Science.gov

Sample records for vapor phase cigarette

  1. Glass fibers and vapor phase components of cigarette smoke as cofactors in experimental respiratory tract carcinogenesis

    SciTech Connect

    Feron, V.J.; Kuper, C.F.; Spit, B.J.; Reuzel, P.G.; Woutersen, R.A.

    1985-01-01

    Syrian golden hamsters were given intratracheal instillations of glass fibers with or without BP suspended in saline, once a fortnight for 52 weeks; the experiment was terminated at week 85. No tumors of the respiratory tract were observed in hamsters treated with glass fibers alone. There was no indication that glass fibers enhanced the development of respiratory tract tumors induced by BP. In another study Syrian golden hamsters were exposed to fresh air or to a mixture of 4 major vapor phase components of cigarette smoke, viz. isoprene (800----700 ppm), methyl chloride (1000----900 ppm), methyl nitrite (200----190 ppm) and acetaldehyde (1400----1200 ppm) for a period of at most 23 months. Some of the animals were also given repeated intratracheal instillations of BP or norharman in saline. Laryngeal tumors were found in 7/31 male and 6/32 female hamsters exposed only to the vapor mixture, whereas no laryngeal tumors occurred in controls. The tumor response of the larynx most probably has to be ascribed entirely to the action of acetaldehyde. Simultaneous treatment with norharman or BP did not affect the tumor response of the larynx. Acetaldehyde may occur in the vapor phase of cigarette smoke at levels up to 2000 ppm. Chronic inhalation exposure of rats to acetaldehyde at levels of 0 (controls), 750, 1500 or 3000----1000 ppm resulted in a high incidence of nasal carcinomas, both squamous cell carcinomas of the respiratory epithelium and adenocarcinomas of the olfactory epithelium. It was discussed that acetaldehyde may significantly contribute to the induction of bronchogenic cancer by cigarette smoke in man.

  2. E-Cigarettes Emit Toxic Vapors

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_160107.html E-Cigarettes Emit Toxic Vapors: Study Levels depend on ... findings could be important to both makers of e-cigarettes and regulators who want to reduce the ...

  3. Murine lung tumor response after exposure to cigarette mainstream smoke or its particulate and gas/vapor phase fractions.

    PubMed

    Stinn, Walter; Arts, Josje H E; Buettner, Ansgar; Duistermaat, Evert; Janssens, Kris; Kuper, C Frieke; Haussmann, Hans-Juergen

    2010-09-10

    Knowledge on mechanisms of smoking-induced tumorigenesis and on active smoke constituents may improve the development and evaluation of chemopreventive and therapeutic interventions, early diagnostic markers, and new and potentially reduced-risk tobacco products. A suitable laboratory animal disease model of mainstream cigarette smoke inhalation is needed for this purpose. In order to develop such a model, A/J and Swiss SWR/J mouse strains, with a genetic susceptibility to developing lung adenocarcinoma, were whole-body exposed to diluted cigarette mainstream smoke at 0, 120, and 240 mg total particulate matter per m(3) for 6h per day, 5 days per week. Mainstream smoke is the smoke actively inhaled by the smoker. For etiological reasons, parallel exposures to whole smoke fractions (enriched for particulate or gas/vapor phase) were performed at the higher concentration level. After 5 months of smoke inhalation and an additional 4-month post-inhalation period, both mouse strains responded similarly: no increase in lung tumor multiplicity was seen at the end of the inhalation period; however, there was a concentration-dependent tumorigenic response at the end of the post-inhalation period (up to 2-fold beyond control) in mice exposed to the whole smoke or the particulate phase. Tumors were characterized mainly as pulmonary adenomas. At the end of the inhalation period, epithelial hyperplasia, atrophy, and metaplasia were found in the nasal passages and larynx, and cellular and molecular markers of inflammation were found in the bronchoalveolar lavage fluid. These inflammatory effects were mostly resolved by the end of the post-inhalation period. In summary, these mouse strains responded to mainstream smoke inhalation with enhanced pulmonary adenoma formation. The major tumorigenic potency resided in the particulate phase, which is contrary to the findings published for environmental tobacco smoke surrogate inhalation in these mouse models. PMID:20594951

  4. Automation of the in vitro micronucleus and chromosome aberration assay for the assessment of the genotoxicity of the particulate and gas-vapor phase of cigarette smoke.

    PubMed

    Roemer, Ewald; Zenzen, Volker; Conroy, Lynda L; Luedemann, Kathrin; Dempsey, Ruth; Schunck, Christian; Sticken, Edgar Trelles

    2015-01-01

    Total particulate matter (TPM) and the gas-vapor phase (GVP) of mainstream smoke from the Reference Cigarette 3R4F were assayed in the cytokinesis-block in vitro micronucleus (MN) assay and the in vitro chromosome aberration (CA) assay, both using V79-4 Chinese hamster lung fibroblasts exposed for up to 24 h. The Metafer image analysis platform was adapted resulting in a fully automated evaluation system of the MN assay for the detection, identification and reporting of cells with micronuclei together with the determination of the cytokinesis-block proliferation index (CBPI) to quantify the treatment-related cytotoxicity. In the CA assay, the same platform was used to identify, map and retrieve metaphases for a subsequent CA evaluation by a trained evaluator. In both the assays, TPM and GVP provoked a significant genotoxic effect: up to 6-fold more micronucleated target cells than in the negative control and up to 10-fold increases in aberrant metaphases. Data variability was lower in the automated version of the MN assay than in the non-automated. It can be estimated that two test substances that differ in their genotoxicity by approximately 30% can statistically be distinguished in the automated MN and CA assays. Time savings, based on man hours, due to the automation were approximately 70% in the MN and 25% in the CA assays. The turn-around time of the evaluation phase could be shortened by 35 and 50%, respectively. Although only cigarette smoke-derived test material has been applied, the technical improvements should be of value for other test substances. PMID:25986082

  5. Vapor phase pyrolysis

    NASA Technical Reports Server (NTRS)

    Steurer, Wolfgang

    1992-01-01

    The vapor phase pyrolysis process is designed exclusively for the lunar production of oxygen. In this concept, granulated raw material (soil) that consists almost entirely of metal oxides is vaporized and the vapor is raised to a temperature where it dissociates into suboxides and free oxygen. Rapid cooling of the dissociated vapor to a discrete temperature causes condensation of the suboxides, while the oxygen remains essentially intact and can be collected downstream. The gas flow path and flow rate are maintained at an optimum level by control of the pressure differential between the vaporization region and the oxygen collection system with the aid of the environmental vacuum.

  6. Evaluation of E-Cigarette Liquid Vapor and Mainstream Cigarette Smoke after Direct Exposure of Primary Human Bronchial Epithelial Cells

    PubMed Central

    Scheffler, Stefanie; Dieken, Hauke; Krischenowski, Olaf; Förster, Christine; Branscheid, Detlev; Aufderheide, Michaela

    2015-01-01

    E-cigarettes are emerging products, often described as “reduced-risk” nicotine products or alternatives to combustible cigarettes. Many smokers switch to e-cigarettes to quit or significantly reduce smoking. However, no regulations for e-cigarettes are currently into force, so that the quality and safety of e-liquids is not necessarily guaranteed. We exposed primary human bronchial epithelial cells of two different donors to vapor of e-cigarette liquid with or without nicotine, vapor of the carrier substances propylene glycol and glycerol as well as to mainstream smoke of K3R4F research cigarettes. The exposure was done in a CULTEX® RFS compact module, allowing the exposure of the cells at the air-liquid interface. 24 h post-exposure, cell viability and oxidative stress levels in the cells were analyzed. We found toxicological effects of e-cigarette vapor and the pure carrier substances, whereas the nicotine concentration did not have an effect on the cell viability. The viability of mainstream smoke cigarette exposed cells was 4.5–8 times lower and the oxidative stress levels 4.5–5 times higher than those of e-cigarette vapor exposed cells, depending on the donor. Our experimental setup delivered reproducible data and thus provides the opportunity for routine testing of e-cigarette liquids to ensure safety and quality for the user. PMID:25856554

  7. Chemical hazards present in liquids and vapors of electronic cigarettes.

    PubMed

    Hutzler, Christoph; Paschke, Meike; Kruschinski, Svetlana; Henkler, Frank; Hahn, Jürgen; Luch, Andreas

    2014-07-01

    Electronic (e-)cigarettes have emerged in recent years as putative alternative to conventional tobacco cigarettes. These products do not contain typical carcinogens that are present in tobacco smoke, due to the lack of combustion. However, besides nicotine, hazards can also arise from other constituents of liquids, such as solvents, flavors, additives and contaminants. In this study, we have analyzed 28 liquids of seven manufacturers purchased in Germany. We confirm the presence of a wide range of flavors to enhance palatability. Although glycerol and propylene glycol were detected in all samples, these solvents had been replaced by ethylene glycol as dominant compound in five products. Ethylene glycol is associated with markedly enhanced toxicological hazards when compared to conventionally used glycerol and propylene glycol. Additional additives, such as coumarin and acetamide, that raise concerns for human health were detected in certain samples. Ten out of 28 products had been declared "free-of-nicotine" by the manufacturer. Among these ten, seven liquids were identified containing nicotine in the range of 0.1-15 µg/ml. This suggests that "carry over" of ingredients may occur during the production of cartridges. We have further analyzed the formation of carbonylic compounds in one widely distributed nicotine-free brand. Significant amounts of formaldehyde, acetaldehyde and propionaldehyde were only found at 150 °C by headspace GC-MS analysis. In addition, an enhanced formation of aldehydes was found in defined puff fractions, using an adopted machine smoking protocol. However, this effect was delayed and only observed during the last third of the smoking procedure. In the emissions of these fractions, which represent up to 40 % of total vapor volume, similar levels of formaldehyde were detected when compared to conventional tobacco cigarettes. By contrast, carbonylic compounds were hardly detectable in earlier collected fractions. Our data demonstrate the

  8. Transcriptome sequencing reveals e-cigarette vapor and mainstream-smoke from tobacco cigarettes activate different gene expression profiles in human bronchial epithelial cells

    PubMed Central

    Shen, Yifei; Wolkowicz, Michael J.; Kotova, Tatyana; Fan, Lonjiang; Timko, Michael P.

    2016-01-01

    Electronic cigarettes (e-cigarettes) generate an aerosol vapor (e-vapor) thought to represent a less risky alternative to main stream smoke (MSS) of conventional tobacco cigarettes. RNA-seq analysis was used to examine the transcriptomes of differentiated human bronchial epithelial (HBE) cells exposed to air, MSS from 1R5F tobacco reference cigarettes, and e-vapor with and without added nicotine in an in vitro air-liquid interface model for cellular exposure. Our results indicate that while e-vapor does not elicit many of the cell toxicity responses observed in MSS-exposed HBE cells, e-vapor exposure is not benign, but elicits discrete transcriptomic signatures with and without added nicotine. Among the cellular pathways with the most significantly enriched gene expression following e-vapor exposure are the phospholipid and fatty acid triacylglycerol metabolism pathways. Our data suggest that alterations in cellular glycerophopholipid biosynthesis are an important consequences of e-vapor exposure. Moreover, the presence of nicotine in e-vapor elicits a cellular response distinct from e-vapor alone including alterations of cytochrome P450 function, retinoid metabolism, and nicotine catabolism. These studies establish a baseline for future analysis of e-vapor and e-vapor additives that will better inform the FDA and other governmental bodies in discussions of the risks and future regulation of these products. PMID:27041137

  9. Transcriptome sequencing reveals e-cigarette vapor and mainstream-smoke from tobacco cigarettes activate different gene expression profiles in human bronchial epithelial cells.

    PubMed

    Shen, Yifei; Wolkowicz, Michael J; Kotova, Tatyana; Fan, Lonjiang; Timko, Michael P

    2016-01-01

    Electronic cigarettes (e-cigarettes) generate an aerosol vapor (e-vapor) thought to represent a less risky alternative to main stream smoke (MSS) of conventional tobacco cigarettes. RNA-seq analysis was used to examine the transcriptomes of differentiated human bronchial epithelial (HBE) cells exposed to air, MSS from 1R5F tobacco reference cigarettes, and e-vapor with and without added nicotine in an in vitro air-liquid interface model for cellular exposure. Our results indicate that while e-vapor does not elicit many of the cell toxicity responses observed in MSS-exposed HBE cells, e-vapor exposure is not benign, but elicits discrete transcriptomic signatures with and without added nicotine. Among the cellular pathways with the most significantly enriched gene expression following e-vapor exposure are the phospholipid and fatty acid triacylglycerol metabolism pathways. Our data suggest that alterations in cellular glycerophopholipid biosynthesis are an important consequences of e-vapor exposure. Moreover, the presence of nicotine in e-vapor elicits a cellular response distinct from e-vapor alone including alterations of cytochrome P450 function, retinoid metabolism, and nicotine catabolism. These studies establish a baseline for future analysis of e-vapor and e-vapor additives that will better inform the FDA and other governmental bodies in discussions of the risks and future regulation of these products. PMID:27041137

  10. Vapor Phase Catalytic Ammonia Reduction

    NASA Technical Reports Server (NTRS)

    Flynn, Michael T.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    This paper discusses the development of a Vapor Phase Catalytic Ammonia Reduction (VPCAR) teststand and the results of an experimental program designed to evaluate the potential of the technology as a water purification process. In the experimental program the technology is evaluated based upon product water purity, water recovery rate, and power consumption. The experimental work demonstrates that the technology produces high purity product water and attains high water recovery rates at a relatively high specific power consumption. The experimental program was conducted in 3 phases. In phase I an Igepon(TM) soap and water mixture was used to evaluate the performance of an innovative Wiped-Film Rotating-Disk evaporator and associated demister. In phase II a phenol-water solution was used to evaluate the performance of the high temperature catalytic oxidation reactor. In phase III a urine analog was used to evaluate the performance of the combined distillation/oxidation functions of the processor.

  11. Vaporous Marketing: Uncovering Pervasive Electronic Cigarette Advertisements on Twitter

    PubMed Central

    Jones, Chris A.; Williams, Jake Ryland; Kurti, Allison N.; Norotsky, Mitchell Craig; Danforth, Christopher M.; Dodds, Peter Sheridan

    2016-01-01

    Background Twitter has become the “wild-west” of marketing and promotional strategies for advertisement agencies. Electronic cigarettes have been heavily marketed across Twitter feeds, offering discounts, “kid-friendly” flavors, algorithmically generated false testimonials, and free samples. Methods All electronic cigarette keyword related tweets from a 10% sample of Twitter spanning January 2012 through December 2014 (approximately 850,000 total tweets) were identified and categorized as Automated or Organic by combining a keyword classification and a machine trained Human Detection algorithm. A sentiment analysis using Hedonometrics was performed on Organic tweets to quantify the change in consumer sentiments over time. Commercialized tweets were topically categorized with key phrasal pattern matching. Results The overwhelming majority (80%) of tweets were classified as automated or promotional in nature. The majority of these tweets were coded as commercialized (83.65% in 2013), up to 33% of which offered discounts or free samples and appeared on over a billion twitter feeds as impressions. The positivity of Organic (human) classified tweets has decreased over time (5.84 in 2013 to 5.77 in 2014) due to a relative increase in the negative words ‘ban’, ‘tobacco’, ‘doesn’t’, ‘drug’, ‘against’, ‘poison’, ‘tax’ and a relative decrease in the positive words like ‘haha’, ‘good’, ‘cool’. Automated tweets are more positive than organic (6.17 versus 5.84) due to a relative increase in the marketing words like ‘best’, ‘win’, ‘buy’, ‘sale’, ‘health’, ‘discount’ and a relative decrease in negative words like ‘bad’, ‘hate’, ‘stupid’, ‘don’t’. Conclusions Due to the youth presence on Twitter and the clinical uncertainty of the long term health complications of electronic cigarette consumption, the protection of public health warrants scrutiny and potential regulation of social media

  12. Infrared spectroscopy study of the influence of inhaled vapors/smoke produced by cigarettes of active smokers

    NASA Astrophysics Data System (ADS)

    Popa, Cristina

    2015-05-01

    While much is known about the effect of smoke and vapors on the composition of blood, little is known about their impact on the composition of breath. When tobacco from traditional cigarettes (T) is burned, it produces harmful smoke compared with the vapor produced when using electronic cigarettes (E). Using a noninvasive, safe, and rapid CO2 laser-photoacoustic method, this study aimed to examine the ethylene changes at different time intervals in the exhaled breath composition of E-cigarette smokers and T-cigarette smokers, before and after the consecutive exposures to cigarettes. Oxidative stress from exposure to tobacco smoke has a role in the pathogenic process, leading to chronic obstructive pulmonary disease. The evidence on the mechanisms by which T-smoking causes damage indicates that there is no risk-free level of exposure to tobacco smoke. The study revealed that the ethylene level (in the E-cigarette smoker's case) was found to be in smaller concentrations (compared with T-cigarette smoker's case) and that E-cigarettes may provide an alternative to T-cigarette smoking.

  13. Electrothermal vaporization, part 1: gas phase chemistry

    NASA Astrophysics Data System (ADS)

    Majidi, Vahid; Xu, Ning; Smith, Robert G.

    2000-01-01

    This manuscript is the first of a two-part publication on evaluation of vaporization and atomization processes in electrothermal vaporizers (ETV). Part 1 is specifically focused on gas phase (and heterogeneous) chemistry in ETVs. Molecular absorption spectroscopy and thermogravimetric analysis (in conjunction with gas-phase mass spectrometry) are used to investigate the vaporization of Mg, Ca, Sr, Ba, Co and Ni (chloride and nitrate salts). Graphite, Pt, and Ta were used as substrate material for vaporizers to elucidate some observations of gas-phase chemistry. The experiments in Part I and II of this series are intentionally performed using wall vaporization to closely mimic the conditions used when ETV is employed as a sample introduction device.

  14. Carbonyl Compounds in Electronic Cigarette Vapors: Effects of Nicotine Solvent and Battery Output Voltage

    PubMed Central

    Kosmider, Leon; Sobczak, Andrzej; Fik, Maciej; Knysak, Jakub; Zaciera, Marzena; Kurek, Jolanta

    2014-01-01

    Introduction: Glycerin (VG) and propylene glycol (PG) are the most common nicotine solvents used in e-cigarettes (ECs). It has been shown that at high temperatures both VG and PG undergo decomposition to low molecular carbonyl compounds, including the carcinogens formaldehyde and acetaldehyde. The aim of this study was to evaluate how various product characteristics, including nicotine solvent and battery output voltage, affect the levels of carbonyls in EC vapor. Methods: Twelve carbonyl compounds were measured in vapors from 10 commercially available nicotine solutions and from 3 control solutions composed of pure glycerin, pure propylene glycol, or a mixture of both solvents (50:50). EC battery output voltage was gradually modified from 3.2 to 4.8V. Carbonyl compounds were determined using the HPLC/DAD method. Results: Formaldehyde and acetaldehyde were found in 8 of 13 samples. The amounts of formaldehyde and acetaldehyde in vapors from lower voltage EC were on average 13- and 807-fold lower than in tobacco smoke, respectively. The highest levels of carbonyls were observed in vapors generated from PG-based solutions. Increasing voltage from 3.2 to 4.8V resulted in a 4 to more than 200 times increase in formaldehyde, acetaldehyde, and acetone levels. The levels of formaldehyde in vapors from high-voltage device were in the range of levels reported in tobacco smoke. Conclusions: Vapors from EC contain toxic and carcinogenic carbonyl compounds. Both solvent and battery output voltage significantly affect levels of carbonyl compounds in EC vapors. High-voltage EC may expose users to high levels of carbonyl compounds. PMID:24832759

  15. Endothelial disruptive proinflammatory effects of nicotine and e-cigarette vapor exposures.

    PubMed

    Schweitzer, Kelly S; Chen, Steven X; Law, Sarah; Van Demark, Mary; Poirier, Christophe; Justice, Matthew J; Hubbard, Walter C; Kim, Elena S; Lai, Xianyin; Wang, Mu; Kranz, William D; Carroll, Clinton J; Ray, Bruce D; Bittman, Robert; Goodpaster, John; Petrache, Irina

    2015-07-15

    The increased use of inhaled nicotine via e-cigarettes has unknown risks to lung health. Having previously shown that cigarette smoke (CS) extract disrupts the lung microvasculature barrier function by endothelial cell activation and cytoskeletal rearrangement, we investigated the contribution of nicotine in CS or e-cigarettes (e-Cig) to lung endothelial injury. Primary lung microvascular endothelial cells were exposed to nicotine, e-Cig solution, or condensed e-Cig vapor (1-20 mM nicotine) or to nicotine-free CS extract or e-Cig solutions. Compared with nicotine-containing extract, nicotine free-CS extract (10-20%) caused significantly less endothelial permeability as measured with electric cell-substrate impedance sensing. Nicotine exposures triggered dose-dependent loss of endothelial barrier in cultured cell monolayers and rapidly increased lung inflammation and oxidative stress in mice. The endothelial barrier disruptive effects were associated with increased intracellular ceramides, p38 MAPK activation, and myosin light chain (MLC) phosphorylation, and was critically mediated by Rho-activated kinase via inhibition of MLC-phosphatase unit MYPT1. Although nicotine at sufficient concentrations to cause endothelial barrier loss did not trigger cell necrosis, it markedly inhibited cell proliferation. Augmentation of sphingosine-1-phosphate (S1P) signaling via S1P1 improved both endothelial cell proliferation and barrier function during nicotine exposures. Nicotine-independent effects of e-Cig solutions were noted, which may be attributable to acrolein, detected along with propylene glycol, glycerol, and nicotine by NMR, mass spectrometry, and gas chromatography, in both e-Cig solutions and vapor. These results suggest that soluble components of e-Cig, including nicotine, cause dose-dependent loss of lung endothelial barrier function, which is associated with oxidative stress and brisk inflammation. PMID:25979079

  16. Endothelial disruptive proinflammatory effects of nicotine and e-cigarette vapor exposures

    PubMed Central

    Schweitzer, Kelly S.; Chen, Steven X.; Law, Sarah; Van Demark, Mary; Poirier, Christophe; Justice, Matthew J.; Hubbard, Walter C.; Kim, Elena S.; Lai, Xianyin; Wang, Mu; Kranz, William D.; Carroll, Clinton J.; Ray, Bruce D.; Bittman, Robert; Goodpaster, John

    2015-01-01

    The increased use of inhaled nicotine via e-cigarettes has unknown risks to lung health. Having previously shown that cigarette smoke (CS) extract disrupts the lung microvasculature barrier function by endothelial cell activation and cytoskeletal rearrangement, we investigated the contribution of nicotine in CS or e-cigarettes (e-Cig) to lung endothelial injury. Primary lung microvascular endothelial cells were exposed to nicotine, e-Cig solution, or condensed e-Cig vapor (1–20 mM nicotine) or to nicotine-free CS extract or e-Cig solutions. Compared with nicotine-containing extract, nicotine free-CS extract (10–20%) caused significantly less endothelial permeability as measured with electric cell-substrate impedance sensing. Nicotine exposures triggered dose-dependent loss of endothelial barrier in cultured cell monolayers and rapidly increased lung inflammation and oxidative stress in mice. The endothelial barrier disruptive effects were associated with increased intracellular ceramides, p38 MAPK activation, and myosin light chain (MLC) phosphorylation, and was critically mediated by Rho-activated kinase via inhibition of MLC-phosphatase unit MYPT1. Although nicotine at sufficient concentrations to cause endothelial barrier loss did not trigger cell necrosis, it markedly inhibited cell proliferation. Augmentation of sphingosine-1-phosphate (S1P) signaling via S1P1 improved both endothelial cell proliferation and barrier function during nicotine exposures. Nicotine-independent effects of e-Cig solutions were noted, which may be attributable to acrolein, detected along with propylene glycol, glycerol, and nicotine by NMR, mass spectrometry, and gas chromatography, in both e-Cig solutions and vapor. These results suggest that soluble components of e-Cig, including nicotine, cause dose-dependent loss of lung endothelial barrier function, which is associated with oxidative stress and brisk inflammation. PMID:25979079

  17. Vapor phase explosions: elementary detonations?

    PubMed

    Fowles, G R

    1979-04-13

    Although liquid-vapor explosions are widely observed, there is no established explanation for their initiation and propagation. Thermodynamics admits the possibility that superheated liquids can support detonations analogous to those that occur in chemical explosives. For liquid methane superheated 50 K above its boiling point at 1 atmosphere, the energy of explosion is 2 to 3 percent of that of TNT. PMID:17738085

  18. Water vapor radiometry research and development phase

    NASA Technical Reports Server (NTRS)

    Resch, G. M.; Chavez, M. C.; Yamane, N. L.; Barbier, K. M.; Chandlee, R. C.

    1985-01-01

    This report describes the research and development phase for eight dual-channel water vapor radiometers constructed for the Crustal Dynamics Project at the Goddard Space Flight Center, Greenbelt, Maryland, and for the NASA Deep Space Network. These instruments were developed to demonstrate that the variable path delay imposed on microwave radio transmissions by atmospheric water vapor can be calibrated, particularly as this phenomenon affects very long baseline interferometry measurement systems. Water vapor radiometry technology can also be used in systems that involve moist air meteorology and propagation studies.

  19. Application of Thioether for Vapor Phase Lubrication

    NASA Technical Reports Server (NTRS)

    Graham, E. Earl

    1997-01-01

    The objective of these studies was to identify the optimal conditions for vapor phase lubrication using Thioether for both sliding and rolling wear. The important variable include; (1) The component materials including M50 steel, monel and silicon nitride. (2) The vapor concentration and flow rate. (3) The temperature in the range of 600 F to 1500 F. (4) The loads and rolling and/or sliding speeds.

  20. Inhaled delivery of Δ(9)-tetrahydrocannabinol (THC) to rats by e-cigarette vapor technology.

    PubMed

    Nguyen, Jacques D; Aarde, Shawn M; Vandewater, Sophia A; Grant, Yanabel; Stouffer, David G; Parsons, Loren H; Cole, Maury; Taffe, Michael A

    2016-10-01

    Most human Δ(9)-tetrahydrocannabinol (THC) use is via inhalation, and yet few animal studies of inhalation exposure are available. Popularization of non-combusted methods for the inhalation of psychoactive drugs (Volcano(®), e-cigarettes) further stimulates a need for rodent models of this route of administration. This study was designed to develop and validate a rodent chamber suitable for controlled exposure to vaporized THC in a propylene glycol vehicle, using an e-cigarette delivery system adapted to standard size, sealed rat housing chambers. The in vivo efficacy of inhaled THC was validated using radiotelemetry to assess body temperature and locomotor responses, a tail-flick assay for nociception and plasma analysis to verify exposure levels. Hypothermic responses to inhaled THC in male rats depended on the duration of exposure and the concentration of THC in the vehicle. The temperature nadir was reached after ∼40 min of exposure, was of comparable magnitude (∼3 °Celsius) to that produced by 20 mg/kg THC, i.p. and resolved within 3 h (compared with a 6 h time course following i.p. THC). Female rats were more sensitive to hypothermic effects of 30 min of lower-dose THC inhalation. Male rat tail-flick latency was increased by THC vapor inhalation; this effect was blocked by SR141716 pretreatment. The plasma THC concentration after 30 min of inhalation was similar to that produced by 10 mg/kg THC i.p. This approach is flexible, robust and effective for use in laboratory rats and will be of increasing utility as users continue to adopt "vaping" for the administration of cannabis. PMID:27256501

  1. Adult Behavior in Male Mice Exposed to E-Cigarette Nicotine Vapors during Late Prenatal and Early Postnatal Life

    PubMed Central

    Smith, Dani; Aherrera, Angela; Lopez, Armando; Neptune, Enid; Winickoff, Jonathan P.; Klein, Jonathan D.; Chen, Gang; Lazarus, Philip; Collaco, Joseph M.; McGrath-Morrow, Sharon A.

    2015-01-01

    Nicotine exposure has been associated with an increased likelihood of developing attention deficit hyperactivity disorder (ADHD) in offspring of mothers who smoked during pregnancy. The goal of this study was to determine if exposure to E-cigarette nicotine vapors during late prenatal and early postnatal life altered behavior in adult mice. Methods Timed-pregnant C57BL/6J mice were exposed to 2.4% nicotine in propylene glycol (PG) or 0% nicotine /PG once a day from gestational day 15 until delivery. After delivery, offspring and mothers were exposed to E-cigarette vapors for an additional 14 days from postnatal day 2 through 16. Following their last exposure serum cotinine levels were measured in female juvenile mice. Male mice underwent behavioral testing at 14 weeks of age to assess sensorimotor, affective, and cognitive functional domains. Results Adult male mice exposed to 2.4% nicotine/PG E-cigarette vapors had significantly more head dips in the zero maze test and higher levels of rearing activity in the open field test compared to 0% nicotine/PG exposed mice and untreated controls. In the water maze test after reversal training, the 2.4% nicotine/PG mice spent more than 25% of time in the new location whereas the other groups did not. Conclusion Adult male mice exhibited increased levels of activity in the zero maze and open field tests when exposed to E-cigarette vapor containing nicotine during late prenatal and early postnatal life. These findings indicate that nicotine exposure from E-cigarettes may cause persistent behavioral changes when exposure occurs during a period of rapid brain growth. PMID:26372012

  2. Vapor-liquid phase separator permeability results

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Frederking, T. H. K.

    1981-01-01

    Continued studies are described in the area of vapor-liquid phase separator work with emphasis on permeabilities of porous sintered plugs (stainless steel, nominal pore size 2 micrometer). The temperature dependence of the permeability has been evaluated in classical fluid using He-4 gas at atmospheric pressure and in He-2 on the basis of a modified, thermosmotic permeability of the normal fluid.

  3. Vapor-liquid phase separator studies

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Lee, J. M.; Kim, Y. I.; Hepler, W. A.; Frederking, T. H. K.

    1983-01-01

    Porous plugs serve as both entropy rejection devices and phase separation components separating the vapor phase on the downstream side from liquid Helium 2 upstream. The liquid upstream is the cryo-reservoir fluid needed for equipment cooling by means of Helium 2, i.e Helium-4 below its lambda temperature in near-saturated states. The topics outlined are characteristic lengths, transport equations and plug results.

  4. Liquid-phase compositions from vapor-phase analyses

    SciTech Connect

    Davis, W. Jr. ); Cochran, H.D. )

    1990-02-01

    Arsenic normally is not considered to be a contaminant. However, because arsenic was found in many cylinders of UF{sub 6}, including in corrosion products, a study was performed of the distribution of the two arsenic fluorides, AsF{sub 3} and AsF{sub 5}, between liquid and vapor phases. The results of the study pertain to condensation or vaporization of liquid UF{sub 6}. This study includes use of various experimental data plus many extrapolations necessitated by the meagerness of the experimental data. The results of this study provide additional support for the vapor-liquid equilibrium model of J.M. Prausnitz and his coworkers as a means of describing the distribution of various impurities between vapor and liquid phases of UF{sub 6}. Thus, it is concluded that AsF{sub 3} will tend to concentrate in the liquid phase but that the concentration of AsF{sub 5} in the vapor phase will exceed its liquid-phase concentration by a factor of about 7.5, which is in agreement with experimental data. Because the weight of the liquid phase in a condensation operation may be in the range of thousands of times that of the vapor phase, most of any AsF{sub 5} will be in the liquid phase in spite of this separation factor of 7.5. It may also be concluded that any arsenic fluorides fed into a uranium isotope separation plant will either travel with other low-molecular-weight gases or react with materials present in the plant. 25 refs., 3 figs., 6 tabs.

  5. Vapor-liquid phase separator studies

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Hepler, W. A.; Frederking, T. H. K.

    1985-01-01

    A study of porous plug use for vapor-liquid phase seperation in spaceborne cryogenic systems was conducted. The three main topics addressed were: (1) the usefulness of porous media in designs that call for variable areas and flow rates; (2) the possibility of prediction of main parameters of porous plugs for a given material; and (3) prediction of all parameters of the plug, including secondary parameters.

  6. A Simple and Rapid Method for Standard Preparation of Gas Phase Extract of Cigarette Smoke

    PubMed Central

    Higashi, Tsunehito; Mai, Yosuke; Noya, Yoichi; Horinouchi, Takahiro; Terada, Koji; Hoshi, Akimasa; Nepal, Prabha; Harada, Takuya; Horiguchi, Mika; Hatate, Chizuru; Kuge, Yuji; Miwa, Soichi

    2014-01-01

    Cigarette smoke consists of tar and gas phase: the latter is toxicologically important because it can pass through lung alveolar epithelium to enter the circulation. Here we attempt to establish a standard method for preparation of gas phase extract of cigarette smoke (CSE). CSE was prepared by continuously sucking cigarette smoke through a Cambridge filter to remove tar, followed by bubbling it into phosphate-buffered saline (PBS). An increase in dry weight of the filter was defined as tar weight. Characteristically, concentrations of CSEs were represented as virtual tar concentrations, assuming that tar on the filter was dissolved in PBS. CSEs prepared from smaller numbers of cigarettes (original tar concentrations ≤15 mg/ml) showed similar concentration-response curves for cytotoxicity versus virtual tar concentrations, but with CSEs from larger numbers (tar ≥20 mg/ml), the curves were shifted rightward. Accordingly, the cytotoxic activity was detected in PBS of the second reservoir downstream of the first one with larger numbers of cigarettes. CSEs prepared from various cigarette brands showed comparable concentration-response curves for cytotoxicity. Two types of CSEs prepared by continuous and puff smoking protocols were similar regarding concentration-response curves for cytotoxicity, pharmacology of their cytotoxicity, and concentrations of cytotoxic compounds. These data show that concentrations of CSEs expressed by virtual tar concentrations can be a reference value to normalize their cytotoxicity, irrespective of numbers of combusted cigarettes, cigarette brands and smoking protocols, if original tar concentrations are ≤15 mg/ml. PMID:25229830

  7. COMPARATIVE YIELDS OF MUTAGENS FROM CIGARETTE SMOKERS' URINE OBTAINED BY USING SOLID-PHASE EXTRACTION TECHNIQUES

    EPA Science Inventory

    Urine from cigarette smokers was prepared for mutagenicity testing by extracting mutagens with solid phase extraction columns. ommercially available prepacked bonded silicas (cotadecyl, cyclohexyl, cyanopropyl) were compared for their efficiency and specificity in concentration o...

  8. Smoke and Vapor: Exploring the Terminology Landscape among Electronic Cigarette Users

    PubMed Central

    Alexander, Jennifer P.; Coleman, Blair N.; Johnson, Sarah E.; Tessman, Greta K.; Tworek, Cindy; Dickinson, Denise M.

