Sample records for valles marineris canyon

  1. New insights on the runout of large landslides in the Valles-Marineris canyons, Mars

    E-print Network

    Lajeunesse, Eric

    is usually estimated by their mobility (ratio of runout length DL to vertical drop DH). Mobility is commonlyNew insights on the runout of large landslides in the Valles-Marineris canyons, Mars E. Lajeunesse experiments demonstrates that runouts and deposits heights of Valles- Marineris (VM) landslides can be scaled

  2. Valles Marineris

    NASA Technical Reports Server (NTRS)

    1997-01-01

    MOC images P013_01 and P013_02 were acquired with the low resolution red and blue wide angle cameras at 2:14 PM PDT on October 3, 1997, about 11 minutes after Mars Global Surveyor passed close to the planet for the thirteenth time. To make a color image, a third component (green) was synthesized from the red and blue images. During the imaging period, the spacecraft was canted towards the sun-lit hemisphere by 25o, and the MOC was obliquely viewing features from about 600 to 1000 km (360 to 600 miles) away. The resolution at those distances was between 350 and 600 meters (0.25 to 0.37 miles) per picture element. The image covers an area from 73o to 86o W longitude and 5o N to 10o S).

    In both of the two images shown above, north is to the top. In the MOC image, the camera was viewing towards the west.

    The left image is excepted from a U.S. Geological Survey shaded relief map, showing the footprint of the MOC wide angle color image. The large canyon system (Valles Marineris) spans this view; chaotic terrain is seen at the far right and the eastern-most of the four large Tharsis volcanoes (Ascraeus Mons) is shown in upper left.

    The right image is the composite of MOC frames P013_01 and P013_02. Because the MOC acquires its images one line at a time, the cant angle towards the sun-lit portion of the planet, the spacecraft orbital velocity, and the spacecraft rotational velocity combine to distort the image slightly. However, the wide angle cameras provide a fairly realistic portrayal of what one would see looking out across Mars from the Orbiter. Notable in this image are the late afternoon clouds and hazes that are concentrated within the canyon system. This image is available at higher resolution as PIA00991.

    Launched on November 7, 1996, Mars Global Surveyor entered Mars orbit on Thursday, September 11, 1997. From the planned 400 km (248 mi) orbit altitude, MOC wide angle images will be 2-4 times higher resolution than these pictures.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  3. Valles Marineris

    NASA Technical Reports Server (NTRS)

    1997-01-01

    MOC images P013_01 and P013_02 were acquired with the low resolution red and blue wide angle cameras at 2:14 PM PDT on October 3, 1997, about 11 minutes after Mars Global Surveyor passed close to the planet for the thirteenth time. To make a color image, a third component (green) was synthesized from the red and blue images. During the imaging period, the spacecraft was canted towards the sun-lit hemisphere by 25o, and the MOC was obliquely viewing features from about 600 to 1000 km (360 to 600 miles) away. The resolution at those distances was between 350 and 600 meters (0.25 to 0.37 miles) per picture element. The image covers an area from 73o to 86o W longitude and 5o N to 10o S).

    In the image above, north is to the top. The camera is viewing towards the west. The image is the composite of MOC frames P013_01 and P013_02. Because the MOC acquires its images one line at a time, the cant angle towards the sun-lit portion of the planet, the spacecraft orbital velocity, and the spacecraft rotational velocity combine to distort the image slightly. However, the wide angle cameras provide a fairly realistic portrayal of what one would see looking out across Mars from the Orbiter. Notable in this image are the late afternoon clouds and hazes that are concentrated within the Valles Marineris canyon system.

    Launched on November 7, 1996, Mars Global Surveyor entered Mars orbit on Thursday, September 11, 1997. From the planned 400 km (248 mi) orbit altitude, MOC wide angle images will be 2-4 times higher resolution than these pictures.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  4. Fly in 3D over the Valles Marineris Canyon on Mars (title provided or enhanced by cataloger)

    NSDL National Science Digital Library

    Daniel Barstow

    2003-12-15

    This interactive activity lets you explore the Valles Marineris canyon (the size of the US) and a piece of it called the Candor Chasm. Using a 3D model of Mars' surface created using data from orbiting spacecraft, you can examine the surface from a distance, changing lighting to enhance features, and fly over the surface, looking for markers hidden in the terrain. Informative feedback makes the exercise educational as well as fun.

  5. Western Candor Chasma, Valles Marineris

    NASA Technical Reports Server (NTRS)

    1998-01-01

    One of the most striking discoveries of the Mars Global Surveyor mission has been the identification of thousands of meters/feet of layers within the wall rock of the enormous martian canyon system, Valles Marineris.

    Valles Marineris was first observed in 1972 by the Mariner 9 spacecraft, from which the troughs get their name: Valles--valleys, Marineris--Mariner.

    Some hints of layering in both the canyon walls and within some deposits on the canyon floors were seen in Mariner 9 and Viking orbiter images from the 1970s. The Mars Orbiter Camera on board Mars Global Surveyor has been examining these layers at much higher resolution than was available previously.

    MOC images led to the realization that there are layers in the walls that go down to great depths. An example of the wall rock layers can be seen in MOC image 8403, shown above (C).

    MOC images also reveal amazing layered outcrops on the floors of some of the Valles Marineris canyons. Particularly noteworthy is MOC image 23304 (D, above), which shows extensive, horizontally-bedded layers exposed in buttes and mesas on the floor of western Candor Chasma. These layered rocks might be the same material as is exposed in the chasm walls (as in 8403--C, above), or they might be rocks that formed by deposition (from water, wind, and/or volcanism) long after Candor Chasma opened up.

    In addition to layered materials in the walls and on the floors of the Valles Marineris system, MOC images are helping to refine our classification of geologic features that occur within the canyons. For example, MOC image 25205 (E, above), shows the southern tip of a massive, tongue-shaped massif (a mountainous ridge) that was previously identified as a layered deposit. However, this MOC image does not show layering. The material has been sculpted by wind and mass-wasting--downslope movement of debris--but no obvious layers were exposed by these processes.

    Valles Marineris a fascinating region on Mars that holds much potential to reveal information about the early history and evolution of the red planet. The MOC Science Team is continuing to examine the wealth of new data and planning for new Valles Marineris targets once the Mapping Phase of the Mars Global Surveyor mission commences in March 1999.

    This image: Layers in western Candor Chasma northern wall. MOC image 8403 subframe shown at full resolution of 4.6 meters (15 feet) per pixel. The image shows an area approximately 2.4 by 2.5 kilometers (1.5 x 1.6 miles). North is up, illumination is from the left. Image 8403 was obtained during Mars Global Surveyor's 84th orbit at 10:12 p.m. (PST) on January 6, 1998.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  6. Hematite in Valles Marineris, Mars

    NASA Astrophysics Data System (ADS)

    Knudson, A. T.; Christensen, P. R.

    2005-12-01

    We investigate the geological context and morphology of hematite deposits in Valles Marineris using data from the Thermal Emission Spectrometer (TES), the Thermal Emission Imaging Spectrometer (THEMIS), Mars Orbiter Camera (MOC), and Mars Orbital Laser Altimeter (MOLA). Observations indicate two classes of deposits within the canyon system. Deposits in Capri Chasma are in-place layered materials at the base of a stack of layers deposited on older chaotic terrain. Deposits in central Valles Marineris (Ophir and Candor Chasmata) are concentrated in topographic lows or benches that are adjacent to bright, layered, sulfate-rich materials. These deposits likely represent hematite-rich lag deposits weathered out of more friable materials, such as adjacent layered deposits. The Capri Chasma hematite deposits are similar in appearance and geological context to the deposit mapped in Aram Chaos. If the central Valles Marineris deposits are lag deposits as described above, they would be comparable to the Meridiani Planum hematite deposits. These results indicate that conditions in each of these two regions of Valles Marineris may have been similar to conditions at Aram Choas and Meridiani Planum at the time of hematite formation. Although two distinct categories of deposit can be established based on morphology and context, all hematite deposits on Mars share compositional commonality. The thermal infrared spectral shape of hematite as derived from TES data is common to all hematite sites so far investigated. Additionally, all sites share similar compositional context. Results from the Observatoire pour la Mineralogie, l'Eau, les Glaces, et l'Activite (OMEGA) team show that sulfate-rich materials occur in, or near, all of the TES identified hematite sites. The hematite is also mixed with basaltic materials as mapped by TES and THEMIS. Researchers have speculated on a variety of mechanisms for the formation of hematite on Mars, but the compositional similarities of all hematite exposures may indicate that all hematite on Mars formed through a similar mechanism. The two distinct categories of deposit may indicate that there were subtle differences in the depositional, post-depositional, or erosional history of these two categories of deposit, but the hematite formation mechanism was most likely common to both categories.

  7. Lakes in Valles Marineris

    NASA Astrophysics Data System (ADS)

    Lucchitta, Baerbel K.

    2010-10-01

    The paper reviews the evolution of hypotheses of lakes in Valles Marineris through observations made from the time of Mariner and continuing through the Viking, MGS, MO, MEx, and MRO missions. Several pertinent findings from these missions are addressed, including: The morphology and composition of the interior layered deposits (ILD); the question whether ILD are deposited inside the troughs or exhumed from the walls; the possible existence of ancestral basins; the derivation of water; arguments for an origin as aqueous, eolian, or pyroclastic sediments, or sub/ice volcanoes; origin of inclined layers, mounds and moats; and age relations of features within and peripheral to the troughs. A possible scenario begins with the collapse of ice-charged ground into ancestral basins along structural planes of weakness due to Tharsis stresses, about 3.5 Ga ago. The basins rapidly filled with water from ground ice, subterranean aquifers, or nearby valley networks. The water spilled out of the peripheral troughs and flowed across high plateaus into early outflow channels. The ancestral basins then filled with sediments derived from valley networks or from trapped eolian or pyroclastic deposits. Alternatively, volcanoes rose under the water or ice to form tuyas. The water was highly acidic, and sediments may have been deposited directly as evaporites or were later altered to evaporites by the brines or by hydrothermal activity. Percolating fluids produced iron oxide concretions. Similar alteration would have affected the putative volcanoes. Most of the ILD were emplaced early in the troughs' history. Shortly thereafter, more water erupted from the peripheral troughs and formed additional chaos and outflow channels. The ancestral basins were breached by erosion and tectonism, and the through-going Coprates/Ius graben system developed. Major lakes within the Valles Marineris dried up and vigorous wind erosion reduced the friable, evaporite-rich sediments to isolated mounds. Simultaneously, the iron oxide concretions weat hered out to form lag deposits mostly at the base of scarps. During that time, some of the ILD may have become tilted by structural deformation. Alternatively, inclined beds on the mounds may have come from draping by volcanic ash or eolian deposits, or by gravity sliding on the steep, evaporite-charged flanks of the mounds. Inclined layers could be readily explained if the ILD were tuyas. Landslides fell into the newly created voids and occasional sliding persisted throughout most of the troughs' history. Minor volcanic activity continued and may have spewed mafic ash onto the eroded ILD-mound surfaces and onto the trough floors. Eventually, only wind persisted, producing yardangs on the ILD and reworking ash, trapped eolian sediments, and debris eroded from the ILD.

  8. Oblique View of Valles Marineris

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An oblique, color image of central Valles Marineris, Mars showing relief of Ophir and Candor Chasmata; view toward north. The photograph is a composite of Viking high-resolution images in black and white and low-resolution images in color. Ophir Chasma on the north is approximately 300 km across and as deep as 10 km. The connected chasma or valleys of Valles Marineris may have formed from a combination of erosional collapse and structural activity. Tongues of interior layered deposits on the floor of the chasmata can be observed as well as young landslide material along the base of Ophir Chasma's north wall.

  9. Candor Chasm in Valles Marineris

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Part of Candor Chasm in Valles Marineris, Mars, from about latitude -9 degrees to -3 degrees and longitude 69 degrees to 75 degrees. Layered terrain is visible in the scene, perhaps due to a huge ancient lake. The geomorphology is complex, shaped by tectonics, mass wasting, and wind, and perhaps by water and volcanism.

  10. Investigations of Hematite Deposits in Valles Marineris

    NASA Astrophysics Data System (ADS)

    Knudson, A. T.; Christensen, P. R.

    2003-12-01

    Gray, crystalline hematite deposits have been identified using Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) data at three areas of Mars: Meridiani Planum, Aram Chaos, and the Valles Marineris system. Detailed studies of the deposits in Meridiani Planum and Aram Chaos reveal that the hematite occurs in coherent, in-place stratigraphic units. In contrast, the Valles Marineris occurrences are small (5 - 35 km) and scattered throughout the canyon system. The largest hematite deposits are in Ophir and Candor Chasma, where hematite appears to be associated with dark materials near or within the interior layered deposits of the canyon and may represent erosional remnants or in-place units within the layered deposits. A variety of different formational processes have been proposed for these layered deposits, many of which involve liquid water. However, little work has been done to date on the context of the hematite in this locality and the relationship with the layered deposits. This study investigates the details of the hematite occurrences in Valles Marineris, re-mapping hematite occurrence at TES pixel resolution and incorporating multiple datasets to further investigate and interpret the formation, compositional relationships, and history of these deposits. Data from the Mars Odyssey Thermal Emission Imaging System (THEMIS), the MGS Mars Orbiter Camera (MOC), and the MGS Mars Orbiter Laser Altimeter (MOLA) are used along with TES data to map the compositional, thermophysical, and geomorphic context of the hematite deposits throughout the chasma system. Numerous small, isolated occurrences are investigated along with the larger deposits in Ophir and Candor Chasma in order to determine whether the deposits share common origins or represent distinct geologic events.

  11. SHARAD detections of subsurface reflectors near RSL sites on the Tharsis Plateau immediately adjacent to the canyon rim of Valles Marineris

    NASA Astrophysics Data System (ADS)

    Smith, I. B.; Stillman, D. E.; Phillips, R. J.; Forget, F.; Mellon, M. T.; Spiga, A.; Putzig, N. E.

    2014-12-01

    Recurring slope lineae (RSL) are very exciting features that exhibit evidence for water flow on the Martian surface. The number of RSL sites has risen to ~100 since their first detection in 2011. Those sites extend over a large portion of the Valles Marineris margin and nearby smaller canyons, but no source for this flowing water has been identified. Two possible sources exist for water near the Martian equator: the atmospheric and the subsurface. At low latitudes, atmospheric water vapor abundance is extremely low, and condensation of water from the air is unlikely. Furthermore, subsurface water ice is unlikely to remain stable in the long term, but scenarios for retaining ice on shorter timescales have not been fully tested. The Shallow Radar (SHARAD) instrument on Mars Reconnaissance Orbiter has successfully probed the subsurface of Mars to locate dielectric interfaces that delineate volcanic boundaries, layers within the polar ice caps, and ice-rock boundaries. Using the same technique of searching for dielectric contrasts at lower latitudes, we have found several detections at the highest elevations of the Tharsis Plateau, near the cliffs that form Valles Marineris at depths ranging from 30 to 80 m, depending on the dielectric properties of the overlying material. These reflectors are located near the canyon rim and slope towards the canyon, potentially crossing geologic boundaries mapped from surface data. Because of the proximity of the reflectors to RSL and the geometry of the reflections, we hypothesize that SHARAD may be detecting an ice or water reservoir that can act as a source for flowing water on the surface. We test this hypothesis by employing a one-dimensional thermal model to estimate the stability of ground ice over a wide range of durations at this latitude, including recent epochs of high obliquity, when ice would be more stable at low latitudes and for longer periods.

  12. Gray Hematite Distribution within Valles Marineris

    NASA Astrophysics Data System (ADS)

    Weitz, C.; Lane, M.; Anderson, F. S.

    2003-12-01

    Valles Marineris is one of three regions on Mars where TES has identified gray crystalline hematite. In the other two locations, Meridiani Planum and Aram Chaos, a strong correlation between the hematite distribution and geologic units has been found. We have used MOC, THEMIS, and MOLA data to determine if a similar correlation exists for hematite within Valles Marineris. After studying the larger patches of hematite within the canyons, we find a correlation between hematite abundance and distinctive geologic units for some patches, but not all. In Ophir and Candor Chasma, the hematite correlates to relatively brighter, dustier units in daytime THEMIS infrared images, but the correlation is moderate and other units with similar infrared properties have no corresponding hematite. Using the narrow angle MOC images, we have determined that the hematite signatures correspond to areas where patches of brighter material are exposed from beneath overlying dark units and dunes. This type of exhumation is similar to the hematite unit at Meridiani Planum. In Eos and Capri Chasma, the hematite appears to cross over geologic units seen in the THEMIS data sets, but no MOC images are available to assess the geology at the higher resolution. The presence of hematite also varies widely with topography, with one patch of hematite occurring across 2 km of relief in central Candor Chasma. In general, hematite occurs more prevalently on the canyon floors adjacent to the interior layered deposits, rather than on the layered deposits themselves. Our current results are based upon the hematite distribution map of Christensen et al. [J. Geophys. Res., 105, 9623-9642, 2000] but we hope to refine these TES compositional maps in order to more precisely correlate hematite to geologic features seen in the MOC and THEMIS data sets.

  13. Scarp development in the Valles Marineris

    NASA Technical Reports Server (NTRS)

    Patton, P. C.

    1984-01-01

    The scarps along the margins of the Vales Marineris display a complex assemblage of forms that have been related to a variety of mass wasting and sapping processes. These scarp segments display variations in the degree of development of spur and gully topography, the number and density of apparent sapping features and the frequency of large scale landslides which reflect the age, geology and processes of slope development throughout the Valles Marineris. This regional analysis should provide more information on the geologic evolution of the Valles Marineris as well as new insight into the relative importance of different processes in the development of the scarp forms. In order to evaluate the regional variation in scarp form and the influence of time and structure on scarp development geomorphic mapping and morphometric analysis of geologically distinct regions of Valles Marineris is being undertaken.

  14. Valles Marineris Basin Beds: a Complex Story

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.

    1985-01-01

    High resolution stereoimages of the central Valles Marineris enabled detailed geologic mapping on Ophir and Candor Chasmata. Abundant light colored deposits, both layered and massive, fill the chasmata in this region. Units within these deposits were identified by their erosional characteristics and superposition and cross cutting relations. The Valles Marineris beds reflect a history of repeated faulting, volcanic eruptions, and deposition and erosion, resulting in stratigraphic sequences with several unconformities. Because of the preponderance of apparent volcanic deposits inside the troughs, the chasmata may not be simple grabens, but rather giant volcano tectonic depressions. Major events in chasmata development are examined.

  15. Oblique View with Altimetry of Valles Marineris

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An oblique, color image of central Valles Marineris, Mars showing relief of Ophir and Candor Chasmata; view toward east. The photograph is a composite of Viking high-resolution images in black and white and low-resolution images in color. Ophir Chasma on the north (left side) is approximately 300 km across and as deep as 10 km. The connected chasma or valleys of Valles Marineris may have formed from a combination of erosional collapse and structural activity. Tongues of interior layered deposits on the floor of the chasmata can be observed as well as young landslide material along the base of Ophir Chasma's north wall.

  16. Valles Marineris basin beds: A complex story

    NASA Astrophysics Data System (ADS)

    Lucchitta, B. K.

    1985-04-01

    High resolution stereoimages of the central Valles Marineris enabled detailed geologic mapping on Ophir and Candor Chasmata. Abundant light colored deposits, both layered and massive, fill the chasmata in this region. Units within these deposits were identified by their erosional characteristics and superposition and cross cutting relations. The Valles Marineris beds reflect a history of repeated faulting, volcanic eruptions, and deposition and erosion, resulting in stratigraphic sequences with several unconformities. Because of the preponderance of apparent volcanic deposits inside the troughs, the chasmata may not be simple grabens, but rather giant volcano tectonic depressions. Major events in chasmata development are examined.

  17. Mars Airplane Valles Marineris Terrain Flight

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This is a computer simulation showing a proposed configuration of the Langley Mars Airplane on a flyover of the Valles Marineris system on the planet Mars. The actual flight is scheduled for Dec. 17, 2003, timed to mark the 100th anniversary of the Wright brothers' historic powered flight at Kitty Hawk, N.C.

  18. Valles Marineris, Mars - Wet debris flows and ground ice

    NASA Astrophysics Data System (ADS)

    Lucchitta, B. K.

    1987-11-01

    Water-containing landslides forming enormous wet debris flows are suggested by the present study of the equatorial troughs of the Martian Valles Marineris. Speed and emplacement efficiency differences between terrestrial and Martian landslides are attributable to the entrainment of volatiles on Mars. The water content of the wall rock is indicated by the evident transportation of the debris through tributary canyons and the easy flow and disintegration of the wall rock. Since material lower than 400-800 m was not desiccated during the period of landslide activity, this ground-water or -ice reservoir must have been replenished if it was not an ancient relic.

  19. Deformation of Sedimentary Rocks in Valles Marineris

    NASA Astrophysics Data System (ADS)

    Metz, J. M.; Grotzinger, J. P.; Milliken, R.; Weitz, C. M.; Okubo, C. H.

    2009-12-01

    Deformation of sedimentary rocks is widespread within Valles Marineris with many occurrences of both brittle and plastic deformation identified in Melas, Candor and Ius Chasmata. Using HiRISE and CTX images, we identify four styles of deformation, contorted beds, blocky deposits, folded strata and fragmented strata. Contorted beds are detached rounded blocks of material with alternating dark and light-toned strata that show refolded folds with a fold wavelength of about one kilometer. The blocky deposits are also detached rounded blocks of material, but they only locally show evidence of layering. The folded strata are continuous layered materials that have been folded, and the trend of their fold axes is not uniform. The fragmented strata are areas that show evidenced of brittle deformation and fragments of strata that have broken off into small irregularly-shaped pieces. Some areas exhibit multiple styles of deformation and grade from one type of deformation into another. There are several possible mechanisms that could be responsible for the deformation in Valles Marineris including subaerial or subaqueous gravitational slumping or sliding, salt tectonics and soft-sediment deformation including impact-induced liquefaction (seismites). These mechanisms can be evaluated based on the types, scale and areal pattern of deformation they produce. The cause and timing of deformation could provide important constraints on whether these sedimentary deposits pre- or post-date the formation of Valles Marineris. Four types of deformation observed. A) Contorted beds; B) Blocky deposits; C) Folded strata; D) and E) show examples of fragmented strata.

  20. Stratigraphy of the layered terrain in Valles Marineris, Mars

    NASA Astrophysics Data System (ADS)

    Komatsu, G.; Strom, Roger G.

    1991-06-01

    The layered terrain in Valles Marineris provides information about its origin and the geologic history of this canyon system. Whether the terrain is sedimentary material deposited in a dry or lacustrine environment, or volcanic material related to the tectonics of the canyon is still controversial. However, recent studies of Gangis Layered Terrain suggests a cyclic sequence of deposition and erosion under episodic lacustrine conditions. The stratigraphic studies are extended to four other occurrences of layered terrains in Valles Marineris in an attempt to correlate and distinguish between depositional environments. The Juvantae Chasma, Hebes Chasma, Ophir and Candor Chasmata, Melas Chasma, and Gangis Layered Terrain were examined. Although there are broad similarities among the layered terrains, no two deposits are exactly alike. This suggests that there was no synchronized regional depositional processes to form all the layered deposits. However, the similar erosional style of the lower massive weakly bedded unit in Hebes, Gangis, and Ophir-Candor suggests it may have been deposited under similar circumstances.

  1. Amounts of crustal stretching in Valles Marineris, Mars

    NASA Astrophysics Data System (ADS)

    Mège, Daniel; Masson, Philippe

    1996-08-01

    Terrestrial grabens and continental rifts are compared with the Valles Marineris system, in order to define the mechanisms which could be responsible for its geometry and formation. Simple shear/pure shear mechanisms, symmetric/asymmetric grabens and faults, high/low dip angles, block tilting/no block tilting, shouldering or not, lithospheric layering, and amount of sedimentation on chasma floors are discussed. Amounts of stretching on several transverse topographic profiles are then calculated, assuming either block tilting or no block tilting. On each profile initial dip angles ranging from 40 to 90, and sediment thicknesses ranging from 0 to 3 km are considered, as well as symmetric and asymmetric border fault dips. The case of Ius Chasma, the southwestern trough of the Valles Marineris system, is first considered, then the entire graben system. Considering a constant 660 km profile length, stretching increases eastward in Ius Chasma from the Noctis Labyrinthus boundary (stretching factor ? = 1.01-1.02, assuming initial 60 dipping faults) to the middle part of this trough (? = 1.04-1.06). Then Ius Chasma stretching decreases, but is partly taken over by stretching in Candor and Ophir chasmata. Stretching decreases from the eastern part of Melas Chasma (? = 1.05-1.06) to almost the eastern end of Coprates Chasma (? = 1.01). Then stretching increases again eastward (? = 1.02-1.04) at the longitude Coprates Chasma splits around a horst and Gangis Chasma opens northward. A striking feature is that a low peak of extension in the centre of the Valles Marineris troughs is observed (? = 1.03-1.04). The low stretching peak in the central part of Valles Marineris may originate from the existence of buried structures in the grabens, and/or along-strike variations in sediment thickness. According to the profiles and to the hypotheses, some 9-26 km of additional normal movements along faults with dip angles equivalent to the dip angles of the walls would be expected within the central Valles Marineris grabens to get constant stretching from Ius to Coprates chasmata. The amount of this lacking offset may be partly explained by a few km subsidence of Ophir Planum, and the shallow inter-chasmata grabens. Part of the remaining lacking normal movements are best explained by buried structures (possibly shallow horst and graben alternances or other structures) in the major canyons: Melas, Candor, and/or Ophir chasmata - probably mainly in Melas Chasma. Alternatively, along-strike variations of sediment thickness (about 3 km) without taking such buried structures into account, can explain the results as well. Observation of images shows up that the most realistic structural model of Valles Marineris should probably consider both variations of sediment thicknesses and existence of buried structures. Models for the origin of Valles Marineris stretching are discussed. The role of passive rifting in crust weakened by hot spot is emphasized, although extensional stresses due to the Tharsis load should have also contributed to stretching.

  2. The Layer Cake Walls of Valles Marineris

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This image of the northern wall of Coprates Chasma, in Valles Marineris, was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 1227 UTC (8:27 a.m. EDT) on June 16, 2007, near 13.99 degrees south latitude, 303.09 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 20 meters (66 feet) across. The region covered is just over 10 kilometers (6.2 miles) wide at its narrowest point.

    Valles Marineris is a large canyon system straddling Mars' equator, with a total size approximating the Mediterranean Sea emptied of water. It is subdivided into several interconnected 'chasmata' each hundreds of kilometers wide and, in some cases, thousands of kilometers long. The walls of several of the chasmata, including Coprates Chasma, expose a section of Mars' upper crust about 5 kilometers (3 miles) in depth. Exposures like these show the layers of rock that record the formation of Mars' crust over geologic time, much as the walls of the Grand Canyon on Earth show part of our planet's history.

    The upper panel of this montage shows the location of the CRISM image on a mosaic from the Mars Odyssey spacecraft's Thermal Emission Imaging System (THEMIS), taken in longer infrared wavelengths than measured by CRISM. The CRISM image samples the base of Coprates Chasma's wall, including a conspicuous horizontal band that continues along the wall for tens of kilometers to the east and west, and a topographic shelf just above that.

    The middle two panels show the CRISM image in visible and infrared light. In the middle left panel, the red, green, and blue image planes show brightness at 0.59, 0.53, and 0.48 microns, similar to what the human eye would see. Color variations are subdued by the presence of dust on all exposed surfaces. In the middle right panel, the red, green, and blue image planes show brightness at 2.53, 1.51, and 1.08 microns. These three infrared wavelengths are the 'usual' set that the CRISM team uses to provide an overview of infrared data, because dust has a less obscuring effect, and because they are sensitive to a wide variety of minerals. Layering is clearly evident in the wall rocks. The conspicuous band running along the base of the chasma wall appears slightly yellowish, and the scarp at the edge of the topographic bench appears slightly green.

    The bottom two panels use combinations of wavelengths to show the strengths of absorptions that provide 'fingerprints' of different minerals. In the lower left panel, red shows strength of a 0.53-micron absorption due to oxidized iron in dust, green shows strength of an inflection in the spectrum at 0.6 microns that may be related to rock coatings, and blue shows strength of a 1-micron absorption due to the igneous minerals olivine and pyroxene. The conspicuous horizontal band appears slightly blue, indicating a stronger signature of olivine and/or pyroxene. In the lower right panel, red is a measure of an absorption particular to olivine, green is a measure of a 2.3-micron absorption due to phyllosilicates (clay-like minerals formed when rock was subjected to liquid water), and blue is a measure of absorptions particular to pyroxene. The conspicuous horizontal band is now resolved into an upper portion richer in pyroxene, underlain by material richer in olivine than the rest of the wall rock. Also, erosion-resistant material forming the topographic bench is underlain by phyllosilicate-containing material exposed on the scarp.

    Taken together, these data reveal a layer cake-like composition of the crustal material exposed in Coprates Chasma's wall. Most of the rock is rich in pyroxene, which is expected because much of Mars' crust consists of volcanic basaltic rock. However discrete layers are richer in olivine, and in some layers the presence of phyllosilicates indicates interaction of rock with liquid water. Because the phyllosilicate-containing layer is low on the walls and deeply buried, it likely represents an early pe

  3. Dark materials in Valles Marineris - Indications of the style of volcanism and magmatism on Mars

    NASA Technical Reports Server (NTRS)

    Geissler, Paul E.; Singer, Robert B.; Lucchitta, Baerbel K.

    1990-01-01

    Computer mapping of spectral reflectance in Viking Orbiter I multispectral images is combined with photogeological interpretation and used to examine the geological significance of the dark materials in Valles Marineris, a canyon system that provides a unique view of the interior of the Martian crust. Special consideration is given to the relation of the dark materials to the past episodes of tectonism, volcanic activity, and igneous intrusion. Spectral mapping suggests that the dark floor-covering materials in the lower canyon are derived from a thick deposit composed of mafic glass, possibly an ancient Martian analogue of the lunar terra mantling deposits. Application of computer mapping techniques to probable young volcanic materials in the central troughs yields an inferred distribution of volcanic activity consistent with the interpretation of extrusion along faults near the margins of the canyon floors. The results support the hypothesis that Valles Marineris originated through tectonic extension.

  4. Climbing and falling dunes in Valles Marineris, Mars Matthew Chojnacki,1

    E-print Network

    Perfect, Ed

    Click Here for Full Article Climbing and falling dunes in Valles Marineris, Mars Matthew Chojnacki. Newly acquired Mars Reconnaissance Orbiter (MRO) images and topography of the walls of Valles Marineris, and D. M. Burr (2010), Climbing and falling dunes in Valles Marineris, Mars, Geophys. Res. Lett., 37, L

  5. Slope stability analysis of Valles Marineris, Mars

    NASA Astrophysics Data System (ADS)

    Vittorio De Blasio, Fabio; Battista Crosta, Giovanni; Castellanza, Riccardo; Utili, Stefano

    2013-04-01

    Valles Marineris (VM) in the equatorial area of Mars exhibits several gravitational failures which resulted in a series of large landslides up to several hundred cubic kilometers in volume. Questions arise as to forces at play and rock strength in the stability of the walls of VM. In this work we address the stability analysis of the walls of VM by considering the strength of the materials of the chasma walls and the causes of landslides. Using finite element calculations and the limit analysis upper bound method, we explore the range of cohesion and friction angle values associated to realistic failure geometries, and compare predictions with the classical Culmann's wedge model. Our analysis is based both on synthetic, simplified slope profiles and also on the real shape of the walls of VM taken from the MOLA topographic data. Validation of the calibrated cohesion and friction angle values is performed by comparing the computed unstable cross sectional areas with the observed pre- and post-failure profiles and estimated failure surface geometry. This offers a link between rock mass properties, slope geometry and volume of the observed failure. Pseudo-static seismic analyses generated another set of dimensionless charts. Our pseudo-static analyses show that low seismicity events induced by meteoroids impacts compatible with the size of craters could be a cause for some of the observed landslides if poor rock properties for VM is assumed.

  6. Light-toned Layered Outcrops in Valles Marineris Walls

    NASA Technical Reports Server (NTRS)

    2000-01-01

    [figure removed for brevity, see original site]

    Valles Marineris a system of troughs, chasms, and pit chains that stretches more than 4,000 km (2,500 miles) across the martian western hemisphere. Outcrops of layered material found in mounds and mesas within the chasms of the Valles Marineris were known from the pictures taken by Mariner 9 in 1972 and the Viking orbiters of 1976-1980. One example of the those known previously is the mesa labeled 'Candor Mensa' in the context image (above); another example is the mound in the center of Ganges Chasma. For several decades, it has been widely speculated among Mars scientists that the light- and dark-toned layered materials in the Valles Marineris might have formed in lakes that had once filled the chasms during the most recent epoch of martian history; others thought they might result from volcanic ash deposited in the chasms. Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) images have confirmed the presence of light- and dark-toned layered sedimentary rock outcrops in the Valles Marineris, but they have also revealed many more than were previously known and they have shown several good examples that these materials are coming out of the walls of the Valles Marineris chasms. The fact that these materials come out of the chasm walls means that the layers do not represent lakes (or volcanic debris) that formed in the Valles Marineris. Instead, they represent materials deposited and buried long before there ever was a Valles Marineris. They are seen now because of the faulting and erosion that opened up and widened the Valles Marineris troughs. The context image is a mosaic of Viking 1 orbiter images taken in 1976 showing a portion of the wall that separates western Ophir Chasma from western Candor Chasma in the Valles Marineris. This area is located around 5oS, 74oW. The white box labeled 'M17-00467' shows the location of a subframe of MOC image M17-00467 that was acquired in July 2000 to allow scientists to examine one of the many bright patches (indicated by small arrows) seen on the walls of Valles Marineris. The release image is a subframe of MOC image M17-00467, showing a high-resolution view of one of the bright patches on the walls of Candor Chasma. The MOC image reveals that the bright material indeed consists of light-toned layered rock similar to other outcrops thought to be sedimentary in origin found throughout the Valles Marineris. The dark ridge running from top center to center-left in this view is mantled by a smooth, dark material that covers additional light-toned layered rock. The observation that these kinds of bright layered rock occur within the walls of the Valles Marineris indicate that the materials are very, very old. They have been buried under several kilometers (i.e., more than a mile) of additional layered rock, all of which is beneath plains thought to be more than 2.5 to 3.5 billion years old. These relationships suggest that all of the layered sedimentary rocks observed on Mars by MGS MOC may date back to the earliest parts of martian history, between 3.5 and 4.5 billion years ago. In both pictures, north is toward the top. Sunlight illuminates the context image from the top/right; the MOC image (top left) is illuminated from the upper left.

  7. Origin and evolution of the layered deposits in the Valles Marineris, Mars

    NASA Astrophysics Data System (ADS)

    Nedell, S. S.; Squyres, S. W.; Andersen, D. W.

    1987-06-01

    Four hypotheses are discussed concerning the origin of the layered deposits in the Martian Valles Marineris, whose individual thicknesses range from about 70 to 300 m. The hypothesized processes are: (1) aeolian deposition; (2) deposition of remnants of the material constituting the canyon walls; (3) deposition of volcanic eruptions; and (4) deposition in standing bodies of water. The last process is chosen as most consistent with the rhythm and lateral continuity of the layers, as well as their great thickness and stratigraphic relationship with other units in the canyons. Attention is given to ways in which the sediments could have entered an ice-covered lake; several geologically feasible mechanisms are identified.

  8. Evidence for precipitation on Mars from dendritic valleys in the Valles Marineris area.

    PubMed

    Mangold, Nicolas; Quantin, Cathy; Ansan, Véronique; Delacourt, Christophe; Allemand, Pascal

    2004-07-01

    Dendritic valleys on the plateau and canyons of the Valles Marineris region were identified from Thermal Emission Imaging System (THEMIS) images taken by Mars Odyssey. The geomorphic characteristics of these valleys, especially their high degree of branching, favor formation by atmospheric precipitation. The presence of inner channels and the maturity of the branched networks indicate sustained fluid flows over geologically long periods of time. These fluvial landforms occur within the Late Hesperian units (about 2.9 to 3.4 billion years old), when Mars was thought to have been cold. Our results suggest a period of warmer conditions conducive to hydrological activity. PMID:15232103

  9. Valles Marineris, Mars - Volatiles in interior deposits?

    NASA Astrophysics Data System (ADS)

    Lucchitta, B. K.; Rosanova, C. E.

    1997-03-01

    A geographic information system approach has clarified 3D relations of geological units in the Vallis Marineris of Mars through a superposition of black-and-white and color images on a digitized topography. These images indicate that extensive mass wasting may have occurred on interior layered deposits in Ophir and central Candor Chasmata.

  10. Part 2: Sedimentary geology of the Valles, Marineris, Mars and Antarctic dry valley lakes

    NASA Technical Reports Server (NTRS)

    Nedell, Susan S.

    1987-01-01

    Detailed mapping of the layered deposits in the Valles Marineris, Mars from high-resolution Viking orbiter images revealed that they from plateaus of rhythmically layered material whose bases are in the lowest elevations of the canyon floors, and whose tops are within a few hundred meters in elevation of the surrounding plateaus. Four hypotheses for the origin of the layered deposits were considered: that they are eolian deposits; that they are remnants of the same material as the canyon walls; that they are explosive volcanic deposits; or that they were deposited in standing bodies of water. There are serious morphologic objections to each of the first three. The deposition of the layered deposits in standing bodies of water best explains their lateral continuity, horizontality, great thickness, rhythmic nature, and stratigraphic relationships with other units within the canyons. The Martian climatic history indicated that any ancient lakes were ice covered. Two methods for transporting sediment through a cover of ice on a martian lake appear to be feasible. Based on the presently available data, along with the theoretical calculations presented, it appears most likely that the layered deposits in the Valles Marineris were laid down in standing bodies of water.

  11. Evidence of a Paleolake in the central Valles Marineris

    NASA Astrophysics Data System (ADS)

    Harrison, K. P.

    2007-12-01

    The Valles Marineris (VM) canyon system of Mars is closely related to large flooding channels, some of which emerge full born from chaotic terrain in canyon floors. Coprates Chasma, one of the largest VM canyons, is connected at its eastern end to chaotic terrain Capri Chasma. Despite the likely large volumes of groundwater that discharged from Capri Chasma [1], no evidence of related fluvial activity in Coprates Chasma has thus far been reported. We present an analysis of the regional topography which, together with photogeologic interpretation of available imagery, suggests that ponding due to late-stage discharge of water from Capri Chasma chaotic terrain produced a shallow lake spanning parts of Melas, Coprates, Capri and Eos Chasmata (MCCE). Overflow of this lake at its eastern end resulted in delivery of water to downstream chaos regions and outflow channels. Our ponding hypothesis is motivated primarily by the identification of scarp and terrace features which, despite a lateral spread of about 1500 km, have similar elevations. Furthermore, these elevations correspond to the maximum ponding elevation of the region (-3562 m). Mean lake depth is 842 m. Simulated ponding in the MCCE system yields an overflow point at its eastern extremity, in Eos Chasma. The neighborhood of this overflow point contains clear indicators of fluvial erosion in a consistent east-west orientation (Figure 4). Specifically, scour marks suggest an eastward convergence of flow lines. Downstream of the overflow point, the direction set by the scour marks is paved by a smooth deposit leading directly to a scoured channel entering the next major region of chaotic terrain, Aurorae Chaos. The smooth deposit is likely made up of remnants of the interior deposit breached by the MCCE paleolake overflow. The next region of chaotic terrain downstream of Aurorae Chasma is Hydraotes Chaos, which lies in a relatively deep depression and would be the next significant ponding location for flow originating in the MCCE region. Crucially, it is also the only other Chryse Planitia chaos to exhibit terraces, which have been attributed a lacustrine origin by other authors [2]. References: [1] Carr M. H. (1979) JGR, 84, 2995-3007. [2] Ori G. G. and Mosangini C. (1998) JGR, 103, 22713-22724.

  12. Landslide on Valles Marineris: morphology and flow dynamics

    NASA Astrophysics Data System (ADS)

    Sato, H.; Kurita, K.; Baratoux, D.; Pinet, P.

    2008-09-01

    Introduction: Valles Marineris is known as a place of numerous and well preserved landslides on Mars. In comparison with terrestrial landslides, martian landslides are distinctive in their size and morphology. As a consequence of the topography of the canyon, the averaged drop height of these landslides is about 6.5 km and the averaged volume is about 102~4 km3[1], which is 2~3 orders of magnitude larger than terrestrial ones, at the exception of marine landslides[2]. As for the morphology, clear levees with longitudinal lineations are typical features of martian landslides, whereas surfaces of the terrestrial mass movements are dominated by a rather chaotic topography with, in some cases, the occurrence of transverse ridges. The characteristics of the deposits should reflect the dynamics of the emplacement and the subsurface material properties. In particular, there is a longstanding debate about the relation between the long run-out length and the existence of subsurface volatiles (water ice, clathrates, ground water) [1,3,4,5,6,7]. The motivation of our research is the fact that material properties are expected to be deduced from the morphology of the deposits and the knowledge of the flow dynamics. Then, the characteristics of subsurface materials partially collapsed as mass movements could be documented as a function of time, considering the age of each landslide. In this study, we focus on the longitudinal grooves which are found on the surface of landslide deposits at Valles Marineris (Fig.1). This pattern is a typical feature in the martian landslides[3], and extremely rarely observed in the terrestrial mass movements. The origin is not well clarified, but it seems strong relation with the flow style or physical property of transported materials. With the objective to determine the condition of formation of the lineations, the geometric characteristics (volume, surface, thickness, run-out length) of lineated and non-lineated landslides are compared. Then, the difference in flow dynamics are discussed based on the physics of granular flow. Topographic measurements are derived from HRSC and MOLA data. HRSC, MOC, THEMIS-VIS are used for the morphological observations. Result and Discussions: Not all the landslides have longitudinal lineation as shown in Fig.1. Almost half numbers of landslides observed in Valles Marineris show irregularly shaped knobby surface as shown in Fig.2. We classified all the landslides in this area as lineated type and knobby type, including a few exceptions. We compare two types of landslide by measured morphological parameters, such as volume, averaged thickness, area, maximum run-out (Lmax), and maximum drop height (Hmax). When we compare by volume and Hmax/Lmax plot, where Hmax/Lmax corresponds to the apparent coefficient of friction[2], a clear difference is recognized. Landslides of the lineated type show a negative correlation of Hmax/Lmax with volume, a similar trend to terrestrial dry landslides. On the other hand, the plots of knobby type concentrate in a small area at larger volumes without any clear correlation of two parameters. From the comparison at the plot of averaged thickness and total volume of deposit, lineated type show systematically thinner geometry than knobby type, bounded around 200 to 250 m. From the comparison of averaged thickness and root square of deposit area (Fig.5), a roughly linear correlation is reported for the lineated type. The square root of deposit area means the index length of horizontal shape of deposit. Usually the deposit of landslide at Valles Marineris spread out at flat broad valley floor showing semi-radialy spreaded shape. Thus it can be invoked as index length independent with actual horizontal deposit shape. The linear correlation of thickness and square of the deposit area for the lineated type implies that deposits shapes are homothetic, and keep similarity. This observation is striking given the large range of volumes reported. In contrast, a constant square of deposit area for thicknesses ranging from 100 to 600 meters is reported. T

  13. Western Tithonium Chasma/Ius Chasma, Valles Marineris

    NASA Technical Reports Server (NTRS)

    1997-01-01

    On October 3, 1997, the MOC acquired this image of the western Tithonium Chasma/Ius Chasma portion of the Valles Marineris, centered at 6.6oS, 90.4oW, at 1:16 PM PDT. Although the lighting beneath the spacecraft was very poor, the camera was canted towards the sun, and the illumination was equivalent to roughly 5 PM local time (the sun was about 17o above the horizon). In the image, the canyon floors are mostly shadowed, but steep slopes in the area are exquisitely highlighted.

    The area outlined in the upper right image, the highest resolution view of the region previously available, is 6.6 km (4 miles) wide by 55.6 km (34.5 miles) long. The ridges to the north and south are about 4000 m (13,000 feet) above the floor of the troughs, but in the area photographed, the relief is slightly lower (about 3000 m, or 10,000 feet). The top portion of the image is shown on the left, and a section of that image is shown enlarged at lower right. The scale is 6.45 m/pixel across the image by 9.65 m/pixel down the image. The left and lower right images are available at higher resolution as PIA01022 and PIA01023, respectively.

    Launched on November 7, 1996, Mars Global Surveyor entered Mars orbit on Thursday, September 11, 1997. The original mission plan called for using friction with the planet's atmosphere to reduce the orbital energy, leading to a two-year mapping mission from close, circular orbit (beginning in March 1998). Owing to difficulties with one of the two solar panels, aerobraking was suspended in mid-October and resumed in November 8. Many of the original objectives of the mission, and in particular those of the camera, are likely to be accomplished as the mission progresses.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  14. Are there carbonate deposits in the Valles Marineris, Mars?

    NASA Astrophysics Data System (ADS)

    McKay, C. P.; Nedell, S. S.

    1988-01-01

    The precipitation of 30 mbar of Martian atmosphere CO2 as carbonates in lakes is suggested to be the source of thick sequences of layered deposits found in the Valles Marineris. Support is adduced for this scenario from processes occurring in the perennially frozen dry valley lakes of Antarctica, where the lake water is supersaturated with atmospheric gases. Atmospheric CO2 would have accumulated in such Martian lakes as temperatures fell, and the presence of an insulating ice cover would have allowed liquid water to exist.

  15. Dark materials in Valles Marineris: Indications of the style of volcanism and magmatism on Mars

    SciTech Connect

    Geissler, P.E.; Singer, R.B. (Univ. of Arizona, Tucson (USA)); Lucchitta, B.K. (Geological Survey, Flagstaff, AZ (USA))

    1990-08-30

    Rifting on the equatorial canyon system of Valles Marineris provides a unique view of the interior of the Martian crust to depths reaching 7 km, exposing several in situ bedrock units which testify to past volcanic and magmatic processes on Mars. A thick, regionally extensive deposit observed in Coprates and Juventae chasmata is interpreted on the basis of spectral reflectance, erosional morphology, and tendency for eolian mobilization to be composed of mafic glass, possibly an ancient Martian analogue of the lunar terra mantling deposits. Spectral mapping suggests that the dark floor-covering materials in the lower canyons are derived from this unit. A series of cliffs in the Ophir Chasma wall rock is interpreted to be exposures of resistant bedrock; the spectral signature of this massive and uniform unit most closely resembles that of terrestrial mafic rocks altered to or coated by crystalline hematite. Application of computer mapping techniques to probable young volcanic materials in the central troughs yields an inferred distribution of volcanic activity consistent with the interpretation of extrusion along faults near the margins of the canyon floors. This result supports the hypothesis that the valles originated through tectonic extension.

  16. Lakes in Valles Marineris, Mars (I): Walls, Mounds, Moats, and Volcanoes

    NASA Astrophysics Data System (ADS)

    Lucchitta, B. K.

    2009-03-01

    Synthesis of research concerning lakes in the Valles Marineris suggests that the interior layered deposits were emplaced in a wet environment. Addressed are exhumation from the walls; eolian, fluvial, or volcanic origin; moats and inclined layers.

  17. Mobility of large rock avalanches: evidence from Valles Marineris, Mars

    USGS Publications Warehouse

    McEwen, A.S.

    1989-01-01

    Measurements of H/L (height of drop/length of runout) vs. volume for landslides in Valles Marineris on Mars show a trend of decreasing H/L with increasing volume. This trend, which is linear on a log-log plot, is parallel to but lies above the trend for terrestrial dry rock avalanches. This result and estimates of 104 to 105 Pa yield strength suggest that the landslides were not water saturated, as suggested by previous workers. The offset between the H/L vs. volume trends shows that a typical Martian avalanche must be nearly two orders of magnitude more voluminous than a typical terrestrial avalance in order to achieve the same mobility. This offset might be explained by the effects of gravity on flows with high yield strengths. These results should prove useful to future efforts to resolve the controversy over the mechanics of long-runout avalanches. -Author

  18. Hematite in Valles Marineris: Context, Composition, Distribution, Morphology, Physical Properties, and Comparison to Other Mars Hematite Deposits

    NASA Astrophysics Data System (ADS)

    Knudson, A. T.; Christensen, P. R.

    2004-12-01

    Gray, crystalline hematite deposits have been identified by data from MGS TES at three areas on Mars: Meridiani Planum, Aram Chaos, and Valles Marineris. Remote sensing studies of the deposits at Meridiani Planum and Aram Chaos indicate that hematite occurs in relatively large, coherent, in-place stratigraphic units. In situ studies at the Meridiani Planum site by the MER Opportunity have revealed that the hematite is likely carried in spheroidal concretions that form lag deposits as they weather out of in-situ sedimentary layered deposits. The hematite occurrences in Valles Marineris are small, 5 - 35 km in diameter, and are discontinuous throughout the canyon system. In this study THEMIS, MOC, MOLA and TES data are used to investigate the geomorphology, composition, and thermophysical characteristics of hematite bearing deposits throughout the canyon system and compare them to the other hematite deposits on Mars. Hematite bearing deposits in Valles Marineris span an total elevation range of 5600m. Preliminary evaluation indicates no clear correlation of with latitude or longitude. In Ophir and Candor Chasmata, hematite is associated with relatively dark materials near or within interior layered deposits and may represent in-place units or erosional remnants. Deconvolution of TES spectra from Candor Chasma show hematite abundances from 5 to 12%. Associated materials exhibit compositions similar to TES Surface Type II, which has been described as a basaltic andesite or weathered basalt. In Capri Chasma hematite signatures generally correlate with layered units, which lie at similar elevations, and are within 1km of the mean. Dunes overlying and obscuring layered deposits do not contain hematite. Benches and breaks in slope near the boundaries of many layered deposits provide further evidence that the layers may represent in-place, stratigraphic units. Hematite in Capri Chasma may have formed in a single event, which involved deposition or reworking in standing water.

  19. Spatial and Temporal Relationships of Landslides in Valles Marineris, Mars: Constraints on their Triggering Mechanisms

    NASA Astrophysics Data System (ADS)

    Watkins, J.; Yin, A.

    2011-12-01

    The giant canyon system of Valles Marineris on Mars hosts the most concentrated landslides on the planet. Large landslides are preferentially distributed along the north wall of the Ius, Melas, and Coprates Chasmata (IMC), including a long stretch of the Coprates Chasma north wall where there is no major slide activity. There are four possible causes for the occurrence of these rotational landslides in Valles Marineris. (1) The IMC wall rocks are stratified with stronger material overlying weak material and undercutting of the weaker layer by erosion induced slope instability. (2) An episode of wet and warm climate could have also triggered the occurrence of widespread landslides that slip on nearly frictionless, water (or other medium)-lubricated surfaces. (3) A succession of concentric faults out from impacts may have triggered landslides. (4) Seismic activity along trough-bounding faults may have both enhanced the steepness of trough walls and triggered landslides, which may explain the preferential concentration of landslides along the north wall of the IMC. In addition to the above triggering mechanism, we note that the location and shape of the landslides are clearly controlled by trough-parallel pre-existing fractures, leading to the collapse of long strips of trough walls as seen in western Ius Chasma. The four competing causes make contrasting predictions on (a) timing of landslides (synchronous vs. diachronous) and (b) their spatial relationships to trough-bounding faults, nearby craters, and the strength of lithologic units comprising the trough walls. A systematic mapping of individual landslides is currently in progress to address the above issues.

  20. Reconstructing the Catastrophic Flood History of Eastern Valles Marineris, Mars

    NASA Astrophysics Data System (ADS)

    Warner, N. H.; Sowe, M.; Gupta, S.; Dumke, A.

    2014-12-01

    The km-deep chaotic terrains of the eastern Valles Marineris region have long been recognized as depositional sinks for eolian and air fall material. Furthermore, many have suggested that groundwater influx into these basins may have contributed to the development of lacustrine environments, basin-floor fluvial systems, and basin-marginal catastrophic outflow channels. However, the lacustrine hypothesis has been challenged by suggestions that the proposed fluvial-lacustrine landforms may have formed by non-aqueous mechanisms (e.g. volcanic) or processes that require low volumes of liquid water (e.g. glacial). In this work, we describe the basin-marginal landscape of eastern Valles Marineris at the junction between Eos Chaos and Aurorae Chaos basins. Using new high resolution topography data (HRSC DTMs), imagery (CTX), and impact crater chronology we identify and describe four catastrophic outflow channels that occur along a 500 km arc that traces the eastern margin of Eos Chaos. The fluvial origin of these channels is evidenced by (1) occurrence of longitudinal grooves that cross-cut Noachian-age (3.8 Ga) highland terrain, (2) multiple bedrock terraces that occur at consistent elevations across each channel, (3) streamlined landforms, (4) inner channels headed by cataracts, and (5) crater size frequency distributions that indicate resurfacing of highland craters (Figure 1). The terraces provide evidence for progressive incision from individual flood events with discharges of ~106 - 108 m3 s-1. The topographically highest terrace in each channel initiates at the same elevation of ~1000 m along the entire basin margin. The lowest terraces and grooved terrains require up to 5 km of total incision, down to a base level of ~4100 m that is set by the downstream floor of Aurorae Chaos. The observations not only require a regional topographic control on flood initiation in all channels, but the existence of a base level that suggests the chaotic terrains pre-date the flood events. This is confirmed by the older crater retention age of the basin floors (3.5 Ga) relative to the outflow channels (3.0 Ga). These combined observations point to the past occurrence of an upstream lake within Eos Chaos, spillover of that lake along its eastern margin, and incision of outflow channels, integrating Eos Chaos with Aurorae Chaos.

  1. Layers within the Valles Marineris: Clues to the Ancient Crust of Mars - High Resolution Image

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This high resolution picture of the Martian surface was obtained in the early evening of January 1, 1998 by the Mars Orbiter Camera (MOC), shortly after the Mars Global Surveyor spacecraft began it's 80th orbit. Seen in this view are a plateau and surrounding steep slopes within the Valles Marineris, the large system of canyons that stretches 4000 km (2500 mi) along the equator of Mars. The image covers a tiny fraction of the canyons at very high resolution: it extends only 9.8 km by 17.3 km (6.1 mi by 10.7 mi) but captures features as small as 6 m (20 ft) across. The highest terrain in the image is the relatively smooth plateau near the center. Slopes descend to the north and south (upper and lower part of image, respectively) in broad, debris-filled gullies with intervening rocky spurs. Multiple rock layers, varying from a few to a few tens of meters thick, are visible in the steep slopes on the spurs and gullies. Layered rocks on Earth form from sedimentary processes (such as those that formed the layered rocks now seen in Arizona's Grand Canyon) and volcanic processes (such as layering seen in the Waimea Canyon on the island of Kauai). Both origins are possible for the Martian layered rocks seen in this image. In either case, the total thickness of the layered rocks seen in this image implies a complex and extremely active early history for geologic processes on Mars.

    Malin Space Science Systems (MSSS) and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  2. Analysis of Fault Lengths Across Valles Marineris, Mars

    NASA Astrophysics Data System (ADS)

    Fori, A. N.; Schultz, R. A.

    1996-03-01

    Summary. As part of a larger project to determine the history of stress and strain across Valles Marineris, Mars, graben lengths located within the Valley are measured using a two-dimensional window-sampling method to investigate depth of faulting and accuracy of measurement. The resulting degree of uncertainty in measuring lengths (+19 km - 80% accuracy) is independent of the resolution at which the faults are measured, so data sets and resultant statistical analysis from different scales or map areas can be compared. The cumulative length frequency plots show that the geometry of Valley faults display no evidence of a frictional stability transition at depth in the lithosphere if mechanical interaction between individual faults (an unphysical situation) is not considered. If strongly interacting faults are linked and the composite lengths used to re-create the cumulative lengths plots, a significant change in slope is apparent suggesting the existence of a transition at about 35-65 km below the surface (assuming faults are dipping from 50deg to 70deg This suggests the thermal gradient to the associated 300-400degC isotherm is 53C/km to 12degC/km.

  3. Sedimentation, volcanism, and ancestral lakes in the Valles Marineris: Clues from topography

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.; Isbell, N. K.; Howington-Kraus, A.

    1993-01-01

    Compilation of a simplified geologic/geomorphic map onto a digital terrain model of Valles Marineris has permitted quantitative evaluations of topographic parameters. The study showed that, if their interior layered deposits are lacustrine, the ancestral Valles Marineris must have consisted of isolated basins. If, on the other hand, the troughs were interconnected as they are today, the deposits are most likely to volcanic origin, and the mesas in the peripheral troughs may be table mountains. The material eroded from the trough walls was probably not sufficient to form all of the interior layered deposits, but it may have contributed significantly to their formation.

  4. Pristine Noachian crust and key geologic transitions in the lower walls of Valles Marineris: Insights into early igneous processes on Mars

    NASA Astrophysics Data System (ADS)

    Flahaut, Jessica; Quantin, Cathy; Clenet, Harold; Allemand, Pascal; Mustard, John F.; Thomas, Pierre

    2012-09-01

    Valles Marineris is a unique vertical section through the uppermost kilometers of the martian crust. Its location, east of the Tharsis bulge, and its water-related history, fuel a great diversity of rock types in this area (Carr, M.H., Head, J.W. [2010]. Earth Planet. Sci. Lett. 294, 185-203). HiRISE and CRISM data available over the walls of the canyon were analyzed to infer the importance of magmatic and sedimentary processes through time. This contribution provides a complete morphologic and mineralogic characterization of the cross-section of rocks exposed in the canyon walls. Low-calcium pyroxene and olivine are detected in the lower portion of the walls, in association with morphologically distinct outcrops, leading to the idea that pristine Noachian crust might be exposed. Phyllosilicates are also present within the walls, but they appear to correspond to an alteration product. No proper sedimentary layers were observed within the walls of Valles Marineris at the resolution available today. All these detections are limited to the eastern portion of Valles Marineris, especially Juventae, Coprates, Capri, and Ganges chasmata. Preserved Noachian crustal material is rare on the martian surface and is rarely exposed in its pristine geologic context. Such detections lend precious information about early igneous processes. This survey also supports observations from the nearby impact crater central peaks (Quantin, C., Flahaut, J., Allemand, P. [2009]. Lunar Planet. Sci. 10; Quantin, C., Flahaut, J., Clenet, H., Allemand, P., Thomas, P. [2011]. Icarus, submitted for publication) and suggests that the western part of Valles Marineris may be cut into another material, consistent with lavas or volcanic sediments.

  5. Stability of rock slopes in Valles Marineris, Mars Richard A. Schultz

    E-print Network

    Stability of rock slopes in Valles Marineris, Mars Richard A. Schultz Geomechanics-Rock Fracture Group, Department of Geological Sciences, Mackay School of Mines, University of Nevada, Reno, USA slope measurements from the Mars Orbiter Laser Altimeter (MOLA), in conjunction with the Rock Mass

  6. Simulated Flight of LaRC Mars Airplane over Valles Marineris

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a computer simulation showing a proposed configuration of the Langley Mars Airplane on a flyover of the Valles Marineris system on the planet Mars. The actual flight is scheduled for Dec. 17, 2003, timed to mark the 100th anniversary of the Wright brothers' historic powered flight at Kitty Hawk, N.C.

  7. Western Tithonium Chasma/Ius Chasma, Valles Marineris - High Resolution Image

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Most remarkable about this MOC image is the discovery of light and dark layers in the rock outcrops of the canyon walls. In the notable, triangular mountain face (at center), some 80 layers, typically alternating in brightness and varying in thickness from 5 to 50 meters (16 to 160 feet), are clearly visible. This shear mountain cliff, over 1000 m (3200 ft) tall, is only one of several outcrops that, together, indicate layering almost the entire depth of the canyon.

    This type of bedrock layering has never been seen before in Valles Marineris. It calls into question common views about the upper crust of Mars, for example, that there is a deep layer of rubble underlying most of the martian surface, and argues for a much more complex early history for the planet.

    Launched on November 7, 1996, Mars Global Surveyor entered Mars orbit on Thursday, September 11, 1997. The original mission plan called for using friction with the planet's atmosphere to reduce the orbital energy, leading to a two-year mapping mission from close, circular orbit (beginning in March 1998). Owing to difficulties with one of the two solar panels, aerobraking was suspended in mid-October and resumed in November 8. Many of the original objectives of the mission, and in particular those of the camera, are likely to be accomplished as the mission progresses.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  8. Topography of Valles Marineris: Implications for erosional and structural history

    NASA Astrophysics Data System (ADS)

    Lucchitta, B. K.; Isbell, N. K.; Howington-Kraus, A.

