Sample records for variable density wind

  1. Preliminary biplane tests in the variable density wind tunnel

    NASA Technical Reports Server (NTRS)

    Shoemaker, James M

    1928-01-01

    Biplane cellules using the N.A.C.A.-M6 airfoil section have been tested in the variable density wind tunnel of the National Advisory Committee for Aeronautics. Three cellules, differing only in the amount of stagger, were tested at two air densities, corresponding to pressures of one atmosphere and of twenty atmospheres. The range of angle of attack was from -2 degrees to +48 degrees. The effect of stagger on the lift and drag, and on the shielding effect of the upper wing by the lower at high angles of attack was determined.

  2. Does variable-density thinning increase wind damage in conifer stands on the Olympic Peninsula?

    Treesearch

    S.D. Roberts; C.A. Harrington; K.R. Buermeyer

    2007-01-01

    Silvicultural treatments designed to enhance stand structural diversity may result in increased wind damage. The ability to avoid conditions that might lead to excessive wind damage would benefit forest managers. We analyzed wind damage following implementation of a variable-density thinning at four sites on the Olympic National Forest in northwest Washington. The...

  3. The Variable Density Wind Tunnel of the National Advisory Committee for Aeronautics

    NASA Technical Reports Server (NTRS)

    Munk, Max M; Miller, Elton W

    1926-01-01

    This report contains an exact description of the new wind tunnel of the National Advisory Committee for Aeronautics. This is the first american type wind tunnel. It differs from ordinary wind tunnels by its being surrounded by a strong steel shell, 35 feet long and 15 feet in diameter. A compressor system is provided to fill this shell - and hence the entire wind tunnel - with air compressed to a density up to 25 times the ordinary atmospheric density. It is demonstrated in the report that the increase of the air density makes up for a corresponding decrease in the scale of the model. Hence such american type wind tunnel is free from scale effect. The report is illustrated by many drawings and photographs. All construction details are described, and many dimensions given. The method of conducting tests is also described and some preliminary results given in the report. So far, the tests have confirmed the chief feature of this wind tunnel - absence of scale effect.

  4. The characteristics of 78 related airfoil sections from tests in the variable-density wind tunnel

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N; Ward, Kenneth E; Pinkerton, Robert M

    1933-01-01

    An investigation of a large group of related airfoils was made in the NACA variable-density wind tunnel at a large value of the Reynolds number. The tests were made to provide data that may be directly employed for a rational choice of the most suitable airfoil section for a given application. The variation of the aerodynamic characteristics with variations in thickness and mean-line form were systematically studied. (author)

  5. On the Origins of the Intercorrelations Between Solar Wind Variables

    NASA Astrophysics Data System (ADS)

    Borovsky, Joseph E.

    2018-01-01

    It is well known that the time variations of the diverse solar wind variables at 1 AU (e.g., solar wind speed, density, proton temperature, electron temperature, magnetic field strength, specific entropy, heavy-ion charge-state densities, and electron strahl intensity) are highly intercorrelated with each other. In correlation studies of the driving of the Earth's magnetosphere-ionosphere-thermosphere system by the solar wind, these solar wind intercorrelations make determining cause and effect very difficult. In this report analyses of solar wind spacecraft measurements and compressible-fluid computer simulations are used to study the origins of the solar wind intercorrelations. Two causes are found: (1) synchronized changes in the values of the solar wind variables as the plasma types of the solar wind are switched by solar rotation and (2) dynamic interactions (compressions and rarefactions) in the solar wind between the Sun and the Earth. These findings provide an incremental increase in the understanding of how the Sun-Earth system operates.

  6. WIND measurements of proton and alpha particle flow and number density

    NASA Technical Reports Server (NTRS)

    Steinberg, J. T.; Lazarus, A. J.; Ogilvie, J. T.; Lepping, R.; Byrnes, J.; Chornay, D.; Keller, J.; Torbert, R. B.; Bodet, D.; Needell, G. J.

    1995-01-01

    We propose to review measurements of the solar wind proton and alpha particle flow velocities and densities made since launch with the WIND SWE instrument. The SWE Faraday cup ion sensors are designed to be able to determine accurately flow vector directions, and thus can be used to detect proton-alpha particle differential flow. Instances of differential flow, and the solar wind features with which they are associated will be discussed. Additionally, the variability of the percentage of alpha particles as a fraction of the total solar wind ion density will be presented.

  7. Variability in large-scale wind power generation: Variability in large-scale wind power generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiviluoma, Juha; Holttinen, Hannele; Weir, David

    2015-10-25

    The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net load events. The comparison shows regions with low variability (Sweden, Spain and Germany), medium variability (Portugal, Ireland, Finland and Denmark) and regions with higher variability (Quebec, Bonneville Power Administration and Electric Reliability Council of Texas in North America; Gansu, Jilin and Liaoning in China; and Norway and offshore wind power in Denmark). For regions with low variability, the maximum 1more » h wind ramps are below 10% of nominal capacity, and for regions with high variability, they may be close to 30%. Wind power variability is mainly explained by the extent of geographical spread, but also higher capacity factor causes higher variability. It was also shown how wind power ramps are autocorrelated and dependent on the operating output level. When wind power was concentrated in smaller area, there were outliers with high changes in wind output, which were not present in large areas with well-dispersed wind power.« less

  8. Wind direction variability in Afternoon and Sunset Turbulence

    NASA Astrophysics Data System (ADS)

    Nilsson, Erik; Lothon, Marie; Lohou, Fabienne; Mahrt, Larry

    2014-05-01

    Understanding wind direction (WD) variability better is important for several reasons. Air pollution models need information about how variable wind direction is in different conditions (Davies and Thomson 1999). Accurate predictions of dispersion are important for human health and safety and allow for adaptation planning (Nagle et al. 2011). Other applications include horizontal diffusion, efficiency and fatigue of wind machines and air-sea interaction (Mahrt 2011). Most studies of wind direction variability have focused on nocturnal conditions because of greater variability in light winds. Modelling WD variability in transition periods when both mean wind speed and variance of the wind components are in a state of change can, however, also be very challenging and has not been the focus of earlier studies. The evening transitioning to the nocturnal boundary layer can play an important role in the diffusion process of pollutants and scalars emitted at surface and transported within the atmosphere. The Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign that took place in southern France in June and July 2011 focused on the decaying turbulence of the late afternoon boundary layer and related issues (Lothon et al. 2012). We analyse field measurements from BLLAST to investigate WD variability in the evening transition period. Standard deviations of horizontal wind direction fluctuations in the lowest 60 m of the boundary layer have been examined for dependence on mean wind speed, higher order moments and averaging time. Measurement results are interpreted using measured and idealized probability density functions of horizontal wind vectors. These are also used to develop analytical functions describing how WD variability depends on wind speed, variance and other controlling factors in the atmospheric boundary layer. References: Davies B.M., Thomson D.J., 1999. Comparison of some parameterizations of wind direction variability with observations

  9. Long term variability of B supergiant winds

    NASA Technical Reports Server (NTRS)

    Massa, Derck L.

    1995-01-01

    The object of this observing proposal was to sample wind variability in B supergiants on a daily basis over a period of several days in order to determine the time scale with which density variability occurs in their winds. Three stars were selected for this project: 69 Cyg (B0 Ib), HD 164402 (B0 Ib), and HD 47240 (B1 Ib). Three grey scale representations of the Si IV lambda lambda 1400 doublet in each star are attached. In these figures, time (in days) increases upward, and the wavelength (in terms of velocity relative to the rest wavelength of the violet component of the doublet) is the abscissa. The spectra are normalized by a minimum absorption (maximum flux) template, so that all changes appear as absorptions. As a result of these observations, we can now state with some certainty that typical B supergiants develop significant wind inhomogeneities with recurrence times of a few days, and that some of these events show signs of strong temporal coherence.

  10. Synthetic thermosphere winds based on CHAMP neutral and plasma density measurements

    NASA Astrophysics Data System (ADS)

    Gasperini, F.; Forbes, J. M.; Doornbos, E. N.; Bruinsma, S. L.

    2016-04-01

    Meridional winds in the thermosphere are key to understanding latitudinal coupling and thermosphere-ionosphere coupling, and yet global measurements of this wind component are scarce. In this work, neutral and electron densities measured by the Challenging Minisatellite Payload (CHAMP) satellite at solar low and geomagnetically quiet conditions are converted to pressure gradient and ion drag forces, which are then used to solve the horizontal momentum equation to estimate low latitude to midlatitude zonal and meridional "synthetic" winds. We validate the method by showing that neutral and electron densities output from National Center for Atmospheric Research (NCAR) Thermosphere Ionosphere Mesosphere Electrodynamics-General Circulation Model (TIME-GCM) can be used to derive solutions to the momentum equations that replicate reasonably well (over 85% of the variance) the winds self-consistently calculated within the TIME-GCM. CHAMP cross-track winds are found to share over 65% of the variance with the synthetic zonal winds, providing further reassurance that this wind product should provide credible results. Comparisons with the Horizontal Wind Model 14 (HWM14) show that the empirical model largely underestimates wind speeds and does not reproduce much of the observed variability. Additionally, in this work we reveal the longitude, latitude, local time, and seasonal variability in the winds; show evidence of ionosphere-thermosphere (IT) coupling, with enhanced postsunset eastward winds due to depleted ion drag; demonstrate superrotation speeds of ˜27 m/s at the equator; discuss vertical wave coupling due the diurnal eastward propagating tide with zonal wave number 3 and the semidiurnal eastward propagating tide with zonal wave number 2.

  11. A space-based climatology of diurnal MLT tidal winds, temperatures and densities from UARS wind measurements

    NASA Astrophysics Data System (ADS)

    Svoboda, Aaron A.; Forbes, Jeffrey M.; Miyahara, Saburo

    2005-11-01

    A self-consistent global tidal climatology, useful for comparing and interpreting radar observations from different locations around the globe, is created from space-based Upper Atmosphere Research Satellite (UARS) horizontal wind measurements. The climatology created includes tidal structures for horizontal winds, temperature and relative density, and is constructed by fitting local (in latitude and height) UARS wind data at 95 km to a set of basis functions called Hough mode extensions (HMEs). These basis functions are numerically computed modifications to Hough modes and are globally self-consistent in wind, temperature, and density. We first demonstrate this self-consistency with a proxy data set from the Kyushu University General Circulation Model, and then use a linear weighted superposition of the HMEs obtained from monthly fits to the UARS data to extrapolate the global, multi-variable tidal structure. A brief explanation of the HMEs’ origin is provided as well as information about a public website that has been set up to make the full extrapolated data sets available.

  12. Tests on Models of Three British Airplanes in the Variable Density Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Higgins, George J; Defoe, George L; Diehl, W S

    1928-01-01

    This report contains the results of tests made in the National Advisory Committee for Aeronautics variable density wind tunnel on three airplane models supplied by the British Aeronautical Research Committee. These models, the BE-2E with R.A.F. 19 wings, the British Fighter with R.A.F. 15 wings, and the Bristol Fighter with R.A.F. 30 wings, were tested over a wide range in Reynolds numbers in order to supply data desired by the Aeronautical Research Committee for scale effect studies. The maximum lifts obtained in these tests are in excellent agreement with the published results of British tests, both model and full scale. No attempt is made to compare drag data, owing to the emission of tail surfaces, radiator, etc., from the model, but is shown that the scale effect observed on the drag coefficients in these tests is due to a large extent to the parts of the models other than the wings. (author)

  13. Ionosphere variability during the 2009 SSW: Influence of the lunar semidiurnal tide and mechanisms producing electron density variability

    NASA Astrophysics Data System (ADS)

    Pedatella, N. M.; Liu, H.-L.; Sassi, F.; Lei, J.; Chau, J. L.; Zhang, X.

    2014-05-01

    To investigate ionosphere variability during the 2009 sudden stratosphere warming (SSW), we present simulation results that combine the Whole Atmosphere Community Climate Model Extended version and the thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM). The simulations reveal notable enhancements in both the migrating semidiurnal solar (SW2) and lunar (M2) tides during the SSW. The SW2 and M2 amplitudes reach ˜50 m s-1 and ˜40 m s-1, respectively, in zonal wind at E region altitudes. The dramatic increase in the M2 at these altitudes influences the dynamo generation of electric fields, and the importance of the M2 on the ionosphere variability during the 2009 SSW is demonstrated by comparing simulations with and without the M2. TIME-GCM simulations that incorporate the M2 are found to be in good agreement with Jicamarca Incoherent Scatter Radar vertical plasma drifts and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) observations of the maximum F region electron density. The agreement with observations is worse if the M2 is not included in the simulation, demonstrating that the lunar tide is an important contributor to the ionosphere variability during the 2009 SSW. We additionally investigate sources of the F region electron density variability during the SSW. The primary driver of the electron density variability is changes in electric fields. Changes in meridional neutral winds and thermosphere composition are found to also contribute to the electron density variability during the 2009 SSW. The electron density variability for the 2009 SSW is therefore not solely due to variability in electric fields as previously thought.

  14. Comparison of Density Measurements on ACE and WIND

    NASA Astrophysics Data System (ADS)

    Fowler, G.; Russell, C. T.

    2001-12-01

    In studying the compression of the magnetosphere by the solar wind we have used data publically available on the CDA Web site and the ACE website. The solar wind velocities measured by these two spacecraft agree well but the densities do not. The density reported by WIND is on average only 75% of that reported by ACE. This ratio does not appear to be a constant, however. It seems to vary with the solar wind velocity.

  15. Multi-decadal Variability of the Wind Power Output

    NASA Astrophysics Data System (ADS)

    Kirchner Bossi, Nicolas; García-Herrera, Ricardo; Prieto, Luis; Trigo, Ricardo M.

    2014-05-01

    The knowledge of the long-term wind power variability is essential to provide a realistic outlook on the power output during the lifetime of a planned wind power project. In this work, the Power Output (Po) of a market wind turbine is simulated with a daily resolution for the period 1871-2009 at two different locations in Spain, one at the Central Iberian Plateau and another at the Gibraltar Strait Area. This is attained through a statistical downscaling of the daily wind conditions. It implements a Greedy Algorithm as classificator of a geostrophic-based wind predictor, which is derived by considering the SLP daily field from the 56 ensemble members of the longest homogeneous reanalysis available (20CR, 1871-2009). For calibration and validation purposes we use 10 years of wind observations (the predictand) at both sites. As a result, a series of 139 annual wind speed Probability Density Functions (PDF) are obtained, with a good performance in terms of wind speed uncertainty reduction (average daily wind speed MAE=1.48 m/s). The obtained centennial series allow to investigate the multi-decadal variability of wind power from different points of view. Significant periodicities around the 25-yr frequency band, as well as long-term linear trends are detected at both locations. In addition, a negative correlation is found between annual Po at both locations, evidencing the differences in the dynamical mechanisms ruling them (and possible complementary behavior). Furthermore, the impact that the three leading large-scale circulation patterns over Iberia (NAO, EA and SCAND) exert over wind power output is evaluated. Results show distinct (and non-stationary) couplings to these forcings depending on the geographical position and season or month. Moreover, significant non-stationary correlations are observed with the slow varying Atlantic Multidecadal Oscillation (AMO) index for both case studies. Finally, an empirical relationship is explored between the annual Po and the

  16. Selecting the process variables for filament winding

    NASA Technical Reports Server (NTRS)

    Calius, E.; Springer, G. S.

    1986-01-01

    A model is described which can be used to determine the appropriate values of the process variables for filament winding cylinders. The process variables which can be selected by the model include the winding speed, fiber tension, initial resin degree of cure, and the temperatures applied during winding, curing, and post-curing. The effects of these process variables on the properties of the cylinder during and after manufacture are illustrated by a numerical example.

  17. Correlating Solar Wind Modulation with Ionospheric Variability at Mars from MEX and MAVEN Observations

    NASA Astrophysics Data System (ADS)

    Kopf, A. J.; Morgan, D. D.; Halekas, J. S.; Ruhunusiri, S.; Gurnett, D. A.; Connerney, J. E. P.

    2017-12-01

    The synthesis of observations by the Mars Express and Mars Atmosphere and Volatiles Evolution (MAVEN) spacecraft allows for a unique opportunity to study variability in the Martian ionosphere from multiple perspectives. One major source for this variability is the solar wind. Due to its elliptical orbit which precesses over time, MAVEN periodically spends part of its orbit outside the Martian bow shock, allowing for direct measurements of the solar wind impacting the Martian plasma environment. When the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) instrument aboard Mars Express is simultaneously sounding the ionosphere, the influence from changes in the solar wind can be observed. Previous studies have suggested a positive correlation, connecting ionospheric density to the solar wind proton flux, but depended on Earth-based measurements for solar wind conditions. More recently, research has indicated that observations of ionospheric variability from these two spacecraft can be connected in special cases, such as shock wave impacts or specific solar wind magnetic field orientations. Here we extend this to more general solar wind conditions and examine how changes in the solar wind properties measured by MAVEN instruments correlate with ionospheric structure and dynamics observed simultaneously in MARSIS remote and local measurements.

  18. Density, Velocity and Ionization Structure in Accretion-Disc Winds

    NASA Technical Reports Server (NTRS)

    Sonneborn, George (Technical Monitor); Long, Knox

    2004-01-01

    This was a project to exploit the unique capabilities of FUSE to monitor variations in the wind- formed spectral lines of the luminous, low-inclination, cataclysmic variables(CV) -- RW Sex. (The original proposal contained two additional objects but these were not approved.) These observations were intended to allow us to determine the relative roles of density and ionization state changes in the outflow and to search for spectroscopic signatures of stochastic small-scale structure and shocked gas. By monitoring the temporal behavior of blue-ward extended absorption lines with a wide range of ionization potentials and excitation energies, we proposed to track the changing physical conditions in the outflow. We planned to use a new Monte Carlo code to calculate the ionization structure of and radiative transfer through the CV wind. The analysis therefore was intended to establish the wind geometry, kinematics and ionization state, both in a time-averaged sense and as a function of time.

  19. Tests of N.A.C.A. airfoils in the variable-density wind tunnel Series 24

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N; WARD KENNETH E

    1932-01-01

    This note is the fifth of a series covering an investigation of a number of related airfoils. It presents the results obtained from tests of a group of six low-cambered airfoils in the variable-density wind tunnel. The mean camber lines are identical for the six airfoils and are of such a form that the maximum mean camber is 2 per cent of the chord and is at a position 0.4 of the chord behind the loading edge. The airfoils differ in thickness only, the maximum-thickness/chord ratios being 0.06, 0.09, 0.12, 0.15, 0.18, and 0.21. The results have been presented in the form of both infinite and finite aspect-ratio characteristics. The values of C(sub L) max/C(sub d) degrees min for this group of airfoils are among the highest thus far obtained, the minimum profile drags being approximately equal to those for the symmetrical series of corresponding thickness, while the maximum lift coefficients are considerably higher.

  20. Wind Variability in Intermediate Luminosity B Supergiants

    NASA Technical Reports Server (NTRS)

    Massa, Derck

    1996-01-01

    This study used the unique spectroscopic diagnostics of intermediate luminosity B supergiants to determine the ubiquity and nature of wind variability. Specifically, (1) A detailed analysis of HD 64760 demonstrated massive ejections into its wind, provided the first clear demonstration of a 'photospheric connection' and ionization shifts in a stellar wind; (2) The international 'IUE MEGA campaign' obtained unprecedented temporal coverage of wind variability in rapidly rotating stars and demonstrated regularly repeating wind features originating in the photosphere; (3) A detailed analysis of wind variability in the rapidly rotating B1 Ib, gamma Ara demonstrated a two component wind with distinctly different mean states at different epochs; (4) A follow-on campaign to the MEGA project to study slowly rotating stars was organized and deemed a key project by ESA/NASA, and will obtain 30 days of IUE observations in May-June 1996; and (5) A global survey of archival IUE time series identified recurring spectroscopic signatures, identified with different physical phenomena. Items 4 and 5 above are still in progress and will be completed this summer in collaboration with Raman Prinja at University College, London.

  1. Inherent length-scales of periodic solar wind number density structures

    NASA Astrophysics Data System (ADS)

    Viall, N. M.; Kepko, L.; Spence, H. E.

    2008-07-01

    We present an analysis of the radial length-scales of periodic solar wind number density structures. We converted 11 years (1995-2005) of solar wind number density data into radial length series segments and Fourier analyzed them to identify all spectral peaks with radial wavelengths between 72 (116) and 900 (900) Mm for slow (fast) wind intervals. Our window length for the spectral analysis was 9072 Mm, approximately equivalent to 7 (4) h of data for the slow (fast) solar wind. We required that spectral peaks pass both an amplitude test and a harmonic F-test at the 95% confidence level simultaneously. From the occurrence distributions of these spectral peaks for slow and fast wind, we find that periodic number density structures occur more often at certain radial length-scales than at others, and are consistently observed within each speed range over most of the 11-year interval. For the slow wind, those length-scales are L ˜ 73, 120, 136, and 180 Mm. For the fast wind, those length-scales are L ˜ 187, 270 and 400 Mm. The results argue for the existence of inherent radial length-scales in the solar wind number density.

  2. Thermospheric density and wind retrieval from Swarm observations

    NASA Astrophysics Data System (ADS)

    Visser, Pieter; Doornbos, Eelco; van den IJssel, Jose; Teixeira da Encarnação, João

    2013-11-01

    The three-satellite ESA Swarm mission aims at mapping the Earth's global geomagnetic field at unprecedented spatial and temporal resolution and precision. Swarm also aims at observing thermospheric density and possibly horizontal winds. Precise orbit determination (POD) and Thermospheric Density and Wind (TDW) chains form part of the Swarm Constellation and Application Facility (SCARF), which will provide the so-called Level 2 products. The POD and TDW chains generate the orbit, accelerometer calibration, and thermospheric density and wind Level 2 products. The POD and TDW chains have been tested with data from the CHAMP and GRACE missions, indicating that a 3D orbit precision of about 10 cm can be reached. In addition, POD allows to determine daily accelerometer bias and scale factor values with a precision of around 10-15 nm/s2 and 0.01-0.02, respectively, for the flight direction. With these accelerometer calibration parameter values, derived thermospheric density is consistent at the 9-11% level (standard deviation) with values predicted by models (taking into account that model values are 20-30% higher). The retrieval of crosswinds forms part of the processing chain, but will be challenging. The Swarm observations will be used for further developing and improving density and wind retrieval algorithms.

  3. Wind farm density and harvested power in very large wind farms: A low-order model

    NASA Astrophysics Data System (ADS)

    Cortina, G.; Sharma, V.; Calaf, M.

    2017-07-01

    In this work we create new understanding of wind turbine wakes recovery process as a function of wind farm density using large-eddy simulations of an atmospheric boundary layer diurnal cycle. Simulations are forced with a constant geostrophic wind and a time varying surface temperature extracted from a selected period of the Cooperative Atmospheric Surface Exchange Study field experiment. Wind turbines are represented using the actuator disk model with rotation and yaw alignment. A control volume analysis around each turbine has been used to evaluate wind turbine wake recovery and corresponding harvested power. Results confirm the existence of two dominant recovery mechanisms, advection and flux of mean kinetic energy, which are modulated by the background thermal stratification. For the low-density arrangements advection dominates, while for the highly loaded wind farms the mean kinetic energy recovers through fluxes of mean kinetic energy. For those cases in between, a smooth balance of both mechanisms exists. From the results, a low-order model for the wind farms' harvested power as a function of thermal stratification and wind farm density has been developed, which has the potential to be used as an order-of-magnitude assessment tool.

  4. The Impacts of Wind Speed Trends and Long-term Variability in Relation to Hydroelectric Reservoir Inflows on Wind Power in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Cross, B.; Kohfeld, K. E.; Cooper, A.; Bailey, H. J.; Rucker, M.

    2013-12-01

    The use of wind power is growing rapidly in the Pacific Northwest (PNW ) due to environmental concerns, decreasing costs of implementation, strong wind speeds, and a desire to diversify electricity sources to minimize the impacts of streamflow variability on electricity prices and system flexibility. In hydroelectric dominated systems, like the PNW, the benefits of wind power can be maximized by accounting for the relationship between long term variability in wind speeds and reservoir inflows. Clean energy policies in British Columbia make the benefits of increased wind power generation during low streamflow periods particularly large, by preventing the overbuilding of marginal hydroelectric projects. The goal of this work was to quantify long-term relationships between wind speed and streamflow behavior in British Columbia. Wind speed data from the North American Regional Reanalysis (NARR) and cumulative usable inflows (CUI) from BC Hydro were used to analyze 10m wind speed and density (WD) trends, WD-CUI correlations, and WD anomalies during low and high inflow periods in the PNW (40°N to 65°N, 110°W to 135°W) from 1979-2010. Statistically significant positive wind speed and density trends were found for most of the PNW, with the largest increases along the Pacific Coast. CUI-WD correlations were weakly positive for most regions, with the highest values along the US coast (r ~0.55), generally weaker correlations to the north, and negative correlations (r ~ -0.25) along BC's North Coast. When considering seasonal relationships, the Spring freshet was coincident with lower WD anomalies west of the Rocky Mountains and higher WDs to the east. A similar but opposite pattern was observed for low inflow winter months. When considering interannual variability, lowest inflow years experienced positive WD anomalies (up to 40% increases) for the North Coast. In highest inflow years, positive WD anomalies were widespread in the US and for smaller patches of central BC

  5. Electrons In The Low Density Solar Wind

    NASA Technical Reports Server (NTRS)

    Ogilvie, Keith W.; Desch, Michael; Fitzenreiter, Richard; Vondrak, Richard R. (Technical Monitor)

    2000-01-01

    The recent occurrence of an interval (May 9th to May 12th, 1999) of abnormally low density solar wind has drawn attention to such events. The SWE instrument on the Wind spacecraft observed nine similar events between launch (November 1994) and August 1999: one in 1997, three in 1998, and five in January-August 1999. No such events were observed in 1996, the year of solar minimum. This already suggests a strong dependence upon solar activity. In this paper we discuss observations of the electron strahl, a strong anisotropy in the solar wind electrons above 60 eV directed along the magnetic field and observed continuously during the periods of low density in 1998 and 1999. When the solar wind density was less than 2/cc, the angular width of the strahl was below 3.5 degrees and the temperature deduced from the slope of the electron strahl phase density (as a function of energy in the energy range 200 to 800 eV) was 100 to 150 eV, equivalent to a typical coronal electron temperature. Three examples of this phenomenon, observed on Feb. 20- 22, April 26-27 and May 9-12, 1999, are discussed to show their similarity to one another. These electron observations are interpreted to show that the strahl occurs as a result of the conservation of the first adiabatic invariant, combined with the lack of coulomb collisions as suggested by Fairfield and Scudder, 1985.

  6. Variable geometry Darrieus wind machine

    NASA Astrophysics Data System (ADS)

    Pytlinski, J. T.; Serrano, D.

    1983-08-01

    A variable geometry Darrieus wind machine is proposed. The lower attachment of the blades to the rotor can move freely up and down the axle allowing the blades of change shape during rotation. Experimental data for a 17 m. diameter Darrieus rotor and a theoretical model for multiple streamtube performance prediction were used to develop a computer simulation program for studying parameters that affect the machine's performance. This new variable geometry concept is described and interrelated with multiple streamtube theory through aerodynamic parameters. The computer simulation study shows that governor behavior of a Darrieus turbine can not be attained by a standard turbine operating within normally occurring rotational velocity limits. A second generation variable geometry Darrieus wind turbine which uses a telescopic blade is proposed as a potential improvement on the studied concept.

  7. Transition heating rates determined on a 0.006 scale space shuttle orbiter model (no. 50-0) in the NASA/LaRC Mach 8 variable density wind tunnel test (OH14)

    NASA Technical Reports Server (NTRS)

    Cummings, J.

    1976-01-01

    Data obtained from wind tunnel tests of an .006-scale space shuttle orbiter model in the 18 in. Variable Density Wind Tunnel are presented. The tests, denoted as OH14, were performed to determine transition heating rates using thin skin thermocouples located at various locations on the space shuttle orbiter. The model was tested at M = 8.0 for a range of Reynolds numbers per foot varying from 1.0 to 10.0 million with angles-of-attack from 20 to 35 degrees incremented by 5 degrees.

  8. A low-density boundary-layer wind tunnel facility

    NASA Technical Reports Server (NTRS)

    White, B. R.

    1987-01-01

    This abstract describes a low-density wind-tunnel facility that was established at NASA Ames in order to aid interpretation and understanding of data received from the Mariner and Viking spacecraft through earth-based simulation. The wind tunnel is a boundary-layer type which is capable of operating over a range of air densities ranging from 0.01 to 1.24 kg/cu m, with the lower values being equivalent to the near-surface density of the planet Mars. Although the facility was developed for space and extraterrestrial simulation, it also can serve as a relatively large-scale, low-density aerodynamic test facility. A description of this unique test facility and some Pitot-tube and hot-wire anemometry data acquired in the facility are presented.

  9. Multi-wavelength studies of wind driving cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Witherick, Dugan Kenneth

    This thesis presents several case studies of disc winds from high-state cataclysmic variable stars, based on multi-wavelength time-series spectroscopy. The research presented here primarily focuses on three low-inclination, nova-like systems: RW Sextansis, V592 Cassiopeiae and BZ Camelopardalis. The aim was to derive and compare key spectral line diagnostics of the outflows, spanning a wide range of ionisation and excitation using (new) FUSE, HST, IUE and optical data. Analysis of the far-UV time-series of RW Sex reveals the wind to be highly variable but generally confined to between ~ -1000 and ~ 0 km/s for all ionisation states; no evidence of the wind at red-shifted velocities is found. This wind is modulated on the orbital period of the system and it is argued that the observed variability is due to changes in the blue-shifted absorption rather than a variable velocity emission. The Balmer profiles observed in the optical time-series of V592 Cas were found to be characterised by three components: a broad, shallow absorption trough, a narrow central emission and a blue-shifted absorption from the disc wind. The wind is also found to be modulated on the systems orbital period, although this modulation is slightly out of phase with the Balmer emission radial velocities. The wind of BZ Cam was found to behave very differently to that of RW Sex and V592 Cas. At times, it was seen (in the Balmer lines and some of the He I lines) to be extremely strong and variable but at other times is was seemingly not present; there was no evidence to suggest that it is modulated on the orbital or any other period. This study is an immense source of data on CV disc winds and importantly tries to parameterise three nova-like CVs to understand the similarities and differences between them and their winds.

  10. Incorporating wind availability into land use regression modelling of air quality in mountainous high-density urban environment.

    PubMed

    Shi, Yuan; Lau, Kevin Ka-Lun; Ng, Edward

    2017-08-01

    Urban air quality serves as an important function of the quality of urban life. Land use regression (LUR) modelling of air quality is essential for conducting health impacts assessment but more challenging in mountainous high-density urban scenario due to the complexities of the urban environment. In this study, a total of 21 LUR models are developed for seven kinds of air pollutants (gaseous air pollutants CO, NO 2 , NO x , O 3 , SO 2 and particulate air pollutants PM 2.5 , PM 10 ) with reference to three different time periods (summertime, wintertime and annual average of 5-year long-term hourly monitoring data from local air quality monitoring network) in Hong Kong. Under the mountainous high-density urban scenario, we improved the traditional LUR modelling method by incorporating wind availability information into LUR modelling based on surface geomorphometrical analysis. As a result, 269 independent variables were examined to develop the LUR models by using the "ADDRESS" independent variable selection method and stepwise multiple linear regression (MLR). Cross validation has been performed for each resultant model. The results show that wind-related variables are included in most of the resultant models as statistically significant independent variables. Compared with the traditional method, a maximum increase of 20% was achieved in the prediction performance of annual averaged NO 2 concentration level by incorporating wind-related variables into LUR model development. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Solar wind structure suggested by bimodal correlations of solar wind speed and density between the spacecraft SOHO and Wind

    NASA Astrophysics Data System (ADS)

    Ogilvie, K. W.; Coplan, M. A.; Roberts, D. A.; Ipavich, F.

    2007-08-01

    We calculate the cross-spacecraft maximum lagged-cross-correlation coefficients for 2-hour intervals of solar wind speed and density measurements made by the plasma instruments on the Solar and Heliospheric Observatory (SOHO) and Wind spacecraft over the period from 1996, the minimum of solar cycle 23, through the end of 2005. During this period, SOHO was located at L1, about 200 R E upstream from the Earth, while Wind spent most of the time in the interplanetary medium at distances of more than 100 R E from the Earth. Yearly histograms of the maximum, time-lagged correlation coefficients for both the speed and density are bimodal in shape, suggesting the existence of two distinct solar wind regimes. The larger correlation coefficients we suggest are due to structured solar wind, including discontinuities and shocks, while the smaller are likely due to Alfvénic turbulence. While further work will be required to firmly establish the physical nature of the two populations, the results of the analysis are consistent with a solar wind that consists of turbulence from quiet regions of the Sun interspersed with highly filamentary structures largely convected from regions in the inner solar corona. The bimodal appearance of the distributions is less evident in the solar wind speed than in the density correlations, consistent with the observation that the filamentary structures are convected with nearly constant speed by the time they reach 1 AU. We also find that at solar minimum the fits for the density correlations have smaller high-correlation components than at solar maximum. We interpret this as due to the presence of more relatively uniform Alfvénic regions at solar minimum than at solar maximum.

  12. The Impact of Variable Wind Shear Coefficients on Risk Reduction of Wind Energy Projects

    PubMed Central

    Thomson, Allan; Yoonesi, Behrang; McNutt, Josiah

    2016-01-01

    Estimation of wind speed at proposed hub heights is typically achieved using a wind shear exponent or wind shear coefficient (WSC), variation in wind speed as a function of height. The WSC is subject to temporal variation at low and high frequencies, ranging from diurnal and seasonal variations to disturbance caused by weather patterns; however, in many cases, it is assumed that the WSC remains constant. This assumption creates significant error in resource assessment, increasing uncertainty in projects and potentially significantly impacting the ability to control gird connected wind generators. This paper contributes to the body of knowledge relating to the evaluation and assessment of wind speed, with particular emphasis on the development of techniques to improve the accuracy of estimated wind speed above measurement height. It presents an evaluation of the use of a variable wind shear coefficient methodology based on a distribution of wind shear coefficients which have been implemented in real time. The results indicate that a VWSC provides a more accurate estimate of wind at hub height, ranging from 41% to 4% reduction in root mean squared error (RMSE) between predicted and actual wind speeds when using a variable wind shear coefficient at heights ranging from 33% to 100% above the highest actual wind measurement. PMID:27872898

  13. First look at GOCE-derived thermosphere density and wind measurements

    NASA Astrophysics Data System (ADS)

    Doornbos, E.; Bruinsma, S. L.; Koppenwallner, G.; Fritsche, B.; Visser, P. N.; van den IJssel, J.; Kern, M.

    2011-12-01

    Accelerometers carried by low-Earth orbiters such as GOCE have the ability to provide highly detailed data on thermospheric density and winds. Like its predecessor missions, CHAMP and GRACE, GOCE has not been specifically designed for studies of the thermosphere. Nevertheless, their application in this domain has resulted in density and wind data sets containing information at unprecedented levels of coverage and precision, resulting in many scientific papers. The orbit of GOCE is unique. It is nearly sun-synchronous, and due to its drag free control system, its altitude can be kept fixed for several years, at about 270 km. This leads to sampling characteristics that are ideal for studying the effect of variations in solar and magnetospheric energy input on the thermosphere density and wind. Besides the presentation of the first GOCE-derived density and wind measurements, this poster will describe the GOCE data processing approach, which differs from that of the earlier missions in the special consideration required for both the handling of the thruster accelerations and the aerodynamic modelling.

  14. Interference of Wing and Fuselage from Tests of 209 Combinations in the NACA Variable-Density Tunnel

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N; Ward, Kenneth E

    1936-01-01

    This report presents the results of tests of 209 simple wing-fuselage combinations made in the NACA variable-density wind tunnel to provide information regarding the effects of aerodynamic interference between wings and fuselages at a large value of Reynolds number.

  15. Substorm-related thermospheric density and wind disturbances

    NASA Astrophysics Data System (ADS)

    Ritter, P.; Luhr, H.; Doornbos, E. N.

    2009-12-01

    The input of energy and momentum from the magnetosphere is most efficiently coupled into the high latitude ionosphere-thermosphere. The phenomenon we are focusing on here is the magnetospheric substorm. This paper presents substorm related observations of the thermosphere derived from the CHAMP satellite. With its sensitive accelerometer the satellite can measure the air density and zonal winds. Based on a large number of substorm events the average high and low latitude thermosphere response to substorm onsets was deduced. During magnetic substorms the thermospheric density is enhanced first at high latitudes. Then the disturbance travels at sonic speed to lower latitudes, and 3-4 hours later the bulge reaches the equator on the night side. Under the influence of the Coriolis force the traveling atmospheric disturbance (TAD) is deflected westward. In accordance with present-day atmospheric models the disturbance zonal wind velocities during substorms are close to zero near the equator before midnight and attain moderate westward velocities after midnight. In general, the wind system is only weakly perturbed by substorms.

  16. The Asymmetrical Wind of the Candidate Luminous Blue Variable MWC 314

    NASA Technical Reports Server (NTRS)

    Wisniewski, John P.; Babler, Brian L.; Bjorkman, Karen S.; Kurchakov, Anatoly V.; Meade,Marilyn R.; Miroshnichenko, Anatoly S.

    2006-01-01

    We present the results of long-term spectropolarimetric and spectroscopic monitoring of MWC 314, a candidate Luminous Blue Variable star. We detect the first evidence of H alpha variability in MWC 314, and find no apparent periodicity in this emission. The total R-band polarization is observed to vary between 2.21% and 3.00% at a position angle consistently around approximately 0 degrees, indicating the presence of a time-variable intrinsic polarization component, hence an asymmetrical circumstellar envelope. We find suggestive evidence that MWC 314's intrinsic polarization exhibits a wavelength-independent magnitude varying between 0.09% and 0.58% at a wavelength-independent position angle covering all four quadrants of the Stokes Q-U plane. Electron scattering off of density clumps in MWC 314's wind is considered as the probable mechanism responsible for these variations.

  17. Coastal and rain-induced wind variability depicted by scatterometers

    NASA Astrophysics Data System (ADS)

    Portabella, M.; Lin, W.; Stoffelen, A.; Turiel, A.; Verhoef, A.; Verspeek, J.; Ballabrera, J.; Vogelzang, J.

    2012-04-01

    A detailed knowledge of local wind variability near the shore is very important since it strongly affects the weather and microclimate in coastal regions. Since coastal areas are densely populated and most activity at sea occurs near the shore, sea-surface wind field information is important for a number of applications. In the vicinity of land sea-breeze, wave fetch, katabatic and current effects are more likely than in the open ocean, thus enhancing air-sea interaction. Also very relevant for air-sea interaction are the rain-induced phenomena, such as downbursts and convergence. Relatively cold and dry air is effectively transported to the ocean surface and surface winds are enhanced. In general, both coastal and rain-induced wind variability are poorly resolved by Numerical Weather Prediction (NWP) models. Satellite real aperture radars (i.e., scatterometers) are known to provide accurate mesoscale (25-50 km resolution) sea surface wind field information used in a wide variety of applications. Nowadays, there are two operating scatterometers in orbit, i.e., the C-band Advanced Scatterometer (ASCAT) onboard Metop-A and the Ku-band scatterometer (OSCAT) onboard Oceansat-2. The EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI SAF) delivers several ASCAT level 2 wind products with 25 km and 12.5 km Wind Vector Cell (WVC) spacing, including a pre-operational coastal wind product as well as an OSCAT level 2 wind product with 50 km spacing in development status. Rain is known to both attenuate and scatter the microwave signal. In addition, there is a "splashing" effect. The roughness of the sea surface is increased because of splashing due to rain drops. The so-called "rain contamination" is larger for Ku-band scatterometer systems than for C-band systems. Moreover, the associated downdrafts lead to variable wind speeds and directions, further complicating the wind retrieval. The C-band ASCAT high resolution wind processing is validated under rainy

  18. Wind Variability of B Supergiants. No. 2; The Two-component Stellar Wind of gamma Arae

    NASA Technical Reports Server (NTRS)

    Prinja, R. K.; Massa, D.; Fullerton, A. W.; Howarth, I. D.; Pontefract, M.

    1996-01-01

    The stellar wind of the rapidly rotating early-B supergiant, gamma Ara, is studied using time series, high-resolution IUE spectroscopy secured over approx. 6 days in 1993 March. Results are presented based on an analysis of several line species, including N(N), C(IV), Si(IV), Si(III), C(II), and Al(III). The wind of this star is grossly structured, with evidence for latitude-dependent mass loss which reflects the role of rapid rotation. Independent, co-existing time variable features are identified at low-velocity (redward of approx. -750 km/s) and at higher-speeds extending to approx. -1500 km/s. The interface between these structures is 'defined' by the appearance of a discrete absorption component which is extremely sharp (in velocity space). The central velocity of this 'Super DAC' changes only gradually, over several days, between approx. -400 and -750 km/s in most of the ions. However, its location is shifted redward by almost 400 km/s in Al(III) and C(II), indicating that the physical structure giving rise to this feature has a substantial velocity and ionization jump. Constraints on the relative ionization properties of the wind structures are discussed, together with results based on SEI line-profile-fitting methods. The overall wind activity in gamma Ara exhibits a clear ion dependence, such that low-speed features are promoted in low-ionization species, including Al(III), C(II), and Si(III). We also highlight that - in contrast to most OB stars - there are substantial differences in the epoch-to-epoch time-averaged wind profiles of gamma Ara. We interpret the results in terms of a two-component wind model for gamma Ara, with an equatorially compressed low ionization region, and a high speed, higher-ionization polar outflow. This picture is discussed in the context of the predicted bi-stability mechanism for line-driven winds in rapidly rotating early-B type stars, and the formation of compressed wind regions in rapidly rotating hot stars. The apparent

  19. Favre-Averaged Turbulence Statistics in Variable Density Mixing of Buoyant Jets

    NASA Astrophysics Data System (ADS)

    Charonko, John; Prestridge, Kathy

    2014-11-01

    Variable density mixing of a heavy fluid jet with lower density ambient fluid in a subsonic wind tunnel was experimentally studied using Particle Image Velocimetry and Planar Laser Induced Fluorescence to simultaneously measure velocity and density. Flows involving the mixing of fluids with large density ratios are important in a range of physical problems including atmospheric and oceanic flows, industrial processes, and inertial confinement fusion. Here we focus on buoyant jets with coflow. Results from two different Atwood numbers, 0.1 (Boussinesq limit) and 0.6 (non-Boussinesq case), reveal that buoyancy is important for most of the turbulent quantities measured. Statistical characteristics of the mixing important for modeling these flows such as the PDFs of density and density gradients, turbulent kinetic energy, Favre averaged Reynolds stress, turbulent mass flux velocity, density-specific volume correlation, and density power spectra were also examined and compared with previous direct numerical simulations. Additionally, a method for directly estimating Reynolds-averaged velocity statistics on a per-pixel basis is extended to Favre-averages, yielding improved accuracy and spatial resolution as compared to traditional post-processing of velocity and density fields.

  20. Long term variability of Cygnus X-1: VII. Orbital variability of the focussed wind in Cyg X-1/HDE 226868 system

    DOE PAGES

    Grinberg, V.; Leutenegger, M. A.; Hell, N.; ...

    2015-04-16

    Binary systems with an accreting compact object offer a unique opportunity to investigate the strong, clumpy, line-driven winds of early-type supergiants by using the compact object’s X-rays to probe the wind structure. In this paper, we analyze the two-component wind of HDE 226868, the O9.7Iab giant companion of the black hole Cyg X-1, using 4.77 Ms Rossi X-ray Timing Explorer (RXTE) observations of the system taken over the course of 16 years. Absorption changes strongly over the 5.6 d binary orbit, but also shows a large scatter at a given orbital phase, especially at superior conjunction. The orbital variability ismore » most prominent when the black hole is in the hard X-ray state. Our data are poorer for the intermediate and soft state, but show signs for orbital variability of the absorption column in the intermediate state. We quantitatively compare the data in the hard state to a toy model of a focussed Castor-Abbott-Klein wind: as it does not incorporate clumping, the model does not describe the observations well. Finally, a qualitative comparison to a simplified simulation of clumpy winds with spherical clumps shows good agreement in the distribution of the equivalent hydrogen column density for models with a porosity length on the order of the stellar radius at inferior conjunction; we conjecture that the deviations between data and model at superior conjunction could either be due to lack of a focussed wind component in the model or to a more complicated clump structure.« less

  1. Wind ripples in low density atmospheres

    NASA Technical Reports Server (NTRS)

    Miller, J. S.; Marshall, J. R.; Greeley, R.

    1987-01-01

    The effect of varying fluid density (rho) on particle transport was examined by conducting tests at atmospheric pressures between 1 and 0.004 bar in the Martian Surface Wind Tunnel (MARSWIT). This study specifically concerns the effect of varying rho on the character of wind ripples, and elicits information concerning generalized ripple models as well as specific geological circumstances for ripple formation such as those prevailing on Mars. Tests were conducted primarily with 95 micron quartz sand, and for each atmospheric pressure chosen, tests were conducted at two freestream wind speeds: 1.1 U*(t) and 1.5 U*(t), where U*(t) is saltation threshold. Preliminary analysis of the data suggests: (1) ballistic ripple wavelength is not at variance with model predictions; (2) an atmospheric pressure of approximately 0.2 bar could represent a discontinuity in ripple behavior; and (4) ripple formation on Mars may not be readily predicted by extrapolation of terrestrial observations.

  2. Energy Storage on the Grid and the Short-term Variability of Wind

    NASA Astrophysics Data System (ADS)

    Hittinger, Eric Stephen

    Wind generation presents variability on every time scale, which must be accommodated by the electric grid. Limited quantities of wind power can be successfully integrated by the current generation and demand-side response mix but, as deployment of variable resources increases, the resulting variability becomes increasingly difficult and costly to mitigate. In Chapter 2, we model a co-located power generation/energy storage block composed of wind generation, a gas turbine, and fast-ramping energy storage. A scenario analysis identifies system configurations that can generate power with 30% of energy from wind, a variability of less than 0.5% of the desired power level, and an average cost around $70/MWh. While energy storage technologies have existed for decades, fast-ramping grid-level storage is still an immature industry and is experiencing relatively rapid improvements in performance and cost across a variety of technologies. Decreased capital cost, increased power capability, and increased efficiency all would improve the value of an energy storage technology and each has cost implications that vary by application, but there has not yet been an investigation of the marginal rate of technical substitution between storage properties. The analysis in chapter 3 uses engineering-economic models of four emerging fast-ramping energy storage technologies to determine which storage properties have the greatest effect on cost-of-service. We find that capital cost of storage is consistently important, and identify applications for which power/energy limitations are important. In some systems with a large amount of wind power, the costs of wind integration have become significant and market rules have been slowly changing in order to internalize or control the variability of wind generation. Chapter 4 examines several potential market strategies for mitigating the effects of wind variability and estimate the effect that each strategy would have on the operation and

  3. Evaluation of the Wind Flow Variability Using Scanning Doppler Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Sand, S. C.; Pichugina, Y. L.; Brewer, A.

    2016-12-01

    Better understanding of the wind flow variability at the heights of the modern turbines is essential to accurately assess of generated wind power and efficient turbine operations. Nowadays the wind energy industry often utilizes scanning Doppler lidar to measure wind-speed profiles at high spatial and temporal resolution.The study presents wind flow features captured by scanning Doppler lidars during the second Wind Forecast and Improvement Project (WFIP 2) sponsored by the Department of Energy (DOE) and National Oceanic and Atmospheric Administration (NOAA). This 18-month long experiment in the Columbia River Basin aims to improve model wind forecasts complicated by mountain terrain, coastal effects, and numerous wind farms.To provide a comprehensive dataset to use for characterizing and predicting meteorological phenomena important to Wind Energy, NOAA deployed scanning, pulsed Doppler lidars to two sites in Oregon, one at Wasco, located upstream of all wind farms relative to the predominant westerly flow in the region, and one at Arlington, located in the middle of several wind farms.In this presentation we will describe lidar scanning patterns capable of providing data in conical, or vertical-slice modes. These individual scans were processed to obtain 15-min averaged profiles of wind speed and direction in real time. Visualization of these profiles as time-height cross sections allows us to analyze variability of these parameters with height, time and location, and reveal periods of rapid changes (ramp events). Examples of wind flow variability between two sites of lidar measurements along with examples of reduced wind velocity downwind of operating turbines (wakes) will be presented.

  4. Random function representation of stationary stochastic vector processes for probability density evolution analysis of wind-induced structures

    NASA Astrophysics Data System (ADS)

    Liu, Zhangjun; Liu, Zenghui

    2018-06-01

    This paper develops a hybrid approach of spectral representation and random function for simulating stationary stochastic vector processes. In the proposed approach, the high-dimensional random variables, included in the original spectral representation (OSR) formula, could be effectively reduced to only two elementary random variables by introducing the random functions that serve as random constraints. Based on this, a satisfactory simulation accuracy can be guaranteed by selecting a small representative point set of the elementary random variables. The probability information of the stochastic excitations can be fully emerged through just several hundred of sample functions generated by the proposed approach. Therefore, combined with the probability density evolution method (PDEM), it could be able to implement dynamic response analysis and reliability assessment of engineering structures. For illustrative purposes, a stochastic turbulence wind velocity field acting on a frame-shear-wall structure is simulated by constructing three types of random functions to demonstrate the accuracy and efficiency of the proposed approach. Careful and in-depth studies concerning the probability density evolution analysis of the wind-induced structure have been conducted so as to better illustrate the application prospects of the proposed approach. Numerical examples also show that the proposed approach possesses a good robustness.

  5. Control of variable speed variable pitch wind turbine based on a disturbance observer

    NASA Astrophysics Data System (ADS)

    Ren, Haijun; Lei, Xin

    2017-11-01

    In this paper, a novel sliding mode controller based on disturbance observer (DOB) to optimize the efficiency of variable speed variable pitch (VSVP) wind turbine is developed and analyzed. Due to the highly nonlinearity of the VSVP system, the model is linearly processed to obtain the state space model of the system. Then, a conventional sliding mode controller is designed and a DOB is added to estimate wind speed. The proposed control strategy can successfully deal with the random nature of wind speed, the nonlinearity of VSVP system, the uncertainty of parameters and external disturbance. Via adding the observer to the sliding mode controller, it can greatly reduce the chattering produced by the sliding mode switching gain. The simulation results show that the proposed control system has the effectiveness and robustness.

  6. Long term variability of Cygnus X-1. VII. Orbital variability of the focussed wind in Cyg X-1/HDE 226868 system

    NASA Astrophysics Data System (ADS)

    Grinberg, V.; Leutenegger, M. A.; Hell, N.; Pottschmidt, K.; Böck, M.; García, J. A.; Hanke, M.; Nowak, M. A.; Sundqvist, J. O.; Townsend, R. H. D.; Wilms, J.

    2015-04-01

    Binary systems with an accreting compact object offer a unique opportunity to investigate the strong, clumpy, line-driven winds of early-type supergiants by using the compact object's X-rays to probe the wind structure. We analyze the two-component wind of HDE 226868, the O9.7Iab giant companion of the black hole Cyg X-1, using 4.77 Ms Rossi X-ray Timing Explorer (RXTE) observations of the system taken over the course of 16 years. Absorption changes strongly over the 5.6 d binary orbit, but also shows a large scatter at a given orbital phase, especially at superior conjunction. The orbital variability is most prominent when the black hole is in the hard X-ray state. Our data are poorer for the intermediate and soft state, but show signs for orbital variability of the absorption column in the intermediate state. We quantitatively compare the data in the hard state to a toy model of a focussed Castor-Abbott-Klein wind: as it does not incorporate clumping, the model does not describe the observations well. A qualitative comparison to a simplified simulation of clumpy winds with spherical clumps shows good agreement in the distribution of the equivalent hydrogen column density for models with a porosity length on the order of the stellar radius at inferior conjunction; we conjecture that the deviations between data and model at superior conjunction could either be due to lack of a focussed wind component in the model or to a more complicated clump structure. Appendix A is available in electronic form at http://www.aanda.org

  7. Costs of solar and wind power variability for reducing CO2 emissions.

    PubMed

    Lueken, Colleen; Cohen, Gilbert E; Apt, Jay

    2012-09-04

    We compare the power output from a year of electricity generation data from one solar thermal plant, two solar photovoltaic (PV) arrays, and twenty Electric Reliability Council of Texas (ERCOT) wind farms. The analysis shows that solar PV electricity generation is approximately one hundred times more variable at frequencies on the order of 10(-3) Hz than solar thermal electricity generation, and the variability of wind generation lies between that of solar PV and solar thermal. We calculate the cost of variability of the different solar power sources and wind by using the costs of ancillary services and the energy required to compensate for its variability and intermittency, and the cost of variability per unit of displaced CO(2) emissions. We show the costs of variability are highly dependent on both technology type and capacity factor. California emissions data were used to calculate the cost of variability per unit of displaced CO(2) emissions. Variability cost is greatest for solar PV generation at $8-11 per MWh. The cost of variability for solar thermal generation is $5 per MWh, while that of wind generation in ERCOT was found to be on average $4 per MWh. Variability adds ~$15/tonne CO(2) to the cost of abatement for solar thermal power, $25 for wind, and $33-$40 for PV.

  8. Satellite accelerometer measurements of neutral density and winds during geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Marcos, F. A.; Forbes, J. M.

    1986-01-01

    A new thermospheric wind measurement technique is reported which is based on a Satellite Electrostatic Triaxial Accelerometer (SETA) system capable of accurately measuring accelerations in the satellite's in-track, cross-track and radial directions. Data obtained during two time periods are presented. The first data set describes cross-track winds measured between 170 and 210 km during a 5-day period (25 to 29 March 1979) of mostly high geomagnetic activity. In the second data set, cross-track winds and neutral densities from SETA and exospheric temperatures from the Millstone Hill incoherent scatter radar are examined during an isolated magnetic substorm occurring on 21 March 1979. A polar thermospheric wind circulation consisting of a two cell horizontal convection pattern is reflected in both sets of cross-track acceleration measurements. The density response is highly asymmetric with respect to its day/night behavior. Latitude structures of the density response at successive times following the substorm peak suggest the equatorward propagation of a disturbance with a phase speed between 300 and 600 m/s. A deep depression in the density at high latitudes (less than 70 deg) is evident in conjunction with this phenomenon. The more efficient propagation of the disturbance to lower latitudes during the night is probably due to the midnight surge effect.

  9. Control Strategy: Wind Energy Powered Variable Chiller with Thermal Ice Storage

    DTIC Science & Technology

    2014-12-01

    New York, 2013. [8] A. Togelou et al., “Wind power forecasting in the absence of historical data,” IEEE trans. on sustainable energy, vol. 3, no...WIND ENERGY POWERED VARIABLE CHILLER WITH THERMAL ICE STORAGE by Rex A. Boonyobhas December 2014 Thesis Advisor: Anthony J. Gannon Co...AND DATES COVERED December 20 14 Master ’s Thesis 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS CONTROL STRATEGY: WIND ENERGY POWERED VARIABLE CHILLER

  10. Quantification of Neutral Wind Variability in the Upper Thermosphere

    NASA Technical Reports Server (NTRS)

    Richards, Philip G.

    2000-01-01

    The overall objective of this grant was to: 1) Quantify thermospheric neutral wind behavior in the ionosphere. This was to be achieved by developing an improved empirical wind model. 2) Validating the procedure for obtaining winds from the height of the peak density. 3) Improving the model capabilities and making updated versions of the model available to other scientists. The approach is to use neutral winds derived from ionosonde measurements of the height of the peak electron density (h(sub m)F(sub 2)). One of the proposed first year tasks was to perform some validation studies on the method. Substantial progress has been made with regard to both the empirical model and the validation study. Funding from this grant has also enabled a number of fruitful collaborations with other researchers; one of the stated aims in the proposal. Graduate student Mayra Martinez has developed the mathematical formulation for the empirical wind model as part of her dissertation. As proposed, authors continued validation studies of the technique for determining winds from h(sub m)F(sub 2). They are submitted a paper to the Journal of Geophysical Research in December 1996 entitled "Therinospheric neutral winds at southern mid-latitudes: comparison of optical and ionosonde h(sub m)F(sub 2) methods. A second paper entitled "Ionospheric behavior at a southern mid-latitude in March 1995" has come out of the March 1995 data set and was published in The Journal of Geophysical Research. A new algorithm was developed. The ionosphere also have been modeled.