    2016-01-01

    Objective We explored the terminology of adult e-cigarette users in describing e-cigarette products and their use. We report how users discuss and differentiate these products and the language and culture surrounding them. Methods Focus groups (N = 12) were held in 5 locations in the United States between March and May, 2014. Participants (N = 99) included young adults or adults who were either exclusive or nonexclusive e-cigarette users. We gathered data on how users identify various types of e-cigarettes and how users understand and describe specific terms. Results Participants were familiar with the attributes of e-cigarettes in general but confused by the variety of products and unable to describe differences between product types. They were familiar with the term “vaping” even when they used “smoking” more frequently, and were clear that e-cigarettes do not produce traditional cigarette smoke. They had varied opinions about what to call regular users of e-cigarettes. Conclusions Findings highlight that conceptual clarity, including using specific and familiar terminology and product descriptions for users and nonusers alike, is challenging and crucial. It is important that surveillance efforts, policy development, messaging, and future research reflect the language understood and used by consumers to enable widespread comprehension. PMID:27430008

  9. Liquid-phase compositions from vapor-phase analyses

    SciTech Connect

    Davis, W. Jr.; Cochran, H.D.; Leitnaker, J.M.

    1989-09-01

    In the safe handling and processing of uranium hexafluoride (UF{sub 6}), it is often desirable to calculate vapor composition and pressure from known liquid composition and temperature. Furthermore, the ability to use analyses of equilibrium vapor-phase samples to calculate liquid-phase compositions would be economically advantageous to the International Atomic Energy Agency (IAEA) in its international safeguards program and to uranium enrichment operators. The latter technique is projected to save the IAEA on the order of $1500 or more per sample. Either type of calculation could be performed with a multicomponent vapor-liquid equilibrium (VLE) model if this model were shown to apply to UF{sub 6} and its common impurities. This report is concerned with the distribution of four potential impurities in UF{sub 6} between liquid and vapor phases. The impurities are carbon dioxide, sulfur hexafluoride, chloryl fluoride, and Freon-114 (CClF{sub 2}CClF{sub 2}). There are no binary equilibrium data on the first three of these impurities; hence, the VLE calculations are based entirely on the thermodynamic properties of the pure components. There are two sets of binary equilibrium data for the system Freon-114-UF{sub 6} that are analyzed in terms of the model of Prausnitz et al. Calculations based on these data are compared with those based solely on the thermodynamic properties of pure Freon-114 and pure UF{sub 6}. 23 refs., 3 figs., 5 tabs.

  10. Mixed metal vapor phase matching for third-harmonic generation

    NASA Technical Reports Server (NTRS)

    Bloom, D. M.; Young, J. F.; Harris, S. E.

    1975-01-01

    Phase matching for frequency tripling of 1.06 microns is demonstrated in a homogeneous mixture of sodium and magnesium vapor. The ratio of Mg to Na vapor pressures required for phase matching is 2:1. This ratio is about 1/75 of that required to phase match Na with Xe.

  11. Power production with two-phase expansion through vapor dome

    SciTech Connect

    Amend, W.E.; Toner, S.J.

    1984-08-07

    In a system wherein a fluid exhibits a regressive vapor dome in a T-S diagram, the following are provided: a two-phase nozzle receiving the fluid in pressurized and heated liquid state and expanding the received liquid into saturated or superheated vapor state, and apparatus receiving the saturated or superheated vapor to convert the kinetic energy thereof into power.

  12. Mechanistic study of organometallic vapor phase epitaxy

    SciTech Connect

    Stringfellow, G.B.

    1990-12-31

    Only AsH{sub 3} and PH{sub 3} have been used as the group V source molecules for organometallic vapor phase epitaxy (OMVPE) of III/V semiconductors until recently, since they have been the only precursors yielding device quality materials. This paper reviews recent work on the pyrolysis of individual organometallic molecules, with emphasis on the group V sources, including: (1) the methylarsines, di- and tri-methylarsine, (2) the ethylarsines, mono-, di-, and tri-ethylarsine, and (3) the singly substituted tertiarybutyl arsine and phosphine molecules. The pyrolysis and growth reactions occurring when both group III and group V precursors are present simultaneously, i.e., the reactions occuring during OMVPE growth of several III/V semiconductors, are also briefly reviewed.

  13. Mechanistic study of organometallic vapor phase epitaxy

    SciTech Connect

    Stringfellow, G.B.

    1990-01-01

    Only AsH{sub 3} and PH{sub 3} have been used as the group V source molecules for organometallic vapor phase epitaxy (OMVPE) of III/V semiconductors until recently, since they have been the only precursors yielding device quality materials. This paper reviews recent work on the pyrolysis of individual organometallic molecules, with emphasis on the group V sources, including: (1) the methylarsines, di- and tri-methylarsine, (2) the ethylarsines, mono-, di-, and tri-ethylarsine, and (3) the singly substituted tertiarybutyl arsine and phosphine molecules. The pyrolysis and growth reactions occurring when both group III and group V precursors are present simultaneously, i.e., the reactions occuring during OMVPE growth of several III/V semiconductors, are also briefly reviewed.

  14. Monitoring of vapor phase polycyclic aromatic hydrocarbons

    DOEpatents

    Vo-Dinh, Tuan; Hajaligol, Mohammad R.

    2004-06-01

    An apparatus for monitoring vapor phase polycyclic aromatic hydrocarbons in a high-temperature environment has an excitation source producing electromagnetic radiation, an optical path having an optical probe optically communicating the electromagnetic radiation received at a proximal end to a distal end, a spectrometer or polychromator, a detector, and a positioner coupled to the first optical path. The positioner can slidably move the distal end of the optical probe to maintain the distal end position with respect to an area of a material undergoing combustion. The emitted wavelength can be directed to a detector in a single optical probe 180.degree. backscattered configuration, in a dual optical probe 180.degree. backscattered configuration or in a dual optical probe 90.degree. side scattered configuration. The apparatus can be used to monitor an emitted wavelength of energy from a polycyclic aromatic hydrocarbon as it fluoresces in a high temperature environment.

  15. Chiroptical Spectroscopy in the Vapor Phase

    NASA Astrophysics Data System (ADS)

    Lahiri, Priyanka; Long, Benjamin D.; Wiberg, Kenneth B.; Vaccaro, Patrick H.

    2011-06-01

    Electromagnetic radiation propagating through an isotropic chiral medium experiences a complex index of refraction that differs in both real (in-phase) and imaginary (in-quadrature) parts for the right-circular and left-circular polarization states that define the helicity basis. The resulting phenomena of circular birefringence (CB) and circular dichroism (CD) lead to observable effects in the form of dispersive rotation and absorptive elliptization for an impinging beam of plane-polarized light, which commonly are measured under conditions of nonresonant and resonant excitation, respectively. This talk will discuss ongoing efforts designed to elucidate the provenance of electronic optical activity under complementary solvated and isolated conditions, with the latter vapor-phase work made possible by our continuing development of Cavity Ring-Down Polarimetry (CRDP). Molecules of interest include the rigid bicyclic ketone (1R,4R)-norbornenone, where the spatial arrangement of distal alkene and carbonyl moeities gives rise to extraordinarily large specific rotation (CB) parameters that are predicted incongruously by different quantum-chemical methods; the monoterpene constitutional isomers (S)-2-carene and (S)-3-carene, which display surprisingly distinct chiroptical properties; and conjugated ketones such as (S)-verbenone, where CD probes of weak π*←n absorption bands have been performed at vibronic resolution. The disparate nature of gas-phase and condensed-phase optical activity will be highlighted, with complementary ab initio calculations serving to elucidate the structural, chemical, and electronic origins of observed behavior. T. Müller, K. B. Wiberg, P. H. Vaccaro, J. R. Cheeseman, and M. J. Frisch, J. Opt. Soc. Am. B 19, 125 (2002) P. H. Vaccaro, ``Chapter 1.II.10: Optical Rotation and Intrinsic Optical Activity'' in Comprehensive Chiroptical Spectroscopy, N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody, eds. (John Wiley and Sons, Inc

  16. New Vapor/Mist Phase Lubricant Formulated

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo; Handschuh, Robert F.

    1999-01-01

    To meet the increased thermal stresses of future advanced aircraft engines, new lubricants will have to be developed to replace the currently used ester-based liquid lubricants. If a suitable conventional replacement cannot be found, a different lubrication method will have to be used. The conventional method circulates bulk lubricant (stored in a sump) through a lubricating system containing cooling and filtering elements. Solid lubricants have been studied as a replacement for bulk liquid lubricants, and have been found to provide reasonable lubrication for lightly loaded systems. Solid lubricants, however, have proved inadequate for highly loaded, high-speed applications. Vapor/mist phase lubrication (VMPL), on the other hand, may be a viable alternative. VMPL has been used successfully to lubricate high-temperature bearings or gears. It can be used as an emergency backup system or as the primary source of lubrication. With VMPL, minimal weight is added to the system and minimal debris is formed. It works over a wide temperature range.

  17. Vapor-phase viscosity of phenol

    NASA Astrophysics Data System (ADS)

    Vogel, E.; Neumann, A.-K.

    1993-07-01

    New measurements of the vapor-phase viscosity of phenol were performed from 437 up to 624 K and for densities between 0.006 and 0.023 mol · L-1 in an all-quartz oscillating-disk viscometer with small gaps. Thus, including our own measurements reported earlier, experimental data are available in the temperature range between 376 and 639 K and in the density range from 0.001 up to 0.023 mol · L-1. The data were evaluated with a density series for the viscosity in which only a linear density contribution is included. The values of the second viscosity virial coefficient obtained for phenol as well as for benzene, toluene, and p-xylene were compared with results of the Rainwater-Friend theory and of the modified Enskog theory on the basis of the Lennard-Jones 12-6 potential. The agreement is reasonable, when the potential parameter ratios determined by Bich and Vogel are used. The influence of bound dimers seems to be already taken into account in the three-monomer contribution according to Hoffman and Curtiss.

  18. The liquid to vapor phase transition in excited nuclei

    SciTech Connect

    Elliott, J.B.; Moretto, L.G.; Phair, L.; Wozniak, G.J.; Beaulieu, L.; Breuer, H.; Korteling, R.G.; Kwiatkowski, K.; Lefort, T.; Pienkowski, L.; Ruangma, A.; Viola, V.E.; Yennello, S.J.

    2001-05-08

    For many years it has been speculated that excited nuclei would undergo a liquid to vapor phase transition. For even longer, it has been known that clusterization in a vapor carries direct information on the liquid-vapor equilibrium according to Fisher's droplet model. Now the thermal component of the 8 GeV/c pion + 197 Au multifragmentation data of the ISiS Collaboration is shown to follow the scaling predicted by Fisher's model, thus providing the strongest evidence yet of the liquid to vapor phase transition.

  19. Molecular theory of vapor phase nucleation

    NASA Astrophysics Data System (ADS)

    Kusaka, Isamu

    1998-06-01

    An attempt has been made to establish the foundation of molecular level theory of vapor phase nucleation. We have focused on evaluating the reversible work of cluster formation and followed two major trends in this direction, namely, statistical mechanical density functional theory and molecular level simulation. We applied density functional theory to heterogeneous nucleation onto an ion. Our prime interest is to predict a sign preference of nucleation rate, which has been experimentally observed yet remained inexplicable in the classical framework. The theory indicates that asymmetry in ion-molecule interaction is directly responsible for the sign preference. The predicted sign dependence decreases as the supersaturation is increased. Our results from density functional theory agree well with the existing experimental observations. Molecular simulation offers an alternative to molecular level approach. A long-standing issue of fundamental importance in cluster simulation is the precise definition of a cluster. Thus far, all attempts of defining a cluster had introduced ad hoc criteria to determine unambiguously whether a given molecule in the system belongs to vapor or to a cluster for any instantaneous configuration of molecules. From a careful examination of the context in which a cluster should be introduced into nucleation theory, we conclude that such a criterion is unnecessary. Then, we present a new approach to cluster simulation which is free of any arbitrariness involved in the definition of a cluster. Instead, it preferentially and automatically generates the physical clusters, defined as the density fluctuations that lead to nucleation, and determines their equilibrium distribution in a single simulation. The latter feature permits one to completely bypass the computationally demanding free energy evaluation that is necessary in a conventional simulation. The method is applied first to water using the SPC/E model. We then turn to H2SO4/H2O binary

  20. Carbonyl Compounds in the Gas Phase of Cigarette Mainstream Smoke and Their Pharmacological Properties.

    PubMed

    Horinouchi, Takahiro; Higashi, Tsunehito; Mazaki, Yuichi; Miwa, Soichi

    2016-01-01

    Cigarette mainstream smoke is composed of gas and tar phases and contains >4000 chemical constituents, including nicotine and tar. The substances in the gas phase but not in the tar phase can pass through the airway epithelial barrier, enter the systemic circulation via the pulmonary circulation, and increase systemic oxidative damage, leading to the development of cigarette smoking-related diseases such as atherosclerosis. Recently, we identified some stable carbonyl compounds, including acrolein (ACR) and methyl vinyl ketone (MVK), as major cytotoxic factors in nicotine- and tar-free cigarette smoke extract (CSE) of the gas phase. CSE, ACR, and MVK induce protein kinase C (PKC)-dependent activation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) and subsequent generation of reactive oxygen species (ROS) via NOX, causing plasma membrane damage and cell apoptosis. CSE, ACR, and MVK also trigger carbonylation of PKC, which is an irreversible oxidative modification. Cell damage and PKC carbonylation in response to treatment with CSE, ACR, or MVK are abolished by thiol-containing antioxidants such as N-acetyl-L-cysteine and reduced glutathione. Thus pharmacological modulation of PKC and NOX activities and the trapping of ROS are potential strategies for the prevention of diseases related to cigarette smoking. PMID:27251492

  1. External fuel vaporization study, phase 1

    NASA Technical Reports Server (NTRS)

    Szetela, E. J.; Chiappetta, L.

    1980-01-01

    A conceptual design study was conducted to devise and evaluate techniques for the external vaporization of fuel for use in an aircraft gas turbine with characteristics similar to the Energy Efficient Engine (E(3)). Three vaporizer concepts were selected and they were analyzed from the standpoint of fuel thermal stability, integration of the vaporizer system into the aircraft engine, engine and vaporizer dynamic response, startup and altitude restart, engine performance, control requirements, safety, and maintenance. One of the concepts was found to improve the performance of the baseline E(3) engine without seriously compromising engine startup and power change response. Increased maintenance is required because of the need for frequent pyrolytic cleaning of the surfaces in contact with hot fuel.

  2. Simultaneous analysis of 22 volatile organic compounds in cigarette smoke using gas sampling bags for high-throughput solid-phase microextraction.

    PubMed

    Sampson, Maureen M; Chambers, David M; Pazo, Daniel Y; Moliere, Fallon; Blount, Benjamin C; Watson, Clifford H

    2014-07-15

    Quantifying volatile organic compounds (VOCs) in cigarette smoke is necessary to establish smoke-related exposure estimates and evaluate emerging products and potential reduced-exposure products. In response to this need, we developed an automated, multi-VOC quantification method for machine-generated, mainstream cigarette smoke using solid-phase microextraction gas chromatography-mass spectrometry (SPME-GC-MS). This method was developed to simultaneously quantify a broad range of smoke VOCs (i.e., carbonyls and volatiles, which historically have been measured by separate assays) for large exposure assessment studies. Our approach collects and maintains vapor-phase smoke in a gas sampling bag, where it is homogenized with isotopically labeled analogue internal standards and sampled using gas-phase SPME. High throughput is achieved by SPME automation using a CTC Analytics platform and custom bag tray. This method has successfully quantified 22 structurally diverse VOCs (e.g., benzene and associated monoaromatics, aldehydes and ketones, furans, acrylonitrile, 1,3-butadiene, vinyl chloride, and nitromethane) in the microgram range in mainstream smoke from 1R5F and 3R4F research cigarettes smoked under ISO (Cambridge Filter or FTC) and Intense (Health Canada or Canadian Intense) conditions. Our results are comparable to previous studies with few exceptions. Method accuracy was evaluated with third-party reference samples (≤15% error). Short-term diffusion losses from the gas sampling bag were minimal, with a 10% decrease in absolute response after 24 h. For most analytes, research cigarette inter- and intrarun precisions were ≤20% relative standard deviation (RSD). This method provides an accurate and robust means to quantify VOCs in cigarette smoke spanning a range of yields that is sufficient to characterize smoke exposure estimates. PMID:24933649

  3. BIOREMEDIATION OF MIXED VAPOR PHASE CONTAMINANTS FROM SOILS AND GROUNDWATER

    EPA Science Inventory

    Soil vapor phase contaminants commonly include combinations of chlorinated ethenes and petroleum hydrocarbons. Many chlorinated ethenes and petroleum hydrocarbons are readily degradable by a range of aerobic soil microorganisms, making the use of biological systems for degrading ...

  4. FIELD TRAPPING OF SUBSURFACE VAPOR PHASE PETROLEUM HYDROCARBONS

    EPA Science Inventory

    Soil gas samples from intact soil cores were collected on adsorbents at a field site, then thermally desorbed and analyzed by laboratory gas chromatography (GC). ertical concentration profiles of predominant vapor phase petroleum hydrocarbons under ambient conditions were obtaine...

  5. Development of Vapor-Phase Catalytic Ammonia Removal System

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Fisher, John; Kiss, Mark; Borchers, Bruce; Tleimat, Badawi; Tleimat, Maher; Quinn, Gregory; Fort, James; Nalette, Tim; Baker, Gale; Genovese, Joseph

    2007-01-01

    A report describes recent accomplishments of a continuing effort to develop the vapor-phase catalytic ammonia removal (VPCAR) process for recycling wastewater for consumption by humans aboard a spacecraft in transit to Mars.

  6. Vapor phase crystallization in Apollo 14 breccia.

    NASA Technical Reports Server (NTRS)

    Mckay, D. S.; Clanton, U. S.; Morrison, D. A.; Ladle, G. H.

    1972-01-01

    The vugs contained in many of the highly recrystallized breccias from Apollo 14 are discussed, along with the well-developed crystals of plagioclase, pyroxene, ilmenite, apatite, whitlockite, iron, nickel-iron, and troilite that extend from the vug walls and bridge open spaces. These crystals are interpreted as having formed by deposition from a hot vapor containing oxides, halides, sulfides, alkali metals, iron and possibly other chemical species. The hot vapor was associated with the thermal metamorphism and subsequent cooling of the Fra Mauro formation after it had been deposited as an ejecta blanket by the Imbrian impact.

  7. Vapor core turbulence in annular two-phase flow

    SciTech Connect

    Trabold, T.A.; Kumar, R.

    1998-06-01

    This paper reports a new technique to measure vapor turbulence in two-phase flows using hot-film anemometry. Continuous vapor turbulence measurements along with local void fraction, droplet frequency, droplet velocity and droplet diameter were measured in a thin, vertical duct. By first eliminating the portion of the output voltage signal resulting from the interaction of dispersed liquid droplets with the HFA sensor, the discrete voltage samples associated with the vapor phase were separately analyzed. The data revealed that, over the range of liquid droplet sizes and concentrations encountered, the presence of the droplet field acts to enhance vapor turbulence. In addition, there is evidence that vapor turbulence is significantly influenced by the wall-bounded liquid film. The present results are qualitatively consistent with the limited data available in the open literature.

  8. Simultaneous Analysis of 22 Volatile Organic Compounds in Cigarette Smoke Using Gas Sampling Bags for High-Throughput Solid-Phase Microextraction

    PubMed Central

    Sampson, Maureen M.; Chambers, David M.; Pazo, Daniel Y.; Moliere, Fallon; Blount, Benjamin C.; Watson, Clifford H.

    2015-01-01

    Quantifying volatile organic compounds (VOCs) in cigarette smoke is necessary to establish smoke-related exposure estimates and evaluate emerging products and potential reduced-exposure products. In response to this need, we developed an automated, multi-VOC quantification method for machine-generated, mainstream cigarette smoke using solidphase microextraction gas chromatography–mass spectrometry (SPME-GC–MS). This method was developed to simultaneously quantify a broad range of smoke VOCs (i.e., carbonyls and volatiles, which historically have been measured by separate assays) for large exposure assessment studies. Our approach collects and maintains vapor-phase smoke in a gas sampling bag, where it is homogenized with isotopically labeled analogue internal standards and sampled using gas-phase SPME. High throughput is achieved by SPME automation using a CTC Analytics platform and custom bag tray. This method has successfully quantified 22 structurally diverse VOCs (e.g., benzene and associated monoaromatics, aldehydes and ketones, furans, acrylonitrile, 1,3-butadiene, vinyl chloride, and nitromethane) in the microgram range in mainstream smoke from 1R5F and 3R4F research cigarettes smoked under ISO (Cambridge Filter or FTC) and Intense (Health Canada or Canadian Intense) conditions. Our results are comparable to previous studies with few exceptions. Method accuracy was evaluated with third-party reference samples (≤15% error). Short-term diffusion losses from the gas sampling bag were minimal, with a 10% decrease in absolute response after 24 h. For most analytes, research cigarette inter- and intrarun precisions were ≤20% relative standard deviation (RSD). This method provides an accurate and robust means to quantify VOCs in cigarette smoke spanning a range of yields that is sufficient to characterize smoke exposure estimates. PMID:24933649

  9. Preliminary assessment of halogenated alkanes as vapor-phase tracers

    SciTech Connect

    Adams, Michael C.; Moore, Joseph N.; Hirtz, Paul

    1991-01-01

    New tracers are needed to evaluate the efficiency of injection strategies in vapor-dominated environments. One group of compounds that seems to meet the requirements for vapor-phase tracing are the halogenated alkanes (HCFCs). HCFCs are generally nontoxic, and extrapolation of tabulated thermodynamic data indicate that they will be thermally stable and nonreactive in a geothermal environment. The solubilities and stabilities of these compounds, which form several homologous series, vary according to the substituent ratios of fluorine, chlorine, and hydrogen. Laboratory and field tests that will further define the suitability of HCFCs as vapor-phase tracers are under way.

  10. External fuel vaporization study, phase 2

    NASA Technical Reports Server (NTRS)

    Szetela, E. J.; Chiappetta, L.

    1981-01-01

    An analytical study was conducted to evaluate the effect of variations in fuel properties on the design of an external fuel vaporizaton system. The fuel properties that were considered included thermal stability, critical temperature, enthalpy a critical conditions, volatility, and viscosity. The design parameters that were evaluated included vaporizer weight and the impact on engine requirement such as maintenance, transient response, performance, and altitude relight. The baseline fuel properties were those of Jet A. The variation in thermal stability was taken as the thermal stability variation for Experimental Referee Broad Specification (ERBS) fuel. The results of the analysis indicate that a change in thermal stability equivalent to that of ERBS would increase the vaporization system weight by 20 percent, decrease oprating time between cleaning by 40 percent and make altitude relight more difficult. An increase in fuel critical temperature of 39 K would require a 40 percent increase in vaporization system weight. The assumed increase in enthalpy and volatility would also increase vaporizer weight by 40 percent and make altitude relight extremely difficult. The variation in fuel viscosity would have a negligible effect on the design parameters.

  11. The interaction of the theophylline metastable phase with water vapor

    NASA Astrophysics Data System (ADS)

    Matvienko, A. A.; Boldyrev, V. V.; Sidel'Nikov, A. A.; Chizhik, S. A.

    2008-07-01

    The conditions of hydration of the stable and metastable theophylline phases were determined. Two-phase metastable phase/monohydrate and stable phase/monohydrate equilibrium pressures were measured at 25, 30, and 35°C. The metastable phase began to react with water vapor at lower relative humidities than the stable phase. Processes that occurred with the metastable and stable theophylline phases over various water pressure ranges were considered. The metastable phase exhibited an unusual behavior at 25°C and relative humidity 47%. At constant water vapor pressure and temperature, theophylline was initially hydrated and then lost water and again became anhydrous. Two consecutive processes occurred in the system, the formation of theophylline monohydrate from the metastable phase and its decomposition to the stable phase. The ratio between the rates of these processes determined the content of the monohydrate at the given time moment.

  12. Vapor Phase Deposition Using Plasma Spray-PVD™

    NASA Astrophysics Data System (ADS)

    von Niessen, K.; Gindrat, M.; Refke, A.

    2010-01-01

    Plasma spray—physical vapor deposition (PS-PVD) is a low pressure plasma spray technology to deposit coatings out of the vapor phase. PS-PVD is a part of the family of new hybrid processes recently developed by Sulzer Metco AG (Switzerland) on the basis of the well-established low pressure plasma spraying (LPPS) technology. Included in this new process family are plasma spray—chemical vapor deposition (PS-CVD) and plasma spray—thin film (PS-TF) processes. In comparison to conventional vacuum plasma spraying and LPPS, these new processes use a high energy plasma gun operated at a work pressure below 2 mbar. This leads to unconventional plasma jet characteristics which can be used to obtain specific and unique coatings. An important new feature of PS-PVD is the possibility to deposit a coating not only by melting the feed stock material which builds up a layer from liquid splats, but also by vaporizing the injected material. Therefore, the PS-PVD process fills the gap between the conventional PVD technologies and standard thermal spray processes. The possibility to vaporize feedstock material and to produce layers out of the vapor phase results in new and unique coating microstructures. The properties of such coatings are superior to those of thermal spray and EB-PVD coatings. This paper reports on the progress made at Sulzer Metco to develop functional coatings build up from vapor phase of oxide ceramics and metals.

  13. Vapor-Phase Synthesis of Gallium Phosphide Nanowires

    SciTech Connect

    Gu, Dr Zhanjun; Paranthaman, Mariappan Parans; Pan, Zhengwei

    2009-01-01

    Gallium phosphide (GaP) nanowires were synthesized in a high yield by vapor-phase reaction of gallium vapor and phosphorus vapor at 1150 C in a tube furnace system. The nanowires have diameters in the range of 25-100 nm and lengths of up to tens of micrometers. Twinning growth occurs in GaP nanowires, and as a result most nanowires contain a high density of twinning faults. Novel necklacelike GaP nanostructures that were formed by stringing tens of amorphous Ga-P-O microbeads upon one crystalline GaP nanowires were also found in some synthesis runs. This simple vapor-phase approach may be applied to synthesize other important group III-V compound nanowires.

  14. Phase transformations during the growth of paracetamol crystals from the vapor phase

    NASA Astrophysics Data System (ADS)

    Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.

    2014-07-01

    Phase transformations during the growth of paracetamol crystals from the vapor phase are studied by differential scanning calorimetry. It is found that the vapor-crystal phase transition is actually a superposition of two phase transitions: a first-order phase transition with variable density and a second-order phase transition with variable ordering. The latter, being a diffuse phase transition, results in the formation of a new, "pretransition," phase irreversibly spent in the course of the transition, which ends in the appearance of orthorhombic crystals. X-ray diffraction data and micrograph are presented.

  15. Fog Machines, Vapors, and Phase Diagrams

    ERIC Educational Resources Information Center

    Vitz, Ed

    2008-01-01

    A series of demonstrations is described that elucidate the operation of commercial fog machines by using common laboratory equipment and supplies. The formation of fogs, or "mixing clouds", is discussed in terms of the phase diagram for water and other chemical principles. The demonstrations can be adapted for presentation suitable for elementary…

  16. Effect of vapor-phase oxygen on chemical vapor deposition growth of graphene

    NASA Astrophysics Data System (ADS)

    Terasawa, Tomo-o.; Saiki, Koichiro

    2015-03-01

    To obtain a large-area single-crystal graphene, chemical vapor deposition (CVD) growth on Cu is considered the most promising. Recently, the surface oxygen on Cu has been found to suppress the nucleation of graphene. However, the effect of oxygen in the vapor phase was not elucidated sufficiently. Here, we investigate the effect of O2 partial pressure (PO2) on the CVD growth of graphene using radiation-mode optical microscopy. The nucleation density of graphene decreases monotonically with PO2, while its growth rate reaches a maximum at a certain pressure. Our results indicate that PO2 is an important parameter to optimize in the CVD growth of graphene.

  17. Quantitative Infrared Spectra of Vapor Phase Chemical Agents

    SciTech Connect

    Sharpe, Steven W.; Johnson, Timothy J.; Chu, P M.; Kleimeyer, J; Rowland, Brad; Gardner, Patrick J.

    2003-04-21

    Quantitative high resolution (0.1 cm -1) infrared spectra have been acquired for a number of pressure broadened (101.3 KPa N2), vapor phase chemicals including: Sarin (GB), Soman (GD), Tabun (GA), Cyclosarin (GF), VX, nitrogen mustard (HN3), sulfur mustard (HD) and Lewisite (L).

  18. ACA phase calibration scheme with the ALMA water vapor radiometers

    NASA Astrophysics Data System (ADS)

    Asaki, Yoshiharu; Matsushita, Satoki; Morita, Koh-Ichiro; Nikolic, Bojan

    2012-09-01

    In Atacama Large Millimeter/submillimeter Array (ALMA) commissioning and science verification we have conducted a series of experiments of a novel phase calibration scheme for Atacama Compact Array (ACA). In this scheme water vapor radiometers (WVRs) devoted to measurements of tropospheric water vapor content are attached to ACA’s four total-power array (TP Array) antennas surrounding the 7 m dish interferometer array (7 m Array). The excess path length (EPL) due to the water vapor variations aloft is fitted to a simple two-dimensional slope using WVR measurements. Interferometric phase fluctuations for each baseline of the 7 m Array are obtained from differences of EPL inferred from the two-dimensional slope and subtracted from the interferometric phases. In the experiments we used nine ALMA 12-m antennas. Eight of them were closely located in a 70-m square region, forming a compact array like ACA. We supposed the most four outsiders to be the TP Array while the inner 4 antennas were supposed to be the 7 m Array, so that this phase correction scheme (planar-fit) was tested and compared with the WVR phase correction. We estimated residual root-mean-square (RMS) phases for 17- to 41-m baselines after the planar-fit phase correction, and found that this scheme reduces the RMS phase to a 70 - 90 % level. The planar-fit phase correction was proved to be promising for ACA, and how high or low PWV this scheme effectively works in ACA is an important item to be clarified.

  19. Vapor-phase exchange of perchloroethene between soil and plants

    USGS Publications Warehouse

    Struckhoff, G.C.; Burken, J.G.; Schumacher, J.G.

    2005-01-01

    Tree core concentrations of tetrachloroethylene (perchloroethene, PCE) at the Riverfront Superfund Site in New Haven, MO, were found to mimic the profile of soil phase concentrations. The observed soil-tree core relationship was stronger than that of groundwater PCE to tree core concentrations at the same site. Earlier research has shown a direct, linear relationship between tree core and groundwater concentrations of chlorinated solvents and other organics. Laboratory-scale experiments were performed to elucidate this phenomenon, including determining partitioning coefficients of PCE between plant tissues and air and between plant tissues and water, measured to be 8.1 and 49 L/kg, respectively. The direct relationship of soil to tree core PCE concentrations was hypothesized to be caused by diffusion between tree roots and the soil vapor phase in the subsurface. The central findings of this research are discovering the importance of subsurface vapor-phase transfer for VOCs and uncovering a direct relationship between soil vapor-phase chlorinated solvents and uptake rates that impact contaminant translocation from the subsurface and transfer into the atmosphere. ?? 2005 American Chemical Society.

  20. Superfluid helium 2 liquid-vapor phase separation: Technology assessment

    NASA Technical Reports Server (NTRS)

    Lee, J. M.

    1984-01-01

    A literature survey of helium 2 liquid vapor phase separation is presented. Currently, two types of He 2 phase separators are being investigated: porous, sintered metal plugs and the active phase separator. The permeability K(P) shows consistency in porous plug geometric characterization. Both the heat and mass fluxes increase with K(P). Downstream pressure regulation to adjust for varying heat loads and both temperatures is possible. For large dynamic heat loads, the active phase separator shows a maximum heat rejection rate of up to 2 W and bath temperature stability of 0.1 mK. Porous plug phase separation performance should be investigated for application to SIRTF and, in particular, that plugs of from 10 to the minus ninth square centimeters to 10 to the minus eighth square centimeters in conjunction with downstream pressure regulation be studied.

  1. nanocrystallites condensed in vapor-phase for photocatalyst applications

    NASA Astrophysics Data System (ADS)

    Yoshida, Takehito; Yagi, Nobuyasu; Nakagou, Riki; Sugimura, Akira; Umezu, Ikurou

    2014-10-01

    We have synthesized titanium dioxide (TiO2) nanocrystallites by pulsed laser ablation (PLA) in oxygen (O2) background gas for photocatalyst applications. Varying O2 background gas pressure or substrate target distance ( D TS), it was possible to change weight fraction of anatase phase in the anatase/rutile mixture from 0.2 to 1.0. Porosity of the deposited TiO2 films increased with increasing and D TS. Relation between the process parameters and the formed crystal phases was explained from the point of cooling process in vapor-phase. Furthermore, rapid thermal annealing (RTA) was performed as post-annealing, suppressing sintering of the nanocrystallites. Photocatalytic activities of the TiO2 nanocrystallites depended on the RTA temperature and following crystallinity restoring as well as the crystal phase: anatase or rutile.

  2. Vapor-phase biofiltration: Laboratory and field experience

    SciTech Connect

    Evans, P.J.; Bourbonais, K.A.; Peterson, L.E.; Lee, J.H.; Laakso, G.L.

    1995-12-31

    Application of vapor-phase bioreactors (VPBs) to petroleum hydrocarbons is complicated by the different mass transfer characteristics of aliphatics and aromatics. Laboratory- and pilot-scale VPB studies were conducted to evaluate treatment of soil vapor extraction (SVE) off-gas. A mixture of compost, perlite, and activated carbon was the selected medium based on pressure drop, microbial colonization, and adsorption properties. Two different pilot-scale reactors were built with a difference of 70:1 in scale. The smaller VPB`s maximum effective elimination capacity (EC) was determined to be 7.2 g m{sup {minus}3} h{sup {minus}1}; the larger unit`s EC was 70% to 80% of this value. Low EC values may be attributable to a combination of mass-transfer and kinetic limitations.

  3. Vapors-liquid phase separator. [infrared telescope heat sink

    NASA Technical Reports Server (NTRS)

    Frederking, T. H. K.; Brown, G. S.; Chuang, C.; Kamioka, Y.; Kim, Y. I.; Lee, J. M.; Yuan, S. W. K.

    1980-01-01

    The use of porous plugs, mostly with in the form of passive devices with constant area were considered as vapor-liquid phase separators for helium 2 storage vessels under reduced gravity. The incorporation of components with variable cross sectional area as a method of flow rate modification was also investigated. A particular device which uses a shutter-type system for area variation was designed and constructed. This system successfully permitted flor rate changes of up to plus or minus 60% from its mean value.