    1994-02-01

    Compilation of a simplified geologic/geomorphic map onto digital terrain models of the Valles Marineris permitted an evaluation of elevations in the vicinity of the troughs and the calculation of depth of troughs below surrounding plateaus, thickness of deposits inside the troughs, volumes of void spaces above geologic/geomorphic units, and volumes of deposits. The central troughs north Ophir, north and central Candor, and north Melas Chasmata lie as much as 11 km below the adjacent plateaus. In Ophir and Candor chasmata, interior layered deposits reach 8 km in elevation. If the deposits are lacustrine and if all troughs were interconnected, lake waters standing 8 km high would have spilled out of Coprates Chasma onto the surrounding plateaus having surface elevations of only 4-5 km. On the other hand, the troughs may not have been interconnected at the time of interior-deposit emplacement; they may have formed isolated ancestral basins. The existence of such basins is supported by independent structural and stratigraphic evidence. The ancestral basins may have eventually merged, perhaps through renewed faulting, to form northern subsidiary troughs in Ophir and Candor Chasmata and the Coprates/north Melas/Ius graben system. The peripheral troughs are only 2-5 km deep, shallower than the central troughs. Chaotic terrain is seen in the peripheral troughs near a common contour level of about 4 km on the adjacent plateaus, which supports the idea of release of water under artesian pressure from confined aquifers. The layered deposits in the peripheral troughs may have formed in isolated depressions that harbored lakes and predated the formation of the deep outflow channels. (If these layered deposits are of volcanic origin, they may have been emplaced beneath ice in the manner of table mountains.) Areal and volumetric computations show that erosion widened the troughs by about one-third and that deposits occupy one-sixth of the interior space. Even though the volume eroded is larger than the volume deposited, topographic and geologic considerations imply that material eroded from trough walls was probably part of the interior layered deposits but not their sole source. Additional material may have come from subterranean piping, from reworking of local disintegration products on the floors, such as chaotic materials, or from eolian influx. But overall it is likely that the additional material is volcanic and that it forms mostly the upper, more diversely bedded layers of the interior deposits.

  9. Topography of Valles Marineris: Implications for erosional and structural history

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.; Isbell, N. K.; Howington-Kraus, A.

    1994-01-01

    Compilation of a simplified geologic/geomorphic map onto digital terrain models of the Valles Marineris permitted an evaluation of elevations in the vicinity of the troughs and the calculation of depth of troughs below surrounding plateaus, thickness of deposits inside the troughs, volumes of void spaces above geologic/geomorphic units, and volumes of deposits. The central troughs north Ophir, north and central Candor, and north Melas Chasmata lie as much as 11 km below the adjacent plateaus. In Ophir and Candor chasmata, interior layered deposits reach 8 km in elevation. If the deposits are lacustrine and if all troughs were interconnected, lake waters standing 8 km high would have spilled out of Coprates Chasma onto the surrounding plateaus having surface elevations of only 4-5 km. On the other hand, the troughs may not have been interconnected at the time of interior-deposit emplacement; they may have formed isolated ancestral basins. The existence of such basins is supported by independent structural and stratigraphic evidence. The ancestral basins may have eventually merged, perhaps through renewed faulting, to form northern subsidiary troughs in Ophir and Candor Chasmata and the Coprates/north Melas/Ius graben system. The peripheral troughs are only 2-5 km deep, shallower than the central troughs. Chaotic terrain is seen in the peripheral troughs near a common contour level of about 4 km on the adjacent plateaus, which supports the idea of release of water under artesian pressure from confined aquifers. The layered deposits in the peripheral troughs may have formed in isolated depressions that harbored lakes and predated the formation of the deep outflow channels. (If these layered deposits are of volcanic origin, they may have been emplaced beneath ice in the manner of table mountains.) Areal and volumetric computations show that erosion widened the troughs by about one-third and that deposits occupy one-sixth of the interior space. Even though the volume eroded is larger than the volume deposited, topographic and geologic considerations imply that material eroded from trough walls was probably part of the interior layered deposits but not their sole source. Additional material may have come from subterranean piping, from reworking of local disintegration products on the floors, such as chaotic materials, or from eolian influx. But overall it is likely that the additional material is volcanic and that it forms mostly the upper, more diversely bedded layers of the interior deposits.

  10. Variable features in the Valles Marineris region of Mars

    NASA Technical Reports Server (NTRS)

    Geissler, Paul E.; Singer, Robert B.

    1991-01-01

    Transient phenomena on Mars have long been recognized in Mariner and Viking images as well as in decades of Earth based telescopic observations. These events are of interest because of the information they present on currently active meteorological and geological processes. Changes in surface albedo patterns and atmospheric conditions can also affect the analysis and interpretation of data based on spectral or morphological properties of geologic units on the surface. The mechanism responsible for albedo pattern change is currently under investigation. Generation and subsequent transportation and deposition of dark sands has been interpreted in the Valles. However, the removal of a bright dust layer is more consistent with the rapid time period of the change (about two months) and with preliminary multispectral mapping results which suggest that the dark streak south of Eos and Coprates Chasmata is spectrally distinguishable from the dark saltating materials found elsewhere in the canyon system. If a layer of bright dust was removed to affect the albedo change, questions concerning how such micron-sized particles are mobilized by the winds during a normally quiescent season (Southern Hemisphere Autumn) should be addressed.

  11. Layers within the Valles Marineris: Clues to the Ancient Crust of Mars

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This high resolution picture (right) of the Martian surface was obtained in the early evening of January 1, 1998 by the Mars Orbiter Camera (MOC), shortly after the Mars Global Surveyor spacecraft began it's 80th orbit. Seen in this view are a plateau and surrounding steep slopes within the Valles Marineris, the large system of canyons that stretches 4000 km (2500 mi) along the equator of Mars. The image covers a tiny fraction of the canyons at very high resolution: it extends only 9.8 km by 17.3 km (6.1 mi by 10.7 mi) but captures features as small as 6 m (20 ft) across. The highest terrain in the image is the relatively smooth plateau near the center. Slopes descend to the north and south (upper and lower part of image, respectively) in broad, debris-filled gullies with intervening rocky spurs. Multiple rock layers, varying from a few to a few tens of meters thick, are visible in the steep slopes on the spurs and gullies. Layered rocks on Earth form from sedimentary processes (such as those that formed the layered rocks now seen in Arizona's Grand Canyon) and volcanic processes (such as layering seen in the Waimea Canyon on the island of Kauai). Both origins are possible for the Martian layered rocks seen in this image. In either case, the total thickness of the layered rocks seen in this image implies a complex and extremely active early history for geologic processes on Mars.

    The left and center 'context' images are Viking mosaics reproduced at scales of 230 meters/pixel and 80 meters/pixel respectively. Outlines in these two images represent the location of the higher resolution image(s).

    Malin Space Science Systems (MSSS) and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  12. Strike-slip faulting of ridged plains near Valles Marineris, Mars

    NASA Astrophysics Data System (ADS)

    Schultz, R. A.

    1989-10-01

    This paper identifies and documents several well-preserved examples of Martian strike-slip faults and examines their relationships to wrinkle-ridges. The strike-slip faulting predates or overlaps periods of wrinkle-ridge growth southeast of Valles Marineris, and some wrinkle ridges may have nucleated and grown as a result of strike-slip displacements along the echelon fault arrays. Lateral displacements of several km inferred along these arrays may be related to tectonism in Tharsis.

  13. Volcanism and FluvioGlacial Processes on the Interior Layered Deposits of Valles Marineris, Mars?

    Microsoft Academic Search

    M. G. Chapman

    2005-01-01

    The Interior Layered Deposits (ILDs) in Valles Marineris have been suggested to be possible sub-ice volcanoes. Recent images also show evidence of possible fluvio-glacial processes on the ILDs and hence volcano\\/ice\\/water interaction. For example, Mars Express Mission anaglyph from Orbit 334 of central Ophir and Candor Chasmata, THEMIS image V10551002, and MOC images E1700142 and E190020 show 2 ILD mounds

  14. A network of lava tubes as the origin of Labyrinthus Noctis and Valles Marineris on Mars

    NASA Astrophysics Data System (ADS)

    Leone, Giovanni

    2014-05-01

    The role of lava tube networks and lava channels is reassessed as the primordial stage of the volcano-erosional processes that formed the Labyrinthus Noctis-Valles Marineris system instead of a tectonic origin. The combined use of CTX, CRISM, HiRISE imagery, and MOLA profiles has provided valuable insight in the evolution of pit chains into fossae first and then chasmata later due to mass wasting processes caused by the erosional effect of the lava flows that draped Valles Marineris and other outflow channels. Although a quantitative evaluation of eruption rates is difficult even with digital terrain models (DTMs) because of the mixing between new flows and paleoflows, a comparison with Elysium and other Tharsis outflow channels suggests that the availability of lava supply is correlated to their widths. The images of ubiquitous lava flows rather than sporadic light-toned deposits strengthen the role of lava over that of water in the erosional processes that formed Labyrinthus Noctis and carved Valles Marineris like many other outflow channel on Mars. The erosional evolution of the outflow channels shows an increasing trend of age and a decreasing trend of depth from the sources on Tharsis to the mouths at Chryse Planitia. This finding, coupled with the observation of lava flows mantling Chryse Planitia, may have profound implications for the water inventories thought to have filled the lowlands with an ocean.

  15. Thin-skinned deformation of sedimentary rocks in Valles Marineris, Mars

    USGS Publications Warehouse

    Metz, Joannah; Grotzinger, John; Okubo, Chris; Milliken, Ralph

    2010-01-01

    Deformation of sedimentary rocks is widespread within Valles Marineris, characterized by both plastic and brittle deformation identified in Candor, Melas, and Ius Chasmata. We identified four deformation styles using HiRISE and CTX images: kilometer-scale convolute folds, detached slabs, folded strata, and pull-apart structures. Convolute folds are detached rounded slabs of material with alternating dark- and light-toned strata and a fold wavelength of about 1 km. The detached slabs are isolated rounded blocks of material, but they exhibit only highly localized evidence of stratification. Folded strata are composed of continuously folded layers that are not detached. Pull-apart structures are composed of stratified rock that has broken off into small irregularly shaped pieces showing evidence of brittle deformation. Some areas exhibit multiple styles of deformation and grade from one type of deformation into another. The deformed rocks are observed over thousands of kilometers, are limited to discrete stratigraphic intervals, and occur over a wide range in elevations. All deformation styles appear to be of likely thin-skinned origin. CRISM reflectance spectra show that some of the deformed sediments contain a component of monohydrated and polyhydrated sulfates. Several mechanisms could be responsible for the deformation of sedimentary rocks in Valles Marineris, such as subaerial or subaqueous gravitational slumping or sliding and soft sediment deformation, where the latter could include impact-induced or seismically induced liquefaction. These mechanisms are evaluated based on their expected pattern, scale, and areal extent of deformation. Deformation produced from slow subaerial or subaqueous landsliding and liquefaction is consistent with the deformation observed in Valles Marineris.

  16. The influence of the topography on landslide's mobility in Valles Marineris (Mars), by a numerical & remote sensing approach

    NASA Astrophysics Data System (ADS)

    Lucas, A.; Mangeney, A.

    Landslides play a major role in the erosion processes and transport at the surface of the Earth and Mars. Indeed, the dynamics of the landscapes is strongly tributary of these catastrophic events which also constitute important risks for the populations on Earth. It is thus advisable to study their dynamics. In addition, water often takes part in the dynamics of these events on Earth. Former work highlights a very great mobility of the gravitational flows over Mars [1] [2] [3]. The studies of martians landslides contribute to understand the dynamics of the landscapes and also teach us about climate conditions during those events occurring at Amazonian Time [4] as the potential presence of ground water. Currently, there is no unified theory for describing the landslides at the field scale. The description of granular flows is quiet well understood at the microscopic scale using various experimental and numerical experiments. But at the macroscopic scale, description remains today a largely open and wide problem. Dry granular flows experiments on an horizontal plane [5] present several differences with martians data [7]. Runout of martians landslides are twice larger than in experiments. Numerical studies in agreement with experiments scaling laws using a numerical model developped by F. Bouchut and A. Mangeney [6] based on Saint-Venant equations is proposed. Our studies focus on the influence of the topography on landslide's mobility occuring in Valles Marineris. To start with MOLA/MGS DEM data, it is also possible to rebuild the paleotopography using remote sensing methods for identification of landslide deposits. We use HRSC/MeX, THEMIS/MO and MOC/MGS images to find out correctly each area of deposits in our DEM. Afterwards, we perfom a series of numerical experiments to model landslides over a real topography rebuilt from MOLA grid. Our results show that the topography is a main parameter which contribute significantly to increase the mobility of granular flows. Nevertheless, the taking into account of the topography does not explain the total differences between experiments and martians landslides. Our simulations show also that the mobility of martians landslides is larger than the mobility observed in dry granular flows experiments (one order of magnitude larger) [7] but still remains under sur-satured sub-marines landslides (one order of magnitude less) [8]. Those results show that it is needed to introduce another physical process to explain such mobility. The results do not allow to conclude about the role of water in the martians landslide dynamics. We propose that degazing processes causing by CO2 or sublimation of icy lenses in the ground would imply an increasing of mobility during slide events at Amazonian. A geological study using mineralogy given by OMEGA/MeX and Radar profile given by MARSIS/MeX would help to subjugate our preliminary results. References [1] B. K. Lucchitta. Landslides in Valles Marineris, Mars. Journal of Geoph. Research, 84:8097-8113, December 1979. [2] A. S. McEwen. Mobility of large rock avalanches : Evidence from Valles Marines, Mars. Geology, pages 1111-1114, 1989. [3] C. Quantin, P. Allemand, and C. Delacourt. Morphology and geometry of Valles Marineris landslides. Planetary and Space Sciences, 52:1011-1022, September 2004. [4] C. Quantin, P. Allemand, N. Mangold, and C. Delacourt. Ages of Valles Marineris (Mars) landslides and implications for canyon history. Icarus, 172:555- 572, December 2004. [5] E. Lajeunesse, A. Mangeney-Castelnau, and J. P. Vilotte. Spreading of a granular mass on a horizontal plane. Physics of Fluids, 16:2371-2381, July 2004. [6] A. Mangeney-Castelnau, F. Bouchut, J. P. Vilotte, E. Lajeunesse, A. Aubertin, and M. Pirulli. On the use of Saint Venant equations to simulate the spreading of a granular mass. Journal of Geophysical Research (Solid Earth), 110:9103- +, September 2005. [7] E. Lajeunesse, C. Quantin, P. Allemand, and C. Delacourt. New insights on the runout of large landslides in the Valles-Marineris canyons, Mars. Geophysical Research Letters, 33:4

  17. Fault-Continuation Ridges in the Valles Marineris, Mars: Evidence for Groundwater Circulation

    NASA Astrophysics Data System (ADS)

    Treiman, A. H.; Spiker, K.

    1996-03-01

    The walls of the Valles Marineris (VM) are marked in many places by high-standing ridges that continue the traces of graben bounding faults on the plains adjacent to the VM. These fault-continuation ridges (FCR) are most prominent at Melas Labes and Candor Labes, where they form the boundaries between Ophir, Melas, and Candor Chasmae. FCR are as long as 100 km, and extend from the plains surfaces downward about 3-6 km in elevation. Available data suggests that FCR are fault zones cemented and hardened by groundwater deposits.

  18. Complex early rifting in Valles Marineris: Results from preliminary geologic mapping of the Ophir Planum Region of Mars

    NASA Astrophysics Data System (ADS)

    Schultz, Richard A.

    Photogeologic mapping of the Ophir Planum quadrangle was undertaken to solve two main problems: (1) what controlled the location, orientation, and growth of Ophir Planum grabens; and (2) how are the grabens and trough faulting related. The rich geological history of the Ophir Planum quadrangle underscores the fundamental importance of faulting in the early growth of Valles Marineris.

  19. Lithologic and Structural Control on Slope Morphology in the Valles Marineris

    NASA Technical Reports Server (NTRS)

    Patton, P. C.

    1985-01-01

    Throughout the Valles Marineris scarp morphology varies as a function of lithology, structure and scarp height. In addition lithology is an important control on permeability and the relative importance of spring sapping processes. Geomorphic mapping of distinct subareas can be used to define the characteristic scarp forms. Distinct morphologic zones defined on the basis of regional variations in lithology are described. Lithology and tectonic history are shown to be the two most important factors controlling slope development. Regional variation in scarp morphology can be correlated with the orientation and density of fracture systems; scarp height and the presence of rejuvenated fault scarps; and the thickness and degree of exposure of presumably less competent, more permeable, water saturated crated plateau material in the chasmata scarps.

  20. Analysis of a new geomorphological inventory of landslides in Valles Marineris, Mars

    NASA Astrophysics Data System (ADS)

    Brunetti, Maria Teresa; Guzzetti, Fausto; Cardinali, Mauro; Fiorucci, Federica; Santangelo, Michele; Mancinelli, Paolo; Komatsu, Goro; Borselli, Lorenzo

    2014-11-01

    We completed a systematic mapping of landslides in a 105 km area in Tithonium and Ius Chasmata, Valles Marineris, Mars, where landslides are abundant. Using visual interpretation of medium to high-resolution optical images, we mapped and classified the geometry of 219 mass wasting features, including rock slides, complex/compound failures, rock avalanches, debris flows, and rock glacier-like features, for a total landslide area of ALT=4.4×104 km, 44% of the study area, a proportion larger than previously recognised. Studying the landslide inventory, we showed that the probability density of landslide area p(AL) follows a power law, with a scaling exponent ?=-1.35±0.01, significantly different from the exponents found for terrestrial landslides, ?=-2.2 and ?=-2.4. This indicates that the proportion of large landslides (AL>107 m) is larger on Mars than on Earth. We estimated the volume (VL) of a subset of 49 deep-seated slides in our study area and found that the probability density of landslide volume p(VL) obeys a power law trend typical of terrestrial rock falls and rock slides, with a slope ?=-1.03±0.01. From the combined analysis of landslide area and volume measurements, we obtained a power law dependency comparable to a similar relationship obtained for terrestrial bedrock landslides, VL=(1.2±0.8)×AL(1.25±0.03). From the fall height HL and run out length LL of a subset of 83 slides unaffected by topographic confinement, we obtained the mobility index (Heim's ratio) HL/LL, a measure of the apparent friction angle of the failed materials, ?=14.4°±0.4°. Slope stability simulations and back analyses performed adopting a Limit Equilibrium Method, and using Monte Carlo approaches on failed and stable slopes, suggest that the large landslides in Valles Marineris were seismically induced.

  1. Acidic Alteration Environments at Valles Marineris, Noctis Labyrinthus and Mawrth Vallis

    NASA Astrophysics Data System (ADS)

    Bishop, Janice L.; Weitz, Catherine M.; Flahaut, Jessica; Gross, Christoph; Horgan, Briony

    2015-04-01

    Unique surface materials have been discovered at Valles Marineris, Noctis Labyrinthus, Mawrth Vallis, and elsewhere that have CRISM features distinct from those of any known minerals. Typically these unusual sites are found in light-toned outcrops or interior layered deposits associated with phyllosilicates and/or sulfates. We term these units "doublet" materials because they exhibit a doublet absorption in CRISM spectra between 2.2 and 2.3 µm. We are investigating the spectral signatures of these outcrops compared to lab spectra of minerals, mixtures and alteration products. We're also evaluating the stratigraphy of these unique alteration phases compared with neighboring phyllosilicate and sulfate units. A similar 2.2-2.3 µm doublet has been observed in spectra taken of acid altered clays produced in the laboratory. The band centers and relative intensities of these Martian doublet features vary greatly suggesting that a process such as acid weathering could be acting on OH-bearing minerals to produce altered phases that differ depending on the type of substrate, water/rock ratio, solution chemistry, and duration of aqueous processes. Because these unique materials occur in many regions across a range of times on Mars, acidic alteration may have been a key process at local and regional scales throughout Martian geologic history. Constraining the types of acidic alteration that have taken place on Mars will assist in defining the aqueous geochemistry at these sites.

  2. Erosional development of bedrock spur and gully topography in the Valles Marineris, Mars

    NASA Technical Reports Server (NTRS)

    Patton, Peter C.

    1990-01-01

    Gully networks separated by resistant bedrock spurs are a common erosional feature along the escarpments that border the Valles Marineris. The resistant spur topography is best developed where the base of the slope is truncated by linear scarps interpreted as fault scarps. Regional variations in slope morphology imply that spur and gully topography undergoes a systematic progressive degradation through time associated with the erosional destruction of the basal fault scarps. The comparative morphometry of the divide networks indicates that the density of the spur networks and the number of first-order unbranched spurs decreases as the basal slope break becomes more sinuous. Abstraction of the spurs occurs through regolith storage in adjacent gullies at the slope base and the most degraded slope forms are entirely buried in talus. The basal fault scarps apparently control regolith transport by allowing debris to drain from the slope. As these basal scarps decay the slope base becomes increasingly sinuous and the slopes become transport limited. Dry mass-wasting may be the most important process acting on these slopes where a continually lowered base level is required to maintain the spur topography. In contrast to the Martian slopes, range front fault escarpments in the western U.S. show no systematic trend in spur network geometry as they are eroded. These weathering limited slopes are controlled by the more efficient removal of regolith through fluvial processes which rapidly create quasi-equilibrium drainage networks.

  3. Structural development of Coprates Chasma and western Ophir Planum, Valles Marineris Rift, Mars

    NASA Technical Reports Server (NTRS)

    Schultz, Richard A.

    1991-01-01

    A portion of Valles Marineris was mapped in detail in order to clarify the dominant processes responsible for the formation of Coprates Chasma. New crater counts indicate that the caprock on western Ophir Planum plateau has a Late Hesperian crater age, whereas trough floor preserved in western Coprates Chasma has an Early to Late Hesperian crater age. Caprock on western Ophir Planum correlates in relative age with the Syria Planum Formation, and the caprock may overlie Lower Hesperian ridged plains material. Trough floor material in Coprates Chasma correlates in relative age with ridged plains material on the adjacent Lunae Planum and Coprates plateaus and represents a structurally coherent block displaced downward by normal faulting. The crater counts and detailed structural relationships demonstrate the commonly accepted view that Coprates Chasma occupies a graben. Formation of Coprates Chasma by keystone collapse of locally elevated topography is not supported by available topographic data, but a general association between the trough and volcanotectonic activity in the Tharsis region is considered to be a likely explanation for the trough forming stresses. Faulting on Ophir Planum appears related to the faulting that created the Coprates Chasma trough. The geology and structure of Coprates Chasma are comparable to those of other troughs such as Melas, Ius, and perhaps Candor chasmata, suggesting that these troughs may also have formed as grabens.

  4. Structural development of Coprates Chasma and western Ophir Planum, Valles Marineris Rift, Mars

    NASA Astrophysics Data System (ADS)

    Schultz, Richard A.

    1991-12-01

    A portion of Valles Marineris was mapped in detail in order to clarify the dominant processes responsible for the formation of Coprates Chasma. New crater counts indicate that the caprock on western Ophir Planum plateau has a Late Hesperian crater age, whereas trough floor preserved in western Coprates Chasma has an Early to Late Hesperian crater age. Caprock on western Ophir Planum correlates in relative age with the Syria Planum Formation, and the caprock may overlie Lower Hesperian ridged plains material. Trough floor material in Coprates Chasma correlates in relative age with ridged plains material on the adjacent Lunae Planum and Coprates plateaus and represents a structurally coherent block displaced downward by normal faulting. The crater counts and detailed structural relationships demonstrate the commonly accepted view that Coprates Chasma occupies a graben. Formation of Coprates Chasma by keystone collapse of locally elevated topography is not supported by available topographic data, but a general association between the trough and volcanotectonic activity in the Tharsis region is considered to be a likely explanation for the trough forming stresses. Faulting on Ophir Planum appears related to the faulting that created the Coprates Chasma trough. The geology and structure of Coprates Chasma are comparable to those of other troughs such as Melas, Ius, and perhaps Candor chasmata, suggesting that these troughs may also have formed as grabens.

  5. Mars: Canyon and Volcanoes

    NSDL National Science Digital Library

    This image of Mars includes a brief description and a zoom-in feature to view the image at closer range. The center of the scene shows the entire Valles Marineris canyon system. An audio option allows one to listen to the caption. A glossary is also provided.

  6. Sulfates and Other Hydrated Minerals in Ius Chasma, Valles Marineris and Implications for Water Geochemistry

    NASA Astrophysics Data System (ADS)

    Roach, L. H.; Mustard, J. F.; Murchie, S. L.; Milliken, R. E.; Crowley, J. K.; Bishop, J. L.; Arvidson, R. E.

    2008-12-01

    Ius Chasma is a linear trough in western Valles Marineris containing horst and graben structures, multiple landslides, and light-toned floor deposits. Elsewhere is Valles Marineris, sulfate deposits identified by OMEGA and CRISM are restricted to Interior Layered Deposits or nearby autochthonous loose material (Gendrin et al., 2005; Murchie et al., 2007; Murchie et al., in revision). In Ius Chasma, however, sulfates are found in thin floor units in enclosed depressions at the lowest elevations. Kieserite is at the lowest elevation, with polyhydrated sulfate and an unidentified hydrated phase, at higher elevations. Some poorly defined layering is visible on the HiRISE scale, but is not diagnostic. The total exposed thickness of kieserite is 300 m, with a total range in elevation of -4175 to -4475 m. The kieserite deposit is covered in places by pyroxene-bearing dunes. The polyhydrated sulfate outcrops range from -3515 to -4000 m. The unidentified hydrated phase outcrops between -3770 to -4100 m. The polyhydrated sulfate and unidentified hydrated material occur at the same elevations and do not have a clear stratigraphic relationship. Elsewhere in Ius Chasma, the unidentified hydrated material clearly drapes chasma floor units. The unidentified hydrated material is characterized by absorptions near 1.4 and 1.9 ?m, and a narrow doublet at 2.21 and 2.27 ?m. The deep ~1.9 ?m is due to the combination tone of the OH stretch and H2O bend and the ~1.4 ?m absorption is due to the 1st overtone of the OH stretch. Sulfates or other minerals with 2 or more water molecules per unit cell in their structure are necessary to account for deep water and hydroxyl absorptions in many spectra we observe. The doublet doesn't match any known sulfate, phyllosilicate, chloride, hydrated silica library spectra. Possibly a mixture of hydrated phases could explain this phase. The 2.21-2.26 ?m region is generally convex in sulfates, but gypsum (CaSO4 2H2O ) and jarosite group members (MFe3(SO4)2(OH)6) have absorptions there. However, neither sulfates' doublet matches the unidentified spectrum's minima. While there is no phyllosilicate that exactly matches the 2.21 and 2.27 ?m doublet, a combination of smectite clays, such as nontronite and montmorillonite, produces a similar doublet at 2.21 and 2.29 ?m. A third option that is spectrally close but not exact is hydrated silica. Hydrated silica has a wider absorption over 2.21- 2.25 ?m and its hydration bands are shifted to ~1.38 and ~1.91 ?m (Milliken et al., 2008). The location of kieserite in the lowest points of Ius Chasma, with polyhydrated sulfate exclusively found at higher elevations, suggests they were formed by nearly complete evaporation of a closed basin. Polyhydrated evaporites form first and then kieserite as the basin is drawn down. Originally, Ius Chasma may have been less connected to Melas Chasma than it is now (Peulvast and Masson, 1993). These sulfates may be evidence of an environment that supported isolated, evaporating basins. Better discrimination of the sulfate assemblages present and the stratigraphic relationships within the ILD is critical to understanding the environment during and since their formation.

  7. Reassessing rock mass properties and slope instability triggering conditions in Valles Marineris, Mars

    NASA Astrophysics Data System (ADS)

    Crosta, Giovanni Battista; Utili, Stefano; De Blasio, Fabio Vittorio; Castellanza, Riccardo

    2014-02-01

    The rock walls of the Valles Marineris valleys (VM) in the equatorial area of Mars exhibit several gravitational failures which resulted in a series of large landslides up to several hundred cubic kilometers in volume. Questions arise as to forces at play and rock strength in the stability of the walls of VM. In this work we address the stability analysis of the walls of VM by considering the strength of the materials of the walls and the causes of landslides. Using finite element calculations and the limit analysis upper bound method, we explore the range of cohesion and friction angle values associated with realistic failure geometries, and compare predictions with the more classical Culmann's translational failure model. Our analysis is based both on synthetic, simplified slope profiles, and on the real shape of the walls of VM taken from the MOLA topographic data. Validation of the calibrated cohesion and friction angle values is performed by comparing the computed unstable cross sectional areas with the observed pre- and post-failure profiles, the estimated failure surface geometry and ridge crest retreat. This offers a link between rock mass properties, slope geometry and volume of the observed failure, represented in dimensionless charts. The role of groundwater flow and seismic action on the decrease of slope stability is also estimated. Pseudo-static seismic analyses provide another set of dimensionless charts and show that low seismicity events induced by meteoroid impacts, consistent with the size of craters, could be a cause for some of the observed landslides, if poor rock properties for VM are assumed. Analyses suggest that rock mass properties are more similar to their earth equivalents with respect to what has been previously supposed.

  8. Complex Floor Deposits Within Western Ganges Chasma, Valles Marineris - High Resolution Image

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image shows a remarkable landscape of ridges and troughs that very closely resemble folded and warped sediments on Earth. This is the first time such warped beds have been seen on Mars, and neither their origin nor their occurrence within Ganges Chasma is understood. It is possible these are beds folded by a large landslide, but that would be very unusual. Alternatively, these may be folded sedimentary beds, similar to horizontal beds seen elsewhere in Ganges Chasma. However, what forces then folded these particular beds while leaving the others undeformed is unknown. Future imaging within this and the other Valles Marineris will be used to address such issues.

    Launched on November 7, 1996, Mars Global Surveyor entered Mars orbit on Thursday, September 11, 1997. The original mission plan called for using friction with the planet's atmosphere to reduce the orbital energy, leading to a two-year mapping mission from close, circular orbit (beginning in March 1998). Owing to difficulties with one of the two solar panels, aerobraking was suspended in mid-October and resumed in November 8. Many of the original objectives of the mission, and in particular those of the camera, are likely to be accomplished as the mission progresses.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  9. The Confluence of Gangis and Eos Chasmas (5-12 deg S, 31-41 deg W): Geologic, Hydrologic, and Exobiologic Considerations for Landing Site at the East End of Valles Marineris

    NASA Technical Reports Server (NTRS)

    George, J. A.; Clifford, S. M.

    1999-01-01

    Over its 3,500 km length, Valles Marineris exhibits an enormous range of geologic and environmental diversity. At its western end, the canyon is dominated by the tectonic complex of Noctis Labyrinthus; while in the east it grades into an extensive region of chaos where scoured channels and streamlined islands provide evidence of catastrophic floods that spilled into the northern plains. In the central portion of the system, debris derived from the massive interior layered deposits of Candor and Ophir Chasmas spills into the central trough. In other areas, 6 km-deep exposures of Hesperian and Noachian-age canyon wall stratigraphy have collapsed in massive landslides that extend many tens of kilometers across the canyon floor. Ejecta from interior craters, aeolian sediments, and possible volcanics emanating from structurally controlled vents along the base of the scarps, further contribute to the canyon's geologic complexity. Following the initial rifting that gave birth to Valles Marineris, water appears to have been a principal agent in the canyon's geomorphic development an agent whose significance is given added weight by its potential role in both sustaining and preserving evidence of past life. In this regard, the interior layered deposits of Candor, Ophir, and Hebes Chasmas, have been identified as possible lucustrine sediments that may have been laid down in long-standing ice-covered lakes. The potential survival and growth of native organisms in such an environment, or in the aquifers whose disruption gave birth to the chaotic terrain and outflow channels to the north and east of the canyon, raises the possibility that fossil indicators of life may be present in the local sediment and rock. Because of the enormous distances over which these diverse environments occur, identifying a single landing site that maximizes the opportunity for scientific return is not a simple task. However, given the fluvial history and narrow geometry of the canyon, the presence of a single exit at its eastern end provides an opportunity for sampling that appears unequaled elsewhere in the system.

  10. The Confluence of Gangis and Eos Chasmas (5-12 deg S, 31-41 deg W): Geologic, Hydrologic, and Exobiologic Considerations for Landing Site at the East End of Valles Marineris

    NASA Astrophysics Data System (ADS)

    George, J. A.; Clifford, S. M.

    1999-06-01

    Over its 3,500 km length, Valles Marineris exhibits an enormous range of geologic and environmental diversity. At its western end, the canyon is dominated by the tectonic complex of Noctis Labyrinthus; while in the east it grades into an extensive region of chaos where scoured channels and streamlined islands provide evidence of catastrophic floods that spilled into the northern plains. In the central portion of the system, debris derived from the massive interior layered deposits of Candor and Ophir Chasmas spills into the central trough. In other areas, 6 km-deep exposures of Hesperian and Noachian-age canyon wall stratigraphy have collapsed in massive landslides that extend many tens of kilometers across the canyon floor. Ejecta from interior craters, aeolian sediments, and possible volcanics emanating from structurally controlled vents along the base of the scarps, further contribute to the canyon's geologic complexity. Following the initial rifting that gave birth to Valles Marineris, water appears to have been a principal agent in the canyon's geomorphic development an agent whose significance is given added weight by its potential role in both sustaining and preserving evidence of past life. In this regard, the interior layered deposits of Candor, Ophir, and Hebes Chasmas, have been identified as possible lucustrine sediments that may have been laid down in long-standing ice-covered lakes. The potential survival and growth of native organisms in such an environment, or in the aquifers whose disruption gave birth to the chaotic terrain and outflow channels to the north and east of the canyon, raises the possibility that fossil indicators of life may be present in the local sediment and rock. Because of the enormous distances over which these diverse environments occur, identifying a single landing site that maximizes the opportunity for scientific return is not a simple task. However, given the fluvial history and narrow geometry of the canyon, the presence of a single exit at its eastern end provides an opportunity for sampling that appears unequaled elsewhere in the system.

  11. Mapping, classification, and statistics of mass movements in Valles Marineris, Mars

    NASA Astrophysics Data System (ADS)

    Brunetti, M.; Cardinali, M.; Fiorucci, F.; Guzzetti, F.; Santangelo, M.; Mancinelli, P.; Komatsu, G.; Goto, K.; Saito, H.

    2011-12-01

    An unprecedented spatial detail of the Mars surface is accessible using high and ultra-high-resolution images and data by the High-Resolution Stereo Camera (HRSC) on-board the ESA Mars Express satellite, by the Mars Orbiter Laser Altimeter (MOLA), on-board the NASA Mars Global Surveyor, and by the High Resolution Imaging Science Experiment (HiRISE) camera on-board the NASA Mars Reconnaissance Orbiter. The images have spatial resolutions adequate to detect and map mass movements, allowing for the compilation of a nearly complete geomorphological landslide inventory, above a minimum size threshold. In the study area located in Valles Marineris, we visually identified and mapped 179 landslides (including escarpments, source areas, and deposits) using interpretation criteria adopted by geomorphologists to map terrestrial landslides. This is a significantly larger number of slope failures than previously reported. Areas of the individual failures span in the range 1.3×10^5 m^2 < A < 2.6×10^9 m^2. Adopting a classification commonly used to catalogue terrestrial mass movements, slope failures recognized and mapped in the study area were classified in three main types: (i) deep-seated slides, including rock slides, complex and compound failures, (ii) flows, including shallow debris flows and debris avalanches, and deep-seated rock avalanches, and (iii) rock glaciers. For mass movements of the slide type, multiple generations of failures were recognized. For a subset of 76 mass movements of the slide type, including deep-seated slides, rock slides, complex and compound failures we have determined the planimetric area in a GIS. For 46 slides we have estimated the volume of the deposit. Using this information, we obtained the probability density of the landslide areas, p(A), and of the landslide volumes, p(V), and compared it with the corresponding probability density of terrestrial landslides. We found that: (a) mass movements of the slide type on Mars are significantly larger than similar mass movements on Earth, (b) the proportion of very large landslides (A > 10^7 m^2), compared to the small and medium size failures, is significantly larger on Mars than on Earth, while (c) the distribution of landslide volumes is similar to that found on Earth.

  12. Volcanism and Fluvio-Glacial Processes on the Interior Layered Deposits of Valles Marineris, Mars?

    NASA Astrophysics Data System (ADS)

    Chapman, M. G.

    2005-12-01

    The Interior Layered Deposits (ILDs) in Valles Marineris have been suggested to be possible sub-ice volcanoes. Recent images also show evidence of possible fluvio-glacial processes on the ILDs and hence volcano/ice/water interaction. For example, Mars Express Mission anaglyph from Orbit 334 of central Ophir and Candor Chasmata, THEMIS image V10551002, and MOC images E1700142 and E190020 show 2 ILD mounds in central Candor Chasma that have been sheared off at approximately equal elevations by some material that has been subsequently removed. Level shearing of ILD rock materials and subsequent removal of the abrasive material, suggest ice erosion and glacial processes because glacial ice is mobile enough to grind the rock and can melt away. Another adjacent ILD mound in Central Candor shows an abrupt flank termination and damming of material, rather than flank scour. The dammed material appears to be layers piled up in a ridge at the ILD base. This relation is observed on the HRSC anaglyph and MOC images E0101343 and E201146. Another ILD in Melas Chasma, seen on MOC image M0804981, shows lobes of flank material that terminate along a lineation; possibly suggesting lobe confinement against subsequently removed material. This morphology can also be observed on the flank of the Gangis Chasma ILD in MOC image M0705587. A possible terrestrial volcanic analog for this ILD flank morphology is the Helgafell hyaloclasitic ridge (tindar) in Iceland (Chapman et al., 2004), the eastern flank of which has a linear termination interpreted as largely unmodified and caused by hyalotuff material banked against a former ice wall that has since melted away (Schopka et al., 2003). Glacial shearing of some ILDs and confined banking of other ILDs suggest that these mounds formed at different times, as the sheared ILD likely predated ice and the confined ILD may have formed concurrently with ice. Alternatively, the banking may have been due to lack of shear forces (static ice) and confined post-depositional avalanche deposits. However, exposed in the banked cliff faces are near horizontal bedding planes that can be traced upslope into angled flank layers; a relation that may suggest ice concurrent with volcanic ILD formation (Chapman and Smellie, in press). In addition to glacial processes, many Mars ILDs show fluvial gullies cut into mostly low lying flank deposits. Gullies are eroded into all sides of the ILDs including their north-facing slopes, so solar heating likely did not generate the gullies. Although formal work on the subject is lacking, ongoing terrestrial observation by the author (on an edifice north of Helgafell and in Gjalp eruption films) indicate fluvial erosion of subglacial volcanoes on Earth may be concurrent with their formation, occurring after edifices rise above their surrounding ice-confined meltwater lake. Remnant ice on the top of the edifices can melt to generate streams that erode the growing volcanic flanks.

  13. Identification and spatial distribution of light-toned deposits enriched in Al-phyllosilicates on the plateaus around Valles Marineris, Mars

    NASA Astrophysics Data System (ADS)

    Le Deit, L.; Flahaut, J.; Quantin, C.; Allemand, P.

    2009-12-01

    The plateaus around Valles Marineris consist in series of mafic rocks suggested to be flood basalts (McEwen et al., 1998), lavas interbedded with sediments (Malin and Edgett, 2000), layered intrusive rocks (Williams et al., 2003), or lava flows dated from the Noachian to the late Hesperian epochs (Scott and Carr, 1978). Recent studies show the occurrence of light layered deposits of hundred meters thick cropping out on plateaus near Ius Chasma, Melas Chasma, Candor Chasma, Juventae Chasma and Ganges Chasma deposited during the Hesperian epoch by fluvio-lacustrine processes (Weitz et al., 2009), or by air-fall processes (Le Deit et al., 2009). These layered deposits are enriched in hydrated minerals including opaline silica (Milliken et al., 2008), hydroxylated ferric sulfates (Bishop et al., 2009), and possibly Al-rich phyllosilicates (Le Deit et al., 2009). We identified another type of formation corresponding to light-toned massive deposits cropping out around Valles Marineris. It appears that these light-toned deposits are associated to bright, rough, and highly cratered terrains, located beneath a dark and thin capping unit. Previous studies report the occurrence of phyllosilicates on few locations around Valles Marineris based on OMEGA data analyses (Gondet et al., 2007; Carter et al., 2009). The analysis of CRISM data show that the light-toned deposits are associated with spectra displaying absorption bands at 1.4 ?m, 1.9 ?m, and a narrow band at 2.2 ?m. These spectral characteristics are consistent with the presence of Al-rich phyllosilicates such as montmorillonite, or illite in the light-toned deposits. They constitute dozens of outcrops located on the plateaus south and east of Coprates Chasma and Capri Chasma, and west of Ganges Chasma. All outcrops investigated so far are present over Noachian terrains mapped as the unit Npl2 by Scott and Tanaka (1986), and Witbeck et al. (1991). These light-toned deposits could result from in situ aqueous alteration of Noachian basaltic plateaus during or after the Noachian epoch. We also identified Fe/Mg-rich phyllosilicates that are commonly found in the southern highland Noachian terrains (Mustard et al., 2008). They are located in central peaks, rims and ejecta of impact craters on plateaus, suggesting excavation of old buried layers. The deposits located around Valles Marineris are characterized by a wide variety of hydrated minerals that registered the evolution of the environmental conditions from the Noachian to the late Hesperian epochs. Further investigations are ongoing to determine their global spatial distribution and their stratigraphical relationships in order to better constrain the geological and climatic history of the region of Valles Marineris.

  14. A New Method for High-Resolution Apparent Thermal Inertia Mapping of Mars: Application to Valles Marineris

    NASA Astrophysics Data System (ADS)

    Kubiak, M.; Mège, D.; Gurgurewicz, J.; Ci??ela, J.

    2014-12-01

    The minerals absorb and reflect thermal infrared (TIR) light of the different wavelengths depending on their composition and structure. Thus, every rock absorbs and reflects different wavelengths in TIR and has its own spectral signature. The TIR images are used in the thermal inertia mapping and in its approximation called apparent thermal inertia (ATI). We present the methodology and the high-resolution apparent thermal inertia maps for selected parts of Valles Marineris (Mars). ATI was calculated from surface albedo (A) and diurnal temperature difference (?T) following the equation: ATI = (1 - A) / ?T. Albedo was computed by dividing reflected radiation (IR) by incident radiation (II): A = IR / II. After introducing: II = F • cosIA, where F stands for solar constant and IA for incident angle (°), it develops to: A = IR / (F • cosIA). This formula allows us to calculate A on a horizontal surface. Calculating A on an inclined surface requires corrections of IA against relief characteristics (slopes, aspects): IAC = (IA - arctan(tans • cos(e + t • 15° - 180°))), where s is slope (°), e - aspect (°) and t - local solar time (h). A correction was made also for ?T. The calibration process was more complex because it involved changes in incident radiation (II) over a given time interval (?T = T13:00 - T6:00). II is a function of: Martian tilt, eccentricity, perihelium longitude, solar longitude (Ls, in °), latitude (?, in °), local solar time and relief characteristics. Total II, integrated over the time interval, can be calculated following the equation [1]. The results were compared to the existing thermal inertia maps of Mars.

  15. Morphology, composition, age and spatial extent of a layered superficial formation covering the plains around Valles Marineris, Mars

    NASA Astrophysics Data System (ADS)

    Le Deit, L.; Bourgeois, O.; Le Mouélic, S.; Quantin-Nataf, C.; Mège, D.; Sotin, C.; Massé, M.; Sarago, V.

    2008-09-01

    Introduction An extensive light-toned layered formation covers the plains surrounding Valles Marineris on Mars. It is particularly visible south of Ius Chasma and of Melas Chasma [1], southwest of Juventae Chasma [2,3], north of Tithonium Chasma and west of Ganges Chasma. Some deposits of this formation may be enriched in hydrated silicates such as hydrated glasses, chalcedony, opal or other hydrated Si-rich phases according to CRISM data [1]. From an analysis of HRSC, THEMIS, MOC, HiRISE, MOLA PEDR, OMEGA and CRISM data, we discuss the morphology, the composition, the age, the spatial extent and the emplacement processes of these layered deposits (LDs). Here we focus on two regions where the LDs are particularly spectacular: Ganges Chasma and Juventae Chasma. Regional map We have compiled a regional map of the LDs around Valles Marineris (orange in Fig. 1a). In some cases their spatial extent is unclear due to their being covered either by dark material or by dust that appears yellow on IRB color HiRISE images (Fig 1b). Dashed contours on Fig. 1a outline these poorly constrained boundaries, whereas plain contours correspond to regions where the stratigraphic contact between the LDs and the underlying basement is unambiguous. The light-toned LDs are located stratigraphically and topographically above the basaltic basement that constitutes the plains surrounding Valles Marineris. The total thickness of the LDs does not exceed a hundred meters on average. They consist of subparallel light-toned layers of various thicknesses that are apparently interbedded with darker beds (Fig. 1b). This difference in albedo can be due to variations in mineralogical composition, topographic slope, roughness, grain size or state of erosion of the different layers, or to partial covering of certain layers by a dark mantle. Ganges Chasma West of Ganges Chasma, the LDs rest topographically and stratigraphically above the Noachian plains that have been defined as the Npl2 unit [4] (Fig. 1c). Npl2 has been interpreted as thin interbedded lava flows and eolian deposits that partly bury underlying rocks [4]. Outcrops of bright material on CTX and night-time infrared THEMIS images are exposed a few tens of kilometres west of the LDs. These light-toned outcrops are located near the Hesperian outflow channel Allegheny Vallis [5] (Fig. 1c). They may correspond to exposures of the Npl2 unit or alternatively to a formation covering Npl2. The LDs are located stratigraphically above the outflow channel, so they are Hesperian in age or younger. LDs are characterized by a particularly low brightness temperature on night-time THEMIS images in comparison with the surrounding plains (Fig. 1d). It suggests that the LDs are composed of a soft material that is sensitive to erosion. This is consistent with the occurrence of remnant buttes, kilometres away from the largest outcrop. The buttes attest that the LDs were more extensive in the past and have been removed by erosion in many places. The thickness of the LDs ranges from 10 to 40 m on average. Their constitutive layers are subparallel to each other but they locally exhibit deformation features such as folds and fractures. Some layers display a polygonal texture. The polygons range from a few metres to about 10 m in diameter. This polygonal network may be due to thermal contraction, desiccation or sublimation [6]. Sinuous ridges, as wide as 60 m, are visible on the LDs (Fig. 1c). At night, they have a similar brightness temperature as the LDs and they are apparently composed of the same material. Their morphology suggests that they are eskers or inverted fluvial channels [7-9]. In that latter case, a fluvial origin could explain the deposition of the LDs. However, other origins such as lacustrine or glacial deposition, ash or dust air-fall and ash flows cannot be excluded. The analysis of CRISM data (FRT 8949) shows that some layers have spectral characteristics of hydrated materials. Ratio spectra display small absorption bands at ~1.39 ?m and ~1.92 ?m, a deep band centred near ~2.2-2.24 ?m, and a drop be

  16. Complex Floor Deposits Within Western Ganges Chasma, Valles Marineris - High Resolution Image

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image shows the area near the canyon wall, where large blocks of the upland surface have slumped down into the canyon. Close inspection of this image shows numerous small dark dots that are in fact individual rocks on the surface of Mars. These rocks vary from the size of a small automobile to the size of a house, have fallen down steep slopes.

    Launched on November 7, 1996, Mars Global Surveyor entered Mars orbit on Thursday, September 11, 1997. The original mission plan called for using friction with the planet's atmosphere to reduce the orbital energy, leading to a two-year mapping mission from close, circular orbit (beginning in March 1998). Owing to difficulties with one of the two solar panels, aerobraking was suspended in mid-October and resumed in November 8. Many of the original objectives of the mission, and in particular those of the camera, are likely to be accomplished as the mission progresses.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  17. Interior Layered Deposits in Valles Marineris, Mars: Insights From 3d-Data Obtained by the High Resolution Stereo Camera (HRSC) on Mars Express

    NASA Astrophysics Data System (ADS)

    Hauber, E.; Gwinner, K.; Stesky, R. M.; Fueten, F.; Michael, G.; Reiss, D.; Hoffmann, H.; Jaumann, R.; Neukum, G.; Zegers, T.

    2004-12-01

    The Interior Layered Deposits (ILD) in the Valles Marineris depressions on Mars may be of volcanic or sedimentary origin. Either way, their presence has profound implications for the formation of the Valles Marineris itself. The High Resolution Stereo Camera (HRSC) on board the Mars Express mission obtains high-resolution stereo and multipectral images, which are particularly well suited for the geomorphologic analysis of the ILD. One possible key to decide whether the layers are volcanic or sedimentary is their layering geometry, i.e., their strike and dip. Sedimentary, water-lain deposits should have a horizontal layering following an equipotential line, if no post--depositional processes have tilted the layered sequence. On the other hand, volcanic layers from pyroclastic eruptions, including subglacial eruptions, might be inclined, e.g., in tuff cones or in subglacial volcanoes. The strike and dip of layers should then display a concentric pattern around the vent. Digital Elevation Models and orthoimages derived from HRSC data have been used to measure the strike and dip of several ILD in the troughs of Hebes, Ophir, Candor, Melas, and Juventae Chasmata. In most cases, the layers have dips of 10o--20o, dipping outward from the centers of the ILD. This pattern is in agreement with a volcanic origin. At Juventae Chasma, the layering of one ILD at --4.5oS, 297.3oE is subhorizontal. This particular ILD is also distinguished from the other ILD covered by this study by its morphology, as revealed by HRSC, Themis, and MOC images, and by its mineralogy, as revealed by the imaging spectrometer Omega on Mars Express [Bibring et al., COSPAR 2004]. Here, a sedimentary origin seems consistent with our measurements.

  18. A Marineris Vallis sample site

    NASA Technical Reports Server (NTRS)

    Bridger, C. S.

    1988-01-01

    Consideration is given to the choice of a Marineris Vallis canyon site in that it may offer the widest possible variety of martian units with a minimum amount of roving. Researchers support this in the classical comparison of Marineris Vallis with the Grand Canyon of the U.S.A. It is well-known to American geologists that most of the geological units in the U.S. may be found here in one section. Might not the Martian canyon offer a similar selection but only more so in view of its much greater size. A system whereby this sampling may be effected is proposed based on a combination of a skip with a wire-line core-barrel method. The final design will depend more on the completeness of the core to be taken as the entire section is that long that the weight of the core of the whole section may well be prohibitive for return to Earth unless several returns are envisaged. The wire-line is operated from a static head-gear in much the same way as an oil well implying a lander not needing mobility of any kind - a destinct advantage.

  19. Martian canyons and African rifts: Structural comparisons and implications

    NASA Technical Reports Server (NTRS)

    Frey, H. V.

    1978-01-01

    The resistant parts of the canyon walls of the Martian rift complex Valled Marineris were used to infer an earlier, less eroded reconstruction of the major roughs. The individual canyons were then compared with individual rifts of East Africa. When measured in units of planetary radius, Martian canyons show a distribution of lengths nearly identical to those in Africa, both for individual rifts and for compound rift systems. A common mechanism which scales with planetary radius is suggested. Martian canyons are significantly wider than African rifts. The overall pattern of the rift systems of Africa and Mars are quite different in that the African systems are composed of numerous small faults with highly variable trend. On Mars the trends are less variable; individual scarps are straighter for longer than on earth. This is probably due to the difference in tectonic histories of the two planets: the complex history of the earth and the resulting complicated basement structures influence the development of new rifts. The basement and lithosphere of Mars are inferred to be simple, reflecting a relatively inactive tectonic history prior to the formation of the canyonlands.

  20. Martian canyons and African rifts - Structural comparisons and implications

    NASA Technical Reports Server (NTRS)

    Frey, H.

    1979-01-01

    The resistant parts of the canyon walls of the Martian rift complex Valles Marineris have been used to infer an earlier, less eroded reconstruction of the major troughs. The individual canyons are compared with individual rifts of East Africa. When measured in units of planetary radius, Martian canyons show a distribution of lengths nearly identical to those in Africa, both for individual rifts and for compound rift systems. A common mechanism which scales with planetary radius is suggested. Martian canyons are significantly wider than African rifts. This is consistent with the longstanding idea that rift width is related to crustal thickness: most evidence favors a crust on Mars at least 50% thicker than that of Africa. The overall patterns of the rift systems of Africa and Mars are quite different in that the African systems are composed of numerous small faults with highly variable trend. On Mars the trends are less variable; individual scraps are straighter for longer than on earth. The basement and lithosphere of Mars are inferred to be simple, reflecting a relatively inactive tectonic history prior to the formation of the canyonlands.

  1. Surface Composition Differences in Martian Canyon

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Color differences in this daytime infrared image taken by the camera on NASA's Mars Odyssey spacecraft represent differences in the mineral composition of the rocks, sediments and dust on the surface.

    The image shows a portion of a canyon named Candor Chasma within the great Valles Marineris system of canyons, at approximately 5 degrees south latitude, 285 degrees east (75 degrees west) longitude. The area shown is approximately 30 by 175 kilometers (19 by 110 miles).

    The image combines exposures taken by Odyssey's thermal emission imaging system at three different wavelengths of infrared light: 6.3 microns, 7.4 microns and 8.7 microns.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The thermal emission imaging system was provided by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and JPL. JPL is a division of the California Institute of Technology in Pasadena.

  2. The Grand Canyon of Mars and how it formed

    NSDL National Science Digital Library

    This module from the Mars Exploration Curriculum revolves around the formation of Valles Marineris. Students investigate the formation of Mars' 3,000 mile-long rift valley. After investigating how a planet's surface can be altered and analyzing data and images from NASA's missions to Mars, students develop hypotheses to explain the rift valley's formation and amass evidence to support their ideas.

  3. Ryan Canyon Hull Canyon

    E-print Network

    ten Brink, Uri S.

    Geospatial-Intelligence Agency (http://earth-info.nga.mil/gns/html/index.html) Bathymetry is from National:1,500,000 Contour interval 500 meters Depths referenced to Instantaneous Sea Level Canyon names are from National

  4. Hot Canyon

    SciTech Connect

    None

    2012-06-18

    This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  5. Hot Canyon

    SciTech Connect

    None

    2012-01-01

    This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  6. Hot Canyon

    ScienceCinema

    None

    2013-03-01

    This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  7. Mechanisms of slope failure in Valles Marineris, Mars D.P. Neuffer1,2

    E-print Network

    Geomechanics-Rock Fracture Group, Department of Geological Sciences and Engineering/172, Mackay School of Earth in the large relief exposures (up to 8 km) of basaltic wall rock and soft interior layered deposits (ILDs). Eleven landslides, including eight circular failures, were mapped in the ILDs. Two wall rock landslide

  8. Small, Spectrally Distinct Deposits in the Valles Marineris, Mars: A New Lithology?

    NASA Astrophysics Data System (ADS)

    Hamilton, V. E.

    2005-12-01

    Materials suspected of having a relatively felsic spectral character were identified in THEMIS infrared data of Eos Chasma by Hamilton and Christensen [1]. A survey of decorrelation stretched THEMIS infrared images over Eos and Ganges Chasmata reveals that similar materials are widespread throughout the region, but do not form large outcrops; rather they most commonly are associated with small knobs in the vicinity of olivine-rich materials. Ratios of THEMIS spectra from olivine-rich materials to Eos Chasma floor materials show an expected long wavelength absorption characteristic of olivine enrichment. Spectral ratios of the newly identified material to the floor materials, on the other hand, show an unusual shape dominated by a short wavelength absorption characteristic of felsic minerals, although this assignment is tentative. We are analyzing THEMIS and TES atmosphere-subtracted surface spectra to determine the phase(s) responsible for the observed signatures. This presentation will describe the mineralogy, morphology and thermophysical properties of these materials as observed by THEMIS and TES, as well as related characteristics observed in MOC and MOLA data. [1] Hamilton, V. E., and P. R. Christensen (2003), Eos Trans. AGU, 84, Fall Meet. Suppl., Abstract P21A-03.

  9. Dip of Chasm Wall Faults in Ophir Chasma, Valles Marineris, Mars

    NASA Astrophysics Data System (ADS)

    Fueten, F.; Robinson, A.; Stesky, R.; MacKinnon, P.; Hauber, E.; Zegers, T.; Gwinner, K.

    2010-03-01

    The mean dip of normal fault facets within the walls of Ophir Chasma is approximately 36°. We suggest that the shallow faults were initiated as thrust faults during a localized uplift phase of the basin formation and reactivated as normal faults.

  10. Mobility and topographic effects for large Valles Marineris landslides on Mars

    E-print Network

    Lucas, Antoine

    .1029/2007GL029835. 1. Introduction [2] Thanks to orbital imagery, morphologies related to granular flows (landslides, debris flows, gullies. . .) were identified on Mars [Lucchitta, 1979]. Martian granular flows may

  11. Kasei Valles

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 2 June 2004 This image was collected July 17, 2002 during northern spring season. The local time at the image location was about 4 pm. The image shows an area in the Kasei Valles region.

    The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude 25.3, Longitude 298.8 East (61.2 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. Mawrth Valles

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The THEMIS VIS camera is capable of capturing color images of the Martian surface using five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from using multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    This false color image of an old channel floor and surrounding highlands is located in the lower reach of Mawrth Valles. This image was collected during the Northern Spring season.

    Image information: VIS instrument. Latitude 25.7, Longitude 341.2 East (18.8 West). 35 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. Hebrus Valles

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 3 June 2002) The Science Hebrus Valles is located in the Elysium Planitia region of the northern lowlands of the planet. This image shows three sinuous tributaries of the channel system which carved up the surrounding plains. These individual tributaries are up to 3 km wide and have up to three terraces visible along their margins. These terraces may indicate separate flood events or may be the result of one flood plucking away at channel wall materials with varying strengths of resistance. It is not clear if these are separate rock layers or just the erosion of one type of material from rising and falling water levels. A streamlined island is visible in the lower third of the image. This feature indicates that flow was from the lower right to upper left in this region (the tail of the island points downstream). In places ripples, interpreted to be dunes, can also be seen along the interface of the channel floor with the walls. Smaller, fainter channels can also be seen scouring the plains, especially in the lower portion of this image. Other features of note in this image are the various inselbergs (isolated hills) located primarily in the upper portion of the image. The inselbergs are surrounded with aprons of material that was probably shed off of the hills by various processes of erosion. The Story Mars was once the scene of some major floods that rushed out upon the land, carving all kinds of channels. These signs of ancient flooding have always been exciting to scientists who want to understand the history of water on the planet. Water is important to understanding the climate and geological history of Mars, as well as whether life could ever have developed there. While we can't tell much about the life question from pictures like this one, it does give some insights into the great flood itself. You can see three tributaries of a channel system that are up to two miles wide or so. The really interesting thing is that you can see terraces of land that step down from the sides of the tributaries. How did they form? Was there one massive flood that swept through, eroding materials with varying strengths of resistance? Or was it several, separate floods? And what could the answer tell us about the types of rocks and materials in this region? No one knows if these are separate rock layers or just one type of material that has eroded from rising and falling water levels. While these questions will continue to intrigue geologists, one thing that they can tell for sure is the direction the water flowed. Can you find the tear-drop shaped island in the now dry channel? On Earth, we see these islands created in rivers all the time. The 'tail' of the island (the point on the teardrop) points downstream, so that means the flood rushed down the channel from the lower right to the upper left. Since the flood, there is some rippling evidence on the channel floor that dunes may have formed. Smaller, fainter channels can also be seen scouring the plains, especially in the lower portion of this image. Other interesting features in this image are the various inselbergs (isolated hills) located primarily in the upper portion of the image. The inselbergs are surrounded with aprons of material that was probably shed off of the hills by various processes of erosion.

  14. Canyon Dust

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03682 Canyon Dust

    These dust slides are located on the wall of Thithonium Chasma.

    Image information: VIS instrument. Latitude -4.1N, Longitude 275.7E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  15. Canyon Variety

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03281 Canyon Variety

    This image shows paret of the west end of Melas Chasma. Landslide deposits are visible at the top of the image, with dark dunes appearing at the bottom.

    Image information: VIS instrument. Latitude -8.2N, Longitude 281.0E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  16. Mapping the Canyon

    NSDL National Science Digital Library

    In this activity, students will learn about the bathymetry of Hudson Canyon, a submarine canyon on the Atlantic coast of North America. As they study Hudson Canyon, they will compare and contrast topographic maps and bathymetric maps, investigate the various ways in which bathymetric maps are made, and learn how to interpret bathymetric maps.

  17. The Valles natural analogue project

    SciTech Connect

    Stockman, H.; Krumhansl, J.; Ho, C. [Sandia National Labs., Albuquerque, NM (United States); McConnell, V. [Alaska Univ., Fairbanks, AK (United States). Geophysical Inst.

    1994-12-01

    The contact between an obsidian flow and a steep-walled tuff canyon was examined as an analogue for a highlevel waste repository. The analogue site is located in the Valles Caldera in New Mexico, where a massive obsidian flow filled a paleocanyon in the Battleship Rock tuff. The obsidian flow provided a heat source, analogous to waste panels or an igneous intrusion in a repository, and caused evaporation and migration of water. The tuff and obsidian samples were analyzed for major and trace elements and mineralogy by INAA, XRF, X-ray diffraction; and scanning electron microscopy and electron microprobe. Samples were also analyzed for D/H and {sup 39}Ar/{sup 4O} isotopic composition. Overall,the effects of the heating event seem to have been slight and limited to the tuff nearest the contact. There is some evidence of devitrification and migration of volatiles in the tuff within 10 meters of the contact, but variations in major and trace element chemistry are small and difficult to distinguish from the natural (pre-heating) variability of the rocks.

  18. 4. DARK CANYON SIPHON VIEW ACROSS DARK CANYON AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DARK CANYON SIPHON - VIEW ACROSS DARK CANYON AT LOCATION OF SIPHON. VIEW TO NORTHWEST - Carlsbad Irrigation District, Dark Canyon Siphon, On Main Canal, 1 mile South of Carlsbad, Carlsbad, Eddy County, NM

  19. Discontinuities in the shallow Martian crust at Lunae, Syria, and Sinai Plana

    Microsoft Academic Search

    Philip A. Davis; Matthew P. Golombek

    1990-01-01

    Detailed photoclinometric profiles across 125 erosional features and 141 grabens in the western equatorial region of Mars indicate the presence of three discontinuities within the shallow crust. Pits, troughs, and wall valleys (tributary canyons) within Noctis Layrinthus and Valles Marineris and escarpments within the fretted terrain of Sacra Fossae and Kasei Valles show distinct erosional base levels at depths of

  20. Bryce Canyon Natural Bridge

    USGS Multimedia Gallery

    The Bryce Canyon Natural Bridge. Technically, this is not a natural bridge, which forms when running water erodes a tunnel into a rock formation. Instead, this is a natural arch, similar to the ones in nearby Arches National Park. Bryce Canyon is a unique sandstone formation in southern Utah. It is...

