and fucosyltransferase (FUT-4, -5, -6) mRNA expression. Together, these data indicate a novel mechanism by which estradiol increases mucus synthesis in the human bronchial epithelium. PMID:24964096

Tam, Anthony; Wadsworth, Samuel; Dorscheid, Delbert; Man, Shu-Fan Paul; Sin, Don D

2014-01-01

158

Trichostatin A Inhibits ?-Casein Expression in Mammary Epithelial Cells  

PubMed Central

Many aspects of cellular behavior are defined by the content of information provided by association of the extracellular matrix (ECM) and with cell membrane receptors. When cultured in the presence of laminin-containing ECM and prolactin (Prl), normal mammary epithelial cells express the milk protein ?-casein. We have previously found that the minimal ECM- and Prl-responsive enhancer element BCE-1 was only active when stably integrated into chromatin, and that trichostatin A (TSA), a reagent that leads to alterations in chromatin structure, was able to activate the integrated enhancer element. We now show that endogenous ?-casein gene, which is controlled by a genetic assembly that is highly similar to that of BCE-1 and which is also activated by incubation in ECM and Prl, is instead inhibited by TSA. We provide evidence that the differing response of ?-casein and BCE-1 to TSA is neither due to an unusual effect of TSA on mammary epithelial cells, nor to secondary consequences from the expression of a separate gene, nor to a particular property of the BCE-1 construct. As a component of this investigation, we also showed that ECM mediated rapid histone deacetylation in mammary epithelial cells. These results are discussed in combination with previous work showing that TSA mediates the differentiation of many types of cancer cells but inhibits differentiation of some nonmalignant cell types. PMID:11746508

Pujuguet, Philippe; Radisky, Derek; Levy, Dinah; Lacza, Charlemagne; Bissell, Mina J.

2010-01-01

159

Cytoskeletal mechanics during Shigella invasion and dissemination in epithelial cells.  

PubMed

The actin cytoskeleton is key to the barrier function of epithelial cells, by permitting the establishment and maintenance of cell-cell junctions and cell adhesion to the basal matrix. Actin exists under monomeric and polymerized filamentous form and its polymerization following activation of nucleation promoting factors generates pushing forces, required to propel intracellular microorganisms in the host cell cytosol or for the formation of cell extensions that engulf bacteria. Actin filaments can associate with adhesion receptors at the plasma membrane via cytoskeletal linkers. Membrane anchored to actin filaments are then subjected to the retrograde flow that may pull membrane-bound bacteria inside the cell. To induce its internalization by normally non-phagocytic cells, bacteria need to establish adhesive contacts and trick the cell into apply pulling forces, and/or to generate protrusive forces that deform the membrane surrounding its contact site. In this review, we will focus on recent findings on actin cytoskeleton reorganization within epithelial cells during invasion and cell-to-cell spreading by the enteroinvasive pathogen Shigella, the causative agent of bacillary dysentery. PMID:25469430

Valencia-Gallardo, Cesar M; Carayol, Nathalie; Tran Van Nhieu, Guy

2015-02-01

160

Host epithelial geometry regulates breast cancer cell invasiveness  

PubMed Central

Breast tumor development is regulated in part by cues from the local microenvironment, including interactions with neighboring nontumor cells as well as the ECM. Studies using homogeneous populations of breast cancer cell lines cultured in 3D ECM have shown that increased ECM stiffness stimulates tumor cell invasion. However, at early stages of breast cancer development, malignant cells are surrounded by normal epithelial cells, which have been shown to exert a tumor-suppressive effect on cocultured cancer cells. Here we explored how the biophysical characteristics of the host microenvironment affect the proliferative and invasive tumor phenotype of the earliest stages of tumor development, by using a 3D microfabrication-based approach to engineer ducts composed of normal mammary epithelial cells that contained a single tumor cell. We found that the phenotype of the tumor cell was dictated by its position in the duct: proliferation and invasion were enhanced at the ends and blocked when the tumor cell was located elsewhere within the tissue. Regions of invasion correlated with high endogenous mechanical stress, as shown by finite element modeling and bead displacement experiments, and modulating the contractility of the host epithelium controlled the subsequent invasion of tumor cells. Combining microcomputed tomographic analysis with finite element modeling suggested that predicted regions of high mechanical stress correspond to regions of tumor formation in vivo. This work suggests that the mechanical tone of nontumorigenic host epithelium directs the phenotype of tumor cells and provides additional insight into the instructive role of the mechanical tumor microenvironment. PMID:23150585

Boghaert, Eline; Gleghorn, Jason P.; Lee, KangAe; Gjorevski, Nikolce; Radisky, Derek C.; Nelson, Celeste M.

2012-01-01

161

The Role of Vaginal Brachytherapy in the Treatment of Surgical Stage I Papillary Serous or Clear Cell Endometrial Cancer  

SciTech Connect

Objectives: The optimal adjuvant therapy for International Federation of Gynecology and Obstetrics (FIGO) stage I papillary serous (UPSC) or clear cell (CC) endometrial cancer is unknown. We report on the largest single-institution experience using adjuvant high-dose-rate vaginal brachytherapy (VBT) for surgically staged women with FIGO stage I UPSC or CC endometrial cancer. Methods and Materials: From 1998-2011, 103 women with FIGO 2009 stage I UPSC (n=74), CC (n=21), or mixed UPSC/CC (n=8) endometrial cancer underwent total abdominal hysterectomy with bilateral salpingo-oophorectomy followed by adjuvant high-dose-rate VBT. Nearly all patients (n=98, 95%) also underwent extended lymph node dissection of pelvic and paraortic lymph nodes. All VBT was performed with a vaginal cylinder, treating to a dose of 2100 cGy in 3 fractions. Thirty-five patients (34%) also received adjuvant chemotherapy. Results: At a median follow-up time of 36 months (range, 1-146 months), 2 patients had experienced vaginal recurrence, and the 5-year Kaplan Meier estimate of vaginal recurrence was 3%. The rates of isolated pelvic recurrence, locoregional recurrence (vaginal + pelvic), and extrapelvic recurrence (including intraabdominal) were similarly low, with 5-year Kaplan-Meier estimates of 4%, 7%, and 10%, respectively. The estimated 5-year overall survival was 84%. On univariate analysis, delivery of chemotherapy did not affect recurrence or survival. Conclusions: VBT is effective at preventing vaginal relapse in women with surgical stage I UPSC or CC endometrial cancer. In this cohort of patients who underwent comprehensive surgical staging, the risk of isolated pelvic or extrapelvic relapse was low, implying that more extensive adjuvant radiation therapy is likely unnecessary.

Barney, Brandon M., E-mail: barney.brandon@mayo.edu [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Petersen, Ivy A. [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States)] [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Mariani, Andrea; Dowdy, Sean C.; Bakkum-Gamez, Jamie N. [Division of Gynecologic Surgery, Mayo Clinic, Rochester, Minnesota (United States)] [Division of Gynecologic Surgery, Mayo Clinic, Rochester, Minnesota (United States); Haddock, Michael G. [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States)] [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States)

2013-01-01

162

Epithelial stem cells, wound healing and cancer  

Microsoft Academic Search

It is well established that tissue repair depends on stem cells and that chronic wounds predispose to tumour formation. However, the association between stem cells, wound healing and cancer is poorly understood. Lineage tracing has now shown how stem cells are mobilized to repair skin wounds and how they contribute to skin tumour development. The signalling pathways, including WNT and

Esther N. Arwert; Esther Hoste; Fiona M. Watt

2012-01-01

163

Effects of Hepatocyte Growth Factor, Transforming Growth Factor-?1 and Epidermal Growth Factor on Bovine Corneal Epithelial Cells under Epithelial–Keratocyte Interaction in Reconstruction Culture  

Microsoft Academic Search

In the cornea, corneal epithelial cells are in close contact with keratocytes: the epithelial cells organize thickened lamellar structure on a layer of keratocytes embedded in extracellular matrix (ECM). Thus, growth factors are expected to critically regulate corneal component cells under epithelial–keratocyte interaction. The purpose of this study is to clarify effects of hepatocyte growth factor (HGF), transforming growth factor-?1

TOMOHISA NISHIMURA; SHUJI TODA; TAKUYA MITSUMOTO; SHINJI OONO; HAJIME SUGIHARA

1998-01-01

164

Highly efficient generation of airway and lung epithelial cells from human pluripotent stem cells  

PubMed Central

The ability to generate lung and airway epithelial cells from human pluripotent stem cells (hPSCs) would have applications in regenerative medicine, drug screening and modeling of lung disease, and studies of human lung development. We established, based on developmental paradigms, a highly efficient method for directed differentiation of hPSCs into lung and airway epithelial cells. Long-term differentiation in vivo and in vitro yielded basal, goblet, Clara, ciliated, type I and type II alveolar epithelial cells. Type II alveolar epithelial cells generated were capable of surfactant protein-B uptake and stimulated surfactant release, providing evidence of specific function. Inhibiting or removing agonists to signaling pathways critical for early lung development in the mouse—retinoic acid, Wnt and BMP—recapitulated defects in corresponding genetic mouse knockouts. The capability of this protocol to generate most cell types of the respiratory system suggests its utility for deriving patient-specific therapeutic cells. PMID:24291815

Huang, Sarah X.L.; Islam, Mohammad Naimul; O’Neill, John; Hu, Zheng; Yang, Yong-Guang; Chen, Ya-Wen; Mumau, Melanie; Green, Michael D.; Vunjak-Novakovic, Gordana; Bhattacharya, Jahar; Snoeck, Hans-Willem

2013-01-01

165

Radiogenic transformation of human mammary epithelial cells in vitro  

NASA Technical Reports Server (NTRS)

Cancer induction by space radiations is a major concern for manned space exploration. Accurate assessment of radiation risk at low doses requires basic understanding of mechanism(s) of radiation carcinogenesis. For determining the oncogenic effects of ionizing radiation in human epithelial cells, we transformed a mammary epithelial cell line (185B5), which was immortalized by benzo(a)pyrene, with energetic heavy ions and obtained several transformed clones. These transformed cells showed growth properties on Matrigel similar to human mammary tumor cells. To better understand the mechanisms of radiogenic transformation of human cells, we systematically examined the alterations in chromosomes and cancer genes. Among 16 autosomes examined for translocations, by using fluorescence in situ hybridization (FISH) technique, chromosomes 3, 12, 13, 15, 16, and 18 appeared to be normal in transformed cells. Chromosomes 1, 4, 6, 8, and 17 in transformed cells, however, showed patterns different from those in nontransformed cells. Southern blot analyses indicated no detectable alterations in myc, ras, Rb, or p53 genes. Further studies of chromosome 17 by using in situ hybridization with unique sequence p53 gene probe and a centromere probe showed no loss of p53 gene in transformed cells. Experimental results from cell fusion studies indicated that the transforming gene(s) is recessive. The role of genomic instability and tumor suppressor gene(s) in radiogenic transformation of human breast cells remains to be identified.

Yang, T. C.; Georgy, K. A.; Tavakoli, A.; Craise, L. M.; Durante, M.

1996-01-01

166

In vitro differentiation of human tooth germ stem cells into endothelial- and epithelial-like cells.  

PubMed

Current clinical techniques in dental practice include stem cell and tissue engineering applications. Dental stem cells are promising primary cell source for mainly tooth tissue engineering. Interaction of mesenchymal stem cell with epithelial and endothelial cells is strictly required for an intact tooth morphogenesis. Therefore, it is important to investigate whether human tooth germ stem cells (hTGSCs) derived from wisdom tooth are suitable for endothelial and epithelial cell transformation in dental tissue regeneration approaches. Differentiation into endothelial and epithelial cell lineages were mimicked under defined conditions, confirmed by real time PCR, western blotting and immunocytochemical analysis by qualitative and quantitative methods. HUVECs and HaCaT cells were used as positive controls for the endothelial and epithelial differentiation assays, respectively. Immunocytochemical and western blotting analysis revealed that terminally differentiated cells expressed cell-lineage markers including CD31, VEGFR2, VE-Cadherin, vWF (endothelial cell markers), and cytokeratin (CK)-17, CK-19, EpCaM, vimentin (epithelial cell markers) in significant levels with respect to undifferentiated control cells. Moreover, high expression levels of VEGFR1, VEGFR2, VEGF, CK-18, and CK-19 genes were detected in differentiated endothelial and epithelial-like cells. Endothelial-like cells derived from hTGSCs were cultured on Matrigel, tube-like structure formations were followed as an indication for functional endothelial differentiation. hTGSCs successfully differentiate into various cell types with a broad range of functional abilities using an in vitro approach. These findings suggest that hTGSCs may serve a potential stem cell source for tissue engineering and cell therapy of epithelial and endothelial tissue. PMID:25077982

Do?an, Ay?egül; Demirci, Selami; ?ahin, Fikrettin

2015-01-01

167

Characterization of butyrate uptake by nontransformed intestinal epithelial cell lines.  

PubMed

Butyrate (BT) is one of the main end products of anaerobic bacterial fermentation of dietary fiber within the human colon. Among its recognized effects, BT inhibits colon carcinogenesis. Our aim was to characterize uptake of BT by two nontransformed intestinal epithelial cell lines: rat small intestinal epithelial (IEC-6) and fetal human colonic epithelial (FHC) cells. Uptake of ¹?C-BT by IEC-6 cells was (1) time- and concentration-dependent; (2) pH-dependent; (3) Na+-, Cl?- and energy-dependent; (4) inhibited by BT structural analogues; (5) sensitive to monocarboxylate transporter 1 (MCT1) inhibitors; and (6) insensitive to DIDS and amiloride. IEC-6 cells express both MCT1 and Na+-coupled monocarboxylate transporter 1 (SMCT1) mRNA. We conclude that ¹?C-BT uptake by IEC-6 cells mainly involves MCT1, with a small contribution of SMCT1. Acute exposure to ethanol, acetaldehyde, indomethacin, resveratrol and quercetin reduced ¹?C-BT uptake. Chronic exposure to resveratrol and quercetin reduced ¹?C-BT uptake but had no effect on either MCT1 or SMCT1 mRNA levels. Uptake of ¹?C-BT by FHC cells was time- and concentration-dependent but pH-, Na+-, Cl?- and energy-independent and insensitive to BT structural analogues and MCT1 inhibitors. Although MCT1 (but not SMCT1) mRNA expression was found in FHC cells, the characteristics of ¹?C-BT uptake by FHC cells did not support either MCT1 or SMCT1 involvement. In conclusion, uptake characteristics of ¹?C-BT differ between IEC-6 and FHC cells. IEC-6 cells demonstrate MCT1- and SMCT1-mediated transport, while FHC cells do not. PMID:21286694

Gonçalves, Pedro; Araújo, João R; Martel, Fátima

2011-03-01

168

Cytosolic calcium measurements in renal epithelial cells by flow cytometry.  

PubMed

A variety of cellular processes, both physiological and pathophysiological, require or are governed by calcium, including exocytosis, mitochondrial function, cell death, cell metabolism and cell migration to name but a few. Cytosolic calcium is normally maintained at low nanomolar concentrations; rather it is found in high micromolar to millimolar concentrations in the endoplasmic reticulum, mitochondrial matrix and the extracellular compartment. Upon stimulation, a transient increase in cytosolic calcium serves to signal downstream events. Detecting changes in cytosolic calcium is normally performed using a live cell imaging set up with calcium binding dyes that exhibit either an increase in fluorescence intensity or a shift in the emission wavelength upon calcium binding. However, a live cell imaging set up is not freely accessible to all researchers. Alternative detection methods have been optimized for immunological cells with flow cytometry and for non-immunological adherent cells with a fluorescence microplate reader. Here, we describe an optimized, simple method for detecting changes in epithelial cells with flow cytometry using a single wavelength calcium binding dye. Adherent renal proximal tubule epithelial cells, which are normally difficult to load with dyes, were loaded with a fluorescent cell permeable calcium binding dye in the presence of probenecid, brought into suspension and calcium signals were monitored before and after addition of thapsigargin, tunicamycin and ionomycin. PMID:25407650

Lee, Wing-Kee; Dittmar, Thomas

2014-01-01

169

The transport pathways of polymer nanoparticles in MDCK epithelial cells.  

PubMed

Epithelial cell membranes as the typical biological barrier constitute the prime obstacle for the transport of therapeutic agents including nanomedicines. The previous studies on the interaction between nanomedicines and cells are mostly emphasized on cellular uptake and intracellular trafficking, but seldom on epithelial cells, although more and more oral nanomedicines are available now. In an attempt to clarify the transport pathways of nanomedicines in epithelial cells, the different molecular mechanisms among endocytosis, exocytosis and transcytosis processes were carefully studied and compared here using a kind of polymer nanoparticles (PNs) and MDCK epithelial cells as models. As the result, their similarity and difference were demonstrated. The similarities among all the three processes included the mediation of lipid rafts, the involvement of some protein kinases such as protein tyrosine kinase (PTK), protein kinase C (PKC) and phosphatidylinositol 3-kinase (PI3K), and the existence of multiple pathways. However, the difference among these processes was very significant, including different pathways, and especially the disparate effects of lipid rafts and protein kinases for different processes. The endocytosis involved both lipid raft and clathrin mechanisms but no macropinocytosis, via the invagination of membrane but no pore formation, the exocytosis contained ER/Golgi and Golgi/PM pathways, and transcytosis included AEE/CE/BSE and Golgi/BSE pathways. The roles of lipid rafts on endocytosis were positive but that on exocytosis and transcytosis was negative. The impacts of PTK and PKC on endocytosis were positive, while the influences of PTK, PKC and P13K on AEE/CE/BSE, as well as PTK and P13K on Golgi/BSE transcytosis pathways were negative. Moreover, the discrepancy between inward and outward transport of PNs elucidated an interesting fact that the endocytosis was rather easy and outward transport including exocytosis and transcytosis was rather difficult. Finally, it was indicated by comparison with previous reports that the molecular mechanisms between PNs and macromolecules such as proteins were also dissimilar. PMID:23478037

He, Bing; Jia, Zengrong; Du, Wenwen; Yu, Chao; Fan, Yuchen; Dai, Wenbing; Yuan, Lan; Zhang, Hua; Wang, Xueqing; Wang, Jiancheng; Zhang, Xuan; Zhang, Qiang

2013-06-01

170

Protective Effects of Trehalose on the Corneal Epithelial Cells  

PubMed Central

Purpose. Aim of the present work was to evaluate the effects of the trehalose on the corneal epithelium undergoing alcohol delamination. Methods. Twelve patients undergoing laser subepithelial keratomileusis (LASEK) were consecutively included in the study. The right eyes were pretreated with 3% trehalose eye drops, whilst left eyes were used as control. Epithelial specimens were processed for cells vitality assessment, apoptosis, and light and transmission electron microscopy; a morphometric analysis was performed in both groups. Results. In both trehalose-untreated eyes (TUE) and trehalose-treated eyes (TTE), the percentage of vital cells was similar and no apoptotic cells were observed. In TUE, the corneal epithelium showed superficial cells with reduced microfolds, wing cells with vesicles and dilated intercellular spaces, and dark basal cells with vesicles and wide clefts. In TTE, superficial and wing cells were better preserved, and basal cells were generally clear with intracytoplasmatic vesicles. The morphometric analysis showed statistically significant differences between the two groups: the TTE epithelial height was higher, the basal cells showed larger area and clearer cytoplasm. The distribution of desmosomes and hemidesmosomes was significantly different between the groups. Conclusions. Trehalose administration better preserved morphological and morphometric features of alcohol-treated corneal epithelium, when compared to controls. PMID:25045743

Aragona, Pasquale; Colosi, Pietro; Colosi, Francesca; Pisani, Antonina; Puzzolo, Domenico; Micali, Antonio

2014-01-01

171

Epithelial Cell Polarity Determinant CRB3 in Cancer Development  

PubMed Central

Cell polarity, which is defined as asymmetry in cell shape, organelle distribution and cell function, is essential in numerous biological processes, including cell growth, cell migration and invasion, molecular transport, and cell fate. Epithelial cell polarity is mainly regulated by three conserved polarity protein complexes, the Crumbs (CRB) complex, partitioning defective (PAR) complex and Scribble (SCRIB) complex. Research evidence has indicated that dysregulation of cell polarity proteins may play an important role in cancer development. Crumbs homolog 3 (CRB3), a member of the CRB complex, may act as a cancer suppressor in mouse kidney epithelium and mouse mammary epithelium. In this review, we focus on the current data available on the roles of CRB3 in cancer development. PMID:25552927

Li, Pingping; Mao, Xiaona; Ren, Yu; Liu, Peijun

2015-01-01

172

Stiffness nanotomography of human epithelial cancer cells  

NASA Astrophysics Data System (ADS)

The mechanical stiffness of individual cells is important in both cancer initiation and metastasis. We present atomic force microscopy (AFM) based nanoindentation experiments on various human mammary and esophagus cell lines covering the spectrum from normal immortalized cells to highly metastatic ones. The combination of an AFM with a confocal fluorescence lifetime imaging microscope (FLIM) in conjunction with the ability to move the sample and objective independently allow for precise alignment of AFM probe and laser focus with an accuracy down to a few nanometers. This enables us to correlate the mechanical properties with the point of indentation in the FLIM image. We are using force-volume measurements as well as force indentation curves on distinct points on the cells to compare the elastic moduli of the nuclei, nucleoli, and the cytoplasm, and how they vary within and between individual cells and cell lines. Further, a detailed analysis of the force-indentation curves allows study of the cells' mechanical properties at different indentation depths and to generate 3D elasticity maps.

Staunton, Jack R.; Doss, Bryant L.; Gilbert, C. Michael; Kasas, Sandor; Ros, Robert

2012-02-01

173

Measles Virus Infection Induces Terminal Differentiation of Human Thymic Epithelial Cells  

PubMed Central

Measles virus infection induces a profound immunosuppression that may lead to serious secondary infections and mortality. In this report, we show that the human cortical thymic epithelial cell line is highly susceptible to measles virus infection in vitro, resulting in infectious viral particle production and syncytium formation. Measles virus inhibits thymic epithelial cell growth and induces an arrest in the G0/G1 phases of the cell cycle. Moreover, we show that measles virus induces a progressive thymic epithelial cell differentiation process: attached measles virus-infected epithelial cells correspond to an intermediate state of differentiation while floating cells, recovered from cell culture supernatants, are fully differentiated. Measles virus-induced thymic epithelial cell differentiation is characterized by morphological and phenotypic changes. Measles virus-infected attached cells present fusiform and stellate shapes followed by a loss of cell-cell contacts and a shift from low- to high-molecular-weight keratin expression. Measles virus infection induces thymic epithelial cell apoptosis in terminally differentiated cells, revealed by the condensation and degradation of DNA in measles virus-infected floating thymic epithelial cells. Because thymic epithelial cells are required for the generation of immunocompetent T lymphocytes, our results suggest that measles virus-induced terminal differentiation of thymic epithelial cells may contribute to immunosuppression, particularly in children, in whom the thymic microenvironment is of critical importance for the development and maturation of a functional immune system. PMID:9971804

Valentin, Hélène; Azocar, Olga; Horvat, Branka; Williems, Rejane; Garrone, Robert; Evlashev, Alexei; Toribio, Maria L.; Rabourdin-Combe, Chantal

1999-01-01

174

Choroid epithelial cells: source cerebrospinal fluid progesterone in sheep?  

Microsoft Academic Search

Karahan S., Yarim G. F., Yarim M. Choroid epithelial cells: the source of cerebrospinal fluid progesterone in sheep? Summary The present study was conducted to immunolocalize 3b-hydroxysteroid dehydrogenase (3b-HSD), an enzyme metabolizing pregnenolone to progesterone in the choroid plexus of the lateral ventricle in sheep, as well as to measure progesterone concentration in cerebrospinal fluid (CSF) and plasma using radioimmunoassay

SIYAMI KARAHAN; GUL FATMA YARIM; MURAT YARIM

2007-01-01

175

CD45Positive Blood Cells Give Rise to Uterine Epithelial Cells in Mice  

Microsoft Academic Search

The uterine endometrium is composed of epithelial and stromal cells, which undergo extensive degeneration and regeneration in every estrous cycle, and dramatic changes occur during pregnancy. The high turnover of cells requires a correspondingly high level of cell division by progenitor cells in the uterus but the character and source of these cells remain obscure. In the present study, using

András Bratincsák; Michael J. Brownstein; Riccardo Cassiani-Ingoni; Sandra Pastorino; Ildikó Szalayova; Zsuzsanna E. Tóth; Sharon Key; Krisztián Németh; James Pickel; Éva Mezey

2007-01-01

176

Reconstitution of Mammary Epithelial Morphogenesis by Murine Embryonic Stem Cells Undergoing Hematopoietic Stem Cell Differentiation  

Microsoft Academic Search

BackgroundMammary stem cells are maintained within specific microenvironments and recruited throughout lifetime to reconstitute de novo the mammary gland. Mammary stem cells have been isolated through the identification of specific cell surface markers and in vivo transplantation into cleared mammary fat pads. Accumulating evidence showed that during the reformation of mammary stem cell niches by dispersed epithelial cells in the

Shuxian Jiang; Byeong-Chel Lee; Yigong Fu; Shalom Avraham; Bing Lim; Hava Karsenty Avraham

2010-01-01

177

Protein-Coated Nanoparticles Are Internalized by the Epithelial Cells of the Female Reproductive Tract and Induce Systemic and Mucosal Immune Responses  

PubMed Central

The female reproductive tract (FRT) includes the oviducts (fallopian tubes), uterus, cervix and vagina. A layer of columnar epithelium separates the endocervix and uterus from the outside environment, while the vagina is lined with stratified squamous epithelium. The mucosa of the FRT is exposed to antigens originating from microflora, and occasionally from infectious microorganisms. Whether epithelial cells (ECs) of the FRT take up (sample) the lumen antigens is not known. To address this question, we examined the uptake of 20–40 nm nanoparticles (NPs) applied vaginally to mice which were not treated with hormones, epithelial disruptors, or adjuvants. We found that 20 and 40 nm NPs are quickly internalized by ECs of the upper FRT and within one hour could be observed in the lymphatic ducts that drain the FRT, as well as in the ileac lymph nodes (ILNs) and the mesenteric lymph nodes (MLNs). Chicken ovalbumin (Ova) conjugated to 20 nm NPs (NP-Ova) when administered vaginally reaches the internal milieu in an immunologically relevant form; thus vaginal immunization of mice with NP-Ova induces systemic IgG to Ova antigen. Most importantly, vaginal immunization primes the intestinal mucosa for secretion of sIgA. Sub-cutaneous (s.c) boosting immunization with Ova in complete Freund's adjuvant (CFA) further elevates the systemic (IgG1 and IgG2c) as well as mucosal (IgG1 and sIgA) antibody titers. These findings suggest that the modes of antigen uptake at mucosal surfaces and pathways of antigen transport are more complex than previously appreciated. PMID:25490456

Howe, Savannah E.; Konjufca, Vjollca H.

2014-01-01

178

Human alveolar epithelial type II cells in primary culture.  

PubMed

Alveolar epithelial type II (AEII) cells are a key structure and defender in the lung but also are the targets in many lung diseases, including acute respiratory distress syndrome, ventilator-induced lung injury, and pulmonary fibrosis. We sought to establish an optimized method for high yielding and long maintenance of characteristics of primary human AEII cells to facilitate the investigation of the mechanisms of lung diseases at the cellular and molecular levels. Adult human peripheral normal lung tissues of oncologic patients undergoing lung resection were collected. The AEII cells were isolated and identified by the expression of pro-surfactant protein (SP)C, epithelial sodium channel (?ENaC) and cytokeratin (CK)-8, the lamellar bodies specific for AEII cells, and confirmed by the histology using electron microscopy. The phenotype of AEII cells was characterized by the expression of surfactant proteins (SP-A, SP-B, SP-C, SP-D), CK-8, KL-6, ?ENaC, and aquaporin (AQP)-3, which was maintained over 20 days. The biological activity of the primary human AEII cells producing SP-C, cytokines, and intercellular adhesion molecule-1 was vigorous in response to stimulation with tumor necrosis factor-?. We have modified previous methods and optimized a method for isolation of high purity and long maintenance of the human AEII cell phenotype in primary culture. This method provides an important tool for studies aiming at elucidating the molecular mechanisms of lung diseases exclusively in AEII cells. PMID:25677546

Mao, Pu; Wu, Songling; Li, Jianchun; Fu, Wei; He, Weiqun; Liu, Xiaoqing; Slutsky, Arthur S; Zhang, Haibo; Li, Yimin

2015-02-01

179

Polarised bovine endometrial epithelial cells vectorially secrete prostaglandins and chemotactic factors under physiological and pathological conditions.  

PubMed

Epithelial cells of the endometrium secrete prostaglandins to regulate the bovine oestrous cycle and form a functional barrier to microbes. However, bacterial infection of the endometrium commonly causes infertility in dairy cattle by disrupting endometrial physiology. Epithelial cell cultures are used to study the mechanisms of physiology and pathology, but 2D cultures may not reflect the 3D complexity of the epithelium. In this study, a polarised epithelial cell transwell culture was developed, using transepithelial resistance (TER), to monitor epithelial integrity. Polarised epithelial cells were treated with oxytocin and arachidonic acid to test physiological function and with lipopolysaccharide (LPS) to mimic bacterial infection. Supernatants were analysed for prostaglandin E(2) (PGE), prostaglandin F(2)(?), the chemokine interleukin-8 (IL8) and the ability of supernatants to induce neutrophil migration. Confluent epithelial cells established polarity when TER was >1800? ? cm(2) and predominantly released prostaglandins basolaterally. In contrast, IL8 from epithelial cells accumulated apically and the supernatants were highly chemotactic for neutrophils. The striking exception was when the epithelial cells were treated with LPS in the apical or basolateral compartment independently, which led to the release of IL8 towards the treated compartment. Although stromal cells also accumulated PGE and IL8 in response to treatment, co-culture of stromal cells in the well below polarised epithelial cells did not influence cellular responses. In conclusion, polarised endometrial epithelial cells vectorially released prostaglandins and chemokines to reflect their respective mechanistic roles in physiology and pathology. PMID:23115348

MacKintosh, Siân B; Schuberth, Hans-Joachim; Healy, Laura L; Sheldon, I Martin

2013-01-01

180

Presentation of peptides and proteins by intestinal epithelial cells.  

PubMed Central

Murine intestinal epithelial cells (IEC) constitutively express major histocompatibility complex (MHC) class II molecules, which enable them to present foreign antigens to T cells in vitro. In this study we have compared the ability of freshly isolated IEC and spleen adherent cells to present both protein and peptide antigens to T cells in vitro. Consistently IEC were unable to present protein but could readily present immunogenic peptides in an MHC-dependent fashion to stimulate lymphokine release from T cells. Consistent with their inability to process protein antigens, IEC were also unable to present a synthetic peptide which requires intracellular processing, whereas spleen antigen-presenting cells (APC) could readily present the same peptide. These findings indicate that IEC may lack the necessary intracellular machinery to process exogenous antigens but they raise the possibility that IEC may play an important immunological role in vivo by presenting processed peptides to T cells. PMID:8262549

Hoyne, G F; Callow, M G; Kuo, M C; Thomas, W R

1993-01-01

181

Temporal association of serum progesterone concentrations and vaginal cytology in walruses (Odobenus rosmarus).  

PubMed

Concentrations of serum estradiol-17? and progesterone were monitored in six female walruses using an enzyme immunoassay. Progesterone concentrations increased from March to May in females aged 6 y or older, and subsequently declined (October). No significant elevation of estradiol-17? concentration was detected before an elevation of progesterone concentration. Vaginal smears from four females were examined with Papanicolaou staining. In all females, most epithelial cells were basophilic intermediate-superficial cells; no color change from basophilic to eosinophilic of the cells was detected. Meanwhile, the percentage of anucleate cells in vaginal smears reached its highest value before the elevation of progesterone concentration, followed by an increase in the percentage of leukocytes. We inferred that the change in populations of anucleate cells and leukocytes in vaginal smears reflected ovarian status and CL formation in female walruses. PMID:22153266

Kinoshita, K; Kiwata, M; Kuwano, R; Sato, N; Tanaka, T; Nagata, M; Taira, H; Kusunoki, H

2012-03-15

182

Gelsolin modulation in epithelial and stromal cells of mammary carcinoma.  

PubMed Central

Gelsolin, a Ca2+-sensitive protein present in many mammalian cells, regulates actin filament length by multiple mechanisms. In tumor cells, increased amounts of F-actin without change in its total amount have been observed, suggesting a modification in the organisation of this protein. The authors have localized gelsolin, total actin, alpha-smooth muscle actin, and prekeratin in frozen sections of normal human breast and infiltrating duct carcinomas by immunohistochemistry. A positive staining for gelsolin was observed in normal epithelial and myoepithelial cells but not in stromal fibroblasts. In contrast, no staining for gelsolin was detectable in carcinomatous cells, with the exception of remaining myoepithelial cells; myofibroblasts of the stromal reaction displayed an intense positive reaction. The absence of gelsolin staining in the epithelial cells of breast carcinoma may reflect their dedifferentiation or proliferative and invasive activities. The appearance of gelsolin in stromal cells raises the question as to what is its function in this situation. The immunohistochemical detection of gelsolin may be a useful adjunct to the study of mammary gland epithelium malignant transformation. Images Figure 1 Figure 2 Figure 3 PMID:2538057

Chaponnier, C.; Gabbiani, G.

1989-01-01

183

Molecular characterization of mouse gastric epithelial progenitor cells.  