  11. Wind Turbines Adaptation to the Variability of the Wind Field

    NASA Astrophysics Data System (ADS)

    Ulianov, Yuriy; Martynenko, Gennadii; Misaylov, Vitaliy; Soliannikova, Iuliia

    2010-05-01

    WIND TURBINES ADAPTATION TO THE VARIABILITY OF THE WIND FIELD The subject of our scientific research is wind power turbines (WPT) with the horizontal axis which were now common in the world. Efficient wind turbines work is largely determined by non-stationarity of the wind field, expressed in its gustiness, the presence of vertical and horizontal shifts of wind speed and direction. At critical values of the wind parameters WPT has aerodynamic and mechanical overload, leading to breakdowns, premature wear and reduce the life of the wind turbine. To prevent accidents at the peak values of wind speed it is used the regulatory system of windwheels. WPT control systems provide a process orientation of the wind turbine rotor axis in the line of the mean wind. Wind turbines are also equipped with braking device used to protect against breakdowns when a significant increase in the wind. In general, all these methods of regulation are not always effective. Thus, in practice there may be situations when the wind speed is many times greater than the stated limit. For example, if there are microbursts in the atmospheric boundary layer, low-level wind shears caused by its gust front, storms, etc. It is required for a wind power turbine adaptation to intensive short-term wind impulses and considerable vertical wind shifts that the data about them shall be obtained ahead of time. To do this it is necessary to have the information on the real structure of the wind field in the area of the blade sweep for the minimum range against the wind that is determined by the mean speed and the system action time. The implementation of acoustic and laser traditional wind sounding systems is limited by ambient acoustic noise, by heavy rain, snowfall and by fog. There are free of these disadvantages the inclined radioacoustic sounding (IRASS) technique which works for a system of remote detection and control of wind gusts. IRASS technique is realized as low-potential Doppler pulse radar

  12. The Future of Wind Energy in California: Future Projections in Variable-Resolution CESM

    NASA Astrophysics Data System (ADS)

    Wang, M.; Ullrich, P. A.; Millstein, D.; Collier, C.

    2017-12-01

    This study focuses on the wind energy characterization and future projection at five primary wind turbine sites in California. Historical (1980-2000) and mid-century (2030-2050) simulations were produced using the Variable-Resolution Community Earth System Model (VR-CESM) to analyze the trends and variations in wind energy under climate change. Datasets from Det Norske Veritas Germanischer Llyod (DNV GL), MERRA-2, CFSR, NARR, as well as surface observational data were used for model validation and comparison. Significant seasonal wind speed changes under RCP8.5 were detected from several wind farm sites. Large-scale patterns were then investigated to analyze the synoptic-scale impact on localized wind change. The agglomerative clustering method was applied to analyze and group different wind patterns. The associated meteorological background of each cluster was investigated to analyze the drivers of different wind patterns. This study improves the characterization of uncertainty around the magnitude and variability in space and time of California's wind resources in the near future, and also enhances understanding of the physical mechanisms related to the trends in wind resource variability.

  13. Multiple and variable speed electrical generator systems for large wind turbines

    NASA Technical Reports Server (NTRS)

    Andersen, T. S.; Hughes, P. S.; Kirschbaum, H. S.; Mutone, G. A.

    1982-01-01

    A cost effective method to achieve increased wind turbine generator energy conversion and other operational benefits through variable speed operation is presented. Earlier studies of multiple and variable speed generators in wind turbines were extended for evaluation in the context of a specific large sized conceptual design. System design and simulation have defined the costs and performance benefits which can be expected from both two speed and variable speed configurations.

  14. Power-Production Diagnostic Tools for Low-Density Wind Farms with Applications to Wake Steering

    NASA Astrophysics Data System (ADS)

    Takle, E. S.; Herzmann, D.; Rajewski, D. A.; Lundquist, J. K.; Rhodes, M. E.

    2016-12-01

    Hansen (2011) provided guidelines for wind farm wake analysis with applications to "high density" wind farms (where average distance between turbines is less than ten times rotor diameter). For "low-density" (average distance greater than fifteen times rotor diameter) wind farms, or sections of wind farms we demonstrate simpler sorting and visualization tools that reveal wake interactions and opportunities for wind farm power prediction and wake steering. SCADA data from a segment of a large mid-continent wind farm, together with surface flux measurements and lidar data are subjected to analysis and visualization of wake interactions. A time-history animated visualization of a plan view of power level of individual turbines provides a quick analysis of wake interaction dynamics. Yaw-based sectoral histograms of enhancement/decline of wind speed and power from wind farm reference levels reveals angular width of wake interactions and identifies the turbine(s) responsible for the power reduction. Concurrent surface flux measurements within the wind farm allowed us to evaluate stability influence on wake loss. A one-season climatology is used to identify high-priority candidates for wake steering based on estimated power recovery. Typical clearing prices on the day-ahead market are used to estimate the added value of wake steering. Current research is exploring options for identifying candidate locations for wind farm "build-in" in existing low-density wind farms.

  15. Variability of interconnected wind plants: correlation length and its dependence on variability time scale

    DOE PAGES

    St. Martin, Clara M.; Lundquist, Julie K.; Handschy, Mark A.

    2015-04-02

    The variability in wind-generated electricity complicates the integration of this electricity into the electrical grid. This challenge steepens as the percentage of renewably-generated electricity on the grid grows, but variability can be reduced by exploiting geographic diversity: correlations between wind farms decrease as the separation between wind farms increases. However, how far is far enough to reduce variability? Grid management requires balancing production on various timescales, and so consideration of correlations reflective of those timescales can guide the appropriate spatial scales of geographic diversity grid integration. To answer 'how far is far enough,' we investigate the universal behavior of geographic diversity by exploring wind-speed correlations using three extensive datasets spanning continents, durations and time resolution. First, one year of five-minute wind power generation data from 29 wind farms span 1270 km across Southeastern Australia (Australian Energy Market Operator). Second, 45 years of hourly 10 m wind-speeds from 117 stations span 5000 km across Canada (National Climate Data Archive of Environment Canada). Finally, four years of five-minute wind-speeds from 14 meteorological towers span 350 km of the Northwestern US (Bonneville Power Administration). After removing diurnal cycles and seasonal trends from all datasets, we investigate dependence of correlation length on time scale by digitally high-pass filtering the data on 0.25–2000 h timescales and calculating correlations between sites for each high-pass filter cut-off. Correlations fall to zero with increasing station separation distance, but the characteristic correlation length varies with the high-pass filter applied: the higher the cut-off frequency, the smaller the station separation required to achieve de-correlation. Remarkable similarities between these three datasets reveal behavior that, if universal, could be particularly useful for grid management. For high

  16. Variability of interconnected wind plants: correlation length and its dependence on variability time scale

    NASA Astrophysics Data System (ADS)

    St. Martin, Clara M.; Lundquist, Julie K.; Handschy, Mark A.

    2015-04-01

    The variability in wind-generated electricity complicates the integration of this electricity into the electrical grid. This challenge steepens as the percentage of renewably-generated electricity on the grid grows, but variability can be reduced by exploiting geographic diversity: correlations between wind farms decrease as the separation between wind farms increases. But how far is far enough to reduce variability? Grid management requires balancing production on various timescales, and so consideration of correlations reflective of those timescales can guide the appropriate spatial scales of geographic diversity grid integration. To answer ‘how far is far enough,’ we investigate the universal behavior of geographic diversity by exploring wind-speed correlations using three extensive datasets spanning continents, durations and time resolution. First, one year of five-minute wind power generation data from 29 wind farms span 1270 km across Southeastern Australia (Australian Energy Market Operator). Second, 45 years of hourly 10 m wind-speeds from 117 stations span 5000 km across Canada (National Climate Data Archive of Environment Canada). Finally, four years of five-minute wind-speeds from 14 meteorological towers span 350 km of the Northwestern US (Bonneville Power Administration). After removing diurnal cycles and seasonal trends from all datasets, we investigate dependence of correlation length on time scale by digitally high-pass filtering the data on 0.25-2000 h timescales and calculating correlations between sites for each high-pass filter cut-off. Correlations fall to zero with increasing station separation distance, but the characteristic correlation length varies with the high-pass filter applied: the higher the cut-off frequency, the smaller the station separation required to achieve de-correlation. Remarkable similarities between these three datasets reveal behavior that, if universal, could be particularly useful for grid management. For high

  17. Long-term variability of wind patterns at hub-height over Texas

    NASA Astrophysics Data System (ADS)

    Jung, J.; Jeon, W.; Choi, Y.; Souri, A.

    2017-12-01

    Wind energy is getting more attention because of its environmentally friendly attributes. Texas is a state with significant capacity and number of wind turbines. Wind power generation is significantly affected by wind patterns, and it is important to understand this seasonal and decadal variability for long-term power generation from wind turbines. This study focused on the trends of changes in wind pattern and its strength at two hub-heights (80 m and 110 m) over 30-years (1986 to 2015). We only analyzed summer data(June to September) because of concentrated electricity usage in Texas. We extracted hub-height wind data (U and V components) from the three-hourly National Centers for Environmental Prediction-North American Regional Reanalysis (NCEP-NARR) and classified wind patterns properly by using nonhierarchical K-means method. Hub-height wind patterns in summer seasons of 1986 to 2015 were classified in six classes at day and seven classes at night. Mean wind speed was 4.6 ms-1 at day and 5.4 ms-1 at night, but showed large variability in time and space. We combined each cluster's frequencies and wind speed tendencies with large scale atmospheric circulation features and quantified the amount of wind power generation.

  18. Winds from accretion disks - Ultraviolet line formation in cataclysmic variables

    NASA Technical Reports Server (NTRS)

    Shlosman, Isaac; Vitello, Peter

    1993-01-01

    Winds from accretion disks in cataclysmic variable stars are ubiquitous. Observations by IUE reveal P Cygni-shaped profiles of high-ionization lines which are attributed to these winds. We have studied the formation of UV emission lines in cataclysmic variables by constructing kinematical models of biconical rotating outflows from disks around white dwarfs. The photoionization in the wind is calculated taking into account the radiation fields of the disk, the boundary layer, and the white dwarf. The 3D radiative transfer is solved in the Sobolev approximation. Effects on the line shapes of varying basic physical parameters of the wind are shown explicitly. We identify and map the resonant scattering regions in the wind which have strongly biconical character regardless of the assumed velocity and radiation fields. Rotation at the base of the wind introduces a radial shear which decreases the line optical depth and reduces the line core intensity. We find that it is possible to reproduce the observed P Cygni line shapes and make some predictions to be verified in high-resolution observations.

  19. Generating Variable Wind Profiles and Modeling Their Effects on Small-Arms Trajectories

    DTIC Science & Technology

    2016-04-01

    ARL-TR-7642 ● APR 2016 US Army Research Laboratory Generating Variable Wind Profiles and Modeling Their Effects on Small-Arms... Wind Profiles and Modeling Their Effects on Small-Arms Trajectories by Timothy A Fargus Weapons and Materials Research Directorate, ARL...Generating Variable Wind Profiles and Modeling Their Effects on Small-Arms Trajectories 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  20. Elsaesser variable analysis of fluctuations in the ion foreshock and undisturbed solar wind

    NASA Technical Reports Server (NTRS)

    Labelle, James; Treumann, Rudolf A.; Marsch, Eckart

    1994-01-01

    Magnetohydrodynamics (MHD) fluctuations in the solar wind have been investigated previously by use of Elsaesser variables. In this paper, we present a comparison of the spectra of Elsaesser variables in the undisturbed solar wind at 1 AU and in the ion foreshock in front of the Earth. Both observations take place under relatively strong solar wind flow speed conditions (approximately equal 600 km/s). In the undisturbed solar wind we find that outward propagating Alfven waves dominate, as reported by other observers. In the ion foreshock the situation is more complex, with neither outward nor inward propagation dominating over the entire range investigated (1-10 mHz). Measurements of the Poynting vectors associated with the fluctuations are consistent with the Elsaesser variable analysis. These results generally support interpretations of the Elsaesser variables which have been made based strictly on solar wind data and provide additional insight into the nature of the ion foreshock turbulence.

  1. An examination of loads and responses of a wind turbine undergoing variable-speed operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, A.D.; Buhl, M.L. Jr.; Bir, G.S.

    1996-11-01

    The National Renewable Energy Laboratory has recently developed the ability to predict turbine loads and responses for machines undergoing variable-speed operation. The wind industry has debated the potential benefits of operating wind turbine sat variable speeds for some time. Turbine system dynamic responses (structural response, resonance, and component interactions) are an important consideration for variable-speed operation of wind turbines. The authors have implemented simple, variable-speed control algorithms for both the FAST and ADAMS dynamics codes. The control algorithm is a simple one, allowing the turbine to track the optimum power coefficient (C{sub p}). The objective of this paper is tomore » show turbine loads and responses for a particular two-bladed, teetering-hub, downwind turbine undergoing variable-speed operation. The authors examined the response of the machine to various turbulent wind inflow conditions. In addition, they compare the structural responses under fixed-speed and variable-speed operation. For this paper, they restrict their comparisons to those wind-speed ranges for which limiting power by some additional control strategy (blade pitch or aileron control, for example) is not necessary. The objective here is to develop a basic understanding of the differences in loads and responses between the fixed-speed and variable-speed operation of this wind turbine configuration.« less

  2. Mean wind speed below building height in residential neighborhoods with different tree densities

    Treesearch

    G.M. Heisler

    1990-01-01

    There is little available knowledge of the absolute or relative effects of trees and buildings on wind at or below building height in residential neighborhoods. In this study, mean wind speed was measured at a height of 6.6 ft (2 m) in neighborhoods of single-family houses. BuIlding densities ranged between 6% and 12% of the land ares, and tree-cover densities were...

  3. A Study of Spatio-Temporal Variability in Future Wind Energy over the Korean Peninsula Using Regional Climate Model Ensemble Projections

    NASA Astrophysics Data System (ADS)

    KIM, Y.; Lim, Y. J.; Kim, Y. H.; Kim, B. J.

    2015-12-01

    The impacts of climate change on wind speed, wind energy density (WED), and potential electronic production (PEP) over the Korean peninsula have been investigated by using five regional climate models (HadGEM3-RA, RegCM, WRF, GRIMs and MM5) ensemble projection data. HadGEM2-AO based two RCP scenarios (RCP4.5/8.5) data have been used for initial and boundary condition to all RCMs. Wind energy density and its annual and seasonal variability have been estimated based on monthly near-surface wind speeds, and the potential electronic production and its change have been also analyzed. As a result of comparison ensemble models based annual mean wind speed for 25-yr historical period (1981-2005) to the ERA-interim, it is shown that all RCMs overestimate near-surface wind speed compared to the reanalysis data but the results of HadGEM3-RA are most comparable. The changes annual and seasonal mean of WED and PEP for the historical period and comparison results to future projection (2021-2050) will be presented in this poster session. We also scrutinize the changes in mean sea level pressure and mean sea level pressure gradient in driving GCM/RCM as a factor inducing the variations. Our results can be used as a background data for devising a plan to develop and operate wind farm over the Korean Peninsula.

  4. Power maximization of variable-speed variable-pitch wind turbines using passive adaptive neural fault tolerant control

    NASA Astrophysics Data System (ADS)

    Habibi, Hamed; Rahimi Nohooji, Hamed; Howard, Ian

    2017-09-01

    Power maximization has always been a practical consideration in wind turbines. The question of how to address optimal power capture, especially when the system dynamics are nonlinear and the actuators are subject to unknown faults, is significant. This paper studies the control methodology for variable-speed variable-pitch wind turbines including the effects of uncertain nonlinear dynamics, system fault uncertainties, and unknown external disturbances. The nonlinear model of the wind turbine is presented, and the problem of maximizing extracted energy is formulated by designing the optimal desired states. With the known system, a model-based nonlinear controller is designed; then, to handle uncertainties, the unknown nonlinearities of the wind turbine are estimated by utilizing radial basis function neural networks. The adaptive neural fault tolerant control is designed passively to be robust on model uncertainties, disturbances including wind speed and model noises, and completely unknown actuator faults including generator torque and pitch actuator torque. The Lyapunov direct method is employed to prove that the closed-loop system is uniformly bounded. Simulation studies are performed to verify the effectiveness of the proposed method.

  5. Wind regimes and their relation to synoptic variables using self-organizing maps

    NASA Astrophysics Data System (ADS)

    Berkovic, Sigalit

    2018-01-01

    This study exemplifies the ability of the self-organizing maps (SOM) method to directly define well known wind regimes over Israel during the entire year, except summer period, at 12:00 UTC. This procedure may be applied at other hours and is highly relevant to future automatic climatological analysis and applications. The investigation is performed by analysing surface wind measurements from 53 Israel Meteorological Service stations. The relation between the synoptic variables and the wind regimes is revealed from the averages of ECMWF ERA-INTERIM reanalysis variables for each SOM wind regime. The inspection of wind regimes and their average geopotential anomalies has shown that wind regimes relate to the gradient of the pressure anomalies, rather than to the specific isobars pattern. Two main wind regimes - strong western and the strong eastern or northern - are well known over this region. The frequencies of the regimes according to seasons is verified. Strong eastern regimes are dominant during winter, while strong western regimes are frequent in all seasons.

  6. Statistical Methods for Quantifying the Variability of Solar Wind Transients of All Sizes

    NASA Astrophysics Data System (ADS)

    Tindale, E.; Chapman, S. C.

    2016-12-01

    The solar wind is inherently variable across a wide range of timescales, from small-scale turbulent fluctuations to the 11-year periodicity induced by the solar cycle. Each solar cycle is unique, and this change in overall cycle activity is coupled from the Sun to Earth via the solar wind, leading to long-term trends in space weather. Our work [Tindale & Chapman, 2016] applies novel statistical methods to solar wind transients of all sizes, to quantify the variability of the solar wind associated with the solar cycle. We use the same methods to link solar wind observations with those on the Sun and Earth. We use Wind data to construct quantile-quantile (QQ) plots comparing the statistical distributions of multiple commonly used solar wind-magnetosphere coupling parameters between the minima and maxima of solar cycles 23 and 24. We find that in each case the distribution is multicomponent, ranging from small fluctuations to extreme values, with the same functional form at all phases of the solar cycle. The change in PDF is captured by a simple change of variables, which is independent of the PDF model. Using this method we can quantify the quietness of the cycle 24 maximum, identify which variable drives the changing distribution of composite parameters such as ɛ, and we show that the distribution of ɛ is less sensitive to changes in its extreme values than that of its constituents. After demonstrating the QQ method on solar wind data, we extend the analysis to include solar and magnetospheric data spanning the same time period. We focus on GOES X-ray flux and WDC AE index data. Finally, having studied the statistics of transients across the full distribution, we apply the same method to time series of extreme bursts in each variable. Using these statistical tools, we aim to track the solar cycle-driven variability from the Sun through the solar wind and into the Earth's magnetosphere. Tindale, E. and S.C. Chapman (2016), Geophys. Res. Lett., 43(11), doi: 10

  7. Variability of Wind Speeds and Power over Europe

    NASA Astrophysics Data System (ADS)

    Tambke, J.; von Bremen, L.; de Decker, J.; Schmidt, M.; Steinfeld, G.; Wolff, J.-O.

    2010-09-01

    of momentum through the air-sea interface is described by a common wave boundary layer with enhanced Charnock dynamics. 2.) Wind Field Variability Time series of wind speed and power from 400 potential offshore locations and 16,000 onshore sites in the 2020 and 2030 scenarios are part of the design basis of the EU-project www.OffshoreGrid.eu. This project investigates the grid integration of all planned offshore farms in Northern Europe and will serve as the basis for the "Blueprint for Offshore Grids" by the European Commission. The synchronous wind time series were calculated with the WRF-model. The simulation comprises four years and was validated with a number of wind measurements. We present detailed statistics of local, clustered and regional power production. The analysis quantifies spatial and temporal correlations, extreme events and ramps. Important results are the smoothing effects in a pan-European offshore grid. Key words: Offshore Wind Resource Assessment; Marine Meteorology; Wind Speed Profile; Marine Atmospheric Boundary Layer; Wind Variability, Spatio-temporal Correlation; Electricity Grid Integration

  8. Subgrid-scale effects in compressible variable-density decaying turbulence

    DOE PAGES

    GS, Sidharth; Candler, Graham V.

    2018-05-08

    We present that many turbulent flows are characterized by complex scale interactions and vorticity generation caused by compressibility and variable-density effects. In the large-eddy simulation of variable-density flows, these processes manifest themselves as subgrid-scale (SGS) terms that interact with the resolved-scale flow. This paper studies the effect of the variable-density SGS terms and quantifies their relative importance. We consider the SGS terms appearing in the density-weighted Favre-filtered equations and in the unweighted Reynolds-filtered equations. The conventional form of the Reynolds-filtered momentum equation is complicated by a temporal SGS term; therefore, we derive a new form of the Reynolds-filtered governing equationsmore » that does not contain this term and has only double-correlation SGS terms. The new form of the filtered equations has terms that represent the SGS mass flux, pressure-gradient acceleration and velocity-dilatation correlation. To evaluate the dynamical significance of the variable-density SGS effects, we carry out direct numerical simulations of compressible decaying turbulence at a turbulent Mach number of 0.3. Two different initial thermodynamic conditions are investigated: homentropic and a thermally inhomogeneous gas with regions of differing densities. The simulated flow fields are explicitly filtered to evaluate the SGS terms. The importance of the variable-density SGS terms is quantified relative to the SGS specific stress, which is the only SGS term active in incompressible constant-density turbulence. It is found that while the variable-density SGS terms in the homentropic case are negligible, they are dynamically significant in the thermally inhomogeneous flows. Investigation of the variable-density SGS terms is therefore important, not only to develop variable-density closures but also to improve the understanding of scale interactions in variable-density flows.« less

  9. Subgrid-scale effects in compressible variable-density decaying turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GS, Sidharth; Candler, Graham V.

    We present that many turbulent flows are characterized by complex scale interactions and vorticity generation caused by compressibility and variable-density effects. In the large-eddy simulation of variable-density flows, these processes manifest themselves as subgrid-scale (SGS) terms that interact with the resolved-scale flow. This paper studies the effect of the variable-density SGS terms and quantifies their relative importance. We consider the SGS terms appearing in the density-weighted Favre-filtered equations and in the unweighted Reynolds-filtered equations. The conventional form of the Reynolds-filtered momentum equation is complicated by a temporal SGS term; therefore, we derive a new form of the Reynolds-filtered governing equationsmore » that does not contain this term and has only double-correlation SGS terms. The new form of the filtered equations has terms that represent the SGS mass flux, pressure-gradient acceleration and velocity-dilatation correlation. To evaluate the dynamical significance of the variable-density SGS effects, we carry out direct numerical simulations of compressible decaying turbulence at a turbulent Mach number of 0.3. Two different initial thermodynamic conditions are investigated: homentropic and a thermally inhomogeneous gas with regions of differing densities. The simulated flow fields are explicitly filtered to evaluate the SGS terms. The importance of the variable-density SGS terms is quantified relative to the SGS specific stress, which is the only SGS term active in incompressible constant-density turbulence. It is found that while the variable-density SGS terms in the homentropic case are negligible, they are dynamically significant in the thermally inhomogeneous flows. Investigation of the variable-density SGS terms is therefore important, not only to develop variable-density closures but also to improve the understanding of scale interactions in variable-density flows.« less

  10. An oilspill trajectory analysis model with a variable wind deflection angle

    USGS Publications Warehouse

    Samuels, W.B.; Huang, N.E.; Amstutz, D.E.

    1982-01-01

    The oilspill trajectory movement algorithm consists of a vector sum of the surface drift component due to wind and the surface current component. In the U.S. Geological Survey oilspill trajectory analysis model, the surface drift component is assumed to be 3.5% of the wind speed and is rotated 20 degrees clockwise to account for Coriolis effects in the Northern Hemisphere. Field and laboratory data suggest, however, that the deflection angle of the surface drift current can be highly variable. An empirical formula, based on field observations and theoretical arguments relating wind speed to deflection angle, was used to calculate a new deflection angle at each time step in the model. Comparisons of oilspill contact probabilities to coastal areas calculated for constant and variable deflection angles showed that the model is insensitive to this changing angle at low wind speeds. At high wind speeds, some statistically significant differences in contact probabilities did appear. ?? 1982.

  11. Wind Stress Variability Observed Over Coastal Waters

    NASA Astrophysics Data System (ADS)

    Ortiz-Suslow, D. G.; Haus, B. K.; Laxague, N.; Williams, N. J.; Graber, H. C.

    2016-02-01

    The wind stress on the ocean surface generates waves, drives currents, and enhances gas exchange; and a significant amount of work has been done to characterize the air-sea momentum flux in terms of bulk oceanographic and atmospheric parameters. However, the majority of this work to develop operational algorithms has been focused on the deep ocean and the suitability of these methods in the coastal regime has not been evaluated. The findings from a two-part field campaign will be presented which highlight the divergence of nearshore wind stress observations from conventional, deep water results. The first set of data comes from a coastal region near a relatively small, natural tidal inlet. A high degree of spatial variability was observed in both the wind stress magnitude and direction, suggestive of coastal processes (e.g., depth-limited wave affects and horizontal current shear) modulating the momentum flux from the atmosphere to the ocean surface. These shallow-water processes are typically not accounted for in conventional parameterizations. Across the experimental domain and for a given wind speed, the stress magnitude was found to be nearly 2.5 times that predicted by conventional methods; also, a high propensity for stress steering off the mean azimuthal wind direction (up to ±70 degrees) was observed and linked to horizontal current gradients produced by the tidal inlet. The preliminary findings from a second data set taken in the vicinity of the macrotidal Columbia River Mouth will also be presented. Compared to the first data set, a similar degree of variability is observed here, but the processes responsible for this are present at a much larger scale. Specifically, the Columbia River Mouth observations were made in the presence of significant swell wave energy and during periods of very high estuarine discharge. The relative angle between the wind and swell direction is expected to be significant with regards to the observed momentum flux. Also, these

  12. 11- and 22-year variations of the cosmic ray density and of the solar wind speed

    NASA Technical Reports Server (NTRS)

    Chirkov, N. P.

    1985-01-01

    Cosmic ray density variations for 17-21 solar activity cycles and the solar wind speed for 20-21 events are investigated. The 22-year solar wind speed recurrence was found in even and odd cycles. The 22-year variations of cosmic ray density were found to be opposite that of solar wind speed and solar activity. The account of solar wind speed in 11-year variations significantly decreases the modulation region of cosmic rays when E = 10-20 GeV.

  13. Variability of winds and temperature in the Bergen area

    NASA Astrophysics Data System (ADS)

    Schönbein, Daniel; Ólafsson, Haraldur; Asle Olseth, Jan; Furevik, Birgitte

    2017-04-01

    In recent years, observations have been made by a dense network of automatic weather stations in the Bergen area in W-Norway (Bergen School of Meteorology). Here, cases are presented that feature large spatial variability in winds and temperature and the ability of a numerical model to reproduce this variability is assessed.

  14. Wind effect on salt transport variability in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Sandeep, K. K.; Pant, V.

    2017-12-01

    The Bay of Bengal (BoB) exhibits large spatial variability in sea surface salinity (SSS) pattern caused by its unique hydrological, meteorological and oceanographical characteristics. This SSS variability is largely controlled by the seasonally reversing monsoon winds and the associated currents. Further, the BoB receives substantial freshwater inputs through excess precipitation over evaporation and river discharge. Rivers like Ganges, Brahmaputra, Mahanadi, Krishna, Godavari, and Irawwady discharge annually a freshwater volume in range between 1.5 x 1012 and 1.83 x 1013 m3 into the bay. A major volume of this freshwater input to the bay occurs during the southwest monsoon (June-September) period. In the present study, a relative role of winds in the SSS variability in the bay is investigated by using an eddy-resolving three dimensional Regional Ocean Modeling System (ROMS) numerical model. The model is configured with realistic bathymetry, coastline of study region and forced with daily climatology of atmospheric variables. River discharges from the major rivers are distributed in the model grid points representing their respective geographic locations. Salt transport estimate from the model simulation for realistic case are compared with the standard reference datasets. Further, different experiments were carried out with idealized surface wind forcing representing the normal, low, high, and very high wind speed conditions in the bay while retaining the realistic daily varying directions for all the cases. The experimental simulations exhibit distinct dispersal patterns of the freshwater plume and SSS in different experiments in response to the idealized winds. Comparison of the meridional and zonal surface salt transport estimated for each experiment showed strong seasonality with varying magnitude in the bay with a maximum spatial and temporal variability in the western and northern parts of the BoB.

  15. Heat transfer phase change paint test (OH-42) of a Rockwell International SSV orbiter in the NASA/LRC Mach 8 variable density wind tunnel

    NASA Technical Reports Server (NTRS)

    Jones, R.; Creel, T. R., Jr.; Lawing, P.; Quan, M.; Dye, W.; Cummings, J.; Gorowitz, H.; Craig, C.; Rich, G.

    1973-01-01

    Phase change paint tests of a Rockwell International .00593-scale space shuttle orbiter were conducted in the Langley Research Center's Variable Density Wind Tunnel. The test objectives were to determine the effects of various wing/underbody configurations on the aerodynamic heating rates and boundary layer transition during simulated entry conditions. Several models were constructed. Each varied from the other in either wing cuff radius, airfoil thickness, or wing-fuselage underbody blending. Two ventral fins were glued to the fuselage underside of one model to test the interference heating effects. Simulated Mach 8 entry data were obtained for each configuration at angles of attack ranging from 25 to 40 deg, and a Reynolds number variation of one million to eight million. Elevon, bodyflap, and rudder flare deflections were tested. Oil flow visualization and Schlieren photographs were obtained to aid in reducing the phase change paint data as well as to observe the flow patterns peculiar to each configuration.

  16. Spectral Density of Laser Beam Scintillation in Wind Turbulence. Part 1; Theory

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1997-01-01

    The temporal spectral density of the log-amplitude scintillation of a laser beam wave due to a spatially dependent vector-valued crosswind (deterministic as well as random) is evaluated. The path weighting functions for normalized spectral moments are derived, and offer a potential new technique for estimating the wind velocity profile. The Tatarskii-Klyatskin stochastic propagation equation for the Markov turbulence model is used with the solution approximated by the Rytov method. The Taylor 'frozen-in' hypothesis is assumed for the dependence of the refractive index on the wind velocity, and the Kolmogorov spectral density is used for the refractive index field.

  17. Atmospheric pressure, density, temperature and wind variations between 50 and 200 km

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Woodrum, A.

    1972-01-01

    Data on atmospheric pressure, density, temperature and winds between 50 and 200 km were collected from sources including Meteorological Rocket Network data, ROBIN falling sphere data, grenade release and pitot tube data, meteor winds, chemical release winds, satellite data, and others. These data were analyzed by a daily difference method and results on the distribution statistics, magnitude, and spatial structure of the irregular atmospheric variations are presented. Time structures of the irregular variations were determined by the analysis of residuals from harmonic analysis of time series data. The observed height variations of irregular winds and densities are found to be in accord with a theoretical relation between these two quantities. The latitude variations (at 50 - 60 km height) show an increasing trend with latitude. A possible explanation of the unusually large irregular wind magnitudes of the White Sands MRN data is given in terms of mountain wave generation by the Sierra Nevada range about 1000 km west of White Sands. An analytical method is developed which, based on an analogy of the irregular motion field with axisymmetric turbulence, allows measured or model correlation or structure functions to be used to evaluate the effective frequency spectra of scalar and vector quantities of a spacecraft moving at any speed and at any trajectory elevation angle.

  18. Smoothing Control of Wind Farm Output by Using Kinetic Energy of Variable Speed Wind Power Generators

    NASA Astrophysics Data System (ADS)

    Sato, Daiki; Saitoh, Hiroumi

    This paper proposes a new control method for reducing fluctuation of power system frequency through smoothing active power output of wind farm. The proposal is based on the modulation of rotaional kinetic energy of variable speed wind power generators through power converters between permanent magnet synchronous generators (PMSG) and transmission lines. In this paper, the proposed control is called Fluctuation Absorption by Flywheel Characteristics control (FAFC). The FAFC can be easily implemented by adding wind farm output signal to Maximum Power Point Tracking control signal through a feedback control loop. In order to verify the effectiveness of the FAFC control, a simulation study was carried out. In the study, it was assumed that the wind farm consisting of PMSG type wind power generator and induction machine type wind power generaotors is connected with a power sysem. The results of the study show that the FAFC control is a useful method for reducing the impacts of wind farm output fluctuation on system frequency without additional devices such as secondary battery.

  19. Are Strong Zonal Winds in Giant Planets Caused by Density-Stratification?

    NASA Astrophysics Data System (ADS)

    Verhoeven, J.; Stellmach, S.

    2012-12-01

    One of the most striking features of giant planets like Jupiter and Saturn are the zonal wind patterns observed on their surfaces. The mechanism that drives this differential rotation is still not clearly identified and is currently strongly debated in the astro- and geophysics community. Different mechanisms have been proposed over the last decades. Here, a recently discovered mechanism based on background density stratification (Glatzmaier et al., 2009) is investigated. This mechanism has the potential to overcome known difficulties of previous explanations and its efficiency has been demonstrated in 2-d simulations covering equatorial planes. By performing highly resolved numerical simulations in a local Cartesian geometry, we are able to test the efficiency and functionality of this mechanism in turbulent, rotating convection in three spatial dimensions. The choice of a Cartesian model geometry naturally excludes other known mechanisms capable of producing differential rotation, thus allowing us to investigate the role of density stratification in isolation. Typically, the dynamics can be classified into two main regimes: A regime exhibiting strong zonal winds for weak to moderate thermal driving and a regime where zonal winds are largely absent in the case of a strong thermal forcing. Our results indicate that previous 2-d results must be handled with care and can only explain parts of the full 3-d behavior. We show that the density-stratification mechanism tends to operate in a more narrow parameter range in 3-d as compared to 2-d simulations. The dynamics of the regime transition is shown to differ in both cases, which renders scaling laws derived from two-dimensional studies questionable. Based on our results, we provide estimates for the importance of the density-stratification mechanism for giant planets like Jupiter (strong density stratification), for systems like the Earth's core (weak density stratification) and compare its efficiency with other

  20. Density and pressure variability in the mesosphere and thermosphere

    NASA Technical Reports Server (NTRS)

    Davis, T. M.

    1986-01-01

    In an effort to isolate the essential physics of the mesosphere and the thermosphere, a steady one-dimensional density and pressure model has been developed in support of related NASA activities, i.e., projects such as the AOTV and the Space Station. The model incorporates a zeroth order basic state including both the three-dimensional wind field and its associated shear structure, etc. A first order wave field is also incorporated in period bands ranging from about one second to one day. Both basic state and perturbation quantities satsify the combined constraints of mass, linear momentum and energy conservation on the midlatitude beta plane. A numerical (iterative) technique is used to solve for the vertical wind which is coupled to the density and pressure fields. The temperature structure from 1 to 1000 km and the lower boundary conditions are specified using the U.S. Standard Atmosphere 1976. Vertical winds are initialized at the top of the Planetary Boundary Layer using Ekman pumping values over flat terrain. The model also allows for the generation of waves during the geostrophic adjustment process and incorporates wave nonlinearity effects.

  1. Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators: Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators

    DOE PAGES

    Staid, Andrea; Watson, Jean -Paul; Wets, Roger J. -B.; ...

    2017-07-11

    Forecasts of available wind power are critical in key electric power systems operations planning problems, including economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of wind power production, with associated probability. We present and analyze a novel method for generating probabilistic wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed wind power timemore » series. We estimate non-parametric forecast error densities, specifically using epi-spline basis functions, allowing us to capture the skewed and non-parametric nature of error densities observed in real-world data. We then describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to which extreme errors are captured.We compare the performance of our approach to the current state-of-the-art considering publicly available data associated with the Bonneville Power Administration, analyzing aggregate production of a number of wind farms over a large geographic region. Finally, we discuss the advantages of our approach in the context of specific power systems operations planning problems: stochastic unit commitment and economic dispatch. Here, our methodology is embodied in the joint Sandia – University of California Davis Prescient software package for assessing and analyzing stochastic operations strategies.« less

  2. Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators: Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staid, Andrea; Watson, Jean -Paul; Wets, Roger J. -B.

    Forecasts of available wind power are critical in key electric power systems operations planning problems, including economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of wind power production, with associated probability. We present and analyze a novel method for generating probabilistic wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed wind power timemore » series. We estimate non-parametric forecast error densities, specifically using epi-spline basis functions, allowing us to capture the skewed and non-parametric nature of error densities observed in real-world data. We then describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to which extreme errors are captured.We compare the performance of our approach to the current state-of-the-art considering publicly available data associated with the Bonneville Power Administration, analyzing aggregate production of a number of wind farms over a large geographic region. Finally, we discuss the advantages of our approach in the context of specific power systems operations planning problems: stochastic unit commitment and economic dispatch. Here, our methodology is embodied in the joint Sandia – University of California Davis Prescient software package for assessing and analyzing stochastic operations strategies.« less

  3. IPS analysis on relationship among velocity, density and temperature of the solar wind

    NASA Astrophysics Data System (ADS)

    Hayashi, K.; Tokumaru, M.; Fujiki, K.

    2015-12-01

    The IPS(Interplanetary Scintillation)-MHD(magnetohydrodynamics) tomography is a method we have developed to determine three-dimensional MHD solution of the solar wind that best matches the line-of-sight IPS solar-wind speed data (Hayashi et al., 2003). The tomographic approach is an iteration method in which IPS observations are simulated in MHD steady-state solution, then differences between the simulated observation and the actual IPS observation is reduced by modifying solar-wind boundary map at 50 solar radii. This forward model needs to assume solar wind density and temperature as function of speed. We use empirical functions, N(V) and T(V), derived from Helios in-situ measurement data within 0.5 AU in 1970s. For recent years, especially after 2006, these functions yield higher densities and lower temperatures than in-situ measurements indicate. To characterize the differences between the simulated and actual solar wind plasma, we tune parameters in the functions so that agreements with in-situ data (near the Earth and at Ulysses) will be optimized. This optimization approach can help better simulations of the solar corona and heliosphere, and will help our understandings on roles of magnetic field in solar wind heating and acceleration.

  4. Substorm-related thermospheric density and wind disturbances derived from CHAMP observations

    NASA Astrophysics Data System (ADS)

    Ritter, P.; Lühr, H.; Doornbos, E.

    2010-06-01

    The input of energy and momentum from the magnetosphere is most efficiently coupled into the high latitude ionosphere-thermosphere. The phenomenon we are focusing on here is the magnetospheric substorm. This paper presents substorm related observations of the thermosphere derived from the CHAMP satellite. With its sensitive accelerometer the satellite can measure the air density and zonal winds. Based on a large number of substorm events the average high and low latitude thermospheric response to substorm onsets was deduced. During magnetic substorms the thermospheric density is enhanced first at high latitudes. Then the disturbance travels at an average speed of 650 m/s to lower latitudes, and 3-4 h later the bulge reaches the equator on the night side. Under the influence of the Coriolis force the travelling atmospheric disturbance (TAD) is deflected westward. In accordance with present-day atmospheric models the disturbance zonal wind velocities during substorms are close to zero near the equator before midnight and attain moderate westward velocities after midnight. In general, the wind system is only weakly perturbed (Δvy<20 m/s) by substorms.

  5. Interplanetary scintillation at large elongation angles: Response to solar wind density structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erskine, F.T.; Cronyn, W.M.; Shawhan, S.D.

    1978-09-01

    Synoptic interplanetary scintillation (IPS) index measurements were taken at 34.3 MHz during May-December 1974 using the University of Iowa Coca Cross radiotelescope on a 'grid' of 150 selected radio sources covering solar elongation angles up to 180/sup 0/. Over 80 of these sources displayed definite IPS. The solar elongation dependence of the 34.3-MHz IPS index is consistent with the elongation angle dependence measured at higher frequencies. Large enhancements (factors of> or approx. =2) of the IPS index are found to coincide with the solar wind (proton density increases greater than 10 cm/sup -3/ as measured by Imp 7 and 8more » for nearly all observed IPS sources throughout the sky. These 'all-sky' IPS enhancements appear to be caused by incresed contributions to the scintillation power by turbulent plasma in regions close to the earth (< or approx. =0.3AU) in all directions. Correlation analysis confirms the IPS response to solar wind density and indicates that the events are due primarily to the corotating solar wind turbulent plasma structures which dominated the interplanetary medium during 1974. The expected IPS space-time signature for a simple model of an approaching corotating turbulent structure is not apparent in our observations. In some cases, the enhancement variatons can be attributed to structural differences in the solar wind density turbulence in and out of the ecliptic.« less

  6. The Variable Fast Soft X-Ray Wind in PG 1211+143

    NASA Astrophysics Data System (ADS)

    Reeves, J. N.; Lobban, A.; Pounds, K. A.

    2018-02-01

    The analysis of a series of seven observations of the nearby (z = 0.0809) QSO PG 1211+143, taken with the Reflection Grating Spectrometer (RGS) onboard XMM-Newton in 2014, are presented. The high-resolution soft X-ray spectrum, with a total exposure exceeding 600 ks, shows a series of blueshifted absorption lines from the He and H-like transitions of N, O, and Ne, as well as from L-shell Fe. The strongest absorption lines are all systematically blueshifted by ‑0.06c, originating in two absorption zones from low- and high-ionization gas. Both zones are variable on timescales of days, with the variations in absorber opacity effectively explained by either column density changes or the absorber ionization responding directly to the continuum flux. We find that the soft X-ray absorbers probably exist in a two-phase wind at a radial distance of ∼1017–1018 cm from the black hole with the lower-ionization gas as denser clumps embedded within a higher-ionization outflow. The overall mass outflow rate of the soft X-ray wind may be as high as 2{M}ȯ yr‑1, close to the Eddington rate for PG 1211+143 and similar to that previously deduced from the Fe K absorption.

  7. Variable speed generator technology options for wind turbine generators

    NASA Technical Reports Server (NTRS)

    Lipo, T. A.

    1995-01-01

    The electrical system options for variable speed operation of a wind turbine generator are treated in this paper. The key operating characteristics of each system are discussed and the major advantages and disadvantages of each are identified

  8. Modeling circulation patterns induced by spatial cross-shore wind variability in a small-size coastal embayment

    NASA Astrophysics Data System (ADS)

    Cerralbo, Pablo; Espino, Manuel; Grifoll, Manel

    2016-08-01

    This contribution shows the importance of the cross-shore spatial wind variability in the water circulation in a small-sized micro-tidal bay. The hydrodynamic wind response at Alfacs Bay (Ebro River delta, NW Mediterranean Sea) is investigated with a numerical model (ROMS) supported by in situ observations. The wind variability observed in meteorological measurements is characterized with meteorological model (WRF) outputs. From the hydrodynamic simulations of the bay, the water circulation response is affected by the cross-shore wind variability, leading to water current structures not observed in the homogeneous-wind case. If the wind heterogeneity response is considered, the water exchange in the longitudinal direction increases significantly, reducing the water exchange time by around 20%. Wind resolutions half the size of the bay (in our case around 9 km) inhibit cross-shore wind variability, which significantly affects the resultant circulation pattern. The characteristic response is also investigated using idealized test cases. These results show how the wind curl contributes to the hydrodynamic response in shallow areas and promotes the exchange between the bay and the open sea. Negative wind curl is related to the formation of an anti-cyclonic gyre at the bay's mouth. Our results highlight the importance of considering appropriate wind resolution even in small-scale domains (such as bays or harbors) to characterize the hydrodynamics, with relevant implications in the water exchange time and the consequent water quality and ecological parameters.

  9. Temperature and density anti-correlations in solar wind fluctuations

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Matthaeus, W. H.; Klein, L. W.

    1990-01-01

    Recent theoretical investigations of low Mach number flows, that describe two distinct approaches by fluids to the incompressible regime are summarized. The first includes the effects of relatively strong density and temperature fluctuations (Type I), while the second places fluctuations in mechanical pressure, density, and temperature on an equal footing (Type II). In the latter case, the relations between density and pressure are recovered, whereas the former case yields departures from incompressible behavior in that density and temperature fluctuations are predicted to be anti-correlated. It is suggested that nearly incompressible fluids can be classified as either Type I or II, and it is shown that the well-known pressure-balanced structures represent a subclass of static solutions within this classification. Two examples from Voyager data illustrate the potential for observing these distinct nearly incompressible dynamical ordering in the solar wind.

  10. Revealing The Impact Of Climate Variability On The Wind Resource Using Data Mining Techniques

    NASA Astrophysics Data System (ADS)

    Clifton, A.; Lundquist, J. K.

    2011-12-01

    Wind turbines harvest energy from the wind. Winds at heights where industrial-scale turbines operate, up to 200 m above ground, experience a complex interaction between the atmosphere and the Earth's surface. Previous studies for a variety of locations have shown that the wind resource varies over time. In some locations, this variability can be related to large-scale climate oscillations as revealed in climate indices such as the El-Nino-Southern Oscillation (ENSO). These indices can be used to quantify climate change in the past, and can also be extracted from models of future climate. Understanding the correlation between climate indices and wind resources therefore allows us to understand how climate change may influence wind energy production. We present a new methodology for assessing relevant climate modes of oscillation at a given site in order to quantify future wind resource variability. We demonstrate the method on a 14-year record of 10-minute averaged wind speed and wind direction data from several levels of an 80m tower at the National Renewable Energy Laboratory (NREL) National Wind Technology Center near Boulder, Colorado. Data mining techniques (based on k-means clustering) identify 4 major groups of wind speed and direction. After removing annual means, each cluster was compared to a series of climate indices, including the Arctic Oscillation (AO) and Multivariate ENSO Index (MEI). Statistically significant relationships emerge between individual clusters and climate indices. At this location, this result is consistent with the MEI's relationship with other meteorological parameters, such as precipitation, in the Rocky Mountain Region. The presentation will illustrate these relationships between wind resource at this location and other relevant climate indices, and suggest how these relationships can provide a foundation for quantifying the potential future variability of wind energy production at this site and others.

  11. Wind tunnel test of a variable-diameter tiltrotor (VDTR) model

    NASA Technical Reports Server (NTRS)

    Matuska, David; Dale, Allen; Lorber, Peter

    1994-01-01

    This report documents the results from a wind tunnel test of a 1/6th scale Variable Diameter Tiltrotor (VDTR). This test was a joint effort of NASA Ames and Sikorsky Aircraft. The objective was to evaluate the aeroelastic and performance characteristics of the VDTR in conversion, hover, and cruise. The rotor diameter and nacelle angle of the model were remotely changed to represent tiltrotor operating conditions. Data is presented showing the propulsive force required in conversion, blade loads, angle of attack stability and simulated gust response, and hover and cruise performance. This test represents the first wind tunnel test of a variable diameter rotor applied to a tiltrotor concept. The results confirm some of the potential advantages of the VDTR and establish the variable diameter rotor a viable candidate for an advanced tiltrotor. This wind tunnel test successfully demonstrated the feasibility of the Variable Diameter rotor for tilt rotor aircraft. A wide range of test points were taken in hover, conversion, and cruise modes. The concept was shown to have a number of advantages over conventional tiltrotors such as reduced hover downwash with lower disk loading and significantly reduced longitudinal gust response in cruise. In the conversion regime, a high propulsive force was demonstrated for sustained flight with acceptable blade loads. The VDTR demonstrated excellent gust response capabilities. The horizontal gust response correlated well with predictions revealing only half the response to turbulence of the conventional civil tiltrotor.

  12. Wind speed variability over the Canary Islands, 1948-2014: focusing on trend differences at the land-ocean interface and below-above the trade-wind inversion layer

    NASA Astrophysics Data System (ADS)

    Azorin-Molina, Cesar; Menendez, Melisa; McVicar, Tim R.; Acevedo, Adrian; Vicente-Serrano, Sergio M.; Cuevas, Emilio; Minola, Lorenzo; Chen, Deliang

    2017-08-01

    This study simultaneously examines wind speed trends at the land-ocean interface, and below-above the trade-wind inversion layer in the Canary Islands and the surrounding Eastern North Atlantic Ocean: a key region for quantifying the variability of trade-winds and its response to large-scale atmospheric circulation changes. Two homogenized data sources are used: (1) observed wind speed from nine land-based stations (1981-2014), including one mountain weather station (Izaña) located above the trade-wind inversion layer; and (2) simulated wind speed from two atmospheric hindcasts over ocean (i.e., SeaWind I at 30 km for 1948-2014; and SeaWind II at 15 km for 1989-2014). The results revealed a widespread significant negative trend of trade-winds over ocean for 1948-2014, whereas no significant trends were detected for 1989-2014. For this recent period wind speed over land and ocean displayed the same multi-decadal variability and a distinct seasonal trend pattern with a strengthening (late spring and summer; significant in May and August) and weakening (winter-spring-autumn; significant in April and September) of trade-winds. Above the inversion layer at Izaña, we found a predominance of significant positive trends, indicating a decoupled variability and opposite wind speed trends when compared to those reported in boundary layer. The analysis of the Trade Wind Index (TWI), the North Atlantic Oscillation Index (NAOI) and the Eastern Atlantic Index (EAI) demonstrated significant correlations with the wind speed variability, revealing that the correlation patterns of the three indices showed a spatio-temporal complementarity in shaping wind speed trends across the Eastern North Atlantic.

  13. Wind speed variability over the Canary Islands, 1948-2014: focusing on trend differences at the land-ocean interface and below-above the trade-wind inversion layer

    NASA Astrophysics Data System (ADS)

    Azorin-Molina, Cesar; Menendez, Melisa; McVicar, Tim R.; Acevedo, Adrian; Vicente-Serrano, Sergio M.; Cuevas, Emilio; Minola, Lorenzo; Chen, Deliang

    2018-06-01

    This study simultaneously examines wind speed trends at the land-ocean interface, and below-above the trade-wind inversion layer in the Canary Islands and the surrounding Eastern North Atlantic Ocean: a key region for quantifying the variability of trade-winds and its response to large-scale atmospheric circulation changes. Two homogenized data sources are used: (1) observed wind speed from nine land-based stations (1981-2014), including one mountain weather station (Izaña) located above the trade-wind inversion layer; and (2) simulated wind speed from two atmospheric hindcasts over ocean (i.e., SeaWind I at 30 km for 1948-2014; and SeaWind II at 15 km for 1989-2014). The results revealed a widespread significant negative trend of trade-winds over ocean for 1948-2014, whereas no significant trends were detected for 1989-2014. For this recent period wind speed over land and ocean displayed the same multi-decadal variability and a distinct seasonal trend pattern with a strengthening (late spring and summer; significant in May and August) and weakening (winter-spring-autumn; significant in April and September) of trade-winds. Above the inversion layer at Izaña, we found a predominance of significant positive trends, indicating a decoupled variability and opposite wind speed trends when compared to those reported in boundary layer. The analysis of the Trade Wind Index (TWI), the North Atlantic Oscillation Index (NAOI) and the Eastern Atlantic Index (EAI) demonstrated significant correlations with the wind speed variability, revealing that the correlation patterns of the three indices showed a spatio-temporal complementarity in shaping wind speed trends across the Eastern North Atlantic.

  14. Dual stator winding variable speed asynchronous generator: optimal design and experiments

    NASA Astrophysics Data System (ADS)

    Tutelea, L. N.; Deaconu, S. I.; Popa, G. N.

    2015-06-01

    In the present paper is carried out a theoretical and experimental study of dual stator winding squirrel cage asynchronous generator (DSWA) behavior in the presence of saturation regime (non-sinusoidal) due to the variable speed operation. The main aims are the determination of the relations of calculating the equivalent parameters of the machine windings to optimal design using a Matlab code. Issue is limited to three phase range of double stator winding cage-induction generator of small sized powers, the most currently used in the small adjustable speed wind or hydro power plants. The tests were carried out using three-phase asynchronous generator having rated power of 6 [kVA].

  15. Accretion disc wind variability in the states of the microquasar GRS 1915+105

    NASA Astrophysics Data System (ADS)

    Neilsen, Joseph; Petschek, Andrew J.; Lee, Julia C.

    2012-03-01

    Continuing our study of the role and evolution of accretion disc winds in the microquasar GRS 1915+105, we present high-resolution spectral variability analysis of the β and γ states with the Chandra High-Energy Transmission Grating Spectrometer. By tracking changes in the absorption lines from the accretion disc wind, we find new evidence that radiation links the inner and outer accretion discs on a range of time-scales. As the central X-ray flux rises during the high-luminosity γ state, we observe the progressive overionization of the wind. In the β state, we argue that changes in the inner disc leading to the ejection of a transient 'baby jet' also quench the highly ionized wind from the outer disc. Our analysis reveals how the state, structure and X-ray luminosity of the inner accretion disc all conspire to drive the formation and variability of highly ionized accretion disc winds.

  16. Variable speed wind turbine generator with zero-sequence filter

    DOEpatents

    Muljadi, Eduard

    1998-01-01

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

  17. Variable Speed Wind Turbine Generator with Zero-sequence Filter

    DOEpatents

    Muljadi, Eduard

    1998-08-25

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

  18. Variable speed wind turbine generator with zero-sequence filter

    DOEpatents

    Muljadi, E.

    1998-08-25

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility. 14 figs.

  19. Examination of ionic wind and cathode sheath effects in a E-field premixed flame with ion density measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, Stewart V., E-mail: svj0001@uah.edu; Xu, Kunning G., E-mail: gabe.xu@uah.edu

    2016-04-15

    The effect of the ionic wind on a premixed methane-air flame under a DC electric field is studied via mapping of the ion density with Langmuir probes. Ion densities were observed to increase near the burner with increasing electrode voltage up to 6 kV. Past this electrode supply voltage, ion densities ceased increasing and began to decline in some locations within the premixed flame. The increased ion density is caused by an increase in ionic wind force and cathode sheath thickness. The plateau in density is due to the cathode sheath fully encompassing the flame front which is the ion source,more » thereby collecting all ions in the flame. The spatial density data support the ionic wind hypothesis and provide further explanation of its limits based on the plasma sheath.« less

  20. A rotating bluff-body disc for reduced variability in wind tunnel aerosol studies.

    PubMed

    Koehler, Kirsten A; Anthony, T Renee; van Dyke, Michael; Volckens, John

    2011-01-01

    A rotating bluff-body disc (RBD) was developed to reduce spatiotemporal variability associated with sampling supermicron aerosol in low-velocity wind tunnels. The RBD is designed to rotate eight personal aerosol samplers around a circular path in a forward-facing plane aligned with the wind tunnel cross section. Rotation of the RBD allows each sampler to traverse an identical path about the wind tunnel cross section, which reduces the effects of spatial heterogeneity associated with dispersing supermicron aerosol in low-velocity wind tunnels. Samplers are positioned on the face of the RBD via sampling ports, which connect to an air manifold on the back of the disc. Flow through each sampler was controlled with a critical orifice or needle valve, allowing air to be drawn through the manifold with a single pump. A metal tube, attached to this manifold, serves as both the axis of rotation and the flow conduction path (between the samplers and the vacuum source). Validation of the RBD was performed with isokinetic samplers and 37-mm cassettes. For facing-the-wind tests, the rotation of the RBD significantly decreased intra-sampler variability when challenged with particle diameters from 1 to 100 μm. The RBD was then employed to determine the aspiration efficiency of Institute of Occupational Medicine (IOM) personal samplers under a facing-the-wind condition. Operation of IOM samplers on the RBD reduced the between-sampler variability for all particle sizes tested.

  1. Quantifying the Contribution of Wind-Driven Linear Response to the Seasonal and Interannual Variability of Amoc Volume Transports Across 26.5ºN

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; von Storch, J. S.; Haak, H.; Nakayama, K.; Marotzke, J.

    2014-12-01

    Surface wind stress is considered to be an important forcing of the seasonal and interannual variability of Atlantic Meridional Overturning Circulation (AMOC) volume transports. A recent study showed that even linear response to wind forcing captures observed features of the mean seasonal cycle. However, the study did not assess the contribution of wind-driven linear response in realistic conditions against the RAPID/MOCHA array observation or Ocean General Circulation Model (OGCM) simulations, because it applied a linear two-layer model to the Atlantic assuming constant upper layer thickness and density difference across the interface. Here, we quantify the contribution of wind-driven linear response to the seasonal and interannual variability of AMOC transports by comparing wind-driven linear simulations under realistic continuous stratification against the RAPID observation and OCGM (MPI-OM) simulations with 0.4º resolution (TP04) and 0.1º resolution (STORM). All the linear and MPI-OM simulations capture more than 60% of the variance in the observed mean seasonal cycle of the Upper Mid-Ocean (UMO) and Florida Strait (FS) transports, two components of the upper branch of the AMOC. The linear and TP04 simulations also capture 25-40% of the variance in the observed transport time series between Apr 2004 and Oct 2012; the STORM simulation does not capture the observed variance because of the stochastic signal in both datasets. Comparison of half-overlapping 12-month-long segments reveals some periods when the linear and TP04 simulations capture 40-60% of the observed variance, as well as other periods when the simulations capture only 0-20% of the variance. These results show that wind-driven linear response is a major contributor to the seasonal and interannual variability of the UMO and FS transports, and that its contribution varies in an interannual timescale, probably due to the variability of stochastic processes.