  4. Modeling of Gallium Nitride Hydride Vapor Phase Epitaxy

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    A reactor model for the hydride vapor phase epitaxy of GaN is presented. The governing flow, energy, and species conservation equations are solved in two dimensions to examine the growth characteristics as a function of process variables and reactor geometry. The growth rate varies with GaCl composition but independent of NH3 and H2 flow rates. A change in carrier gas for Ga source from H2 to N2 affects the growth rate and uniformity for a fixed reactor configuration. The model predictions are in general agreement with observed experimental behavior.

  5. Effect of dimensionality on vapor-liquid phase transition

    NASA Astrophysics Data System (ADS)

    Singh, Sudhir Kumar

    2014-04-01

    Dimensionality play significant role on `phase transitions'. Fluids in macroscopic confinement (bulk or 3-Dimensional, 3D) do not show significant changes in their phase transition properties with extent of confinement, since the number of molecules away from the surrounding surfaces is astronomically higher than the number of molecules in close proximity of the confining surfaces. In microscopic confinement (quasi 3D to quasi-2D), however, the number of molecules away from the close proximity of the surface is not as high as is the case with macroscopic (3D) confinement. Hence, under the same thermodynamic conditions `phase transition' properties at microscopic confinement may not remain the same as the macroscopic or 3D values. Phase transitions at extremely small scale become very sensitive to the dimensions as well as the surface characteristics of the system. In this work our investigations reveal the effect of dimensionality on the phase transition from 3D to quasi-2D to 2D behavior. We have used grand canonical transition matrix Monte Carlo simulation to understand the vapor-liquid phase transitions from 3D to quasi-2D behavior. Such studies can be helpful in understanding and controlling the fluid film behaviour confined between solid surfaces of few molecular diameters, for example, in lubrication applications.

  6. Simultaneous Vapor Deposition and Phase Separation of Polymer Films

    NASA Astrophysics Data System (ADS)

    Tao, Ran; Anthamatten, Mitchell

    2012-02-01

    Initiated chemical vapor deposition (iCVD) is a solventless, free radical technique used predominately to deposit homogeneous films of linear and crosslinked polymers directly from gas phase feeds. The major goal of this research is to force and arrest phase separation of deposited species by co-depositing non-reactive molecules (porogens) with reactive monomers and crosslinkers. We introduce these species during iCVD to force and quench polymer induced phase separation (PIPS) during film growth as a step toward tunable pore-size, density, and morphology. Polymerization, crosslinking and PIPS are intended to occur simultaneously on the substrate, resulting in a vitrified microstructure. Cahn-Hilliard theory predicts that the length scale of phase separation depends on the polymer-porogen interaction energy, the polymerization rate and the species' mobility. A series of films were grown by varying deposition rate, porogen type, and reagent flowrates. Crosslinkers were introduced to limit the growth of phase separated domains and to provide mechanical support during porogen removal. To elucidate how phase separation competes with polymerization and film growth, deposited films were studied using a combination of electron microscopy, profilometry and spectroscopic techniques.

  7. Debris cloud characterization in the liquid-vapor phase

    SciTech Connect

    Chhabildas, L.C.; Boslough, M.B.; Reinhart, W.D.; Hall, C.A.

    1993-10-01

    A series of experiments has been performed on the Sandia Hypervelocity Launcher to impact a 1.25-mm thick aluminum bumper by an aluminum flier plate 17-mm diameter by 0.92-mm thick over the velocity range of 5 km/s to 11 km/s. Radiographic techniques were employed to record the debris cloud generated upon impact. The shape of the debris cloud is found to depend on the flier plate tilt. Generally the data indicate a central core of higher density surrounded by a diffused layer. These experiments allow measurements of debris cloud expansion velocities as the material undergoes a phase change from solid fragments at impact velocities of 5 km/s to a mixture of liquid and vapor phase at higher impact velocities. The expansion velocity of the debris cloud increases with increasing impact velocity, with the high-density leading edge traveling faster than the impact velocity. There is a difference between the X-ray and photographic measurements of expansion velocities at higher impact velocities. This is believed to be due to the presence of very low- density vapor in the photographic records that are not detected using X-ray techniques.

  8. Sporicidal Activity of the KMT reagent in its vapor phase against Geobacillus stearothermophilus Spores.

    PubMed

    Kida, Nori; Mochizuki, Yasushi; Taguchi, Fumiaki

    2007-01-01

    In an investigation of the sporicidal activity of the KMT reagent, a vapor phase study was performed using five kinds of carriers contaminated with Geobacillus stearothermophilus spores. When 25 ml of the KMT reagent was vaporized in a chamber (capacity; approximately 95 liters), the 2-step heating method (vaporization by a combination of low temperature and high temperature) showed the most effective sporicidal activity in comparison with the 1-step heating method (rapid vaporization). The 2-step heating method appeared to be related to the sporicidal activity of vaporized KMT reagent, i.e., ethanol and iodine, which vaporized mainly when heated at a low temperature such as 55 C, and acidic water, which vaporized mainly when heated at a high temperature such as 300 C. We proposed that the KMT reagent can be used as a new disinfectant not only in the liquid phase but also in the vapor phase in the same way as peracetic acid and hydrogen peroxide. PMID:17237604

  9. Healing defective CVD-graphene through vapor phase treatment

    NASA Astrophysics Data System (ADS)

    van Lam, Do; Kim, Sang-Min; Cho, Youngji; Kim, Jae-Hyun; Lee, Hak-Joo; Yang, Jun-Mo; Lee, Seung-Mo

    2014-05-01

    Structural defects present on chemical vapor deposition (CVD)-graphene have usually originated from the growth stage and transfer process. They limit the electronic transport properties of graphene and degrade performance of related devices. Here we report that these inherent atomic defects could be selectively healed by a simple vapor phase treatment performed in equipment conventionally used for atomic layer deposition (ALD). The unique chemistry of Al2O3 ALD facilitated selective depositions of AlxOy compounds on the defects, which could be readily probed and visualized using AFM imaging. The healing agent, AlxOy, was observed to bind tightly to the defects and lead to doping of the CVD-graphene, which was reflected in the noticeable improvement in electrical sheet resistance. In contrast with the chemically doped graphene, the ALD-treated graphenes revealed notable long-term stability under environmental conditions. Our approach promises selective healing of defects present in most materials and possibly ensures considerable improvement in electrical and mechanical properties. ALD with a broad spectrum of material selection could be a versatile tool for upgrading properties of materials.Structural defects present on chemical vapor deposition (CVD)-graphene have usually originated from the growth stage and transfer process. They limit the electronic transport properties of graphene and degrade performance of related devices. Here we report that these inherent atomic defects could be selectively healed by a simple vapor phase treatment performed in equipment conventionally used for atomic layer deposition (ALD). The unique chemistry of Al2O3 ALD facilitated selective depositions of AlxOy compounds on the defects, which could be readily probed and visualized using AFM imaging. The healing agent, AlxOy, was observed to bind tightly to the defects and lead to doping of the CVD-graphene, which was reflected in the noticeable improvement in electrical sheet resistance

  10. Evidence of Phase Separation during Vapor Deposition Polymerization

    NASA Astrophysics Data System (ADS)

    Tao, Ran; Anthamatten, Mitchell

    2013-03-01

    Initiated chemical vapor deposition (iCVD) is a solventless, free radical technique predominately used to deposit homogeneous films of linear and crosslinked polymers directly from gas phase feeds. We are developing multicomponent iCVD techniques to induce phase separation during film growth. Small molecule porogens and crosslinkers are introduced into the iCVD process during film growth of poly(glycidyl methacrylate). Analogous to well established polymerization induced phase separation (PIPS) processes, porogens, such as dimethyl phthalate, are well mixed at the growing gas-film interface but are immiscible with high molecular weight polymer. Polymerization, crosslinking and PIPS are intended to occur simultaneously on the substrate, resulting in a vitrified microstructure. A series of films were grown by varying deposition rate, porogen type, and reagent flowrates. Deposited films were studied by electron microscopy and spectroscopic techniques. Experiments are compared to Cahn-Hilliard theory predictions that relate the length and time scale of the phase separation to the polymer-porogen interaction energy, the rate of polymerization and the species mobility.

  11. Healing defective CVD-graphene through vapor phase treatment.

    PubMed

    Van Lam, Do; Kim, Sang-Min; Cho, Youngji; Kim, Jae-Hyun; Lee, Hak-Joo; Yang, Jun-Mo; Lee, Seung-Mo

    2014-06-01

    Structural defects present on chemical vapor deposition (CVD)-graphene have usually originated from the growth stage and transfer process. They limit the electronic transport properties of graphene and degrade performance of related devices. Here we report that these inherent atomic defects could be selectively healed by a simple vapor phase treatment performed in equipment conventionally used for atomic layer deposition (ALD). The unique chemistry of Al2O3 ALD facilitated selective depositions of AlxOy compounds on the defects, which could be readily probed and visualized using AFM imaging. The healing agent, AlxOy, was observed to bind tightly to the defects and lead to doping of the CVD-graphene, which was reflected in the noticeable improvement in electrical sheet resistance. In contrast with the chemically doped graphene, the ALD-treated graphenes revealed notable long-term stability under environmental conditions. Our approach promises selective healing of defects present in most materials and possibly ensures considerable improvement in electrical and mechanical properties. ALD with a broad spectrum of material selection could be a versatile tool for upgrading properties of materials. PMID:24756318

  12. Melt-vapor phase transition in the lead-selenium system at atmospheric and low pressure

    NASA Astrophysics Data System (ADS)

    Volodin, V. N.; Burabaeva, N. M.; Trebukhov, S. A.

    2016-03-01

    The boiling temperature and the corresponding vapor phase composition in the existence domain of liquid solutions were calculated from the partial pressures of saturated vapor of the components and lead selenide over liquid melts in the lead-selenium system. The phase diagram was complemented with the liquid-vapor phase transition at atmospheric pressure and in vacuum of 100 Pa, which allowed us to judge the behavior of the components during the distillation separation.

  13. Continuous Determination of High-Vapor Phase Concentrations of Tetrachloroethylene Using On-Line Mass Spectrometry

    EPA Science Inventory

    A method was developed to determine the vapor concentration of tetrachloroethylene (PCE) at and below its equilibrium vapor phase concentration, 168,000 μg/L (25°C). Vapor samples were drawn by vacuum into a six-port sampling valve and injected through a jet separator into an io...

  14. Comparative characterization of organic emissions from diesel particles, coke oven mains, roofing tar vapors, and cigarette smoke condensate

    SciTech Connect

    Williams, R.; Sparacino, C.; Petersen, B.; Bumgarner, J.; Jungers, R.H.

    1986-01-01

    The paper reports the characterization of the extractable organics from diesel particle emissions compared to other complex organics which have been reported to increase the risk of human lung cancer. Class fractions of diesel, cigarette smoke condensate, roofing tar, and coke oven extracts were obtained using liquid/liquid partitioning and silica gel chromatography. Capillary GC/MS was used to identify compounds in each extract fraction. The manuscript reports the mass distribution after fractionation of each extract, all identified fraction components and quantification of selected mutagenic and carcinogenic compounds.

  15. Comparative characterization of organic emissions from diesel particles, coke oven mains, roofing tar vapors and cigarette smoke condensate.

    PubMed

    Williams, R; Sparacino, C; Petersen, B; Bumgarner, J; Jungers, R H; Lewtas, J

    1986-01-01

    This paper reports the characterization of the extractable organics from diesel particulate emissions compared to other complex organics which have been reported to increase the risk of human lung cancer. Class fractions of diesel, cigarette smoke condensate, roofing tar, and coke oven extracts were obtained using liquid/liquid partitioning and silica gel chromatography. Capillary GC/MS was used to identify compounds in each extract fraction. This manuscript reports the mass distribution after fractionation of each extract, all identified fraction components and quantification of selected mutagenic and carcinogenic compounds. PMID:3804556

  16. Quantitative Infrared Spectra of Vapor Phase Chemical Agents

    SciTech Connect

    Sharpe, Steven W.; Johnson, Timothy J.; Chu, P. M.; Kleimeyer, J.; Rowland, Brad

    2003-08-01

    Quantitative, moderately high resolution (0.1 cm-1) infrared spectra have been acquired for a number of nitrogen broadened (1 atm N2) vapor phase chemicals including: Sarin (GB), Soman (GD), Tabun (GA), Cyclosarin (GF), VX, Nitrogen Mustard (HN3), Sulfur Mustard (HD), and Lewisite (L). The spectra are acquired using a heated, flow-through White Cell1 of 5.6 meter optical path length. Each reported spectrum represents a statistical fit to Beer’s law, which allows for a rigorous calculation of uncertainty in the absorption coefficients. As part of an ongoing collaboration with the National Institute of Standards and Technology (NIST), cross-laboratory validation is a critical aspect of this work. In order to identify possible errors in the Dugway flow-through system, quantitative spectra of isopropyl alcohol from both NIST and Pacific Northwest National Laboratory (PNNL) are compared to similar data taken at Dugway proving Grounds (DPG).

  17. Airborne and vapor phase hydrocarbons over the Mediterranean Sea

    SciTech Connect

    Marie-Alexandrine, S.; Jean-Claude, M.; Anne, L.; Alain, S.

    1990-11-01

    n-Alkane distributions and concentrations have been determined in the atmospheric particulate and gas phases for samples collected over the Mediterranean Sea. Distributions of airborne alkanes exhibited a strong odd to even predominance in the C{sub 22}-C{sub 38} range associated with the presence of unresolved compounds indicating a mixture of terrigenous and anthropogenic inputs. Variations in their concentration levels could be related to the origin of air masses. Solvent extractable gas phase n-alkanes dominated in the C{sub 15}-C{sub 22} range with a slight predominance of n-C{sub 17} except in one sample were C{sub 18} and C{sub 20} were dominant. A hump of unresolved compounds shifted toward low molecular weight was observed in all the samples. The origin of vapor phase hydrocarbons is discussed with respect to the composition of seawater samples collected during the same cruise. From lifetime and transport time considerations as well as distribution features, both marine and continental origins, as distribution features, both marine and continental origins, likely anthropogenic, are suggested. The strong terrigenous signal of the suspended particles in the microlayer and underlying waters is attributed to aerosol deposition. The dissolved alkane compositional feature suggested both marine and anthropogenic sources.

  18. A High Temperature Vapor Phase Lubrication Study Utilizing a Thioether Liquid Lubricant

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo; Graham, E. Earl; Galvin, Thomas

    1997-01-01

    Much of the experimental work on vapor phase lubrication has employed certain organo phosphorous compounds as the vapor phase lubricant. Graham and Klaus, for instance, used tricresyl phosphate (TCP) and tributyl phosphate to vapor phase lubricate a four-ball wear tester using M50 steel balls at 370 C. Makki and Graham were able to vapor phase lubricate a reciprocating pin on plate tribometer using 1018 steel at 280 C with TCP vapor. Although a few organo phosphorous compounds, such as TCP, have been successfully used as vapor phase lubricants in many laboratory experiments, many problems remain unsolved. Two areas of concern relate to the 'durability' of phosphate deposited films and to the ability of the lubricating system to "self-recover" when vapor phase lubricated with an organo phosphorous compound. Durability refers to the ability of the deposited film to provide effective lubrication, for a period of time, after the vapor flow to the lubricating surfaces has been interrupted. Vapor phase lubrication tests, conducted at Cleveland State University with their high temperature tribometer, revealed that when TCP vapor flow to the lubricating surfaces was interrupted the frictional coefficient of the system rapidly increased from a value less than 0.1 to a value of 0.3 which was selected as our failure point. Self-recovery means the ability of the vapor phase lubricant to reduce the frictional coefficient of the lubricating system back down to value less than 0.1 after startup of the interrupted vapor flow. Lubrication tests conducted at Cleveland State University revealed that the high temperature tribometer could not self-recover after startup of the interrupted TCP vapor flow.

  19. Sensitive and selective determination of polycyclic aromatic hydrocarbons in mainstream cigarette smoke using a graphene-coated solid-phase microextraction fiber prior to GC/MS.

    PubMed

    Wang, Xiaoyu; Wang, Yuan; Qin, Yaqiong; Ding, Li; Chen, Yi; Xie, Fuwei

    2015-08-01

    A simple method has been developed for the simultaneous determination of 16 polycyclic aromatic hydrocarbons (PAHs) in mainstream cigarette smoke. The procedure is based on employing a homemade graphene-coated solid-phase microextraction (SPME) fiber for extraction prior to GC/MS. In comparison to commercial 100-μm poly(dimethyl siloxane) (PDMS) fiber, the graphene-coated SPME fiber exhibits advantageous cleanup and preconcentration efficiencies. By collecting the particulate phase 5 cigarettes, the LODs and LOQs of 16 target PAHs were 0.02-0.07 and 0.07-0.22 ng/cigarette, respectively, and all of the linear correlation efficiencies were larger than 0.995. The validation results also indicate that the method has good repeatability (RSD between 4.2% and 9.5%) and accuracy (spiked recoveries between 80% and 110%). The developed method was applied to analyze two Kentucky reference cigarettes (1R5F and 3R4F) and six Chinese brands of cigarettes. In addition, the PAH concentrations in the particulate phase of the smoke from the 1R5F Kentucky cigarettes were in good agreement with recently reported results. Due to easy operation and good validation results, this SPME-GC/MS method may be an excellent alternative for trace analysis of PAHs in cigarette smoke. PMID:26048830

  20. Liquid-vapor phase equilibrium in a tin-selenium system

    NASA Astrophysics Data System (ADS)

    Volodin, V. N.; Burabaeva, N. M.; Trebukhov, S. A.

    2014-12-01

    Based on the pressure of the saturated vapor and components over liquid alloys in a tin-selenium system, determined using the boiling points approach (isothermal variant), its boiling point and corresponding vapor phase composition are calculated in the region of liquid solutions. The phase diagram is supple-mented with the liquid-vapor phase transition under atmospheric pressure and in vacuums of 100 and 10 Pa with the boundaries of the region in which the regions of liquid and vapor coexist being determined.

  1. Vapor phase elemental sulfur amendment for sequestering mercury in contaminated soil

    DOEpatents

    Looney, Brian B.; Denham, Miles E.; Jackson, Dennis G.

    2014-07-08

    The process of treating elemental mercury within the soil is provided by introducing into the soil a heated vapor phase of elemental sulfur. As the vapor phase of elemental sulfur cools, sulfur is precipitated within the soil and then reacts with any elemental mercury thereby producing a reaction product that is less hazardous than elemental mercury.

  2. VAPOR-PHASE 2,3,7,8-TCDD SORPTION TO PLANT FOILAGE - A SPECIES COMPARISON

    EPA Science Inventory

    Plant uptake rate constants (k1) were determined for vapor-phase 2,3,7,8-TCDD using grass, azalea, spruce, kale and pepper foliage, and the fruit from apple, tomato and pepper. lants were exposed to vapor-phase 3H-2,3,7,8-TCDD for 96 h, and the TCDD sorption rate constant for eac...

  3. The nuclear liquid-vapor phase transition: Equilibrium between phases or free decay in vacuum?

    SciTech Connect

    Phair, L.; Moretto, L.G.; Elliott, J.B.; Wozniak, G.J.

    2002-11-14

    Recent analyses of multifragmentation in terms of Fisher's model and the related construction of a phase diagram brings forth the problem of the true existence of the vapor phase and the meaning of its associated pressure. Our analysis shows that a thermal emission picture is equivalent to a Fisher-like equilibrium description which avoids the problem of the vapor and explains the recently observed Boltzmann-like distribution of the emission times. In this picture a simple Fermi gas thermometric relation is naturally justified. Low energy compound nucleus emission of intermediate mass fragments is shown to scale according to Fisher's formula and can be simultaneously fit with the much higher energy ISiS multifragmentation data.

  4. E-cigarettes: promise or peril?

    PubMed

    Riker, Carol A; Lee, Kiyoung; Darville, Audrey; Hahn, Ellen J

    2012-03-01

    Electronic cigarettes (e-cigarettes) use a heating element to vaporize nicotine and other ingredients, simulating the visual, sensory, and behavioral aspects of smoking without the combustion of tobacco. An ever-growing number of companies around the world manufacture a wide variety of e-cigarette brands, despite scant information on the safety of the ingredients for human inhalation. This article provides an overview of the history, production, and marketing of e-cigarettes, the contents of e-cigarettes and vapor, how they are used, public health concerns, and implications for nursing practice, research, and policy development. PMID:22289406

  5. A review of porous media enhanced vapor-phase diffusion mechanisms, models, and data: Does enhanced vapor-phase diffusion exist?

    SciTech Connect

    Ho, C.K.; Webb, S.W.

    1996-05-01

    A review of mechanisms, models, and data relevant to the postulated phenomenon of enhanced vapor-phase diffusion in porous media is presented. Information is obtained from literature spanning two different disciplines (soil science and engineering) to gain a diverse perspective on this topic. Findings indicate that while enhanced vapor diffusion tends to correct the discrepancies observed between past theory and experiments, no direct evidence exists to support the postulated processes causing enhanced vapor diffusion. Numerical modeling analyses of experiments representative of the two disciplines are presented in this paper to assess the sensitivity of different systems to enhanced vapor diffusion. Pore-scale modeling is also performed to evaluate the relative significance of enhanced vapor diffusion mechanisms when compared to Fickian diffusion. The results demonstrate the need for additional experiments so that more discerning analyses can be performed.

  6. Numerical Modeling of Liquid-Vapor Phase Change

    NASA Technical Reports Server (NTRS)

    Esmaeeli, Asghar; Arpaci, Vedat S.

    2001-01-01

    We implemented a two- and three-dimensional finite difference/front tracking technique to solve liquid-vapor phase change problems. The mathematical and the numerical features of the method were explained in great detail in our previous reports, Briefly, we used a single formula representation which incorporated jump conditions into the governing equations. The interfacial terms were distributed as singular terms using delta functions so that the governing equations would be the same as conventional conservation equations away from the interface and in the vicinity of the interface they would provide correct jump conditions. We used a fixed staggered grid to discretize these equations and an unstructured grid to explicitly track the front. While in two dimensions the front was simply a connection of small line segments, in three dimensions it was represented by a connection of small triangular elements. The equations were written in conservative forms and during the course of computations we used regriding to control the size of the elements of the unstructured grid. Moreover, we implemented a coalescence in two dimensions which allowed the merging of different fronts or two segments of the same front when they were sufficiently close. We used our code to study thermocapillary migration of bubbles, burst of bubbles at a free surface, buoyancy-driven interactions of bubbles, evaporation of drops, rapid evaporation of an interface, planar solidification of an undercooled melt, dendritic solidification, and a host of other problems cited in the reference.

  7. Vapor phase deposition of transition metal fluoride glasses

    NASA Astrophysics Data System (ADS)

    Boulard, Brigitte; Jacoboni, Charles

    1991-08-01

    Multicomponent fluoride glasses in the PbF2-ZnF2-GaF3 (PZG) vitreous ternary system have been prepared by vapor phase deposition. The thermal stability of the deposited glass was improved by adding stabilizing agents (AlF3, NaF, LiF, InF3). The thin films, deposited on different substrates (fluoride glass, fluoride single crystal, metal, and silica glass) have been characterized by x-ray diffraction. Differential scanning calorimetry (DSC) and secondary ion mass spectroscopy (SIMS). The quality of the film, adherence, and homogeneity was controlled by scanning electronic microscopy (SEM). The optical characteristics of the film and PZG glass are given: the visible-infrared (VIS-IR) window is 0.3-8 micrometers and the refractive index 1.59+/- 0.2 depends on the lead content. Mn2+ doped films (up to 3 mole % MnF2) are optically active: Mn2+ exhibits a broad luminescence band at 560-570 nm (orange). The achieved film thickness varies from 0.5 to 80 micrometers , and the refractive index gradient approaches the required geometry for planar waveguides (doping of the film with lanthanides is in progress).

  8. Non-aqueous phase liquid spreading during soil vapor extraction

    NASA Astrophysics Data System (ADS)

    Kneafsey, Timothy J.; Hunt, James R.

    2004-02-01

    Many non-aqueous phase liquids (NAPLs) are expected to spread at the air-water interface, particularly under non-equilibrium conditions. In the vadose zone, this spreading should increase the surface area for mass transfer and the efficiency of volatile NAPL recovery by soil vapor extraction (SVE). Observations of spreading on water wet surfaces led to a conceptual model of oil spreading vertically above a NAPL pool in the vadose zone. Analysis of this model predicts that spreading can enhance the SVE contaminant recovery compared to conditions where the liquid does not spread. Experiments were conducted with spreading volatile oils hexane and heptane in wet porous media and capillary tubes, where spreading was observed at the scale of centimeters. Within porous medium columns up to a meter in height containing stagnant gas, spreading was less than ten centimeters and did not contribute significantly to hexane volatilization. Water film thinning and oil film pinning may have prevented significant oil film spreading, and thus did not enhance SVE at the scale of a meter. The experiments performed indicate that volatile oil spreading at the field scale is unlikely to contribute significantly to the efficiency of SVE.

  9. Liquid-vapor phase diagram of metals using EAM potential

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Chandrani

    2013-02-01

    Pair-wise additive potentials are not adequate to describe the properties of metallic systems since many body effects are completely ignored in that approximation. In this regard, the embedded atom method is more appropriate because, in addition to the pair interaction, the total energy includes an embedding energy which is the energy required to add an impurity atom to the host electron fluid. Thus EAM takes into account the many body effects to some extent. We use the Cai and Ye's EAM potential to predict the liquid vapor phase diagram and critical constants of Aluminum and Copper within a perturbation theory approach. In this method, free energy of a fluid molecule, trapped in a cage formed by its nearest neighbors, is expanded about a hard sphere reference system. The first order correction term is calculated in terms of the zero temperature isotherm of the solid obtained using the EAM potential. Higher order correction terms are added to account for the deviation of the behavior of the real fluid from the reference hard sphere fluid.

  10. Thin film solar cells grown by organic vapor phase deposition

    NASA Astrophysics Data System (ADS)

    Yang, Fan

    Organic solar cells have the potential to provide low-cost photovoltaic devices as a clean and renewable energy resource. In this thesis, we focus on understanding the energy conversion process in organic solar cells, and improving the power conversion efficiencies via controlled growth of organic nanostructures. First, we explain the unique optical and electrical properties of organic materials used for photovoltaics, and the excitonic energy conversion process in donor-acceptor heterojunction solar cells that place several limiting factors of their power conversion efficiency. Then, strategies for improving exciton diffusion and carrier collection are analyzed using dynamical Monte Carlo models for several nanostructure morphologies. Organic vapor phase deposition is used for controlling materials crystallization and film morphology. We improve the exciton diffusion efficiency while maintaining good carrier conduction in a bulk heterojunction solar cell. Further efficiency improvement is obtained in a novel nanocrystalline network structure with a thick absorbing layer, leading to the demonstration of an organic solar cell with 4.6% efficiency. In addition, solar cells using simultaneously active heterojunctions with broad spectral response are presented. We also analyze the efficiency limits of single and multiple junction organic solar cells, and discuss the challenges facing their practical implementations.

  11. Crystallization from a vapor phase in igneous rocks -- A conceptual model

    SciTech Connect

    Kleck, W.D. )

    1993-04-01

    Euhedral, late-stage crystals in pocket pegmatite and in vesicles of volcanic rocks are commonly cited as examples of crystallization from a vapor phase. If, however, crystallization takes place only from the cavity forming vapor, that vapor cannot contain sufficient material for the formation of the observed crystals. The approximate amount of H[sub 2]O vapor and percentage of dissolved silicate matter (1) for shallow pocket pegmatite is 0.5 g/cm[sup 3] and 0.3 percent; (2) for vesicles is 0.002 g/cm[sup 3] and [much lt]1 percent. These values show that the silicate matter dissolved in the vapor is insufficient for the formation of the observed crystals. No (or little) recharge of the vapor is an unstated assumption in most discussions of enclosed cavities. This, however, is not quite correct. For a simplified system, four phases will exist in equilibrium: (1) mineral grains growing from liquid, (2) late-stage, H[sub 2]O-enriched, silicate liquid, (3) vapor, (4) crystals growing from vapor. The total system (for transferal of silicate matter) is given. Little silicate matter is dissolved in the vapor at any one time, but it is replenished as the crystals grow. The vapor becomes a continuously resupplied reservoir of dissolved silicate matter; crystallization from the vapor continues until the silicate liquid is depleted.

  12. Vaporization behavior of non-stoichiometric refractory carbide materials and direct observations of the vapor phase using laser diagnostics

    SciTech Connect

    Butt, D.P.; Wantuck, P.J.; Rehse, S.J.; Wallace, T.C. Sr.

    1993-09-01

    Transition metal and actinide carbides, such as ZrC or NbC and UC or ThC, exhibit a wide range of stoichiometry, and therefore vaporize incongruently. At long times, steady state vaporization can be achieved where relative concentrations of atomic species on solid surface equals that in the gas phase. The surface composition under these steady state conditions is termed the congruently vaporizing composition, (CVC). Modeling the vaporization or corrosion behavior of this dynamic process is complex and requires an understanding of how the surface composition changes with time and a knowledge of CVC, which is both temperature and atmosphere dependent. This paper describes vaporization and corrosion behavior of non-stoichiometric refractory carbide materials and, as an example, describes a thermokinetic model that characterizes the vaporization behavior of the complex carbide U{sub x}Zr{sub 1-x}C{sub y} in hydrogen at 2500 to 3200 K. This model demonstrates that steady state corrosion of U{sub x}Zr{sub l-x}C{sub y} is rate limited by gaseous transport of Zr where partial pressure of Zr is determined by CVC. This paper also briefly describes efforts to image and characterize the vapor phase above the surface of ZrC in static and flowing gas environments using planar laser induced fluorescence. We have developed the method for monitoring and controlling the corrosion behavior of nuclear fuels in nuclear thermal rockets. However, the techniques described can be used, to image boundary layers, and could be used verifying corrosion models.

  13. Calibration of an explosives vapor generator based on vapor diffusion from a condensed phase

    SciTech Connect

    Parmeter, J.E.; Rhykerd, L. Jr.; Conrad, F.J.; Tiano, G.S.; Preston, D.; Eiceman, G.A.; Arnold, J.T.

    1995-12-31

    Development of a vapor generator for consistently producing accurate amounts of vapor from low vapor pressure explosive materials is a pressing need within the explosives detection community. Of particular importance for reproducibility and widespread acceptance of results is the correlation of such a vapor generator to a National Institute of Standards and Technology (NIST) mass standard. This paper describes an explosives vapor generator recently developed at Varian in which a solid explosive sample in a precision bore glass tube is put in an oven at constant temperature, and vapor diff-using from the top of the tube is entrained in a carrier gas flow. The rate of vapor output is thus dependent on both the equilibrium vapor pressure of the solid at oven temperature and the rate of diffusion up the length of the tube. Correlation to a NIST mass standard is achieved by periodic weighing of the sample tube on a microbalance. We report results obtained with the explosives TNT and RDX. Results for TNT show that the mass output rate is constant over hundreds of hours of continuous use, with outputs of {approximately} 10--2000 pg/sec for oven temperatures in the range of 60--120{degrees}C. Both the mass loss experiments and calibration with an ion mobility spectrometer (IMS) give a TNT mass output value of 85 pg/sec at 79{degrees}C, and this result is supported by transport theory calculations. Mass loss curves for RDX are also linear with time, and show the expected exponential increase of mass output with oven temperature.

  14. Underwater vapor phase burning of aluminum particles and on aluminum ignition during steam explosions

    SciTech Connect

    Epstein, M. )

    1991-09-01

    Recently reported experimental studies on aluminum-water steam explosions indicate that there may be a critical metal temperature at which the process changes over from a physical explosion to one which is very violent and involves the rapid liberation of chemical energy. In this report we examine the hypothesis that vapor-phase burning of aluminum is a necessary condition for the occurrence of such ignition-type'' steam explosions. An available two-phase stagnation flow film-boiling model is used to calculate the steam flux to the vaporizing aluminum surface. Combining this calculation with the notion that there is an upper limit to the magnitude of the metal vaporization rate at which the reaction regime must change from vapor phase to surface burning, leads to prediction of the critical metal surface temperature below which vapor phase burning is impossible. The critical temperature is predicted for both the aluminum-water pre-mixture configuration in which coarse drops of aluminum are falling freely through water and for the finely-fragmented aluminum drops in the wake of the pressure shock that triggers'' the explosion. Vapor phase burning is predicted to be possible during the pre-mixture phase but not very likely during the trigger phase of a steam explosion. The implications of these findings in terms of the validity of the hypothesis that ignition may begin with the vapor phase burning of aluminum is discussed. Recently postulated, alternative mechanisms of underwater aluminum ignition are also discussed.

  15. Underwater vapor phase burning of aluminum particles and on aluminum ignition during steam explosions

    SciTech Connect

    Epstein, M.

    1991-09-01

    Recently reported experimental studies on aluminum-water steam explosions indicate that there may be a critical metal temperature at which the process changes over from a physical explosion to one which is very violent and involves the rapid liberation of chemical energy. In this report we examine the hypothesis that vapor-phase burning of aluminum is a necessary condition for the occurrence of such ``ignition-type`` steam explosions. An available two-phase stagnation flow film-boiling model is used to calculate the steam flux to the vaporizing aluminum surface. Combining this calculation with the notion that there is an upper limit to the magnitude of the metal vaporization rate at which the reaction regime must change from vapor phase to surface burning, leads to prediction of the critical metal surface temperature below which vapor phase burning is impossible. The critical temperature is predicted for both the aluminum-water pre-mixture configuration in which coarse drops of aluminum are falling freely through water and for the finely-fragmented aluminum drops in the wake of the pressure shock that ``triggers`` the explosion. Vapor phase burning is predicted to be possible during the pre-mixture phase but not very likely during the trigger phase of a steam explosion. The implications of these findings in terms of the validity of the hypothesis that ignition may begin with the vapor phase burning of aluminum is discussed. Recently postulated, alternative mechanisms of underwater aluminum ignition are also discussed.

  16. Simultaneous determination of nicotine and 3-vinylpyridine in single cigarette tobacco smoke and in indoor air using direct extraction to solid phase.