PubMed

The adult mouse gastric epithelium undergoes continuous renewal in discrete anatomic units. Lineage tracing studies have previously disclosed the morphologic features of gastric epithelial lineage progenitors (GEPs), including those of the presumptive multipotent stem cell. However, their molecular features have not been defined. Here, we present the results of an analysis of genes and pathways expressed in these cells. One hundred forty-seven transcripts enriched in GEPs were identified using an approach that did not require physical disruption of the stem cell niche. Real-time quantitative RT-PCR studies of laser capture microdissected cells retrieved from this niche confirmed enriched expression of a selected set of genes from the GEP list. An algorithm that allows quantitative comparisons of the functional relatedness of automatically annotated expression profiles showed that the GEP profile is similar to a dataset of genes that defines mouse hematopoietic stem cells, and distinct from the profiles of two differentiated GEP descendant lineages (parietal and zymogenic cell). Overall, our analysis revealed that growth factor response pathways are prominent in GEPs, with insulin-like growth factor appearing to play a key role. A substantial fraction of GEP transcripts encode products required for mRNA processing and cytoplasmic localization, including numerous homologs of Drosophila genes (e.g., Y14, staufen, mago nashi) needed for axis formation during oogenesis. mRNA targeting proteins may help these epithelial progenitors establish differential communications with neighboring cells in their niche. PMID:12409607

Mills, Jason C; Andersson, Niklas; Hong, Chieu V; Stappenbeck, Thaddeus S; Gordon, Jeffrey I

2002-11-12

184

Molecular characterization of mouse gastric epithelial progenitor cells  

PubMed Central

The adult mouse gastric epithelium undergoes continuous renewal in discrete anatomic units. Lineage tracing studies have previously disclosed the morphologic features of gastric epithelial lineage progenitors (GEPs), including those of the presumptive multipotent stem cell. However, their molecular features have not been defined. Here, we present the results of an analysis of genes and pathways expressed in these cells. One hundred forty-seven transcripts enriched in GEPs were identified using an approach that did not require physical disruption of the stem cell niche. Real-time quantitative RT-PCR studies of laser capture microdissected cells retrieved from this niche confirmed enriched expression of a selected set of genes from the GEP list. An algorithm that allows quantitative comparisons of the functional relatedness of automatically annotated expression profiles showed that the GEP profile is similar to a dataset of genes that defines mouse hematopoietic stem cells, and distinct from the profiles of two differentiated GEP descendant lineages (parietal and zymogenic cell). Overall, our analysis revealed that growth factor response pathways are prominent in GEPs, with insulin-like growth factor appearing to play a key role. A substantial fraction of GEP transcripts encode products required for mRNA processing and cytoplasmic localization, including numerous homologs of Drosophila genes (e.g., Y14, staufen, mago nashi) needed for axis formation during oogenesis. mRNA targeting proteins may help these epithelial progenitors establish differential communications with neighboring cells in their niche. PMID:12409607

Mills, Jason C.; Andersson, Niklas; Hong, Chieu V.; Stappenbeck, Thaddeus S.; Gordon, Jeffrey I.

2002-01-01

185

Native type IV collagen induces an epithelial to mesenchymal transition-like process in mammary epithelial cells MCF10A.  

PubMed

Basement membrane (BM) is a complex network of interacting proteins, including type IV collagen (Col IV) that acts as a scaffold that stabilizes the physical structures of tissues and regulates cellular processes. In the mammary gland, BM is a continuous deposit that separates epithelial cells from stroma, and its degradation is related with an increased potential for invasion and metastasis. Epithelial to mesenchymal transition (EMT) is a process by which epithelial cells are transdifferentiated to one mesenchymal state, and is a normal process during embryonic development, tissue remodeling and wound healing, as well as it has been implicated during cancer progression. In breast cancer cells, native Col IV induces migration and gelatinases secretion. However, the role of native Col IV on the EMT process in human mammary epithelial cells remains to be investigated. In the present study, we demonstrate that native Col IV induces down-regulation of E-cadherin expression, accompanied with an increase of Snail1, Snail2 and Sip1 transcripts. Native Col IV also induces an increase in N-cadherin and vimentin expression, an increase of MMP-2 secretion, the activation of FAK and NF?B, cell migration and invasion in MCF10A cells. In summary, these findings demonstrate, for the first time, that native Col IV induces an EMT-like process in MCF10A human mammary non-tumorigenic epithelial cells. PMID:22981734

Espinosa Neira, Roberto; Salazar, Eduardo Perez

2012-12-01

186

Infection of Female Primary Lower Genital Tract Epithelial Cells after Natural Pseudotyping of HIV-1: Possible Implications for Sexual Transmission of HIV-1  

PubMed Central

The global AIDS pandemic continues to expand and in some regions of the world, such as southern Africa, the prevalence of HIV-1 infection exceeds 20%. The devastating spread of the virus in young women in these countries appears disproportional to overall risk of infection. Regions with high prevalence of HIV-1 are often also highly endemic for other pathogenic viruses including HSV, CMV and HTLV. We propose that acquisition by HIV-1 of the envelope glycoproteins of other viruses, in a process we call “natural pseudotyping,” expands the cellular tropism of HIV-1, enabling it to infect female genital epithelial cells directly and thereby dramatically increasing risk of infection during sexual intercourse. In this proof-of-concept study, we demonstrate that when HIV-1 co-infects T cells along with the gammaretrovirus xenotropic murine leukemia virus-related virus (XMRV), progeny HIV-1 particles are produced capable of infecting primary vaginal, ectocervical and endocervical epithelial cells. These cell types are normally resistant to HIV-1 infection. Infection of primary genital cells was neutralized by antisera against the XMRV glycoprotein, confirming that infection was mediated by the XMRV glycoprotein acquired through pseudotyping of HIV. Inhibition by AZT showed that active replication of HIV-1 occurred in these cells and ruled out non-specific endocytic uptake of the virus. These results demonstrate that natural pseudotyping can expand the tropism of HIV-1 to include genital epithelial cells and have potential implications for sexual transmission of the virus. PMID:25010677

Tang, Yuyang; George, Alvin; Nouvet, Franklin; Sweet, Stephanie; Emeagwali, Nkiruka; Taylor, Harry E.; Simmons, Glenn; Hildreth, James E. K.

2014-01-01

187

Plasticity of Airway Epithelial Cell Transcriptome in Response to Flagellin  

PubMed Central

Airway epithelial cells (AEC) are critical components of the inflammatory and immune response during exposure to pathogens. AECs in monolayer culture and differentiated epithelial cells in air-liquid interface (ALI) represent two distinct and commonly used in vitro models, yet differences in their response to pathogens have not been investigated. In this study, we compared the transcriptional effects of flagellin on AECs in monolayer culture versus ALI culture using whole-genome microarrays and RNA sequencing. We exposed monolayer and ALI AEC cultures to flagellin in vitro and analyzed the transcriptional response by microarray and RNA-sequencing. ELISA and RT-PCR were used to validate changes in select candidates. We found that AECs cultured in monolayer and ALI have strikingly different transcriptional states at baseline. When challenged with flagellin, monolayer AEC cultures greatly increased transcription of numerous genes mapping to wounding response, immunity and inflammatory response. In contrast, AECs in ALI culture had an unexpectedly muted response to flagellin, both in number of genes expressed and relative enrichment of inflammatory and immune pathways. We conclude that in vitro culturing methods have a dramatic effect on the transcriptional profile of AECs at baseline and after stimulation with flagellin. These differences suggest that epithelial responses to pathogen challenges are distinctly different in culture models of intact and injured epithelium. PMID:25668187

Clark, Joan G.; Kim, Kyoung-Hee; Basom, Ryan S.; Gharib, Sina A.

2015-01-01

188

Nanoparticle effects on rat alveolar epithelial cell monolayer barrier properties  

PubMed Central

Inhaled nanoparticles have been reported to contribute to deleterious effects on human health. In this study, we investigated the effects of ultrafine ambient particulate suspensions (UAPS), polystyrene nanoparticles (PNP; positively and negatively charged; 20, 100, 120 nm), quantum dots (QD; positively and negatively charged; 30 nm) and single wall carbon nanotubes (SWCNT) on alveolar epithelial cell barrier properties. Transmonolayer resistance (Rt) and equivalent short-circuit current (Ieq) of primary rat alveolar epithelial cell monolayers were measured in the presence and absence of varying concentrations of apical nanoparticles. In some experiments, apical-to-basolateral fluxes of radiolabeled mannitol or inulin were determined with or without apical UAPS exposure and lactate dehydrogenase (LDH) release was analyzed after UAPS or SWCNT exposure. Results revealed that exposure to UAPS decreased Rt and Ieq significantly over 24 hours, although neither mannitol nor inulin fluxes changed. Positively charged QD decreased Rt significantly (with subsequent recovery), while negatively charged QD did not. Rt decreased significantly after SWCNT exposure (with subsequent recovery). On the other hand, PNP exposure had no effects on Rt or Ieq. No significant increases in LDH release were observed after UAPS or SWCNT exposure. These data indicate that disruption of alveolar epithelial barrier properties due to apical nanoparticle exposure likely involves alteration of cellular transport pathways and is dependent on specific nanoparticle composition, shape and/or surface charge. PMID:17555923

Yacobi, Nazanin R.; Phuleria, Harish C.; Demaio, Lucas; Liang, Chi H.; Peng, Ching-An; Sioutas, Constantinos; Borok, Zea; Kim, Kwang-Jin; Crandall, Edward D.

2007-01-01

189

Cytotoxicity of Mouthrinses on Epithelial Cells by Micronucleus Test  

PubMed Central

Objectives To determine the cytotoxicity of three commercial mouthrinses Klorhex, Andorex and Tanflex on buccal epithelial cells using micronucleus (MN) test. Materials and Methods 28 patients with aged 16–24 undergone three mouthrinses’ application were analyzed before and after one week exposure. Physiologic saline was used for the control group. The MN incidence was scored in the buccal epithelial of each participants. The difference in pre- and post-treatment after one week incidence of MN and plaque (PI) and gingival indices (GI) was compared by non-parametric statistical tests. Results The micronuclei incidence increased in Klorhex, Tanflex and Andorex groups after exposure to mouth rinses (P<.05). But when compared with the control group, there was not any difference between Andorex and control group (P>.05). In the other study groups, MN incidence was significantly increased after 7 days treatment (P<.05). GI scores of all groups were decreased significantly (P<.05). PI scores were decreased only in the Klorhex group (P<.05). Conclusions Our primary findings support the presence of possible cytotoxic effects of the mouthrinses on gingival epithelial cells. PMID:19212481

Erdemir, Ebru Olgun; ?engün, Abdulkadir; Ülker, Mustafa

2007-01-01

190

Characterization of biomaterial-free cell sheets cultured from human oral mucosal epithelial cells.  

PubMed

The purpose of this study was to report the characteristics of biomaterial-free sheets cultured from human oral mucosal epithelial cells without fibrin support, in vitro and after transplantation to limbal-deficient models. Human oral mucosal epithelial cells and limbal epithelial cells were cultured for 2 weeks, and the colony-forming efficiency (CFE) rates were compared. Markers of stem cells (p63), cell proliferation (Ki-67) and epithelial differentiation (cytokeratin; K1, K3, K4, K13) were observed in colonies and in biomaterial-free sheets. Biomaterial-free sheets which had been detached with 1% dispase or biomaterial-free sheets generated by fibrin support were transplanted to 12 limbal-deficient rabbit models. In vitro cell viability, in vivo stability and cytokeratin characteristics of biomaterial-free sheets were compared with those of sheets formed by fibrin-coated culture 1 week after transplantation. Mean CFE rate was significantly higher in human oral mucosal epithelial cells (44.8%) than in human limbal epithelial cells(17.7%). K3 and K4 were well expressed in both colonies and sheets. Biomaterial-free sheets had two to six layers of stratified cells and showed an average of 79.8% viable cells in the sheets after detachment. Cytokeratin expressions of biomaterial-free sheets were comparable to those of sheets cultured by fibrin support, in limbal-deficient models. Both p63 and Ki-67 were well expressed in colonies, isolated sheets and sheets transplanted to limbal-deficient models. Our results suggest that biomaterial-free sheets cultured from human oral mucosal epithelial cells without fibrin support can be an alternative option for cell therapy in use for the treatment of limbal-deficient diseases. Copyright © 2014 John Wiley & Sons, Ltd. PMID:25407749

Hyun, Dong Won; Kim, Yun Hee; Koh, Ah Young; Lee, Hyun Ju; Wee, Won Ryang; Jeon, Saewha; Kim, Mee Kum

2014-11-19

191

UV-induced changes in cell cycle and gene expression within rabbit lens epithelial cells  

SciTech Connect

Damage to lens epithelial cells is a probable initiation process in cataract formation induced by ultraviolet radiation. These experiments investigated the ability of 254 nm radiation on cell cycle progression and gene expression in rabbit lens epithelial cell line N/N1003A. No changes in expression of c-fos, c-jun, alpha- tubulin, or vimentin was observed following UV exposure. Using flow cytometry, an accumulation of cells in G1/S phase of the cell cycle 1 hr following exposure. The observed changes in gene expression, especially the decreased histone transcripts reported here may play a role in UV induced inhibition of cell cycle progression.

Sidjanin, D. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Biological Sciences; Grdina, D. [Argonne National Lab., IL (United States); Woloschak, G.E. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Biological Sciences

1994-11-01

192

Intracellular Calcium in Signaling Human ?-Defensin-2 Expression in Oral Epithelial Cells  

Microsoft Academic Search

Expression of human ?-defensins is correlated with differentiation in the oral epithelium, consistent with their function as part of the epithelial antimicrobial barrier. Because calcium is a known regulator of epithelial differentiation, we tested the hypothesis that calcium concentration mediates ?-defensin expression. Gingival epithelial cells were cultured in medium containing low calcium concentration (0.03 mM), then either changed to high

S. Krisanaprakornkit; D. Jotikasthira; B. A. Dale

2003-01-01

193

ATP7B detoxifies silver in ciliated airway epithelial cells  

SciTech Connect

Silver is a centuries-old antibiotic agent currently used to treat infected burns. The sensitivity of a wide range of drug-resistant microorganisms to silver killing suggests that it may be useful for treating refractory lung infections. Toward this goal, we previously developed a methylated caffeine silver acetate compound, SCC1, that exhibits broad-spectrum antimicrobial activity against clinical strains of bacteria in vitro and when nebulized to lungs in mouse infection models. Preclinical testing of high concentrations of SCC1 in primary culture mouse tracheal epithelial cells (mTEC) showed selective ciliated cell death. Ciliated cell death was induced by both silver- and copper-containing compounds but not by the methylated caffeine portion of SCC1. We hypothesized that copper transporting P-type ATPases, ATP7A and ATP7B, play a role in silver detoxification in the airway. In mTEC, ATP7A was expressed in non-ciliated cells, whereas ATP7B was expressed only in ciliated cells. The exposure of mTEC to SCC1 induced the trafficking of ATP7B, but not ATP7A, suggesting the presence of a cell-specific silver uptake and detoxification mechanisms. Indeed, the expression of the copper uptake protein CTR1 was also restricted to ciliated cells. A role of ATP7B in silver detoxification was further substantiated when treatment of SCC1 significantly increased cell death in ATP7B shRNA-treated HepG2 cells. In addition, mTEC from ATP7B{sup -/-} mice showed enhanced loss of ciliated cells compared to wild type. These studies are the first to demonstrate a cell type-specific expression of the Ag{sup +}/Cu{sup +} transporters ATP7A, ATP7B, and CTR1 in airway epithelial cells and a role for ATP7B in detoxification of these metals in the lung.

Ibricevic, Aida, E-mail: aidaibricevic@hotmail.co [Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 (United States); Brody, Steven L., E-mail: sbrody@dom.wustl.ed [Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 (United States); Youngs, Wiley J., E-mail: youngs@uakron.ed [Department of Chemistry, University of Akron, Akron, OH 44325 (United States); Cannon, Carolyn L., E-mail: carolyn.cannon@utsouthwestern.ed [Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110 (United States)

2010-03-15

194

Development of microtubule capping structures in ciliated epithelial-cells  

E-print Network

Development of microtubule capping structures in ciliated epithelial cells R. W. PORTMAN, E. L. LeCLUYSE and W. L. DENTLER Department of Physiology and Cell Biology, University of Kansas, Lawrence, KS 66045, USA Summary Although capping structures... are present at the tips of microtubules in both growing cilia and mature cilia, previous work has not determined the time of cap formation. The results reported here reveal that the large caps of mature palate cilia appear in cilia with lengths as short as 1...

Dentler, William L., Jr; Portman, R. W.; LeCluyse, E. L.

1987-02-01

195

IL-4 attenuates pulmonary epithelial cell-mediated suppression of T cell priming.  

PubMed

We have previously shown that Th2-polarized airway inflammation facilitates sensitization towards new, protein antigens. In this context, we could demonstrate that IL-4 needs to act on cells of the hematopoetic and the structural compartment in order to facilitate sensitization towards new antigens. We thus aimed to elucidate possible mechanisms of action of IL-4 on structural cells choosing to analyze pulmonary epithelial cells as an important part of the lung's structural system. We used a co-culture system of DC- or APC-dependent in vitro priming of T cells, co-cultivated on a layer of cells of a murine pulmonary epithelial cell line (LA-4) pretreated with or without IL-4. Effects on T cell priming were analyzed via CFSE-dilution and flow cytometric assessment of activation status. Pulmonary epithelial cells suppressed T cell proliferation in vitro but this effect was attenuated by pre-treatment of the epithelial cells with IL-4. Transwell experiments suggest that epithelial-mediated suppression of T cell activation is mostly cell-contact dependent and leads to attenuation in an early naive T cell phenotype. Secretion of soluble factors like TARC, TSLP, GM-CSF and CCL20 by epithelial cells did not change after IL-4 treatment. However, analysis of co-stimulatory expression on pulmonary epithelial cells revealed that pre-treatment of epithelial cells with IL-4 changed expression GITR-L, suggesting a possible mechanism for the effects observed. Our studies provide new insight into the role of IL-4 during the early phases of pulmonary sensitization: The inhibitory activity of pulmonary epithelial cells in homeostasis is reversed in the presence of IL-4, which is secreted in the context of Th2-dominated allergic airway inflammation. This mechanism might serve to explain facilitated sensitization in the clinical context of polysensitization where due to a pre-existing sensitization increased levels of IL-4 in the airways might facilitate T cell priming towards new antigens. PMID:23029313

Albrecht, Melanie; Arnhold, Markus; Lingner, Sandra; Mahapatra, Subhashree; Bruder, Dunja; Hansen, Gesine; Dittrich, Anna-Maria

2012-01-01

196

Human bronchial intraepithelial T cells produce interferon-gamma and stimulate epithelial cells.  

PubMed

Intraepithelial lymphocytes (IELs) can be identified among epithelial cells in systemic mucosal tissues. Although intestinal IELs play a crucial role in mucosal immunity, their bronchial counterparts have not been well studied. The purpose of this study was to determine the immunological functions of human bronchial IELs, which interact directly with epithelial cells, unlike lamina propria lymphocytes (LPLs). We isolated successfully bronchial IELs and LPLs using a magnetic cell separation system from the T cell suspensions extracted from bronchial specimens far from the tumours of resected lungs. Human bronchial IELs showed an apparent type 1 cytokine profile and proliferated more actively in response to CD2 signalling than did bronchial LPLs. CD8(+) IELs were identified as the most significant sources of interferon (IFN)-gamma. Human bronchial epithelial cells constitutively produced the T cell growth factors interleukin (IL)-7 and IL-15, and levels of those factors increased when cells were stimulated by IFN-gamma. Bronchial epithelial cells expressed cell surface proteins CD58 and E-cadherin, possibly enabling adhesion to IELs. In summary, human bronchial IELs have immunological functions distinct from bronchial LPLs and may interact with epithelial cells to maintain mucosal homeostasis. PMID:19040600

Hirosako, S; Goto, E; Fujii, K; Tsumori, K; Hirata, N; Tsumura, S; Kamohara, H; Kohrogi, H

2009-02-01

197

Oral microbial biofilm stimulation of epithelial cell responses.  

PubMed

Oral bacterial biofilms trigger chronic inflammatory responses in the host that can result in the tissue destructive events of periodontitis. However, the characteristics of the capacity of specific host cell types to respond to these biofilms remain ill-defined. This report describes the use of a novel model of bacterial biofilms to stimulate oral epithelial cells and profile select cytokines and chemokines that contribute to the local inflammatory environment in the periodontium. Monoinfection biofilms were developed with Streptococcus sanguinis, Streptococcus oralis, Streptococcus gordonii, Actinomyces naeslundii, Fusobacterium nucleatum, and Porphyromonas gingivalis on rigid gas-permeable contact lenses. Biofilms, as well as planktonic cultures of these same bacterial species, were incubated under anaerobic conditions with a human oral epithelial cell line, OKF4, for up to 24h. Gro-1?, IL1?, IL-6, IL-8, TGF?, Fractalkine, MIP-1?, and IP-10 were shown to be produced in response to a range of the planktonic or biofilm forms of these species. P. gingivalis biofilms significantly inhibited the production of all of these cytokines and chemokines, except MIP-1?. Generally, the biofilms of all species inhibited Gro-1?, TGF?, and Fractalkine production, while F. nucleatum biofilms stimulated significant increases in IL-1?, IL-6, IL-8, and IP-10. A. naeslundii biofilms induced elevated levels of IL-6, IL-8 and IP-10. The oral streptococcal species in biofilms or planktonic forms were poor stimulants for any of these mediators from the epithelial cells. The results of these studies demonstrate that oral bacteria in biofilms elicit a substantially different profile of responses compared to planktonic bacteria of the same species. Moreover, certain oral species are highly stimulatory when in biofilms and interact with host cell receptors to trigger pathways of responses that appear quite divergent from individual bacteria. PMID:22266273

Peyyala, Rebecca; Kirakodu, Sreenatha S; Novak, Karen F; Ebersole, Jeffrey L

2012-04-01

198

Oral microbial biofilm stimulation of epithelial cell responses  

PubMed Central

Oral bacterial biofilms trigger chronic inflammatory responses in the host that can result in the tissue destructive events of periodontitis. However, the characteristics of the capacity of specific host cell types to respond to these biofilms remain ill-defined. This report describes the use of a novel model of bacterial biofilms to stimulate oral epithelial cells and profile select cytokines and chemokines that contribute to the local inflammatory environment in the periodontium. Monoinfection biofilms were developed with Streptococcus sanguinis, Streptococcus oralis, Streptococcus gordonii, Actinomyces naeslundii, Fusobacterium nucleatum, and Porphyromonas gingivalis on rigid gas-permeable contact lenses. Biofilms, as well as planktonic cultures of these same bacterial species, were incubated under anaerobic conditions with a human oral epithelial cell line, OKF4, for up to 24 h. Gro-1?, IL1?, IL-6, IL-8, TGF?, Fractalkine, MIP-1?, and IP-10 were shown to be produced in response to a range of the planktonic or biofilm forms of these species. P. gingivalis biofilms significantly inhibited the production of all of these cytokines and chemokines, except MIP-1?. Generally, the biofilms of all species inhibited Gro-1?, TGF?, and Fractalkine production, while F. nucleatum biofilms stimulated significant increases in IL-1?, IL-6, IL-8, and IP-10. A. naeslundii biofilms induced elevated levels of IL-6, IL-8 and IP-10. The oral streptococcal species in biofilms or planktonic forms were poor stimulants for any of these mediators from the epithelial cells. The results of these studies demonstrate that oral bacteria in biofilms elicit a substantially different profile of responses compared to planktonic bacteria of the same species. Moreover, certain oral species are highly stimulatory when in biofilms and interact with host cell receptors to trigger pathways of responses that appear quite divergent from individual bacteria. PMID:22266273

Peyyala, Rebecca; Kirakodu, Sreenatha S.; Novak, Karen F.; Ebersole, Jeffrey L.

2012-01-01

199

Interleukin (IL)-1, IL-6, and IL-8 predict mucosal toxicity of vaginal microbicidal contraceptives.  

PubMed

Inflammation of the female reproductive tract increases susceptibility to HIV-1 and other viral infections and, thus, it becomes a serious liability for vaginal products. Excessive release of proinflammatory cytokines may alter the mucosal balance between tissue destruction and repair and be linked to enhanced penetration and replication of viral pathogens upon chemical insult. The present study evaluates four surface-active microbicide candidates, nonoxynol-9 (N-9), benzalkonium chloride (BZK), sodium dodecyl sulfate, and sodium monolaurate for their activity against human sperm and HIV, and their capacity to induce an inflammatory response on human vaginal epithelial cells and by the rabbit vaginal mucosa. Spermicidal and virucidal evaluations ranked N-9 as the most potent compound but were unable to predict the impact of the compounds on vaginal cell viability. Interleukin (IL)-1 release in vitro reflected their cytotoxicity profiles more accurately. Furthermore, IL-1 concentrations in vaginal washings correlated with cumulative mucosal irritation scores after single and multiple applications (P < 0.01), showing BZK as the most damaging agent for the vaginal mucosa. BZK induced rapid cell death, IL-1 release, and IL-6 secretion. The other compounds required either more prolonged or repeated contact with the vaginal epithelium to induce a significant inflammatory reaction. Increased IL-8 levels after multiple applications in vivo identified compounds with the highest cumulative mucosal toxicity (P < 0.01). In conclusion, IL-1, IL-6, and IL-8 in the vaginal secretions are sensitive indicators of compound-induced mucosal toxicity. The described evaluation system is a valuable tool in identifying novel vaginal contraceptive microbicides, selecting out candidates that may enhance, rather than decrease, HIV transmission. PMID:15128598

Fichorova, R N; Bajpai, M; Chandra, N; Hsiu, J G; Spangler, M; Ratnam, V; Doncel, G F

2004-09-01

200

Normal and Abnormal Epithelial Differentiation in the Female Reproductive Tract  

PubMed Central

In mammals, the female reproductive tract (FRT) develops from a pair of paramesonephric or Müllerian ducts (MDs), which arise from coelomic epithelial cells of mesodermal origin. During development, the MDs undergo a dynamic morphogenetic transformation from simple tubes consisting of homogeneous epithelium and surrounding mesenchyme into several distinct organs namely the oviduct, uterus, cervix and vagina. Following the formation of anatomically distinctive organs, the uniform MD epithelium (MDE) differentiates into diverse epithelial cell types with unique morphology and functions in each organ. Classic tissue recombination studies, in which the epithelium and mesenchyme isolated from the newborn mouse FRT were recombined, have established that the organ specific epithelial cell fate of MDE is dictated by the underlying mesenchyme. The tissue recombination studies have also demonstrated that there is a narrow developmental window for the epithelial cell fate determination in MD-derived organs. Accordingly, the developmental plasticity of epithelial cells is mostly lost in mature FRT. If the signaling that controls epithelial differentiation is disrupted at the critical developmental stage, the cell fate of MD-derived epithelial tissues will be permanently altered and can result in epithelial lesions in adult life. A disruption of signaling that maintains epithelial cell fate can also cause epithelial lesions in the FRT. In this review, the pathogenesis of cervical/vaginal adenoses and uterine squamous metaplasia is discussed as examples of such incidences. PMID:21612855

Kurita, Takeshi

2011-01-01

201

Nectin 4 is the epithelial cell receptor for measles virus.  

PubMed

Measles virus (MV) causes acute respiratory disease, infects lymphocytes and multiple organs, and produces immune suppression leading to secondary infections. In rare instances it can also cause persistent infections in the brain and central nervous system. Vaccine and laboratory-adapted strains of MV use CD46 as a receptor, whereas wild-type strains of MV (wtMV) cannot. Both vaccine and wtMV strains infect lymphocytes, monocytes, and dendritic cells (DCs) using the signaling lymphocyte activation molecule (CD150/SLAM). In addition, MV can infect the airway epithelial cells of the host. Nectin 4 (PVRL4) was recently identified as the epithelial cell receptor for MV. Coupled with recent observations made in MV-infected macaques, this discovery has led to a new paradigm for how the virus accesses the respiratory tract and exits the host. Nectin 4 is also a tumor cell marker which is highly expressed on the apical surface of many adenocarcinoma cell lines, making it a potential target for MV oncolytic therapy. PMID:22721863

Noyce, Ryan S; Richardson, Christopher D

2012-09-01

202

Epidermal growth factor promotes a neural phenotype in thymic epithelial cells and enhances neuropoietic cytokine expression  

PubMed Central

Neural crest-derived cells populate the thymus, and their coexistence with epithelial cells is required for proper organ development and T cell education function. We show here that epidermal growth factor (EGF), a major epithelial cell growth-enhancing agent, has a morphogenetic action to promote the expression of a neuronal phenotype (e.g., neurofilament expression) in cultured thymic epithelial cells that are characterized by a cytokeratin-positive epithelial cell background. The proliferation of such neurodifferentiated cells is also enhanced by EGF. Furthermore, the growth factor enhances cells that express the genes encoding the preprotachykinin A-generated neuropeptides and bipotential neuropoietic and lymphopoietic cytokines ciliary neurotrophic factor and interleukin-6. These cytokines also enhance the neuronal phenotype of thymic epithelial cells. Therefore, EGF appears to be a composite autocrine/paracrine neuromodulator in thymic stroma. This suggests that EGF may regulate thymus-dependent immune functions by promoting neuronal gene expression in neural crest- derived cells. PMID:7540616

1995-01-01

203

Gallbladder epithelial cell hydraulic water permeability and volume regulation  

PubMed Central

The hydraulic water permeability (Lp) of the cell membranes of Necturus gallbladder epithelial cells was estimated from the rate of change of cell volume after a change in the osmolality of the bathing solution. Cell volume was calculated from computer reconstruction of light microscopic images of epithelial cells obtained by the "optical slice" technique. The tissue was mounted in a miniature Ussing chamber designed to achieve optimal optical properties, rapid bath exchange, and negligible unstirred layer thickness. The control solution contained only 80% of the normal NaCl concentration, the remainder of the osmolality was made up by mannitol, a condition that did not significantly decrease the fluid absorption rate in gallbladder sac preparations. The osmotic gradient ranged from 11.5 to 41 mosmol and was achieved by the addition or removal of mannitol from the perfusion solutions. The Lp of the apical membrane of the cell was 1.0 X 10(-3) cm/s . osmol (Posm = 0.055 cm/s) and that of the basolateral membrane was 2.2 X 10(-3) cm/s . osmol (Posm = 0.12 cm/s). These values were sufficiently high so that normal fluid absorption by Necturus gallbladder could be accomplished by a 2.4-mosmol solute gradient across the apical membrane and a 1.1-mosmol gradient across the basolateral membrane. After the initial cell shrinkage or swelling resulting from the anisotonic mucosal or serosal medium, cell volume returned rapidly toward the control value despite the fact that one bathing solution remained anisotonic. This volume regulatory response was not influenced by serosal ouabain or reduction of bath NaCl concentration to 10 mM. Complete removal of mucosal perfusate NaCl abolished volume regulation after cell shrinkage. Estimates were also made of the reflection coefficient for NaCl and urea at the apical cell membrane and of the velocity of water flow across the cytoplasm. PMID:7077291

1982-01-01

204

Culture and characterization of oral mucosal epithelial cells on human amniotic membrane for ocular surface reconstruction  

PubMed Central

Purpose To culture oral mucosal epithelial cells on deepithelialized human amniotic membrane without the use of feeder cells and to compare the characteristics of cultured oral cells with cultured limbal and conjunctival epithelial cells for use in ocular surface reconstruction. Methods Oral biopsies were obtained from healthy volunteers after informed consent and were cultured on deepithelialized amniotic membrane for three to four weeks. Confluent cultures of limbal, oral, and conjunctival cells were subjected to characterization of markers of stem cells and of epithelial differentiation by reverse-transcription polymerase chain reaction (RT–PCR) and by immunohistochemistry. Ultrastructural studies were also performed using electron microscopy. Results A sheet of healthy, stratified oral epithelial cells was obtained within three to four weeks of culture. Electron microscopy demonstrated that the cells formed gap junctions and desmosomes. RT–PCR analysis showed that cultured oral epithelial cells expressed markers of epithelial differentiation such as cytokeratin K3, K4, K13, K15 and connexin 43. The cells also expressed stem cell markers of epithelial cells such as ?N isoforms of p63 as well as p75, a marker for stem cells of oral epithelium. The cells did not express cytokeratin K12 or Pax-6, an eye-specific transcription factor. Conclusions Oral epithelial cells can be cultured as explants on deepithelialized amniotic membrane without using feeder cells. Characterization showed that these cells maintain the phenotypic characteristics of oral epithelial cells and that the culture is a heterogeneous population of differentiated cells and stem cells. We find the cultured oral epithelial cells usable for ocular surface reconstruction in patients having bilateral ocular surface diseases. PMID:18334934

Madhira, Soundarya Lakshmi; Vemuganti, Geeta; Bhaduri, Anirban; Gaddipati, Subhash; Sangwan, Virender Singh

2008-01-01

205

Differential Regulation of Cystic Fibrosis Transmembrane Conductance Regulator by Interferon   in Mast Cells and Epithelial Cells  

Microsoft Academic Search

ABSTRACT Cystic fibrosis transmembrane,conductance,regulator (CFTR) is a cAMP-dependent chloride channel in epithelial cells; recently, we,identified it in mast,cells. Previous work,that we,confirmed showed,that interferon ? (IFN?) down-regulated,CFTR expres- sion in epithelial cells (T84), but by contrast, we found that IFN? up-regulated,CFTR mRNA and,protein expression,in rat and human,mast,cells. IFN? up-regulation,of CFTR in mast,cells was,inhibited by p38 and,extracellular signal-regulated kinase (ERK) kinase,inhibitors but

Marianna Kulka

2005-01-01

206

Role of Porphyromonas gingivalis SerB in Gingival Epithelial Cell Cytoskeletal Remodeling and Cytokine Production  

Microsoft Academic Search

The SerB protein of Porphyromonas gingivalis is a HAD family serine phosphatase that plays a critical role in entry and survival of the organism in gingival epithelial cells. SerB is secreted by P. gingivalis upon contact with epithelial cells. Here it is shown by microarray analysis that SerB impacts the transcriptional profile of gingival epithelial cells, with pathways involving the

Yoshiaki Hasegawa; Gena D. Tribble; Henry V. Baker; Jeffrey J. Mans; Martin Handfield; Richard J. Lamont

2008-01-01

207

Cyclosporine A induces apoptosis in murine tubular epithelial cells: Role of caspases  

Microsoft Academic Search

Cyclosporine A induces apoptosis in murine tubular epithelial cells: Role of caspases.BackgroundThe pathogenesis of cyclosporine A (CsA) nephrotoxicity has not been completely elucidated.MethodsThe ability of CsA to induce apoptosis in cultured murine tubular epithelial cells and its regulation by the cell microenvironment and inhibitors of caspases were studied.ResultsThis study found that CsA induces apoptotic death in murine proximal tubular epithelial

Alberto Ortiz; Corina Lorz; Marina Catalán; Arturo Ortiz; Santiago Coca; Jesus Egido

1998-01-01

208

Thymosin ? 4 inhibits benzalkonium chloride-mediated apoptosis in corneal and conjunctival epithelial cells in vitro  

Microsoft Academic Search

Thymosin beta-4 (T?4) is known to promote ocular wound healing, to decrease ocular inflammation, and to have anti-apoptotic effects on corneal epithelium. In this study, the effect of T?4 on the survival of human ocular surface epithelial cells exposed to benzalkonium chloride (BAK) was measured. Human conjunctival epithelial cells (HC0597) or human corneal epithelial cells (HCET) were treated with 0%,

Gabriel Sosne; Abdul-Rahman Albeiruti; Brian Hollis; Atif Siddiqi; David Ellenberg; Michelle Kurpakus-Wheater

2006-01-01

209

Efficient Immortalization of Primary Nasopharyngeal Epithelial Cells for EBV Infection Study  

PubMed Central

Nasopharyngeal carcinoma (NPC) is common among southern Chinese including the ethnic Cantonese population living in Hong Kong. Epstein-Barr virus (EBV) infection is detected in all undifferentiated type of NPC in this endemic region. Establishment of stable and latent EBV infection in premalignant nasopharyngeal epithelial cells is an early event in NPC development and may contribute to its pathogenesis. Immortalized primary nasopharyngeal epithelial cells represent an important tool for investigation of EBV infection and its tumorigenic potential in this special type of epithelial cells. However, the limited availability and small sizes of nasopharyngeal biopsies have seriously restricted the establishment of primary nasopharyngeal epithelial cells for immortalization. A reliable and effective method to immortalize primary nasopharyngeal epithelial cells will provide unrestricted materials for EBV infection studies. An earlier study has reported that Bmi-1 expression could immortalize primary nasopharyngeal epithelial cells. However, its efficiency and actions in immortalization have not been fully characterized. Our studies showed that Bmi-1 expression alone has limited ability to immortalize primary nasopharyngeal epithelial cells and additional events are often required for its immortalization action. We have identified some of the key events associated with the immortalization of primary nasopharyngeal epithelial cells. Efficient immortalization of nasopharyngeal epithelial cells could be reproducibly and efficiently achieved by the combined actions of Bmi-1 expression, activation of telomerase and silencing of p16 gene. Activation of MAPK signaling and gene expression downstream of Bmi-1 were detected in the immortalized nasopharyngeal epithelial cells and may play a role in immortalization. Furthermore, these newly immortalized nasopharyngeal epithelial cells are susceptible to EBV infection and supported a type II latent EBV infection program characteristic of EBV-infected nasopharyngeal carcinoma. The establishment of an efficient method to immortalize primary nasopharyngeal epithelial cells will facilitate the investigation into the role of EBV infection in pathogenesis of nasopharyngeal carcinoma. PMID:24167620

Yip, Yim Ling; Pang, Pei Shin; Deng, Wen; Tsang, Chi Man; Zeng, Musheng; Hau, Pok Man; Man, Cornelia; Jin, Yuesheng; Yuen, Anthony Po Wing; Tsao, Sai Wah

2013-01-01

210

Estrogen Vaginal  

MedlinePLUS

... estradiol vaginal ring is also used to treat hot flushes ('hot flashes'; sudden strong feelings of heat and sweating) ... mild soap and warm water. Do not use hot water or boil the applicator. Ask your pharmacist ...