  2. Constraining 20th Century Pacific Trade-Wind Variability Using Coral Mn/Ca

    NASA Astrophysics Data System (ADS)

    Sayani, H. R.; Thompson, D. M.; Carilli, J.; Ireland, T. J.; Cobb, K. M.; Atwood, A. R.; Grothe, P. R.; Miller, S. J.; Hitt, N. T.; O'Connor, G.

    2017-12-01

    Global mean surface temperatures during the 20th century are characterized by multidecadal periods of either accelerated or reduced rates of warming that cannot be explained by external forcings alone. Both observations and modeling studies suggest that the reduced rate of global surface warming during the early-2000s can be largely explained by decadal climate variability in the tropical Pacific, specifically changes in trade-wind strength [e.g. Meehl et al., 2016]. However, the relationship between Pacific trade-wind strength and global surface warming is poorly constrained due to the lack of instrumental wind observations prior to the 1970s. Surface corals are now routinely used to generate records of past sea-surface temperature (SST) change, and have dramatically improved our understanding of oceanic variability in the tropical Pacific. Yet, there are few direct measurements of the atmospheric response to this SST variability. Skeletal Mn/Ca ratios in corals from Tarawa Atoll (1.3˚N, 173˚E) have been shown to track El Niño-related westerly wind events on interannual timescales [Shen et al., 1992], and the strength of Pacific trade winds on decadal timescales [Thompson et al., 2015]. Here, we investigate the utility of this novel wind proxy at Kiritimati Atoll (Christmas Island; 2˚N, 157.5˚W), a site that is hydrographically similar to Tarawa. We use a series of seawater samples collected across the 2015/16 El Niño to characterize and quantify the relationship between westerly wind events and seawater Mn variability around Kiritimati. Anchored by this modern-day calibration, we present a new reconstruction of westerly winds across the late-20thcentury from Kiritimati Atoll. We also assess the reproducibility of coral Mn/Ca across cores collected at varying distances from the lagoon, which represents the primary source of seawater Mn to the reef at our site. Lastly, we discuss the strengths and limitations of this novel proxy, as well as the potential for

  3. Wind Turbine Wake Variability in a Large Wind Farm, Observed by Scanning Lidar

    NASA Astrophysics Data System (ADS)

    Lundquist, J. K.; Xiaoxia, G.; Aitken, M.; Quelet, P. T.; Rana, J.; Rhodes, M. E.; St Martin, C. M.; Tay, K.; Worsnop, R.; Irvin, S.; Rajewski, D. A.; Takle, E. S.

    2014-12-01

    Although wind turbine wake modeling is critical for accurate wind resource assessment, operational forecasting, and wind plant optimization, verification of such simulations is currently constrained by sparse datasets taken in limited atmospheric conditions, often of single turbines in isolation. To address this knowledge gap, our team deployed a WINDCUBE 200S scanning lidar in a 300-MW operating wind farm as part of the CWEX-13 field experiment. The lidar was deployed ~2000 m from a row of four turbines, such that wakes from multiple turbines could be sampled with horizontal scans. Twenty minutes of every hour were devoted to horizontal scans at ½ degree resolution at six different elevation angles. Twenty-five days of data were collected, with wind speeds at hub height ranging from quiescent to 14 m/s, and atmospheric stability varying from unstable to strongly stable. The example scan in Fig. 1a shows wakes from a row of four turbines propagating to the northwest. This extensive wake dataset is analyzed based on the quantitative approach of Aitken et al. (J. Atmos. Ocean. Technol. 2014), who developed an automated wake detection algorithm to characterize wind turbine wakes from scanning lidar data. We have extended the Aitken et al. (2014) method to consider multiple turbines in a single scan in order to classify the large numbers of wakes observed in the CWEX-13 dataset (Fig. 1b) during southerly flow conditions. The presentation will explore the variability of wake characteristics such as the velocity deficit and the wake width. These characteristics vary with atmospheric stability, atmospheric turbulence, and inflow wind speed. We find that the strongest and most persistent wakes occur at low to moderate wind speeds (region 2 of the turbine power curve) in stable conditions. We also present evidence that, in stable conditions with strong changes of wind direction with height, wakes propagate in different directions at different elevations above the surface

  4. Filament formation in wind-cloud interactions- II. Clouds with turbulent density, velocity, and magnetic fields

    NASA Astrophysics Data System (ADS)

    Banda-Barragán, W. E.; Federrath, C.; Crocker, R. M.; Bicknell, G. V.

    2018-01-01

    We present a set of numerical experiments designed to systematically investigate how turbulence and magnetic fields influence the morphology, energetics, and dynamics of filaments produced in wind-cloud interactions. We cover 3D, magnetohydrodynamic systems of supersonic winds impacting clouds with turbulent density, velocity, and magnetic fields. We find that lognormal density distributions aid shock propagation through clouds, increasing their velocity dispersion and producing filaments with expanded cross-sections and highly magnetized knots and subfilaments. In self-consistently turbulent scenarios, the ratio of filament to initial cloud magnetic energy densities is ∼1. The effect of Gaussian velocity fields is bound to the turbulence Mach number: Supersonic velocities trigger a rapid cloud expansion; subsonic velocities only have a minor impact. The role of turbulent magnetic fields depends on their tension and is similar to the effect of radiative losses: the stronger the magnetic field or the softer the gas equation of state, the greater the magnetic shielding at wind-filament interfaces and the suppression of Kelvin-Helmholtz instabilities. Overall, we show that including turbulence and magnetic fields is crucial to understanding cold gas entrainment in multiphase winds. While cloud porosity and supersonic turbulence enhance the acceleration of clouds, magnetic shielding protects them from ablation and causes Rayleigh-Taylor-driven subfilamentation. Wind-swept clouds in turbulent models reach distances ∼15-20 times their core radius and acquire bulk speeds ∼0.3-0.4 of the wind speed in one cloud-crushing time, which are three times larger than in non-turbulent models. In all simulations, the ratio of turbulent magnetic to kinetic energy densities asymptotes at ∼0.1-0.4, and convergence of all relevant dynamical properties requires at least 64 cells per cloud radius.

  5. Climatology of mesopause region nocturnal temperature, zonal wind, and sodium density observed by sodium lidar over Hefei, China (32°N, 117°E)

    NASA Astrophysics Data System (ADS)

    Li, T.; Ban, C.; Fang, X.; Li, J.; Wu, Z.; Xiong, J.; Feng, W.; Plane, J. M. C.

    2017-12-01

    The University of Science and Technology of China narrowband sodium temperature/wind lidar, located in Hefei, China (32°N, 117°E), was installed in November 2011 and have made routine nighttime measurements since January 2012. We obtained 154 nights ( 1400 hours) of vertical profiles of temperature, sodium density, and zonal wind, and 83 nights ( 800 hours) of vertical flux of gravity wave (GW) zonal momentum in the mesopause region (80-105 km) during the period of 2012 to 2016. In temperature, it is likely that the diurnal tide dominates below 100 km in spring, while the semidiurnal tide dominates above 100 km throughout the year. A clear semiannual variation in temperature is revealed near 90 km, likely related to the tropical mesospheric semiannual oscillation (MSAO). The variability of sodium density is positively correlated with temperature, suggesting that in addition to dynamics, the chemistry may also play an important role in the formation of sodium atoms. The observed sodium peak density is 1000 cm-3 higher than that simulated by the model. In zonal wind, the diurnal tide dominates in both spring and fall, while semidiurnal tide dominates in winter. The observed semiannual variation in zonal wind near 90 km is out-of-phase with that in temperature, consistent with tropical MSAO. The GW zonal momentum flux is mostly westward in fall and winter, anti-correlated with eastward zonal wind. The annual mean flux averaged over 87-97 km is -0.3 m2/s2 (westward), anti-correlated with eastward zonal wind of 10 m/s. The comparisons of lidar results with those observed by satellite, nearby radar, and simulated by model show generally good agreements.

  6. Precision Electron Density Measurements in the SSX MHD Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Suen-Lewis, Emma M.; Barbano, Luke J.; Shrock, Jaron E.; Kaur, Manjit; Schaffner, David A.; Brown, Michael R.

    2017-10-01

    We characterize fluctuations of the line averaged electron density of Taylor states produced by the magnetized coaxial plasma gun of the SSX device using a 632.8 nm HeNe laser interferometer. The analysis method uses the electron density dependence of the refractive index of the plasma to determine the electron density of the Taylor states. Typical magnetic field and density values in the SSX device approach about B ≅ 0.3 T and n = 0 . 4 ×1016 cm-3 . Analysis is improved from previous density measurement methods by developing a post-processing method to remove relative phase error between interferometer outputs and to account for approximately linear phase drift due to low-frequency mechanical vibrations of the interferometer. Precision density measurements coupled with local measurements of the magnetic field will allow us to characterize the wave composition of SSX plasma via density vs. magnetic field correlation analysis, and compare the wave composition of SSX plasma with that of the solar wind. Preliminary results indicate that density and magnetic field appear negatively correlated. Work supported by DOE ARPA-E ALPHA program.

  7. The Impacts of Wind Speed Trends and 30-Year Variability in Relation to Hydroelectric Reservoir Inflows on Wind Power in the Pacific Northwest.

    PubMed

    Cross, Benjamin D; Kohfeld, Karen E; Bailey, Joseph; Cooper, Andrew B

    2015-01-01

    In hydroelectric dominated systems, the value and benefits of energy are higher during extended dry periods and lower during extended or extreme wet periods. By accounting for regional and temporal differences in the relationship between wind speed and reservoir inflow behavior during wind farm site selection, the benefits of energy diversification can be maximized. The goal of this work was to help maximize the value of wind power by quantifying the long-term (30-year) relationships between wind speed and streamflow behavior, using British Columbia (BC) and the Pacific Northwest (PNW) as a case study. Clean energy and self-sufficiency policies in British BC make the benefits of increased generation during low streamflow periods particularly large. Wind density (WD) estimates from a height of 10m (North American Regional Reanalysis, NARR) were correlated with cumulative usable inflows (CUI) for BC (collected from BC Hydro) for 1979-2010. The strongest WD-CUI correlations were found along the US coast (r ~0.55), whereas generally weaker correlations were found in northern regions, with negative correlations (r ~ -0.25) along BC's North Coast. Furthermore, during the lowest inflow years, WD anomalies increased by up to 40% above average values for the North Coast. Seasonally, high flows during the spring freshet were coincident with widespread negative WD anomalies, with a similar but opposite pattern for low inflow winter months. These poorly or negatively correlated sites could have a moderating influence on climate related variability in provincial electricity supply, by producing greater than average generation in low inflow years and reduced generation in wet years. Wind speed and WD trends were also analyzed for all NARR grid locations, which showed statistically significant positive trends for most of the PNW and the largest increases along the Pacific Coast.

  8. The Impacts of Wind Speed Trends and 30-Year Variability in Relation to Hydroelectric Reservoir Inflows on Wind Power in the Pacific Northwest

    PubMed Central

    Cross, Benjamin D.; Kohfeld, Karen E.; Bailey, Joseph; Cooper, Andrew B.

    2015-01-01

    In hydroelectric dominated systems, the value and benefits of energy are higher during extended dry periods and lower during extended or extreme wet periods. By accounting for regional and temporal differences in the relationship between wind speed and reservoir inflow behavior during wind farm site selection, the benefits of energy diversification can be maximized. The goal of this work was to help maximize the value of wind power by quantifying the long-term (30-year) relationships between wind speed and streamflow behavior, using British Columbia (BC) and the Pacific Northwest (PNW) as a case study. Clean energy and self-sufficiency policies in British BC make the benefits of increased generation during low streamflow periods particularly large. Wind density (WD) estimates from a height of 10m (North American Regional Reanalysis, NARR) were correlated with cumulative usable inflows (CUI) for BC (collected from BC Hydro) for 1979–2010. The strongest WD-CUI correlations were found along the US coast (r ~0.55), whereas generally weaker correlations were found in northern regions, with negative correlations (r ~ -0.25) along BC’s North Coast. Furthermore, during the lowest inflow years, WD anomalies increased by up to 40% above average values for the North Coast. Seasonally, high flows during the spring freshet were coincident with widespread negative WD anomalies, with a similar but opposite pattern for low inflow winter months. These poorly or negatively correlated sites could have a moderating influence on climate related variability in provincial electricity supply, by producing greater than average generation in low inflow years and reduced generation in wet years. Wind speed and WD trends were also analyzed for all NARR grid locations, which showed statistically significant positive trends for most of the PNW and the largest increases along the Pacific Coast. PMID:26271035

  9. Ultraviolet line diagnostics of accretion disk winds in cataclysmic variables

    NASA Technical Reports Server (NTRS)

    Vitello, Peter; Shlosman, Isaac

    1993-01-01

    The IUE data base is used to analyze the UV line shapes of the cataclysmic variables RW Sex, RW Tri, and V Sge. Observed lines are compared to synthetic line profiles computed using a model of rotating biconical winds from accretion disks. The wind model calculates the wind ionization structure self-consistently including photoionization from the disk and boundary layer and treats 3D line radiation transfer in the Sobolev approximation. It is found that winds from accretion disks provide a good fit for reasonable parameters to the observed UV lines which include the P Cygni profiles for low-inclination systems and pure emission at large inclination. Disk winds are preferable to spherical winds which originate on the white dwarf because they: (1) require a much lower ratio of mass-loss rate to accretion rate and are therefore more plausible energetically; (2) provide a natural source for a biconical distribution of mass outflow which produces strong scattering far above the disk leading to P Cygni profiles for low-inclination systems and pure line emission profiles at high inclination with the absence of eclipses in UV lines; and (3) produce rotation-broadened pure emission lines at high inclination.

  10. UV line diagnostics of accretion disk winds in cataclysmic variables

    NASA Technical Reports Server (NTRS)

    Vitello, Peter; Shlosman, Isaac

    1992-01-01

    The IUE data base is used to analyze the UV line shapes of cataclysmic variables RW Sex, RW Tri, and V Sge. Observed lines are compared to synthetic line profiles computed using a model of rotating bi-conical winds from accretion disks. The wind model calculates the wind ionization structure self-consistently including photoionization from the disk and boundary layer and treats 3-D line radiation transfer in the Sobolev approximation. It is found that winds from accretion disks provide a good fit for reasonable parameters to the observed UV lines which include the P Cygni profiles for low inclination systems and pure emission at large inclination. Disk winds are preferable to spherical winds which originate on the white dwarf because they (1) require a much lower ratio of mass loss rate to accretion rate and are therefore more plausible energetically, (2) provide a natural source for a bi-conical distribution of mass outflow which produces strong scattering far above the disk leading to P Cygni profiles for low inclination systems, and pure line emission profiles at high inclination with the absence of eclipses in UV lines, and (3) produce rotation broadened pure emission lines at high inclination.

  11. Measured acoustic properties of variable and low density bulk absorbers

    NASA Technical Reports Server (NTRS)

    Dahl, M. D.; Rice, E. J.

    1985-01-01

    Experimental data were taken to determine the acoustic absorbing properties of uniform low density and layered variable density samples using a bulk absober with a perforated plate facing to hold the material in place. In the layered variable density case, the bulk absorber was packed such that the lowest density layer began at the surface of the sample and progressed to higher density layers deeper inside. The samples were placed in a rectangular duct and measurements were taken using the two microphone method. The data were used to calculate specific acoustic impedances and normal incidence absorption coefficients. Results showed that for uniform density samples the absorption coefficient at low frequencies decreased with increasing density and resonances occurred in the absorption coefficient curve at lower densities. These results were confirmed by a model for uniform density bulk absorbers. Results from layered variable density samples showed that low frequency absorption was the highest when the lowest density possible was packed in the first layer near the exposed surface. The layers of increasing density within the sample had the effect of damping the resonances.

  12. Interhemispheric gradient of atmospheric radiocarbon reveals natural variability of Southern Ocean winds

    NASA Astrophysics Data System (ADS)

    Rodgers, K. B.; Mikaloff-Fletcher, S. E.; Bianchi, D.; Beaulieu, C.; Galbraith, E. D.; Gnanadesikan, A.; Hogg, A. G.; Iudicone, D.; Lintner, B. R.; Naegler, T.; Reimer, P. J.; Sarmiento, J. L.; Slater, R. D.

    2011-10-01

    Tree ring Δ14C data (Reimer et al., 2004; McCormac et al., 2004) indicate that atmospheric Δ14C varied on multi-decadal to centennial timescales, in both hemispheres, over the period between AD 950 and 1830. The Northern and Southern Hemispheric Δ14C records display similar variability, but from the data alone is it not clear whether these variations are driven by the production of 14C in the stratosphere (Stuiver and Quay, 1980) or by perturbations to exchanges between carbon reservoirs (Siegenthaler et al., 1980). As the sea-air flux of 14CO2 has a clear maximum in the open ocean regions of the Southern Ocean, relatively modest perturbations to the winds over this region drive significant perturbations to the interhemispheric gradient. In this study, model simulations are used to show that Southern Ocean winds are likely a main driver of the observed variability in the interhemispheric gradient over AD 950-1830, and further, that this variability may be larger than the Southern Ocean wind trends that have been reported for recent decades (notably 1980-2004). This interpretation also implies that there may have been a significant weakening of the winds over the Southern Ocean within a few decades of AD 1375, associated with the transition between the Medieval Climate Anomaly and the Little Ice Age. The driving forces that could have produced such a shift in the winds at the Medieval Climate Anomaly to Little Ice Age transition remain unknown. Our process-focused suite of perturbation experiments with models raises the possibility that the current generation of coupled climate and earth system models may underestimate the natural background multi-decadal- to centennial-timescale variations in the winds over the Southern Ocean.

  13. Three-dimensional density and compressible magnetic structure in solar wind turbulence

    NASA Astrophysics Data System (ADS)

    Roberts, Owen W.; Narita, Yasuhito; Escoubet, C.-Philippe

    2018-03-01

    The three-dimensional structure of both compressible and incompressible components of turbulence is investigated at proton characteristic scales in the solar wind. Measurements of the three-dimensional structure are typically difficult, since the majority of measurements are performed by a single spacecraft. However, the Cluster mission consisting of four spacecraft in a tetrahedral formation allows for a fully three-dimensional investigation of turbulence. Incompressible turbulence is investigated by using the three vector components of the magnetic field. Meanwhile compressible turbulence is investigated by considering the magnitude of the magnetic field as a proxy for the compressible fluctuations and electron density data deduced from spacecraft potential. Application of the multi-point signal resonator technique to intervals of fast and slow wind shows that both compressible and incompressible turbulence are anisotropic with respect to the mean magnetic field direction P⟂ ≫ P∥ and are sensitive to the value of the plasma beta (β; ratio of thermal to magnetic pressure) and the wind type. Moreover, the incompressible fluctuations of the fast and slow solar wind are revealed to be different with enhancements along the background magnetic field direction present in the fast wind intervals. The differences in the fast and slow wind and the implications for the presence of different wave modes in the plasma are discussed.

  14. Mesoscale density variability in the mesosphere and thermosphere: Effects of vertical flow accelerations

    NASA Technical Reports Server (NTRS)

    Revelle, D. O.

    1987-01-01

    A mechanistic one dimensional numerical (iteration) model was developed which can be used to simulate specific types of mesoscale atmospheric density (and pressure) variability in the mesosphere and the thermosphere, namely those due to waves and those due to vertical flow accelerations. The model was developed with the idea that it could be used as a supplement to the TGCMs (thermospheric general circulation models) since such models have a very limited ability to model phenomena on small spatial scales. The simplest case to consider was the integration upward through a time averaged, height independent, horizontally divergent flow field. Vertical winds were initialized at the lower boundary using the Ekman pumping theory over flat terrain. The results of the computations are summarized.

  15. Wind Variability of B Supergiants. No. 1; The Rapid Rotator HD 64760 (B0.5 Ib)

    NASA Technical Reports Server (NTRS)

    Massa, Derck; Prinja, Raman K.; Fullerton, Alexander W.

    1995-01-01

    We present the results of a 6 day time series of observations of the rapidly rotating B0.5 Ib star HD 64760. We point out several reasons why such intermediate luminosity B supergiants are ideal targets for wind variability studies and then present our results that show the following: continuous wind activity throughout the 6 day run with the wind never in steady state for more than a few hr; wind variability very near nu = 0 km sec(exp -1) in the resonance lines from the lower ionization stages (Al III and C II); a distinct correlation between variability in the Si III ; lambda(lambda)1300 triplets, the strong C III (lambda)1247 singlet, and the onset of extremely strong wind activity, suggesting a connection between photospheric and wind activity; long temporal coherence in the behavior of the strong absorption events; evidence for large-scale spatial coherence, implied by a whole scale, simultaneous weakening in the wind absorption over a wide range in velocities; and ionization variability in the wind accompanying the largest changes in the absorption strengths of the wind lines. In addition, modeling of the wind lines provides the following information about the state the wind in HD 64760. The number of structures on the portion of a constant velocity surface occulting the stellar disk at a particular time must be quite small, while the number on the entire constant velocity surface throughout the wind must be large. The escape probability at low velocity is overestimated by a normal beta approx. 1 velocity law, perhaps due to the presence of low-velocity shocks deep in the wind or a shallow velocity gradient at low velocity. Estimates of the ionization structure in the wind indicate that the ionization ratios are not those expected from thermal equilibrium wind models or from an extrapolation of previous O star results. The large observed q(N V)/q(Si IV) ratio is almost certainly due to distributed X-rays, but the level of ionization predicted by distributed

  16. 3-D ballistic transport of ellipsoidal volcanic projectiles considering horizontal wind field and variable shape-dependent drag coefficients

    NASA Astrophysics Data System (ADS)

    Bertin, Daniel

    2017-02-01

    An innovative 3-D numerical model for the dynamics of volcanic ballistic projectiles is presented here. The model focuses on ellipsoidal particles and improves previous approaches by considering horizontal wind field, virtual mass forces, and drag forces subjected to variable shape-dependent drag coefficients. Modeling suggests that the projectile's launch velocity and ejection angle are first-order parameters influencing ballistic trajectories. The projectile's density and minor radius are second-order factors, whereas both intermediate and major radii of the projectile are of third order. Comparing output parameters, assuming different input data, highlights the importance of considering a horizontal wind field and variable shape-dependent drag coefficients in ballistic modeling, which suggests that they should be included in every ballistic model. On the other hand, virtual mass forces should be discarded since they almost do not contribute to ballistic trajectories. Simulation results were used to constrain some crucial input parameters (launch velocity, ejection angle, wind speed, and wind azimuth) of the block that formed the biggest and most distal ballistic impact crater during the 1984-1993 eruptive cycle of Lascar volcano, Northern Chile. Subsequently, up to 106 simulations were performed, whereas nine ejection parameters were defined by a Latin-hypercube sampling approach. Simulation results were summarized as a quantitative probabilistic hazard map for ballistic projectiles. Transects were also done in order to depict aerial hazard zones based on the same probabilistic procedure. Both maps combined can be used as a hazard prevention tool for ground and aerial transits nearby unresting volcanoes.

  17. Natural wind variability triggered drop in German redispatch volume and costs from 2015 to 2016.

    PubMed

    Wohland, Jan; Reyers, Mark; Märker, Carolin; Witthaut, Dirk

    2018-01-01

    Avoiding dangerous climate change necessitates the decarbonization of electricity systems within the next few decades. In Germany, this decarbonization is based on an increased exploitation of variable renewable electricity sources such as wind and solar power. While system security has remained constantly high, the integration of renewables causes additional costs. In 2015, the costs of grid management saw an all time high of about € 1 billion. Despite the addition of renewable capacity, these costs dropped substantially in 2016. We thus investigate the effect of natural climate variability on grid management costs in this study. We show that the decline is triggered by natural wind variability focusing on redispatch as a main cost driver. In particular, we find that 2016 was a weak year in terms of wind generation averages and the occurrence of westerly circulation weather types. Moreover, we show that a simple model based on the wind generation time series is skillful in detecting redispatch events on timescales of weeks and beyond. As a consequence, alterations in annual redispatch costs in the order of hundreds of millions of euros need to be understood and communicated as a normal feature of the current system due to natural wind variability.

  18. Natural wind variability triggered drop in German redispatch volume and costs from 2015 to 2016

    PubMed Central

    Reyers, Mark; Märker, Carolin; Witthaut, Dirk

    2018-01-01

    Avoiding dangerous climate change necessitates the decarbonization of electricity systems within the next few decades. In Germany, this decarbonization is based on an increased exploitation of variable renewable electricity sources such as wind and solar power. While system security has remained constantly high, the integration of renewables causes additional costs. In 2015, the costs of grid management saw an all time high of about € 1 billion. Despite the addition of renewable capacity, these costs dropped substantially in 2016. We thus investigate the effect of natural climate variability on grid management costs in this study. We show that the decline is triggered by natural wind variability focusing on redispatch as a main cost driver. In particular, we find that 2016 was a weak year in terms of wind generation averages and the occurrence of westerly circulation weather types. Moreover, we show that a simple model based on the wind generation time series is skillful in detecting redispatch events on timescales of weeks and beyond. As a consequence, alterations in annual redispatch costs in the order of hundreds of millions of euros need to be understood and communicated as a normal feature of the current system due to natural wind variability. PMID:29329349

  19. A variable-density absorption event in NGC 3227 mapped with Suzaku and Swift

    NASA Astrophysics Data System (ADS)

    Beuchert, T.; Markowitz, A. G.; Krauß, F.; Miniutti, G.; Longinotti, A. L.; Guainazzi, M.; de La Calle Pérez, I.; Malkan, M.; Elvis, M.; Miyaji, T.; Hiriart, D.; López, J. M.; Agudo, I.; Dauser, T.; Garcia, J.; Kreikenbohm, A.; Kadler, M.; Wilms, J.

    2015-12-01

    Context. The morphology of the circumnuclear gas accreting onto supermassive black holes in Seyfert galaxies remains a topic of much debate. As the innermost regions of active galactic nuclei (AGN) are spatially unresolved, X-ray spectroscopy, and in particular line-of-sight absorption variability, is a key diagnostic to map out the distribution of gas. Aims: Observations of variable X-ray absorption in multiple Seyferts and over a wide range of timescales indicate the presence of clumps/clouds of gas within the circumnuclear material. Eclipse events by clumps transiting the line of sight allow us to explore the properties of the clumps over a wide range of radial distances from the optical/UV broad line region (BLR) to beyond the dust sublimation radius. Time-resolved absorption events have been extremely rare so far, but suggest a range of density profiles across Seyferts. We resolve a weeks-long absorption event in the Seyfert NGC 3227. Methods: We examine six Suzaku and 12 Swift observations from a 2008 campaign spanning five weeks. We use a model accounting for the complex spectral interplay of three absorbers with different levels of ionization. We perform time-resolved spectroscopy to discern the absorption variability behavior. We also examine the IR to X-ray spectral energy distribution (SED) to test for reddening by dust. Results: The 2008 absorption event is due to moderately-ionized (log ξ ~ 1.2-1.4) gas covering 90% of the line of sight. We resolve the density profile to be highly irregular, in contrast to a previous symmetric and centrally-peaked event mapped with RXTE in the same object. The UV data do not show significant reddening, suggesting that the cloud is dust-free. Conclusions: The 2008 campaign has revealed a transit by a filamentary, moderately-ionized cloud of variable density that is likely located in the BLR, and possibly part of a disk wind.

  20. IUE observations of variability in winds from hot stars

    NASA Technical Reports Server (NTRS)

    Grady, C. A.; Snow, T. P., Jr.

    1981-01-01

    Observations of variability in stellar winds or envelopes provide an important probe of their dynamics. For this purpose a number of O, B, Be, and Wolf-Rayet stars were repeatedly observed with the IUE satellite in high resolution mode. In the course of analysis, instrumental and data handling effects were found to introduce spurious variability in many of the spectra. software was developed to partially compensate for these effects, but limitations remain on the type of variability that can be identified from IUE spectra. With these contraints, preliminary results of multiple observations of two OB stars, one Wolf-Rayet star, and a Be star are discussed.

  1. Probability density function characterization for aggregated large-scale wind power based on Weibull mixtures

    DOE PAGES

    Gomez-Lazaro, Emilio; Bueso, Maria C.; Kessler, Mathieu; ...

    2016-02-02

    Here, the Weibull probability distribution has been widely applied to characterize wind speeds for wind energy resources. Wind power generation modeling is different, however, due in particular to power curve limitations, wind turbine control methods, and transmission system operation requirements. These differences are even greater for aggregated wind power generation in power systems with high wind penetration. Consequently, models based on one-Weibull component can provide poor characterizations for aggregated wind power generation. With this aim, the present paper focuses on discussing Weibull mixtures to characterize the probability density function (PDF) for aggregated wind power generation. PDFs of wind power datamore » are firstly classified attending to hourly and seasonal patterns. The selection of the number of components in the mixture is analyzed through two well-known different criteria: the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Finally, the optimal number of Weibull components for maximum likelihood is explored for the defined patterns, including the estimated weight, scale, and shape parameters. Results show that multi-Weibull models are more suitable to characterize aggregated wind power data due to the impact of distributed generation, variety of wind speed values and wind power curtailment.« less

  2. A study of density modulation index in the inner heliospheric solar wind during solar cycle 23

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisoi, Susanta Kumar; Janardhan, P.; Ingale, M.

    2014-11-01

    The ratio of the rms electron density fluctuations to the background density in the solar wind (density modulation index, ε {sub N} ≡ ΔN/N) is of vital importance for understanding several problems in heliospheric physics related to solar wind turbulence. In this paper, we have investigated the behavior of ε {sub N} in the inner heliosphere from 0.26 to 0.82 AU. The density fluctuations ΔN have been deduced using extensive ground-based observations of interplanetary scintillation at 327 MHz, which probe spatial scales of a few hundred kilometers. The background densities (N) have been derived using near-Earth observations from the Advancedmore » Composition Explorer. Our analysis reveals that 0.001 ≲ ε {sub N} ≲ 0.02 and does not vary appreciably with heliocentric distance. We also find that ε {sub N} declines by 8% from 1998 to 2008. We discuss the impact of these findings on problems ranging from our understanding of Forbush decreases to the behavior of the solar wind dynamic pressure over the recent peculiar solar minimum at the end of cycle 23.« less

  3. Variable Density Effects in Stochastic Lagrangian Models for Turbulent Combustion

    DTIC Science & Technology

    2016-07-20

    PDF methods in dealing with chemical reaction and convection are preserved irrespective of density variation. Since the density variation in a typical...combustion process may be as large as factor of seven, including variable- density effects in PDF methods is of significance. Conventionally, the...strategy of modelling variable density flows in PDF methods is similar to that used for second-moment closure models (SMCM): models are developed based on

  4. Dynamics of Magnetopause Reconnection in Response to Variable Solar Wind Conditions

    NASA Astrophysics Data System (ADS)

    Berchem, J.; Richard, R. L.; Escoubet, C. P.; Pitout, F.

    2017-12-01

    Quantifying the dynamics of magnetopause reconnection in response to variable solar wind driving is essential to advancing our predictive understanding of the interaction of the solar wind/IMF with the magnetosphere. To this end we have carried out numerical studies that combine global magnetohydrodynamic (MHD) and Large-Scale Kinetic (LSK) simulations to identify and understand the effects of solar wind/IMF variations. The use of the low dissipation, high resolution UCLA MHD code incorporating a non-linear local resistivity allows the representation of the global configuration of the dayside magnetosphere while the use of LSK ion test particle codes with distributed particle detectors allows us to compare the simulation results with spacecraft observations such as ion dispersion signatures observed by the Cluster spacecraft. We present the results of simulations that focus on the impacts of relatively simple solar wind discontinuities on the magnetopause and examine how the recent history of the interaction of the magnetospheric boundary with solar wind discontinuities can modify the dynamics of magnetopause reconnection in response to the solar wind input.

  5. Seasonal variability in winds in the north polar region of Mars

    NASA Astrophysics Data System (ADS)

    Smith, Isaac B.; Spiga, Aymeric

    2018-07-01

    Surface features near Mars' polar regions are very active, suggesting that they are among the most dynamic places on the planet. Much of that activity is driven by seasonal winds that strongly influence the distribution of water ice and other particulates. Morphologic features such as the spiral troughs, Chasma Boreale, and prominent circumpolar dune fields have experienced persistent winds for several Myr. Therefore, detailing the pattern of winds throughout the year is an important step to understanding what processes affect the martian surface in contemporary and past epochs. In this study, we provide polar-focused mesoscale simulations from northern spring to summer to understand variability from the diurnal to the seasonal scales. We find that there is a strong seasonality to the diurnal surface wind speeds driven primarily by the retreat of the seasonal CO2 until about summer solstice, when the CO2 is gone. The fastest winds are found when the CO2 cap boundary is on the slopes of the north polar layered deposits, providing a strong thermal gradient that enhances the season-long katabatic effect. Mid-summer winds, while not as fast as spring winds, may play a role in dune migration for some dune fields. Late summer wind speeds pick up as the seasonal cap returns.

  6. Stability Augmentation of Wind Farm using Variable Speed Permanent Magnet Synchronous Generator

    NASA Astrophysics Data System (ADS)

    Rosyadi, Marwan; Muyeen, S. M.; Takahashi, Rion; Tamura, Junji

    This paper presents a new control strategy of variable speed permanent magnet wind generator for stability augmentation of wind farm including fixed speed wind turbine with Induction Generator (IG). A new control scheme is developed for two levels back-to-back converters of Permanent Magnet Synchronous Generator (PMSG), by which both active and reactive powers delivered to the grid can be controlled easily. To avoid the converter damage, the DC link protection controller is also proposed in order to protect the dc link circuit during fault condition. To evaluate the control capability of the proposed controllers, simulations are performed on two model systems composed of wind farms connected to an infinite bus. From transient and steady state analyses by using PSCAD/EMTDC, it is concluded that the proposed control scheme is very effective to improve the stability of wind farm for severe network disturbance and randomly fluctuating wind speed.

  7. UDE-based control of variable-speed wind turbine systems

    NASA Astrophysics Data System (ADS)

    Ren, Beibei; Wang, Yeqin; Zhong, Qing-Chang

    2017-01-01

    In this paper, the control of a PMSG (permanent magnet synchronous generator)-based variable-speed wind turbine system with a back-to-back converter is considered. The uncertainty and disturbance estimator (UDE)-based control approach is applied to the regulation of the DC-link voltage and the control of the RSC (rotor-side converter) and the GSC (grid-side converter). For the rotor-side controller, the UDE-based vector control is developed for the RSC with PMSG control to facilitate the application of the MPPT (maximum power point tracking) algorithm for the maximum wind energy capture. For the grid-side controller, the UDE-based vector control is developed to control the GSC with the power reference generated by a UDE-based DC-link voltage controller. Compared with the conventional vector control, the UDE-based vector control can achieve reliable current decoupling control with fast response. Moreover, the UDE-based DC-link voltage regulation can achieve stable DC-link voltage under model uncertainties and external disturbances, e.g. wind speed variations. The effectiveness of the proposed UDE-based control approach is demonstrated through extensive simulation studies in the presence of coupled dynamics, model uncertainties and external disturbances under varying wind speeds. The UDE-based control is able to generate more energy, e.g. by 5% for the wind profile tested.

  8. Development and Validation of a New Fallout Transport Method Using Variable Spectral Winds

    NASA Astrophysics Data System (ADS)

    Hopkins, Arthur Thomas

    A new method has been developed to incorporate variable winds into fallout transport calculations. The method uses spectral coefficients derived by the National Meteorological Center. Wind vector components are computed with the coefficients along the trajectories of falling particles. Spectral winds are used in the two-step method to compute dose rate on the ground, downwind of a nuclear cloud. First, the hotline is located by computing trajectories of particles from an initial, stabilized cloud, through spectral winds, to the ground. The connection of particle landing points is the hotline. Second, dose rate on and around the hotline is computed by analytically smearing the falling cloud's activity along the ground. The feasibility of using specgtral winds for fallout particle transport was validated by computing Mount St. Helens ashfall locations and comparing calculations to fallout data. In addition, an ashfall equation was derived for computing volcanic ash mass/area on the ground. Ashfall data and the ashfall equation were used to back-calculate an aggregated particle size distribution for the Mount St. Helens eruption cloud. Further validation was performed by comparing computed and actual trajectories of a high explosive dust cloud (DIRECT COURSE). Using an error propagation formula, it was determined that uncertainties in spectral wind components produce less than four percent of the total dose rate variance. In summary, this research demonstrated the feasibility of using spectral coefficients for fallout transport calculations, developed a two-step smearing model to treat variable winds, and showed that uncertainties in spectral winds do not contribute significantly to the error in computed dose rate.

  9. On the Origin of the Wind Variability of 55 Cyg

    NASA Astrophysics Data System (ADS)

    Haucke, M.; Kraus, M.; Venero, R. O. J.; Tomić, S.; Cidale, L. S.; Nickeler, D. H.; Curé, M.

    2014-10-01

    The early B-type supergiant 55 Cygni exhibits pronounced night-to-night variations in its Hα P-Cygni line profile, probably related to a strong variable stellar wind. In this work we studied a sample of spectroscopic observations, taken at the Observatory of Ondřejov (Czech Republic), in order to analyze the variations in the stellar and wind parameters. The observations were modeled using FASTWIND code (Santolaya-Rey, Puls & Herrero 1997, A&A 323, 488-512). Although we were not able to find an exact period from the Hα line profile variations, the same pattern (shape and intensity) seems to have a cyclic behaviour of about 17 days. The values for the wind and stellar parameters suggest changes of the mass loss rate by a factor of three during a cycle of variability. On the other hand, Kraus et al. (Precision Asteroseismology Proceedings, IAU Symposium 301, 2014) found that the HeI λ 6678 photospheric absorption line presents a 1.09 day period, which could be superimposed over a longer period. From the analysis of our theoretical parameters we found that a gravitational mode of pulsation could not be the only agent responsible for the observed variations. As the stars evolving from the main sequence to the red supergiant stage (RSG) have different pulsation properties than those evolving back to the blue supergiant region (Saio, Georgy & Meynet, 2013, MNRAS, 433, 1246), we conclude that 55 Cygni could be in a post-RSG phase with multiperiodic pulsation modes. The variable mass loss could be attributed to the coupling of the oscillation modes.

  10. Temporal and spatial variability of wind resources in the United States as derived from the Climate Forecast System Reanalysis

    Treesearch

    Lejiang Yu; Shiyuan Zhong; Xindi Bian; Warren E. Heilman

    2015-01-01

    This study examines the spatial and temporal variability of wind speed at 80m above ground (the average hub height of most modern wind turbines) in the contiguous United States using Climate Forecast System Reanalysis (CFSR) data from 1979 to 2011. The mean 80-m wind exhibits strong seasonality and large spatial variability, with higher (lower) wind speeds in the...

  11. A conceptual framework for evaluating variable speed generator options for wind energy applications

    NASA Technical Reports Server (NTRS)

    Reddoch, T. W.; Lipo, T. A.; Hinrichsen, E. N.; Hudson, T. L.; Thomas, R. J.

    1995-01-01

    Interest in variable speed generating technology has accelerated as greater emphasis on overall efficiency and superior dynamic and control properties in wind-electric generating systems are sought. This paper reviews variable speed technology options providing advantages and disadvantages of each. Furthermore, the dynamic properties of variable speed systems are contrasted with synchronous operation. Finally, control properties of variable speed systems are examined.

  12. THz limb sounder (TLS) for lower thermospheric wind, oxygen density, and temperature

    NASA Astrophysics Data System (ADS)

    Wu, Dong L.; Yee, Jeng-Hwa; Schlecht, Erich; Mehdi, Imran; Siles, Jose; Drouin, Brian J.

    2016-07-01

    Neutral winds are one of the most critical measurements in the lower thermosphere and E region ionosphere (LTEI) for understanding complex electrodynamic processes and ion-neutral interactions. We are developing a high-sensitivity, low-power, noncryogenic 2.06 THz Schottky receiver to measure wind profiles at 100-140 km. The new technique, THz limb sounder (TLS), aims to measure LTEI winds by resolving the wind-induced Doppler shift of 2.06 THz atomic oxygen (OI) emissions. As a transition between fine structure levels in the ground electronic state, the OI emission is in local thermodynamic equilibrium (LTE) at altitudes up to 350 km. This LTE property, together with day-and-night capability and small line-of-sight gradient, makes the OI limb sounding a very attractive technique for neutral wind observations. In addition to the wind measurement, TLS can also retrieve [OI] density and neutral temperature in the LTEI region. TLS leverages rapid advances in THz receiver technologies including subharmonically pumped (SHP) mixers and Schottky-diode-based power multipliers. Current SHP Schottky receivers have produced good sensitivity for THz frequencies at ambient environment temperatures (120-150 K), which are achievable through passively cooling in spaceflight. As an emerging technique, TLS can fill the critical data gaps in the LTEI neutral wind observations to enable detailed studies on the coupling and dynamo processes between charged and neutral molecules.

  13. THz Limb Sounder (TLS) for Lower Thermospheric Wind, Oxygen Density, and Temperature

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.; Yee, Jeng-Hwa; Schlecht, Erich; Mehdi, Imran; Siles, Jose; Drouin, Brian J.

    2016-01-01

    Neutral winds are one of the most critical measurements in the lower thermosphere and E region ionosphere (LTEI) for understanding complex electrodynamic processes and ion-neutral interactions. We are developing a high-sensitivity, low-power, noncryogenic 2.06 THz Schottky receiver to measure wind profiles at 100-140 km. The new technique, THz limb sounder (TLS), aims to measure LTEI winds by resolving the wind-induced Doppler shift of 2.06 THz atomic oxygen (OI) emissions. As a transition between fine structure levels in the ground electronic state, the OI emission is in local thermodynamic equilibrium(LTE) at altitudes up to 350km. This LTE property, together with day-and-night capability and small line-of-sight gradient, makes the OI limb sounding a very attractive technique for neutral wind observations. In addition to the wind measurement, TLS can also retrieve [OI] density and neutral temperature in the LTEI region. TLS leverages rapid advances in THz receiver technologies including subharmonically pumped (SHP)mixers and Schottky-diode-based power multipliers. Current SHP Schottky receivers have produced good sensitivity for THz frequencies at ambient environment temperatures (120-150 K), which are achievable through passively cooling in spaceflight. As an emerging technique, TLS can fill the critical data gaps in the LTEI neutral wind observations to enable detailed studies on the coupling and dynamo processes between charged and neutral molecules.

  14. Variable density mixing in turbulent jets with coflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charonko, John James; Prestridge, Katherine Philomena

    Two sets of experiments are performed to study variable-density effects in turbulent round jets with co flow at density ratios, s = 4.2 and s = 1.2. 10,000 instantaneous realisations of simultaneous 2-D PIV and PLIF at three axial locations in the momentumdominated region of the jet allow us to calculate the full t.k.e. budgets, providing insights into the mechanisms of density fluctuation correlations both axially and radially in a non- Boussinesq flow. The strongest variable-density effects are observed within the velocity half-width of the jet, r ~u1/2 . Variable density effects decrease the Reynolds stresses via increased turbulent massmore » flux in the heavy jet, as shown by previous jet centreline measurements. Radial pro les of turbulent flux show that in the lighter jet t.k.e. is moving away from the centreline, while in the heavy jet it is being transported both inwards towards the centreline and radially outwards. Negative t.k.e. production is observed in the heavy jet, and we demonstrate that this is caused by both reduced gradient stretching in the axial direction and increased turbulent mass fluxes. Large differences in advection are also observed between the two jets. The air jet has higher total advection caused by strong axial components, while density fluctuations in the heavy jet reduce the axial advection signi cantly. The budget mechanisms in the non-Boussinesq regime are best understood using effective density and velocity half-width, ρeff ¯u 3 1,CL/r ~u1/2,eff , a modi cation of previous scaling.« less

  15. Variable density mixing in turbulent jets with coflow

    DOE PAGES

    Charonko, John James; Prestridge, Katherine Philomena

    2017-07-24

    Two sets of experiments are performed to study variable-density effects in turbulent round jets with co flow at density ratios, s = 4.2 and s = 1.2. 10,000 instantaneous realisations of simultaneous 2-D PIV and PLIF at three axial locations in the momentumdominated region of the jet allow us to calculate the full t.k.e. budgets, providing insights into the mechanisms of density fluctuation correlations both axially and radially in a non- Boussinesq flow. The strongest variable-density effects are observed within the velocity half-width of the jet, r ~u1/2 . Variable density effects decrease the Reynolds stresses via increased turbulent massmore » flux in the heavy jet, as shown by previous jet centreline measurements. Radial pro les of turbulent flux show that in the lighter jet t.k.e. is moving away from the centreline, while in the heavy jet it is being transported both inwards towards the centreline and radially outwards. Negative t.k.e. production is observed in the heavy jet, and we demonstrate that this is caused by both reduced gradient stretching in the axial direction and increased turbulent mass fluxes. Large differences in advection are also observed between the two jets. The air jet has higher total advection caused by strong axial components, while density fluctuations in the heavy jet reduce the axial advection signi cantly. The budget mechanisms in the non-Boussinesq regime are best understood using effective density and velocity half-width, ρeff ¯u 3 1,CL/r ~u1/2,eff , a modi cation of previous scaling.« less

  16. Characterization of wind power resource and its intermittency

    NASA Astrophysics Data System (ADS)

    Gunturu, U. B.; Schlosser, C. A.

    2011-12-01

    Wind resource in the continental and offshore United States has been calculated and characterized using metrics that describe - apart from abundance - its availability, persistence and intermittency. The Modern Era Retrospective-Analysis for Research and Applications (MERRA) boundary layer flux data has been used to construct wind power density profiles at 50, 80, 100 and 120 m turbine hub heights. The wind power density estimates at 50 m are qualitatively similar to those in the US wind atlas developed by the National Renewable Energy Laboratory (NREL), but quantitatively a class less in some regions, but are within the limits of uncertainty. We also show that for long tailed distributions like those of the wind power density, the mean is an overestimation and median is a more robust metric for summary representation of wind power resource.Generally speaking, the largest and most available wind power density resources are found in off-shore regions of the Atlantic and Pacific coastline, and the largest on-shore resource potential lies in the central United States. However, the intermittency and widespread synchronicity of on-shore wind power density are substantial, and highlights areas where considerable back-up generation technologies will be required. Generation-duration curves are also presented for the independent systems operator (ISO) zones of the U.S. to highlight the regions with the largest capacity factor (MISO, ERCOT, and SWPP) as well as the periods and extent to which all ISOs contain no wind power and the potential benefits of aggregation on wind power intermittency in each region. The impact of raising the wind turbine hub height on metrics of abundance, persistence, variability and intermittency is analyzed. There is a general increase in availability and abundance of wind resource but there is also an increase in intermittency with respect to a 'usable wind power' crossing level in low resource regions. A similar perspective of wind resource for

  17. Wind properties of variable B supergiants. Evidence of pulsations connected with mass-loss episodes

    NASA Astrophysics Data System (ADS)

    Haucke, M.; Cidale, L. S.; Venero, R. O. J.; Curé, M.; Kraus, M.; Kanaan, S.; Arcos, C.

    2018-06-01

    Context. Variable B supergiants (BSGs) constitute a heterogeneous group of stars with complex photometric and spectroscopic behaviours. They exhibit mass-loss variations and experience different types of oscillation modes, and there is growing evidence that variable stellar winds and photospheric pulsations are closely related. Aims: To discuss the wind properties and variability of evolved B-type stars, we derive new stellar and wind parameters for a sample of 19 Galactic BSGs by fitting theoretical line profiles of H, He, and Si to the observed ones and compare them with previous determinations. Methods: The synthetic line profiles are computed with the non-local thermodynamic equilibrium (NLTE) atmosphere code FASTWIND, with a β-law for hydrodynamics. Results: The mass-loss rate of three stars has been obtained for the first time. The global properties of stellar winds of mid/late B supergiants are well represented by a β-law with β > 2. All stars follow the known empirical wind momentum-luminosity relationships, and the late BSGs show the trend of the mid BSGs. HD 75149 and HD 99953 display significant changes in the shape and intensity of the Hα line (from a pure absorption to a P Cygni profile, and vice versa). These stars have mass-loss variations of almost a factor of 2.8. A comparison among mass-loss rates from the literature reveals discrepancies of a factor of 1 to 7. This large variation is a consequence of the uncertainties in the determination of the stellar radius. Therefore, for a reliable comparison of these values we used the invariant parameter Qr. Based on this parameter, we find an empirical relationship that associates the amplitude of mass-loss variations with photometric/spectroscopic variability on timescales of tens of days. We find that stars located on the cool side of the bi-stability jump show a decrease in the ratio V∞/Vesc, while their corresponding mass-loss rates are similar to or lower than the values found for stars on the

  18. Variable Frequency Operations of an Offshore Wind Power Plant with HVDC-VSC: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gevorgian, V.; Singh, M.; Muljadi, E.

    2011-12-01

    In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated. Based on DOE study, wind power generation may reach 330 GW by 2030 at the level of penetration of 20% of the total energy production. From this amount of wind power, 54 GW of wind power will be generated at offshore wind power plants. The deployment of offshore wind power plants requires power transmission from the plant to the load center inland. Since this power transmissionmore » requires submarine cable, there is a need to use High-Voltage Direct Current (HVDC) transmission. Otherwise, if the power is transmitted via alternating current, the reactive power generated by the cable capacitance may cause an excessive over voltage in the middle of the transmission distance which requires unnecessary oversized cable voltage breakdown capability. The use of HVDC is usually required for transmission distance longer than 50 kilometers of submarine cables to be economical. The use of HVDC brings another advantage; it is capable of operating at variable frequency. The inland substation will be operated to 60 Hz synched with the grid, the offshore substation can be operated at variable frequency, thus allowing the wind power plant to be operated at constant Volt/Hz. In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated.« less

  19. Interhemispheric gradient of atmospheric radiocarbon reveals natural variability of Southern Ocean winds

    NASA Astrophysics Data System (ADS)

    Rodgers, K. B.; Fletcher, S. E. M.; Bianchi, D.; Beaulieu, C.; Galbraith, E. D.; Gnanadesikan, A.; Hogg, A. G.; Iudicone, D.; Lintner, B.; Naegler, T.; Reimer, P. J.; Sarmiento, J. L.; Slater, R. D.

    2011-01-01

    Tree ring Δ14C data (Reimer et al., 2004; McCormac et al., 2004) indicate that atmospheric Δ14C varied on multi-decadal to centennial timescales, in both hemispheres, over the pre-industrial period AD 950-1830. Although the Northern and Southern Hemispheric Δ14C records display similar variability, it is difficult from these data alone to distinguish between variations driven by 14CO2 production in the upper atmosphere (Stuiver, 1980) and exchanges between carbon reservoirs (Siegenthaler, 1980). Here we consider rather the Interhemispheric Gradient in atmospheric Δ14C as revealing of the background pre-bomb air-sea Disequilbrium Flux between 14CO2 and CO2. As the global maximum of the Disequilibrium Flux is squarely centered in the open ocean regions of the Southern Ocean, relatively modest perturbations to the winds over this region drive significant perturbations to the Interhemispheric Gradient. The analysis presented here implies that changes to Southern Ocean windspeeds are likely a main driver of the observed variability in the Interhemispheric Gradient over 950-1830, and further, that this variability may be larger than the Southern Ocean wind trends that have been reported for recent decades (notably 1980-2004). This interpretation also implies a significant weakening of the winds over the Southern Ocean within a few decades of AD 1375, associated with the transition between the Medieval Climate Anomaly and the Little Ice Age. The driving forces that could have produced such a shift in the winds remain unkown.

  20. Estimating annoyance to calculated wind turbine shadow flicker is improved when variables associated with wind turbine noise exposure are considered.

    PubMed

    Voicescu, Sonia A; Michaud, David S; Feder, Katya; Marro, Leonora; Than, John; Guay, Mireille; Denning, Allison; Bower, Tara; van den Berg, Frits; Broner, Norm; Lavigne, Eric

    2016-03-01

    The Community Noise and Health Study conducted by Health Canada included randomly selected participants aged 18-79 yrs (606 males, 632 females, response rate 78.9%), living between 0.25 and 11.22 km from operational wind turbines. Annoyance to wind turbine noise (WTN) and other features, including shadow flicker (SF) was assessed. The current analysis reports on the degree to which estimating high annoyance to wind turbine shadow flicker (HAWTSF) was improved when variables known to be related to WTN exposure were also considered. As SF exposure increased [calculated as maximum minutes per day (SFm)], HAWTSF increased from 3.8% at 0 ≤ SFm < 10 to 21.1% at SFm ≥ 30, p < 0.0001. For each unit increase in SFm the odds ratio was 2.02 [95% confidence interval: (1.68,2.43)]. Stepwise regression models for HAWTSF had a predictive strength of up to 53% with 10% attributed to SFm. Variables associated with HAWTSF included, but were not limited to, annoyance to other wind turbine-related features, concern for physical safety, and noise sensitivity. Reported dizziness was also retained in the final model at p = 0.0581. Study findings add to the growing science base in this area and may be helpful in identifying factors associated with community reactions to SF exposure from wind turbines.

  1. Interplanetary Type III Bursts and Electron Density Fluctuations in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Krupar, V.; Maksimovic, M.; Kontar, E. P.; Zaslavsky, A.; Santolik, O.; Soucek, J.; Kruparova, O.; Eastwood, J. P.; Szabo, A.

    2018-04-01

    Type III bursts are generated by fast electron beams originated from magnetic reconnection sites of solar flares. As propagation of radio waves in the interplanetary medium is strongly affected by random electron density fluctuations, type III bursts provide us with a unique diagnostic tool for solar wind remote plasma measurements. Here, we performed a statistical survey of 152 simple and isolated type III bursts observed by the twin-spacecraft Solar TErrestrial RElations Observatory mission. We investigated their time–frequency profiles in order to retrieve decay times as a function of frequency. Next, we performed Monte Carlo simulations to study the role of scattering due to random electron density fluctuations on time–frequency profiles of radio emissions generated in the interplanetary medium. For simplification, we assumed the presence of isotropic electron density fluctuations described by a power law with the Kolmogorov spectral index. Decay times obtained from observations and simulations were compared. We found that the characteristic exponential decay profile of type III bursts can be explained by the scattering of the fundamental component between the source and the observer despite restrictive assumptions included in the Monte Carlo simulation algorithm. Our results suggest that relative electron density fluctuations < δ {n}{{e}}> /{n}{{e}} in the solar wind are 0.06–0.07 over wide range of heliospheric distances.

  2. Stochastic investigation of wind process for climatic variability identification

    NASA Astrophysics Data System (ADS)

    Deligiannis, Ilias; Tyrogiannis, Vassilis; Daskalou, Olympia; Dimitriadis, Panayiotis; Markonis, Yannis; Iliopoulou, Theano; Koutsoyiannis, Demetris

    2016-04-01

    The wind process is considered one of the hydrometeorological processes that generates and drives the climate dynamics. We use a dataset comprising hourly wind records to identify statistical variability with emphasis on the last period. Specifically, we investigate the occurrence of mean, maximum and minimum values and we estimate statistical properties such as marginal probability distribution function and the type of decay of the climacogram (i.e., mean process variance vs. scale) for various time periods. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.

  3. Design and analysis of a direct-drive wind power generator with ultra-high torque density

    NASA Astrophysics Data System (ADS)

    Jian, Linni; Shi, Yujun; Wei, Jin; Zheng, Yanchong

    2015-05-01

    In order to get rid of the nuisances caused by mechanical gearboxes, generators with low rated speed, which can be directly connected to wind turbines, are attracting increasing attention. The purpose of this paper is to propose a new direct-drive wind power generator (DWPG), which can offer ultra-high torque density. First, magnetic gear (MG) is integrated to achieve non-contact torque transmission and speed variation. Second, armature windings are engaged to achieve electromechanical energy conversion. Interior permanent magnet (PM) design on the inner rotor is adopted to boost the torque transmission capability of the integrated MG. Nevertheless, due to lack of back iron on the stator, the proposed generator does not exhibit prominent salient feature, which usually exists in traditional interior PM (IPM) machines. This makes it with good controllability and high power factor as the surface-mounted permanent magnet machines. The performance is analyzed using finite element method. Investigation on the magnetic field harmonics demonstrates that the permanent-magnetic torque offered by the MG can work together with the electromagnetic torque offered by the armature windings to balance the driving torque captured by the wind turbine. This allows the proposed generator having the potential to offer even higher torque density than its integrated MG.