  1. Bryce Canyon Rim

    USGS Multimedia Gallery

    The rim of Bryce Canyon, viewed from Rainbow Point. Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different erosion rates for the dolomite that caps them and the sandstone that forms ...

  2. Bryce Canyon Hoodoos

    USGS Multimedia Gallery

    Sandstone hoodoos in Bryce Canyon National Park. In the background, Grand Staircase-Escalante National Monument can be seen. Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different er...

  3. Snake Hells Canyon Subbasin Inventory

    E-print Network

    Snake Hells Canyon Subbasin Inventory May 2004 Prepared for the Northwest Power and Conservation .................................................................................................................................. 62 8 APPENDIX A APRE SUMMARIES FOR HELLS CANYON SUBBASIN.................. 63 Snake Hells Canyon Subbasin Inventory i May 2004 #12;LIST OF FIGURES FIGURE 1.LAND MANAGEMENT IN THE SNAKE HELLS CANYON

  4. The Grand Canyon

    NSDL National Science Digital Library

    Brieske, Joel A.

    2002-01-01

    The first site from PBS.org, called Lost in the Canyon (1), offers an excellent online learning experience. Visitors learn about John Wesley Powell's expedition down the Colorado River, covered in transcripts from the companion television show and a timeline of Powell's life. Other features include an interactive lesson on running rapids and a look at the unique geologic history of the area. Next, from StudyWorks! Online comes the lesson entitled Sleuthing at the Grand Canyon: Using Rocks to Tell Us About the Past (2). Through basic descriptions, photographs, and illustrations, students learn how rocks form, how scientists use them to find out about past environments, and much more. The third site is provided by the Grand Canyon Monitoring and Research Center called The Grand Canyon Monitoring and Research Center Fiscal Year 2000-2004 Monitoring and Research Strategic Plan (3). Readers will discover the mission of the center, history of monitoring in the area, management strategies, research activities, and much more. Next is a site offered by Richard S. Naylor of Northeastern University's Department of Geology called Unconformities in the Grand Canyon (4). Visitors will find descriptions and photographs of several sites in the Grand Canyon that exhibit geologic unconformities or surfaces that represent a break in the geologic record. The fifth site is maintained by kaibob.org called the Geology of Grand Canyon (5). This site contains basic information on how the canyon was formed, where all the rock came from, why it looks like it does, and when it all happened. From NASA's Visible Earth Web site comes the 3-D View of Grand Canyon (6) page. The canyon can be viewed in a low or high resolution JPEG format, which shows the surrounding area, part of the Colorado river, and the canyon itself in dynamic colors. Part of Northern Arizona University, the seventh site is entitled Canyons, Culture, and Environmental Change: An Introduction to the Land Use History of the Colorado Plateau (7). The site provides an introduction to the environmental history of the Colorado Plateau and summarizes a vast body of research from multiple disciplines in an easily accessible format. The last site from NOAA's Colorado River Basin Forecast Center is the River Forecasts and Data page (8). Provided are data from various sites along the river that offer a wide range of relevant information such as simulated hydrographs.

  5. Snake Hells Canyon Subbasin Assessment

    E-print Network

    Snake Hells Canyon Subbasin Assessment May 2004 Prepared for the Northwest Power and Conservation, Ecovista Angela Sondenaa, Nez Perce Tribe Darin Saul, Ecovista #12;Snake Hells Canyon Subbasin Assessment Table of Contents 0 INTRODUCTION TO SNAKE HELLS CANYON SUBBASIN ASSESSMENT............ 1 1 SUBBASIN

  6. Grand Canyon Explorer

    NSDL National Science Digital Library

    Maintained by Bob Ribokas, Grand Canyon Explorer is quite extraordinary for a unaffiliated Web site. Updated regularly, it contains everything from stunning photography and geologic descriptions to information about hiking permits and park trials for users planning a trip. A highlight of the site is the guided tour, which provides descriptions and pictures from the park entrance to the Grand Canyon's spectacular formations like Mohave Point on the South Rim. The author has even provided a downloadable version of the Web site for Pocket PC's and PDA's, enabling users to have all the information at their finger tips when visiting the park.

  7. Central Valles Marineris: uncontrolled Mars Global Surveyor (MGS) Mars Orbital Camera (MOC) digital context photomosaic (250 megapixel resolution)

    USGS Publications Warehouse

    Noreen, Eric

    2000-01-01

    These images were processed from a raw format using Integrated Software for Images and Spectrometers (ISIS) to perform radiometric corrections and projection. All the images were projected in sinusoidal using a center longitude of 70 degrees. There are two versions of the mosaic, one unfiltered (vallesmos.tif), and one produced with all images processed through a box filter with an averaged pixel tone of 7.699 (vallesmosflt.tif). Both mosaics are ArcView-ArcInfo ready in TIF format with associated world files (*.tfw).

  8. Observations of Candor and Ophir Chasmata in Valles Marineris, Mars, Using Merged Topographic, Geologic, and Image Data

    NASA Astrophysics Data System (ADS)

    Rosanova, C. E.; Lucchitta, B. K.; Hare, T. M.; Velasco, M.

    1999-03-01

    Images of Ophir and Candor Chasmata were draped over topographic data to produce perspective views, anaglyphs, and layered data sets. The 3-D views help determine the sequence of events. Slope and volume information is being obtained.

  9. Sandbar in Grand Canyon

    USGS Multimedia Gallery

    Picture showing the size of the sandbar before the November 2012 controlled flood from the Glen Canyon Dam. This location is 65 miles downstream from Lees Ferry and the view is looking downstream. These and additional photographs depicting the results of the recent controlled floods can be viewed on...

  10. The Grand Canyon

    NSDL National Science Digital Library

    This lesson plan is part of the DiscoverySchool.com lesson plan library for grades 6-8. It focuses on the ecology of the Grand Canyon area. Students act as scientists investigating the damming of the Colorado River by the Glen Canyon dam and experimental flooding that took place in 1996. They then write a proposal as to whether or not more experimental flooding should be done on the area considering the ecological effects. It includes objectives, materials, procedures, discussion questions, evaluation ideas, extensions, suggested readings, and vocabulary. There are videos available to order which complement this lesson, an audio-enhanced vocabulary list, and links to teaching tools for making custom quizzes, worksheets, puzzles and lesson plans.

  11. Flushing submarine canyons

    Microsoft Academic Search

    Miquel Canals; Pere Puig; Xavier Durrieu de Madron; Serge Heussner; Albert Palanques; Joan Fabres

    2006-01-01

    The continental slope is a steep, narrow fringe separating the coastal zone from the deep ocean. During low sea-level stands, slides and dense, sediment-laden flows erode the outer continental shelf and the continental slope, leading to the formation of submarine canyons that funnel large volumes of sediment and organic matter from shallow regions to the deep ocean1. During high sea-level

  12. ARTICLE IN PRESS S0019-1035(04)00212-X/FLA AID:7423 Vol.() [DTD5] P.1 (1-18)

    E-print Network

    Delacourt, Christophe

    resolution images from Mars Orbiter Camera (MOC) and from Mars Odyssey Thermal Emission Imaging System) (Mars Orbiter Camera narrow angle, MOC) and from Mars Odyssey 2001 mission (Thermal Emis- 0019.elsevier.com/locate/icarus Ages of Valles Marineris (Mars) landslides and implications for canyon history C. Quantin a, , P

  13. An unusual spectral unit in West Candor Chasma: Evidence for hydrothermal or aqueous alteration?

    Microsoft Academic Search

    P. E. Geissler; R. B. Singer

    1993-01-01

    A spectrally distinctive unit on the floor of W. Candor Chasma (6 S, 76 W) in the central Valles Marineris may be a likely candidate for hydrothermal or aqueous alteration. This unusual material is noticeably redder than nearby plains and canyon floor-covering deposits of similar brightness in several Viking Orbiter color composite images calibrated using PICS Level I procedures. The

  14. Mars

    NSDL National Science Digital Library

    Robert Crippen

    1999-01-21

    The true global geography of Mars first emerged with comprehensive maps from Mariner 9 and Viking during the 1970s. This visualization tours the Red Planet using the Viking dataset, hitting such features as the Valles Marineris canyons and the Olympus Mons volcano.

  15. Sunset over Red Rock Canyon

    USGS Multimedia Gallery

    Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Canyon is a National Conservation Area managed by the Bureau of Land Management, located just outside of Las Vegas, Nevada. It is part of...

  16. Sunset over Pine Creek Canyon

    USGS Multimedia Gallery

    Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Canyon is a National Conservation Area managed by the Bureau of Land Management, located just outside of Las Vegas, Nevada. It is part of...

  17. Yuccas in Pine Creek Canyon

    USGS Multimedia Gallery

    The Mojave Desert, home to drought-tolerant plants like yuccas, gradually mixes with loblolly pine ecosystems in Pine Creek Canyon. Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Cany...

  18. Chollas in Pine Creek Canyon

    USGS Multimedia Gallery

    The Mojave Desert, home to drought-tolerant plants like Cholla cacti, gradually mixes with loblolly pine ecosystems in Pine Creek Canyon. Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Roc...

  19. Sunset in Pine Creek Canyon

    USGS Multimedia Gallery

    Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Canyon is a National Conservation Area managed by the Bureau of Land Management, located just outside of Las Vegas, Nevada. It is part of...

  20. Manzanita in Pine Creek Canyon

    USGS Multimedia Gallery

    Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Canyon is a National Conservation Area managed by the Bureau of Land Management, located just outside of Las Vegas, Nevada. It is part of...

  1. Yucca in Pine Creek Canyon

    USGS Multimedia Gallery

    Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Canyon is a National Conservation Area managed by the Bureau of Land Management, located just outside of Las Vegas, Nevada. It is part of...

  2. Bryce Canyon's Navajo Loop Trail

    USGS Multimedia Gallery

    Views along the Navajo Loop Trail in Bryce Canyon National Park. Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different erosion rates for the dolomite that caps them and the sandston...

  3. Cedar Forest in Bryce Canyon

    USGS Multimedia Gallery

    A cedar forest in Bryce Canyon National Park, viewed from Rainbow Point. Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different erosion rates for the dolomite that caps them and the ...

  4. Currents in Monterey Submarine Canyon

    Microsoft Academic Search

    J. P. Xu; Marlene A. Noble

    2009-01-01

    Flow fields of mean, subtidal, and tidal frequencies between 250 and 3300 m water depths in Monterey Submarine Canyon are examined using current measurements obtained in three yearlong field experiments. Spatial variations in flow fields are mainly controlled by the topography (shape and width) of the canyon. The mean currents flow upcanyon in the offshore reaches (>1000 m) and downcanyon

  5. Cedar Tree in Bryce Canyon

    USGS Multimedia Gallery

    A cedar tree in Bryce Canyon National Park. Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different erosion rates for the dolomite that caps them and the sandstone that forms their ba...

  6. Snow-covered Bryce Canyon

    USGS Multimedia Gallery

    Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different erosion rates for the dolomite that caps them and the sandstone that forms their base. Bryce Canyon is also home to large numbe...

  7. Canyon in DCS Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released July 26, 2004 This image shows two representations of the same infra-red image covering a portion of Ganges Chasma. On the left is a grayscale image showing surface temperature, and on the right is a false-color composite made from 3 individual THEMIS bands. The false-color image is colorized using a technique called decorrelation stretch (DCS), which emphasizes the spectral differences between the bands to highlight compositional variations.

    The northern canyon at the top of this image is dominated by a bright red/magenta area consisting primarly basaltic materials on the floor of the canyon and atmospheric dust. Within that area, there are patches of purple, on the walls and in the landslides, that may be due to an olivine rich mineral layer. In the middle of the image, the green on the mesa between the two canyons is from a layer of dust. The patchy blue areas in the southern canyon are likely due to water ice clouds.

    Image information: IR instrument. Latitude -6.6, Longitude 316 East (44 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. Grand Canyon Explorer: The Geology of the Grand Canyon

    NSDL National Science Digital Library

    Bob Ribokas

    This site provides an overview of how the Grand Canyon was formed. Concepts discussed include erosion by water, ice and wind, continental drift, and deposition. A photo gallery and stratigraphic figures support the text.

  9. New York Canyon Stimulation

    SciTech Connect

    Raemy, Bernard

    2012-06-21

    The New York Canyon Stimulation Project was to demonstrate the commercial application of Enhanced Geothermal System techniques in Buena Vista Valley area of Pershing County, Nevada. From October 2009 to early 2012, TGP Development Company aggressively implemented Phase I of Pre-Stimulation and Site/Wellbore readiness. This included: geological studies; water studies and analyses and procurement of initial permits for drilling. Oversubscription of water rights and lack of water needed for implementation of EGS were identified and remained primary obstacles. Despite extended efforts to find alternative solutions, the water supply circumstances could not be overcome and led TGP to determine a "����No Go"��� decision and initiate project termination in April 2012.

  10. Repainting decontaminated canyon cranes

    SciTech Connect

    Not Available

    1984-08-23

    The paint on the H-area hot canyon crane is expected to be at least partially removed during the planned decontamination with high pressure Freon/reg sign/ blasting. Tests to evaluate two candidate finishes, DuPont Imron/reg sign/ polyurethane enamel and DuPont Colar/reg sign/ epoxy were carried out at Quadrex Co., Oak Ridge, TN, March 1984. Three types of 304L stainless steel surface finishes were included in the test (ASTM No. 1, bead blasted ASTM No. 1, and ASTM No. 2B). Two types of contamination were used (diluted dissolver solution, the type of contamination encountered in existing canyons; and raw sludge plus volatiles, the type of contamination expected in DWPF). Some specimens were coated with the type of grease (Mystic JT-6) used on cranes in SRP separations areas. The results of the test indicate that smoother surfaces are easier to decontaminate than rougher surfaces. Statistical analysis of the data from this experiment by R.L. Postles leads to the following conclusions: There is no statistical difference between the decontamination properties of DuPont Imron/reg sign/ polyurethane enamel and DuPont Colar/reg sign/ epoxy; DuPont Imron/reg sign/ polyurethane enamel and perhaps Type 304L stainless steel with an ASTM No. 2B surface finish are easier to decontaminate than Type 304L stainless steel with an ASTM No. 1 surface finish; dilute dissolver solution is harder to remove than raw sludge plus volatiles; specimens with grease are easier to decontaminate than specimens with no grease; and, Freon/reg sign/ blasting pressure has no statistically significant effect. 2 refs., 1 fig., 4 tabs.

  11. Grand Canyon: The Hidden Secrets

    NSDL National Science Digital Library

    Summertime means vacations for many people, and for many of these sojourning to the American Southwest, this may mean a trip to the brilliance that is the Grand Canyon in northern Arizona. The people at National Geographic certainly know this area quite well, as they have sponsored a number of research expeditions there over the past century or so. Designed as a way to publicize the film that the organization plays at their canyon visitor center, this site contains a number of helpful features for those persons who may be visiting the canyon. First, visitors will want to look at the interactive map of the South Rim offered here. The map allows visitors to learn about selected features of the area, such as the famous bald eagles, the various outlooks, and the plants indigenous to the region. The site also includes a section for young people, a number of free screensavers and wallpapers, along with a travel guide to visiting the Grand Canyon.

  12. 1996 Grand Canyon Flood Analysis

    NSDL National Science Digital Library

    Mark Manone

    Mark Manone, Northern Arizona University Summary Analyze the effect of a 1996 controlled flood on a sandbar in Grand Canyon. This exercise uses Spatial Analyst and 3D Analyst Context Type and level of course ...

  13. Downstream in Mawrth Valles

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The THEMIS VIS camera is capable of capturing color images of the Martian surface using five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from using multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    This false color image is from further downstream in Mawrth Valles than yesterday's image. The channel here is at the end of the vallis. This image was collected during the Northern Spring season.

    Image information: VIS instrument. Latitude 26.7, Longitude 340.2 East (19.8 West). 37 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  14. Red Canyon Terrace Project

    NSDL National Science Digital Library

    Dennis Dahms

    We know that glacial cycles produce changes in stream regimens downstream from the active ice margin, and that successive glacial cycles often result in separate (and usually lower) floodplains that become terraces following each cycle of stream incision. Using a suite of 4-5 glacio-fluvial terraces outside the mouth of Little PopoAgie Canyon on the east flank of Wyoming's Wind River Range, students do the following: (1) produce a map of the major terrace landforms, (2) observe the geomorphic characteristics of each map unit (this includes height above present stream, depth of fine overbank material above coarse bedload, and general weathering characteristics of the units, and whether the unit is a cut or fill terrace), and (3) measure the characteristics of soil profiles dug into each unit (including horizons Id's, depth and thickness of horizons, and carbonate morphology). Students use all this information to place the terrace units into the regional glacio-fluvial chronology by matching the relative age-data with the Pinedale/Bull Lake/Pre-Bull Lake regional sequence. Final project must include a graphic representation of stream heights that fit their interpretations of the regional glacio-fluvial stratigraphy.

  15. Canyon Floor Deposits

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03598 Canyon Floor Deposits

    The layered and wind eroded deposits seen in this VIS image occur on the floor of Chandor Chasma.

    Image information: VIS instrument. Latitude 5.2S, Longitude 283.4E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  16. Geology Fieldnotes: Grand Canyon National Park, Arizona

    NSDL National Science Digital Library

    Visitors can access park geology information, photographs, related links, visitor information, multimedia resources, and resources for teaching geology with National Park examples. The park geology section discusses the Grand Canyon's geologic history, structural geology, and features a question-and-answer section about the canyon. The history of the canyon as a park and environmental issues surrounding it are also discussed. A geologic cross section of the canyon showing the various rock layers is included.

  17. DEVIL CANYON-BEAR CANYON PRIMITIVE AREA, CALIFORNIA.

    USGS Publications Warehouse

    Crowder, Dwight F.; Fillo, Paul V.

    1984-01-01

    The Devil Canyon-Bear Canyon Primitive Area, located about 10 mi northeast of Pasadena in the Angeles National Forest, Los Angeles County, California, is an area about 8 mi long by 6 mi wide. To evaluate the mineral-resource potential of the area, geologic examinations were made by foot traverses. Samples of fresh, altered, and mineralized rocks, of sand, gravel, and other sediments, and of some panned concentrates from stream sediments were collected and analyzed. The mineral-resource survey concluded that there is little promise for the occurrence of metallic resources.

  18. Currents in monterey submarine canyon

    USGS Publications Warehouse

    Xu, J. P.; Noble, M.A.

    2009-01-01

    Flow fields of mean, subtidal, and tidal frequencies between 250 and 3300 m water depths in Monterey Submarine Canyon are examined using current measurements obtained in three yearlong field experiments. Spatial variations in flow fields are mainly controlled by the topography (shape and width) of the canyon. The mean currents flow upcanyon in the offshore reaches (>1000 m) and downcanyon in the shallow reaches (100-m amplitude isotherm oscillations and associated high-speed rectilinear currents. The 15-day spring-neap cycle and a ???3-day??? band are the two prominent frequencies in subtidal flow field. Neither of them seems directly correlated with the spring-neap cycle of the sea level.

  19. Shallow seismic investigations in the Valles Caldera

    E-print Network

    West, Michael

    Shallow seismic investigations in the Valles Caldera Presented by: Michael West, New Mexico State component of JTEX · Three lines centered on caldera · NW-SE deployed in 1993 · E-W & SW-NE in 1995 velocity material beneath rift · Strong contrast between east and west sides · Hint of Valle Grande caldera

  20. Geomorphic process fingerprints in submarine canyons

    USGS Publications Warehouse

    Brothers, Daniel S.; ten Brink, Uri S.; Andrews, Brian D.; Chaytor, Jason D.; Twichell, David C.

    2013-01-01

    Submarine canyons are common features of continental margins worldwide. They are conduits that funnel vast quantities of sediment from the continents to the deep sea. Though it is known that submarine canyons form primarily from erosion induced by submarine sediment flows, we currently lack quantitative, empirically based expressions that describe the morphology of submarine canyon networks. Multibeam bathymetry data along the entire passive US Atlantic margin (USAM) and along the active central California margin near Monterey Bay provide an opportunity to examine the fine-scale morphology of 171 slope-sourced canyons. Log–log regression analyses of canyon thalweg gradient (S) versus up-canyon catchment area (A) are used to examine linkages between morphological domains and the generation and evolution of submarine sediment flows. For example, canyon reaches of the upper continental slope are characterized by steep, linear and/or convex longitudinal profiles, whereas reaches farther down canyon have distinctly concave longitudinal profiles. The transition between these geomorphic domains is inferred to represent the downslope transformation of debris flows into erosive, canyon-flushing turbidity flows. Over geologic timescales this process appears to leave behind a predictable geomorphic fingerprint that is dependent on the catchment area of the canyon head. Catchment area, in turn, may be a proxy for the volume of sediment released during geomorphically significant failures along the upper continental slope. Focused studies of slope-sourced submarine canyons may provide new insights into the relationships between fine-scale canyon morphology and down-canyon changes in sediment flow dynamics.

  1. 77 FR 9265 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ...INTERIOR Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY...SUMMARY: The Glen Canyon Dam Adaptive Management Work Group (AMWG...Secretary of the Interior concerning Glen Canyon Dam operations and other management...

  2. 76 FR 24516 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ...INTERIOR Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY...SUMMARY: The Glen Canyon Dam Adaptive Management Work Group (AMWG...Secretary of the Interior concerning Glen Canyon Dam operations and other management...

  3. 77 FR 43117 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ...INTERIOR Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY...SUMMARY: The Glen Canyon Dam Adaptive Management Work Group (AMWG...Secretary of the Interior concerning Glen Canyon Dam operations and other management...

  4. 77 FR 22801 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-17

    ...INTERIOR Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY...SUMMARY: The Glen Canyon Dam Adaptive Management Work Group (AMWG...Secretary of the Interior concerning Glen Canyon Dam operations and other management...

  5. 78 FR 7810 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ...INTERIOR Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY...SUMMARY: The Glen Canyon Dam Adaptive Management Work Group (AMWG...Secretary of the Interior concerning Glen Canyon Dam operations and other management...

  6. 78 FR 21415 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ...INTERIOR Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY...SUMMARY: The Glen Canyon Dam Adaptive Management Work Group (AMWG...Secretary of the Interior concerning Glen Canyon Dam operations and other management...

  7. Bell Canyon test and results

    SciTech Connect

    Christensen, C.L.; Hunter, T.O.

    1980-01-01

    The purposes of the Borehold Plugging Program are: to identify issues associated with sealing boreholes and shafts; to establish a data base from which to assess the importance of these issues; and to develop sealing criteria, materials, and demonstrative test for the Waste Isolation Pilot Plant (WIPP). The Bell Canyon Test described in this report is one part of that program. Its purpose was to evaluate, in situ, the state of the art in borehole plugs and to identify and resolve problems encountered in evaluating a typical plug installation in anhydrite. The test results are summarized from the work of Peterson and Christensen and divided into two portions: system integrity and wellbore characterization tests prior to plug installation, and a series of tests to evaluate isolation characteristics of the 1.8-m-long plug. Conclusions of the Bell Canyon Test are: brine and fresh-water grouts, with acceptable physical properties in the fluid and hardened states, have been developed; the field data, taken together with laboratory data, suggest that the predominant flow into the test region occurs through the cement plug/borehold interface region, with lesser contributions occurring through the wellbore damage zone, the plug core, and the surrounding undisturbed anhydrite bed; and the 1.8-m-long by 20-cm-diameter grout plug, installed in anhydrite at a depth of 1370 m in the AEC-7 borehole, limits flow from the high pressure Bell Canyon aquifer to 0.6 liters/day.

  8. Snake Hells Canyon Subbasin Management Plan

    E-print Network

    ...............................................................9 4.1 Vision Statement...............................................................................8 4 VISION FOR THE SNAKE HELLS CANYON SUBBASIN........................................................................................................9 5 PROBLEM STATEMENTS, OBJECTIVES, AND STRATEGIES

  9. Biological Inventory Colorado Canyons National Conservation Area

    E-print Network

    Biological Inventory of the Colorado Canyons National Conservation Area Prepared by: Joe Stevens............................................................................................................................. 1 II. The Natural Heritage Network and Biological Diversity ...................................................... 3 What is Biological Diversity

  10. Layering in the wall rock of Valles Marineris: intrusive and extrusive Jean-Pierre Williams, David A. Paige, and Craig E. Manning

    E-print Network

    Manning, Craig

    effusive flood basalt volcanism or interbedded sediments and volcanics. We present observations igneous province associated with crustal rifting and exposures of thick sequences of layered flood basalts and intruded layered cumulates. INDEX TERMS: 5480 Planetology: Solid Surface Planets: Volcanism (8450); 6225

  11. Urban street canyons: Coupling dynamics, chemistry and within-canyon chemical processing of emissions

    NASA Astrophysics Data System (ADS)

    Bright, Vivien Bianca; Bloss, William James; Cai, Xiaoming

    2013-04-01

    Street canyons, formed by rows of buildings in urban environments, are associated with high levels of atmospheric pollutants emitted primarily from vehicles, and substantial human exposure. The street canyon forms a semi-enclosed environment, within which emissions may be entrained in a re-circulatory system; chemical processing of emitted compounds alters the composition of the air vented to the overlying boundary layer, compared with the primary emissions. As the prevailing atmospheric chemistry is highly non-linear, and the canyon mixing and predominant chemical reaction timescales are comparable, the combined impacts of dynamics and chemistry must be considered to quantify these effects. Here we report a model study of the coupled impacts of dynamical and chemical processing upon the atmospheric composition in a street canyon environment, to assess the impacts upon air pollutant levels within the canyon, and to quantify the extent to which within-canyon chemical processing alters the composition of canyon outflow, in comparison to the primary emissions within the canyon. A new model for the simulation of street canyon atmospheric chemical processing has been developed, by integrating an existing Large-Eddy Simulation (LES) dynamical model of canyon atmospheric motion with a detailed chemical reaction mechanism, a Reduced Chemical Scheme (RCS) comprising 51 chemical species and 136 reactions, based upon a subset of the Master Chemical Mechanism (MCM). The combined LES-RCS model is used to investigate the combined effects of mixing and chemical processing upon air quality within an idealised street canyon. The effect of the combination of dynamical (segregation) and chemical effects is determined by comparing the outputs of the full LES-RCS canyon model with those obtained when representing the canyon as a zero-dimensional box model (i.e. assuming mixing is complete and instantaneous). The LES-RCS approach predicts lower (canyon-averaged) levels of NOx, OH and HO2, but higher levels of O3, compared with the box model run under identical chemical and emissions conditions. When considering the level of chemical detail implemented, segregation effects were found to reduce the error introduced by simplifying the reaction mechanism. Chemical processing of emissions within the canyon leads to a significant increase in the Ox flux from the canyon into the overlying boundary layer, relative to primary emissions, for the idealised case considered here. These results demonstrate that within-canyon atmospheric chemical processing can substantially alter the concentrations of pollutants injected into the urban canopy layer, compared with the raw emission rates within the street canyon. The extent to which these effects occur is likely to be dependent upon the nature of the domain (canyon aspect ratio), prevailing meteorology and emission/pollution scenario considered.

  12. Barrel Cactus in Pine Creek Canyon

    USGS Multimedia Gallery

    Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Canyon is a National Conservation Area managed by the Bureau of Land Management, located just outside of Las Vegas, Nevada. It is part of...

  13. Sunset Panorama in Pine Creek Canyon

    USGS Multimedia Gallery

    Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Canyon is a National Conservation Area managed by the Bureau of Land Management, located just outside of Las Vegas, Nevada. It is part of...

  14. Loblolly Pines in Pine Creek Canyon

    USGS Multimedia Gallery

    Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Canyon is a National Conservation Area managed by the Bureau of Land Management, located just outside of Las Vegas, Nevada. It is part of...

  15. Environmental assessment: Davis Canyon site, Utah

    SciTech Connect

    Not Available

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of the five sites suitable for characterization.

  16. Environmental assessment: Davis Canyon site, Utah

    SciTech Connect

    Not Available

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considering for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization.

  17. ACCELERATED PILOT PROJECT FOR U CANYON DEMOLITION

    SciTech Connect

    KEHLER KL

    2011-01-13

    At the U.S. Department of Energy's Hanford Site in southeast Washington State, CH2M HILL Plateau Remediation Company (CH2M HILL) is underway on a first-of-a-kind project with the decommissioning and demolition of the U Canyon. Following the U.S. Environmental Protection Agency's Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) Record of Decision for the final remediation of the canyon, CH2M HILL is combining old and new technology and techniques to prepare U Canyon for demolition. The selected remedial action called first for consolidating and grouting equipment currently in the canyon into lower levels of the plant (openings called cells), after which the cell galleries, hot pipe trench, ventilation tunnel, drains and other voids below the operating deck and crane-way deck levels will be filled with approximately 20,000 cubic yards of grout and the canyon roof and walls demolished down to the approximate level of the canyon deck. The remaining canyon structure will then be buried beneath an engineered barrier designed to control potential contaminant migration for a 500-year life. Methods and lessons learned from this project will set the stage for the future demolition of Hanford's four other canyon-type processing facilities.

  18. Grand Canyon Monitoring and Research Center

    USGS Publications Warehouse

    Hamill, John F.

    2009-01-01

    The Grand Canyon of the Colorado River, one of the world's most spectacular gorges, is a premier U.S. National Park and a World Heritage Site. The canyon supports a diverse array of distinctive plants and animals and contains cultural resources significant to the region's Native Americans. About 15 miles upstream of Grand Canyon National Park sits Glen Canyon Dam, completed in 1963, which created Lake Powell. The dam provides hydroelectric power for 200 wholesale customers in six western States, but it has also altered the Colorado River's flow, temperature, and sediment-carrying capacity. Over time this has resulted in beach erosion, invasion and expansion of nonnative species, and losses of native fish. Public concern about the effects of Glen Canyon Dam operations prompted the passage of the Grand Canyon Protection Act of 1992, which directs the Secretary of the Interior to operate the dam 'to protect, mitigate adverse impacts to, and improve values for which Grand Canyon National Park and Glen Canyon National Recreation Area were established...' This legislation also required the creation of a long-term monitoring and research program to provide information that could inform decisions related to dam operations and protection of downstream resources.

  19. Big Canyon Creek Ecological Restoration Strategy

    Microsoft Academic Search

    Lynn Rasmussen; Shannon Richardson

    2007-01-01

    He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River

  20. Snow-covered Sandstone at Bryce Canyon

    USGS Multimedia Gallery

    Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different erosion rates for the dolomite that caps them and the sandstone that forms their base. Bryce Canyon is also home to large numbe...

  1. Geology and biology of Oceanographer submarine canyon.

    USGS Publications Warehouse

    Valentine, P.C.; Uzmann, J.R.; Cooper, R.A.

    1980-01-01

    Santonian beds more than 100 m thick are the oldest rocks collected from the canyon. Quaternary silty clay veneers the canyon walls in many places and is commonly burrowed by benthic organisms that cause extensive erosion of the canyon walls, especially in the depth zone (100-1300 m) inhabited by the crabs Geryon and Cancer. Bioerosion is minimal on high, near-vertical cliffs of sedimentary rock, in areas of continual sediment movement, and where the sea floor is paved by gravel. A thin layer of rippled, unconsolidated silt and sand is commonly present on the canyon walls and in the axis. Shelf sediments are transported from Georges Bank over the E rim and in the Canyon by the SW drift and storm currents; tidal currents and internal waves move the sediment downcanyon along the walls and axis.- from Authors

  2. Primary Initiation of Submarine Canyons

    E-print Network

    Herndon, J Marvin

    2011-01-01

    The discovery of close-to-star gas-giant exo-planets lends support to the idea of Earth's origin as a Jupiter-like gas-giant and to the consequences of its compression, including whole-Earth decompression dynamics that gives rise, without requiring mantle convection, to the myriad measurements and observations whose descriptions are attributed to plate tectonics. I propose here another, unanticipated consequence of whole-Earth decompression dynamics: namely, a specific, dominant, non-erosion, underlying initiation-mechanism precursor for submarine canyons that follows as a direct consequence of Earth's early origin as a Jupiter-like gas-giant.

  3. Supplement to The Snake Hells Canyon Subbasin Plan Introduction

    E-print Network

    1 Supplement to The Snake Hells Canyon Subbasin Plan Introduction This document was written draft Snake Hells Canyon Subbasin Assessment and Snake Hells Canyon Subbasin Management Plan prepared species in the Snake Hells Canyon subbasin. Section II summarizes the prioritization of these limiting

  4. MC-19 Margaritifer Sinus Region

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Mars digital-image mosaic merged with color of the MC-19 quadrangle, Margaritifer Sinus region of Mars. Heavily cratered highlands, which dominate the Margaritifer Sinus quadrangle, are marked by large expanses of chaotic terrain. In the northwestern part, the major rift zone of Valles Marineris connects with a broad canyon filled with chaotic terrain. Latitude range -30 to 0, longitude range 0 to 45 degrees.

  5. Prehistoric deforestation at Chaco Canyon?

    PubMed Central

    Wills, W. H.; Drake, Brandon L.; Dorshow, Wetherbee B.

    2014-01-01

    Ancient societies are often used to illustrate the potential problems stemming from unsustainable land-use practices because the past seems rife with examples of sociopolitical “collapse” associated with the exhaustion of finite resources. Just as frequently, and typically in response to such presentations, archaeologists and other specialists caution against seeking simple cause-and effect-relationships in the complex data that comprise the archaeological record. In this study we examine the famous case of Chaco Canyon, New Mexico, during the Bonito Phase (ca. AD 860–1140), which has become a prominent popular illustration of ecological and social catastrophe attributed to deforestation. We conclude that there is no substantive evidence for deforestation at Chaco and no obvious indications that the depopulation of the canyon in the 13th century was caused by any specific cultural practices or natural events. Clearly there was a reason why these farming people eventually moved elsewhere, but the archaeological record has not yet produced compelling empirical evidence for what that reason might have been. Until such evidence appears, the legacy of Ancestral Pueblo society in Chaco should not be used as a cautionary story about socioeconomic failures in the modern world. PMID:25071220

  6. A GEOLOGICAL AND GEOPHYSICAL STUDY OF THE BACA GEOTHERMAL FIELD, VALLES CALDERA, NEW MEXICO

    SciTech Connect

    Wilt, M.; Haar, S.V.

    1982-03-01

    The Baca location {number_sign}1 geothermal field is located in north-central New Mexico within the western half of the Plio-Pleistocene valles Caldera. Steam and hot water are produced primarily from the northeast-trending Redondo Creek graben, where downhole temperatures exceed 500 F. Stratigraphically the reservoir region can be described as a five-layer sequence that includes (1) caldera fill and the upper units of the Bandelier ash flow tuff, (2) the lower members of this tuff, which comprise the main reservoir rock at Baca, (3) the Pliocene Paliza Canyon volcanics, (4) Tertiary sands and Paleozoic sedimentary rocks, and (5) Precambrian granitic basement. Production is controlled by fractures and faults that are ultimately related to activity in the Rio Grande Rift system. Geophysically, the caldera is characterized by a gravity minimum and a resistivity low. A 40-mgal gravity minimum over the caldera is due mostly to the relatively low-density volcanics and sediments that fill the caldera and probably bears no relation to deep-seated magmatic sources. Two-dimensional gravity modeling indicates that the depth to Precambrian basement in Redondo Canyon is probably at least 3 km and may exceed 5 km in eastern parts of the caldera. Telluric and magnetotelluric surveys have shown that the reservoir region is associated with low resistivity and that a deep low-resistivity zone correlates well with the depth of the primary reservoir inferred from well data.

  7. Meteorological predictions for 2003 Mars Exploration Rover high-priority landing sites

    NASA Astrophysics Data System (ADS)

    Rafkin, Scot C. R.; Michaels, T. I.

    2003-10-01

    The Mars Regional Atmospheric Modeling System is used to predict meteorological conditions that are likely to be encountered by the Mars Exploration Rovers at several proposed landing sites during entry, descent, and landing. Seven areas, five of which contain specific high-priority landing ellipses, are investigated: Hematite (two sites), Isidis Planitia, Elysium Planitia (two sites), Valles Marineris, and Gusev Crater. The last two locations are in regions of extreme topography, and the local and regional thermal circulations that result are equally extreme. Horizontal wind speeds near the floor of Valles Marineris exceed 50 ms-1. Vertical velocities near the walls exceed 40 ms-1 and penetrate 10 km in altitude above the rim of the canyon. Thermal convection is suppressed within Valles Marineris by subsidence that forms in response to the upslope flows along the canyon walls. Wind magnitudes at Gusev crater are approximately one third of those at the canyon, but horizontal wind shear is greater. Deep convective thermals are noted at the relatively flat Hematite site, where 10 ms-1 updrafts rising to heights of 5 km are not uncommon during the midafternoon. Linearly organized convective updrafts superimposed on upslope circulations dominate over most of Isidis Planitia. Hexagonal and linearly organized convection predominates at Elysium Planitia. Afternoon circulations at all sites pose some risk (significant risk in some cases) to entry, descent, and landing. Most of the atmospheric hazards are not evident in current observational data and general circulation model simulations and can only be ascertained through mesoscale modeling of the region.

  8. The Grand Canyon: How It Formed

    NSDL National Science Digital Library

    Today, in the deepest part of the Grand Canyon, the Colorado River flows past rocks that are 1.7 billion years old. This video describes how the river cut vertically through layers of pre-existing rock as the plateau beneath it was uplifted by tectonic forces. It also explains that other forces worked to widen the canyon, particluarly the activity of tributary streams and debris flows caused by flash flooding from intense rainfall or rapid snowmelt moving loose rock and boulders down canyon walls and side channels. A background essay and list of discussion questions are also provided.

  9. Potential MER Landing Site in Melas Chasma

    Microsoft Academic Search

    C. M. Weitz; Timothy J. Parker; F. Scott Anderson

    2001-01-01

    We have selected one area in Valles Marineris as a potential landing site for the Mars Exploration Rover (MER) mission. After 30 years of analyses, the formation of the Valles Marineris system of troughs and its associated deposits still remains an enigma. Understanding all aspects of the Valles Marineris would significantly contribute to deciphering the internal and external history of

  10. Mars Science Laboratory at Canyon

    NASA Technical Reports Server (NTRS)

    2003-01-01

    December 2, 2003

    NASA's Mars Science Laboratory travels near a canyon on Mars in this artist's concept. The mission is under development for launch in 2009 and a precision landing on Mars in 2010.

    Once on the ground, the Mars Science Laboratory would analyze dozens of samples scooped up from the soil and cored from rocks as it explores with greater range than any previous Mars rover. It would investigate the past or present ability of Mars to support life. NASA is considering nuclear energy for powering the rover to give it a long operating lifespan.

    NASA's Jet Propulsion Laboratory, Pasadena, Calif., is managing development of the Mars Smart Laboratory for the NASA Office of Space Science, Washington, D.C.

  11. Flow Structure in a Bedrock Canyon (Invited)

    NASA Astrophysics Data System (ADS)

    Venditti, J. G.; Rennie, C. D.; Church, M. A.; Bomhof, J.; Lin, M.

    2013-12-01

    Bedrock canyon incision is widely recognized as setting the pace of landscape evolution. A variety of models link flow and sediment transport processes to the bedrock canyon incision rate. The model components that represent sediment transport processes are quite well developed in some models. In contrast, the model components that represent fluid flow remain rudimentary. Part of the reason is that there have been relatively few observations of flow structure in a bedrock canyon. Here, we present observations of flow obtained using an array of three acoustic Doppler current profilers during a 524 km long continuous centerline traverse of the Fraser River, British Columbia, Canada as it passes through a series of bedrock canyons. Through this portion of the river, the channel alternates between gravel-bedded reaches that are deeply incised into semi-consolidated glacial deposits and solid bedrock-bound reaches. We present observations of flow through 41 bedrock bound reaches of the river, derived from our centerline traverses and more detailed three-dimensional mapping of the flow structure in 2 canyons. Our observations suggest that flow in the most well-defined canyons (deep, laterally constrained, completely bedrock bound) is far more complex than that in a simple prismatic channel. As flow enters the canyon, a high velocity core plunges from the surface to the bed, causing a velocity inversion (high velocities at the bed and low velocities at the surface). This plunging flow then upwells along the canyon wall, resulting in a three-dimensional flow with counter-rotating, along-stream eddies that diverge near the bed. We observe centerline ridges along the canyon floors that result from the divergence and large-scale surface boils caused by the upwelling. This flow structure causes deep scour in the bedrock channel floor, and ensures the base of the canyon walls are swept of debris that otherwise may be deposited due to lower shear stresses abutting the walls. The observations suggest that the modeling approaches currently included in landscape evolution theories may be inadequate to capture the morphodynamics of bedrock canyons.

  12. Structure of Flow in a Bedrock Canyon

    NASA Astrophysics Data System (ADS)

    Venditti, J. G.; Rennie, C. D.; Church, M. A.; Bomhof, J.; Lin, M.

    2012-12-01

    Bedrock canyon incision is widely recognized as setting the pace of landscape evolution. A variety of models link flow and sediment transport processes to the bedrock canyon incision rate. The model components that represent sediment transport processes are quite well developed in some models. In contrast, the model components that represent fluid flow remain rudimentary. Part of the reason is that there have been relatively few observations of flow structure in a bedrock canyon. Here, we present observations of flow obtained using an array of three acoustic Doppler current profilers during a 524 km long continuous centerline traverse of the Fraser River, British Columbia, Canada as it passes through a series of bedrock canyons. Through this portion of the river, the channel alternates between gravel-bedded reaches that are deeply incised into semi-consolidated glacial deposits and solid bedrock-bound reaches. We present observations of flow through 41 bedrock bound reaches of the river, derived from our centerline traverses and more detailed three-dimensional mapping of the flow structure in 2 canyons. Our observations suggest that flow in the most well-defined canyons (deep, laterally constrained, completely bedrock bound) is far more complex than that in a simple prismatic channel. As flow enters the canyon, a high velocity core plunges from the surface to the bed, causing a velocity inversion (high velocities at the bed and low velocities at the surface). This plunging flow then upwells along the canyon wall, resulting in a three-dimensional flow with counter-rotating, along-stream eddies that diverge near the bed. We observe centerline ridges along the canyon floors that result from the divergence and large-scale surface boils caused by the upwelling. This flow structure causes deep scour in the bedrock channel floor, and ensures the base of the canyon walls are swept of debris that otherwise may be deposited due to lower shear stresses abutting the walls. The observations suggest that the rudimentary modeling approaches currently included in landscape evolution theories are inadequate to capture the morphodynamics of bedrock canyons.

  13. Environmental assessment: Davis Canyon site, Utah

    SciTech Connect

    Not Available

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has fond that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization. 181 figs., 175 tabs.

  14. Streamlined Islands in Ares Valles

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 10 June 2002) The Science Although liquid water is not stable on the surface of Mars today, there is substantial geologic evidence that large quantities of water once flowed across the surface in the distant past. Streamlined islands, shown here, are one piece of evidence for this ancient water. The tremendous force of moving water, possibly from a catastrophic flood, carved these teardrop-shaped islands within a much larger channel called Ares Valles. The orientation of the islands can be used as an indicator of the direction the water flowed. The islands have a blunt end that is usually associated with an obstacle, commonly an impact crater. The crater is resistant to erosion and creates a geologic barrier around which the water must flow. As the water flows past the obstacle, its erosive power is directed outward, leaving the area in the lee of the obstacle relatively uneroded. However, some scientists have also argued that the area in the lee of the obstacle might be a depositional zone, where material is dropped out of the water as it briefly slows. The ridges observed on the high-standing terrain in the leeward parts of the islands may be benches carved into the rock that mark the height of the water at various times during the flood, or they might be indicative of layering in the leeward rock. As the water makes its way downstream, the interference of the water flow by the obstacle is reduced, and the water that was diverted around the obstacle rejoins itself at the narrow end of the island. Therefore, the direction of the water flow is parallel to the orientation of the island, and the narrow end of the island points downstream. In addition to the streamlined islands, the channel floor exhibits fluting that is also suggestive of flowing water. The flutes (also known as longitudinal grooves) are also parallel to the direction of flow, indicating that the water flow was turbulent and probably quite fast, which is consistent with the hypothesized catastrophic floods that came through Ares Valles. The Story In symbolism only, these guppy-shaped islands and current-like flutes of land beside them may conjure up a mental image of a flowing Martian river. This picture would only be half-right. Scientifically, no fish ever swam this channel, but these landforms do reveal that catastrophic floods of rushing water probably patterned the land in just this way. Geologists who study flood areas believe that a tremendous force of moving water probably carved both the islands and the small, parallel, 'current-like' ridges around them. The blunt end of the islands (the 'heads' of the 'fish') are probably ancient impact craters that posed obstacles to the water as it rushed down the channel in torrents. Because a crater is resistant to erosion, it creates a geologic barrier around which the water must flow. As the water makes its way downstream, the crater's interference with the water flow is reduced, so the water that was diverted around the obstacle rejoins at the narrow end of the island (the 'tail' of the 'fish'). Therefore, from this information, you can tell that the water flowed from the southeast to the northwest. As a rule of thumb for the future, you can say that the narrow end of the island points downstream. The result may be the island behind the crater, but geologists disagree about the exact process by which the island forms. Some scientists argue that the erosive power of the water is directed outward, leaving the area behind, or in the lee of, the obstacle relatively untouched. Other scientists argue that the water slows when it encounters the crater obstacle, and small particles of sand and 'dirt' drop out of the water and are deposited in the lee. There's another small associated uncertainty too. Look closely at the edges of the islands and notice how the land is terraced. These ledges might mark the height of the water at various times during the flood . . . or they might be an indication that layering occurred. It all depends on your hypothesis. Like the stream

  15. Karst hydrology of Grand Canyon, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Hill, C. A.; Polyak, V. J.

    2010-09-01

    SummaryCaves in Grand Canyon, Arizona, USA fall into two main categories: those formed under unconfined conditions and those formed under confined conditions. This study focuses on the hydrology and paleohydrology of the confined caves in the Redwall-Muav aquifer, where the aquifer is overlain by rocks of the Supai Group and underlain by the Bright Angel Shale. Unconfined caves are discussed only in their relation to confined caves. Discharge for confined groundwater was, as it is today, primarily from the Redwall Limestone where it has been incised by the main canyon or its tributaries and where it has converged along a structural low or fault. Descent of the potentiometric surface (or water table) over time is recorded by one ore episode and six cave episodes: (1) emplacement of Cu-U ore, (2) precipitation of iron oxide in cavities, (3) dissolution of cave passages, (4) precipitation of calcite-spar linings over cave passage walls, (5) precipitation of cave mammillary coatings, (6) minor replacement of cave wall and ceiling limestone by gypsum, and (7) deposition of subaerial speleothems. The mammillary episode records the approximate position of the water table when the incision of the canyon was at that level. Discharge toward spring points has reorganized and adjusted with respect to ongoing canyon and side-canyon incision. The dissolution of Grand Canyon confined caves was the result of the mixing of epigene waters with hypogene waters so that undersaturation with respect to calcite was achieved. The karst hydrology of Grand Canyon may be unique compared to other hypogene cave areas of the world.

  16. Origin of Florida Canyon and the role of spring sapping on the formation of submarine box canyons

    USGS Publications Warehouse

    Paull, Charles K.; Spiess, Fred N.; Curray, Joseph R.; Twichell, David C.

    1990-01-01

    Florida Canyon, one of a series of major submarine canyons on the southwestern edge of the Florida Platform, was surveyed using GLORIA, SeaBeam, and Deep-Tow technologies, and it was directly observed during three DSRV Alvin dives. Florida Canyon exhibits two distinct morphologies: a broad V-shaped upper canyon and a deeply entrenched, flat-floored, U-shaped lower canyon. The flat- floored lower canyon extends 20 km into the Florida Platform from the abyssal Gulf. The lower canyon ends abruptly at an ?3 km in diameter semicircular headwall that rises 750 m with a >60° slope angle to the foot of the upper canyon. The sides of the lower canyon are less steep than its headwall and are characterized by straight faces that occur along preferred orientations and indicate a strong joint control. The upper canyon is characterized by a gently sloping, straight V-shaped central valley cut into a broad terrace. The flat floor of the upper canyon continues as terraces along the upper walls of the lower canyon. On the flanks of the upper canyon, there are five >50-m-deep, >0.5-km-wide, closed sink-hole-like depressions which indicate subsurface dissolution within the platform. The origin of the lower canyon is difficult to explain with traditional models of submarine canyon formation by external physical processes. The movement of ground water, probably with high salinities and reduced compounds along regional joints, may have focused the corrosive force of submarine spring sapping at the head of the lower canyon to produce the canyon's present shape.

  17. Overview of the Colorado River Canyon from the helicopter pad. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview of the Colorado River Canyon from the helicopter pad. View of the Nevada side where new bridge will cross canyon, view northwest - Hoover Dam, Spanning Colorado River at Route 93, Boulder City, Clark County, NV

  18. Contemporary sediment-transport processes in submarine canyons.

    PubMed

    Puig, Pere; Palanques, Albert; Martín, Jacobo

    2014-01-01

    Submarine canyons are morphological incisions into continental margins that act as major conduits of sediment from shallow- to deep-sea regions. However, the exact mechanisms involved in sediment transfer within submarine canyons are still a subject of investigation. Several studies have provided direct information about contemporary sedimentary processes in submarine canyons that suggests different modes of transport and various triggering mechanisms. Storm-induced turbidity currents and enhanced off-shelf advection, hyperpycnal flows and failures of recently deposited fluvial sediments, dense shelf-water cascading, canyon-flank failures, and trawling-induced resuspension largely dominate present-day sediment transfer through canyons. Additionally, internal waves periodically resuspend ephemeral deposits within canyons and contribute to dispersing particles or retaining and accumulating them in specific regions. These transport processes commonly deposit sediments in the upper- and middle-canyon reaches for decades or centuries before being completely or partially flushed farther down-canyon by large sediment failures. PMID:23937169

  19. 43. and Design, Grand Canyon National Park, dated August 23, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. and Design, Grand Canyon National Park, dated August 23, 1934, and September 17, 1934 (original located at Federal Records Center, Denver, Colorado, #113/3084-set of 2) SEWAGE PLANT ADDITION. - Water Reclamation Plant, Grand Canyon, Coconino County, AZ

  20. 6. DARK CANYON SIPHON Photographic copy of historic photo, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DARK CANYON SIPHON - Photographic copy of historic photo, January 29, 1907 (original print filed in Record Group 115, National Archives, Washington, D.C.) W.J.Lubken, photographer 'RIPRAP AT THE ENTRANCE END OF DARK CANYON PRESSURE PIPE' - Carlsbad Irrigation District, Dark Canyon Siphon, On Main Canal, 1 mile South of Carlsbad, Carlsbad, Eddy County, NM

  1. 5. DARK CANYON SIPHON Photographic copy of historic photo, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DARK CANYON SIPHON - Photographic copy of historic photo, November 11, 1906 (original print located at the Carlsbad Irrigation District offices, Carlsbad, New Mexico) photographer unknown 'LOWER END OF DARK CANYON SIPHON CONSTRUCTION' - Carlsbad Irrigation District, Dark Canyon Siphon, On Main Canal, 1 mile South of Carlsbad, Carlsbad, Eddy County, NM

  2. THE ORIGI N ANDSEDIMENTOLOGYOF THE PUNASUBMARINE CANYON,HAhIAII

    E-print Network

    Luther, Douglas S.

    THE ORIGI N ANDSEDIMENTOLOGYOF THE PUNASUBMARINE CANYON,HAhIAII A DISSERTATIONSUBMITTEDTO Submarrne Canyon lres oFf the east coast of Lhe rsland of Hawarr, the youngest rsland of the Hawallan Charn. The canyon has a length of 7, km and a varrable wrdth, reachrng a maxrmum of t5 km at a posrtron abouL 25 km

  3. 75 FR 34476 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ...INTERIOR Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY...renewing the charter for the Glen Canyon Dam Adaptive Management Work Group. The purpose...respect to the operation of Glen Canyon Dam and the exercise of other authorities...

  4. Financial Analysis of Experimental Releases Conducted at Glen Canyon Dam

    E-print Network

    Kemner, Ken

    Financial Analysis of Experimental Releases Conducted at Glen Canyon Dam during Water Years 2006 Canyon Dam during Water Years 2006 through 2010 ANL/DIS-11-4 by L.A. Poch,1 T.D. Veselka,1 C.S. Palmer,2 Canyon Dam (GCD) conducted for the U.S. Department of Energy's Western Area Power Administration (Western

  5. 27 CFR 9.152 - Malibu-Newton Canyon.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Malibu-Newton Canyon. 9.152 Section 9.152...Viticultural Areas § 9.152 Malibu-Newton Canyon. (a) Name. The name of...described in this petition is “Malibu-Newton Canyon.” (b) Approved maps....

  6. 27 CFR 9.152 - Malibu-Newton Canyon.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 2014-04-01 false Malibu-Newton Canyon. 9.152 Section 9.152...Viticultural Areas § 9.152 Malibu-Newton Canyon. (a) Name. The name of...described in this petition is “Malibu-Newton Canyon.” (b) Approved maps....

  7. 27 CFR 9.152 - Malibu-Newton Canyon.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 2013-04-01 false Malibu-Newton Canyon. 9.152 Section 9.152...Viticultural Areas § 9.152 Malibu-Newton Canyon. (a) Name. The name of...described in this petition is “Malibu-Newton Canyon.” (b) Approved maps....

  8. 7. DARK CANYON SIPHON Photographic copy of construction drawing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DARK CANYON SIPHON - Photographic copy of construction drawing c1907 (from Record Group 115, Box 17, Denver Branch of the National Archives, Denver) DARK CANYON SIPHON PLAN, ELEVATION, AND SECTIONS - Carlsbad Irrigation District, Dark Canyon Siphon, On Main Canal, 1 mile South of Carlsbad, Carlsbad, Eddy County, NM

  9. Authigenic clay minerals in sandstones of the Delaware Mountain Group: Bell Canyon and Cherry Canyon Formations, Waha Field, West Texas

    E-print Network

    Walling, Suzette Denise

    1992-01-01

    AUTHIGENIC CLAY MINERALS IN SANDSTONES OF THE DELAWARE MOUNTAIN GROUP: BELL CANYON AND CHERRY CANYON FORMATIONS, WAHA FIELD, WEST TEXAS A Thesis by SUZETTE DENISE WALLING Submitted to the Office of Graduate Studies of Texas A&M University... in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1992 Major Subject: Geology AUTHIGENIC CLAY MINERALS IN SANDSTONES OF THE DELAWARE MOUNTAIN GROUP: BELL CANYON AND CHERRY CANYON FORMATIONS, WAHA FIELD, WEST TEXAS...

  10. Let's Bet on Sediments! Hudson Canyon Cruise--Grades 9-12. Focus: Sediments of Hudson Canyon.

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    These activities are designed to teach about the sediments of Hudson Canyon. Students investigate and analyze the patterns of sedimentation in the Hudson Canyon, observe how heavier particles sink faster than finer particles, and learn that submarine landslides are avalanches of sediment in deep ocean canyons. The activity provides learning…

  11. HELLS CANYON STUDY AREA, OREGON AND IDAHO.

    USGS Publications Warehouse

    Simmons, George C.; Close, Terry J.

    1984-01-01

    The Hells Canyon study area occupies nearly 950 sq mi along and near Hells Canyon of the Snake River in northeast Oregon and west-central Idaho. Geologic, geochemical, aeromagnetic, and mine and prospect investigations to determine the mineral-resource potential of the area were carried out. As a result, 42 sq mi or about 4 percent of the lands, in 21 separate areas, were classified as having probable or substantiated resource potential for base and precious metals, molybdenum, and tungsten. No energy resource potential was identified in this study.

  12. Morphology of Neptune Node Sites, Barkley Canyon, Cascadia Margin

    NASA Astrophysics Data System (ADS)

    Lundsten, E. M.; Anderson, K.; Paull, C. K.; Caress, D. W.; Thomas, H. J.; Riedel, M.

    2014-12-01

    High-resolution multibeam bathymetry and chirp seismic reflection profiles collected with MBARI's mapping autonomous underwater vehicle reveal the fine-scale morphology and shallow seafloor structure of the flanks and floor of Barkley Canyon on the Cascadia continental margin off British Columbia. The surveys characterize the environment surrounding three nodes on the Neptune Canada cabled observatory located within the canyon. The canyon floor between 960 and 1020 m water depth lacks channeling and contains ? 24 m of acoustically uniform sediment fill, which is ponded between the canyon's steep sidewalls. The fill overlies a strong reflector that outlines an earlier, now buried, canyon floor channel system. Debris flow tongues contain meter scale blocks sticking-up through the fill. Apparently the present geomorphology surrounding the Canyon Axis node in 985 m is attributable to local debris flows, rather than organized down canyon processes. In the survey area the canyon sidewalls extend ~300 m up and in places the slope of the canyons sides exceed 40°. Both the Hydrate node in 870 m water depths and the Mid-Canyon node at 890 m are located on a headland that forms intermediate depth terraces on the canyon's western flank. While the seafloor immediately surrounding the Mid-canyon node is smooth, the Hydrate node is marked by 10 circular mounds up to 2 m high and 10 m in diameter, presumable associated with hydrate formation. Although wedges of sediment drape occur in places on the canyon sides, the chirp profiles show no detectible sediment drape at either node site and suggest these nodes are situated on older, presumably pre-Quaternary strata. The lack of reflectors in the chirp profiles indicates most of the canyon's sidewalls are largely sediment-bare. Lineations in the bathymetry mark the exposed edges of truncated beds. Rough, apparently fresh textures, within slide scarps show the importance of erosion on the development of the canyon flanks.

  13. Geohydrology of White Rock Canyon of the Rio Grande from Otowi to Frijoles Canyon

    SciTech Connect

    Purtymun, W.D.; Peters, R.J.; Owens, J.W.

    1980-12-01

    Twenty-seven springs discharge from the Totavi Lentil and Tesuque Formation in White Rock Canyon. Water generally acquires its chemical characteristics from rock units that comprise the spring aquifer. Twenty-two of the springs are separated into three groups of similar aquifer-related chemical quality. The five remaining springs make up a fourth group with a chemical quality that differs due to localized conditions in the aquifer. Localized conditions may be related to recharge or discharge in or near basalt intrusion or through faults. Streams from Pajarito, Ancho, and Frijoles Canyons discharge into the Rio Grande in White Rock Canyon. The base flow in the streams is from springs. Sanitary effluent in Mortandad Canyon from the treatment plant at White Rock also reaches the Rio Grande.

  14. Anatomy of La Jolla submarine canyon system; offshore southern California

    USGS Publications Warehouse

    Paull, C.K.; Caress, D.W.; Lundsten, E.; Gwiazda, R.; Anderson, K.; McGann, M.; Conrad, J.; Edwards, B.; Sumner, E.J.

    2013-01-01

    An autonomous underwater vehicle (AUV) carrying a multibeam sonar and a chirp profiler was used to map sections of the seafloor within the La Jolla Canyon, offshore southern California, at sub-meter scales. Close-up observations and sampling were conducted during remotely operated vehicle (ROV) dives. Minisparker seismic-reflection profiles from a surface ship help to define the overall geometry of the La Jolla Canyon especially with respect to the pre-canyon host sediments. The floor of the axial channel is covered with unconsolidated sand similar to the sand on the shelf near the canyon head, lacks outcrops of the pre-canyon host strata, has an almost constant slope of 1.0° and is covered with trains of crescent shaped bedforms. The presence of modern plant material entombed within these sands confirms that the axial channel is presently active. The sand on the canyon floor liquefied during vibracore collection and flowed downslope, illustrating that the sediment filling the channel can easily fail even on this gentle slope. Data from the canyon walls help constrain the age of the canyon and extent of incision. Horizontal beds of moderately cohesive fine-grained sediments exposed on the steep canyon walls are consistently less than 1.232 million years old. The lateral continuity of seismic reflectors in minisparker profiles indicate that pre-canyon host strata extend uninterrupted from outside the canyon underneath some terraces within the canyon. Evidence of abandoned channels and point bar-like deposits are noticeably absent on the inside bend of channel meanders and in the subsurface of the terraces. While vibracores from the surface of terraces contain thin (< 10 cm) turbidites, they are inferred to be part of a veneer of recent sediment covering pre-canyon host sediments that underpin the terraces. The combined use of state of the art seafloor mapping and exploration tools provides a uniquely detailed view of the morphology within an active submarine canyon.

  15. Map Your Way to the Grand Canyon

    ERIC Educational Resources Information Center

    Yoder, Holly

    2005-01-01

    In the introductory assignment, each randomly assigned group spends about 10 to 15 minutes at each station. The author incorporates as much sensory stimulation in the activity as possible. At the first station, students view a PowerPoint show from a geology class the author participated in at the Grand Canyon. At station two, students look at a…

  16. The Colorado River in the Grand Canyon.

    ERIC Educational Resources Information Center

    Speece, Susan

    1991-01-01

    An assessment of the water quality of the Colorado River in the Grand Canyon was made, using the following parameters: dissolved oxygen, water temperature, hydrogen ion concentration, total dissolved solids, turbidity, and ammonium/nitrogen levels. These parameters were used to provide some clue as to the "wellness" and stability of the aquatic…

  17. Sandbar growth Grand Canyon following controlled flood

    USGS Multimedia Gallery

    Picture showing the increased size of the sandbar after the November 2012 controlled flood from the Glen Canyon Dam. This location is 65 miles downstream from Lees Ferry and the view is looking downstream. These and additional photographs depicting the results of the recent controlled floods can be ...