211

Early signalling mechanism in colonic epithelial cell response to gastrin.  

PubMed Central

The hormone gastrin exerts a growth-promoting effect on gastrointestinal cells. The molecular mechanisms by which colonic epithelial cells respond to gastrin are still poorly understood. In this study, we demonstrate a novel feature of the action of gastrin on normal colonic cells, namely the rapid phosphorylation on tyrosine of phospholipase C gamma 1 (PLC gamma 1). Tyrosine phosphorylation of PLC gamma 1, elicited by gastrin, was transient, concentration-dependent, and was abrogated by pretreating the colonic cells with the gastrin-receptor antagonist proglumide, the tyrosine kinase inhibitor genistein, and by removal of the tyrosine phosphatase inhibitor orthovanadate from the isolation buffer. Tyrosine phosphorylation of PLC gamma 1 correlated with the time- and concentration-dependent decrease in the mass of membrane phosphatidylinositol 4,5-bisphosphate (PIP2) and the increase in the epithelial concentration of inositol 1,4,5-trisphosphate (IP3). Likewise, the stimulated increase in IP3 was also prevented by proglumide and genistein. Gastrin induced a definite but transient increase in the intracellular concentration of free Ca2+ [Ca2+]i, and increased membrane-translocation of immunoreactive alpha- and beta-protein kinase C. The data thus indicate that gastrin elicits at least one signalling cascade, through rapid tyrosine phosphorylation of PLC gamma 1, leading to the activation of a PIP2-specific PLC pathway. Images Figure 1 Figure 5 PMID:7487955

Yassin, R R; Little, K M

1995-01-01

212

Sensing, signaling and sorting events in kidney epithelial cell physiology.  

PubMed

The kidney regulates body fluid, ion and acid/base homeostasis through the interaction of a host of channels, transporters and pumps within specific tubule segments, specific cell types and specific plasma membrane domains. Furthermore, renal epithelial cells have adapted to function in an often unique and challenging environment that includes high medullary osmolality, acidic pHs, variable blood flow and constantly changing apical and basolateral 'bathing' solutions. In this review, we focus on selected protein trafficking events by which kidney epithelial cells regulate body fluid, ion and acid-base homeostasis in response to changes in physiological conditions. We discuss aquaporin 2 and G-protein-coupled receptors in fluid and ion balance, the vacuolar H(+)-adenosine triphosphatase (V-ATPase) and intercalated cells in acid/base regulation and acidification events in the proximal tubule degradation pathway. Finally, in view of its direct role in vesicle trafficking that we outline in this study, we propose that the V-ATPase itself should, under some circumstances, be considered a fourth category of vesicle 'coat' protein (COP), alongside clathrin, caveolin and COPs. PMID:19170982

Brown, Dennis; Breton, Sylvie; Ausiello, Dennis A; Marshansky, Vladimir

2009-03-01

213

Roles of limbal microvascular net and limbal stroma in regulating maintenance of limbal epithelial stem cells.  

PubMed

Knowledge of the microenvironment (niche) of stem cells is helpful for stem-cell-based regenerative medicine. In the eye, limbal epithelial stem cells (corneal epithelial stem cells) provide the self-renewal capacity of the corneal epithelium and are essential for maintaining corneal transparency and vision. Limbal epithelial stem cell deficiency results in significant visual deterioration. Successful treatment of this type of blinding disease requires studies of the limbal epithelial stem cells and their microenvironment. We investigate the function of the limbal microvascular net and the limbal stroma in the maintenace of the limbal epithelial stem cell niche in vivo and examine the regulation of limbal epithelial stem cell survival, proliferation and differentiation in vivo. We assess the temporal and spatial changes in the expression patterns of the following markers during a six-month follow-up of various rabbit limbal autograft transplantation models: vascular endothelial cell marker CD31, corneal epithelium differentiation marker K3, limbal epithelial stem-cell-associated markers P63 and ABCG2 and proliferating cell nuclear marker Ki67. Our results suggest that limbal epithelial stem cells cannot maintain their stemness or proliferation without the support of the limbal microvascular net microenvironment. Thus, both the limbal microvascular net and the limbal stroma play important roles as components of the limbal epithelial stem cell niche maintaining limbal epithelial stem cell survival and proliferation and the avoidance of differentiation. The limbal stroma constitutes the structural basis of the limbal epithelial stem cell niche and the limbal microvascular net is a requirement for this niche. These new insights should aid the eventual construction of tissue-engineered cornea for corneal blind patients in the future. PMID:25398719

Huang, Minghai; Wang, Bowen; Wan, Pengxia; Liang, Xuanwei; Wang, Xiaoran; Liu, Ying; Zhou, Qiang; Wang, Zhichong

2015-02-01

214

Activated endothelial cells elicit paracrine induction of epithelial chloride secretion. 6-Keto-PGF1alpha is an epithelial secretagogue.  

PubMed Central

Endothelial cells play a central role in the coordination of the inflammatory response. In mucosal tissue, such as the lung and intestine, endothelia are anatomically positioned in close proximity to epithelia, providing the potential for cell-cell crosstalk. Thus, in this study endothelial-epithelial biochemical crosstalk pathways were studied using a human intestinal crypt cell line (T84) grown in noncontact coculture with human umbilical vein endothelia. Exposure of such cocultures to endothelial-specific agonists (LPS) resulted in activation of epithelial electrogenic Cl- secretion and vectorial fluid transport. Subsequent experiments revealed that in response to diverse stimuli (LPS, IL-1alpha, TNF-alpha, hypoxia), endothelia produce and secrete a small, stable epithelial secretagogue into conditioned media supernatants. Further experiments identified this secretagogue as 6-keto-PGF1alpha, a stable hydrolysis product of prostacyclin (PGI2). Results obtained with synthetic prostanoids indicated that 6-keto-PGF1alpha (EC50 = 80 nM) and PGI2 stable analogues (EC50 = 280 nM) activate the same basolaterally polarized, Ca2+-coupled epithelial receptor. In summary, these findings reveal a previously unappreciated 6-keto-PGF1alpha receptor on intestinal epithelia, the ligation of which results in activation of electrogenic Cl- secretion. In addition, these data reveal a novel action for the prostacyclin hydrolysis product 6-keto-PGF1alpha and provide a potential endothelial- epithelial crosstalk pathway in mucosal tissue. PMID:9739050

Blume, E D; Taylor, C T; Lennon, P F; Stahl, G L; Colgan, S P

1998-01-01

215

Force dependence of phagosome trafficking in retinal pigment epithelial cells  

NASA Astrophysics Data System (ADS)

Retinal pigment epithelial (RPE) cells play an integral role in the renewal of photoreceptor disk membranes. As rod and cone cells shed their outer segments, they are phagocytosed and degraded by the RPE, and a failure in this process can result in retinal degeneration. We have studied the role of myosin VI in nonspecific phagocytosis in a human RPE primary cell line (ARPE-19), testing the hypothesis that this motor generates the forces required to traffic phagosomes in these cells. Experiments were conducted in the presence of forces through the use of in vivo optical trapping. Our results support a role for myosin VI in phagosome trafficking and demonstrate that applied forces modulate rates of phagosome trafficking.

Daniel, Rebekah; Koll, Andrew T.; Altman, David

2014-09-01

216

Galvanotactic control of collective cell migration in epithelial monolayers  

NASA Astrophysics Data System (ADS)

Many normal and pathological biological processes involve the migration of epithelial cell sheets. This arises from complex emergent behaviour resulting from the interplay between cellular signalling networks and the forces that physically couple the cells. Here, we demonstrate that collective migration of an epithelium can be interactively guided by applying electric fields that bias the underlying signalling networks. We show that complex, spatiotemporal cues are locally interpreted by the epithelium, resulting in rapid, coordinated responses such as a collective U-turn, divergent migration, and unchecked migration against an obstacle. We observed that the degree of external control depends on the size and shape of the cell population, and on the existence of physical coupling between cells. Together, our results offer design and engineering principles for the rational manipulation of the collective behaviour and material properties of a tissue.

Cohen, Daniel J.; James Nelson, W.; Maharbiz, Michel M.

2014-04-01

217

Human Cytomegalovirus UL131 Open Reading Frame Is Required for Epithelial Cell Tropism  

PubMed Central

Epithelial cells are one of the prominent cell types infected by human cytomegalovirus (HCMV) within its host. However, many cultured epithelial cells, such as ARPE-19 retinal pigmented epithelial cells, are poorly infected by laboratory-adapted strains in cell culture, and little is known about the viral factors that determine HCMV epithelial cell tropism. In this report, we demonstrate that the UL131 open reading frame (ORF), and likely the entire UL131-128 locus, is required for efficient infection of epithelial cells. Repair of the mutated UL131 gene in the AD169 laboratory strain of HCMV restored its ability to infect both epithelial and endothelial cells while compromising its ability to replicate in fibroblasts. ARPE-19 epithelial cells support replication of the repaired AD169 virus as well as clinical isolates of HCMV. Productive infection of cultured epithelial cells, endothelial cells, and fibroblasts with the repaired AD169 virus leads to extensive membrane fusion and syncytium formation, suggesting that the virus may spread through cell-cell fusion. PMID:16051825

Wang, Dai; Shenk, Thomas

2005-01-01

218

Phototoxicity and cytotoxicity of fullerol in human lens epithelial cells  

SciTech Connect

The water-soluble, hydroxylated fullerene [fullerol, nano-C{sub 60}(OH){sub 22-26}] has several clinical applications including use as a drug carrier to bypass the blood ocular barriers. We have assessed fullerol's potential ocular toxicity by measuring its cytotoxicity and phototoxicity induced by UVA and visible light in vitro with human lens epithelial cells (HLE B-3). Accumulation of nano-C{sub 60}(OH){sub 22-26} in the cells was confirmed spectrophotometrically at 405 nm and cell viability estimated using MTS and LDH assays. Fullerol was cytotoxic to HLE B-3 cells maintained in the dark at concentrations higher than 20 {mu}M. Exposure to either UVA or visible light in the presence of > 5 {mu}M fullerol-induced phototoxic damage. When cells were pretreated with non-toxic antioxidants: 20 {mu}M lutein, 1 mM N-acetyl cysteine, or 1 mM L-ascorbic acid prior to irradiation, only the singlet oxygen quencher-lutein significantly protected against fullerol photodamage. Apoptosis was observed in lens cells treated with fullerol whether or not the cells were irradiated, in the order UVA > visible light > dark. Dynamic light scattering (DLS) showed that in the presence of the endogenous lens protein {alpha}-crystallin, large aggregates of fullerol were reduced. In conclusion, fullerol is both cytotoxic and phototoxic to human lens epithelial cells. Although the acute toxicity of water-soluble nano-C{sub 60}(OH){sub 22-26} is low, these compounds are retained in the body for long periods, raising concern for their chronic toxic effect. Before fullerols are used to deliver drugs to the eye, they should be tested for photo- and cytotoxicity in vivo.

Roberts, Joan E. [Department of Natural Sciences, Fordham University, 113 West 60th Street, New York City, NY 10023 (United States)], E-mail: jroberts@fordham.edu; Wielgus, Albert R. [Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States)], E-mail: wielgus@niehs.nih.gov; Boyes, William K. [Neurotoxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States)], E-mail: Boyes.William@epamail.epa.gov; Andley, Usha [Department of Ophthalmology and Visual Science, Washington University School of Medicine, St. Louis, MO 63110 (United States)], E-mail: andley@vision.wustl.edu; Chignell, Colin F. [Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States)], E-mail: chignell@niehs.nih.gov

2008-04-01

219

H. pylori Infection Inhibits Phagocyte Clearance of Apoptotic Gastric Epithelial Cells  

PubMed Central

Increased apoptotic death of gastric epithelial cells is a hallmark of H. pylori infection, and altered epithelial cell turnover is an important contributor to gastric carcinogenesis. To address the fate of apoptotic gastric epithelial cells and their role in H. pylori mucosal disease, we investigated phagocyte clearance of apoptotic gastric epithelial cells in H. pylori infection. Human gastric mononuclear phagocytes were analyzed for their ability to take up apoptotic epithelial cells in vivo using immunofluorescence analysis. We then used primary human gastric epithelial cells induced to undergo apoptosis by exposure to live H. pylori to study apoptotic cell uptake by autologous monocyte-derived macrophages. We show that HLA-DR+ mononuclear phagocytes in human gastric mucosa contain cytokeratin-positive and TUNEL-positive apoptotic epithelial cell material, indicating that gastric phagocytes are involved in apoptotic epithelial cell clearance. We further show that H. pylori both increased apoptosis in primary gastric epithelial cells and decreased phagocytosis of the apoptotic epithelial cells by autologous monocyte-derived macrophages. Reduced macrophage clearance of apoptotic cells was mediated in part by H. pylori-induced macrophage TNF-?, which was expressed at higher levels in H. pylori-infected, compared to uninfected, gastric mucosa. Importantly, we show that H. pylori-infected gastric mucosa contained significantly higher numbers of apoptotic epithelial cells and higher levels of non-phagocytosed TUNEL-positive apoptotic material, consistent with a defect in apoptotic cell clearance. Thus, as shown in other autoimmune and chronic inflammatory diseases, insufficient phagocyte clearance may contribute to the chronic and self-perpetuating inflammation in human H. pylori infection. PMID:23686492

Bimczok, Diane; Smythies, Lesley E.; Waites, Ken B.; Grams, Jayleen M.; Stahl, Richard D.; Mannon, Peter J.; Peter, Shajan; Wilcox, C. Mel; Harris, Paul R.; Das, Soumita; Ernst, Peter B.; Smith, Phillip D.

2013-01-01

220

PKC?/midkine pathway drives hypoxia-induced proliferation and differentiation of human lung epithelial cells.  

PubMed

Epithelial cells are key players in the pathobiology of numerous hypoxia-induced lung diseases. The mechanisms mediating such hypoxic responses of epithelial cells are not well characterized. Earlier studies reported that hypoxia stimulates protein kinase C (PKC)? activation in renal cancer cells and an increase in expression of a heparin-binding growth factor, midkine (MK), in lung alveolar epithelial cells. We reasoned that hypoxia might regulate MK levels via a PKC?-dependent pathway and hypothesized that PKC?-driven MK expression is required for hypoxia-induced lung epithelial cell proliferation and differentiation. Replication of human lung epithelial cells (A549) was significantly increased by chronic hypoxia (1% O2) and was dependent on expression of PKC?. Hypoxia-induced proliferation of epithelial cells was accompanied by translocation of PKC? from Golgi into the nuclei. Marked attenuation in MK protein levels by rottlerin, a pharmacological antagonist of PKC, and by small interfering RNA-targeting PKC?, revealed that PKC? is required for MK expression in both normoxic and hypoxic lung epithelial cells. Sequestering MK secreted into the culture media with a neutralizing antibody reduced hypoxia-induced proliferation demonstrating that an increase in MK release from cells is linked with epithelial cell division under hypoxia. In addition, recombinant MK accelerated transition of hypoxic epithelial cells to cells of mesenchymal phenotype characterized by elongated morphology and increased expression of mesenchymal markers, ?-smooth muscle actin, and vimentin. We conclude that PKC?/MK axis mediates hypoxic proliferation and differentiation of lung epithelial cells. Manipulation of PKC? and MK activity in epithelial cells might be beneficial for the treatment of hypoxia-mediated lung diseases. PMID:24500281

Zhang, Hanying; Okamoto, Miyako; Panzhinskiy, Evgeniy; Zawada, W Michael; Das, Mita

2014-04-01

221

Instructions for use Molecular Responses of Human Lung Epithelial Cells to the Toxicity of Copper Oxide  

E-print Network

so eventually died. KEY WORDS: copper oxide nanoparticles, cytotoxicity, lung epithelial cells, cell of Copper Oxide Nanoparticles Inferred from Whole Genome Expression Analysis Nobutaka Hanagata1,2,* , Fei proposes a molecular mechanism for lung epithelial A549 cells response to copper oxide nanoparticles (Cu

Tsunogai, Urumu

222

Kidney injury molecule–1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells  

PubMed Central

Following injury, the clearance of apoptotic and necrotic cells is necessary for mitigation and resolution of inflammation and tissue repair. In addition to macrophages, which are traditionally assigned to this task, neighboring epithelial cells in the affected tissue are postulated to contribute to this process. Kidney injury molecule–1 (KIM-1 or TIM-1) is an immunoglobulin superfamily cell-surface protein not expressed by cells of the myeloid lineage but highly upregulated on the surface of injured kidney epithelial cells. Here we demonstrate that injured kidney epithelial cells assumed attributes of endogenous phagocytes. Confocal images confirm internalization of apoptotic bodies within KIM-1–expressing epithelial cells after injury in rat kidney tubules in vivo. KIM-1 was directly responsible for phagocytosis in cultured primary rat tubule epithelial cells and also porcine and canine epithelial cell lines. KIM-1 was able to specifically recognize apoptotic cell surface-specific epitopes phosphatidylserine, and oxidized lipoproteins, expressed by apoptotic tubular epithelial cells. Thus, KIM-1 is the first nonmyeloid phosphatidylserine receptor identified to our knowledge that transforms epithelial cells into semiprofessional phagocytes. PMID:18414680

Ichimura, Takaharu; Asseldonk, Edwin J.P.v.; Humphreys, Benjamin D.; Gunaratnam, Lakshman; Duffield, Jeremy S.; Bonventre, Joseph V.

2008-01-01

223

WU Polyomavirus in Respiratory Epithelial Cells from Lung Transplant Patient with Job Syndrome  

PubMed Central

We detected WU polyomavirus (WUPyV) in a bronchoalveolar lavage sample from lungs transplanted into a recipient with Job syndrome by using immunoassays specific for the WUPyV viral protein 1. Co-staining for an epithelial cell marker identified most WUPyV viral protein 1–positive cells as respiratory epithelial cells. PMID:25531075

Siebrasse, Erica A.; Pastrana, Diana V.; Nguyen, Nang L.; Wang, Annie; Roth, Mark J.; Holland, Steven M.; Freeman, Alexandra F.; McDyer, John; Buck, Christopher B.

2015-01-01

224

Medullary but not cortical thymic epithelial cells present soluble antigens to helper T cells  

PubMed Central

Thymic epithelial cell lines (TECs) were established from newborn C57BL/6 mice. They were classified into two types (medullary and cortical TECs) by using the monoclonal antibody (Th-3) that recognizes the meshwork structure of thymic cortical epithelial cells. Antigen- presenting activity of each TEC was determined by using ovalbumin- specific, I-Ab-restricted helper T cell lines. It was demonstrated that the medullary but not the cortical TECs functioned as antigen- presenting cells. This is the first evidence for the functional difference between the cortical and the medullary TEC. PMID:1534114

1992-01-01

225

45Ca uptake by retinal pigment epithelial cells  

SciTech Connect

Uptake of {sup 45}Ca was studied in isolated frog retinal pigment epithelial cells. {sup 45}Ca accumulation was found to be a saturable, temperature-dependent event. Kinetic analysis of this accumulation revealed two transport systems with apparent km of 2.0 and 0.3 mM. We found the presence of a Na-Ca exchanger mechanism that releases Ca2 under depolarized conditions. Light induced an increase of {sup 45}Ca uptake due to activation of the Na-K-ATPase and consequent decrease of extracellular potassium concentration.

Salceda, R. (Universidad Nacional Autonoma de Mexico (Mexico))

1989-10-01

226

Versican regulates metastasis of epithelial ovarian carcinoma cells and spheroids  

PubMed Central

Background Epithelial ovarian carcinoma is a deadly disease characterized by overt peritoneal metastasis. Individual cells and multicellular aggregates, or spheroids, seed these metastases, both commonly found in ascites. Mechanisms that foster spheroid attachment to the peritoneal tissues preceding formation of secondary lesions are largely unknown. Methods Cell culture models of SKOV-3, OVCAR3, OVCAR4, Caov-3, IGROV-1, and A2780 were used. In this report the role of versican was examined in adhesion of EOC spheroids and cells to peritoneal mesothelial cell monolayers in vitro as well as in formation of peritoneal tumors using an in vivo xenograft mouse model. Results The data demonstrate that versican is instrumental in facilitating cell and spheroid adhesion to the mesothelial cell monolayers, as its reduction with specific shRNAs led to decreased adhesion. Furthermore, spheroids with reduced expression of versican failed to disaggregate to complete monolayers when seeded atop monolayers of peritoneal mesothelial cells. Failure of spheroids lacking versican to disaggregate as efficiently as controls could be attributed to a reduced cell migration that was observed in the absence of versican expression. Importantly, both spheroids and cells with reduced expression of versican demonstrated significantly impaired ability to generate peritoneal tumors when injected intraperitoneally into athymic nude mice. Conclusions Taken together these data suggest that versican regulates the development of peritoneal metastasis originating from cells and spheroids. PMID:24999371

2014-01-01

227

Subcellular Localization of p44/WDR77 Determines Proliferation and Differentiation of Prostate Epithelial Cells  

PubMed Central

The molecular mechanism that controls the proliferation and differentiation of prostate epithelial cells is currently unknown. We previously identified a 44-kDa protein (p44/wdr77) as an androgen receptor-interacting protein that regulates a set of androgen receptor target genes in prostate epithelial cells and prostate cancer. In this study, we found that p44 localizes in the cytoplasm of prostate epithelial cells at the early stage of prostate development when cells are proliferating, and its nuclear translocation is associated with cellular and functional differentiation in adult prostate tissue. We further demonstrated that cytoplasmic p44 protein is essential for proliferation of prostate epithelial cells, whereas nuclear p44 is required for cell differentiation and prostate- specific protein secretion. These studies suggest a novel mechanism by which proliferation and differentiation of prostate epithelial cells are controlled by p44’s location in the cell. PMID:23145110

Gao, Shen; Wang, Zhengxin

2012-01-01

228

A biomaterial model of tumor stromal microenvironment promotes mesenchymal morphology but not epithelial to mesenchymal transition in epithelial cells.  

PubMed

The stromal tissue surrounding most carcinomas is comprised of an extracellular matrix densely packed with collagen-I fibers, which are often highly aligned in metastatic disease. Here we developed an in vitro model to test the effect of an aligned fibrous environment on cancer cell morphology and behavior, independent of collagen ligand presentation. We grew cells on a biomimetic surface of aligned electrospun poly-l-lactic acid (PLLA) fibers and then examined the effect of this environment on growth rate, morphology, cytoskeletal organization, biochemical and genetic markers of epithelial to mesenchymal transition (EMT), cell surface adhesion, and cell migration. We grew a phenotypically normal breast epithelial cell line (MCF10A) and an invasive breast cancer cell line (MDA-MB-231) on three different substrates: typical flat culture surface (glass or plastic), flat PLLA (glass coated with PLLA) or electrospun PLLA fibers. Cells of both types adopted a more mesenchymal morphology when grown on PLLA fibers, and this effect was exaggerated in the more metastatic-like MDA-MB-231 cells. However, neither cell type underwent the changes in gene expression indicative of EMT despite the changes in cell shape, nor did they exhibit the decreased adhesive strength or increased migration typical of metastatic cells. These results suggest that changes in cell morphology alone do not promote a more mesenchymal phenotype and consequently that the aligned fibrous environment surrounding epithelial cancers may not promote EMT solely through topographical cues. PMID:25058401

McLane, Joshua S; Rivet, Christopher J; Gilbert, Ryan J; Ligon, Lee A

2014-11-01

229

Proteomic Analysis of Nasal Epithelial Cells from Cystic Fibrosis Patients  

PubMed Central

The pathophysiology of cystic fibrosis (CF) lung disease remains incompletely understood. New explanations for the pathogenesis of CF lung disease may be discovered by studying the patterns of protein expression in cultured human nasal epithelial cells (HNEC). To that aim, we compared the level of protein expressions in primary cultures of HNEC from nasal polyps secondary to CF (CFNP, n?=?4), primary nasal polyps (NP, n?=?8) and control mucosa (CTRL, n?=?4) using isobaric tag for relative and absolute quantification (iTRAQ) labeling coupled with liquid chromatography (LC)-MS-MS. The analysis of the data revealed 42 deregulated protein expressions in CFNP compared to NP and CTRL, suggesting that these alterations are related to CF. Overall, AmiGo analysis highlighted six major pathways important for cell functions that seem to be impaired: metabolism, G protein process, inflammation and oxidative stress response, protein folding, proteolysis and structural proteins. Among them, glucose and fatty acid metabolic pathways could be impaired in CF with nine deregulated proteins. Our proteomic study provides a reproducible set of differentially expressed proteins in airway epithelial cells from CF patients and reveals many novel deregulated proteins that could lead to further studies aiming to clarify the involvement of such proteins in CF pathophysiology. PMID:25268127

Papon, Jean-François; Chhuon, Cerina; Zadigue, Patricia; Prulière-Escabasse, Virginie; Amselem, Serge; Escudier, Estelle; Coste, André; Edelman, Aleksander

2014-01-01

230

Polystyrene nanoparticles activate ion transport in human airway epithelial cells  

PubMed Central

Background Over the last decade, nanotechnology has provided researchers with new nanometer materials, such as nanoparticles, which have the potential to provide new therapies for many lung diseases. In this study, we investigated the acute effects of polystyrene nanoparticles on epithelial ion channel function. Methods Human submucosal Calu-3 cells that express cystic fibrosis transmembrane conductance regulator (CFTR) and baby hamster kidney cells engineered to express the wild-type CFTR gene were used to investigate the actions of negatively charged 20 nm polystyrene nanoparticles on short-circuit current in Calu-3 cells by Ussing chamber and single CFTR Clchannels alone and in the presence of known CFTR channel activators by using baby hamster kidney cell patches. Results Polystyrene nanoparticles caused sustained, repeatable, and concentration-dependent increases in short-circuit current. In turn, these short-circuit current responses were found to be biphasic in nature, ie, an initial peak followed by a plateau. EC50 values for peak and plateau short-circuit current responses were 1457 and 315.5 ng/mL, respectively. Short-circuit current was inhibited by diphenylamine-2-carboxylate, a CFTR Cl? channel blocker. Polystyrene nanoparticles activated basolateral K+ channels and affected Cl? and HCO3 ? secretion. The mechanism of short-circuit current activation by polystyrene nanoparticles was found to be largely dependent on calcium-dependent and cyclic nucleotide-dependent phosphorylation of CFTR Cl? channels. Recordings from isolated inside-out patches using baby hamster kidney cells confirmed the direct activation of CFTR Cl? channels by the nanoparticles. Conclusion This is the first study to identify the activation of ion channels in airway cells after exposure to polystyrene-based nanomaterials. Thus, polystyrene nanoparticles cannot be considered as a simple neutral vehicle for drug delivery for the treatment of lung diseases, due to the fact that they may have the ability to affect epithelial cell function and physiological processes on their own. PMID:21760729

McCarthy, J; Gong, X; Nahirney, D; Duszyk, M; Radomski, MW

2011-01-01

231

Phase I Study of Intravenous Triapine (IND # 68338) in Combination With Pelvic Radiation Therapy With or Without Weekly Intravenous Cisplatin Chemotherapy for Locally Advanced Cervical, Vaginal, or Pelvic Gynecologic Malignancies  

ClinicalTrials.gov

Recurrent Cervical Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Vaginal Cancer; Recurrent Vulvar Cancer; Stage III Vaginal Cancer; Stage IIIA Cervical Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIA Vulvar Cancer; Stage IIIB Cervical Cancer; Stage IIIB Ovarian Epithelial Cancer; Stage IIIB Vulvar Cancer; Stage IIIC Ovarian Epithelial Cancer; Stage IIIC Vulvar Cancer; Stage IV Ovarian Epithelial Cancer; Stage IVA Cervical Cancer; Stage IVA Vaginal Cancer; Stage IVB Cervical Cancer; Stage IVB Vaginal Cancer

2013-01-10

232

Enterotoxigenic Escherichia coli infection induces intestinal epithelial cell autophagy.  

PubMed

The morbidity and mortality in piglets caused by enterotoxigenic Escherichia coli (ETEC) results in large economic losses to the swine industry, but the precise pathogenesis of ETEC-associated diseases remains unknown. Intestinal epithelial cell autophagy serves as a host defense against pathogens. We found that ETEC induced autophagy, as measured by both the increased punctae distribution of GFP-LC3 and the enhanced conversion of LC3-I to LC3-II. Inhibiting autophagy resulted in decreased survival of IPEC-1 cells infected with ETEC. ETEC triggered autophagy in IPEC-1 cells through a pathway involving the mammalian target of rapamycin (mTOR), the extracellular signal-regulated kinases 1/2 (ERK1/2), and the AMP-activated protein kinase (AMPK). PMID:24742948

Tang, Yulong; Li, Fengna; Tan, Bie; Liu, Gang; Kong, Xiangfeng; Hardwidge, Philip R; Yin, Yulong

2014-06-25

233

E. coli adherence to bladder epithelial cells of mice.  

PubMed

Adherence of E. coli to bladder cells was studied by mixing E. coli with cells scraped from the surface of the normal mouse bladder. E. coli adherence to bladder epithelium did not correlate with renal infection, the ability of E. coli to resist phagocytosis, the growth of the strains, the presence of K-antigen or dulcitol fermentation. There was also no correlation with proportion of deaths, motility, or rough mutation. Pili were observed in three of the 22 strains of E. coli and their presence was not associated with increased virulence. In this model of renal infection neither adherence of E. coli to bladder epithelial cells nor the presence of pili were significant virulence factors. PMID:6999697

Montgomerie, J Z; Turkel, S; Kalmanson, G M; Guze, L B

1980-01-01

234

Interactions between airway epithelial cells and dendritic cells during viral infections using an in vitro co-culture model  

EPA Science Inventory

Rationale: Historically, single cell culture models have been limited in pathological and physiological relevance. A co-culture model of dendritic cells (DCs) and differentiated human airway epithelial cells was developed to examine potential interactions between these two cell t...

235

Role of membrane traffic in the generation of epithelial cell asymmetry  

PubMed Central

Epithelial cells have an apical–basolateral axis of polarity, which is required for epithelial functions including barrier formation, vectorial ion transport and sensory perception. Here we review what is known about the sorting signals, machineries and pathways that maintain this asymmetry, and how polarity proteins interface with membrane-trafficking pathways to generate membrane domains de novo. It is becoming apparent that membrane traffic does not simply reinforce polarity, but is critical for the generation of cortical epithelial cell asymmetry. PMID:23196841

Apodaca, Gerard; Gallo, Luciana I.; Bryant, David M.