  4. Variable gain for a wind turbine pitch control

    NASA Technical Reports Server (NTRS)

    Seidel, R. C.; Birchenough, A. G.

    1981-01-01

    The gain variation is made in the software logic of the pitch angle controller. The gain level is changed depending upon the level of power error. The control uses low gain for low pitch activity the majority of the time. If the power exceeds ten percent offset above rated, the gain is increased to a higher gain to more effectively limit power. A variable gain control functioned well in tests on the Mod-0 wind turbine.

  5. Evolution of solitary density waves in stellar winds of early-type stars: A simple explanation of discrete absorption component behavior

    NASA Technical Reports Server (NTRS)

    Waldron, Wayne L.; Klein, Larry; Altner, Bruce

    1994-01-01

    We model the evolution of a density shell propagating through the stellar wind of an early-type star, in order to investigate the effects of such shells on UV P Cygni line profiles. Unlike previous treatments, we solve the mass, momentum, and energy conservation equations, using an explicit time-differencing scheme, and present a parametric study of the density, velocity, and temperature response. Under the assumed conditions, relatively large spatial scale, large-amplitude density shells propagate as stable waves through the supersonic portion of the wind. Their dynamical behavior appears to mimic propagating 'solitary waves,' and they are found to accelerate at the same rate as the underlying steady state stellar wind (i.e., the shell rides the wind). These hydrodynamically stable structures quantitatively reproduce the anomalous 'discrete absorption component' (DAC) behavior observed in the winds of luminous early-type stars, as illustrated by comparisons of model predictions to an extensive International Ultraviolet Explorer (IUE) time series of spectra of zeta Puppis (O4f). From these comparisons, we find no conclusive evidence indicative of DACs accelerating at a significantly slower rate than the underlying stellar wind, contrary to earlier reports. In addition, these density shells are found to be consistent within the constraints set by the IR observations. We conclude that the concept of propagating density shells should be seriously reconsidered as a possible explanation of the DAC phenomenon in early-type stars.

  6. Inherent Variability in Short-time Wind Turbine Statistics from Turbulence Structure in the Atmospheric Surface Layer

    NASA Astrophysics Data System (ADS)

    Lavely, Adam; Vijayakumar, Ganesh; Brasseur, James; Paterson, Eric; Kinzel, Michael

    2011-11-01

    Using large-eddy simulation (LES) of the neutral and moderately convective atmospheric boundary layers (NBL, MCBL), we analyze the impact of coherent turbulence structure of the atmospheric surface layer on the short-time statistics that are commonly collected from wind turbines. The incoming winds are conditionally sampled with a filtering and thresholding algorithm into high/low horizontal and vertical velocity fluctuation coherent events. The time scales of these events are ~5 - 20 blade rotations and are roughly twice as long in the MCBL as the NBL. Horizontal velocity events are associated with greater variability in rotor power, lift and blade-bending moment than vertical velocity events. The variability in the industry standard 10 minute average for rotor power, sectional lift and wind velocity had a standard deviation of ~ 5% relative to the ``infinite time'' statistics for the NBL and ~10% for the MCBL. We conclude that turbulence structure associated with atmospheric stability state contributes considerable, quantifiable, variability to wind turbine statistics. Supported by NSF and DOE.

  7. Control strategy for a variable-speed wind energy conversion system

    NASA Technical Reports Server (NTRS)

    Jacob, A.; Veillette, D.; Rajagopalan, V.

    1979-01-01

    A control concept for a variable-speed wind energy conversion system is proposed, for which a self-exited asynchronous cage generator is used along with a system of thyristor converters. The control loops are the following: (1) regulation of the entrainment speed as function of available mechanical energy by acting on the resistance couple of the asynchronous generator; (2) control of electric power delivered to the asynchronous machine, functioning as a motor, for start-up of the vertical axis wind converter; and (3) limitation of the slip value, and by consequence, of the induction currents in the presence of sudden variations of input parameters.

  8. Application of the hybrid ANFIS models for long term wind power density prediction with extrapolation capability.

    PubMed

    Hossain, Monowar; Mekhilef, Saad; Afifi, Firdaus; Halabi, Laith M; Olatomiwa, Lanre; Seyedmahmoudian, Mehdi; Horan, Ben; Stojcevski, Alex

    2018-01-01

    In this paper, the suitability and performance of ANFIS (adaptive neuro-fuzzy inference system), ANFIS-PSO (particle swarm optimization), ANFIS-GA (genetic algorithm) and ANFIS-DE (differential evolution) has been investigated for the prediction of monthly and weekly wind power density (WPD) of four different locations named Mersing, Kuala Terengganu, Pulau Langkawi and Bayan Lepas all in Malaysia. For this aim, standalone ANFIS, ANFIS-PSO, ANFIS-GA and ANFIS-DE prediction algorithm are developed in MATLAB platform. The performance of the proposed hybrid ANFIS models is determined by computing different statistical parameters such as mean absolute bias error (MABE), mean absolute percentage error (MAPE), root mean square error (RMSE) and coefficient of determination (R2). The results obtained from ANFIS-PSO and ANFIS-GA enjoy higher performance and accuracy than other models, and they can be suggested for practical application to predict monthly and weekly mean wind power density. Besides, the capability of the proposed hybrid ANFIS models is examined to predict the wind data for the locations where measured wind data are not available, and the results are compared with the measured wind data from nearby stations.

  9. Application of the hybrid ANFIS models for long term wind power density prediction with extrapolation capability

    PubMed Central

    Mekhilef, Saad; Afifi, Firdaus; Halabi, Laith M.; Olatomiwa, Lanre; Seyedmahmoudian, Mehdi; Stojcevski, Alex

    2018-01-01

    In this paper, the suitability and performance of ANFIS (adaptive neuro-fuzzy inference system), ANFIS-PSO (particle swarm optimization), ANFIS-GA (genetic algorithm) and ANFIS-DE (differential evolution) has been investigated for the prediction of monthly and weekly wind power density (WPD) of four different locations named Mersing, Kuala Terengganu, Pulau Langkawi and Bayan Lepas all in Malaysia. For this aim, standalone ANFIS, ANFIS-PSO, ANFIS-GA and ANFIS-DE prediction algorithm are developed in MATLAB platform. The performance of the proposed hybrid ANFIS models is determined by computing different statistical parameters such as mean absolute bias error (MABE), mean absolute percentage error (MAPE), root mean square error (RMSE) and coefficient of determination (R2). The results obtained from ANFIS-PSO and ANFIS-GA enjoy higher performance and accuracy than other models, and they can be suggested for practical application to predict monthly and weekly mean wind power density. Besides, the capability of the proposed hybrid ANFIS models is examined to predict the wind data for the locations where measured wind data are not available, and the results are compared with the measured wind data from nearby stations. PMID:29702645

  10. Direct numerical simulation of incompressible acceleration-driven variable-density turbulence

    NASA Astrophysics Data System (ADS)

    Gat, Ilana; Matheou, Georgios; Chung, Daniel; Dimotakis, Paul

    2015-11-01

    Fully developed turbulence in variable-density flow driven by an externally imposed acceleration field, e.g., gravity, is fundamental in many applications, such as inertial confinement fusion, geophysics, and astrophysics. Aspects of this turbulence regime are poorly understood and are of interest to fluid modeling. We investigate incompressible acceleration-driven variable-density turbulence by a series of direct numerical simulations of high-density fluid in-between slabs of low-density fluid, in a triply-periodic domain. A pseudo-spectral numerical method with a Helmholtz-Hodge decomposition of the pressure field, which ensures mass conservation, is employed, as documented in Chung & Pullin (2010). A uniform dynamic viscosity and local Schmidt number of unity are assumed. This configuration encapsulates a combination of flow phenomena in a temporally evolving variable-density shear flow. Density ratios up to 10 and Reynolds numbers in the fully developed turbulent regime are investigated. The temporal evolution of the vertical velocity difference across the shear layer, shear-layer growth, mean density, and Reynolds number are discussed. Statistics of Lagrangian accelerations of fluid elements and of vorticity as a function of the density ratio are also presented. This material is based upon work supported by the AFOSR, the DOE, the NSF GRFP, and Caltech.

  11. The IUE Mega Campaign: Wind Variability and Rotation in Early-Type Stars

    NASA Technical Reports Server (NTRS)

    Massa, D.; Fullerton, A. W.; Nichols, J. S.; Owocki, S. P.; Prinja, R. K.; St-Louis, N.; Willis, A. J.; Altner, B.; Bolton, C. T.; Cassinelli, J. P.; hide

    1995-01-01

    Wind variability in OB stars may be ubiquitous and a connection between projected stellar rotation velocity and wind activity is well established. However, the origin of this connection is unknown. To probe the nature of the rotation connection, several of the attendees at the workshop on Instability and Variability of Hot-Star Winds drafted an IUE observing proposal. The goal of this program was to follow three stars for several rotations to determine whether the rotation connection is correlative or causal. The stars selected for monitoring all have rotation periods less than or equal to 5 days. They were HD 50896 (WN5), HD 64760 (BO.5 Ib), and HD 66811 (zeta Pup; 04 If(n)). During 16 days of nearly continuous observations in 1995 January (dubbed the 'MEGA' campaign), 444 high-dispersion IUE spectra of these stars were obtained. This Letter presents an overview of the results of the MEGA campaign and provides an introduction to the three following Letters, which discuss the results for each star.

  12. Density Fluctuations in the Solar Wind Driven by Alfvén Wave Parametric Decay

    NASA Astrophysics Data System (ADS)

    Bowen, Trevor A.; Badman, Samuel; Hellinger, Petr; Bale, Stuart D.

    2018-02-01

    Measurements and simulations of inertial compressive turbulence in the solar wind are characterized by anti-correlated magnetic fluctuations parallel to the mean field and density structures. This signature has been interpreted as observational evidence for non-propagating pressure balanced structures, kinetic ion-acoustic waves, as well as the MHD slow-mode. Given the high damping rates of parallel propagating compressive fluctuations, their ubiquity in satellite observations is surprising and suggestive of a local driving process. One possible candidate for the generation of compressive fluctuations in the solar wind is the Alfvén wave parametric instability. Here, we test the parametric decay process as a source of compressive waves in the solar wind by comparing the collisionless damping rates of compressive fluctuations with growth rates of the parametric decay instability daughter waves. Our results suggest that generation of compressive waves through parametric decay is overdamped at 1 au, but that the presence of slow-mode-like density fluctuations is correlated with the parametric decay of Alfvén waves.

  13. A new numerical benchmark for variably saturated variable-density flow and transport in porous media

    NASA Astrophysics Data System (ADS)

    Guevara, Carlos; Graf, Thomas

    2016-04-01

    In subsurface hydrological systems, spatial and temporal variations in solute concentration and/or temperature may affect fluid density and viscosity. These variations could lead to potentially unstable situations, in which a dense fluid overlies a less dense fluid. These situations could produce instabilities that appear as dense plume fingers migrating downwards counteracted by vertical upwards flow of freshwater (Simmons et al., Transp. Porous Medium, 2002). As a result of unstable variable-density flow, solute transport rates are increased over large distances and times as compared to constant-density flow. The numerical simulation of variable-density flow in saturated and unsaturated media requires corresponding benchmark problems against which a computer model is validated (Diersch and Kolditz, Adv. Water Resour, 2002). Recorded data from a laboratory-scale experiment of variable-density flow and solute transport in saturated and unsaturated porous media (Simmons et al., Transp. Porous Medium, 2002) is used to define a new numerical benchmark. The HydroGeoSphere code (Therrien et al., 2004) coupled with PEST (www.pesthomepage.org) are used to obtain an optimized parameter set capable of adequately representing the data set by Simmons et al., (2002). Fingering in the numerical model is triggered using random hydraulic conductivity fields. Due to the inherent randomness, a large number of simulations were conducted in this study. The optimized benchmark model adequately predicts the plume behavior and the fate of solutes. This benchmark is useful for model verification of variable-density flow problems in saturated and/or unsaturated media.

  14. Density-ratio effects on buoyancy-driven variable-density turbulent mixing

    NASA Astrophysics Data System (ADS)

    Aslangil, Denis; Livescu, Daniel; Banerjee, Arindam

    2017-11-01

    Density-ratio effects on the turbulent mixing of two incompressible, miscible fluids with different densities subject to constant acceleration are studied by means of high-resolution Direct Numerical Simulations. In a triply periodic domain, turbulence is generated by stirring in response to the differential buoyancy forces within the flow. Later, as the fluids become molecularly mixed, dissipation starts to overcome turbulence generation by bouyancy. Thus, the flow evolution includes both turbulence growth and decay, and it displays features present in the core region of the mixing layer of the Rayleigh-Taylor as well as Richtmyer-Meshkov instabilities. We extend the previous studies by investigating a broad range of density-ratio, from 1-14.4:1, corresponding to Atwood numbers of 0.05-0.87. Here, we focus on the Atwood number dependence of mixing-efficiency, that is defined based on the energy-conversion ratios from potential energy to total and turbulent kinetic energies, the decay characteristics of buoyancy-assisted variable-density homogeneous turbulence, and the effects of high density-ratios on the turbulence structure and mixing process. Authors acknowledge financial support from DOE-SSAA (DE-NA0003195) and NSF CAREER (#1453056) awards.

  15. Dynamical downscaling of wind fields for wind power applications

    NASA Astrophysics Data System (ADS)

    Mengelkamp, H.-T.; Huneke, S.; Geyer, J.

    2010-09-01

    Dynamical downscaling of wind fields for wind power applications H.-T. Mengelkamp*,**, S. Huneke**, J, Geyer** *GKSS Research Center Geesthacht GmbH **anemos Gesellschaft für Umweltmeteorologie mbH Investments in wind power require information on the long-term mean wind potential and its temporal variations on daily to annual and decadal time scales. This information is rarely available at specific wind farm sites. Short-term on-site measurements usually are only performed over a 12 months period. These data have to be set into the long-term perspective through correlation to long-term consistent wind data sets. Preliminary wind information is often asked for to select favourable wind sites over regional and country wide scales. Lack of high-quality wind measurements at weather stations was the motivation to start high resolution wind field simulations The simulations are basically a refinement of global scale reanalysis data by means of high resolution simulations with an atmospheric mesoscale model using high-resolution terrain and land-use data. The 3-dimensional representation of the atmospheric state available every six hours at 2.5 degree resolution over the globe, known as NCAR/NCEP reanalysis data, forms the boundary conditions for continuous simulations with the non-hydrostatic atmospheric mesoscale model MM5. MM5 is nested in itself down to a horizontal resolution of 5 x 5 km². The simulation is performed for different European countries and covers the period 2000 to present and is continuously updated. Model variables are stored every 10 minutes for various heights. We have analysed the wind field primarily. The wind data set is consistent in space and time and provides information on the regional distribution of the long-term mean wind potential, the temporal variability of the wind potential, the vertical variation of the wind potential, and the temperature, and pressure distribution (air density). In the context of wind power these data are used

  16. Improved first-pass spiral myocardial perfusion imaging with variable density trajectories.

    PubMed

    Salerno, Michael; Sica, Christopher; Kramer, Christopher M; Meyer, Craig H

    2013-11-01

    To develop and evaluate variable-density spiral first-pass perfusion pulse sequences for improved efficiency and off-resonance performance and to demonstrate the utility of an apodizing density compensation function (DCF) to improve signal-to-noise ratio (SNR) and reduce dark-rim artifact caused by cardiac motion and Gibbs Ringing. Three variable density spiral trajectories were designed, simulated, and evaluated in 18 normal subjects, and in eight patients with cardiac pathology on a 1.5T scanner. By using a DCF, which intentionally apodizes the k-space data, the sidelobe amplitude of the theoretical point spread function (PSF) is reduced by 68%, with only a 13% increase in the full-width at half-maximum of the main-lobe when compared with the same data corrected with a conventional variable-density DCF, and has an 8% higher resolution than a uniform density spiral with the same number of interleaves and readout duration. Furthermore, this strategy results in a greater than 60% increase in measured SNR when compared with the same variable-density spiral data corrected with a conventional DCF (P < 0.01). Perfusion defects could be clearly visualized with minimal off-resonance and dark-rim artifacts. Variable-density spiral pulse sequences using an apodized DCF produce high-quality first-pass perfusion images with minimal dark-rim and off-resonance artifacts, high SNR and contrast-to-noise ratio, and good delineation of resting perfusion abnormalities. Copyright © 2012 Wiley Periodicals, Inc.

  17. Exact statistical results for binary mixing and reaction in variable density turbulence

    NASA Astrophysics Data System (ADS)

    Ristorcelli, J. R.

    2017-02-01

    We report a number of rigorous statistical results on binary active scalar mixing in variable density turbulence. The study is motivated by mixing between pure fluids with very different densities and whose density intensity is of order unity. Our primary focus is the derivation of exact mathematical results for mixing in variable density turbulence and we do point out the potential fields of application of the results. A binary one step reaction is invoked to derive a metric to asses the state of mixing. The mean reaction rate in variable density turbulent mixing can be expressed, in closed form, using the first order Favre mean variables and the Reynolds averaged density variance, ⟨ρ2⟩ . We show that the normalized density variance, ⟨ρ2⟩ , reflects the reduction of the reaction due to mixing and is a mix metric. The result is mathematically rigorous. The result is the variable density analog, the normalized mass fraction variance ⟨c2⟩ used in constant density turbulent mixing. As a consequence, we demonstrate that use of the analogous normalized Favre variance of the mass fraction, c″ ⁣2˜ , as a mix metric is not theoretically justified in variable density turbulence. We additionally derive expressions relating various second order moments of the mass fraction, specific volume, and density fields. The central role of the density specific volume covariance ⟨ρ v ⟩ is highlighted; it is a key quantity with considerable dynamical significance linking various second order statistics. For laboratory experiments, we have developed exact relations between the Reynolds scalar variance ⟨c2⟩ its Favre analog c″ ⁣2˜ , and various second moments including ⟨ρ v ⟩ . For moment closure models that evolve ⟨ρ v ⟩ and not ⟨ρ2⟩ , we provide a novel expression for ⟨ρ2⟩ in terms of a rational function of ⟨ρ v ⟩ that avoids recourse to Taylor series methods (which do not converge for large density differences). We have derived

  18. WIND STRUCTURE AND LUMINOSITY VARIATIONS IN THE WOLF-RAYET/LUMINOUS BLUE VARIABLE HD 5980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Georgiev, Leonid; Koenigsberger, Gloria; Hillier, D. John

    Over the past 40 years, the massive luminous blue variable/Wolf-Rayet system HD 5980 in the Small Magellanic Cloud (SMC) has undergone a long-term S Doradus-type variability cycle and two brief and violent eruptions in 1993 and 1994. In this paper we analyze a collection of UV and optical spectra obtained between 1979 and 2009 and perform CMFGEN model fits to spectra of 1994, 2000, 2002, and 2009. The results are as follows: (1) the long-term S Dor-type variability is associated with changes of the hydrostatic radius; (2) the 1994 eruption involved changes in its bolometric luminosity and wind structure; (3)more » the emission-line strength, the wind velocity, and the continuum luminosity underwent correlated variations in the sense that a decreasing V{sub {infinity}} is associated with increasing emission line and continuum levels; and (4) the spectrum of the third star in the system (Star C) is well fit by a T{sub eff} = 32 K model atmosphere with SMC chemical abundances. For all epochs, the wind of the erupting star is optically thick at the sonic point and is thus driven mainly by the continuum opacity. We speculate that the wind switches between two stable regimes driven by the 'hot' (during the eruption) and the 'cool' (post-eruption) iron opacity bumps as defined by Lamers and Nugis and Graefener and Hamann, and thus the wind may undergo a bi-stability jump of a different nature from that which occurs in OB stars.« less

  19. Imaging Plasma Density Structures in the Soft X-Rays Generated by Solar Wind Charge Exchange with Neutrals

    NASA Astrophysics Data System (ADS)

    Sibeck, David G.; Allen, R.; Aryan, H.; Bodewits, D.; Brandt, P.; Branduardi-Raymont, G.; Brown, G.; Carter, J. A.; Collado-Vega, Y. M.; Collier, M. R.; Connor, H. K.; Cravens, T. E.; Ezoe, Y.; Fok, M.-C.; Galeazzi, M.; Gutynska, O.; Holmström, M.; Hsieh, S.-Y.; Ishikawa, K.; Koutroumpa, D.; Kuntz, K. D.; Leutenegger, M.; Miyoshi, Y.; Porter, F. S.; Purucker, M. E.; Read, A. M.; Raeder, J.; Robertson, I. P.; Samsonov, A. A.; Sembay, S.; Snowden, S. L.; Thomas, N. E.; von Steiger, R.; Walsh, B. M.; Wing, S.

    2018-06-01

    Both heliophysics and planetary physics seek to understand the complex nature of the solar wind's interaction with solar system obstacles like Earth's magnetosphere, the ionospheres of Venus and Mars, and comets. Studies with this objective are frequently conducted with the help of single or multipoint in situ electromagnetic field and particle observations, guided by the predictions of both local and global numerical simulations, and placed in context by observations from far and extreme ultraviolet (FUV, EUV), hard X-ray, and energetic neutral atom imagers (ENA). Each proposed interaction mechanism (e.g., steady or transient magnetic reconnection, local or global magnetic reconnection, ion pick-up, or the Kelvin-Helmholtz instability) generates diagnostic plasma density structures. The significance of each mechanism to the overall interaction (as measured in terms of atmospheric/ionospheric loss at comets, Venus, and Mars or global magnetospheric/ionospheric convection at Earth) remains to be determined but can be evaluated on the basis of how often the density signatures that it generates are observed as a function of solar wind conditions. This paper reviews efforts to image the diagnostic plasma density structures in the soft (low energy, 0.1-2.0 keV) X-rays produced when high charge state solar wind ions exchange electrons with the exospheric neutrals surrounding solar system obstacles. The introduction notes that theory, local, and global simulations predict the characteristics of plasma boundaries such the bow shock and magnetopause (including location, density gradient, and motion) and regions such as the magnetosheath (including density and width) as a function of location, solar wind conditions, and the particular mechanism operating. In situ measurements confirm the existence of time- and spatial-dependent plasma density structures like the bow shock, magnetosheath, and magnetopause/ionopause at Venus, Mars, comets, and the Earth. However, in situ

  20. Turbulent Density Fluctuations and Proton Heating Rate in the Solar Wind from 9-20 R ⊙

    NASA Astrophysics Data System (ADS)

    Sasikumar Raja, K.; Subramanian, Prasad; Ramesh, R.; Vourlidas, Angelos; Ingale, Madhusudan

    2017-12-01

    We obtain scatter-broadened images of the Crab Nebula at 80 MHz as it transits through the inner solar wind in 2017 and 2016 June. These images are anisotropic, with the major axis oriented perpendicular to the radially outward coronal magnetic field. Using these data, we deduce that the density modulation index (δ {N}e/{N}e) caused by turbulent density fluctuations in the solar wind ranges from 1.9× {10}-3 to 7.7× {10}-3 between 9 and 20 R ⊙. We also find that the heating rate of solar wind protons at these distances ranges from 2.2× {10}-13 to 1.0× {10}-11 {erg} {{cm}}-3 {{{s}}}-1. On two occasions, the line of sight intercepted a coronal streamer. We find that the presence of the streamer approximately doubles the thickness of the scattering screen.

  1. Wind Power Curve Modeling in Simple and Complex Terrain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulaevskaya, V.; Wharton, S.; Irons, Z.

    2015-02-09

    Our previous work on wind power curve modeling using statistical models focused on a location with a moderately complex terrain in the Altamont Pass region in northern California (CA). The work described here is the follow-up to that work, but at a location with a simple terrain in northern Oklahoma (OK). The goal of the present analysis was to determine the gain in predictive ability afforded by adding information beyond the hub-height wind speed, such as wind speeds at other heights, as well as other atmospheric variables, to the power prediction model at this new location and compare the resultsmore » to those obtained at the CA site in the previous study. While we reach some of the same conclusions at both sites, many results reported for the CA site do not hold at the OK site. In particular, using the entire vertical profile of wind speeds improves the accuracy of wind power prediction relative to using the hub-height wind speed alone at both sites. However, in contrast to the CA site, the rotor equivalent wind speed (REWS) performs almost as well as the entire profile at the OK site. Another difference is that at the CA site, adding wind veer as a predictor significantly improved the power prediction accuracy. The same was true for that site when air density was added to the model separately instead of using the standard air density adjustment. At the OK site, these additional variables result in no significant benefit for the prediction accuracy.« less

  2. Energy density and variability in abundance of pigeon guillemot prey: Support for the quality-variability trade-off hypothesis

    USGS Publications Warehouse

    Litzow, Michael A.; Piatt, John F.; Abookire, Alisa A.; Robards, Martin D.

    2004-01-01

    1. The quality-variability trade-off hypothesis predicts that (i) energy density (kJ g-1) and spatial-temporal variability in abundance are positively correlated in nearshore marine fishes; and (ii) prey selection by a nearshore piscivore, the pigeon guillemot (Cepphus columba Pallas), is negatively affected by variability in abundance. 2. We tested these predictions with data from a 4-year study that measured fish abundance with beach seines and pigeon guillemot prey utilization with visual identification of chick meals. 3. The first prediction was supported. Pearson's correlation showed that fishes with higher energy density were more variable on seasonal (r = 0.71) and annual (r = 0.66) time scales. Higher energy density fishes were also more abundant overall (r = 0.85) and more patchy at a scale of 10s of km (r = 0.77). 4. Prey utilization by pigeon guillemots was strongly non-random. Relative preference, defined as the difference between log-ratio transformed proportions of individual prey taxa in chick diets and beach seine catches, was significantly different from zero for seven of the eight main prey categories. 5. The second prediction was also supported. We used principal component analysis (PCA) to summarize variability in correlated prey characteristics (energy density, availability and variability in abundance). Two PCA scores explained 32% of observed variability in pigeon guillemot prey utilization. Seasonal variability in abundance was negatively weighted by these PCA scores, providing evidence of risk-averse selection. Prey availability, energy density and km-scale variability in abundance were positively weighted. 6. Trophic interactions are known to create variability in resource distribution in other systems. We propose that links between resource quality and the strength of trophic interactions may produce resource quality-variability trade-offs.

  3. Winding a Long Coil with a Pre-Programmed Turns Density Variation

    DTIC Science & Technology

    1975-05-27

    turns den- sity is to follow. A machine having this capability is needed to provide a towed ELF loop antenna with the smoothly tapered sensitivity...Introduction A submarine towed ELF loop antenna vibrates longitudinally and trans- versely during towing. The vibration is driven by the fluctuating surface...in attaining the smoothly varying turns density required for the signal winding of a towed ELF loop antenna . Acknowledgments Thanks are due to John

  4. Solar wind electron densities from Viking dual-frequency radio measurements

    NASA Technical Reports Server (NTRS)

    Muhleman, D. O.; Anderson, J. D.

    1981-01-01

    Simultaneous phase coherent, two-frequency measurements of the time delay between the earth station and the Viking spacecraft have been analyzed in terms of the electron density profiles from 4 solar radii to 200 solar radii. The measurements were made during a period of solar activity minimum (1976-1977) and show a strong solar latitude effect. The data were analyzed with both a model independent, direct numerical inversion technique and with model fitting, yielding essentially the same results. It is shown that the solar wind density can be represented by two power laws near the solar equator proportional to r exp -2.7 and r exp -2.04. However, the more rapidly falling term quickly disappears at moderate latitudes (approximately 20 deg) leaving only the inverse-square behavior.

  5. Analysis of the long-term surface wind variability over complex terrain using a high spatial resolution WRF simulation

    NASA Astrophysics Data System (ADS)

    Jiménez, Pedro A.; González-Rouco, J. Fidel; Montávez, Juan P.; García-Bustamante, E.; Navarro, J.; Dudhia, J.

    2013-04-01

    This work uses a WRF numerical simulation from 1960 to 2005 performed at a high horizontal resolution (2 km) to analyze the surface wind variability over a complex terrain region located in northern Iberia. A shorter slice of this simulation has been used in a previous study to demonstrate the ability of the WRF model in reproducing the observed wind variability during the period 1992-2005. Learning from that validation exercise, the extended simulation is herein used to inspect the wind behavior where and when observations are not available and to determine the main synoptic mechanisms responsible for the surface wind variability. A principal component analysis was applied to the daily mean wind. Two principal modes of variation accumulate a large percentage of the wind variability (83.7%). The first mode reflects the channeling of the flow between the large mountain systems in northern Iberia modulated by the smaller topographic features of the region. The second mode further contributes to stress the differentiated wind behavior over the mountains and valleys. Both modes show significant contributions at the higher frequencies during the whole analyzed period, with different contributions at lower frequencies during the different decades. A strong relationship was found between these two modes and the zonal and meridional large scale pressure gradients over the area. This relationship is described in the context of the influence of standard circulation modes relevant in the European region like the North Atlantic Oscillation, the East Atlantic pattern, East Atlantic/Western Russia pattern, and the Scandinavian pattern.

  6. Periodic Density Structures and the Origin of the Slow Solar Wind

    NASA Technical Reports Server (NTRS)

    Viall-Kepko, Nicholeen M.; Vourlidas, Angelos

    2015-01-01

    The source of the slow solar wind has challenged scientists for years. Periodic density structures (PDSs), observed regularly in the solar wind at 1 AU (Astronomical Unit), can be used to address this challenge. These structures have length scales of hundreds to several thousands of megameters and frequencies of tens to hundreds of minutes. Two lines of evidence indicate that PDSs are formed in the solar corona as part of the slow solar wind release and/or acceleration processes. The first is corresponding changes in compositional data in situ, and the second is PDSs observed in the inner Heliospheric Imaging data on board the Solar Terrestrial Relations Observatory (STEREO)/Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) suite. The periodic nature of these density structures is both a useful identifier as well as an important physical constraint on their origin. In this paper, we present the results of tracking periodic structures identified in the inner Heliospheric Imager in SECCHI back in time through the corresponding outer coronagraph (COR2) images. We demonstrate that the PDSs are formed around or below 2.5 solar radii-the inner edge of the COR2 field of view. We compute the occurrence rates of PDSs in 10 days of COR2 images both as a function of their periodicity and location in the solar corona, and we find that this set of PDSs occurs preferentially with a periodicity of approximately 90 minutes and occurs near streamers. Lastly, we show that their acceleration and expansion through COR2 is self-similar, thus their frequency is constant at distances beyond 2.5 solar radii.

  7. Spectral Discrete Probability Density Function of Measured Wind Turbine Noise in the Far Field

    PubMed Central

    Ashtiani, Payam; Denison, Adelaide

    2015-01-01

    Of interest is the spectral character of wind turbine noise at typical residential set-back distances. In this paper, a spectral statistical analysis has been applied to immission measurements conducted at three locations. This method provides discrete probability density functions for the Turbine ONLY component of the measured noise. This analysis is completed for one-third octave sound levels, at integer wind speeds, and is compared to existing metrics for measuring acoustic comfort as well as previous discussions on low-frequency noise sources. PMID:25905097

  8. Frequency Regulation and Oscillation Damping Contributions of Variable-Speed Wind Generators in the U.S. Eastern Interconnection (EI)

    DOE PAGES

    Liu, Yong; Gracia, Jose R,; King, Jr, Thomas J.; ...

    2014-05-16

    The U.S. Eastern Interconnection (EI) is one of the largest electric power grids in the world and is expected to have difficulties in dealing with frequency regulation and oscillation damping issues caused by the increasing wind power. On the other side, variable-speed wind generators can actively engage in frequency regulation or oscillation damping with supplementary control loops. This paper creates a 5% wind power penetration simulation scenario based on the 16 000-bus EI system dynamic model and developed the user-defined wind electrical control model in PSS (R) E that incorporates additional frequency regulation and oscillation damping control loops. We evaluatedmore » the potential contributions of variable-speed wind generations to the EI system frequency regulation and oscillation damping, and simulation results demonstrate that current and future penetrations of wind power are promising in the EI system frequency regulation and oscillation damping.« less

  9. The variability of the surface wind field in the equatorial Pacific Ocean: Criteria for satellite measurements

    NASA Technical Reports Server (NTRS)

    Halpern, D.

    1984-01-01

    The natural variability of the equatorial Pacific surface wind field is described from long period surface wind measurements made at three sites along the equator (95 deg W, 109 deg 30 W, 152 deg 30 W). The data were obtained from surface buoys moored in the deep ocean far from islands or land, and provide criteria to adequately sample the tropical Pacific winds from satellites.

  10. Nature and Variability of Coronal Streamers and their Relationship to the Slow Speed Wind

    NASA Technical Reports Server (NTRS)

    Strachan, Leonard

    2005-01-01

    NASA Grant NAG5-12781 is a study on the "Nature and Variability of Coronal Streamers and their Relationship to the Slow Speed Wind." The two main goals of this study are to identify: 1) Where in the streamer structure does the solar wind originate, and 2) What coronal conditions are responsible for the variability of the slow speed wind. To answer the first question, we examined the mostly closed magnetic field regions in streamer cores to search for evidence of outflow. Preliminary results from the OVI Doppler dimming ratios indicates that most of the flow originates from the edges of coronal streamers but this idea should be confirmed by a comparison of the coronal plasma properties with in situ solar wind data. To answer the second question, the work performed thus far suggests that solar minimum streamers have larger perpendicular velocity distributions than do solar maximum streamers. If it can be shown that solar minimum streamers also produce higher solar wind speeds then this would suggest that streamers and coronal holes have similar solar wind acceleration mechanisms. The key to both questions lie in the analysis of the in situ solar wind data sets. This work was not able to be completed during the period of performance and therefore the grant was formally extended for an additional year at no cost to NASA. We hope to have final results and a publication by the end of the calendar year 2004. The SAO personnel involved in the research are Leonard Strachan (PI), Mari Paz Miralles, Alexander Panasyuk, and a Southern University student Michael Baham.

  11. Testing our scenario of a failed wind in TW Hya

    NASA Astrophysics Data System (ADS)

    Canizares, Claude

    2017-09-01

    We recently discovered variability in X-ray indicators of accretion in the CTTS TW Hya. We seek to use this to understand the physics of accretion in our upcoming HST observations. We have been granted 7 HST orbits to monitor the C IV 155 nm doublet in TW Hya, the closest CTTS, to correlate i) the hot wind ii) the cool wind iii) the photometric period iv) the accretion. In existing HETGS data of TW Hya we see variability in emission lines from the accretion shock on the star. However, the densities in Ne IX and O VII indicate that today's shock models are incomplete. A hot wind is the most promising candidate for this missing component.

  12. Temporal Variability of Upper-level Winds at the Eastern Range, Western Range and Wallops Flight Facility

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Barbre, Robert E., Jr.

    2014-01-01

    Space launch vehicles incorporate upper-level wind profiles to determine wind effects on the vehicle and for a commit to launch decision. These assessments incorporate wind profiles measured hours prior to launch and may not represent the actual wind the vehicle will fly through. Uncertainty in the upper-level winds over the time period between the assessment and launch can be mitigated by a statistical analysis of wind change over time periods of interest using historical data from the launch range. Five sets of temporal wind pairs at various times (.75, 1.5, 2, 3 and 4-hrs) at the Eastern Range, Western Range and Wallops Flight Facility were developed for use in upper-level wind assessments. Database development procedures as well as statistical analysis of temporal wind variability at each launch range will be presented.

  13. Taylor Series Trajectory Calculations Including Oblateness Effects and Variable Atmospheric Density

    NASA Technical Reports Server (NTRS)

    Scott, James R.

    2011-01-01

    Taylor series integration is implemented in NASA Glenn's Spacecraft N-body Analysis Program, and compared head-to-head with the code's existing 8th- order Runge-Kutta Fehlberg time integration scheme. This paper focuses on trajectory problems that include oblateness and/or variable atmospheric density. Taylor series is shown to be significantly faster and more accurate for oblateness problems up through a 4x4 field, with speedups ranging from a factor of 2 to 13. For problems with variable atmospheric density, speedups average 24 for atmospheric density alone, and average 1.6 to 8.2 when density and oblateness are combined.

  14. Seasonality, interannual variability, and linear tendency of wind speeds in the northeast Brazil from 1986 to 2011.

    PubMed

    Torres Silva dos Santos, Alexandre; Moisés Santos e Silva, Cláudio

    2013-01-01

    Wind speed analyses are currently being employed in several fields, especially in wind power generation. In this study, we used wind speed data from records of Universal Fuess anemographs at an altitude of 10 m from 47 weather stations of the National Institute of Meteorology (Instituto Nacional de Meteorologia-INMET) from January 1986 to December 2011. The objective of the study was to investigate climatological aspects and wind speed trends. To this end, the following methods were used: filling of missing data, descriptive statistical calculations, boxplots, cluster analysis, and trend analysis using the Mann-Kendall statistical method. The seasonal variability of the average wind speeds of each group presented higher values for winter and spring and lower values in the summer and fall. The groups G1, G2, and G5 showed higher annual averages in the interannual variability of wind speeds. These observed peaks were attributed to the El Niño and La Niña events, which change the behavior of global wind circulation and influence wind speeds over the region. Trend analysis showed more significant negative values for the G3, G4, and G5 groups for all seasons of the year and in the annual average for the period under study.

  15. Seasonality, Interannual Variability, and Linear Tendency of Wind Speeds in the Northeast Brazil from 1986 to 2011

    PubMed Central

    Santos e Silva, Cláudio Moisés

    2013-01-01

    Wind speed analyses are currently being employed in several fields, especially in wind power generation. In this study, we used wind speed data from records of Universal Fuess anemographs at an altitude of 10 m from 47 weather stations of the National Institute of Meteorology (Instituto Nacional de Meteorologia-INMET) from January 1986 to December 2011. The objective of the study was to investigate climatological aspects and wind speed trends. To this end, the following methods were used: filling of missing data, descriptive statistical calculations, boxplots, cluster analysis, and trend analysis using the Mann-Kendall statistical method. The seasonal variability of the average wind speeds of each group presented higher values for winter and spring and lower values in the summer and fall. The groups G1, G2, and G5 showed higher annual averages in the interannual variability of wind speeds. These observed peaks were attributed to the El Niño and La Niña events, which change the behavior of global wind circulation and influence wind speeds over the region. Trend analysis showed more significant negative values for the G3, G4, and G5 groups for all seasons of the year and in the annual average for the period under study. PMID:24250267

  16. Range of Density Variability from Surface To 120 km Altitude

    NASA Technical Reports Server (NTRS)

    Smith, Orvel E.; Chenoweth, Halsey B.

    1961-01-01

    A re-entry space vehicle development program, such as Project Apollo, requires a knowledge of the variability of atmospheric density from the surface of the earth to re-entry altitude (120 km). This report summarizes the data on density given in the most recent literature on the subject. The range of atmospheric density with respect to the ARDC 1959 Model Atmosphere is determined and shown graphically. From the surface to 30 km altitude abundant information on density is available. From 30 to 90 km altitude the summarized reports of observations made at a limited number of stations have been used. Between 90 and 120 km altitude the density is somewhat speculative, there being but few measurements available. Therefore, the qualitative values for the variability of density above 30 km must be considered tentative. Variations of atmospheric density by latitude and seasons made it necessary to develop a family of curves rather than a single profile. Three curves are presented to show the range of density deviation versus altitudes with respect to the ARDC 1959 Model Atmosphere. Each curve is used for a specific latitude range and season.

  17. Synoptic-to-planetary scale wind variability enhances phytoplankton biomass at ocean fronts

    NASA Astrophysics Data System (ADS)

    Whitt, D. B.; Taylor, J. R.; Lévy, M.

    2017-06-01

    In nutrient-limited conditions, phytoplankton growth at fronts is enhanced by winds, which drive upward nutrient fluxes via enhanced turbulent mixing and upwelling. Hence, depth-integrated phytoplankton biomass can be 10 times greater at isolated fronts. Using theory and two-dimensional simulations with a coupled physical-biogeochemical ocean model, this paper builds conceptual understanding of the physical processes driving upward nutrient fluxes at fronts forced by unsteady winds with timescales of 4-16 days. The largest vertical nutrient fluxes occur when the surface mixing layer penetrates the nutricline, which fuels phytoplankton in the mixed layer. At a front, mixed layer deepening depends on the magnitude and direction of the wind stress, cross-front variations in buoyancy and velocity at the surface, and potential vorticity at the base of the mixed layer, which itself depends on past wind events. Consequently, mixing layers are deeper and more intermittent in time at fronts than outside fronts. Moreover, mixing can decouple in time from the wind stress, even without other sources of physical variability. Wind-driven upwelling also enhances depth-integrated phytoplankton biomass at fronts; when the mixed layer remains shallower than the nutricline, this results in enhanced subsurface phytoplankton. Oscillatory along-front winds induce both oscillatory and mean upwelling. The mean effect of oscillatory vertical motion is to transiently increase subsurface phytoplankton over days to weeks, whereas slower mean upwelling sustains this increase over weeks to months. Taken together, these results emphasize that wind-driven phytoplankton growth is both spatially and temporally intermittent and depends on a diverse combination of physical processes.

  18. On the long-term variability of Jupiter and Saturn zonal winds

    NASA Astrophysics Data System (ADS)

    Sanchez-Lavega, A.; Garcia-Melendo, E.; Hueso, R.; Barrado-Izagirre, N.; Legarreta, J.; Rojas, J. F.

    2012-12-01

    We present an analysis of the long-term variability of Jupiter and Saturn zonal wind profiles at their upper cloud level as retrieved from cloud motion tracking on images obtained at ground-based observatories and with different spacecraft missions since 1979, encompassing about three Jovian and one Saturn years. We study the sensitivity and variability of the zonal wind profile in both planets to major planetary-scale disturbances and to seasonal forcing. We finally discuss the implications that these results have for current model efforts to explain the global tropospheric circulation in these planets. Acknowledgements: This work has been funded by Spanish MICIIN AYA2009-10701 with FEDER support, Grupos Gobierno Vasco IT-464-07 and UPV/EHU UFI11/55. [1] Sánchez-Lavega A., et al., Icarus, 147, 405-420 (2000). [2] García-Melendo E., Sánchez LavegaA., Icarus, 152, 316-330 (2001) [3] Sánchez-Lavega A., et al., Nature, 423, 623-625 (2003). [4] García-Melendo E., et al., Geophysical Research Letters, 37, L22204 (2010).

  19. Wind Forced Variability in Eddy Formation, Eddy Shedding, and the Separation of the East Australian Current

    NASA Astrophysics Data System (ADS)

    Bull, Christopher Y. S.; Kiss, Andrew E.; Jourdain, Nicolas C.; England, Matthew H.; van Sebille, Erik

    2017-12-01

    The East Australian Current (EAC), like many other subtropical western boundary currents, is believed to be penetrating further poleward in recent decades. Previous observational and model studies have used steady state dynamics to relate changes in the westerly winds to changes in the separation behavior of the EAC. As yet, little work has been undertaken on the impact of forcing variability on the EAC and Tasman Sea circulation. Here using an eddy-permitting regional ocean model, we present a suite of simulations forced by the same time-mean fields, but with different atmospheric and remote ocean variability. These eddy-permitting results demonstrate the nonlinear response of the EAC to variable, nonstationary inhomogeneous forcing. These simulations show an EAC with high intrinsic variability and stochastic eddy shedding. We show that wind stress variability on time scales shorter than 56 days leads to increases in eddy shedding rates and southward eddy propagation, producing an increased transport and southward reach of the mean EAC extension. We adopt an energetics framework that shows the EAC extension changes to be coincident with an increase in offshore, upstream eddy variance (via increased barotropic instability) and increase in subsurface mean kinetic energy along the length of the EAC. The response of EAC separation to regional variable wind stress has important implications for both past and future climate change studies.

  20. Temporal variability of the wind from the star τ Boötis

    NASA Astrophysics Data System (ADS)

    Nicholson, B. A.; Vidotto, A. A.; Mengel, M.; Brookshaw, L.; Carter, B.; Petit, P.; Marsden, S. C.; Jeffers, S. V.; Fares, R.; BCool Collaboration

    2016-06-01

    We present new wind models for τ Boötis (τ Boo), a hot-Jupiter-host-star whose observable magnetic cycles makes it a uniquely useful target for our goal of monitoring the temporal variability of stellar winds and their exoplanetary impacts. Using spectropolarimetric observations from May 2009 to January 2015, the most extensive information of this type yet available, to reconstruct the stellar magnetic field, we produce multiple 3D magnetohydrodynamic stellar wind models. Our results show that characteristic changes in the large-scale magnetic field as the star undergoes magnetic cycles produce changes in the wind properties, both globally and locally at the position of the orbiting planet. Whilst the mass loss rate of the star varies by only a minimal amount (˜4 per cent), the rates of angular momentum loss and associated spin-down time-scales are seen to vary widely (up to ˜140 per cent), findings consistent with and extending previous research. In addition, we find that temporal variation in the global wind is governed mainly by changes in total magnetic flux rather than changes in wind plasma properties. The magnetic pressure varies with time and location and dominates the stellar wind pressure at the planetary orbit. By assuming a Jovian planetary magnetic field for τ Boo b, we nevertheless conclude that the planetary magnetosphere can remain stable in size for all observed stellar cycle epochs, despite significant changes in the stellar field and the resulting local space weather environment.

  1. Local diurnal wind-driven variability and upwelling in a small coastal embayment

    NASA Astrophysics Data System (ADS)

    Walter, Ryan K.; Reid, Emma C.; Davis, Kristen A.; Armenta, Kevin J.; Merhoff, Kevin; Nidzieko, Nicholas J.

    2017-02-01

    The oceanic response to high-frequency local diurnal wind forcing is examined in a small coastal embayment located along an understudied stretch of the central California coast. We show that local diurnal wind forcing is the dominant control on nearshore temperature variability and circulation patterns. A complex empirical orthogonal function (CEOF) analysis of velocities in San Luis Obispo Bay reveals that the first-mode CEOF amplitude time series, which accounts for 47.9% of the variance, is significantly coherent with the local wind signal at the diurnal frequency and aligns with periods of weak and strong wind forcing. The diurnal evolution of the hydrographic structure and circulation in the bay is examined using both individual events and composite-day averages. During the late afternoon, the local wind strengthens and results in a sheared flow with near-surface warm waters directed out of the bay and a compensating flow of colder waters into the bay over the bottom portion of the water column. This cold water intrusion into the bay causes isotherms to shoal toward the surface and delivers subthermocline waters to shallow reaches of the bay, representing a mechanism for small-scale upwelling. When the local winds relax, the warm water mass advects back into the bay in the form of a buoyant plume front. Local diurnal winds are expected to play an important role in nearshore dynamics and local upwelling in other small coastal embayments with important implications for various biological and ecological processes.

  2. Langmuir turbulence driven by beams in solar wind plasmas with long wavelength density fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krafft, C., E-mail: catherine.krafft@u-psud.fr; Universite´ Paris Sud, 91405 Orsay Cedex; Volokitin, A., E-mail: a.volokitin@mail.ru

    2016-03-25

    The self-consistent evolution of Langmuir turbulence generated by electron beams in solar wind plasmas with density inhomogeneities is calculated by numerical simulations based on a 1D Hamiltonian model. It is shown, owing to numerical simulations performed with parameters relevant to type III solar bursts’ conditions at 1 AU, that the presence of long-wavelength random density fluctuations of sufficiently large average level crucially modifies the well-known process of beam interaction with Langmuir waves in homogeneous plasmas.

  3. Power Maximization Control of Variable Speed Wind Generation System Using Permanent Magnet Synchronous Generator

    NASA Astrophysics Data System (ADS)

    Morimoto, Shigeo; Nakamura, Tomohiko; Takeda, Yoji

    This paper proposes the sensorless output power maximization control of the wind generation system. A permanent magnet synchronous generator (PMSG) is used as a variable speed generator in the proposed system. The generator torque is suitably controlled according to the generator speed and thus the power from a wind turbine settles down on the maximum power point by the proposed MPPT control method, where the information of wind velocity is not required. Moreover, the maximum available generated power is obtained by the optimum current vector control. The current vector of PMSG is optimally controlled according to the generator speed and the required torque in order to minimize the losses of PMSG considering the voltage and current constraints. The proposed wind power generation system can be achieved without mechanical sensors such as a wind velocity detector and a position sensor. Several experimental results show the effectiveness of the proposed control method.

  4. Global MHD Simulations of the Earth's Bow Shock Shape and Motion Under Variable Solar Wind Conditions

    NASA Astrophysics Data System (ADS)

    Mejnertsen, L.; Eastwood, J. P.; Hietala, H.; Schwartz, S. J.; Chittenden, J. P.

    2018-01-01

    Empirical models of the Earth's bow shock are often used to place in situ measurements in context and to understand the global behavior of the foreshock/bow shock system. They are derived statistically from spacecraft bow shock crossings and typically treat the shock surface as a conic section parameterized according to a uniform solar wind ram pressure, although more complex models exist. Here a global magnetohydrodynamic simulation is used to analyze the variability of the Earth's bow shock under real solar wind conditions. The shape and location of the bow shock is found as a function of time, and this is used to calculate the shock velocity over the shock surface. The results are compared to existing empirical models. Good agreement is found in the variability of the subsolar shock location. However, empirical models fail to reproduce the two-dimensional shape of the shock in the simulation. This is because significant solar wind variability occurs on timescales less than the transit time of a single solar wind phase front over the curved shock surface. Empirical models must therefore be used with care when interpreting spacecraft data, especially when observations are made far from the Sun-Earth line. Further analysis reveals a bias to higher shock speeds when measured by virtual spacecraft. This is attributed to the fact that the spacecraft only observes the shock when it is in motion. This must be accounted for when studying bow shock motion and variability with spacecraft data.

  5. Probability Density Functions of the Solar Wind Driver of the Magnetopshere-Ionosphere System

    NASA Astrophysics Data System (ADS)

    Horton, W.; Mays, M. L.

    2007-12-01

    The solar-wind driven magnetosphere-ionosphere system is a complex dynamical system in that it exhibits (1) sensitivity to initial conditions; (2) multiple space-time scales; (3) bifurcation sequences with hysteresis in transitions between attractors; and (4) noncompositionality. This system is modeled by WINDMI--a network of eight coupled ordinary differential equations which describe the transfer of power from the solar wind through the geomagnetic tail, the ionosphere, and ring current in the system. The model captures both storm activity from the plasma ring current energy, which yields a model Dst index result, and substorm activity from the region 1 field aligned current, yielding model AL and AU results. The input to the model is the solar wind driving voltage calculated from ACE solar wind parameter data, which has a regular coherent component and broad-band turbulent component. Cross correlation functions of the input-output data time series are computed and the conditional probability density function for the occurrence of substorms given earlier IMF conditions are derived. The model shows a high probability of substorms for solar activity that contains a coherent, rotating IMF with magnetic cloud features. For a theoretical model of the imprint of solar convection on the solar wind we have used the Lorenz attractor (Horton et al., PoP, 1999, doi:10.10631.873683) as a solar wind driver. The work is supported by NSF grant ATM-0638480.

  6. Short time-scale wind forced variability in the Río de la Plata Estuary and its role on ichthyoplankton retention

    NASA Astrophysics Data System (ADS)

    Simionato, C. G.; Berasategui, A.; Meccia, V. L.; Acha, M.; Mianzan, H.

    2008-01-01

    The Río de la Plata Estuary presents a strong bottom salinity front located over a submerged shoal. Apparently favored by retention processes, it is a spawning ground for several coastal fishes. This estuary is very shallow and essentially wind driven and, moreover, in time scales relevant to biota, estuarine circulation is wind dominated and highly variable. Two intriguing questions are, therefore, how this system can favor retention and what the involved mechanisms are. This paper qualitatively explores mechanisms involved in the estuary where retention is favored applying numerical simulations in which neutral particles - simulating fish eggs and early larvae - are released along the bottom frontal zone and tracked for different wind conditions. Results suggest that retentive features can be a consequence of estuarine response to natural wind variability acting over bathymetric features. For winds from most directions, particles either remain trapped near their launching position or move northeastward to southwestward along the shoal. As alternation of winds that favor along-shoal motion is the dominant feature of wind variability in the region, a retentive scenario results from prevailing wind variability. Additionally, winds that tend to export particles with a poor chance of being restored to the front are neither frequent nor persistent. Results show, therefore, that physical forcing alone might generate a retentive scenario at the inner part of this estuary. The physical retention mechanism is more effective for bottom than for surface launched particles. Wind statistics indicate that the proposed mechanism has different implications for retention along the seasons. Spring is the most favorable season, followed by summer, when particles would have a larger propensity to reach the southern area of the estuary (Samborombón Bay). Fall and winter are increasingly less favorable. All these features are consistent with patterns observed in the region in

  7. The potential wind power resource in Australia: a new perspective.

    PubMed

    Hallgren, Willow; Gunturu, Udaya Bhaskar; Schlosser, Adam

    2014-01-01

    Australia's wind resource is considered to be very good, and the utilization of this renewable energy resource is increasing rapidly: wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to account for over 12% of Australia's electricity generation in 2030. Due to this growth in the utilization of the wind resource and the increasing importance of wind power in Australia's energy mix, this study sets out to analyze and interpret the nature of Australia's wind resources using robust metrics of the abundance, variability and intermittency of wind power density, and analyzes the variation of these characteristics with current and potential wind turbine hub heights. We also assess the extent to which wind intermittency, on hourly or greater timescales, can potentially be mitigated by the aggregation of geographically dispersed wind farms, and in so doing, lessen the severe impact on wind power economic viability of long lulls in wind and power generated. Our results suggest that over much of Australia, areas that have high wind intermittency coincide with large expanses in which the aggregation of turbine output does not mitigate variability. These areas are also geographically remote, some are disconnected from the east coast's electricity grid and large population centers, which are factors that could decrease the potential economic viability of wind farms in these locations. However, on the eastern seaboard, even though the wind resource is weaker, it is less variable, much closer to large population centers, and there exists more potential to mitigate it's intermittency through aggregation. This study forms a necessary precursor to the analysis of the impact of large-scale circulations and oscillations on the wind resource at the mesoscale.

  8. Remote Sensing of the Solar Wind Density, Speed, and Temperature in the Region between the Sun and Parker Solar Probe

    NASA Astrophysics Data System (ADS)

    Davila, J. M.; Reginald, N. L.

    2017-12-01

    A coronagraph is the tool of choice to understand and observe the structure of the corona from space. The novel coronagraph concept presented her provides a new scientific capability that will allow the measurement of density, temperature, and flow velocity in the solar atmosphere. This instrument will provide the first remote sensing measurement of the global solar wind temperature, density, and flow speed in the regions between 3 and 8 Rsun. It is in this region that the manority of the solar wind acceleration takes place, and where the ion compsition of the solar wind is "frozen in". This is also the region of the corona that links the surface of the Sun to the Parker Solar Probe and to Solar Orbiter. The observations suggested here would dramatically improve our understanding of solar wind formation and evolution in this critical region.

  9. Variable-density thinning in coast redwood: a comparison of marking strategies to attain stand variability

    Treesearch

    Kevin L. O' Hara; Lathrop P. Leonard; Christopher R. Keyes

    2012-01-01

    Variable-density thinning (VDT) is an emerging thinning method that attempts to enhance stand structural heterogeneity by deliberately thinning at different intensities throughout a stand. VDT may create stands with dense areas, open areas, and other areas that may be intermediate in density. Subsequent stand development forms a more varied structure than is...