  18. Big Canyon Creek Ecological Restoration Strategy.

    SciTech Connect

    Rasmussen, Lynn; Richardson, Shannon

    2007-10-01

    He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe then used data collected from the District's stream assessment and inventory, utilizing the Stream Visual Assessment Protocol (SVAP), to determine treatment necessary to bring 90% of reaches ranked Poor or Fair through the SVAP up to good or excellent. In 10 year's time, all reaches that were previously evaluated with SVAP will be reevaluated to determine progress and to adapt methods for continued success. Over 400 miles of stream need treatment in order to meet identified restoration goals. Treatments include practices which result in riparian habitat improvements, nutrient reductions, channel condition improvements, fish habitat improvements, invasive species control, water withdrawal reductions, improved hydrologic alterations, upland sediment reductions, and passage barrier removal. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resource Management Watershed Division (Tribe) developed this document to guide restoration activities within the Big Canyon Creek watershed for the period of 2008-2018. This plan was created to demonstrate the ongoing need and potential for anadromous fish habitat restoration within the watershed and to ensure continued implementation of restoration actions and activities. It was developed not only to guide the District and the Tribe, but also to encourage cooperation among all stakeholders, including landowners, government agencies, private organizations, tribal governments, and elected officials. Through sharing information, skills, and resources in an active, cooperative relationships, all concerned parties will have the opportunity to join together to strengthen and maintain a sustainable natural resource base for present and future generations within the watershed. The primary goal of the strategy is to address aquatic habitat restoration needs on a watershed level for resident and anadromous fish species, promoting quality habitat within a self-sustaining watershed. Seven objectives have been developed to support this goal: (1) Identify factors limiting quality

  19. 3D View of Grand Canyon, Arizona

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Grand Canyon is one of North America's most spectacular geologic features. Carved primarily by the Colorado River over the past six million years, the canyon sports vertical drops of 5,000 feet and spans a 445-kilometer-long stretch of Arizona desert. The strata along the steep walls of the canyon form a record of geologic time from the Paleozoic Era (250 million years ago) to the Precambrian (1.7 billion years ago).

    The above view was acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument aboard the Terra spacecraft. Visible and near infrared data were combined to form an image that simulates the natural colors of water and vegetation. Rock colors, however, are not accurate. The image data were combined with elevation data to produce this perspective view, with no vertical exaggeration, looking from above the South Rim up Bright Angel Canyon towards the North Rim. The light lines on the plateau at lower right are the roads around the Canyon View Information Plaza. The Bright Angel Trail, which reaches the Colorado in 11.3 kilometers, can be seen dropping into the canyon over Plateau Point at bottom center. The blue and black areas on the North Rim indicate a forest fire that was smoldering as the data were acquired on May 12, 2000.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties, wetlands Evaluation, thermal pollution monitoring, coral reef degradation, surface temperature mapping of soils and geology, and measuring surface heat balance.

  20. Canyon-confined pockmarks on the western Niger Delta slope

    NASA Astrophysics Data System (ADS)

    Benjamin, Uzochukwu; Huuse, Mads; Hodgetts, David

    2015-07-01

    Fluid flow phenomena in the deepwater Niger Delta are important for the safe and efficient exploration, development and production of hydrocarbons in the area. Utilizing 3D seismic data from the western Niger Delta slope, we have identified pockmarks that are confined within a NE-SW oriented submarine canyon system that has been active since the early Quaternary. The pockmarks, subdivided into 'canyon-margin' pockmarks and 'intra-canyon' pockmarks, on the basis of their plan-form distribution patterns, are found to be spatially and stratigraphically related to stratigraphic discontinuities created by erosion cuts associated with the submarine canyon system. We infer that stratigraphic discontinuities provided pathways for fluid migration within the buried canyon system, allowing fluids from deeper parts of the basin to reach the seafloor as indicated by abundant pockmarks above the partly buried canyon. The transportation of fluids from deeper parts of the basin into the buried segment of the canyon system was facilitated by carrier beds expressed as high amplitude reflection packages and by extensional normal faults. The prevalence of the 'canyon margin' pockmarks over the 'intra-canyon' pockmarks is attributed to the direct connection of the buried canyon margins with truncated reservoir facies in hydraulic connection with deeper reservoir facies. The formation of the 'intra-canyon' pockmarks is interpreted to have been limited by fluid flow disconnection often caused by stratigraphic alternation of sand-rich and shale-rich channel deposits that constitute the canyon fill. Muddy canyon fill units act as baffles to fluid flow, while connected sandy infill units constitute pathways for fluid migration. Occurrence of pockmarks throughout the length of the submarine canyon system is an indication of shallow fluid flow within buried reservoir facies. Systematic alignment of seafloor pockmarks are clues to buried reservoirs and provide insights into reservoir architecture which could be crucial in frontier exploration of buried deepwater canyons reservoirs and for risk assessment of development activities on top of submarine canyons. A single mega pockmark linked by a gas chimney to a deeper anticlinal structure was discovered to the north of the canyon system. This structure may be indicative of subsurface geo-pressures close to the fracture gradient, highlighting a significant drilling hazard in this part of the study area.

  1. Engineering Geologic Assessment of Risk to Visitors: Canyon Lake Gorge, Texas 

    E-print Network

    Kolkmeier, Benjamin D.

    2010-07-14

    Presented here are the results of a study of geological hazards conducted in Canyon Lake Gorge of Central Texas. Canyon Lake Gorge formed in 2002 when the emergency spillway of Canyon Lake was overtopped. Since that time, ...

  2. 75 FR 71102 - Jones Canyon Hydro, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-22

    ...Regulatory Commission [Project No. 13860-000] Jones Canyon Hydro, LLC; Notice of Preliminary Permit...Applications November 12, 2010. On October 14, 2010, Jones Canyon Hydro, LLC (Jones Canyon Hydro) filed an application for a...

  3. 75 FR 20381 - Glen Canyon Dam Adaptive Management Work Group (AMWG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-19

    ...INTERIOR Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group (AMWG...SUMMARY: The Glen Canyon Dam Adaptive Management Program (AMP) was...Decision on the Operation of Glen Canyon Dam Final Environmental Impact Statement...

  4. 78 FR 54482 - Charter Renewal, Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ...4073000] Charter Renewal, Glen Canyon Dam Adaptive Management Work Group AGENCY...renewing the charter for the Glen Canyon Dam Adaptive Management Work Group. The purpose...concerning the operation of Glen Canyon Dam and the exercise of other authorities...

  5. 75 FR 439 - Glen Canyon Dam Adaptive Management Work Group (AMWG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ...INTERIOR Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group (AMWG...SUMMARY: The Glen Canyon Dam Adaptive Management Program (AMP) was...Decision on the Operation of Glen Canyon Dam Final Environmental Impact Statement...

  6. 76 FR 584 - Glen Canyon Dam Adaptive Management Program Work Group (AMWG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ...INTERIOR Bureau of Reclamation Glen Canyon Dam Adaptive Management Program Work Group...SUMMARY: The Glen Canyon Dam Adaptive Management Program (AMP) was...Decision on the Operation of Glen Canyon Dam Final Environmental Impact Statement...

  7. 75 FR 44809 - Glen Canyon Dam Adaptive Management Work Group (AMWG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ...INTERIOR Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group (AMWG...SUMMARY: The Glen Canyon Dam Adaptive Management Program (AMP) was...Decision on the Operation of Glen Canyon Dam Final Environmental Impact Statement...

  8. Candor Chasma - Massive (non-layered) material expos

    NASA Technical Reports Server (NTRS)

    1998-01-01

    One of the most striking discoveries of the Mars Global Surveyor mission has been the identification of thousands of meters/feet of layers within the wall rock of the enormous martian canyon system, Valles Marineris.

    Valles Marineris was first observed in 1972 by the Mariner 9 spacecraft, from which the troughs get their name: Valles--valleys, Marineris--Mariner.

    Some hints of layering in both the canyon walls and within some deposits on the canyon floors were seen in Mariner 9 and Viking orbiter images from the 1970s. The Mars Orbiter Camera on board Mars Global Surveyor has been examining these layers at much higher resolution than was available previously.

    MOC images led to the realization that there are layers in the walls that go down to great depths. An example of the wall rock layers can be seen in MOC image 8403, shown above (C).

    MOC images also reveal amazing layered outcrops on the floors of some of the Valles Marineris canyons. Particularly noteworthy is MOC image 23304 (D, above), which shows extensive, horizontally-bedded layers exposed in buttes and mesas on the floor of western Candor Chasma. These layered rocks might be the same material as is exposed in the chasm walls (as in 8403--C, above), or they might be rocks that formed by deposition (from water, wind, and/or volcanism) long after Candor Chasma opened up.

    In addition to layered materials in the walls and on the floors of the Valles Marineris system, MOC images are helping to refine our classification of geologic features that occur within the canyons. For example, MOC image 25205 (E, above), shows the southern tip of a massive, tongue-shaped massif (a mountainous ridge) that was previously identified as a layered deposit. However, this MOC image does not show layering. The material has been sculpted by wind and mass-wasting--downslope movement of debris--but no obvious layers were exposed by these processes.

    Valles Marineris a fascinating region on Mars that holds much potential to reveal information about the early history and evolution of the red planet. The MOC Science Team is continuing to examine the wealth of new data and planning for new Valles Marineris targets once the Mapping Phase of the Mars Global Surveyor mission commences in March 1999.

    This image: Massive (non-layered) material exposed in central Candor Chasma. MOC image 25205 subframe shown at 11.7 meters (38.4 feet) per pixel resolution. Image shows the southern tip of a massive 'interior deposit' that points like a giant tongue from Ophir Chasma (to the north) down into the center of Candor Chasma. The ridged and grooved bright unit is the 'interior deposit'. South of this ridged unit is a low elevation surface mantled by dark dunes and sand. Image covers an area approximately 5.7 by 5.7 kilometers (3.5 x 3.5 miles). North is approximately up, illumination is from the lower right. Image 25205 was obtained during Mars Global Surveyor's 252nd orbit at 2:45 p.m. (PDT) on April 20, 1998.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  9. Western Candor Chasma - Layers exposed near the middle

    NASA Technical Reports Server (NTRS)

    1998-01-01

    One of the most striking discoveries of the Mars Global Surveyor mission has been the identification of thousands of meters/feet of layers within the wall rock of the enormous martian canyon system, Valles Marineris.

    Valles Marineris was first observed in 1972 by the Mariner 9 spacecraft, from which the troughs get their name: Valles--valleys, Marineris--Mariner.

    Some hints of layering in both the canyon walls and within some deposits on the canyon floors were seen in Mariner 9 and Viking orbiter images from the 1970s. The Mars Orbiter Camera on board Mars Global Surveyor has been examining these layers at much higher resolution than was available previously.

    MOC images led to the realization that there are layers in the walls that go down to great depths. An example of the wall rock layers can be seen in MOC image 8403, shown above (C).

    MOC images also reveal amazing layered outcrops on the floors of some of the Valles Marineris canyons. Particularly noteworthy is MOC image 23304 (D, above), which shows extensive, horizontally-bedded layers exposed in buttes and mesas on the floor of western Candor Chasma. These layered rocks might be the same material as is exposed in the chasm walls (as in 8403--C, above), or they might be rocks that formed by deposition (from water, wind, and/or volcanism) long after Candor Chasma opened up.

    In addition to layered materials in the walls and on the floors of the Valles Marineris system, MOC images are helping to refine our classification of geologic features that occur within the canyons. For example, MOC image 25205 (E, above), shows the southern tip of a massive, tongue-shaped massif (a mountainous ridge) that was previously identified as a layered deposit. However, this MOC image does not show layering. The material has been sculpted by wind and mass-wasting--downslope movement of debris--but no obvious layers were exposed by these processes.

    Valles Marineris a fascinating region on Mars that holds much potential to reveal information about the early history and evolution of the red planet. The MOC Science Team is continuing to examine the wealth of new data and planning for new Valles Marineris targets once the Mapping Phase of the Mars Global Surveyor mission commences in March 1999.

    Layers exposed near the middle of western Candor Chasma. MOC image 23304 subframe shown at 10.7 meters (35 feet) per pixel. Two layered buttes (upper right and lower right) and a layered or stepped mesa (center right) are shown. The image covers an area approximately 5.5 by 5.5 kilometers (3.4 x 3.4 miles). North is approximately up, illumination is from the lower right. Image 23304 was obtained during Mars Global Surveyor's 233rd orbit at 9:23 a.m. (PDT) on April 11, 1998.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  10. Characteristics of wind field in a street canyon

    Microsoft Academic Search

    Vu Thanh Ca; Takashi Asaeda; Manabu Ito; Steve Armfield

    1995-01-01

    Characteristics of the wind field in a North-South oriented street canyon were studied by a numerical model to couple the heat and mass transfer processes. The heat fluxes were traced in and out of the street canyon, and the feedback of the heating processes inside the street canyon to the atmosphere was simulated by simultaneous solutions of the two-dimensional Navier-Stokes

  11. Flood Geology and the Grand Canyon: A Critique

    Microsoft Academic Search

    Carol A. Hill; Stephen O. Moshier

    2009-01-01

    Four claims of Flood Geology—as they are related to the Grand Canyon and specifically to the book Grand Canyon: A Different View—are evaluated by directly addressing Young Earth Creationist arguments, by showing rock features that belie these claims, and by presenting the most up-to-date scientific theories on the origin of the Grand Canyon. We conclude that Young Earth Creationism promotes

  12. Lake Powell, Colorado River, Utah and Grand Canyon, Arizona

    NASA Technical Reports Server (NTRS)

    1973-01-01

    In this stark desert scene, Lake Powell, the Colorado River and the Grand Canyon (36.5N, 111.5W) provide the only relief and source of water. The creation of Lake Powell by the building of the Glen Canyon High Dam led directly to the establishment of a National Recreation Area surrounding the lakes. To the south, following the course of the Colorado River, the NE corner of Grand Canyon can be seen.

  13. Atmospheric Flow through Urban Street Canyons

    Microsoft Academic Search

    H. J. S. Fernando

    2005-01-01

    Flow and turbulence through a network of urban street canyons (streets located within large buildings) were studied during two large-scale field experiments: the Mock Urban Setting Test (MUST-2000) at the US Army Dugway Proving Grounds and the Joint-Urban 2003 field experiment in Oklahoma City. Instrumented towers and tethersondes deployed by the authors and several other groups were analyzed in the

  14. Geomorphic characterization of four shelf-sourced submarine canyons along the U.S. Mid-Atlantic continental margin

    E-print Network

    ten Brink, Uri S.

    Geomorphic characterization of four shelf-sourced submarine canyons along the U.S. Mid Washington Canyon Norfolk Canyon Turbidity flow a b s t r a c t Shelf-sourced submarine canyons are common of major submarine canyons. Submarine canyons on passive margins are primarily the result of erosion

  15. Ascension Submarine Canyon, California - Evolution of a multi-head canyon system along a strike-slip continental margin

    USGS Publications Warehouse

    Nagel, D.K.; Mullins, H.T.; Greene, H. Gary

    1986-01-01

    Ascension Submarine Canyon, which lies along the strike-slip (transform) dominated continental margin of central California, consists of two discrete northwestern heads and six less well defined southeastern heads. These eight heads coalesce to form a single submarine canyon near the 2700 m isobath. Detailed seismic stratigraphic data correlated with 19 rock dredge hauls from the walls of the canyon system, suggest that at least one of the two northwestern heads was initially eroded during a Pliocene lowstand of sea level ???3.8 m.y. B.P. Paleogeographic reconstructions indicate that at this time, northwestern Ascension Canyon formed the distal channel of nearby Monterey Canyon and has subsequently been offset by right-lateral, strike-slip faulting along the San Gregorio fault zone. Some of the six southwestern heads of Ascension Canyon may also have been initially eroded as the distal portions of Monterey Canyon during late Pliocene-early Pleistocene sea-level lowstands (???2.8 and 1.75 m.y. B.P.) and subsequently truncated and offset to the northwest. There have also been a minimum of two canyon-cutting episodes within the past 750,000 years, after the entire Ascension Canyon system migrated to the northwest past Monterey Canyon. We attribute these late Pleistocene erosional events to relative lowstands of sea level 750,000 and 18,000 yrs B.P. The late Pleistocene and Holocene evolution of the six southeastern heads also appears to have been controlled by structural uplift of the Ascension-Monterey basement high at the southeastern terminus of the Outer Santa Cruz Basin. We believe that uplift of this basement high sufficiently oversteepened submarine slopes to induce gravitational instability and generate mass movements that resulted in the erosion of the canyon heads. Most significantly, though, our results and interpretations support previous proposals that submarine canyons along strike-slip continental margins can originate by tectonic trunction and lateral offset. ?? 1986.

  16. Universit de Marne-La-Valle Institut Gaspard Monge

    E-print Network

    Boyer, Edmond

    Université de Marne-La-Vallée Institut Gaspard Monge Ecole Doctorale Information, Communication, Modélisation et Simulation Institut Gaspard Monge, laboratoire d'informatique TH�SE pour obtenir le grade de

  17. Cross Profile and Volume Analysis of Bahram Valles on Mars

    NASA Astrophysics Data System (ADS)

    Kereszturi, A.

    2005-03-01

    We analysed cross section profiles of Bahram Valles on Mars and the connection between its shape, the surrrounding terrain and the probable erosional processes, and estimated the volume of transported material during its formation.

  18. Geology Fieldnotes: Canyon De Chelly National Monument, Arizona

    NSDL National Science Digital Library

    This canyon cuts through the sandstones of the De Chelly formation, of Permian age (200 million years old). The river forming the canyon is the Rio De Chelly, which begins in the nearby Chuska Mountains. Details on this site include some geology, visitor information, photographs, and area maps. Also discussed are details on seeing the park, and Native American history of the area.

  19. Aquatic macroinvertebrates and water quality in Sandia Canyon

    Microsoft Academic Search

    1994-01-01

    In 1990, field studies of water quality and stream macroinvertebrate communities were initiated in Sandia Canyon at Los Alamos National Laboratory. The studies were designed to establish baseline data and to determine the effects of routine discharges of industrial and sanitary waste. Water quality measurements were taken and aquatic macroinvertebrates sampled at three permanent stations within the canyon. Two of

  20. Wind-tunnel study of concentration fields in street canyons

    Microsoft Academic Search

    P Kastner-Klein; E. J Plate

    1999-01-01

    The paper presents results from a case study of gaseous pollutant dispersion in street canyons. Tracer-gas experiments were performed in a neutrally stratified wind tunnel. Vehicle emissions were simulated as line sources. Concentration profiles along building walls were measured. A two-dimensional street canyon was considered as the reference case. The influence of systematic parameter variations on the concentration field is

  1. The Grand Canyon: The Top Two Rock Layers

    NSDL National Science Digital Library

    2006-01-01

    Watch this short video clip to learn more about the rock layers of the Grand Canyon. This video discusses the two sandstone formations that comprise the uppermost part of the canyon. The video also discusses how the two sandstone layers were formed.

  2. Formation of Amphitheater-Headed Canyons Michael Patrick Lamb

    E-print Network

    . Dietrich, Chair Professor Michael M. Manga Professor Mark Stacey Spring 2008 #12;Formation of Amphitheater Dissertation Committee Chair #12;i Contents Contents Acknowledgements Chapter 1. Introduction 1.1. Why Study Amphitheater-Headed Canyons? 1.2. Summary of Chapters 2 ­ 6 1.3. References Chapter 2. Can Springs Cut Canyons

  3. 4. VISTA POINT AND INTERPRETIVE PLAQUE AT LEE VINING CANYON. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VISTA POINT AND INTERPRETIVE PLAQUE AT LEE VINING CANYON. NOTE ROAD CUT ON CANYON WALL. LOOKING NNE. GIS: N-37 56 30.3 / 119 13 44.8 - Tioga Road, Between Crane Flat & Tioga Pass, Yosemite Village, Mariposa County, CA

  4. The Grand Canyon of the Yellowstone Online Tour

    NSDL National Science Digital Library

    Yellowstone National Park

    This Yellowstone National Park website offers an online tour of the Grand Canyon of the Yellowstone. Prominent viewpoints of the canyon are highlighted with photos and information concerning their history. Other stops include information on giant glacial boulders and waterfalls. Similar tours of the Old Faithful area, the Norris Geyser Basin, the Fountain Paint Pots, and the Mammoth Hot Springs are also available online.

  5. Evolution of surface gravity waves over a submarine canyon

    E-print Network

    Magne, R; Herbers, T H C; Ardhuin, F; O'Reilly, W C; Rey, V; Magne, Rudy; Belibassakis, Kostas; Herbers, Thomas H. C.; Ardhuin, Fabrice; Reilly, William C. O'; Rey, Vincent

    2006-01-01

    The effects of a submarine canyon on the propagation of ocean surface waves are examined with a three-dimensional coupled-mode model for wave propagation over steep topography. Whereas the classical geometrical optics approximation predicts an abrupt transition from complete transmission at small incidence angles to no transmission at large angles, the full model predicts a more gradual transition with partial reflection/transmission that is sensitive to the canyon geometry and controlled by evanescent modes for small incidence angles and relatively short waves. Model results for large incidence angles are compared with data from directional wave buoys deployed around the rim and over Scripps Canyon, near San Diego, California, during the Nearshore Canyon Experiment (NCEX). Wave heights are observed to decay across the canyon by about a factor 5 over a distance shorter than a wavelength. Yet, a spectral refraction model predicts an even larger reduction by about a factor 10, because low frequency components c...

  6. Crustal Fractures of Ophir Planum

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 29 April 2002) The Science This THEMIS image covers a tract of plateau territory called Ophir Planum. The most obvious features in this scene are the fractures (ranging from 1 to 5 km wide) running from the upper left to lower right. Localized rifting and deep-seated tension fracturing of the crust probably formed these cracks. The wall rock displayed in the upper part of the cliffs appears to be layered. The southwest-facing wall of the largest and uppermost fracture has classic spur and gully topography. This type of topography is created by differing amounts of erosion. Also seen in this image are some scattered impact craters and some dark wind streaks in the lower right. The Ophir Planum plateau separates two separate smaller canyon systems, not visible in this image, (Candor Chasma to the north and Melas Chasma to the south) in the Valles Marineris canyon complex. The whole Valles Marineris canyon system extends some 4,000 km across the equatorial realms of Mars. For comparison, this would stretch from New York City to San Francisco. The Story Plateaus and spurs might make you think of cowboys on the open plain. 'Spurs' in this context, however, are simply ridges that can be seen on the side of the southwest-facing wall of the large fracture that splits the terrain. Gullies stretch down this slope as well. Both of these features are caused by erosion, which is a mild force of change compared to whatever tension cracked the crust and ripped apart the land. The wall rock displayed in the upper part of the cliffs appears to be layered, suggesting that different kinds of rocks and minerals can be found in each banded zone. The Ophir Planum plateau separates two separate canyon systems in the Valles Marineris complex, the largest canyon in the solar system. If Valles Marineris were on Earth, it would stretch from New York City all the way to San Francisco. That will give you some idea of the geological forces that have acted upon the planet over time. Look for scattered impact craters and some dark wind streaks in the deep dark terrain (lower right) as well.

  7. Active geologic processes in Barrow Canyon, northeast Chukchi Sea

    USGS Publications Warehouse

    Eittreim, S.; Grantz, A.; Greenberg, J.

    1982-01-01

    Circulation patterns on the shelf and at the shelf break appear to dominate the Barrow Canyon system. The canyon's shelf portion underlies and is maintained by the Alaska Coastal Current (A.C.C.), which flows northeastward along the coast toward the northeast corner of the broad Chukchi Sea. Offshelf and onshelf advective processes are indicated by oceanographic measurements of other workers. These advective processes may play an important role in the production of bedforms that are found near the canyon head as well as in processes of erosion or non-deposition in the deeper canyon itself. Coarse sediments recovered from the canyon axis at 400 to 570 m indicate that there is presently significant flow along the canyon. The canyon hooks left at a point north of Point Barrow where the A.C.C. loses its coastal constriction. The left hook, as well as preferential west-wall erosion, continues down to the abyssal plain of the Canada Basin at 3800 m. A possible explanation for the preferential west-wall erosion along the canyon, at least for the upper few hundred meters, is that the occasional upwelling events, which cause nutrient-rich water to flow along the west wall would in turn cause larger populations of burrowing organisms to live there than on the east wall, and that these organisms cause high rates of bioerosion. This hypothesis assumes that the dominant factor in the canyon's erosion is biological activity, not current velocity. Sedimentary bedforms consisting of waves and furrows are formed in soft mud in a region on the shelf west of the canyon head; their presence there perhaps reflects: (a) the supply of fine suspended sediments delivered by the A.C.C. from sources to the south, probably the Yukon and other rivers draining northwestern Alaska; and (b) the westward transport of these suspended sediments by the prevailing Beaufort Gyre which flows along the outer shelf. ?? 1982.

  8. Hanging canyons of Haida Gwaii, British Columbia, Canada: Fault-control on submarine canyon geomorphology along active continental margins

    NASA Astrophysics Data System (ADS)

    Harris, Peter T.; Barrie, J. Vaughn; Conway, Kim W.; Greene, H. Gary

    2014-06-01

    Faulting commonly influences the geomorphology of submarine canyons that occur on active continental margins. Here, we examine the geomorphology of canyons located on the continental margin off Haida Gwaii, British Columbia, that are truncated on the mid-slope (1200-1400 m water depth) by the Queen Charlotte Fault Zone (QCFZ). The QCFZ is an oblique strike-slip fault zone that has rates of lateral motion of around 50-60 mm/yr and a small convergent component equal to about 3 mm/yr. Slow subduction along the Cascadia Subduction Zone has accreted a prism of marine sediment against the lower slope (1500-3500 m water depth), forming the Queen Charlotte Terrace, which blocks the mouths of submarine canyons formed on the upper slope (200-1400 m water depth). Consequently, canyons along this margin are short (4-8 km in length), closely spaced (around 800 m), and terminate uniformly along the 1400 m isobath, coinciding with the primary fault trend of the QCFZ. Vertical displacement along the fault has resulted in hanging canyons occurring locally. The Haida Gwaii canyons are compared and contrasted with the Sur Canyon system, located to the south of Monterey Bay, California, on a transform margin, which is not blocked by any accretionary prism, and where canyons thus extend to 4000 m depth, across the full breadth of the slope.

  9. Geologic Map of the Valles Caldera, Jemez Mountains, New Mexico

    NASA Astrophysics Data System (ADS)

    Goff, F.; Gardner, J. N.; Reneau, S. L.; Kelley, S. A.; Kempter, K. A.; Lawrence, J. R.

    2011-12-01

    Valles caldera is famous as the type locality of large resurgent calderas (Smith and Bailey, 1968), the location of a classic 260-300 °C liquid-dominated geothermal system (Goff and Gardner, 1994), and the site of a long-lived late Pleistocene lake (Fawcett et al., 2011). We have published a detailed color geologic map of the Valles caldera and surrounding areas at 1:50,000 scale obtainable from New Mexico Bureau of Geology and Mineral Resources (geoinfo.nmt.edu/publications/maps/geologic/gm/79/). The new Valles map has been compiled from all or parts of nine 1:24,000 geologic maps completed between 2004 and 2008 (Bland, Cerro del Grant, Jarosa, Jemez Springs, Polvadera Peak, Redondo Peak, Seven Springs, Valle San Antonio, and Valle Toledo). Our map provides more detailed geology on the resurgent dome, caldera collapse breccias, post-caldera lava and tuff eruptions, intracaldera sedimentary and lacustrine deposits, and precaldera volcanic and sedimentary rocks than previous maps and incorporates recent stratigraphic revisions to the geology of the Jemez Mountains volcanic field. Three cross sections supported by surface geology, geophysical data and deep borehole logs (?4500 m) show an updated view of the caldera interior, depict a modern interpretation of caldera collapse and resurgence, and provide caldera-wide subsurface isotherms (?500 °C). A 30 page booklet included with the map contains extensive rock descriptions for 162 stratigraphic units and figures showing physiographic features, structural relations between Valles (1.25 Ma) and the earlier, comparably sized Toledo caldera (1.62 Ma), correlation charts of map units, and the distribution of pre- and post-caldera hydrothermal alteration styles, including recently documented zeolite-type alteration. Finally, the booklet includes a generalized model showing our interpretation of intracaldera structure and subjacent magma chambers, and relations of Valles to earlier Quaternary-Precambrian units.

  10. A submarine canyon as the cause of a mud volcano Liuchieuyu Island in Taiwan

    E-print Network

    Lin, Andrew Tien-Shun

    A submarine canyon as the cause of a mud volcano Ð Liuchieuyu Island in Taiwan J. Chowa,*, J, we also discuss the relationship between a nearby submarine canyon (Kaoping Submarine Canyon¯ection; Submarine canyon; Mud volcano 1. Introduction In the early Pliocene, the paleoenvironment of the offshore

  11. Glen Canyon Dam, Fluctuating Water Levels, and Riparian Breeding Birds: The Need for Management Compromise

    E-print Network

    I ;'. I Glen Canyon Dam, Fluctuating Water Levels, and Riparian Breeding Birds: The Need.--Large water releases from Glen Canyon Dam in May and June are harmful to riparian breeding birds along' INTRODUCTION 100,000,.... COLORAOQ RIVER NEAR GRAND CANYON (PHANTOM RANCHi The completion of Glen Canyon Dam

  12. 28. Fern Canyon (Meier 1979) This established RNA is on the San Dimas

    E-print Network

    Standiford, Richard B.

    28. Fern Canyon (Meier 1979) Location This established RNA is on the San Dimas Experimental Forest of bigcone Douglas-fir (BDF) at Fern Canyon have burned recently (1975). Poor reproduction suggestsUSDA Forest Service General Technical Report PSW-GTR-188. 2004. 28. Fern Canyon Figure 58--Fern Canyon

  13. Numerical simulation of the circulation within the Perth Submarine Canyon, Western Australia

    Microsoft Academic Search

    Susan J. Rennie; Charitha B. Pattiaratchi; Robert D. McCauley

    2009-01-01

    Surface and sub-surface currents along the ocean boundary of Western Australia were simulated using Regional Ocean Modelling System (ROMS) to examine the circulation within the Perth Canyon. Two major current systems influenced the circulation within the canyon: (1) The Leeuwin current interacted weakly with the canyon as the majority of the canyon was below the depth of the Leeuwin current

  14. Transient wind-driven upwelling in a submarine canyon: A process-oriented modeling study

    Microsoft Academic Search

    Jochen Kämpf

    2006-01-01

    A hydrodynamic model is employed to study flow near a submarine canyon during conditions of upwelling-favorable coastal winds. Findings reveal that up-canyon flow is the rapid geostrophic adjustment to barotropic pressure gradients establishing across the canyon. Stratification leads to the formation of a cyclonic eddy within the canyon, trapping neutrally buoyant matter, and limits the upwelling depth only when a

  15. Adiciones a la avifauna del Valle de Aburr y comentarios sobre la investigacin ornitolgica local

    E-print Network

    Cuervo, Andrés

    Adiciones a la avifauna del Valle de Aburrá y comentarios sobre la investigación ornitológica local tendientes a mejorar la calidad de información disponible sobre la avifauna del Valle de Aburrá. La taxonomía & Graves 1995). Especies nuevas para la avifauna del Valle de Aburrá Águila Paramuna Geranoaëtus

  16. Hells Canyon Environmental Investigation : Summary, 1984.

    SciTech Connect

    Not Available

    1984-07-01

    The Northwest Electric Power Planning and Conservation Act of 1980 provided for the establishment of a Regional Power Planning Council (Regional Council) and mandated the development of a Columbia River Basin Fish and Wildlife Program (F and W Program). The F and W Program was adopted in November 1982, and is intended to mitigate fish and wildlife losses resulting from the development of hydroelectric dams on the Columbia and Snake Rivers. One element of the F and W Program is the Water Budget. It calls for additional flows in the Columbia and Snake Rivers between April 15 and June 15 to improve the survival of juvenile salmon and steelhead migrating downstream. The Snake River's contribution to the Water Budget is 20,000 cubic feet per second-months over and above water that would normally flow for power production. The water for the Water Budget would come out of Idaho Power Company's (IPCo) Hells Canyon Complex (Brownlee Reservoir) and the Corps of Engineers' (Corps) Dworshak Reservoir. IPCo's participation in the Water Budget could affect the level of the Brownlee Reservoir and flows downstream of the Hells Canyon Complex on the Snake River. The potential changes that could occur to the environment are summarized in the following areas: (1) natural features, water use, and air and water quality; (2) fish, wildlife, and vegetation; (3) land use, recreation, and aesthetics; and (4) historical and archaeological resources.

  17. Hells Canyon Environmental Investigation : Final Report.

    SciTech Connect

    United States. Bonneville Power Administration.

    1985-01-01

    The Water Budget plan would provide additional flows in the Columbia and Snake Rivers between April 15 and June 15 to improve the survival of downstream migrating salmon and steelhead. The plan calls for 20,000 cubic feet per second-months (beyond the firm power flow) to be delivered to Lower Granite pool as the Snake River contribution to the Water Budget. This water would come from Idaho Power Company's (IPCo) Hells Canyon Complex (principally, Brownlee Reservoir) and the US Army Corps of Engineers' Dworshak Reservoir. This report contains the results of an environmental investigation of the nonpower impacts on the Hells Canyon Complex investigation. The environmental investigation evaluated three Water Budget scenarios, or levels of participation, developed by IPCo. These scenarios involve drawdowns of Brownlee Reservoir to three elevations, or floor levels (2036, 2050, and 2065), for Water Budget flows. A total of nine discipline areas were studied. These include natural features (geology); water use; water quality; fish, botanical, and wildlife resources; air quality; land use; historical and archeological resources; recreational resources; and aesthetic resources. Within each discipline, the report presents the existing conditions, the potential impacts associated with each scenario, information deficiencies and needed studies, and references.

  18. Atmospheric Flow through Urban Street Canyons

    NASA Astrophysics Data System (ADS)

    Fernando, H. J. S.

    2005-11-01

    Flow and turbulence through a network of urban street canyons (streets located within large buildings) were studied during two large-scale field experiments: the Mock Urban Setting Test (MUST-2000) at the US Army Dugway Proving Grounds and the Joint-Urban 2003 field experiment in Oklahoma City. Instrumented towers and tethersondes deployed by the authors and several other groups were analyzed in the framework of flow regimes corresponding to each of the sites (``isolated roughness'' at Dugway and ``skimming flow'' at OKC). The results show that the flow patterns are highly sensitive to the approach angle for angles greater than about 5 deg, and that when the flow is normal to the building cluster the canyons are dominated by recirculating flow. The production of turbulence is highest near the ground and near the top of the buildings, and the variations of turbulent shear stresses could be scaled using local similarity variables. The mean flow in the roughness and inertial layers were compared with available theoretical formulations, and the flow in MUST was also studied using numerical simulations.

  19. Atmospheric Fragmentation of the Canyon Diablo Meteoroid

    NASA Technical Reports Server (NTRS)

    Pierazzo, E.; Artemieva, N. A.

    2005-01-01

    About 50 kyr ago the impact of an iron meteoroid excavated Meteor Crater, Arizona, the first terrestrial structure widely recognized as a meteorite impact crater. Recent studies of ballistically dispersed impact melts from Meteor Crater indicate a compositionally unusually heterogeneous impact melt with high SiO2 and exceptionally high (10 to 25% on average) levels of projectile contamination. These are observations that must be explained by any theoretical modeling of the impact event. Simple atmospheric entry models for an iron meteorite similar to Canyon Diablo indicate that the surface impact speed should have been around 12 km/s [Melosh, personal comm.], not the 15-20 km/s generally assumed in previous impact models. This may help explaining the unusual characteristics of the impact melt at Meteor Crater. We present alternative initial estimates of the motion in the atmosphere of an iron projectile similar to Canyon Diablo, to constraint the initial conditions of the impact event that generated Meteor Crater.

  20. Physical modeling of tidal resonance in a submarine canyon

    NASA Astrophysics Data System (ADS)

    Souëf, K. E.; Allen, S. E.

    2014-02-01

    Current observations in submarine canyons poleward of 30° are usually dominated by the semidiurnal (M2) tidal frequency, which is superinertial at these latitudes. Observations from a submarine canyon at 44°N (the Gully, Nova Scotia) suggest that canyons can be dominated by the subinertial (K1) tidal frequency if length scales are correct for resonance of the K1 frequency. A model of the Gully was constructed in a tank on a rotating table and tidal currents generated to determine factors that influence resonance. Resonance curves were fit to measurements from the laboratory canyon for a range of stratifications, background rotation rates, and forcing amplitudes. Dense water was observed upwelling onto the continental shelf on either side of the laboratory canyon and traveled at least one canyon width along the shelf. Friction values measured in the laboratory were much higher than expected, probably due to upwelled water surging onto the shelf on each tidal cycle, similar to a tidal bore. By scaling observations from the laboratory to the ocean and assuming friction in the ocean is also affected by water traveling onto the shelf, a resonance curve for the ocean was created. Because of the broad resonance curve, the diurnal tide remains strong year round at the Gully, even as stratification at the shelf break changes. Dense water surging onto the shelf on tidal frequencies may affect friction and mixing at other nonresonant canyons.

  1. Uranium-series age determination of calcite veins, VC-1 drill core, Valles Caldera, New Mexico

    NASA Astrophysics Data System (ADS)

    Sturchio, Neil C.; Binz, Carl M.

    1988-06-01

    Uranium-series analysis (238U-234U-230Th) of 13 calcite veins from the hydrothermally altered Madera Limestone in the VC-1 drill core was performed to determine the ages of the veins and their relation to the Valles hydrothermal system. Thermal water from VC-1 and two hot springs in San Diego Canyon was analyzed for U and (234U/238U) to help evaluate the constancy of initial (234U/238U). The (230Th/234U) age of one of the veins is ˜95 kyr, and those of two other veins are ˜230 and ˜250 kyr. Five of the veins have near equilibrium (230Th/234U) and are probably older than ˜0.3 m.y. Uranium concentrations in the remaining veins are too low for analysis by the ?-spectrometry techniques employed in this study. Of the five veins near (230Th/234U) equilibrium, four are also near (234U/238U) equilibrium, suggesting ages greater than ˜1.0 m.y., but one has (234U/238U) = 1.15, suggesting an age between ˜0.3 and ˜1.0 m.y. Calculated initial (234U/238U) of the veins yielding relatively young ages are neither equal to each other nor to (234U/238U) in thermal water from VC-1, indicating inconstancy of initial (234U/238U) that may be related to variations in groundwater mixing proportions. Three of the four veins that yield relatively young ages consist of coarse, sparry, vuggy calcite, suggesting that this may be the type of calcite vein which forms under conditions resembling those encountered presently in VC-1. The analytical data are consistent with closed-system behavior of U and Th in the VC-1 calcite veins.

  2. Workshop on recent research in the Valles caldera

    SciTech Connect

    Heiken, G. (comp.)

    1985-02-01

    Over the last 5 years, there has been increased interest in the geology of the Jemez Mountains volcanic field, New Mexico. Of special interest is the Toledo-Valles caldera complex, which is targeted for research coring as part of the Continental Scientific Drilling Program. The general topics covered in this workshop were (1) hydrothermal systems and rock-water interactions, (2) volcanology and structural framework of the Jemez volcanic field, (3) determining the presence or absence of melt below the Valles caldera, and (4) deep coring and drilling technology. Separate abstracts were prepared for each presentation.

  3. Report Summary, Final Hells Canyon Environmental Investigation.

    SciTech Connect

    United States. Bonneville Power Administration.

    1985-01-01

    The Northwest Electric Power Planning and Conservation Act of 1980 provided for the establishment of a Regional Power Planning Council (Regional Council) and mandated the development of a Columbia River Basin Fish and Wildlife Program (F&W Program). The F&W Program was adopted by the Regional Council in November 1982. and is intended to mitigate fish and wildlife losses resulting from the development of hydroelectric dams on the Columbia and Snake Rivers. One element of the FLW Program is the Water Budget. It calls for additional flows in the Columbia and Snake Rivers between April 15 and June 15 to improve the survival of juvenile salmon and steelhead migrating downstream. The Snake River's contribution to the Water Budget is 20,000 cubic feet per second-months (A volume of water equal to a flow of 20.000 cubic feet per second, 24 hours per day, for a period of a month) over and above water that would normally flow for power production. The water for the Water Budget would come out of Idaho Power Company's (IPCo) Hells Canyon Complex and the Corps of Engineers' (Corps) Dvorshak Reservoir. IPCo's Hells Canyon Complex consists of three dams, Brownlee, Oxbow, and Hells Canyon. Brownlee, at the upstream end, contains a large reservoir and controls flow to the lower dams. IPCo's participation in the Water Budget could affect the level of the Brownlee Reservoir and flows downstream of the Hells Canyon Complex on the Snake River. In light of this, Bonneville Power Administration (BPA) and IPCo contracted with the consulting firm of CH2!4 Hill to study the potential changes that could occur to the environment. The Environmental Investigation (EI) takes into account concerns that were expressed by the public at a series of public meetings held in the Snake River area during June 1983 and again during September 1984. Existing information and consultations with agencies which have management responsibilities in the project area formed the basis for the data used in the EI. This document summarizes the findings of the final EI in the following areas: (1) natural features, water use, and air and water quality; (2) fish, wildlife, and vegetation; (3) land use, recreation, and aesthetics; and (4) historical and archaeological resources. The EI provides information to be used by IPCo as they assess the effect on the system operations (power and nonpower) resulting from Water Budget participation. BPA and IPCo are continuing to discuss the prospects for IPCo's involvement in implementation of the Water Budget on the Snake River. When IPCo reaches a decision on whether and to what extent it wishes to participate in a Water Budget agreement with BPA, the proposed agreement will be subject to analysis under the National Environmental Policy Act (NEPA). That analysis will consider alternatives, significance of impacts to the environment, and mitigative measures.

  4. Lynch Canyon combination thermal drive project. [Termination

    SciTech Connect

    Stair, J. R.

    1980-11-01

    The following report provides a summary of the Lynch Canyon Thermal Drive Project. This demonstration project was begun in 1978 and terminated in 1980. The project originally was divided into four phases; Geologic Evaluation, Injectivity Test, Field Development Combined with Air-Water Injection, and a Project Review. Following the First Phase operations, which included drilling of four wells for geologic evaluation, a joint decision to cancel the project was made. The conditions which were thought to exist at the initiation of the project, would have provided an excellent opportunity to conduct a Pilot Combination Thermal Drive. However, potential problems which were discovered in the Phase One Operations significantly altered the economics of the project and removed the favorable conditions under which the project was begun.

  5. History of the youngest members of the Valles Rhyolite, Valles caldera, New Mexico using ESR dating method

    SciTech Connect

    Ogoh, K.; Toyoda, S.; Ikeda, S.; Ikeya, M. (Osaka Univ., Toyonaka (Japan). Dept. of Physics); Goff, F. (Los Alamos National Lab., NM (United States))

    1991-01-01

    The cooling history of the Valles caldera was studied by the electron spin resonance (ESR) dating method using Al and Ti centers in quartz grains which were separated from the youngest units of the Valles Rhyolite. The ESR apparent ages are much younger than fission track ages and {sup 39}Ar- {sup 40}Ar ages. Three possibilities are suggested, the first is that the ESR ages are real, the second is that ESR method did not work for these samples, and the third is that about 10--40 ka, the signal intensity was partially reduced by a thermal event such as proposed by Harrison et al. (1986). Research on the first and second possibilities is continuing. The third possibility might explain the difference between ESR ages and those by other methods (fission track and {sup 39}Ar- {sup 40}Ar). ESR dating has produced new insights regarding the history of the Valles caldera.

  6. Mars Exploration Curriculum

    NSDL National Science Digital Library

    This series of modules integrates printable images of Mars into classroom activities. Four broad topics cover the exploration of Mars and the Pathfinder missions, the great Martian floods and the Pathfinder landing site, the canyon Valles Marineris, and water on Mars. Each topic has several discrete activities associated with it that can be used independently. There are supporting materials for teachers as well as background information on the images. There are two curriculum modules for grades 4-10, one for grades 6-12 and one for grades 9-12.

  7. MOLA Global roughness map of Mars

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The median of slopes in 35-km windows indicate the typical roughness on 300-meter baselines. The rougher nature of the heavily cratered terrain in the Southern Hemisphere is apparent, as well as that of Valles Marineris (12S, 289E) canyon walls and the Olympus Mons (18N, 227E) aureole deposits. The Northern Lowlands are smooth, especially Amazonis Planitia (16N, 202E), a region to the west of Olympus Mons, were typical median slopes on these baselines are often smaller than 0.1 degree. A shaded relief map of the topography is overlaid is monochrome.

  8. Mars

    NSDL National Science Digital Library

    This NASA (National Aeronautics and Space Administration) planet profile provides data and images of the planet Mars. These data include planet size, orbit facts, distance from the Sun, rotation and revolution times, temperature, atmospheric composition, density, surface materials and albedo. Images with descriptions include surface features such as canyons, volcanoes, Viking 1 and 2 landing sites, the South Pole, plateaus, the Schiaparelli Crater, Amazonis Plains, Cerberus Crater, Valles Marineris, Chasma, Olympis Mons, and images of Mars two moons Phobos and Deimos. Images were taken by the Viking 1 and 2 Landers and the Viking Orbiter Spacecraft.

  9. 14. MAIN CANAL CANAL CHECKGATES, JUST BELOW DARK CANYON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. MAIN CANAL - CANAL CHECKGATES, JUST BELOW DARK CANYON SIPHON, VIEW TO NORTHEAST - Carlsbad Irrigation District, Main Canal, 4 miles North to 12 miles Southeast of Carlsbad, Carlsbad, Eddy County, NM

  10. 37. PRATER CANYON AND CIVILIAN CONSERVATION CORPS CAMP SITE FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. PRATER CANYON AND CIVILIAN CONSERVATION CORPS CAMP SITE FROM PRATER GRADE, FACING E. SAME CAMERA LOCATION AS No. 35 AND No. 36. - Mesa Verde National Park Main Entrance Road, Cortez, Montezuma County, CO

  11. Fossil Woodwardia virginica Foliage From the Middle Miocene Yakima Canyon

    NSDL National Science Digital Library

    Kathleen B. Pigg (Arizona State University; Department of Plant Biology ADR; POSTAL)

    2004-03-09

    Fossil Woodwardia virginica foliage from the middle Miocene Yakima Canyon flora of central Washington State, USA. Vegetative and fertile features of this fossil are remarkably similar to those of the modern ""Virginia chain fern"" of the Atlantic coastal region, USA.

  12. A view in Lapwai Canyon at Milepost 18 of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A view in Lapwai Canyon at Milepost 18 of the grade cut through basalt - Camas Prairie Railroad, Second Subdivision, From Spalding in Nez Perce County, through Lewis County, to Grangeville in Idaho County, Spalding, Nez Perce County, ID

  13. THE SIGNIFICANCE OF ODOR FOR BEES ORIENTING ACROSS A CANYON

    E-print Network

    Boyer, Edmond

    the « odor population hypothesis » would apply in a crosswind situation. MATERIALS AND METHODS crosswind of about 5-10 m/s that blew at a 90° angle to the line across the canyon. The expe- riments were

  14. Sandbar on the Colorado River in Grand Canyon

    USGS Multimedia Gallery

    Sandbar on the Colorado River in Grand Canyon deposited by the 2008 controlled flood. The view is looking downstream and the location is approximately 65 miles downstream from Lees Ferry, Arizona.  ...

  15. Sandbar on the Colorado River in Grand Canyon

    USGS Multimedia Gallery

    Sandbar on the Colorado River in Grand Canyon deposited by 2008 controlled flood. The river is flowing from left to right and the location is approximately 64 miles downstream from Lees Ferry, Arizona....

  16. View of Inverted Siphon crossing Hot Water (or White) Canyon. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Inverted Siphon crossing Hot Water (or White) Canyon. Looking northeast - Childs-Irving Hydroelectric Project, Irving System, Inverted Siphon, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  17. 1. GENERAL VIEW OF SHOSHONE HYDROELECTRIC PLANT IN GLENWOOD CANYON, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF SHOSHONE HYDROELECTRIC PLANT IN GLENWOOD CANYON, VIEW TO THE NORTHEAST ALONG U.S. 6 AND THE COLORADO RIVER. - Shoshone Hydroelectric Plant Complex, 60111 U.S. Highway 6, Glenwood Springs, Garfield County, CO

  18. The Shape of Trail Canyon Alluvial Fan, Death Valley

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.; Dohrenwend, John C.

    1993-01-01

    A modified conic equation has been fit to high-resolution digital topographic data for Trail Canyon alluvial fan in Death Valley, California. Fits were accomplished for 3 individual fan units of different age.

  19. H CANYON PROCESSING IN CORRELATION WITH FH ANALYTICAL LABS

    SciTech Connect

    Weinheimer, E.

    2012-08-06

    Management of radioactive chemical waste can be a complicated business. H Canyon and F/H Analytical Labs are two facilities present at the Savannah River Site in Aiken, SC that are at the forefront. In fact H Canyon is the only large-scale radiochemical processing facility in the United States and this processing is only enhanced by the aid given from F/H Analytical Labs. As H Canyon processes incoming materials, F/H Labs provide support through a variety of chemical analyses. Necessary checks of the chemical makeup, processing, and accountability of the samples taken from H Canyon process tanks are performed at the labs along with further checks on waste leaving the canyon after processing. Used nuclear material taken in by the canyon is actually not waste. Only a small portion of the radioactive material itself is actually consumed in nuclear reactors. As a result various radioactive elements such as Uranium, Plutonium and Neptunium are commonly found in waste and may be useful to recover. Specific processing is needed to allow for separation of these products from the waste. This is H Canyon's specialty. Furthermore, H Canyon has the capacity to initiate the process for weapons-grade nuclear material to be converted into nuclear fuel. This is one of the main campaigns being set up for the fall of 2012. Once usable material is separated and purified of impurities such as fission products, it can be converted to an oxide and ultimately turned into commercial fuel. The processing of weapons-grade material for commercial fuel is important in the necessary disposition of plutonium. Another processing campaign to start in the fall in H Canyon involves the reprocessing of used nuclear fuel for disposal in improved containment units. The importance of this campaign involves the proper disposal of nuclear waste in order to ensure the safety and well-being of future generations and the environment. As processing proceeds in the fall, H Canyon will have a substantial number of samples being sent to F/H Labs. All analyses of these samples are imperative to safe and efficient processing. The important campaigns to occur would be impossible without feedback from analyses such as chemical makeup of solutions, concentrations of dissolution acids and nuclear material, as well as nuclear isotopic data. The necessity of analysis for radiochemical processing is evident. Processing devoid of F/H Lab's feedback would go against the ideals of a safety-conscious and highly accomplished processing facility such as H Canyon.

  20. Canyon dynamics and related sedimentary impacts off western Portugal

    NASA Astrophysics Data System (ADS)

    Vitorino, J.; Oliveira, A.; Silva, R.; Quaresma, L.; Marreiros, R.

    2003-04-01

    Submarine canyons are areas of increased exchanges between the continental shelf and the deep ocean. We present preliminary results from a multidisciplinary research focussing the dynamics of several canyon systems that occur along the Portuguese continental margin. The research is being conducted in the framework of EU project Eurostrataform and aims to understand the dominant aspects of the interaction between shelf/slope flows and canyons and to relate those aspects with the exportation of sediments from the shelf. The present work is intended to complement results from previous projects that were focussed on the quasi-inertial dynamics of the Portuguese canyon systems. Three contrasting systems are studied: (1) the Nazaré Canyon, a narrow and deep canyon which completely cuts the shelf, with no local riverine sources; (2) the Setubal-Lisbon canyon system, located in an area of complex topography and coastline configuration, with local riverine sources (Tagus and Sado rivers) and (3) the Oporto canyon, which is restricted to the outer shelf and affected by a major riverine source (Douro river). The ongoing program of observations includes multidisciplinary surveys (CTD, ADCP, suspended particle matter measurements, shallow seismic) and both long-term and short-term currentmeter moorings. The observations will cover both the summer upwelling regime as well as the highly energetic winter conditions. Process studies will combine observations and numerical modeling tools through the use of MOCASSIM system, which is presently being developed at Instituto Hidrografico. The system integrates several numerical models and is intended to characterise the wave and current conditions over the study areas.

  1. CHAMA RIVER CANYON WILDERNESS AND CONTIGUOUS ROADLESS AREA, NEW MEXICO.

    USGS Publications Warehouse

    Ridgley, Jennie L.; Light, Thomas D.

    1984-01-01

    Results of mineral surveys indicate that the Chama River Canyon Wilderness and contiguous roadless area in new Mexico have a probable mineral-resource potential for copper with associated uranium and silver. Gypsum occurs throughout the area, exposed in the canyon walls. Further study of the wilderness should concentrate on exploratory drilling to test the oil and gas potential of Pennsylvanian strata and evaluate vanadium anomalies in the Todilto as a prospecting guide for locating uranium.

  2. Properties of Saltstone Prepared Containing H-Canyon Waste

    Microsoft Academic Search

    Cozzi

    2005-01-01

    Saltstone slurries were prepared from solutions made from H-Canyon waste and evaluated for processing properties. Salt solutions prepared with a 1:1 ratio of Tank 50H simulant and H-Canyon blended waste produced slurries that met the processing requirements in Table 2 of the Task Technical and Quality Assurance Plan (TTQAP). Additions of set retarder and antifoam were necessary to meet these

  3. Safety Evaluation for Packaging (onsite) T Plant Canyon Items

    SciTech Connect

    OBRIEN, J.H.

    2000-07-14

    This safety evaluation for packaging (SEP) evaluates and documents the ability to safely ship mostly unique inventories of miscellaneous T Plant canyon waste items (T-P Items) encountered during the canyon deck clean off campaign. In addition, this SEP addresses contaminated items and material that may be shipped in a strong tight package (STP). The shipments meet the criteria for onsite shipments as specified by Fluor Hanford in HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments.

  4. A natural analogue for high-level waste in tuff: Chemical analysis and modeling of the Valles site

    SciTech Connect

    Stockman, H.W.; Krumhansl, J.L.; Ho, C.K. [Sandia National Labs., Albuquerque, NM (United States); Kovach, L. [US Nuclear Regulatory Commission, Washington, DC (United States); McConnell, V.S. [Univ. of Alaska, Fairbanks, AK (United States)

    1995-03-01

    The contact between an obsidian flow and a steep-walled tuff canyon was examined as an analogue for a high-level waste repository. The analogue site is located in the Valles Caldera in New Mexico, where a massive obsidian flow filled a paleocanyon in the Battleship Rock Tuff. The obsidian flow provided a heat source, analogous to waste panels or an igneous intrusion in a repository, and caused evaporation and migration of water. The tuff and obsidian samples were analyzed for major and trace elements and mineralogy by INAA, XRF, x-ray diffraction, and scanning electron microscopy and electron microprobe. Samples were also analyzed for D/H and {sup 39}Ar/{sup 40}Ar isotopic composition. Overall, the effects of the heating event seem to have been slight and limited to the tuff nearest the contact. There is some evidence of devitrification and migration of volatiles in the tuff within 10 m of the contact, but variations in major and trace element chemistry are small and difficult to distinguish from the natural (pre-heating) variability of the rocks.

  5. 77 FR 67391 - Notice of Proposed Supplementary Rules on Public Land in Water Canyon, Humboldt County, NV

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-09

    ...Proposed Supplementary Rules on Public Land in Water Canyon, Humboldt County, NV AGENCY...and resources on public land within the Water Canyon Recreation Area. These proposed...restrictions included within the decisions of the Water Canyon Recreation Area Management...

  6. 76 FR 47237 - Notice of Public Meeting for the Glen Canyon Dam Adaptive Management Work Group Federal Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ...Notice of Public Meeting for the Glen Canyon Dam Adaptive Management Work Group Federal Advisory...SUMMARY: The Glen Canyon Dam Adaptive Management Work Group (AMWG...Secretary of the Interior concerning Glen Canyon Dam operations and other management...

  7. Characterization of atmospheric discharges in El Valle de Aburrá

    Microsoft Academic Search

    L. de J. Cardona; C. A. Garcia; C. Y. Velosa

    2008-01-01

    Given the necessity to have the biggest knowledge in the behavior of the atmospheric discharges in the Medellin city and near municipalities, and taking advantage of the data gathered by Lightning Location System (LLS) property of EPM E.S.P. (Energy Distribution Company), a study was made that characterizes the behavior of the atmospheric discharges in El Valle de Aburra. The analyzed

  8. SRTM Anaglyph: Pinon Canyon region, Colorado

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Erosional features are prominent in this view of southern Colorado taken by the Shuttle Radar Topography Mission (SRTM). The area covers about 20,000square kilometers and is located about 50 kilometers south of Pueblo, Colorado. The prominent mountains near the left edge of the image are the Spanish Peaks, remnants of a 20 million year old volcano. Rising 2,100 meters (7,000 feet) above the plains to the east, these igneous rock formations with intrusions of eroded sedimentary rock historically served as guiding landmarks for travelers on the Mountain Branch of the Santa Fe Trail.

    Near the center of the image is the Pinon Canyon Maneuver Site, a training area for soldiers of the U.S. Army from nearby Fort Carson. The site supports a diverse ecosystem with large numbers of big and small game, fisheries, non-game wildlife, forest, range land and mineral resources. It is bounded on the east by the dramatic topography of the Purgatoire River Canyon, a 100 meter (328 feet) deep scenic red canyon with flowing streams, sandstone formations and exposed geologic processes.

    This anaglyph was produced by first shading a preliminary SRTM elevation model. The stereoscopic effect was then created by generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR)that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 177.8 x 111.3 kilometers ( 110.5 x 69.2 miles) Location: 37.5 deg. North lat., 104 deg. West lon. Orientation: North toward the top Original Data Resolution: SRTM 1 arcsecond (30 meters or 99 feet) Image Data: Shaded and colored SRTM elevation model

  9. Regional depositional history of the miocene-pleistocene Louisiana slope, Green Canyon-Mississippi Canyon

    SciTech Connect

    Risch, D.L.; Choudhury, A.N.; Hannan, A.E. [Geco-Prakla, Houston, TX (United States)

    1994-12-31

    A regional sequence stratigraphic analysis was recently completed for the Tertiary slope sediments in Green Canyon, Ewing Bank, and Mississippi Canyon to provide a chronostratigraphic framework for basin reconstructions and to predict lithofacies distributions of reservoir and seal rocks. Sixteen third-order sequences of lowstand deepwater deposits were interpreted for the Middle Miocene-Pleistocene section. Thirty regional lithofacies maps were made of predominantly lowstand deposits showing the distribution of shale and sand-prone sediments, slumps, channel/levee systems, and fan lobes based on distinctive seismic reflection and well log patterns. These maps were combined with isochrons of selected sequences to identify depositional fairways, depocenters, and paleosalt positions that constantly changed through time. Depositional trends were principally north-south but were also observed to be east-west as salt modified the gradient on the gently dipping slope. In some cases, the structural and stratigraphic trends could be projected under allochthonous tabular salt. Miocene channel and fan lobe sands were concentrated on the middle-lower paleoslope across the study area. The sedimentation rate doubled to 2.3 m/1000 yr in the early Middle Pliocene, which caused large-scale salt movements and trapped sand-prone turbidities along the upper to middle slope. A four-fold decrease in sediment influx during the Late Pliocene-Early Pleistocene produced a stacked condensed section of four sequences over the eastern Louisiana slope. A return to rapid sedimentation (up to 6.9 m/1,000 yr) during the Late Pleistocene reactivated salt movements and depocenters in the Green Canyon, Ewing Bank, and Mississippi Trough areas.

  10. Regional depositional history of the Miocene-Pleistocene Louisiana Slope, Green Canyon and Mississippi Canyon

    SciTech Connect

    Risch, D.L.; Chowdhury, A.N.; Hannan, A.E. [Geco-Prakla, Houston, TX (United States)

    1994-09-01

    A regional sequence-stratigraphic analysis was recently completed for the Tertiary slope sediments in Green Canyon, Ewing Bank, and Mississippi Canyon to provide a chronostratigraphic framework for basin reconstructions and predict lithofacies distributions of reservoir and seal rocks. Sixteen third-order sequences of lowstand deep-water deposits were interpreted for the middle Miocene-Pleistocene section. Thirty regional lithofacies maps were made of predominantly lowstand deposits showing the distribution of shale and sand-prone sediments, slumping, channel levee systems, and fan lobes based on distinctive seismic reflection and well log patterns. These maps were combined with isochrons of selected sequences to identify depositional fairways, depocenters, and paleosalt positions that constantly changed through time. Depositional trends were principally north to south but were also observed to be east-west as salt modified the gradient on the gently dipping slope. In some cases, the structural and stratigraphic trends could be projected under allochthonous tabular salt. Miocene channel and fan lobe sands were found concentrated on the middle-lower paleoslope across the study area. The sedimentation rate doubled (0.7 m/1000 yr) in the early-middle Pliocene, which caused large-scale salt movements and trapped sand-prone turbidites along the upper-middle slope. A four-fold decrease in sediment influx during the late Pliocene-early Pleistocene produced a stacked condensed section of four sequences over the eastern Louisiana slope. A return to rapid sedimentation (up to 2.1 m/1000 yr.) during the Pleistocene reactivated salt movements and depocenters in the Green Canyon, Ewing Bank, and Mississippi Trough areas.