    PubMed

    Koszowski, Bartosz; Goniewicz, Maciej Lukasz; Czogala, Jan; Zymelka, Anna; Sobczak, Andrzej

    2009-01-01

    The aim of the present study was to develop a new analytical method of chromatographic determination of two important markers of ETS exposure: nicotine and 3-vinylpyridine (3-ethenylpyridine, 3-EP) in mainstream (MS) and sidestream (SS) smoke of one single cigarette and in indoor air using direct solid phase extraction combined with gas chromatography. The method can be utilised for both nicotine and 3-EP determination in SS and MS of one single cigarette as well as it allows for a precise determination of compound distribution in indoor air. The application of the same analytical method for both kinds of samples allows anticipating indoor air distribution of both analysed compounds in a very precise way. The precision of the method (calculated as a relative standard deviation) was 9.78% for nicotine and 2.67% for 3-EP; whereas the accuracy (evaluated by a recovery study conducted at three different levels) was 70.1 and 87.3%, respectively. The limit of detection was 0.06 µg per cigarette for both nicotine and 3-EP. The method was evaluated by determining the compounds of interest in two commercially available brands of cigarettes as well as in the reference cigarettes 3R4F and also in indoor air polluted with tobacco smoke. Determined levels of compounds of interest in MS varied from 586 to 772 (nicotine) µg per cigarette and from 3.5 to 10.7 (3-EP) µg per cigarette. In SS smoke the level varied from 14,370 to 22,590 (nicotine) µg per cigarette and from 185 to 550 (3-EP) µg per cigarette, whereas levels in indoor air polluted with tobacco smoke varied from 50.1 to 157.3 (nicotine) µg m(-3) and from 7.7 to 20.8 (3-EP) µg m(-3). PMID:19662106

  17. Cigarette smoke extract increases albumin flux across pulmonary endothelium in vitro

    SciTech Connect

    Holden, W.E.; Maier, J.M.; Malinow, M.R.

    1989-01-01

    Cigarette smoking causes lung inflammation, and a characteristic of inflammation is an increase in vascular permeability. To determine if cigarette smoke could alter endothelial permeability, we studied flux of radiolabeled albumin across monolayers of porcine pulmonary artery endothelium grown in culture on microporous membranes. Extracts (in either dimethylsulfoxide or phosphate-buffered saline) of cigarette smoke in a range estimate of concentrations simulating cigarette smoke exposure to the lungs in vivo caused a dose-dependent increase in albumin flux that was dependent on extracellular divalent cations and associated with polymerization of cellular actin. The effect was reversible, independent of the surface of endothelial cells exposed (either luminal or abluminal), and due primarily to components of the vapor phase of smoke. The effects occurred without evidence of cell damage, but subtle morphological changes were produced by exposure to the smoke extracts. These findings suggest that cigarette smoke can alter permeability of the lung endothelium through effects on cytoskeletal elements.

  18. Cigarette smoke-induced protein oxidation and proteolysis is exclusively caused by its tar phase: prevention by vitamin C.

    PubMed

    Panda, K; Chattopadhyay, R; Chattopadhyay, D; Chatterjee, I B

    2001-08-01

    We have reported before that whole phase cigarette smoke (CS) contains stable oxidants that cause oxidative damage and increased proteolysis of proteins [Free Radic. Biol. Med. 27 (1999) 1064]. Here, we demonstrate that these oxidants are exclusively present in the tar phase of the CS and not its gas phase and can almost wholly account for the observed whole phase CS-induced oxidation of human plasma proteins as well as extensive oxidative proteolysis of guinea pig lung and heart microsomal proteins in vitro. The mechanism of the tar phase CS-induced proteolysis of microsomal proteins involves two-steps: (i) initial oxidation of the proteins by oxidants present in the tar extract followed by (ii) rapid proteolytic degradation of the oxidized proteins by proteases present in the microsomes. Like the whole phase CS, the oxidative damage of proteins caused by the tar phase CS, as evidenced by the formation of protein carbonyl and bityrosine as well as loss of tryptophan residues and thiol groups, is also almost completely prevented by ascorbic acid and only partially by glutathione. Other antioxidants, including superoxide dismutase, catalase, vitamin E, beta-carotene and mannitol are ineffective. This again leads us to suggest that adequate intake of vitamin C may help smokers to evade the CS-induced degenerative diseases associated with oxidative damage. The revelation of the acute toxicity of the tar phase with respect to CS-induced oxidative damage also urges the necessity of trapping it more effectively by suitable cigarette filters to reduce the health damage caused to smokers. PMID:11514102

  19. Using Vapor Phase Tomography to Measure the Spatial Distribution of Vapor Concentrations and Flux for Vadose-zone VOC Sources

    PubMed Central

    Mainhagu, J.; Morrison, C.; Brusseau, M.L.

    2015-01-01

    A test was conducted at a chlorinated-solvent contaminated site in Tucson, AZ, to evaluate the effectiveness of vapor-phase tomography (VPT) for characterizing the distribution of volatile organic contaminants (VOC) in the vadose zone. A soil vapor extraction (SVE) system has been in operation at the site since 2007. Vapor concentration and vacuum pressure were measured at four different depths in each of four monitoring wells surrounding the extraction well. The test provided a 3D characterization of local vapor concentrations under induced-gradient conditions. Permeability data obtained from analysis of borehole logs were combined with the vapor-concentration data to determine VOC mass flux within the test domain. A region of higher mass flux was identified in the deepest interval of the S-SW section of the domain, indicating the possible location of a zone with greater contaminant mass. These results are consistent with the TCE-concentration distribution obtained from sediment coring conducted at the site. In contrast, the results of a standard soil gas survey did not indicate the presence of a zone with greater contaminant mass. These results indicate that the VPT test provided a robust characterization of VOC concentration and flux distribution at the site. PMID:25835545

  20. Using Vapor Phase Tomography to Measure the Spatial Distribution of Vapor Concentrations and Flux for Vadose-Zone VOC Sources

    NASA Astrophysics Data System (ADS)

    Mainhagu, J.; Brusseau, M. L. L.; Morrison, C. N.

    2015-12-01

    A test was conducted at a chlorinated-solvent contaminated site in Tucson, AZ, to evaluate the effectiveness of vapor-phase tomography (VPT) for characterizing the distribution of volatile organic contaminants (VOC) in the vadose zone. A soil vapor extraction (SVE) system has been in operation at the site since 2007. Vapor concentration and vacuum pressure were measured at four different depths in each of the four monitoring wells surrounding the extraction well. The test provided a 3D characterization of local vapor concentrations under induced-gradient conditions. Permeability data obtained from analysis of borehole logs were used along with pressure and the vapor-concentration data to determine VOC mass flux within the test domain. A region of higher mass flux was identified in the deepest interval of the S-SW section of the domain, indicating the possible location of a zone with greater contaminant mass. These results are consistent with the TCE-concentration distribution obtained from sediment coring conducted at the site. In contrast, the results of a standard soil gas survey did not indicate the presence of a zone with greater contaminant mass. These results indicate that the VPT test provided a robust characterization of VOC concentration and flux distribution at the site.

  1. Using vapor phase tomography to measure the spatial distribution of vapor concentrations and flux for vadose-zone VOC sources

    NASA Astrophysics Data System (ADS)

    Mainhagu, J.; Morrison, C.; Brusseau, M. L.

    2015-06-01

    A test was conducted at a chlorinated-solvent contaminated site in Tucson, AZ, to evaluate the effectiveness of vapor-phase tomography (VPT) for characterizing the distribution of volatile organic contaminants (VOC) in the vadose zone. A soil vapor extraction (SVE) system has been in operation at the site since 2007. Vapor concentration and vacuum pressure were measured at four different depths in each of the four monitoring wells surrounding the extraction well. The test provided a 3D characterization of local vapor concentrations under induced-gradient conditions. Permeability data obtained from analysis of borehole logs were used along with pressure and the vapor-concentration data to determine VOC mass flux within the test domain. A region of higher mass flux was identified in the deepest interval of the S-SW section of the domain, indicating the possible location of a zone with greater contaminant mass. These results are consistent with the TCE-concentration distribution obtained from sediment coring conducted at the site. In contrast, the results of a standard soil gas survey did not indicate the presence of a zone with greater contaminant mass. These results indicate that the VPT test provided a robust characterization of VOC concentration and flux distribution at the site.

  2. Sorption capacity of ground tires for vapor-phase volatile organic compounds

    SciTech Connect

    Kim, J.Y.; Park, J.K.; Edil, T.B.; Jhung, J.K.

    1996-12-31

    Batch sorption tests were conducted to determine the partition coefficient of volatile organic compounds (VOCs) by ground tires. The partition coefficient in the vapor phase was estimated by dividing the partition coefficient in the aqueous phase by Henry`s law constant. Under a diluted condition VOCs are sorbed onto ground tires noncompetitively regardless of the existence of other VOCs. Polar compounds such as methylene chloride were less sorbed onto ground tires than nonpolar compounds. The vapor-phase partition coefficient was found to have a logarithmic relationship with the saturation vapor concentration. VOCs emitted from waste-water treatment facilities can be effectively retarded by the ground tires.

  3. Quantitative Fourier transform infrared analysis of gas phase cigarette smoke and other gas mixtures

    SciTech Connect

    Cueto, R.; Church, D.F.; Pryor, W.A. )

    1989-03-01

    A new method for the analysis of selected components in complex gas mixtures has been developed utilizing a relatively inexpensive Fourier transform infrared spectrometer and a continuous flow gas cell. The method was used to monitor nitric oxide and nitrogen dioxide concentrations in cigarette smoke with time. Using multivariate least-square regression analysis, it is possible to simultaneously quantitate both NO and NO{sub 2}, even in the presence of overlapping peaks. Using this method, the oxidation of nitric oxide in the presence of isoprene in cigarette smoke and in a model system was followed with time. The method also can be applied to other compounds in smoke or to any other gaseous mixture.

  4. Cigarette Smoke Analysis Using an Inexpensive Gas-Phase IR Cell

    NASA Astrophysics Data System (ADS)

    Garizi, N.; Macias, A.; Furch, Toran; Fan, R.; Wagenknecht, Paul S.; Singmaster, K. A.

    2001-12-01

    An inexpensive, break-resistant IR gas cell has been constructed using a PVC compression tee. The cell allows for multiple experiments to be performed in freshman chemistry and advanced lab courses. The PVC cell can be assembled by the students and then dismantled and cleaned after their experiments are completed. This cell has been successfully used to analyze some of the components of cigarette smoke and car exhaust.

  5. Speciation and quantification of vapor phases in soy biodiesel and waste cooking oil biodiesel.

    PubMed

    Peng, Chiung-Yu; Lan, Cheng-Hang; Dai, Yu-Tung

    2006-12-01

    This study characterizes the compositions of two biodiesel vapors, soy biodiesel and waste cooking oil biodiesel, to provide a comprehensive understanding of biodiesels. Vapor phases were sampled by purging oil vapors through thermal desorption tubes which were then analyzed by the thermal desorption/GC/MS system. The results show that the compounds of biodiesel vapors can be divided into four groups. They include methyl esters (the main biodiesel components), oxygenated chemicals, alkanes and alkenes, and aromatics. The first two chemical groups are only found in biodiesel vapors, not in the diesel vapor emissions. The percentages of mean concentrations for methyl esters, oxygenated chemicals, alkanes and alkenes, and aromatics are 66.1%, 22.8%, 4.8% and 6.4%, respectively for soy biodiesel, and 35.8%, 35.9%, 27.9% and 0.3%, respectively for waste cooking oil biodiesel at a temperature of 25+/-2 degrees C. These results show that biodiesels have fewer chemicals and lower concentrations in vapor phase than petroleum diesel, and the total emission rates are between one-sixteenth and one-sixth of that of diesel emission, corresponding to fuel evaporative emissions of loading losses of between 106 microg l(-1) and 283 microg l(-1). Although diesels generate more vapor phase emissions, biodiesels still generate considerable amount of vapor emissions, particularly the emissions from methyl esters and oxygenated chemicals. These two chemical groups are more reactive than alkanes and aromatics. Therefore, speciation and quantification of biodiesel vapor phases are important. PMID:16904162

  6. Vapors produced by electronic cigarettes and e-juices with flavorings induce toxicity, oxidative stress, and inflammatory response in lung epithelial cells and in mouse lung.

    PubMed

    Lerner, Chad A; Sundar, Isaac K; Yao, Hongwei; Gerloff, Janice; Ossip, Deborah J; McIntosh, Scott; Robinson, Risa; Rahman, Irfan

    2015-01-01

    Oxidative stress and inflammatory response are the key events in the pathogenesis of chronic airway diseases. The consumption of electronic cigarettes (e-cigs) with a variety of e-liquids/e-juices is alarmingly increasing without the unrealized potential harmful health effects. We hypothesized that electronic nicotine delivery systems (ENDS)/e-cigs pose health concerns due to oxidative toxicity and inflammatory response in lung cells exposed to their aerosols. The aerosols produced by vaporizing ENDS e-liquids exhibit oxidant reactivity suggesting oxidants or reactive oxygen species (OX/ROS) may be inhaled directly into the lung during a "vaping" session. These OX/ROS are generated through activation of the heating element which is affected by heating element status (new versus used), and occurs during the process of e-liquid vaporization. Unvaporized e-liquids were oxidative in a manner dependent on flavor additives, while flavors containing sweet or fruit flavors were stronger oxidizers than tobacco flavors. In light of OX/ROS generated in ENDS e-liquids and aerosols, the effects of ENDS aerosols on tissues and cells of the lung were measured. Exposure of human airway epithelial cells (H292) in an air-liquid interface to ENDS aerosols from a popular device resulted in increased secretion of inflammatory cytokines, such as IL-6 and IL-8. Furthermore, human lung fibroblasts exhibited stress and morphological change in response to treatment with ENDS/e-liquids. These cells also secrete increased IL-8 in response to a cinnamon flavored e-liquid and are susceptible to loss of cell viability by ENDS e-liquids. Finally, exposure of wild type C57BL/6J mice to aerosols produced from a popular e-cig increase pro-inflammatory cytokines and diminished lung glutathione levels which are critical in maintaining cellular redox balance. Thus, exposure to e-cig aerosols/juices incurs measurable oxidative and inflammatory responses in lung cells and tissues that could lead to

  7. Vapors Produced by Electronic Cigarettes and E-Juices with Flavorings Induce Toxicity, Oxidative Stress, and Inflammatory Response in Lung Epithelial Cells and in Mouse Lung

    PubMed Central

    Lerner, Chad A.; Sundar, Isaac K.; Yao, Hongwei; Gerloff, Janice; Ossip, Deborah J.; McIntosh, Scott; Robinson, Risa; Rahman, Irfan

    2015-01-01

    Oxidative stress and inflammatory response are the key events in the pathogenesis of chronic airway diseases. The consumption of electronic cigarettes (e-cigs) with a variety of e-liquids/e-juices is alarmingly increasing without the unrealized potential harmful health effects. We hypothesized that electronic nicotine delivery systems (ENDS)/e-cigs pose health concerns due to oxidative toxicity and inflammatory response in lung cells exposed to their aerosols. The aerosols produced by vaporizing ENDS e-liquids exhibit oxidant reactivity suggesting oxidants or reactive oxygen species (OX/ROS) may be inhaled directly into the lung during a “vaping” session. These OX/ROS are generated through activation of the heating element which is affected by heating element status (new versus used), and occurs during the process of e-liquid vaporization. Unvaporized e-liquids were oxidative in a manner dependent on flavor additives, while flavors containing sweet or fruit flavors were stronger oxidizers than tobacco flavors. In light of OX/ROS generated in ENDS e-liquids and aerosols, the effects of ENDS aerosols on tissues and cells of the lung were measured. Exposure of human airway epithelial cells (H292) in an air-liquid interface to ENDS aerosols from a popular device resulted in increased secretion of inflammatory cytokines, such as IL-6 and IL-8. Furthermore, human lung fibroblasts exhibited stress and morphological change in response to treatment with ENDS/e-liquids. These cells also secrete increased IL-8 in response to a cinnamon flavored e-liquid and are susceptible to loss of cell viability by ENDS e-liquids. Finally, exposure of wild type C57BL/6J mice to aerosols produced from a popular e-cig increase pro-inflammatory cytokines and diminished lung glutathione levels which are critical in maintaining cellular redox balance. Thus, exposure to e-cig aerosols/juices incurs measurable oxidative and inflammatory responses in lung cells and tissues that could lead to

  8. A comparative assessment of cigarette smoke aerosols using an in vitro air-liquid interface cytotoxicity test.

    PubMed

    Thorne, David; Dalrymple, Annette; Dillon, Deborah; Duke, Martin; Meredith, Clive

    2015-01-01

    This study describes the evaluation of a modified air-liquid interface BALB/c 3T3 cytotoxicity method for the assessment of smoke aerosols in vitro. The functionality and applicability of this modified protocol was assessed by comparing the cytotoxicity profiles from eight different cigarettes. Three reference cigarettes, 1R5F, 3R4F and CORESTA Monitor 7 were used to put the data into perspective and five bespoke experimental products were manufactured, ensuring a balanced and controlled study. Manufactured cigarettes were matched for key variables such as nicotine delivery, puff number, pressure drop, ventilation, carbon monoxide, nicotine free dry particulate matter and blend, but significantly modified for vapor phase delivery, via the addition of two different types and quantities of adsorptive carbon. Specifically manufacturing products ensures comparisons can be made in a consistent manner and allows the research to ask targeted questions, without confounding product variables. The results demonstrate vapor-phase associated cytotoxic effects and clear differences between the products tested and their cytotoxic profiles. This study has further characterized the in vitro vapor phase biological response relationship and confirmed that the biological response is directly proportional to the amount of available vapor phase toxicants in cigarette smoke, when using a Vitrocell® VC 10 exposure system. This study further supports and strengthens the use of aerosol based exposure options for the appropriate analysis of cigarette smoke induced responses in vitro and may be especially beneficial when comparing aerosols generated from alternative tobacco aerosol products. PMID:26339773

  9. A comparative assessment of cigarette smoke aerosols using an in vitro air–liquid interface cytotoxicity test

    PubMed Central

    Thorne, David; Dalrymple, Annette; Dillon, Deborah; Duke, Martin; Meredith, Clive

    2015-01-01

    Abstract This study describes the evaluation of a modified air-liquid interface BALB/c 3T3 cytotoxicity method for the assessment of smoke aerosols in vitro. The functionality and applicability of this modified protocol was assessed by comparing the cytotoxicity profiles from eight different cigarettes. Three reference cigarettes, 1R5F, 3R4F and CORESTA Monitor 7 were used to put the data into perspective and five bespoke experimental products were manufactured, ensuring a balanced and controlled study. Manufactured cigarettes were matched for key variables such as nicotine delivery, puff number, pressure drop, ventilation, carbon monoxide, nicotine free dry particulate matter and blend, but significantly modified for vapor phase delivery, via the addition of two different types and quantities of adsorptive carbon. Specifically manufacturing products ensures comparisons can be made in a consistent manner and allows the research to ask targeted questions, without confounding product variables. The results demonstrate vapor-phase associated cytotoxic effects and clear differences between the products tested and their cytotoxic profiles. This study has further characterized the in vitro vapor phase biological response relationship and confirmed that the biological response is directly proportional to the amount of available vapor phase toxicants in cigarette smoke, when using a Vitrocell® VC 10 exposure system. This study further supports and strengthens the use of aerosol based exposure options for the appropriate analysis of cigarette smoke induced responses in vitro and may be especially beneficial when comparing aerosols generated from alternative tobacco aerosol products. PMID:26339773

  10. DETERMINING HOW VAPOR PHASE MTBE REACHES GROUND WATER

    EPA Science Inventory

    EPA Region 2 and ORD have funded a RARE project for FY 2005/2006 to evaluate the prospects that MTBE (and other fuel components) in vapors that escape from an underground storage tank (UST) can find its way to ground water produced by monitoring wells at a gasoline filling statio...

  11. Student Understanding of Liquid-Vapor Phase Equilibrium

    ERIC Educational Resources Information Center

    Boudreaux, Andrew; Campbell, Craig

    2012-01-01

    Student understanding of the equilibrium coexistence of a liquid and its vapor was the subject of an extended investigation. Written assessment questions were administered to undergraduates enrolled in introductory physics and chemistry courses. Responses have been analyzed to document conceptual and reasoning difficulties in sufficient detail to…

  12. Microwave-assisted fast vapor-phase transport synthesis of MnAPO-5 molecular sieves

    SciTech Connect

    Shao Hui; Yao Jianfeng; Ke Xuebin; Zhang Lixiong Xu Nanping

    2009-04-02

    MnAPO-5 was prepared by a microwave-assisted vapor-phase transport method at 180 deg. C in short times. The products were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectra, UV-vis spectroscopic measurement, NH{sub 3}-temperature-programmed desorption and esterification reaction. It was found that dry gels prepared with aluminum isopropoxide, phosphoric acid and manganese acetate could be transferred to MnAPO-5 in the vapors of triethylamine and water by the microwave-assisted vapor-phase transport method at 180 deg. C for less than 30 min. The crystallization time was greatly reduced by the microwave heating compared with the conventional heating. The resulting MnAPO-5 exhibited much smaller particle sizes, higher surface areas and slightly higher catalytic activity in the esterification of acetic acid and butyl alcohol than those prepared by the conventional vapor-phase transport method and hydrothermal synthesis.

  13. Scavenging of free radicals in gas-phase mainstream cigarette smoke by immobilized catalase at filter level.

    PubMed

    Lu, Xin; Hua, Zhaozhe; Du, Guocheng; Ma, Xiaolong; Cao, Jianhua; Yang, Zhanping; Chen, Jian

    2008-03-01

    Catalase is well known as capable of inducing the decomposition of H(2)O(2). In this study, a kind of immobilized catalase (entrapped in cross-linked chitosan beads) was dispersed in conventional acetate filter as an antioxidant additive. Quantitative estimation of the free radicals in mainstream cigarette smoke (MCS) was performed to address the effect of this modified filter. It was found that the levels of PBN adduct and NO(*)/NO(2)(*) associated with the gas-phase mainstream cigarette smoke (GPCS) were efficiently decreased by approximately 40% through catalase filtering. Besides, the modified filter was found to lower the MCS-induced adverse biological effects including lipid peroxidation and mutagenicity. This was proved to be substantially attributed to the catalase-dependent breakdown of NO(*), which was stimulated by some of peroxides (most probably being H(2)O(2)), the dismutation products of tar particulate matters (TPM). These results highlighted a promising approach to reduce the smoking-associated health risks to passive smokers. Moreover, the mechanisms of catalase filtering may be helpful for the development of appropriate immobilized enzyme systems to be applied for reducing health risks associated with gaseous pollutants. PMID:18344119

  14. REDOX AND ELECTROPHILIC PROPERTIES OF VAPOR- AND PARTICLE-PHASE COMPONENTS OF AMBIENT AEROSOLS

    PubMed Central

    Eiguren-Fernandez, Arantzazu; Shinyashiki, Masaru; Schmitz, Debra A.; DiStefano, Emma; Hinds, William; Kumagai, Yoshito; Cho, Arthur K.; Froines, John R.

    2010-01-01

    Particulate matter (PM) has been the primary focus of studies aiming to understand the relationship between the chemical properties of ambient aerosols and adverse health effects. Size and chemical composition of PM have been linked to their oxidative capacity which has been postulated to promote or exacerbate pulmonary and cardiovascular diseases. But in the last few years, new studies have suggested that volatile and semivolatile components may also contribute to many adverse health effects. The objectives of this study were: i) assess for the first time the redox and electrophilic potential of vapor-phase components of ambient aerosols, and ii) evaluate the relative contributions of particle- and vapor-fractions to the hazard of a given aerosol. To achieve these objectives vapor- and particle-phase samples collected in Riverside (CA) were subjected to three chemical assays to determine their redox and electrophilic capacities. The results indicate that redox active components are mainly associated with the particle-phase, while electrophilic compounds are found primarily in the vapor-phase. Vapor-phase organic extracts were also capable of inducing the stress responding protein, heme-oxygenase-1 (HO-1), in RAW264.7 murine macrophages. These results demonstrate the importance of volatile components in the overall oxidative and electrophilic capacity of aerosols, and point out the need for inclusion of vapors in future health and risk assessment studies. PMID:20152964

  15. Vapor-Phase Stoichiometry and Heat Treatment of CdTe Starting Material for Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Sha, Yi-Gao; Lehoczky, S. L.; Liu, Hao-Chieh; Fang, Rei; Brebrick, R. F.

    1998-01-01

    Six batches of CdTe, having total amounts of material from 99 to 203 g and gross mole fraction of Te, X(sub Te), 0.499954-0.500138, were synthesized from pure Cd and Te elements. The vapor-phase stoichiometry of the assynthesized CdTe batches was determined from the partial pressure of Te2, P(sub Te2) using an optical absorption technique. The measured vapor compositions at 870 C were Te-rich for all of the batches with partial pressure ratios of Cd to Te2, P(sub Cd)/P(sub Te2), ranging from 0.00742 to 1.92. After the heat treatment of baking under dynamic vacuum at 870 C for 8 min, the vapor-phase compositions moved toward that of the congruent sublimation, i.e. P(sub Cd)/P(sub Te2) = 2.0, with the measured P(sub Cd)/P(sub Te2) varying from 1.84 to 3.47. The partial pressure measurements on one of the heat-treated samples also showed that the sample remained close to the congruent sublimation condition over the temperature range 800-880 C.

  16. Infrared analysis of vapor phase deposited tricresylphosphate (TCP)

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo; Hanyaloglu, Bengi; Graham, Earl E.

    1994-01-01

    Infrared transmission was employed to study the formation of a lubricating film deposited on two different substrates at 700 C. The deposit was formed from tricresylphosphate vapors and collected onto a NaCl substrate and on an iron coated NaCl substrate. Analysis of the infrared data suggests that a metal phosphate is formed initially, followed by the formation of organophosphorus polymeric compounds.

  17. LLNL vapor phase manufacturing progress report, June--December 1995

    SciTech Connect

    Anklam, T.; Benterou, J.; Berzins, L.; Braun, D.; Haynam, C.; Heestand, G.; McClelland, M.

    1996-01-09

    This report gives progress made on the following milestones: demonstrate Ti and Nb monitoring at 3M site, demonstrate Al monitoring at LLNL, complete baseline melt and vapor plume model for the metal matrix process (3M fiber coating process), prototype a laser at LLNL to monitor Cu, ZrO{sub 2} monitoring demonstration at LLNL, Se monitoring demonstration, and process scale-up study for YBCO high-temperature superconductor.

  18. Electronic Cigarette Use by College Students

    PubMed Central

    Sutfin, Erin L.; McCoy, Thomas P.; Morrell, Holly E. R.; Hoeppner, Bettina B.; Wolfson, Mark

    2013-01-01

    Background Electronic cigarettes, or ecigarettes, are battery operated devices that deliver nicotine via inhaled vapor. There is considerable controversy about the disease risk and toxicity of ecigarettes and empirical evidence on short- and long-term health effects is minimal. Limited data on e-cigarette use and correlates exist, and to our knowledge, no prevalence rates among U.S. college students have been reported. This study aimed to estimate the prevalence of ecigarette use and identify correlates of use among a large, multi-institution, random sample of college students. Methods 4,444 students from 8 colleges in North Carolina completed a Webbased survey in fall 2009. Results Ever use of ecigarettes was reported by 4.9% of students, with 1.5% reporting past month use. Correlates of ever use included male gender, Hispanic or “Other race” (compared to non-Hispanic Whites), Greek affiliation, conventional cigarette smoking and e-cigarette harm perceptions. Although e-cigarette use was more common among conventional cigarette smokers, 12% of ever e-cigarette users had never smoked a conventional cigarette. Among current cigarette smokers, e-cigarette use was negatively associated with lack of knowledge about e-cigarette harm, but was not associated with intentions to quit. Conclusions Although e-cigarette use was more common among conventional cigarette smokers, it was not exclusive to them. E-cigarette use was not associated with intentions to quit smoking among a sub-sample of conventional cigarette smokers. Unlike older, more established cigarette smokers, e-cigarette use by college students does not appear to be motivated by the desire to quit cigarette smoking. PMID:23746429

  19. Determination of oxides of nitrogen (NO/sub x/) in cigarette smoke by chemiluminescent analysis

    SciTech Connect

    Jenkins, R.A.; Gill, B.E.

    1980-05-01

    The successful application of a commercial chemiluminescent No/sub x/ analyzer to the determination of oxides of nitrogen in cigarette smoke is reported. Individual puffs of the smoke vapor phase are rapidly diluted in an air stream before introduction into the analyzer. This acts to both reduce quenching of the chemiluminescent response by CO/sub 2/ and to prevent side reactions of the NO/sub x/ with vapor phase organic constituents. Sweeping the dilute smoke through a reduced silver-ion exchange resin bed removed a substantial positive interference from hydrogen cyanide. A range of deliveries of 3 to 47 ..mu..mol of NO/sub x/ per cigarette was observed for nine types of experimental cigarettes. Statistically significant differences between NO/sub x/ and NO levels (NO/sub x/ - NO = NO/sub 2/) in smoke were observed in only one type of cigarette, presumably due to large cigarette-to-cigarette variability in constituent deliveries. 2 figures, 3 tables.

  20. Phase liquid-vapor equilibria and thermodynamic properties of solutions of n-propanol-aliphatic ketones

    NASA Astrophysics Data System (ADS)

    Suntsov, Yu. K.; Vlasov, M. V.; Chuikov, A. M.

    2015-06-01

    The boiling points of solutions of five binary systems are measured using the ebulliometric method in the pressure range of 4.4-101.3 kPa. Compositions of the equilibrium vapor phases of systems are calculated, based on the constructed pressure isotherms of saturated vapor. The values of excess Gibbs energy and the enthalpy and entropy of solutions are calculated from the data on the liquid-vapor equilibrium. The patterns of change in the phase equilibria and thermodynamic properties of the solutions are established, based on the composition and temperature of the systems. The liquid-vapor equilibrium of systems is described using the equations of Wilson and the NRTL (Non-Random Two-Liquid model).

  1. Vapor pressures and gas-phase PVT data for 1,1,1,2-tetrafluoroethane

    SciTech Connect

    Weber, L.A. )

    1989-05-01

    The authors present new data for the vapor pressure and PVT surface of 1,1,1,2-tetrafluoroethane (Refrigerant 134a) in the temperature range 40{degree}C (313 K) to 150{degree}C (423 K). The PVT data are for the gas phase at densities up to one-half critical. Densities of the saturated vapor are derived at five temperatures from the intersections of the experimental isochores with the vapor pressure curve. The data are represented analytically in order to demonstrate experimental precision and to facilitate calculation of thermodynamic properties.

  2. Evidence for extreme partitioning of copper into a magmatic vapor phase

    SciTech Connect

    Lowenstern, J.B.; Mahood, G.A. ); Rivers, M.L.; Sutton, S.R. )

    1991-06-07

    The discovery of copper sulfides in carbon dioxide- and chlorine-bearing bubbles in phenocryst-hosted melt inclusions shows that copper resides in a vapor phase in some shallow magma chambers. Copper is several hundred times more concentrated in magmatic vapor than in coexisting pantellerite melt. The volatile behavior of copper should be considered when modeling the volcanogenic contribution of metals to the atmosphere and may be important in the formation of copper porphyry ore deposits.

  3. Evidence for extreme partitioning of copper into a magmatic vapor phase.

    PubMed

    Lowenstern, J B; Mahood, G A; Rivers, M L; Sutton, S R

    1991-06-01

    The discovery of copper sulfides in carbon dioxide- and chlorine-bearing bubbles in phenocryst-hosted melt inclusions shows that copper resides in a vapor phase in some shallow magma chambers. Copper is several hundred times more concentrated in magmatic vapor than in coexisting pantellerite melt. The volatile behavior of copper should be considered when modeling the volcanogenic contribution of metals to the atmosphere and may be important in the formation of copper porphyry ore deposits. PMID:17772911

  4. Irritants in cigarette smoke plumes

    SciTech Connect

    Ayer, H.E.; Yeager, D.W.

    1982-11-01

    Concentrations of the irritants formaldehyde and acrolein in side stream cigarette smoke plumes are up to three orders of magnitude above occupational limits, readily accounting for eye and nasal irritation. ''Low-tar'' cigarettes appear at least as irritating as other cigarettes. More than half the irritant is associated with the particulate phase of the smoke, permitting deposition throughout the entire respiratory tract and raising the issue of whether formaldehyde in smoke is associated with bronchial cancer.

  5. Vapor-crystal phase transition in synthesis of paracetamol films by vacuum evaporation and condensation

    NASA Astrophysics Data System (ADS)

    Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.; Zarembo, V. I.

    2014-03-01

    We report on the structural and technological investigations of the vapor-crystal phase transition during synthesis of paracetamol films of the monoclinic system by vacuum evaporation and condensation in the temperature range 220-320 K. The complex nature of the transformation accompanied by the formation of a gel-like phase is revealed. The results are interpreted using a model according to which the vapor-crystal phase transition is not a simple first-order phase transition, but is a nonlinear superposition of two phase transitions: a first-order transition with a change in density and a second-order phase transition with a change in ordering. Micrographs of the surface of the films are obtained at different phases of formation.