2013-01-01

236

Molecular signaling of the epithelial to mesenchymal transition in generating and maintaining cancer stem cells  

Microsoft Academic Search

The epithelial to mesenchymal transition (EMT) is a highly conserved cellular program that allows polarized, well-differentiated\\u000a epithelial cells to convert to unpolarized, motile mesenchymal cells. EMT is critical for appropriate embryogenesis and plays\\u000a a crucial role in tumorigenesis and cancer progression. Recent studies revealed that there is a direct link between the EMT\\u000a program and the gain of epithelial stem

Gaoliang Ouyang; Zhe Wang; Xiaoguang Fang; Jia Liu; Chaoyong James Yang

2010-01-01

237

Three-Dimensional Cultures of Mouse Mammary Epithelial Cells  

PubMed Central

The mammary gland is an ideal “model organism” for studying tissue specificity and gene expression in mammals: it is one of the few organs that develop after birth and it undergoes multiple cycles of growth, differentiation and regression during the animal’s lifetime in preparation for the important function of lactation. The basic “functional differentiation” unit in the gland is the mammary acinus made up of a layer of polarized epithelial cells specialized for milk production surrounded by myoepithelial contractile cells, and the two-layered structure is surrounded by basement membrane. Much knowledge about the regulation of mammary gland development has been acquired from studying the physiology of the gland and of lactation in rodents. Culture studies, however, were hampered by the inability to maintain functional differentiation on conventional tissue culture plastic. We now know that the microenvironment, including the extracellular matrix and tissue architecture, plays a crucial role in directing functional differentiation of organs. Thus, in order for culture systems to be effective experimental models, they need to recapitulate the basic unit of differentiated function in the tissue or organ and to maintain its three-dimensional (3D) structure. Mouse mammary culture models evolved from basic monolayers of cells to an array of complex 3D systems that observe the importance of the microenvironment in dictating proper tissue function and structure. In this chapter, we focus on how 3D mouse mammary epithelial cultures have enabled investigators to gain a better understanding of the organization, development and function of the acinus, and to identify key molecular, structural, and mechanical cues important for maintaining mammary function and architecture. The accompanying chapter of Vidi et al. describes 3D models developed for human cells. Here, we describe how mouse primary epithelial cells and cell lines—essentially those we use in our laboratory—are cultured in relevant 3D microenvironments. We focus on the design of functional assays that enable us to understand the intricate signaling events underlying mammary gland biology, and address the advantages and limitations of the different culture settings. Finally we also discuss how advances in bioengineering tools may help towards the ultimate goal of building tissues and organs in culture for basic research and clinical studies. PMID:23097110

Mroue, Rana; Bissell, Mina J.

2013-01-01

238

Cysteine string protein expression in mammary epithelial cells.  

PubMed

Cysteine string protein (Csp) is a secretory vesicle protein previously demonstrated to be required for Ca2+-regulated exocytosis in neurons and endocrine cells. It has been suggested to function by regulating voltage-gated Ca2+ channels or, alternatively, to have a more direct effect on the regulated exocytotic machinery. Here we demonstrate the expression of Csp in mammary epithelial cells and in the KIM-2 mammary cell line. In KIM-2 cells, Csp was found to be associated with a population of small vesicles and showed partial co-distribution with the vesicle protein cellubrevin. KIM-2 cells do not express detectable levels of voltage-gated Ca2+ channels, ruling these out as a site of action. Using the release of transfected growth hormone (GH) as an assay of secretion, we found that GH is secreted in an exclusively constitutive manner from KIM-2 cells. Overexpression of Csp1 inhibits regulated exocytosis in other cell types but has no effect on constitutive GH release by KIM-2 cells. These results suggest that Csp does not have a major function in constitutive exocytosis. PMID:11294245

Gleave, T L; Beechey, R B; Burgoyne, R D

2001-02-01

239

Mapping of HNF4? target genes in intestinal epithelial cells  

PubMed Central

Background The role of HNF4? has been extensively studied in hepatocytes and pancreatic ?-cells, and HNF4? is also regarded as a key regulator of intestinal epithelial cell differentiation. The aim of the present work is to identify novel HNF4? target genes in the human intestinal epithelial cells in order to elucidate the role of HNF4? in the intestinal differentiation progress. Methods We have performed a ChIP-chip analysis of the human intestinal cell line Caco-2 in order to make a genome-wide identification of HNF4? binding to promoter regions. The HNF4? ChIP-chip data was matched with gene expression and histone H3 acetylation status of the promoters in order to identify HNF4? binding to actively transcribed genes with an open chromatin structure. Results 1,541 genes were identified as potential HNF4? targets, many of which have not previously been described as being regulated by HNF4?. The 1,541 genes contributed significantly to gene ontology (GO) pathways categorized by lipid and amino acid transport and metabolism. An analysis of the homeodomain transcription factor Cdx-2 (CDX2), the disaccharidase trehalase (TREH), and the tight junction protein cingulin (CGN) promoters verified that these genes are bound by HNF4? in Caco2 cells. For the Cdx-2 and trehalase promoters the HNF4? binding was verified in mouse small intestine epithelium. Conclusion The HNF4? regulation of the Cdx-2 promoter unravels a transcription factor network also including HNF1?, all of which are transcription factors involved in intestinal development and gene expression. PMID:19761587

2009-01-01

240

Biological length scale topography enhances cell-substratum adhesion of human corneal epithelial cells  

PubMed Central

Summary The basement membrane possesses a rich 3-dimensional nanoscale topography that provides a physical stimulus, which may modulate cell-substratum adhesion. We have investigated the strength of cell-substratum adhesion on nanoscale topographic features of a similar scale to that of the native basement membrane. SV40 human corneal epithelial cells were challenged by well-defined fluid shear, and cell detachment was monitored. We created silicon substrata with uniform grooves and ridges having pitch dimensions of 400-4000 nm using X-ray lithography. F-actin labeling of cells that had been incubated for 24 hours revealed that the percentage of aligned and elongated cells on the patterned surfaces was the same regardless of pitch dimension. In contrast, at the highest fluid shear, a biphasic trend in cell adhesion was observed with cells being most adherent to the smaller features. The 400 nm pitch had the highest percentage of adherent cells at the end of the adhesion assay. The effect of substratum topography was lost for the largest features evaluated, the 4000 nm pitch. Qualitative and quantitative analyses of the cells during and after flow indicated that the aligned and elongated cells on the 400 nm pitch were more tightly adhered compared to aligned cells on the larger patterns. Selected experiments with primary cultured human corneal epithelial cells produced similar results to the SV40 human corneal epithelial cells. These findings have relevance to interpretation of cell-biomaterial interactions in tissue engineering and prosthetic design. PMID:15226393

Karuri, Nancy W.; Liliensiek, Sara; Teixeira, Ana I.; Abrams, George; Campbell, Sean; Nealey, Paul F.; Murphy, Christopher J.

2006-01-01

241

A novel culture system for porcine odontogenic epithelial cells using a feeder layer.  

PubMed

The growth of cells in vitro can provide useful models for investigating their behaviour and improving our understanding of their function in vivo. Although the developmental regulation of enamel matrix formation has been comprehensively analysed, the detailed cellular characteristics of ameloblasts remain unclear because of the lack of a system of long-term in vitro culture. Therefore, the establishment of odontogenic epithelial cell lines has taken on a new significance. Here, we report on a novel porcine odontogenic epithelial cell-culture system, which has permitted serial culture of these cells. Epithelial cells were harvested from third molar tooth buds in the fresh mandibles of 6-month-old pigs, and seeded on dishes in D-MEM containing 10% FBS. Before the cells reached confluence, the medium was changed to LHC-9 to select the epithelial cells. When trypsinized epithelial cells were plated together with 3T3-J2 cells as a feeder layer, the epithelial cells grew from single cells into colonies. The colonies then expanded and became confluent, and could be sub-cultured for up to 20 passages. The long-term culture cells expressed mRNA for amelogenin and ameloblastin, as well as enamelysin (MMP-20), which is a tissue-specific gene product unique to ameloblasts. These results show that the system is capable of sustaining the multiplication of odontogenic epithelial cells with the characteristics of ameloblasts. PMID:16257386

Honda, M J; Shimodaira, T; Ogaeri, T; Shinohara, Y; Hata, K; Ueda, M

2006-04-01

242

Use of lactobacilli and estriol combination in the treatment of disturbed vaginal ecosystem: a review  

PubMed Central

To maintain a healthy vaginal ecosystem or to restore any disturbance, sufficient estrogen levels, an intact mature vaginal epithelium, and physiological lactobacillary microflora are essential. Thus, a combination of beneficial lactobacilli and estrogen is an appealing treatment option. This article reviews the published data on the use of viable Lactobacillus acidophilus KS400 and a low dose of estriol (0.03 mg E3) in the form of vaginal tablets (Gynoflor®). In vitro studies demonstrated that L. acidophilus KS400 produces lactic acid and hydrogen peroxide (H2O2), inhibits the growth of relevant vaginal pathogens, and inhibits adherence of pathogens to epithelial cells. Topical administration of E3 for treatment of vaginal diseases is generally preferred, as this route of application of hormones produces a more significant local proliferative response and has no stimulating effect on the endometrium. Overall, 16 clinical studies have been published with the combination of L. acidophilus KS400 and 0.03 mg E3. The results of these trials have demonstrated that the combination improves the vaginal epithelium and the restoration of the lactobacillary microflora with an excellent safety profile, even during pregnancy. The combination can be used in pre- and postmenopausal women for the restoration of the vaginal flora after anti-infective therapy, for treatment of symptomatic vaginal atrophy, and for abnormal vaginal flora therapy. It can be also considered in repetitive therapy courses for the long-term prevention of recurrences of bacterial vaginosis, even though further clinical studies are needed to substantiate the benefit of this application. PMID:24592002

Ünlü, Cihat; Donders, Gilbert

2011-01-01

243

Role of the microtubule-targeting drug vinflunine on cell-cell adhesions in bladder epithelial tumour cells  

PubMed Central

Background Vinflunine (VFL) is a microtubule-targeting drug that suppresses microtubule dynamics, showing anti-metastatic properties both in vitro and in living cancer cells. An increasing body of evidence underlines the influence of the microtubules dynamics on the cadherin-dependent cell-cell adhesions. E-cadherin is a marker of epithelial-to-mesenchymal transition (EMT) and a tumour suppressor; its reduced levels in carcinoma are associated with poor prognosis. In this report, we investigate the role of VFL on cell-cell adhesions in bladder epithelial tumour cells. Methods Human bladder epithelial tumour cell lines HT1376, 5637, SW780, T24 and UMUC3 were used to analyse cadherin-dependent cell-cell adhesions under VFL treatment. VFL effect on growth inhibition was measured by using a MTT colorimetric cell viability assay. Western blot, immunofluorescence and transmission electron microscopy analyses were performed to assess the roles of VFL effect on cell-cell adhesions, epithelial-to-mesenchymal markers and apoptosis. The role of the proteasome in controlling cell-cell adhesion was studied using the proteasome inhibitor MG132. Results We show that VFL induces cell death in bladder cancer cells and activates epithelial differentiation of the remaining living cells, leading to an increase of E-cadherin-dependent cell-cell adhesion and a reduction of mesenchymal markers, such as N-cadherin or vimentin. Moreover, while E-cadherin is increased, the levels of Hakai, an E3 ubiquitin-ligase for E-cadherin, were significantly reduced in presence of VFL. In 5637, this reduction on Hakai expression was blocked by MG132 proteasome inhibitor, indicating that the proteasome pathway could be one of the molecular mechanisms involved in its degradation. Conclusions Our findings underscore a critical function for VFL in cell-cell adhesions of epithelial bladder tumour cells, suggesting a novel molecular mechanism by which VFL may impact upon EMT and metastasis. PMID:25012153

2014-01-01

244

Preservation of the characteristics of the cultured human type II alveolar epithelial cells.  

PubMed

The human type II alveolar epithelial cells lost their specific characteristics during cultivation. We examined the ultrastructural and biochemical nature of the human type II cells cultured by two culture systems. To make a physiological alveoli model, the epithelial cells were seeded onto the cell culture insert and allowed contact with the air directly. The cells exposed to the air expressed polarity and immature lamellar bodies in their cytoplasm. Separately, the alveolar epithelial cells were cultured as spheroids to construct the three-dimensional condition. These cells expressed mature morphological characteristics as epithelial cells and lamellar bodies. The expression of the surfactant apoprotein-A (SP-A) and -C (SP-C) mRNA was compared in the cells cultured as a monolayer, the air exposed and the spheroids. SP-A mRNA was detected in all the cultured epithelial cells, but SP-C mRNA, a specific protein for the type II cells, was expressed only in the cells forming spheroids. The expression of uPA, one of the fibrinolytic enzymes, its receptor (uPAR) and its inhibitor-1 (PAI-1) were also examined. The epithelial cells exposed to the air and formed spheroids expressed a larger amount of uPA mRNA than the monolayer, although the amount of uPAR mRNA were comparable in these cells. The amount of PAI-1 mRNA significantly increased when the epithelial cells were exposed to the air. These results indicate that the type II alveolar epithelial cells induced and preserved their specific characteristics by taking the physiological three-dimensional structure, and these characteristics were partially restored by exposure to the air. Those findings suggest that the alveolar epithelial cells should be cultivated in three-dimensional form with contact to the air to regenerate an appropriate alveolar tissue. PMID:15636194

Takahashi, Kimiko; Mitsui, Masako; Takeuchi, Kyoko; Uwabe, Yasuhide; Kobayashi, Katsuyuki; Sawasaki, Yoshio; Matsuoka, Takeshi

2004-01-01

245

Characterization of three new serous epithelial ovarian cancer cell lines  

PubMed Central

Background Cell lines constitute a powerful model to study cancer, and here we describe three new epithelial ovarian cancer (EOC) cell lines derived from poorly differentiated serous solid tumors (TOV-1946, and TOV-2223G), as well as the matched ascites for one case (OV-1946). Methods In addition to growth parameters, the cell lines were characterized for anchorage independent growth, migration and invasion potential, ability to form spheroids and xenografts in SCID mice. Results While all cell lines were capable of anchorage independent growth, only the TOV-1946 and OV-1946 cell lines were able to form spheroid and produce tumors. Profiling of keratins, p53 and Her2 protein expression was assessed by immunohistochemistry and western blot analyses. Somatic TP53 mutations were found in all cell lines, with TOV-1946 and OV-1946 harboring the same mutation, and none harbored the commonly observed somatic mutations in BRAF, KRAS or germline BRCA1/2 mutations found to recur in the French Canadian population. Conventional cytogenetics and spectral karyotype (SKY) analyses revealed complex karyotypes often observed in ovarian disease. Conclusion This is the first report of the establishment of matched EOC cell lines derived from both solid tumor and ascites of the same patient. PMID:18507860

Ouellet, Véronique; Zietarska, Magdalena; Portelance, Lise; Lafontaine, Julie; Madore, Jason; Puiffe, Marie-Line; Arcand, Suzanna L; Shen, Zhen; Hébert, Josée; Tonin, Patricia N; Provencher, Diane M; Mes-Masson, Anne-Marie

2008-01-01

246

Single Dose Pharmacokinetics of Oral Tenofovir in Plasma, Peripheral Blood Mononuclear Cells, Colonic Tissue, and Vaginal Tissue  

PubMed Central

Abstract HIV seroconversion outcomes in preexposure prophylaxis (PrEP) trials of oral tenofovir (TFV)-containing regimens are highly sensitive to drug concentration, yet less-than-daily dosing regimens are under study. Description of TFV and its active moiety, TFV diphosphate (TFV-DP), in blood, vaginal tissue, and colon tissue may guide the design and interpretation of PrEP clinical trials. Six healthy women were administered a single oral dose of 300?mg tenofovir disoproxil fumarate (TDF) and 4.3?mg (12.31?MBq, 333??Ci) 14C-TDF slurry. Blood was collected every 4?h for the first 24?h, then at 4, 8, 11, and 15 days postdosing. Colonic and vaginal samples (tissue, total and CD4+ cells, luminal fluid and cells) were collected 1, 8 and 15 days postdose. Samples were analyzed for TFV and TFV-DP. Plasma TFV demonstrated triphasic decay with terminal elimination half-life median [interquartile range (IQR)] 69?h (58–77). Peripheral blood mononuclear cell (PBMC) TFV-DP demonstrated biphasic peaks (median 12?h and 96?h) followed by a terminal 48?h (38–76) half-life; Cmax was 20?fmol/million cells (2–63). One day postdose, the TFV-DP paired colon:vaginal tissue concentration ratio was 1 or greater in all subjects' tissue homogenates, median 124 (range 1–281), but was not sustained. The ratio was lower and more variable in cells extracted from tissue. Among all sample types, TFV and TFV-DP half-life ranged from 23 to 139?h. PBMC TFV-DP rose slowly in the hours after dosing indicating that success with exposure-driven dosing regimens may be sensitive to timing of the dose prior to exposure. Colonic tissue homogenate TFV-DP concentrations were greater than in vaginal homogenate at 24?h, but not in cells extracted from tissue. These and the other pharmacokinetic findings will guide the interpretation and design of future PrEP trials. PMID:23600365

Louissaint, Nicolette A.; Cao, Ying-Jun; Skipper, Paul L.; Liberman, Rosa G.; Tannenbaum, Steven R.; Nimmagadda, Sridhar; Anderson, Jean R.; Everts, Stephanie; Bakshi, Rahul; Fuchs, Edward J.

2013-01-01

247

Measuring antimicrobial peptide activity on epithelial surfaces in cell culture  

PubMed Central

To more accurately assess the activity and role of epithelial-cell derived antimicrobial peptides in their native settings, it is essential to perform assays at the surfaces under relevant conditions. In order to carry this out, we utilize 3-dimensional cultures of airway and gingival epithelium, which are grown at an air-liquid interface. Under these conditions, the cultures can be subjected to challenge with a variety of factors known to cause an increase in antimicrobial peptide gene expression. The functional relevance of this induction can then be assessed by quantifying antibacterial activity either directly on the surface of the cells or using the fluid secreted onto the apical surface of the cultures. The relative contribution of the peptides can also be measured by pre-incubation of the secreted fluid with specific inhibitory antibodies. Thus, a relatively inexpensive in vitro model can be used to evaluate the role of antimicrobial peptides in mucosal epithelium. PMID:20094876

Diamond, Gill; Yim, Sunghan; Rigo, Isaura; McMahon, Laura

2009-01-01

248

Comparative Analysis of Cell Injury after Exposure to Antitumor Platinum Derivatives in Kidney Tubular Epithelial Cells  

Microsoft Academic Search

Background: Platinum derivatives differ in effectiveness and safety. The purpose of this study is to compare differences in the mechanism of nephrotoxicity among these derivatives. Methods: LLC-PK1 cells were used as a model of tubular epithelial cells. Cytotoxicity was evaluated by WST-1 assay, and cellular accumulation of platinum was examined by inductively coupled plasma mass spectrometer. As indexes of necrosis

Noriaki Kitada; Kohji Takara; Chihiro Itoh; Tetsuya Minegaki; Masayuki Tsujimoto; Toshiyuki Sakaeda; Teruyoshi Yokoyama

2008-01-01

249

Focal Adhesion Kinase regulates cell-cell contact formation in epithelial cells via modulation of Rho  

PubMed Central

Focal Adhesion Kinase (FAK) is a non-receptor tyrosine kinase that plays a key role in cellular processes such as cell adhesion, migration, proliferation and survival. Recent studies have also implicated FAK in the regulation of cell-cell adhesion. Here, evidence is presented showing that siRNA-mediated suppression of FAK levels in NBT-II cells and expression of dominant negative mutants of FAK caused loss of epithelial cell morphology and inhibited the formation of cell-cell adhesions. Rac and Rho have been implicated in the regulation of cell-cell adhesions and can be regulated by FAK signaling. Expression of active Rac or Rho in NBT-II cells disrupted formation of cell-cell contacts, thus promoting a phenotype similar to FAK-depleted cells. The loss of intercellular contacts in FAK-depleted cells is prevented upon expression of a dominant negative Rho mutant, but not a dominant negative Rac mutant. Inhibition of FAK decreased tyrosine phosphorylation of p190RhoGAP and elevated the level of GTP-bound Rho. This suggests that FAK regulates cell-cell contact formation by regulation of Rho. PMID:18773890

Playford, Martin P.; Vadali, Kavita; Cai, Xinming; Burridge, Keith; Schaller, Michael D.

2008-01-01

250

A Nasal Epithelial Receptor for Staphylococcus aureus WTA Governs Adhesion to Epithelial Cells and Modulates Nasal Colonization  

PubMed Central

Nasal colonization is a major risk factor for S. aureus infections. The mechanisms responsible for colonization are still not well understood and involve several factors on the host and the bacterial side. One key factor is the cell wall teichoic acid (WTA) of S. aureus, which governs direct interactions with nasal epithelial surfaces. We report here the first receptor for the cell wall glycopolymer WTA on nasal epithelial cells. In several assay systems this type F-scavenger receptor, termed SREC-I, bound WTA in a charge dependent manner and mediated adhesion to nasal epithelial cells in vitro. The impact of WTA and SREC-I interaction on epithelial adhesion was especially pronounced under shear stress, which resembles the conditions found in the nasal cavity. Most importantly, we demonstrate here a key role of the WTA-receptor interaction in a cotton rat model of nasal colonization. When we inhibited WTA mediated adhesion with a SREC-I antibody, nasal colonization in the animal model was strongly reduced at the early onset of colonization. More importantly, colonization stayed low over an extended period of 6 days. Therefore we propose targeting of this glycopolymer-receptor interaction as a novel strategy to prevent or control S. aureus nasal colonization. PMID:24788600

Faulstich, Manuela; Grau, Timo; Severin, Yannik; Unger, Clemens; Hoffmann, Wolfgang H.; Rudel, Thomas; Autenrieth, Ingo B.; Weidenmaier, Christopher

2014-01-01

251

Comparative vaginal cytology of the estrous cycle of black-footed ferrets (Mustela nigripes), Siberian polecats (M. eversmanni), and domestic ferrets (M. putorius furo).  

PubMed

Vaginal cytology and vulva size were used to characterize the reproductive cycle of female black-footed ferrets (Mustela nigripes), Siberian polecats (M. eversmanni), and domestic ferrets (M. putorius furo). Emphasis was on black-footed ferrets because of the need to breed these critically endangered animals and on Siberian polecats because of the close taxonomic relationship to black-footed ferrets. Vaginal cytology of the 3 species of ferret is similar. Proestrus was characterized by an increasing percentage of superficial epithelial cells and enlargement of the vulva. During estrus, superficial cells were usually greater than or equal to 90% of epithelial cells in the vaginal lavage and after several days were fully keratinized. Neutrophils were more common during all stages of the estrous cycle in domestic ferrets than they were in the other species. Following copulation, percentage of superficial calls in the vagina declined and vulva swelling subsided. Large cells, probably of uterine symplasma origin, were observed in vaginal lavages following whelping or pseudopregnancy. Vaginal cytology is extremely useful in the reproductive management of black-footed ferrets and Siberian polecats. Knowledge of normal vaginal cytology could be applied to the diagnosis of female reproductive abnormalities in all 3 species. PMID:1554767

Williams, E S; Thorne, E T; Kwiatkowski, D R; Lutz, K; Anderson, S L

1992-01-01

252

The Successful Culture and Autologous Transplantation of Rabbit Oral Mucosal Epithelial Cells on Amniotic Membrane  

Microsoft Academic Search

PURPOSE. To determine the feasibility of using human amniotic membrane (AM) as a substrate for culturing oral epithelial cells and to investigate the possibility of using autologous cultivated oral epithelial cells in ocular surface reconstruction. METHODS. An ocular surface injury was created in one eye of each of eight adult albino rabbits by a lamellar keratectomy, and a conjunctival excision

Takahiro Nakamura; Ken-Ichi Endo; Leanne J. Cooper; Nigel J. Fullwood; Noriko Tanifuji; Masakatsu Tsuzuki; Noriko Koizumi; Tsutomu Inatomi; Yoichiro Sano; Shigeru Kinoshita

2003-01-01

253

Diet Does Not Affect Putative Mammary Epithelial Stem Cells in Pre-weaned Holstein Heifers  

Technology Transfer Automated Retrieval System (TEKTRAN)

Overfeeding prepubertal heifers can impair mammary epithelial growth and development, processes that depend on stem cells. In this study we evaluated effects of diet composition on putative bovine mammary epithelial stem cell populations using a 5-bromo-2-deoxyrudine (BrdU; a thymidine analog) label...

254

ORIENTATION REQUIREMENT TO DETECT MAGNETIC FIELD-INDUCTED ALTERATION OF GAP JUNCTION COMMUNICATION IN EPITHELIAL CELLS  

EPA Science Inventory

ORIENTATION REQUIREMENT TO DETECT MAGNETIC FIELD-INDUCED ALTERATION OF GAP JUNCTION COMMUNICATION IN EPITHELIAL CELLS. OBJECTIVE: We have shown that functional gap junction communication as measured by Lucifer yellow dye transfer (DT) in Clone-9 rat liver epithelial cells, c...

255

Distinctive Gene Expression Patterns in Human Mammary Epithelial Cells and Breast Cancers  

Microsoft Academic Search

cDNA microarrays and a clustering algorithm were used to identify patterns of gene expression in human mammary epithelial cells growing in culture and in primary human breast tumors. Clusters of coexpressed genes identified through manipulations of mammary epithelial cells in vitro also showed consistent patterns of variation in expression among breast tumor samples. By using immunohistochemistry with antibodies against proteins

Charles M. Perou; Stefanie S. Jeffrey; Matt van de Rijn; Christian A. Rees; Michael B. Eisen; Douglas T. Ross; Alexander Pergamenschikov; Cheryl F. Williams; Shirley X. Zhu; Jeffrey C. F. Lee; Deval Lashkari; Dari Shalon; Patrick O. Brown; David Botstein

1999-01-01

256

Milk lipid and protein traffic in mammary epithelial cells: joint and independent pathways  

E-print Network

Review Milk lipid and protein traffic in mammary epithelial cells: joint and independent pathways, France Abstract -- In mammary epithelial cells, milk lipids and proteins are synthesised in the same com. These processes assure a relatively constant composition of milk but it is not known whether lipid and protein

Boyer, Edmond

257

Change in Cell Shape Is Required for Matrix Metalloproteinase-Induced Epithelial-Mesenchymal  

E-print Network

Change in Cell Shape Is Required for Matrix Metalloproteinase-Induced Epithelial previously that matrix metalloproteinase-3 (MMP3) can stimulate EMT of cultured mouse mammary epithelial. In cultured cells, EMT can be induced by cytokines, growth factors, and matrix metalloproteinases (MMPs

Nelson, Celeste M.

258

Urokinase and the intestinal mucosa: evidence for a role in epithelial cell turnover  

PubMed Central

Background—The functions of urokinase in intestinal epithelia are unknown. ?Aims—To determine the relation of urokinase expressed by intestinal epithelial cells to their position in the crypt-villus/surface axis and of mucosal urokinase activity to epithelial proliferative kinetics in the distal colon. ?Methods—Urokinase expression was examined immunohistochemically in human intestinal mucosa. Urokinase activity was measured colorimetrically in epithelial cells isolated sequentially from the crypt-villus axis of the rat small intestine. In separate experiments, urokinase activity and epithelial kinetics (measured stathmokinetically) were measured in homogenates of distal colonic mucosa of 14 groups of eight rats fed diets known to alter epithelial turnover. ?Results—From the crypt base, an ascending gradient of expression and activity of urokinase was associated with the epithelial cells. Median mucosal urokinase activities in each of the dietary groups of rats correlated positively with autologous median number of metaphase arrests per crypt (r=0.68; p<0.005) and per 100 crypt cells (r=0.75; p<0.001), but not with crypt column height. ?Conclusions—Localisation of an enzyme capable of leading to digestion of cell substratum in the region where cells are loosely attached to their basement membrane, and the association of its activity with indexes of cell turnover, suggest a role for urokinase in facilitating epithelial cell loss in the intestine. ?? Keywords: urokinase; intestinal epithelium; colon; epithelial proliferation PMID:9824347

Gibson, P; Birchall, I; Rosella, O; Albert, V; Finch, C; Barkla, D; Young, G

1998-01-01

259

ORIGINAL ARTICLE Epithelial Cell Extrusion Leads to Breaches in the Intestinal  

E-print Network

ORIGINAL ARTICLE Epithelial Cell Extrusion Leads to Breaches in the Intestinal Epithelium Julia J: Two distinct forms of intestinal epithelial cell (IEC) extrusion are described: 1 with preserved. Conclusions: IEC extrusion mediated by caspase-1 activation contributes to altered intestinal permeability

Alberta, University of

260

CYTOTOXICITY OF CHEMICAL CARCINOGENS TOWARDS HUMAN BRONCHIAL EPITHELIAL CELLS EVALUATED IN A CLONAL ASSAY  

EPA Science Inventory

Survival of human bronchial epithelial cells after administration of four chemical carcinogens was measured in a clonal assay. Human bronchial epithelial cells were obtained from outgrowths of explanted tissue pieces. Serum-free medium was used for both explant culture and clonal...

261

Roles of Wnt/{beta}-catenin signaling in epithelial differentiation of mesenchymal stem cells  

SciTech Connect

Bone marrow-derived mesenchymal stem cells (MSCs) have been demonstrated to be able to differentiate into epithelial lineage, but the precise mechanisms controlling this process are unclear. Our aim is to explore the roles of Wnt/{beta}-catenin in the epithelial differentiation of MSCs. Using indirect co-culture of rat MSCs with rat airway epithelial cells (RTE), MSCs expressed several airway epithelial markers (cytokeratin 18, tight junction protein occudin, cystic fibrosis transmembrance regulator). The protein levels of some important members in Wnt/{beta}-catenin signaling were determined, suggested down-regulation of Wnt/{beta}-catenin with epithelial differentiation of MSCs. Furthermore, Wnt3{alpha} can inhibit the epithelial differentiation of MSCs. A loss of {beta}-catenin induced by Dickkopf-1 can enhance MSCs differentiation into epithelial cells. Lithium chloride transiently activated {beta}-catenin expression and subsequently decreased {beta}-catenin level and at last inhibited MSCs to differentiate into airway epithelium. Taken together, our study indicated that RTE cells can trigger epithelial differentiation of MSCs. Blocking Wnt/{beta}-catenin signaling may promote MSCs to differentiate towards airway epithelial cells.

Wang, Yajing; Sun, Zhaorui; Qiu, Xuefeng [Immunology and Reproductive Biology Laboratory, Medical College of Nanjing University, Nanjing 210093 (China) [Immunology and Reproductive Biology Laboratory, Medical College of Nanjing University, Nanjing 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093 (China); Li, Yan [Jiangsu Centers for Diseases Prevention and Control, Nanjing 210009 (China)] [Jiangsu Centers for Diseases Prevention and Control, Nanjing 210009 (China); Qin, Jizheng [Immunology and Reproductive Biology Laboratory, Medical College of Nanjing University, Nanjing 210093 (China) [Immunology and Reproductive Biology Laboratory, Medical College of Nanjing University, Nanjing 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093 (China); Han, Xiaodong, E-mail: hanxd@nju.edu.cn [Immunology and Reproductive Biology Laboratory, Medical College of Nanjing University, Nanjing 210093 (China) [Immunology and Reproductive Biology Laboratory, Medical College of Nanjing University, Nanjing 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093 (China)

2009-12-25

262

Quiescent epithelial cell rests of Malassez can differentiate into ameloblast-like cells.  

PubMed

Epithelial cell rests of Malassez (ERM) are quiescent epithelial remnants of Hertwig's epithelial root sheath (HERS) that are involved in the formation of tooth roots. After completion of crown formation, HERS are converted from cervical loop cells, which have the potential to generate enamel for tooth crown formation. Cervical loop cells have the potential to differentiate into ameloblasts. Generally, no new ameloblasts can be generated from HERS, however this study demonstrated that subcultured ERM can differentiate into ameloblast-like cells and generate enamel-like tissues in combination with dental pulp cells at the crown formation stage. Porcine ERM were obtained from periodontal ligament tissue by explant culture and were subcultured with non-serum medium. Thereafter, subcultured ERM were expanded on 3T3-J2 feeder cell layers until the tenth passage. The in vitro mRNA expression pattern of the subcultured ERM after four passages was found to be different from that of enamel organ epithelial cells and oral gingival epithelial cells after the fourth passage using the same expansion technique. When subcultured ERM were combined with subcultured dental pulp cells, ERM expressed cytokeratin14 and amelogenin proteins in vitro. In addition, subcultured ERM combined with primary dental pulp cells seeded onto scaffolds showed enamel-like tissues at 8 weeks post-transplantation. Moreover, positive staining for amelogenin was observed in the enamel-like tissues, indicating the presence of well-developed ameloblasts in the implants. These results suggest that ERM can differentiate into ameloblast-like cells. PMID:18663726

Shinmura, Yuka; Tsuchiya, Shuhei; Hata, Ken-Ichiro; Honda, Masaki J

2008-12-01

263

Cyclin D2 activates Cdk2 in preference to Cdk4 in human breast epithelial cells  

Microsoft Academic Search

To investigate the possibility of differing roles for cyclins D1 and D2 in breast epithelial cells, we examined the expression, cell cycle regulation and activity of these two G1 cyclins in both 184 normal breast epithelial cells and T-47D breast cancer cells. Synchronisation studies in 184 cells demonstrated that cyclin D1 and cyclin D2 were differentially regulated during G1, with

Kimberley J Sweeney; Boris Sarcevic; Robert L Sutherland; Elizabeth A Musgrove

1997-01-01

264

Integrins regulate epithelial cell differentiation by modulating Notch activity.  

PubMed

Coordinating exit from the cell cycle with differentiation is crucial for proper development and tissue homeostasis. Failure to do so can lead to aberrant organogenesis and tumorigenesis. However, little is known about the developmental signals that regulate the switch from cell cycle exit to differentiation. Signals downstream of two key developmental pathways, Notch and Salvador-Warts-Hippo (SWH), and signals downstream of myosin activity regulate this switch during the development of the follicle cell epithelium of the Drosophila ovary. Here, we have identified a fourth player, the integrin signaling pathway. Elimination of integrin function blocks the mitosis-to-endocycle switch and differentiation in posterior follicle cells (PFCs), by regulation of the cyclin-dependent kinase inhibitor (CKI) dacapo. In addition, integrin-mutant PFCs show defective Notch signaling and endocytosis. Furthermore, integrins act in PFCs by modulating the activity of the Notch pathway, as reducing the amount of Hairless, the major antagonist of Notch, or misexpressing Notch intracellular domain rescues the cell cycle and differentiation defects. Taken together, our findings reveal a direct involvement of integrin signaling on the spatial and temporal regulation of epithelial cell differentiation during development. PMID:25179603

Gómez-Lamarca, M Jesús; Cobreros-Reguera, Laura; Ibáñez-Jiménez, Beatriz; Palacios, Isabel M; Martín-Bermudo, María D

2014-11-01

265

Epithelial-mesenchymal transition-derived cells exhibit multilineage differentiation potential similar to mesenchymal stem cells.  