  11. Discovery of two new large submarine canyons in the Bering Sea

    USGS Publications Warehouse

    Carlson, P.R.; Karl, Herman A.

    1984-01-01

    The Beringian continental margin is incised by some of the world's largest submarine canyons. Two newly discovered canyons, St. Matthew and Middle, are hereby added to the roster of Bering Sea canyons. Although these canyons are smaller and not cut back into the Bering shelf like the five very large canyons, they are nonetheless comparable in size to most of the canyons that have been cut into the U.S. eastern continental margin and much larger than the well-known southern California canyons. Both igneous and sedimentary rocks of Eocene to Pliocene age have been dredged from the walls of St. Matthew and Middle Canyons as well as from the walls of several of the other Beringian margin canyons, thus suggesting a late Tertiary to Quaternary genesis of the canyons. We speculate that the ancestral Yukon and possibly Anadyr Rivers were instrumental in initiating the canyon-cutting processes, but that, due to restrictions imposed by island and subsea bedrock barriers, cutting of the two newly discovered canyons may have begun later and been slower than for the other five canyons. ?? 1984.

  12. PRUNUS PADUS L. IN VALLE DELL'AVIO (ALTA VALLE CAMONICA, BRESCIA) Entità della popolazione, aspetti geobotanici e fitogeografici della nuova stazione

    Microsoft Academic Search

    STEFANO ARMIRAGLIO; RODOLFO GENTILI; CARLO BARONI

    2005-01-01

    Prunus padus L. in Valle dell'Avio. characters of population, geobotany and phytogeography of new occurren- ce - We report a new occurrence of Prunus padus in Valle del- l'Avio, Adamello Group, Provincia of Brescia (Italian Alps). The population structure have been described. The autoeco- logy and sinecology of this population are investigated in rela- tion to geomorphology. The discovered population

  13. Evolution of depositional and slope instability processes on Bryant Canyon area, Northwest Gulf of Mexico 

    E-print Network

    Tripsanas, Efthymios

    2005-02-17

    . Right after their abandonment, at the beginning of Stage 5, salt diapirs encroached into the canyons, and resulted in their transformation into a network of intraslope basins. The transformation of the canyons resulted in the generation of massive...

  14. 75 FR 10308 - Fire Management Plan, Final Environmental Impact Statement, Record of Decision, Grand Canyon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-05

    ...DEPARTMENT OF THE INTERIOR National Park Service Fire Management Plan, Final Environmental Impact...Environmental Impact Statement for the Fire Management Plan, Grand Canyon National...availability of the Record of Decision for the Fire Management Plan, Grand Canyon...

  15. Sediment transport in the Mississippi Canyon: the role of currents and storm events on optical variability

    E-print Network

    Burden, Cheryl A

    1999-01-01

    Two modes of sediment transport were found to exist in the Mississippi Canyon: the offshelf transport of material in intermediate nepheloid layers originating at depths of 50-175 m and the resuspension and transport of material within the canyon...

  16. Software Configuration Management Plan for the B-Plant Canyon Ventilation Control System

    SciTech Connect

    MCDANIEL, K.S.

    1999-08-31

    Project W-059 installed a new B Plant Canyon Ventilation System. Monitoring and control of the system is implemented by the Canyon Ventilation Control System (CVCS). This Software Configuration Management Plan provides instructions for change control of the CVCS.

  17. 76 FR 42654 - Endangered and Threatened Wildlife and Plants; Petition To List Grand Canyon Cave Pseudoscorpion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ...ceilings, and floors for animals and invertebrates. He identified 12 invertebrates from the 8 caves. The Grand Canyon cave...unpublished literature on cave-dwelling invertebrates within Grand Canyon National Park, as...

  18. Sediment transport in the Mississippi Canyon: the role of currents and storm events on optical variability 

    E-print Network

    Burden, Cheryl A

    1999-01-01

    Two modes of sediment transport were found to exist in the Mississippi Canyon: the offshelf transport of material in intermediate nepheloid layers originating at depths of 50-175 m and the resuspension and transport of material within the canyon...

  19. Origin of Hot Creek Canyon, Long Valley caldera, California

    SciTech Connect

    Maloney, N.J. (California State Univ., Fullerton, CA (United States). Dept. of Geological Sciences)

    1993-04-01

    Hot Creek has eroded a canyon some thirty meters deep across the Hot Creek rhyolite flows located in the southeastern moat of Long Valley Caldera. Maloney (1987) showed that the canyon formed by headward erosion resulting from spring sapping along hydrothermally altered fractures in the rhyolite, and the capture of Mammoth Creek. This analysis ignored the continuing uplift of the central resurgent dome. Reid (1992) concluded that the downward erosion of the canyon must have kept pace with the uplift. Long Valley Lake occupied the caldera until 100,000 to 50,000 years before present. The elevation of the shoreline, determined by trigonometric leveling, is 2,166 m where the creek enters the canyon and 2,148 m on the downstream side of the rhyolite. The slope of the strand line is about equal to the stream gradient. The hill was lower and the stream gradient less at the time of stream capture. Rotational uplift increased the stream gradient which increased the rate of downward erosion and formed the V-shaped canyon

  20. Directed urban canyons in megacities and its applications in meteorological modeling

    NASA Astrophysics Data System (ADS)

    Samsonov, Timofey; Konstantinov, Pavel; Varentsov, Mikhail

    2015-04-01

    Directed urban canyons study applies object-oriented analysis to extraction of urban canyons and introduces the concept of directed urban canyon which is then experimentally applied in urban meteorological modeling. Observation of current approach to description of urban canyon geometry is provided. Then a new theoretical approach to canyon delineation is presented that allows chaining the spaces between buildings into directed canyons that comprise three-level hierarchy. An original methodology based on triangular irregular network (TIN) is presented that allows extraction of regular and directed urban canyons from cartographic data, estimation of their geometric characteristics, including local and averaged height-width ratio, primary and secondary canyon directions. Obtained geometric properties of canyons are then applied in micro-scale temperature and wind modeling using URB-MOS model and estimation of possible wind accelerations along canyons. Extraction and analysis of directed canyons highly depends on the presence of linear street network. Thus, in the absence of this GIS layer, it should be reconstructed from another data sources. The future studies should give us an answer to the question, where the limits of directed canyons are and how they can be classified further in terms of the street longitudinal shape. For now all computations are performed in separate scripts and programs. We plan to develop comprehensive automation of described methods of urban canyon description in specialized software. The most perspective extension of proposed methodology seemes to be canyon -based analysis which is truely object-oriented. Various geometric properties of micro-, meso- and macro-scale canyons should be investigated and their applicability in urban climate modeling should be assesed. Object-oriented canyon analysis can also be applied in architectural studies, urban morphology, planning and various physical and social aspects that are concerned with human in urban space. Acknowledgements This study was supported by Russian Foundation for Basic Research grant 13-05-41306-RGO_a.

  1. Evolution of the Western Valles Caldera Complex, New Mexico: Evidence from intracaldera sandstones, breccias, and surge deposits

    NASA Astrophysics Data System (ADS)

    Hulen, Jeffrey B.; Nielson, Dennis L.; Little, Thomas M.

    1991-05-01

    Scientific core drilling in the Pleistocene Valles caldera complex (encompassing the Valles (1.13 Ma) and coaxial Toledo (1.50 Ma) calderas) of north central New Mexico has provided new insight into the origins of sandstones, breccias, and pyroclastic surge deposits interbedded with the thick intracaldera ignimbrite sequence. These rocks were previously interpreted from geothermal drill cuttings as dominantly fluvial in origin. As such, representing significant erosional intervals, they formed much of the basis for subdividing the intracaldera ignimbrite sequence (up to 2000 m in apparent thickness where drilled) into four major units: the lower tuffs (> 1.50 Ma); the Otowi (1.50 Ma) and Tshirege (1.13 Ma) members of the Bandelier Tuff; and a new unit, the upper tuffs, believed to be post-Bandelier in age (<1.13 Ma). All but the upper tuffs correspond to mapped outflow facies ignimbrite sheets. However, Continental Scientific Drilling Program core holes VC-2A (completed in 1986) and VC-2B (completed in 1988), in the Sulphur Springs area of the Valles caldera, have provided continuous cores, revealing for the first time that some intracaldera rocks previously thought to be exclusively clastic actually have multiple origins. Some of these rocks are probably pyroclastic surge deposits; others could be lithic-rich breccias of various origins incorporated nearly instantaneously in ignimbrites during ash flow eruption and concomitant caldera collapse. These new findings demonstrate the value of continuous core for subsurface characterization and correlation of complex intracaldera lithologies; they also necessitate revision of Nielson and Hulen's (1984) cuttings-based intracaldera stratigraphic framework. For example, the hematitic S2 "sandstone" was initially interpreted as marking an erosional interval between the Tshirege Member of the Bandelier Tuff and the overlying, petrographically similar upper tuffs. Core from VC-2A and VC-2B, however, shows that the S2 cuttings could also represent disaggregated, Permian red bed-rich, lithic lag breccias or caldera collapse mesobreccias. If this is the case, then most or all of the upper tuffs are actually uppermost Tshirege Member ignimbrites. In similar fashion and upon review of previously applied correlation criteria the "lower tuffs" of the western Valles caldera complex could represent both genuine pre-Bandelier ignimbrites and those of the lowermost Otowi Member. The core, however, shows that in the Sulphur Springs subsurface the lower tuffs are separated from overlying ignimbrite sheets by prominent erosional and eruptive breaks; they appear to be slightly more mafic than the overlying tuffs and host distinctive pumice lapilli. At this site the lower tuffs almost certainly predate the Otowi Member and are probably correlative with the outflow facies San Diego Canyon ignimbrites (1.78 Ma). Cores from VC-2A and VC-2B support earlier interpretation of the S3 "sandstone" as a major marker horizon separating the intracaldera Otowi and Tshirege members of the Bandelier Tuff but clearly shows that this important unit is not, as previously thought, entirely a simple intracaldera epiclastic apron. In VC-2A the S3 has the superficial appearance of a sandstone but contains abundant blocky shards as well as accretionary and armored lapilli; it is also soft-sediment-deformed and invades overlying nonwelded tuff as small clastic dikes. We believe that here the S3 was emplaced by a wet pyroclastic surge. In nearby corehole VC-2B the S3 consists of a basal, massive, sediment-gravity-flow (?) sandstone overlain by sandstone and dacite breccias with accretionary and armored lapilli-bearing tuffaceous matrices. These deposits are probably caldera collapse mesobreccias that were formed simultaneously with early Tshirege Member ash flow eruptions through or into a Toledo caldera lake.

  2. Bioavailable organic matter in surface sediments of the Nazaré canyon and adjacent slope (Western Iberian Margin)

    NASA Astrophysics Data System (ADS)

    García, R.; Thomsen, L.

    2008-11-01

    The distribution of bioavailable organic matter in surface sediments of the Nazaré submarine canyon and adjacent open slope was investigated. The concentration of chlorophyll a (chl a), phaeopigments (phaeo), chloroplastic pigment equivalents (CPE) and total hydrolyzable amino acids (THAA) decreased with increasing water depth, and were in general higher within the canyon (specially in the upper regions) than on the open slope. The concentrations were low on the canyon walls, increasing towards the canyon axis. The chl a:phaeo ratio, degradation index (DI), asp:?-ala and glu:?-aba ratios were highest in the upper canyon, and similarly low in the deeper canyon and along the open slope. On the canyon axis and walls these lability indices were similar. chl a:OM ratio indicated that the quality of the bulk organic matter in the upper canyon was higher than on the slope and deeper canyon regions. Bioavailable organic matter enters the canyon through the upper region; it is transported down canyon by the tide circulation, where it is dispersed across a bigger area under a more refractory state. Flume experiments demonstrate that arborescent foraminifera and polychaete pellet mounds, as found in the head of the canyon; increase deposition of phytodetritus under critical shear velocities by a 50%.

  3. 33 CFR 165.1171 - Copper Canyon, Lake Havasu, Colorado River-Regulated Navigation Area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 2012-07-01 false Copper Canyon, Lake Havasu, Colorado River-Regulated...Coast Guard District § 165.1171 Copper Canyon, Lake Havasu, Colorado River...navigation area: (1) In the water area of Copper Canyon, Lake Havasu, Colorado...

  4. 33 CFR 165.1171 - Copper Canyon, Lake Havasu, Colorado River-Regulated Navigation Area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false Copper Canyon, Lake Havasu, Colorado River-Regulated...Coast Guard District § 165.1171 Copper Canyon, Lake Havasu, Colorado River...navigation area: (1) In the water area of Copper Canyon, Lake Havasu, Colorado...

  5. 75 FR 26098 - Safety Zone; Under Water Clean Up of Copper Canyon, Lake Havasu, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ...1625-AA00 Safety Zone; Under Water Clean Up of Copper Canyon, Lake Havasu, AZ AGENCY: Coast...the navigable waters of Lake Havasu in the Copper Canyon in support of the underwater cleanup of Copper Canyon. This temporary safety zone is...

  6. 33 CFR 165.1171 - Copper Canyon, Lake Havasu, Colorado River-Regulated Navigation Area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 false Copper Canyon, Lake Havasu, Colorado River-Regulated...Coast Guard District § 165.1171 Copper Canyon, Lake Havasu, Colorado River...navigation area: (1) In the water area of Copper Canyon, Lake Havasu, Colorado...

  7. 33 CFR 165.1171 - Copper Canyon, Lake Havasu, Colorado River-Regulated Navigation Area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 2013-07-01 false Copper Canyon, Lake Havasu, Colorado River-Regulated...Coast Guard District § 165.1171 Copper Canyon, Lake Havasu, Colorado River...navigation area: (1) In the water area of Copper Canyon, Lake Havasu, Colorado...

  8. 33 CFR 165.1171 - Copper Canyon, Lake Havasu, Colorado River-Regulated Navigation Area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 2011-07-01 false Copper Canyon, Lake Havasu, Colorado River-Regulated...Coast Guard District § 165.1171 Copper Canyon, Lake Havasu, Colorado River...navigation area: (1) In the water area of Copper Canyon, Lake Havasu, Colorado...

  9. 78 FR 42799 - Glen Canyon Dam Adaptive Management Work Group Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ...X30-0594-0913-700-00-0-0, 4073000] Glen Canyon Dam Adaptive Management Work Group Meetings...SUMMARY: The Glen Canyon Dam Adaptive Management Work Group (AMWG...Secretary of the Interior concerning Glen Canyon Dam operations and other management...

  10. 76 FR 54487 - Charter Renewal, Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ...Reclamation Charter Renewal, Glen Canyon Dam Adaptive Management Work Group AGENCY...renewing the charter for the Glen Canyon Dam Adaptive Management Work Group. The purpose...respect to the operation of Glen Canyon Dam and the exercise of other authorities...

  11. 76 FR 28766 - Black Canyon Hydro, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-18

    ...Project No. 14110-000] Black Canyon Hydro, LLC; Notice...Applications On March 14, 2011, Black Canyon Hydro, LLC filed an...study the feasibility of the Black Canyon Hydroelectric Project...otherwise enter upon lands or waters owned by others without...

  12. The Porcupine Bank Canyon coral mounds: oceanographic and topographic steering of deep-water carbonate mound

    E-print Network

    Mazzini, Adriano

    ORIGINAL The Porcupine Bank Canyon coral mounds: oceanographic and topographic steering of deep # Springer-Verlag 2011 Abstract The head of a canyon system extending along the western Porcupine Bank (west of the Porcupine Bank Canyon mounds. Introduction Carbonate mounds, also called coral build-ups, reefs, lithoherms

  13. Engineering Geologic Assessment of Risk to Visitors: Canyon Lake Gorge, Texas

    E-print Network

    Kolkmeier, Benjamin D.

    2010-07-14

    Presented here are the results of a study of geological hazards conducted in Canyon Lake Gorge of Central Texas. Canyon Lake Gorge formed in 2002 when the emergency spillway of Canyon Lake was overtopped. Since that time, the gorge has been opened...

  14. A wind tunnel study of organised and turbulent air motions in urban street canyons

    Microsoft Academic Search

    P. Kastner-Klein; E. Fedorovich; M. W. Rotach

    2001-01-01

    High concentrations of car-exhaust gases in urban street canyons are typically associated with low wind velocities or situations when the wind blows perpendicular to the canyon axis. The latter flow configuration has been studied in a wind tunnel model of a street canyon. The mean flow and turbulence structure have both been investigated and comparisons have been carried out with

  15. Concentration and flow distributions in urban street canyons: wind tunnel and computational data

    Microsoft Academic Search

    Cheng-Hsin Chang; Robert N. Meroney

    2003-01-01

    The goal of this paper is to present bluff body flow and transport from steady point sources of pollutants, or chemical and biological agents in an idealized urban environment This paper includes ventilation behavior in different street canyon configurations. To evaluate dispersion in a model urban street canyon, a series of tests with various street canyon aspect ratios (B\\/H) are

  16. Origin of Izu-Bonin forearc submarine canyons

    SciTech Connect

    Fujioka, Kantaro (Univ. of Tokyo (Japan)); Yoshida, Haruko (Chiba Univ. (Japan))

    1990-06-01

    Submarine canyons on the Izu-Bonin forearc are morphologically divided from north to south into four types based on their morphology, long profiles, and seismic profiles: Mikura, Aogashima, Sofu, and Chichijima types, respectively. These types of canyons are genetically different from each other. Mikura group is formed by the faults related to bending of the subducting Philippine Sea Plate. Aogashima type genetically relates to the activity of large submarine calderas that supply large amounts of volcaniclastic material to the consequent forearc slope. The third, Sofu group, is thought to be formed by the large-scale mega mass wasting in relation to the recent movement of the Sofugan tectonic line. The last, Chichijima group, is formed by collision of the Uyeda Ridge and the Ogasawara Plateau on the subducting Pacific Plate with Bonin Arc. Long profiles of four types of submarine canyons also support this.

  17. Small-scale turbidity currents in a big submarine canyon

    USGS Publications Warehouse

    Xu, Jingping; Barry, James P.; Paull, Charles K.

    2013-01-01

    Field measurements of oceanic turbidity currents, especially diluted currents, are extremely rare. We present a dilute turbidity current recorded by instrumented moorings 14.5 km apart at 1300 and 1860 m water depth. The sediment concentration within the flow was 0.017%, accounting for 18 cm/s gravity current speed due to density excess. Tidal currents of ?30 cm/s during the event provided a "tailwind" that assisted the down-canyon movement of the turbidity current and its sediment plume. High-resolution velocity measurements suggested that the turbidity current was likely the result of a local canyon wall slumping near the 1300 m mooring. Frequent occurrences, in both space and time, of such weak sediment transport events could be an important mechanism to cascade sediment and other particles, and to help sustain the vibrant ecosystems in deep-sea canyons.

  18. Land- and resource-use issues at the Valles Caldera

    SciTech Connect

    Intemann, P.R.

    1981-01-01

    The Valles Caldera possesses a wealth of resources from which various private parties as well as the public at large can benefit. Among the most significant of these are the geothermal energy resource and the natural resource. Wildlife, scenic, and recreational resources can be considered components of the natural resource. In addition, Native Americans in the area value the Valles Caldera as part of their religion. The use of land in the caldera to achieve the full benefits of one resource may adversely affect the value of other resources. Measures can be taken to minimize adverse affects and to maximize the benefits of all the varied resources within the caldera as equitably as possible. An understanding of present and potential land and resource uses in the Caldera, and who will benefit from these uses, can lead to the formulation of such measures.

  19. Core log: Valles caldera No. 2A, New Mexico

    SciTech Connect

    Starguist, V.L.

    1988-01-01

    Scientific core hole VC-2A was drilled into the western ring-fracture zone at Sulphur Springs in the Valles caldera, New Mexico. VC-2A, the second scientific core hole in the caldera, was cored through a faulted and brecciated sequence of intracauldron tuffs and volcaniclastic rocks to a depth of 528 m. As of November 1, 1986, the unequilibrated bottom-hole temperature was 212/degree/C. The rocks penetrated are intensely altered and host sub-ore grade stockwork molybdenite mineralization between 25 and 125 m. This report contains a detailed core log to aid researchers in their studies of the Valles caldera magma hydrothermal system. 3 refs., 2 figs.

  20. Paleogene canyons of Tethyan margin and their hydrocarbon potential, Czechoslovakia

    SciTech Connect

    Picha, F.J. (Chevron Overseas Petroleum Inc., San Ramon, CA (United States))

    1991-03-01

    Two Paleogene canyons buried below the Neogene foredeep and the Carpathian thrust belt in Southern Moravia have been outlined by drilling and seismic profiling. The features, as much as 12 km wide and over 1000 m deep, have been traced for 40 km. They are cut into Mesozoic and Paleozoic carbonate and clastic deposits and underlying Precambrian crystalline rocks. The sedimentary fill is made of late Eocene and early oligocene marine deposits, predominantly silty mudstones and siltstones. Sandstones and conglomerates are distributed mainly in the lower axial part of the valleys. Proximal and distal turbidites, grain-flow and debris-flow deposits have been identified in the fill. The common occurrence of slump folds, pebbly mudstones, and chaotic slump deposits indicate that mass movement played a significant role in sediment transport inside the canyons. The canyons are interpreted as being cut by rivers, then submerged and further developed by submarine processes. The organic rich mudstones of the canyon fill are significant source rocks (1-10% TOC). They reached the generative stage only after being tectonically buried below the Carpathian thrust belt in middle Miocene time. Channelized sandstones and proximal turbidities provide reservoirs of limited extent, although more substantial accumulations of sands are possible further downslope at the mouth of these canyons. Several oil fields have been discovered both within the canyon fill and the surrounding rocks. Similar Paleogene valleys may be present elsewhere along the ancient Tethyan margins buried below the Neogene foredeeps and frontal zones of the Alps and Carpathians. Their recognition could prove fruitful in the search for hydrocarbons.

  1. Review of the Diablo Canyon probabilistic risk assessment

    SciTech Connect

    Bozoki, G.E.; Fitzpatrick, R.G.; Bohn, M.P. [Sandia National Lab., Albuquerque, NM (United States); Sabek, M.G. [Atomic Energy Authority, Nuclear Regulatory and Safety Center, Cairo (Egypt); Ravindra, M.K.; Johnson, J.J. [EQE Engineering, San Francisco, CA (United States)

    1994-08-01

    This report details the review of the Diablo Canyon Probabilistic Risk Assessment (DCPRA). The study was performed under contract from the Probabilistic Risk Analysis Branch, Office of Nuclear Reactor Research, USNRC by Brookhaven National Laboratory. The DCPRA is a full scope Level I effort and although the review touched on all aspects of the PRA, the internal events and seismic events received the vast majority of the review effort. The report includes a number of independent systems analyses sensitivity studies, importance analyses as well as conclusions on the adequacy of the DCPRA for use in the Diablo Canyon Long Term Seismic Program.

  2. BLANCO MOUNTAIN AND BLACK CANYON ROADLESS AREAS, CALIFORNIA.

    USGS Publications Warehouse

    Diggles, Michael F.; Rains, Richard L.

    1984-01-01

    The mineral survey of the Blanco Mountain and Black Canyon Roadless Areas, California indicated that areas of probable and substantiated mineral-resource potential exist only in the Black Canyon Roadless Area. Gold with moderate amounts of lead, silver, zinc, and tungsten, occurs in vein deposits and in tactite. The nature of the geological terrain indicates little likelihood for the occurrence of energy resources in the roadless areas. Detailed geologic mapping might better define the extent of gold mineralization. Detailed stream-sediment sampling and analysis of heavy-mineral concentrations could better define tungsten resource potential.

  3. Are amphitheater headed canyons indicative of a particular formative process?

    NASA Astrophysics Data System (ADS)

    Ryan, A. J.; Whipple, K. X.; Johnson, J. P.

    2012-12-01

    Tributary canyons with amphitheater-shaped heads have previously been interpreted as evidence for groundwater seepage erosion, particularly in environments where fluvial processes are assumed to be negligible. However, some have questioned whether this canyon morphology is truly diagnostic of a particular formative process. We seek to determine the relative roles of fluvial and groundwater-related processes and the strength of stratigraphic control on the Colorado Plateau through a combination of fieldwork and GIS analysis. Amphitheater valleys may have overhanging or steep-sided headwalls with a semicircular plan-view pattern. It is reasonable to assume that this form is a result of focused erosion at the base of the headwall (i.e. sapping). Two frequently cited agents may lead to undermining: plunge-pool scour at the base of waterfalls and seepage induced weathering and erosion where the groundwater table intersects the land surface. Both processes are enhanced where weaker, less permeable layers underlie stronger cap rock. We conducted preliminary fieldwork in two locations on the Colorado Plateau, where there are many classic examples of amphitheater headed canyons. The Escalante River landscape is highly variable with a range of canyon and valley-head forms, many of which cut through the thick Navajo Sandstone into the underlying shale and sand of the Kayenta Formation. Northeast of Escalante National Monument, at the base of the Henry Mountains, is Tarantula Mesa. The canyons there are also considerably variable, with nearly all containing at least one abrupt amphitheater knickpoint at the valley head or farther downstream. Our observations are presented here with an analysis of the canyon profiles, surrounding topography, and potential structural controls. We have found that nearly all amphitheaters in both locales show signs of groundwater seepage weathering and plausibly seepage erosion. However, many also contain plunge pools and evidence of substantial fluvial activity. In most cases, variability in amphitheater scale and location relates to the geometry of exposed strata, suggesting that contrasting, bimodal stratigraphy (i.e. strong, more permeable layer over weaker, less permeable layer) is required for amphitheater formation. This is particularly evident in Tarantula Mesa, where variations in the stratigraphy of the Tarantula Mesa Sandstone strongly influence canyon location and morphology. Amphitheaters form only where a thick, strong sandstone body is exposed in the headwaters of the drainage. Typical v-shaped canyon morphologies are seen nearby in otherwise identical drainages where the sandstone is interbedded with shale.

  4. Early Agriculture in the Eastern Grand Canyon of Arizona, USA

    USGS Publications Warehouse

    Davis, S.W.; Davis, M.E.; Lucchitta, I.; Finkel, R.; Caffee, M.

    2000-01-01

    Abandoned fields in Colorado River alluvium in the eastern Grand Canyon show signs of primitive agriculture. Presence of maize pollen in association with buried soils near Comanche Creek suggests that farming began prior to 3130 yr B.P. Cotton pollen, identified in buried soils near Nankoweap Creek, dates to 1310 yr B.P., approximately 500 years earlier than previously reported anywhere on the Colorado Plateau. Farming spanned three millennia in this reach of the canyon. Entrenchment, starting approximately 700 yr B.P., making water diversion to fields infeasible, was likely responsible for field abandonment. ?? 2000 John Wiley & Sons, Inc.

  5. Continental Scientific Drilling Program: Valles Caldera, New Mexico

    SciTech Connect

    None

    1993-01-01

    The U.S. Continental Scientific Drilling Program attempts to develop a better understanding of the geologic and hydrologic mechanisms within the continental crust, under the auspices of an interagency group comprising the US Department of Energy, the National Science Foundation, and the U.S. Geological Survey. Ten years of research and drilling in the Valles caldera of northern New Mexico has provided a new understanding of volcanism and geothermal systems within a large caldera. Situated at the intersection of the Rio Grande rift and the Jemez volcanic lineament, the Valles caldera and Toledo calderas were formed during two massive eruptions 1.1 and 1.5 M a that vented approximately 300 to 400 km{sup 3} of high-silica rhyolitic tephra. The research at the Valles/Toledo caldera has provided more than 3000 m of corehole samples, which are stored in a repository in Grand Junction, Colorado, and are accessible to the public. This research has also helped support theories of mineral deposition within hydrothermal systems-hot water circulating through breccias, leaching elements from the rocks, and later depositing veins of economically valuable materials.

  6. Multi-stage uplift of the Colorado Plateau and the age of Grand Canyon and precursor canyons

    NASA Astrophysics Data System (ADS)

    Karlstrom, K. E.; Lee, J. P.; Kelley, S. A.; Crow, R.

    2012-12-01

    Debates about the age of Grand Canyon link to debates about the timing of surface uplift(s) of the Colorado Plateau- Rocky Mountain (CP-RM) region. One "old Grand Canyon" model proposes that a paleocanyon of almost the same depth and location as today's Grand Canyon was carved by a NE-flowing "California" paleoriver 80-70 Ma, then was re-used at ~55 Ma by a SW-flowing "Arizona" paleoriver. This model postulates the CP-RM region was uplifted to near modern elevations during the Laramide orogeny. A second model postulates a 17 Ma Grand Canyon; this time corresponds to Basin and Range extension and postulated mantle-driven surface uplift. The "young Grand Canyon" model postulates that >2/3 of modern Grand Canyon was carved by W-flowing Colorado River that became integrated to the Gulf of California at 5-6 Ma during Neogene mantle-driven uplift of the CP/RM region. Thermochronologic data are poised to substantially resolve these debates. Our thermochronology dataset combines published and new apatite fission-track and helium analyses, and joint thermal history modeling using both systems. This dataset reveals three major cooling episodes: 1) a multi-stage Sevier-Laramide contraction episode from about 90 Ma to 50 Ma with structural relief on upwarps on the order 0.5-1 km, compatible with a similar magnitude of surface uplift; 2) 30-20 Ma cooling that was associated with denudation and northward cliff retreat of most of the Mesozoic section from Grand Canyon region; 3) <10 Ma cooling that is best documented in eastern Grand Canyon as part of a general pattern of decreasing age of cooling/denudation to the NE. Combined geologic and thermochronologic data define the age and 3-D geometry of Cenozoic paleotopography that led to Grand Canyon carving. Combined AHe and AFT data indicate 2-4 km of sedimentary rocks covered the Grand Canyon region until about 40 Ma, negating the California River model. These strata were not removed from the Marble Canyon area until after about 25 Ma, negating the Arizona River hypothesis. However, significant paleorelief and paleovalleys were present and their geometry is coming into focus. 1) A long-recognized N-flowing "Peach Springs paleocanyon" existed from Eocene to about 17 Ma and potentially helped carve a paleocanyon along the Hurricane fault, from Truxton to river mile (RM) 225-190. Drill data and modern topography suggest that the NE slope of this paleodrainage has been inverted to a modern SW slope by surface tilting of the CP. 2) An "East Kaibab" paleocanyon was carved across the southern Kaibab uplift to below the Kaibab surface during 30-20 Ma exhumation. This Miocene paleocanyon extended from RM 65 to 116 in the present position of Upper Granite Gorge and may have flowed west (Crooked Ridge River) or east (as an outlet for the 18 Ma Peach Springs paleocanyon). These data support a model of multiple exhumation episodes leading to a 5-6 Ma Grand Canyon that was mainly carved by the W-flowing Colorado River, but that re-used and deepened older paleovalley segments

  7. Water-Temperature Data for the Colorado River and Tributaries Between Glen Canyon Dam and Spencer Canyon, Northern Arizona, 1988-2005

    USGS Publications Warehouse

    Voichick, Nicholas; Wright, Scott A.

    2007-01-01

    The regulation of flow of the Colorado River by Glen Canyon Dam began in 1963. This resulted in significant changes to the downstream ecosystem of the Colorado River in Grand Canyon, contributing to the initiation of the Glen Canyon Environmental Studies program in 1982, followed by establishment of the Glen Canyon Dam Adaptive Management Program in 1996. This report describes a water-temperature dataset collected through these programs for the reach of the Colorado River and selected tributaries between Glen Canyon Dam and Spencer Canyon (approximately 261 river miles) in northern Arizona from 1988 to 2005. The primary purposes of the report are to summarize the methods of data collection, processing, and editing; to present summary statistics; and to make the data described in the report available.

  8. The Response of A Steep-sided Canyon Off The East Spanish Coast To Different Atmospheric Conditions

    Microsoft Academic Search

    M. Marcos; S. Monserrat; E. García-Ladona; J. Tintoré; P. Puig; A. Palanques; J. Martín; M. Llobet; A. Julià; J. Guillén; B. Casas

    2002-01-01

    Current data collected in the region of the Palamós canyon are used to study the flow pattern and variability in the canyon and in the adjacent shelf and slope. Palamós canyon is located in the Catalan coast (northwestern Mediterranean), its axial depth is almost 2000 m, with a total width of about 30 km, implying the canyon has very steep

  9. Surprise and Opportunity for Learning in Grand Canyon: the Glen Canyon Dam Adaptive Management Program

    NASA Astrophysics Data System (ADS)

    Melis, T. S.; Walters, C. J.; Korman, J.

    2013-12-01

    With a focus on resources of the Colorado River ecosystem downstream of Glen Canyon Dam in Glen Canyon National Recreation Area (GCNRA) and Grand Canyon National Park (GCNP) of northern Arizona, the Glen Canyon Dam Adaptive Management Program has evaluated experimental flow and nonflow policy tests since 1990. Flow experiments have consisted of a variety of water releases from the dam within pre-existing annual downstream delivery agreements. The daily experimental dam operation, termed the Modified Low Fluctuating Flow (MLFF), implemented in 1996 to increase daily low flows and decrease daily peaks were intended to limit daily flow range to conserve tributary sand inputs and improve navigation among other objectives, including hydropower energy. Other flow tests have included controlled floods with some larger releases bypassing the dam's hydropower plant to rebuild and maintain eroded sandbars in GCNP. Experimental daily hydropeaking tests beyond MLFF have also been evaluated for managing the exotic recreational rainbow trout fishery in the dam's GCNRA tailwater. Experimental nonflow policies, such as physical removal of exotic fish below the tailwater, and experimental translocation of endangered native humpback chub from spawning habitats in the Little Colorado River (the largest natal origin site for chub in the basin) to other tributaries within GCNP have also been monitored. None of these large-scale field experiments has yet produced unambiguous results in terms of management prescriptions, owing to inadequate monitoring programs and confounding of treatment effects with effects of ongoing natural changes; most notably, a persistent warming of the river resulting from reduced storage in the dam's reservoir after 2003. But there have been several surprising results relative to predictions from models developed to identify monitoring needs and evaluate experimental design options at the start of the adaptive ecosystem assessment and management program in 1997. The repeated surprises were initially viewed with dismay by some managers and stakeholders who had unrealistic expectations about science and modeling to start with, yet actually represent scientific successes in terms of revealing new opportunities for developing better flow and non-flow policies. A new Long Term Experiment and Management Plan EIS (see URL) started in 2011, and co-led by the U.S. Department of the Interior's Bureau of Reclamation and the National Park Service, is underway and provides Colorado River managers, other stakeholders and the public a unique opportunity to refocus and weight resource objectives, conduct trade-off evaluations within the context of structured decision analyses, and identify key uncertainties with the goal of improving past experimental designs and monitoring strategies so as to take advantage of future learning opportunities over the next two decades. Perhaps the single greatest uncertainty now facing river managers is trying to anticipate how climate change and global warming will affect the supply of water from the Upper Colorado River Basin, Lake Powell storage that is known to control the river's thermal regime and native and nonnative fish interactions in GCNP, and the already highly-limited tributary sand supply below the dam from the Paria and Little Colorado Rivers required to manage sandbars along river shorelines.

  10. An analysis of the potential for Glen Canyon Dam releases to inundate archaeological sites in the Grand Canyon, Arizona

    USGS Publications Warehouse

    Sondossi, Hoda A.; Fairley, Helen C.

    2014-01-01

    The development of a one-dimensional flow-routing model for the Colorado River between Lees Ferry and Diamond Creek, Arizona in 2008 provided a potentially useful tool for assessing the degree to which varying discharges from Glen Canyon Dam may inundate terrestrial environments and potentially affect resources located within the zone of inundation. Using outputs from the model, a geographic information system analysis was completed to evaluate the degree to which flows from Glen Canyon Dam might inundate archaeological sites located along the Colorado River in the Grand Canyon. The analysis indicates that between 4 and 19 sites could be partially inundated by flows released from Glen Canyon Dam under current (2014) operating guidelines, and as many as 82 archaeological sites may have been inundated to varying degrees by uncontrolled high flows released in June 1983. Additionally, the analysis indicates that more of the sites currently (2014) proposed for active management by the National Park Service are located at low elevations and, therefore, tend to be more susceptible to potential inundation effects than sites not currently (2014) targeted for management actions, although the potential for inundation occurs in both groups of sites. Because of several potential sources of error and uncertainty associated with the model and with limitations of the archaeological data used in this analysis, the results are not unequivocal. These caveats, along with the fact that dam-related impacts can involve more than surface-inundation effects, suggest that the results of this analysis should be used with caution to infer potential effects of Glen Canyon Dam on archaeological sites in the Grand Canyon.

  11. The Wide Bay Canyon system: A case study of canyon morphology on the east Australian continental margin

    NASA Astrophysics Data System (ADS)

    Yu, P. W.; Hubble, T.; Airey, D.; Gallagher, S. J.; Clarke, S. L.

    2014-12-01

    A voyage was conducted aboard the RV Southern Surveyor in early 2013 to investigate the east Australian continental margin. From the continental slope of the Wide Bay region offshore Fraser Island, Queensland, Australia, remote sensing data and sediment samples were collected. Bathymetric data reveals that the continental slope of the region presents a mature canyon system. Eight dredge samples were recovered from the walls of Wide Bay Canyon and the adjacent, relatively intact continental slope along the entire length of the slope, from the start of the shelf break to the toe, in water depths ranging from 1100-2500 m. For these samples, sediment composition, biostratigraphic age, and bulk mineralogy data are reported. These slope-forming sediments are primarily comprised of calcareous sandy-silts. Occasional terrestrial plant fossils and minerals can be found in a mostly marine-fossiliferous composition, suggesting minor but significant riverine and aeolian input. Biostratigraphic dates extracted from the foraminiferal contents of these samples indicate that the intra-canyon and slope material was deposited between Middle Miocene to Pliocene, implying that the incision of this section of the margin and formation of the erosional features took place no earlier than the Pliocene. In conjunction with bathymetric data of the local continental slope, the depositional origins of this section of the east Australian continental margin, and the timing of major morphological events such as slope failure and canyon incision can be interpreted. The Wide Bay Canyon system can serve as a representative case study of local canyon formation, allowing a better understanding of the past or ongoing processes that are shaping the margin and giving way to similar morphologies.

  12. Habitat characterization of deep-water coral reefs in La Gaviera Canyon (Avilés Canyon System, Cantabrian Sea)

    NASA Astrophysics Data System (ADS)

    Sánchez, Francisco; González-Pola, Cesar; Druet, María; García-Alegre, Ana; Acosta, Juan; Cristobo, Javier; Parra, Santiago; Ríos, Pilar; Altuna, Álvaro; Gómez-Ballesteros, María; Muñoz-Recio, Araceli; Rivera, Jesus; del Río, Guillermo Díaz

    2014-08-01

    Surveys conducted at the complex Avilés Canyon System (southern Bay of Biscay) in order to identify vulnerable habitats and biological communities revealed the presence of noteworthy deep-water coral reefs in one of the tributaries of the system (La Gaviera Canyon). The aim of the present study is to determine why this deep-sea canyon provides suitable environmental conditions for corals to grow. This hanging canyon is characterized by an irregular U-shaped floor with two narrow differentiated flanks. Sand ripples and rocky outcrops structured in diverse W-E directed steps are observed on the canyon floor, suggesting intense hydrodynamic activity. Accordingly, high-frequency near-bottom current and thermal structure profiles showed that there occur strong shifts in currents/hydrography behaving as front-like features at each tidal cycle. These involve the sudden increase of along-axis velocities to over 50 cm/s and vertical velocities of over 5 cm/s in each tidal cycle associated with the passage of sharp thermal fronts and thermal inversions suggesting overturning. A year-long near-bottom current record showed events with near-bottom velocities well over 1 m/s lasting for several days. Three cold-water coral settings were distinguished: a dense coral reef located on stepped rocky bottoms of the eastern and western flanks, carbonate mounds (20-30 m high) located on the canyon floor, and a cluster of shallower water dead coral framework at the head sector of the canyon. Video and still images from a towed sled and ROV verified the presence of dropstones and rippled sand sheets surrounding the mounds and revealed changes in the coral population (alive or dead; total or patchy coverage) in coral reef and carbonate mound areas. The dominant species of the reef are Lophelia pertusa and Madrepora oculata, which considerably increase the habitat?s complexity and biodiversity in relation to other facies described in the canyon. The presence of living cold-water reefs is directly related to a high-energy environment at depths between 700 and 1200 m in the levels between the lower bound of Eastern North Atlantic Central Water (ENACW) and the core of Mediterranean Water (MW). Such level matches the water density range ??=27.35-27.65 kg m-3 which has been identified as limits for cold-water coral distribution in the North Atlantic.

  13. Coprates Chasma

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 21 May 2002) The Science This THEMIS visible image shows the northern interior wall of Coprates Chasma, one of the major canyons that form Valles Marineris. The cliff face seen in this image drops over 8 km from the plateau of Ophir Planum to the north (top) to the floor of Coprates. A complex set of ridges and chutes has been eroded into the layered rock that forms the canyon walls. Streamers of bright and dark material can be seen in many of the chutes, suggesting that loose material (sediment) is moving down the chutes toward the canyon floor. In many places this sediment has completely buried the wall. The uppermost layers near the rim of the canyon are brighter than the lower layers, suggesting that the upper layers are composed of different materials than occur further down the wall. Very few small impact craters can be seen in this image, indicating that the erosion and transport of material down the canyon wall and across the floor is occurring at a relatively rapid rate, so that any craters that form are rapidly buried or eroded. The Story From the smooth plateau of Ophir Planum (top of image), the dramatic canyon wall of Coprates Chasma falls in chutes and ridges for almost five miles to the dark floor of the canyon, where one lone, brooding impact crater can be seen. It is a rare sight in this part of the canyon, because all of the erosion on the cliff face happens so fast that most craters are rapidly buried or eroded. You can see how looser material is transported down the canyon by observing all of the bright and dark streaks streaming down the wall. A particularly good example of this continuing descent is in the left-most canyon shoot, where material has tumbled down into its center crevice, gathering in a pile about mid-way down (left-hand side of the image, right at the point where the bright material meets the dark). A canyon like this one is kind of like a slice through the geologic history of the planet. Each layer in the rock formed at different times, with different materials. You can tell that the bright material in this image is made of different rocks and minerals than the darker layers toward the bottom. If a lander or a rover ever went to study a Martian canyon up close, a good place to land would be at the bottom. That's because all of the rock and soil from the top layers are carried down to the bottom. Without needing to climb up the steep canyon wall for a closer look, scientific instruments on the lander or rover would be able to study all the different kinds of materials right there at the bottom and determine what kinds of rock and soil formed through the ages. Coprates Chasma is one of the major canyons that form Valles Marineris, the largest canyon system in the solar system. If Valles Marineris were on Earth, it would stretch all the way from California to Washington, D.C. Since it also slices a few miles down into the planet's interior, it's the perfect place to study the geological history of Mars.

  14. Deep flow variability in a deeply incised Mediterranean submarine valley (Blanes canyon)

    NASA Astrophysics Data System (ADS)

    Jorda, G.; Flexas, M. M.; Espino, M.; Calafat, A.

    2013-11-01

    Deep flow variability in Blanes canyon is analyzed by means of a unique dataset in which the canyon was instrumented at its axis and at the two canyon walls, from March 2003 to July 2004. The mean intensity of deep currents range between 3.5 cm s-1 (at the canyon axis, 1500 m) and 5.4 cm s-1 (upstream canyon wall, 900 m). A wavelet analysis shows that the energy is concentrated in the 2-30 day band, and it is mainly associated to single (not periodical, not wave-related) events, uncoupled at the different canyon sites. An empirical orthogonal function analysis shows two main patterns of current variability explaining 65% of the total variance. The first mode represents intensifications of the typical along-bathymetry pattern of currents over the canyon. The second mode corresponds to near-bottom upwelling events along the canyon axis with water exiting the canyon through the canyon head. After discussing possible forcing mechanisms, it is here suggested that such deep upwelling events are associated to offshore displacements of the Northern Current. Namely, the interaction of the current with the particular shape of the canyon topography at large depths (>1800 m) would be responsible for the observed deep upwelling events.

  15. Tensor CSAMT survey over the Sulphur Springs thermal area, Valles Caldera, New Mexico, U.S.A. Part 1: Implications for structure of the western caldera

    SciTech Connect

    Wannamaker, P.E. [Univ. of Utah, Salt Lake City, UT (United States). Earth and Geoscience Inst.] [Univ. of Utah, Salt Lake City, UT (United States). Earth and Geoscience Inst.

    1997-03-01

    An extensive tensor controlled-source audiomagnetotelluric (CSAMT) survey has been carried out over the Sulphur Springs geothermal area, Valles Caldera, New Mexico. Forty-five sites were acquired using two crossed transmitter bipoles placed approximately 13 km south of the center of the survey. The soundings in the Sulphur Springs area were arranged in four profiles to cross major structural features. CSAMT and magnetotelluric (MT) data taken outside Valles Caldera were constrained by drill logs and imply resistive Bandelier Tuff, underlain by conductive Paleozoic sediments, and further underlain by resistive, primarily Precambrian crystalline rocks. Model cross-sections within the caldera were derived using 2-D parameterized inversion constrained by drilling, with layered-earth inversion for starting models. Southeast of the Sulphur Creek fault, the upper 200 m of the section are of relatively low resistivity and correspond to unconsolidated land-slide and debris flows. The Bandelier Tuff below exhibits higher but variable resistivities because of alteration controlled by local faulting. Beneath the Bandelier Tuff, the Paleozoic sedimentary layer is only moderately less resistive than it is outside the caldera, with the lowest values occurring northwest of Sulphur Creek. Its low resistivity per se does not necessarily represent a hydrothermal aquifer. The Sulphur Creek fault appears to be a locus of substantial change in structural relief; upthrow of stratigraphy and basement to its west appears to be about 400--500 m. A major normal fault down to the southeast is located under the topographic expression of Freelove Canyon, which is up to 1 km farther southeast than suggested by previous geologic sections. High resistivities possibly corresponding to a vapor zone in the upper 500 m near VC-2B and VC-2A are not consistent with the CSAMT data.

  16. Microthermometry of fluid inclusions from the VC-1 core hole in Valles Caldera, New Mexico

    NASA Astrophysics Data System (ADS)

    Sasada, Masakatsu

    1988-06-01

    Fluid inclusions in vein quartz and calcite from core samples of the VC-1 hole were studied with microscope heating/freezing and crushing stages. All samples originate from hydrothermally altered Paleozoic rocks predating formation of the Jemez Mountains volcanic field and Valles caldera. Most homogenization temperatures (Th) of the liquid-rich inclusions are above the present well temperature, but some Th of primary inclusions from 515 m and those of secondary inclusions from 723 m fit the present well temperature curve measured 10 months after completion of the well. The maximum temperature recorded by the primary inclusions is 275°C from hydrothermal quartz in the Sandia Formation at 811-m depth. The total range of Th for samples from several depths (90°C) indicates cooling from the maximum temperature. The salinity of fluid inclusions in hydrothermal quartz and calcite is generally low, <1 wt % NaCl eq. High-salinity fluid, up to 5 wt % NaCl eq, has been found in several calcite veins from the lower part of the Madera Limestone. The salinity decreases with decrease of Th of the secondary inclusions, and that with lowest Th at the lower part of the Madera Limestone is similar to those from the other depths. These data show that early hot water circulation system involved several types of fluid, whereas the later one was a homogeneous fluid. The salinity of fluid inclusions in detrital quartz (presumably inherited inclusions) is higher than that in hydrothermal minerals. Some of these inclusions show extraordinary low temperatures of final melting point of ice (about -40°C), suggesting that a CaCl2 component is present. CO2 contents in fluid inclusions were estimated by the bubble behavior on crushing. Crushing results indicate that CO2 content of the early fluid is ?0.35 wt %, and that of the later fluid is ˜0.2-0.3 wt %. Geothermal fluid trapped in the fluid inclusions representing the present temperature regime is comparable in composition to those from the Baca geothermal field inside the caldera and to those from hot springs in San Diego Canyon.

  17. Titanite petrochronology in the Fish Canyon Tuff

    NASA Astrophysics Data System (ADS)

    Schmitz, M. D.; Crowley, J. L.

    2014-12-01

    The petrologic complexity of the archtypical 'monotonous intermediate' Fish Canyon Tuff (FCT) has been previously established by a variety of mineralogical and geochemical proxies [1-2], and the unusual storage and eruptive dynamics of the FCT have been delineated by several geochronological studies [3-5]. Titanite is an apparent equilibrium phase in the penultimate FCT magma, and can be linked petrographically to hornblende crystals that preserve up-temperature core-to-rim zoning profiles. As a reactive, trace element-rich phase, we hypothesized that titanite may record an intracrystalline record of magma chamber dynamics. Titanite crystals from the same separate analyzed in [4] were oriented and doubly-polished to yield characteristic wedge-shaped cross-sectional wafers approximately 300 µm in thickness. BSE imaging guided LA-ICPMS analyses of a full suite of trace elements using a 25 µm beam diameter and crater depth on multiple locations across both sides of the wafer. Most titanite crystals are characterized by large variations in trace elements, including at least two generations of REE-enriched, actinide-poor, low Sr, large Eu anomaly cores overgrown by REE-depleted, actinide-rich, high Sr domains with small Eu anomalies and distinctive concave-up middle to heavy REE patterns. Trace element contents and patterns correlate strongly with Eu anomaly; intermediate compositions are abundant and spatially correlated to reaction zones between core and rim domains. Within the context of the batholithic rejuvenation model for the FCT magma [1-2], these trace element variations are interpreted to record the partial melting of a differentiated crystalline FCT precursor and its hybridization with a more 'mafic' flux. ID-TIMS dating of end-member titanites confirm older ages (ca 28.4 to 29.0 Ma) for cores and define a younger age for rejuvenation of ca 28.2 Ma, consistent with recent U-Pb zircon and 40Ar/39Ar studies [5-7]. [1] Bachmann & Dungan (2002) Am Mineral 87, 1062-1076. [2] Bachmann et al (2002) J Petrology 43, 1469-1503. [3] Bachmann et al (2007) Chem Geol 236, 134-166. [4] Schmitz & Bowring (2001) GCA 65, 2571-2587. [5] Wotzlaw et al (2013) Geology 41, 867-870. [6] Rivera et al. (2011) EPSL 311, 420-426. [7] Kuiper et al (2008) Science 320, 500-504.

  18. MEVTV Workshop on Tectonic Features on Mars

    NASA Technical Reports Server (NTRS)

    Watters, Thomas R. (editor); Golombek, Matthew P. (editor)

    1989-01-01

    The state of knowledge of tectonic features on Mars was determined and kinematic and mechanical models were assessed for their origin. Three sessions were held: wrinkle ridges and compressional structure; strike-slip faults; and extensional structures. Each session began with an overview of the features under discussion. In the case of wrinkle ridges and extensional structures, the overview was followed by keynote addresses by specialists working on similar structures on the Earth. The first session of the workshop focused on the controversy over the relative importance of folding, faulting, and intrusive volcanism in the origin of wrinkle ridges. The session ended with discussions of the origin of compressional flank structures associated with Martian volcanoes and the relationship between the volcanic complexes and the inferred regional stress field. The second day of the workshop began with the presentation and discussion of evidence for strike-slip faults on Mars at various scales. In the last session, the discussion of extensional structures ranged from the origin of grabens, tension cracks, and pit-crater chains to the origin of Valles Marineris canyons. Shear and tensile modes of brittle failure in the formation of extensional features and the role of these failure modes in the formation of pit-crater chains and the canyons of Valles Marineris were debated. The relationship of extensional features to other surface processes, such as carbonate dissolution (karst) were also discussed.

  19. Autonomous Vehicle Positioning with GPS in Urban Canyon Environments

    Microsoft Academic Search

    Youjing Cui; Shuzhi S. Ge

    2001-01-01

    Abstract—The Global Positioning System (GPS) has been widely used in land vehicle navigation applications. However, the posi- tioning systems based on GPS alone face great problems in the so-called urban canyon environments, where the GPS signals are often blocked by highrise buildings and there are not enough avail- able satellite signals to estimate the positioning information of a fix. To

  20. Geologic map of the Paintbrush Canyon Area, Yucca Mountain, Nevada

    Microsoft Academic Search

    R. P. Dickerson; R. M. II Drake

    1998-01-01

    This geologic map is produced to support site characterization studies of Yucca Mountain, Nevada, site of a potential nuclear waste storage facility. The area encompassed by this map lies between Yucca Wash and Fortymile Canyon, northeast of Yucca Mountain. It is on the southern flank of the Timber Mountain caldera complex within the southwest Nevada volcanic field. Miocene tuffs and

  1. Socioeconomic impacts of nuclear generating stations: Diablo Canyon case study

    Microsoft Academic Search

    K. D. Pijawka; G. Yaquinto

    1982-01-01

    This report documents a case study of the socioeconomic impacts of the construction and operation of the Diablo Canyon nuclear power station. It is part of a major post-licensing study of the socioeconomic impacts at twelve nuclear power stations. The case study covers the period beginning with the announcement of plans to construct the reactor and ending in the period,

  2. Novel observations on the massive Barkley Canyon hydrates

    Microsoft Academic Search

    P. G. Brewer; E. T. Peltzer; W. J. Kirkwood; R. M. Dunk; P. Walz; K. Hester; E. D. Sloan

    2006-01-01

    We report on the early results of an August 2006 expedition to the massive exposed hydrates found at 850m depth in Barkley Canyon, off-shore Vancouver Island. We used the ROV Tiburon to explore, image, and sample the site, and also to carry out a series of novel experimental techniques and measurements in situ. We used the DORISS II laser Raman

  3. Context view from NE ridge of Daybreak Canyon running NE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Context view from NE ridge of Daybreak Canyon running NE from lookout tower shows fire line on right and NE side of lookout tower in the far distance. Tree in foreground is Pondaross Pine that survived fires of 1991 and 1994. Camera is pointed SW with wide-angle lens. - Chelan Butte Lookout, Summit of Chelan Butte, Chelan, Chelan County, WA

  4. CURRICULUM VITAE: THEODORE KENNEDY Grand Canyon Monitoring and Research Center

    E-print Network

    Lovich, Jeffrey E.

    CURRICULUM VITAE: THEODORE KENNEDY Grand Canyon Monitoring and Research Center United States. PUBLICATIONS: Kennedy, T.A., J.C. Finlay, and S.E. Hobbie. Eradication of invasive saltcedar (Tamarix. Kennedy, T.A. and S.E. Hobbie. Salt cedar invasion (Tamarix ramosissima) alters organic matter dynamics

  5. Tertiary oxidation in Westwater Canyon member of Morrison formation

    Microsoft Academic Search

    Saucier

    1980-01-01

    Hematitic oxidation in the Westwater Canyon Sandstone Member of the Morrison Formation extends along the outcrop from the Pipeline fault northeast of Gallup, New Mexico, to the San Mateo fault north of Grants, New Mexico. The hematitic sandstone forms a broad lobe in the subsurface to a depth of 2,400 ft (730 m). The downdip edge of this sandstone arcs

  6. Crisscrossing "Grand Canyon": Bridging the Gaps with Computer Conferencing.

    ERIC Educational Resources Information Center

    Minock, Mary; Shor, Francis

    1995-01-01

    Notes that Interdisciplinary Studies Program faculty at Wayne State University devised courses and assignments using computer conferencing to create a collaborative, democratic, and nonauthoritarian learning community. Discusses an assignment based on the film "Grand Canyon" that encouraged students to take on roles of their racial and gender…

  7. MOUNTAIN-CANYON CIRCULATION AND THE LOCAL ATMOSPHERE PROCESSES

    Microsoft Academic Search

    N. Ramishvili; Z. Khvedelidze; R. Aplakov; G. Erkomaishvili; T. Shalamberidze

    Investigation of canyon winds, created by microcirculation processes, orographic and thermal factors have always been actual. In the known equations system of hydro- thermo dynamic a new parameter, which describes micro- regional peculiarity, has been brought. Corresponding solution has been obtained. The parameter has been specified, observed and the results have been calculated. Specification has been done in (30-40)% interval.

  8. Properties of Saltstone Prepared Containing H-Canyon Waste

    SciTech Connect

    Cozzi, A

    2005-04-05

    Saltstone slurries were prepared from solutions made from H-Canyon waste and evaluated for processing properties. Salt solutions prepared with a 1:1 ratio of Tank 50H simulant and H-Canyon blended waste produced slurries that met the processing requirements in Table 2 of the Task Technical and Quality Assurance Plan (TTQAP). Additions of set retarder and antifoam were necessary to meet these processing requirements. The water to premix ratio used to achieve acceptable processing properties was 0.63. Slurries prepared solely with H-Canyon blended waste as the salt solution met the gel time and bleed water requirements, but did not set in the allotted time. Compressive strength samples prepared from the mix with acceptable processing properties had an average compressive strength of 814 psi (Samples with a compressive strength value of >200 psi are acceptable.). Analysis for mercury of the leachate of samples analyzed by the Toxic Characteristic Leaching Procedure (TCLP) indicated a concentration of mercury in the leachate <0.11 mg/L (The limit set by the Environmental Protection Agency (EPA) Resource Conservation and Recovery Act (RCRA) for mercury to require treatment is 0.2 mg/L.). It is recommended that without further testing; Tank 50H be limited to no more than 50 wt% H-Canyon material. It is also recommended that prior to the transfer of Tank 50H to the Saltstone Processing Facility; a sample of the Tank 50H waste be evaluated for processing properties.

  9. Geology Fieldnotes: Sequoia and Kings Canyon National Parks, California

    NSDL National Science Digital Library

    Ranging from 1500' to 14,494' in elevation, these adjoining California parks protect immense mountains, deep canyons, huge trees, and stunningly diverse habitats. The site briefly discusses Moro Rock and the process of exfoliation, which causes such dome-like forms, and includes links to visitor information and additional resources.

  10. When did the Grand Canyon Begin to Form?

    NSDL National Science Digital Library

    Mary LeFever

    2008-03-14

    This post, originally published in the Connecting News with National Science Education Standards blog, deals with the findings suggesting the Grand Canyon is two to three times older than commonly believed. Ideas for engaging students in a thoughtful discussion about these research findings are provided.

  11. Thirty-five years at Pajarito Canyon Site

    SciTech Connect

    Paxton, H.C.

    1981-05-01

    A history of the research activities performed at the Pajarito Canyon Site from 1946 to 1981 is presented. Critical assemblies described include: the Topsy assembly; Lady Godiva; Godiva 2; Jezebel; Flattop; the Honeycomb assembly for Rover studies; Kiwi-TNT; PARKA reactor; Big Ten; and Plasma Cavity Assembly.

  12. Holdup measurements of the Rocky Flats Plant 371 precipitator canyons

    Microsoft Academic Search

    P. A. Russo; J. K. Jr. Sprinkle; T. H. Elmont

    1987-01-01

    A shielded NaI(Tl) gamma-ray detector with portable electronics and automated data reduction and readout was used to measure the plutonium holdup on the floors of the Rocky Flats Plant Building 371 precipitator canyons. The amount of plutonium on the floors was determined to be 373 +- 84 g. Based on estimates applied to the very high background count rates measured

  13. HELL'S CANYON STUDY, IDAHO AND NEZ PERCE COUNTIES, IDAHO, 1977

    EPA Science Inventory

    In September of 1975 and again in March and June of 1976, water quality survey runs were made in Hells Canyon (17060103, 17060101) to obtain information on the Snake River and its major tributaries within the area. The surveys included 5 Snake River stations from above Johnson B...

  14. Fish Passage Assessment: Big Canyon Creek Watershed, Technical Report 2004

    Microsoft Academic Search

    Christian

    2004-01-01

    This report presents the results of the fish passage assessment as outlined as part of the Protect and Restore the Big Canyon Creek Watershed project as detailed in the CY2003 Statement of Work (SOW). As part of the Northwest Power Planning Council's Columbia Basin Fish and Wildlife Program (FWP), this project is one of Bonneville Power Administration's (BPA) many efforts

  15. Achieving quality excellence at the Diablo Canyon Nuclear Power Plant

    Microsoft Academic Search

    S. M. Skidmore; D. A. Taggart

    1988-01-01

    Quality assurance methods at the Diablo Canyon plant were transformed from the then typical industry practices that often alienated professional and technical people, as well as craftsmen and their foremen, to a cooperative method that allowed plant personnel to work together as a team. It has created an attitude to do it right the first time. The roles of quality

  16. Context view of Powerhouse from west slope of canyon showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Context view of Powerhouse from west slope of canyon showing west facade and inclined railroad tracks. View to east-southeast - Mystic Lake Hydroelectric Facility, Powerhouse, Along West Rosebud Creek, 1 3/4 miles northeast of Mystic Lake Dam, Fishtail, Stillwater County, MT

  17. 33. VIEW OF TIOGA ROAD DESCENDING LEE VINING CANYON. SAME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. VIEW OF TIOGA ROAD DESCENDING LEE VINING CANYON. SAME VIEW AS CA-149-3. LOOKING ESE. GIS: N-37 56 58.2 / W-119 13 28.1 - Tioga Road, Between Crane Flat & Tioga Pass, Yosemite Village, Mariposa County, CA

  18. Grand Canyon, Colorado as seen from STS-62

    NASA Technical Reports Server (NTRS)

    1994-01-01

    In this view, the Colorado River can be seen flowing southwest from top left to bottom center-right. The dark wider sections of the river are the water surface of Lake Powell (center, and top left), 110 miles long in a straight line. Grand Canyon National Monument lies lower right, centered on the Grand Canyon of the Colorado River, a 10 mile-wide gash carved more than 5,000 feet deep by the Colorado. The Canyon has cut into the Kaibab Plateau, an uplifted area visible here as a forested area with snow on the highest northern parts. The surrounding parts of the Colorado Plateau are sparsely occupied by brush vegetation and appear yellow-brown. The dark area top right is the wooded country of Black Mesa in Navajoland, divided from Lake Powell by the San Juan River. Four Corners is just outside the pictures (top) where the states of Arizona, Utah, Colorado and New Mexico meet. The Henry Mountains appear top left. Apart from Grand Canyon National Monument, several other famous national mo

  19. Shed Some Light on the Subject: Teaching Ramon del Valle-Inclan's "Luces de bohemia"

    ERIC Educational Resources Information Center

    Parker, Jason Thomas

    2011-01-01

    This essay seeks to provide parallel and interchangeable approaches to teaching Ramon del Valle-Inclan's challenging play "Luces de bohemia". A greater understanding of the cultural and mental frameworks of the early twentieth-century Spanish spectator will permit students to penetrate the dense intertextuality that characterizes Valle's…

  20. Geologic framework of thermal springs, Black Canyon, Nevada and Arizona

    USGS Publications Warehouse

    Beard, L. Sue; Anderson, Zachary W.; Felger, Tracey J.; Seixas, Gustav B.