  10. Interannual variability of mean sea level and its sensitivity to wind climate in an inter-tidal basin

    NASA Astrophysics Data System (ADS)

    Gerkema, Theo; Duran-Matute, Matias

    2017-12-01

    The relationship between the annual wind records from a weather station and annual mean sea level in an inter-tidal basin, the Dutch Wadden Sea, is examined. Recent, homogeneous wind records are used, covering the past 2 decades. It is demonstrated that even such a relatively short record is sufficient for finding a convincing relationship. The interannual variability of mean sea level is largely explained by the west-east component of the net wind energy, with some further improvement if one also includes the south-north component and the annual mean atmospheric pressure. Using measured data from a weather station is found to give a slight improvement over reanalysis data, but for both the correlation between annual mean sea level and wind energy in the west-east direction is high. For different tide gauge stations in the Dutch Wadden Sea and along the coast, we find the same qualitative characteristics, but even within this small region, different locations show a different sensitivity of annual mean sea level to wind direction. Correcting observed values of annual mean level for meteorological factors reduces the margin of error (expressed as 95 % confidence interval) by more than a factor of 4 in the trends of the 20-year sea level record. Supplementary data from a numerical hydrodynamical model are used to illustrate the regional variability in annual mean sea level and its interannual variability at a high spatial resolution. This study implies that climatic changes in the strength of winds from a specific direction may affect local annual mean sea level quite significantly.

  11. GeneratorSE: A Sizing Tool for Variable-Speed Wind Turbine Generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sethuraman, Latha; Dykes, Katherine L

    This report documents a set of analytical models employed by the optimization algorithms within the GeneratorSE framework. The initial values and boundary conditions employed for the generation of the various designs and initial estimates for basic design dimensions, masses, and efficiency for the four different models of generators are presented and compared with empirical data collected from previous studies and some existing commercial turbines. These models include designs applicable for variable-speed, high-torque application featuring direct-drive synchronous generators and low-torque application featuring induction generators. In all of the four models presented, the main focus of optimization is electromagnetic design with themore » exception of permanent-magnet and wire-wound synchronous generators, wherein the structural design is also optimized. Thermal design is accommodated in GeneratorSE as a secondary attribute by limiting the winding current densities to acceptable limits. A preliminary validation of electromagnetic design was carried out by comparing the optimized magnetic loading against those predicted by numerical simulation in FEMM4.2, a finite-element software for analyzing electromagnetic and thermal physics problems for electrical machines. For direct-drive synchronous generators, the analytical models for the structural design are validated by static structural analysis in ANSYS.« less

  12. Adaptive robust control of a class of non-affine variable-speed variable-pitch wind turbines with unmodeled dynamics.

    PubMed

    Bagheri, Pedram; Sun, Qiao

    2016-07-01

    In this paper, a novel synthesis of Nussbaum-type functions, and an adaptive radial-basis function neural network is proposed to design controllers for variable-speed, variable-pitch wind turbines. Dynamic equations of the wind turbine are highly nonlinear, uncertain, and affected by unknown disturbance sources. Furthermore, the dynamic equations are non-affine with respect to the pitch angle, which is a control input. To address these problems, a Nussbaum-type function, along with a dynamic control law are adopted to resolve the non-affine nature of the equations. Moreover, an adaptive radial-basis function neural network is designed to approximate non-parametric uncertainties. Further, the closed-loop system is made robust to unknown disturbance sources, where no prior knowledge of disturbance bound is assumed in advance. Finally, the Lyapunov stability analysis is conducted to show the stability of the entire closed-loop system. In order to verify analytical results, a simulation is presented and the results are compared to both a PI and an existing adaptive controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phadke, Amol; Abhyankar, NIkit; Rao, Poorvi

    We analyze variability in load and wind generation in India to assess its implications for grid integration of large scale wind projects using actual wind generation and load data from two states in India, Karnataka and Tamil Nadu. We compare the largest variations in load and net load (load ?wind, i.e., load after integrating wind) that the generation fleet has to meet. In Tamil Nadu, where wind capacity is about 53percent of the peak demand, we find that the additional variation added due to wind over the current variation in load is modest; if wind penetration reaches 15percent and 30percentmore » by energy, the additional hourly variation is less than 0.5percent and 4.5percent of the peak demand respectively for 99percent of the time. For wind penetration of 15percent by energy, Tamil Nadu system is found to be capable of meeting the additional ramping requirement for 98.8percent of the time. Potential higher uncertainty in net load compared to load is found to have limited impact on ramping capability requirements of the system if coal plants can me ramped down to 50percent of their capacity. Load and wind aggregation in Tamil Nadu and Karnataka is found to lower the variation by at least 20percent indicating the benefits geographic diversification. These findings suggest modest additional flexible capacity requirements and costs for absorbing variation in wind power and indicate that the potential capacity support (if wind does not generate enough during peak periods) may be the issue that has more bearing on the economics of integrating wind« less

  14. Dimmable electronic ballasts by variable power density modulation technique

    NASA Astrophysics Data System (ADS)

    Borekci, Selim; Kesler, Selami

    2014-11-01

    Dimming can be accomplished commonly by switching frequency and pulse density modulation techniques and a variable inductor. In this study, a variable power density modulation (VPDM) control technique is proposed for dimming applications. A fluorescent lamp is operated in several states to meet the desired lamp power in a modulation period. The proposed technique has the same advantages of magnetic dimming topologies have. In addition, a unique and flexible control technique can be achieved. A prototype dimmable electronic ballast is built and experiments related to it have been conducted. As a result, a 36WT8 fluorescent lamp can be driven for a desired lamp power from several alternatives without modulating the switching frequency.

  15. Energy density of ionospheric and solar wind origin ions in the near-Earth magnetotail during substorms

    NASA Technical Reports Server (NTRS)

    Daglis, Loannis A.; Livi, Stefano; Sarris, Emmanuel T.; Wilken, Berend

    1994-01-01

    Comprehensive energy density studies provide an important measure of the participation of various sources in energization processes and have been relatively rare in the literature. We present a statistical study of the energy density of the near-Earth magnetotail major ions (H(+), O(+), He(++), He(+)) during substorm expansion phase and discuss its implications for the solar wind/magnetosphere/ionosphere coupling. Our aim is to examine the relation between auroral activity and the particle energization during substorms through the correlation between the AE indices and the energy density of the major magnetospheric ions. The data we used here were collected by the charge-energy-mass (CHEM) spectrometer on board the Active Magnetospheric Particle Trace Explorer (AMPTE)/Charge Composition Explorer (CCE) satellite in the near-equatorial nightside magnetosphere, at geocentric distances approximately 7 to 9 R(sub E). CHEM provided the opportunity to conduct the first statistical study of energy density in the near-Earth magnetotail with multispecies particle data extending into the higher energy range (greater than or equal to 20 keV/E). the use of 1-min AE indices in this study should be emphasized, as the use (in previous statistical studies) of the (3-hour) Kp index or of long-time averages of AE indices essentially smoothed out all the information on substorms. Most distinct feature of our study is the excellent correlation of O(+) energy density with the AE index, in contrast with the remarkably poor He(++) energy density - AE index correlation. Furthermore, we examined the relation of the ion energy density to the electrojet activity during substorm growth phase. The O(+) energy density is strongly correlated with the pre-onset AU index, that is the eastward electrojet intensity, which represents the growth phase current system. Our investigation shows that the near-Earth magnetotail is increasingly fed with energetic ionospheric ions during periods of enhanced

  16. Two-point spectral model for variable density homogeneous turbulence

    NASA Astrophysics Data System (ADS)

    Pal, Nairita; Kurien, Susan; Clark, Timothy; Aslangil, Denis; Livescu, Daniel

    2017-11-01

    We present a comparison between a two-point spectral closure model for buoyancy-driven variable density homogeneous turbulence, with Direct Numerical Simulation (DNS) data of the same system. We wish to understand how well a suitable spectral model might capture variable density effects and the transition to turbulence from an initially quiescent state. Following the BHRZ model developed by Besnard et al. (1990), the spectral model calculation computes the time evolution of two-point correlations of the density fluctuations with the momentum and the specific-volume. These spatial correlations are expressed as function of wavenumber k and denoted by a (k) and b (k) , quantifying mass flux and turbulent mixing respectively. We assess the accuracy of the model, relative to a full DNS of the complete hydrodynamical equations, using a and b as metrics. Work at LANL was performed under the auspices of the U.S. DOE Contract No. DE-AC52-06NA25396.

  17. Structured Slow Solar Wind Variability: Streamer-blob Flux Ropes and Torsional Alfvén Waves

    NASA Astrophysics Data System (ADS)

    Higginson, A. K.; Lynch, B. J.

    2018-05-01

    The slow solar wind exhibits strong variability on timescales from minutes to days, likely related to magnetic reconnection processes in the extended solar corona. Higginson et al. presented a numerical magnetohydrodynamic simulation that showed interchange magnetic reconnection is ubiquitous and most likely responsible for releasing much of the slow solar wind, in particular along topological features known as the Separatrix-Web (S-Web). Here, we continue our analysis, focusing on two specific aspects of structured slow solar wind variability. The first type is present in the slow solar wind found near the heliospheric current sheet (HCS), and the second we predict should be present everywhere S-Web slow solar wind is observed. For the first type, we examine the evolution of three-dimensional magnetic flux ropes formed at the top of the helmet streamer belt by reconnection in the HCS. For the second, we examine the simulated remote and in situ signatures of the large-scale torsional Alfvén wave (TAW), which propagates along an S-Web arc to high latitudes. We describe the similarities and differences between the reconnection-generated flux ropes in the HCS, which resemble the well-known “streamer blob” observations, and the similarly structured TAW. We discuss the implications of our results for the complexity of the HCS and surrounding plasma sheet and the potential for particle acceleration, as well as the interchange reconnection scenarios that may generate TAWs in the solar corona. We discuss predictions from our simulation results for the dynamic slow solar wind in the extended corona and inner heliosphere.

  18. Analytical Modeling of Variable Density Multilayer Insulation for Cryogenic Storage

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Hastings, L. J.; Brown, T.; Cruit, Wendy (Technical Monitor)

    2001-01-01

    A unique foam/Multilayer Insulation (MLI) combination concept for orbital cryogenic storage was experimentally evaluated at NASA Marshall Space Flight Center (MSFC) using the Multipurpose Hydrogen Test Bed (MHTB). The MLI was designed for an on-orbit storage period of 45 days and included several unique features such as: a variable layer density and larger but fewer perforations for venting during ascent to orbit. Test results with liquid hydrogen indicated that the MLI weight or heat leak is reduced by about half in comparison with standard MLI. The focus of this paper is on analytical modeling of the Variable Density MLI (VD-MLI) on-orbit performance (i.e. vacuum/low pressure environment). The foam/VD-MLI combination model is considered to have five segments. The first segment represents the optional foam layer. The second, third, and fourth segments represent three MLI segments with different layer densities. The last segment is considered to be a shroud that surrounds the last MLI layer. Two approaches are considered. In the first approach, the variable density MLI is modeled layer by layer while in the second approach, a semi-empirical model is applied. Both models account for thermal radiation between shields, gas conduction, and solid conduction through the layer separator materials.

  19. Variable diameter wind turbine rotor blades

    DOEpatents

    Jamieson, Peter McKeich; Hornzee-Jones, Chris; Moroz, Emilian M.; Blakemore, Ralph W.

    2005-12-06

    A system and method for changing wind turbine rotor diameters to meet changing wind speeds and control system loads is disclosed. The rotor blades on the wind turbine are able to adjust length by extensions nested within or containing the base blade. The blades can have more than one extension in a variety of configurations. A cable winching system, a hydraulic system, a pneumatic system, inflatable or elastic extensions, and a spring-loaded jack knife deployment are some of the methods of adjustment. The extension is also protected from lightning by a grounding system.

  20. Bearing failure detection of micro wind turbine via power spectral density analysis for stator current signals spectrum

    NASA Astrophysics Data System (ADS)

    Mahmood, Faleh H.; Kadhim, Hussein T.; Resen, Ali K.; Shaban, Auday H.

    2018-05-01

    The failure such as air gap weirdness, rubbing, and scrapping between stator and rotor generator arise unavoidably and may cause extremely terrible results for a wind turbine. Therefore, we should pay more attention to detect and identify its cause-bearing failure in wind turbine to improve the operational reliability. The current paper tends to use of power spectral density analysis method of detecting internal race and external race bearing failure in micro wind turbine by estimation stator current signal of the generator. The failure detector method shows that it is well suited and effective for bearing failure detection.

  1. The Potential Wind Power Resource in Australia: A New Perspective

    PubMed Central

    Hallgren, Willow; Gunturu, Udaya Bhaskar; Schlosser, Adam

    2014-01-01

    Australia’s wind resource is considered to be very good, and the utilization of this renewable energy resource is increasing rapidly: wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to account for over 12% of Australia’s electricity generation in 2030. Due to this growth in the utilization of the wind resource and the increasing importance of wind power in Australia’s energy mix, this study sets out to analyze and interpret the nature of Australia’s wind resources using robust metrics of the abundance, variability and intermittency of wind power density, and analyzes the variation of these characteristics with current and potential wind turbine hub heights. We also assess the extent to which wind intermittency, on hourly or greater timescales, can potentially be mitigated by the aggregation of geographically dispersed wind farms, and in so doing, lessen the severe impact on wind power economic viability of long lulls in wind and power generated. Our results suggest that over much of Australia, areas that have high wind intermittency coincide with large expanses in which the aggregation of turbine output does not mitigate variability. These areas are also geographically remote, some are disconnected from the east coast’s electricity grid and large population centers, which are factors that could decrease the potential economic viability of wind farms in these locations. However, on the eastern seaboard, even though the wind resource is weaker, it is less variable, much closer to large population centers, and there exists more potential to mitigate it’s intermittency through aggregation. This study forms a necessary precursor to the analysis of the impact of large-scale circulations and oscillations on the wind resource at the mesoscale. PMID:24988222

  2. Clumpy wind accretion in Supergiant X-ray Binaries

    NASA Astrophysics Data System (ADS)

    El Mellah, I.; Sundqvist, J. O.; Keppens, R.

    2017-12-01

    Supergiant X-ray binaries (\\sgx) contain a neutron star (NS) orbiting a Supergiant O/B star. The fraction of the dense and fast line-driven wind from the stellar companion which is accreted by the NS is responsible for most of the X-ray emission from those system. Classic \\sgx display photometric variability of their hard X-ray emission, typically from a few 10^{35} to a few 10^{37}erg\\cdots^{-1}. Inhomogeneities (\\aka clumps) in the wind from the star are expected to play a role in this time variability. We run 3D hydrodynamical (HD) finite volume simulations to follow the accretion of the inhomogeneous stellar wind by the NS over almost 3 orders of magnitude. To model the unperturbed wind far upstream the NS, we use recent simulations which managed to resolve its micro-structure. We observe the formation of a Bondi-Hoyle-Lyttleton (BHL) like bow shock around the accretor and follow the clumps as they cross it, down to the NS magnetosphere. Compared to previous estimations discarding the HD effects, we measure lower time variability due to both the damping effect of the shock and the necessity to evacuate angular momentum to enable accretion. We also compute the associated time-variable column density and compare it to recent observations in Vela X-1.

  3. On the Origin of Wind Line Variability in O Stars

    NASA Astrophysics Data System (ADS)

    Massa, D.; Prinja, R. K.

    2015-08-01

    We analyze 10 UV time series for five stars that fulfill specific sampling and spectral criteria to constrain the origin of large-scale wind structure in O stars. We argue that excited state lines must arise close to the stellar surface and are an excellent diagnostic complement to resonance lines which, due to radiative transfer effects, rarely show variability at low velocity. Consequently, we splice dynamic spectra of the excited state line N iv λ1718 at low velocity with those of Si iv λ λ 1400 at high velocity in order to examine the temporal evolution of wind line features. These spliced time series reveal that nearly all of the features observed in the time series originate at or very near the stellar surface. Furthermore, we positively identify the observational signature of equatorial corotating interaction regions in two of the five stars and possibly two others. In addition, we see no evidence of features originating further out in the wind. We use our results to confirm the fact that the features seen in dynamic spectra must be huge in order to remain in the line of sight for days, persisting to very large velocity, and that the photospheric footprint of the features must also be quite large, ˜15%-20% of the stellar diameter.

  4. Climatology of the relationship of cusp-related density anomaly with zonal wind and large-scale FAC based on CHAMP observations: IMF By and solar cycle dependence

    NASA Astrophysics Data System (ADS)

    Kervalishvili, Guram; Lühr, Hermann

    2014-05-01

    We present climatology of the relationship of cusp-related density enhancement with the neutral zonal wind velocity, large-scale field-aligned current (FAC), small-scale FAC, and electron temperature using the superposed epoch analysis (SEA) method. The dependence of these variables on the interplanetary magnetic field (IMF) By component orientation and solar cycle are of particular interest. In addition, the obtained results of relative density enhancement (ρrel), zonal wind, electron temperature and FAC are subdivided into three local seasons of 130 days each: local winter (1 January ±65 days), combined equinoxes (1 April ±32 days and 1 October ±32 days), and local summer (1 July ±65 days). Our investigation is based on CHAMP satellite observations and NASA/GSFC's OMNI online data set for solar maximum (Mar/2002-2007) and minimum (Mar/2004-2009) conditions in the Northern Hemisphere. The SEA technique uses the time and location of the thermospheric mass density anomaly peaks as reference parameters. The relative amplitude of cusp-related density enhancement does on average not depend on the IMF By orientation, solar cycle phase, and local season. Also, it is apparent that the IMF By amplitude does not have a big influence on the relative amplitude of the density anomaly. Conversely, there exists a good correlation between ρrel and the negative amplitude of IMF Bz prevailing about half an hour earlier. In the cusp region, both large-scale FAC distribution and thermospheric zonal wind velocity exhibit a clear dependence on the IMF By orientation. In the case of positive (negative) IMF By there is a systematic imbalance between downward (upward) and upward (downward) FACs peaks equatorward and poleward of the reference point, respectively. The zonal wind velocity is directed towards west i.e. towards dawn in a geomagnetic latitude-magnetic local time (MLat-MLT) frame. This is true for all local seasons and solar conditions. The thermospheric density

  5. Urban renewal based wind environment at pedestrian level in high-density and high-rise urban areas in Sai Ying Pun, Hong Kong

    NASA Astrophysics Data System (ADS)

    Yao, J. W.; Zheng, J. Y.; Zhao, Y.; Shao, Y. H.; Yuan, F.

    2017-11-01

    In high-density and high-rise urban areas, pedestrian level winds contribute to improve comfort, safety and diffusion of heat in urban areas. Outdoor wind study is extremely vital and a prerequisite in high-density cities considering that the immediate pedestrian level wind environment is fundamentally impacted by the presence of a series of high-rise buildings. In this paper, the research site of Sai Ying Pun in Hong Kong will be analysed in terms of geography, climate and urban morphology, while the surrounding natural ventilation has also been simulated by the wind tunnel experiment Computational Fluid Dynamics (CFD). It has found that, the existing problems in this district are the contradiction between planning control and commercial interests, which means some areas around tall buildings are not benefit to the residents because of the unhealthy wind environment. Therefore, some recommendation of urban renewal strategy has been provided.

  6. Analysis of the electrical harmonic characteristics of a slip recovery variable speed generating system for wind turbine applications

    NASA Astrophysics Data System (ADS)

    Herrera, J. I.; Reddoch, T. W.

    1988-02-01

    Variable speed electric generating technology can enhance the general use of wind energy in electric utility applications. This enhancement results from two characteristic properties of variable speed wind turbine generators: an improvement in drive train damping characteristics, which results in reduced structural loading on the entire wind turbine system, and an improvement in the overall efficiency by using a more sophisticated electrical generator. Electronic converter systems are the focus of this investigation -- in particular, the properties of a wound-rotor induction generator with the slip recovery system and direct-current link converter. Experience with solid-state converter systems in large wind turbines is extremely limited. This report presents measurements of electrical performances of the slip recovery system and is limited to the terminal characteristics of the system. Variable speed generating systems working effectively in utility applications will require a satisfactory interface between the turbine/generator pair and the utility network. The electrical testing described herein focuses largely on the interface characteristics of the generating system. A MOD-O wind turbine was connected to a very strong system; thus, the voltage distortion was low and the total harmonic distortion in the utility voltage was less than 3 percent (within the 5 percent limit required by most utilities). The largest voltage component of a frequency below 60 Hz was 40 dB down from the 60-Hz less than component.

  7. Benchmarking variable-density flow in saturated and unsaturated porous media

    NASA Astrophysics Data System (ADS)

    Guevara Morel, Carlos Roberto; Cremer, Clemens; Graf, Thomas

    2015-04-01

    In natural environments, fluid density and viscosity can be affected by spatial and temporal variations of solute concentration and/or temperature. These variations can occur, for example, due to salt water intrusion in coastal aquifers, leachate infiltration from waste disposal sites and upconing of saline water from deep aquifers. As a consequence, potentially unstable situations may exist in which a dense fluid overlies a less dense fluid. This situation can produce instabilities that manifest as dense plume fingers that move vertically downwards counterbalanced by vertical upwards flow of the less dense fluid. Resulting free convection increases solute transport rates over large distances and times relative to constant-density flow. Therefore, the understanding of free convection is relevant for the protection of freshwater aquifer systems. The results from a laboratory experiment of saturated and unsaturated variable-density flow and solute transport (Simmons et al., Transp. Porous Medium, 2002) are used as the physical basis to define a mathematical benchmark. The HydroGeoSphere code coupled with PEST are used to estimate the optimal parameter set capable of reproducing the physical model. A grid convergency analysis (in space and time) is also undertaken in order to obtain the adequate spatial and temporal discretizations. The new mathematical benchmark is useful for model comparison and testing of variable-density variably saturated flow in porous media.

  8. Measuring high spatiotemporal variability in saltation intensity using a low-cost Saltation Detection System: Wind tunnel and field experiments

    NASA Astrophysics Data System (ADS)

    de Winter, W.; van Dam, D. B.; Delbecque, N.; Verdoodt, A.; Ruessink, B. G.; Sterk, G.

    2018-04-01

    The commonly observed over prediction of aeolian saltation transport on sandy beaches is, at least in part, caused by saltation intermittency. To study small-scale saltation processes, high frequency saltation sensors are required on a high spatial resolution. Therefore, we developed a low-cost Saltation Detection System (SalDecS) with the aim to measure saltation intensity at a frequency of 10 Hz and with a spatial resolution of 0.10 m in wind-normal direction. Linearity and equal sensitivity of the saltation sensors were investigated during wind tunnel and field experiments. Wind tunnel experiments with a set of 7 SalDec sensors revealed that the variability of sensor sensitivity is at maximum 9% during relatively low saltation intensities. During more intense saltation the variability of sensor sensitivity decreases. A sigmoidal fit describes the relation between mass flux and sensor output measured during 5 different wind conditions. This indicates an increasing importance of sensor saturation with increasing mass flux. We developed a theoretical model to simulate and describe the effect of grain size, grain velocity and saltation intensity on sensor saturation. Time-averaged field measurements revealed sensitivity equality for 85 out of a set of 89 horizontally deployed SalDec sensors. On these larger timescales (hours) saltation variability imposed by morphological features, such as sand strips, can be recognized. We conclude that the SalDecS can be used to measure small-scale spatiotemporal variabilities of saltation intensity to investigate saltation characteristics related to wind turbulence.

  9. Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal variability of aerosol concentration at a valley site.

    PubMed

    Pal, S; Lee, T R; Phelps, S; De Wekker, S F J

    2014-10-15

    The development of the atmospheric boundary layer (ABL) plays a key role in affecting the variability of atmospheric constituents such as aerosols, greenhouse gases, water vapor, and ozone. In general, the concentration of any tracers within the ABL varies due to the changes in the mixing volume (i.e. ABL depth). In this study, we investigate the impact on the near-surface aerosol concentration in a valley site of 1) the boundary layer dilution due to vertical mixing and 2) changes in the wind patterns. We use a data set obtained during a 10-day field campaign in which a number of remote sensing and in-situ instruments were deployed, including a ground-based aerosol lidar system for monitoring of the ABL top height (zi), a particle counter to determine the number concentration of aerosol particles at eight different size ranges, and tower-based standard meteorological instruments. Results show a clearly visible decreasing trend of the mean daytime zi from 2900 m AGL (above ground level) to 2200 m AGL during a three-day period which resulted in increased near-surface pollutant concentrations. An inverse relationship exists between the zi and the fine fraction (0.3-0.7 μm) accumulation mode particles (AMP) on some days due to the dilution effect in a well-mixed ABL. These days are characterized by the absence of daytime upvalley winds and the presence of northwesterly synoptic-driven winds. In contrast, on the days with an onset of an upvalley wind circulation after the morning transition, the wind-driven local transport mechanism outweighs the ABL-dilution effect in determining the variability of AMP concentration. The interplay between the ABL depth evolution and the onset of the upvalley wind during the morning transition period significantly governs the air quality in a valley and could be an important component in the studies of mountain meteorology and air quality. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Design and dynamic simulation of a fixed pitch 56 kW wind turbine drive train with a continuously variable transmission

    NASA Technical Reports Server (NTRS)

    Gallo, C.; Kasuba, R.; Pintz, A.; Spring, J.

    1986-01-01

    The dynamic analysis of a horizontal axis fixed pitch wind turbine generator (WTG) rated at 56 kW is discussed. A mechanical Continuously Variable Transmission (CVT) was incorporated in the drive train to provide variable speed operation capability. One goal of the dynamic analysis was to determine if variable speed operation, by means of a mechanical CVT, is capable of capturing the transient power in the WTG/wind environment. Another goal was to determine the extent of power regulation possible with CVT operation.

  11. Exploring fine-scale variability of stratospheric wind above the tropical la reunion island using rayleigh-mie doppler lidar

    NASA Astrophysics Data System (ADS)

    Khaykin, S. M.; Hauchecorne, A.; Cammas, J.-P.; Marqestaut, N.; Mariscal, J.-F.; Posny, F.; Payen, G.; Porteneuve, J.; Keckhut, P.

    2018-04-01

    A unique Rayleigh-Mie Doppler lidar capable of wind measurements in the 5-50 km altitude range is operated routinely at La Reunion island (21° S, 55° E) since 2015. We evaluate instrument's capacities in capturing fine structures in stratospheric wind profiles and their temporal and spatial variability through comparison with collocated radiosoundings and ECMWF analysis. Perturbations in the wind velocity are used to retrieve gravity wave frequency spectrum.

  12. Global sensitivity analysis in wind energy assessment

    NASA Astrophysics Data System (ADS)

    Tsvetkova, O.; Ouarda, T. B.

    2012-12-01

    Wind energy is one of the most promising renewable energy sources. Nevertheless, it is not yet a common source of energy, although there is enough wind potential to supply world's energy demand. One of the most prominent obstacles on the way of employing wind energy is the uncertainty associated with wind energy assessment. Global sensitivity analysis (SA) studies how the variation of input parameters in an abstract model effects the variation of the variable of interest or the output variable. It also provides ways to calculate explicit measures of importance of input variables (first order and total effect sensitivity indices) in regard to influence on the variation of the output variable. Two methods of determining the above mentioned indices were applied and compared: the brute force method and the best practice estimation procedure In this study a methodology for conducting global SA of wind energy assessment at a planning stage is proposed. Three sampling strategies which are a part of SA procedure were compared: sampling based on Sobol' sequences (SBSS), Latin hypercube sampling (LHS) and pseudo-random sampling (PRS). A case study of Masdar City, a showcase of sustainable living in the UAE, is used to exemplify application of the proposed methodology. Sources of uncertainty in wind energy assessment are very diverse. In the case study the following were identified as uncertain input parameters: the Weibull shape parameter, the Weibull scale parameter, availability of a wind turbine, lifetime of a turbine, air density, electrical losses, blade losses, ineffective time losses. Ineffective time losses are defined as losses during the time when the actual wind speed is lower than the cut-in speed or higher than the cut-out speed. The output variable in the case study is the lifetime energy production. Most influential factors for lifetime energy production are identified with the ranking of the total effect sensitivity indices. The results of the present

  13. A Persistent Disk Wind in GRS 1915+105 with NICER

    NASA Astrophysics Data System (ADS)

    Neilsen, J.; Cackett, E.; Remillard, R. A.; Homan, J.; Steiner, J. F.; Gendreau, K.; Arzoumanian, Z.; Prigozhin, G.; LaMarr, B.; Doty, J.; Eikenberry, S.; Tombesi, F.; Ludlam, R.; Kara, E.; Altamirano, D.; Fabian, A. C.

    2018-06-01

    The bright, erratic black hole X-ray binary GRS 1915+105 has long been a target for studies of disk instabilities, radio/infrared jets, and accretion disk winds, with implications that often apply to sources that do not exhibit its exotic X-ray variability. With the launch of the Neutron star Interior Composition Explorer (NICER), we have a new opportunity to study the disk wind in GRS 1915+105 and its variability on short and long timescales. Here we present our analysis of 39 NICER observations of GRS 1915+105 collected during five months of the mission data validation and verification phase, focusing on Fe XXV and Fe XXVI absorption. We report the detection of strong Fe XXVI in 32 (>80%) of these observations, with another four marginal detections; Fe XXV is less common, but both likely arise in the well-known disk wind. We explore how the properties of this wind depend on broad characteristics of the X-ray lightcurve: mean count rate, hardness ratio, and fractional rms variability. The trends with count rate and rms are consistent with an average wind column density that is fairly steady between observations but varies rapidly with the source on timescales of seconds. The line dependence on spectral hardness echoes the known behavior of disk winds in outbursts of Galactic black holes; these results clearly indicate that NICER is a powerful tool for studying black hole winds.

  14. A comparison of shock-cloud and wind-cloud interactions: effect of increased cloud density contrast on cloud evolution

    NASA Astrophysics Data System (ADS)

    Goldsmith, K. J. A.; Pittard, J. M.

    2018-05-01

    The similarities, or otherwise, of a shock or wind interacting with a cloud of density contrast χ = 10 were explored in a previous paper. Here, we investigate such interactions with clouds of higher density contrast. We compare the adiabatic hydrodynamic interaction of a Mach 10 shock with a spherical cloud of χ = 103 with that of a cloud embedded in a wind with identical parameters to the post-shock flow. We find that initially there are only minor morphological differences between the shock-cloud and wind-cloud interactions, compared to when χ = 10. However, once the transmitted shock exits the cloud, the development of a turbulent wake and fragmentation of the cloud differs between the two simulations. On increasing the wind Mach number, we note the development of a thin, smooth tail of cloud material, which is then disrupted by the fragmentation of the cloud core and subsequent `mass-loading' of the flow. We find that the normalized cloud mixing time (tmix) is shorter at higher χ. However, a strong Mach number dependence on tmix and the normalized cloud drag time, t_{drag}^' }, is not observed. Mach-number-dependent values of tmix and t_{drag}^' } from comparable shock-cloud interactions converge towards the Mach-number-independent time-scales of the wind-cloud simulations. We find that high χ clouds can be accelerated up to 80-90 per cent of the wind velocity and travel large distances before being significantly mixed. However, complete mixing is not achieved in our simulations and at late times the flow remains perturbed.

  15. Variable speed wind turbine control by discrete-time sliding mode approach.

    PubMed

    Torchani, Borhen; Sellami, Anis; Garcia, Germain

    2016-05-01

    The aim of this paper is to propose a new design variable speed wind turbine control by discrete-time sliding mode approach. This methodology is designed for linear saturated system. The saturation constraint is reported on inputs vector. To this end, the back stepping design procedure is followed to construct a suitable sliding manifold that guarantees the attainment of a stabilization control objective. It is well known that the mechanisms are investigated in term of the most proposed assumptions to deal with the damping, shaft stiffness and inertia effect of the gear. The objectives are to synthesize robust controllers that maximize the energy extracted from wind, while reducing mechanical loads and rotor speed tracking combined with an electromagnetic torque. Simulation results of the proposed scheme are presented. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Maximum likelihood estimation for predicting the probability of obtaining variable shortleaf pine regeneration densities

    Treesearch

    Thomas B. Lynch; Jean Nkouka; Michael M. Huebschmann; James M. Guldin

    2003-01-01

    A logistic equation is the basis for a model that predicts the probability of obtaining regeneration at specified densities. The density of regeneration (trees/ha) for which an estimate of probability is desired can be specified by means of independent variables in the model. When estimating parameters, the dependent variable is set to 1 if the regeneration density (...

  17. Low-frequency photospheric and wind variability in the early-B supergiant HD 2905

    NASA Astrophysics Data System (ADS)

    Simón-Díaz, S.; Aerts, C.; Urbaneja, M. A.; Camacho, I.; Antoci, V.; Fredslund Andersen, M.; Grundahl, F.; Pallé, P. L.

    2018-04-01

    Context. Despite important advances in space asteroseismology during the last decade, the early phases of evolution of stars with masses above 15 M⊙ (including the O stars and their evolved descendants, the B supergiants) have been only vaguely explored up to now. This is due to the lack of adequate observations for a proper characterization of the complex spectroscopic and photometric variability occurring in these stars. Aim. Our goal is to detect, analyze, and interpret variability in the early-B-type supergiant HD 2905 (κ Cas, B1 Ia) using long-term, ground-based, high-resolution spectroscopy. Methods: We gather a total of 1141 high-resolution spectra covering some 2900 days with three different high-performance spectrographs attached to 1-2.6m telescopes at the Canary Islands observatories. We complement these observations with the hipparcos light curve, which includes 160 data points obtained during a time span of 1200 days. We investigate spectroscopic variability of up to 12 diagnostic lines by using the zero and first moments of the line profiles. We perform a frequency analysis of both the spectroscopic and photometric dataset using Scargle periodograms. We obtain single snapshot and time-dependent information about the stellar parameters and abundances by means of the FASTWIND stellar atmosphere code. Results: HD 2905 is a spectroscopic variable with peak-to-peak amplitudes in the zero and first moments of the photospheric lines of up to 15% and 30 km s-1, respectively. The amplitude of the line-profile variability is correlated with the line formation depth in the photosphere and wind. All investigated lines present complex temporal behavior indicative of multi-periodic variability with timescales of a few days to several weeks. No short-period (hourly) variations are detected. The Scargle periodograms of the hipparcos light curve and the first moment of purely photospheric lines reveal a low-frequency amplitude excess and a clear dominant frequency

  18. Observed and Aogcm Simulated Relationships Between us Wind Speeds and Large Scale Modes of Climate Variability

    NASA Astrophysics Data System (ADS)

    Schoof, J. T.; Pryor, S. C.; Barthelmie, R. J.

    2013-12-01

    Previous research has indicated that large-scale modes of climate variability, such as El Niño - Southern Oscillation (ENSO), the Arctic Oscillation (AO) and the Pacific-North American pattern (PNA), influence the inter-annual and intra-annual variability of near-surface and upper-level wind speeds over the United States. For example, we have shown that rawinsonde derived wind speeds indicate that 90th percentile of wind speeds at 700 hPa over the Pacific Northwest and Southwestern USA are significantly higher under the negative phase of the PNA, and the Central Plains experiences higher wind speeds at 850 hPa under positive phase Southern Oscillation index while the Northeast exhibits higher wind speeds at 850 hPa under positive phase NAO. Here, we extend this research by further investigating these relationships using both reanalysis products and output from coupled atmosphere-ocean general circulation models (AOGCMs) developed for the 5th Phase of the Coupled Model Intercomparison Project (CMIP5). The research presented has two specific goals. First, we evaluate the AOGCM simulations in terms of their ability to represent the temporal and spatial representations of ENSO, the AO, and the PNA pattern relative to historical observations. The diagnostics used include calculation of the power spectra (and thus representation of the fundamental frequencies of variability) and Taylor diagrams (for comparative assessment of the spatial patterns and their intensities). Our initial results indicate that most AOGCMs produce modes that are qualitatively similar to those observed, but that differ slightly in terms of the spatial pattern, intensity of specific centers of action, and variance explained. Figure 1 illustrates an example of the analysis of the frequencies of variability of two climate modes for the NCEP-NCAR reanalysis (NNR) and a single AOGCM (BCC CSM1). The results show a high degree of similarity in the power spectra but for this AOGCM the variance of the PNA

  19. Do Transient Electrodynamic Processes Support Enhanced Neutral Mass Densities in Earth's Cusp-Region Thermosphere via Divergent Upward Winds?

    NASA Astrophysics Data System (ADS)

    Conde, M.; Larsen, M. F.; Troyer, R.; Gillespie, D.; Kosch, M.

    2017-12-01

    Satellite accelerometer measurements show that Earth's thermosphere contains two substantial and permanent regions of enhanced mass density that are located at around 400 km altitude near the footprints of the north and south geomagnetic cusps. The additional mass in these regions must be supported against gravity, which requires that similarly localized perturbations must occur in one or more of the other fields (beyond mass density) that appear in the momentum conservation equation for the thermospheric neutral fluid. However more than a decade after the density enhancements were first discovered, there are still no observations of any other corresponding perturbations to terms appearing directly in this equation that would indicate what is supporting the extra mass. To date, most candidate mechanisms involve high-altitude transient electrodynamic heating (at 250 km and above) that drives upwelling and associated horizontal divergence. Indeed, there are very few viable mechanisms that don't ultimately cause substantial localized neutral wind perturbations to occur near the density anomalies. Thus, we report here on a study to search for signatures of these localized perturbations in winds, using several data sources. These are the WATS instrument that flew aboard the DE-2 spacecraft, the C-REX-1 rocket flight through the CUSP in 2014, and two ground-based Fabry-Perot instruments that are located in Antarctica at latitudes that pass under the geomagnetic cusps - i.e. at McMurdo and South Pole stations. Using these data, we will present both climatological averages and also individual case studies to illustrate what localized signatures occur (if any) in the neutral wind fields near the cusp-region density anomalies.

  20. Analysis of the electrical harmonic characteristics of a slip recovery variable speed generating system for wind turbine applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, J.I.; Reddoch, T.W.

    1988-02-01

    Variable speed electric generating technology can enhance the general use of wind energy in electric utility applications. This enhancement results from two characteristic properties of variable speed wind turbine generators: an improvement in drive train damping characteristics, which results in reduced structural loading on the entire wind turbine system, and an improvement in the overall efficiency by using a more sophisticated electrical generator. Electronic converter systems are the focus of this investigation -- in particular, the properties of a wound-rotor induction generator with the slip recovery system and direct-current link converter. Experience with solid-state converter systems in large wind turbinesmore » is extremely limited. This report presents measurements of electrical performances of the slip recovery system and is limited to the terminal characteristics of the system. Variable speed generating systems working effectively in utility applications will require a satisfactory interface between the turbine/generator pair and the utility network. The electrical testing described herein focuses largely on the interface characteristics of the generating system. A MOD-O wind turbine was connected to a very strong system; thus, the voltage distortion was low and the total harmonic distortion in the utility voltage was less than 3% (within the 5% limit required by most utilities). The largest voltage component of a frequency below 60 Hz was 40 dB down from the 60-Hz< component. 8 refs., 14 figs., 8 tabs.« less

  1. Variability in sublingual microvessel density and flow measurements in healthy volunteers.

    PubMed

    Hubble, Sheena M A; Kyte, Hayley L; Gooding, Kim; Shore, Angela C

    2009-02-01

    As sublingual microvascular indices are increasingly heralded as new resuscitation end-points, better population data are required to power clinical studies. This paper describes improved methods to quantify sublingual microvessel flow and density in images obtained by sidestream dark field (SDF) technology in healthy volunteers, including vessels under 10 microm in diameter. Measurements of sublingual capillary density and flow were obtained by recording three 15-second images in 20 healthy volunteers over three days. Two independent observers quantified capillary density by using two methods: total vessel length (mm/mm2) and counting (number/mm). Both intraoral and temporal variabilities within subject and observer reproducibilities were determined by using coefficients of variability and reproducibility indices. For small (1-10 microm), medium (11-20 microm), and large (21-50 microm) diameter, mean vessel density with standard deviations (SDs) in volunteers was 21.3(+/- 4.9), 5.2 (+/- 1.2), and 2.7 (+/- 0.9) mm/mm2, respectively. Also, 94.0 +/- 1.4% of small vessels, 94.5 +/- 1.4% of medium vessels, and 94.5+/- 4.0% of large vessels had continuous perfusion. Within subjects, the means of all measurements over three days varied less than 13, 22, and 35% in small, medium, and large vessels, respectively. Interobserver reproducibility was good, especially for capillary (1-10 microm) density and flow measurements. Our methods of microvessel flow and density quantification have low observer variability and confirm the stability of microcirculatory measurements over time. These results facilitate the development of SDF-acquired sublingual microvascular indices as feasible microperfusion markers in shock resuscitation.

  2. Wind-induced interannual variability of sea level slope, along-shelf flow, and surface salinity on the Northwest Atlantic shelf

    NASA Astrophysics Data System (ADS)

    Li, Yun; Ji, Rubao; Fratantoni, Paula S.; Chen, Changsheng; Hare, Jonathan A.; Davis, Cabell S.; Beardsley, Robert C.

    2014-04-01

    In this study, we examine the importance of regional wind forcing in modulating advective processes and hydrographic properties along the Northwest Atlantic shelf, with a focus on the Nova Scotian Shelf (NSS)-Gulf of Maine (GoM) region. Long-term observational data of alongshore wind stress, sea level slope, and along-shelf flow are analyzed to quantify the relationship between wind forcing and hydrodynamic responses on interannual time scales. Additionally, a simplified momentum balance model is used to examine the underlying mechanisms. Our results show significant correlation among the observed interannual variability of sea level slope, along-shelf flow, and alongshore wind stress in the NSS-GoM region. A mechanism is suggested to elucidate the role of wind in modulating the sea level slope and along-shelf flow: stronger southwesterly (northeastward) winds tend to weaken the prevailing southwestward flow over the shelf, building sea level in the upstream Newfoundland Shelf region, whereas weaker southwesterly winds allow stronger southwestward flow to develop, raising sea level in the GoM region. The wind-induced flow variability can influence the transport of low-salinity water from the Gulf of St. Lawrence to the GoM, explaining interannual variations in surface salinity distributions within the region. Hence, our results offer a viable mechanism, besides the freshening of remote upstream sources, to explain interannual patterns of freshening in the GoM.

  3. FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM

    EPA Science Inventory

    The paper describes a variable-speed wind generation system where fuzzy logic principles are used to optimize efficiency and enhance performance control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which either pump...

  4. Variable Density Multilayer Insulation for Cryogenic Storage

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Brown, T. M.; Hastings, L. J.; Martin, J.

    2000-01-01

    Two analytical models for a foam/Variable Density Multi-Layer Insulation (VD-MLI) system performance are discussed. Both models are one-dimensional and contain three heat transfer mechanisms, namely conduction through the spacer material, radiation between the shields, and conduction through the gas. One model is based on the methodology developed by McIntosh while the other model is based on the Lockheed semi-empirical approach. All models input variables are based on the Multi-purpose Hydrogen Test Bed (MHTB) geometry and available values for material properties and empirical solid conduction coefficient. Heat flux predictions are in good agreement with the MHTB data, The heat flux predictions are presented for the foam/MLI combinations with 30, 45, 60, and 75 MLI layers

  5. Further influence of the eastern boundary on the seasonal variability of the Atlantic Meridional Overturning Circulation at 26N

    NASA Astrophysics Data System (ADS)

    Baehr, Johanna; Schmidt, Christian

    2016-04-01

    The seasonal cycle of the Atlantic Meridional Overturning Circulation (AMOC) at 26.5 N has been shown to arise predominantly from sub-surface density variations at the Eastern boundary. Here, we suggest that these sub-surface density variations have their origin in the seasonal variability of the Canary Current system, in particular the Poleward Undercurrent (PUC). We use a high-resolution ocean model (STORM) for which we show that the seasonal variability resembles observations for both sub-surface density variability and meridional transports. In particular, the STORM model simulation density variations at the eastern boundary show seasonal variations reaching down to well over 1000m, a pattern that most model simulations systematically underestimate. We find that positive wind stress curl anomalies in late summer and already within one degree off the eastern boundary result -through water column stretching- in strong transport anomlies in PUC in fall, coherent down to 1000m depth. Simultaneously with a westward propagation of these transport anomalies, we find in winter a weak PUC between 200 m and 500m, and southward transports between 600m and 1300m. This variability is in agreement with the observationally-based suggestion of a seasonal reversal of the meridional transports at intermediate depths. Our findings extend earlier studies which suggested that the seasonal variability at of the meridional transports across 26N is created by changes in the basin-wide thermocline through wind-driven upwelling at the eastern boundary analyzing wind stress curl anomalies 2 degrees off the eastern boundary. Our results suggest that the investigation of AMOC variability and particular its seasonal cycle modulations require the analysis of boundary wind stress curl and the upper ocean transports within 1 degree off the eastern boundary. These findings also implicate that without high-resolution coverage of the eastern boundary, coarser model simulation might not fully

  6. Stochastic transport models for mixing in variable-density turbulence

    NASA Astrophysics Data System (ADS)

    Bakosi, J.; Ristorcelli, J. R.

    2011-11-01

    In variable-density (VD) turbulent mixing, where very-different- density materials coexist, the density fluctuations can be an order of magnitude larger than their mean. Density fluctuations are non-negligible in the inertia terms of the Navier-Stokes equation which has both quadratic and cubic nonlinearities. Very different mixing rates of different materials give rise to large differential accelerations and some fundamentally new physics that is not seen in constant-density turbulence. In VD flows material mixing is active in a sense far stronger than that applied in the Boussinesq approximation of buoyantly-driven flows: the mass fraction fluctuations are coupled to each other and to the fluid momentum. Statistical modeling of VD mixing requires accounting for basic constraints that are not important in the small-density-fluctuation passive-scalar-mixing approximation: the unit-sum of mass fractions, bounded sample space, and the highly skewed nature of the probability densities become essential. We derive a transport equation for the joint probability of mass fractions, equivalent to a system of stochastic differential equations, that is consistent with VD mixing in multi-component turbulence and consistently reduces to passive scalar mixing in constant-density flows.

  7. Grid Integration of Offshore Wind | Wind | NREL

    Science.gov Websites

    . Photograph of a wind turbine in the ocean. Located about 10 kilometers off the coast of Arklow, Ireland, the Grid Integration of Offshore Wind Grid Integration of Offshore Wind Much can be learned from the existing land-based integration research for handling the variability and uncertainty of the wind resource

  8. Wind variability and sheltering effects on measurements and modeling of air-water exchange for a small lake

    NASA Astrophysics Data System (ADS)

    Markfort, Corey D.; Resseger, Emily; Porté-Agel, Fernando; Stefan, Heinz

    2014-05-01

    Lakes with a surface area of less than 10 km2 account for over 50% of the global cumulative lake surface water area, and make up more than 99% of the total number of global lakes, ponds, and wetlands. Within the boreal regions as well as some temperate and tropical areas, a significant proportion of land cover is characterized by lakes or wetlands, which can have a dramatic effect on land-atmosphere fluxes as well as the local and regional energy budget. Many of these small water bodies are surrounded by complex terrain and forest, which cause the wind blowing over a small lake or wetland to be highly variable. Wind mixing of the lake surface layer affects thermal stratification, surface temperature and air-water gas transfer, e.g. O2, CO2, and CH4. As the wind blows from the land to the lake, wake turbulence behind trees and other shoreline obstacles leads to a recirculation zone and enhanced turbulence. This wake flow results in the delay of the development of wind shear stress on the lake surface, and the fetch required for surface shear stress to fully develop may be ~O(1 km). Interpretation of wind measurements made on the lake is hampered by the unknown effect of wake turbulence. We present field measurements designed to quantify wind variability over a sheltered lake. The wind data and water column temperature profiles are used to evaluate a new method to quantify wind sheltering of lakes that takes into account lake size, shape and the surrounding landscape features. The model is validated against field data for 36 Minnesota lakes. Effects of non-uniform sheltering and lake shape are also demonstrated. The effects of wind sheltering must be included in lake models to determine the effect of wind-derived energy inputs on lake stratification, surface gas transfer, lake water quality, and fish habitat. These effects are also important for correctly modeling momentum, heat, moisture and trace gas flux to the atmosphere.

  9. FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM

    EPA Science Inventory

    The report gives results of a demonstration of the successful application of fuzzy logic to enhance the performance and control of a variable-speed wind generation system. A squirrel cage induction generator feeds the power to either a double-sided pulse-width modulation converte...

  10. Periodic fluctuations in correlation-based connectivity density time series: Application to wind speed-monitoring network in Switzerland

    NASA Astrophysics Data System (ADS)

    Laib, Mohamed; Telesca, Luciano; Kanevski, Mikhail

    2018-02-01

    In this paper, we study the periodic fluctuations of connectivity density time series of a wind speed-monitoring network in Switzerland. By using the correlogram-based robust periodogram annual periodic oscillations were found in the correlation-based network. The intensity of such annual periodic oscillations is larger for lower correlation thresholds and smaller for higher. The annual periodicity in the connectivity density seems reasonably consistent with the seasonal meteo-climatic cycle.

  11. On Lunar Exospheric Column Densities and Solar Wind Access Beyond the Terminator from ROSAT Soft X-Ray Observations of Solar Wind Charge Exchange

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Snowden, S. L.; Sarantos, M.; Benna, M.; Carter, J. A.; Cravens, T. E.; Farrell, W. M.; Fatemi, S.; Hills, H. Kent; Hodges, R. R.; hide

    2014-01-01

    We analyze the Rontgen satellite (ROSAT) position sensitive proportional counter soft X-ray image of the Moon taken on 29 June 1990 by examining the radial profile of the surface brightness in three wedges: two 19 deg wedges (one north and one south) 13-32 deg off the terminator toward the dark side and one wedge 38 deg wide centered on the antisolar direction. The radial profiles of both the north and the south wedges show significant limb brightening that is absent in the 38 deg wide antisolar wedge. An analysis of the soft X-ray intensity increase associated with the limb brightening shows that its magnitude is consistent with that expected due to solar wind charge exchange (SWCX) with the tenuous lunar atmosphere based on lunar exospheric models and hybrid simulation results of solar wind access beyond the terminator. Soft X-ray imaging thus can independently infer the total lunar limb column density including all species, a property that before now has not been measured, and provide a large-scale picture of the solar wind-lunar interaction. Because the SWCX signal appears to be dominated by exospheric species arising from solar wind implantation, this technique can also determine how the exosphere varies with solar wind conditions. Now, along with Mars, Venus, and Earth, the Moon represents another solar system body at which SWCX has been observed.

  12. Modeling X-ray Absorbers in AGNs with MHD-Driven Accretion-Disk Winds

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Kazanas, D.; Shrader, C. R.; Tombesi, F.; Contopoulos, J.; Behar, E.

    2013-04-01

    We have proposed a systematic view of the observed X-ray absorbers, namely warm absorbers (WAs) in soft X-ray and highly-ionized ultra-fast outflows (UFOs), in the context of magnetically-driven accretion-disk wind models. While potentially complicated by variability and thermal instability in these energetic outflows, in this simplistic model we have calculated 2D kinematic field as well as density and ionization structure of the wind with density profile of 1/r corresponding to a constant column distribution per decade of ionization parameter. In particular we show semi-analytically that the inner layer of the disk-wind manifests itself as the strongly-ionized fast outflows while the outer layer is identified as the moderately-ionized absorbers. The computed characteristics of these two apparently distinct absorbers are consistent with X-ray data (i.e. a factor of ~100 difference in column and ionization parameters as well as low wind velocity vs. near-relativistic flow). With the predicted contour curves for these wind parameters one can constrain allowed regions for the presence of WAs and UFOs.The model further implies that the UFO's gas pressure is comparable to that of the observed radio jet in 3C111 suggesting that the magnetized disk-wind with density profile of 1/r is a viable agent to help sustain such a self-collimated jet at small radii.

  13. Stochastic Multi-Timescale Power System Operations With Variable Wind Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hongyu; Krad, Ibrahim; Florita, Anthony

    This paper describes a novel set of stochastic unit commitment and economic dispatch models that consider stochastic loads and variable generation at multiple operational timescales. The stochastic model includes four distinct stages: stochastic day-ahead security-constrained unit commitment (SCUC), stochastic real-time SCUC, stochastic real-time security-constrained economic dispatch (SCED), and deterministic automatic generation control (AGC). These sub-models are integrated together such that they are continually updated with decisions passed from one to another. The progressive hedging algorithm (PHA) is applied to solve the stochastic models to maintain the computational tractability of the proposed models. Comparative case studies with deterministic approaches are conductedmore » in low wind and high wind penetration scenarios to highlight the advantages of the proposed methodology, one with perfect forecasts and the other with current state-of-the-art but imperfect deterministic forecasts. The effectiveness of the proposed method is evaluated with sensitivity tests using both economic and reliability metrics to provide a broader view of its impact.« less

  14. Wind Effects on Flow Patterns and Net Fluxes in Density-Driven High-Latitude Channel Flow

    NASA Astrophysics Data System (ADS)

    Huntley, Helga S.; Ryan, Patricia

    2018-01-01

    A semianalytic two-dimensional model is used to analyze the interplay between the different forces acting on density-driven flow in high-latitude channels. In particular, the balance between wind stress, viscous forces, baroclinicity, and sea surface slope adjustments under specified flux conditions is examined. Weak winds are found not to change flow patterns appreciably, with minimal (<7%) adjustments to horizontal velocity maxima. In low-viscosity regimes, strong winds change the flow significantly, especially at the surface, by either strengthening the dual-jet pattern, established without wind, by a factor of 2-3 or initiating return flow at the surface. A nonzero flux does not result in the addition of a uniform velocity throughout the channel cross section, but modifies both along-channel and cross-channel velocities to become more symmetric, dominated by a down-channel jet centered in the domain and counter-clockwise lateral flow. We also consider formulations of the model that allow adjustments of the net flux in response to the wind. Flow patterns change, beyond uniform intensification or weakening, only for strong winds and high Ekman number. Comparisons of the model results to observational data collected in Nares Strait in the Canadian Archipelago in the summer of 2007 show rough agreement, but the model misses the upstream surface jet on the east side of the strait and propagates bathymetric effects too strongly in the vertical for this moderately high eddy viscosity. Nonetheless, the broad strokes of the observed high-latitude flow are reproduced.

  15. Turbulence suppression at water density interfaces: observations under moderate wind forcing.

    NASA Astrophysics Data System (ADS)

    Marcello Falcieri, Francesco; Kanth, Lakshmi H.; Benetazzo, Alvise; Bergamasco, Andrea; Bonaldo, Davide; Barbariol, Francesco; Malačič, Vlado; Sclavo, Mauro; Carniel, Sandro

    2016-04-01

    Water column stratification has a strong influence on the behaviour of turbulence kinetic energy (TKE) dissipation rates. Density gradient interfaces, due to thermohaline characteristics and to suspended sediment concentration, can act as a barrier and significantly damp TKE. Between January 30th - February 4th 2014 (CARPET2014 oceanographic campaign on R/V URANIA) we collected the very first turbulence data in the Gulf of Trieste (a small bay located in the North-eartern part of the Adriatic Sea). Observation consisted of 38 CTD casts and 478 microstructure profiles (145 ensembles) collected with a free-falling probe (MSS90L). Among those 48 were grouped in three sets of yoyo casts, each lasting for about 12 consecutive hours. The meteorological conditions during the campaign were of moderate wind (average wind speed 10 m s-1) and heat flux (net negative heat flux ranging from 150 to 400 W m-2). The water column characteristics in the Gulf during the campaign evolved from well-mixed to stratified conditions with waters intruding from the Adriatic Sea at the bottom. Two types of water intrusions were found during yoyo casts: one coming from the Adriatic Sea northern coast (i.e. warmer, saltier and more turbid) and one coming from the open sea in front of the Po Delta (i.e. cooler, fresher and less turbid). Our observations show that under moderate wind forcing, the GOT was not completely mixed due to the interfaces created by the bottom waters intruding from the open sea. The comparison of microstructure profiles collected during well mixed and stratified conditions permitted us to highlight the effect of different stratification on TKE dissipation rates. While during well mixed condition TKE profiles are governed just by their forcing, the two intrusions showed different impacts on TKE dissipation rate profiles. The coastal one, with high turbidity, acted as a barrier to surface driven turbulence dumping it of almost two order of magnitude, while the one coming

  16. Solar wind proton density increase that preceded Central Italy earthquakes occurred between 26 and 30 October 2016

    NASA Astrophysics Data System (ADS)

    Cataldi, Gabriele; Cataldi, Daniele; Straser, Valentino

    2017-04-01

    Between 26 and 30 October 2016 in Central Italy were recorded two strong earthquakes: M6.1 occurred on October 26, 2016 at 19:18:08 UTC and M6.6 occurred on October 30, 2016 at 06:40:18 UTC. The authors of this study noted that the two earthquakes were preceded by an increase in the proton density of the interplanetary medium: a phenomenon observed since 2012 and has always preceded the seismic events of high intensity (M6+) occurring on a global scale. To obtain these results the authors have analyzed the conditions of Spaceweather "near Earth" and the characteristics of the Earth's geomagnetic field in the days and in the hours that preceded the two earthquakes. The data relating to the two earthquakes were provided by the United States Geological Survey (USGS). The data on ion density used to realize the study are represented by: solar wind ion density variation detected by ACE (Advanced Composition Explorer) Satellite, in orbit near the L1 Lagrange point, at 1.5 million of km from Earth, in direction of the Sun. The instrument used to perform the measurement of the solar wind ion density is the Electron, Proton, and Alpha Monitor (EPAM) instrument, equipped on the ACE Satellite. To conduct the study, the authors have taken in consideration the variation of the solar wind protons density of three different energy fractions: differential proton flux 1060-1900 keV (p/cm^2-sec-ster-MeV); differential proton flux 761-1220 keV (p/cm^2-sec-ster-MeV); differential proton flux 310-580 keV (p/cm^2-sec-ster-MeV). In addition, the authors were analyzed the Earth's geomagnetic field variations through the geomagnetic data released by Tromsø Geomagnetic Observatory (TGO), Norway; Scoresbysund Geomagnetic Observatory (SCO), Greenland, Denmark; Dikson Geomagnetic Observatory (DIK), Russia and Pushkov Institute of terrestrial magnetism, ionosphere and radio wave propagation (IZMIRAN), Troitsk, Moscow Region. The results of the study, in agreement with what already ascertained

  17. Investigation of aircraft landing in variable wind fields

    NASA Technical Reports Server (NTRS)

    Frost, W.; Reddy, K. R.