PubMed

The epithelial-to-mesenchymal transition (EMT) is an embryonic process that becomes latent in most normal adult tissues. Recently, we have shown that induction of EMT endows breast epithelial cells with stem cell traits. In this report, we have further characterized the EMT-derived cells and shown that these cells are similar to mesenchymal stem cells (MSCs) with the capacity to differentiate into multiple tissue lineages. For this purpose, we induced EMT by ectopic expression of Twist, Snail, or transforming growth factor-beta in immortalized human mammary epithelial cells. We found that the EMT-derived cells and MSCs share many properties including the antigenic profile typical of MSCs, that is, CD44(+), CD24(-), and CD45(-). Conversely, MSCs express EMT-associated genes, such as Twist, Snail, and mesenchyme forkhead 1 (FOXC2). Interestingly, CD140b (platelet-derived growth factor receptor-beta), a marker for naive MSCs, is exclusively expressed in EMT-derived cells and not in their epithelial counterparts. Moreover, functional analyses revealed that EMT-derived cells but not the control cells can differentiate into alizarin red S-positive mature osteoblasts, oil red O-positive adipocytes and alcian blue-positive chondrocytes similar to MSCs. We also observed that EMT-derived cells but not the control cells invade and migrate towards MDA-MB-231 breast cancer cells similar to MSCs. In vivo wound homing assays in nude mice revealed that the EMT-derived cells home to wound sites similar to MSCs. In conclusion, we have demonstrated that the EMT-derived cells are similar to MSCs in gene expression, multilineage differentiation, and ability to migrate towards tumor cells and wound sites. PMID:20572012

Battula, Venkata Lokesh; Evans, Kurt William; Hollier, Brett George; Shi, Yuexi; Marini, Frank C; Ayyanan, Ayyakkannu; Wang, Rui-Yu; Brisken, Cathrin; Guerra, Rudy; Andreeff, Michael; Mani, Sendurai A

2010-08-01

266

Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside the stem cell niche.  

PubMed

Hereditary mixed polyposis syndrome (HMPS) is characterized by the development of mixed-morphology colorectal tumors and is caused by a 40-kb genetic duplication that results in aberrant epithelial expression of the gene encoding mesenchymal bone morphogenetic protein antagonist, GREM1. Here we use HMPS tissue and a mouse model of the disease to show that epithelial GREM1 disrupts homeostatic intestinal morphogen gradients, altering cell fate that is normally determined by position along the vertical epithelial axis. This promotes the persistence and/or reacquisition of stem cell properties in Lgr5-negative progenitor cells that have exited the stem cell niche. These cells form ectopic crypts, proliferate, accumulate somatic mutations and can initiate intestinal neoplasia, indicating that the crypt base stem cell is not the sole cell of origin of colorectal cancer. Furthermore, we show that epithelial expression of GREM1 also occurs in traditional serrated adenomas, sporadic premalignant lesions with a hitherto unknown pathogenesis, and these lesions can be considered the sporadic equivalents of HMPS polyps. PMID:25419707

Davis, Hayley; Irshad, Shazia; Bansal, Mukesh; Rafferty, Hannah; Boitsova, Tatjana; Bardella, Chiara; Jaeger, Emma; Lewis, Annabelle; Freeman-Mills, Luke; Giner, Francesc C; Rodenas-Cuadrado, Pedro; Mallappa, Sreelakshmi; Clark, Susan; Thomas, Huw; Jeffery, Rosemary; Poulsom, Richard; Rodriguez-Justo, Manuel; Novelli, Marco; Chetty, Runjan; Silver, Andrew; Sansom, Owen J; Greten, Florian R; Wang, Lai Mun; East, James E; Tomlinson, Ian; Leedham, Simon J

2015-01-01

267

[Characterization and culture of isolated primary dairy goat mammary gland epithelial cells].  

PubMed

Based on the in vitro culturing system developed for epithelial cells in mammary gland of Xinong Saanen dairy goats using tissue explant culture, high density cultivation, and continuous passaging, the cultured epithelial cells were evaluated by growth curve fitting, karyotype analysis, immunofluorescence staining (keratin, epithelial membrane antigen (EMA), vimentin, beta-casein), oil red staining and RT-PCR of beta-casein gene. The results showed that the growth of epithelial cells with the model number of chromosome of 60 demonstrated a typical 'S' shape curve, the positive gene expression of keratin, EMA, vimentin and beta-casein was detected, the cytoplasmic lipid droplets were observed following the oil red staining, the cultured cells expressed the mRNA of beta-casein. In conclusion, the current in vitro culturing system can obtain the normal mammary gland epithelial cells with the function of secretion. PMID:21090118

Wang, Zhen; Luo, Jun; Wang, Wei; Zhao, Wangsheng; Lin, Xianzi

2010-08-01

268

Effect of type III group B streptococcal capsular polysaccharide on invasion of respiratory epithelial cells.  

PubMed Central

Group B streptococcal (GBS) capsular polysaccharide is an important virulence factor, and its role in invasion of cultured respiratory epithelial cells was investigated. A type III GBS clinical isolate, COH1, and asialo and unencapsulated isogenic transposon capsule mutants of it were compared in an in vitro invasion assay. The results demonstrated that capsule attenuated the invasion process. Invasion was not affected when the A549 epithelial cells were preincubated with purified type III GBS capsular polysaccharide. Polyclonal type III GBS capsule antibody inhibited invasion by COH1 but did not affect invasion by the capsule mutants. Serotypes Ia, Ib, Ia/c, II, and III all invaded respiratory epithelial cells but demonstrated some strain variation in magnitude of invasion. These observations led us to conclude that type III capsular polysaccharide was not essential for invasion of respiratory epithelial cells by GBS and that bacterial factors other than capsule were responsible for respiratory epithelial cell invasion. Images PMID:8406885

Hulse, M L; Smith, S; Chi, E Y; Pham, A; Rubens, C E

1993-01-01

269

Nectin4 is an epithelial cell receptor for canine distemper virus and involved in neurovirulence.  

PubMed

Canine distemper virus (CDV) uses signaling lymphocyte activation molecule (SLAM), expressed on immune cells, as a receptor. However, epithelial and neural cells are also affected by CDV in vivo. Wild-type CDV strains showed efficient replication with syncytia in Vero cells expressing dog nectin4, and the infection was blocked by an anti-nectin4 antibody. In dogs with distemper, CDV antigen was preferentially detected in nectin4-positive neurons and epithelial cells, suggesting that nectin4 is an epithelial cell receptor for CDV and also involved in its neurovirulence. PMID:22761370

Pratakpiriya, Watanyoo; Seki, Fumio; Otsuki, Noriyuki; Sakai, Kouji; Fukuhara, Hideo; Katamoto, Hiromu; Hirai, Takuya; Maenaka, Katsumi; Techangamsuwan, Somporn; Lan, Nguyen Thi; Takeda, Makoto; Yamaguchi, Ryoji

2012-09-01

270

KLF5 Activates MicroRNA 200 Transcription To Maintain Epithelial Characteristics and Prevent Induced Epithelial-Mesenchymal Transition in Epithelial Cells  

PubMed Central

KLF5 is an essential basic transcriptional factor that regulates a number of physiopathological processes. In this study, we tested whether and how KLF5 modulates the epithelial-mesenchymal transition (EMT). Using transforming growth factor ? (TGF-?)- and epidermal growth factor (EGF)-treated epithelial cells as an established model of EMT, we found that KLF5 was downregulated during EMT and that knockdown of KLF5 induced EMT even in the absence of TGF-? and EGF treatment, as indicated by phenotypic and molecular EMT properties. Array-based screening suggested and biochemical analyses confirmed that the microRNA 200 (miR-200) microRNAs, a group of well-established EMT repressors, were transcriptionally activated by KLF5 via its direct binding to the GC boxes in miR-200 gene promoters. Functionally, overexpression of miR-200 prevented the EMT induced by KLF5 knockdown or by TGF-? and EGF treatment, and ectopic expression of KLF5 attenuated TGF-?- and EGF-induced EMT by rescuing the expression of miR-200. In mouse prostates, knockout of Klf5 downregulated the miR-200 family and induced molecular changes indicative of EMT. These findings indicate that KLF5 maintains epithelial characteristics and prevents EMT by transcriptionally activating the miR-200 family in epithelial cells. PMID:24126055

Zhang, Baotong; Zhang, Zhiqian; Xia, Siyuan; Xing, Changsheng; Ci, Xinpei; Li, Xin; Zhao, Ranran; Tian, Sha; Ma, Gui; Zhu, Zhengmao; Fu, Liya

2013-01-01

271

Epithelial Cells as Active Player In Fibrosis: Findings from an In Vitro Model  

PubMed Central

Kidney fibrosis, a scarring of the tubulo-interstitial space, is due to activation of interstitial myofibroblasts recruited locally or systemically with consecutive extracellular matrix deposition. Newly published clinical studies correlating acute kidney injury (AKI) to chronic kidney disease (CKD) challenge this pathological concept putting tubular epithelial cells into the spotlight. In this work we investigated the role of epithelial cells in fibrosis using a simple controlled in vitro system. An epithelial/mesenchymal 3D cell culture model composed of human proximal renal tubular cells and fibroblasts was challenged with toxic doses of Cisplatin, thus injuring epithelial cells. RT-PCR for classical fibrotic markers was performed on fibroblasts to assess their modulation toward an activated myofibroblast phenotype in presence or absence of that stimulus. Epithelial cell lesion triggered a phenotypical modulation of fibroblasts toward activated myofibroblasts as assessed by main fibrotic marker analysis. Uninjured 3D cell culture as well as fibroblasts alone treated with toxic stimulus in the absence of epithelial cells were used as control. Our results, with the caveats due to the limited, but highly controllable and reproducible in vitro approach, suggest that epithelial cells can control and regulate fibroblast phenotype. Therefore they emerge as relevant target cells for the development of new preventive anti-fibrotic therapeutic approaches. PMID:23457584

Moll, Solange; Ebeling, Martin; Weibel, Franziska; Farina, Annarita; Araujo Del Rosario, Andrea; Hoflack, Jean Christophe; Pomposiello, Silvia; Prunotto, Marco

2013-01-01

272

Hormonal regulation of Na -K -ATPase in cultured epithelial cells  

SciTech Connect

Aldosterone and insulin stimulate Na transport through mechanisms involving protein synthesis. Na -K -ATPase has been implicated in the action of both hormones. The authors examined the effect of aldosterone and insulin on Na -K -ATPase in epithelial cells in culture derived from toad urinary bladder (TB6C) and toad kidney (A6). Aldosterone, but not insulin, increases short-circuit current (I/sub sc/) in TB6C cells. Aldosterone increases Na -K -(TSP)ATPase activity after 18 h of incubation, but no effect can be seen at 3 and 6 h. Amiloride, which inhibits aldosterone-induced increases in I/sub sc/, has no effect on either basal or aldosterone stimulated enzyme activity. Both aldosterone and insulin increase I/sub sc/ in A6 cells and when added together are synergistic. Aldosterone stimulates enzyme activity in A6 cells, but insulin alone has no effect. However, aldosterone and insulin together stimulate enzyme activity more than aldosterone alone. It appears that stimulation of Na -K -ATPase activity is involved in aldosterone action in both cell lines but does not appear to be due to increased Na entry, since enhanced enzyme activity is not inhibited by amiloride. In contrast, insulin alone has no direct effect on Na -K -ATPase, although the increased enzyme activity following both agents in combination may explain their synergism on I/sub sc/.

Johnson, J.P.; Jones, D.; Wiesmann, W.P.

1986-08-01

273

Radiation-induced chromosomal instability in human mammary epithelial cells  

NASA Technical Reports Server (NTRS)

Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

Durante, M.; Grossi, G. F.; Yang, T. C.

1996-01-01

274

Intrinsic lens forming potential of mouse lens epithelial versus newt iris pigment epithelial cells in three-dimensional culture.  

PubMed

Adult newts (Notophthalmus viridescens) are capable of complete lens regeneration that is mediated through dorsal iris pigment epithelial (IPE) cells transdifferentiation. In contrast, higher vertebrates such as mice demonstrate only limited lens regeneration in the presence of an intact lens capsule with remaining lens epithelial cells. To compare the intrinsic lens regeneration potential of newt IPE versus mouse lens epithelial cells (MLE), we have established a novel culture method that uses cell aggregation before culture in growth factor-reduced Matrigel. Dorsal newt IPE aggregates demonstrated complete lens formation within 1 to 2 weeks of Matrigel culture without basic fibroblast growth factor (bFGF) supplementation, including the establishment of a peripheral cuboidal epithelial cell layer, and the appearance of central lens fibers that were positive for ?A-crystallin. In contrast, the lens-forming potential of MLE cell aggregates cultured in Matrigel was incomplete and resulted in the formation of defined-size lentoids with partial optical transparency. While the peripheral cell layers of MLE aggregates were nucleated, cells in the center of aggregates demonstrated a nonapoptotic nuclear loss over a time period of 3 weeks that was representative of lens fiber formation. Matrigel culture supplementation with bFGF resulted in higher transparent bigger-size MLE aggregates that demonstrated increased appearance of ?B1-crystallin expression. Our study demonstrates that bFGF is not required for induction of newt IPE aggregate-dependent lens formation in Matrigel, while the addition of bFGF seems to be beneficial for the formation of MLE aggregate-derived lens-like structures. In conclusion, the three-dimensional aggregate culture of IPE and MLE in Matrigel allows to a higher extent than older models the indepth study of the intrinsic lens-forming potential and the corresponding identification of lentogenic factors. PMID:23672748

Hoffmann, Andrea; Nakamura, Kenta; Tsonis, Panagiotis A

2014-02-01

275

Gallbladder Epithelial Cells that Engraft in Mouse Liver Can Differentiate into Hepatocyte-Like Cells  

PubMed Central

We tested the hypothesis that well-differentiated gallbladder epithelial cells (GBECs) are capable of engrafting and surviving in murine liver and acquire phenotypic characteristics of hepatocytes. GBECs isolated from transgenic mice that constitutively express green fluorescent protein (GFP) were either cultured before transplantation or transplanted immediately following isolation. Recipient mice with severe-combined immunodeficiency underwent retrorsine treatment and either partial hepatectomy before transplantation or carbon tetrachloride treatment following transplantation. From 1 to 4 months following transplantation, the livers of recipient mice contained discrete colonies of GFP+ cells. Most GFP+ cells surrounded vesicles, were epithelial cell-like in morphology, and expressed the biliary epithelial markers cytokeratin 19 and carbonic anhydrase IV. Subpopulations of GFP+ cells resembled hepatocytes morphologically and expressed the hepatocyte-specific markers connexin-32 and hepatic nuclear factor-4?, but not cytokeratin 19 or carbonic anhydrase IV. At 4 months, cells in GFP+ colonies were not actively proliferating as determined by proliferating cell nuclear antigen expression. Thus, GBECs are capable of engrafting and surviving in damaged mouse livers, and some can differentiate into cells with hepatocyte-like features. These findings suggest that environmental cues in the recipient liver are sufficient to allow a subpopulation of donor GBECs to differentiate into hepatocyte-like cells in the absence of exogenous transcriptional reprogramming. GBECs might be used as donor cells in a cell transplantation approach for the treatment of liver disease. PMID:19218347

Lee, Sum P.; Savard, Christopher E.; Kuver, Rahul

2009-01-01

276

Aire unleashes stalled RNA polymerase to induce ectopic gene expression in thymic epithelial cells  

E-print Network

Aire is a transcriptional regulator that induces expression of peripheral tissue antigens (PTA) in thymic medullary epithelial cells (MECs), driving immunological self-tolerance in differentiating T cells. To elucidate its ...

Giraud, Matthieu

277

CHLORAL HYDRATE DECREASES GAP JUNCTION COMMUNICATION IN RAT LIVER EPITHELIAL CELLS  

EPA Science Inventory

Chloral hydrate decreases gap junction communication in rat liver epithelial cells Gap junction communication (GJC) is involved in controlling cell proliferation and differentiation. Connexins (Cx) that make up these junctions are composed of a closely related group of m...

278

Bactericidal effects of antimicrobial agents on epithelial cell-associated Pseudomonas aeruginosa.  

PubMed

It is not clear whether antipseudomonal agents can kill cell-associated bacteria within a short time. Madin-Darby canine kidney (MDCK) and A549 cells were infected with Pseudomonas aeruginosa ATCC 27853 and PAO1 and the bactericidal activity of ceftazidime, imipenem, meropenem, gentamicin, and ciprofloxacin against the organisms was investigated. In both MDCK and A549 cells, ?-lactams could not kill epithelial cell-associated bacteria within 2 h. Gentamicin at concentrations ?32 ?g/ml killed more than 99% of epithelial cell-associated bacteria. Ciprofloxacin at 0.5 ?g/ml killed more than 99.9% of MDCK cell-associated bacteria. Ciprofloxacin has the strongest and most rapid bactericidal activity against epithelial cell-associated bacteria, which may be explained by the combination of potent in-vitro bactericidal activity and high penetration ability into epithelial cells. PMID:22116462

Hirakata, Yoichi; Yano, Hisakazu; Arai, Kazuaki; Kitagawa, Miho; Hatta, Masumitsu; Kunishima, Hiroyuki; Kaku, Mitsuo

2012-06-01

279

Human Bronchial Epithelial Cell Response to Heavy Particle Exposure  

NASA Astrophysics Data System (ADS)

A battery of non-oncogenically immortalized human bronchial epithelial cells (HBECs) are being used to examine the molecular changes that lead to lung carcinogenesis after exposure to heavy particles found in the free space environment. The goal is to ultimately identify biomarkers of radioresponse that can be used for prediction of carcinogenic risk for fatal lung cancer. Our initial studies have focused on the cell line HBEC3 KT and the isogenic variant HBEC3 KTR53, which overexpresses the RASv12 mutant and where p53 has been knocked down by shRNA, and is considered to be a more oncogenically progressed variant. We have previously described the response of HBEC3 KT at the cellular and molecular level, however, the focus here is on the rate of cellular transformation after HZE radiation exposure and the molecular changes in transformed cells. When comparing the two cell lines we find that there is a maximum rate of cellular transformation at 0.25 Gy when cells are exposed to 1 GeV Fe particles, and, for the HBEC3 KTR53 there are multiple pathways upregulated that promote anchorage independent growth including the mTOR pathway, the TGF-1 pathway, RhoA signaling and the ERK/MAPK pathway as early as 2 weeks after radiation. This does not occur in the HBEC3 KT cell line. Transformed HBEC3 KT cells do not show any morphologic or phenotypic changes when grown as cell cultures. HBEC3 KTR53 cells on the other hand show substantial changes in morphology from a cobblestone epithelial appearance to a mesenchymal appearance with a lack of contact inhibition. This epithelial to mesenchymal change in morphology is accompanied by the expression of vimentin and a reduction in the expression of E-cadherin, which are hallmarks of epithelial to mesenchymal transition. Interestingly, for HBEC3 KT transformed cells there are no mutations in the p53 gene, 2 of 15 clones were found to be heterozygous for the RASV12 mutation, and 3 of 15 clones expressed high levels of BigH3, a TGFB-responsive gene associated with loss of cell anchorage. There is also a range of aneuploidy amongst the transformed clones and ongoing chromosomal analysis by array-based comparative genomic hybridization has identified single or two copy loss of the tumor suppressor gene FHIT, in 8 of 15 transformed clones. This is accompanied by a 6-fold reduction, overall, in FHIT gene expression amongst the 15 clones under examination. Interestingly, in spite of these changes at the molecular level, when implanted subcutaneously into immune-compromised mice, the transformed clones from the HBEC3 KT cell line do not form tumors. This suggests that additional hits are required for oncogenesis, at least in a subcutaneous model, and/or, 2-D tissue culture models to not adequately reflect the underlying biology. We have therefore, begun to examine transformation in a 3-D tissue culture model, bronchocysts, where HBEC cells ultimately differentiate and stop cycling. We have shown that cells in 3-D have reduced gene expression of key DNA repair genes, and are less effective at repairing complex damage. We are now irradiating at dose rates as low as 0.2 cGy/min to test the notion of an inverse dose rate effect for carcinogenesis by HZE particles. In our early experiments we have shown that as the dose rate dropped from 20 cGy/min to 0.2 cGy/min, for the same total dose (0.25 and 0.50 Gy) an increasing percentage of bronchocysts become mis-shapen, suggesting that some cells within the cyst have de-differentiated and have reentered the cell cycle. We are now testing whether those cells are, in fact, cycling and wherther they are transformed by disaggregating the cyst and placing the cells into soft agar culture.

Story, Michael; Ding, Liang-Hao; Minna, John; Park, Seong-mi; Peyton, Michael; Larsen, Jill

2012-07-01

280

Activation-induced cytidine deaminase (AID) is necessary for the epithelial–mesenchymal transition in mammary epithelial cells  

PubMed Central

Activation-induced cytidine deaminase (AID), which functions in antibody diversification, is also expressed in a variety of germ and somatic cells. Evidence that AID promotes DNA demethylation in epigenetic reprogramming phenomena, and that it is induced by inflammatory signals, led us to investigate its role in the epithelial–mesenchymal transition (EMT), a critical process in normal morphogenesis and tumor metastasis. We find that expression of AID is induced by inflammatory signals that induce the EMT in nontransformed mammary epithelial cells and in ZR75.1 breast cancer cells. shRNA–mediated knockdown of AID blocks induction of the EMT and prevents cells from acquiring invasive properties. Knockdown of AID suppresses expression of several key EMT transcriptional regulators and is associated with increased methylation of CpG islands proximal to the promoters of these genes; furthermore, the DNA demethylating agent 5 aza-2'deoxycytidine (5-Aza-dC) antagonizes the effects of AID knockdown on the expression of EMT factors. We conclude that AID is necessary for the EMT in this breast cancer cell model and in nontransformed mammary epithelial cells. Our results suggest that AID may act near the apex of a hierarchy of regulatory steps that drive the EMT, and are consistent with this effect being mediated by cytosine demethylation. This evidence links our findings to other reports of a role for AID in epigenetic reprogramming and control of gene expression. PMID:23882083

Muñoz, Denise P.; Lee, Elbert L.; Takayama, Sachiko; Coppé, Jean-Philippe; Heo, Seok-Jin; Boffelli, Dario; Di Noia, Javier M.; Martin, David I. K.

2013-01-01

281

Renal tubular epithelial cells modulate T-cell responses via ICOS-L and B7-H1  

Microsoft Academic Search

Renal tubular epithelial cells modulate T-cell responses via ICOS-L and B7-H1.BackgroundRenal tubular epithelial cells (TECs) play an active role in renal inflammation. Previous studies have demonstrated the capacity of TECs to modulate T-cell responses both positively and negatively. Recently, new costimulatory molecules [inducible T cell costimulator-L (ICOS-L) and B7-H1] have been described, which appear to be involved in peripheral T-cell

SIMONE DE HAIJ; ANDREA M WOLTMAN; LEENDERT A TROUW; ASTRID C BAKKER; SYLVIA W KAMERLING; SANDRA W VAN DER KOOIJ; LIEPING CHEN; RICHARD A KROCZEK; MOHAMED R DAHA; CEES VAN KOOTEN

2005-01-01

282

Increased epithelial stem cell traits in advanced endometrial endometrioid carcinoma  

PubMed Central

Background It has been recognized cancer cells acquire characters reminiscent of those of normal stem cells, and the degree of stem cell gene expression correlates with patient prognosis. Lgr5(+) or CD133(+) epithelial stem cells (EpiSCs) have recently been identified and these cells are susceptible to neoplastic transformation. It is unclear, however, whether genes enriched in EpiSCs also contribute in tumor malignancy. Endometrial endometrioid carcinoma (EEC) is a dominant type of the endometrial cancers and is still among the most common female cancers. Clinically endometrial carcinoma is classified into 4 FIGO stages by the degree of tumor invasion and metastasis, and the survival rate is low in patients with higher stages of tumors. Identifying genes shared between advanced tumors and stem cells will not only unmask the mechanisms of tumor malignancy but also provide novel therapeutic targets. Results To identify EpiSC genes in late (stages III-IV) EECs, a molecular signature distinguishing early (stages I-II) and late EECs was first identified to delineate late EECs at the genomics level. ERBB2 and CCR1 were genes activated in late EECs, while APBA2 (MINT2) and CDK inhibitor p16 tumor suppressors in early EECs. MAPK pathway was significantly up in late EECs, indicating drugs targeting this canonical pathway might be useful for treating advanced EECs. A six-gene mini-signature was further identified to differentiate early from advanced EECs in both the training and testing datasets. Advanced, invasive EECs possessed a clear EpiSC gene expression pattern, explaining partly why these tumors are more malignant. Conclusions Our work provides new insights into the pathogenesis of EECs and reveals a previously unknown link between adult stem cells and the histopathological traits of EECs. Shared EpiSC genes in late EECs may contribute to the stem cell-like phenotypes shown by advanced tumors and hold the potential of being candidate therapeutic targets and novel prognosis biomarkers. PMID:20015385

2009-01-01

283

Collective cell streams in epithelial monolayers depend on cell adhesion  

NASA Astrophysics Data System (ADS)

We report spontaneously emerging, randomly oriented, collective streaming behavior within a monolayer culture of a human keratinocyte cell line, and explore the effect of modulating cell adhesions by perturbing the function of calcium-dependent cell adhesion molecules. We demonstrate that decreasing cell adhesion induces narrower and more anisotropic cell streams, reminiscent of decreasing the Taylor scale of turbulent liquids. To explain our empirical findings, we propose a cell-based model that represents the dual nature of cell-cell adhesions. Spring-like connections provide mechanical stability, while a cellular Potts model formalism represents surface-tension driven attachment. By changing the relevance and persistence of mechanical links between cells, we are able to explain the experimentally observed changes in emergent flow patterns.

Czirók, András; Varga, Katalin; Méhes, El?d; Szabó, András

2013-07-01

284

Collective cell streams in epithelial monolayers depend on cell adhesion  

PubMed Central

We report a spontaneously emerging, randomly oriented, collective streaming behavior within a monolayer culture of a human keratinocyte cell line, and explore the effect of modulating cell adhesions by perturbing the function of calcium-dependent cell adhesion molecules. We demonstrate that decreasing cell adhesion induces narrower and more anisotropic cell streams, reminiscent of decreasing the Taylor scale of turbulent liquids. To explain our empirical findings, we propose a cell-based model that represents the dual nature of cell-cell adhesions. Spring-like connections provide mechanical stability, while a cellular Potts model formalism represents surface-tension driven attachment. By changing the relevance and persistence of mechanical links between cells, we are able to explain the experimentally observed changes in emergent flow patterns. PMID:24363603

Czirók, András; Varga, Katalin; Méhes, El?d; Szabó, András

2013-01-01

285

Regulation of Epithelial-Mesenchymal Transition in Breast Cancer Cells by Cell Contact and Adhesion  

PubMed Central

Epithelial-mesenchymal transition (EMT) is a physiological program that is activated during cancer cell invasion and metastasis. We show here that EMT-related processes are linked to a broad and conserved program of transcriptional alterations that are influenced by cell contact and adhesion. Using cultured human breast cancer and mouse mammary epithelial cells, we find that reduced cell density, conditions under which cell contact is reduced, leads to reduced expression of genes associated with mammary epithelial cell differentiation and increased expression of genes associated with breast cancer. We further find that treatment of cells with matrix metalloproteinase-3 (MMP-3), an inducer of EMT, interrupts a defined subset of cell contact-regulated genes, including genes encoding a variety of RNA splicing proteins known to regulate the expression of Rac1b, an activated splice isoform of Rac1 known to be a key mediator of MMP-3-induced EMT in breast, lung, and pancreas. These results provide new insights into how MMPs act in cancer progression and how loss of cell–cell interactions is a key step in the earliest stages of cancer development.

Cichon, Magdalena A; Nelson, Celeste M; Radisky, Derek C

2015-01-01

286

Fluid transport by cultured corneal epithelial cell layers  

PubMed Central

BACKGROUND/AIMS—Fluid transport across the in vitro corneal epithelium is short lived, hence difficult to detect and characterise. Since stable rates of fluid transport across several cultured epithelial cell layers have been demonstrated, the behaviour of confluent SV40 transformed rabbit corneal epithelial cells (tRCEC) grown on permeable supports was examined.?METHODS—Fluid transport was determined with a nanoinjector volume clamp; the specific electrical resistance of the layers was 184 (SEM 9) ? cm2. tRCEC layers transported fluid (from basal to apical) against a pressure head of 3 cm H2O for 2-3 hours.?RESULTS—In the first hour, the rate of fluid transport was 5.2 (0.5) µl/h/cm?2 (n=23), which is comparable with that found in other epithelia. Fluid transport was completely inhibited in 15-30 minutes by either 100 µM ouabain (n=6), 50 µM bumetanide (n=6), or 1 µM endothelin-1 (ET-1; n=6). Preincubation with 10 µM BQ123 (an ETA receptor antagonist) obviated inhibition by ET-1 (n=6). ET-1 also caused a 22% decrease in specific resistance.?CONCLUSIONS—Fluid transport appears to depend on transepithelial Cl transport since (1) their directions are the same (stroma?tear), and (2) both bumetanide and ouabain inhibit it with similar time course. tRCEC appear useful to investigate aspects of the physiology and pharmacology of fluid transport across this layer, including receptor mediated control of this process.?? PMID:10655198

Yang, H; Reinach, P; Koniarek, J; Wang, Z; Iserovich, P; Fischbarg, J

2000-01-01

287

NK cells are necessary for recovery of corneal CD11c+ dendritic cells after epithelial abrasion injury.  

PubMed

Mechanisms controlling CD11c(+) MHCII(+) DCs during corneal epithelial wound healing were investigated in a murine model of corneal abrasion. Selective depletion of NKp46(+) CD3- NK cells that normally migrate into the cornea after epithelial abrasion resulted in >85% reduction of the epithelial CD11c(+) MHCII(+) DCs, normally present during and after epithelial wound closure. Transfer (i.v.) of spleen NK cells into NK cell-depleted mice significantly restored levels of corneal epithelial DCs (P<0.01). Immigrated NK cells were predominately positive for IFN-?, and topical corneal anti-IFN-? reduced epithelial DCs by 79% (P<0.01). IFN-?(-/-) mice had 69% fewer DCs than WT controls (P<0.01), and topical rIFN-? applied to NK cell-depleted corneas increased epithelial DCs significantly (P<0.01). The contribution of ICAM-1, an adhesion molecule involved in leukocyte migration, expressed on healing corneal epithelium, was evaluated. ICAM-1(-/-) mice exhibited >70% reduction in epithelial DC recovery in the first 48 h after epithelial abrasion (P<0.01). These interventions reveal an early turnover of DCs in the epithelium after injury, and ICAM-1, NK cells, and IFN-? are necessary for the immigration phase of this turnover. PMID:23695308

Gao, Yuan; Li, Zhijie; Hassan, Nida; Mehta, Pooja; Burns, Alan R; Tang, Xin; Smith, C Wayne

2013-08-01

288

Early Trypanosoma cruzi Infection Reprograms Human Epithelial Cells  

PubMed Central

Trypanosoma cruzi, the causative agent of Chagas disease, has the peculiarity, when compared with other intracellular parasites, that it is able to invade almost any type of cell. This property makes Chagas a complex parasitic disease in terms of prophylaxis and therapeutics. The identification of key host cellular factors that play a role in the T. cruzi invasion is important for the understanding of disease pathogenesis. In Chagas disease, most of the focus is on the response of macrophages and cardiomyocytes, since they are responsible for host defenses and cardiac lesions, respectively. In the present work, we studied the early response to infection of T. cruzi in human epithelial cells, which constitute the first barrier for establishment of infection. These studies identified up to 1700 significantly altered genes regulated by the immediate infection. The global analysis indicates that cells are literally reprogrammed by T. cruzi, which affects cellular stress responses (neutrophil chemotaxis, DNA damage response), a great number of transcription factors (including the majority of NF?B family members), and host metabolism (cholesterol, fatty acids, and phospholipids). These results raise the possibility that early host cell reprogramming is exploited by the parasite to establish the initial infection and posterior systemic dissemination. PMID:24812617

Chiribao, María Laura; Libisch, Gabriela; Parodi-Talice, Adriana; Robello, Carlos

2014-01-01

289

Epithelial cell invasion by bovine septicemic Escherichia coli.  

PubMed Central

Little is known regarding the pathogenesis of Escherichia coli-induced septicemic colibacillosis of calves. To understand the mechanism by which these strains penetrate the intestinal epithelium and gain access to the bloodstream, we examined the potential of bovine septicemic E. coli to invade cultured epithelial cells. By using a gentamicin survival assay, we demonstrated bacterial invasion of Madin-Darby canine kidney (MDCK) cells. Transcytosis of polarized MDCK cell monolayers was also observed, but only when bacteria were added to the basolateral surface. Electron microscopy confirmed the presence of intracellular organisms which appeared to be within membrane-bound vacuoles. The bovine septicemic isolate used in this study expressed the fimbrial adhesion CS31A. To examine the role of CS31A-mediated adherence in invasion and transcytosis of MDCK cell monolayers, a CS31A-deficient mutant was constructed by suicide vector-mediated insertional mutagenesis. Although nonadherent, the mutant showed a level of invasion similar to that of the wild-type parent. E. coli DH5 alpha carrying the cloned CS31A determinant was noninvasive. These findings suggest that expression of CS31A is neither required nor sufficient to mediate invasion. Images PMID:7903284

Korth, M J; Lara, J C; Moseley, S L

1994-01-01

290

IL-18 receptor expression on epithelial cells is upregulated by TNF alpha.  

PubMed

IL-18 is a multifunctional cytokine that augments both innate and acquired immunity and potentiates Th1 and Th2 reactions. We studied the expression of IL-18 receptor (IL-18R) on renal and respiratory epithelial cell lines. Both cell lines upregulated IL-18R mRNA and IL-18R membrane expression in response to TNF alpha and other proinflammatory cytokines. The function of IL-18R was confirmed by induction of IL-8 release from epithelial cells in response to recombinant IL-18. Epithelial cells may represent an important target for IL-18, mainly under inflammatory conditions associated with TNF alpha release. PMID:16502344

Krásná, Eliska; Kolesár, Libor; Slavcev, Antonij; Valhová, Sárka; Kronosová, Bohumíra; Jaresová, Marcela; Stríz, Ilja

2005-02-01

291

Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells  

SciTech Connect

Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H{sub 2}O{sub 2}) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H{sub 2}O{sub 2} treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells.