    2014-01-01

    Thermal springs in Black Canyon of the Colorado River, downstream of Hoover Dam, are important recreational, ecological, and scenic features of the Lake Mead National Recreation Area. This report presents the results from a U.S. Geological Survey study of the geologic framework of the springs. The study was conducted in cooperation with the National Park Service and funded by both the National Park Service and National Cooperative Geologic Mapping Program of the U.S. Geological Survey. The report has two parts: A, a 1:48,000-scale geologic map created from existing geologic maps and augmented by new geologic mapping and geochronology; and B, an interpretive report that presents results based on a collection of fault kinematic data near springs within Black Canyon and construction of 1:100,000-scale geologic cross sections that extend across the western Lake Mead region. Exposures in Black Canyon are mostly of Miocene volcanic rocks, underlain by crystalline basement composed of Miocene plutonic rocks or Proterozoic metamorphic rocks. The rocks are variably tilted and highly faulted. Faults strike northwest to northeast and include normal and strike-slip faults. Spring discharge occurs along faults intruded by dacite dikes and plugs; weeping walls and seeps extend away from the faults in highly fractured rock or relatively porous volcanic breccias, or both. Results of kinematic analysis of fault data collected along tributaries to the Colorado River indicate two episodes of deformation, consistent with earlier studies. The earlier episode formed during east-northeast-directed extension, and the later during east-southeast-directed extension. At the northern end of the study area, pre-existing fault blocks that formed during the first episode were rotated counterclockwise along the left-lateral Lake Mead Fault System. The resulting fault pattern forms a complex arrangement that provides both barriers and pathways for groundwater movement within and around Black Canyon. Regional cross sections in this report show that thick Paleozoic carbonate aquifer rocks of east-central Nevada do not extend into the Black Canyon area and generally are terminated to the south at a major tectonic boundary defined by the northeast-striking Lake Mead Fault System and the northwest-striking Las Vegas Valley shear zone. Faults to the west of Black Canyon strike dominantly north-south and form a complicated pattern that may inhibit easterly groundwater movement from Eldorado Valley. To the east of Black Canyon, crystalline Proterozoic rocks locally overlain by Tertiary volcanic rocks in the Black Mountains are bounded by steep north-south normal faults. These faults may also inhibit westerly groundwater movement from Detrital Valley toward Black Canyon. Finally, the cross sections show clearly that Proterozoic basement rocks and (or) Tertiary plutonic rocks are shallow in the Black Canyon area (at the surface to a few hundred meters depth) and are cut by several major faults that discharge most of the springs in the Black Canyon. Therefore, the faults most likely provide groundwater pathways to sufficient depths that the groundwater is heated to the observed temperatures of up to 55 °C.

  1. B30307 2nd pages / 1 of 32 For permission to copy, contact editing@geosociety.org

    E-print Network

    Montgomery, David R.

    Society of America Modeling the collapse of Hebes Chasma, Valles Marineris, Mars M.P.A. Jackson1, , J of the Valles Marineris region of equatorial Mars. Hebes Chasma is a 315-km-long and 8-km- deep closed. Gravity-driven collapse in the models reproduced all the chasma's main landforms as subsidence evolved

  2. Cross faults in extensional settings: Stress triggering, displacement localization, and implications for the origin of blunt troughs at Valles

    E-print Network

    Cross faults in extensional settings: Stress triggering, displacement localization Marineris, Mars, we investigate the reactivation of preexisting cross faults in response to stress changes associated with slippage along a major, basin-bounding normal fault (i.e., border fault). Coulomb stress

  3. Morphotectonics and evolutionary controls on the Pearl River Canyon system, South China Sea

    NASA Astrophysics Data System (ADS)

    Ding, Weiwei; Li, Jiabiao; Li, Jun; Fang, Yinxia; Tang, Yong

    2013-12-01

    The Pearl River Canyon system is a typical canyon system on the northern continental slope of the South China Sea, which has significant implications for hydrocarbon exploration. Through swath bathymetry in the canyon area combined with different types of seismic data, we have studied the morphotectonics and controlling factors of the canyon by analyzing its morphology and sedimentary structure, as well as the main features of the continental slope around the canyon. Results show that the Pearl River Canyon can be separated into three segments with different orientations. The upper reach is NW-oriented with a shallowly incised course, whereas the middle and lower reaches, that are located mainly in the Baiyun Sag, have a broad U-shape and have experienced consistent deposition. Seventeen deeply-cut canyons have developed in the slope north of the Baiyun Sag, playing an important role in the sedimentary processes of the middle and lower reaches of the Pearl River Canyon. These canyons display both asymmetrical V- and U-shapes along their lengths. Numerous buried channels can be identified below the modern canyons with unidirectionally migrating stacking patterns, suggesting that the canyons have experienced a cyclic evolution with several cut and fill phases of varying magnitude. These long established canyons, rather than the upper reach of the Pearl River Canyon, are the main conduits for the transport of terrigenous materials to the lower slope and abyssal basin during lowstand stage, and have contributed to the formation of vertically stacked deep-water fans in the middle reach. Canyon morphology is interpreted as a result of erosive sediment flows. The Pearl River Canyon and the 17 canyons in the slope area north of the Baiyun Sag probably have developed since the Miocene. Cenozoic tectonics, sea level change and sediment supply jointly control the morphology and sedimentary structure. The middle and lower reaches of the Pearl River Canyon developed on the paleo-terrain of the Baiyun Sag, which has been a persistently rapid depositional environment, receiving most of the materials transported via the canyons.

  4. Cosmogenic 3He ages and frequency of late Holocene debris flows from Prospect Canyon, Grand Canyon, USA

    USGS Publications Warehouse

    Cerling, T.E.; Webb, R.H.; Poreda, R.J.; Rigby, A.D.; Melis, T.S.

    1999-01-01

    Lava Falls Rapid, which was created and is maintained by debris flows from Prospect Canyon, is the most formidable reach of whitewater on the Colorado River in Grand Canyon and is one of the most famous rapids in the world. Debris flows enter the Colorado River at tributary junctures, creating rapids. The frequency of debris flows is an important consideration when management of regulated rivers involves maintenance of channel morphology. We used cosmogenic 3He, 14C, and historical photographs to date 12 late Holocene and historic debris flows from Prospect Canyon. The highest and oldest deposits from debris flows on the debris fan yielded a 3He date of about 3 ka, which indicates predominately late Holocene aggradation of one of the largest debris fans in Grand Canyon. The deposit, which has a 25-m escarpment caused by river reworking, crossed the Colorado River and raised its base level by 30 m for an indeterminate although likely short period. We mapped depositional surfaces of 11 debris flows that occurred after 3 ka. Two deposits inset against the highest deposit yielded 3He ages of about 2.2 ka, and at least two others followed shortly afterwards. At least one of these debris flows also dammed the Colorado River. The most recent prehistoric debris flow occurred no more than 0.5 ka. The largest historic debris flow, which constricted the river by 80%, occurred in 1939. Five other debris flows occurred after 1939; these debris flows constricted the Colorado River by 35-80%. Assuming the depositional volumes of late Holocene debris flows can be modeled using a lognormal distribution, we calculated recurrence intervals of 15 to more than 2000 years for debris flows from Prospect Canyon.

  5. Environmental analysis of Lower Pueblo/Lower Los Alamos Canyon, Los Alamos, New Mexico

    SciTech Connect

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.; Becker, N.M.; Rodgers, J.C.; Hansen, W.R.

    1994-12-01

    The radiological survey of the former radioactive waste treatment plant site (TA-45), Acid Canyon, Pueblo Canyon, and Los Alamos Canyon found residual contamination at the site itself and in the channel and banks of Acid, Pueblo, and lower Los Alamos Canyons all the way to the Rio Grande. The largest reservoir of residual radioactivity is in lower Pueblo Canyon, which is on DOE property. However, residual radioactivity does not exceed proposed cleanup criteria in either lower Pueblo or lower Los Alamos Canyons. The three alternatives proposed are (1) to take no action, (2) to construct a sediment trap in lower Pueblo Canyon to prevent further transport of residual radioactivity onto San Ildefonso Indian Pueblo land, and (3) to clean the residual radioactivity from the canyon system. Alternative 2, to cleanup the canyon system, is rejected as a viable alternative. Thousands of truckloads of sediment would have to be removed and disposed of, and this effort is unwarranted by the low levels of contamination present. Residual radioactivity levels, under either present conditions or projected future conditions, will not result in significant radiation doses to persons exposed. Modeling efforts show that future transport activity will not result in any residual radioactivity concentrations higher than those already existing. Thus, although construction of a sediment trap in lower Pueblo Canyon is a viable alternative, this effort also is unwarranted, and the no-action alternative is the preferred alternative.

  6. Depositional framework and genesis of Wilcox Submarine Canyon systems, Northwest Gulf Coast

    SciTech Connect

    Galloway, W.F.; Dinqus, W.F.; Paige, R.E.

    1988-01-01

    Wilcox (late Paleocene-early Eocene) slope systems of the Texas coastal plain contain two families of paleosubmarine canyons that exhibit distinctly different characteristics and stratigraphic settings: Yoakum and Lavaca type canyons occur as widely separated features within the generally retrogradational middle Wilcox interval. Four such canyons exhibit high length to width ratios, extend far updip of the contemporaneous shelf edge, were excavated deeply into paralic and coastal-plain deposits, and were filled primarily by mud. Fills consist of a lower onlapping unit and capping progradational deposits that are genetically related to deposition of the upper Wilcox fluvial-deltaic sequence. Significantly, the canyon fills correlate with widespread transgressive marine mudstones (the Yoakum shale-Sabinetown Formation and ''Big Shale''). In contrast, Lavaca-type canyons form a system of erosional features created along the rapidly prograding, unstable lower Wilcox continental margin. Comparative analysis of the two canyon system suggests a general process model for submarine canyon formation on prograding basin margins. Key elements are depositional loading of the continental margin creating instability, initiation of a large-scale slump, family of slumps, or listric bedding-plane fault creating a depression or indentation in the margin, and headward and lateral expansion of the depression by slumping and density-underflow erosion. Extent of canyon evolution varies according to time and submerged space available for maturation; short, broad canyons form on narrow shelves of actively prograding margins, and elongate mature canyons form in retrogradational or transgressive settings.

  7. Seismic stratigraphy and development of Avon canyon in Benin (Dahomey) basin, southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Olabode, S. O.; Adekoya, J. A.

    2008-03-01

    Interpretation of a grid of high resolution seismic profiles from the offshore eastern part of the Benin (Dahomey) basin in southwestern Nigeria area permitted the identification of cyclic events of cut and fill associated with the Avon canyon. Seismic stratigraphic analysis was carried out to evaluate the canyon morphology, origin and evolution. At least three generations of ancient submarine canyons and a newly formed submarine canyon have been identified. Seismic reflection parameters of the ancient canyons are characterized by transparent to slightly transparent, continuous to slightly discontinuous, high to moderate amplitude and parallel to sub-parallel reflections. Locally, high amplitude and chaotic reflections were observed. The reflection configurations consist of regular oblique, chaotic oblique, progradational and parallel to sub-parallel types. These seismic reflection characteristics are probably due to variable sedimentation processes within the canyons, which were affected by mass wasting. Canyon morphological features include step-wise and spoon-shaped wall development, deep valley incision, a V-shaped valley, similar orientation in the southeast direction, and simple to complex erosion features in the axial floor. The canyons have a composite origin, caused partly by lowering of the sea level probably associated with the formation of the Antarctic Ice Sheet about 30 Ma ago and partly by complex sedimentary processes. Regional correlation with geological ages using the reflectors show that the canyons cut through the Cretaceous and lower Tertiary sediments while the sedimentary infill of the canyon is predominantly Miocene and younger. Gravity-driven depositional processes, downward excavation by down slope sediment flows, mass wasting from the canyon walls and variation in terrigenous sediment supply have played significant roles in maintaining the canyons. These canyons were probably conduits for sediment transport to deep-waters in the Gulf of Guinea during their period of formation.

  8. Restoring Anadromous Fish Habitat in Big Canyon Creek Watershed; Anadromous Fish Habitat Restoration in the Nichols Canyon Subwatershed, 1999 Annual Report.

    SciTech Connect

    Koziol, Deb (Nez Perce Soil and Water Conservation District, Lewiston, ID)

    2000-02-01

    Nez Perce Soil & Water Conservation District (NPSWCD) undertook the Nichols Canyon Subwatershed Steelhead Trout Habitat Improvement Project in the spring of 1999. This Project is funded through a grant provided by the Bonneville Power Administration. The Project's purpose is to install and implement agricultural best management practices (BMPs) and riparian restorations to improve steelhead trout spawning and rearing habitat in the Nichols Canyon subwatershed of Big Canyon Creek. Improvements to spawning and rearing habitat in lower Big Canyon Creek tributaries will enhance natural production of the species in Big Canyon Creek and ultimately the Clearwater River. The following report is a summation of the activities undertaken by the NPSWCD in the first year of the project.

  9. Morphology, structures and seismic characters of the Chimei Canyon-Fan system offshore eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Hsieh, Y. H.; Liu, C. S.

    2014-12-01

    The Chimei submarine canyon located offshore east Taiwan shows a very distinct morphology, it has a wide (9 km in average) and very smooth bottom, a submarine fan was formed at its foot but the northern part of the submarine fan has been washed away. This canyon starts from the Hsiukuluan River estuary, runs eastward across the eastern flank of the Luzon arc, and merges into the Hualien Canyon near the western end of the Ryukyu Trench off NE Taiwan. The Chimei canyon can be divided into two parts: the upper section is a U-shaped canyon with broad and flat bottom and high walls; the lower section meanders across a deep sea fan in the Huatung basin. In this study, we use multichannel seismic reflection profile data together with high resolution bathymetry data to study the topography, basement structures and seismic sequences along the canyon path and in the distal fan. The U-shaped upper Chimei canyon seems to be carved not only by submarine erosion but also by structural uplift of both side-walls. The canyon walls are up to 950 m above the canyon floor, strata truncations along both sides of the canyon walls and many slumps are observed. The upper Chimei canyon was developed along basement lows of the highly deformed Luzon arc, and runs across a series of N-S trending thrusts. Acoustic basement and lower strata are deformed and folded, and young sediments cover the canyon floor smoothly. We find many thrusts run across the upper Chimei canyon, but now the canyon bottom is smooth. The concave thalweg profile seems to reach the equilibrium between erosion and deposition. An east-vergent thrust fault lies at the foot of the eastern flank of the Luzon arc which separates the upper section from the lower section of the Chimei Canyon. The lower section of the Chimei canyon flows over a submarine fan where eight seismic sequences are recognized. The two lower sequences show continuous, parallel to sub-parallel sheet-drape seismic facies which fill the basement low. They are interpreted to be old deep sea sediment. The six upper sequences show chaotic and mounded seismic facies, and also transparent and continuous parallel seismic strata. We interpret those are characters of submarine fan. Some large slumps occurred at northern half of the submarine fan. The northern half of the submarine fan has been eroded away already by canyon and slumps.

  10. Geomorphic characterization of four shelf-sourced submarine canyons along the U.S. Mid-Atlantic continental margin

    USGS Publications Warehouse

    Obelcz, Jeffrey; Brothers, Daniel S.; Chaytor, Jason D.; ten Brink, Uri S.; Ross, Steve W.; Brooke, Sandra

    2013-01-01

    Shelf-sourced submarine canyons are common features of continental margins and are fundamental to deep-sea sedimentary systems. Despite their geomorphic and geologic significance, relatively few passive margin shelf-breaching canyons worldwide have been mapped using modern geophysical methods. Between 2007 and 2012 a series of geophysical surveys was conducted across four major canyons of the US Mid-Atlantic margin: Wilmington, Baltimore, Washington, and Norfolk canyons. More than 5700 km2 of high-resolution multibeam bathymetry and 890 line-km of sub-bottom CHIRP profiles were collected along the outer shelf and uppermost slope (depths of 80-1200 m). The data allowed us to compare and contrast the fine-scale morphology of each canyon system. The canyons have marked differences in the morphology and orientation of canyon heads, steepness and density of sidewall gullies, and the character of the continental shelf surrounding canyon rims. Down-canyon axial profiles for Washington, Baltimore and Wilmington canyons have linear shapes, and each canyon thalweg exhibits morphological evidence for recent, relatively small-scale sediment transport. For example, Washington Canyon displays extremely steep wall gradients and contains ~100 m wide, 5–10 m deep, v-shaped incisions down the canyon axis, suggesting modern or recent sediment transport. In contrast, the convex axial thalweg profile, the absence of thalweg incision, and evidence for sediment infilling at the canyon head, suggest that depositional processes strongly influence Norfolk Canyon during the current sea-level high-stand. The north walls of Wilmington, Washington and Norfolk canyons are steeper than the south walls due to differential erosion, though the underlying cause for this asymmetry is not clear. Furthermore, we speculate that most of the geomorphic features observed within the canyons (e.g., terraces, tributary canyons, gullies, and hanging valleys) were formed during the Pleistocene, and show only subtle modification by Holocene processes active during the present sea-level high-stand.

  11. Controlled Flooding of the Colorado River in the Grand Canyon

    NSDL National Science Digital Library

    1997-01-01

    The controlled flood of the Colorado River in the Grand Canyon can be monitored in real time on the U.S. Geological Survey's (USGS) Web site. Starting on March 26 and continuing for seven days, the Bureau of Reclamation (BOR) is releasing approximately 45,000 cubic feet of water per second from Glen Canyon Dam. Line graphs of provisional stream flow data at 15 sites in Arizona are being made available in real time on the Internet via satellite telemetry technology. "This controlled flood will provide an excellent opportunity to demonstrate the usefulness of the real-time network during flooding conditions." Historical stream flow data is also available, as are calculated hydrographs, channel sand data, and detailed fact sheets on the rationale of the study and data collection methods. http://wwwdaztcn.wr.usgs.gov/flood.html

  12. Cyclone-induced hyperpycnal turbidity currents in a submarine canyon

    NASA Astrophysics Data System (ADS)

    Liu, James T.; Wang, Yu-Huai; Yang, Rick J.; Hsu, Ray T.; Kao, Shuh-Ji; Lin, Hui-Ling; Kuo, Fang Hsu

    2012-04-01

    Density currents such as turbidity currents are major transport agents in various terrestrial, lacustrine, and marine environments worldwide. However, a gap exists between those who study the deposits by turbidity currents (turbidite) on a field scale, and those who study turbidity currents using small-scale laboratory experiments and theoretical/numerical models. We report two typhoon-triggered hyperpycnal turbidity current events observed in a submarine canyon. Our findings verify turbidite sequences with the characteristics of suspended sediment carried by passing turbidity currents that displayed distinct waxing and waning phases. Our study also confirms the direct link between typhoon-triggered hyperpycnal flows in a small mountainous river and turbidity currents in a nearby submarine canyon that transport sediment to the deep-sea efficiently.

  13. Disturbance, productivity and diversity in deep-sea canyons: A worm's eye view

    NASA Astrophysics Data System (ADS)

    Paterson, Gordon L. J.; Glover, Adrian G.; Cunha, Marina R.; Neal, Lenka; de Stigter, Henko C.; Kiriakoulakis, Konstadinos; Billett, David S. M.; Wolff, George A.; Tiago, Aurea; Ravara, Ascensão; Lamont, Peter; Tyler, Paul

    2011-12-01

    The abundance, diversity and assemblage structure of polychaetes from the Nazaré, Setúbal and Cascais Canyons along the Iberian Margin were studied as part of the EU project HERMES. A Dynamic Equilibrium Model (DEM) was used to identify the main environmental factors structuring the assemblages. Box corer and megacorer samples from upper (1000 m), middle (3400 m) and lower canyon (4300 m) settings were taken in each canyon. Polychaete abundances in the Nazaré and Setúbal Canyons were highest at 3400 m while in Cascais there were only slight differences between the various depths. Most of the polychaetes occurred in the top 5 cm of the sediment. Sample diversity both within and among the canyon sites did not differ statistically despite differences in the environmental settings, suggesting that small-scale heterogeneity at the scale of the sampler was similar at all sites. Species richness at the level of site was lowest at 3400 m sites in both the Nazaré and Setúbal Canyons. In contrast, species richness increased from 1000 m to ca. 3400 m and then again to 4300 m in the Cascais Canyon. The differences were linked to the physico-biogeochemical environment of each canyon. Analyses of physico-environmental variables indicated that the Nazaré mid-canyon sites were subject to high levels of disturbance and intermediate levels of productivity, accounting for high abundances and low species richness. Low disturbance and low productivity characterised the lower Nazaré Canyon site at 4300 m. Diversity results agreed with predictions of the DEM. However, the 4300 m site in the Setúbal Canyon did not conform to model predictions. Overall, while the Iberian Margin canyons demonstrated higher abundance and biomass than 'open slope' polychaete assemblages, they had lower species richness.

  14. Is the Valles caldera entering a new cycle of activity?

    SciTech Connect

    Wolff, J.A. [Univ. of Texas, Arlington, TX (United States)] [Univ. of Texas, Arlington, TX (United States); Gardner, J.N. [Los Alamos National Lab., NM (United States)] [Los Alamos National Lab., NM (United States)

    1995-05-01

    The Valles caldera formed during two major rhyolitic ignimbrite eruptive episodes (the Bandelier Tuff) at 1.61 and 1.22 Ma, after some 12 m.y. of activity in the Jemez Mountains volcanic field, New Mexico. Several subsequent eruptions between 1.22 and 0.52 Ma produced dominantly high-silica rhyolite lava domes and tephras within the caldera. These were followed by a dormancy of 0.46 m.y. prior to the most recent intracaldera activity, the longest hiatus since the inception of the Bandelier magma system at approximately 1.8 Ma. The youngest volcanic activity at approximately 60 ka produced the SW moat rhyolites, a series of lavas and tuffs that display abundant petrologic evidence of being newly generated melts. Petrographic textures conform closely to published predictions for silicic magmas generated by intrusion of basaltic magma into continental crust. The Valles caldera may currently be the site of renewed silicic magma generation, induced by intrusion of mafic magma at depth. Recent seismic investigations revealed the presence of a large low-velocity anomaly in the lower crust beneath the caldera. The generally aseismic character of the caldera, despite abundant regional seismicity, may be attributed to a heated crustal column, the local effect of 13 m.y. of magmatism and emplacement of mid-crustal plutons. 24 refs., 3 figs.

  15. Canyon Creek: A late Pleistocene vertebrate locality in interior Alaska

    USGS Publications Warehouse

    Weber, F.R.; Hamilton, T.D.; Hopkins, D.M.; Repenning, C.A.; Haas, H.

    1981-01-01

    The Canyon Creek vertebrate-fossil locality is an extensive road cut near Fairbanks that exposes sediments that range in age from early Wisconsin to late Holocene. Tanana River gravel at the base of the section evidently formed during the Delta Glaciation of the north-central Alaska Range. Younger layers and lenses of fluvial sand are interbedded with arkosic gravel from Canyon Creek that contains tephra as well as fossil bones of an interstadial fauna about 40,000 years old. Solifluction deposits containing ventifacts, wedge casts, and rodent burrows formed during a subsequent period of periglacial activity that took place during the maximum phase of Donnelly Glaciation about 25,000-17,000 years ago. Overlying sheets of eolian sand are separated by a 9500-year-old paleosol that may correlate with a phase of early Holocene spruce expansion through central Alaska. The Pleistocene fauna from Canyon Creek consists of rodents (indicated by burrows), Mammuthus primigenius (woolly mammoth), Equus lambei (Yukon wild ass), Camelops hesternus (western camel), Bison sp. cf. B. crassicornis (large-horned bison), Ovis sp. cf. O. dalli (mountain sheep), Canis sp. cf. C. lupus (wolf), Lepus sp. cf. L. othus or L. arcticus (tundra hare), and Rangifer sp. (caribou). This assemblage suggests an open landscape in which trees and tall shrubs were either absent or confined to sheltered and moist sites. Camelops evidently was present in eastern Beringia during the middle Wisconsin interstadial interval but may have disappeared during the following glacial episode. The stratigraphic section at Canyon Creek appears to demonstrate that the Delta Glaciation of the north-central Alaska Range is at least in part of early Wisconsin age and was separated from the succeeding Donnelly Glaciation by an interstadial rather than interglacial episode. ?? 1981.

  16. Basic repository source term and data sheet report: Lavender Canyon

    SciTech Connect

    Not Available

    1988-01-01

    This report is one of a series describing studies undertaken in support of the US Department of Energy Civilian Radioactive Waste Management (CRWM) Program. This study contains the derivation of values for environmental source terms and resources consumed for a CRWM repository. Estimates include heavy construction equipment; support equipment; shaft-sinking equipment; transportation equipment; and consumption of fuel, water, electricity, and natural gas. Data are presented for construction and operation at an assumed site in Lavender Canyon, Utah. 3 refs; 6 tabs.

  17. Grand Canyon Exercise: Geological Time, History, and Sedimentary Environments.

    NSDL National Science Digital Library

    Dexter Perkins

    1998-01-01

    This site presents a take-home web-based project for introductory geology students. The exercise has the students interpreting the sedimentary geology (lithology and fossils) of the Grand Canyon to create a geological history for the region. It is an open-ended exercise with no absolutely correct answer; it involves students acting as scientists - that is, the way real scientists think and combine information to come up with explanations.

  18. LITTLE DOG AND PUP CANYONS ROADLESS AREA, NEW MEXICO.

    USGS Publications Warehouse

    Hayes, Philip T.; Bigsby, Philip R.

    1984-01-01

    The Little Dog and Pup Canyons Roadless Area comprises about 41 sq mi along the precipitous west escarpment of the Guadalupe Mountains in southeastern New Mexico. On the basis of a mineral survey area is considered to have a portable potential for oil and (or) gas resources and little likelihood for the occurrence of other mineral or energy resources. Only the drilling of exploratory holes in or near the roadless area could conclusively determine its resource potential for oil and (or) gas.

  19. Science Sampler: Map your way to the Grand Canyon

    NSDL National Science Digital Library

    Holly Yoder

    2005-10-01

    How do urban eighth graders from the flatlands of Indiana capture the poetry and grandeur of the Grand Canyon without ever leaving the classroom? By talking and touching and seeing and smelling and listening and...writing. Enhance your eighth-grade geology unit by implementing this inquiry-based activity that stimulates the senses and uses writing as a means of assessment and as a creative outlet into your science curriculum.

  20. Electrical resistance sensors record spring flow timing, Grand Canyon, Arizona.

    PubMed

    Adams, Eric A; Monroe, Stephen A; Springer, Abraham E; Blasch, Kyle W; Bills, Donald J

    2006-01-01

    Springs along the south rim of the Grand Canyon, Arizona, are important ecological and cultural resources in Grand Canyon National Park and are discharge points for regional and local aquifers of the Coconino Plateau. This study evaluated the applicability of electrical resistance (ER) sensors for measuring diffuse, low-stage (<1.0 cm) intermittent and ephemeral flow in the steep, rocky spring-fed tributaries of the south rim. ER sensors were used to conduct a baseline survey of spring flow timing at eight sites in three spring-fed tributaries in Grand Canyon. Sensors were attached to a nearly vertical rock wall at a spring outlet and were installed in alluvial and bedrock channels. Spring flow timing data inferred by the ER sensors were consistent with observations during site visits, with flow events recorded with collocated streamflow gauging stations and with local precipitation gauges. ER sensors were able to distinguish the presence of flow along nearly vertical rock surfaces with flow depths between 0.3 and 1.0 cm. Laboratory experiments confirmed the ability of the sensors to monitor the timing of diffuse flow on impervious surfaces. A comparison of flow patterns along the stream reaches and at springs identified the timing and location of perennial and intermittent flow, and periods of increased evapotranspiration. PMID:16961484

  1. Do urban canyons influence street level grass pollen concentrations?

    PubMed

    Peel, Robert George; Kennedy, Roy; Smith, Matt; Hertel, Ole

    2014-08-01

    In epidemiological studies, outdoor exposure to pollen is typically estimated using rooftop monitoring station data, whilst exposure overwhelmingly occurs at street level. In this study the relationship between street level and roof level grass pollen concentrations was investigated for city centre street canyon environments in Aarhus, Denmark, and London, UK, during the grass pollen seasons of 2010 and 2011 respectively. For the period mid-day to late evening, street level concentrations in both cities tended to be lower than roof-level concentrations, though this difference was found to be statistically significant only in London. The ratio of street/roof level concentrations was compared with temperature, relative humidity, wind speed and direction, and solar radiation. Results indicated that the concentration ratio responds to wind direction with respect to relative canyon orientation and local source distribution. In the London study, an increase in relative humidity was linked to a significant decrease in street/roof level concentration ratio, and a possible causative mechanism involving moisture mediated pollen grain buoyancy is proposed. Relationships with the other weather variables were not found to be significant in either location. These results suggest a tendency for monitoring station data to overestimate exposure in the canyon environment. PMID:24037300

  2. Recent sea beam mapping of Ascension-Monterey Submarine Canyon System

    SciTech Connect

    Greene, H.G. (Geological Survey, Menlo Park, CA (USA))

    1990-06-01

    Extensive Sea Beam and Bathymetric Swatch Survey System (BS{sup 3}) data covering the Ascension-Monterey Submarine Canyon system and adjoining areas and canyons were collected offshore central California. Many discovered geomorphological features lead to significant new geologic conclusions about the formation and processes of submarine canyons in general and disclose unique sedimentary and tectonic features of the Ascension-Monterey Canyon system. The highly detailed bathymetric maps constructed from the Sea Beam data indicate that the seafloor topographic pattern is influenced by sedimentary and tectonic processes; both remain active along the central California margin. Interpretations of MOAA composite maps, final raw Sea Beam bathymetric maps, and three-dimensional physiographic renditions from bathymetric data indicate a diverse and complex geomorphology for the Ascension-Monterey Submarine Canyon system and adjoining region. Five distinct geomorphologic provinces and four well-defined geographic areas are mapped. Canyons cut by faults and canyon walls actively undergoing mass wasting are prominently displayed in the Sea Beam data. Sedimentary processes illustrating canyon channel capture and the formation of extensive mega-sedimentary wave fields where the canyons debouch onto the abyssal plain are spectacularly well defined. This new tool of seafloor mapping is contributing significant data for the geological interpretation of continental margins and seafloor in the world's oceans.

  3. Deep-sea scavenging amphipod assemblages from the submarine canyons of the Western Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Duffy, G. A.; Horton, T.; Billett, D. S. M.

    2012-11-01

    Submarine canyons have often been identified as hotspots of secondary production with the potential to house distinct faunal assemblages and idiosyncratic ecosystems. Within these deep-sea habitats, assemblages of scavenging fauna play a vital role in reintroducing organic matter from large food falls into the wider deep-sea food chain. Free-fall baited traps were set at different depths within three submarine canyons on the Iberian Margin. Amphipods from the traps were identified to species level and counted. Scavenging amphipod assemblages were compared at different depths within each canyon and between individual canyon systems. Using data from literature, abyssal plain assemblages were compared to submarine canyon assemblages. Samples from canyons were found to contain common abyssal plain species but in greater than expected abundances. It is proposed that this is a result of the high organic carbon input into canyon systems owing to their interception of sediment from the continental shelf and input from associated estuarine systems. Community composition differed significantly between the submarine canyons and abyssal plains. The cause of this difference cannot be attributed to one environmental variable due to the numerous inherent differences between canyons and abyssal plains.

  4. Characteristics of flow and reactive pollutant dispersion in urban street canyons

    NASA Astrophysics Data System (ADS)

    Park, Soo-Jin; Kim, Jae-Jin; Kim, Minjoong J.; Park, Rokjin J.; Cheong, Hyeong-Bin

    2015-05-01

    In this study, the effects of aspect ratio defined as the ratio of building height to street width on the dispersion of reactive pollutants in street canyons were investigated using a coupled CFD-chemistry model. Flow characteristics for different aspect ratios were analyzed first. For each aspect ratio, six emission scenarios with different VOC-NOX ratios were considered. One vortex was generated when the aspect ratio was less than 1.6 (shallow street canyon). When the aspect ratio was greater than 1.6 (deep street canyon), two vortices were formed in the street canyons. Comparing to previous studies on two-dimensional street canyons, the vortex center is slanted toward the upwind building and reverse and downward flows are dominant in street canyons. Near the street bottom, there is a marked difference in flow pattern between in shallow and deep street canyons. Near the street bottom, reverse and downward flows are dominant in shallow street canyon and flow convergence exists near the center of the deep street canyons, which induces a large difference in the NOX and O3 dispersion patterns in the street canyons. NOX concentrations are high near the street bottom and decreases with height. The O3 concentrations are low at high NO concentrations near the street bottom because of NO titration. At a low VOC-NOX ratio, the NO concentrations are sufficiently high to destroy large amount of O3 by titration, resulting in an O3 concentration in the street canyon much lower than the background concentration. At high VOC-NOX ratios, a small amount of O3 is destroyed by NO titration in the lower layer of the street canyons. However, in the upper layer, O3 is formed through the photolysis of NO2 by VOC degradation reactions. As the aspect ratio increases, NOX (O3) concentrations averaged over the street canyons decrease (increase) in the shallow street canyons. This is because outward flow becomes strong and NOX flux toward the outsides of the street canyons increases, resulting in less NO titration. In the deep street canyons, outward flow becomes weak and outward NOX flux decreases, resulting in an increase (decrease) in NOX (O3) concentration.

  5. UV Radiation in an Urban Canyon in Southeast Queensland

    NASA Astrophysics Data System (ADS)

    McKinley, A. R.; Moore, M. R.; Kimlin, M. G.

    2006-12-01

    Ultraviolet radiation (UV) has the possibility to both harm and to benefit human beings when unprotected exposure occurs. After receiving small amounts of UV our bodies begin to synthesise vitamin D, which is essential for maintaining healthy bones, however excessive UV exposure can result in a variety of damaging outcomes ranging from sunburn to skin cancer and cataracts. For this reason it is very important to understand the different environments in which people encounter UV so as to better prepare the public to make smart and healthy sun exposure decisions. Each day more and more people are moving into large cities around the world and spending their time inside the urban canyon, however UV measurements are generally taken at scientific stations in open areas or on top of tall buildings, meaning that at times the environmental characteristics measured may not accurately represent those found at street-level in these highly urbanized areas. Urban canyons are home to both very tall buildings and tropospheric air pollution, each of which reduces the amount of UV reaching street-level. This study measured the varying difference between UV measurements taken at street-level and at a standard UV monitoring site on top of a building outside of the urban canyon. Investigation was conducted in the central business district (CBD) of Brisbane, Australia, which models the CBDs of large cities around the world in that it boasts a great number of tall buildings, including many skyscrapers. Data was collected under clear sky conditions at five different street-level sites in the CBD (on either side of two streets running perpendicular to one another (four sites) and in a public square) and then compared to that obtained on the same day at the Queensland University of Technology's Australian Sun and Health Research Laboratory (ASHRL), which is located 2.5 kilometres outside Brisbane's CBD. Minimum erythemal dose (MED) data was collected at each location and it was found that throughout the day the intensity of erythemal UV measured in the city was significantly lower than that measured at the ASHRL site. On average the amount of erythemal UV measured in the urban canyon was approximately 33% of that measured at the ASHRL site. Based upon these findings we hope to conduct further study regarding UV exposure in the urban canyon.

  6. Restoring Anadromous Fish Habitat in Big Canyon Creek Watershed; Anadromous Fish Habitat Restoration in the Nichols Canyon Subwatershed, 2000 Annual Report.

    SciTech Connect

    Koziol, Deb (Nez Perce Soil and Water Conservation District, Lewiston, ID)

    2001-02-01

    Nez Perce Soil & Water Conservation District (NPSWCD) undertook the Nichols Canyon Subwatershed Steelhead Trout Habitat Improvement Project in the spring of 1999 with funding from a grant through the Bonneville Power Administration. The Project's purpose is to install and implement agricultural best management practices (MBPS) and riparian restorations with the goal of improving steelhead trout spawning and rearing habitat in the subwatershed. Improvements to fish habitat in the Big Canyon Creek tributaries enhances natural production of the species in Big Canyon Creek and ultimately the Clearwater River. This report is a summation of the progress made by the NPSWCD in the Project's second year.

  7. Space-for-time substitution and the evolution of submarine canyons in a passive, progradational margin.

    NASA Astrophysics Data System (ADS)

    Micallef, Aaron; Ribó, Marta; Canals, Miquel; Puig, Pere; Lastras, Galderic; Tubau, Xavier

    2013-04-01

    40% of submarine canyons worldwide are located in passive margins, where they constitute preferential conduits of sediment and biodiversity hotspots. Recent studies have presented evidence that submarine canyons incising passive, progradational margins can co-evolve with the adjacent continental slope during long-term margin construction. The stages of submarine canyon initiation and their development into a mature canyon-channel system are still poorly constrained, however, which is problematic when attempting to reconstruct the development of passive continental margins. In this study we analyse multibeam echosounder and seismic reflection data from the southern Ebro margin (western Mediterranean Sea) to document the stages through which a first-order gully develops into a mature, shelf-breaching canyon and, finally, into a canyon-channel system. This morphological evolution allows the application of a space-for-time substitution approach. Initial gully growth on the continental slope takes place via incision and downslope elongation, with limited upslope head retreat. Gravity flows are the main driver of canyon evolution, whereas slope failures are the main agent of erosion; they control the extent of valley widening, promote tributary development, and their influence becomes more significant with time. Breaching of the continental shelf by a canyon results in higher water/sediment loads that enhance canyon development, particularly in the upper reaches. Connection of the canyon head with a paleo-river changes evolution dynamics significantly, promoting development of a channel and formation of depositional landforms. Morphometric analyses demonstrate that canyons develop into geometrically self-similar systems that approach steady-state and higher drainage efficiency. Canyon activity in the southern Ebro margin is pulsating and enhanced during sea level lowstands. Rapid sedimentation by extension of the palaeo-Millars River into the outermost shelf and upper slope is inferred as the source of gravity flows driving canyon evolution. Canyon morphology is shown to be maintained over the course of more than one fall and rise in sea-level. Our model of canyon evolution is applicable to other passive margins (e.g. Argentine continental margin).

  8. Morphology, paleogeographic setting, and origin of the middle Wilcox Yoakum Canyon, Texas coastal plain

    SciTech Connect

    Dingus, W.F. (Exxon Co., Midland, TX (USA)); Galloway, W.E. (Univ. of Texas, Austin (USA))

    1990-07-01

    The Yoakum canyon is the largest of the Gulf Coast Eocene erosional gorges and is interpreted as a buried submarine channel. The canyon can be traced for 67 mi (108 km) from the Wilcox fault zone, which defines the position of the early Eocene shelf edge, nearly to present outcrop. In this paper, the authors expand on previously published descriptions of the canyon and use a more extensive subsurface database. Decompaction of the canyon shale-fill reveals that original depths of the canyon exceeded 3,500 ft (1,067 m). Apparent canyon-wall slump scarps and a peripheral chaotic zone, interpreted as an incipient slump feature, are comparable to similar features of the late Quaternary Mississippi submarine canyon. The Yoakum canyon formed within the Garwood subembayment to the west of and adjacent to the middle Wilcox Rockdale delta system. Quantitative mapping of facies adjacent to the Yoakum shale indicate the following sequence of events. (1) Muddy, distal deltaic and shelf facies of the lower middle Wilcox subgroup were deposited during a retrogradation. (2) A resurgence of progradation deposited upper middle Wilcox deltaic facies atop the unconsolidated, lower middle Wilcox continental margin muds, loading the shelf edge and initiating slump failure of the continental margin. (3) Headward erosion of the canyon across the shelf occurred contemporaneously with a subsidence-induced transgression that coincided with a disruption in sediment supply. The Yoakum canyon was excavated by a combination of slumping and current scour. (4) The canyon was filled by hemipelagic and prodelta muds of the upper Wilcox subgroup. 19 figs.

  9. Energy integrated farm system: Del Valle Hog Farm

    SciTech Connect

    Not Available

    1984-01-01

    The Del Valle Hog Farm, a Texas hog farm with grain crops, is designed to conserve energy through methane generation, alcohol production, and efficient use of electrical energy. The integrated energy concepts to be demonstrated are: methane generation from swine manure to produce electricity and heat for alcohol fermentation and distillation and to produce hot water for heating the digester reactors and the hog feeding pens; and alcohol production from milo and distillation of 170 proof alcohol by use of methane and generated electricity. Specific energy technologies to be implemented are: anaerobic digester; gas compressors to store methane for peak demands; engine generator powered by methane; waste-heat exchanger on engine generator to produce hot water; continuous-process alcohol facility to produce 24 gal/day; and crop management.

  10. The eect of a submarine canyon on the river sediment dispersal and inner shelf sediment movements in

    E-print Network

    Lin, Andrew Tien-Shun

    The e¡ect of a submarine canyon on the river sediment dispersal and inner shelf sediment movements 2001 Abstract This study examines the influence of a submarine canyon on the dispersal of sediments the head region of the Kao-ping Submarine Canyon whose landward terminus is located approximately 1 km

  11. 77 FR 38051 - Jones Canyon Hydro, LLC; Notice of Application for Amendment of Preliminary Permit Accepted for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ...Commission [Project No. 13860-001] Jones Canyon Hydro, LLC; Notice of Application...Intervene, and Protests On May 29, 2012, Jones Canyon Hydro, LLC filed an amendment to...preliminary permit issued March 28, 2011 for the Jones Canyon Pumped Storage Project. The...

  12. Demise of a submarine canyon? Evidence for highstand infilling on the Waipaoa River continental margin, New Zealand

    Microsoft Academic Search

    J. P. Walsh; C. R. Alexander; T. Gerber; A. R. Orpin; B. W. Sumners

    2007-01-01

    Submarine canyons are major geomorphologic features on the Earth's surface. Their formation has received considerable debate, but their demise has received less attention. Research of modern canyons with cores and moorings has documented active sediment transport and deposition, but extrapolation of these local observations over larger areas is precluded by complex canyon geomorphology. High-resolution multibeam and chirp data presented here

  13. Delaware River: Evidence for its former extension to Wilmington Submarine Canyon

    USGS Publications Warehouse

    Twichell, D.C.; Knebel, H. J.; Folger, D.W.

    1977-01-01

    Seismic-reflection profiles indicate that during the Pleistocene the Delaware River flowed across the continental shelf east of Delaware Bay and emptied into Wilmington Submarine Canyon. The ancestral valley (width, 3 to 8 kilometers; relief, 10 to 30 meters) is buried, is not reflected in the surface topography, and probably predates the formation of the present canyon head.

  14. Possibility of Using Computational Fluid Dynamics (CFD) for Urban Canyon Studies in Tropical Climate

    Microsoft Academic Search

    Mohd Hamdan Ahmad

    2006-01-01

    This paper gives an overview of research methods for urban street canyon studies, from the commonly used field experiments and scaled models methods to numerical simulation models. Review of field experiments and scaled models showed identical weaknesses in dealing with urban canyon studies i.e. cost, time consuming and data or information obtained is rather limited or specific and often do

  15. Cyclones and tides as feeders of a submarine canyon off Bangladesh

    NASA Astrophysics Data System (ADS)

    Kudrass, H. R.; Michels, K. H.; Wiedicke, M.; Suckow, A.

    1998-08-01

    Extremely high annual sedimentation rates of about 50 cm/yr at the head of the submarine canyon “Swatch of No Ground,” which connects the submarine delta of the Ganges-Brahmaputra to the Bengal deep-sea fan were estimated by 210Pb and 137Cs gamma spectrometry. The sediment in the canyon at 228 m water depth consists of graded sand and silt layers and laminated mud. The sand and silt layers are assumed to have been deposited by tropical cyclones, whereas the intercalated laminated mud is thought to have been deposited by daily variations of tidal currents. The graded layers correlate well with the historical record of cyclones and allow an annual fine tuning. The rapid infill of the canyon head is caused by trapping of suspended sediment that has been mobilized by storms and tides on the delta topset. The sediment is stored only temporarily in the canyon head: slides, slumps, and earthquakes occasionally remove and transfer it by turbidity currents to the deep-sea fan. The focusing effect of the canyon and the subsequent stepwise export of sediment, probably combined with erosion of the canyon floor, explain the long-term regional stability of this canyon and probably other shelf canyons.

  16. Amphitheater-headed canyons formed by megaflooding at Malad Gorge, Idaho

    PubMed Central

    Lamb, Michael P.; Mackey, Benjamin H.; Farley, Kenneth A.

    2014-01-01

    Many bedrock canyons on Earth and Mars were eroded by upstream propagating headwalls, and a prominent goal in geomorphology and planetary science is to determine formation processes from canyon morphology. A diagnostic link between process and form remains highly controversial, however, and field investigations that isolate controls on canyon morphology are needed. Here we investigate the origin of Malad Gorge, Idaho, a canyon system cut into basalt with three remarkably distinct heads: two with amphitheater headwalls and the third housing the active Wood River and ending in a 7% grade knickzone. Scoured rims of the headwalls, relict plunge pools, sediment-transport constraints, and cosmogenic (3He) exposure ages indicate formation of the amphitheater-headed canyons by large-scale flooding ?46 ka, coeval with formation of Box Canyon 18 km to the south as well as the eruption of McKinney Butte Basalt, suggesting widespread canyon formation following lava-flow diversion of the paleo-Wood River. Exposure ages within the knickzone-headed canyon indicate progressive upstream younging of strath terraces and a knickzone propagation rate of 2.5 cm/y over at least the past 33 ka. Results point to a potential diagnostic link between vertical amphitheater headwalls in basalt and rapid erosion during megaflooding due to the onset of block toppling, rather than previous interpretations of seepage erosion, with implications for quantifying the early hydrosphere of Mars. PMID:24344293

  17. Restoring Anadromous Fish Habitat in Big Canyon Creek Watershed, 2004-2005 Annual Report

    Microsoft Academic Search

    Rasmussen; Lynn

    2006-01-01

    The ''Restoring Anadromous Fish Habitat in the Big Canyon Creek Watershed'' is a multi-phase project to enhance steelhead trout in the Big Canyon Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by

  18. Amphitheater-headed canyons formed by megaflooding at Malad Gorge, Idaho.

    PubMed

    Lamb, Michael P; Mackey, Benjamin H; Farley, Kenneth A

    2014-01-01

    Many bedrock canyons on Earth and Mars were eroded by upstream propagating headwalls, and a prominent goal in geomorphology and planetary science is to determine formation processes from canyon morphology. A diagnostic link between process and form remains highly controversial, however, and field investigations that isolate controls on canyon morphology are needed. Here we investigate the origin of Malad Gorge, Idaho, a canyon system cut into basalt with three remarkably distinct heads: two with amphitheater headwalls and the third housing the active Wood River and ending in a 7% grade knickzone. Scoured rims of the headwalls, relict plunge pools, sediment-transport constraints, and cosmogenic ((3)He) exposure ages indicate formation of the amphitheater-headed canyons by large-scale flooding ?46 ka, coeval with formation of Box Canyon 18 km to the south as well as the eruption of McKinney Butte Basalt, suggesting widespread canyon formation following lava-flow diversion of the paleo-Wood River. Exposure ages within the knickzone-headed canyon indicate progressive upstream younging of strath terraces and a knickzone propagation rate of 2.5 cm/y over at least the past 33 ka. Results point to a potential diagnostic link between vertical amphitheater headwalls in basalt and rapid erosion during megaflooding due to the onset of block toppling, rather than previous interpretations of seepage erosion, with implications for quantifying the early hydrosphere of Mars. PMID:24344293

  19. MAPPING COLORADO RIVER ECOSYSTEM RESOURCES IN GLEN CANYON: ANALYSIS OF HYPERSPECTRAL LOW-ALTITUDE AVIRIS IMAGERYT

    E-print Network

    Merényi, Erzsébet

    of both native and non-native plant species. Riparian vegetation consists of stands that often cover onlyMAPPING COLORADO RIVER ECOSYSTEM RESOURCES IN GLEN CANYON: ANALYSIS OF HYPERSPECTRAL LOW Space Science Institute, Boulder, CO (william.farrand@colorado.edu) Lawrence E. Stevens Grand Canyon

  20. Draft environmental assessment: Lavender Canyon site, Utah. Nuclear Waste Policy Act (Section 112). [Contains glossary

    SciTech Connect

    Not Available

    1984-12-01

    In February 1983, the US Department of Energy (DOE) identified the Lavender Canyon site in Utah, as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Lavender Canyon site and the eight other potentially acceptable sites h

  1. Geophysical Exploration of the Red Rocks Canyon Landfill in Colorado Springs, Colorado

    Microsoft Academic Search

    N. Calhoun; C. Morin; S. Gy; C. Bank

    2005-01-01

    Our introductory geophysics class conducted a survey of the Red Rocks Canyon landfill to determine its boundaries, depth, type of fill, and groundwater runoff patterns. In the 1970s and 1980s the canyon was filled with domestic waste, and has recently been acquired by the city to extend an existing park. Our results in general portray a heterogenous subsurface and reveal

  2. Excavations at the Red Rock Canyon Rockshelter (CA-KER-147), Western Mojave Desert, California

    Microsoft Academic Search

    Mark Q. Sutton; R. W. Robinson; Jill K. Gardner

    In 1973 test excavations were conducted at the Red Rock Canyon Rockshelter (CA-KER-147) in Red Rock Canyon State Park. This work was initiated by State Parks in response to vandalism at the site, including the disturbance of human remains. The site is inter- preted as a fall or winter habitation locality with a primary focus on jackrabbit procurement and was

  3. Peak discharge of a Pleistocene lava-dam outburst flood in Grand Canyon, Arizona, USA

    E-print Network

    Peak discharge of a Pleistocene lava-dam outburst flood in Grand Canyon, Arizona, USA Cassandra R Received 6 May 2005 Availble online 7 February 2006 Abstract The failure of a lava dam 165,000 yr ago produced the largest known flood on the Colorado River in Grand Canyon. The Hyaloclastite Dam was up to 366

  4. Combined optic-flow and stereo-based navigation of urban canyons for a UAV

    Microsoft Academic Search

    Stefan Hrabar; Gaurav S. Sukhatme; Peter Corke; Kane Usher; Jonathan Roberts

    2005-01-01

    We present a novel vision-based technique for navigating an unmanned aerial vehicle (UAV) through urban canyons. Our technique relies on both optic flow and stereo vision information. We show that the combination of stereo and optic flow (stereo flow) is more effective at navigating urban canyons than either technique alone. Optic flow from a pair of sideways looking cameras is

  5. Low-frequency variability of the Mediterranean undercurrent downstream of Portimão Canyon

    Microsoft Academic Search

    Laurent M. Chérubin; Nuno Serra; Isabel Ambar

    2003-01-01

    Data from current meters deployed during the CANIGO Project from June 1997 to August 1998 are analyzed. We focus on two meridionally aligned current meter moorings located west of the Portimão Canyon. Periodically, an XBT line was performed during the period of the current meter measurements, upstream of Portimão Canyon; it preceded the release of RAFOS floats in each of

  6. Canyon-related undulation structures in the Shenhu area, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Qiao, Shaohua; Su, Ming; Kuang, Zenggui; Yang, Rui; Liang, Jinqiang; Wu, Nengyou

    2015-03-01

    The characteristics and origin of seafloor and subsurface undulations were studied in the Shenhu area, northern South China Sea using high-precision multibeam bathymetric map and high-resolution 2D seismic data. Two undulation structure fields associated with submarine canyons have been identified. One structure field is developed in canyon head areas and shows waveform morphology on the bathymetric map. The waves display wavelengths and wave heights of 1-2 km and 20-50 m, respectively, generally occur on slopes from 1° to 5°, and extend for about 15 km approximately parallel to the canyon's orientation. The other structure field is developed in the lower segment or mouth area of submarine canyons. In general, the waves display wavelengths and wave heights of 1.3-3.6 km and 50-80 m, respectively, occur on slopes of approximately 2°, and extend for more than 20 km. Sediment cores from crests between submarine canyons in the lower segment include predominantly silts and clayey silts. Since undulations in the two fields show differences in morphology and internal architectures, two different formation mechanisms are suggested. Seafloor undulations in the head area of submarine canyons are interpreted as creep folds induced by soft sediment deformation. Undulation structures in the lower segment or the mouth area of submarine canyons are sediment waves constructed by turbidity currents overflows along the submarine canyons.

  7. On the (mis-) Behavior of Thunderstorms at the Grand Canyon, Arizona

    NASA Astrophysics Data System (ADS)

    Cummins, K. L.; Saba, M. M.; Schulz, W.; Noggle, C.; Quick, M. G.; Saraiva, A. C.; Krider, E. P.

    2009-12-01

    The area density of cloud-to-ground (CG) lightning strokes reported by the NLDN near the Grand Canyon, Arizona, show strong variations near the canyon rim. The average area density of strokes outside the canyon is about 8-times larger than within the canyon, and there is a clear increase in the frequency of lightning attachments near the top edge of the canyon rim. If the attachments are made at or near the top of the rim, this could imply a very large attractive radius and unusually long upward leaders, perhaps produced by enhanced electric fields at the canyon rim just prior to ground termination. If the attachments are made along the face of the canyon near the rim, another possible explanation of the existing data, then the high area density near the rim and the low density within the canyon might be explained by the random spatial development of downward branches in the lightning leader just prior to attachment, interacting with the slope and protrusions along the canyon walls. This geometrical development might cause attachment to occur to the canyon walls before the lower-altitude leader channels can attach to the canyon floor. Two other possible factors are (1) the attenuation or distortion of the electromagnetic fields produced by the lightning due to propagation from deep within the canyon to the surface and (2) a difficulty for lightning-producing storms to form over or propagate into the wider regions of the canyon. The effects of EM propagation will likely result in low-amplitude fields and/or produce waveforms that the NLDN will not classify as CG strokes. Storm-propagation effects will likely reduce the convection and the electrification of clouds over the wide portions of the canyon, and result in a lower area density of flashes. We will present limited results of some measurements that were obtained during July 2009 relating to each of the above factors, and we will outline our plans for additional measurements during July/August 2010 or 2011.

  8. Variability in turbidity current frequency within a central Portuguese margin canyon

    NASA Astrophysics Data System (ADS)

    Allin, Joshua R.; Talling, Peter J.; Hunt, James E.; Clare, Michael E.; Pope, Ed

    2015-04-01

    Submarine canyons constitute one of the most important pathways for sediment transport into ocean basins. For this reason, understanding canyon architecture and sedimentary processes has significance for oil and gas reservoir characterisation, carbon budgets and geohazard assessment. Canyon sedimentation in the form of turbidity-currents is known to operate on a variety of scales and result from a number of different processes, including landslides, river-derived hyperpycnal flows and tidal or storm resuspension. Despite the expanding knowledge of turbidity current triggers, the spatial variability in turbidity current frequency within most canyon systems is not well defined. Here, new chronologies from cores in the lower reaches of Nazaré Canyon illustrate changes in turbidity current frequency and their relationship to sea level. These flows were relatively frequent during the last glacial maximum and the last deglaciation, with an average recurrence interval of ~70 years. Mid to early Holocene slowdown in activity (avg. recurrence of 1625 years) appears to occur later than other systems along the Iberian margin. Cores from the Iberian Abyssal Plain also provide the first recurrence interval estimates for large run-out turbidity currents from the central Portuguese margin. These large turbidity currents have an average recurrence interval of 2750 years, broadly comparable to modern turbidity flow events in the lower Nazaré Canyon. This indicates that Nazaré Canyon acted as a depocentre, capturing large volumes of sediment during glacial periods prior to large scale canyon flushing events. However, this sediment capture has largely been restricted to the middle and upper canyon since stabilisation of Holocene sea level. Recurrence intervals suggest that large turbidity flows which flush the canyon operate on a timescale independent of the sea level forcing evident in the lower canyon. While instability-triggered landsliding and tidal/storm resuspension are likely responsible for canyon restricted turbidity flows, a different trigger may exist for long run-out turbidity flows capable of travelling several hundred kilometres. Canyon flushing events in other systems have been suggested as resulting from landslides triggered by regional earthquakes. However, turbidites from the Iberian Abyssal Plain do not correlate well with previously suggested earthquake-triggered landslides in the Tagus Abyssal Plain to the south. The inconclusiveness of a test for synchronous deposition in distinct basins makes identifying a seismic trigger problematic. The Nazaré fault, which intersects the canyon head, may have a distinct return time for large earthquakes that is different from seismically active areas to the south. This further suggests the need for caution in the use of turbidites as a palaeo-seismological indicator along the Iberian margin.

  9. Populating a Control Point Database: A cooperative effort between the USGS, Grand Canyon Monitoring and Research Center and the Grand Canyon Youth Organization

    NASA Astrophysics Data System (ADS)

    Brown, K. M.; Fritzinger, C.; Wharton, E.

    2004-12-01

    The Grand Canyon Monitoring and Research Center measures the effects of Glen Canyon Dam operations on the resources along the Colorado River from Glen Canyon Dam to Lake Mead in support of the Grand Canyon Adaptive Management Program. Control points are integral for geo-referencing the myriad of data collected in the Grand Canyon including aerial photography, topographic and bathymetric data used for classification and change-detection analysis of physical, biologic and cultural resources. The survey department has compiled a list of 870 control points installed by various organizations needing to establish a consistent reference for data collected at field sites along the 240 mile stretch of Colorado River in the Grand Canyon. This list is the foundation for the Control Point Database established primarily for researchers, to locate control points and independently geo-reference collected field data. The database has the potential to be a valuable mapping tool for assisting researchers to easily locate a control point and reduce the occurrance of unknowingly installing new control points within close proximity of an existing control point. The database is missing photographs and accurate site description information. Current site descriptions do not accurately define the location of the point but refer to the project that used the point, or some other interesting fact associated with the point. The Grand Canyon Monitoring and Research Center (GCMRC) resolved this problem by turning the data collection effort into an educational exercise for the participants of the Grand Canyon Youth organization. Grand Canyon Youth is a non-profit organization providing experiential education for middle and high school aged youth. GCMRC and the Grand Canyon Youth formed a partnership where GCMRC provided the logistical support, equipment, and training to conduct the field work, and the Grand Canyon Youth provided the time and personnel to complete the field work. Two data collection efforts were conducted during the 2004 summer allowing 40 youth the opportunity to contribute valuable information to the Control Point Database. This information included: verification of point existence, photographs, accurate site descriptions concisely describing the location of the point, how to reach the point, the specific point location and detailed bearings to visible and obvious land marks. The youth learned to locate themselves and find the points using 1:1000 airphotos, write detailed site descriptions, take bearings with a compass, measure vertical and horizontal distances, and use a digital camera. The youth found information for 252 control points (29% of the total points).

  10. Factors affecting condition of flannelmouth suckers in the Colorado River, Grand Canyon, Arizona

    USGS Publications Warehouse

    Paukert, C.; Rogers, R.S.

    2004-01-01

    The impoundment of the Colorado River by Glen Canyon Dam, Arizona, in 1963 created a highly regulated environment in the Grand Canyon that altered the native fish populations, including the flannelmouth sucker Catostomus latipinnis. Flannelmouth suckers were sampled from 1991 to 2001 to determine seasonal, annual, and spatial trends in fish condition (i.e., relative weight [Wr]). Mean Wr peaked during the prespawn and spawning periods and was lowest in summer and fall, but it was never lower than 93. Condition was variable throughout the Grand Canyon but was typically greatest at intermediate distances from Glen Canyon Dam, possibly because of the increased number of warmwater tributaries in this reach. Flannelmouth sucker condition in September was positively correlated with Glen Canyon Dam discharge during summer (June-August); this result may be due to the larger euphotic zone and greater macroinvertebrate abundance observed during higher water flows. Increased dam discharge that stimulates river productivity may provide benefits for this native fish.