    1978-01-01

    A digital simulation study is reported of the effects of gusts and wind shear on the approach and landing of aircraft. The gusts and wind shear are primarily those associated with wind fields created by surface wind passing around bluff geometries characteristic of buildings. Also, flight through a simple model of a thunderstorm is investigated. A two-dimensional model of aircraft motion was represented by a set of nonlinear equations which accounted for both spatial and temporal variations of winds. The landings of aircraft with the characteristics of a DC-8 and a DHC-6 were digitally simulated under different wind conditions with fixed and automatic controls. The resulting deviations in touchdown points and the controls that are required to maintain the desired flight path are presented. The presence of large bluff objects, such as buildings in the flight path is shown to have considerable effect on aircraft landings.

  18. Winds: intensity and power density simulated by RegCM4 over South America in present and future climate

    NASA Astrophysics Data System (ADS)

    Reboita, Michelle Simões; Amaro, Tatiana Rocha; de Souza, Marcelo Rodrigues

    2017-09-01

    Since wind is an important source of renewable energy, it has attracted attention worldwide. Several studies have been developed in order to know favorable areas where wind farms can be implemented. Therefore, the purpose of this study is to project changes in wind intensity and in wind power density (PD), at 100 m high, over South America and adjacent oceans, by downscaling and ensemble techniques. Regional climate model version 4 (RegCM4) was nested in the output of three global climate models, considering the RCP8.5 scenario. RegCM4 ensemble in the present climate (1979-2005) was validated through comparisons with ERA-Interim reanalysis. The ensemble represents well the spatial pattern of the winds, but there are some differences in relation to the wind intensity registered by ERA-Interim, mainly in center-east Brazil and Patagonia. The comparison between the future climate (2020-2050 and 2070-2098) and the present one shows that there is an increase in wind intensity and PD on the north of SA, center-east Brazil (except in summer) and latitudes higher than 50°S. Such increase is more intense in the period 2070-2098.

  19. DENSITY-DEPENDENT FLOW IN ONE-DIMENSIONAL VARIABLY-SATURATED MEDIA

    EPA Science Inventory

    A one-dimensional finite element is developed to simulate density-dependent flow of saltwater in variably saturated media. The flow and solute equations were solved in a coupled mode (iterative), in a partially coupled mode (non-iterative), and in a completely decoupled mode. P...

  20. The variability of winds over the ocean

    NASA Technical Reports Server (NTRS)

    Pierson, W. J.

    1981-01-01

    The present state of knowledge of the synoptic scale, the mesoscale, and the microscale in describing the winds, especially over the ocean, is summarized both in terms of conventional data and remotely sensed properties and effects of the winds. A description is then given of some of the areas posing problems in modeling each scale and interpreting the various kinds of measurements that are made. It is noted that not much is known about the wind, especially in the mesoscale, that affects the ability to use remotely sensed data in an optimum way.

  1. Intraseasonal variability in the summer South China Sea: Wind jet, cold filament, and recirculations

    NASA Astrophysics Data System (ADS)

    Xie, Shang-Ping; Chang, Chueh-Hsin; Xie, Qiang; Wang, Dongxiao

    2007-10-01

    A recent study shows that the blockage of the southwest monsoon by the mountain range on the east coast of Indochina triggers a chain of ocean-atmospheric response, including a wind jet and cold filament in the South China Sea (SCS). We extend this climatological analysis by using higher temporal resolution (weekly) to study intraseasonal variability in summer. Our analysis shows that the development of the wind jet and cold filament is not a smooth seasonal process but consists of several intraseasonal events each year at about 45-day intervals. In a typical intraseasonal event, the wind jet intensifies to above 12 m/s, followed in a week by the development of a cold filament advected by an offshore jet east of South Vietnam on the boundary of a double gyre circulation in the ocean. The double gyre circulation itself also strengthens in response to the intraseasonal wind event via Rossby wave adjustment, reaching the maximum strength in 2 to 3 weeks. The intraseasonal cold filaments appear to influence the surface wind, reducing the local wind speed because of the increased static stability in the near-surface atmosphere. To first order, the above sequence of events may be viewed as the SCS response to atmospheric intraseasonal wind pulses, which are part of the planetary-scale boreal summer intraseasonal oscillation characterized by the northeastward propagation of atmospheric deep convection. The intraseasonal anomalies of sea surface temperature and precipitation are in phase over the SCS, suggesting an oceanic feedback onto the atmosphere. As wind variations are now being routinely monitored by satellite, the lags of 1-3 weeks in oceanic response offer useful predictability that may be exploited.

  2. Climate and climate variability of the wind power resources in the Great Lakes region of the United States

    Treesearch

    X. Li; S. Zhong; X. Bian; W.E. Heilman

    2010-01-01

    The climate and climate variability of low-level winds over the Great Lakes region of the United States is examined using 30 year (1979-2008) wind records from the recently released North American Regional Reanalysis (NARR), a three-dimensional, high-spatial and temporal resolution, and dynamically consistent climate data set. The analyses focus on spatial distribution...

  3. A study of aerosol entrapment and the influence of wind speed, chamber design and foam density on polyurethane foam passive air samplers used for persistent organic pollutants.

    PubMed

    Chaemfa, Chakra; Wild, Edward; Davison, Brian; Barber, Jonathan L; Jones, Kevin C

    2009-06-01

    Polyurethane foam disks are a cheap and versatile tool for sampling persistent organic pollutants (POPs) from the air in ambient, occupational and indoor settings. This study provides important background information on the ways in which the performance of these commonly used passive air samplers may be influenced by the key environmental variables of wind speed and aerosol entrapment. Studies were performed in the field, a wind tunnel and with microscopy techniques, to investigate deployment conditions and foam density influence on gas phase sampling rates (not obtained in this study) and aerosol trapping. The study showed: wind speed inside the sampler is greater on the upper side of the sampling disk than the lower side and tethered samplers have higher wind speeds across the upper and lower surfaces of the foam disk at a wind speed > or = 4 m/s; particles are trapped on the foam surface and within the body of the foam disk; fine (<1 um) particles can form clusters of larger size inside the foam matrix. Whilst primarily designed to sample gas phase POPs, entrapment of particles ensures some 'sampling' of particle bound POPs species, such as higher molecular weight PAHs and PCDD/Fs. Further work is required to investigate how quantitative such entrapment or 'sampling' is under different ambient conditions, and with different aerosol sizes and types.

  4. Periodic Alpha Signatures and the Origins of the Slow Solar Wind

    NASA Astrophysics Data System (ADS)

    Blume, Catherine; Kepko, Larry

    2017-01-01

    The origin of the slow solar wind has puzzled scientists for decades. Both flux tube geometry of field lines open to the heliosphere and magnetic reconnection that opens field lines that were previously closed to the heliosphere have been proposed as explanations (via the expansion factor and S-web models, respectively), but the observations to date have proven an inadequate test for distinguishing between the theories. However, short term (~hours) variability of alpha particles could provide the set of observations that tips the balance. Alpha particles compose about 4% of the solar wind, and its precise composition is determined by dynamics in the solar atmosphere. Therefore, compositional changes in the alpha to proton ratio must have originated at the Sun, making alphs tracer particles of sorts and carrying signatures of their solar creation. We examined in situ alpha density and proton density data from the Wind, ACE, STEREO-B, AND STEREO-A spacecraft, focusing on a pseudostreamer that occurred August 9, 2008. This case study found one clear periodic structure in the slow solar wind preceding the pseudostreamer in Wind/ACE and the same periodic structure in the in situ data at STEREO-B. The existence of this slow wind structure in association with a pseudostreamer directly contradicts the expansion factor model, which predicts that pseudostreamers produce fast wind. The structure's appearance at STEREO-B, which was located 30 degrees behind the Earth-Sun line, further indicates that the mechanism at the Sun is responsible for its formation was active for at least three days. Moreover, an analysis of both helmet streamer and pseudostreamer events between 2007-2009 finds that similar density structures exist in at least 35% of all streamers. This indicates that the same physical process that produces this slow solar wind occurs with a degree of frequency in association with both types of streamers. The clarity, duration, and frequency of these periodic density

  5. Seabird aggregative patterns: a new tool for offshore wind energy risk assessment.

    PubMed

    Christel, Isadora; Certain, Grégoire; Cama, Albert; Vieites, David R; Ferrer, Xavier

    2013-01-15

    The emerging development of offshore wind energy has raised public concern over its impact on seabird communities. There is a need for an adequate methodology to determine its potential impacts on seabirds. Environmental Impact Assessments (EIAs) are mostly relying on a succession of plain density maps without integrated interpretation of seabird spatio-temporal variability. Using Taylor's power law coupled with mixed effect models, the spatio-temporal variability of species' distributions can be synthesized in a measure of the aggregation levels of individuals over time and space. Applying the method to a seabird aerial survey in the Ebro Delta, NW Mediterranean Sea, we were able to make an explicit distinction between transitional and feeding areas to define and map the potential impacts of an offshore wind farm project. We use the Ebro Delta study case to discuss the advantages of potential impacts maps over density maps, as well as to illustrate how these potential impact maps can be applied to inform on concern levels, optimal EIA design and monitoring in the assessment of local offshore wind energy projects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Forced and intrinsic variability in the response to increased wind stress of an idealized Southern Ocean

    NASA Astrophysics Data System (ADS)

    Wilson, Chris; Hughes, Chris W.; Blundell, Jeffrey R.

    2015-01-01

    use ensemble runs of a three layer, quasi-geostrophic idealized Southern Ocean model to explore the roles of forced and intrinsic variability in response to a linear increase of wind stress imposed over a 30 year period. We find no increase of eastward circumpolar volume transport in response to the increased wind stress. A large part of the resulting time series can be explained by a response in which the eddy kinetic energy is linearly proportional to the wind stress with a possible time lag, but no statistically significant lag is found. However, this simple relationship is not the whole story: several intrinsic time scales also influence the response. We find an e-folding time scale for growth of small perturbations of 1-2 weeks. The energy budget for intrinsic variability at periods shorter than a year is dominated by exchange between kinetic and potential energy. At longer time scales, we find an intrinsic mode with period in the region of 15 years, which is dominated by changes in potential energy and frictional dissipation in a manner consistent with that seen by Hogg and Blundell (2006). A similar mode influences the response to changing wind stress. This influence, robust to perturbations, is different from the supposed linear relationship between wind stress and eddy kinetic energy, and persists for 5-10 years in this model, suggestive of a forced oscillatory mode with period of around 15 years. If present in the real ocean, such a mode would imply a degree of predictability of Southern Ocean dynamics on multiyear time scales.

  7. Post-processing method for wind speed ensemble forecast using wind speed and direction

    NASA Astrophysics Data System (ADS)

    Sofie Eide, Siri; Bjørnar Bremnes, John; Steinsland, Ingelin

    2017-04-01

    Statistical methods are widely applied to enhance the quality of both deterministic and ensemble NWP forecasts. In many situations, like wind speed forecasting, most of the predictive information is contained in one variable in the NWP models. However, in statistical calibration of deterministic forecasts it is often seen that including more variables can further improve forecast skill. For ensembles this is rarely taken advantage of, mainly due to that it is generally not straightforward how to include multiple variables. In this study, it is demonstrated how multiple variables can be included in Bayesian model averaging (BMA) by using a flexible regression method for estimating the conditional means. The method is applied to wind speed forecasting at 204 Norwegian stations based on wind speed and direction forecasts from the ECMWF ensemble system. At about 85 % of the sites the ensemble forecasts were improved in terms of CRPS by adding wind direction as predictor compared to only using wind speed. On average the improvements were about 5 %, but mainly for moderate to strong wind situations. For weak wind speeds adding wind direction had more or less neutral impact.

  8. The effect of adsorbed liquid and material density on saltation threshold: Insight from laboratory and wind tunnel experiments

    NASA Astrophysics Data System (ADS)

    Yu, Xinting; Hörst, Sarah M.; He, Chao; Bridges, Nathan T.; Burr, Devon M.; Sebree, Joshua A.; Smith, James K.

    2017-11-01

    Saltation threshold, the minimum wind speed for sediment transport, is a fundamental parameter in aeolian processes. Measuring this threshold using boundary layer wind tunnels, in which particles are mobilized by flowing air, for a subset of different planetary conditions can inform our understanding of physical processes of sediment transport. The presence of liquid, such as water on Earth or methane on Titan, may affect the threshold values to a great extent. Sediment density is also crucial for determining threshold values. Here we provide quantitative data on density and water content of common wind tunnel materials (including chromite, basalt, quartz sand, beach sand, glass beads, gas chromatograph packing materials, walnut shells, iced tea powder, activated charcoal, instant coffee, and glass bubbles) that have been used to study conditions on Earth, Titan, Mars, and Venus. The measured density values for low density materials are higher compared to literature values (e.g., ∼30% for walnut shells), whereas for the high density materials, there is no such discrepancy. We also find that low density materials have much higher water content and longer atmospheric equilibration timescales compared to high density sediments. We used thermogravimetric analysis (TGA) to quantify surface and internal water and found that over 80% of the total water content is surface water for low density materials. In the Titan Wind Tunnel (TWT), where Reynolds number conditions similar to those on Titan can be achieved, we performed threshold experiments with the standard walnut shells (125-150 μm, 7.2% water by mass) and dried walnut shells, in which the water content was reduced to 1.7%. The threshold results for the two scenarios are almost the same, which indicates that humidity had a negligible effect on threshold for walnut shells in this experimental regime. When the water content is lower than 11.0%, the interparticle forces are dominated by adsorption forces, whereas at

  9. Impact of tidal density variability on orbital and reentry predictions

    NASA Astrophysics Data System (ADS)

    Leonard, J. M.; Forbes, J. M.; Born, G. H.

    2012-12-01

    Since the first satellites entered Earth orbit in the late 1950's and early 1960's, the influences of solar and geomagnetic variability on the satellite drag environment have been studied, and parameterized in empirical density models with increasing sophistication. However, only within the past 5 years has the realization emerged that "troposphere weather" contributes significantly to the "space weather" of the thermosphere, especially during solar minimum conditions. Much of the attendant variability is attributable to upward-propagating solar tides excited by latent heating due to deep tropical convection, and solar radiation absorption primarily by water vapor and ozone in the stratosphere and mesosphere, respectively. We know that this tidal spectrum significantly modifies the orbital (>200 km) and reentry (60-150 km) drag environments, and that these tidal components induce longitude variability not yet emulated in empirical density models. Yet, current requirements for improvements in orbital prediction make clear that further refinements to density models are needed. In this paper, the operational consequences of longitude-dependent tides are quantitatively assessed through a series of orbital and reentry predictions. We find that in-track prediction differences incurred by tidal effects are typically of order 200 ± 100 m for satellites in 400-km circular orbits and 15 ± 10 km for satellites in 200-km circular orbits for a 24-hour prediction. For an initial 200-km circular orbit, surface impact differences of order 15° ± 15° latitude are incurred. For operational problems with similar accuracy needs, a density model that includes a climatological representation of longitude-dependent tides should significantly reduce errors due to this source.

  10. Quantifying the impact of sub-grid surface wind variability on sea salt and dust emissions in CAM5

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Zhao, Chun; Wan, Hui; Qian, Yun; Easter, Richard C.; Ghan, Steven J.; Sakaguchi, Koichi; Liu, Xiaohong

    2016-02-01

    This paper evaluates the impact of sub-grid variability of surface wind on sea salt and dust emissions in the Community Atmosphere Model version 5 (CAM5). The basic strategy is to calculate emission fluxes multiple times, using different wind speed samples of a Weibull probability distribution derived from model-predicted grid-box mean quantities. In order to derive the Weibull distribution, the sub-grid standard deviation of surface wind speed is estimated by taking into account four mechanisms: turbulence under neutral and stable conditions, dry convective eddies, moist convective eddies over the ocean, and air motions induced by mesoscale systems and fine-scale topography over land. The contributions of turbulence and dry convective eddy are parameterized using schemes from the literature. Wind variabilities caused by moist convective eddies and fine-scale topography are estimated using empirical relationships derived from an operational weather analysis data set at 15 km resolution. The estimated sub-grid standard deviations of surface wind speed agree well with reference results derived from 1 year of global weather analysis at 15 km resolution and from two regional model simulations with 3 km grid spacing.The wind-distribution-based emission calculations are implemented in CAM5. In terms of computational cost, the increase in total simulation time turns out to be less than 3 %. Simulations at 2° resolution indicate that sub-grid wind variability has relatively small impacts (about 7 % increase) on the global annual mean emission of sea salt aerosols, but considerable influence on the emission of dust. Among the considered mechanisms, dry convective eddies and mesoscale flows associated with topography are major causes of dust emission enhancement. With all the four mechanisms included and without additional adjustment of uncertain parameters in the model, the simulated global and annual mean dust emission increase by about 50 % compared to the default model

  11. Quantifying the impact of sub-grid surface wind variability on sea salt and dust emissions in CAM5

    DOE PAGES

    Zhang, Kai; Zhao, Chun; Wan, Hui; ...

    2016-02-12

    This paper evaluates the impact of sub-grid variability of surface wind on sea salt and dust emissions in the Community Atmosphere Model version 5 (CAM5). The basic strategy is to calculate emission fluxes multiple times, using different wind speed samples of a Weibull probability distribution derived from model-predicted grid-box mean quantities. In order to derive the Weibull distribution, the sub-grid standard deviation of surface wind speed is estimated by taking into account four mechanisms: turbulence under neutral and stable conditions, dry convective eddies, moist convective eddies over the ocean, and air motions induced by mesoscale systems and fine-scale topography overmore » land. The contributions of turbulence and dry convective eddy are parameterized using schemes from the literature. Wind variabilities caused by moist convective eddies and fine-scale topography are estimated using empirical relationships derived from an operational weather analysis data set at 15 km resolution. The estimated sub-grid standard deviations of surface wind speed agree well with reference results derived from 1 year of global weather analysis at 15 km resolution and from two regional model simulations with 3 km grid spacing.The wind-distribution-based emission calculations are implemented in CAM5. In terms of computational cost, the increase in total simulation time turns out to be less than 3 %. Simulations at 2° resolution indicate that sub-grid wind variability has relatively small impacts (about 7 % increase) on the global annual mean emission of sea salt aerosols, but considerable influence on the emission of dust. Among the considered mechanisms, dry convective eddies and mesoscale flows associated with topography are major causes of dust emission enhancement. With all the four mechanisms included and without additional adjustment of uncertain parameters in the model, the simulated global and annual mean dust emission increase by about 50 % compared to the

  12. Quantifying the impact of sub-grid surface wind variability on sea salt and dust emissions in CAM5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Kai; Zhao, Chun; Wan, Hui

    This paper evaluates the impact of sub-grid variability of surface wind on sea salt and dust emissions in the Community Atmosphere Model version 5 (CAM5). The basic strategy is to calculate emission fluxes multiple times, using different wind speed samples of a Weibull probability distribution derived from model-predicted grid-box mean quantities. In order to derive the Weibull distribution, the sub-grid standard deviation of surface wind speed is estimated by taking into account four mechanisms: turbulence under neutral and stable conditions, dry convective eddies, moist convective eddies over the ocean, and air motions induced by mesoscale systems and fine-scale topography overmore » land. The contributions of turbulence and dry convective eddy are parameterized using schemes from the literature. Wind variabilities caused by moist convective eddies and fine-scale topography are estimated using empirical relationships derived from an operational weather analysis data set at 15 km resolution. The estimated sub-grid standard deviations of surface wind speed agree well with reference results derived from 1 year of global weather analysis at 15 km resolution and from two regional model simulations with 3 km grid spacing.The wind-distribution-based emission calculations are implemented in CAM5. In terms of computational cost, the increase in total simulation time turns out to be less than 3 %. Simulations at 2° resolution indicate that sub-grid wind variability has relatively small impacts (about 7 % increase) on the global annual mean emission of sea salt aerosols, but considerable influence on the emission of dust. Among the considered mechanisms, dry convective eddies and mesoscale flows associated with topography are major causes of dust emission enhancement. With all the four mechanisms included and without additional adjustment of uncertain parameters in the model, the simulated global and annual mean dust emission increase by about 50 % compared to the

  13. Changes In the Pickup Ion Cutoff Under Variable Solar Wind Conditions

    NASA Astrophysics Data System (ADS)

    Bower, J.; Moebius, E.; Taut, A.; Berger, L.; Drews, C.; Lee, M. A.; Farrugia, C. J.

    2017-12-01

    We present the first systematic analysis to determine pickup ion (PUI) cutoff speed variations,both during compression regions, identified by their structure, and during times of highly variablesolar wind (SW) speed or magnetic field strength. This study is motivated by the attempt toremove or correct these effects on the determination of the longitude of the interstellar neutralgas flow from the flow pattern related variation of the PUI cutoff with ecliptic longitude. At thesame time, this study sheds light on the physical mechanisms that lead to energy transferbetween the SW and the embedded PUI population. Using 2007-2014 STEREO A PLASTICobservations we identify compression regions in the solar wind and analyze the PUI velocitydistribution function (VDF). We developed a routine to identify stream interaction regions andCIRs, by identifying the stream interface and the successive velocity increase in the solar windspeed and density. Characterizing these individual compression events and combining them in asuperposed epoch analysis allows us to analyze the PUI population in similar conditions andfind the local cutoff shift with adequate statistics. The result of this method yields cutoff shifts forcompression regions with large solar wind speed gradients. Additionally, through sorting theentire set of PUI VDFs at high time resolution we obtain a noticeable correlation of the cutoffshift with gradients in the SW speed and interplanetary magnetic field strength. We willdiscuss implications for the understanding of the PUI VDF evolution and the PUI cutoff analysisof the interstellar gas flow.

  14. Arbitrary-order Hilbert Spectral Analysis and Intermittency in Solar Wind Density Fluctuations

    NASA Astrophysics Data System (ADS)

    Carbone, Francesco; Sorriso-Valvo, Luca; Alberti, Tommaso; Lepreti, Fabio; Chen, Christopher H. K.; Němeček, Zdenek; Šafránková, Jana

    2018-05-01

    The properties of inertial- and kinetic-range solar wind turbulence have been investigated with the arbitrary-order Hilbert spectral analysis method, applied to high-resolution density measurements. Due to the small sample size and to the presence of strong nonstationary behavior and large-scale structures, the classical analysis in terms of structure functions may prove to be unsuccessful in detecting the power-law behavior in the inertial range, and may underestimate the scaling exponents. However, the Hilbert spectral method provides an optimal estimation of the scaling exponents, which have been found to be close to those for velocity fluctuations in fully developed hydrodynamic turbulence. At smaller scales, below the proton gyroscale, the system loses its intermittent multiscaling properties and converges to a monofractal process. The resulting scaling exponents, obtained at small scales, are in good agreement with those of classical fractional Brownian motion, indicating a long-term memory in the process, and the absence of correlations around the spectral-break scale. These results provide important constraints on models of kinetic-range turbulence in the solar wind.

  15. Wind energy potential assessment to estimate performance of selected wind turbine in northern coastal region of Semarang-Indonesia

    NASA Astrophysics Data System (ADS)

    Premono, B. S.; Tjahjana, D. D. D. P.; Hadi, S.

    2017-01-01

    The aims of this paper are to investigate the characteristic of the wind speed and wind energy potential in the northern coastal region of Semarang, Central Java, Indonesia. The wind data was gained from Meteorological Station of Semarang, with ten-min average time series wind data for one year period, at the height of 10 m. Weibull distribution has been used to determine the wind power density and wind energy density of the site. It was shown that the value of the two parameters, shape parameter k, and scale parameter c, were 3.37 and 5.61 m/s, respectively. The annual mean wind speed and wind speed carrying the maximum energy were 5.32 m/s and 6.45 m/s, respectively. Further, the annual energy density at the site was found at a value of 103.87 W/m2, and based on Pacific North-west Laboratory (PNL) wind power classification, at the height of 10 m, the value of annual energy density is classified into class 2. The commercial wind turbine is chosen to simulate the wind energy potential of the site. The POLARIS P25-100 is most suitable to the site. It has the capacity factor 29.79% and can produce energy 261 MWh/year.

  16. Analytical Models for Variable Density Multilayer Insulation Used in Cryogenic Storage

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Hastings, L. J.; Brown, T.

    2001-01-01

    A unique multilayer insulation concept for orbital cryogenic storage was experimentally evaluated at NASA Marshall Space Flight Center (MSFC) using the Multipurpose Hydrogen Test Bed (MHTB). A combination of foam/Multi layer Insulation (MLI) was used. The MLI (45 layers of Double Aluminized Mylar (DAM) with Dacron net spacers) was designed for an on-orbit storage period of 45 days and included several unique features such as: a variable layer density and larger but fewer DAM perforations for venting during ascent to orbit. The focus of this paper is on analytical modeling of the variable density MLI performance during orbital coast periods. The foam/MLI combination model is considered to have five segments. The first segment represents the foam layer. The second, third, and fourth segments represent the three layers of MLI with different layer densities and number of shields. Finally, the last segment is considered to be a shroud that surrounds the last MLI layer. The hot boundary temperature is allowed to vary from 164 K to 305 K. To simulate MLI performance, two approaches are considered. In the first approach, the variable density MLI is modeled layer by layer while in the second approach, a semi-empirical model is applied. Both models account for thermal radiation between shields, gas conduction, and solid conduction through the separator materials. The heat flux values predicted by each approach are compared for different boundary temperatures and MLI systems with 30, 45, 60, and 75 layers.

  17. Flow interference in a variable porosity trisonic wind tunnel.

    NASA Technical Reports Server (NTRS)

    Davis, J. W.; Graham, R. F.

    1972-01-01

    Pressure data from a 20-degree cone-cylinder in a variable porosity wind tunnel for the Mach range 0.2 to 5.0 are compared to an interference free standard in order to determine wall interference effects. Four 20-degree cone-cylinder models representing an approximate range of percent blockage from one to six were compared to curve-fits of the interference free standard at each Mach number and errors determined at each pressure tap location. The average of the absolute values of the percent error over the length of the model was determined and used as the criterion for evaluating model blockage interference effects. The results are presented in the form of the percent error as a function of model blockage and Mach number.

  18. Wind-tunnel Tests of the Fowler Variable-area Wing

    NASA Technical Reports Server (NTRS)

    Weick, Fred E; Platt, Robert C

    1932-01-01

    The lift, drag, and center of pressure characteristics of a model of the Fowler variable-area wing were measured in the NACA 7 by 10 foot wind tunnel. The Fowler wing consists of a combination of a main wing and an extension surface, also of airfoil section. The extension surface can be entirely retracted within the lower rear portion of the main wing or it can be moved to the rear and downward. The tests were made with the nose of the extension airfoil in various positions near the trailing edge of the main wing and with the surface at various angular deflections. The highest lift coefficient obtained was C(sub L) = 3.17 as compared with 1.27 for the main wing alone.

  19. High-resolution grids of hourly meteorological variables for Germany

    NASA Astrophysics Data System (ADS)

    Krähenmann, S.; Walter, A.; Brienen, S.; Imbery, F.; Matzarakis, A.

    2018-02-01

    We present a 1-km2 gridded German dataset of hourly surface climate variables covering the period 1995 to 2012. The dataset comprises 12 variables including temperature, dew point, cloud cover, wind speed and direction, global and direct shortwave radiation, down- and up-welling longwave radiation, sea level pressure, relative humidity and vapour pressure. This dataset was constructed statistically from station data, satellite observations and model data. It is outstanding in terms of spatial and temporal resolution and in the number of climate variables. For each variable, we employed the most suitable gridding method and combined the best of several information sources, including station records, satellite-derived data and data from a regional climate model. A module to estimate urban heat island intensity was integrated for air and dew point temperature. Owing to the low density of available synop stations, the gridded dataset does not capture all variations that may occur at a resolution of 1 km2. This applies to areas of complex terrain (all the variables), and in particular to wind speed and the radiation parameters. To achieve maximum precision, we used all observational information when it was available. This, however, leads to inhomogeneities in station network density and affects the long-term consistency of the dataset. A first climate analysis for Germany was conducted. The Rhine River Valley, for example, exhibited more than 100 summer days in 2003, whereas in 1996, the number was low everywhere in Germany. The dataset is useful for applications in various climate-related studies, hazard management and for solar or wind energy applications and it is available via doi: 10.5676/DWD_CDC/TRY_Basis_v001.

  20. Using Analog Ensemble to generate spatially downscaled probabilistic wind power forecasts

    NASA Astrophysics Data System (ADS)

    Delle Monache, L.; Shahriari, M.; Cervone, G.

    2017-12-01

    We use the Analog Ensemble (AnEn) method to generate probabilistic 80-m wind power forecasts. We use data from the NCEP GFS ( 28 km resolution) and NCEP NAM (12 km resolution). We use forecasts data from NAM and GFS, and analysis data from NAM which enables us to: 1) use a lower-resolution model to create higher-resolution forecasts, and 2) use a higher-resolution model to create higher-resolution forecasts. The former essentially increases computing speed and the latter increases forecast accuracy. An aggregated model of the former can be compared against the latter to measure the accuracy of the AnEn spatial downscaling. The AnEn works by taking a deterministic future forecast and comparing it with past forecasts. The model searches for the best matching estimates within the past forecasts and selects the predictand value corresponding to these past forecasts as the ensemble prediction for the future forecast. Our study is based on predicting wind speed and air density at more than 13,000 grid points in the continental US. We run the AnEn model twice: 1) estimating 80-m wind speed by using predictor variables such as temperature, pressure, geopotential height, U-component and V-component of wind, 2) estimating air density by using predictors such as temperature, pressure, and relative humidity. We use the air density values to correct the standard wind power curves for different values of air density. The standard deviation of the ensemble members (i.e. ensemble spread) will be used as the degree of difficulty to predict wind power at different locations. The value of the correlation coefficient between the ensemble spread and the forecast error determines the appropriateness of this measure. This measure is prominent for wind farm developers as building wind farms in regions with higher predictability will reduce the real-time risks of operating in the electricity markets.

  1. MODFLOW/MT3DMS-based simulation of variable-density ground water flow and transport

    USGS Publications Warehouse

    Langevin, C.D.; Guo, W.

    2006-01-01

    This paper presents an approach for coupling MODFLOW and MT3DMS for the simulation of variable-density ground water flow. MODFLOW routines were modified to solve a variable-density form of the ground water flow equation in which the density terms are calculated using an equation of state and the simulated MT3DMS solute concentrations. Changes to the MODFLOW and MT3DMS input files were kept to a minimum, and thus existing data files and data files created with most pre- and postprocessors can be used directly with the SEAWAT code. The approach was tested by simulating the Henry problem and two of the saltpool laboratory experiments (low- and high-density cases). For the Henry problem, the simulated results compared well with the steady-state semianalytic solution and also the transient isochlor movement as simulated by a finite-element model. For the saltpool problem, the simulated breakthrough curves compared better with the laboratory measurements for the low-density case than for the high-density case but showed good agreement with the measured salinity isosurfaces for both cases. Results from the test cases presented here indicate that the MODFLOW/MT3DMS approach provides accurate solutions for problems involving variable-density ground water flow and solute transport. ?? 2006 National Ground Water Association.

  2. Role of wind forcing and eddy activity in the intraseasonal variability of the barrier layer in the South China Sea

    NASA Astrophysics Data System (ADS)

    Liang, Zhanlin; Xie, Qiang; Zeng, Lili; Wang, Dongxiao

    2018-03-01

    In addition to widely discussed seasonal variability, the barrier layer (BL) of the South China Sea (SCS) also exhibits significant intraseasonal variability (ISV) and plays an important role in the upper heat and salt balances. The characteristics and mechanisms of spatiotemporal variations in the BL are investigated using an eddy-resolving ocean model OFES (OGCM For the Earth Simulator) ouput and related atmospheric and oceanic processes. The active intraseasonal BL variability in the SCS occurs mainly during the late summer/autumn and winter and exhibits remarkable differences between these two periods. The BL ISV in late summer/autumn occurs in the southern basin, while in winter, it is limited to the northwestern basin. To further discuss the evolution and driving thermodynamic mechanisms, we quantify the processes that control the variability of intraseasonal BL. Different mechanisms for the intraseasonal BL variability for these two active periods are investigated based on the case study and composite analysis. During late summer/autumn, the active BL in the southern basin is generated by advected and local freshwater, and then decays rapidly with the enhanced wind. In winter, anticyclonic eddy activity is associated with the evolution of the BL by affecting the thermocline and halocline variations, while wind stress and wind stress curl have no obvious influence on BL.

  3. The dependence of C IV broad absorption line properties on accompanying Si IV and Al III absorption: relating quasar-wind ionization levels, kinematics, and column densities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filiz Ak, N.; Brandt, W. N.; Schneider, D. P.

    2014-08-20

    We consider how the profile and multi-year variability properties of a large sample of C IV Broad Absorption Line (BAL) troughs change when BALs from Si IV and/or Al III are present at corresponding velocities, indicating that the line of sight intercepts at least some lower ionization gas. We derive a number of observational results for C IV BALs separated according to the presence or absence of accompanying lower ionization transitions, including measurements of composite profile shapes, equivalent width (EW), characteristic velocities, composite variation profiles, and EW variability. We also measure the correlations between EW and fractional-EW variability for Cmore » IV, Si IV, and Al III. Our measurements reveal the basic correlated changes between ionization level, kinematics, and column density expected in accretion-disk wind models; e.g., lines of sight including lower ionization material generally show deeper and broader C IV troughs that have smaller minimum velocities and that are less variable. Many C IV BALs with no accompanying Si IV or Al III BALs may have only mild or no saturation.« less

  4. Autocorrelation Study of Solar Wind Plasma and IMF Properties as Measured by the MAVEN Spacecraft

    NASA Astrophysics Data System (ADS)

    Marquette, Melissa L.; Lillis, Robert J.; Halekas, J. S.; Luhmann, J. G.; Gruesbeck, J. R.; Espley, J. R.

    2018-04-01

    It has long been a goal of the heliophysics community to understand solar wind variability at heliocentric distances other than 1 AU, especially at ˜1.5 AU due to not only the steepening of solar wind stream interactions outside 1 AU but also the number of missions available there to measure it. In this study, we use 35 months of solar wind and interplanetary magnetic field (IMF) data taken at Mars by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft to conduct an autocorrelation analysis of the solar wind speed, density, and dynamic pressure, which is derived from the speed and density, as well as the IMF strength and orientation. We found that the solar wind speed is coherent, that is, has an autocorrelation coefficient above 1/e, over roughly 56 hr, while the density and pressure are coherent over smaller intervals of roughly 25 and 20 hr, respectively, and that the IMF strength is coherent over time intervals of approximately 20 hr, while the cone and clock angles are considerably less steady but still somewhat coherent up to time lags of roughly 16 hr. We also found that when the speed, density, pressure, or IMF strength is higher than average, the solar wind or IMF becomes uncorrelated more quickly, while when they are below average, it tends to be steadier. This analysis allows us to make estimates of the values of solar wind plasma and IMF parameters when they are not directly measured and provide an approximation of the error associated with that estimate.

  5. On the Long-Term Variability of Jupiter's Winds and Brightness as Observed from Hubble

    NASA Technical Reports Server (NTRS)

    Simon-Miller, Amy A.; Gierasch, Peter J.

    2010-01-01

    Hubble Space Telescope Wide Field Planetary Camera 2 imaging data of Jupiter were combined with wind profiles from Voyager and Cassini data to study long-term variability in Jupiter's winds and cloud brightness. Searches for evidence of wind velocity periodicity yielded a few latitudes with potential variability; the most significant periods were found nearly symmetrically about the equator at 0 deg., 10-12 deg. N, and 14-18 deg. S planetographic latitude. The low to mid-latitude signals have components consistent with the measured stratospheric temperature Quasi-Quadrennial Oscillation (QQO) period of-5 years, while the equatorial signal is approximately seasonal and could be tied to mesoscale wave formation, robustness tests indicate that a constant or continuously varying periodic signal near 4.5 years would appear with high significance in the data periodograms as long as uncertainties or noise in the data are not of greater magnitude. However, the lack of a consistent signal over many latitudes makes it difficult to interpret as a QQO-related change. In addition, further analyses of calibrated 410-nm and 953-nm brightness scans found few corresponding changes in troposphere haze and cloud structure on QQO timescales. However, stratospheric haze reflectance at 255-nm did appear to vary on seasonal timescales, though the data do not have enough temporal coverage or photometric accuracy to be conclusive. Sufficient temporal coverage and spacing, as well as data quality, are critical to this type of search.

  6. Variability in understory evapotranspiration with overstory density in Siberian larch forests

    NASA Astrophysics Data System (ADS)

    Tobio, A.; Loranty, M. M.; Kropp, H.; Pena, H., III; Alexander, H. D.; Natali, S.; Kholodov, A. L.

    2016-12-01

    Arctic ecosystems are changing rapidly in response to amplified rates of climate change. Increased vegetation productivity, altered ecosystem carbon and hydrologic cycling, and increased wildfire severity are among the key responses to changing permafrost and climate conditions. Boreal larch forests in northeastern Siberia are a critical but understudied ecosystem affected by these modifications. Understory vegetation in these ecosystems, which typically have low canopy cover, may account for half of all water fluxes. Despite the potential importance of the understory for ecosystem water exchange, there has been relatively little research examining variability in understory evapotranspiration in boreal larch forests. In particular, the water balance of understory shrubs and mosses is largely undefined and could provide insight on how understory vegetation and our changing climate interact. This is especially important because both observed increases in vegetation productivity and wildfire severity could lead to increases in forests density, altering the proportional contributions of over- and understory vegetation to whole ecosystem evapotranspiration. In order to better understand variability in understory evapotranspiration we measured in larch forests with differing overstory density and permafrost conditions that likely vary as a consequence of fire severity. We used the static chamber technique to measure fluxes across a range of understory vegetation types and environmental conditions. In general, we found that the understory vegetation in low density stands transpires more than that in high density stands. This tends to be correlated with a larger amount of aboveground biomass in the low density stands, and an increase in solar radiation, due to less shading by overstory trees. These results will help us to better understand water balances, evapotranspiration variability, and productivity changes associated with climate on understory vegetation. Additionally

  7. CFD modelling of nocturnal low-level jet effects on wind energy related variables

    NASA Astrophysics Data System (ADS)

    Sogachev, Andrey; Mann, Jakob; Dellwik, Ebba; Ejsing Jørgensen, Hans

    2010-05-01

    The development of a wind speed maximum in the nocturnal boundary layer, referred to as a low-level jet (LLJ), is a common feature of the vertical structure of the atmospheric boundary layer (ABL). Characterizing and understanding LLJ streams is growing in importance as wind turbines are being built larger and taller to take advantage of higher wind speeds at increased heights. We used a computational fluid dynamics (CFD) model to explore LLJs effect on wind speed, wind directional and speed shear inside the surface layer 40 - 130 m, where their physical measurements are not trivial and still rare today. We used the one-dimensional version of the ABL model SCADIS (Sogachev et al. 2002: Tellus 54:784-819). The unique feature of the model, based on a two-equation closure approach, is the treatment of buoyancy effects in a universal way, which overcomes the uncertainties with model coefficients for non-shear source/sink terms (Sogachev, 2009: Boundary Layer Meteor. 130:423-435). From a variety of mechanisms suggested for formation of LLJs, such as inertial oscillations, baroclinicity over sloping terrain, and land-sea breeze effects, the one-dimensional ABL model is capable of simulating only the first one. However, that mechanism, which is caused by the diurnal oscillation of eddy viscosity, is often responsible for jet formation. Sensitivity tests carried out showed that SCADIS captures the most prominent features of the LLJ, including its vertical structure as well as its diurnal phase and amplitude. We simulated ABL pattern under conditions typical for LLJ formation (a fair day on July 1, a flat low-roughness underlying surface) at 30 and 50o latitudes. Diurnal variability of wind speed and turbulence intensity at four levels of 40, 70, 100 and 130 m above ground and of wind and directional shear between those levels were analysed. Despite of small differences in LLJ structure the properties of LLJ important for wind energy production are still common for two

  8. Hydrodynamic Models of Line-Driven Accretion Disk Winds III: Local Ionization Equilibrium

    NASA Technical Reports Server (NTRS)

    Pereyra, Nicolas Antonio; Kallman, Timothy R.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present time-dependent numerical hydrodynamic models of line-driven accretion disk winds in cataclysmic variable systems and calculate wind mass-loss rates and terminal velocities. The models are 2.5-dimensional, include an energy balance condition with radiative heating and cooling processes, and includes local ionization equilibrium introducing time dependence and spatial dependence on the line radiation force parameters. The radiation field is assumed to originate in an optically thick accretion disk. Wind ion populations are calculated under the assumption that local ionization equilibrium is determined by photoionization and radiative recombination, similar to a photoionized nebula. We find a steady wind flowing from the accretion disk. Radiative heating tends to maintain the temperature in the higher density wind regions near the disk surface, rather than cooling adiabatically. For a disk luminosity L (sub disk) = solar luminosity, white dwarf mass M(sub wd) = 0.6 solar mass, and white dwarf radii R(sub wd) = 0.01 solar radius, we obtain a wind mass-loss rate of M(sub wind) = 4 x 10(exp -12) solar mass yr(exp -1) and a terminal velocity of approximately 3000 km per second. These results confirm the general velocity and density structures found in our earlier constant ionization equilibrium adiabatic CV wind models. Further we establish here 2.5D numerical models that can be extended to QSO/AGN winds where the local ionization equilibrium will play a crucial role in the overall dynamics.

  9. Organization of vertical shear of wind and daily variability of monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Gouda, K. C.; Goswami, P.

    2016-10-01

    Very little is known about the mechanisms that govern the day to day variability of the Indian summer monsoon (ISM) rainfall; in the current dominant view, the daily rainfall is essentially a result of chaotic dynamics. Most studies in the past have thus considered monsoon in terms of its seasonal (June-September) or monthly rainfall. We show here that the daily rainfall in June is associated with vertical shear of horizontal winds at specific scales. While vertical shear had been used in the past to investigate interannual variability of seasonal rainfall, rarely any effort has been made to examine daily rainfall. Our work shows that, at least during June, the daily rainfall variability of ISM rainfall is associated with a large scale dynamical coherence in the sense that the vertical shear averaged over large spatial extents are significantly correlated with area-averaged daily rainfall. An important finding from our work is the existence of a clearly delineated monsoon shear domain (MSD) with strong coherence between area-averaged shear and area-averaged daily rainfall in June; this association of daily rainfall is not significant with shear over only MSD. Another important feature is that the association between daily rainfall and vertical shear is present only during the month of June. Thus while ISM (June-September) is a single seasonal system, it is important to consider the dynamics and variation of June independently of the seasonal ISM rainfall. The association between large-scale organization of circulation and daily rainfall is suggested as a basis for attempting prediction of daily rainfall by ensuring accurate simulation of wind shear.

  10. Wind-driven Ocean Circulation and the Spatial-temporal Variability of Dissolved Inorganic Carbon in the Gulf of Tehuantepec, North Eastern Tropical Pacific

    NASA Astrophysics Data System (ADS)

    Chapa, C.; Beier, E.; Durazo, R.; Martin Hernandez-Ayon, J. M.; Alin, S. R.; Lopez-Perez, A.

    2016-12-01

    The relationship between the surface enrichment of dissolved inorganic carbon (DIC) and wind variability and circulation in the Gulf of Tehuantepec (GT) was examined from satellite images and in situ data from three cruises (June 2010; April and November 2013). Monthly mean wind climatologies (and derived variables), sea surface temperature and sea surface height anomaly fields were analyzed in the GT and part of the NETP. Signal decomposition according to circulation scales (seasonal, inter-annual, mesoscale) was performed using harmonic analysis for the seasonal components, and empirical orthogonal functions for the residuals, applied to satellite sea-level anomaly data. The results show that wind is the main driving force of the variability in the GT. Mesoscale is the variable with the highest percent of local variance (25-75%), due mainly to mesoscale eddies, followed by seasonality (20-55%), and finally the inter-annual signal (10-30%), dominated by ENSO. Mesoscale and seasonality prevailed during the samplings. The changes in circulation led to variations in the concentration of surface DIC ranging between 100 and 300 µmol kg-1 (436 µatm) due to Ekman pumping. The largest enrichment occurred in November 2013 after a strong northerly wind event. However, the predominance of mesoscale events suggests that changes in dissolved inorganic carbon resulting from mesoscale- derived Ekman pumping may become important in the long term and with a larger spatial and temporal coverage. The results suggest that the seasonal cycle of dissolved inorganic carbon may be linked to wind seasonality.

  11. Did the April 14-24 storms impact the mesopause region sodium density, temperature and wind over Fort Collins, CO (41N, 105W)

    NASA Astrophysics Data System (ADS)

    Arnold, K. S.; She, C.; Yuan, T.; Williams, B. P.; Krueger, D. A.

    2002-12-01

    The April 14-24 storms is under intense study to determine, among other things, its MLTI response. The change in sodium density, neutral temperature and winds in the mesopause region (80-110km) is a useful signature to look for. The Colorado State Sodium Lidar happened to have made nocturnal observations of sodium density, neutral temperature and zonal wind in April, 8th, 12th, 13th, 18th, and 22nd through 25th. We hope to determine and report if statistically meaningful changes in these important quantities had indeed occurred.

  12. Variable density randomized stack of spirals (VDR-SoS) for compressive sensing MRI.

    PubMed

    Valvano, Giuseppe; Martini, Nicola; Landini, Luigi; Santarelli, Maria Filomena

    2016-07-01

    To develop a 3D sampling strategy based on a stack of variable density spirals for compressive sensing MRI. A random sampling pattern was obtained by rotating each spiral by a random angle and by delaying for few time steps the gradient waveforms of the different interleaves. A three-dimensional (3D) variable sampling density was obtained by designing different variable density spirals for each slice encoding. The proposed approach was tested with phantom simulations up to a five-fold undersampling factor. Fully sampled 3D dataset of a human knee, and of a human brain, were obtained from a healthy volunteer. The proposed approach was tested with off-line reconstructions of the knee dataset up to a four-fold acceleration and compared with other noncoherent trajectories. The proposed approach outperformed the standard stack of spirals for various undersampling factors. The level of coherence and the reconstruction quality of the proposed approach were similar to those of other trajectories that, however, require 3D gridding for the reconstruction. The variable density randomized stack of spirals (VDR-SoS) is an easily implementable trajectory that could represent a valid sampling strategy for 3D compressive sensing MRI. It guarantees low levels of coherence without requiring 3D gridding. Magn Reson Med 76:59-69, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  13. Extracting a mix parameter from 2D radiography of variable density flow

    NASA Astrophysics Data System (ADS)

    Kurien, Susan; Doss, Forrest; Livescu, Daniel

    2017-11-01

    A methodology is presented for extracting quantities related to the statistical description of the mixing state from the 2D radiographic image of a flow. X-ray attenuation through a target flow is given by the Beer-Lambert law which exponentially damps the incident beam intensity by a factor proportional to the density, opacity and thickness of the target. By making reasonable assumptions for the mean density, opacity and effective thickness of the target flow, we estimate the contribution of density fluctuations to the attenuation. The fluctuations thus inferred may be used to form the correlation of density and specific-volume, averaged across the thickness of the flow in the direction of the beam. This correlation function, denoted by b in RANS modeling, quantifies turbulent mixing in variable density flows. The scheme is tested using DNS data computed for variable-density buoyancy-driven mixing. We quantify the deficits in the extracted value of b due to target thickness, Atwood number, and modeled noise in the incident beam. This analysis corroborates the proposed scheme to infer the mix parameter from thin targets at moderate to low Atwood numbers. The scheme is then applied to an image of counter-shear flow obtained from experiments at the National Ignition Facility. US Department of Energy.

  14. Improved First Pass Spiral Myocardial Perfusion Imaging with Variable Density Trajectories

    PubMed Central

    Salerno, Michael; Sica, Christopher; Kramer, Christopher M.; Meyer, Craig H.

    2013-01-01

    Purpose To develop and evaluate variable-density (VD) spiral first-pass perfusion pulse sequences for improved efficiency and off-resonance performance and to demonstrate the utility of an apodizing density compensation function (DCF) to improve SNR and reduce dark-rim artifact caused by cardiac motion and Gibbs Ringing. Methods Three variable density spiral trajectories were designed, simulated, and evaluated in 18 normal subjects, and in 8 patients with cardiac pathology on a 1.5T scanner. Results By utilizing a density compensation function (DCF) which intentionally apodizes the k-space data, the side-lobe amplitude of the theoretical PSF is reduced by 68%, with only a 13% increase in the FWHM of the main-lobe as compared to the same data corrected with a conventional VD DCF, and has an 8% higher resolution than a uniform density spiral with the same number of interleaves and readout duration. Furthermore, this strategy results in a greater than 60% increase in measured SNR as compared to the same VD spiral data corrected with a conventional DCF (p<0.01). Perfusion defects could be clearly visualized with minimal off-resonance and dark-rim artifacts. Conclusion VD spiral pulse sequences using an apodized DCF produce high-quality first-pass perfusion images with minimal dark-rim and off-resonance artifacts, high SNR and CNR and good delineation of resting perfusion abnormalities. PMID:23280884

  15. The role of remote wind forcing in the subinertial current variability in the central and northern parts of the South Brazil Bight

    NASA Astrophysics Data System (ADS)

    Dottori, Marcelo; Castro, Belmiro Mendes

    2018-06-01

    Data analysis of continental shelf currents and coastal sea level, together with the application of a semi-analytical model, are used to estimate the importance of remote wind forcing on the subinertial variability of the current in the central and northern areas of the South Brazil Bight. Results from both the data analysis and from the semi-analytical model are robust in showing subinertial variability that propagates along-shelf leaving the coast to the left in accordance with theoretical studies of Continental Shelf Waves (CSW). Both the subinertial variability observed in along-shelf currents and sea level oscillations present different propagation speeds for the narrow northern part of the SBB ( 6-7 m/s) and the wide central SBB region ( 11 m/s), those estimates being in agreement with the modeled CSW propagation speed. On the inner and middle shelf, observed along-shelf subinertial currents show higher correlation coefficients with the winds located southward and earlier in time than with the local wind at the current meter mooring position and at the time of measurement. The inclusion of the remote (located southwestward) wind forcing improves the prediction of the subinertial currents when compared to the currents forced only by the local wind, since the along-shelf-modeled currents present correlation coefficients with observed along-shelf currents up to 20% higher on the inner and middle shelf when the remote wind is included. For most of the outer shelf, on the other hand, this is not observed since usually, the correlation between the currents and the synoptic winds is not statistically significant.

  16. The role of remote wind forcing in the subinertial current variability in the central and northern parts of the South Brazil Bight

    NASA Astrophysics Data System (ADS)

    Dottori, Marcelo; Castro, Belmiro Mendes

    2018-05-01

    Data analysis of continental shelf currents and coastal sea level, together with the application of a semi-analytical model, are used to estimate the importance of remote wind forcing on the subinertial variability of the current in the central and northern areas of the South Brazil Bight. Results from both the data analysis and from the semi-analytical model are robust in showing subinertial variability that propagates along-shelf leaving the coast to the left in accordance with theoretical studies of Continental Shelf Waves (CSW). Both the subinertial variability observed in along-shelf currents and sea level oscillations present different propagation speeds for the narrow northern part of the SBB ( 6-7 m/s) and the wide central SBB region ( 11 m/s), those estimates being in agreement with the modeled CSW propagation speed. On the inner and middle shelf, observed along-shelf subinertial currents show higher correlation coefficients with the winds located southward and earlier in time than with the local wind at the current meter mooring position and at the time of measurement. The inclusion of the remote (located southwestward) wind forcing improves the prediction of the subinertial currents when compared to the currents forced only by the local wind, since the along-shelf-modeled currents present correlation coefficients with observed along-shelf currents up to 20% higher on the inner and middle shelf when the remote wind is included. For most of the outer shelf, on the other hand, this is not observed since usually, the correlation between the currents and the synoptic winds is not statistically significant.

  17. Wind Resource Assessment of Gujarat (India)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draxl, C.; Purkayastha, A.; Parker, Z.

    India is one of the largest wind energy markets in the world. In 1986 Gujarat was the first Indian state to install a wind power project. In February 2013, the installed wind capacity in Gujarat was 3,093 MW. Due to the uncertainty around existing wind energy assessments in India, this analysis uses the Weather Research and Forecasting (WRF) model to simulate the wind at current hub heights for one year to provide more precise estimates of wind resources in Gujarat. The WRF model allows for accurate simulations of winds near the surface and at heights important for wind energy purposes.more » While previous resource assessments published wind power density, we focus on average wind speeds, which can be converted to wind power densities by the user with methods of their choice. The wind resource estimates in this study show regions with average annual wind speeds of more than 8 m/s.« less

  18. Flow Visualization of Density in a Cryogenic Wind Tunnel Using Planar Rayleigh and Raman Scattering

    NASA Technical Reports Server (NTRS)

    Herring, Gregory C.; Shirinzadeh, Behrooz

    2002-01-01

    Using a pulsed Nd:YAG laser (532 nm) and a gated, intensified charge-coupled device, planar Rayleigh and Raman scattering techniques have been used to visualize the unseeded Mach 0.2 flow density in a 0.3-meter transonic cryogenic wind tunnel. Detection limits are determined for density measurements by using both unseeded Rayleigh and Raman (N2 vibrational) methods. Seeding with CO2 improved the Rayleigh flow visualization at temperatures below 150 K. The seeded Rayleigh version was used to demonstrate the observation of transient flow features in a separated boundary layer region, which was excited with an oscillatory jet. Finally, a significant degradation of the laser light sheet, in this cryogenic facility, is discussed.

  19. 3D electron density distributions in the solar corona during solar minima: assessment for more realistic solar wind modeling

    NASA Astrophysics Data System (ADS)

    de Patoul, J.; Foullon, C.; Riley, P.

    2015-12-01

    Knowledge of the electron density distribution in the solar corona put constraints on the magnetic field configurations for coronal modeling, and on initial conditions for solar wind modeling. We work with polarized SOHO/LASCO-C2 images from the last two recent minima of solar activity (1996-1997 and 2008-2010), devoid of coronal mass ejections. We derive the 4D electron density distributions in the corona by applying a newly developed time-dependent tomographic reconstruction method. First we compare the density distributions obtained from tomography with magnetohydrodynamic (MHD) solutions. The tomography provides more accurate distributions of electron densities in the polar regions, and we find that the observed density varies with the solar cycle in both polar and equatorial regions. Second, we find that the highest-density structures do not always correspond to the predicted large-scale heliospheric current sheet or its helmet streamer but can follow the locations of pseudo-streamers. We conclude that tomography offers reliable density distribution in the corona, reproducing the slow time evolution of coronal structures, without prior knowledge of the coronal magnetic field over a full rotation. Finally, we suggest that the highest-density structures show a differential rotation well above the surface depending on how it is magnetically connected to the surface. Such valuable information on the rotation of large-scale structures could help to connect the sources of the solar wind to their in-situ counterparts in future missions such as Solar Orbiter and Solar Probe Plus. This research combined with the MHD coronal modeling efforts has the potential to increase the reliability for future space weather forecasting.