Shin, Jung Ar [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of)] [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Chung, Jin Sil [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of)] [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of); Cho, Sang-Ho [Department of Pathology, Pochon CHA University, College of Medicine, Gyeonggi-do (Korea, Republic of)] [Department of Pathology, Pochon CHA University, College of Medicine, Gyeonggi-do (Korea, Republic of); Kim, Hyung Jung, E-mail: khj57@yuhs.ac.kr [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Yoo, Young Do, E-mail: ydy1130@korea.ac.kr [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of)

2013-09-20

292

Curcumin Prevents Replication of Respiratory Syncytial Virus and the Epithelial Responses to It in Human Nasal Epithelial Cells  

PubMed Central

The human nasal epithelium is the first line of defense during respiratory virus infection. Respiratory syncytial virus (RSV) is the major cause of bronchitis, asthma and severe lower respiratory tract disease in infants and young children. We previously reported in human nasal epithelial cells (HNECs), the replication and budding of RSV and the epithelial responses, including release of proinflammatory cytokines and enhancement of the tight junctions, are in part regulated via an NF-?B pathway. In this study, we investigated the effects of the NF-?B in HNECs infected with RSV. Curcumin prevented the replication and budding of RSV and the epithelial responses to it without cytotoxicity. Furthermore, the upregulation of the epithelial barrier function caused by infection with RSV was enhanced by curcumin. Curcumin also has wide pharmacokinetic effects as an inhibitor of NF-?B, eIF-2? dephosphorylation, proteasome and COX2. RSV-infected HNECs were treated with the eIF-2? dephosphorylation blocker salubrinal and the proteasome inhibitor MG132, and inhibitors of COX1 and COX2. Treatment with salubrinal, MG132 and COX2 inhibitor, like curcumin, prevented the replication of RSV and the epithelial responses, and treatment with salubrinal and MG132 enhanced the upregulation of tight junction molecules induced by infection with RSV. These results suggest that curcumin can prevent the replication of RSV and the epithelial responses to it without cytotoxicity and may act as therapy for severe lower respiratory tract disease in infants and young children caused by RSV infection. PMID:24058438

Obata, Kazufumi; Kojima, Takashi; Masaki, Tomoyuki; Okabayashi, Tamaki; Yokota, Shinichi; Hirakawa, Satoshi; Nomura, Kazuaki; Takasawa, Akira; Murata, Masaki; Tanaka, Satoshi; Fuchimoto, Jun; Fujii, Nobuhiro; Tsutsumi, Hiroyuki; Himi, Tetsuo; Sawada, Norimasa

2013-01-01

293

The regenerative potential of parietal epithelial cells in adult mice.  

PubMed

Previously, we showed that some podocytes in juvenile mice are recruited from cells lining Bowman's capsule, suggesting that parietal epithelial cells (PECs) are a progenitor cell population for podocytes. To investigate whether PECs also replenish podocytes in adult mice, PECs were genetically labeled in an irreversible fashion in 5-week-old mice. No significant increase in labeled podocytes was observed, even after 18 months. To accelerate a potential regenerative mechanism, progressive glomerular hypertrophy was induced by progressive partial nephrectomies. Again, no significant podocyte replenishment was observed. Rather, labeled PECs exclusively invaded segments of the tuft affected by glomerulosclerosis, consistent with our previous findings. We next reassessed PEC recruitment in juvenile mice using a different reporter mouse and confirmed significant recruitment of labeled PECs onto the glomerular tuft. Moreover, some labeled cells on Bowman's capsule expressed podocyte markers, and cells on Bowman's capsule were also directly labeled in juvenile podocyte-specific Pod-rtTA transgenic mice. In 6-week-old mice, however, cells on Bowman's capsule no longer expressed podocyte-specific markers. Similarly, in human kidneys, some cells on Bowman's capsule expressed the podocyte marker synaptopodin from 2 weeks to 2 years of age but not at 7 years of age. In summary, podocyte regeneration from PECs could not be detected in aging mice or models of glomerular hypertrophy. We propose that a small fraction of committed podocytes reside on Bowman's capsule close to the vascular stalk and are recruited onto the glomerular tuft during infancy to adolescence in mice and humans. PMID:24408873

Berger, Katja; Schulte, Kevin; Boor, Peter; Kuppe, Christoph; van Kuppevelt, Toin H; Floege, Jürgen; Smeets, Bart; Moeller, Marcus J

2014-04-01

294

Manipulation of cell-cell and cell-substratum interactions in mouse mammary tumor epithelial cells using broad spectrum antisera  

PubMed Central

Two antisera were raised in goats against material shed by two different mammary epithelial cell lines into serum-free culture medium. These antisera, when added to the medium of intact, growing mouse mammary tumor cells in the absence of complement, cause distinct and dramatic alterations in cell morphology and adhesiveness. One antiserum (anti-SFM I) causes mouse mammary tumor epithelial cells to round and detach from the substratum. Treatment with the other antiserum (anti- SFM II) does not affect cell-substratum interactions, but causes the cells to convert from an epitheloid to a fibroblastic morphology. Statistical analysis of transmission electron micrographs of control and antibody-treated cells indicates that treatment with anti-SFM II is associated with a substantial reduction in the extent of intercellular junctions, particularly desmosomes. To identify the components with which the two antisera interact, nonionic detergent extracts of mouse mammary tumor cells were fractionated, and the ability of various fractions to block the morphological effects of either antiserum was determined. The whole Nonidet P40 (NP40) extract of the epithelial cells blocked the effects of both antisera. After the extract was subjected to ion exchange and lectin affinity chromatography, two separate fractions were obtained. One fraction blocks and anti-SFM I induced rounding and detachment of cells from the substratum. The second fraction blocks the effects of both antisera. The isolation of the former fraction, which has highly restricted number of components, represents a significant first step toward identifying the surface membrane molecule(s) involved in cell-substratum adhesion in epithelial cells. PMID:7251647

1981-01-01

295

Selective interactions between epithelial tumour cells and bone marrow mesenchymal stem cells  

PubMed Central

This work is a comparative study on the features displayed by an epithelial metastatic breast cancer cell line (MCF-7) when set in co-culture with human bone marrow mesenchymal stem cells (MSC) or a feeder layer of 3T3 fibroblasts. MSC, a subset of non-haematopoietic cells in the marrow stroma, display a potential for self-renewal, proliferation and differentiation into precursors for bone, cartilage, connective and muscular tissue. Adhesion of MCF-7 cells to monolayers of MSC or 3T3 was high (95 and 85% respectively). Once attached, MCF-7 grow well on both monolayers. Morphology of MCF-7 cells, as analysed by light and epifluorescence microscopy, revealed that MCF-7 cells grow in clusters on 3T3, but disperse on MSC. Concomitant with the lost of their aggregation status, MCF-7 on MSC express low levels of the intercellular adhesion molecules, E-cadherin and epithelial-specific antigen (ESA). These results suggest that MSC represent an appropriate cell target to investigate the cellular and molecular events occurring at the interface of epithelial-marrow stromal interactions. Together, the model here described should permit to further evaluate the significance and prognostic impact of the shift of micrometastatic cells from a cluster-aggregated into a single-cell status. © 2000 Cancer Research Campaign PMID:10755403

Hombauer, H; Minguell, J J

2000-01-01

296

Japanese Encephalitis Virus Disrupts Cell-Cell Junctions and Affects the Epithelial Permeability Barrier Functions  

PubMed Central

Japanese encephalitis virus (JEV) is a neurotropic flavivirus, which causes viral encephalitis leading to death in about 20–30% of severely-infected people. Although JEV is known to be a neurotropic virus its replication in non-neuronal cells in peripheral tissues is likely to play a key role in viral dissemination and pathogenesis. We have investigated the effect of JEV infection on cellular junctions in a number of non-neuronal cells. We show that JEV affects the permeability barrier functions in polarized epithelial cells at later stages of infection. The levels of some of the tight and adherens junction proteins were reduced in epithelial and endothelial cells and also in hepatocytes. Despite the induction of antiviral response, barrier disruption was not mediated by secreted factors from the infected cells. Localization of tight junction protein claudin-1 was severely perturbed in JEV-infected cells and claudin-1 partially colocalized with JEV in intracellular compartments and targeted for lysosomal degradation. Expression of JEV-capsid alone significantly affected the permeability barrier functions in these cells. Our results suggest that JEV infection modulates cellular junctions in non-neuronal cells and compromises the permeability barrier of epithelial and endothelial cells which may play a role in viral dissemination in peripheral tissues. PMID:23894488

Agrawal, Tanvi; Sharvani, Vats; Nair, Deepa; Medigeshi, Guruprasad R.

2013-01-01

297

Epigen is induced during the interleukin-13-stimulated cell proliferation in murine primary airway epithelial cells.  

PubMed

Airway remodeling in bronchial asthma is characterized by epithelial detachment and proliferation, subepithelial fibrosis, increased smooth muscle mass, and goblet cell hyperplasia. These features are mediated by T-helper type 2 (Th2) cytokines including interleukin (IL)-13. However, the direct effects of IL-13 on the functions of airway epithelial cells are not fully understood. Murine primary airway epithelial (MPAE) cells were cultured in an air-liquid interface (ALI) culture system. AG1478, a specific inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase, was used to examine whether EGFR was involved in the IL-13-stimulated proliferation of MPAE cells. The expressions of EGFR ligands were investigated by reverse transcriptase-polymerase chain reaction, Western blotting, and immunohistochemical analyses. The cell counting in cross-sections and [(3)H]thymidine incorporation assays revealed a significant increase in the number of MPAE cells cultured with IL-13 compared with a phosphate-buffered saline (PBS) control. AG1478 abolished the IL-13-stimulated proliferation of MPAE cells. The expression of epigen, one of the EGFR ligands, was enhanced in MPAE cells cultured with IL-13. The findings suggest that EGFR is involved in the IL-13-stimulated proliferation of MPAE cells, and that epigen is important for the proliferation process in airway remodeling. PMID:21867383

Taniguchi, Kazuto; Yamamoto, Shuichi; Aoki, Shigehisa; Toda, Shuji; Izuhara, Kenji; Hamasaki, Yuhei

2011-10-01

298

Rho-Associated Protein Kinase Inhibition Enhances Airway Epithelial Basal-Cell Proliferation and Lentivirus Transduction  

PubMed Central

The identification of factors that regulate airway epithelial cell proliferation and differentiation are essential for understanding the pathophysiology of airway diseases. Rho-associated protein kinases (ROCKs) are downstream effector proteins of RhoA GTPase that direct the functions of cell cytoskeletal proteins. ROCK inhibition with Y27632 has been shown to enhance the survival and cloning of human embryonic stem cells and pluripotent cells in other tissues. We hypothesized that Y27632 treatment exerts a similar effect on airway epithelial basal cells, which function as airway epithelial progenitor cells. Treatment with Y27632 enhanced basal-cell proliferation in cultured human tracheobronchial and mouse tracheal epithelial cells. ROCK inhibition accelerated the maturation of basal cells, characterized by a diminution of the cell size associated with cell compaction and the expression of E-cadherin at cell–cell junctions. Transient treatment of cultured basal cells with Y27632 did not affect subsequent ciliated or mucous cell differentiation under air–liquid interface conditions, and allowed for the initial use of lower numbers of human or mouse primary airway epithelial cells than otherwise possible. Moreover, the use of Y27632 during lentivirus-mediated transduction significantly improved posttransduction efficiency and the selection of a transduced cell population, as determined by reporter gene expression. These findings suggest an important role for ROCKs in the regulation of proliferation and maturation of epithelial basal cells, and demonstrate that the inhibition of ROCK pathways using Y27632 provides an adjunctive tool for the in vitro genetic manipulation of airway epithelial cells by lentivirus vectors. PMID:23713995

Horani, Amjad; Nath, Aditya; Wasserman, Mollie G.; Huang, Tao

2013-01-01

299

Replication of Neisseria meningitidis within Epithelial Cells Requires TonB-Dependent Acquisition of Host Cell Iron  

Microsoft Academic Search

Neisseria meningitidis (meningococcus (MC)) is able to enter and replicate within epithelial cells. Iron, an essential nutrient for nearly all organisms, is an important determinant in the ability of MC to cause disease; however, its role in MC intracellular replication has not been investigated. We analyzed the growth of MC within the A431 human epithelial cell line and the dependence

Jason A. Larson; Dustin L. Higashi; Igor Stojiljkovic; Magdalene So

2002-01-01

300

Efficient generation of functional CFTR-expressing airway epithelial cells from human pluripotent stem cells.  

PubMed

Airway epithelial cells are of great interest for research on lung development, regeneration and disease modeling. This protocol describes how to generate cystic fibrosis (CF) transmembrane conductance regulator protein (CFTR)-expressing airway epithelial cells from human pluripotent stem cells (PSCs). The stepwise approach from PSC culture to differentiation into progenitors and then mature epithelia with apical CFTR activity is outlined. Human PSCs that were inefficient at endoderm differentiation using our previous lung differentiation protocol were able to generate substantial lung progenitor cell populations. Augmented CFTR activity can be observed in all cultures as early as at 35 d of differentiation, and full maturation of the cells in air-liquid interface cultures occurs in <5 weeks. This protocol can be used for drug discovery, tissue regeneration or disease modeling. PMID:25654755

Wong, Amy P; Chin, Stephanie; Xia, Sunny; Garner, Jodi; Bear, Christine E; Rossant, Janet

2015-03-01

301

Epithelial monolayer culture system for real?time single?cell analyses  

PubMed Central

Abstract Many epithelial cells form polarized monolayers under in vivo and in vitro conditions. Typically, epithelial cells are cultured for differentiation on insert systems where cells are plated on a porous filter membrane. Although the cultured monolayers have been a standard system to study epithelial physiology, there are some limits: The epithelial cells growing inside the commercial inserts are not optimal to visualize directly through lenses on inverted microscopes. The cell images are optically distorted and background fluorescence is bright due to the filter membrane positioned between the cells and the lens. In addition, the cells are not easily accessible by electrodes due to the presence of tall side walls. Here, we present the design, fabrication, and practical applications of an improved system for analysis of polarized epithelial monolayers. This new system allows (1) direct imaging of cells without an interfering filter membrane, (2) electrophysiological measurements, and (3) detection of apical secretion with minimal dilution. Therefore, our culture method is optimized to study differentiated epithelial cells at the single?cell and subcellular levels, and can be extended to other cell types with minor modifications. PMID:24771696

Seo, Jong Bae; Moody, Mark; Koh, Duk?Su

2014-01-01

302

Interaction of the pathogenic mold Aspergillus fumigatus with lung epithelial cells  

PubMed Central

Aspergillus fumigatus is an opportunistic environmental mold that can cause severe allergic responses in atopic individuals and poses a life-threatening risk for severely immunocompromised patients. Infection is caused by inhalation of fungal spores (conidia) into the lungs. The initial point of contact between the fungus and the host is a monolayer of lung epithelial cells. Understanding how these cells react to fungal contact is crucial to elucidating the pathobiology of Aspergillus-related disease states. The experimental systems, both in vitro and in vivo, used to study these interactions, are described. Distinction is made between bronchial and alveolar epithelial cells. The experimental findings suggest that lung epithelial cells are more than just “innocent bystanders” or a purely physical barrier against infection. They can be better described as an active extension of our innate immune system, operating as a surveillance mechanism that can specifically identify fungal spores and activate an offensive response to block infection. This response includes the internalization of adherent conidia and the release of cytokines, antimicrobial peptides, and reactive oxygen species. In the case of allergy, lung epithelial cells can dampen an over-reactive immune response by releasing anti-inflammatory compounds such as kinurenine. This review summarizes our current knowledge regarding the interaction of A. fumigatus with lung epithelial cells. A better understanding of the interactions between A. fumigatus and lung epithelial cells has therapeutic implications, as stimulation or inhibition of the epithelial response may alter disease outcome. PMID:23055997

Osherov, Nir

2012-01-01

303

Pseudomonas aeruginosa invades corneal epithelial cells during experimental infection.  

PubMed Central

Pseudomonas aeruginosa is considered an extracellular pathogen. Using assays to determine intracellular survival in the presence of gentamicin, we have demonstrated that some strains of P. aeruginosa are able to invade corneal cells during experimental bacterial keratitis in mice. Although intracellular bacteria were detectable 15 min after inoculation, the number of intracellular bacteria increased in a time-dependent manner over a 24-h period. Levels of invasion were similar when bacteria were grown as a biofilm on solid medium and when they were grown in suspension. Intracellular bacteria survived in vitro for at least 24 h, although only minimal bacterial multiplication within cells was observed. P. aeruginosa PAK and Escherichia coli HB101 did not cause disease in this model and were not isolated from corneas after 24 h even when an inoculum of 10(8) CFU was applied. Transmission electron microscopy of corneal epithelium from eyes infected for 8 h revealed that intracellular bacteria were present within membrane-bound vacuoles, which suggests that bacterial entry was an endocytic process. At 24 h, the observation of many bacteria free in the cytoplasm indicated that P. aeruginosa was able to escape the endocytic vacuole. The ability of some P. aeruginosa strains to invade corneal epithelial cells may contribute to the pathogenesis or to the progression of disease, since intracellular bacteria can evade host immune effectors and antibiotics commonly used to treat infection. Images PMID:8039920

Fleiszig, S M; Zaidi, T S; Fletcher, E L; Preston, M J; Pier, G B

1994-01-01

304

Antiproteases modulate bronchial epithelial cell responses to endotoxin.  

PubMed

Escherichia coli endotoxin (0.1 to 1000 micrograms/ml) stimulated the release of neutrophil chemotactic activity (P < 0.001) and induced bronchial epithelial cell (BEC) cytotoxicity assessed by lactate dehydrogenase release (P < 0.001). Endotoxin (100 micrograms/ml) inhibited BEC accumulation (P < 0.001). In the present study, we investigated the role of proteolytic activity of BECs per se in response to endotoxin. Several structurally and functionally different antiproteases, alpha 1 protease inhibitor, soybean trypsin inhibitor, two chloromethyl ketone derivatives (N-tosyl-L-lysine chloromethyl ketone and methoxysuccinyl-Ala-Ala-Pro-Val chloromethyl ketone), and L-658,758, a neutrophil elastase inhibitor, attenuated the release of neutrophil chemotactic activity and lactate dehydrogenase (P < 0.01). alpha 1-Protease inhibitor and N-tosyl-L-lysine chloromethyl ketone attenuated the inhibition of BEC accumulation by endotoxin (P < 0.001). The proteolytic enzyme activity measured by synthetic substrates revealed that endotoxin significantly augmented the serine proteolytic activity in the cell layers. Culture supernatant fluids and cell lysates of BECs in the presence of endotoxin solubilized 14C-labeled casein. These data suggest that responses of BECs to endotoxin may involve activation of cellular proteolytic activity. PMID:7747815

Koyama, S; Rennard, S I; Claassen, L; Robbins, R A

1995-05-01

305

Culture models of human mammary epithelial cell transformation  

SciTech Connect

Human pre-malignant breast diseases, particularly ductal carcinoma in situ (DCIS)3 already display several of the aberrant phenotypes found in primary breast cancers, including chromosomal abnormalities, telomerase activity, inactivation of the p53 gene and overexpression of some oncogenes. Efforts to model early breast carcinogenesis in human cell cultures have largely involved studies in vitro transformation of normal finite lifespan human mammary epithelial cells (HMEC) to immortality and malignancy. We present a model of HMEC immortal transformation consistent with the know in vivo data. This model includes a recently described, presumably epigenetic process, termed conversion, which occurs in cells that have overcome stringent replicative senescence and are thus able to maintain proliferation with critically short telomeres. The conversion process involves reactivation of telomerase activity, and acquisition of good uniform growth in the absence and presence of TFGB. We propose th at overcoming the proliferative constraints set by senescence, and undergoing conversion, represent key rate-limiting steps in human breast carcinogenesis, and occur during early stage breast cancer progression.

Stampfer, Martha R.; Yaswen, Paul

2000-11-10

306

Molecular basis of potassium channels in pancreatic duct epithelial cells  

PubMed Central

Potassium channels regulate excitability, epithelial ion transport, proliferation, and apoptosis. In pancreatic ducts, K+ channels hyperpolarize the membrane potential and provide the driving force for anion secretion. This review focuses on the molecular candidates of functional K+ channels in pancreatic duct cells, including KCNN4 (KCa3.1), KCNMA1 (KCa1.1), KCNQ1 (Kv7.1), KCNH2 (Kv11.1), KCNH5 (Kv10.2), KCNT1 (KCa4.1), KCNT2 (KCa4.2), and KCNK5 (K2P5.1). We will give an overview of K+ channels with respect to their electrophysiological and pharmacological characteristics and regulation, which we know from other cell types, preferably in epithelia, and, where known, their identification and functions in pancreatic ducts and in adenocarcinoma cells. We conclude by pointing out some outstanding questions and future directions in pancreatic K+ channel research with respect to the physiology of secretion and pancreatic pathologies, including pancreatitis, cystic fibrosis, and cancer, in which the dysregulation or altered expression of K+ channels may be of importance. PMID:23962792

Hayashi, Mikio; Novak, Ivana

2013-01-01

307

Epithelial cell polarity affects susceptibility to Pseudomonas aeruginosa invasion and cytotoxicity.  

PubMed Central

Intact tissues are relatively resistant to Pseudomonas aeruginosa-induced disease, and injury predisposes tissue to infection. Intact epithelia contain polarized cells that have distinct apical and basolateral membranes with unique lipids and proteins. In this study, the role of cell polarity in epithelial cell susceptibility to P. aeruginosa virulence mechanisms was tested. Madin-Darby canine kidney (MDCK) cells, human corneal epithelial cells, and primary cultures of two different types of airway epithelial cells were grown on Transwell filters or in plastic tissue culture wells. P. aeruginosa invasion of cells was quantified by gentamicin survival assays with two isolates that invade epithelial cells (6294 and PAO1). Cytotoxic activity was assessed by trypan blue exclusion assays with two cytotoxic strains (6206 and PA103). Basolateral surfaces of cells were exposed by one of two methods: EGTA pretreatment of epithelial cells or growth of cells in low-calcium medium. Both methods of exposing basolateral membranes increased epithelial cell susceptibility to P. aeruginosa invasion and cytotoxicity. Migrating cells were also found to be more susceptible to P. aeruginosa invasion than confluent monolayers that had established membrane polarity. Monolayers of MDCK cells that had been selected for resistance to killing by concanavalin A were resistant to both cytotoxicity and invasion by P. aeruginosa because they were more efficiently polarized for their susceptibility to P. aeruginosa virulence factors than regular MDCK cells and not because they were defective in glycosylation. These results suggest that there are factors on the basolateral surfaces of epithelial cells that promote interaction with P. aeruginosa or that there are inhibitory factors on the apical cell surface. Thus, cell polarity of intact epithelia is likely to contribute to defense against P. aeruginosa infection. PMID:9199460

Fleiszig, S M; Evans, D J; Do, N; Vallas, V; Shin, S; Mostov, K E

1997-01-01

308

Modeling epithelial cell homeostasis: assessing recovery and control mechanisms.  

PubMed

Critical to epithelial cell viability is prompt and direct recovery, following a perturbation of cellular conditions. Although a number of transporters are known to be activated by changes in cell volume, cell pH, or cell membrane potential, their importance to cellular homeostasis has been difficult to establish. Moreover, the coordination among such regulated transporters to enhance recovery has received no attention in mathematical models of cellular function. In this paper, a previously developed model of proximal tubule (Weinstein, 1992, Am. J. Physiol. 263, F784-F798), has been approximated by its linearization about a reference condition. This yields a system of differential equations and auxiliary linear equations, which estimate cell volume and composition and transcellular fluxes in response to changes in bath conditions or membrane transport coefficients. Using the singular value decomposition, this system is reduced to a linear dynamical system, which is stable and reproduces the full model behavior in a useful neighborhood of the reference. Cost functions on trajectories formulated in the model variables (e.g., time for cell volume recovery) are translated into cost functions for the dynamical system. When the model is extended by the inclusion of linear dependence of membrane transport coefficients on model variables, the impact of each such controller on the recovery cost can be estimated with the solution of a Lyapunov matrix equation. Alternatively, solution of an algebraic Riccati equation provides the ensemble of controllers that constitute optimal state feedback for the dynamical system. When translated back into the physiological variables, the optimal controller contains some expected components, as well as unanticipated controllers of uncertain significance. This approach provides a means of relating cellular homeostasis to optimization of a dynamical system. PMID:15294423

Weinstein, Alan M

2004-09-01

309

Regulation of Polymorphonuclear Leukocyte-Intestinal Epithelial Cell Interactions: Signalling Events and Potential Drug Targets  

Microsoft Academic Search

A crucial event in the inflammatory response is recruitment of polymorphonuclear leukocytes (PMNL) to a site of infection or injury. PMNL-epithelial interactions involve many fundamental cell processes, including adhesion, migra- tion, secretion, phagocytosis and apoptosis. Thus, migration of PMNL across epithelial-lined organs is a primary event component of host defense. Moreover, PMNL transepithelial migration often results in disease symptoms. New

Paul Hofman

2007-01-01

310

Allergen Recognition by Innate Immune Cells: Critical Role of Dendritic and Epithelial Cells  

PubMed Central

Allergy is an exacerbated response of the immune system against non-self-proteins called allergens and is typically characterized by biased type-2 T helper cell and deleterious IgE mediated immune responses. The allergic cascade starts with the recognition of allergens by antigen presenting cells, mainly dendritic cells (DCs), leading to Th2 polarization, switching to IgE production by B cells, culminating in mast cell sensitization and triggering. DCs have been demonstrated to play a crucial role in orchestrating allergic diseases. Using different C-type lectin receptors DCs are able to recognize and internalize a number of allergens from diverse sources leading to sensitization. Furthermore, there is increasing evidence highlighting the role of epithelial cells in triggering and modulating immune responses to allergens. As well as providing a physical barrier, epithelial cells can interact with allergens and influence DCs behavior through the release of a number of Th2 promoting cytokines. In this review we will summarize current understanding of how allergens are recognized by DCs and epithelial cells and what are the consequences of such interaction in the context of allergic sensitization and downstream events leading to allergic inflammation. Better understanding of the molecular mechanisms of allergen recognition and associated signaling pathways could enable developing more effective therapeutic strategies that target the initial steps of allergic sensitization hence hindering development or progression of allergic diseases. PMID:24204367

Salazar, Fabián; Ghaemmaghami, Amir M.

2013-01-01

311

Methotrexate stimulates lung epithelial cells to release inflammatory cell chemotactic activities.  

PubMed

Methotrexate-induced pneumonitis has been reported as an infrequent but potentially serious complication of therapy in a variety of malignant and benign conditions. Because inflammatory cell infiltration is concerned with the development of methotrexate-induced pneumoinitis, and because airway epithelial cells participate in the orchestration of lung inflammation, the authors determined whether methotrexate might stimulate airway epithelial cells (A549 cells) to release neutrophil, monocyte, and eosinophil chemotactic activities (NCA, MCA, and ECA). A549 cells released NCA, MCA, and ECA in a dose- and time-dependent manner in response to methotrexate. Partial characterization revealed the heterogeneity of NCA, MCA, and ECA. The release of chemotactic activity was blocked by lipoxygenase inhibitors and cycloheximide. NCA was inhibited by leukotriene (LT) B(4) receptor antagonist, and anti-interleukin (IL)-8 and granulocyte colony-stimulating factor (G-CSF) antibodies. MCA was attenuated by LTB(4) receptor antagonist, and anti-monocyte chemoattractant protein (MCP)-1 and granulocyte-macrophage CSF (GM-CSF) antibodies. ECA was attenuated by LTB(4) receptor antagonist, and anti-IL-8 and GM-CSF antibodies. The release of IL-8, G-CSF, MCP-1, GM-CSF, and LTB(4) from A549 cells significantly increased in response to methotrexate. The mRNA expression of IL-8 and MCP-1 was augmented by methotrexate stimulation. These data suggest that type II epithelial cells may modulate inflammatory cell recruitment into the lung by releasing NCA, MCA, and ECA in response to methotrexate. PMID:12554356

Koyama, Sekiya; Sato, Etsuro; Takamizawa, Akemi; Tsukadaira, Akihiro; Haniuda, Masayuki; Kurai, Makoto; Numanami, Hiroki; Nagai, Sonoko; Izumi, Takateru

2003-03-01

312

Influenza enhances caspase-1 in bronchial epithelial cells from asthmatics and is associated with pathogenesis  

PubMed Central

Background The leading cause of asthma exacerbation is respiratory viral infection. Innate antiviral defense pathways are altered in the asthmatic epithelium, yet involvement of inflammasome signaling in virus-induced asthma exacerbation is not known. Objective To compare influenza-induced activation of inflammasome and innate immune signaling in human bronchial epithelial cells from asthmatics and non-asthmatics and investigate the role of caspase-1 in epithelial cell antiviral defense. Methods Differentiated primary human bronchial epithelial cells from asthmatics and non-asthmatics were infected with influenza A virus. An inflammasome-specific quantitative real-time polymerase chain reaction array was used to compare baseline and influenza-induced gene expression profiles. Cytokine secretion, innate immune gene expression, and viral replication were compared between human bronchial epithelial cells from asthmatics and non-asthmatics. Immunofluorescence microscopy was used to evaluate caspase-1 and PYCARD co-localization. Tracheal epithelial cells from caspase-1 deficient or wildtype mice were infected with influenza and assessed for antiviral gene expression and viral replication. Results Human bronchial epithelial cells from asthmatics had altered influenza-induced expression of inflammasome-related and innate immune signaling components, which correlated with enhanced production of interlukin-1?, interleukin-6, and tumor necrosis factor-?. Specifically, influenza-induced caspase-1 expression was enhanced and localization differed in human bronchial epithelial cells from asthmatics compared to non-asthmatics. Influenza-infected tracheal epithelial cells from caspase-1 deficient mice had reduced expression of antiviral genes and viral replication. Conclusion Caspase-1 plays an important role in the airway epithelial cell response to influenza infection, which is enhanced in asthmatics and may contribute to the enhanced influenza related pathogenesis observed in vivo. PMID:23021143

Bauer, Rebecca N.; Brighton, Luisa E.; Mueller, Loretta; Xiang, Zhidan; Rager, Julia E.; Fry, Rebecca C.; Peden, David B.; Japers, Ilona

2012-01-01

313

The effect of N-acetylcysteine on chloride efflux from airway epithelial cells.  

PubMed

Defective chloride transport in epithelial cells increases mucus viscosity and leads to recurrent infections with high oxidative stress in patients with CF (cystic fibrosis). NAC (N-acetylcysteine) is a well known mucolytic and antioxidant drug, and an indirect precursor of glutathione. Since GSNO (S-nitrosoglutathione) previously has been shown to be able to promote Cl- efflux from CF airway epithelial cells, it was investigated whether NAC also could stimulate Cl- efflux from CF and non-CF epithelial cells and through which mechanisms. CFBE (CF bronchial epithelial cells) and normal bronchial epithelial cells (16HBE) were treated with 1 mM, 5 mM, 10 mM or 15 mM NAC for 4 h at 37 degrees C. The effect of NAC on Cl- transport was measured by Cl- efflux measurements and by X-ray microanalysis. Cl- efflux from CFBE cells was stimulated by NAC in a dose-dependent manner, with 10 mM NAC causing a significant increase in Cl- efflux with nearly 80% in CFBE cells. The intracellular Cl- concentration in CFBE cells was significantly decreased up to 60% after 4 h treatment with 10 mM NAC. Moreover immunocytochemistry and Western blot experiments revealed expression of CFTR channel on CFBE cells after treatment with 10 mM NAC. The stimulation of Cl- efflux by NAC in CF airway epithelial cells may improve hydration of the mucus and thereby be beneficial for CF patients. PMID:19947928

Varelogianni, Georgia; Oliynyk, Igor; Roomans, Godfried M; Johannesson, Marie

2010-03-01

314

Nuclear Factor kB Subunits Induce Epithelial Cell Growth Arrest1  

Microsoft Academic Search

Nuclear factor kB (NF-kB) gene-regulatory proteins play important roles in inflammation, neoplasia, and programmed cell death. Recently, blockade of NF-kB function has been shown to result in epithelial hyper- plasia, suggesting a potential role for NF-kB in negative growth regula- tion. We expressed active NF-kB subunits in normal epithelial cells and found that NF-kB profoundly inhibits cell cycle progression. This

Cornelia S. Seitz; Helen Deng; Kaede Hinata; Qun Lin; Paul A. Khavari

2000-01-01

315

Plasma Membrane Surface Increases with Tonic Stretch of Alveolar Epithelial Cells  

Microsoft Academic Search

Cyclic stretch stimulates numerous responses in alveolar epithelial cells—some beneficial, some injurious—often through mechano- sensitive membrane-associated proteins such as stretch-activated ion channels. Tonic stretch, in contrast, stimulates only some of these responses. In this study, we hypothesized that the plasma membranes of alveolar epithelial cells expand during tonic stretch, not only through cell surface unfolding, but also through recruit- ment

Jacob L. Fisher; Irena Levitan; Susan S. Margulies

2004-01-01

316

Inhibition of RANTES expression by indirubin in influenza virus-infected human bronchial epithelial cells  

Microsoft Academic Search

The human bronchial epithelial cells are the primary sites of influenza virus infection. In this study, the effect of indirubin on the expression of the chemokine regulated on activation, normal T cell expressed and secreted (RANTES) by the influenza virus-infected H292 human epithelial cell line was examined. The expression of RANTES mRNA was analyzed using reverse transcription polymerase chain reaction

Nai-Ki Mak; Chung-Yee Leung; Xiao-Yi Wei; Xiao-Ling Shen; Ricky Ngok-Shun Wong; Kwok-Nam Leung; Ming-Chiu Fung

2004-01-01

317

Induction of MHC class II antigen in cultured bovine ciliary epithelial cells  

Microsoft Academic Search

The expression of major histocompatibility complex (MHC) class II antigens in cultured bovine ciliary epithelial cells was investigated by means of indirect immunohistochemistry and immunocytofluorometry. Ciliary epithelial cells grown in control tissue-culture medium did not express MHC class II. However, after incubation with bovine gamma-interferon (IFN-G) in concentrations as low as 0.3 units\\/ml, nearly all cells stained for MHC class

Horst Helbig; Rebecca C. Gurley; Robert J. Reichl; Rashid Mahdi; Robert B. Nussenblatt; Alan G. Palestine

1990-01-01

318

Action of cholera toxin in the intestinal epithelial cells  

SciTech Connect

The primary event in the action of cholera toxin on the isolated chick intestinal epithelial cell is its interaction with the cell membrane. This involves a large number (17 million per cell) of high affinity binding sites which belong to a single class. Binding of biologically active /sup 125/I-labeled toxin is rapid, temperature-dependent, reversible, and saturable over a wide range of concentrations and includes only a small contribution from nonspecific sites. A characteristic lag phase of 10 min occurs following the complete binding of toxin before any increase in cellular cAMP levels can be detected in the isolated cells. The response (elevation of cellular cAMP) of the enterocytes to cholera toxin is linear with time for 40-50 min and causes a six- to eight-fold increase over control levels at steady stae. cAMP and agents that increase cAMP production inhibit Cl/sup -/-independent Na/sup +/ influx into the isolated enterocytes whereas chlorporomazine (CPZ) which completely abolishes toxin-induced elevation of cAMP both reverses and prevents the cAMP-mediated inhibition of Na/sup +/ entry. Correlation between cellular cAMP levels and the magnitude of Na/sup +/ influx into the enterocytes provides evidence for a cAMP-mediated control of intestinal Na/sup +/ uptake, which may represent the mechanistic basis for the antiabsorptive effect of CT and Na/sup +/ during induction of intestinal secretion. The effect of cAMP on Na/sup +/ but no Cl/sup -/ influx in our villus cell preparation can be partially explained in terms of a cAMP-regulated Na/sup +//H/sup +/ neutral exchange system.