  11. Aerodynamic effects of trees on pollutant concentration in street canyons.

    PubMed

    Buccolieri, Riccardo; Gromke, Christof; Di Sabatino, Silvana; Ruck, Bodo

    2009-09-15

    This paper deals with aerodynamic effects of avenue-like tree planting on flow and traffic-originated pollutant dispersion in urban street canyons by means of wind tunnel experiments and numerical simulations. Several parameters affecting pedestrian level concentration are investigated, namely plant morphology, positioning and arrangement. We extend our previous work in this novel aspect of research to new configurations which comprise tree planting of different crown porosity and stand density, planted in two rows within a canyon of street width to building height ratio W/H=2 with perpendicular approaching wind. Sulfur hexafluoride was used as tracer gas to model the traffic emissions. Complementary to wind tunnel experiments, 3D numerical simulations were performed with the Computational Fluid Dynamics (CFD) code FLUENT using a Reynolds Stress turbulence closure for flow and the advection-diffusion method for concentration calculations. In the presence of trees, both measurements and simulations showed considerable larger pollutant concentrations near the leeward wall and slightly lower concentrations near the windward wall in comparison with the tree-less case. Tree stand density and crown porosity were found to be of minor importance in affecting pollutant concentration. On the other hand, the analysis indicated that W/H is a more crucial parameter. The larger the value of W/H the smaller is the effect of trees on pedestrian level concentration regardless of tree morphology and arrangement. A preliminary analysis of approaching flow velocities showed that at low wind speed the effect of trees on concentrations is worst than at higher speed. The investigations carried out in this work allowed us to set up an appropriate CFD modelling methodology for the study of the aerodynamic effects of tree planting in street canyons. The results obtained can be used by city planners for the design of tree planting in the urban environment with regard to air quality issues. PMID:19596394

  12. Mariner 9 views Canyon System emerging from Martian Dust Storm

    NASA Technical Reports Server (NTRS)

    1971-01-01

    View of canyon system emerging from the Martian dust storm.

    Mariner 9 was the first spacecraft to orbit another planet. The spacecraft was designed to continue the atmospheric studies begun by Mariners 6 and 7, and to map over 70% of the Martian surface from the lowest altitude (1500 kilometers [900 miles])and at the highest resolutions (1 kilometer per pixel to 100 meters per pixel) of any previous Mars mission.

    Mariner 9 was launched on May 30, 1971 and arrived on November 14, 1971.

  13. Ordering Geologic Events and Interpreting Geologic History: The Grand Canyon

    NSDL National Science Digital Library

    Jennifer Wenner

    This activity is designed to help students recognize the connections among things like rock identification and map reading with the "story" that these things can tell us in terms of geologic history. Students have already learned about using observation to identify rocks and the principles of interpreting geologic cross-sections. The activity gives students practice in rock ID, topo map reading, geologic map reading and the aspects of geologic time. Students work with rock samples and a geologic map of the Grand Canyon to interpret a history for the area.

  14. Incision History of the Black Canyon of the Gunnison

    NASA Astrophysics Data System (ADS)

    Sandoval, M.; Karlstrom, K. E.; Aslan, A.; Kirby, E.; Granger, D.

    2006-12-01

    The Gunnison River is the major tributary of the Colorado River that drains some of the highest topography of the Colorado Rocky Mountains. Paleo river profiles at 640ka, 10Ma, and ~35Ma provide benchmarks to understand the long-term incision history of the Black Canyon. Reconstruction of these paleo profiles is based on elevated bedrock straths and alluvial deposits that can be dated using the Lava Creek B ash (640 ka), Grand Mesa and associated basalts (10 Ma), and Oligocene ash flow tuffs (~35 Ma). Comparison of these to the modern profile offers insight into incision history. The modern long profile displays a distinct knickpoint located near the Painted Wall in the Black Canyon of the Gunnison National Park. This high-gradient reach (10-km-long) is partly explained by the Vernal Mesa Granite, but it traverses basement lithologies present above and below the knickpoint, suggesting that increased river gradient is not explained entirely by hard bedrock. Incision rates downstream of the knickpoint are higher (250-300 m/Ma over 640 ka and ~ 150 m/Ma over 10 Ma) in comparison to upstream rates (140 m/Ma over 640 ka and ~ 150 m/Ma over 10 Ma). The difference in incision rates across the knickpoint argue that this feature reflects transient adjustment of the fluvial system to baselevel lowering associated with downstream drainage reorganization. Incision rates in the nearby reaches of the Colorado River since 1-3 Ma are distinctly higher than those in the time periods of ~30 Ma- present and 10 Ma-present. This leads us to infer that rapid incision was not established in the Gunnison region until post ca. 3 Ma. A knickpoint similar to that seen in the modern profile is present in the reconstructed 640ka profile, reinforcing the transient character and implying upstream migration of the knickpoint of 25km in the past 640 ka. Projection of the ~ 640 ka river gravels in the abandoned Shinn- Bostwick tributary to its intersection with the Gunnison at Red Canyon is presently the best constraint on the age of incision; here, ~400m of its ~700m total depth in the Black Canyon has been incised in the last 640 ka. To refine these profiles and incision rates, new mapping and sampling for cosmogenic burial dating have been conducted on major terraces at the North Fork Gunnison-Gunnison River confluence, the Shinn-Bostwick Park, and Grizzley Creek. These will provide new dates, confirm tephrochronolgic associations, and refine preexisting data to further constrain incision history.

  15. An exhumed Late Paleozoic canyon in the rocky mountains

    USGS Publications Warehouse

    Soreghan, G.S.; Sweet, D.E.; Marra, K.R.; Eble, C.F.; Soreghan, M.J.; Elmore, R.D.; Kaplan, S.A.; Blum, M.D.

    2007-01-01

    Landscapes are thought to be youthful, particularly those of active orogenic belts. Unaweep Canyon in the Colorado Rocky Mountains, a large gorge drained by two opposite-flowing creeks, is an exception. Its origin has long been enigmatic, but new data indicate that it is an exhumed late Paleozoic landform. Its survival within a region of profound late Paleozoic orogenesis demands a reassessment of tectonic models for the Ancestral Rocky Mountains, and its form and genesis have significant implications for understanding late Paleozoic equatorial climate. This discovery highlights the utility of paleogeomorphology as a tectonic and climatic indicator. ?? 2007 by The University of Chicago. All rights reserved.

  16. Air pollutant retention within a complex of urban street canyons

    NASA Astrophysics Data System (ADS)

    Richmond-Bryant, J.; Isukapalli, S. S.; Vallero, D. A.

    2011-12-01

    Epidemiological studies of health effects associated with ambient air pollution are subject to uncertainty in the effects estimates related to the spatial and temporal variability of ambient air pollution. This study examines meteorological and concentration decay data for an urban canopy in Oklahoma City, OK to develop a modeling approach that can be used to estimate spatiotemporal variability in contaminant retention that could add bias or uncertainty to epidemiological results. Concentration and microscale turbulent wind data from the Joint Urban 2003 study were reanalyzed to examine scaling relationships between contaminant residence time in urban street canyons, urban boundary layer winds, and urban topography. Street-level sulfur hexafluoride (SF 6) concentration time series were reviewed to find time periods that included a peak and decay. Exponential decay curves were fitted to each period, and a characteristic residence time was derived from each model slope. That residence time was nondimensionalized by the ratio of mean urban boundary layer wind speed to height of the building just upwind of the street canyon in which the concentration was measured. Sonic detection and ranging (SODAR) data were used to assess atmospheric turbulence conditions at times concurrent with the concentration decay measurements. Reynolds number ( Re) was calculated from the 15-min average wind velocity and ranged from 2.1 × 10 6 to 7.6 × 10 7. Nondimensional residence time ( H) ranged from 3.7 to 996 with a median of 13.3. Inverse relationships were validated between H and Re and between H and the street canyon aspect ratio. These relationships provided a mechanism to understand time-varying ventilation within a street canyon. The results shown here were intended to demonstrate how scaling relationships derived from the transport equation can be used to provide rapid estimates of characteristic decay times for the purpose of estimating variability in the concentrations encountered in an urban environment. This could be a useful tool to reduce uncertainty in air pollution epidemiological study results related to spatial and temporal variability in urban concentrations.

  17. A sand budget for Marble Canyon, Arizona: implications for long-term monitoring of sand storage change

    USGS Publications Warehouse

    Grams, Paul E.

    2013-01-01

    Recent U.S. Geological Survey research is providing important insights into how best to monitor changes in the amount of tributary-derived sand stored on the bed of the Colorado River and in eddies in Marble Canyon, Arizona. Before the construction of Glen Canyon Dam and other dams upstream, sandbars in Glen, Marble, and Grand Canyons were replenished each year by sediment-rich floods. Sand input into the Colorado River is crucial to protecting endangered native fish, animals, and plants and cultural and recreational resources along the river in Glen Canyon National Recreation Area and Grand Canyon National Park.

  18. Dispersal of natural and anthropogenic lead through submarine canyons at the Portuguese margin

    NASA Astrophysics Data System (ADS)

    Richter, T. O.; de Stigter, H. C.; Boer, W.; Jesus, C. C.; van Weering, T. C. E.

    2009-02-01

    Submarine canyons represent natural conduits for preferential transport of particulate material, including anthropogenic contaminants, from coastal zones directly to the deep sea. To assess related dispersal of natural and anthropogenic lead (Pb), we analyzed Pb concentrations and stable isotope ratios in surface sediments and sediment trap particulate material from the Portuguese margin Nazaré and Setúbal/Lisbon canyons. Geochemical data are integrated with previously obtained data on near-bottom hydrodynamics and processes and pathways of sediment transport. The two canyon systems are located in close geographic proximity to each other, but represent contrasting settings in terms of sediment input and down-canyon sediment transport processes. Concentration-isotope diagrams and three-isotope plots ( 206Pb/ 207Pb vs. 208Pb/ 206Pb) suggest binary mixing between natural and anthropogenic end members. The inferred isotopic signature of pollutant Pb ( 206Pb/ 207Pb=1.143 [1.134-1.149, 95% confidence interval]) is most consistent with industrial Pb; ongoing influence from gasoline Pb additives is at most of minor importance. Two proposed natural end members most likely bracket the isotopic signature of natural Pb. Accordingly, binary mixing calculations indicate that on average 20-45% vs. 35-55% of total Pb is derived from anthropogenic sources in the Nazaré and Setúbal-Lisbon canyon systems, respectively. Enhanced anthropogenic influence in the latter area is consistent with its proximity to heavily populated and industrialized areas and with sediment input from the Tagus and Sado rivers, potential major carriers of pollutant particles. In both canyon systems, the anthropogenic component generally decreases with increasing water depth. Isotopic signatures of sediment trap particulate material are generally consistent with surface sediment data at similar water depth, but show large variability in the upper Nazaré canyon and major deviations from surface sediments in the lower canyon. In the lower canyon, Pb isotopic ratios of sediment trap particulate material mostly reflect low pelagic fluxes from the overlying water column, whereas surface sediment signatures are dominated by episodic down-canyon mass transport events. Such gravity flows appear to incorporate older (pre-industrial) material masking the isotopic signature of pollutant Pb. Large variability in the upper canyon reflects continuous sediment resuspension by bottom currents. Stronger average bottom currents are associated with higher 206Pb/ 207Pb ratios of sediment trap particulate material and hence decreased influence of pollutant Pb. This may reflect preferential resuspension of natural Pb at the canyon floor and/or additional remobilization of older, less-polluted sediment in adjacent areas such as the canyon walls.

  19. An Improved Simulation of the Diurnally Varying Street Canyon Flow

    NASA Astrophysics Data System (ADS)

    Yaghoobian, Neda; Kleissl, Jan; Paw U, Kyaw Tha

    2012-11-01

    The impact of diurnal variation of temperature distribution over building and ground surfaces on the wind flow and scalar transport in street canyons is numerically investigated using the PArallelized LES Model (PALM). The Temperature of Urban Facets Indoor-Outdoor Building Energy Simulator (TUF-IOBES) is used for predicting urban surface heat fluxes as boundary conditions for a modified version of PALM. TUF-IOBES dynamically simulates indoor and outdoor building surface temperatures and heat fluxes in an urban area taking into account weather conditions, indoor heat sources, building and urban material properties, composition of the building envelope (e.g. windows, insulation), and HVAC equipment. Temperature (and heat flux) distribution over urban surfaces of the 3-D raster-type geometry of TUF-IOBES makes it possible to provide realistic, high resolution boundary conditions for the numerical simulation of flow and scalar transport in an urban canopy. Compared to some previous analyses using uniformly distributed thermal forcing associated with urban surfaces, the present analysis shows that resolving non-uniform thermal forcings can provide more detailed and realistic patterns of the local air flow and pollutant dispersion in urban canyons.

  20. Fast response modeling of a two building urban street canyon

    SciTech Connect

    Pardyjak, E. R. (Eric R.); Brown, M. J. (Michael J.)

    2002-01-01

    QWIC-URB is a fast response model designed to generate high resolution, 3-dimensional wind fields around buildings. The wind fields are produced using a mass consistent diagnostic wind model based on the work of Roeckle (1990, 1998) and Kaplan & Dinar (1996). QWIC-URB has been used for producing wind fields around single buildings with various incident wind angles (Pardyjak and Brown 2001). Recently, the model has been expanded to consider two-building, 3D canyon flow. That is, two rectangular parallelepipeds of height H, crosswind width W, and length L separated by a distance S. The purpose of this work is to continue to evaluate the Roeckle (1990) model and develop improvements. In this paper, the model is compared to the twin high-rise building data set of Ohba et al. (1993, hereafter OSL93). Although the model qualitatively predicts the flow field fairly well for simple canyon flow, it over predicts the strength of vortex circulation and fails to reproduce the upstream rotor.

  1. Baltimore Canyon Trough, a clastic-carbonate system

    SciTech Connect

    Edson, G.M. (Minerals Management Service, Herndon, VA (USA))

    1990-05-01

    Baltimore Canyon Trough is similar in age, architecture, and sedimentary framework to neighboring marginal basins offshore from eastern North America. The other basins are the Scotian and Georges Bank basins and the Carolina Trough. All contain a Jurassic-earliest Cretaceous clastic-carbonate sedimentary section composed of terrigenous basin fill and a shallow-water limestone platform. In Baltimore Canyon Trough, the platform is believed to be over 10 km thick. Upward through the Jurassic System, the platform progrades seaward and narrows. The platform top is earliest Cretaceous (Berriasian) and only about 5-15 km wide. Width of the base is indeterminate but apparently much wider. At the seaward edge of the platform is a limestone buildup and reef complex that consists of bioclastic wackestones, packstones, grainstones, and sponge-stromatoporoid-algal bindstones. Foreslope deposits are thrombolitic stromatactis-pelletal carbonate mudstones. Landward of the buildup, the platform contains numerous siliciclastic interbeds, consisting of mostly calcareous shale and siltstone with inertinite. The calciclastic lime mudstone beds of the platform contain terrigenous siliciclasts and kerogens. All units are oxidized and show considerable sedimentary reworking. Through the Jurassic System and into the Cretaceous, terrigenous clastic sediments became increasingly dominant in the basin and erosional-depositional cycles continually reworked carbonate, as well as siliciclastic, units.

  2. Geologic map of the Paintbrush Canyon Area, Yucca Mountain, Nevada

    SciTech Connect

    Dickerson, R.P. [Geological Survey, Denver, CO (United States); Drake, R.M. II [Pacific Western Technologies, Ltd., Lakewood, CO (United States)

    1998-11-01

    This geologic map is produced to support site characterization studies of Yucca Mountain, Nevada, site of a potential nuclear waste storage facility. The area encompassed by this map lies between Yucca Wash and Fortymile Canyon, northeast of Yucca Mountain. It is on the southern flank of the Timber Mountain caldera complex within the southwest Nevada volcanic field. Miocene tuffs and lavas of the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group crop out in the area of this map. The source vents of the tuff cones and lava domes commonly are located beneath the thickest deposits of pyroclastic ejecta and lava flows. The rocks within the mapped area have been deformed by north- and northwest-striking, dominantly west-dipping normal faults and a few east-dipping normal faults. Faults commonly are characterized by well developed fault scarps, thick breccia zones, and hanging-wall grabens. Latest movement as preserved by slickensides on west-dipping fault scarps is oblique down towards the southwest. Two of these faults, the Paintbrush Canyon fault and the Bow Ridge fault, are major block-bounding faults here and to the south at Yucca Mountain. Offset of stratigraphic units across faults indicates that faulting occurred throughout the time these volcanic units were deposited.

  3. Predictive Temperature Equations for Three Sites at the Grand Canyon

    NASA Astrophysics Data System (ADS)

    McLaughlin, Katrina Marie Neitzel

    Climate data collected at a number of automated weather stations were used to create a series of predictive equations spanning from December 2009 to May 2010 in order to better predict the temperatures along hiking trails within the Grand Canyon. The central focus of this project is how atmospheric variables interact and can be combined to predict the weather in the Grand Canyon at the Indian Gardens, Phantom Ranch, and Bright Angel sites. Through the use of statistical analysis software and data regression, predictive equations were determined. The predictive equations are simple or multivariable best fits that reflect the curvilinear nature of the data. With data analysis software curves resulting from the predictive equations were plotted along with the observed data. Each equation's reduced chi2 was determined to aid the visual examination of the predictive equations' ability to reproduce the observed data. From this information an equation or pair of equations was determined to be the best of the predictive equations. Although a best predictive equation for each month and season was determined for each site, future work may refine equations to result in a more accurate predictive equation.

  4. Ophir Planum

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site] (Released 16 July 2002) This is an image of a region of Mars called Ophir Planum, located at 8.4 S, 306.8 E. The Valles Marineris system of canyons that stretch for thousands of kilometers across Mars are located just to the south of the area covered by the image shown here. This image contains numerous overlapping lava flows, which can be seen in the layers of the wall rocks in Valles Marineris to the south. A number of remarkable wind streaks are also apparent throughout the image. These streaks commonly trail behind small topographic features such as craters and give an indication of the prevailing wind direction within the region. The northern half of this image is indicative of a northeast wind direction and the southern half indicates a predominance of a southeast wind direction. The variability of these winds may indicate that the local topography has some influence over the local winds.

  5. Large-scale fault kinematic analysis in Noctis Labyrinthus (Mars)

    NASA Astrophysics Data System (ADS)

    Bistacchi, Nicola; Massironi, Matteo; Baggio, Paolo

    2004-01-01

    Noctis Labyrinthus (Mars) is characterized by many tectonic features, which represent brittle deformation of the crust. This tectonic setting was analysed by remote sensing of the Viking Mars Digital Image Model (MDIM) mosaic and Mars Orbiter Camera (MOC) global mosaic, in order to identify deformational events. The main features are normal faults producing horst-graben structures, strike-slip faults, and related en-echelon and pull-apart basins. Using the criterion of cross-cutting relationships and analysis of secondary structures, to infer sense of movement of faults, two deformational phases were identified in the Noctis Labyrinthus area. The first, D1, located mainly in the northern part, is characterized by transtensional faults (Noachian). The second, D2, recorded in the southern part of the Noctis Labyrinthus by an orthorhombic extensional fault pattern along NNE and WNW trends, is related to the Valles Marineris formation (Late Noachian-Early Hesperian). A third tectonic event, D3, represented by the partly known dextral NW strike-slip faults cross-cutting the Valles Marineris Canyon System (Late Hesperian?-Amazonian?), was not found in Noctis Labyrinthus at the scale and resolution considered.

  6. Experimental simulation of air quality in street canyon under changes of building orientation and aspect ratio.

    PubMed

    Yassin, Mohamed F; Ohba, Masaake

    2012-09-01

    To assist validation of numerical simulations of urban pollution, air quality in a street canyon was investigated using a wind tunnel as a research tool under neutral atmospheric conditions. We used tracer gas techniques from a line source without buoyancy. Ethylene (C(2)H(4)) was used as the tracer gas. The street canyon model was formed of six parallel building rows of the same length. The flow and dispersion field was analyzed and measured using a hot-wire anemometer with split fiber probe and fast flame ionization detector. The diffusion flow field in the boundary layer within the street canyon was examined at different locations, with varying building orientations (?=90°, 112.5°, 135° and 157.5°) and street canyon aspect ratios (W/H=1/2, 3/4 and 1) downwind of the leeward side of the street canyon model. Results show that velocity increases with aspect ratio, and with ?>90°. Pollutant concentration increases as aspect ratio decreases. This concentration decreases exponentially in the vertical direction, and decreases as ? increases from 90°. Measured pollutant concentration distributions indicate that variability of building orientation and aspect ratio in the street canyon are important for estimating air quality in the canyon. The data presented here can be used as a comprehensive database for validation of numerical models. PMID:22760437

  7. Draft environmental assessment: Davis Canyon site, Utah. Nuclear Waste Policy Act (Section 112). [Contains glossary

    SciTech Connect

    Not Available

    1984-12-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah, as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories. These evaluations are reported in this draft environmental assessment (EA), which is being issued for public review and comment. The DOE findings and determinations that are based on these evaluations are preliminary and subject to public review and comment. A final EA will be prepared after considering the comments received. On the basis of the evaluations reported in this draft EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. The site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site - the Lavender Canyon site. Although the Lavender Canyon site appears to be suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. Furthermore, the DOE finds that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is proposing to nominate the Davis Canyon site as one of five sites suitable for characterization. Having compared the Davis Canyon site with the other four sites proposed for nomination, the DOE has determined that the Davis Canyon site is not one of the three preferred sites for recommendation to the President as candidates for characterization.

  8. The influence of canyon winds on flow fields near Colorado`s Front Range

    SciTech Connect

    Doran, J.C. [Pacific Northwest Lab., Richland, WA (United States)] [Pacific Northwest Lab., Richland, WA (United States)

    1996-04-01

    A network of sodars was operated in the late summer and fall of 1993 to monitor the occurrence of nocturnal winds from a canyon in Colorado`s Front Range near the Rocky Flats Plant and to determine the influence of those winds on the flow fields over the plant. The canyon flows could be broadly classified into two categories: well developed and irregular. The well-developed flows were generally stronger, deeper, and more continuous than the irregular ones, and the canyon`s influence on the wind fields near the plant site was confined primarily to periods with these flows. These periods, in turn, usually followed days during which a deep mixed layer formed over the plains to the east of the mountains. Following days with shallower mixed layers, the canyon winds tended to be weaker and shallower. Numerical simulations with a nested mesoscale numerical model were used to examine the mechanisms responsible for this behavior. The nighttime simulated temperature gradients between the air near the mountain slopes and the free air over the plains were found to be larger after days with deep mixed layers, resulting in stronger down-canyon flows at night. Marker particles released into the simulated flow fields were used to follow the motion of air parcels from the mountains out over the plains. They revealed a tendency for air parcels to remain elevated when they exit the valley on nights with lighter canyon winds and shallower afternoon mixed layers, thereby reducing the canyon`s potential effect on the near-surface winds over the Rocky Flats Plant. Particle trajectories were also used to examine the concept of a well-defined airshed feeding a draining valley; the concept was found to be of limited validity for the topography in this area. 18 refs., 15 figs., 1 tab.

  9. Evolution of the western Valles caldera complex, New Mexico: Evidence from intracaldera sandstones, breccias, and surge deposits

    Microsoft Academic Search

    Jeffrey B. Hulen; Dennis L. Nielson; Thomas M. Little

    1991-01-01

    Scientific core drilling in the Pleistocene Valles caldera complex (encompassing the Valles (1.13 Ma) and coaxial Toledo (1.50 Ma) calderas) of north central New Mexico has provided new insight into the origins of sandstones, breccias, and pyroclastic surge deposits interbedded with the thick intracaldera ignimbrite sequence. These rocks were previously interpreted from geothermal drill cuttings as dominantly fluvial in origin.

  10. Re-collection of Fish Canyon Tuff for fission-track standardization

    USGS Publications Warehouse

    Naeser, C.W.; Cebula, G.T.

    1984-01-01

    The PURPOSE of this note is to announce the availability of apatite and zircon from a third collection of the Oligocene Fish Canyon Tuff (FC-3). Apatite and zircon separated from the Fish Canyon Tuff have prove to be a useful standard for fission-track dating, both for interlaboratory comparisons and for checking procedures within a laboratory. In May 1981, about 540 kg of Fish Canyon Tuff were collected for mineral separation. Approximately 7. 5 g of apatite, 6. 5 g of zircon, and 89 g of sphene were recovered from this collection. This new material is now ready for distribution.

  11. Variation of Fracturing Pressures with Depth Near the Valles Caldera

    SciTech Connect

    Dash, Zora; Murphy, Hugh

    1983-12-15

    Hydraulic Fracturing at the Fenton Hill Hot Dry Rock Geothermal site near the Valles Caldera has yielded fracturing pressures from 14 to 81 MPa (2030 to 11,750 psi) at depths ranging from 0.7 to 4.4 km (2250 to 14,400 ft). This data can be fit to a fracture gradient of 19 MPa/km (0.84 psi/ft), except for an anomalous region between 2.6 to 3.2 km where fracturing pressures are about 20 MPa lower than estiamted using the above gradient. This anomaly coincides with a biotite granodiorite intrusive emplaced into a heterogeneous jointed metamorphic complex comprised of gneisses, schists and metavolcanic rocks. Microseismic events detected with sensitive downhole geophones suggest that shear failure is an important process during hydraulic fracturing of such jointed rock. Consequently the usual relation between minimum earth stress and fracture opening pressure, based upon classic tensile failure, cannot be used apriori; fracture opening pressure is instead a complex function of joint orientation and all three components of principal earth stress.

  12. Scientific core hole VC-2A, Valles Caldera, New Mexico

    SciTech Connect

    Musgrave, J.; Goff, S. (Los Alamos National Lab., NM (USA)); Turner, T. (Turner (Tom), Salt Lake City, UT (USA))

    1990-10-01

    This report details the remedial action activities that were necessary to complete scientific core hole Valles caldera {number sign}2A (VC-2A) before it was relinquished to the landowners. Sandia National Laboratories, acting as the Geoscience Research Drilling Office (GRDO), managed the coring operations. Los Alamos National Laboratory (Los Alamos) obtained the proper drilling permits with the New Mexico State Engineers Office (SEO). A legal agreement between Los Alamos and the landowners states that the Laboratory will give the landowners the completed core hold with casing, well head, and other hardware at the end of May 1991, or earlier if scientific investigations were completed. By May 1988, the Science Team completed the planned scientific investigations in the VC-2A core hole. Upon the insistence of the GRDO, the New Mexico Oil Conservation Division (OCD) inspected the core hole, declared jurisdiction, and required that the 11.43- by 11.43-cm annular cement job be repaired to comply with OCD regulations. These regulations state that there must be a return to surface of cement in all cementing operations. We successfully completed a squeeze cementing operation and relinquished the core hold to the landowners in November 1988 to the satisfaction of the OCD, SEO, the landowners, and Los Alamos. 7 refs., 4 figs., 1 tab.

  13. Ectopsocidae (Psocodea: 'Psocoptera') from Valle del Cauca and NNP Gorgona, Colombia.

    PubMed

    Manchola, Oscar Fernando Saenz; Obando, Ranulfo González; Aldrete, Alfonso N García

    2014-01-01

    The results of a survey of the psocid family Ectopsocidae in Valle del Cauca and NNP Gorgona, are here presented. Fifteen species were identified, in the genera Ectopsocus (14 species), and Ectopsocopsis (one species); four of the Ectopsocus species are new to science and are here described and illustrated. The male of E. thorntoni García Aldrete is here described. Records of Ectopsocopsis cryptomeriae (Enderlein), Ectopsocus briggsi McLachlan, E. californicus Banks, E. columbianus Badonnel, E. maindroni Badonnel, E. meridionalis Ribaga, E. pilosus Badonnel, E. richardsi Pearman, E. titschacki Jentsch, and E. vilhenai Badonnel, are provided. Ten species were found only in Valle del Cauca, two species were found only in the NNP Gorgona, and three species were found at both sites. The specimens studied are deposited in the Entomological Museum, Universidad del Valle, Santiago de Cali, Colombia (MUSENUV). PMID:24869552

  14. Field trip guide to the Valles Caldera and its geothermal systems

    SciTech Connect

    Goff, F.E.; Bolivar, S.L.

    1983-12-01

    This field trip guide has been compiled from extensive field trips led at Los Alamos National Laboratory during the past six years. The original version of this guide was designed to augment a workshop on the Valles Caldera for the Continental Scientific Drilling Program (CSDP). This workshop was held at Los Alamos, New Mexico, 5-7 October 1982. More stops were added to this guide to display the volcanic and geothermal features at the Valles Caldera. The trip covers about 90 miles (one way) and takes two days to complete; however, those who wish to compress the trip into one day are advised to use the designated stops listed in the Introduction. Valles Caldera and vicinity comprise both one of the most exciting geothermal areas in the United States and one of the best preserved Quaternary caldera complexes in the world.

  15. Ox Mountain sanitary landfill: Apanolio Canyon expansion site, San Mateo County, California. Volume 2. Appendix. Final report

    SciTech Connect

    Not Available

    1989-04-01

    Further studies include: plants Observed in Apanolio Canyon; Animals Expected or Observed in Apanolio Canyon; Marbled Murrelet Survey; Review of Available Scientific Information on Six Candidate Insects; Update on Status of Candidate Insects; Apanolio Canyon Sensitive Plant Investigation; Fisheries Resources of Upper Apanolio, Benthic Invertebrate Survey of Apanolio, Corinda Los Trancos, and Pilarcitos Creeks, San Mateo County, California; Streamflows and Velocity of Flows at the Bongard diversion Dam in Apanolio Canyon; A Spring Survey to Determine the Presence or Absence of the San Francisco Garter Snake (Thamnophis sirtalis tetrataenis) in Two Tributaries of Pilarcitos Creek, Half Moon Bay, CA; Wildlife and Fisheries Mitigation Plan, Ox Mountain Sanitary Landfill, Apanolio Canyon Expansion Site; Correspondence Site Selection Criteria Information; Draft Contingency Remedial Action Plan; Leachate Collection and Removal System (LCRS) and Leachate/Contaminated Groundwater Treatment Systems; Apanolio Creek Streamflow Augmentation Plan; Apanolio Canyon Lower Aquifer Recharge Plan; Application for Exemptions - Technical Informations; Geotechnical Study and Specifications, Subgrade Barrier and Clay Liner System; Apanolio Canyon Boring Logs; Potentiometric Surface Maps, Apanolio Canyon; Geologic Cross Sections - Apanolio Canyon; Interim Report on Leachate Exposure Test Program, Apanolio Canyon Landfill Expansion.

  16. Recreation and jobs in the Glen Canyon Dam region

    SciTech Connect

    Douglas, A.J.; Harpman, D.A. [National Biological Survey, Ft. Collins, CO (United States); [Denver Federal Center, CO (United States)

    1995-12-31

    Natural resource economists have estimated the nonmarket benefits provided by streamflows in several recent research papers. The current paper also examines the economic implications of water based recreational activities. The analysis uses a software package and database called IMPLAN to estimate the jobs impacts of expenditures for recreation trips to the Lee`s Ferry reach on the Colorado River. The discussion describes the basic input-output model and water based recreation activities at the Lee`s Ferry reach. Non-resident river recreation trip expenditures to the Glen Canyon Dam region generate 585 jobs. The estimates presented here add further credence and policy weight to the premise that the outdoor recreation sector of the economy is relatively labor intensive.

  17. Is there excess argon in the Fish Canyon magmatic system?

    NASA Astrophysics Data System (ADS)

    Wilkinson, C. M.; Sherlock, S.; Kelley, S. P.; Charlier, B. L.

    2010-12-01

    Some phenocrysts from the Fish Canyon Tuff (San Juan volcanic field, south-western Colorado, USA) have yielded anomalously old 40Ar/39Ar apparent ages and yet the sanidine ages are sufficiently reproducible to allow its use as an international standard. The eruption age of the Fish Canyon tuff has recently been determined by high precision analysis and recalibration of the decay constants based on the sanidine standard at 28.305 ± 0.036 Ma [1], slightly younger than the generally accepted U-Pb age. Previously, minerals from the tuff have been used in various geochronological studies e.g., fission-track; U-Pb; Rb-Sr; K-Ar and 40Ar/39Ar, but U-Pb zircon ages which range 28.37 - 28.61 Ma appear to be older than the sanidine and other minerals, including biotite, yield older ages (27.41 - 28.25 Ma for biotite) [2]. In the Fish Canyon volcanic system, the erupted products are thought to exist in the magma chamber for significant periods prior to eruption [3] and then pass rapidly from a high temperature magmatic environment (where Ar is free to re-equilibrate among the minerals), to effectively being quenched upon eruption (where Ar becomes immobile). Artificially elevated ages, older than eruption age, have been identified in some 40Ar/39Ar geochronological studies (e.g. [4]). These older ages may either reflect; 1) argon accumulation in pheno- or xenocrysts (by radioactive decay of parent 40K), 2) excess argon (40ArE) incorporated into a mineral during crystallisation (via diffusion into the mineral lattice or hosted within fluid or melt inclusions) or 3) inherited radiogenic argon (the dated material contains a component older than the age of eruption) [5]. To better understand the effects of 40ArE on 40Ar/39Ar apparent ages we have conducted a detailed study of intra-grain grain age variations by UV-LAMP Ar-analysis. Analysis of polished thick sections has been performed in-situ using a 213nm laser and Nu Instruments Noblesse which is able to discriminate against interfering peaks at mass 36 allowing us to correct for the atmospheric 40Ar content. By using this method to analyse potassium-rich minerals (sanidine and biotite) and potassium-poor minerals (quartz and plagioclase), it has been possible to study the distribution of argon within these mineral phases and its incorporation into melt, fluid and solid inclusions. Here we report new 40Ar/39Ar intra-grain age data of minerals from the Fish Canyon Tuff, which despite being well characterised and extensively researched has not yet been a subject for this particular technique. [1] Renne P. R. et al., (2010) Geochim. Cosmochim. Acta, 74, 5349-5367. [2] Bachmann, O. et al., (2007) Chemical Geology, 236, 134-166.[3] Charlier, B.L.A. et al., (2007) Journal of Petrology, 48, 1875-1894. [4] Esser, R. P. et al., (1997) Geochim. Cosmochim. Acta, 61, 3789-3801. [5] Kelley, S. (2002) Chemical Geology, 188, 1-22. Corresponding Author: c.m.wilkinson@open.ac.uk

  18. Microbial ecology of deep-water mid-Atlantic canyons

    USGS Publications Warehouse

    Kellogg, Christina A.

    2011-01-01

    The research described in this fact sheet will be conducted from 2012 to 2014 as part of the U.S. Geological Survey's DISCOVRE (DIversity, Systematics, and COnnectivity of Vulnerable Reef Ecosystems) Program. This integrated, multidisciplinary effort will be investigating a variety of topics related to unique and fragile deep-sea ecosystems from the microscopic level to the ecosystem level. One goal is to improve understanding, at the microbiological scale, of the benthic communities (including corals) that reside in and around mid-Atlantic canyon habitats and their associated environments. Specific objectives include identifying and characterizing the microbial associates of deep-sea corals, characterizing the microbial biofilms on hard substrates to better determine their role in engineering the ecosystem, and adding a microbial dimension to benthic community structure and function assessments by characterizing micro-eukaryotes, bacteria, and archaea in deep-sea sediments.

  19. Web-based Interactive Landform Simulation Model - Grand Canyon

    NASA Astrophysics Data System (ADS)

    Luo, W.; Pelletier, J. D.; Duffin, K.; Ormand, C. J.; Hung, W.; Iverson, E. A.; Shernoff, D.; Zhai, X.; Chowdary, A.

    2013-12-01

    Earth science educators need interactive tools to engage and enable students to better understand how Earth systems work over geologic time scales. The evolution of landforms is ripe for interactive, inquiry-based learning exercises because landforms exist all around us. The Web-based Interactive Landform Simulation Model - Grand Canyon (WILSIM-GC, http://serc.carleton.edu/landform/) is a continuation and upgrade of the simple cellular automata (CA) rule-based model (WILSIM-CA, http://www.niu.edu/landform/) that can be accessed from anywhere with an Internet connection. Major improvements in WILSIM-GC include adopting a physically based model and the latest Java technology. The physically based model is incorporated to illustrate the fluvial processes involved in land-sculpting pertaining to the development and evolution of one of the most famous landforms on Earth: the Grand Canyon. It is hoped that this focus on a famous and specific landscape will attract greater student interest and provide opportunities for students to learn not only how different processes interact to form the landform we observe today, but also how models and data are used together to enhance our understanding of the processes involved. The latest development in Java technology (such as Java OpenGL for access to ubiquitous fast graphics hardware, Trusted Applet for file input and output, and multithreaded ability to take advantage of modern multi-core CPUs) are incorporated into building WILSIM-GC and active, standards-aligned curricula materials guided by educational psychology theory on science learning will be developed to accompany the model. This project is funded NSF-TUES program.

  20. Candor Chasma

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site] (Released 27 June 2002) The Science This THEMIS visible image shows the effects of erosion on a beautiful sequence of dramatically layered rocks within Candor Chasma, which is part of the Valles Marineris. These layers were initially deposited within Candor, and have subsequently been eroded by a variety of processes, including wind and downslope motion due to gravity. The effect of erosion is manifest differently in the different layers and at different locations within the layered material. For example, the upper portion of the Candor deposit seen in the lower one-third of the image appears more intact, whereas downslope there is pronounced fluting to create produced 'spur and gully' slopes. Relatively dark materials are seen throughout the image and appear to mantle select areas of the layered deposits. When seen in other areas by THEMIS, and at higher resolution by the Mars Global Surveyor camera, these dark materials often form sand dunes. The dark mantling material in Candor is likely dark sand as well. Several particularly dark patches can be seen near the left (western) edge of the image, approximately one quarter of the way up from the bottom of the image. Very few impact craters of any size can be seen in this image, indicating that the erosion and transport of material is occurring at a relatively rapid rate, so that any craters that form are rapidly buried or eroded. The Story The smooth, triangular shape near the center of this image is the plateau of a canyon, with walls that dramatically descend on either side. This canyon is named Chasma, which means 'blaze' or 'white' in Latin. The lighter, brighter material of the southern canyon wall displays erosional streaks that almost do happen to look like a white blaze. Toward the bottom left of the image, you can see how the relatively brighter material from the top has been carried down to the bottom. Notice that the upper, grayer part of the southern canyon walls don't seem to have the same erosional flutes as the brighter material just below it. By looking at such differences on the same canyon wall, geologists can begin to understand the kinds of materials that make up each layer of the canyon wall, and how resistant each is to erosion. No matter what part of the canyon you look at, erosion has created the beautiful sequence of layered rocks within Candor. Sometimes it's the wind that acts, and sometimes gravity, which pulls material from the upper parts of the canyon downslope. Be sure to click on the above image for a close-up view of all of the subtle layers and ripples. Look also for some dark, almost black patches (bottom left, about a quarter of the way up). These dark splotches are most likely made of sand. In fact, much of the darker areas seen in this image are probably made of sand. The sand often forms in dunes, as both THEMIS and the higher resolution camera on Mars Global Surveyor, Odyssey's sister orbiter, have shown. With all of the wind and downslope erosion, this area is fairly active geologically. You can tell because there are very few impact craters of any size to be seen. That means material is being transported at a rate that's rapid enough to bury or erode any craters that do form. Candor Chasma is part of Valles Marineris, the large canyon system that slices across a large part of the red planet. If Valles Marineris were located on Earth, it would stretch all the way from the west coast to the east coast of the United States.

  1. A benchmark for numerical scheme validation of airborne particle exposure in street canyons.

    PubMed

    Marini, S; Buonanno, G; Stabile, L; Avino, P

    2015-02-01

    Measurements of particle concentrations and distributions in terms of number, surface area, and mass were performed simultaneously at eight sampling points within a symmetric street canyon of an Italian city. The aim was to obtain a useful benchmark for validation of wind tunnel experiments and numerical schemes: to this purpose, the influence of wind directions and speeds was considered. Particle number concentrations (PNCs) were higher on the leeward side than the windward side of the street canyon due to the wind vortex effect. Different vertical PNC profiles were observed between the two canyon sides depending on the wind direction and speed at roof level. A decrease in particle concentrations was observed with increasing rooftop wind speed, except for the coarse fraction indicating a possible particle resuspension due to the traffic and wind motion. This study confirms that particle concentration fields in urban street canyons are strongly influenced by traffic emissions and meteorological parameters, especially wind direction and speed. PMID:25167823

  2. 33. SAR1, LOOKING DOWN CANYON OVER TAILRACE CONSTRUCTION. EEC print ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. SAR-1, LOOKING DOWN CANYON OVER TAILRACE CONSTRUCTION. EEC print no. G-C-01-00269, no date. Photograph by Benjamin F. Pearson. - Santa Ana River Hydroelectric System, SAR-1 Powerhouse, Redlands, San Bernardino County, CA

  3. Seismic stratigraphy and salt tectonics of the Alaminos Canyon area, Gulf of Mexico.

    E-print Network

    Mechler, Suzanne Marie

    1994-01-01

    morphology, salt structure, and suprasalt sediments indicate the majority of the slope is covered by a shallow salt canopy. The salt structure map indicates that the Alaminos Canyon study area represents a transition from a semi-continuous salt sheet...

  4. 76 FR 22670 - Black Hills National Forest, Hell Canyon Ranger District, South Dakota, Vestal Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ...District Ranger, Black Hills National Forest, Hell Canyon Ranger District...readable in Word, Rich Text or PDF formats. FOR FURTHER INFORMATION...provided by the Black Hills National Forest Land and Resource Management Plan (Forest Plan). The...

  5. Fire modeling for Building 221-T - T Plant Canyon Deck and Railroad Tunnel

    SciTech Connect

    Oar, D.L.

    1994-09-29

    This report was prepared by Hughes Associates, Inc. to document the results of fire models for building 221-T Canyon Deck and Railroad Tunnel. Backup data is contained in document No. WHC-SD-CP-ANAL-010, Rev. 0.

  6. Large-Eddy Simulation of Flow and Pollutant Transport in Urban Street Canyons with Ground Heating

    E-print Network

    Li, Xian-Xiang

    Our study employed large-eddy simulation (LES) based on a one-equation subgrid-scale model to investigate the flow field and pollutant dispersion characteristics inside urban street canyons. Unstable thermal stratification ...

  7. Patterns in biodiversity and distribution of benthic Polychaeta in the Mississippi Canyon, Northern Gulf of Mexico 

    E-print Network

    Wang, Yuning

    2006-04-12

    The distribution of benthic polychaetes in the Mississippi Canyon was examined to evaluate impacts of environmental variables on species assemblages. Environmental variables considered included depth, bathymetric slope, hydrographic features...

  8. Integrated Project Management Planning for the Deactivation of the Savannah River Site F-Canyon Complex

    SciTech Connect

    Clark, T.G.

    2000-12-01

    This paper explains the planning process that is being utilized by the Westinghouse Savannah River Company to take the F-Canyon Complex facilities from operations to a deactivated condition awaiting final decommissioning.

  9. Explaining the relationship between prehistoric agriculture and environment at Chaco Canyon, New Mexico

    E-print Network

    Gang, G-Young

    1993-01-01

    Chaco Canyon, the Pueblo settlement of New Mexico, represents one of the major cultural developments in the prehistoric Southwest. Between A.D. 900 and A.D. 1100 Chaco reached its peak of cultural florescence. This period was characterized...

  10. 76 FR 23335 - Wilderness Stewardship Plan/Environmental Impact Statement, Sequoia and Kings Canyon National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-26

    ...sekiwild. You may request to be added to the project mailing list by mailing or faxing your request to: Superintendent Karen F. Taylor-Goodrich, Sequoia and Kings Canyon National Parks, Attn: Wilderness Stewardship Plan, 47050 Generals Highway, Three...

  11. Collembolan species diversity of calcareous canyons in the Republic of Moldova

    PubMed Central

    Bu?machiu, Galina; Bedos, Anne; Deharveng, Louis

    2015-01-01

    Abstract The study of collembolan communities from the Vî?c?u?i canyon in Moldova revealed 63 species belonging to 41 genera and 12 families, including four species new for the fauna of the Republic of Moldova. A checklist of collembolan species identified in the five calcareous canyons sampled so far in Moldova is included, with data on habitats, life form, occurrence and comments of distribution of most remarkable species. Of the 98 recognized species of these calcareous canyons, only 38 were shared by Vî?c?u?i and the other canyons. The richness of calcareous habitats together with the high heterogeneity in faunal composition suggests that further significant increase in the species richness of the region may be expected.

  12. Depositional environment of Canyon (Cisco) sandstones, North Jameson field Mitchell County, Texas

    E-print Network

    Dally, David Jesse

    1983-01-01

    DEPOSITIONAL ENVIRONMENT OF CANYON (CISCO) SANDSTONES, NORTH JAMESON FIELD MITCHELL COUNTY, TEXAS A Thesis DAVID JESSE DALLY Submitted to the Graduate College of' Texas A&M University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE May 1983 Master Subject: Geology DEPOSITIONAL ENVIRONMENT OF CANYON (CISCO) SANDSTONES, NOHTH JAMESON FIELD MITCHELL COUNTY, TEXAS A Thesis DAVID JESSE DALLY Approved as to style and content by: Robert R. Berg (Che. irman...

  13. Lava Falls Rapid in Grand Canyon; effects of late Holocene debris flows on the Colorado River

    USGS Publications Warehouse

    Webb, Robert H.; Melis, Theodore S.; Griffiths, Peter G.; Elliott, John G.; Cerling, Thure E.; Poreda, Robert J.; Wise, Thomas W.; Pizzuto, James E.

    1999-01-01

    Lava Falls Rapid is the most formidable reach of whitewater on the Colorado River in Grand Canyon and is one of the most famous rapids in the world. Debris flows in 1939, 1954, 1955, 1966, and 1995, as well as prehistoric events, completely changed flow through the rapid. Floods cleared out much of the increased constrictions, but releases from Glen Canyon Dam, including the 1996 controlled flood, are now required to remove the boulders deposited by the debris flows.

  14. Safety analysis -- 200 Area Savannah River Plant, F-Canyon Operations. Supplement 4

    Microsoft Academic Search

    M. M. Beary; C. D. Collier; L. A. Fairobent; R. F. Graham; C. L. Mason; W. T. McDuffee; T. L. Owen; D. H. Walker

    1986-01-01

    The F-Canyon facility is located in the 200 Separations Area and uses the Purex process to recover plutonium from reactor-irradiated uranium. The irradiated uranium is normally in the form of solid or hollow cylinders called slugs. These slugs are encased in aluminum cladding and are sent to the F-Canyon from the Savannah River Plant (SRP) reactor areas or from the

  15. Safety analysis, 200 Area, Savannah River Plant H-Canyon operations. Supplement 5

    Microsoft Academic Search

    M. M. Beary; C. D. Collier; L. A. Fairobent; R. F. Graham; C. L. Mason; W. T. McDuffee; T. L. Owen; D. H. Walker

    1986-01-01

    The H-Canyon facility is located in the 200 Separations Area and uses the HM process to separate uranium, neptunium, plutonium, and fission products. Irradiated uranium fuels containing ²³⁵U at enrichments from 1.1% to 94% are processed and recovered, along with neptunium and plutonium isotopes. This Safety Analysis Report (SAR) documents an analysis of the H-Canyon operations and is an update

  16. Safety analysis, 200 Area, Savannah River Plant H-Canyon operations

    Microsoft Academic Search

    M. M. Beary; C. D. Collier; L. A. Fairobent; R. F. Graham; C. L. Mason; W. T. McDuffee; T. L. Owen; D. H. Walker

    1986-01-01

    The H-Canyon facility is located in the 200 Separations Area and uses the HM process to separate uranium, neptunium, plutonium, and fission products. Irradiated uranium fuels containing [sup 235]U at enrichments from 1.1% to 94% are processed and recovered, along with neptunium and plutonium isotopes. This Safety Analysis Report (SAR) documents an analysis of the H-Canyon operations and is an

  17. Carbon Steel and Magnesium Oxide Dissolution for H-Canyon Process Applications

    Microsoft Academic Search

    2004-01-01

    H Area Operations is planning to process plutonium-contaminated uranium metal scrap in its efforts to de-inventory excess nuclear materials. The Savannah River Technology Center (SRTC) performed flowsheet development to support the decision to process the scrap in H-Canyon using 2M nitric acid (HNO3) \\/ 0.025M potassium fluoride (KF) and 2 g\\/L boron. The scrap will be charged to the H-Canyon

  18. Spatial distribution of phytoplankton assemblages in the Nazaré submarine canyon region (Portugal): HPLC-CHEMTAX approach

    Microsoft Academic Search

    Carlos Rafael Mendes; Carolina Sá; João Vitorino; Carlos Borges; Virginia Maria Tavano Garcia; Vanda Brotas

    2011-01-01

    The distribution and composition of phytoplankton assemblages were studied in the Nazaré submarine canyon, during an upwelling event, using high-performance liquid chromatography (HPLC) pigment analysis, complemented by microscopic qualitative observations. High chlorophyll a (Chl a) concentrations were recorded in the canyon head, near the coast, where values greater than 4?gL?1 were observed. In contrast, Chl a was relatively low in

  19. Past and present sedimentary activity in the Capbreton Canyon, southern Bay of Biscay

    Microsoft Academic Search

    M. Gaudin; T. Mulder; P. Cirac; S. Berné; P. Imbert

    2006-01-01

    Located in the south-eastern part of the Bay of Biscay, the Capbreton Canyon incises the continental shelf up to the 30 m isobath contour, and acts as a natural conduit for continental and shelf-derived sediments. EM1000 multibeam bathymetry shows two main features characterising the canyon — a deeply entrenched meandering channel, bordered by fluvial-like terraces constituting large sediment traps. A dataset

  20. Wind tunnel simulation studies on dispersion at urban street canyons and intersections—a review

    Microsoft Academic Search

    K. Ahmad; M. Khare; K. K. Chaudhry

    2005-01-01

    Increased traffic emissions and reduced natural ventilation cause build up of high pollution levels in urban street canyons\\/intersections. Natural ventilation in urban streets canyons\\/intersections is restricted because the bulk of flow does not enter inside and pollutants are trapped in the lower region. Wind vortices, low-pressure zones and channeling effects may cause build up of pollutants under adverse meteorological conditions

  1. Geologic Map of MTM -20012 and -25012 Quadrangles, Margaritifer Terra Region of Mars

    USGS Publications Warehouse

    Grant, J.A.; Wilson, S.A.; Fortezzo, C.M.; Clark, D.A.

    2009-01-01

    Mars Transverse Mercator (MTM) -20012 and -25012 quadrangles (lat 17.5 deg - 27.5 deg S., long 345 deg - 350 deg E.) cover a portion of Margaritifer Terra near the east end of Valles Marineris. The map area consists of a diverse assemblage of geologic surfaces including isolated knobs of rugged mountainous material, heavily cratered and dissected ancient highland material, a variety of plains materials, chaotic terrain materials, and one of the highest densities of preserved valleys and their associated deposits on the planet (Saunders, 1979; Baker, 1982; Phillips and others, 2000, 2001). The map area is centered on a degraded, partially filled, ~200-km-diameter impact structure (lat 22 deg S., long 347.5 deg E.), informally referred to as Parana basin, located between Parana Valles to the east and Loire Valles to the west. Parana Valles is a network of multidigitate, mostly east-west-oriented valleys that flowed west and discharged into Parana basin (Grant, 1987, 2000; Grant and Parker, 2002). Loire Valles, broadly comparable in length to the Grand Canyon on Earth, has a deeply incised channel within the map area that originates at the west-northwest edge of Erythraeum Chaos within Parana basin (Grant, 1987, 2000; Grant and Parker, 2002; Strom and others, 2000). Parana and Loire Valles, combined with Samara Valles to the west, form one of the most laterally extensive, well-integrated valley networks on Mars (Grant, 2000) and record a long history of modification by fluvial processes. The origin and morphology of the valley networks, therefore, provide insight into past environmental conditions, whereas their relation with other landforms helps constrain the timing and role of fluvial processes in the evolution and modification of the Margaritifer Terra region.

  2. Recent progress in CFD modelling of wind field and pollutant transport in street canyons

    NASA Astrophysics Data System (ADS)

    Li, Xian-Xiang; Liu, Chun-Ho; Leung, Dennis Y. C.; Lam, K. M.

    With rapid development in computer hardware and numerical algorithms, computational fluid dynamics (CFD) techniques are widely utilized to study the wind field and pollutant transport in urban street canyons. The recent advancements and achievements in street-canyon pollution research using mathematical modelling approaches are reviewed in this paper. The standard, renormalized-group (RNG), and realizable k-? turbulence closure schemes are the most commonly used Reynolds-averaged Navier-Stokes (RANS) models in street-canyon flow research, including the studies on the effects of street-canyon aspect ratio, building configuration, ambient wind direction, inflow turbulence intensities, vehicle-induced turbulence, and thermal stratifications. Another approach to turbulence simulation inside street canyons is large-eddy simulation (LES) which can handle a broad range of turbulent motions in a transient manner. These two approaches have their merits and the choice between them will be a compromise between accuracy and cost. Several guidelines on this choice as well as some comments on the 2D and 3D CFD simulations are given. The outputs from wind field models can be used with pollutant transport models to calculate the pollutant distribution inside street canyons. The most commonly employed pollutant transport models include Lagrangian, Eulerian, and Lagrangian/Eulerian hybrid models. The advantages and shortcomings of these models are summarized. Several other modelling concerns, such as chemically reactive pollutant dispersion and boundary conditions treatment, are also discussed.

  3. Potential hazards from floodflows in Grapevine Canyon, Death Valley National Monument, California and Nevada

    USGS Publications Warehouse

    Bowers, J.C.

    1990-01-01

    Grapevine Canyon is on the western slope of the Grapevine Mountains in the northern part of Death Valley National Monument , California and Nevada. Grapevine Canyon Road covers the entire width of the canyon floor in places and is a frequently traveled route to Scotty 's Castle in the canyon. The region is arid and subject to flash flooding because of infrequent but intense convective storms. When these storms occur, normally in the summer, the resulting floods may create a hazard to visitor safety and property. Historical data on rainfall and floodflow in Grapevine Canyon are sparse. Data from studies made for similar areas in the desert mountains of southern California provide the basis for estimating discharges and the corresponding frequency of floods in the study area. Results of this study indicate that high-velocity flows of water and debris , even at shallow depths, may scour and damage Grapevine Canyon Road. When discharge exceeds 4,900 cu ft/sec, expected at a recurrence interval of between 25 and 50 years, the Scotty 's Castle access road and bridge may be damaged and the parking lot partly inundated. A flood having a 100-year or greater recurrence interval probably would wash out the bridge and present a hazard to the stable and garage buildings but not to the castle buildings, whose foundations are higher than the predicted maximum flood level. (USGS)

  4. Large-eddy simulations of wind flow and pollutant dispersion in a street canyon

    NASA Astrophysics Data System (ADS)

    So, Ellen S. P.; Chan, Andy T. Y.; Wong, Anton Y. T.

    The wind flow and pollutant dispersion phenomena in urban streets of different aspect ratios ( h/w) and relative canyon height ratios ( h2/ h1) are studied using large-eddy simulations (LES). The concerned large eddies are computed by the filtered Navier-Stokes equations in LES and the unresolved small eddies are modelled using Smagorinsky subgrid scale model. The domain is discretised into uneven staggered grids using marker and cell (MAC) method. The objective of this work is to demonstrate the various flow regimes and their threshold values in urban street canyon using LES for various canyon geometries and Reynolds numbers. All cases are investigated with Reynolds number 400 primarily to obtain information of the three regimes of canyon flow and the Reynolds number is then increased incrementally to 2000 to study the consequent flow fields and pollutant dilution patterns. In low Reynolds numbers, results presented agree with the generally obtained threshold values for different flow regimes. Increase in Reynolds number has smeared the flow regimes boundary. The ease of pollutant dispersion is mainly promoted by better mixings inside the canyon, formation of unstable circulations and higher Reynolds numbers. All results show that the flow regime and pollution pattern demarcations depend on both the varying canyon geometry and Reynolds number.

  5. Clay mineral diagenesis in Westwater Canyon sandstone member of Morrison Formation, San Juan basin, New Mexico

    SciTech Connect

    Crossey, L.J. (Univ. of New Mexico, Albuquerque (USA))

    1989-09-01

    The Westwater Canyon Sandstone Member and the Brushy Basin and Recapture Shale Members of the Morrison Formation are examined from core located on the southern flank of the San Juan basin, northwestern New Mexico. Clay mineralogy of fine-grained lithologies of the Westwater Canyon Sandstone Member is contrasted with that of coarse-grained lithologies. Two distinct mixed-layer clay populations are present: a high expandable mixed-layer illite/smectite associated with coarse-grained lithologies. Two distinct mixed-layer clay populations are present: a highly expandable mixed-layer illite/smectite associated with coarse-grained units (in addition to chlorite and kaolinite), and an illitic mixed-layer illite/smectite (in some cases ordered and accompanied by traces of chlorite) in the fine-grained units. The expandable component of the mixed-layer clay does not exhibit a trend with depth but is lithology dependent. Coarse-grained samples from the Westwater Canyon Sandstone Member contain numerous mudstone intraclasts. The clay mineralogy of selected clasts has been examined. These lithologic characteristics must be taken into account in interpreting clay mineral diagenesis within the Morrison Formation. Framework grain alternation within the Westwater Canyon Sandstone Member has been linked to lacustrine facies in the overlying Brushy Basin Shale Member. Authigenic clay minerals within the Westwater Canyon Sandstone Member may provide a record of downward-percolating lake fluids. Early diagenetic effects must be recognized in order to interpret the complete diagenetic history of the Westwater Canyon Sandstone Member.

  6. Geologic map and upper Paleozoic stratigraphy of the Marble Canyon area, Cottonwood Canyon quadrangle, Death Valley National Park, Inyo County, California

    USGS Publications Warehouse

    Stone, Paul; Stevens, Calvin H.; Belasky, Paul; Montañez, Isabel P.; Martin, Lauren G.; Wardlaw, Bruce R.; Sandberg, Charles A.; Wan, Elmira; Olson, Holly A.; Priest, Susan S.

    2014-01-01

    This geologic map and pamphlet focus on the stratigraphy, depositional history, and paleogeographic significance of upper Paleozoic rocks exposed in the Marble Canyon area in Death Valley National Park, California. Bedrock exposed in this area is composed of Mississippian to lower Permian (Cisuralian) marine sedimentary rocks and the Jurassic Hunter Mountain Quartz Monzonite. These units are overlain by Tertiary and Quaternary nonmarine sedimentary deposits that include a previously unrecognized tuff to which we tentatively assign an age of late middle Miocene (~12 Ma) based on tephrochronologic analysis, in addition to the previously recognized Pliocene tuff of Mesquite Spring. Mississippian and Pennsylvanian rocks in the Marble Canyon area represent deposition on the western continental shelf of North America. Mississippian limestone units in the area (Tin Mountain, Stone Canyon, and Santa Rosa Hills Limestones) accumulated on the outer part of a broad carbonate platform that extended southwest across Nevada into east-central California. Carbonate sedimentation was interrupted by a major eustatic sea-level fall that has been interpreted to record the onset of late Paleozoic glaciation in southern Gondwana. Following a brief period of Late Mississippian clastic sedimentation (Indian Springs Formation), a rise in eustatic sea level led to establishment of a new carbonate platform that covered most of the area previously occupied by the Mississippian platform. The Pennsylvanian Bird Spring Formation at Marble Canyon makes up the outer platform component of ten third-order (1 to 5 m.y. duration) stratigraphic sequences recently defined for the regional platform succession. The regional paleogeography was fundamentally changed by major tectonic activity along the continental margin beginning in middle early Permian time. As a result, the Pennsylvanian carbonate shelf at Marble Canyon subsided and was disconformably overlain by lower Permian units (Osborne Canyon and Darwin Canyon Formations) representing part of a deep-water turbidite basin filled primarily by fine-grained siliciclastic sediment derived from cratonal sources to the east. Deformation and sedimentation along the western part of this basin continued into late Permian time. The culminating phase was part of a regionally extensive late Permian thrust system that included the Marble Canyon thrust fault just west of the present map area.

  7. California State Waters Map Series--Hueneme Canyon and vicinity, California

    USGS Publications Warehouse

    Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Kvitek, Rikk G.; Greene, H. Gary; Krigsman, Lisa M.; Endris, Charles A.; Clahan, Kevin B.; Sliter, Ray W.; Wong, Florence L.; Yoklavich, Mary M.; Normark, William R.