  6. Ultrafast dynamics of the acoustic vaporization of phase-change microdroplets.

    PubMed

    Shpak, Oleksandr; Kokhuis, Tom J A; Luan, Ying; Lohse, Detlef; de Jong, Nico; Fowlkes, Brian; Fabiilli, Mario; Versluis, Michel

    2013-08-01

    Acoustically sensitive emulsions are a promising tool for medical applications such as localized drug delivery. The physical mechanisms underlying the ultrasound-triggered nucleation and subsequent vaporization of these phase-change emulsions are largely unexplored. Here, the acoustic vaporization of individual micron-sized perfluoropentane (PFP) droplets is studied at a nanoseconds timescale. Highly diluted emulsions of PFP-in-water and oil-in-PFP-in-water droplets, ranging from 3.5 to 11 μm in radius, were prepared and the nucleation and growth of the vapor bubbles was imaged at frame rates of up to 20 Mfps. The droplet vaporization dynamics was observed to have three distinct regimes: (1) prior to nucleation, a regime of droplet deformation and oscillatory translations within the surrounding fluid along the propagation direction of the applied ultrasound; (2) a regime characterized by the rapid growth of a vapor bubble enhanced by ultrasound-driven rectified heat transfer; and (3) a final phase characterized by a relatively slow expansion, after ultrasound stops, that is fully dominated by heat transfer. A method to measure the moment of inception of the nucleation event with respect to the phase of the ultrasound wave is proposed. A simple physical model captures quantitatively all of the features of the subsequent vapor bubble growth. PMID:23927201

  7. The Roles of Cigarette Smoking and the Lung in the Transitions Between Phases of Preclinical Rheumatoid Arthritis.

    PubMed

    Sparks, Jeffrey A; Karlson, Elizabeth W

    2016-03-01

    While the etiology of rheumatoid arthritis (RA) remains to be fully elucidated, recent research has advanced the understanding of RA pathogenesis to the point where clinical trials for RA prevention are underway. The current paradigm for RA pathogenesis is that individuals progress through distinct preclinical phases prior to the onset of clinically apparent RA. These preclinical RA phases consist of genetic risk, local inflammation, presence of RA-related autoantibodies, asymptomatic systemic inflammation, and early non-specific symptoms prior to clinical seropositive RA. Epidemiologic studies have been important in forming hypotheses related to the biology occurring in preclinical RA. Specifically, studies associating cigarette smoking with overall RA risk as well as transitions between phases of preclinical RA were vital in helping to establish the lung as a potential important initiating site in the pathogenesis of seropositive RA. Herein, we review the epidemiology associating smoking with transitions in preclinical phases of RA as well as the recent literature supporting the lung as a critical site in RA pathogenesis. PMID:26951253

  8. Detection of vapor phase mercury species by laser fluorescence methods

    NASA Astrophysics Data System (ADS)

    Tong, Xiaomei

    Several mercury species emissions have been identified in off-gases from industrial processes. At present, there is no commercial continuous emission monitoring (CEM) technique or instrumentation to reliably monitor volatile mercury species emissions from industrial stacks. Conventional measurement methods, such as cold vapor trap based techniques for elemental mercury, have difficulty in achieving both high sensitivity and the fast time resolution required for real-time monitoring. This doctoral research work gives a systematic study of potential methods for real-time trace detection of volatile elemental mercury and mercury compounds in industrial stack gases. It is based on laser-induced fluorescence techniques; photofragment fluorescence spectroscopy for detection of volatile mercury compounds, and resonance fluorescence for detection of elemental mercury. The capabilities and limitations of these detection techniques are investigated in this dissertation. Detection of mercury compounds is a challenge since they are non-fluorescent. With photofragment fluorescence spectroscopy, target compound concentrations are related to the fluorescence intensity from an excited fragment. In this doctoral research work, low concentrations of mercuric bromide vapor in an atmospheric pressure flow cell are irradiated by a focused laser beam at 222nm. Photofragment fluorescence is monitored at 253.7nm. Two detection schemes, Charge Coupled Device (CCD) and photomultiplier tube (PMT), are applied for the measurement of photofragment fluorescence. The performances of these two systems are compared in the dissertation. A supersonic jet is combined with resonance fluorescence for detection of elemental mercury vapor. With test gas expanded into a vacuum, fluorescence quenching and spectral broadening are reduced. In the experiment, the gas jet is crossed with a laser beam at 253.7nm to excite atomic fluorescence, which is distinguished from the elastic background by time gating

  9. Reaction Kinetics of Ethylene Glycol Reforming over Platinum in the Vapor versus Aqueous Phases

    SciTech Connect

    Kandoi, Shampa; Greeley, Jeffrey P.; Simonetti, Dante A.; Shabaker, John; Dumesic, James A.; Mavrikakis, Manos

    2010-08-12

    First-principles, periodic, density functional theory (DFT) calculations are carried out on Pt(111) to investigate the structure and energetics of dehydrogenated ethylene glycol species and transition states for the cleavage of C-H/O-H and C-C bonds. Additionally, reaction kinetics studies are carried out for the vapor phase reforming of ethylene glycol (C2H6O2) over Pt/Al2O3 at various temperatures, pressures, and feed concentrations. These results are compared to data for aqueous phase reforming of ethylene glycol on this Pt catalyst, as reported in a previous publication (Shabaker, J. W.; et al. J. Catal. 2003, 215, 344). Microkinetic models were developed to describe the reaction kinetics data obtained for both the vapor-phase and aqueous-phase reforming processes. The results suggest that C-C bond scission in ethylene glycol occurs at an intermediate value of x (3 or 4) in C2HxO2. It is also found that similar values of kinetic parameters can be used to describe the vapor and aqueous phase reforming data, suggesting that the vapor phase chemistry of this reaction over platinum is similar to that in the aqueous phase over platinum.

  10. Reaction kinetics of ethylene glycol reforming over platinum in the vapor versus aqueous phases

    SciTech Connect

    Kandoi, Shampa; Greeley, Jeff; Simonetti, Dante; Shabaker, John; Dumesic, James A.; Mavrikakis, Manos

    2010-08-12

    First-principles, periodic, density functional theory (DFT) calculations are carried out on Pt(111) to investigate the structure and energetics of dehydrogenated ethylene glycol species and transition states for the cleavage of C–H/O–H and C–C bonds. Additionally, reaction kinetics studies are carried out for the vapor phase reforming of ethylene glycol (C₂H₆O₂) over Pt/Al₂O₃ at various temperatures, pressures, and feed concentrations. These results are compared to data for aqueous phase reforming of ethylene glycol on this Pt catalyst, as reported in a previous publication (Shabaker, J. W.; et al. J. Catal. 2003, 215, 344). Microkinetic models were developed to describe the reaction kinetics data obtained for both the vapor-phase and aqueous-phase reforming processes. The results suggest that C–C bond scission in ethylene glycol occurs at an intermediate value of x (3 or 4) in C₂HxO₂. It is also found that similar values of kinetic parameters can be used to describe the vapor and aqueous phase reforming data, suggesting that the vapor phase chemistry of this reaction over platinum is similar to that in the aqueous phase over platinum.

  11. Use of electronic cigarettes (e-cigarettes) impairs indoor air quality and increases FeNO levels of e-cigarette consumers.

    PubMed

    Schober, Wolfgang; Szendrei, Katalin; Matzen, Wolfgang; Osiander-Fuchs, Helga; Heitmann, Dieter; Schettgen, Thomas; Jörres, Rudolf A; Fromme, Hermann

    2014-07-01

    Despite the recent popularity of e-cigarettes, to date only limited data is available on their safety for both users and secondhand smokers. The present study reports a comprehensive inner and outer exposure assessment of e-cigarette emissions in terms of particulate matter (PM), particle number concentrations (PNC), volatile organic compounds (VOC), polycyclic aromatic hydrocarbons (PAH), carbonyls, and metals. In six vaping sessions nine volunteers consumed e-cigarettes with and without nicotine in a thoroughly ventilated room for two hours. We analyzed the levels of e-cigarette pollutants in indoor air and monitored effects on FeNO release and urinary metabolite profile of the subjects. For comparison, the components of the e-cigarette solutions (liquids) were additionally analyzed. During the vaping sessions substantial amounts of 1,2-propanediol, glycerine and nicotine were found in the gas-phase, as well as high concentrations of PM2.5 (mean 197 μg/m(3)). The concentration of putative carcinogenic PAH in indoor air increased by 20% to 147 ng/m(3), and aluminum showed a 2.4-fold increase. PNC ranged from 48,620 to 88,386 particles/cm(3) (median), with peaks at diameters 24-36 nm. FeNO increased in 7 of 9 individuals. The nicotine content of the liquids varied and was 1.2-fold higher than claimed by the manufacturer. Our data confirm that e-cigarettes are not emission-free and their pollutants could be of health concern for users and secondhand smokers. In particular, ultrafine particles formed from supersaturated 1,2-propanediol vapor can be deposited in the lung, and aerosolized nicotine seems capable of increasing the release of the inflammatory signaling molecule NO upon inhalation. In view of consumer safety, e-cigarettes and nicotine liquids should be officially regulated and labeled with appropriate warnings of potential health effects, particularly of toxicity risk in children. PMID:24373737

  12. A Preliminary Study on the Vapor/Mist Phase Lubrication of a Spur Gearbox

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo; Handschuh, Robert F.

    1999-01-01

    Organophosphates have been the primary compounds used in vapor/mist phase lubrication studies involving ferrous bearing material. Experimental results have indicated that the initial formation of an iron phosphate film on a rubbing ferrous surface, followed by the growth (by cationic diffusion) of a lubricious pyrophosphate-type coating over the iron phosphate, is the reason organophosphates work well as vapor/mist phase lubricants. Recent work, however, has shown that this mechanism leads to the depletion of surface iron atoms and to eventual lubrication failure. A new organophosphate formulation was developed which circumvents surface iron depletion. This formulation was tested by generating an iron phosphate coating on an aluminum surface. The new formulation was then used to vapor/mist phase lubricate a spur gearbox in a preliminary study.

  13. Diffuse-interface modeling of liquid-vapor phase separation in a van der Waals fluid

    NASA Astrophysics Data System (ADS)

    Lamorgese, A. G.; Mauri, R.

    2009-04-01

    We simulate liquid-vapor phase separation in a van der Waals fluid that is deeply quenched into the unstable range of its phase diagram. Our theoretical approach follows the diffuse-interface model, where convection induced by phase change is accounted for via a nonequilibrium (Korteweg) force expressing the tendency of the liquid-vapor system to minimize its free energy. Spinodal decomposition patterns for critical and off-critical van der Waals fluids are studied numerically, revealing the scaling laws of the characteristic length scale and composition of single-phase microdomains, together with their dependence on the Reynolds number. Unlike phase separation of viscous binary mixtures, here local equilibrium is reached almost immediately after single-phase domains start to form. In addition, as predicted by scaling laws, such domains grow in time like t2/3. Comparison between 2D and 3D results reveals that 2D simulations capture, even quantitatively, the main features of the phenomenon.

  14. MEMS Lubrication by In-Situ Tribochemical Reactions From the Vapor Phase.

    SciTech Connect

    Dugger, Michael T.; Asay, David B.; Kim, Seong H.

    2008-01-01

    Vapor Phase Lubrication (VPL) of silicon surfaces with pentanol has been demonstrated. Two potential show stoppers with respect to application of this approach to real MEMS devices have been investigated. Water vapor was found to reduce the effectiveness of VPL with alcohol for a given alcohol concentration, but the basic reaction mechanism observed in water-free environments is still active, and devices operated much longer in mixed alcohol and water vapor environments than with chemisorbed monolayer lubricants alone. Complex MEMS gear trains were successfully lubricated with alcohol vapors, resulting in a factor of 104 improvement in operating life without failure. Complex devices could be made to fail if operated at much higher frequencies than previously used, and there is some evidence that the observed failure is due to accumulation of reaction products at deeply buried interfaces. However, if hypothetical reaction mechanisms involving heated surfaces are valid, then the failures observed at high frequency may not be relevant to operation at normal frequencies. Therefore, this work demonstrates that VPL is a viable approach for complex MEMS devices in conventional packages. Further study of the VPL reaction mechanisms are recommended so that the vapor composition may be optimized for low friction and for different substrate materials with potential application to conventionally fabricated, metal alloy parts in weapons systems. Reaction kinetics should be studied to define effective lubrication regimes as a function of the partial pressure of the vapor phase constituent, interfacial shear rate, substrate composition, and temperature.

  15. Effect of vapor phase corrosion inhibitor on microbial corrosion of aluminum alloys.

    PubMed

    Yang, S S; Ku, C H; Bor, H J; Lin, Y T

    1996-02-01

    Vapor phase corrosion inhibitors were used to investigate the antimicrobial activities and anticorrosion of aluminum alloy. Aspergillus flavus, A. niger, A. versicolor, Chaetomium globosum and Penicillium funiculosum had moderate to abundant growth on the aluminum alloy AA 1100 at Aw 0.901, while there was less growth at Aw 0.842. High humidity stimulated microbial growth and induced microbial corrosion. Dicyclohexylammonium carbonate had a high inhibitory effect on the growth of test fungi and the microbial corrosion of aluminum alloy, dicyclohexylammonium caprate and dicyclohexylammonium stearate were the next. Aluminum alloy coating with vapor phase corrosion inhibitor could prevent microbial growth and retard microbial corrosion. PMID:10592784

  16. Effect of vapor-phase glutaraldehyde crosslinking on electrospun starch fibers.

    PubMed

    Wang, Wenyu; Jin, Xin; Zhu, Yonghao; Zhu, Chengzhang; Yang, Jian; Wang, Hongjie; Lin, Tong

    2016-04-20

    In this work, we have proven that starch nanofibrous membranes with high tensile strength, water stability and non-cytotoxicity can be produced by electrospinning of starch solution and post-treatment with GTA in vapor phase. GTA vapor phase crosslinking plays a key role in forming water-stable nanofiber membrane and improving the mechanical properties. Comparing with non-crosslinked starch fibers, the crosslinked fibers are increased by nearly 10 times in tensile strength. The crosslinked starch fibrous membranes are non-cytotoxic. They may find applications in the fields of tissue engineering, pharmaceutical therapy and medical. PMID:26876862

  17. Effect of dimensionality on vapor-liquid phase transition

    SciTech Connect

    Singh, Sudhir Kumar

    2014-04-24

    Dimensionality play significant role on ‘phase transitions’. Fluids in macroscopic confinement (bulk or 3-Dimensional, 3D) do not show significant changes in their phase transition properties with extent of confinement, since the number of molecules away from the surrounding surfaces is astronomically higher than the number of molecules in close proximity of the confining surfaces. In microscopic confinement (quasi 3D to quasi-2D), however, the number of molecules away from the close proximity of the surface is not as high as is the case with macroscopic (3D) confinement. Hence, under the same thermodynamic conditions ‘phase transition’ properties at microscopic confinement may not remain the same as the macroscopic or 3D values. Phase transitions at extremely small scale become very sensitive to the dimensions as well as the surface characteristics of the system. In this work our investigations reveal the effect of dimensionality on the phase transition from 3D to quasi-2D to 2D behavior. We have used grand canonical transition matrix Monte Carlo simulation to understand the vapor–liquid phase transitions from 3D to quasi-2D behavior. Such studies can be helpful in understanding and controlling the fluid film behaviour confined between solid surfaces of few molecular diameters, for example, in lubrication applications.

  18. Striped Phase of 3-Hexylthiophene Self-Assembled Monolayers on Au(1 11) Formed by Vapor Phase Deposition.

    PubMed

    Kim, Youngwoo; Kang, Hungu; Tsunoi, Azuho; Hayashi, Tomohiro; Hara, Masahiko; Noh, Jaegeun

    2016-03-01

    The formation and surface structure of 3-hexylthiophene (HTP) self-assembled monolayers (SAMs) on Au(111) prepared by solution and ambient-pressure vapor deposition at room temperature (RT) for 24 h were examined by means of scanning tunneling microscopy (STM) and cyclic voltammetry (CV). STM imaging revealed that HTP SAMs formed by solution deposition have a disordered phase, whereas those formed by vapor deposition exhibit a striped phase with a unidirectional orientation. The distance between the rows in the striped phase was measured to be 1.3 ± 0.1 nm, and the hexyl molecular backbones of HTP in the SAMs on Au(111) are oriented parallel to the Au(111) surface with the head-to-head orientation. From this STM observation, we suggest that the formation of this striped phase in HTP SAMs prepared by vapor deposition were mainly driven by the optimization of van der Waals interactions between the hexyl chains on the surface. CV measurements also demonstrated that HTP SAMs show a high blocking efficiency for electron transfer reactions between electrolytes and the gold electrode, suggesting the formation of SAMs on Au(111) from the vapor phase. Our results obtained here will be very useful for understanding the formation and structure of HTP SAMs on Au(111) surfaces and how they are influenced by deposition method. PMID:27455710

  19. Fluid Dynamics and Thermodynamics of Vapor Phase Crystal Growth

    NASA Technical Reports Server (NTRS)

    Wiedemeier, H.

    1985-01-01

    The ground-based research effort under this program is concerned with systematic studies of the effects of variations: (1) of the relative importance of buoyancy-driven convection, and (2) of diffusion and viscosity conditions on crystal properties. These experimental studies are supported by thermodynamic characterizations of the systems, based on which fluid dynamic parameters can be determined. The specific materials under investigation include: the GeSe-GeI4, Ge-GeI4, HgTe-HgI2, and Hg sub (1-x)Cd sub (x) Te-HgI2 systems. Mass transport rate studies of the GeSe-GeI system as a function of orientation of the density gradient relative to the gravity vector demonstrated the validity of flux anomalies observed in earlier space experiments. The investigation of the effects of inert gases on mass flux yielded the first experimental evidence for the existence of a boundary layer in closed ampoules. Combined with a thorough thermodynamic analysis, a transport model for diffusive flow including chemical vapor transport, sublimation, and Stefan flow was developed.

  20. Condensed phase conversion and growth of nanorods and other materials instead of from vapor

    DOEpatents

    Geohegan, David B.; Seals, Roland D.; Puretzky, Alex A.; Fan, Xudong

    2010-10-19

    Compositions, systems and methods are described for condensed phase conversion and growth of nanorods and other materials. A method includes providing a condensed phase matrix material; and activating the condensed phase matrix material to produce a plurality of nanorods by condensed phase conversion and growth from the condensed phase matrix material instead of from vapor. The compositions are very strong. The compositions and methods provide advantages because they allow (1) formation rates of nanostructures necessary for reasonable production rates, and (2) the near net shaped production of component structures.

  1. Are Published Minimum Vapor Phase Spark Ignition Energy Data Valid?

    SciTech Connect

    Staggs, K J; Alvares, N J; Greenwood, D W

    2001-11-21

    The use of sprayed flammable fluids as solvents in dissolution and cleaning processes demand detailed understanding of ignition and fire hazards associated with these applications. When it is not feasible to inert the atmosphere in which the spraying process takes place, then elimination of all possible ignition sources must be done. If operators are involved in the process, the potential for human static build-up and ultimate discharge is finite, and it is nearly impossible to eliminate. The specific application discussed in this paper involved the use of heated Dimethyl Sulfoxide (DMSO) to dissolve high explosives (HE). Search for properties of DMSO yielded data on flammability limits and flash point, but there was no published information pertaining to the minimum energy for electrical arc ignition. Due to the sensitivity of this procedure, The Hazards Control Department of Lawrence Livermore National Laboratory (LLNL) was tasked to determine the minimum ignition energy of DMSO aerosol and vapor an experimental investigation was thus initiated. Because there were no electrical sources in spray chamber, Human Electro-Static Discharge (HESD) was the only potential ignition source. Consequently, the electrostatic generators required for this investigation were designed to produce electrostatic arcs with the defined voltage and current pulse characteristics consistent with simulated human capacitance. Diagnostic procedures required to insure these characteristics involve specific data gathering techniques where the voltage and current sensors are in close proximity to the electrodes, thus defining the arc energy directly between the electrodes. The intriguing finding derived from this procedure is how small these measured values are relative to the arc energy as defined by the capacitance and the voltage measure at the capacitor terminals. The suggested reason for this difference is that the standard procedure for determining arc energy from the relation; E = 1/2CV

  2. Comparison of environmental tobacco smoke (ETS) concentrations generated by an electrically heated cigarette smoking system and a conventional cigarette.

    PubMed

    Tricker, Anthony R; Schorp, Matthias K; Urban, Hans-Jörg; Leyden, Donald; Hagedorn, Heinz-Werner; Engl, Johannes; Urban, Michael; Riedel, Kirsten; Gilch, Gerhard; Janket, Dinamis; Scherer, Gerhard

    2009-01-01

    Smoking conventional lit-end cigarettes results in exposure of nonsmokers to potentially harmful cigarette smoke constituents present in environmental tobacco smoke (ETS) generated by sidestream smoke emissions and exhaled mainstream smoke. ETS constituent concentrations generated by a conventional lit-end cigarette and a newly developed electrically heated cigarette smoking system (EHCSS) that produces only mainstream smoke and no sidestream smoke emissions were investigated in simulated "office" and "hospitality" environments with different levels of baseline indoor air quality. Smoking the EHCSS (International Organisation for Standardization yields: 5 mg tar, 0.3 mg nicotine, and 0.6 mg carbon monoxide) in simulated indoor environments resulted in significant reductions in ETS constituent concentrations compared to when smoking a representative lit-end cigarette (Marlboro: 6 mg tar, 0.5 mg nicotine, and 7 mg carbon monoxide). In direct comparisons, 24 of 29 measured smoke constituents (83%) showed mean reductions of greater than 90%, and 5 smoke constituents (17%) showed mean reductions between 80% and 90%. Gas-vapor phase ETS markers (nicotine and 3-ethenylpyridine) were reduced by an average of 97% (range 94-99%). Total respirable suspended particles, determined by online particle measurements and as gravimetric respirable suspended particles, were reduced by 90% (range 82-100%). The mean and standard deviation of the reduction of all constituents was 94 +/- 4%, indicating that smoking the new EHCSS in simulated "office" and "hospitality" indoor environments resulted in substantial reductions of ETS constituents in indoor air. PMID:18951229

  3. Influence of soil properties on vapor-phase sorption of trichloroethylene.

    PubMed

    Bekele, Dawit N; Naidu, Ravi; Chadalavada, Sreenivasulu

    2016-04-01

    Current practices in health risk assessment from vapor intrusion (VI) using mathematical models are based on assumptions that the subsurface sorption equilibrium is attained. The time required for sorption to reach near-steady-state conditions at sites may take months or years to achieve. This study investigated the vapor phase attenuation of trichloroethylene (TCE) in five soils varying widely in clay and organic matter content using repacked columns. The primary indicators of TCE sorption were vapor retardation rate (Rt), the time required for the TCE vapor to pass through the soil column, and specific volume of retention (VR), and total volume of TCE retained in soil. Results show TCE vapor retardation is mainly due to the rapid partitioning of the compound to SOM. However, the specific volume of retention of clayey soils with secondary mineral particles was higher. Linear regression analyses of the SOM and clay fraction with VR show that a unit increase in clay fraction results in higher sorption of TCE (VR) than the SOM. However, partitioning of TCE vapor was not consistent with the samples' surface areas but was mainly a function of the type of secondary minerals present in soils. PMID:26686522

  4. POTENTIAL USE AND MODIFICATION OF EXISTING MESOCOSMS FOR VAPOR PHASE PHOTOTOXICITY

    EPA Science Inventory

    With vapor phase plant toxicity testing becoming a requirement in Europe, there is a pressing need to develop and implement acceptable tests protocols. The quickest way to proceed is to examine and modify existing methodologies while determining if new technologies are needed. ...

  5. VAPOR PHASE MERCURY SORPTION BY ORGANIC-SULFIDE COATED BIMETALLIC IRON-COPPER NANOPARTICLE AGGREGATES

    EPA Science Inventory

    Tetra sulfide silane coated iron-copper nano-particle aggregates are found to be potentially very high capacity sorbents for vapor phase mercury capture. High equilibrium capacities were obtained for the silane coated iron copper nano-aggregate sorbent at 70 oC and 120 oC. Even a...

  6. DEVELOPMENT OF AN AIR-TO-LEAF VAPOR PHASE TRANSFER FACTOR FOR DIOXINS AND FURANS

    EPA Science Inventory

    Results of an experiment in which grass was grown in a greenhouse and outdoors, and in soils of different concentration levels of dioxins and furans, were used in a modeling exercise to derive an air-to-leaf vapor phase transfer factor. The purpose of the experiment was to under...

  7. Inhibition effects of vapor phase thymol and modified atmosphere against Salmonella spp. on raw shrimp

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella contamination of shrimp is a food safety concern in the U.S. and other countries. Natural antimicrobial compounds (e.g. essential oils) in vapor phase and modified atmosphere (MA) technology can inhibit the growth potential of Salmonella spp. However, each strategy has its limitations, wh...

  8. A technique for eliminating white phosphorus deposits in vapor phase epitaxy systems

    NASA Technical Reports Server (NTRS)

    Wilt, D. M.; Hoffman, R. W.

    1993-01-01

    A technique of heating the exhaust lines is described whereby phosphorus in the exhaust portion of an organometallic vapor phase epitaxy reactor is encouraged to deposit in the red form rather than the pyrophoric white form. This technique is simple, effective, and does not hinder or limit the conditions under which the reactor may be operated.

  9. EFFECT OF DIRECTIONAL SWITCHING FREQUENCY ON TOLUENE DEGRADATION IN A VAPOR-PHASE BIOREACTOR. (R826168)

    EPA Science Inventory

    A potential method to improve biomass distribution and the stability of vapor-phase bioreactors is to operate them in a directionally switching mode such that the contaminant air stream direction is periodically reversed through the reactor. In this study, the effect of switching...

  10. EFFECT OF VAPOR-PHASE BIOREACTOR OPERATION ON BIOMASS ACCUMULATION, DISTRIBUTION, AND ACTIVITY. (R826168)

    EPA Science Inventory

    Excess biomass accumulation and activity loss in vapor-phase bioreactors (VPBs) can lead to unreliable long-term operation. In this study, temporal and spatial variations in biomass accumulation, distribution and activity in VPBs treating toluene-contaminated air were monitored o...

  11. Simplified thermodynamic functions for vapor-liquid phase separation and fountain effect pumps

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Hepler, W. A.; Frederking, T. H. K.

    1984-01-01

    He-4 fluid handling devices near 2 K require novel components for non-Newtonian fluid transport in He II. Related sizing of devices has to be based on appropriate thermophysical property functions. The present paper presents simplified equilibrium state functions for porous media components which serve as vapor-liquid phase separators and fountain effect pumps.

  12. Space cryogenics components based on the thermomechanical effect - Vapor-liquid phase separation

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Frederking, T. H. K.

    1989-01-01

    Applications of the thermomechanical effect has been qualified including incorporation in large-scale space systems in the area of vapor-liquid phase separation (VLPS). The theory of the porous-plug phase separator is developed for the limit of a high thermal impedance of the solid-state grains. Extensions of the theory of nonlinear turbulent flow are presented based on experimental results.

  13. Plasma Spray-PVD: A New Thermal Spray Process to Deposit Out of the Vapor Phase

    NASA Astrophysics Data System (ADS)

    von Niessen, Konstantin; Gindrat, Malko

    2011-06-01

    Plasma spray-physical vapor deposition (PS-PVD) is a low pressure plasma spray technology recently developed by Sulzer Metco AG (Switzerland). Even though it is a thermal spray process, it can deposit coatings out of the vapor phase. The basis of PS-PVD is the low pressure plasma spraying (LPPS) technology that has been well established in industry for several years. In comparison to conventional vacuum plasma spraying (VPS) or low pressure plasma spraying (LPPS), the new proposed process uses a high energy plasma gun operated at a reduced work pressure of 0.1 kPa (1 mbar). Owing to the high energy plasma and further reduced work pressure, PS-PVD is able to deposit a coating not only by melting the feed stock material which builds up a layer from liquid splats but also by vaporizing the injected material. Therefore, the PS-PVD process fills the gap between the conventional physical vapor deposition (PVD) technologies and standard thermal spray processes. The possibility to vaporize feedstock material and to produce layers out of the vapor phase results in new and unique coating microstructures. The properties of such coatings are superior to those of thermal spray and electron beam-physical vapor deposition (EB-PVD) coatings. In contrast to EB-PVD, PS-PVD incorporates the vaporized coating material into a supersonic plasma plume. Owing to the forced gas stream of the plasma jet, complex shaped parts such as multi-airfoil turbine vanes can be coated with columnar thermal barrier coatings using PS-PVD. Even shadowed areas and areas which are not in the line of sight of the coating source can be coated homogeneously. This article reports on the progress made by Sulzer Metco in developing a thermal spray process to produce coatings out of the vapor phase. Columnar thermal barrier coatings made of Yttria-stabilized Zircona (YSZ) are optimized to serve in a turbine engine. This process includes not only preferable coating properties such as strain tolerance and erosion

  14. Electronic Cigarettes

    MedlinePlus

    ... and Figures Tobacco and Nicotine Smoked Tobacco Products Smokeless Tobacco Products Electronic Cigarettes New FDA Regulations HEALTH EFFECTS ... Secondhand Smoke Effects of Smoking on Your Health Smokeless Tobacco and Your Health Tobacco Use and Fertility Tobacco ...

  15. Menthol Cigarettes

    MedlinePlus

    ... Use Supplement to the Current Population Survey (TUS-CPS) 2006/07. 2008, National Cancer Institute and Centers ... 07): http://cancercontrol.cancer.gov/brp/tcrb/tus-cps/ . U.S. Department of Commerce Census Bureau, Menthol Cigarette ...

  16. Solvent-free vapor-phase photografting of acrylamide onto poly(ethylene terephthalate).

    PubMed

    Wirsén, Anders; Sun, Hui; Albertsson, Ann-Christine

    2005-01-01

    Poly(ethylene terphthalate) (PET) films were photografted under reduced pressure in a solvent-free vapor of acrylamide and a co-initiator, benzophenone. Characterization of grafted samples by ESCA and contact angles showed that the grafting increased with grafting time and temperature. The amide groups obtained by the acrylamide grafting were converted into amine groups by the Hofmann rearrangement to be used in coupling reactions. The amine groups were confirmed by reaction with pentafluorobenzoyl chloride, which provides a fluorine label for ESCA. Surface grafting of polymeric substrates in the vapor phase induced by plasma or high energy and UV irradiation is reviewed. PMID:16153108

  17. Liquid-phase and vapor-phase dehydration of organic/water solutions

    DOEpatents

    Huang, Yu; Ly, Jennifer; Aldajani, Tiem; Baker, Richard W.

    2011-08-23

    Processes for dehydrating an organic/water solution by pervaporation or vapor separation using fluorinated membranes. The processes are particularly useful for treating mixtures containing light organic components, such as ethanol, isopropanol or acetic acid.

  18. Novel Process for Removal and Recovery of Vapor Phase Mercury

    SciTech Connect

    Greenwell, Collin; Roberts, Daryl L; Albiston, Jason; Stewart, Robin; Broderick, Tom

    1998-03-09

    We demonstrated in the Phase I program all key attributes of a new technology for removing mercury from flue gases, namely, a) removal of greater than 95% of both elemental and oxidized forms of mercury, both in the laboratory and in the field b) regenerability of the sorbent c) ability to scale up, and d) favorable economics. The Phase I program consisted of four tasks other than project reporting: Task I-1 Screen Sorbent Configurations in the Laboratory Task I-2 Design and Fabricate Bench-Scale Equipment Task I-3 Test Bench-Scale Equipment on Pilot Combustor Task I-4 Evaluate Economics Based on Bench-Scale Results In Task I-1, we demonstrated that the sorbents are thermally durable and are regenerable through at least 55 cycles of mercury uptake and desorption. We also demonstrated two low-pressure- drop configurations of the sorbent, namely, a particulate form and a monolithic form. We showed that the particulate form of the sorbent would take up 100% of the mercury so long as the residence time in a bed of the sorbent exceeded 0.1 seconds. In principle, the particulate form of the sorbent could be imbedded in the back side of a higher temperature bag filter in a full-scale application. With typical bag face velocities of four feet per minute, the thickness of the particulate layer would need to be about 2000 microns to accomplish the uptake of the mercury. For heat transfer efficiency, however, we believed the monolithic form of the sorbent would be the more practical in a full scale application. Therefore, we purchased commercially-available metallic monoliths and applied the sorbent to the inside of the flow channels of the monoliths. At face velocities we tested (up to 1.5 ft/sec), these monoliths had less than 0.05 inches of water pressure drop. We tested the monolithic form of the sorbent through 21 cycles of mercury sorption and desorption in the laboratory and included a test of simultaneous uptake of both mercury and mercuric chloride. Overall, in Task

  19. Resonant Acoustic Measurement of Vapor Phase Transport Phenomenon

    NASA Astrophysics Data System (ADS)

    Schuhmann, R. J.; Garrett, S. L.; Matson, J. V.

    2002-12-01

    A major impediment to accurate non steady-state diffusion measurements is the ability to accurately measure and track a rapidly changing gas concentration without disturbing the system. Non-destructive methods that do not interfere with system dynamics have been developed in the past. These methods, however, have tended to be cumbersome or inaccurate at low concentrations. A new experimental approach has been developed to measure gaseous diffusion in free air and through porous materials. The method combines the traditional non steady-state laboratory methodology with resonant acoustic gas analysis. A phase-locked-loop (PLL) resonance frequency tracker is combined with a thermally insulated copper resonator. A piston sealed with a metal bellows excites the fundamental standing wave resonance of the resonator. The PLL maintains a constant phase difference (typically 90§) between the accelerometer mounted on the piston and a microphone near the piston to track the resonance frequency in real time. A capillary or glass bead filled core is fitted into an o-ring sealed opening at the end of the resonator opposite the bellows. The rate at which the tracer gas is replaced by air within the resonator is controlled by the diffusion coefficient of the gas in free air through the capillary (DA) or by the effective diffusion coefficient of the gas through the core (De). The mean molecular weight of the gas mixture in the resonator is directly determined six times each minute from the ratio of the absolute temperature to the square of the fundamental acoustic resonance frequency. Average system stability (temperature divided by frequency squared) is better than 350 ppm. DA values for a 0.3-inch diameter capillary were in excellent agreement with published values. De values for porous media samples (0.5 mm glass beads) of four different lengths (1 through 4 inches) using three different tracer gases (He, CH4, Kr) will be reported. Comments will be offered regarding tracer gas

  20. Phase-transition thresholds and vaporization phenomena for ultrasound phase-change nanoemulsions assessed via high-speed optical microscopy.

    PubMed

    Sheeran, Paul S; Matsunaga, Terry O; Dayton, Paul A

    2013-07-01

    Ultrasonically activated phase-change contrast agents (PCCAs) based on perfluorocarbon droplets have been proposed for a variety of therapeutic and diagnostic clinical applications. When generated at the nanoscale, droplets may be small enough to exit the vascular space and then be induced to vaporize with high spatial and temporal specificity by externally-applied ultrasound. The use of acoustical techniques for optimizing ultrasound parameters for given applications can be a significant challenge for nanoscale PCCAs due to the contributions of larger outlier droplets. Similarly, optical techniques can be a challenge due to the sub-micron size of nanodroplet agents and resolution limits of optical microscopy. In this study, an optical method for determining activation thresholds of nanoscale emulsions based on the in vitro distribution of bubbles resulting from vaporization of PCCAs after single, short (<10 cycles) ultrasound pulses is evaluated. Through ultra-high-speed microscopy it is shown that the bubbles produced early in the pulse from vaporized droplets are strongly affected by subsequent cycles of the vaporization pulse, and these effects increase with pulse length. Results show that decafluorobutane nanoemulsions with peak diameters on the order of 200 nm can be optimally vaporized with short pulses using pressures amenable to clinical diagnostic ultrasound machines. PMID:23760161

  1. Phase-transition thresholds and vaporization phenomena for ultrasound phase-change nanoemulsions assessed via high speed optical microscopy

    PubMed Central

    Sheeran, Paul S.; Matsunaga, Terry O.; Dayton, Paul A.