Hyun, C.S.

1982-01-01

319

Generation of Alveolar Epithelial Spheroids via Isolated Progenitor Cells from Human Pluripotent Stem Cells  

PubMed Central

Summary No methods for isolating induced alveolar epithelial progenitor cells (AEPCs) from human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) have been reported. Based on a study of the stepwise induction of alveolar epithelial cells (AECs), we identified carboxypeptidase M (CPM) as a surface marker of NKX2-1+ “ventralized” anterior foregut endoderm cells (VAFECs) in vitro and in fetal human and murine lungs. Using SFTPC-GFP reporter hPSCs and a 3D coculture system with fetal human lung fibroblasts, we showed that CPM+ cells isolated from VAFECs differentiate into AECs, demonstrating that CPM is a marker of AEPCs. Moreover, 3D coculture differentiation of CPM+ cells formed spheroids with lamellar-body-like structures and an increased expression of surfactant proteins compared with 2D differentiation. Methods to induce and isolate AEPCs using CPM and consequently generate alveolar epithelial spheroids would aid human pulmonary disease modeling and regenerative medicine. PMID:25241738

Gotoh, Shimpei; Ito, Isao; Nagasaki, Tadao; Yamamoto, Yuki; Konishi, Satoshi; Korogi, Yohei; Matsumoto, Hisako; Muro, Shigeo; Hirai, Toyohiro; Funato, Michinori; Mae, Shin-Ichi; Toyoda, Taro; Sato-Otsubo, Aiko; Ogawa, Seishi; Osafune, Kenji; Mishima, Michiaki

2014-01-01

320

Mucous and ciliated cell metaplasia in epithelial linings of odontogenic inflammatory and developmental cysts.  

PubMed

The incidence of mucous and ciliated cells in epithelial linings was examined among odontogenic inflammatory cysts (radicular cysts) and developmental cysts (dentigerous and primordial cysts). Mucous cells were found in 20.8% of all cysts examined, while ciliated cells were found in 11.4%; however, ciliated cells were always accompanied by mucous cells. The incidence of mucous cells in radicular cysts and dentigerous cysts and that of ciliated cells in radicular cysts was higher in the maxilla than in the mandible, while the incidence of mucous cells in primordial cysts and that of ciliated cells in dentigerous cysts and primordial cysts was higher in the mandible than in the maxilla. The present results regarding mucous cells and ciliated cells in the epithelial linings of intraosseous odontogenic cysts indicate a metaplasic origin, but the cause and biological significance of this phenomenon is not known. Mucous cells were present in the surface layer of epithelial linings, and intraepithelial gland-like structures lined with mucous cells were observed in the hyperplastic regions of epithelial linings of several radicular and dentigerous cysts. Such gland-like structures lined by mucous cells in the thickened epithelial lining, which have not been demonstrated previously, resembled the glandular structures of "glandular odontogenic cysts". PMID:16050487

Takeda, Yasunori; Oikawa, Yuko; Furuya, Izuru; Satoh, Masanobu; Yamamoto, Hirotsugu

2005-06-01

321

Candida albicans cell wall glycosylation may be indirectly required for activation of epithelial cell proinflammatory responses.  

PubMed

Oral epithelial cells discriminate between the yeast and hyphal forms of Candida albicans via the mitogen-activated protein kinase (MAPK) signaling pathway. This occurs through phosphorylation of the MAPK phosphatase MKP1 and activation of the c-Fos transcription factor by the hyphal form. Given that fungal cell wall polysaccharides are critical in host recognition and immune activation in myeloid cells, we sought to determine whether ?-glucan and N- or O-glycosylation was important in activating the MAPK/MKP1/c-Fos hypha-mediated response mechanism and proinflammatory cytokines in oral epithelial cells. Using a series of ?-glucan and N- and O-mannan mutants, we found that N-mannosylation (via ?och1 and ?pmr1 mutants) and O-mannosylation (via ?pmt1 and ?mnt1 ?mnt2 mutants), but not phosphomannan (via a ?mnn4 mutant) or ?-1,2 mannosylation (via ?bmt1 to ?bmt6 mutants), were required for MKP1/c-Fos activation, proinflammatory cytokine production, and cell damage induction. However, the N- and O-mannan mutants showed reduced adhesion or lack of initial hypha formation at 2 h, resulting in little MKP1/c-Fos activation, or restricted hypha formation/pseudohyphal formation at 24 h, resulting in minimal proinflammatory cytokine production and cell damage. Further, the ?-1,6-mannose backbone of the N-linked outer chain (corresponding to a ?mnn9 mutant) may be required for epithelial adhesion, while the ?-1,2-mannose component of phospholipomannan (corresponding to a ?mit1 mutant) may contribute to epithelial cell damage. ?-Glucan appeared to play no role in adhesion, epithelial activation, or cell damage. In summary, N- and O-mannosylation defects affect the ability of C. albicans to induce proinflammatory cytokines and damage in oral epithelial cells, but this may be due to indirect effects on fungal pathogenicity rather than mannose residues being direct activators of the MAPK/MKP1/c-Fos hypha-mediated immune response. PMID:21930756

Murciano, Celia; Moyes, David L; Runglall, Manohursingh; Islam, Ayesha; Mille, Celine; Fradin, Chantal; Poulain, Daniel; Gow, Neil A R; Naglik, Julian R

2011-12-01

322

Canine distemper virus epithelial cell infection is required for clinical disease but not for immunosuppression.  

PubMed

To characterize the importance of infection of epithelial cells for morbillivirus pathogenesis, we took advantage of the severe disease caused by canine distemper virus (CDV) in ferrets. To obtain a CDV that was unable to enter epithelial cells but retained the ability to enter immune cells, we transferred to its attachment (H) protein two mutations shown to interfere with the interaction of measles virus H with its epithelial receptor, human nectin-4. As expected for an epithelial receptor (EpR)-blind CDV, this virus infected dog and ferret epithelial cells inefficiently and did not cause cell fusion or syncytium formation. On the other hand, the EpR-blind CDV replicated in cells expressing canine signaling lymphocyte activation molecule (SLAM), the morbillivirus immune cell receptor, with similar kinetics to those of wild-type CDV. While ferrets infected with wild-type CDV died within 12 days after infection, after developing severe rash and fever, animals infected with the EpR-blind virus showed no clinical signs of disease. Nevertheless, both viruses spread rapidly and efficiently in immune cells, causing similar levels of leukopenia and inhibition of lymphocyte proliferation activity, two indicators of morbillivirus immunosuppression. Infection was documented for airway epithelia of ferrets infected with wild-type CDV but not for those of animals infected with the EpR-blind virus, and only animals infected with wild-type CDV shed virus. Thus, epithelial cell infection is necessary for clinical disease and efficient virus shedding but not for immunosuppression. PMID:22278252

Sawatsky, Bevan; Wong, Xiao-Xiang; Hinkelmann, Sarah; Cattaneo, Roberto; von Messling, Veronika

2012-04-01

323

Enteric glial cells and their role in the intestinal epithelial barrier  

PubMed Central

The intestinal epithelium constitutes a physical and functional barrier between the external environment and the host organism. It is formed by a continuous monolayer of intestinal epithelial cells maintained together by intercellular junctional complex, limiting access of pathogens, toxins and xenobiotics to host tissues. Once this barrier integrity is disrupted, inflammatory disorders and tissue injury are initiated and perpetuated. Beneath the intestinal epithelial cells lies a population of astrocyte-like cells that are known as enteric glia. The morphological characteristics and expression markers of these enteric glia cells were identical to the astrocytes of the central nervous system. In the past few years, enteric glia have been demonstrated to have a trophic and supporting relationship with intestinal epithelial cells. Enteric glia lesions and/or functional defects can be involved in the barrier dysfunction. Besides, factors secreted by enteric glia are important for the regulation of gut barrier function. Moreover, enteric glia have an important impact on epithelial cell transcriptome and induce a shift in epithelial cell phenotype towards increased cell adhesion and cell differentiation. Enteric glia can also preserve epithelial barrier against intestinal bacteria insult. In this review, we will describe the current body of evidence supporting functional roles of enteric glia on intestinal barrier. PMID:25170211

Yu, Yan-Bo; Li, Yan-Qing

2014-01-01

324

Epoxyeicosatrienoic acids attenuate cigarette smoke extract-induced interleukin-8 production in bronchial epithelial cells.  

PubMed

In response to endothelial cell activation, arachidonic acid can be converted by cytochrome P450 (CYP) epoxygenases to epoxyeicosatrienoic acids (EETs), which have potent vasodilator and anti-inflammatory properties. In this study, we investigated the effects of exogenous EETs on cigarette smoke extract (CSE)-induced inflammation in human bronchial epithelial cells (NCI-H292). We found that CSE inhibited the expression of CYP2C8 and mildly stimulated the expression of epoxide hydrolase 2 (EPHX2) but did not change the expression of CYP2J2. Treatment with 11,12-EET or 14,15-EET attenuated the CSE-induced release of interleukin (IL)-8 by inhibiting the phosphorylation of p38 mitogen-activated protein kinases (MAPKs). Our results demonstrated that CSE may reduce the anti-inflammatory ability of epithelial cells themselves by lowering the EET level. EETs from pulmonary epithelial cells may play a critical protective role on epithelial cell injury. PMID:25467970

Ma, Wen-Jiang; Sun, Yan-Hong; Jiang, Jun-Xia; Dong, Xin-Wei; Zhou, Jian-Ying; Xie, Qiang-Min

2014-11-01

325

TNF-? induced epithelial mesenchymal transition increases stemness properties in renal cell carcinoma cells  

PubMed Central

Objective: Emerging evidence suggest that the acquisition of epithelial mesenchymal transition (EMT) and induction of cancer stem cell (CSC) or cancer stem-like cell phenotype are interrelated and contribute to tumor recurrence and drug resistance. The aim of this study is to shed light on the relationship between EMT and CSCs by using renal cell carcinoma (RCC) cell line, ACHN and 786-0. Methods: RCC cells were treated with 50 ng/ml of TNF-? for 14 days. To evaluate EMT, morphological changes were assessed by light microscopy. RT-PCR and Western blot for EMT-related markers. On TNF-? treated and untreated RCC cells, we performed stemness tests and stemness markers expression. Results: TNF-? treated ACHN cell lost its epithelial morphology assuming a fibroblast-like appearance. The same results were obtained for the 786-0 cells. RT-PCR and Western blot showed up-regulation of Vimentin and down-regulation of E-cadherin in TNF-? treated ACHN and 786-0 cells. Slug and ZEB1 mRNA transcripts were up-regulated in TNF-? treated RCC cells confirming EMT. This two cell line also showed overexpression of Oct4, Nanog, and Bmi-1, all genes of stemness. In addition, in TNF-? treated RCC cell, an increased tumorsphere-forming capacity was detectable. Conclusions: The induction of EMT by TNF-? exposure, in RCC cell results in the acquisition of mesenchymal profile and in the expression of stemness markers.

Zhang, Linlin; Jiao, Min; Wu, Kaijie; Li, Lei; Zhu, Guodong; Wang, Xinyang; He, Dalin; Wu, Dapeng

2014-01-01

326

Effects of biodegradable Mg-6Zn alloy extracts on cell cycle of intestinal epithelial cells.  

PubMed

In this study, intestinal epithelial cells (IEC)-6 were cultured in different concentration extracts of Mg-6Zn alloys for different time periods. We studied the indirect effects of Mg-6Zn alloys on cell cycle of IEC-6 cells. The cell cycle of IEC-6 cells was measured using flow cytometry. And, the cell cycle of IEC-6 cells was evaluated by investigating the expression of cyclin D1, CDK4, and P21 using real-time polymerase chain reaction (PCR) and Western blotting tests. It was found that the IEC-6 cells displayed better cell functions in 20% extract of the Mg-6Zn alloy extracts, compared to the 100% or 60% extract. The in vitro results indicated that the conspicuous alkaline environment that is a result of rapid corrosion of Mg-6Zn alloys is disadvantageous to cell cycle of IEC-6 cells. PMID:22071354

Wang, Zhanhui; Yan, Jun; Zheng, Qi; Wang, Zhigang; Li, Jianan; Zhang, Xiaonong; Zhang, Shaoxiang

2013-02-01

327

Rate and pattern of epithelial cell proliferation in ulcerative colitis.  

PubMed Central

We investigated the pattern of proliferation of epithelial cells in rectal mucosa taken from normal individuals and patients with ulcerative colitis by incubating mucosa with tritiated thymidine in vitro and processing for autoradiography. We found that patients with ulcerative colitis in remission showed a proliferative pattern similar to that seen in both regenerating and "precancerous' mucosa. Patients with a short history were as likely to show this pattern as those with a long history, and this shows that the abnormal pattern does not signify impending malignant change. We also found that mucosa from patients with ulcerative colitis in remission showed an increased proportion of cells synthesising DNA, a proportion surprisingly close to that seen in an active phase; this suggests that the abnormal pattern seen in remission is the pattern of a regenerating mucosa. We feel that this high rate of mucosal turnover, sustained not just during clinically active disease but throughout remission, leads to the increased incidence of carcinoma and to the development of carcinoma in flat mucosa. PMID:7286781

Serafini, E P; Kirk, A P; Chambers, T J

1981-01-01

328

Nanoceria have no genotoxic effect on human lens epithelial cells  

NASA Astrophysics Data System (ADS)

There are no treatments for reversing or halting cataract, a disease of the structural proteins in the eye lens, that has associations with other age-related degenerative conditions such as Alzheimer's disease. The incidence of cataract and associated conditions is increasing as the average age of the population rises. Protein folding diseases are difficult to assess in vivo as proteins and their age-related changes are assessed after extraction. Nanotechnology can be used to investigate protein changes in the intact lens as well as for a potential means of drug delivery. Nanoparticles, such as cerium oxide (CeO2) which have antioxidant properties, may even be used as a means of treating cataract directly. Prior to use in treatments, nanoparticle genotoxicity must be tested to assess the extent of any DNA or chromosomal damage. Sister chromatid exchanges were measured and DNA damage investigated using the alkaline COMET assay on cultured human lens epithelial cells, exposed to 5 and 10 µg ml-1 of CeO2 nanoparticles (nanoceria). Nanoceria at these dosages did not cause any DNA damage or significant increases in the number of sister chromatid exchanges. The absence of genotoxic effects on lens cells suggests that nanoceria, in the doses and exposures tested in this study, are not deleterious to the eye lens and have the potential for use in studying structural alterations, in developing non-surgical cataract treatments and in investigating other protein folding diseases.

Pierscionek, Barbara K.; Li, Yuebin; Yasseen, Akeel A.; Colhoun, Liza M.; Schachar, Ronald A.; Chen, Wei

2010-01-01

329

Establishment and characterization of immortalized bovine endometrial epithelial cells  

PubMed Central

Bovine primary uterine endometrial epithelial cells (EECs) are not ideal for long-term studies, because primary EECs lose hormone responsiveness quickly, and/or they tend to have a short life span. The aims of this study were to establish immortalized bovine EECs and to characterize these cells following long-term cultures. Immortalized bovine EECs were established by transfecting retroviral vectors encoding human papillomavirus (HPV) E6 and E7, and human telomerase reverse transcriptase (hTERT) genes. Established bovine immortalized EECs (imEECs) showed the same morphology as primary EECs, and could be grown without any apparent changes for over 60 passages. In addition, imEECs have maintained the features as EECs, exhibiting oxytocin (OT) and interferon tau (IFNT) responsiveness. Therefore, these imEECs, even after numbers of passages, could be used as an in vitro model to investigate cellular and molecular mechanisms, by which the uterine epithelium responds to IFNT stimulation, the event required for the maternal recognition of pregnancy in the bovine species. PMID:24735401

Bai, Hanako; Sakurai, Toshihiro; Bai, Rulan; Yamakoshi, Sachiko; Aoki, Etsunari; Kuse, Mariko; Okuda, Kiyoshi; Imakawa, Kazuhiko

2014-01-01

330

The relevance of human stem cell-derived organoid models for epithelial translational medicine  

PubMed Central

Epithelial organ remodeling is a major contributing factor to worldwide death and disease, costing healthcare systems billions of dollars every year. Despite this, most fundamental epithelial organ research fails to produce new therapies and mortality rates for epithelial organ diseases remain unacceptably high. In large part, this failure in translating basic epithelial research into clinical therapy is due to a lack of relevance in existing preclinical models. To correct this, new models are required that improve preclinical target identification, pharmacological lead validation, and compound optimization. In this review, we discuss the relevance of human stem cell-derived, three-dimensional organoid models for addressing each of these challenges. We highlight the advantages of stem cell-derived organoid models over existing culture systems, discuss recent advances in epithelial tissue-specific organoids, and present a paradigm for using organoid models in human translational medicine. PMID:23203919

Hynds, Robert E.; Giangreco, Adam

2014-01-01

331

KSA antigen Ep-CAM mediates cell-cell adhesion of pancreatic epithelial cells: morphoregulatory roles in pancreatic islet development.  

PubMed

Cell adhesion molecules (CAMs) are important mediators of cell-cell interactions and regulate cell fate determination by influencing growth, differentiation, and organization within tissues. The human pancarcinoma antigen KSA is a glycoprotein of 40 kD originally identified as a marker of rapidly proliferating tumors of epithelial origin. Interestingly, most normal epithelia also express this antigen, although at lower levels, suggesting that a dynamic regulation of KSA may occur during cell growth and differentiation. Recently, evidence has been provided that this glycoprotein may function as an epithelial cell adhesion molecule (Ep-CAM). Here, we report that Ep-CAM exhibits the features of a morphoregulatory molecule involved in the development of human pancreatic islets. We demonstrate that Ep-CAM expression is targeted to the lateral domain of epithelial cells of the human fetal pancreas, and that it mediates calcium-independent cell-cell adhesion. Quantitative confocal immunofluorescence in fetal pancreata identified the highest levels of Ep-CAM expression in developing islet-like cell clusters budding from the ductal epithelium, a cell compartment thought to comprise endocrine progenitors. A surprisingly reversed pattern was observed in the human adult pancreas, displaying low levels of Ep-CAM in islet cells and high levels in ducts. We further demonstrate that culture conditions promoting epithelial cell growth induce upregulation of Ep-CAM, whereas endocrine differentiation of fetal pancreatic epithelial cells, transplanted in nude mice, is associated with a downregulation of Ep-CAM expression. In addition, a blockade of Ep-CAM function by KS1/4 mAb induced insulin and glucagon gene transcription and translation in fetal pancreatic cell clusters. These results indicate that developmentally regulated expression and function of Ep-CAM play a morphoregulatory role in pancreatic islet ontogeny. PMID:9508783

Cirulli, V; Crisa, L; Beattie, G M; Mally, M I; Lopez, A D; Fannon, A; Ptasznik, A; Inverardi, L; Ricordi, C; Deerinck, T; Ellisman, M; Reisfeld, R A; Hayek, A

1998-03-23

332

Fluoroquinolone (ciprofloxacin) secretion by human intestinal epithelial (Caco-2) cells  

PubMed Central

Human intestinal epithelial Caco-2 cells were used to investigate the mechanistic basis of transepithelial secretion of the fluoroquinolone antibiotic ciprofloxacin. Net secretion and cellular uptake of ciprofloxacin (at 0.1?mM) were not subject to competitive inhibition by sulphate, thiosulphate, oxalate, succinate and para-amino hippurate, probenecid (10?mM), taurocholate (100??M) or bromosulphophthalein (100??M). Similarly tetraethylammonium and N-?methylnicotinamide (10?mM) were without effect. Net secretion of ciprofloxacin was inhibited by the organic exchange inhibitor 4,4?-diisothiocyanostilbene-2-2?-disulphonic acid (DIDS, 400??M). Net secretion of ciprofloxacin was partially inhibited by 100??M verapamil, whilst net secretion of the P-glycoprotein substrate vinblastine was totally abolished under these conditions. Ciprofloxacin secretion was unaltered after preincubation of cells with two anti-P-glycoprotein antibodies (UIC2 and MRK16), which both significantly reduced secretory vinblastine flux (measured in the same cell batch). Ciprofloxacin (3?mM) failed to inhibit vinblastine net secretion in Caco-2 epithelia, and was not itself secreted by the P-glycoprotein expressing and vinblastine secreting dog kidney cell line, MDCK. Net secretion and cellular uptake of ciprofloxacin (at 0.1?mM) were not subject to alterations of either cytosolic or medium pH, or dependent on the presence of medium Na+, Cl? or K+ in the bathing media. The substrate specificity of the ciprofloxacin secretory transport in Caco-2 epithelia is distinct from both the renal organic anion and cation transport. A role for P-glycoprotein in ciprofloxacin secretion may also be excluded. A novel transport mechanism, sensitive to both DIDS and verapamil mediates secretion of ciprofloxacin by human intestinal Caco-2 epithelia. PMID:9283689

Cavet, M E; West, M; Simmons, N L

1997-01-01

333

DDR1 triggers epithelial cell differentiation by promoting cell adhesion through stabilization of E-cadherin.  

PubMed

Discoidin domain receptor 1 (DDR1) promotes E-cadherin-mediated adhesion. The underlying mechanism and its significance, however, have not been elucidated. Here we show that DDR1 overexpression augmented, whereas dominant negative mutant (DN-DDR1) or knockdown of DDR1 inhibited E-cadherin localized in cell-cell junctions in epithelial cells. DDR1 changed the localization and abundance of E-cadherin, as well as epithelial plasticity, as manifested by enhancement of microvilli formation and alteration of cytoskeletal organization. DDR1 also reduced protein abundance of mesenchymal markers, whereas DN-DDR1 and sh-DDR1 showed opposite effects. These results suggest that expression of DDR1 increases epithelial plasticity. Expression of DDR1 augmented E-cadherin protein levels by decreasing its degradation rate. Photobleaching and photoconversion of E-cadherin conjugated with Eos fluorescence protein demonstrated that DDR1 increased the stability of E-cadherin on the cell membrane, whereas sh-DDR1 decreased it. Pull-down assay and expression of constitutively active or dominant-negative Cdc42 showed that DDR1 stabilized E-cadherin through inactivation of Cdc42. Altogether, our results show that DDR1 promotes cell-cell adhesion and differentiation through stabilization of E-cadherin, which is mediated by Cdc42 inactivation. PMID:21289093

Yeh, Yi-Chun; Wu, Chia-Ching; Wang, Yang-Kao; Tang, Ming-Jer

2011-04-01

334

DDR1 triggers epithelial cell differentiation by promoting cell adhesion through stabilization of E-cadherin  

PubMed Central

Discoidin domain receptor 1 (DDR1) promotes E-cadherin–mediated adhesion. The underlying mechanism and its significance, however, have not been elucidated. Here we show that DDR1 overexpression augmented, whereas dominant negative mutant (DN-DDR1) or knockdown of DDR1 inhibited E-cadherin localized in cell-cell junctions in epithelial cells. DDR1 changed the localization and abundance of E-cadherin, as well as epithelial plasticity, as manifested by enhancement of microvilli formation and alteration of cytoskeletal organization. DDR1 also reduced protein abundance of mesenchymal markers, whereas DN-DDR1 and sh-DDR1 showed opposite effects. These results suggest that expression of DDR1 increases epithelial plasticity. Expression of DDR1 augmented E-cadherin protein levels by decreasing its degradation rate. Photobleaching and photoconversion of E-cadherin conjugated with Eos fluorescence protein demonstrated that DDR1 increased the stability of E-cadherin on the cell membrane, whereas sh-DDR1 decreased it. Pull-down assay and expression of constitutively active or dominant-negative Cdc42 showed that DDR1 stabilized E-cadherin through inactivation of Cdc42. Altogether, our results show that DDR1 promotes cell-cell adhesion and differentiation through stabilization of E-cadherin, which is mediated by Cdc42 inactivation. PMID:21289093

Yeh, Yi-Chun; Wu, Chia-Ching; Wang, Yang-Kao; Tang, Ming-Jer

2011-01-01

335

Mesenchymal stem cell therapy stimulates endogenous host progenitor cells to improve colonic epithelial regeneration.  

PubMed

Patients who undergo pelvic radiotherapy may develop severe and chronic complications resulting from gastrointestinal alterations. The lack of curative treatment highlights the importance of novel and effective therapeutic strategies. We thus tested the therapeutic benefit of mesenchymal stem cells (MSC) treatment and proposed molecular mechanisms of action. MSC efficacy was tested in an experimental model of radiation-induced severe colonic ulceration histologically similar to that observed in patients. In this model, MSC from bone marrow were administered intravenously, immediately or three weeks (established lesions) after irradiation. MSC therapy reduces radiation-induced colonic ulceration and increases animal survival. MSC treatment induces therapeutic efficacy whatever the time of cell infusion. Infused-MSC engraft in the colon but also increase endogenous MSC mobilization in blood that have lasting benefits over time. In vitro analysis demonstrates that the MSC effect is mediated by paracrine mechanisms through the non-canonical WNT (Wingless integration site) pathway. In irradiated rat colons, MSC treatment increases the expression of the non-canonical WNT4 ligand by epithelial cells. The epithelial regenerative process is improved after MSC injection by stimulation of colonic epithelial cells positive for SOX9 (SRY-box containing gene 9) progenitor/stem cell markers. This study demonstrates that MSC treatment induces stimulation of endogenous host progenitor cells to improve the regenerative process and constitutes an initial approach to arguing in favor of the use of MSC to limit/reduce colorectal damage induced by radiation. PMID:23922953

Sémont, Alexandra; Demarquay, Christelle; Bessout, Raphaëlle; Durand, Christelle; Benderitter, Marc; Mathieu, Noëlle

2013-01-01

336

Herpes Simplex Virus Type 1 Glycoprotein E Mediates Retrograde Spread from Epithelial Cells to Neurites?  

PubMed Central

In animal models of infection, glycoprotein E (gE) is required for efficient herpes simplex virus type 1 (HSV-1) spread from the inoculation site to the cell bodies of innervating neurons (retrograde direction). Retrograde spread in vivo is a multistep process, in that HSV-1 first spreads between epithelial cells at the inoculation site, then infects neurites, and finally travels by retrograde axonal transport to the neuron cell body. To better understand the role of gE in retrograde spread, we used a compartmentalized neuron culture system, in which neurons were infected in the presence or absence of epithelial cells. We found that gE-deleted HSV-1 (NS-gEnull) retained retrograde axonal transport activity when added directly to neurites, in contrast to the retrograde spread defect of this virus in animals. To better mimic the in vivo milieu, we overlaid neurites with epithelial cells prior to infection. In this modified system, virus infects epithelial cells and then spreads to neurites, revealing a 100-fold retrograde spread defect for NS-gEnull. We measured the retrograde spread defect of NS-gEnull from a variety of epithelial cell lines and found that the magnitude of the spread defect from epithelial cells to neurons correlated with epithelial cell plaque size defect, indicating that gE plays a similar role in both types of spread. Therefore, gE-mediated spread between epithelial cells and neurites likely explains the retrograde spread defect of gE-deleted HSV-1 in vivo. PMID:19279108

McGraw, Helen M.; Friedman, Harvey M.

2009-01-01

337

Polarity, cell division, and out-of-equilibrium dynamics control the growth of epithelial structures  

PubMed Central

The growth of a well-formed epithelial structure is governed by mechanical constraints, cellular apico-basal polarity, and spatially controlled cell division. Here we compared the predictions of a mathematical model of epithelial growth with the morphological analysis of 3D epithelial structures. In both in vitro cyst models and in developing epithelial structures in vivo, epithelial growth could take place close to or far from mechanical equilibrium, and was determined by the hierarchy of time-scales of cell division, cell–cell rearrangements, and lumen dynamics. Equilibrium properties could be inferred by the analysis of cell–cell contact topologies, and the nonequilibrium phenotype was altered by inhibiting ROCK activity. The occurrence of an aberrant multilumen phenotype was linked to fast nonequilibrium growth, even when geometric control of cell division was correctly enforced. We predicted and verified experimentally that slowing down cell division partially rescued a multilumen phenotype induced by altered polarity. These results improve our understanding of the development of epithelial organs and, ultimately, of carcinogenesis. PMID:24145168

Cerruti, Benedetta; Puliafito, Alberto; Shewan, Annette M.; Yu, Wei; Combes, Alexander N.; Little, Melissa H.; Chianale, Federica; Primo, Luca; Serini, Guido; Mostov, Keith E.; Celani, Antonio

2013-01-01

338

Epithelial progenitor cell lines as models of normal breast morphogenesis and neoplasia  

PubMed Central

The majority of human breast carcinomas exhibit luminal characteristics and as such, are most probably derived from progenitor cells within the luminal epithelial compartment. This has been subdivided recently into at least three luminal subtypes based on gene expression patterns. The value of knowing the cellular origin of individual tumours is clear and should aid in designing effective therapies. To do this, however, we need strategies aimed at defining the nature of stem and progenitor cell populations in the normal breast. In this review, we will discuss our technical approach for delineating the origin of the epithelial cell types. A major step forward was the purification of each cell type by the application of immunomagnetic cell sorting based on expression of lineage-specific surface antigens. We then developed chemically defined media that could support either the luminal epithelial or the myoepithelial cell phenotype in primary cultures. Having succeeded in continuous propagation presumably without loss of markers, we could show that a subset of the luminal epithelial cells could convert to myoepithelial cells, signifying the possible existence of a progenitor cell population. By combining the information on marker expression and in situ localization with immunomagnetic sorting and subsequent immortalization, we have identifed and isolated a cytokeratin 19-positive suprabasal putative precursor cell in the luminal epithelial compartment and established representative cell lines. This suprabasal-derived epithelial cell line is able to generate both itself and differentiated luminal epithelial and myoepithelial cells, and in addition, is able to form elaborate terminal duct lobular unit (TDLU)-like structures within a reconstituted basement membrane. As more than 90% of breast cancers arise in TDLUs and more than 90% are also cytokeratin 19-positive, we suggest that this cell population contains a breast-cancer progenitor. PMID:14521514

Petersen, Ole William; Gudjonsson, Thorarinn; Villadsen, René; Bissell, Mina J.; Rønnov-Jessen, Lone

2010-01-01

339

Characteristic and Functional Analysis of a Newly Established Porcine Small Intestinal Epithelial Cell Line  

PubMed Central

The mucosal surface of intestine is continuously exposed to both potential pathogens and beneficial commensal microorganisms. Recent findings suggest that intestinal epithelial cells, which once considered as a simple physical barrier, are a crucial cell lineage necessary for maintaining intestinal immune homeostasis. Therefore, establishing a stable and reliable intestinal epithelial cell line for future research on the mucosal immune system is necessary. In the present study, we established a porcine intestinal epithelial cell line (ZYM-SIEC02) by introducing the human telomerase reverse transcriptase (hTERT) gene into small intestinal epithelial cells derived from a neonatal, unsuckled piglet. Morphological analysis revealed a homogeneous cobblestone-like morphology of the epithelial cell sheets. Ultrastructural indicated the presence of microvilli, tight junctions, and a glandular configuration typical of the small intestine. Furthermore, ZYM-SIEC02 cells expressed epithelial cell-specific markers including cytokeratin 18, pan-cytokeratin, sucrase-isomaltase, E-cadherin and ZO-1. Immortalized ZYM-SIEC02 cells remained diploid and were not transformed. In addition, we also examined the host cell response to Salmonella and LPS and verified the enhanced expression of mRNAs encoding IL-8 and TNF-? by infection with Salmonella enterica serovars Typhimurium (S. Typhimurium). Results showed that IL-8 protein expression were upregulated following Salmonella invasion. TLR4, TLR6 and IL-6 mRNA expression were upregulated following stimulation with LPS, ZYM-SIEC02 cells were hyporeponsive to LPS with respect to IL-8 mRNA expression and secretion. TNF? mRNA levels were significantly decreased after LPS stimulation and TNF-? secretion were not detected challenged with S. Typhimurium neither nor LPS. Taken together, these findings demonstrate that ZYM-SIEC02 cells retained the morphological and functional characteristics typical of primary swine intestinal epithelial cells and thus provide a relevant in vitro model system for future studies on porcine small intestinal pathogen-host cell interactions. PMID:25337908

Wang, Jing; Hu, Guangdong; Lin, Zhi; He, Lei; Xu, Lei; Zhang, Yanming

2014-01-01

340

A comparative light-microscopic, electron-microscopic and chemical study of human vaginal and buccal epithelium.  