    2012-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California's State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Hueneme Canyon and vicinity map area lies within the eastern Santa Barbara Channel region of the Southern California Bight. The area is part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation - at least 90° - since the early Miocene has been proposed for the Western Transverse Ranges, and the region is presently undergoing north-south shortening. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area, which is offshore of the Oxnard plain and west of and along the trend of the south flank of the Santa Monica Mountains, lies at the east end of the Santa Barbara littoral cell, characterized by west-to-east littoral transport of sediment derived mainly from coastal watersheds. The Hueneme Canyon and vicinity map area in California's State Waters is characterized by two major physiographic features: (1) the nearshore continental shelf, and (2) the Hueneme and Mugu Submarine Canyon system, which, in the map area, includes Hueneme Canyon and parts of three smaller, unnamed headless canyons incised into the shelf southeast of Hueneme Canyon. The shelf is underlain by tens of meters of interbedded upper Quaternary shelf, estuarine, and fluvial deposits that formed as sea level fluctuated in the last several hundred thousand years. Hueneme Canyon extends about 15 km offshore from its canyon head near the dredged navigation channel of the Port of Hueneme. The canyon is relatively deep (about 150 m at the California's State Waters limit) and steep (canyon flanks as steep as 25° to 30°). Historically, Hueneme Canyon functioned as the eastern termination of the Santa Barbara littoral cell by trapping all eastward littoral drift, not only feeding the large Hueneme submarine fan but acting as the major conduit of sediment to the deep Santa Monica Basin; however, recent dredging programs needed to maintain Channel Islands Harbor and the Port of Hueneme have moved the nearshore sediment trapped by jetties and breakwaters to an area southeast of the Hueneme Canyon head. Seafloor habitats in the broad Santa Barbara Channel region consist of significant amounts of soft sediment and isolated areas of rocky habitat that support kelp-forest communities nearshore and rocky-reef communities in deep water. The potential marine benthic habitat types mapped in the Hueneme Canyon and vicinity map area are related directly to the geomorphology and sedimentary processes that are the result of its Quaternary geologic history. The two basic megahabitats in the map area are Shelf (continental shelf) and Flank (continental slope). The flat seafloor of the continental shelf in the Hueneme Canyon and vicinity map area is dynamic, as indicated by mobile sand sheets and coarser grained scour depressions. The active Hueneme Canyon provides considerable relief to the continental shelf in the map area, and its irregular morphology of eroded walls, landslide scarps, and deposits and gullies provide promising habitat for groundfish, crabs, shrimp, and other marine benthic organisms. Most invertebrates observed in the map area durin

  8. Effects of the Western Boundary undercurrent on sediment transport and deposition in the Pamlico Canyon off Cape Hatteras 

    E-print Network

    Jenkins, John Stacy

    1980-01-01

    directions and Alvin dive sites . . Submarine canyons along the continental margin off the northeast United States. Depths are in fathoms Velocity vector of WBU free stream (a), theoretical path taken by geostrophic WBU around Pamlico Canyon (b), radius... by the WBU along the east coast of the United States (Fig. 2). The information gained from this study will, therefore, have general applicability to problems concerning sediment transport in submarine canyons. Previous Work Some attempts have been made...

  9. INCREASING OIL RECOVERY THROUGH ADVANCED REPROCESSING OF 3D SEISMIC, GRANT CANYON AND BACON FLAT FIELDS, NYE COUNTY, NEVADA

    Microsoft Academic Search

    Eric H. Johnson; Don E. French

    2001-01-01

    Makoil, Inc., of Orange, California, with the support of the U.S. Department of Energy has reprocessed and reinterpreted the 3D seismic survey of the Grant Canyon area, Railroad Valley, Nye County, Nevada. The project was supported by Dept. of Energy Grant DE-FG26-00BC15257. The Grant Canyon survey covers an area of 11 square miles, and includes Grant Canyon and Bacon Flat

  10. An Investigation of Amphitheater-Headed Canyon Distribution, Morphology Variation, and Longitudinal Profile Controls in Escalante and Tarantula Mesa, Utah.

    NASA Astrophysics Data System (ADS)

    Ryan, A. J.; Whipple, K. X.

    2014-12-01

    Amphitheater-headed canyons are primarily distinguished from typical fluvial channels by their abrupt headwall terminations. A key goal in the study of river canyons is to establish a reliable link between form and formation processes. This is of particular significance for Mars, where, if such links can be established, amphitheater-headed canyons could be used to determine ancient erosion mechanisms and, by inference, climate conditions. Type examples in arid regions on Earth, such as in Escalante River, Utah, previously have been interpreted as products of groundwater seepage erosion. We investigate amphitheater-headed canyons in Escalante and Tarantula Mesa where variations in canyon head morphology may hold clues for the relative roles of rock properties and fluvial and groundwater processes. In lower Escalante, amphitheaters are only present where canyons have breached the Navajo Sandstone - Kayenta Formation contact. In some canyons, amphitheater development appears to have been inhibited by an abundance of coarse bedload. In Tarantula Mesa, canyons have a variety of headwalls, from amphitheaters to stepped knickzones. Headwall morphology distribution is directly related to the spatially variable presence of knickpoint-forming, fine-grained interbeds within cliff-forming sandstones. Amphitheaters only form where the sandstone unit is undisrupted by these interbeds. Finally, most canyons in Escalante and Tarantula Mesa, regardless of substrate lithology, amphitheater presence, or groundwater spring intensity, are well described by a slope-area power law relationship with regionally constant concavity and normalized steepness indices. This suggests that all channels here are subject to the same erosion rates, independent of groundwater weathering intensity. Thus: 1) variations in canyon headwall form do not necessary relate to differences in fluvial history, 2) stratigraphic variations are clearly of importance in sedimentary canyon systems, and 3) although groundwater seepage weathering is clearly active in many canyons in Utah and may be responsible for amphitheater development, fluvial forces appear to be the dominant erosive force responsible for shaping stream profiles.

  11. Sedimentary regime of deep submarine canyons around Fylla Banke, northeastern Labrador Sea

    NASA Astrophysics Data System (ADS)

    Paulsen, Dorthe; Kuijpers, Antoon; Seidenkrantz, Marit-Solveig; Nielsen, Tove

    2014-05-01

    Sedimentary regime of deep submarine canyons around the Fylla Banke, northeastern Labrador Sea Dorthe Paulsen (1), Antoon Kuijpers (2), Marit-Solveig Seidenkrantz (3) and Tove Nielsen (2) 1) Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K 2) Geological Survey of Denmark and Greenland (GEUS), Øster Voldgde 10, DK-1350 Copenhagen K. 3) Centre for Past Climate Studies, Department of Geoscience, Aarhus University. Hoegh-Guldbergs Gade 2, DK-8000 Aarhus C The southern end of the Davis Strait, the comparatively shallow-water area separating the Labrador Sea from the Baffin Bay, is cut by two deep submarine canyons of west Greenland, on the western and eastern side of the Fylla Banke, respectively. The purpose of this study is to investigate Late Pleistocene sedimentary processes governing the area of the two canyons in order to test if gravity flows or ocean currents are the most important factors governing canyon sedimentary processes in this region. Furthermore, an account is given on the formation of the two canyons in order to explain the significant difference between them. The study was carried out based on seismic profiles combined with bathymetric information, and a single sidescan sonar profile from one of the canyons (western canyon). Sedimentary information and an age model are derived from of a 5-m long gravity core (TTR13-AT-479G) collected from the mouth of the western canyon (southern end). The data indicates that the sedimentary regime is today highly affected by northward transport of the ocean currents and that gravity flows (southward from shallower to deep waters) are only of limited significance today. The deep southern end of the canyons are influenced by the upper parts of the deep North Atlantic Deep Water, but the majority of the sediment transport is linked to the strong northward flow of the lower parts of the West Greenland Current. For comparison the sediment transport is held up against earlier studies from the Davis Strait area, where 2D seismic profiles were carried out several places of the west coast of Greenland. These studies are from a contourite drift complex at the Davis Strait and north of Labrador Sea. A further possible process operating in maintaining active sediment transport through the canyon may be the cascading of dense winter water formed on the West Greenland shelf.

  12. Plio-Quaternary canyons evolution on South Colombian convergent margin : Tectonic causes and implications

    NASA Astrophysics Data System (ADS)

    Ratzov, Gueorgui; Sosson, Marc; Collot, Jean-Yves; Migeon, Sebastien

    2010-05-01

    Investigations of seafloor morphology and sediment deposits associated with the incision of the South Colombia active margin by a major submarine canyon system are used to reveal out-of-sequence fault activity at least since the Middle Pleistocene. The South Colombian convergent margin is located along Northwestern South America, where the Nazca plate underthrusts eastward the South America plate with a 58 mm.yr-1 convergence rate. The morphology and deep multichannel seismic reflection lines obtained across the margin reflect a frontal accretionnary wedge, as well as antiform and faulted internal structural highs that locally extend up to near the continental shelf, suggesting wide-spread Plio-Quaternary tectonic activity. The Amadeus cruise conduced in 2005 brought new seismic and sedimentary data together with 150m and 60m-resolution EM12D multibeam bathymetry. The newly mapped Mira and Patia canyons system incises the South Colombian margin slope over a distance of ~90 and ~150 km respectively, forming an unequivocal Z-shape in map view, breaching the deformation front and feeding a 30-km wide trench fan system. The morphology of the canyon exhibits meanders, steep over-incised walls (~25-30 degrees), alternation between concave-up and convex-up downstream profiles, slope failures scars, and buried channels. These features reflect interactions between tectonics, sedimentation and the canyon evolution. A synthesis of all the data reveals that: A) Uplifting structural highs control canyons path and incision stages. B) Canyons developed asynchronously across the upper, mid and lower margin slopes according to three main stages: a) upper slope incision by downward cutting during Pleistocene, and possibly by retrogressive headward erosion, b) infill of a mid-slope basin bounded by uplifting structural highs, and c) overspill of the slope basin, and breaching its seaward bounding ridge, and the accretionary prism ~150 kyr ago. These processes led to the construction of sedimentary lobes in the trench, and then to a well-developed channel-levees system. C) Occurrences of antecedence, canyon walls over steepening, and convex-up bathymetric profiles of the canyons imply uplift of the fault-controlled structural highs at least during the last ~150 kyr supporting active out-of-sequence tectonic shortening. The long-term causes of the out-of-sequence tectonic could be linked to interplate coupling and basal friction variations. This study strongly reflects the interplay between tectonic deformation and canyon evolution thus providing a good example of the use of canyon morphology and associated deposits as markers of active tectonic deformation

  13. Submarine canyon morphologies and evolution on a modern carbonate system: the Northern Slope of Little Bahama Bank (Bahamas).

    NASA Astrophysics Data System (ADS)

    Tournadour, Elsa; Mulder, Thierry; Borgomano, Jean; Hanquiez, Vincent; Ducassou, Emmanuelle; Gillet, Hervé; Sorriaux, Patrick

    2013-04-01

    The recent CARAMBAR cruise (Nov. 2010) on the northern slope of Little Bahama Bank (LBB, Bahamas) provided new seafloor and subsurface data, that improve our knowledge on carbonate slope systems. The new high-resolution multibeam bathymetry data (Kongsberg EM302 echosounder) and very high resolution (3.5 kHz/Chirp subbotom profiler) seismic data show that the upper LBB slope is dissected by 18 canyons. These canyons evolve sharply into short channels opening to depositional fan-shaped lobes. These architectural elements form a narrow carbonate gravity system extending over 40 km along the LBB slope. The features previously described as small linear canyons have a more complex morphology than originally supposed. The several architectural elements that can be distinguished share similar characteristics with siliciclastic canyons. The average morphological features of the canyons are: minimum and maximum water depths of 460 and 970 m resp., mean length = 16.3 km and sinuosity = 1.14. Canyons are floored with flat elongated morphologies interpreted as terraces. Some of these terraces are located at the toe of slide scars on canyon heads and canyon sides which suggest that they result from sediment failures. On the Chirp seismic data, wedge-shape aggrading terraces interpreted as "internal levees" can be observed. These terraces would then be formed by overbanking of the upper part of turbidity currents. Between 530 and 630 m water depth, some canyons exhibit an amphitheater-shaped head with a head wall height ranging from 80 to 100 m. The wall edges of these canyon heads consist of coalescing arcuate slump scars, which suggests that the canyons formed by retrogressive erosion. Other canyons show an amphitheater-shaped head that evolves upslope into linear valleys incising the upper slope between 460 m and 530 m water depth. The onset and the spatial distribution of these linear valleys seem to be influenced by sediments transported from oolitic shoals of Walker Cay located 5 km upstream toward the upper slope. Indeed, upslope the canyon heads, the reflectivity map shows low backscatters characteristic of fine grained sediments within small elongated depressions (3-5 km long, 1-5 m deep) that are probably-formed by the flow of sediments coming the platform. These initial results allow a preliminary model of the canyon evolution to be proposed with two stages: (1) a first stage controlled by retrogressive erosion, generating several slides and collapses finally forming the amphitheater-shaped canyon heads, (2) a second stage of retrogressive erosion influenced on the upper slope by the sediment input from the platform along small erosional depressions located seaward of the carbonate bank. These small depressions can locally merge with the canyon heads.

  14. Challenges in real-time virtualization and predictable cloud computing Marisol Garca-Valls a,

    E-print Network

    Lu, Chenyang

    Challenges in real-time virtualization and predictable cloud computing Marisol García-Valls a 2014 Keywords: Cloud computing Soft real-time systems Virtualization Resource management Quality of service SLA a b s t r a c t Cloud computing and virtualization technology have revolutionized general

  15. Geophysical and Hydrological Characterization of Alluvial Fans in the Valle El Sauz Encinillas, Chihuahua, México

    Microsoft Academic Search

    A. Villalobos-Aragón; R. Chávez-Aguirre; A. Osuna-Vizcarra; V. V. Espejel-García

    2007-01-01

    The Valle El Sauz Encinillas (VESE) is located 92 km north of Chihuahua City, México. Despite being the principal aquifer feeding Chihuahua City, and being flanked by two well studied geological features (Bloque Calera-Del Nido to the West, and the Sierra Peña Blanca to the East), a lack of available hydrogeological data prevails in the valley. The goals of this

  16. La responsabilídad social en empresas del Valle de Toluca (México): Un estudio exploratorio

    Microsoft Academic Search

    PATRICIA MERCADO SALGADO; PATRICIA GARCÍA HERNÁNDEZ

    2007-01-01

    En un mundo globalizado, el sector empresarial no puede seguir negando la necesidad de adoptar la responsabilidad social como estrategia para alcanzar beneficios externos e internos, pues sigue latente cierto comportamiento dominante de rechazo hacia ella. Por ello, el objetivo de esta investigación exploratoria, no experimental, es describir la responsabilidad social en empresas del Valle de Toluca (México) mediante cuatro

  17. Two Middle Pleistocene Glacial-Interglacial Cycles from the Valle Grande, Jemez Mountains, northern New Mexico

    E-print Network

    Anderson, R. Scott

    valley of the Valles Caldera in northern New Mexico, when a post-caldera eruption (South Mountain rhyolite) dammed the drainage out of the caldera. The deposits of this lake were cored in May 2004 (GLAD5 sediments filled the available accommodation space in the caldera moat. Multiple analyses, including core

  18. Antecedentes del Sirex noctilio (Hymenoptera-Siricidae) en el Valle de Calamuchita, Cordoba, Argentina

    E-print Network

    Antecedentes del Sirex noctilio (Hymenoptera-Siricidae) en el Valle de Calamuchita, Cordoba F. (Hymenoptera-Siricidae) en las plantaciones de Pinus spp. (31.125 ha de Pinus elliottii, 3.738 ha TECNICAS Preliminary studies on Sirex noctilio (Hymenoptera-Siricidae) in pine plantations

  19. Spectacular Cataracts (Dry Falls) on the Floor of Kasei Valles, Mars

    NASA Astrophysics Data System (ADS)

    Coleman, N.

    2010-03-01

    The largest known cataracts exist on the floor of Kasei Valles. These spectacular dry falls have a vertical relief of ~500 m, and may have migrated by headward erosion as much as 250 km. They are characterized using THEMIS images and MOLA data.

  20. Evidence for remnants of ancient ice-rich deposits: Mangala Valles outflow channel, Mars

    Microsoft Academic Search

    Joseph S. Levy; James W. Head

    2005-01-01

    High-resolution spacecraft data reveal the presence of a distinctive unit on the upper reaches of the floor of Mangala Valles, an ancient outflow channel on Mars. In contrast to abundant evidence for scour, intense erosion, and hydro- dynamic shaping typical of the floors and margins of Mangala and other outflow channels, this unit is smooth-surfaced, has cuspate margins, is superposed

  1. Juventae Chasma and Maja Valles, Mars: Further Evidence for Multiple Flooding Events

    Microsoft Academic Search

    C. Gross; L. Wendt; A. Dumke; G. Neukum

    2009-01-01

    Introduction: In this study we investigate the age relationship of Juventae Chasma to the adjacent Maja Valles in order to gain a feasible explanation for the formation and evolution of rhythmic light-toned layered deposits (LLD). In this first step, we use impact crater size-frequency distributions for dating the planetary surface in the regions of interest. Juventae Chasma is located at

  2. Formation of Mangala Valles outflow channel, Mars: Morphological development and water discharge and duration estimates

    Microsoft Academic Search

    Harald J. Leask; Lionel Wilson; Karl L. Mitchell

    2007-01-01

    The morphology of features on the floor of the Mangala Valles suggests that the channel system was not bank-full for most of the duration of its formation by water being released from its source, the Mangala Fossa graben. For an estimated typical 50 m water depth, local slopes of sin ? = ?0.002 imply a discharge of ?1 × 107

  3. SRTM Colored Height and Shaded Relief: Pinon Canyon region, Colorado

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Erosional features are prominent in this view of southern Colorado taken by the Shuttle Radar Topography Mission (SRTM). The area covers about 20,000 square kilometers and is located about 50 kilometers south of Pueblo, Colorado. The prominent mountains near the left edge of the image are the Spanish Peaks, remnants of a 20 million year old volcano. Rising 2,100 meters (7,000 ft) above the plains to the east, these igneous rock formations with intrusions of eroded sedimentary rock historically served as guiding landmarks for travelers on the Mountain Branch of the Santa Fe Trail.

    Near the center of the image is the Pinon Canyon Maneuver Site, a training area for soldiers of the U.S. Army from nearby Fort Carson. The site supports a diverse ecosystem with large numbers of big and small game, fisheries, non-game wildlife, forest, range land and mineral resources. It is bounded on the east by the dramatic topography of the Purgatoire River Canyon, a 100 meter (328 foot) deep scenic red canyon with flowing streams, sandstone formations, and exposed geologic processes.

    Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction. Southern slopes appear bright and northern slopes appear dark. Color coding is directly related to topographic height, with blue and green at the lower elevations, rising through yellow and brown to white at the highest elevations.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR)that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 177.8 x 111.3 kilometers ( 110.5 x 69.2 miles) Location: 37.5 deg. North lat., 104 deg. West lon. Orientation: North toward the top Image Data: Shaded and colored SRTM elevation model Original Data Resolution: SRTM 1 arcsecond (30 meters or 99 feet) Date Acquired: February 2000

  4. Magmatic recharge during formation and resurgence of the Valles caldera, New Mexico, USA: evidence from quartz compositional zoning

    E-print Network

    of resurgent caldera system, characterised by eruption of two voluminous high-silica rhyolite ignimbrites (the Canyon Rhyolite, followed closely by the Redondo Creek Rhyodacite. The Cerro del Medio Rhyolite lava dome ignimbrite, 2) samples of the Deer Canyon Rhyolite and 3) the Cerro del Medio Rhyolite lavas. CL imaging

  5. Modelling bottom trawling-generated sediment flows in La Fonera submarine canyon (Northwestern Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Payo-Payo, Marta; Silva Jacinto, Ricardo; Lastras, Galderic; Canals, Miquel; Puig, Pere; Martín, Jacobo; Sanchez-Vidal, Anna; Rabineau, Marina

    2015-04-01

    Bottom-trawling is one of the anthropogenic activities with a stronger and more widespread impact on the seafloor. Physical processes involved in sediment resuspension due to trawling and the resulting sediment-laden flows are not fully understood. The amount and fate of remobilized sediments are of the utmost relevance for establishing present-day continental margin sediment budgets. Resuspension by bottom trawling leads to massive transfer of sediment from shallower to deeper areas practically worldwide. La Fonera submarine canyon is a large, deeply-incised active canyon in the Northwestern Mediterranean Sea. It presents complex sediment transport dynamics associated to littoral drift and extreme events such as dense shelf water cascading and severe storms. Recent studies have revealed recurrent peaks in near-bottom current speed and suspended sediment concentration in the northern flank of the canyon synchronously with trawling. Aiming at simulating sediment-loaded fluxes triggered by trawling and their interaction with the seafloor in La Fonera canyon, we have implemented a numerical process-based model developed to reproduce such flows. Mooring data have been used both to calibrate the modelled sediment fluxes. Good agreement between model and monitoring data has been found, with modelled peaks of suspended sediment concentration values exceeding 120 mg-l-1 and current speed measurements of up to 40 cm-s-1 at the mooring site. Moreover, we have quantified fishing activity over the canyon flanks through modelling and have obtained the propagation pattern of sediment flows from the fishing ground downward the canyon. Our results confirm the value of numerical models to complete and enlarge our understanding of the sedimentary transfer processes from shallow to deep in the ocean. Besides, they allow establishing quantitative comparisons between trawling impact and natural forcing on the sediments dynamics of La Fonera submarine canyon.

  6. Effects of building roof greening on air quality in street canyons

    NASA Astrophysics Data System (ADS)

    Baik, Jong-Jin; Kwak, Kyung-Hwan; Park, Seung-Bu; Ryu, Young-Hee

    2012-12-01

    Building roof greening is a successful strategy for improving urban thermal environment. It is of theoretical interest and practical importance to study the effects of building roof greening on urban air quality in a systematic and quantitative way. In this study, we examine the effects of building roof greening on air quality in street canyons using a computational fluid dynamics (CFD) model that includes the thermodynamic energy equation and the transport equation of passive, non-reactive pollutants. For simplicity, building roof greening is represented by specified cooling. Results for a simple building configuration with a street canyon aspect ratio of one show that the cool air produced due to building roof greening flows into the street canyon, giving rise to strengthened street canyon flow. The strengthened street canyon flow enhances pollutant dispersion near the road, which decreases pollutant concentration there. Thus, building roof greening improves air quality near the road. The degree of air quality improvement near the road increases as the cooling intensity increases. In the middle region of the street canyon, the air quality can worsen when the cooling intensity is not too strong. Results for a real urban morphology also show that building roof greening improves air quality near roads. The degree of air quality improvement near roads due to building roof greening depends on the ambient wind direction. These findings provide a theoretical foundation for constructing green roofs for the purpose of improving air quality near roads or at a pedestrian level as well as urban thermal environment. Further studies using a CFD model coupled with a photochemistry model and a surface energy balance model are required to evaluate the effects of building roof greening on air quality in street canyons in a more realistic framework.

  7. Wind and topographic effects on the Labrador Current at Carson Canyon

    NASA Astrophysics Data System (ADS)

    Kinsella, E. Douglas; Hay, Alex E.; Denner, Warren W.

    1987-09-01

    We present results from an experimental investigation of the interaction between a shelf break jet and a submarine canyon and of the response of this system to a single upwelling favorable wind event. The field site was Carson Canyon, located at the edge of the Grand Bank of Newfoundland. The shelf break jet is the Labrador Current. The time-averaged current measurements indicate that the interaction between the Labrador Current and the canyon topography is nonlinear and that the mean current crosses isobaths to flow into the canyon on the upstream side but is steered off shelf on the downstream side. The mean flow vorticity balance in the near field and far field is examined, using a two-layer model with the lower layer at rest. In the far field we obtain an interesting result which suggests that the cross-stream shear in combination with bottom friction can drive a significant on-shelf flow. This flow is equivalent to a volume transport of about 60 m3 s-1 per 100 m of along-shelf distance, which is comparable to typical wind-driven Ekman transports on and off continental shelves and which appears to have important implications for the on-off-shelf transport of icebergs in the Grand Banks region. In the near field the Rossby number is of order unity and bottom friction is less important. Many of the observed flow properties can be explained qualitatively in terms of an upstream inertial boundary layer and potential vorticity conservation. The time-dependent response to upwelling favorable winds was registered by current meters in the canyon and at the shelf break at the canyon perimeter. These observations indicate an amplified upwelling response at the shelf break and vertical ascent rates within the canyon of about 0.7 cm s-1.

  8. Constraining the timing of turbidity current driven sediment transport down Monterey Canyon, offshore California

    NASA Astrophysics Data System (ADS)

    McGann, M.; Stevens, T.; Paull, C. K.; Ussler, W.; Buylaert, J.

    2013-12-01

    Turbidity currents are responsible for transport of sand down the Monterey Submarine Canyon, offshore California, from the shoreline to Monterey Fan. However the timing of sediment transport events and their frequencies are not fully understood despite recent monitoring of canyon events and AMS 14C dating of foraminifera from hemipelagic sediments bracketing sand deposited during turbidity flows. Quartz optically stimulated luminescence (OSL) dating in sand sequences provides a complementary means of dating sand transport. OSL dates reflect the time interval since the sand grains were last exposed to sunlight. However, the technique has never been applied extensively to canyon sediments before. Here we report both quartz OSL ages of sand deposits and benthic foraminifera ages sampled from the axial channel within Monterey Submarine Canyon and Fan via ROV-collected vibracores. This allows a rare opportunity to directly test the frequency and timing of turbidity current events at different points in the canyon. We use both single-grain and small (~2 mm area) single aliquot regeneration OSL approaches on vibracore samples from various water depths to determine sand transport frequency. Within the upper canyon (<2,000 m water depths) the OSL data require sub-decadal to decadal transit times. Sand bearing fining upward sequences yielding middle Holocene to last few hundred year ages indicate turbidity currents occur at 150 to 250 year event frequencies within the fan channel out to 3,600 m water depth. We suggest that turbidity currents have been active during the current sea-level high stand and that the submarine fan has recorded turbidity currents over the entire Holocene. The increased age spread in single grain OSL dates with water depth provides evidence of sediment mixing and reworking during turbidity flows. Apparently, sand is stored within the canyon for various amounts of time while it is in route to its current location on the fan.

  9. Large-eddy simulation of street canyons and urban microclimate using Uintah:MPMICE

    NASA Astrophysics Data System (ADS)

    Nemati Hayati, A.; Stoll, R., II; Harman, T.; Pardyjak, E.

    2014-12-01

    Urban microclimate plays an important role in urban water use, energy use, pollutant transport, and the general comfort and well-being of urban inhabitants. The microclimate interacts locally with urban morphology, water levels, properties of urban surfaces, and vegetation cover all of which contribute significantly to the strong spatial variability observed in urban areas. Considerable parts of urban open spaces take the form of street canyons. These urban street canyons play a remarkable role in creating urban microclimates. Within street canyons themselves, a wide variety of phenomena contribute to complex flow patterns. These include various flow structures such as wake fields, circulation zones, isolated roughness flow, wake interference and skimming flows. In addition, heat fluxes from the buildings and the surrounding area enhance the complexity of the flow field inside the canyon. Here, we introduce Uintah:MPMICE for the simulation of fluid structure interactions in urban flows. Uintah:MPMICE has been developed in a massively parallel computational infrastructure, uses material points to represent buildings, and the large-eddy simulation (LES) technique to represent momentum and scalar transport. To validate Uintah:MPMICE, simulations of typical street canyons are compared against published wind tunnel particle imaging velocimetry (PIV) data for the cases of step-up and step-down street canyons. Our findings show promising results in capturing major flow features, namely wake fields, recirculation zones, wake interference, vortex structures, and flow separation in street canyons. LES results demonstrate the ability of the simulations to predict flow topology details such as secondary circulation zones and wall-originating elevated shear layers in step-up and step-down cases, respectively. Furthermore, mean flow and variance statistics indicate sensitivity to inlet boundary conditions; upstream turbulence generation method, in particular, has a significant impact on the LES results.

  10. Reconstruction of submarine canyon systems associated with proto-Stockton arch during Late Cretaceous

    SciTech Connect

    Rider, J.

    1986-04-01

    A hypothetical depositional model of the middle Great Valley gas fields of California includes the area from the Southwest Vernalis gas field in the south (T3S) to the Nicolaus gas field in the north (T12N). The model assumes that (1) the early Campanian Dobbins Shale Member was deposited at or near the shelf/slope break, and (2) the absence of the Dobbins Shale Member indicates scouring processes of active submarine canyon systems. A striking correlation exists between the proposed distribution of the Dobbins Shale Member scour channels and the position of river systems operating today in the valley. The model distinguishes six submarine canyon systems: (1) Feather River/Nicolaus, (2) American River/Florin, (3) Cosumnes River/Poppy Ridge, (4) Mokelumne River/Lodi, (5) Calaveras delta/Mulligan Hill, and (6) Stanislaus River/East Collegeville. The model implies that an extensive delta system was associated with the Calaveras River during deposition of the Dobbins Shale Member, before its erosive exit southwest of the Mulligan Hill gas field, just east of the Los Medanos, Concord, and Willow Pass fields. The presence of possible equivalents of the Dobbins Shale Member of this latter area suggests an early Campanian highland, the proto-Stockton arch. Subsequent Forbes Formation deposition appears to involve apronlike drapes or overlaps of the early Campanian canyons. However, during deposition of the Kione Formation, the canyon systems were reactivated, and canyon scour predominated, matching the scour patterns of the Dobbins Shale Member. From these ancestral canyons, younger canyons could have evolved easily.

  11. Viking Orbiter: Views of Mars

    NSDL National Science Digital Library

    1980-05-09

    This website is an electronic version of an historical NASA (National Aeronautics and Space Administration) publication containing information about the Viking Orbiter and images it took of the planet Mars. This book incorporates images acquired by the Viking orbiters beginning in 1976. The pictures here represent only a small fraction of the many thousands taken, and were chosen to illustrate the diverse geology and atmospheric phenomena of Mars. General information about the Viking mission highlights the purpose of sending these two spacecraft to the planet Mars. The images contain descriptions and explanations of what is being shown and cover planetary features such as channels, Valles Marineris canyon, volcanic features and Olympus Mons, comparison between Earth and Mars, deformation, craters, the moons Phobos and Deimos, surface processes (wind, mass wasting), polar regions, planet color, atmosphere and the Viking 1 and Viking 2 landing sites.

  12. The Antarctic dry valley lakes: Relevance to Mars

    NASA Technical Reports Server (NTRS)

    Wharton, R. A., Jr.; Mckay, Christopher P.; Mancinelli, Rocco L.; Clow, G. D.; Simmons, G. M., Jr.

    1989-01-01

    The similarity of the early environments of Mars and Earth, and the biological evolution which occurred on early Earth, motivates exobiologists to seriously consider the possiblity of an early Martian biota. Environments are being identified which could contain Martian life and areas which may presently contain evidence of this former life. Sediments which were thought to be deposited in large ice-covered lakes are present on Mars. Such localities were identified within some of the canyons of the Valles Marineris and more recently in the ancient terrain in the Southern Hemisphere. Perennially ice-covered Antarctic lakes are being studied in order to develop quantitative models that relate environmental factors to the nature of the biological community and sediment forming processes. These models will be applied to the Martian paleolakes to establish the scientific rationale for the exobiological study of ancient Martian sediments.

  13. West Candor Chasm, Approximately Natural Color

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This picture (centered at latitude 4 degrees S., longitude 76 degrees W.) shows parts of central Valles Marineris, including Candor Chasm (lower left), Ophir Chasm (lower right), and Hebes Chasm (upper right). Complex layered deposits in the canyons may have been deposited in lakes, and if so, are of great interest for future searches for fossil life on Mars. The pinkish deposits in Candor Chasm (enhanced color version PIA00155) may be due to hydrothermal alterations and the production of crystalline ferric oxides (Geissler et al., 1993, Icarus 106, 380). Viking Orbiter Picture Numbers 279B02 (violet), 279B10 (green), and 279B12 (red) at 240 m/pixel resolution. Picture width is 2231 km. North is 47 degrees clockwise from top.

  14. West Candor Chasm (Enhanced Color)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This picture (centered at latitude 4 degrees S., longitude 76 degrees W.) shows areas of central Valles Marineris, including Candor Chasm (lower left), Ophir Chasm (lower right), and Hebes Chasm (upper right). Complex layered deposits in the canyons may have been deposited in lakes, and if so, are of great interest for future searches for fossil life on Mars. The pinkish deposits in Candor Chasm may be due to hydrothermal alterations and the production of crystalline ferric oxides (Geissler et al., 1993, Icarus 106,380). Viking Orbiter Picture Numbers 279B02 (violet), 279B10 (green), and 279B12 (red) at 240 m/pixel resolution. Picture width is 231 km. North is 47 degrees clockwise from top.

  15. Basic repository environmental assessment design basis, Lavender Canyon site

    SciTech Connect

    Not Available

    1988-01-01

    This study examines the engineering factors and costs associated with the construction, operation, and decommissioning of a high-level nuclear waste repository in salt in the Paradox Basin in Lavender Canyon, Utah. The study assumes a repository capacity of 36,000 metric tons of heavy metal (MTHM) of unreprocessed spent fuel and 36,000 MTHM of commercial high-level reprocessing waste, along with 7020 canisters of defense high-level reprocessing waste and associated quantities of remote- and contact-handled transuranic waste (TRU). With the exception of TRU, all the waste forms are placed in 300- to 1000-year-life carbon-steel waste packages in a collocated waste handling and packaging facility (WHPF), which is also described. The construction, operation, and decommissioning of the proposed repository is estimated to cost approximately $5.51 billion. Costs include those for the collocated WHPP, engineering, and contingency, but exclude waste form assembly and shipment to the site and waste package fabrication and shipment to the site. These costs reflect the relative average wage rates of the region and the relatively sound nature of the salt at this site. Construction would require an estimated 7.75 years. Engineering factors and costs are not strongly influenced by environmental considerations. 51 refs., 24 figs., 20 tabs.

  16. The Grand Canyon midair collision. A stimulus for change.

    PubMed

    Murphy, G K

    1990-06-01

    Commercial aviation in the United States developed rapidly from a nucleus of pilots who returned from World War I, barnstormed and flew primitive airmail routes, and were hired by the new commerical airlines of the 1930s. The death of U.S. Senator Bronson Cutting in a 1935 crash was an important stimulus to improved governmental regulation of civil aviation. The air traffic control system, primitive until and throughout World War II, was soon proven to be inadequate for postwar demands. The midair collision of two large airliners over the Grand Canyon in June 1956 that killed the 128 persons on board was itself a strong stimulus for serious efforts, particularly in improving air traffic control systems. This and many other difficult problems in aviation safety have been addressed in the subsequent 33 years, some with success, although it has not always been immediate, and with major accidents still occurring. Commercial air travel is safe and widely accepted, however, and there is promise for additional important advances here. PMID:2343835

  17. Reach-averaged sediment routing model of a canyon river

    USGS Publications Warehouse

    Wiele, S.M.; Wilcock, P.R.; Grams, P.E.

    2007-01-01

    Spatial complexity in channel geometry indicates that accurate prediction of sediment transport requires modeling in at least two dimensions. However, a one-dimensional model may be the only practical or possible alternative, especially for longer river reaches of practical concern in river management or landscape modeling. We have developed a one-dimensional model of the Colorado River through upper Grand Canyon that addresses this problem by reach averaging the channel properties and predicting changes in sand storage using separate source and sink functions coupled to the sand routing model. The model incorporates results from the application of a two-dimensional model of flow, sand transport, and bed evolution, and a new algorithm for setting the near-bed sand boundary condition for sand transported over an exposed bouldery bed. Model predictions were compared to measurements of sand discharge during intermittent tributary inputs and varying discharges controlled by dam releases. The model predictions generally agree well with the timing and magnitude of measured sand discharges but tend to overpredict sand discharge during the early stages of a high release designed to redistribute sand to higher-elevation deposits.

  18. Outbreak of leptospirosis among canyoning participants, Martinique, 2011.

    PubMed

    Hochedez, P; Escher, M; Decoussy, H; Pasgrimaud, L; Martinez, R; Rosine, J; Théodose, R; Bourhy, P; Picardeau, M; Olive, C; Ledrans, M; Cabie, A

    2013-01-01

    Two gendarmes who participated in canyoning activities on 27 June 2011 on the Caribbean island of Martinique were diagnosed with leptospirosis using quantitative real-time polymerase chain reaction (qPCR), 9 and 12 days after the event. Among the 45 participants who were contacted, 41 returned a completed questionnaire, of whom eight met the outbreak case definition. The eight cases sought medical attention and were given antibiotics within the first week after fever onset. No severe manifestations of leptospirosis were reported. In seven of the eight cases, the infection was confirmed by qPCR. Three pathogenic Leptospira species, including L. kmetyi, were identified in four of the cases. None of the evaluated risk factors were statistically associated with having developed leptospirosis. Rapid diagnostic assays, such as qPCR, are particularly appropriate in this setting – sporting events with prolonged fresh-water exposure – for early diagnosis and to help formulate public health recommendations. Participants in such events should be made specifically aware of the risk of leptospirosis, particularly during periods of heavy rainfall and flooding. PMID:23725775

  19. Variability of modal parameters measured on the Alamosa Canyon Bridge

    SciTech Connect

    Farrar, C.R.; Doebling, S.W. [Los Alamos National Lab., NM (United States); Cornwell, P.J.; Straser, E.G. [Stanford Univ., CA (United States). J.A. Blume Earthquake Engineering Center

    1996-12-31

    A significant amount of work has been reported in technical literature regarding the use of changes in modal parameters to identify the location and extent of damage in structures. Curiously absent, and critically important to the practical implementation of this work, is an accurate characterization of the natural variability of these modal parameters caused by effects other than damage. To examine this issue, a two-lane, seven-span, composite slab-on-girder bridge near the town of Truth or Consequences in southern New Mexico was tested several times over a period of nine months. Environmental effects common to this location that could potentially produce changes in the measured modal properties include changes in temperature, high winds, and changes to the supporting soil medium. In addition to environmental effects, variabilities in modal testing procedures and data reduction can also cause changes in the identified dynamic properties of the structure. In this paper the natural variability of the frequencies and mode shapes of the Alamosa Canyon bridge that result from changes in time of day when the test was performed, amount of traffic, and environmental conditions will be discussed. Because this bridge has not been in active use throughout the testing period, it is assumed that any change in the observed modal properties are the result of the factors listed above rather than deterioration of the structure itself.

  20. Great Houses and the Sun - Astronomy of Chaco Canyon

    NASA Astrophysics Data System (ADS)

    McKim Malville, J.; Munro, Andrew

    The primary axes of Basketmaker III pit structures at Shabik'eschee in Chaco Canyon have two orientations, one to the south and the other to the south-south-east. This architectural tradition continued with remarkable continuity throughout the San Juan Basin to the end of Pueblo III. Many of the Great Houses in Chaco, which appear to be massively enlarged front-facing unit pueblos typical of the Northern San Juan, continued this tradition. Orientations of the back walls of Great Houses to the solstice sun or standstill moon may never have been intended by the builders. Claimed inter-site alignments of Great Houses to minor or major standstill limits appear to be the results of local topography and not intended by the builders. Late Bonito phase (AD 1100-1140) Great Houses are distinguished by their planned designs, relatively short construction period, and negligible middens. Solstice sunrise or sunset horizon foresights are present at the majority of these Great Houses, which may have been designed in part to provide demonstrations of the astronomical knowledge of the Chacoan leadership.

  1. The Bayo Canyon/radioactive lanthanum (RaLa) program

    SciTech Connect

    Dummer, J.E.; Taschner, J.C.; Courtright, C.C.

    1996-04-01

    LANL conducted 254 radioactive lanthanum (RaLa) implosion experiments Sept. 1944-March 1962, in order to test implosion designs for nuclear weapons. High explosives surrounding common metals (surrogates for Pu) and a radioactive source containing up to several thousand curies of La, were involved in each experiment. The resulting cloud was deposited as fallout, often to distances of several miles. This report was prepared to summarize existing records as an aid in evaluating the off-site impact, if any, of this 18-year program. The report provides a historical setting for the program, which was conducted in Technical Area 10, Bayo Canyon about 3 miles east of Los Alamos. A description of the site is followed by a discussion of collateral experiments conducted in 1950 by US Air Force for developing an airborne detector for tracking atmospheric nuclear weapons tests. All known off-site data from the RaLa program are tabulated and discussed. Besides the radiolanthanum, other potential trace radioactive material that may have been present in the fallout is discussed and amounts estimated. Off-site safety considerations are discussed; a preliminary off-site dose assessment is made. Bibliographical data on 33 persons important to the program are presented as footnotes.

  2. Fluctuating Helical Asymmetry and Morphology of Snails (Gastropoda) in Divergent Microhabitats at ‘Evolution Canyons I and II,’ Israel

    PubMed Central

    Raz, Shmuel; Schwartz, Nathan P.; Mienis, Hendrik K.; Nevo, Eviatar; Graham, John H.

    2012-01-01

    Background Developmental instability of shelled gastropods is measured as deviations from a perfect equiangular (logarithmic) spiral. We studied six species of gastropods at ‘Evolution Canyons I and II’ in Carmel and the Galilee Mountains, Israel, respectively. The xeric, south-facing, ‘African’ slopes and the mesic, north-facing, ‘European’ slopes have dramatically different microclimates and plant communities. Moreover, ‘Evolution Canyon II’ receives more rainfall than ‘Evolution Canyon I.’ Methodology/Principal Findings We examined fluctuating asymmetry, rate of whorl expansion, shell height, and number of rotations of the body suture in six species of terrestrial snails from the two ‘Evolution Canyons.’ The xeric ‘African’ slope should be more stressful to land snails than the ‘European’ slope, and ‘Evolution Canyon I’ should be more stressful than ‘Evolution Canyon II.’ Only Eopolita protensa jebusitica showed marginally significant differences in fluctuating helical asymmetry between the two slopes. Contrary to expectations, asymmetry was marginally greater on the ‘European’ slope. Shells of Levantina spiriplana caesareana at ‘Evolution Canyon I,’ were smaller and more asymmetric than those at ‘Evolution Canyon II.’ Moreover, shell height and number of rotations of the suture were greater on the north-facing slopes of both canyons. Conclusions/Significance Our data is consistent with a trade-off between drought resistance and thermoregulation in snails; Levantina was significantly smaller on the ‘African’ slope, for increasing surface area and thermoregulation, while Eopolita was larger on the ‘African’ slope, for reducing water evaporation. In addition, ‘Evolution Canyon I’ was more stressful than Evolution Canyon II’ for Levantina. PMID:22848631

  3. Surficial Properties of Landslide Units in Ophir Chasma, Mars, from Remote-sensing Data

    NASA Astrophysics Data System (ADS)

    Chojnacki, M.; Jakosky, B. M.; Hynek, B. M.

    2005-03-01

    We mapped the surface layers of the Ophir Chasma region of Valles Marineris using observations made by the MGS's TES and the MO's THEMIS. We found the landslide units of Ophir's north wall to have a diverse range of characteristics.

  4. Exploring Mars: Old, Relatively

    NSDL National Science Digital Library

    This activity uses an image of landslides and craters at the wall of Valles Marineris on Mars to teach students how the notion of superposition can help to determine the sequence of events in a planet's geologic history.

  5. The Alpar canyon system in the Pannonian Basin, Hungary - its morphology, infill and development

    NASA Astrophysics Data System (ADS)

    Juhász, Györgyi; Pogácsás, György; Magyar, Imre; Hatalyák, Péter

    2013-04-01

    Giant incised canyons were recently recognized in Late-Miocene post-rift sediments in the central part of the Pannonian Basin. Though not connected to the world seas, Lake Pannon shows significant signs of relative lake level variations controlled by tectonics and climate changes. The incision surface of the Alpar canyon system is connected to SB Pa-4 (6.8 Ma sensu Vakarcs, 1997), earlier reported to represent a significant relative base-level fall in the basin, however, debated recently. Incised several hundred meters in the preexisting substrate, the individual canyon valleys of the Alpar canyon system are enormous in size and display a multi-story nature. They loose topographic expression headwards and basinward. Widths of individual valleys range from 5 to 10 km, with smaller tributaries. In the study area several adjacent canyon valleys can be seen on seismic profiles. The valley depth is greatest near their confluence, where a major trunk valley (600-700 m deep) was formed by eroding most of the Upper Miocene succession. The canyons are filled with clay marls. They are incised into an extremely thick aggrading deltaic complex and are overlain by fluvial sediments, suggesting a major transgression in between. The Late Miocene Alpár canyon system developed on the southern margin of the Mid-Hungarian Mobile Belt, the latter is characterized by NE-SW oriented fold axis and NE-SW oriented left lateral strike-slip faults. The canyon system coincides with a large releasing bend and/or extensional duplex of the Paks-Szolnok strike-slip system being active as sinistral during the Late Miocene. Presumably, the formation of the deep canyons was generated by the close interaction of several factors and events in space and time, among them tectonic uplift forced relative base-level fall, the reactivation and bending/duplexing of a strike-slip fault system located near the coeval zone of the lake shoreline and shelf edge, and the possible change of sediment supply carried by overfed rivers.

  6. Geothermal data for 95 thermal and nonthermal waters of the Valles Caldera - southern Jemez Mountains region, New Mexico

    SciTech Connect

    Goff, F.; McCormick, Trujillo, P.E. Jr.; Counce, D.; Grigsby, C.O.

    1982-05-01

    Field, chemical, and isotopic data for 95 thermal and nonthermal waters of the southern Jemez Mountains, New Mexico are presented. This region includes all thermal and mineral waters associated with Valles Caldera and many of those located near the Nacimiento Uplift, near San Ysidro. Waters of the region can be categorized into five general types: (1) surface and near surface meteoric waters; (2) acid-sulfate waters (Valles Caldera); (3) thermal meteoric waters (Valles Caldera); (4) deep geothermal and derivative waters (Valles Caldera); and (5) mineralized waters near San Ysidro. Some waters display chemical and isotopic characteristics intermediate between the types listed. The object of the data is to help interpret geothermal potential of the Jemez Mountains region and to provide background data for investigating problems in hydrology, structural geology, hydrothermal alterations, and hydrothermal solution chemistry.

  7. Hydrogeochemical data for thermal and nonthermal waters and gases of the Valles Caldera- southern Jemez Mountains region, New Mexico

    SciTech Connect

    Shevenell, L.; Goff, F.; Vuataz, F.; Trujillo, P.E. Jr.; Counce, D.; Janik, C.J.; Evans, W.

    1987-03-01

    This report presents field, chemical, gas, and isotopic data for thermal and nonthermal waters of the southern Jemez Mountains, New Mexico. This region includes all thermal and mineral waters associated with Valles Caldera and many of those located near the Nacimiento Uplift, north of San Ysidro. Waters of the region can be categorized into five general types: (1) surface and near-surface meteoric waters; (2) acid-sulfate waters at Sulphur Springs (Valles Caldera); (3) thermal meteoric waters in the ring fracture zone (Valles Caldera); (4) deep geothermal waters of the Baca geothermal field and derivative waters in the Soda Dam and Jemez Springs area (Valles Caldera); and (5) mineralized waters near San Ysidro. Some waters display chemical and isotopic characteristics intermediate between the types listed. Data in this report will help in interpreting the geothermal potential of the Jemez Mountains region and will provide background for investigating problems in hydrology, structural geology, hydrothermal alterations, and hydrothermal solution chemistry.

  8. RESEARCH AND DEVELOPMENT ACTIVITIES AT SAVANNAH RIVER SITE'S H CANYON FACILITY

    SciTech Connect

    Sexton, L.; Fuller, Kenneth

    2013-07-09

    The Savannah River Site's (SRS) H Canyon Facility is the only large scale, heavily shielded, nuclear chemical separations plant still in operation in the U.S. The facility's operations historically recovered uranium-235 (U-235) and neptunium-237 (Np-237) from aluminum-clad, enriched-uranium fuel tubes from Site nuclear reactors and other domestic and foreign research reactors. Today the facility, in conjunction with HB Line, is working to provide the initial feed material to the Mixed Oxide Facility also located on SRS. Many additional campaigns are also in the planning process. Furthermore, the facility has started to integrate collaborative research and development (R&D) projects into its schedule. H Canyon can serve as the appropriate testing location for many technologies focused on monitoring the back end of the fuel cycle, due to the nature of the facility and continued operation. H Canyon, in collaboration with the Savannah River National Laboratory (SRNL), has been working with several groups in the DOE complex to conduct testing demonstrations of novel technologies at the facility. The purpose of conducting these demonstrations at H Canyon will be to demonstrate the capabilities of the emerging technologies in an operational environment. This paper will summarize R&D testing activities currently taking place in H Canyon and discuss the possibilities for future collaborations.

  9. An In Situ Radiological Survey of Three Canyons at the Los Alamos National Laboratory

    SciTech Connect

    R.J. Maurer

    1999-06-01

    An in situ radiological survey of Mortandad, Ten Site, and DP Canyons at the Los Alamos National Laboratory was conducted during August 19-30, 1996. The purpose of this survey was to measure the quantities of radionuclides that remain in the canyons from past laboratory operations. A total of 65 in situ measurements were conducted using high-resolution gamma radiation detectors at 1 meter above the ground. The measurements were obtained in the streambeds of the canyons beginning near the water-release points at the laboratories and extending to the ends of the canyons. Three man-made gamma-emitting radionuclides were detected in the canyons: americium-241 ({sup 241}Am), cesium-137 ({sup 137}Cs), and cobalt-60 ({sup 60}Co). Estimated contamination levels ranged from 13.3-290.4 picocuries per gram (pCi/g)for {sup 241}Am, 4.4-327.8 pCi/g for {sup 137}Cs, and 0.4-2.6 pCi/g for {sup 60}Co.

  10. A multidisciplinary study of the role of submarine canyons off western Portugal

    NASA Astrophysics Data System (ADS)

    Vitorino, J.; Oliveira, A.; Rodrigues, A.

    2003-04-01

    A multidisciplinary research aimed to characterise the dominant aspects of the Portuguese canyon systems and their role on the shelf-deep ocean sediment exchanges is being conducted in the framework of EU project Eurostrataform. Three contrasting systems are studied: (1) the Nazaré Canyon is a narrow and deep canyon which extends from the deep ocean and completely cuts the NW Portuguese shelf, with no local riverine sources; (2) the Setubal-Lisbon canyon system affects an area marked by complex topography and coastline configuration and with riverine contributions provided by the Tagus and Sado rivers; (3) the Oporto canyon is restricted to the outer shelf, with a major local riverine source (Douro river). We present preliminary results from the ongoing program of observations, which includes multidisciplinary surveys (CTD, suspended particle matter measurments, shallow seismic) and both long- and short-term moorings. Process studies are extended with the use of system MOCASSIM, an operational system for the forecast of oceanographic conditions off the Portuguese coast, which is presently being developped at Instituto Hidrografico. The system integrates wave and circulation models and makes use of data assimilation methods to provide numerical results which are consistent with the observed conditions.

  11. Study on the wind field and pollutant dispersion in street canyons using a stable numerical method.

    PubMed

    Xia, Ji-Yang; Leung, Dennis Y C

    2005-01-01

    A stable finite element method for the time dependent Navier-Stokes equations was used for studying the wind flow and pollutant dispersion within street canyons. A three-step fractional method was used to solve the velocity field and the pressure field separately from the governing equations. The Streamline Upwind Petrov-Galerkin (SUPG) method was used to get stable numerical results. Numerical oscillation was minimized and satisfactory results can be obtained for flows at high Reynolds numbers. Simulating the flow over a square cylinder within a wide range of Reynolds numbers validates the wind field model. The Strouhal numbers obtained from the numerical simulation had a good agreement with those obtained from experiment. The wind field model developed in the present study is applied to simulate more complex flow phenomena in street canyons with two different building configurations. The results indicated that the flow at rooftop of buildings might not be assumed parallel to the ground as some numerical modelers did. A counter-clockwise rotating vortex may be found in street canyons with an inflow from the left to right. In addition, increasing building height can increase velocity fluctuations in the street canyon under certain circumstances, which facilitate pollutant dispersion. At high Reynolds numbers, the flow regimes in street canyons do not change with inflow velocity. PMID:16083131

  12. Street canyon flow patterns in a horizontal plane : measurements from the Joint URBAN 2003 field experiment

    SciTech Connect

    Brown, M. J. (Michael J.); Khalsa, H. S. (Hari S.); Nelson, M. A. (Matthew Aaron); Boswell, D. (David)

    2004-01-01

    As part of the larger Joint URBAN 2003 tracer field experiment performed in Oklahoma City from June 29 to July 30, 2003, a collaborative team of government and university researchers instrumented a downtown street canyon with a high density of wind sensor instrumentation (Brown et al., 2003). The goal of the Park Avenue street canyon experiment was to garner flow field information in order to better understand the transport and dispersion of tracers released in the street canyon and to test and improve the next generation of urban dispersion models. In this paper, we focus on describing the mean flow patterns that developed in the street canyon in a horizontal plane near the surface. We look at the patterns that develop over entire Intensive Operating Periods (IOP's) lasting from 6-9 hours in length, and as a function of inflow wind direction. Most prior street canyon experiments have generally focused on the vertical structure of the flow; this work contributes to the understanding of the horizontal nature of the flow.

  13. A simplified water temperature model for the Colorado River below Glen Canyon Dam

    USGS Publications Warehouse

    Wright, S.A.; Anderson, C.R.; Voichick, N.

    2009-01-01

    Glen Canyon Dam, located on the Colorado River in northern Arizona, has affected the physical, biological and cultural resources of the river downstream in Grand Canyon. One of the impacts to the downstream physical environment that has important implications for the aquatic ecosystem is the transformation of the thermal regime from highly variable seasonally to relatively constant year-round, owing to hypolimnetic releases from the upstream reservoir, Lake Powell. Because of the perceived impacts on the downstream aquatic ecosystem and native fish communities, the Glen Canyon Dam Adaptive Management Program has considered modifications to flow releases and release temperatures designed to increase downstream temperatures. Here, we present a new model of monthly average water temperatures below Glen Canyon Dam designed for first-order, relatively simple evaluation of various alternative dam operations. The model is based on a simplified heat-exchange equation, and model parameters are estimated empirically. The model predicts monthly average temperatures at locations up to 421 km downstream from the dam with average absolute errors less than 0.58C for the dataset considered. The modelling approach used here may also prove useful for other systems, particularly below large dams where release temperatures are substantially out of equilibrium with meteorological conditions. We also present some examples of how the model can be used to evaluate scenarios for the operation of Glen Canyon Dam.

  14. Coastal cape and canyon effects on wind-driven upwelling in northern Taiwan Strait

    NASA Astrophysics Data System (ADS)

    Chen, Zhaoyun; Yan, Xiao-Hai; Jiang, Yuwu

    2014-07-01

    A combination of observations and numerical model is used to reveal the upwelling features and mechanisms in the northern Taiwan Strait during summer. In situ data give evidence of the upwelling in the form of thermocline tilting upward onshore. The remote sensing data show a strip of upwelling in the coastal region, which occurs more than half a summer. The upwelling probability map indicates there are two upwelling cores, one located downstream of Pingtan Island formed as cape effect and the other over the coastal canyon off the Sansha Bay. Remote sensing data and numerical model results suggest that the southerly wind plays a key role in shaping this upwelling strip, while the tides regulate the upwelling location through tidal mixing effect in the shallow water region, especially lee of Pingtan Island. Further numerical experiments using idealized cape and coastal canyon topography show that vertical velocity is intensified downstream of the cape and canyon. The vorticity equation shows that relative vorticity change along a streamline and frictional diffusion of vorticity are responsible for the vertical velocity off the cape and within and around the canyon. According to the conservation of potential vorticity, the variation of relative vorticity along a streamline over irregular topography, e.g., cape and canyon, is the main mechanism for the two upwelling cores in the northern Taiwan Strait.

  15. Colorado River fish monitoring in Grand Canyon, Arizona; 2000 to 2009 summary

    USGS Publications Warehouse

    Makinster, Andrew S.; Persons, William R.; Avery, Luke A.; Bunch, Aaron J.

    2010-01-01

    Long-term fish monitoring in the Colorado River below Glen Canyon Dam is an essential component of the Glen Canyon Dam Adaptive Management Program (GCDAMP). The GCDAMP is a federally authorized initiative to ensure that the primary mandate of the Grand Canyon Protection Act of 1992 to protect resources downstream from Glen Canyon Dam is met. The U.S. Geological Survey's Grand Canyon Monitoring and Research Center is responsible for the program's long-term fish monitoring, which is implemented in cooperation with the Arizona Game and Fish Department, U.S. Fish and Wildlife Service, SWCA Environmental Consultants, and others. Electrofishing and tagging protocols have been developed and implemented for standardized annual monitoring of Colorado River fishes since 2000. In 2009, sampling occurred throughout the river between Lees Ferry and Lake Mead for 38 nights over two trips. During the two trips, scientists captured 6,826 fish representing 11 species. Based on catch-per-unit-effort, salmonids (for example, rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta)) increased eightfold between 2006 and 2009. Flannelmouth sucker (Catostomus latipinnis) catch rates were twice as high in 2009 as in 2006. Humpback chub (Gila cypha) catches were low throughout the 10-year sampling period.

  16. Effectiveness of green infrastructure for improvement of air quality in urban street canyons.

    PubMed

    Pugh, Thomas A M; Mackenzie, A Robert; Whyatt, J Duncan; Hewitt, C Nicholas

    2012-07-17

    Street-level concentrations of nitrogen dioxide (NO(2)) and particulate matter (PM) exceed public health standards in many cities, causing increased mortality and morbidity. Concentrations can be reduced by controlling emissions, increasing dispersion, or increasing deposition rates, but little attention has been paid to the latter as a pollution control method. Both NO(2) and PM are deposited onto surfaces at rates that vary according to the nature of the surface; deposition rates to vegetation are much higher than those to hard, built surfaces. Previously, city-scale studies have suggested that deposition to vegetation can make a very modest improvement (<5%) to urban air quality. However, few studies take full account of the interplay between urban form and vegetation, specifically the enhanced residence time of air in street canyons. This study shows that increasing deposition by the planting of vegetation in street canyons can reduce street-level concentrations in those canyons by as much as 40% for NO(2) and 60% for PM. Substantial street-level air quality improvements can be gained through action at the scale of a single street canyon or across city-sized areas of canyons. Moreover, vegetation will continue to offer benefits in the reduction of pollution even if the traffic source is removed from city centers. Thus, judicious use of vegetation can create an efficient urban pollutant filter, yielding rapid and sustained improvements in street-level air quality in dense urban areas. PMID:22663154

  17. Status and Trends of Resources Below Glen Canyon Dam Update - 2009

    USGS Publications Warehouse

    Hamill, John F.

    2009-01-01

    The protection of resources found in Glen Canyon National Recreation Area and Grand Canyon National Park, Arizona, emerged as a significant public concern in the decades following the completion of Glen Canyon Dam in 1963. The dam, which lies about 15 miles upstream from the park, altered the Colorado River's flow, temperature, and sediment-carrying capacity, resulting over time in beach erosion, expansion of nonnative species, and losses of native fish. During the 1990s, in response to public concern, Congress and the Department of the Interior embarked on an ongoing effort to reduce and address the effects of dam operations on downstream resources. In 2005, the U.S. Geological Survey produced a comprehensive report entitled 'The State of the Colorado River Ecosystem in Grand Canyon', which documented the condition and trends of resources downstream of Glen Canyon Dam from 1991 to 2004. This fact sheet updates the 2005 report to extend its findings to include data published through April 2009 for key resources.

  18. On the Impact of Trees on Dispersion Processes of Traffic Emissions in Street Canyons

    NASA Astrophysics Data System (ADS)

    Gromke, Christof; Ruck, Bodo

    2009-04-01

    Wind-tunnel studies of dispersion processes of traffic exhaust in urban street canyons with tree planting were performed and tracer gas concentrations using electron capture detection (ECD) and flow fields using laser Doppler velocimetry (LDV) were measured. It was found that tree planting reduces the air exchange between street canyons and the ambience. In comparison to treeless street canyons, higher overall pollutant concentrations and lower flow velocities were measured. In particular, for perpendicular approaching wind, markedly higher concentrations at the leeward canyon wall and slightly lower concentrations at the windward canyon wall were observed. Furthermore, a new approach is suggested to model porous vegetative structures such as tree crowns for small-scale wind-tunnel applications. The approach is based on creating different model tree crown porosities by incorporating a certain amount of wadding material into a specified volume. A significant influence of the crown porosity on pollutant concentrations was found for high degrees of porosity, however, when it falls below a certain threshold, no further changes in pollutant concentrations were observed.

  19. A paleolimnological investigation of historical environmental change in East Canyon Reservoir

    NASA Astrophysics Data System (ADS)

    Higby Halseth, Deanna Renee

    East Canyon Reservoir is located 32 km east of Salt Lake City, Utah, and serves as a resource for irrigation, culinary water, and recreation. This research used paleolimnology and historical records to investigate the impacts of multiple stressors, including land clearance, dam construction and enlargement, and climate warming on East Canyon Reservoir. Recently, blue green algal blooms, typically indicative of eutrophication, have been increasing at East Canyon Reservoir despite reductions of nutrients from point sources, so part of the impetus for this study was to understand the forcing mechanisms of these blooms. A multiproxy analysis of three sediment cores retrieved from the reservoir determined changes in nutrient concentrations and sediment composition over time. Percent organics, magnetic susceptibility, and diatom analyses of 210Pb dated cores were compared to measurements of temperature and precipitation as well as records of historical land use, which were determined using remote sensing. Percent organics and magnetic susceptibility showed changes related to dam construction and increased development. Fossil diatom assemblages indicated that East Canyon Reservoir had been eutrophic since origination; however, principal components analyses of the diatom data indicated that the canyon became more P-enriched following dam construction and increased development. Recent increases in Cyclotella diatoms indicate changes related to warming temperatures, and we speculate that this warming is also what is causing blue-green algal blooms to increase.

  20. Geomorphic process fingerprints in submarine canyons1 Daniel S. Brothers*, Uri S. ten Brink, Brian D. Andrews, Jason D. Chaytor, David C.2

    E-print Network

    ten Brink, Uri S.

    1 Geomorphic process fingerprints in submarine canyons1 Daniel S. Brothers*, Uri S. ten *Corresponding author: dbrothers@usgs.gov; 508-457-229310 11 Abstract12 Submarine canyons are common from the continents to the deep sea.14 Though it is known that submarine canyons form primarily from