    2015-01-01

    Ultrasonically activated phase-change contrast agents (PCCAs) based on perfluorocarbon droplets have been proposed for a variety of therapeutic and diagnostic clinical applications. When generated at the nanoscale, droplets may be small enough to exit the vascular space and then be induced to vaporize with high spatial and temporal specificity by externally-applied ultrasound. The use of acoustical techniques for optimizing ultrasound parameters for given applications can be a significant challenge for nanoscale PCCAs due to the contributions of larger outlier droplets. Similarly, optical techniques can be a challenge due to the sub-micron size of nanodroplet agents and resolution limits of optical microscopy. In this study, an optical method for determining activation thresholds of nanoscale emulsions based on the in vitro distribution of bubbles resulting from vaporization of PCCAs after single, short (<10 cycles) ultrasound pulses is evaluated. Through ultra-high-speed microscopy it is shown that the bubbles produced early in the pulse from vaporized droplets are strongly affected by subsequent cycles of the vaporization pulse, and these effects increase with pulse length. Results show that decafluorobutane nanoemulsions with peak diameters on the order of 200 nm can be optimally vaporized with short pulses using pressures amenable to clinical diagnostic ultrasound machines. PMID:23760161

  2. Assessment of the Vapor Phase Catalytic Ammonia Removal (VPCAR) Technology at the MSFC ECLS Test Facility

    NASA Technical Reports Server (NTRS)

    Tomes, Kristin; Long, David; Carter, Layne; Flynn, Michael

    2007-01-01

    The Vapor Phase Catalytic Ammonia. Removal (VPCAR) technology has been previously discussed as a viable option for. the Exploration Water Recovery System. This technology integrates a phase change process with catalytic oxidation in the vapor phase to produce potable water from exploration mission wastewaters. A developmental prototype VPCAR was designed, built and tested under funding provided by a National Research. Announcement (NRA) project. The core technology, a Wiped Film Rotating Device (WFRD) was provided by Water Reuse Technologies under the NRA, whereas Hamilton Sundstrand Space Systems International performed the hardware integration and acceptance test. of the system. Personnel at the-Ames Research Center performed initial systems test of the VPCAR using ersatz solutions. To assess the viability of this hardware for Exploration. Life Support (ELS) applications, the hardware has been modified and tested at the MSFC ECLS Test facility. This paper summarizes the hardware modifications and test results and provides an assessment of this technology for the ELS application.

  3. An intercomparison of measurement systems for vapor and particulate phase concentrations of formic and acetic acids

    NASA Technical Reports Server (NTRS)

    Keene, William C.; Talbot, Robert W.; Andreae, Meinrat O.; Beecher, Kristene; Berresheim, Harold

    1989-01-01

    During June 1986, eight systems for measuring vapor phase and four for measuring particulate phase concentrations of formic acid (HCOOH) and acetic acid (CH3COOH) were intercompared in central Virginia. HCOOH and CH3COOH vapors were sampled by condensate, mist, Chromosorb 103 GC resin, NaOH-coated annular denuders, NaOH-impregnated quartz filters, K2CO3 and NaCO3-impregnated cellulose filters, and Nylasorb membranes. Atmospheric aerosol was collected on Teflon and Nuclepore filters using both hi-vol and lo-vol systems to measure particulate phase concentrations. Performances of the mist chamber and K2CO3-impregnated filter techniques were evaluated using zero air and ambient air spiked with HCOOH(g) and CH3COOH(g), and formaldehyde from permeation sources. The advantages and drawbacks of these methods are reported and discussed.

  4. Compact Raman Lidar Measurement of Liquid and Vapor Phase Water Under the Influence of Ionizing Radiation

    NASA Astrophysics Data System (ADS)

    Shiina, Tatsuo; Chigira, Tomoyuki; Saito, Hayato; Manago, Naohiro; Kuze, Hiroaki; Hanyu, Toshinori; Kanayama, Fumihiko; Fukushima, Mineo

    2016-06-01

    A compact Raman lidar has been developed for studying phase changes of water in the atmosphere under the influence of ionization radiation. The Raman lidar is operated at the wavelength of 349 nm and backscattered Raman signals of liquid and vapor phase water are detected at 396 and 400 nm, respectively. Alpha particles emitted from 241Am of 9 MBq ionize air molecules in a scattering chamber, and the resulting ions lead to the formation of liquid water droplets. From the analysis of Raman signal intensities, it has been found that the increase in the liquid water Raman channel is approximately 3 times as much as the decrease in the vapor phase water Raman channel, which is consistent with the theoretical prediction based on the Raman cross-sections. In addition, the radius of the water droplet is estimated to be 0.2 μm.

  5. Determination of toxic carbonyl compounds in cigarette smoke.

    PubMed

    Fujioka, Kazutoshi; Shibamoto, Takayuki

    2006-02-01

    Toxic carbonyl compounds, including formaldehyde, malonaldehyde, and glyoxal, formed in mainstream cigarette smoke were quantified by derivatization-solid phase extraction-gas chromatography methods. Cigarette smoke from 14 commercial brands and one reference (2R1F) was drawn into a separatory funnel containing aqueous phosphate-buffered saline. Reactive carbonyl compounds trapped in the buffer solution were derivatized into stable nitrogen containing compounds (pyrazoles for beta-dicarbonyl and alpha,beta-unsaturated aldehyde; quinoxalines for alpha-dicarbonyls; and thiazolidines for alkanals). After derivatives were recovered using C(18) solid phase extraction cartridges, they were analyzed quantitatively by a gas chromatograph with a nitrogen phosphorus detector. The total carbonyl compounds recovered from regular size cigarettes ranged from 1.92 mg/cigarette(-1) to 3.14 mg/cigarette(-1). The total carbonyl compounds recovered from a reference cigarette and a king size cigarette were 3.23 mg/cigarette(-1) and 3.39 mg/cigarette(-1), respectively. The general decreasing order of the carbonyl compounds yielded was acetaldehyde (1110-2101 microg/cigarette(-1)) > diacetyl (301-433 microg/cigarette(-1)), acrolein (238-468 microg/cigarette(-1)) > formaldehyde (87.0-243 microg/cigarette(-1)), propanal (87.0-176 microg/cigarette(-1)) > malonaldehyde (18.9-36.0 microg/cigarette(-1)), methylglyoxal (13.4-59.6 microg/cigarette(-1)) > glyoxal (1.93-6.98 microg/cigarette(-1)). PMID:16463255

  6. Thermodynamic Study of the Role of Interface Curvature on Multicomponent Vapor-Liquid Phase Equilibrium.

    PubMed

    Shardt, Nadia; Elliott, Janet A W

    2016-04-14

    The effect of interface curvature on phase equilibrium has been much more studied for single-component than multicomponent systems. We isolate the effect of curvature on multicomponent vapor-liquid equilibrium (VLE) phase envelopes and phase composition diagrams using the ideal system methanol/ethanol and the nonideal system ethanol/water as illustrative examples. An important finding is how nanoscale interface curvature shifts the azeotrope (equal volatility point) of nonideal systems. Understanding of the effect of curvature on VLE can be exploited in future nanoscale prediction and design. PMID:27028744

  7. Transient-pressure analysis in geothermal steam reservoirs with an immobile vaporizing liquid phase

    USGS Publications Warehouse

    Moench, A.F.; Atkinson, P.G.

    1978-01-01

    A finite-difference model for the radial horizontal flow of steam through a porous medium is used to evaluate transient-pressure behavior in the presence of an immobile vaporizing or condensing liquid phase. Graphs of pressure drawdown and buildup in terms of dimensionless pressure and time are obtained for a well discharging steam at a constant mass flow rate for a specified time. The assumptions are made that the steam is in local thermal equilibrium with the reservoir rocks, that temperature changes are due only to phase change, and that effects of vapor-pressure lowering are negligible. Computations show that when a vaporizing liquid phase is present the pressure drawdown exhibits behavior similar to that observed in noncondensable gas reservoirs, but delayed in time. A theoretical analysis allows for the computation of this delay and demonstrates that it is independent of flow geometry. The response that occurs upon pressure buildup is markedly different from that in a noncondensable gas system. This result may provide a diagnostic tool for establishing the existence of phase-change phenomena within a reservoir. ?? 1979.

  8. Dramatic vapor-phase modulation of the characteristics of graphene field-effect transistors.

    PubMed

    Worley, Barrett C; Kim, Seohee; Park, Saungeun; Rossky, Peter J; Akinwande, Deji; Dodabalapur, Ananth

    2015-07-28

    Here we report on dramatic and favorable changes to the operating characteristics in monolayer graphene field-effect transistors (FETs) exposed to vapor-phase, polar organic molecules in ambient. These changes include significant reduction of the Dirac voltage, accompanied by both an increase in electron and hole mobility, μ, and a decrease in residual carrier density, N0, to < 3 × 10(11) cm(-2). In contrast to graphene FET modulation with various liquid- and solid-phase dielectric media present in the literature, we attribute these changes to screening by polar vapor-phase molecules of fields induced by charged impurities and defects, n(imp), in or near the active layer. The magnitude of the changes produced in the graphene FET parameters scales remarkably well with the dipole moment of the delivered molecules. These effects are reversible, a unique advantage of working in the vapor phase. The changes observed upon polar molecule delivery are analogous to those produced by depositing and annealing fluoropolymer coatings on graphene that have been reported previously, and we attribute these changes to similar charge screening or neutralization phenomena. PMID:26107384

  9. SURVEY OF INDUSTRIAL APPLICATIONS OF VAPOR-PHASE ACTIVATED-CARBON ADSORPTION FOR CONTROL OF POLLUTANT COMPOUNDS FROM MANUFACTURE OF ORGANIC COMPOUNDS

    EPA Science Inventory

    This study covers industrial use of activated carbon for vapor-phase applications. A listing of over 700 applications of vapor-phase carbon systems is made available for use in identifying sites where a given compound is being removed.

  10. Selective vapor phase sensing of small molecules using biofunctionalized field effect transistors

    NASA Astrophysics Data System (ADS)

    Hagen, Joshua A.; Kim, Sang Nyon; Kelley-Loughnane, Nancy; Naik, Rajesh R.; Stone, Morley O.

    2011-05-01

    This work details a proof of concept study for vapor phase selective sensing using a strategy of biorecognition elements (BRE) integrated into a zinc oxide field effect transistor (ZnO FET). ZnO FETs are highly sensitive to changes to the environment with little to no selectivity. Addition of a biorecognition element retains the sensitivity of the device while adding selectivity. The DNA aptamer designed to bind the small molecule riboflavin was covalently integrated into the ZnO FET and detects the presence of 116 ppb of riboflavin in a nitrogen atmosphere by a change in current. The unfunctionalized ZnO FET shows no response to this same concentrations of riboflavin, showing that the aptamerbinding strategy may be a promising strategy for vapor phase sensing.

  11. The contribution of nitro- and methylnitronaphthalenes to the vapor-phase mutagenicity of ambient air samples

    NASA Astrophysics Data System (ADS)

    Gupta, Pamela; Harger, William P.; Arey, Janet

    1- and 2-Nitronaphthalene (NN) and the 14 methylnitronaphthalene (MNN) isomers were identified and quantified in ambient vapor-phase samples collected in Redlands, CA during moderate photochemical air pollution. The mutagenic activities of NN and MNN standards were determined using a microsuspension-preincubation modification of the Ames Salmonella bacterial reversion assay in strain TA98 without microsomal activation. The calculated contributions of the NNs and MNNs to the total vapor-phase ambient mutagenic activity were ˜ 18 and ˜ 32% for daytime and nighttime composite samples, respectively. Enhanced mutagenic activity in the nighttime sample was attributed to NN and MNN formation from nighttime N03 radical-initiated reactions of naphthalene and the methylnaphthalenes.

  12. Gas phase versus surface contributions to photolytic laser chemical vapor deposition rates

    NASA Astrophysics Data System (ADS)

    Braichotte, D.; van den Bergh, H.

    1988-04-01

    The rate of cw photolytic laser chemical vapor deposition (LCVD) of platinum is measured for λ≈350 nm as a function of the light intensity and the metalorganic vapor pressure. The growth of the metal films is studied in situ and in real time by monitoring their optical transmission. At low intensities the transmitted light decreases monotonically with time, and the LCVD process is photolytic with its rate limiting step in the surface adlayer. At higher intensities we observe two distinct time domains: Relatively slow initial photolytic deposition with its rate limiting step in the gas phase, which is followed by much faster pyrolytic LCVD. An improved method for distinguishing between adlayer and gas-phase limiting processes is demonstrated. These observations are confirmed by studying the photolytic deposition rates while varying the thickness of the adlayer.

  13. Formation of Ordered 4-Fluorobenzenethiol Self-Assembled Monolayers on Au(111) from Vapor Phase Deposition.

    PubMed

    Kang, Hungu; Ito, Eisuke; Hara, Masahiko; Noh, Jaegeun

    2016-03-01

    Self-assembled monolayers (SAMs) were formed by the spontaneous adsorption of 4-fluorobenzenethiol (4-FBT) on Au(111) using both solution and ambient-pressure vapor deposition methods at room temperature. The surface structure and thermal desorption properties of 4-FBT SAMs were examined by scanning tunneling microscopy (STM) and thermal desorption spectroscopy (TDS). STM imaging showed that 4-FBT SAMs formed in solution at room temperature mainly contained disordered phase with gold adatom islands, while those formed by ambient-pressure vapor deposition had well-ordered phase, which can be described as a (2 x 2√13)R45 degrees structure. In addition, thermal desorption spectroscopy (TDS) measurements showed that strong desorption peak for parent mass fragment (m/z = 128, FC6H5SH+) for 4-FBT SAMs on Au(111) was observed at 460 K, as a result of hydrogen abstract reaction of chemisorbed thiolates during desorption. PMID:27455712

  14. Melting, ablation, and vapor phase condensation during atmospheric passage of the Bjurbole meteorite

    NASA Technical Reports Server (NTRS)

    Rietmeijer, F. J. M.; Mackinnon, I. D. R.

    1984-01-01

    A detailed study of the Bjurbole fusion crust using scanning electron microscopy (SEM) and energy dispersive analysis (EDS) shows that filamentary crystals and ablation spheres may form on the meteoroid surface. Filamentary crystals, hollow spheres, and porous regions of the surface point to a period of intense vapor phase activity during atmospheric passage. Filamentary crystals can be divided into three categories on the basis of bulk composition and morphology. Two types of filamentary crystals are vapor phase condensation products formed during atmospheric entry of the meteoroid. The other type forms by the interaction of seawater with the fusion surface. The density and composition of ablation spheres varies with the flight orientation of the meteorite. The size range and composition of iron-nickel spheres on the surface of Bjurbole are similar to spheres collected in the stratosphere. A comparison of stratospheric dust collections with meteorite surfaces may provide further insight into the mechanisms of meteoroid entry into planetary atmospheres.

  15. In situ, subsurface monitoring of vapor-phase TCE using fiber optics

    SciTech Connect

    Rossabi, J.; Colston, B. Jr.; Brown, S.; Milanovich, F.; Lee, L.T. Jr.

    1993-03-05

    A vapor-phase, reagent-based, fiber optic trichloroethylene (TCE) sensor developed by Lawrence Livermore National Laboratory (LLNL) was demonstrated at the Savannah River Site (SRS) in two configurations. The first incorporated the sensor into a down-well instrument bounded by two inflatable packers capable of sealing an area for discrete depth analysis. The second involved an integration of the sensor into the probe tip of the Army Corps of Engineers Waterways Experiment Station (WES) cone penetrometry system. Discrete depth measurements of vapor-phase concentrations of TCE in the vadose zone were successfully made using both configurations. These measurements demonstrate the first successful in situ sensing (as opposed to sampling) of TCE at a field site.

  16. Progress toward cascade cells made by OM-VPE. [organometallic vapor phase epitaxy

    NASA Technical Reports Server (NTRS)

    Borden, P. G.; Larue, R. A.; Ludowise, M. J.

    1982-01-01

    Organometallic Vapor Phase Epitaxy (COM-VPE) was used to make a sophisticated monolithic cascade cell, with a peak AMO efficiency of 16.6%, not corrected for 14% grid coverage. The cell has 9 epitaxial layers. The top cell is 1.35 microns thick with a 0.1 micron thich emitter. Both cells are heteroface n-p structures. The cascade cell uses metal interconnects. Details of growth and processing are described.

  17. The growth of vapor bubble and relaxation between two-phase bubble flow

    NASA Astrophysics Data System (ADS)

    Mohammadein, S. A.; Subba Reddy Gorla, Rama

    2002-10-01

    This paper presents the behavior of the bubble growth and relaxation between vapor and superheated liquid. The growth and thermal relaxation time between the two-phases are obtained for different levels of superheating. The heat transfer problem is solved numerically by using the extended Scriven model. Results are compared with those of Scriven theory and MOBY DICK experiment with reasonably good agreement for lower values of superheating.

  18. Sintered plug flow modulation of a vapor-liquid phase separator for a helium II vessel

    NASA Technical Reports Server (NTRS)

    Frederking, T. H. K.; Chuang, C.; Kamioka, Y.; Lee, J. M.; Yuan, S. W. K.

    1984-01-01

    Presented is a system for modulation of a superfluid (helium II) flow in a vapor-liquid phase separator, for use in cryogenic storage tanks in future space missions. The system consists of a semicircular mechanically operated shutter, downstream of the separator plug, rotated at 0.1 rpm to control the operational surface area of the separator. The mass flow rate was varied from 10 to 22 mg/s. Pressure gradients across the plug are also discussed.

  19. Growth of Low-Resistivity n-Type ZnTe by Metalorganic Vapor Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Ogawa, Hiroshi; Irfan, Gheyas; Nakayama, Hitoshi; Nishio, Mitsuhiro; Yoshida, Akira

    1994-07-01

    Doping of ZnTe has been carried out by metalorganic vapor phase epitaxy using triethylaluminum as the dopant source. N-type ZnTe layers with a carrier concentration of (1 4) ×1017 cm-3 and a resistivity as low as 0.1 0.3 Ω·cm have been obtained. It has been indicated by the photoluminescence measurement that Al is incorporated effectively into the epitaxial layer.

  20. Removal of Oxygen from Electronic Materials by Vapor-Phase Processes

    NASA Technical Reports Server (NTRS)

    Palosz, Witold

    1997-01-01

    Thermochemical analyses of equilibrium partial pressures over oxides with and without the presence of the respective element condensed phase, and hydrogen, chalcogens, hydrogen chalcogenides, and graphite are presented. Theoretical calculations are supplemented with experimental results on the rate of decomposition and/or sublimation/vaporization of the oxides under dynamic vacuum, and on the rate of reaction with hydrogen, graphite, and chalcogens. Procedures of removal of a number of oxides under different conditions are discussed.

  1. Application of high-resolution laser spectroscopy to the monitoring of vapor-phase metals

    SciTech Connect

    Lipert, R.J.; Wang, Z.M.; Schuler, R.; Edelson, M.C.

    1992-10-01

    Research conducted in the Ames Laboratory Nuclear Safeguards and Security Program is reviewed. Progress in applying high-resolution laser spectroscopy to the monitoring of vapor-phase metals is described. The spectroscopic techniques employed include fluorescence excitation in an atomic beam, laser atomic absorption in a heat-pipe oven and atomic beam, Doppler-free saturated absorption in a heat-pipe oven, and Doppler-free polarization spectroscopy for the stabilization of the laser wavelength.

  2. Sintering behavior of ultrafine silicon carbide powders obtained by vapor phase reaction

    NASA Technical Reports Server (NTRS)

    Okabe, Y.; Miyachi, K.; Hojo, J.; Kato, A.

    1984-01-01

    The sintering behavior of ultrafine SiC powder with average particle size of about 0.01-0.06 microns produced by a vapor phase reaction of the Me4Si-H2 system was studied at the temperature range of 1400-2050 deg. It was found that the homogeneous dispersion of C on SiC particles is important to remove the surface oxide layer effectively. B and C and inhibitive effect on SiC grain growth.

  3. Oxygen-poor phase observed during plasma-sprayed physical vapor deposition of zirconia coatings

    NASA Astrophysics Data System (ADS)

    Good, Brian; Harder, Bryan

    2014-03-01

    When cubic zirconia is deposited using Plasma Spray-Physical Vapor Deposition (PS-PVD) under oxygen-poor conditions, a metastable phase is observed. We describe a combined experimental and computational approach aimed at determining the structure and composition of the phase. X-Ray analysis indicates that the phase exhibits cubic symmetry, and it is also found to be electrically conductive, in contrast to cubic zirconia, which is electrically insulating. We have performed electronic structure calculations aimed at identifying the metastable phase. Three cubic candidate ZrO structures were identified, and the lattice constants were optimized for each. The lowest-energy structure was found to be the NaCl structure. Projected density of states calculations show that the material is conductive, with conduction occurring within the Zr 4s band. Potential technological uses for the phase are discussed.

  4. Smokers' and E-Cigarette Users' Perceptions about E-Cigarette Warning Statements.

    PubMed

    Wackowski, Olivia A; Hammond, David; O'Connor, Richard J; Strasser, Andrew A; Delnevo, Cristine D

    2016-01-01

    Cigarette warning labels are important sources of risk information, but warning research for other tobacco products is limited. This study aimed to gauge perceptions about warnings that may be used for e-cigarettes. We conducted six small focus groups in late 2014/early 2015 with adult current e-cigarette users and cigarette-only smokers. Participants rated and discussed their perceptions of six e-cigarette warning statements, and warnings in two existing Vuse and MarkTen e-cigarette ads. Participants were open to e-cigarette warnings and provided the strongest reactions to statements warning that e-liquid/e-vapor or e-cigarettes can be poisonous, contain toxins, or are "not a safe alternative to smoking". However, many also noted that these statements were exaggerated, potentially misleading, and could scare smokers away from reducing their harm by switching to e-cigarettes. Opinions on the Food and Drug Administration's proposed nicotine addiction warning and warnings that e-cigarettes had not been approved for smoking cessation or had unknown health effects were mixed. Participants perceived MarkTen's advertisement warning to be stronger and more noticeable than Vuse's. Care should be taken in developing e-cigarette warnings given their relative recentness and potential for harm reduction compared to other tobacco products. Additional research, including with varied audiences, would be instructive. PMID:27376310

  5. Smokers’ and E-Cigarette Users’ Perceptions about E-Cigarette Warning Statements

    PubMed Central

    Wackowski, Olivia A.; Hammond, David; O’Connor, Richard J.; Strasser, Andrew A.; Delnevo, Cristine D.

    2016-01-01

    Cigarette warning labels are important sources of risk information, but warning research for other tobacco products is limited. This study aimed to gauge perceptions about warnings that may be used for e-cigarettes. We conducted six small focus groups in late 2014/early 2015 with adult current e-cigarette users and cigarette-only smokers. Participants rated and discussed their perceptions of six e-cigarette warning statements, and warnings in two existing Vuse and MarkTen e-cigarette ads. Participants were open to e-cigarette warnings and provided the strongest reactions to statements warning that e-liquid/e-vapor or e-cigarettes can be poisonous, contain toxins, or are “not a safe alternative to smoking”. However, many also noted that these statements were exaggerated, potentially misleading, and could scare smokers away from reducing their harm by switching to e-cigarettes. Opinions on the Food and Drug Administration’s proposed nicotine addiction warning and warnings that e-cigarettes had not been approved for smoking cessation or had unknown health effects were mixed. Participants perceived MarkTen’s advertisement warning to be stronger and more noticeable than Vuse’s. Care should be taken in developing e-cigarette warnings given their relative recentness and potential for harm reduction compared to other tobacco products. Additional research, including with varied audiences, would be instructive. PMID:27376310

  6. Optimum operating conditions of DIR-MCFC without vapor-phase carbonate pollution

    NASA Astrophysics Data System (ADS)

    Sugiura, Kimihiko; Daimon, Mayumi; Tanimoto, Kazumi

    In direct internal reforming-molten carbonate fuel cells (DIR-MCFC), deterioration of catalytic activity takes place in the anode channel due to both liquid-phase pollution and vapor-phase pollution. Although the liquid-phase pollution can be solved by installing protective barrier, an effective defense method and a reactivation method of vapor-phase polluted catalyst have not established yet. In order to study the reactivation method, the adhesion form of potassium compounds in the polluted catalyst under the various gas conditions was evaluated by using a thermogravimetric analyzer in which water vapor can feed. Additionally, the activity of the treated catalyst was also tested by a differential reactor. As a result, KOH changes to K 2CO 3 under a CO 2 concentration of 25% or more. KOH becomes a solid-phase from the liquid-phase when it is changed into K 2CO 3. Therefore, the catalyst can not be reactive because K 2CO 3 chokes pores of the catalyst. However, the activity of the polluted catalyst is revived to 80% of the initial activity by controlling the gas species concentration, especially CO 2. Moreover, the catalytic activity can be revived under a steam-carbon ratio of 2.0 or more. Based on the results obtained by these fundamental experiments, the reactivation methods of catalyst polluted are proposed as follows: (i) catalyst should be loaded more upstream in the anode; (ii) in order to reactivate the polluted catalyst, the DIR-MCFC should maintain a steam-carbon ratio of 2.0 or more; (iii) gas conditions to activate the catalyst should be applied regularly.

  7. Modeling of liquid-vapor phase change using smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Das, A. K.; Das, P. K.

    2015-12-01

    A model has been proposed based on smoothed particle hydrodynamics to describe gas liquid phase change. Pseudo particles of zero mass are initially placed to locate the interface. Mass generated due to phase change is assigned to the pseudo particles and their positions are updated at intervals to track the mobility of the interface. The developed algorithm has been used to simulate vapor formation around solid spheres both in the absence of gravity and in the normal gravitational field. Finally, bubble growth over a hot horizontal surface due to boiling has been simulated. Simulated results showed good matching with the reported literature.

  8. Acoustic strength of water and effect of ultrasound on the liquid-vapor phase diagram

    NASA Astrophysics Data System (ADS)

    Volkov, G. A.; Petrov, Yu. V.; Gruzdkov, A. A.

    2015-05-01

    The structure-time approach is used to develop an analytical model that makes it possible to predict the dependences of the acoustic cavitation threshold of water on temperature and background pressure. The calculated dependences are compared with the results of experiments carried out in the leading laboratories. It is demonstrated that the proposed approach allows the estimation of the effect of the acoustic field on the phase state of the substance under study. The calculated liquid-vapor phase curves for water in the presence of acoustic fields are presented.

  9. The mechanism of vapor phase hydration of calcium oxide: implications for CO2 capture.

    PubMed

    Kudłacz, Krzysztof; Rodriguez-Navarro, Carlos

    2014-10-21

    Lime-based sorbents are used for fuel- and flue-gas capture, thereby representing an economic and effective way to reduce CO2 emissions. Their use involves cyclic carbonation/calcination which results in a significant conversion reduction with increasing number of cycles. To reactivate spent CaO, vapor phase hydration is typically performed. However, little is known about the ultimate mechanism of such a hydration process. Here, we show that the vapor phase hydration of CaO formed after calcination of calcite (CaCO3) single crystals is a pseudomorphic, topotactic process, which progresses via an intermediate disordered phase prior to the final formation of oriented Ca(OH)2 nanocrystals. The strong structural control during this solid-state phase transition implies that the microstructural features of the CaO parent phase predetermine the final structural and physicochemical (reactivity and attrition) features of the product hydroxide. The higher molar volume of the product can create an impervious shell around unreacted CaO, thereby limiting the efficiency of the reactivation process. However, in the case of compact, sintered CaO structures, volume expansion cannot be accommodated in the reduced pore volume, and stress generation leads to pervasive cracking. This favors complete hydration but also detrimental attrition. Implications of these results in carbon capture and storage (CCS) are discussed. PMID:25233236

  10. Introducing phase transitions to quantum chemistry: from Trouton's rule to first principles vaporization entropies.

    PubMed

    Spickermann, Christian; Lehmann, Sebastian B C; Kirchner, Barbara

    2008-06-28

    In the present study, we employ quantum cluster equilibrium calculations on a small water cluster set in order to derive thermochemical equilibrium properties of the liquid phase as well as the liquid-vapor phase transition. The focus is set on the calculation of liquid phase entropies, from which entropies of vaporization at the normal boiling point of water are derived. Different electronic structure methods are compared and the influences of basis set size and of cooperative effects are discussed. In line with a previous study on the subject [B. Kirchner, J. Chem. Phys. 123, 204116 (2005)], we find that the neglect of cooperativity leads to large errors in the equilibrium cluster populations as well as in the obtained entropy values. In contrast, a correct treatment of the intermolecular many-body interaction yields liquid phase entropies and phase transition entropies being in very good agreement with the experimental reference, thus demonstrating that the quantum cluster equilibrium partition function intrinsically accounts for the shortcomings of the ideal gas partition function often employed in first principles entropy calculations. Comparing the calculated vaporization entropies to the value predicted by Trouton's rule, it is observed that for entropy calculations the consideration of intracluster cooperative effects is more important than the explicit treatment of the intercluster association even in a highly associated liquid such as water. The decomposition of entropy into contributions due to different degrees of freedom implies the need for the accurate treatment of particle indistinguishability and free volume of translation, whereas minor influences should be expected from the vibrational and rotational degrees of freedom and none from the electronic degrees of freedom. PMID:18618941

  11. Sorption equilibria of vapor-phase organic pollutants on unsaturated soils and soil minerals. Final report, Mar 85-Mar 89

    SciTech Connect

    Lion, L.W.; Ong, S.K.; Linder, S.R.; Swager, J.L.; Schwager, S.J.

    1990-04-01

    Most groundwater pollutants are volatile organic compounds; however, there is relatively little understanding of the sorption reactions that control the transport and fate of organic vapors in the vadose zone. This investigation identified the physical/chemical properties of the soil matrix and organic vapors which control vapor-solid phase distribution. The dominant property which regulates vapor sorption in the unsaturated zone is the moisture content of the soil. Under very dry conditions, soil mineral/vapor interactions are regulated by specific surface area, indicating the dominance of a relatively non-specific physical adsorption process. However, at moisture contents exceeding an average surface coverage of four to eight layers of water, vapor uptake is controlled by partitioning reactions into soil moisture and soil organic matter.

  12. Evaluation of PCDD/F partitioning between vapor and solid phases in MWI flue gases with temperature variation.

    PubMed

    Chi, Kai Hsien; Chang, Moo Been; Chang, Shu Hao

    2006-12-01

    Partitioning of PCDD/Fs (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofuran) between vapor and solid phases in flue gas is affected by several factors including temperature variation. In this study, PCDD/F removal efficiencies achieved with activated carbon injection (ACI) and partitioning of vapor/solid phase PCDD/Fs in flue gases with temperature variation in a municipal waste incinerator (MWI) are evaluated via intensive flue gas sampling. Results indicate that most PCDD/Fs in flue gas downstream of the ACI+bag filter (BF) exist in vapor phase (over 90%) while the removal efficiencies of vapor and solid phase PCDD/Fs are 98.5-99.6% and 99.8-99.9%, respectively. The results of flue gas samplings also indicate that there is optimal operating temperature for PCDD/F removal achieved with ACI. Additionally, a pilot-scale adsorption system (PAS) is constructed in this study to evaluate the PCDD/F partitioning affected by temperature. The results of the PAS experimentation indicate that about 55% and 25% vapor phase PCDD/Fs passing through the filter cake (adsorbent) are transferred to solid phase at 150 and 200 degrees C, respectively. As the temperature is increased to 250 degrees C, filter cake (adsorbent) cannot effectively adsorb vapor phase PCDD/Fs and significant PCDD/Fs are formed via de novo synthesis. PMID:16920255

  13. Enhanced Vapor-Phase Diffusion in Porous Media - LDRD Final Report

    SciTech Connect

    Ho, C.K.; Webb, S.W.

    1999-01-01

    As part of the Laboratory-Directed Research and Development (LDRD) Program at Sandia National Laboratories, an investigation into the existence of enhanced vapor-phase diffusion (EVD) in porous media has been conducted. A thorough literature review was initially performed across multiple disciplines (soil science and engineering), and based on this review, the existence of EVD was found to be questionable. As a result, modeling and experiments were initiated to investigate the existence of EVD. In this LDRD, the first mechanistic model of EVD was developed which demonstrated the mechanisms responsible for EVD. The first direct measurements of EVD have also been conducted at multiple scales. Measurements have been made at the pore scale, in a two- dimensional network as represented by a fracture aperture, and in a porous medium. Significant enhancement of vapor-phase transport relative to Fickian diffusion was measured in all cases. The modeling and experimental results provide additional mechanisms for EVD beyond those presented by the generally accepted model of Philip and deVries (1957), which required a thermal gradient for EVD to exist. Modeling and experimental results show significant enhancement under isothermal conditions. Application of EVD to vapor transport in the near-surface vadose zone show a significant variation between no enhancement, the model of Philip and deVries, and the present results. Based on this information, the model of Philip and deVries may need to be modified, and additional studies are recommended.

  14. Design and optimization of a total vaporization technique coupled to solid-phase microextraction.

    PubMed

    Rainey, Christina L; Bors, Dana E; Goodpaster, John V

    2014-11-18

    Solid-phase microextraction (SPME) is a popular sampling technique in which chemical compounds are collected with a sorbent-coated fiber and then desorbed into an analytical instrument such as a liquid or gas chromatograph. Typically, this technique is used to sample the headspace above a solid or liquid sample (headspace SPME), or to directly sample a liquid (immersion SPME). However, this work demonstrates an alternative approach where the sample is totally vaporized (total vaporization SPME or TV-SPME) so that analytes partition directly between the vapor phase and the SPME fiber. The implementation of this technique is demonstrated with polydimethylsiloxane-divinylbenzene (PDMS-DVB) and polyacrylate (PA) coated SPME fibers for the collection of nicotine and its metabolite cotinine in chloroform extracts. The most important method parameters were optimized using a central composite design, and this resulted in an optimal extraction temperature (96 °C), extraction time (60 min), and sample volume (120 μL). In this application, large sample volumes up to 210 μL were analyzed using a volatile solvent such as chloroform at elevated temperatures. The sensitivity of TV-SPME is nearly twice that of liquid injection for cotinine and nearly 6 times higher for nicotine. In addition, increased sampling selectivity of TV-SPME permits detection of both nicotine and cotinine in hair as biomarkers of tobacco use where in the past the detection of cotinine has not been achieved by conventional SPME. PMID:25313649

  15. Ordered organic thin films self-assembled from the vapor phase

    NASA Technical Reports Server (NTRS)

    Debe, M. K.

    1993-01-01

    Organic films self-assembled from a liquid phase, as in Langmuir-Blodgett or adsorption from solution, have received much attention in the past decade as techniques to achieve highly oriented-ordered polymeric thin films. Many organic compounds including some of the same fatty acids have been vapor deposited as well. However, organic pigments and dyes comprise a major class of important materials which have very low solubilities yet excellent thermal stabilities, making them ideally suited for film deposition from the vapor phase. Surprisingly, such molecular systems exhibit a significant propensity to self order, a high sensitivity to deposition parameters, and a range of microstructural forms that cannot be duplicated by the less energetic mechanisms associated with solution adsorption processes. Molecular solids such as heterocyclic polynuclear aromatics are excellent candidates for film formation by vacuum deposition means. Over the past decade, our work and that of others investigating a wide variety of perylene and phthalocyanine derivatives identified five deposition parameters that can significantly affect film morphology, physical microstructure, and type and extent of ordering developed in vacuum and vapor transport grown films. These parameters are substrate temperature, deposition rate, substrate chemistry and epitaxy, ambient gas convective flows, and post deposition annealing. Examples of how each of these conditions manifest themselves in the film structure and ordering, most frequently revealed by scanning electron microscopy, reflection absorption infrared spectroscopy (RAIR), and grazing incidence x-ray diffraction (GIX), are presented.