  20. Incompressible variable-density turbulence in an external acceleration field

    DOE PAGES

    Gat, Ilana; Matheou, Georgios; Chung, Daniel; ...

    2017-08-24

    Dynamics and mixing of a variable-density turbulent flow subject to an externally imposed acceleration field in the zero-Mach-number limit are studied in a series of direct numerical simulations. The flow configuration studied consists of alternating slabs of high- and low-density fluid in a triply periodic domain. Density ratios in the range ofmore » $$1.05\\leqslant R\\equiv \\unicode[STIX]{x1D70C}_{1}/\\unicode[STIX]{x1D70C}_{2}\\leqslant 10$$are investigated. The flow produces temporally evolving shear layers. A perpendicular density–pressure gradient is maintained in the mean as the flow evolves, with multi-scale baroclinic torques generated in the turbulent flow that ensues. For all density ratios studied, the simulations attain Reynolds numbers at the beginning of the fully developed turbulence regime. An empirical relation for the convection velocity predicts the observed entrainment-ratio and dominant mixed-fluid composition statistics. Two mixing-layer temporal evolution regimes are identified: an initial diffusion-dominated regime with a growth rate$${\\sim}t^{1/2}$$followed by a turbulence-dominated regime with a growth rate$${\\sim}t^{3}$$. In the turbulent regime, composition probability density functions within the shear layers exhibit a slightly tilted (‘non-marching’) hump, corresponding to the most probable mole fraction. In conclusion, the shear layers preferentially entrain low-density fluid by volume at all density ratios, which is reflected in the mixed-fluid composition.« less

  1. Incompressible variable-density turbulence in an external acceleration field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gat, Ilana; Matheou, Georgios; Chung, Daniel

    Dynamics and mixing of a variable-density turbulent flow subject to an externally imposed acceleration field in the zero-Mach-number limit are studied in a series of direct numerical simulations. The flow configuration studied consists of alternating slabs of high- and low-density fluid in a triply periodic domain. Density ratios in the range ofmore » $$1.05\\leqslant R\\equiv \\unicode[STIX]{x1D70C}_{1}/\\unicode[STIX]{x1D70C}_{2}\\leqslant 10$$are investigated. The flow produces temporally evolving shear layers. A perpendicular density–pressure gradient is maintained in the mean as the flow evolves, with multi-scale baroclinic torques generated in the turbulent flow that ensues. For all density ratios studied, the simulations attain Reynolds numbers at the beginning of the fully developed turbulence regime. An empirical relation for the convection velocity predicts the observed entrainment-ratio and dominant mixed-fluid composition statistics. Two mixing-layer temporal evolution regimes are identified: an initial diffusion-dominated regime with a growth rate$${\\sim}t^{1/2}$$followed by a turbulence-dominated regime with a growth rate$${\\sim}t^{3}$$. In the turbulent regime, composition probability density functions within the shear layers exhibit a slightly tilted (‘non-marching’) hump, corresponding to the most probable mole fraction. In conclusion, the shear layers preferentially entrain low-density fluid by volume at all density ratios, which is reflected in the mixed-fluid composition.« less

  2. Projecting Wind Energy Potential Under Climate Change with Ensemble of Climate Model Simulations

    NASA Astrophysics Data System (ADS)

    Jain, A.; Shashikanth, K.; Ghosh, S.; Mukherjee, P. P.

    2013-12-01

    Recent years have witnessed an increasing global concern over energy sustainability and security, triggered by a number of issues, such as (though not limited to): fossil fuel depletion, energy resource geopolitics, economic efficiency versus population growth debate, environmental concerns and climate change. Wind energy is a renewable and sustainable form of energy in which wind turbines convert the kinetic energy of wind into electrical energy. Global warming and differential surface heating may significantly impact the wind velocity and hence the wind energy potential. Sustainable design of wind mills requires understanding the impacts of climate change on wind energy potential, which we evaluate here with multiple General Circulation Models (GCMs). GCMs simulate the climate variables globally considering the greenhouse emission scenarios provided as Representation Concentration path ways (RCPs). Here we use new generation climate model outputs obtained from Coupled model Intercomparison Project 5(CMIP5). We first compute the wind energy potential with reanalysis data (NCEP/ NCAR), at a spatial resolution of 2.50, where the gridded data is fitted to Weibull distribution and with the Weibull parameters, the wind energy densities are computed at different grids. The same methodology is then used, to CMIP5 outputs (resultant of U-wind and V-wind) of MRI, CMCC, BCC, CanESM, and INMCM4 for historical runs. This is performed separately for four seasons globally, MAM, JJA, SON and DJF. We observe the muti-model average of wind energy density for historic period has significant bias with respect to that of reanalysis product. Here we develop a quantile based superensemble approach where GCM quantiles corresponding to selected CDF values are regressed to reanalysis data. It is observed that this regression approach takes care of both, bias in GCMs and combination of GCMs. With superensemble, we observe that the historical wind energy density resembles quite well with

  3. Datasets on hub-height wind speed comparisons for wind farms in California.

    PubMed

    Wang, Meina; Ullrich, Paul; Millstein, Dev

    2018-08-01

    This article includes the description of data information related to the research article entitled "The future of wind energy in California: Future projections with the Variable-Resolution CESM"[1], with reference number RENE_RENE-D-17-03392. Datasets from the Variable-Resolution CESM, Det Norske Veritas Germanischer Lloyd Virtual Met, MERRA-2, CFSR, NARR, ISD surface observations, and upper air sounding observations were used for calculating and comparing hub-height wind speed at multiple major wind farms across California. Information on hub-height wind speed interpolation and power curves at each wind farm sites are also presented. All datasets, except Det Norske Veritas Germanischer Lloyd Virtual Met, are publicly available for future analysis.

  4. Managers’ perspectives: practical experience and challenges associated with variable-density operations and uneven-aged management

    Treesearch

    Kurtis E. Steele

    2013-01-01

    Variable-density thinning has received a lot of public attention in recent years and has subsequently become standard language in most of the Willamette National Forest’s timber management projects. Many techniques have been tried, with varying on-the-ground successes. To accomplish variable-density thinning, the McKenzie River Ranger District currently uses...

  5. Solar wind ion density variations that preceded the M6+ earthquakes occurring on a global scale between 3 and 15 September 2013

    NASA Astrophysics Data System (ADS)

    Cataldi, Gabriele; Cataldi, Daniele; Straser, Valentino

    2015-04-01

    Between 3 and 15 September 2013 on Earth were recorded nine M6+ earthquakes: Canada M6,1 earthquake occurred on 3 September at 20:19 UTC; Japan M6,5 earthquake occurred on 4 September at 00:18 UTC; Canada M6,0 earthquake occurred on 4 September at 00:23 UTC; Alaska M6,5 earthquake occurred on 4 September at 02:32 UTC; Alaska M6,0 earthquake occurred on 4 September at 06:27 UTC; Northern Mid-Atlantic Ridge M6,0 earthquake occurred on 5 September at 04:01 UTC; Guatemala M6,4 earthquake occurred on 7 September at 00:13 UTC; Central East Pacific Rise M6,1 earthquake occurred on 11 September at 12:44 UTC; Alaska M6,1 earthquake occurred on 15 September at 16:21 UTC. The authors analyzed the modulation of solar wind ion density during the period from 1 to 18 September 2013 to determine whether the nine earthquakes were preceded by a variations of the solar wind ion density and for testing a method to be applied in the future also for the prediction of tsunami. The data on ion density used to realize the correlation study are represented by: solar wind ion density variation detected by ACE (Advanced Composition Explorer) Satellite, in orbit near the L1 Lagrange point, at 1.5 million of km from Earth, in direction of the Sun. The instrument used to perform the measurement of the solar wind ion density is the Electron, Proton, and Alpha Monitor (EPAM) instrument, equipped on the ACE Satellite. To conduct the study, the authors have taken in consideration the variation of the solar wind protons density that have these characteristics: differential proton flux 1060-1900 keV (p/cm^2-sec-ster-MeV); differential proton flux 761-1220 keV (p/cm^2-sec-ster-MeV); differential proton flux 310-580 keV (p/cm^2-sec-ster-MeV) and differential proton flux 115-195 keV (p/cm^2-sec-ster-MeV). This data set has been marked with the times (time markers) of M6+ earthquakes occurred on a global scale (the data on M6+ seismic activity are provided in real time by USGS, INGV and the CSEM) between

  6. Analytical Modeling and Test Correlation of Variable Density Multilayer Insulation for Cryogenic Storage

    NASA Technical Reports Server (NTRS)

    Hastings, L. J.; Hedayat, A.; Brown, T. M.

    2004-01-01

    A unique foam/multilayer insulation (MLI) combination concept for orbital cryogenic storage was experimentally evaluated using a large-scale hydrogen tank. The foam substrate insulates for ground-hold periods and enables a gaseous nitrogen purge as opposed to helium. The MLI, designed for an on-orbit storage period for 45 days, includes several unique features including a variable layer density and larger but fewer perforations for venting during ascent to orbit. Test results with liquid hydrogen indicated that the MLI weight or tank heat leak is reduced by about half in comparison with standard MLI. The focus of this effort is on analytical modeling of the variable density MLI (VD-MLI) on-orbit performance. The foam/VD-MLI model is considered to have five segments. The first segment represents the optional foam layer. The second, third, and fourth segments represent three different MLI layer densities. The last segment is an environmental boundary or shroud that surrounds the last MLI layer. Two approaches are considered: a variable density MLI modeled layer by layer and a semiempirical model or "modified Lockheed equation." Results from the two models were very comparable and were within 5-8 percent of the measured data at the 300 K boundary condition.

  7. Application of Snowfall and Wind Statistics to Snow Transport Modeling for Snowdrift Control in Minnesota.

    NASA Astrophysics Data System (ADS)

    Shulski, Martha D.; Seeley, Mark W.

    2004-11-01

    Models were utilized to determine the snow accumulation season (SAS) and to quantify windblown snow for the purpose of snowdrift control for locations in Minnesota. The models require mean monthly temperature, snowfall, density of snow, and wind frequency distribution statistics. Temperature and precipitation data were obtained from local cooperative observing sites, and wind data came from Automated Surface Observing System (ASOS)/Automated Weather Observing System (AWOS) sites in the region. The temperature-based algorithm used to define the SAS reveals a geographic variability in the starting and ending dates of the season, which is determined by latitude and elevation. Mean seasonal snowfall shows a geographic distribution that is affected by topography and proximity to Lake Superior. Mean snowfall density also exhibits variability, with lower-density snow events displaced to higher-latitude positions. Seasonal wind frequencies show a strong bimodal distribution with peaks from the northwest and southeast vector direction, with an exception for locations in close proximity to the Lake Superior shoreline. In addition, for western and south-central Minnesota there is a considerably higher frequency of wind speeds above the mean snow transport threshold of 7 m s-1. As such, this area is more conducive to higher potential snow transport totals. Snow relocation coefficients in this area are in the range of 0.4 0.9, and, according to the empirical models used in this analysis, this range implies that actual snow transport is 40% 90% of the total potential in south-central and western areas of the state.


  8. On the Role of Solar Wind Discontinuities in the ULF Power Spectral Density at the Earth's Outer Radiation Belt: a Case Study

    NASA Astrophysics Data System (ADS)

    Lago, A.; Alves, L. R.; Braga, C. R.; Mendonca, R. R. S.; Jauer, P. R.; Medeiros, C.; Souza, V. M. C. E. S.; Mendes, O., Jr.; Marchezi, J.; da Silva, L.; Vieira, L.; Rockenbach, M.; Sibeck, D. G.; Kanekal, S. G.; Baker, D. N.; Wygant, J. R.; Kletzing, C.

    2016-12-01

    The solar wind incident upon the Earth's magnetosphere can produce either enhancement, depletion or no change in the flux of relativistic electrons at the outer radiation belt. During geomagnetic storms progress, solar wind parameters may change significantly, and occasionally relativistic electron fluxes at the outer radiation belt show dropouts in a range of energy and L-shells. Wave-particle interactions observed within the Van Allen belts have been claimed to play a significant role in energetic particle flux changes. The relation between changes on the solar wind parameters and the radiation belt is still a hot topic nowadays, particularly the role played by the solar wind on sudden electron flux decreases. The twin satellite Van Allen Probes measured a relativistic electron flux dropout concurrent to broad band Ultra-low frequency (ULF) waves, i.e. from 1 mHz to 10 Hz, on October 2, 2013. Magnetic field and plasma data from both ACE and WIND satellites allowed the characterization of this event as being an interplanetary coronal mass ejection in conjunction with shock. The interaction of this event with the Earth's magnetosphere was modeled using a global magnetohydrodynamic simulation and the magnetic field perturbation deep in magnetosphere could be analyzed from the model outputs. Results show the contribution of time-varying solar wind parameters to the generation of ULF waves. The power spectral densities, as a function of L-shell, were evaluated considering changes in the input parameters, e.g. magnitude and duration of dynamic pressure and magnetic field. The modeled power spectral densities are compared with Van Allen Probes data. The results provide us a clue on the solar wind characteristics that might be able to drive ULF waves in the inner magnetosphere, and also which wave modes are expected to be excited under a specific solar wind driving.

  9. Quantifying variability in fast and slow solar wind: From turbulence to extremes

    NASA Astrophysics Data System (ADS)

    Tindale, E.; Chapman, S. C.; Moloney, N.; Watkins, N. W.

    2017-12-01

    Fast and slow solar wind exhibit variability across a wide range of spatiotemporal scales, with evolving turbulence producing fluctuations on sub-hour timescales and the irregular solar cycle modulating the system over many years. Here, we apply the data quantile-quantile (DQQ) method [Tindale and Chapman 2016, 2017] to over 20 years of Wind data, to study the time evolution of the statistical distribution of plasma parameters in fast and slow solar wind. This model-independent method allows us to simultaneously explore the evolution of fluctuations across all scales. We find a two-part functional form for the statistical distributions of the interplanetary magnetic field (IMF) magnitude and its components, with each region of the distribution evolving separately over the solar cycle. Up to a value of 8nT, turbulent fluctuations dominate the distribution of the IMF, generating the approximately lognormal shape found by Burlaga [2001]. The mean of this core-turbulence region tracks solar cycle activity, while its variance remains constant, independent of the fast or slow state of the solar wind. However, when we test the lognormality of this core-turbulence component over time, we find the model provides a poor description of the data at solar maximum, where sharp peaks in the distribution dominate over the lognormal shape. At IMF values higher than 8nT, we find a separate, extremal distribution component, whose moments are sensitive to solar cycle phase, the peak activity of the cycle and the solar wind state. We further investigate these `extremal' values using burst analysis, where a burst is defined as a continuous period of exceedance over a predefined threshold. This form of extreme value statistics allows us to study the stochastic process underlying the time series, potentially supporting a probabilistic forecast of high-energy events. Tindale, E., and S.C. Chapman (2016), Geophys. Res. Lett., 43(11) Tindale, E., and S.C. Chapman (2017), submitted Burlaga, L

  10. Variable millimetre radiation from the colliding-wind binary Cygnus OB2 #8A

    NASA Astrophysics Data System (ADS)

    Blomme, R.; Fenech, D. M.; Prinja, R. K.; Pittard, J. M.; Morford, J. C.

    2017-12-01

    Context. Massive binaries have stellar winds that collide. In the colliding-wind region, various physically interesting processes occur, leading to enhanced X-ray emission, non-thermal radio emission, as well as non-thermal X-rays and gamma-rays. Non-thermal radio emission (due to synchrotron radiation) has so far been observed at centimetre wavelengths. At millimetre wavelengths, the stellar winds and the colliding-wind region emit more thermal free-free radiation, and it is expected that any non-thermal contribution will be difficult or impossible to detect. Aims: We aim to determine if the material in the colliding-wind region contributes substantially to the observed millimetre fluxes of a colliding-wind binary. We also try to distinguish the synchrotron emission from the free-free emission. Methods: We monitored the massive binary Cyg OB2 #8A at 3 mm with the NOrthern Extended Millimeter Array (NOEMA) interferometer of the Institut de Radioastronomie Millimétrique (IRAM). The data were collected in 14 separate observing runs (in 2014 and 2016), and provide good coverage of the orbital period. Results: The observed millimetre fluxes range between 1.1 and 2.3 mJy, and show phase-locked variability, clearly indicating that a large part of the emission is due to the colliding-wind region. A simple synchrotron model gives fluxes with the correct order of magnitude, but with a maximum that is phase-shifted with respect to the observations. Qualitatively this phase shift can be explained by our neglect of orbital motion on the shape of the colliding-wind region. A model using only free-free emission results in only a slightly worse explanation of the observations. Additionally, on the map of our observations we also detect the O6.5 III star Cyg OB2 #8B, for which we determine a 3 mm flux of 0.21 ± 0.033 mJy. Conclusions: The question of whether synchrotron radiation or free-free emission dominates the millimetre fluxes of Cyg OB2 #8A remains open. More detailed

  11. Kinematics of a vertical axis wind turbine with a variable pitch angle

    NASA Astrophysics Data System (ADS)

    Jakubowski, Mateusz; Starosta, Roman; Fritzkowski, Pawel

    2018-01-01

    A computational model for the kinematics of a vertical axis wind turbine (VAWT) is presented. A H-type rotor turbine with a controlled pitch angle is considered. The aim of this solution is to improve the VAWT productivity. The discussed method is related to a narrow computational branch based on the Blade Element Momentum theory (BEM theory). The paper can be regarded as a theoretical basis and an introduction to further studies with the application of BEM. The obtained torque values show the main advantage of using the variable pitch angle.

  12. Evaluation model of wind energy resources and utilization efficiency of wind farm

    NASA Astrophysics Data System (ADS)

    Ma, Jie

    2018-04-01

    Due to the large amount of abandoned winds in wind farms, the establishment of a wind farm evaluation model is particularly important for the future development of wind farms In this essay, consider the wind farm's wind energy situation, Wind Energy Resource Model (WERM) and Wind Energy Utilization Efficiency Model(WEUEM) are established to conduct a comprehensive assessment of the wind farm. Wind Energy Resource Model (WERM) contains average wind speed, average wind power density and turbulence intensity, which assessed wind energy resources together. Based on our model, combined with the actual measurement data of a wind farm, calculate the indicators using the model, and the results are in line with the actual situation. We can plan the future development of the wind farm based on this result. Thus, the proposed establishment approach of wind farm assessment model has application value.

  13. The 12-foot pressure wind tunnel restoration project model support systems

    NASA Technical Reports Server (NTRS)

    Sasaki, Glen E.

    1992-01-01

    The 12 Foot Pressure Wind Tunnel is a variable density, low turbulence wind tunnel that operates at subsonic speeds, and up to six atmospheres total pressure. The restoration of this facility is of critical importance to the future of the U.S. aerospace industry. As part of this project, several state of the art model support systems are furnished to provide an optimal balance between aerodynamic and operational efficiency parameters. Two model support systems, the Rear Strut Model Support, and the High Angle of Attack Model Support are discussed. This paper covers design parameters, constraints, development, description, and component selection.

  14. Status of wind-energy conversion

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Savino, J. M.

    1973-01-01

    The utilization of wind energy is technically feasible as evidenced by the many past demonstrations of wind generators. The cost of energy from the wind has been high compared to fossil fuel systems. A sustained development effort is needed to obtain economical systems. The variability of the wind makes it an unreliable source on a short-term basis. However, the effects of this variability can be reduced by storage systems or connecting wind generators to fossil fuel systems, hydroelectric systems, or dispersing them throughout a large grid network. The NSF and NASA-Lewis Research Center have sponsored programs for the utilization of wind energy.

  15. Status of wind-energy conversion

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Savino, J. M.

    1973-01-01

    The utilization of wind energy is technically feasible as evidenced by the many past demonstrations of wind generators. The cost of energy from the wind has been high compared to fossil fuel systems; a sustained development effort is needed to obtain economical systems. The variability of the wind makes it an unreliable source on a short term basis. However, the effects of this variability can be reduced by storage systems or connecting wind generators to: (1) fossil fuel systems; (2) hydroelectric systems; or (3) dispersing them throughout a large grid network. Wind energy appears to have the potential to meet a significant amount of our energy needs.

  16. Provisionally corrected surface wind data, worldwide ocean-atmosphere surface fields, and Sahelian rainfall variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, M.N.

    Worldwide ship datasets of sea surface temperature (SST), sea level pressure (SLP), and surface vector wind are analyzed for a July-September composite of five Sahelian wet years (1950, 1952, 1953, 1954, 1958) minus five Sahelian dry years (1972, 1973, 1982, 1983, 1984) (W - D). The results are compared with fields for a number of individual years and for 1988 minus 1987 (88 - 87); Sahelian rainfall in 1988 was near the 1951-80 normal, whereas 1987 was very dry. An extensive study of the geostrophic consistency of trends in pressure gradients and observed wind was undertaken. The results suggest, duringmore » the period 1949-88, a mean increase in reported wind speed of about 16% that cannot be explained by trends in geostrophic winds derived from seasonal mean SLP. Estimates of the wind bias are averaged for 18 ocean regions. A map of correlations between Sahelian rainfall and SLP in all available ocean regions is shown to be field significant. Remote atmospheric associations with Sahelian rainfall are consistent with recent suggestions that SST forcing from the tropical Atlantic and the other ocean basins may contribute to variability in seasonal Sahelian rainfall. It is suggested that wetter years in the Sahel are often accompanied by a stronger surface monsoonal flow over the western Indian Ocean and low SLP in the tropical western Pacific near New Guinea, and that there is increased cyclonicity over the extratropical eastern North Atlantic and northwest Europe. In the tropical Atlantic, W - D shows many of the features identified by previous authors. However, the 88-87 fields do not reflect these large-scale tropical Atlantic changes. Instead there is only local strengthening of the pressure gradient and wind flow from Brazil to Senegal. Further individual years are presented (1958, 1972, 1975) to provide specific examples.« less

  17. Solar Illumination Control of the Polar Wind

    NASA Astrophysics Data System (ADS)

    Maes, L.; Maggiolo, R.; De Keyser, J.; André, M.; Eriksson, A. I.; Haaland, S.; Li, K.; Poedts, S.

    2017-11-01

    Polar wind outflow is an important process through which the ionosphere supplies plasma to the magnetosphere. The main source of energy driving the polar wind is solar illumination of the ionosphere. As a result, many studies have found a relation between polar wind flux densities and solar EUV intensity, but less is known about their relation to the solar zenith angle at the ionospheric origin, certainly at higher altitudes. The low energy of the outflowing particles and spacecraft charging means it is very difficult to measure the polar wind at high altitudes. We take advantage of an alternative method that allows estimations of the polar wind flux densities far in the lobes. We analyze measurements made by the Cluster spacecraft at altitudes from 4 up to 20 RE. We observe a strong dependence on the solar zenith angle in the ion flux density and see that both the ion velocity and density exhibit a solar zenith angle dependence as well. We also find a seasonal variation of the flux density.

  18. VISTA variables in the Sagittarius dwarf spheroidal galaxy: pulsation-versus dust-driven winds on the giant branches

    NASA Astrophysics Data System (ADS)

    McDonald, I.; Zijlstra, A. A.; Sloan, G. C.; Kerins, E.; Lagadec, E.; Minniti, D.

    2014-04-01

    Variability is examined in over 2.6 million stars covering 11 square degrees of the core of the Sagittarius dwarf spheroidal galaxy (Sgr dSph) from Visible and Infrared Survey Telescope for Astronomy Z-band observations. Generally, pulsation on the Sgr dSph giant branches appears to be excited by the internal κ mechanism. Pulsation amplitudes appear identical between red and asymptotic (red giant branch/asymptotic giant branch) giant stars, and between unreddened carbon and oxygen-rich stars at the same luminosity. The lack of correlation between infrared excess and variability among oxygen-rich stars indicates that pulsations do not contribute significantly to wind driving in oxygen-rich stars in the Sgr dSph, though the low amplitudes of these stars mean this may not apply elsewhere. The dust-enshrouded carbon stars have the highest amplitudes of the stars we observe. Only in these stars does an external κ-mechanism-driven pulsation seem likely, caused by variations in their more opaque carbon-rich molecules or dust. This may allow pulsation driving of winds to be effective in carbon stars. Variability can be simplified to a power law (A ∝ L/T2), as in other systems. In total, we identify 3026 variable stars (with rms variability of δZ ≳ 0.015 mag), of which 176 are long-period variables associable with the upper giant branches of the Sgr dSph. We also identify 324 candidate RR Lyrae variables in the Sgr dSph and 340 in the outer Galactic bulge.

  19. k-filtering applied to Cluster density measurements in the Solar Wind: Early findings

    NASA Astrophysics Data System (ADS)

    Jeska, Lauren; Roberts, Owen; Li, Xing

    2014-05-01

    Studies of solar wind turbulence indicate that a large proportion of the energy is Alfvénic (incompressible) at inertial scales. The properties of the turbulence found in the dissipation range are still under debate ~ while it is widely believed that kinetic Alfvén waves form the dominant component, the constituents of the remaining compressible turbulence are disputed. Using k-filtering, the power can be measured without assuming the validity of Taylor's hypothesis, and its distribution in (ω, k)-space can be determined to assist the identification of weak turbulence components. This technique is applied to Cluster electron density measurements and compared to the power in |B(t)|. As the direct electron density measurements from the WHISPER instrument have a low cadency of only 2.2s, proxy data derived from the spacecraft potential, measured every 0.2s by the EFW instrument, are used to extend this study to ion scales.

  20. Chromospheric Structure and Wind Acceleration in Zeta Aur Stars

    NASA Technical Reports Server (NTRS)

    Bennett, Philip D.

    2001-01-01

    This NASA grant supported an analysis of the variability of the wind of the supergiant primary star (K4 Ib) in the eclipsing binary Zeta Aurigae (Zeta Aur). In the ultraviolet, the main-sequence companion star (B5 V) dominates the observed flux, and therefore serves as a convenient probe of the cool supergiant's wind. This study utilized the extensive set of (100+) ultraviolet spectroscopic observations obtained with the International Ultraviolet Explorer (IUE) satellite over its operational lifetime of 1978-1995. Although the resolution of IUE is limited (about 25 km/s), it is adequate to resolve variability in the wind features in Zeta Aur's ultraviolet spectrum, which are blueshifted 70 km/s from line center. Our analysis used the tau-v technique of Cardelli and Savage, which makes full use of the available line profile information. We find that the wind column densities vary by up to an order of magnitude over time. These results are being written up for submission to the Astrophysical Journal as the third paper of a series on the chromosphere and wind of Zeta Aurigae. The first two papers report on the construction of mean chromosphere and wind models respectively, based on HST/GHRS observations and funded by STScI. The third paper - this research - reports on variability of the Zeta Aur wind as determined from our analysis of the long IUE time series. This paper will be completed within the next three months; the delay in publication was to allow the completion of Papers 1 and 2, which logically precede the present work. Therefore, an additional no-cost extension was requested in order to ensure budgeted funds remain available for publication of this work. Unfortunately, this request was denied, and so I am forced to write this final report before publication of Paper 3. Regardless, this paper will be submitted for publication within the next three months.

  1. Gravitational lensing by a smoothly variable surface mass density

    NASA Technical Reports Server (NTRS)

    Paczynski, Bohdan; Wambsganss, Joachim

    1989-01-01

    The statistical properties of gravitational lensing due to smooth but nonuniform distributions of matter are considered. It is found that a majority of triple images had a parity characteristic for 'shear-induced' lensing. Almost all cases of triple or multiple imaging were associated with large surface density enhancements, and lensing objects were present between the images. Thus, the observed gravitational lens candidates for which no lensing object has been detected between the images are unlikely to be a result of asymmetric distribution of mass external to the image circle. In a model with smoothly variable surface mass density, moderately and highly amplified images tended to be single rather than multiple. An opposite trend was found in models which had singularities in the surface mass distribution.

  2. Sputtering by the Solar Wind: Effects of Variable Composition

    NASA Technical Reports Server (NTRS)

    Killen, R. M.; Arrell, W. M.; Sarantos, M.; Delory, G. T.

    2011-01-01

    It has long been recognized that solar wind bombardment onto exposed surfaces in the solar system will produce an energetic component to the exospheres about those bodies. Laboratory experiments have shown that there is no increase in the sputtering yield caused by highly charged heavy ions for metallic and for semiconducting surfaces, but the sputter yield can be noticeably increased in the case of a good insulating surface. Recently measurements of the solar wind composition have become available. It is now known that the solar wind composition is highly dependent on the origin of the particular plasma. Using the measured composition of the slow wind, fast wind, solar energetic particle (SEP) population, and coronal mass ejection (CME), broken down into its various components, we have estimated the total sputter yield for each type of solar wind. Whereas many previous calculations of sputtering were limited to the effects of proton bombardment. we show that the heavy ion component. especially the He++ component. can greatly enhance the total sputter yield during times when the heavy ion population is enhanced. We will discuss sputtering of both neutrals and ions.

  3. Active Power and Flux Control of a Self-Excited Induction Generator for a Variable-Speed Wind Turbine Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Na, Woonki; Muljadi, Eduard; Leighty, Bill

    A Self-Excited Induction Generation (SEIG) for a variable speed wind turbine generation(VS-WG) is normally considered to be a good candidate for implementation in stand-alone applications such as battery charging, hydrogenation, water pumping, water purification, water desalination, and etc. In this study, we have examined a study on active power and flux control strategies for a SEIG for a variable speed wind turbine generation. The control analysis for the proposed system is carried out by using PSCAD software. In the process, we can optimize the control design of the system, thereby enhancing and expediting the control design procedure for this application.more » With this study, this control design for a SEIG for VS-WG can become the industry standard for analysis and development in terms of SEIG.« less

  4. Wind and IMP 8 Solar Wind, Magnetosheath and Shock Data

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The purpose of this project was to provide the community access to magnetosheath data near Earth. We provided 27 years of IMP 8 magnetosheath proton velocities, densities, and temperatures with our best (usually 1-min.) time resolution. IMP 8 crosses the magnetosheath twice each 125 day orbit, and we provided magnetosheath data for the roughly 27 years of data for which magnetometer data are also available (which are needed to reliably pick boundaries). We provided this 27 years of IMP 8 magnetosheath data to the NSSDC; this data is now integrated with the IMP 8 solar wind data with flags indicating whether each data point is in the solar wind, magnetosheath, or at the boundary between the two regions. The plasma speed, density, and temperature are provided for each magnetosheath point. These data are also available on the MIT web site ftp://space .mit.edu/pub/plasma/imp/www/imp.html. We provide ASCII time-ordered rows of data giving the observation time, the spacecraft position in GSE, the velocity is GSE, the density and temperature for protons. We also have analyzed and archived on our web site the Wind magnetosheath plasma parameters. These consist of ascii files of the proton and alpha densities, speeds, and thermal speeds. These data are available at ftp://space.mit.edu/pub/plasma/wind/sheath These are the two products promised in the work statement and they have been completed in full.

  5. The Winds of B Supergiants

    NASA Technical Reports Server (NTRS)

    Fullerton, A. W.; Massa, D. L.; Prinja, R. K.; Owocki, S. P.; Cranmer, S. R.

    1998-01-01

    This report summarizes the progress of the work conducted under the program "The Winds of B Supergiants," conducted by Raytheon STX Corporation. The report consists of a journal article "Wind variability in B supergiants III. Corotating spiral structures in the stellar wind of HD 64760." The first step in the project was the analysis of the 1996 time series of 2 B supergiants and an O star. These data were analyzed and reported on at the ESO workshop, "Cyclical Variability in Stellar Winds."

  6. The aerodynamic characteristics of eight very thick airfoils from tests in the variable density wind tunnel

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N

    1932-01-01

    Report presents the results of wind tunnel tests on a group of eight very thick airfoils having sections of the same thickness as those used near the roots of tapered airfoils. The tests were made to study certain discontinuities in the characteristic curves that have been obtained from previous tests of these airfoils, and to compare the characteristics of the different sections at values of the Reynolds number comparable with those attained in flight. The discontinuities were found to disappear as the Reynolds number was increased. The results obtained from the large-scale airfoil, a symmetrical airfoil having a thickness ratio of 21 per cent, has the best general characteristics.

  7. Acyclic High-Energy Variability in Eta Carinae and WR 140

    NASA Technical Reports Server (NTRS)

    Corcoran, Michael F.

    2012-01-01

    Eta Carinae and WR 140 are similar long-period colliding wind binaries in which X-ray emission is produced by a strong shock due to the collision of the powerful stellar winds. The change in the orientation and density of this shock as the stars revolve in their orbits influences the X-ray flux and spectrum in a phase dependent way. Monitoring observations with RXTE and other X-ray satellite observatories since the 1990s have detailed this variability but have also shown significant deviations from strict phase dependence (short-term brightness changes or "flares", and cyc1e-to-cyc1e average flux differences). We examine these acylic variations in Eta Car and WR 140 and discuss what they tell us about the stability of the wind-wind collision shock.

  8. Impacts of wind stilling on solar radiation variability in China

    PubMed Central

    Lin, Changgui; Yang, Kun; Huang, Jianping; Tang, Wenjun; Qin, Jun; Niu, Xiaolei; Chen, Yingying; Chen, Deliang; Lu, Ning; Fu, Rong

    2015-01-01

    Solar dimming and wind stilling (slowdown) are two outstanding climate changes occurred in China over the last four decades. The wind stilling may have suppressed the dispersion of aerosols and amplified the impact of aerosol emission on solar dimming. However, there is a lack of long-term aerosol monitoring and associated study in China to confirm this hypothesis. Here, long-term meteorological data at weather stations combined with short-term aerosol data were used to assess this hypothesis. It was found that surface solar radiation (SSR) decreased considerably with wind stilling in heavily polluted regions at a daily scale, indicating that wind stilling can considerably amplify the aerosol extinction effect on SSR. A threshold value of 3.5 m/s for wind speed is required to effectively reduce aerosols concentration. From this SSR dependence on wind speed, we further derived proxies to quantify aerosol emission and wind stilling amplification effects on SSR variations at a decadal scale. The results show that aerosol emission accounted for approximately 20% of the typical solar dimming in China, which was amplified by approximately 20% by wind stilling. PMID:26463748

  9. Density Variations in the Earth's Magnetospheric Cusps

    NASA Technical Reports Server (NTRS)

    Walsh, B. M.; Niehof, J.; Collier, M. R.; Welling, D. T.; Sibeck, D. G.; Mozer, F. S.; Fritz, T. A.; Kuntz, K. D.

    2016-01-01

    Seven years of measurements from the Polar spacecraft are surveyed to monitor the variations of plasma density within the magnetospheric cusps. The spacecraft's orbital precession from 1998 through 2005 allows for coverage of both the northern and southern cusps from low altitude out to the magnetopause. In the mid- and high- altitude cusps, plasma density scales well with the solar wind density (n(sub cusp)/n(sub sw) approximately 0.8). This trend is fairly steady for radial distances greater then 4 R(sub E). At low altitudes (r less than 4R(sub E)) the density increases with decreasing altitude and even exceeds the solar wind density due to contributions from the ionosphere. The density of high charge state oxygen (O(greater +2) also displays a positive trend with solar wind density within the cusp. A multifluid simulation with the Block-Adaptive-Tree Solar Wind Roe-Type Upwind Scheme MHD model was run to monitor the relative contributions of the ionosphere and solar wind plasma within the cusp. The simulation provides similar results to the statistical measurements from Polar and confirms the presence of ionospheric plasma at low altitudes.

  10. Wind tunnel measurements of the power output variability and unsteady loading in a micro wind farm model

    NASA Astrophysics Data System (ADS)

    Bossuyt, Juliaan; Howland, Michael; Meneveau, Charles; Meyers, Johan

    2015-11-01

    To optimize wind farm layouts for a maximum power output and wind turbine lifetime, mean power output measurements in wind tunnel studies are not sufficient. Instead, detailed temporal information about the power output and unsteady loading from every single wind turbine in the wind farm is needed. A very small porous disc model with a realistic thrust coefficient of 0.75 - 0.85, was designed. The model is instrumented with a strain gage, allowing measurements of the thrust force, incoming velocity and power output with a frequency response up to the natural frequency of the model. This is shown by reproducing the -5/3 spectrum from the incoming flow. Thanks to its small size and compact instrumentation, the model allows wind tunnel studies of large wind turbine arrays with detailed temporal information from every wind turbine. Translating to field conditions with a length-scale ratio of 1:3,000 the frequencies studied from the data reach from 10-4 Hz up to about 6 .10-2 Hz. The model's capabilities are demonstrated with a large wind farm measurement consisting of close to 100 instrumented models. A high correlation is found between the power outputs of stream wise aligned wind turbines, which is in good agreement with results from prior LES simulations. Work supported by ERC (ActiveWindFarms, grant no. 306471) and by NSF (grants CBET-113380 and IIA-1243482, the WINDINSPIRE project).

  11. Variable density thinning promotes variable structural responses 14 years after treatment in the Pacific Northwest

    Treesearch

    John L. Willis; Scott D. Roberts; Constance A. Harrington

    2018-01-01

    Young stands are commonly assumed to require centuries to develop into late-successional forest habitat. This viewpoint reflects the fact that young stands often lack many of the structural features that define late-successional habitat, and that these features derive from complex stand dynamics that are difficult to mimic with forest management. Variable density...

  12. Structure of wind-shear turbulence

    NASA Technical Reports Server (NTRS)

    Trevino, G.; Laituri, T. R.

    1989-01-01

    The statistical characteristics of wind shear turbulence are modelled. Isotropic turbulence serves as the basis of comparison for the anisotropic turbulence which exists in wind shear. The question of turbulence scales in wind shear is addressed from the perspective of power spectral density.

  13. The environment of the wind-wind collision region of η Carinae

    NASA Astrophysics Data System (ADS)

    Panagiotou, C.; Walter, R.

    2018-02-01

    Context. η Carinae is a colliding wind binary hosting two of the most massive stars and featuring the strongest wind collision mechanical luminosity. The wind collision region of this system is detected in X-rays and γ-rays and offers a unique laboratory for the study of particle acceleration and wind magneto-hydrodynamics. Aim. Our main goal is to use X-ray observations of η Carinae around periastron to constrain the wind collision zone geometry and understand the reasons for its variability. Methods: We analysed 10 Nuclear Spectroscopic Telescope Array (NuSTAR) observations, which were obtained around the 2014 periastron. The NuSTAR array monitored the source from 3 to 30 keV, which allowed us to grasp the continuum and absorption parameters with very good accuracy. We were able to identify several physical components and probe their variability. Results: The X-ray flux varied in a similar way as observed during previous periastrons and largely as expected if generated in the wind collision region. The flux detected within 10 days of periastron is lower than expected, suggesting a partial disruption of the central region of the wind collision zone. The Fe Kα line is likely broadened by the electrons heated along the complex shock fronts. The variability of its equivalent width indicates that the fluorescence region has a complex geometry and that the source obscuration varies quickly with the line of sight.

  14. The association between wind-related variables and stroke symptom onset: A case-crossover study on Jeju Island.

    PubMed

    Kim, Jayeun; Yoon, Khyuhyun; Choi, Jay Chol; Kim, Ho; Song, Jung-Kook

    2016-10-01

    Although several studies have investigated the effects of ambient temperature on the risk of stroke, few studies have examined the relationship between other meteorological conditions and stroke. Therefore, the aim of this study was to analyze the association between wind-related variables and stroke symptoms onset. Data regarding the onset of stroke symptoms occurring between January 1, 2006, and December 31, 2007 on Jeju Island were collected from the Jeju National University Hospital stroke registry. A fixed-strata case-crossover analysis based on time of onset and adjusted for ambient temperature, relative humidity, air pressure, and pollutants was used to analyze the effects of wind speed, the daily wind speed range (DWR), and the wind chill index on stroke symptom onset using varied lag terms. Models examining the modification effects by age, sex, smoking status, season, and type of stroke were also analyzed. A total of 409 stroke events (381 ischemic and 28 hemorrhagic) were registered between 2006 and 2007. The odds ratios (ORs) for wind speed, DWR, and wind chill among the total sample at lag 0-8 were 1.18 (95% confidence interval (CI): 1.06-1.31), 1.08 (95% CI: 1.02-1.14), and 1.22 (95% CI: 1.07-1.39) respectively. The ORs for wind speed, DWR, and wind chill for ischemic stroke patients were slightly greater than for patients in the total sample (OR=1.20, 95% CI: 1.08-1.34; OR=1.09, 95% CI: 1.03-1.15; and OR=1.22, 95% CI: 1.07-1.39, respectively). Statistically significant season-specific effects were found for spring and winter, and various delayed effects were observed. In addition, age, sex, and smoking status modified the effect size of wind speed, DWR, and wind chill. Our analyses showed that the risk of stroke symptoms onset was associated with wind speed, DWR, and wind chill on Jeju Island. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. 3D ELECTRON DENSITY DISTRIBUTIONS IN THE SOLAR CORONA DURING SOLAR MINIMA: ASSESSMENT FOR MORE REALISTIC SOLAR WIND MODELING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patoul, Judith de; Foullon, Claire; Riley, Pete, E-mail: j.depatoul@exeter.ac.uk, E-mail: c.foullon@exeter.ac.uk, E-mail: rileype@saic.com

    Knowledge of the electron density distribution in the solar corona put constraints on the magnetic field configurations for coronal modeling and on initial conditions for solar wind modeling. We work with polarized SOHO/LASCO-C2 images from the last two recent minima of solar activity (1996–1997 and 2008–2010), devoid of coronal mass ejections. The goals are to derive the 4D electron density distributions in the corona by applying a newly developed time-dependent tomographic reconstruction method and to compare the results between the two solar minima and with two magnetohydrodynamic models. First, we confirm that the values of the density distribution in thermodynamic models aremore » more realistic than in polytropic ones. The tomography provides more accurate distributions in the polar regions, and we find that the density in tomographic and thermodynamic solutions varies with the solar cycle in both polar and equatorial regions. Second, we find that the highest-density structures do not always correspond to the predicted large-scale heliospheric current sheet or its helmet streamer but can follow the locations of pseudo-streamers. We deduce that tomography offers reliable density distributions in the corona, reproducing the slow time evolution of coronal structures, without prior knowledge of the coronal magnetic field over a full rotation. Finally, we suggest that the highest-density structures show a differential rotation well above the surface depending on how they are magnetically connected to the surface. Such valuable information on the rotation of large-scale structures could help to connect the sources of the solar wind to their in situ counterparts in future missions such as Solar Orbiter and Solar Probe Plus.« less

  16. Wind direction change criteria for wind turbine design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cliff, W.C.

    1979-01-01

    A method is presented for estimating the root mean square (rms) value of the wind direction change, ..delta..theta(tau) = theta(tau + tau) - theta(tau), that occurs over the swept area of wind turbine rotor systems. An equation is also given for the rms value of the wind direction change that occurs at a single point in space, i.e., a direcion change that a wind vane would measure. Assuming a normal probability density function for the lateral wind velocity change and relating this to angular changes, equations are given for calculating the expected number of wind direction changes, larger than anmore » arbitrary value, that will occur in 1 hr as well as the expected number that will occur during the design life of a wind turbine. The equations presented are developed using a small angle approximation and are, therefore, considered appropriate for wind direction changes of less than 30/sup 0/. The equations presented are based upon neutral atmospheric boundary-layer conditions and do not include information regarding events such as tornados, hurricanes, etc.« less

  17. Temporal variability in wind-wave climate and its validation with ESSO-NIOT wave atlas for the head Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Patra, Anindita; Bhaskaran, Prasad K.

    2017-08-01

    The head Bay region bordering the northern Bay of Bengal is a densely populated area with a complex geomorphologic setting, and highly vulnerable to extreme water levels along with other factors like sea level rise and impact of tropical cyclones. The influence of climate change on wind-wave regime from this region of Bay of Bengal is not known well and that requires special attention, and there is a need to perform its long-term assessment for societal benefits. This study provides a comprehensive analysis on the temporal variability in domain averaged wind speed, significant wave height (SWH) utilizing satellite altimeter data (1992-2012) and mean wave period using ECMWF reanalysis products ERA-Interim (1992-2012) and ERA-20C (1992-2010) over this region. The SWH derived from WAVEWATCH III (WW3) model along with the ERA-Interim reanalysis supplements the observed variability in satellite altimeter observations. Further, the study performs an extensive error estimation of SWH and mean wave period with ESSO-NIOT wave atlas that shows a high degree of under-estimation in the wave atlas mean wave period. Annual mean and wind speed maxima from altimeter show an increasing trend, and to a lesser extent in the SWH. Interestingly, the estimated trend is higher for maxima compared to the mean conditions. Analysis of decadal variability exhibits an increased frequency of higher waves in the present decade compared to the past. Linear trend analysis show significant upswing in spatially averaged ERA-20C mean wave period, whereas the noticed variations are marginal in the ERA-Interim data. A separate trend analysis for the wind-seas, swell wave heights and period from ERA-20C decipher the fact that distant swells governs the local wind-wave climatology over the head Bay region, and over time the swell activity have increased in this region.

  18. Neutral wind and density perturbations in the thermosphere created by gravity waves observed by the TIDDBIT sounder

    NASA Astrophysics Data System (ADS)

    Vadas, Sharon L.; Crowley, Geoff

    2017-06-01

    In this paper, we study the 10 traveling ionospheric disturbances (TIDs) observed at zobs˜283 km by the TIDDBIT ionospheric sounder on 30 October 2007 at 0400-0700 UT near Wallops Island, USA. These TIDs propagated northwest/northward and were previously found to be secondary gravity waves (GWs) from tropical storm Noel. An instrumented sounding rocket simultaneously measured a large neutral wind peak uH' with a similar azimuth at z ˜ 325 km. Using the measured TID amplitudes and wave vectors from the TIDDBIT system, together with ion-neutral theory, GW dissipative polarization relations and ray tracing, we determine the GW neutral horizontal wind and density perturbations as a function of altitude from 220 to 380 km. We find that there is a serious discrepancy between the GW dissipative theory and the observations unless the molecular viscosity, μ, decreases with altitude in the middle to upper thermosphere. Assuming that μ∝ρ¯q, where ρ¯ is the density, we find using GW dissipative theory that the GWs could have been observed at zobs and that one or more of the GWs could have caused the uH' wind peak at z≃325 km if q ˜ 0.67 for z≥220 km. This implies that the kinematic viscosity, ν=μ/ρ¯, increases less rapidly with altitude for z≥220 km: ν∝1/ρ¯0.33. This dependence makes sense because as ρ¯→0, the distance between molecules goes to infinity, which implies no molecular collisions and therefore no molecular viscosity μ.

  19. Structure of wind-shear turbulence

    NASA Technical Reports Server (NTRS)

    Trevino, G.; Laituri, T. R.

    1988-01-01

    The statistical characteristics of wind-shear turbulence are modelled. Isotropic turbulence serves as the basis of comparison for the anisotropic turbulence which exists in wind shear. The question of how turbulence scales in a wind shear is addressed from the perspective of power spectral density.

  20. Application of SEAWAT to select variable-density and viscosity problems

    USGS Publications Warehouse

    Dausman, Alyssa M.; Langevin, Christian D.; Thorne, Danny T.; Sukop, Michael C.

    2010-01-01

    SEAWAT is a combined version of MODFLOW and MT3DMS, designed to simulate three-dimensional, variable-density, saturated groundwater flow. The most recent version of the SEAWAT program, SEAWAT Version 4 (or SEAWAT_V4), supports equations of state for fluid density and viscosity. In SEAWAT_V4, fluid density can be calculated as a function of one or more MT3DMS species, and optionally, fluid pressure. Fluid viscosity is calculated as a function of one or more MT3DMS species, and the program also includes additional functions for representing the dependence of fluid viscosity on temperature. This report documents testing of and experimentation with SEAWAT_V4 with six previously published problems that include various combinations of density-dependent flow due to temperature variations and/or concentration variations of one or more species. Some of the problems also include variations in viscosity that result from temperature differences in water and oil. Comparisons between the results of SEAWAT_V4 and other published results are generally consistent with one another, with minor differences considered acceptable.

  1. Prospects for generating electricity by large onshore and offshore wind farms

    NASA Astrophysics Data System (ADS)

    Volker, Patrick J. H.; Hahmann, Andrea N.; Badger, Jake; Jørgensen, Hans E.

    2017-03-01

    The decarbonisation of energy sources requires additional investments in renewable technologies, including the installation of onshore and offshore wind farms. For wind energy to remain competitive, wind farms must continue to provide low-cost power even when covering larger areas. Inside very large wind farms, winds can decrease considerably from their free-stream values to a point where an equilibrium wind speed is reached. The magnitude of this equilibrium wind speed is primarily dependent on the balance between turbine drag force and the downward momentum influx from above the wind farm. We have simulated for neutral atmospheric conditions, the wind speed field inside different wind farms that range from small (25 km2) to very large (105 km2) in three regions with distinct wind speed and roughness conditions. Our results show that the power density of very large wind farms depends on the local free-stream wind speed, the surface characteristics, and the turbine density. In onshore regions with moderate winds the power density of very large wind farms reaches 1 W m-2, whereas in offshore regions with very strong winds it exceeds 3 W m-2. Despite a relatively low power density, onshore regions with moderate winds offer potential locations for very large wind farms. In offshore regions, clusters of smaller wind farms are generally preferable; under very strong winds also very large offshore wind farms become efficient.

  2. Self-Calibrating Wave-Encoded Variable-Density Single-Shot Fast Spin Echo Imaging.

    PubMed

    Chen, Feiyu; Taviani, Valentina; Tamir, Jonathan I; Cheng, Joseph Y; Zhang, Tao; Song, Qiong; Hargreaves, Brian A; Pauly, John M; Vasanawala, Shreyas S

    2018-04-01

    It is highly desirable in clinical abdominal MR scans to accelerate single-shot fast spin echo (SSFSE) imaging and reduce blurring due to T 2 decay and partial-Fourier acquisition. To develop and investigate the clinical feasibility of wave-encoded variable-density SSFSE imaging for improved image quality and scan time reduction. Prospective controlled clinical trial. With Institutional Review Board approval and informed consent, the proposed method was assessed on 20 consecutive adult patients (10 male, 10 female, range, 24-84 years). A wave-encoded variable-density SSFSE sequence was developed for clinical 3.0T abdominal scans to enable high acceleration (3.5×) with full-Fourier acquisitions by: 1) introducing wave encoding with self-refocusing gradient waveforms to improve acquisition efficiency; 2) developing self-calibrated estimation of wave-encoding point-spread function and coil sensitivity to improve motion robustness; and 3) incorporating a parallel imaging and compressed sensing reconstruction to reconstruct highly accelerated datasets. Image quality was compared pairwise with standard Cartesian acquisition independently and blindly by two radiologists on a scale from -2 to 2 for noise, contrast, confidence, sharpness, and artifacts. The average ratio of scan time between these two approaches was also compared. A Wilcoxon signed-rank tests with a P value under 0.05 considered statistically significant. Wave-encoded variable-density SSFSE significantly reduced the perceived noise level and improved the sharpness of the abdominal wall and the kidneys compared with standard acquisition (mean scores 0.8, 1.2, and 0.8, respectively, P < 0.003). No significant difference was observed in relation to other features (P = 0.11). An average of 21% decrease in scan time was achieved using the proposed method. Wave-encoded variable-density sampling SSFSE achieves improved image quality with clinically relevant echo time and reduced scan time, thus providing a fast

  3. ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert W. Preus; DOE Project Officer - Keith Bennett

    2008-04-23

    This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus’ experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliablemore » or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energy’s (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.« less

  4. An evidence for prompt electric field disturbance driven by changes in the solar wind density under northward IMF Bz condition

    DOE PAGES

    Rout, Diptiranjan; Chakrabarty, D.; Sekar, R.; ...

    2016-05-26

    Before the onset of a geomagnetic storm on 22 January 2012 (Ap = 24), an enhancement in solar wind number density from 10/cm 3 to 22/cm 3 during 0440–0510 UT under northward interplanetary magnetic field (IMF Bz) condition is shown to have enhanced the high-latitude ionospheric convection and also caused variations in the geomagnetic field globally. Some conspicuous changes in ΔX are observed not only at longitudinally separated low-latitude stations over Indian (prenoon), South American (midnight), Japanese (afternoon), Pacific (afternoon) and African (morning) sectors but also at latitudinally separated stations located over high and middle latitudes. The latitudinal variation ofmore » the amplitude of the ΔX during 0440–0510 UT is shown to be consistent with the characteristics of prompt penetration electric field disturbances. Most importantly, the density pulse event caused enhancements in the equatorial electrojet strength and the peak height of the F layer (h mF 2) over the Indian dip equatorial sector. Furthermore, the concomitant enhancements in electrojet current and F layer movement over the dip equator observed during this space weather event suggest a common driver of prompt electric field disturbance at this time. Such simultaneous variations are found to be absent during magnetically quiet days. In the absence of significant change in solar wind velocity and magnetospheric substorm activity, these observations point toward perceptible prompt electric field disturbance over the dip equator driven by the overcompression of the magnetosphere by solar wind density enhancement.« less

  5. How supernovae launch galactic winds?

    NASA Astrophysics Data System (ADS)

    Fielding, Drummond; Quataert, Eliot; Martizzi, Davide; Faucher-Giguère, Claude-André

    2017-09-01

    We use idealized three-dimensional hydrodynamic simulations of global galactic discs to study the launching of galactic winds by supernovae (SNe). The simulations resolve the cooling radii of the majority of supernova remnants (SNRs) and thus self-consistently capture how SNe drive galactic winds. We find that SNe launch highly supersonic winds with properties that agree reasonably well with expectations from analytic models. The energy loading (η _E= \\dot{E}_wind/ \\dot{E}_SN) of the winds in our simulations are well converged with spatial resolution while the wind mass loading (η _M= \\dot{M}_wind/\\dot{M}_\\star) decreases with resolution at the resolutions we achieve. We present a simple analytic model based on the concept that SNRs with cooling radii greater than the local scaleheight break out of the disc and power the wind. This model successfully explains the dependence (or lack thereof) of ηE (and by extension ηM) on the gas surface density, star formation efficiency, disc radius and the clustering of SNe. The winds our simulations are weaker than expected in reality, likely due to the fact that we seed SNe preferentially at density peaks. Clustering SNe in time and space substantially increases the wind power.

  6. Western Wind Strategy: Addressing Critical Issues for Wind Deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas Larson; Thomas Carr

    2012-03-30

    The goal of the Western Wind Strategy project was to help remove critical barriers to wind development in the Western Interconnection. The four stated objectives of this project were to: (1) identify the barriers, particularly barriers to the operational integration of renewables and barriers identified by load-serving entities (LSEs) that will be buying wind generation, (2) communicate the barriers to state officials, (3) create a collaborative process to address those barriers with the Western states, utilities and the renewable industry, and (4) provide a role model for other regions. The project has been on the forefront of identifying and informingmore » state policy makers and utility regulators of critical issues related to wind energy and the integration of variable generation. The project has been a critical component in the efforts of states to push forward important reforms and innovations that will enable states to meet their renewable energy goals and lower the cost to consumers of integrating variable generation.« less

  7. Variability in vegetation effects on density and nesting success of grassland birds

    USGS Publications Warehouse

    Winter, Maiken; Johnson, Douglas H.; Shaffer, Jill A.

    2005-01-01

    The structure of vegetation in grassland systems, unlike that in forest systems, varies dramatically among years on the same sites, and among regions with similar vegetation. The role of this variation in vegetation structure on bird density and nesting success of grassland birds is poorly understood, primarily because few studies have included sufficiently large temporal and spatial scales to capture the variation in vegetation structure, bird density, or nesting success. To date, no large-scale study on grassland birds has been conducted to investigate whether grassland bird density and nesting success respond similarly to changes in vegetation structure. However, reliable management recommendations require investigations into the distribution and nesting success of grassland birds over larger temporal and spatial scales. In addition, studies need to examine whether bird density and nesting success respond similarly to changing environmental conditions. We investigated the effect of vegetation structure on the density and nesting success of 3 grassland-nesting birds: clay-colored sparrow (Spizella pallida), Savannah sparrow (Passerculus sandwichensis), and bobolink (Dolichonyx oryzivorus) in 3 regions of the northern tallgrass prairie in 1998-2001. Few vegetation features influenced the densities of our study species, and each species responded differently to those vegetation variables. We could identify only 1 variable that clearly influenced nesting success of 1 species: clay-colored sparrow nesting success increased with increasing percentage of nest cover from the surrounding vegetation. Because responses of avian density and nesting success to vegetation measures varied among regions, years, and species, land managers at all times need to provide grasslands with different types of vegetation structure. Management guidelines developed from small-scale, short-term studies may lead to misrepresentations of the needs of grassland-nesting birds.