PubMed

The scarcity of sizeable specimens of normal oral mucosa for experimental purposes has hampered research on oral epithelium. Because large specimens of viable human vaginal mucosa are readily available and because vaginal and buccal epithelia are microscopically similar, vaginal mucosa has been used successfully to establish a human cyst model in experimental animals. The ultrastructure and distribution of keratin filaments in these epithelia are also similar, as is their permeability to water and a number of chemical substances. Therefore, if vaginal mucosa could be substituted for buccal mucosa it would expedite research on the epithelium of buccal mucosa. To strengthen further the concept that vaginal epithelium could replace buccal epithelium in certain experimental studies, the thickness of these epithelia, their patterns of surface keratinization, the presence or absence of intercellular lipid lamellae and their lipid contents were now compared. Thirty-three specimens of vaginal mucosa from postmenopausal women and 36 of buccal mucosa were investigated. To compare the thickness of the epithelial layers the number of cell layers in sections of 20 vaginal and 20 buccal mucosal specimens were counted in the three thickest and three thinnest regions of each specimen. Surface keratinization was evaluated on sections stained with the Picro-Mallory method. To demonstrate lipid lamellae two vaginal and two buccal mucosa specimens were examined electron microscopically after normal fixation and postfixation in ruthenium tetroxide. Following solvent extraction of 11 vaginal and 14 buccal epithelia, quantitative lipid analyses were performed using thin-layer chromatography. No statistically significant differences were found between the maximum and minimum number of epithelial cell layers. The patterns of surface keratinization and the distribution and appearance of the lipid lamellae in the intercellular spaces were similar. The lipid composition of the two epithelia corresponded, except for the cholesterol esters and glycosylceramides, which were higher in buccal epithelium. Ceramides for vaginal epithelium and triglycerides for buccal epithelium were not determined. Based on structural similarities, a similar lipid composition and earlier findings, it is concluded that vaginal epithelium can be used as a substitute for buccal epithelium in certain in vitro, and possibly for in vivo, studies. PMID:11684027

Thompson, I O; van der Bijl, P; van Wyk, C W; van Eyk, A D

2001-12-01

341

Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells  

SciTech Connect

Research highlights: {yields} Recent studies have shown that pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. {yields} Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and scattered, fibroblast-like appearance. {yields} PSCs decreased the expression of epithelial markers but increased that of mesenchymal markers, along with increased migration. {yields} This study suggests epithelial-mesenchymal transition as a novel mechanism by which PSCs contribute to the aggressive behavior of pancreatic cancer cells. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Because epithelial-mesenchymal transition (EMT) plays a critical role in the progression of pancreatic cancer, we hypothesized that PSCs promote EMT in pancreatic cancer cells. Panc-1 and SUIT-2 pancreatic cancer cells were indirectly co-cultured with human PSCs isolated from patients undergoing operation for pancreatic cancer. The expression of epithelial and mesenchymal markers was examined by real-time PCR and immunofluorescent staining. The migration of pancreatic cancer cells was examined by scratch and two-chamber assays. Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and a scattered, fibroblast-like appearance. The expression of E-cadherin, cytokeratin 19, and membrane-associated {beta}-catenin was decreased, whereas vimentin and Snail (Snai-1) expression was increased more in cancer cells co-cultured with PSCs than in mono-cultured cells. The migration of pancreatic cancer cells was increased by co-culture with PSCs. The PSC-induced decrease of E-cadherin expression was not altered by treatment with anti-TGF-{beta}-neutralizing antibody, excluding a central role of TGF-{beta} in this process. In conclusion, PSCs promoted EMT in pancreatic cancer cells suggesting a novel mechanism by which PSCs contribute to the aggressive behavior of pancreatic cancer cells.

Kikuta, Kazuhiro [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan)] [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Masamune, Atsushi, E-mail: amasamune@med.tohoku.ac.jp [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan)] [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Watanabe, Takashi; Ariga, Hiroyuki; Itoh, Hiromichi; Hamada, Shin; Satoh, Kennichi [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan)] [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Egawa, Shinichi; Unno, Michiaki [Department of Hepatobiliary-Pancreatic Surgery, Tohoku University Graduate School of Medicine, Sendai (Japan)] [Department of Hepatobiliary-Pancreatic Surgery, Tohoku University Graduate School of Medicine, Sendai (Japan); Shimosegawa, Tooru [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan)] [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan)

2010-12-17

342

SWI/SNF Chromatin Remodeling Enzyme ATPases Promote Cell Proliferation in Normal Mammary Epithelial Cells  

PubMed Central

The ATPase subunits of the SWI/SNF chromatin remodeling enzymes, Brahma (BRM) and Brahma related gene 1 (BRG1), can induce cell cycle arrest in BRM and BRG1 deficient tumor cell lines, and mice heterozygous for Brg1 are predisposed to breast tumors, implicating loss of BRG1 as a mechanism for unregulated cell proliferation. To test the hypothesis that loss of BRG1 can contribute to breast cancer, we utilized RNA interference to reduce the amounts of BRM or BRG1 protein in the nonmalignant mammary epithelial cell line, MCF-10A. When grown in reconstituted basement membrane (rBM), these cells develop into acini that resemble the lobes of normal breast tissue. Contrary to expectations, knockdown of either BRM or BRG1 resulted in an inhibition of cell proliferation in monolayer cultures that was enhanced in three-dimensional rBM culture. This inhibition was strikingly enhanced in three-dimensional rBM culture, although some BRM depleted cells were later able to resume proliferation. Cells did not arrest in any specific stage of the cell cycle; instead, the cell cycle length increased by approximately 50%. Thus, SWI/SNF ATPases promote cell cycle progression in nonmalignant mammary epithelial cells. PMID:20333683

Cohet, Nathalie; Stewart, Kathleen M.; Mudhasani, Rajini; Asirvatham, Ananthi J.; Mallappa, Chandrashekara; Imbalzano, Karen M.; Weaver, Valerie M.; Imbalzano, Anthony N.; Nickerson, Jeffrey A.

2012-01-01

343

Should EMT of Cancer Cells Be Understood as Epithelial-Myeloid Transition?  

PubMed Central

Cancer cells express epithelial markers, and when progressing in malignancy they may express markers of the mesenchymal cell type. Therefore an epithelial-mesenchymal transition of the cancer cells is assumed. However the mesenchymal markers can equally well be interpreted as myeloid markers since they are common in both types of cell lineages. Moreover, cancer cells express multiple specific markers of the myeloid lineages thus giving rise to the hypothesis that the transition of cancer cells may be from epithelial to myeloid cells and not to mesenchymal cells. This interpretation would better explain why cancer cells, often already in their primary cancer site, frequently show properties common to those of macrophages, platelets and pre-/osteoclasts. PMID:24494030

Schramm, Henning M.

2014-01-01

344

Adult thymus contains FoxN1(-) epithelial stem cells that are bipotent for medullary and cortical thymic epithelial lineages.  

PubMed

Within the thymus, two major thymic epithelial cell (TEC) subsets-cortical and medullary TECs-provide unique structural and functional niches for T cell development and establishment of central tolerance. Both lineages are believed to originate from a common progenitor cell, yet the cellular and molecular identity of these bipotent TEC progenitors/stem cells remains ill defined. Here we identify rare stromal cells in the murine adult thymus, which under low-attachment conditions formed spheres (termed "thymospheres"). These thymosphere-forming cells (TSFCs) displayed the stemness features of being slow cycling, self-renewing, and bipotent. TSFCs could be significantly enriched based on their distinct surface antigen phenotype. The FoxN1 transcription factor was dispensable for TSFCs maintenance in situ and for commitment to the medullary and cortical TEC lineages. In summary, this study presents the characterization of the adult thymic epithelial stem cells and demonstrates the dispensability of FoxN1 function for their stemness. PMID:25148026

Ucar, Ahmet; Ucar, Olga; Klug, Paula; Matt, Sonja; Brunk, Fabian; Hofmann, Thomas G; Kyewski, Bruno

2014-08-21

345

Adult Thymus Contains FoxN1? Epithelial Stem Cells that Are Bipotent for Medullary and Cortical Thymic Epithelial Lineages  

PubMed Central

Summary Within the thymus, two major thymic epithelial cell (TEC) subsets—cortical and medullary TECs—provide unique structural and functional niches for T cell development and establishment of central tolerance. Both lineages are believed to originate from a common progenitor cell, yet the cellular and molecular identity of these bipotent TEC progenitors/stem cells remains ill defined. Here we identify rare stromal cells in the murine adult thymus, which under low-attachment conditions formed spheres (termed “thymospheres”). These thymosphere-forming cells (TSFCs) displayed the stemness features of being slow cycling, self-renewing, and bipotent. TSFCs could be significantly enriched based on their distinct surface antigen phenotype. The FoxN1 transcription factor was dispensable for TSFCs maintenance in situ and for commitment to the medullary and cortical TEC lineages. In summary, this study presents the characterization of the adult thymic epithelial stem cells and demonstrates the dispensability of FoxN1 function for their stemness. PMID:25148026

Ucar, Ahmet; Ucar, Olga; Klug, Paula; Matt, Sonja; Brunk, Fabian; Hofmann, Thomas G.; Kyewski, Bruno

2014-01-01

346

Self-organizing actomyosin patterns on the cell cortex at epithelial cell-cell junctions.  

PubMed

The behavior of actomyosin critically determines morphologically distinct patterns of contractility found at the interface between adherent cells. One such pattern is found at the apical region (zonula adherens) of cell-cell junctions in epithelia, where clusters of the adhesion molecule E-cadherin concentrate in a static pattern. Meanwhile, E-cadherin clusters throughout lateral cell-cell contacts display dynamic movements in the plane of the junctions. To gain insight into the principles that determine the nature and organization of these dynamic structures, we analyze this behavior by modeling the 2D actomyosin cell cortex as an active fluid medium. The numerical simulations show that the stability of the actin filaments influences the spatial structure and dynamics of the system. We find that in addition to static Turing-type patterns, persistent dynamic behavior occurs in a wide range of parameters. In the 2D model, mechanical stress-dependent actin breakdown is shown to produce a continuously changing network of actin bridges, whereas with a constant breakdown rate, more isolated clusters of actomyosin tend to form. The model qualitatively reproduces the dynamic and stable patterns experimentally observed at the junctions between epithelial cells. PMID:25468344

Moore, Thomas; Wu, Selwin K; Michael, Magdalene; Yap, Alpha S; Gomez, Guillermo A; Neufeld, Zoltan

2014-12-01

347

Identification of DNA Aptamers toward Epithelial Cell Adhesion Molecule via Cell-SELEX  

PubMed Central

The epithelial cell adhesion molecule (EpCAM, also known as CD326) is a transmembrane glycoprotein that is specifically detected in most adenocarcinomas and cancer stem cells. In this study, we performed a Cell systematic evolution of ligands by exponential enrichment (SELEX) experiment to isolate the aptamers against EpCAM. After seven round of Cell SELEX, we identified several aptamer candidates. Among the selected aptamers, EP166 specifically binds to cells expressing EpCAM with an equilibrium dissociation constant (Kd) in a micromolar range. On the other hand, it did not bind to negative control cells. Moreover, EP166 binds to J1ES cells, a mouse embryonic stem cell line. Therefore, the isolated aptamers against EpCAM could be used as a stem cell marker or in other applications in both stem cell and cancer studies. PMID:25266702

Kim, Ji Won; Kim, Eun Young; Kim, Sun Young; Byun, Sang Kyung; Lee, Dasom; Oh, Kyoung-Jin; Kim, Won Kon; Han, Baek Soo; Chi, Seung-Wook; Lee, Sang Chul; Bae, Kwang-Hee

2014-01-01

348

Cytoskeletal proteins in thymic epithelial cells of the Australian lungfish Neoceratodus forsteri  

PubMed Central

The vertebrate thymus consists of distinctive subpopulations of epithelial cells that contain a diverse repertoire of cytoskeletal proteins. In this study of the thymus in the Australian lungfish, Neoceratodus forsteri, immunohistochemistry was used to distinguish the cytoskeletal proteins present in each class of thymic epithelial cell. A panel of antibodies (Abs), each specific for a different cytoskeletal polypeptide (keratins, vimentin, desmin, actin and tubulins), was used on paraffin and ultrathin resin sections of thymus. Ab AE I (reactive against human type I cytokeratins (CK) 14, 16 and 19) selectively stained the cytoplasm of capsular, trabecular and the outermost epithelial cells of Hassall's corpuscles. Anti-CK 10 Abs strongly labelled the capsular epithelial cells and less than 20% of cortical and medullary epithelial cells. The anti-50-kDa desmin Ab did not react with any thymic cells, whereas the anti-53-kDa desmin Ab labelled some capsular, cortical and medullary thymic epithelial cells. The anti-vimentin Ab stained most of the capsular and ?60% of the cortical epithelium. Thymic nurse cells and Hassall's corpuscles were found to be devoid of actin, which was strongly detected in medullary and perivascular epithelium. Both ? and ? tubulins were detected in all thymic cells. This study extends the concept of thymic epithelial heterogeneity. The complexity of thymic epithelium in N. forsteri may indicate a relationship between thymic epithelial subpopulations and the thymic microenvironment. These data identify anti-keratin Abs as a valuable tool for studying differentiation and ontogeny of the thymic epithelium in N. forsteri. PMID:19166477

Mohammad, Mohammad G; Raftos, David A; Joss, Jean

2009-01-01

349

Macrophages regulate expression of ?1,2-fucosyltransferase genes in human endometrial epithelial cells.  

PubMed

The epithelial cell surface of the endometrium undergoes substantial biochemical changes to allow embryo attachment and implantation in early pregnancy. We hypothesized that tissue macrophages influence these events to promote uterine receptivity. To investigate the role of macrophages in regulating epithelial cell expression of genes linked to glycan-mediated embryo adhesion, Ishikawa, RL95-2 and HEC1A endometrial epithelial cells were cultured alone or with unactivated or lipopolysaccharide-activated monocytic U937 cells, separated using transwell inserts. Expression of mRNAs encoding two ?1,2-fucosyltransferases (FUT1, FUT2) was increased in all three epithelial cell lines following co-culture with U937 cells, and was associated with increased fucosylation of cell surface glycoproteins detected using lectins from Ulex europaeus (UEA-1) and Dolichos biflorus (DBA). FUT1 induction by U937 cells also occurred in primary endometrial epithelial cells collected in luteal but not proliferative phase. Activation of the interleukin-6 (IL6)/leukemia inhibitory factor (LIF) cytokine signaling pathway with phosphorylation of STAT3 and elevated SOCS3 mRNA expression was evident in epithelial cells stimulated by U937 co-culture. Several recombinant macrophage-secreted cytokines exerted stimulatory or inhibitory effects on FUT1 and FUT2 mRNA expression, and the macrophage-derived cytokine LIF partially replicated the effects of U937 cells on both FUT1 and FUT2 expression and UEA-1 and DBA lectin reactivity in Ishikawa cells. These results suggest that macrophage-derived factors including LIF might facilitate development of an implantation-receptive endometrium by regulating surface glycan structures in epithelial cells. Abnormal phenotypes or altered abundance of uterine macrophages could contribute to the pathophysiology of primary unexplained infertility in women. PMID:22053055

Nakamura, Hitomi; Jasper, Melinda J; Hull, M Louise; Aplin, John D; Robertson, Sarah A

2012-04-01

350

Hysterectomy - vaginal - discharge  

MedlinePLUS

Vaginal hysterectomy - discharge; Laparoscopically assisted vaginal hysterectomy - discharge; LAVH - discharge ... you are unable to urinate. You have a discharge from your vagina that has a bad odor. ...

351

Feedback Interactions between Cell-Cell Adherens Junctions and Cytoskeletal Dynamics in Newt Lung Epithelial Cellsh V  

Microsoft Academic Search

To test how cell- cell contacts regulate microtubule (MT) and actin cytoskeletal dynamics, we examined dynamics in cells that were contacted on all sides with neighboring cells in an epithelial cell sheet that was undergoing migration as a wound-healing response. Dynamics were recorded using time-lapse digital fluorescence microscopy of microinjected, labeled tubulin and actin. In fully contacted cells, most MT

Clare M. Waterman-Storer; Wendy C. Salmon; E. D. Salmon

2000-01-01

352

Gap junction intercellular communication: a microinjection investigation of fibroblast and epithelial cell lines  

E-print Network

The objectives of this research were threefold. The first objective was to develop a protocol for unbiased microinjection of the fluorescent dye Lucifer Yellow to normal fibroblast and epithelial cell lines. I determined the optimal equipment...

Pahlka, Raymond Benton

2012-06-07

353

Simultaneous Exposure to Multiple Air Pollutants Influences Alveolar Epithelial Cell Ion Transport  

EPA Science Inventory

Purpose. Air pollution sources generally release multiple pollutants simultaneously and yet, research has historically focused on the source-to-health linkages of individual air pollutants. We recently showed that exposure of alveolar epithelial cells to a combination of particul...

354

Image-based Evaluation of the Molecular Events Underlying HC11 Mammary Epithelial Cell Differentiation  

E-print Network

methods for molecular delineation and compound screenNational Cancer Institute, NIH, Bethesda, MD Abstract We have developed an image-based technique for signal pathway analysis, target validation and compound screening related to mammary epithelial cell

355

Sequestration and Segregation of Receptor Kinases in Epithelial Cells: Implications for ErbB2 Oncogenesis  

NSDL National Science Digital Library

The development of cancer is a complex process involving multiple stages. This Review, with 2 figures and 49 references, describes how changes in cellular morphology or shape can contribute to oncogenesis. The focus is epithelial cell shape and how the various specialized membrane regions sequester receptor subunits and may segregate receptors from their ligands, thereby controlling cell behavior. When epithelial cell morphology is disrupted, aberrant signaling leading to cell proliferation and transition from an epithelial to a more motile mesenchymal phenotype may occur. We further suggest that this mechanism for oncogenesis recapitulates a normal epithelial response to sense and repair damage. We focus on the receptors of the epidermal growth factor family and transforming growth factor–β family as examples of receptor sequestration and segregation, and we describe how these two receptors may contribute to oncogenesis.

Coralie A. Carothers Carraway (University of Miami School of Medicine;Departments of Biochemistry and Molecular Biology and Cell Biology and Anatomy REV); Kermit L. Carraway (University of Miami School of Medicine;Departments of Biochemistry and Molecular Biology and Cell Biology and Anatomy REV)

2007-04-10

356

Epithelial-cell-intrinsic IKK-b expression regulates intestinal immune homeostasis  

E-print Network

LETTERS Epithelial-cell-intrinsic IKK-b expression regulates intestinal immune homeostasis Colby homeostasis by promoting mucosal immunity and lim- iting chronic inflammation. The mucosal surface of the GI

Arnold, Jonathan

357

Role of Allergen Source-Derived Proteases in Sensitization via Airway Epithelial Cells  

PubMed Central

Protease activity is a characteristic common to many allergens. Allergen source-derived proteases interact with lung epithelial cells, which are now thought to play vital roles in both innate and adaptive immune responses. Allergen source-derived proteases act on airway epithelial cells to induce disruption of the tight junctions between epithelial cells, activation of protease-activated receptor-2, and the production of thymic stromal lymphopoietin. These facilitate allergen delivery across epithelial layers and enhance allergenicity or directly activate the immune system through a nonallergic mechanism. Furthermore, they cleave regulatory cell surface molecules involved in allergic reactions. Thus, allergen source-derived proteases are a potentially critical factor in the development of allergic sensitization and appear to be strongly associated with heightened allergenicity. PMID:22523502

Matsumura, Yasuhiro

2012-01-01

358

SEASONAL EFFECTS OF ULTRAFINE, FINE, AND COARSE PARTICULATE MATTER (PM) ON HUMAN PRIMARY AIRWAY EPITHELIAL CELLS  

EPA Science Inventory

SEASONAL EFFECTS OF ULTRAFINE, FINE, AND COARSE PARTICULATE MATTER (PM) ON HUMAN PRIMARY AIRWAY EPITHELIAL CELLS Exposure of humans to PM results in increased mortality and morbidity. Recent toxicology studies have shown a number of pathophysiological pulmonary and car...

359

Phenotypic alterations in type II alveolar epithelial cells in CD4+ T cell mediated lung inflammation  

PubMed Central

Background Although the contribution of alveolar type II epithelial cell (AEC II) activities in various aspects of respiratory immune regulation has become increasingly appreciated, our understanding of the contribution of AEC II transcriptosome in immunopathologic lung injury remains poorly understood. We have previously established a mouse model for chronic T cell-mediated pulmonary inflammation in which influenza hemagglutinin (HA) is expressed as a transgene in AEC II, in mice expressing a transgenic T cell receptor specific for a class II-restricted epitope of HA. Pulmonary inflammation in these mice occurs as a result of CD4+ T cell recognition of alveolar antigen. This model was utilized to assess the profile of inflammatory mediators expressed by alveolar epithelial target cells triggered by antigen-specific recognition in CD4+ T cell-mediated lung inflammation. Methods We established a method that allows the flow cytometric negative selection and isolation of primary AEC II of high viability and purity. Genome wide transcriptional profiling was performed on mRNA isolated from AEC II isolated from healthy mice and from mice with acute and chronic CD4+ T cell-mediated pulmonary inflammation. Results T cell-mediated inflammation was associated with expression of a broad array of cytokine and chemokine genes by AEC II cell, indicating a potential contribution of epithelial-derived chemoattractants to the inflammatory cell parenchymal infiltration. Morphologically, there was an increase in the size of activated epithelial cells, and on the molecular level, comparative transcriptome analyses of AEC II from inflamed versus normal lungs provide a detailed characterization of the specific inflammatory genes expressed in AEC II induced in the context of CD4+ T cell-mediated pneumonitis. Conclusion An important contribution of AEC II gene expression to the orchestration and regulation of interstitial pneumonitis is suggested by the panoply of inflammatory genes expressed by this cell population, and this may provide insight into the molecular pathogenesis of pulmonary inflammatory states. CD4+ T cell recognition of antigen presented by AEC II cells appears to be a potent trigger for activation of the alveolar cell inflammatory transcriptosome. PMID:17610738

Gereke, Marcus; Gröbe, Lothar; Prettin, Silvia; Kasper, Michael; Deppenmeier, Stefanie; Gruber, Achim D; Enelow, Richard I; Buer, Jan; Bruder, Dunja

2007-01-01

360

Alveolar Epithelial Cell Injury Due to Zinc Oxide Nanoparticle Exposure  

PubMed Central

Rationale: Although inhalation of zinc oxide (ZnO) nanoparticles (NPs) is known to cause systemic disease (i.e., metal fume fever), little is known about mechanisms underlying injury to alveolar epithelium. Objectives: Investigate ZnO NP–induced injury to alveolar epithelium by exposing primary cultured rat alveolar epithelial cell monolayers (RAECMs) to ZnO NPs. Methods: RAECMs were exposed apically to ZnO NPs or, in some experiments, to culture fluid containing ZnCl2 or free Zn released from ZnO NPs. Transepithelial electrical resistance (RT) and equivalent short-circuit current (IEQ) were assessed as functions of concentration and time. Morphologic changes, lactate dehydrogenase release, cell membrane integrity, intracellular reactive oxygen species (ROS), and mitochondrial activity were measured. Measurements and Main Results: Apical exposure to 176 ?g/ml ZnO NPs decreased RT and IEQ of RAECMs by 100% over 24 hours, whereas exposure to 11 ?g/ml ZnO NPs had little effect. Changes in RT and IEQ caused by 176 ?g/ml ZnO NPs were irreversible. ZnO NP effects on RT yielded half-maximal concentrations of approximately 20 ?g/ml. Apical exposure for 24 hours to 176 ?g/ml ZnO NPs induced decreases in mitochondrial activity and increases in lactate dehydrogenase release, permeability to fluorescein sulfonic acid, increased intracellular ROS, and translocation of ZnO NPs from apical to basolateral fluid (most likely across injured cells and/or damaged paracellular pathways). Conclusions: ZnO NPs cause severe injury to RAECMs in a dose- and time-dependent manner, mediated, at least in part, by free Zn released from ZnO NPs, mitochondrial dysfunction, and increased intracellular ROS. PMID:20639441

Kim, Yong Ho; Fazlollahi, Farnoosh; Kennedy, Ian M.; Yacobi, Nazanin R.; Hamm-Alvarez, Sarah F.; Borok, Zea; Kim, Kwang-Jin; Crandall, Edward D.

2010-01-01

361

Nanoparticle Incorporation of Melittin Reduces Sperm and Vaginal Epithelium Cytotoxicity  

PubMed Central

Melittin is a cytolytic peptide component of bee venom which rapidly integrates into lipid bilayers and forms pores resulting in osmotic lysis. While the therapeutic utility of free melittin is limited by its cytotoxicity, incorporation of melittin into the lipid shell of a perfluorocarbon nanoparticle has been shown to reduce its toxicity in vivo. Our group has previously demonstrated that perfluorocarbon nanoparticles containing melittin at concentrations <10 µM inhibit HIV infectivity in vitro. In the current study, we assessed the impact of blank and melittin-containing perfluorocarbon nanoparticles on sperm motility and the viability of both sperm and vaginal epithelial cells. We found that free melittin was toxic to sperm and vaginal epithelium at concentrations greater than 2 µM (p<0.001). However, melittin nanoparticles were not cytotoxic to sperm (p?=?0.42) or vaginal epithelium (p?=?0.48) at an equivalent melittin concentration of 10 µM. Thus, nanoparticle formulation of melittin reduced melittin cytotoxicity fivefold and prevented melittin toxicity at concentrations previously shown to inhibit HIV infectivity. Melittin nanoparticles were toxic to vaginal epithelium at equivalent melittin concentrations ?20 µM (p<0.001) and were toxic to sperm at equivalent melittin concentrations ?40 µM (p<0.001). Sperm cytotoxicity was enhanced by targeting of the nanoparticles to the sperm surface antigen sperm adhesion molecule 1. While further testing is needed to determine the extent of cytotoxicity in a more physiologically relevant model system, these results suggest that melittin-containing nanoparticles could form the basis of a virucide that is not toxic to sperm and vaginal epithelium. This virucide would be beneficial for HIV serodiscordant couples seeking to achieve natural pregnancy. PMID:24748389

Jallouk, Andrew P.; Moley, Kelle H.; Omurtag, Kenan; Hu, Grace; Lanza, Gregory M.; Wickline, Samuel A.; Hood, Joshua L.

2014-01-01

362

Nanoparticle incorporation of melittin reduces sperm and vaginal epithelium cytotoxicity.  

PubMed

Melittin is a cytolytic peptide component of bee venom which rapidly integrates into lipid bilayers and forms pores resulting in osmotic lysis. While the therapeutic utility of free melittin is limited by its cytotoxicity, incorporation of melittin into the lipid shell of a perfluorocarbon nanoparticle has been shown to reduce its toxicity in vivo. Our group has previously demonstrated that perfluorocarbon nanoparticles containing melittin at concentrations <10 µM inhibit HIV infectivity in vitro. In the current study, we assessed the impact of blank and melittin-containing perfluorocarbon nanoparticles on sperm motility and the viability of both sperm and vaginal epithelial cells. We found that free melittin was toxic to sperm and vaginal epithelium at concentrations greater than 2 µM (p<0.001). However, melittin nanoparticles were not cytotoxic to sperm (p?=?0.42) or vaginal epithelium (p?=?0.48) at an equivalent melittin concentration of 10 µM. Thus, nanoparticle formulation of melittin reduced melittin cytotoxicity fivefold and prevented melittin toxicity at concentrations previously shown to inhibit HIV infectivity. Melittin nanoparticles were toxic to vaginal epithelium at equivalent melittin concentrations ?20 µM (p<0.001) and were toxic to sperm at equivalent melittin concentrations ?40 µM (p<0.001). Sperm cytotoxicity was enhanced by targeting of the nanoparticles to the sperm surface antigen sperm adhesion molecule 1. While further testing is needed to determine the extent of cytotoxicity in a more physiologically relevant model system, these results suggest that melittin-containing nanoparticles could form the basis of a virucide that is not toxic to sperm and vaginal epithelium. This virucide would be beneficial for HIV serodiscordant couples seeking to achieve natural pregnancy. PMID:24748389

Jallouk, Andrew P; Moley, Kelle H; Omurtag, Kenan; Hu, Grace; Lanza, Gregory M; Wickline, Samuel A; Hood, Joshua L

2014-01-01

363

Lumican induces human corneal epithelial cell migration and integrin expression via ERK 1/2 signaling  

SciTech Connect

Lumican is a major proteoglycans of the human cornea. Lumican knock-out mice have been shown to lose corneal transparency and to display delayed wound healing. The purpose of this study was to define the role of lumican in corneal epithelial cell migration. Over-expression of lumican in human corneal epithelial (HCE-T) cells increased both cell migration and proliferation, and increased levels of integrins {alpha}2 and {beta}1. ERK 1/2 was also activated in lumican over-expressed cells. When we treated HCE-T cells with the ERK-specific inhibitor U0126, cell migration and the expression of integrin {beta}1 were completely blocked. These data provide evidence that lumican stimulates cell migration in the corneal epithelium by activating ERK 1/2, and point to a novel signaling pathway implicated in corneal epithelial cell migration.

Seomun, Young [Laboratory of Ophthalmology and Visual Science, Korean Eye Tissue and Gene Bank related to Blindness, College of Medicine, Catholic University of Korea, 505 Banpo-dong, Seocho-ku, Seoul 137-040 (Korea, Republic of); Joo, Choun-Ki [Laboratory of Ophthalmology and Visual Science, Korean Eye Tissue and Gene Bank related to Blindness, College of Medicine, Catholic University of Korea, 505 Banpo-dong, Seocho-ku, Seoul 137-040 (Korea, Republic of)], E-mail: ckjoo@catholic.ac.kr

2008-07-18

364

Asbestos-induced injury to cultured human pulmonary epithelial-like cells: role of neutrophil elastase  

Microsoft Academic Search

The mechanisms responsible for asbestos- induced pulmonary epithelial cell cytotoxicity, especially oxidant-independent mechanisms, are not established. We determined whether human polymorphonuclear leu- kocyte (PMN) proteases contribute to asbestos-induced damage to human pulmonary epithelial-like cells (PECs) assessed using an in vitro chromium-Si release assay. Serine antiproteases, phenylmethylsulfonyl fluoride and a1-antitrypsin, each ameliorated PEC injury induced by amosite asbestos and PMNs. A

David W. Kamp; Moyra Dunne; Mark S. Dykewicz; Jane S. Sbalchiero; Sigmund A. Weitzman; Marc M. Dunn

1993-01-01

365

Telomerase immortalization of human mammary epithelial cells derived from a BRCA2 mutation carrier  

Microsoft Academic Search

Summary  A novel human mammary epithelial cell line, HME348, was established from benign breast tissue from a 44-year-old germ-line BRCA2 mutation carrier with a history of stage 1 breast cancer. Mutation analysis showed that the patient had a known 6872del4 BRCA2 heterozygous mutation. The human mammary epithelial cells passaged in culture exhibited cellular replicative aging as evidenced by telomere shortening, lack

Cheryl M. Lewis; Brittney-Shea Herbert; Dawei Bu; Shane Halloway; Adam Beck; Ashleen Shadeo; Cindy Zhang; Raheela Ashfaq; Jerry W. Shay; David M. Euhus

2006-01-01

366

Cyclic AMP promotes growth and secretion in human polycystic kidney epithelial cells1  

Microsoft Academic Search

Cyclic AMP promotes growth and secretion in human polycystic kidney epithelial cells.BackgroundProgressive cyst enlargement, the hallmark of autosomal-dominant polycystic kidney disease (ADPKD) and autosomal-recessive (ARPKD) polycystic kidney disease, precedes the eventual decline of function in these conditions. The expansion of individual cysts in ADPKD is determined to a major extent by mural epithelial cell proliferation and transepithelial fluid secretion. This

Franck A. Belibi; GAIL REIF; Darren P. Wallace; TAMIO YAMAGUCHI; LINCOLN OLSEN; HONG LI; George M. Helmkamp; Jared J. Grantham

2004-01-01

367

Uptake pathways of clinical isolates of Proteus mirabilis into human epithelial cell lines  

Microsoft Academic Search

Proteus mirabilisisolates obtained from urine and faeces showed high invasion levels into several human epithelial cell lines in gentamicin assays. Invasion efficiencies of isolate 102 from a monkey with diarrhoea equalled or even exceeded those ofSalmonella typhistrain Ty2 (6.3 to 13.8% of the inoculum). Vegetative, non-swarmingP. mirabilisinvaded epithelial cells efficiently and were found in endosomes and free in the cytoplasm.

Tobias A. Oelschlaeger; Ben D. Tall

1996-01-01

368

Regulation and function of adhesion molecule expression by human alveolar epithelial cells.  

PubMed Central

The role of major histocompatibility complex (MHC) and adhesion molecule expression by alveolar epithelium on the modulation of immune responses in the lung is not understood. We have developed efficient methods to isolate, purify and culture human alveolar epithelial cells (type II pneumocytes) in vitro. The expression of MHC and adhesion molecules by isolated, cultured and cytokine-stimulated alveolar epithelial cells was quantified by flow cytometry, and demonstrated the presence of T-cell ligands including class I MHC, HLA-DR and HLA-DP, intracellular adhesion molecule-1 (ICAM-1; CD54) and lymphocyte function-associated antigen (LFA-3; CD58), but not vascular cell adhesion molecule-1 (VCAM-1) (CD106) or B7 (CD80). The proinflammatory cytokine interferon-gamma (IFN-gamma) caused an up-regulation of class I MHC and ICAM-1. In contrast, tumour necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1 beta) had little effect on the expression of these surface antigens by human alveolar epithelial cells. The functional activity of alveolar epithelial adhesion molecules was then studied by determining their ability to bind allogeneic lymphocytes. An increase in lymphocyte adherence to monolayers of alveolar epithelial cells was observed following in vitro activation. However, up-regulation of alveolar epithelial counter receptors with the proinflammatory cytokine gamma-IFN did not enhance adhesion. The adhesive interaction between CD18 on lymphocytes and ICAM-1 on alveolar epithelial cells was demonstrated by the use of blocking antibodies specific for both ligands. Blockade of LFA-3 on alveolar monolayers also suppressed lymphocyte adherence. In conclusion, alveolar epithelial cells expressed MHC HLA-A, B, C, HLA-DR and -DP, and functional adhesion molecules including ICAM-1 and LFA-3. Images Figure 1 Figure 2 Figure 4 PMID:7490130

Cunningham, A C; Kirby, J A

1995-01-01

369