  16. Properties of nuclear waste melts and glasses: Contact-refractory corrosion and vapor phase hydration

    NASA Astrophysics Data System (ADS)

    Lu, Xiaodong

    Control of refractory corrosion in waste glass melts and meeting vapor phase hydration test (VHT) requirement for Hanford low-activity waste (LAW) glass product are two critical issues among many technical challenges of nuclear waste vitrification. In this study, refractory corrosion was treated as a complex non-equilibrium, multi-component and multi-phase reactive transport process and studied both thermodynamically and kinetically. Dissolution tests of granular refractory materials into under-saturated melts coupled with crystallization tests from supersaturated melts were used to determine the possible equilibrium points. The test results show that spinet phase is the most stable phase of K-3 refractory. Solubility of glass-refractory interface material controls the long term refractory corrosion rate and protects refractory from further corrosion. Therefore, refractory corrosion rate can be possibly adjusted by controlling the underlying solubility of the interface material. A set of monolithic refractory corrosion and dissolution tests was carried out to study the kinetic effects of refractory porosity and glass melt viscosity, the two major kinetic factors associated with reactive transport process. The test results show that temperature and glass melt viscosity have intensive effects on refractory material dissolution rate. Fast closure of channels near the glass-refractory interface during corrosion reaction by fast transformation of solid solution to spinel and spinel re-crystallization helps stop further corrosion reaction. Glass composition can be "passivated" by engineering the formulation to maximizing the beneficial alteration process. For the study of VHT kinetics, data from simulated LAW glasses studied previously at Pacific Northwest National Laboratory and Vitreous State Laboratory was modeled based on Avrami equation and its variant, the so-called generalized Avrami equation for better modeling of the VHT data. The results show that the kinetics

  17. Electronic cigarettes: a short review.

    PubMed

    Bertholon, J F; Becquemin, M H; Annesi-Maesano, I; Dautzenberg, B

    2013-01-01

    Marketed since 2004 as an alternative to nicotine delivery and advertised as a valid means to smoking cessation, the electronic (e)-cigarette has been the subject of much controversy but very little experimental study. This review provides a brief summary of the current knowledge of this product. Propylene glycol and glycerol, the main ingredients of the fluid that is vaporized, have proved to be harmless in the fog machines of the entertainment industry. However, in the case of the e-cigarette fluid, the composition is not properly labeled: additives like nicotine and flavors vary between and within brands and contamination with various chemicals has been detected. The short-term toxicity seems low, but the long-term toxicity is unknown. The usefulness of the e-cigarette in smoking cessation has still to be clinically established. PMID:24080743

  18. Vapor-phase infrared spectroscopy on solid organic compounds with a pulsed resonant photoacoustic detection scheme

    NASA Astrophysics Data System (ADS)

    Bartlome, Richard; Fischer, Cornelia; Sigrist, Markus W.

    2005-08-01

    There is a great need for a low cost and sensitive method to measure infrared spectra of solid organic compounds in the gas phase. To record such spectra, we propose an optical parametric generator-based photoacoustic spectrometer, which emits in the mid-infrared fingerprint region between 3 and 4 microns. In this system, the sample is heated in a vessel before entering a home built photoacoustic cell, where the gaseous molecules are excited by a tunable laser source with a frequency repetition rate that matches the first longitudinal resonance frequency of the photocaoustic cell. In a first phase, we have focused on low-melting point stimulants such as Nikethamide, Mephentermine sulfate, Methylephedrine, Ephedrine and Pseudoephedrine. The vapor-phase spectra of these doping substances were measured between 2800 and 3100 cm-1, where fundamental C-H stretching vibrations take place. Our spectra show notable differences with commercially available condensed phase spectra. Our scheme enables to measure very low vapor pressures of low-melting point (<160 °C) solid organic compounds. Furthermore, the optical resolution of 8 cm-1 is good enough to distinguish closely related chemical structures such as the Ephedra alkaloids Ephedrine and Methylephedrine, but doesn't allow to differentiate diastereoisomeric pairs such as Ephedrine and Pseudoephedrine, two important neurotransmitters which reveal different biological activities. Therefore, higher resolution and a system capable of measuring organic compounds with higher melting points are required.

  19. Comparison of the layer structure of vapor phase and leached SRL glass by use of AEM

    SciTech Connect

    Biwer, B.M.; Bates, J.K.; Abrajano, T.A. Jr.; Bradley, J.P.

    1990-12-31

    Test samples of 131 type glass that have been reacted for extended time periods in water vapor atmospheres of different relative humidities and in static leaching solution have been examined to characterize the reaction products. Analytical electron microscopy (AEM) was used to characterize the leached samples, and a complicated layer structure was revealed, consisting of phases that precipitate from solution and also form within the residual glass layer. The precipitated phases include birnes-site, saponite, and an iron species, while the intralayer phases include the U-Ti containing phase brannerite distributed within a matrix consisting of bands of an Fe rich montmorillonite clay. Comparison is made between samples leached at 40C for 4 years with those leached at 90C for 3-1/2 years. The samples reacted in water vapor were examined with scanning electron microscopy and show increasing reaction as both the relative humidity and time of reaction increases. These samples also contain a layered structure with reaction products on the glass surface.

  20. Vapor-Phase Garnet at Yucca Mountain, Nevada: Geochemistry and Oxygen-Isotope Thermometry

    SciTech Connect

    R. J. Moscati; C.A. Johnson; J.F. Whelan

    2001-07-03

    About 20 vapor-phase garnets were studied in two samples of the Topopah Spring Tuff from Yucca Mountain, in southern Nevada. The Miocene-age Topopah Spring Tuff is a 350-m-thick, devitrified, moderately to densely welded ash flow that is compositionally zoned from high-silica rhyolite to quartz latite. During cooling of the tuff, escaping vapor produced lithophysae (former gas cavities) lined with an assemblage of tridymite, cristobalite, alkali feldspar, and locally, hematite and/or garnet. Vapor-phase topaz and economic deposits (such as porphyry molybdenum-tungsten) commonly associated with topaz-bearing rhyolites (characteristically enriched in fluorine) were not found in the Topopah Spring Tuff at Yucca Mountain. The garnets are not primary igneous phenocrysts, but rather crystals that grew from a fluorine-poor magma-derived vapor trapped during emplacement of the tuff. The garnets are euhedral, vitreous, reddish brown, trapezohedral, as large as 2 mm in diameter, and fractured. The garnets also contain inclusions of tridymite. Electron-microprobe analyses of the garnets reveal that they are almandine-spessartine (48.0 and 47.9 mol percent, respectively), have an average chemical formula of (Fe{sub 1.46}, Mn{sub 1.45}, Mg{sub 0.03}, Ca{sub 0.10}) (Al{sub 1.93}, TiO{sub 0.02}) Si{sub 3.01}O{sub 12}, and are homogeneous in Fe and Mn concentrations from core to rim. Composited garnets from each sample site have {delta}{sup 18}O values of 7.2 and 7.4{per_thousand}. The coexisting tridymite, however, has {delta}{sup 18}O values of 17.4 and 17.6{per_thousand} values indicative of reaction with later, low-temperature water. Unaltered tridymite from higher in the stratigraphic section has a {delta}{sup 18}O of 11.1{per_thousand} which, when coupled with the garnet {delta}{sup 18}O values in a quartz-garnet fractionation equation, indicates vapor-phase crystallization at temperatures of almost 600 C. This high-temperature mineralization, formed during cooling of the

  1. Method for the Determination of Ammonia in Mainstream Cigarette Smoke Using Ion Chromatography.

    PubMed

    Watson, Christina Vaughan; Feng, June; Valentin-Blasini, Liza; Stanelle, Rayman; Watson, Clifford H

    2016-01-01

    Ammonia in mainstream smoke is present in both the particulate and vapor phases. The presence of ammonia in the cigarette filler material and smoke is of significance because of the potential role ammonia could have in raising the "smoke pH." An increased smoke pH could shift a fraction of total nicotine to free-base nicotine, which is reportedly more rapidly absorbed by the smoker. Methods measuring ammonia in smoke typically employ acid filled impingers to trap the smoke. We developed a fast, reliable method to measure ammonia in mainstream smoke without the use of costly and time consuming impingers to examine differences in ammonia delivery. The method uses both a Cambridge filter pad and a Tedlar bag to capture particulate and vapor phases of the smoke. We quantified ammonia levels in the mainstream smoke of 50 cigarette brands from 5 manufacturers. Ammonia levels ranged from approximately 1μg to 23μg per cigarette for ISO smoking conditions and 38μg to 67μg per cigarette for Canadian intense smoking conditions and statistically significance differences were observed between brands and manufacturers. Our findings suggest that ammonia levels vary by brand and are higher under Canadian intense smoking conditions. PMID:27415766

  2. Method for the Determination of Ammonia in Mainstream Cigarette Smoke Using Ion Chromatography

    PubMed Central

    Watson, Christina Vaughan; Feng, June; Valentin-Blasini, Liza; Stanelle, Rayman; Watson, Clifford H.

    2016-01-01

    Ammonia in mainstream smoke is present in both the particulate and vapor phases. The presence of ammonia in the cigarette filler material and smoke is of significance because of the potential role ammonia could have in raising the “smoke pH.” An increased smoke pH could shift a fraction of total nicotine to free-base nicotine, which is reportedly more rapidly absorbed by the smoker. Methods measuring ammonia in smoke typically employ acid filled impingers to trap the smoke. We developed a fast, reliable method to measure ammonia in mainstream smoke without the use of costly and time consuming impingers to examine differences in ammonia delivery. The method uses both a Cambridge filter pad and a Tedlar bag to capture particulate and vapor phases of the smoke. We quantified ammonia levels in the mainstream smoke of 50 cigarette brands from 5 manufacturers. Ammonia levels ranged from approximately 1μg to 23μg per cigarette for ISO smoking conditions and 38μg to 67μg per cigarette for Canadian intense smoking conditions and statistically significance differences were observed between brands and manufacturers. Our findings suggest that ammonia levels vary by brand and are higher under Canadian intense smoking conditions. PMID:27415766

  3. Pin-in-paste DFM constraints in vapor phase soldering technology for optoelectronic components

    NASA Astrophysics Data System (ADS)

    Plotog, I.; Varzaru, G.; Turcu, C.; Cucu, T. C.; Svasta, P.; Vasile, A.

    2009-01-01

    The topical trends in the field of electronic equipments developing are a large integration on pcb support for different types of components and devices, including optoelectronic type, from small to medium power, in condition of reducing physical dimensions, in order to create new electronic products in short time at lower manufacturing cost. The condition for economical success for a product is to assure the product, even from the conception stage, with a high level of quality by reducing the product cost; to conclude, designing according with production possibilities by using Design For Manufacturing (DFM) concept. This desideratum depends on the conception and design of the product. According to DFM concept, a successful project assures design requirements for the system and finally for printed circuit boards (PCB), accomplishes the assembling technology constraints defined by international standards in the field of electronic packaging, such as IPC or Restriction of Hazardous Substances Directive. Active from July 1, 2006, the RoHS Directive 2002/95/EC adopted in February 2003 by the European Union, and adopted in Romania by HG - 992/2005, completed by HG - 816/2006, call forth important consequences in assembling technologies. In order to minimize manufacturing cost, Pin-In-Paste offers solutions for complete assembling of high complexity PCBs in Vapor Phase Technology using only one reflow machine avoiding overheating of the assemblies relatively to infrared reflow oven. Starting from RoHS consequences analysis, especially thermal profile, the paper presents the applied research performed in the assembling lines on VPS machine in order to define the design requirements for Pin-In-Paste dedicated stencils and PCBs, experiments result and conclusions regarding DFM requirements for lead-free assembling technologies of optoelectronic components. Finally, scientific and practical conclusions shall be drawn to configure the optimum implementation way for Pin

  4. Liquid-vapor transformations with surfactants. Phase-field model and Isogeometric Analysis

    NASA Astrophysics Data System (ADS)

    Bueno, Jesus; Gomez, Hector

    2016-09-01

    Surfactants are compounds that find energetically favorable to be located at the boundaries between fluids. They are able to modify the properties of those interfaces, for example, reducing surface tension. Here, we propose a new model for liquid-vapor flows with surfactants which captures the dynamics of the surfactant and accounts for phase transformations in the fluid. The aforementioned model is derived from a free energy functional by using a Coleman-Noll approach. The proposed theory emanates from the isothermal Navier-Stokes-Korteweg equations, which describe single-component two-phase flow and naturally allow for phase transformations. We believe that our model has significant potential to study the influence of surfactants in vaporization and condensation processes. From a numerical point of view, the proposed model poses significant challenges to existing discretization methods, including stiffness in space and time, internal and boundary layers as well as higher-order partial differential operators. To overcome these challenges we propose algorithms based on Isogeometric Analysis, which permit an accurate and efficient discretization. Finally, we illustrate the viability of the theoretical framework and the effectiveness of our algorithms by solving several numerical problems in two and three dimensions.

  5. Biodegradation of vapor-phase toluene in unsaturated porous media: Column experiments.

    PubMed

    Khan, Ali M; Wick, Lukas Y; Harms, Hauke; Thullner, Martin

    2016-04-01

    Biodegradation of organic chemicals in the vapor phase of soils and vertical flow filters has gained attention as promising approach to clean up volatile organic compounds (VOC). The drivers of VOC biodegradation in unsaturated systems however still remain poorly understood. Here, we analyzed the processes controlling aerobic VOC biodegradation in a laboratory setup mimicking the unsaturated zone above a shallow aquifer. The setup allowed for diffusive vapor-phase transport and biodegradation of three VOC: non-deuterated and deuterated toluene as two compounds of highly differing biodegradability but (nearly) identical physical and chemical properties, and MTBE as (at the applied experimental conditions) non-biodegradable tracer and internal control. Our results showed for toluene an effective microbial degradation within centimeter VOC transport distances despite high gas-phase diffusivity. Degradation rates were controlled by the reactivity of the compounds while oxic conditions were found everywhere in the system. This confirms hypotheses that vadose zone biodegradation rates can be extremely high and are able to prevent the outgassing of VOC to the atmosphere within a centimeter range if compound properties and site conditions allow for sufficiently high degradation rates. PMID:26774779

  6. Vapor-phase hydrogen peroxide as a surface decontaminant and sterilant.

    PubMed

    Klapes, N A; Vesley, D

    1990-02-01

    The feasibility of utilizing vapor-phase hydrogen peroxide (VPHP) as a surface decontaminant and sterilant was evaluated in a centrifuge application. The prototype VPHP decontamination system, retrofitted into a Beckman L8-M ultracentrifuge, was designed to vaporize a 30% (wt/wt) solution of aqueous hydrogen peroxide continuously injecting and withdrawing VPHP in a deep-vacuum flow-through system. VPHP cycles of 4, 8, 16, and 32 min were examined for cidal activity against spores of Bacillus subtilis subsp. globigii and Bacillus stearothermophilus. Spore inocula (approximately 10(6)/coupon) were dried onto 0.5-in. (1.27-cm)-square stainless-steel coupons, and coupons were suspended in the centrifuge chamber, the space between the refrigeration can and the barrier ring (inner gap), and the space between the barrier ring and the vacuum ring (outer gap). At a chamber temperature of 4 degrees C, B. subtilis subsp. globigii spores were inactivated within 8 min, while inactivation of spores located in the outer gap at 27 degrees C required 32 min. The elevated temperature and high surface area/volume ratios in the outer gap may serve to decompose the gas more rapidly, thus reducing cidal efficacy. Of the two test spores, B. stearothermophilus was more resistant to VPHP. Nonetheless, VPHP was shown to possess significant sporicidal capability. For practical decontamination applications of the type described, VPHP shows promise as an effective and safer alternative to currently used ethylene oxide or formaldehyde vapors. PMID:2106287

  7. Vapor-phase hydrogen peroxide as a surface decontaminant and sterilant.

    PubMed Central

    Klapes, N A; Vesley, D

    1990-01-01

    The feasibility of utilizing vapor-phase hydrogen peroxide (VPHP) as a surface decontaminant and sterilant was evaluated in a centrifuge application. The prototype VPHP decontamination system, retrofitted into a Beckman L8-M ultracentrifuge, was designed to vaporize a 30% (wt/wt) solution of aqueous hydrogen peroxide continuously injecting and withdrawing VPHP in a deep-vacuum flow-through system. VPHP cycles of 4, 8, 16, and 32 min were examined for cidal activity against spores of Bacillus subtilis subsp. globigii and Bacillus stearothermophilus. Spore inocula (approximately 10(6)/coupon) were dried onto 0.5-in. (1.27-cm)-square stainless-steel coupons, and coupons were suspended in the centrifuge chamber, the space between the refrigeration can and the barrier ring (inner gap), and the space between the barrier ring and the vacuum ring (outer gap). At a chamber temperature of 4 degrees C, B. subtilis subsp. globigii spores were inactivated within 8 min, while inactivation of spores located in the outer gap at 27 degrees C required 32 min. The elevated temperature and high surface area/volume ratios in the outer gap may serve to decompose the gas more rapidly, thus reducing cidal efficacy. Of the two test spores, B. stearothermophilus was more resistant to VPHP. Nonetheless, VPHP was shown to possess significant sporicidal capability. For practical decontamination applications of the type described, VPHP shows promise as an effective and safer alternative to currently used ethylene oxide or formaldehyde vapors. PMID:2106287

  8. Liquid-Vapor Phase Extraction of Gasoline for In Situ Amelioration of Contaminated Clayey Soil

    NASA Astrophysics Data System (ADS)

    Sharma, S.; Spencer, S.

    2008-12-01

    Liquid-vapor phase extraction (LVPE) of hydrocarbon is a recognized technique for rapid remediation of gasoline contaminated soils and waters. On site application of LVPE is, however, challenging in clayey soils. Four LVPE events were conducted during a 10-month period at a central Californian site that had been contaminated with gasoline due to leakage of underground storage tanks. The site was underlain by unconsolidated alluvial deposits and the soil profile consisted of layers of sandy clays and silty clays with low water table. The objectives of this study were to reduce floating product volume in well waters and to remove petroleum hydrocarbons within the vadose zone. Groundwater was extracted by lowering a stinger to the groundwater surface and applying vacuum. The stingers were able to extract down to 20 ft below ground surface. Vacuum was applied at 25 in of Hg pressure and the LVPE unit extracted soil vapor at the rate of 54 ft3/min. Samples were collected periodically from the extracted groundwater, treated groundwater, extracted soil vapor, and analyzed for gasoline and its constituents. The LVPE showed a moderate impact on the floating product found beneath the site. The volumes of floating product, although measurable, were reduced significantly after the extraction operations. High hydrocarbon concentrations in soil vapor at initial period of extraction events suggested that hydrocarbon vaporization followed a rapid kinetics. During first couple of extraction events, this surge was a followed by a quick decline in concentrations over time. The vaporization process appeared to have reached steady state after repetitive extraction activities. The LVPE system extracted about 288-336 (x1000) liters of groundwater and 88-358 kg of hydrocarbons during the events. In subsequent monitoring studies, significant concentrations of gasoline and its constituents were detected in the well waters. This suggested that the residual contaminant pool could replenish

  9. Shape controllable synthesis of ZnO nanorod arrays via vapor phase growth

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochen; Zhang, Hongzhou; Xu, Jun; Zhao, Qing; Wang, Rongming; Yu, Dapeng

    2004-03-01

    ZnO nanorod arrays with peculiar morphologies were synthesized on (111)-oriented Si substrate and glass via a vapor phase growth. The morphology of the individual nanorod can be flat-headed bottle-like, and needle-like, which depends on the deposition positions relative to the source materials in the presence of a controlling element Se. In addition, the arrays of all the three morphologies exhibit good alignment and high coverage. This fabrication technique can be also used to direct the controllable growth of other nanomaterials with similar morphologies.

  10. Use of column V alkyls in organometallic vapor phase epitaxy (OMVPE)

    NASA Technical Reports Server (NTRS)

    Ludowise, M. J.; Cooper, C. B., III

    1982-01-01

    The use of the column V-trialkyls trimethylarsenic (TMAs) and trimethylantimony (TMSb) for the organometallic vapor phase epitaxy (OM-VPE) of III-V compound semiconductors is reviewed. A general discussion of the interaction chemistry of common Group III and Group V reactants is presented. The practical application of TMSb and TMAs for OM-VPE is demonstrated using the growth of GaSb, GaAs(1-y)Sb(y), Al(x)Ga(1-x)Sb, and Ga(1-x)In(x)As as examples.

  11. Organometallic vapor phase epitaxial growth of InP using new phosphorus sources

    NASA Astrophysics Data System (ADS)

    Larsen, C. A.; Chen, C. H.; Kitamura, M.; Stringfellow, G. B.; Brown, D. W.; Robertson, A. J.

    1986-06-01

    Two organophosphorus compounds, isobutylphosphine and tertiarybutylphosphine, have been investigated for their possible use as precursors in the organometallic vapor phase epitaxy process. They are the first nonhydride compounds to be used as phosphorus sources. Pyrolysis studies show that the first decomposition products are phosphine and various organic compounds. The phosphine then pyrolyzes to give phosphorus. The materials are less pyrophoric and less toxic than phosphine, and so are safer to use. The compounds have been used to grow epitaxial layers of InP on InP and GaAs substrates. The layers exhibit photoluminescence and electrical properties which are similar to those of layers grown with phosphine.

  12. Vapor-phase nucleation of individual CdSe nanostructures from shape-engineered nanocrystal seeds

    NASA Astrophysics Data System (ADS)

    Fasoli, A.; Pisana, S.; Colli, A.; Carbone, L.; Manna, L.; Ferrari, A. C.

    2008-01-01

    We investigate the vapor-phase nucleation of CdSe nanostructures on nanocrystals seeds of different shapes. The growth dynamics is assessed by transmission electron microscopy, following the evolution of the same nanocrystals prior and after the deposition process. We prove that individual nanocrystals can sustain the growth of single nanowires and determine their final morphology. Straight or branched nanowires are obtained from spherical or tetrapod-shaped nanocrystals, respectively. When tetrapod-shaped nanocrystals are used, we also find that their original shape and orientation are mostly preserved upon further growth.

  13. Synthesis of graphene nanoribbons from amyloid templates by gallium vapor-assisted solid-phase graphitization

    SciTech Connect

    Murakami, Katsuhisa Dong, Tianchen; Kajiwara, Yuya; Takahashi, Teppei; Fujita, Jun-ichi; Hiyama, Takaki; Takai, Eisuke; Ohashi, Gai; Shiraki, Kentaro

    2014-06-16

    Single- and double-layer graphene nanoribbons (GNRs) with widths of around 10 nm were synthesized directly onto an insulating substrate by solid-phase graphitization using a gallium vapor catalyst and carbon templates made of amyloid fibrils. Subsequent investigation revealed that the crystallinity, conductivity, and carrier mobility were all improved by increasing the temperature of synthesis. The carrier mobility of the GNR synthesized at 1050 °C was 0.83 cm{sup 2}/V s, which is lower than that of mechanically exfoliated graphene. This is considered to be most likely due to electron scattering by the defects and edges of the GNRs.

  14. Free-Standing GaN Substrates by Hydride Vapor Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Park, Sung S.; Park, Il-W.; Choh, Sung H.

    2000-11-01

    Thick gallium nitride films 250-350 μm in thickness were grown on 2-inch-diameter (0001) sapphire wafers by hydride vapor phase epitaxy. The size of the free-standing GaN substrates without cracks separated from the sapphire substrates by laser processing was equal to that of the initial sapphire substrates. The origin of bowing and the broad photoluminescence (PL) spectra of GaN films was considered the difference in the residual strain between the front and bottom surfaces caused by threading dislocations.

  15. Hydride vapor phase epitaxy of AlN using a high temperature hot-wall reactor

    NASA Astrophysics Data System (ADS)

    Baker, Troy; Mayo, Ashley; Veisi, Zeinab; Lu, Peng; Schmitt, Jason

    2014-10-01

    Aluminum nitride (AlN) was grown on c-plane sapphire substrates by hydride vapor phase epitaxy (HVPE). The experiments utilized a two zone inductively heated hot-wall reactor. The surface morphology, crystal quality, and growth rate were investigated as a function of growth temperature in the range of 1450-1575 °C. AlN templates grown to a thickness of 1 μm were optimized with double axis X-ray diffraction (XRD) rocking curve full width half maximums (FWHMs) of 135″ for the (002) and 513″ for the (102).

  16. Simulation and testing of a vertical organometallic vapor phase epitaxy reactor

    NASA Astrophysics Data System (ADS)

    Sani, R. A.; Barmawi, M.; Mindara, J. Y.

    1998-02-01

    The purpose of the study is to design a single wafer vertical organo-metallic vapor phase epitaxy (OMVPE) reactor which gives a uniform deposition around the symmetry axis. The vertical reactor under the consideration consist of a diffuser and a system of coaxial cylinders to laminarize the flow which may lead to a uniform deposition without rotating the susceptor. The simulation shows that for a susceptor with a radius of 2.5 cm, a uniformity can be achieved in a region of a radius of 2 cm within 1% for certain operating condition. The result is compared with the experimental measurement of TiO2 deposition from TTIP.

  17. Vapor-phase bioreactors: Avoiding problems through better design and operation

    SciTech Connect

    Kinney, K.A.; Loehr, R.C.; Corsi, R.L.

    1999-09-30

    Vapor-phase bioreactors are an efficient method to treat air contaminated with volatile organic compounds. To ensure stable long term performance, several design and operating factors must be considered. Common problems include nutrient limitations, biomass clogging, inactive biomass, low moisture content and reductions in pH. Based on several bioreactor studies, the underlying cause of each of these problems is identified, monitoring requirements are outlined and a range of appropriate response actions are presented. These solutions range from modification of bioreactor design and operation (e.g., step feed configuration and directionally switching operation) to the use of alternative types of microorganisms (e.g., fungi).

  18. Low-temperature vapor-phase etching of silicon carbide by dioxygen difluoride

    NASA Astrophysics Data System (ADS)

    Moalem, M.; Olander, D. R.; Balooch, M.

    1995-06-01

    Efficient room-temperature vapor-phase etching of SiC by the compound dioxygen difluoride (FOOF) has been demonstrated. FOOF was generated using a design based on thermal-atomization technique which produced gram quantities of the compound per hour. On both poly- and epitype silicon carbide at room temperature, about 6% of the FOOF molecules striking the surface reacted to form SiF4 and CO. Examination by atomic force microscopy (AFM) showed that the roughness and morphology of the etched surface were virtually indistinguishable from those of the original surface. No residues or anisotropies were present on the etched surface.

  19. Synthesis of graphene nanoribbons from amyloid templates by gallium vapor-assisted solid-phase graphitization

    NASA Astrophysics Data System (ADS)

    Murakami, Katsuhisa; Dong, Tianchen; Kajiwara, Yuya; Hiyama, Takaki; Takahashi, Teppei; Takai, Eisuke; Ohashi, Gai; Shiraki, Kentaro; Fujita, Jun-ichi

    2014-06-01

    Single- and double-layer graphene nanoribbons (GNRs) with widths of around 10 nm were synthesized directly onto an insulating substrate by solid-phase graphitization using a gallium vapor catalyst and carbon templates made of amyloid fibrils. Subsequent investigation revealed that the crystallinity, conductivity, and carrier mobility were all improved by increasing the temperature of synthesis. The carrier mobility of the GNR synthesized at 1050 °C was 0.83 cm2/V s, which is lower than that of mechanically exfoliated graphene. This is considered to be most likely due to electron scattering by the defects and edges of the GNRs.

  20. Performance Testing of the Vapor Phase Catalytic Ammonia Removal Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Tleimat, Maher; Nalette, Tim; Quinn, Gregory

    2005-01-01

    This paper describes the results of performance testing of the Vapor Phase Catalytic Ammonia Removal (VPCAR) technology. The VPCAR technology is currently being developed by NASA as a Mars transit vehicle water recycling system. NASA has recently completed-a grant-to develop a next generation VPCAR system. This grant concluded with the shipment of the final deliverable to NASA on 8/31/03. This paper presents the results of mass, power, volume, and acoustic measurements for the delivered system. Product water purity analysis for a Mars transit mission and a simulated planetary base wastewater ersatz are also provided.

  1. XeF2 vapor phase silicon etch used in the fabrication of movable SOI structures.

    SciTech Connect

    Wiwi, M.; Sanchez, Carlos Anthony; Plut, Thomas Alvin; Salazar, M.; Stevens, Jeffrey; Bauer, Todd M.; Ford, C.; Shul, Randy John; Grossetete, Grant David

    2010-10-01

    Vapor phase XeF{sub 2} has been used in the fabrication of various types of devices including MEMS, resonators, RF switches, and micro-fluidics, and for wafer level packaging. In this presentation we demonstrate the use of XeF{sub 2} Si etch in conjunction with deep reactive ion etch (DRIE) to release single crystal Si structures on Silicon On Insulator (SOI) wafers. XeF{sub 2} vapor phase etching is conducive to the release of movable SOI structures due to the isotropy of the etch, the high etch selectivity to silicon dioxide (SiO{sub 2}) and fluorocarbon (FC) polymer etch masks, and the ability to undercut large structures at high rates. Also, since XeF{sub 2} etching is a vapor phase process, stiction problems often associated with wet chemical release processes are avoided. Monolithic single crystal Si features were fabricated by etching continuous trenches in the device layer of an SOI wafer using a DRIE process optimized to stop on the buried SiO{sub 2}. The buried SiO{sub 2} was then etched to handle Si using an anisotropic plasma etch process. The sidewalls of the device Si features were then protected with a conformal passivation layer of either FC polymer or SiO{sub 2}. FC polymer was deposited from C4F8 gas precursor in an inductively coupled plasma reactor, and SiO{sub 2} was deposited by plasma enhanced chemical vapor deposition (PECVD). A relatively high ion energy, directional reactive ion etch (RIE) plasma was used to remove the passivation film on surfaces normal to the direction of the ions while leaving the sidewall passivation intact. After the bottom of the trench was cleared to the underlying Si handle wafer, XeF{sub 2} was used to isotropically etch the handle Si, thus undercutting and releasing the features patterned in the device Si layer. The released device Si structures were not etched by the XeF{sub 2} due to protection from the top SiO{sub 2} mask, sidewall passivation, and the buried SiO{sub 2} layer. Optimization of the XeF{sub 2

  2. Feasibility Study of Vapor-Mist Phase Reaction Lubrication Using a Thioether Liquid

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo; Handschuh, Robert F.; Krantz, Timothy L.

    2007-01-01

    A primary technology barrier preventing the operation of gas turbine engines and aircraft gearboxes at higher temperatures is the inability of currently used liquid lubricants to survive at the desired operating conditions over an extended time period. Current state-of-the-art organic liquid lubricants rapidly degrade at temperatures above 300 C; hence, another form of lubrication is necessary. Vapor or mist phase reaction lubrication is a unique, alternative technology for high temperature lubrication. The majority of past studies have employed a liquid phosphate ester that was vaporized or misted, and delivered to bearings or gears where the phosphate ester reacted with the metal surfaces generating a solid lubricious film. This method resulted in acceptable operating temperatures suggesting some good lubrication properties, but the continuous reaction between the phosphate ester and the iron surfaces led to wear rates unacceptable for gas turbine engine or aircraft gearbox applications. In this study, an alternative non-phosphate liquid was used to mist phase lubricate a spur gearbox rig operating at 10,000 rpm under highly loaded conditions. After 21 million shaft revolutions of operation the gears exhibited only minor wear.

  3. Uptake rate constants and partition coefficients for vapor phase organic chemicals using semipermeable membrane devices (SPMDs)

    USGS Publications Warehouse

    Cranor, W.L.; Alvarez, D.A.; Huckins, J.N.; Petty, J.D.

    2009-01-01

    To fully utilize semipermeable membrane devices (SPMDs) as passive samplers in air monitoring, data are required to accurately estimate airborne concentrations of environmental contaminants. Limited uptake rate constants (kua) and no SPMD air partitioning coefficient (Ksa) existed for vapor-phase contaminants. This research was conducted to expand the existing body of kinetic data for SPMD air sampling by determining kua and Ksa for a number of airborne contaminants including the chemical classes: polycyclic aromatic hydrocarbons, organochlorine pesticides, brominated diphenyl ethers, phthalate esters, synthetic pyrethroids, and organophosphate/organosulfur pesticides. The kuas were obtained for 48 of 50 chemicals investigated and ranged from 0.03 to 3.07??m3??g-1??d-1. In cases where uptake was approaching equilibrium, Ksas were approximated. Ksa values (no units) were determined or estimated for 48 of the chemicals investigated and ranging from 3.84E+5 to 7.34E+7. This research utilized a test system (United States Patent 6,877,724 B1) which afforded the capability to generate and maintain constant concentrations of vapor-phase chemical mixtures. The test system and experimental design employed gave reproducible results during experimental runs spanning more than two years. This reproducibility was shown by obtaining mean kua values (n??=??3) of anthracene and p,p???-DDE at 0.96 and 1.57??m3??g-1??d-1 with relative standard deviations of 8.4% and 8.6% respectively.

  4. The influence of temperature on the polymerization of ethyl cyanoacrylate from the vapor phase

    SciTech Connect

    Dadmun, Mark D; Algaier, Dana; Baskaran, Durairaj

    2011-01-01

    The polymerization of ethyl cyanoacrylate fumes from surface bound initiators is an important step in many novel and mature technologies. Understanding the effect of temperature on the rate of poly(ethyl cyanoacrylate) (PECA) growth and its molecular weight during its polymerization from the vapor phase from surface bound initiators provides insight into the important mechanistic aspects that impact the polymerizations success. In these studies, it is shown that the amount of PECA formed during the polymerization of ECA from a latent fingerprint increases with decreasing temperature, while the polymer molecular weight varies little. This is interpreted to be the result of the loosening of the ion pair that initiates the polymer chain growth and resides on the end of the growing polymer chain with decreasing temperature. Comparison of temperature effects and counter-ion studies show that in both cases loosening the ion pair results in the formation of more polymer with similar molecular weight, verifying this interpretation. These results further suggest that lowering the temperature may be an effective method to optimize anionic vapor phase polymerizations, including the improvement of the quality of aged latent prints and preliminary results are presented that substantiate this prediction.

  5. Evaluation of solid-phase microextraction in detection of contraband drug vapors

    NASA Astrophysics Data System (ADS)

    Orzechowska, Grazyna E.; Poziomek, Edward J.; Tersol, Vangielynn; Homstead, Juliana

    1997-02-01

    Solid phase microextraction (SPME) has emerged as a rapid alternative to conventional sample extraction techniques. SPME can be used in solids, liquids, and sample headspace. Compounds are sorbed by a stationary phase coated on a fused silica fiber. The compounds are desorbed, and analyzed using gas chromatography (GC), and high performance liquid chromatography (HPLC). As a part of the present work we have found that SPME can also be used conveniently with ion mobility spectrometry (IMS). Cocaine and heroin vapors sorbed on a SPME fiber were detected using IMS. The use of SPME-GC or SPME-HPLC has been reported in analysis of urine samples containing cocaine and its metabolites. We are evaluating SPME-IMS, and SPME-GC systems for the detection of cocaine and heroin and their decomposition products in the headspace above surfaces. This is part of our research on the surface decomposition of contraband drugs for detection applications. This paper will give a variety of examples in the use of SPME in the detection of contraband drugs and their reaction/decomposition products in the vapor state. An example is the detection of cocaine in the headspace above cocaine HCl at room temperature.

  6. Mechanistic investigation of non-ideal sorption behavior in natural organic matter. 1. Vapor phase equilibrium.

    PubMed

    Bell, Katherine Young; Leboeuf, Eugene J

    2012-06-19

    Results from an experimental and modeling investigation of the influence of thermodynamic properties of highly purified natural organic matter (NOM) on observed equilibrium sorption/desorption behaviors of vapor phase trichloroethylene (TCE) is presented. Identification of glass transition (T(g)) behavior in Leonardite humic acid and Organosolv lignin enabled evaluation of equilibrium and nonequilibrium sorption behavior in glassy and rubbery NOM. Specific differences in vapor phase equilibrium behavior in NOM above and below their T(g) were identified. In the glassy state (below T(g)), sorption of TCE is well-described by micropore models, with enthalpies of sorption characteristic of microporous, glassy macromolecules. Above T(g), sorptive behavior was well-described by Flory-Huggins theory, indicating that the mobility and structural configuration of rubbery NOM materials may be analogous to the characteristic sorption behavior observed in more mobile, rubbery macromolecules, including strong entropic changes during sorption. Results from this work provide further support that, at least for the samples employed in this study, NOM possesses macromolecular characteristics which display sorption behavior similar to synthetic macromolecules-an important assumption in conceptual sorption equilibrium models used in the analysis of the fate and transport of VOCs in the environment. PMID:22642948

  7. Uptake rate constants and partition coefficients for vapor phase organic chemicals using semipermeable membrane devices (SPMDs)

    NASA Astrophysics Data System (ADS)

    Cranor, Walter L.; Alvarez, David A.; Huckins, James N.; Petty, Jimmie D.

    To fully utilize semipermeable membrane devices (SPMDs) as passive samplers in air monitoring, data are required to accurately estimate airborne concentrations of environmental contaminants. Limited uptake rate constants ( kua) and no SPMD air partitioning coefficient ( Ksa) existed for vapor-phase contaminants. This research was conducted to expand the existing body of kinetic data for SPMD air sampling by determining kua and Ksa for a number of airborne contaminants including the chemical classes: polycyclic aromatic hydrocarbons, organochlorine pesticides, brominated diphenyl ethers, phthalate esters, synthetic pyrethroids, and organophosphate/organosulfur pesticides. The kuas were obtained for 48 of 50 chemicals investigated and ranged from 0.03 to 3.07 m 3 g -1 d -1. In cases where uptake was approaching equilibrium, Ksas were approximated. Ksa values (no units) were determined or estimated for 48 of the chemicals investigated and ranging from 3.84E+5 to 7.34E+7. This research utilized a test system (United States Patent 6,877,724 B1) which afforded the capability to generate and maintain constant concentrations of vapor-phase chemical mixtures. The test system and experimental design employed gave reproducible results during experimental runs spanning more than two years. This reproducibility was shown by obtaining mean kua values ( n = 3) of anthracene and p, p'-DDE at 0.96 and 1.57 m 3 g -1 d -1 with relative standard deviations of 8.4% and 8.6% respectively.

  8. Highly Dispersed Gold Nanoparticles Supported on SBA-15 for Vapor Phase Aerobic Oxidation of Benzyl Alcohol.

    PubMed

    Kumar, Ashish; Sreedhar, Bojja; Chary, Komandur V R

    2015-02-01

    Gold nanoparticles supported on SBA-15 are prepared by homogenous deposition-precipitation method (HDP) using urea as the precipitating agent. The structural features of the synthesized catalysts were characterized by various techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen adsorption-desorption (BET), pore size distribution (PSD), CO chemisorption and X-ray photoelectron spectroscopy (XPS). The catalytic activity and stability of the Au/SBA-15 catalysts are investigated during the vapor phase aerobic oxidation of benzyl alcohol. The BJH pore size distribution results of SBA-15 support and Au/SBA-15 catalysts reveals that the formation of mesoporous structure in all the samples. TEM results suggest that Au nanoparticles are highly dispersed over SBA-15 and long range order of hexagonal mesopores of SBA-15 is well retained even after the deposition of Au metallic nanoparticles. XPS study reveals the formation of Au (0) after chemical reduction by NaBH4. The particle size measured from CO-chemisorption and TEM analysis are well correlated with the TOF values of the reaction. Au/SBA-1 5 catalysts are found to show higher activity compare to Au/TiO2 and Au/MgO catalysts during the vapor phase oxidation of benzyl alcohol. The catalytic functionality are well substantiated with particle size measured from TEM. The crystallite size of Au in both fresh and spent catalysts were measured from X-ray diffraction. PMID:26353720

  9. On the existence of vapor-liquid phase transition in dusty plasmas

    NASA Astrophysics Data System (ADS)

    Kundu, M.; Avinash, K.; Sen, A.; Ganesh, R.

    2014-10-01

    The phenomenon of phase transition in a dusty-plasma system (DPS) has attracted some attention in the past. Earlier Farouki and Hamaguchi [J. Chem. Phys. 101, 9876 (1994)] have demonstrated the existence of a liquid to solid transition in DPS where the dust particles interact through a Yukawa potential. However, the question of the existence of a vapor-liquid (VL) transition in such a system remains unanswered and relatively unexplored so far. We have investigated this problem by performing extensive molecular dynamics simulations which show that the VL transition does not have a critical curve in the pressure versus volume diagram for a large range of the Yukawa screening parameter κ and the Coulomb coupling parameter Γ. Thus, the VL phase transition is found to be super-critical, meaning that this transition is continuous in the dusty plasma model given by Farouki and Hamaguchi. We provide an approximate analytic explanation of this finding by means of a simple model calculation.

  10. Reaction mechanisms in the organometallic vapor phase epitaxial growth of GaAs

    NASA Technical Reports Server (NTRS)

    Larsen, C. A.; Buchan, N. I.; Stringfellow, G. B.

    1988-01-01

    The decomposition mechanisms of AsH3, trimethylgallium (TMGa), and mixtures of the two have been studied in an atmospheric-pressure flow system with the use of D2 to label the reaction products which are analyzed in a time-of-flight mass spectrometer. AsH3 decomposes entirely heterogeneously to give H2. TMGa decomposes by a series of gas-phase steps, involving methyl radicals and D atoms to produce CH3D, CH4, C2H6, and HD. TMGa decomposition is accelerated by the presence of AsH3. When the two are mixed, as in the organometallic vapor phase epitaxial growth of GaAs, both compounds decompose in concert to produce only CH4. A likely model is that of a Lewis acid-base adduct that forms and subsequently eliminates CH4.

  11. He II Liquid/Vapor Phase Separator for Large Dynamic Range Operation

    NASA Technical Reports Server (NTRS)

    Nakano, A.; Petrac, D.

    1995-01-01

    A phase separator, which separates helium vapor from liquid superfluid helium (He II), is an indispensable device for space cryogenics. The most recent approach to the Space Infrared Telescope Facility (SIRTF) uses a new design concept in which only the detector package is cold at launch, the remainder of the telescope being subsequently cooled to operating temperature on orbit. Therefore, a large dynamic operational range is required of the cryogen system. This is a report of initial laboratory test results with candidate porous plugs as phase separators. Mass flow rates and pressure and temperature differences across a porous plug were measured in this experiment. Relatively large mass flow rates were observed even at small pressure differences. In the high mass flow rate region, a hysteresis was observed with increases and decreases of the pressure difference. A linear theory is proposed and compared with experimental data to explain several phenomena observed in this system.

  12. Metal organic vapor phase epitaxy of hexagonal Ge-Sb-Te (GST)

    NASA Astrophysics Data System (ADS)

    Schuck, Martin; Rieß, Sally; Schreiber, Marcel; Mussler, Gregor; Grützmacher, Detlev; Hardtdegen, Hilde

    2015-06-01

    Epitaxial, hexagonal Ge-Sb-Te was grown on Si(111) substrates by Metal Organic Vapor Phase Epitaxy (MOVPE) using the precursor digermane. The effect of reactor pressure, growth temperature and in situ pre-treatment on morphology and Ge-Sb-Te composition was studied. The composition is sensitive to reactor pressure and growth temperature. Compositional control is achieved at a reactor pressure of 50 hPa. Substrate pre-treatment affects film coalescence. The use of hydrogen and a suitable precursor pre-treatment leads to enhanced surface coverage. X-ray diffraction reveals a trigonal structure with lattice parameters close to that reported for Ge1Sb2Te4 crystallizing in the R 3 bar m phase. The composition was confirmed by energy-dispersive X-ray spectroscopy.

  13. Growth of AlN layer on patterned sapphire substrate by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Lee, Gang Seok; Lee, Chanmi; Jeon, Hunsoo; Lee, Chanbin; Bae, Sung Geun; Ahn, Hyung Soo; Yang, Min; Yi, Sam Nyung; Yu, Young Moon; Lee, Jae Hak; Honda, Yoshio; Sawaki, Nobuhiko; Kim, Suck-Whan

    2016-05-01

    Even though a patterned sapphire substrate (PSS) has been used for the growth of a high-quality epilayer because of its many advantages, it has not been successfully used to grow an AlN epilayer for ultraviolet (UV) light-emitting diodes (LEDs) on a PSS up to now. We report the growth of a high-quality AlN epilayer on a PSS, as a substrate for the manufacture of UV LEDs, by hydride vapor phase epitaxy (HVPE). The X-ray diffraction (XRD) peaks for the AlN epilayer grown on the PSS indicate that crystalline AlN with a wurtzite structure was grown successfully on the PSS. Furthermore, HVPE combining both in situ HVPE technology and liquid-phase epitaxy (LPE) using a mixed source is proposed as a novel method for the growth of a flat AlN epilayer on a PSS.

  14. On the existence of vapor-liquid phase transition in dusty plasmas

    SciTech Connect

    Kundu, M.; Sen, A.; Ganesh, R.; Avinash, K.

    2014-10-15

    The phenomenon of phase transition in a dusty-plasma system (DPS) has attracted some attention in the past. Earlier Farouki and Hamaguchi [J. Chem. Phys. 101, 9876 (1994)] have demonstrated the existence of a liquid to solid transition in DPS where the dust particles interact through a Yukawa potential. However, the question of the existence of a vapor-liquid (VL) transition in such a system remains unanswered and relatively unexplored so far. We have investigated this problem by performing extensive molecular dynamics simulations which show that the VL transition does not have a critical curve in the pressure versus volume diagram for a large range of the Yukawa screening parameter κ and the Coulomb coupling parameter Γ. Thus, the VL phase transition is found to be super-critical, meaning that this transition is continuous in the dusty plasma model given by Farouki and Hamaguchi. We provide an approximate analytic explanation of this finding by means of a simple model calculation.

  15. Impact of Liquid-Vapor to Liquid-Liquid-Vapor Phase Transitions on Asphaltene-Rich Nanoaggregate Behavior in Athabasca Vacuum Residue + Pentane Mixtures

    SciTech Connect

    Long, Bingwen; Chodakowski, Martin; Shaw, John M.

    2013-06-05

    The bulk phase behavior of heavy oil + alkane mixtures and the behavior of the asphaltenes that they contain are topics of importance for the design and optimization of processes for petroleum production, transport, and refining and for performing routine saturates, aromatics, resins, and asphaltenes (SARA) analyses. In prior studies, partial phase diagrams and phase behavior models for Athabasca vacuum residue (AVR) comprising 32 wt % pentane asphaltenes + n-alkanes were reported. For mixtures with pentane, observed phase behaviors included single-phase liquid as well as liquid–liquid, liquid–liquid–vapor, and liquid–liquid–liquid–vapor regions. Dispersed solids were detected under some conditions as well but not quantified. In this work, small-angle X-ray scattering (SAXS) is used to study nanostructured materials in liquid phases present in AVR + n-pentane mixtures from 50 to 170 °C at mixture bubble pressure. The investigation focuses on the impact of the transition from a single AVR-rich liquid to co-existing pentane-rich and AVR-rich liquids on the nanostructure and the nanostructures most resistant to aggregation as the pentane composition axis is approached. Background scattering subtraction was performed using global mixture composition. The robustness of this assumption with respect to values obtained for coefficients appearing in a two level Beaucage unified equation fit is demonstrated. The nanostructured material is shown to arise at two length scales from 1 to 100 wt % AVR. Smaller nanostructures possess mean radii less than 50 Å, while the larger nanostructures possess mean radii greater than 250 Å. The addition of pentane to the AVR causes an increasingly large fraction of the large and small nanostructures to grow in size. Only nanostructures resistant to aggregation remain in the pentane-rich phase as the 0 wt % AVR axis is approached. Step changes in aggregation identified from changes in average radius of gyration, scattering

  16. Vapor-phase synthesis of uniform silica spheres through two-stage hydrolysis of SiCl{sub 4}

    SciTech Connect

    Park, Hoey K.; Park, Kyun Y.

    2008-11-03

    We report, for the first time, a vapor-phase synthesis of nearly monodispersed silica spheres 250-300 nm in size through a two-stage hydrolysis of SiCl{sub 4}. In the first stage, SiCl{sub 4} vapor was partially hydrolyzed with water vapor in a batch reactor at 150 deg. C to form silicon oxychloride particles, nearly monodispersed and spherical. In the second stage, these oxychloride particles were converted into silica particles through further hydrolysis at 1000 deg. C in a tubular reactor, while the morphology and size after the first-stage reaction remained virtually unchanged.

  17. Mathematical modeling of planar and spherical vapor-liquid phase interfaces for multicomponent fluids

    NASA Astrophysics Data System (ADS)

    Celný, David; Vinš, Václav; Planková, Barbora; Hrubý, Jan

    2016-03-01

    Development of methods for accurate modeling of phase interfaces is important for understanding various natural processes and for applications in technology such as power production and carbon dioxide separation and storage. In particular, prediction of the course of the non-equilibrium phase transition processes requires knowledge of the properties of the strongly curved phase interfaces of microscopic droplets. In our work, we focus on the spherical vapor-liquid phase interfaces for binary mixtures. We developed a robust computational method to determine the density and concentration profiles. The fundamentals of our approach lie in the Cahn-Hilliard gradient theory, allowing to transcribe the functional formulation into a system of ordinary Euler-Langrange equations. This system is then split and modified into a shape suitable for iterative computation. For this task, we combine the Newton-Raphson and the shooting methods providing a good convergence speed. For the thermodynamic roperties, the PC-SAFT equation of state is used. We determine the density and concentration profiles for spherical phase interfaces at various saturation factors for the binary mixture of CO2 and C9H20. The computed concentration profiles allow to the determine the work of formation and other characteristics of the microscopic droplets.

  18. APTS and rGO co-functionalized pyrenated fluorescent nanonets for representative vapor phase nitroaromatic explosive detection

    NASA Astrophysics Data System (ADS)

    Guo, Linjuan; Zu, Baiyi; Yang, Zheng; Cao, Hongyu; Zheng, Xuefang; Dou, Xincun

    2014-01-01

    For the first time, flexible PVP/pyrene/APTS/rGO fluorescent nanonets were designed and synthesized via a one-step electrospinning method to detect representative subsaturated nitroaromatic explosive vapor. The functional fluorescent nanonets, which were highly stable in air, showed an 81% quenching efficiency towards TNT vapor (~10 ppb) with an exposure time of 540 s at room temperature. The nice performance of the nanonets was ascribed to the synergistic effects induced by the specific adsorption properties of APTS, the fast charge transfer properties and the effective π-π interaction with pyrene and TNT of rGO. Compared to the analogues of TNT, the PVP/pyrene/APTS/rGO nanonets showed notable selectivity towards TNT and DNT vapors. The explored functionalization method opens up brand new insight into sensitive and selective detection of vapor phase nitroaromatic explosives.For the first time, flexible PVP/pyrene/APTS/rGO fluorescent nanonets were designed and synthesized via a one-step electrospinning method to detect representative subsaturated nitroaromatic explosive vapor. The functional fluorescent nanonets, which were highly stable in air, showed an 81% quenching efficiency towards TNT vapor (~10 ppb) with an exposure time of 540 s at room temperature. The nice performance of the nanonets was ascribed to the synergistic effects induced by the specific adsorption properties of APTS, the fast charge transfer properties and the effective π-π interaction with pyrene and TNT of rGO. Compared to the analogues of TNT, the PVP/pyrene/APTS/rGO nanonets showed notable selectivity towards TNT and DNT vapors. The explored functionalization method opens up brand new insight into sensitive and selective detection of vapor phase nitroaromatic explosives. Electronic supplementary information (ESI) available: Vapor pressure of TNT and its analogues, fluorescence quenching kinetics, fluorescence quenching efficiencies and additional SEM images. See DOI: 10.1039/c3nr04960d

  19. Triple sorbent thermal desorption/gas chromatography/mass spectrometry determination of vapor phase organic contaminants

    SciTech Connect

    Ma, C.Y.; Skeen, J.T.; Dindal, A.B.; Higgins, C.E.; Jenkins, R.A.

    1994-05-01

    A thermal desorption/ps chromatography/mass spectrometry (TD/GC/MS) has been evaluated for the determination of volatile organic compounds (VOCS) in vapor phase samples using Carbosieve S-III/Carbotrap/Carotrap C triple sorbent traps (TST) similar to those available from a commercial source. The analysis was carried out with a Hewlett-Packard 5985A or 5995 GC/MS system with a modified injector to adapt an inhouse manufactured short-path desorber for transferring desorbate directly onto a cryofocusing loop for subsequent GC/MS analysis. Vapor phase standards generated from twenty six compounds were used for method validation, including alkanes, alkyl alcohols, alkyl ketones, and alkyl nitrites, a group of representative compounds that have previously been identified in a target airborne matrix. The method was validated based on the satisfactory results in terms of reproducibility, recovery rate, stability, and linearity. A relative, standard deviation of 0.55 to 24.3 % was obtained for the entire TD process (generation of gas phase standards, spiking the standards on and desorbing from TST) over a concentration range of 20 to 500 ng/trap. Linear correlation coefficients for the calibration curves as determined ranged from 0.81 to 0.99 and limits of detection ranged from 3 to 76 ng. For a majority of standards, recoveries of greater than 90% were observed. For three selected standards spiked on TSTS, minimal loss (10 to 22%) was observed after storing the spiked in, a 4{degree}C refrigerator for 29 days. The only chromatographable artifact observed was a 5% conversion of isopropanol to acetone. The validated method been successfully applied, to the determination of VOCs collected from various emission sources in a diversified concentration range.

  20. Evaluating the robustness of the enantioselective stationary phases on the Rosetta mission against space vacuum vaporization

    NASA Astrophysics Data System (ADS)

    Meierhenrich, Uwe J.; Cason, Julie R. L.; Szopa, Cyril; Sternberg, Robert; Raulin, François; Thiemann, Wolfram H.-P.; Goesmann, Fred

    2013-12-01

    The European Space Agency's Rosetta mission was launched in March 2004 in order to reach comet 67P/Churyumov-Gerasimenko by August 2014. The Cometary Sampling and Composition experiment (COSAC) onboard the Rosetta mission's lander "Philae" has been designed for the cometary in situ detection and quantification of organic molecules using gas chromatography coupled to mass spectrometry (GC-MS). The GC unit of COSAC is equipped with eight capillary columns that will each provide a specific stationary phase for molecular separation. Three of these stationary phases will be used to chromatographically resolve enantiomers, as they are composed of liquid polymers of polydimethylsiloxane (PDMS) to which chiral valine or cyclodextrin units are attached. Throughout the ten years of Rosetta's journey through space to reach comet 67P, these liquid stationary phases have been exposed to space vacuum, as the capillary columns within the COSAC unit were not sealed or filled with carrier gas. Long term exposures to space vacuum can cause damage to such liquid stationary phases as key monomers, volatiles, and chiral selectors can be vaporized and lost in transit. We have therefore exposed identical spare units of COSAC's chiral stationary phases over eight years to vacuum conditions mimicking those experienced in space and we have now investigated their resolution capabilities towards different enantiomers both before and after exposure to space vacuum environments. We have observed that enantiomeric resolution capabilities of these chiral liquid enantioselective stationary phases has not been affected by exposure to space vacuum conditions. Thus we conclude that the three chiral stationary phases of the COSAC experiment onboard the Rosetta mission lander "Philae" can be considered to have maintained their resolution capacities throughout their journey prior to cometary landing in November 2014.

  1. Gas-phase reaction study of disilane pyrolysis: Applications to low pressure chemical vapor deposition

    SciTech Connect

    Johannes, J.E.; Ekerdt, J.G. . Dept. of Chemical Engineering)

    1994-08-01

    The gas-phase thermal reactions during disilane decomposition at low pressure chemical vapor deposition conditions were studied from 300 to 1,000 K using resonance enhanced multiphoton ionization (REMPI) and multiphoton ionization (MPI). REMPI of gas-phase Si, mass 28, was detected from 640 to 840 K and 1 to 10 Torr, with a maximum signal intensity between 700 to 720 K. During disilane decomposition, no SiH (427.8 nm), SiH[sub 2] (494-515 nm), or SiH[sub 3] (419.0 nm) was detected. MPI of higher silanes, silenes, and silylenes were detected through mass fragments 2, 32, and 60; these species reached a maximum signal intensity 20 degrees prior to the mass-28 maximum. Modeling studies that included a detailed low pressure gas-phase kinetic scheme predict relative gas-phase partial pressures generated during disilane pyrolysis. The model predicted experimental trends in the Si partial pressure and the higher silane, silene, and silylene partial pressures.

  2. Calculation of liquid water-hydrate-methane vapor phase equilibria from molecular simulations.

    PubMed

    Jensen, Lars; Thomsen, Kaj; von Solms, Nicolas; Wierzchowski, Scott; Walsh, Matthew R; Koh, Carolyn A; Sloan, E Dendy; Wu, David T; Sum, Amadeu K

    2010-05-01

    Monte Carlo simulation methods for determining fluid- and crystal-phase chemical potentials are used for the first time to calculate liquid water-methane hydrate-methane vapor phase equilibria from knowledge of atomistic interaction potentials alone. The water and methane molecules are modeled using the TIP4P/ice potential and a united-atom Lennard-Jones potential, respectively. The equilibrium calculation method for this system has three components, (i) thermodynamic integration from a supercritical ideal gas to obtain the fluid-phase chemical potentials, (ii) calculation of the chemical potential of the zero-occupancy hydrate system using thermodynamic integration from an Einstein crystal reference state, and (iii) thermodynamic integration to obtain the water and guest molecules' chemical potentials as a function of the hydrate occupancy. The three-phase equilibrium curve is calculated for pressures ranging from 20 to 500 bar and is shown to follow the Clapeyron behavior, in agreement with experiment; coexistence temperatures differ from the latter by 4-16 K in the pressure range studied. The enthalpy of dissociation extracted from the calculated P-T curve is within 2% of the experimental value at corresponding conditions. While computationally intensive, simulations such as these are essential to map the thermodynamically stable conditions for hydrate systems. PMID:20392117

  3. Vapor-deposited non-crystalline phase vs ordinary glasses and supercooled liquids: Subtle thermodynamic and kinetic differences

    SciTech Connect

    Bhattacharya, Deepanjan; Sadtchenko, Vlad

    2015-04-28

    Vapor deposition of molecules on a substrate often results in glassy materials of high kinetic stability and low enthalpy. The extraordinary properties of such glasses are attributed to high rates of surface diffusion during sample deposition, which makes it possible for constituents to find a configuration of much lower energy on a typical laboratory time scale. However, the exact nature of the resulting phase and the mechanism of its formation are not completely understood. Using fast scanning calorimetry technique, we show that out-of-equilibrium relaxation kinetics and possibly the enthalpy of vapor-deposited films of toluene and ethylbenzene, archetypical fragile glass formers, are distinct from those of ordinary supercooled phase even when the deposition takes place at temperatures above the ordinary glass softening transition temperatures. These observations along with the absolute enthalpy dependences on deposition temperatures support the conjecture that the vapor-deposition may result in formation of non-crystalline phase of unique structural, thermodynamic, and kinetic properties.

  4. Heterocyclic aromatic amines and their contribution to the bacterial mutagenicity of the particulate phase of cigarette smoke.

    PubMed

    Roemer, Ewald; Meisgen, Thomas; Diekmann, Joerg; Conroy, Lynda; Stabbert, Regina

    2016-01-22

    Heterocyclic aromatic amines (HAAs) rank among the strongest known mutagens. Approximately 30 HAAs have been found in cooked foods (broiled, fried, and grilled) and several HAAs have been characterized as animal carcinogens. Nine HAAs have also been reported to be constituents of cigarette smoke (CS) raising concerns that HAAs might contribute significantly to the known carcinogenicity of CS. As HAAs are found predominantly in the total particulate matter (TPM) of CS, an improved method for the quantification of HAAs in TPM is reported allowing detection and quantification of 8 HAAs in a single run. The mutagenic potency of these HAAs and that of TPM from the reference cigarette 2R4F was determined in the Salmonella Reverse Mutation Assay (Ames assay) with tester strain TA98 and a metabolic activation system. The 8 HAAs, when applied together in the Ames assay, showed a clear sub-additive response. Likewise, the combination of HAAs and TPM, if at all, gave rise to a slight sub-additive response. In both cases, however, the sub-additive response in the Ames assay was observed at HAA doses that are far above the amounts found in CS. The contribution of the individual HAAs to the total mutagenic activity of TPM was calculated and experimentally confirmed to be approximately 1% of the total mutagenic activity. Thus, HAAs do not contribute significantly to the bacterial in vitro mutagenicity of CS TPM. PMID:26724587

  5. Vapor-phase biofilters make bid for VOC control in industrial applications

    SciTech Connect

    Stewart, W.C.; Thom, R.R.

    1996-09-01

    Biofiltration of contaminated air streams containing volatile organic compounds (VOCs) is a relatively new application of biotechnology in the waste management industry. The primary stimulus for development of vapor-phase biofiltration in Europe is its capability for efficient and reliable VOC destruction without forming hazardous by-products, coupled with low operating and life-cycle costs compared to conventional physical-chemical alternatives. The filters operate by passing the contaminated air stream through a bed of compost, peat, soil or other permeate material, which acts as an attachment site for rich microbial fauna. After the VOCs have been sorbed from the air stream while passing through the bed, the microorganisms use the sorbed organics as a food source, converting the pollutant into carbon dioxide and water vapor. As the organic pollutant is metabolized, the binding site to which it was attached again becomes available to strip additional VOC molecules from the incoming air stream. Thus, the biofilters reach a steady state, and sorption and biological destruction is followed by re-sorption of fresh volatile pollutants. Under proper conditions, this sequence of reactions occurs quite rapidly.

  6. Computational fluid dynamics-aided analysis of a hydride vapor phase epitaxy reactor

    NASA Astrophysics Data System (ADS)

    Schulte, Kevin L.; Simon, John; Roy, Abhra; Reedy, Robert C.; Young, David L.; Kuech, Thomas F.; Ptak, Aaron J.

    2016-01-01

    We report the development of a computational fluid dynamics (CFD) model of a dual chamber hydride vapor phase epitaxial (HVPE) growth reactor. Uniformity of reactant concentrations in the growth stream, transient reactor flows, and cross doping between the two growth chambers, all factors critical to the deposition of uniform, low defect semiconductor layers, were modeled. Simulation results were generated by solving the fundamental continuity, momentum and energy equations over a discretized reactor volume by a finite volume analysis with the aid of CFD-ACE+ commercial software. We demonstrated uniformity of the vapor composition within ±1% across the substrate, achieved due to specific features of the reactor design. Small compositional non-uniformity (±2% absolute) in In1-xGaxP layers grown in our reactor was correlated with calculated temperature non-uniformity across the substrate. Gas switching was modeled and the transient time predicted by the model was confirmed by measurement of doping transients in a sample grown in the reactor. Lastly the gas curtains that chemically isolate the reactor chambers were modeled and the results were compared to experimental data for cross doping between the chambers. As an example, we demonstrate, based on insight from the model, that our HVPE reactor is suitable for the deposition of GaAs PV devices. CFD modeling is a critical tool for the scale up of laboratory level processes to industrial levels.

  7. Susceptibility of Klebsiella pneumoniae on coriander leaves to liquid- and vapor-phase ethanol.

    PubMed

    Krusong, Warawut; Pornpukdeewatana, Soisuda; Teerarak, Montinee

    2016-05-01

    The bio-control of ethanol on Klebsiella pneumoniae on fresh coriander leaves for significantly reducing consumer health risk was investigated. Washed and sterilized leaves of coriander were inoculated with K. pneumoniae cultured in Trypticase Soy broth. Susceptibility of the K. pneumoniae to liquid- and evaporated vapor-phase ethanol (EVE) was then examined in vitro Complete inhibition of K. pneumoniae was found with 18% (v/v) liquid ethanol. Exposure for 15 min to EVE (9.00 ± 0.8 mmol L(-1)) completely destroyed K. pneumoniae (4.04 ± 0.02 log CFU/ml) spread on Mueller Hilton agar at 30 ± 2°C. The effect of EVE with and without evaporated water vapor (EWV) on the susceptibility of K. pneumoniae on fresh coriander leaves was examined. While exposure to EVE affected the survival of K. pneumoniae, the degree of reduction depended on both the inoculation level and the EWV. Complete reduction of K. pneumoniae was achieved for the low inoculation level by EVE alone (37 ± 2% relative humidity; RH) but susceptibility was reduced with EWV (high RH; 80 ± 2%). Scanning electron microscope (SEM) images of inoculated coriander leaves confirm the effects of EVE in reducing levels of K. pneumoniae Exposure to EVE alone proved an effective bio-control for K. pneumoniae on fresh coriander leaves. PMID:27020413

  8. Development of an acoustic wave based biosensor for vapor phase detection of small molecules

    NASA Astrophysics Data System (ADS)

    Stubbs, Desmond

    For centuries scientific ingenuity and innovation have been influenced by Mother Nature's perfect design. One of her more elusive designs is that of the sensory olfactory system, an array of highly sensitive receptors responsible for chemical vapor recognition. In the animal kingdom this ability is magnified among canines where ppt (parts per trillion) sensitivity values have been reported. Today, detection dogs are considered an essential part of the US drug and explosives detection schemes. However, growing concerns about their susceptibility to extraneous odors have inspired the development of highly sensitive analytical detection tools or biosensors known as "electronic noses". In general, biosensors are distinguished from chemical sensors in that they use an entity of biological origin (e.g. antibody, cell, enzyme) immobilized onto a surface as the chemically-sensitive film on the device. The colloquial view is that the term "biosensors" refers to devices which detect the presence of entities of biological origin, such as proteins or single-stranded DNA and that this detection must take place in a liquid. Our biosensor utilizes biomolecules, specifically IgG monoclonal antibodies, to achieve molecular recognition of relatively small molecules in the vapor phase.

  9. Tank vapor sampling and analysis data package for tank 241-C-106 waste retrieval sluicing system process test phase III

    SciTech Connect

    LOCKREM, L.L.

    1999-08-13

    This data package presents sampling data and analytical results from the March 28, 1999, vapor sampling of Hanford Site single-shell tank 241-C-106 during active sluicing. Samples were obtained from the 296-C-006 ventilation system stack and ambient air at several locations. Characterization Project Operations (CPO) was responsible for the collection of all SUMMATM canister samples. The Special Analytical Support (SAS) vapor team was responsible for the collection of all triple sorbent trap (TST), sorbent tube train (STT), polyurethane foam (PUF), and particulate filter samples collected at the 296-C-006 stack. The SAS vapor team used the non-electrical vapor sampling (NEVS) system to collect samples of the air, gases, and vapors from the 296-C-006 stack. The SAS vapor team collected and analyzed these samples for Lockheed Martin Hanford Corporation (LMHC) and Tank Waste Remediation System (TWRS) in accordance with the sampling and analytical requirements specified in the Waste Retrieval Sluicing System Vapor Sampling and Analysis Plan (SAP) for Evaluation of Organic Emissions, Process Test Phase III, HNF-4212, Rev. 0-A, (LMHC, 1999). All samples were stored in a secured Radioactive Materials Area (RMA) until the samples were radiologically released and received by SAS for analysis. The Waste Sampling and Characterization Facility (WSCF) performed the radiological analyses. The samples were received on April 5, 1999.

  10. Migration of carbon nanotubes from liquid phase to vapor phase in the refrigerant-based nanofluid pool boiling

    PubMed Central

    2011-01-01

    The migration characteristics of carbon nanotubes from liquid phase to vapor phase in the refrigerant-based nanofluid pool boiling were investigated experimentally. Four types of carbon nanotubes with the outside diameters from 15 to 80 nm and the lengths from 1.5 to 10 μm were used in the experiments. The refrigerants include R113, R141b and n-pentane. The oil concentration is from 0 to 10 wt.%, the heat flux is from 10 to 100 kW·m-2, and the initial liquid-level height is from 1.3 to 3.4 cm. The experimental results indicate that the migration ratio of carbon nanotube increases with the increase of the outside diameter or the length of carbon nanotube. For the fixed type of carbon nanotube, the migration ratio decreases with the increase of the oil concentration or the heat flux, and increases with the increase of the initial liquid-level height. The migration ratio of carbon nanotube increases with the decrease of dynamic viscosity of refrigerant or the increase of liquid phase density of refrigerant. A model for predicting the migration ratio of carbon nanotubes in the refrigerant-based nanofluid pool boiling is proposed, and the predictions agree with 92% of the experimental data within a deviation of ±20%. PMID:21711730