  8. Accretion from a clumpy massive-star wind in supergiant X-ray binaries

    NASA Astrophysics Data System (ADS)

    El Mellah, I.; Sundqvist, J. O.; Keppens, R.

    2018-04-01

    Supergiant X-ray binaries (SgXB) host a compact object, often a neutron star (NS), orbiting an evolved O/B star. Mass transfer proceeds through the intense line-driven wind of the stellar donor, a fraction of which is captured by the gravitational field of the NS. The subsequent accretion process on to the NS is responsible for the abundant X-ray emission from SgXB. They also display peak-to-peak variability of the X-ray flux by a factor of a few 10-100, along with changes in the hardness ratios possibly due to varying absorption along the line of sight. We use recent radiation-hydrodynamic simulations of inhomogeneities (a.k.a. clumps) in the non-stationary wind of massive hot stars to evaluate their impact on the time-variable accretion process. For this, we run 3D hydrodynamic simulations of the wind in the vicinity of the accretor to investigate the formation of the bow shock and follow the inhomogeneous flow over several spatial orders of magnitude, down to the NS magnetosphere. In particular, we show that the impact of the wind clumps on the time variability of the intrinsic mass accretion rate is severely tempered by the crossing of the shock, compared to the purely ballistic Bondi-Hoyle-Lyttleton estimation. We also account for the variable absorption due to clumps passing by the line of sight and estimate the final effective variability of the column density and mass accretion rate for different orbital separations. Finally, we compare our results to the most recent analysis of the X-ray flux and the hardness ratio in Vela X-1.

  9. Wind Power Generation Design Considerations.

    DTIC Science & Technology

    1984-12-01

    DISTRIBUTION 4 I o ....................................... . . . e . * * TABLES Number Page I Wind Turbine Characteristics II 0- 2 Maximum Economic Life II 3...Ratio of Blade Tip Speed to Wind Speed 10 4 Interference with Microwave and TV Reception by Wind Turbines 13 5 Typical Flow Patterns Over Two...18 * 12 Annual Mean Wind Power Density 21 5 FIGURES (Cont’d) Number Page 13 Wind - Turbine /Generator Types Currently Being Tested on Utility Sites 22 14

  10. Distribution and solar wind control of compressional solar wind-magnetic anomaly interactions observed at the Moon by ARTEMIS

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Poppe, A. R.; Lue, C.; Farrell, W. M.; McFadden, J. P.

    2017-06-01

    A statistical investigation of 5 years of observations from the two-probe Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) mission reveals that strong compressional interactions occur infrequently at high altitudes near the ecliptic but can form in a wide range of solar wind conditions and can occur up to two lunar radii downstream from the lunar limb. The compressional events, some of which may represent small-scale collisionless shocks ("limb shocks"), occur in both steady and variable interplanetary magnetic field (IMF) conditions, with those forming in steady IMF well organized by the location of lunar remanent crustal magnetization. The events observed by ARTEMIS have similarities to ion foreshock phenomena, and those observed in variable IMF conditions may result from either local lunar interactions or distant terrestrial foreshock interactions. Observed velocity deflections associated with compressional events are always outward from the lunar wake, regardless of location and solar wind conditions. However, events for which the observed velocity deflection is parallel to the upstream motional electric field form in distinctly different solar wind conditions and locations than events with antiparallel deflections. Consideration of the momentum transfer between incoming and reflected solar wind populations helps explain the observed characteristics of the different groups of events.Plain Language SummaryWe survey the environment around the Moon to determine when and where strong amplifications in the charged particle <span class="hlt">density</span> and magnetic field strength occur. These structures may be some of the smallest shock waves in the solar system, and learning about their formation informs us about the interaction of charged particles with small-scale magnetic fields throughout the solar system and beyond. We find that these compressions occur in an extended region</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1213785-characterizing-wind-power-resource-reliability-southern-africa','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1213785-characterizing-wind-power-resource-reliability-southern-africa"><span>Characterizing <span class="hlt">wind</span> power resource reliability in southern Africa</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Fant, Charles; Gunturu, Bhaskar; Schlosser, Adam</p> <p>2015-08-29</p> <p>Producing electricity from <span class="hlt">wind</span> is attractive because it provides a clean, low-maintenance power supply. However, <span class="hlt">wind</span> resource is intermittent on various timescales, thus occasionally introducing large and sudden changes in power supply. A better understanding of this <span class="hlt">variability</span> can greatly benefit power grid planning. In the following study, <span class="hlt">wind</span> resource is characterized using metrics that highlight these intermittency issues; therefore identifying areas of high and low <span class="hlt">wind</span> power reliability in southern Africa and Kenya at different time-scales. After developing a <span class="hlt">wind</span> speed profile, these metrics are applied at various heights in order to assess the added benefit of raising themore » <span class="hlt">wind</span> turbine hub. Furthermore, since the interconnection of <span class="hlt">wind</span> farms can aid in reducing the overall intermittency, the value of interconnecting near-by sites is mapped using two distinct methods. Of the countries in this region, the Republic of South Africa has shown the most interest in <span class="hlt">wind</span> power investment. For this reason, we focus parts of the study on <span class="hlt">wind</span> reliability in the country. The study finds that, although mean <span class="hlt">Wind</span> Power <span class="hlt">Density</span> is high in South Africa compared to its neighboring countries, <span class="hlt">wind</span> power resource tends to be less reliable than in other parts of southern Africa—namely central Tanzania. We also find that South Africa’s potential varies over different timescales, with higher reliability in the summer than winter, and higher reliability during the day than at night. This study is concluded by introducing two methods and measures to characterize the value of interconnection, including the use of principal component analysis to identify areas with a common signal.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1213785-characterizing-wind-power-resource-reliability-southern-africa','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1213785-characterizing-wind-power-resource-reliability-southern-africa"><span>Characterizing <span class="hlt">wind</span> power resource reliability in southern Africa</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Fant, Charles; Gunturu, Bhaskar; Schlosser, Adam</p> <p></p> <p>Producing electricity from <span class="hlt">wind</span> is attractive because it provides a clean, low-maintenance power supply. However, <span class="hlt">wind</span> resource is intermittent on various timescales, thus occasionally introducing large and sudden changes in power supply. A better understanding of this <span class="hlt">variability</span> can greatly benefit power grid planning. In the following study, <span class="hlt">wind</span> resource is characterized using metrics that highlight these intermittency issues; therefore identifying areas of high and low <span class="hlt">wind</span> power reliability in southern Africa and Kenya at different time-scales. After developing a <span class="hlt">wind</span> speed profile, these metrics are applied at various heights in order to assess the added benefit of raising themore » <span class="hlt">wind</span> turbine hub. Furthermore, since the interconnection of <span class="hlt">wind</span> farms can aid in reducing the overall intermittency, the value of interconnecting near-by sites is mapped using two distinct methods. Of the countries in this region, the Republic of South Africa has shown the most interest in <span class="hlt">wind</span> power investment. For this reason, we focus parts of the study on <span class="hlt">wind</span> reliability in the country. The study finds that, although mean <span class="hlt">Wind</span> Power <span class="hlt">Density</span> is high in South Africa compared to its neighboring countries, <span class="hlt">wind</span> power resource tends to be less reliable than in other parts of southern Africa—namely central Tanzania. We also find that South Africa’s potential varies over different timescales, with higher reliability in the summer than winter, and higher reliability during the day than at night. This study is concluded by introducing two methods and measures to characterize the value of interconnection, including the use of principal component analysis to identify areas with a common signal.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSA31C..03K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSA31C..03K"><span>Stratospheric mountain wave attenuation in positive and negative ambient <span class="hlt">wind</span> shear</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kruse, C. G.; Smith, R. B.</p> <p>2016-12-01</p> <p>Recently, much has been learned about the vertical propagation and attenuation of mountain waves launched by the Southern Alps of New Zealand (NZ) from the Deep Propagating Gravity Wave Experiment (DEEPWAVE) field campaign. Over NZ, approximately half of mountain wave events are strongly attenuated in a lower-stratospheric "valve layer," defined as a layer of reduced <span class="hlt">wind</span> with no critical levels. Within a valve layer, negative <span class="hlt">wind</span> shear causes mountain waves steepen and attenuate, with the amount of transmitted momentum flux controlled by the minimum <span class="hlt">wind</span> speed within the layer. The other half of wave events are deep (propagating to 35+ km), usually with positive <span class="hlt">wind</span> shear. Within these deep events, increasing amplitude with decreasing <span class="hlt">density</span> causes mountain waves to attenuate gradually (after spatial/temporal averaging). Global reanalyses indicate that this valve layer is a climatological feature in the wintertime mid-latitudes above the subtropical jet, while deep events and gradual attenuation occur over higher latitudes below the polar stratospheric jet. The local physics of mountain wave attenuation in positive and negative ambient <span class="hlt">wind</span> shear are investigated using realistic winter-long (JJA) 6-km resolution Weather Research and Forecasting (WRF) model simulations over the Andes. Attention is given to the spatiotemporal <span class="hlt">variability</span> of wave attenuation and the various factors driving this <span class="hlt">variability</span> (e.g. <span class="hlt">variability</span> in wave generation, ambient conditions at attenuation level, inherent wave-induced instabilities). Mesoscale potential vorticity generation is used as an indicator of wave attenuation. Additionally, regionally integrated wave momentum flux and gravity wave drag (GWD) within WRF are quantified and compared with parameterized quantities in the MERRA1 and 2 reanalyses.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.5941M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.5941M"><span>The Río de la Plata estuary response to <span class="hlt">wind</span> <span class="hlt">variability</span> in synoptic time scale: Salinity fields and salt wedge structure</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meccia, V. L.; Simionato, C. G.; Guerrero, R. A.</p> <p>2009-04-01</p> <p>The Río de la Plata estuary is located in the eastern coast of southern South America, approximately at 35° S. It has a northwest to southeast oriented funnel shape approximately 300 km long that narrows from 220 km at its mouth to 40 km at its upper end. With a mean discharge of 25,000 m3 s-1 and a drainage area of 3.5 × 106 km2 it ranks fourth and fifth worldwide in freshwater discharge and drainage area, respectively. The interaction between estuarine and shelf waters originates an intense and active salinity front which plays an important role in the flow dynamics and the distribution of properties on the shelf. As a result of the constant displacement of the surface front and the steadiness of the bottom front whose location is controlled by the bathymetry, a time-<span class="hlt">variable</span> salt wedge structure is observed in the estuary during most of the year. In this work, Estuary, Coastal and Ocean Model (ECOM) was applied to study the processes associated to the salinity fields and the salt wedge structure in the Río de la Plata estuary. It was found that salinity fields in the Río de la Plata rapidly respond -order of 3 days- to <span class="hlt">wind</span> <span class="hlt">variability</span>. Therefore, the traditional conceptual scheme that considers seasonal <span class="hlt">variability</span> as the main feature of the salinity field in this estuary does not longer hold and conditions classically though as characteristic of ‘winter' or ‘summer' can take place during any season with high <span class="hlt">variability</span>. The estuary response to <span class="hlt">wind</span> <span class="hlt">variability</span> can be explained in terms of four characteristic patterns associated to <span class="hlt">winds</span> that blow with dominant components perpendicular and parallel to the estuary axis. Northeasterly <span class="hlt">winds</span> produce a southwestward retraction of the surface salinity front. The results are consistent with upwelling motion along the Uruguayan coast under this <span class="hlt">wind</span> direction. Southwesterly <span class="hlt">winds</span> produce a northward displacement of the surface salinity front towards the Uruguayan coast and, according to our simulations, a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ISPAr42W7.1283M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ISPAr42W7.1283M"><span>Assessment of Global <span class="hlt">Wind</span> Energy Resource Utilization Potential</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, M.; He, B.; Guan, Y.; Zhang, H.; Song, S.</p> <p>2017-09-01</p> <p>Development of <span class="hlt">wind</span> energy resource (WER) is a key to deal with climate change and energy structure adjustment. A crucial issue is to obtain the distribution and <span class="hlt">variability</span> of WER, and mine the suitable location to exploit it. In this paper, a multicriteria evaluation (MCE) model is constructed by integrating resource richness and stability, utilization value and trend of resource, natural environment with weights. The global resource richness is assessed through <span class="hlt">wind</span> power <span class="hlt">density</span> (WPD) and multi-level <span class="hlt">wind</span> speed. The utilizable value of resource is assessed by the frequency of effective <span class="hlt">wind</span>. The resource stability is assessed by the coefficient of variation of WPD and the frequency of prevailing <span class="hlt">wind</span> direction. Regression slope of long time series WPD is used to assess the trend of WER. All of the resource evaluation indicators are derived from the atmospheric reanalysis data ERA-Interim with spatial resolution 0.125°. The natural environment factors mainly refer to slope and land-use suitability, which are derived from multi-resolution terrain elevation data 2010 (GMTED 2010) and GlobalCover2009. Besides, the global WER utilization potential map is produced, which shows most high potential regions are located in north of Africa. Additionally, by verifying that 22.22 % and 48.8 9% operational <span class="hlt">wind</span> farms fall on medium-high and high potential regions respectively, the result can provide a basis for the macroscopic siting of <span class="hlt">wind</span> farm.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSA22A..05Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSA22A..05Y"><span>Sq Currents and Neutral <span class="hlt">Winds</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamazaki, Y.</p> <p>2015-12-01</p> <p>The relationship between ionospheric dynamo currents and neutral <span class="hlt">winds</span> is examined using the Thermosphere Ionosphere Mesosphere Electrodynamic General Circulation Model (TIME-GCM). The simulation is run for May and June 2009 with <span class="hlt">variable</span> neutral <span class="hlt">winds</span> but with constant solar and magnetospheric energy inputs, which ensures that day-to-day changes in the solar quiet (Sq) current system arise only from lower atmospheric forcing. The intensity and focus position of the simulated Sq current system exhibit large day-to-day <span class="hlt">variability</span>, as is also seen in ground magnetometer data. We show how the day-to-day variation of the Sq current system relate to <span class="hlt">variable</span> <span class="hlt">winds</span> at various altitudes, latitudes, and longitudes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27872902','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27872902"><span><span class="hlt">Wind</span> energy potential assessment of Cameroon's coastal regions for the installation of an onshore <span class="hlt">wind</span> farm.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Arreyndip, Nkongho Ayuketang; Joseph, Ebobenow; David, Afungchui</p> <p>2016-11-01</p> <p>For the future installation of a <span class="hlt">wind</span> farm in Cameroon, the <span class="hlt">wind</span> energy potentials of three of Cameroon's coastal cities (Kribi, Douala and Limbe) are assessed using NASA average monthly <span class="hlt">wind</span> data for 31 years (1983-2013) and compared through Weibull statistics. The Weibull parameters are estimated by the method of maximum likelihood, the mean power <span class="hlt">densities</span>, the maximum energy carrying <span class="hlt">wind</span> speeds and the most probable <span class="hlt">wind</span> speeds are also calculated and compared over these three cities. Finally, the cumulative <span class="hlt">wind</span> speed distributions over the wet and dry seasons are also analyzed. The results show that the shape and scale parameters for Kribi, Douala and Limbe are 2.9 and 2.8, 3.9 and 1.8 and 3.08 and 2.58, respectively. The mean power <span class="hlt">densities</span> through Weibull analysis for Kribi, Douala and Limbe are 33.7 W/m2, 8.0 W/m2 and 25.42 W/m2, respectively. Kribi's most probable <span class="hlt">wind</span> speed and maximum energy carrying <span class="hlt">wind</span> speed was found to be 2.42 m/s and 3.35 m/s, 2.27 m/s and 3.03 m/s for Limbe and 1.67 m/s and 2.0 m/s for Douala, respectively. Analysis of the <span class="hlt">wind</span> speed and hence power distribution over the wet and dry seasons shows that in the wet season, August is the windiest month for Douala and Limbe while September is the windiest month for Kribi while in the dry season, March is the windiest month for Douala and Limbe while February is the windiest month for Kribi. In terms of mean power <span class="hlt">density</span>, most probable <span class="hlt">wind</span> speed and <span class="hlt">wind</span> speed carrying maximum energy, Kribi shows to be the best site for the installation of a <span class="hlt">wind</span> farm. Generally, the <span class="hlt">wind</span> speeds at all three locations seem quite low, average <span class="hlt">wind</span> speeds of all the three studied locations fall below 4.0m/s which is far below the cut-in <span class="hlt">wind</span> speed of many modern <span class="hlt">wind</span> turbines. However we recommend the use of low cut-in speed <span class="hlt">wind</span> turbines like the Savonius for stand alone low energy needs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFD.L2001B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFD.L2001B"><span>The Spectrum of <span class="hlt">Wind</span> Power Fluctuations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bandi, Mahesh</p> <p>2016-11-01</p> <p><span class="hlt">Wind</span> is a <span class="hlt">variable</span> energy source whose fluctuations threaten electrical grid stability and complicate dynamical load balancing. The power generated by a <span class="hlt">wind</span> turbine fluctuates due to the <span class="hlt">variable</span> <span class="hlt">wind</span> speed that blows past the turbine. Indeed, the spectrum of <span class="hlt">wind</span> power fluctuations is widely believed to reflect the Kolmogorov spectrum; both vary with frequency f as f - 5 / 3. This <span class="hlt">variability</span> decreases when aggregate power fluctuations from geographically distributed <span class="hlt">wind</span> farms are averaged at the grid via a mechanism known as geographic smoothing. Neither the f - 5 / 3 <span class="hlt">wind</span> power fluctuation spectrum nor the mechanism of geographic smoothing are understood. In this work, we explain the <span class="hlt">wind</span> power fluctuation spectrum from the turbine through grid scales. The f - 5 / 3 <span class="hlt">wind</span> power fluctuation spectrum results from the largest length scales of atmospheric turbulence of order 200 km influencing the small scales where individual turbines operate. This long-range influence spatially couples geographically distributed <span class="hlt">wind</span> farms and synchronizes farm outputs over a range of frequencies and decreases with increasing inter-farm distance. Consequently, aggregate grid-scale power fluctuations remain correlated, and are smoothed until they reach a limiting f - 7 / 3 spectrum. This work was funded by the Collective Interactions Unit, OIST Graduate University, Japan.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1043895','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1043895"><span>Adaptive pitch control for <span class="hlt">variable</span> speed <span class="hlt">wind</span> turbines</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Johnson, Kathryn E [Boulder, CO; Fingersh, Lee Jay [Westminster, CO</p> <p>2012-05-08</p> <p>An adaptive method for adjusting blade pitch angle, and controllers implementing such a method, for achieving higher power coefficients. Average power coefficients are determined for first and second periods of operation for the <span class="hlt">wind</span> turbine. When the average power coefficient for the second time period is larger than for the first, a pitch increment, which may be generated based on the power coefficients, is added (or the sign is retained) to the nominal pitch angle value for the <span class="hlt">wind</span> turbine. When the average power coefficient for the second time period is less than for the first, the pitch increment is subtracted (or the sign is changed). A control signal is generated based on the adapted pitch angle value and sent to blade pitch actuators that act to change the pitch angle of the <span class="hlt">wind</span> turbine to the new or modified pitch angle setting, and this process is iteratively performed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24899131','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24899131"><span>Ecological drivers of guanaco recruitment: <span class="hlt">variable</span> carrying capacity and <span class="hlt">density</span> dependence.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Marino, Andrea; Pascual, Miguel; Baldi, Ricardo</p> <p>2014-08-01</p> <p>Ungulates living in predator-free reserves offer the opportunity to study the influence of food limitation on population dynamics without the potentially confounding effects of top-down regulation or livestock competition. We assessed the influence of relative forage availability and population <span class="hlt">density</span> on guanaco recruitment in two predator-free reserves in eastern Patagonia, with contrasting scenarios of population <span class="hlt">density</span>. We also explored the relative contribution of the observed recruitment to population growth using a deterministic linear model to test the assumption that the studied populations were closed units. The observed <span class="hlt">densities</span> increased twice as fast as our theoretical populations, indicating that marked immigration has taken place during the recovery phase experienced by both populations, thus we rejected the closed-population assumption. Regarding the factors driving variation in recruitment, in the low- to medium-<span class="hlt">density</span> setting, we found a positive linear relationship between recruitment and surrogates of annual primary production, whereas no <span class="hlt">density</span> dependence was detected. In contrast, in the high-<span class="hlt">density</span> scenario, both annual primary production and population <span class="hlt">density</span> showed marked effects, indicating a positive relationship between recruitment and per capita food availability above a food-limitation threshold. Our results support the idea that environmental carrying capacity fluctuates in response to climatic variation, and that these fluctuations have relevant consequences for herbivore dynamics, such as amplifying <span class="hlt">density</span> dependence in drier years. We conclude that including the coupling between environmental <span class="hlt">variability</span> in resources and <span class="hlt">density</span> dependence is crucial to model ungulate population dynamics; to overlook temporal changes in carrying capacity may even mask <span class="hlt">density</span> dependence as well as other important processes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRA..118.3546L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRA..118.3546L"><span>Nightside electron precipitation at Mars: Geographic <span class="hlt">variability</span> and dependence on solar <span class="hlt">wind</span> conditions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lillis, Robert J.; Brain, David A.</p> <p>2013-06-01</p> <p>Electron precipitation is usually the dominant source of energy input to the nightside Martian atmosphere, with consequences for ionospheric <span class="hlt">densities</span>, chemistry, electrodynamics, communications, and navigation. We examine downward-traveling superthermal electron flux on the Martian nightside from May 1999 to November 2006 at 400 km altitude and 2 A.M. local time. Electron precipitation is geographically organized by crustal magnetic field strength and elevation angle, with higher fluxes occurring in regions of weak and/or primarily vertical crustal fields, while stronger and more horizontal fields retard electron access to the atmosphere. We investigate how these crustal field-organized precipitation patterns vary with proxies for solar <span class="hlt">wind</span> (SW) pressure and interplanetary magnetic field (IMF) direction. Generally, higher precipitating fluxes accompany higher SW pressures. Specifically, we identify four characteristic spectral behaviors: (1) "stable" regions where fluxes increase mildly with SW pressure, (2) "high-flux" regions where accelerated (peaked) spectra are more common and where fluxes below ~500 eV are largely independent of SW pressure, (3) permanent plasma voids, and (4) intermittent plasma voids where fluxes depend strongly on SW pressure. The locations, sizes, shapes, and absence/existence of these plasma voids vary significantly with solar <span class="hlt">wind</span> pressure proxy and moderately with IMF proxy direction; average precipitating fluxes are 40% lower in strong crustal field regions and 15% lower globally for approximately southwest proxy directions compared with approximately northeast directions. This variation of the strength and geographic pattern of the shielding effect of Mars' crustal fields exemplifies the complex interaction between those fields and the solar <span class="hlt">wind</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018A%26A...613A..62S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018A%26A...613A..62S"><span>Number <span class="hlt">density</span> structures in the inner heliosphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stansby, D.; Horbury, T. S.</p> <p>2018-06-01</p> <p>Aims: The origins and generation mechanisms of the slow solar <span class="hlt">wind</span> are still unclear. Part of the slow solar <span class="hlt">wind</span> is populated by number <span class="hlt">density</span> structures, discrete patches of increased number <span class="hlt">density</span> that are frozen in to and move with the bulk solar <span class="hlt">wind</span>. In this paper we aimed to provide the first in-situ statistical study of number <span class="hlt">density</span> structures in the inner heliosphere. Methods: We reprocessed in-situ ion distribution functions measured by Helios in the inner heliosphere to provide a new reliable set of proton plasma moments for the entire mission. From this new data set we looked for number <span class="hlt">density</span> structures measured within 0.5 AU of the Sun and studied their properties. Results: We identified 140 discrete areas of enhanced number <span class="hlt">density</span>. The structures occurred exclusively in the slow solar <span class="hlt">wind</span> and spanned a wide range of length scales from 50 Mm to 2000 Mm, which includes smaller scales than have been previously observed. They were also consistently denser and hotter that the surrounding plasma, but had lower magnetic field strengths, and therefore remained in pressure balance. Conclusions: Our observations show that these structures are present in the slow solar <span class="hlt">wind</span> at a wide range of scales, some of which are too small to be detected by remote sensing instruments. These structures are rare, accounting for only 1% of the slow solar <span class="hlt">wind</span> measured by Helios, and are not a significant contribution to the mass flux of the solar <span class="hlt">wind</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/37331','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/37331"><span><span class="hlt">Variable-density</span> thinning for parks and reserves: An experimental case study at Humboldt Redwoods State Park, California</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Christopher R. Keyes; Thomas E. Perry; Jesse F. Plummer</p> <p>2010-01-01</p> <p><span class="hlt">Variable-density</span> thinning is emerging as a valuable tool for the silvicultural promotion of old-growth conditions in second-growth forests of the Pacific Coast. This paper reports on an experimental <span class="hlt">variable-density</span> thinning prescription applied between 2006 and 2007 at north coastal California’s Humboldt Redwoods State Park. The prescription strategy relied on known...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IAUS..329..448S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IAUS..329..448S"><span>Stellar <span class="hlt">wind</span> measurements for Colliding <span class="hlt">Wind</span> Binaries using X-ray observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sugawara, Yasuharu; Maeda, Yoshitomo; Tsuboi, Yohko</p> <p>2017-11-01</p> <p>We report the results of the stellar <span class="hlt">wind</span> measurement for two colliding <span class="hlt">wind</span> binaries. The X-ray spectrum is the best measurement tool for the hot postshock gas. By monitoring the changing of the the X-ray luminosity and column <span class="hlt">density</span> along with the orbital phases, we derive the mass-loss rates of these stars.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030011270','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030011270"><span>Intercalibration and Cross-Correlation of Ace and <span class="hlt">Wind</span> Solar <span class="hlt">Wind</span> Data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2003-01-01</p> <p>This report covers activities funded from October 1, 1998 through September 30, 2002. Two yearly status reports have been filed on this grant, and they are included as Appendix 1. The purpose of this grant was to compare ACE and <span class="hlt">Wind</span> solar <span class="hlt">wind</span> parameters when the two spacecraft were near to one another and then to use the intercalibrated parameters to carry out scientific investigations. In September, 2001 a request for a one-year, no-cost extension until September 30, 2002 was submitted and approved. The statement of work for that extension included adjustment of ACE <span class="hlt">densities</span> below <span class="hlt">wind</span> speeds of 350 km/s, a study of shock normal orientations using travel time delays between the two spacecraft, comparison of <span class="hlt">density</span> jumps at shocks, and a study of temperature anisotropies and double streaming to see if such features evolved between the spacecraft.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy...50.4455B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy...50.4455B"><span>Near-surface <span class="hlt">wind</span> <span class="hlt">variability</span> over the broader Adriatic region: insights from an ensemble of regional climate models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Belušić, Andreina; Prtenjak, Maja Telišman; Güttler, Ivan; Ban, Nikolina; Leutwyler, David; Schär, Christoph</p> <p>2018-06-01</p> <p>Over the past few decades the horizontal resolution of regional climate models (RCMs) has steadily increased, leading to a better representation of small-scale topographic features and more details in simulating dynamical aspects, especially in coastal regions and over complex terrain. Due to its complex terrain, the broader Adriatic region represents a major challenge to state-of-the-art RCMs in simulating local <span class="hlt">wind</span> systems realistically. The objective of this study is to identify the added value in near-surface <span class="hlt">wind</span> due to the refined grid spacing of RCMs. For this purpose, we use a multi-model ensemble composed of CORDEX regional climate simulations at 0.11° and 0.44° grid spacing, forced by the ERA-Interim reanalysis, a COSMO convection-parameterizing simulation at 0.11° and a COSMO convection-resolving simulation at 0.02° grid spacing. Surface station observations from this region and satellite QuikSCAT data over the Adriatic Sea have been compared against daily output obtained from the available simulations. Both day-to-day <span class="hlt">wind</span> and its frequency distribution are examined. The results indicate that the 0.44° RCMs rarely outperform ERA-Interim reanalysis, while the performance of the high-resolution simulations surpasses that of ERA-Interim. We also disclose that refining the grid spacing to a few km is needed to properly capture the small-scale <span class="hlt">wind</span> systems. Finally, we show that the simulations frequently yield the accurate angle of local <span class="hlt">wind</span> regimes, such as for the Bora flow, but overestimate the associated <span class="hlt">wind</span> magnitude. Finally, spectral analysis shows good agreement between measurements and simulations, indicating the correct temporal <span class="hlt">variability</span> of the <span class="hlt">wind</span> speed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AeoRe..23...51N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AeoRe..23...51N"><span>Evaporative sodium salt crust development and its <span class="hlt">wind</span> tunnel derived transport dynamics under <span class="hlt">variable</span> climatic conditions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nield, Joanna M.; McKenna Neuman, Cheryl; O'Brien, Patrick; Bryant, Robert G.; Wiggs, Giles F. S.</p> <p>2016-12-01</p> <p>Playas (or ephemeral lakes) can be significant sources of dust, but they are typically covered by salt crusts of <span class="hlt">variable</span> mineralogy and these introduce uncertainty into dust emission predictions. Despite the importance of crust mineralogy to emission potential, little is known about (i) the effect of short-term changes in temperature and relative humidity on the erodibility of these crusts, and (ii) the influence of crust degradation and mineralogy on <span class="hlt">wind</span> speed threshold for dust emission. Our understanding of systems where emission is not driven by impacts from saltators is particularly poor. This paper describes a <span class="hlt">wind</span> tunnel study in which dust emission in the absence of saltating particles was measured for a suite of climatic conditions and salt crust types commonly found on Sua Pan, Botswana. The crusts were found to be non-emissive under climate conditions characteristic of dawn and early morning, as compared to hot and dry daytime conditions when the <span class="hlt">wind</span> speed threshold for dust emission appears to be highly <span class="hlt">variable</span>, depending upon salt crust physicochemistry. Significantly, sodium sulphate rich crusts were found to be more emissive than crusts formed from sodium chloride, while degraded versions of both crusts had a lower emission threshold than fresh, continuous crusts. The results from this study are in agreement with in-situ field measurements and confirm that dust emission from salt crusted surfaces can occur without saltation, although the vertical fluxes are orders of magnitude lower (∼10 μg/m/s) than for aeolian systems where entrainment is driven by particle impact.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A13G0379S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A13G0379S"><span>Interannual <span class="hlt">variability</span> in equatorial Kelvin waves in the upper troposphere and lower stratosphere, and relation to the background equatorial <span class="hlt">wind</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suzuki, J.; Nishi, N.; Fujiwara, M.; Yoneyama, K.</p> <p>2016-12-01</p> <p>We investigated the influence of the background <span class="hlt">wind</span> regime on interannual <span class="hlt">variability</span> in equatorial Kelvin waves in the upper troposphere and lower stratosphere using the European Centre for Medium-Range Weather Forecasts 40-year reanalysis data. We focused on <span class="hlt">variability</span> in the number of Kelvin wave events as a function of the background westerly <span class="hlt">wind</span>, given by the zonal <span class="hlt">wind</span> index (ZWI) in the equatorial western hemisphere. The ZWI measures the strength of the upper branch of the Walker circulation in the western hemisphere. Although the ZWI is well correlated with the sea surface temperature in the Niño-3.4 region, nearly half of the peaks of positive (negative) ZWI cases occurred outside of the typical La Niña (El Niño) season (December to February), respectively. In the positive ZWI (stronger westerly) cases, both convective activity over the western Pacific and extratropical Rossby waves were enhanced. Kelvin waves over the western hemisphere appeared frequently at 200 hPa but barely reached 100 hPa due to the strong westerly <span class="hlt">wind</span> under this level. In the negative ZWI period, on the other hand, the number of Kelvin waves at 200 hPa decreased due to the weaker convection; Kelvin waves reached 100 hPa and propagated even farther upward. We also investigated the relationship between the ZWI and the phase speed of Kelvin waves. Kelvin waves with relatively slow phase speeds are found in negative ZWI cases, but are not found in positive ZWI cases due to the westerly background <span class="hlt">wind</span> below the altitudes where Kelvin waves commonly propagate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/25201','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/25201"><span>Tree and understory responses to <span class="hlt">variable-density</span> thinning in western Washington.</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Constance A. Harrington; Scott D. Roberts; Leslie C. Brodie</p> <p>2005-01-01</p> <p>The Olympic Habitat Development Study was initiated in 1994 to evaluate whether active management in 35- to 70-year-old stands could accelerate development of stand structures and plant and animal communities associated with late-successional forests. The study used a <span class="hlt">variable-density</span> thinning prescription as the main tool to alter stand structure; the prescription...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014hst..prop13734P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014hst..prop13734P"><span>Probing the extreme <span class="hlt">wind</span> confinement of the most magnetic O star with COS spectroscopy</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petit, Veronique</p> <p>2014-10-01</p> <p>We propose to obtain phase-resolved UV spectroscopy of the recently discovered magnetic O star NGC 1624-2, which has the strongest magnetic field ever detected in a O-star, by an order of magnitude. We will use the strength and <span class="hlt">variability</span> of the UV resonance line profiles to diagnose the <span class="hlt">density</span>, velocity, and ionization structure of NGC 1624-2's enormous magnetosphere that results from entrapment of its stellar <span class="hlt">wind</span> by its strong, nearly dipolar magnetic field. With this gigantic magnetosphere, NGC 1624-2 represents a new regime of extreme <span class="hlt">wind</span> confinement that will constrain models of magnetized <span class="hlt">winds</span> and their surface mass flux properties. A detailed understanding of such <span class="hlt">winds</span> is necessary to study the rotational braking history of magnetic O-stars, which can shed new light on the fundamental origin of magnetism in massive, hot stars.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.9538W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.9538W"><span>Small scale <span class="hlt">variability</span> of snow properties on Antarctic sea ice</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wever, Nander; Leonard, Katherine; Paul, Stephan; Jacobi, Hans-Werner; Proksch, Martin; Lehning, Michael</p> <p>2016-04-01</p> <p>Snow on sea ice plays an important role in air-ice-sea interactions, as snow accumulation may for example increase the albedo. Snow is also able to smooth the ice surface, thereby reducing the surface roughness, while at the same time it may generate new roughness elements by interactions with the <span class="hlt">wind</span>. Snow <span class="hlt">density</span> is a key property in many processes, for example by influencing the thermal conductivity of the snow layer, radiative transfer inside the snow as well as the effects of aerodynamic forcing on the snowpack. By comparing snow <span class="hlt">density</span> and grain size from snow pits and snow micro penetrometer (SMP) measurements, highly resolved <span class="hlt">density</span> and grain size profiles were acquired during two subsequent cruises of the RV Polarstern in the Weddell Sea, Antarctica, between June and October 2013. During the first cruise, SMP measurements were done along two approximately 40 m transects with a horizontal resolution of approximately 30 cm. During the second cruise, one transect was made with approximately 7.5 m resolution over a distance of 500 m. Average snow <span class="hlt">densities</span> are about 300 kg/m3, but the analysis also reveals a high spatial <span class="hlt">variability</span> in snow <span class="hlt">density</span> on sea ice in both horizontal and vertical direction, ranging from roughly 180 to 360 kg/m3. This <span class="hlt">variability</span> is expressed by coherent snow structures over several meters. On the first cruise, the measurements were accompanied by terrestrial laser scanning (TLS) on an area of 50x50 m2. The comparison with the TLS data indicates that the spatial <span class="hlt">variability</span> is exhibiting similar spatial patterns as deviations in surface topology. This suggests a strong influence from surface processes, for example <span class="hlt">wind</span>, on the temporal development of <span class="hlt">density</span> or grain size profiles. The fundamental relationship between variations in snow properties, surface roughness and changes therein as investigated in this study is interpreted with respect to large-scale ice movement and the mass balance.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070032962&hterms=temperature+variability&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dtemperature%2Bvariability','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070032962&hterms=temperature+variability&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dtemperature%2Bvariability"><span>Intraseasonal <span class="hlt">Variability</span> of the Equatorial Indian Ocean Observed from Sea Surface Height, <span class="hlt">Wind</span>, and Temperature Data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fu, Lee-Lueng</p> <p>2007-01-01</p> <p>The forcing of the equatorial Indian Ocean by the highly periodic monsoon <span class="hlt">wind</span> cycle creates many interesting intraseasonal <span class="hlt">variabilities</span>. The frequency spectrum of the <span class="hlt">wind</span> stress observations from the European Remote Sensing Satellite scatterometers reveals peaks at the seasonal cycle and its higher harmonics at 180, 120, 90, and 75 days. The observations of sea surface height (SSH) from the Jason and Ocean Topography Experiment (TOPEX)/Poseidon radar altimeters are analyzed to study the ocean's response. The focus of the study is on the intraseasonal periods shorter than the annual period. The semiannual SSH <span class="hlt">variability</span> is characterized by a basin mode involving Rossby waves and Kelvin waves traveling back and forth in the equatorial Indian Ocean between 10(deg)S and 10(deg)N. However, the interference of these waves with each other masks the appearance of individual Kelvin and Rossby waves, leading to a nodal point (amphidrome) of phase propagation on the equator at the center of the basin. The characteristics of the mode correspond to a resonance of the basin according to theoretical models. The theory also calls for similar modes at 90 and 60 days.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25487154','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25487154"><span>Higher-than-predicted saltation threshold <span class="hlt">wind</span> speeds on Titan.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Burr, Devon M; Bridges, Nathan T; Marshall, John R; Smith, James K; White, Bruce R; Emery, Joshua P</p> <p>2015-01-01</p> <p>Titan, the largest satellite of Saturn, exhibits extensive aeolian, that is, <span class="hlt">wind</span>-formed, dunes, features previously identified exclusively on Earth, Mars and Venus. <span class="hlt">Wind</span> tunnel data collected under ambient and planetary-analogue conditions inform our models of aeolian processes on the terrestrial planets. However, the accuracy of these widely used formulations in predicting the threshold <span class="hlt">wind</span> speeds required to move sand by saltation, or by short bounces, has not been tested under conditions relevant for non-terrestrial planets. Here we derive saltation threshold <span class="hlt">wind</span> speeds under the thick-atmosphere, low-gravity and low-sediment-<span class="hlt">density</span> conditions on Titan, using a high-pressure <span class="hlt">wind</span> tunnel refurbished to simulate the appropriate kinematic viscosity for the near-surface atmosphere of Titan. The experimentally derived saltation threshold <span class="hlt">wind</span> speeds are higher than those predicted by models based on terrestrial-analogue experiments, indicating the limitations of these models for such extreme conditions. The models can be reconciled with the experimental results by inclusion of the extremely low ratio of particle <span class="hlt">density</span> to fluid <span class="hlt">density</span> on Titan. Whereas the <span class="hlt">density</span> ratio term enables accurate modelling of aeolian entrainment in thick atmospheres, such as those inferred for some extrasolar planets, our results also indicate that for environments with high <span class="hlt">density</span> ratios, such as in jets on icy satellites or in tenuous atmospheres or exospheres, the correction for low-<span class="hlt">density</span>-ratio conditions is not required.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1411325-evaluation-different-inertial-control-methods-variable-speed-wind-turbines-simulated-fatigue-aerodynamic-structures-turbulence-fast','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1411325-evaluation-different-inertial-control-methods-variable-speed-wind-turbines-simulated-fatigue-aerodynamic-structures-turbulence-fast"><span>Evaluation of different inertial control methods for <span class="hlt">variable</span>-speed <span class="hlt">wind</span> turbines simulated by fatigue, aerodynamic, structures and turbulence (FAST)</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, Xiao; Gao, Wenzhong; Scholbrock, Andrew</p> <p></p> <p>To mitigate the degraded power system inertia and undesirable primary frequency response caused by large-scale <span class="hlt">wind</span> power integration, the frequency support capabilities of <span class="hlt">variable</span>-speed <span class="hlt">wind</span> turbines is studied in this work. This is made possible by controlled inertial response, which is demonstrated on a research turbine - controls advanced research turbine, 3-bladed (CART3). Two distinct inertial control (IC) methods are analysed in terms of their impacts on the grids and the response of the turbine itself. The released kinetic energy in the IC methods are determined by the frequency measurement or shaped active power reference in the turbine speed-power plane.more » The <span class="hlt">wind</span> turbine model is based on the high-fidelity turbine simulator fatigue, aerodynamic, structures and turbulence, which constitutes the aggregated <span class="hlt">wind</span> power plant model with the simplified power converter model. The IC methods are implemented over the baseline CART3 controller, evaluated in the modified 9-bus and 14-bus testing power grids considering different <span class="hlt">wind</span> speeds and different <span class="hlt">wind</span> power penetration levels. The simulation results provide various insights on designing such kinds of ICs. The authors calculate the short-term dynamic equivalent loads and give a discussion about the turbine structural loadings related to the inertial response.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.3238F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.3238F"><span><span class="hlt">Wind</span>, Circulation, and Topographic Effects on Alongshore Phytoplankton <span class="hlt">Variability</span> in the California Current</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fiechter, Jerome; Edwards, Christopher A.; Moore, Andrew M.</p> <p>2018-04-01</p> <p>A physical-biogeochemical model is used to produce a retrospective analysis at 3-km resolution of alongshore phytoplankton <span class="hlt">variability</span> in the California Current during 1988-2010. The simulation benefits from downscaling a regional circulation reanalysis, which provides improved physical ocean state estimates in the high-resolution domain. The emerging pattern is one of local upwelling intensification in response to increased alongshore <span class="hlt">wind</span> stress in the lee of capes, modulated by alongshore meanders in the geostrophic circulation. While stronger upwelling occurs near most major topographic features, substantial increases in phytoplankton biomass only ensue where local circulation patterns are conducive to on-shelf retention of upwelled nutrients. Locations of peak nutrient delivery and chlorophyll accumulation also exhibit interannual <span class="hlt">variability</span> and trends noticeably larger than the surrounding shelf regions, thereby suggesting that long-term planktonic ecosystem response in the California Current exhibits a significant local scale (O(100 km)) alongshore component.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26846216','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26846216"><span>Inter-Population <span class="hlt">Variability</span> of Endosymbiont <span class="hlt">Densities</span> in the Asian Citrus Psyllid (Diaphorina citri Kuwayama).</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chu, Chia-Ching; Gill, Torrence A; Hoffmann, Mark; Pelz-Stelinski, Kirsten S</p> <p>2016-05-01</p> <p>The Asian citrus psyllid (Diaphorina citri Kuwayama) is an insect pest capable of transmitting Candidatus Liberibacter asiaticus (CLas), the causal agent of citrus greening in North America. D. citri also harbors three endosymbionts, Wolbachia, Candidatus Carsonella ruddii, and Candidatus Profftella armatura, which may influence D. citri physiology and fitness. Although genomic researches on these bacteria have been conducted, much remains unclear regarding their ecology and inter-population <span class="hlt">variability</span> in D. citri. The present work examined the <span class="hlt">densities</span> of each endosymbiont in adult D. citri sampled from different populations using quantitative PCR. Under field conditions, the <span class="hlt">densities</span> of all three endosymbionts positively correlated with each other, and they are associated with D. citri gender and locality. In addition, the infection <span class="hlt">density</span> of CLas also varied across populations. Although an analysis pooling D. citri from different populations showed that CLas-infected individuals tended to have lower endosymbiont <span class="hlt">densities</span> compared to uninfected individuals, the difference was not significant when the population was included as a factor in the analysis, suggesting that other population-specific factors may have stronger effects on endosymbiont <span class="hlt">densities</span>. To determine whether there is a genetic basis to the <span class="hlt">density</span> differences, endosymbiont <span class="hlt">densities</span> between aged CLas-negative females of two D. citri populations reared under standardized laboratory conditions were compared. Results suggested that inter-population <span class="hlt">variability</span> in Wolbachia infection <span class="hlt">density</span> is associated with the genotypes of the endosymbiont or the host. Findings from this work could facilitate understanding of D. citri-bacterial associations that may benefit the development of approaches for managing citrus greening, such as prevention of CLas transmission.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720000409','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720000409"><span>Program to determine space vehicle response to <span class="hlt">wind</span> turbulence</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilkening, H. D.</p> <p>1972-01-01</p> <p>Computer program was developed as prelaunch <span class="hlt">wind</span> monitoring tool for Saturn 5 vehicle. Program accounts for characteristic <span class="hlt">wind</span> changes including turbulence power spectral <span class="hlt">density</span>, <span class="hlt">wind</span> shear, peak <span class="hlt">wind</span> velocity, altitude, and <span class="hlt">wind</span> direction using stored variational statistics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvD..95k3004R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvD..95k3004R"><span>Matter <span class="hlt">density</span> versus distance for the neutrino beam from Fermilab to Lead, South Dakota, and comparison of oscillations with <span class="hlt">variable</span> and constant <span class="hlt">density</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roe, Byron</p> <p>2017-06-01</p> <p>This paper is divided into two parts. In the first part, the material <span class="hlt">densities</span> passed through for neutrinos going from FNAL to Sanford Laboratory are calculated using two recent <span class="hlt">density</span> tables, Crustal [G. Laske, G. Masters, Z. Ma, and M. Pasyanos, Update on CRUST1.0—A 1-degree global model of Earth's crust, Geophys. Res. Abstracts 15, EGU2013-2658 (2013),; For the programs and tables, see the website: http://igppweb.ucsd.edu/ gabi/crust1.html.] and Shen-Ritzwoller [W. Shen and M. H. Ritzwoller, Crustal and uppermost mantle structure beneath the United States, J. Geophys. Res.: Solid Earth 121, 4306 (2016)], as well as the values from an older table PEMC [A. M. Dziewonski, A. L. Hales, and E. R. Lapwood, Parametrically simple earth models consistent with geophysical data, Phys. Earth Plan. Int. 10, 12 (1975); For further information see the website: http://ds.iris.edu/ds/products/emc-pem/.]. In the second part, neutrino oscillations at Sanford Laboratory are examined for the <span class="hlt">variable</span> <span class="hlt">density</span> table of Shen-Ritzwoller. These results are then compared with oscillation results using the mean <span class="hlt">density</span> from the Shen-Ritzwoller tables and with one other fixed <span class="hlt">density</span>. For the tests made here, the mean <span class="hlt">density</span> results are quite similar to the results using the <span class="hlt">variable</span> <span class="hlt">density</span> vs distance.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010SPIE.7622E..0AD','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010SPIE.7622E..0AD"><span>A stepwedge-based method for measuring breast <span class="hlt">density</span>: observer <span class="hlt">variability</span> and comparison with human reading</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Diffey, Jenny; Berks, Michael; Hufton, Alan; Chung, Camilla; Verow, Rosanne; Morrison, Joanna; Wilson, Mary; Boggis, Caroline; Morris, Julie; Maxwell, Anthony; Astley, Susan</p> <p>2010-04-01</p> <p>Breast <span class="hlt">density</span> is positively linked to the risk of developing breast cancer. We have developed a semi-automated, stepwedge-based method that has been applied to the mammograms of 1,289 women in the UK breast screening programme to measure breast <span class="hlt">density</span> by volume and area. 116 images were analysed by three independent operators to assess inter-observer <span class="hlt">variability</span>; 24 of these were analysed on 10 separate occasions by the same operator to determine intra-observer <span class="hlt">variability</span>. 168 separate images were analysed using the stepwedge method and by two radiologists who independently estimated percentage breast <span class="hlt">density</span> by area. There was little intra-observer <span class="hlt">variability</span> in the stepwedge method (average coefficients of variation 3.49% - 5.73%). There were significant differences in the volumes of glandular tissue obtained by the three operators. This was attributed to variations in the operators' definition of the breast edge. For fatty and dense breasts, there was good correlation between breast <span class="hlt">density</span> assessed by the stepwedge method and the radiologists. This was also observed between radiologists, despite significant inter-observer variation. Based on analysis of thresholds used in the stepwedge method, radiologists' definition of a dense pixel is one in which the percentage of glandular tissue is between 10 and 20% of the total thickness of tissue.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM51A2412N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM51A2412N"><span>Plasma sheet <span class="hlt">density</span> dependence on Interplanetary Magnetic Field and Solar <span class="hlt">Wind</span> properties: statistical study using 9+ year of THEMIS data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nykyri, K.; Chu, C.; Dimmock, A. P.</p> <p>2017-12-01</p> <p>Previous studies have shown that plasma sheet in tenuous and hot during southward IMF, whereas northward IMF conditions are associated with cold, dense plasma. The cold, dense plasma sheet (CDPS) has strong influence on magnetospheric dynamics. Closer to Earth, the CDPS could be formed via double high-latitude reconnection, while at increasing tailward distance reconnection, diffusion and kinetic Alfven waves in association with Kelvin-Helmholtz Instability are suggested as dominant source for cold-dense plasma sheet formation. In this paper we present statistical correlation study between Solar <span class="hlt">Wind</span>, Magnetosheath and Plasma sheet properties using 9+ years of THEMIS data in aberrated GSM frame, and in a normalized coordinate system that takes into account the changes of the magnetopause and bow shock location with respect to changing solar <span class="hlt">wind</span> conditions. We present statistical results of the plasma sheet <span class="hlt">density</span> dependence on IMF orientation and other solar <span class="hlt">wind</span> properties.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003IJTPE.123.1531S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003IJTPE.123.1531S"><span><span class="hlt">Wind</span> Velocity and Position Sensor-less Operation for PMSG <span class="hlt">Wind</span> Generator</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Senjyu, Tomonobu; Tamaki, Satoshi; Urasaki, Naomitsu; Uezato, Katsumi; Funabashi, Toshihisa; Fujita, Hideki</p> <p></p> <p>Electric power generation using non-conventional sources is receiving considerable attention throughout the world. <span class="hlt">Wind</span> energy is one of the available non-conventional energy sources. Electrical power generation using <span class="hlt">wind</span> energy is possible in two ways, viz. constant speed operation and <span class="hlt">variable</span> speed operation using power electronic converters. <span class="hlt">Variable</span> speed power generation is attractive, because maximum electric power can be generated at all <span class="hlt">wind</span> velocities. However, this system requires a rotor speed sensor, for vector control purpose, which increases the cost of the system. To alleviate the need of rotor speed sensor in vector control, we propose a new sensor-less control of PMSG (Permanent Magnet Synchronous Generator) based on the flux linkage. We can estimate the rotor position using the estimated flux linkage. We use a first-order lag compensator to obtain the flux linkage. Furthermore‚we estimate <span class="hlt">wind</span> velocity and rotation speed using a observer. The effectiveness of the proposed method is demonstrated thorough simulation results.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MAP...130...81K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MAP...130...81K"><span>Impact of active and break <span class="hlt">wind</span> spells on the demand-supply balance in <span class="hlt">wind</span> energy in India</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kulkarni, Sumeet; Deo, M. C.; Ghosh, Subimal</p> <p>2018-02-01</p> <p>With an installed capacity of over 19,000 MW, the <span class="hlt">wind</span> power currently accounts for almost 70% of the total installed capacity among the renewable energy sector in India. The extraction of <span class="hlt">wind</span> power mainly depends on prevailing meteorology which is strongly influenced by monsoon <span class="hlt">variability</span>. The monsoon season is characterized by significant fluctuations in between periods of wet and dry spells. During the dry spells, the demand for power from agriculture and cooling equipment increases, whereas during the wet periods, such demand reduces, although, at the same time, the power supply increases because of strong westerly <span class="hlt">winds</span> contributing to an enhanced production of <span class="hlt">wind</span> energy. At this backdrop, we aim to assess the impact of intra-seasonal <span class="hlt">wind</span> <span class="hlt">variability</span> on the balance of energy supply and demand during monsoon seasons in India. Further, we explore the probable cause of <span class="hlt">wind</span> <span class="hlt">variability</span> by relating it to El Nino events. It is observed that the active and break phases in <span class="hlt">wind</span> significantly impact the overall <span class="hlt">wind</span> potential output. Although the dry spells are generally found to reduce the overall <span class="hlt">wind</span> potential, their impact on the potential seems to have declined after the year 2000. The impact of meteorological changes on variations in <span class="hlt">wind</span> power studied in this work should find applications typically in taking investment decisions on conventional generation facilities, like thermal, which are currently used to maintain the balance of power supply and demand.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020043314','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020043314"><span>The <span class="hlt">Winds</span> of B Supergiants</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Massa, Derck; West, D. (Technical Monitor)</p> <p>2002-01-01</p> <p>We present the most suitable data sets available in the International Ultraviolet Explorer (IUE) archive for the study of time-dependent stellar <span class="hlt">winds</span> in early B supergiants. The UV line profile <span class="hlt">variability</span> in 11 B0 to B3 stars is analyzed, compared and discussed, based on 16 separate data sets comprising over 600 homogeneously reduced high-resolution spectrograms. The targets include 'normal' stars with moderate rotation rates and examples of rapid rotators. A gallery of grey-scale images (dynamic spectra) is presented, which demonstrates the richness and range of <span class="hlt">wind</span> <span class="hlt">variability</span> and highlights different structures in the <span class="hlt">winds</span> of these stars. This work emphasizes the suitability of B supergiants for <span class="hlt">wind</span> studies, under-pinned by the fact that they exhibit unsaturated <span class="hlt">wind</span> lines for a wide range of ionization. The <span class="hlt">wind</span> activity of B supergiants is substantial and has highly varied characteristics. The <span class="hlt">variability</span> evident in individual stars is classified and described in terms of discrete absorption components, spontaneous absorption, bowed structures, recurrence, and ionization <span class="hlt">variability</span> and stratification. Similar structures can occur in stars of different fundamental parameters but also different structures may occur in the same star at a given epoch. We discuss the physical phenomena that may be associated with the spectral signatures, and highlight the challenges that these phenomena present to theoretical studies of time-dependent outflows in massive stars. In addition, SEI line-synthesis modelling of the UV <span class="hlt">wind</span> lines is used to provide further information about the state of the <span class="hlt">winds</span> in our program stars. Typically the range, implied by the line profile <span class="hlt">variability</span>, in the product of mass-loss rate and ion fraction (M qi) is a factor of approximately 1.5, when integrated between 0.2 and 0.9 v infinity; it it can however be several times larger over localized velocity regions. At a given effective temperature the mean relative ion ratios can differ by a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020092091','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020092091"><span>The <span class="hlt">Winds</span> of B Supergiants</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Massa, D.; Oliversen, R. (Technical Monitor)</p> <p>2002-01-01</p> <p>We present the most suitable data sets available in the International Ultraviolet Explorer (IUE) archive for the study of time-dependent stellar <span class="hlt">winds</span> in early B supergiants. The UV line profile <span class="hlt">variability</span> in 11 B0 to B3 stars is analyzed, compared and discussed, based on 16 separate data sets comprising over 600 homogeneously reduced high-resolution spectrograms. The targets include 'normal' stars with moderate rotation rates and examples of rapid rotators. A gallery of grey-scale images (dynamic spectra) is presented, which demonstrates the richness and range of <span class="hlt">wind</span> <span class="hlt">variability</span> and highlights different structures in the <span class="hlt">winds</span> of these stars. This work emphasises the suitability of B supergiants for <span class="hlt">wind</span> studies, under-pinned by the fact that they exhibit unsaturated <span class="hlt">wind</span> lines for a wide range of ionization. The <span class="hlt">wind</span> activity of B supergiants is substantial and has highly varied characteristics. The <span class="hlt">variability</span> evident in individual stars is classified and described in terms of discrete absorption components, spontaneous absorption, bowed structures, recurrence, and ionization <span class="hlt">variability</span> and stratification. Similar structures can occur in stars of different fundamental parameters, but also different structures may occur in the same star at a given epoch. We discuss the physical phenomena that may be associated with the spectral signatures, and highlight the challenges that these phenomena present to theoretical studies of time-dependent outflows in massive stars. In addition, SEI line-synthesis modelling of the UV <span class="hlt">wind</span> lines is used to provide further information about the state of the <span class="hlt">winds</span> in our program stars. Typically the range, implied by the line profile <span class="hlt">variability</span>, in the product of mass-loss rate and ion fraction (M (dot) q(sub i)) is a factor of approximately 1.5, when integrated between 0.2 and 0.9 v infinity; it can however be several times larger over localized velocity regions. At a given effective temperature the mean relative ion ratios can</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.4568B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.4568B"><span>Empirical model for the electron <span class="hlt">density</span> peak height disturbance in response to solar <span class="hlt">wind</span> conditions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blanch, E.; Altadill, D.</p> <p>2009-04-01</p> <p>Geomagnetic storms disturb the quiet behaviour of the ionosphere, its electron <span class="hlt">density</span> and the electron <span class="hlt">density</span> peak height, hmF2. Many works have been done to predict the variations of the electron <span class="hlt">density</span> but few efforts have been dedicated to predict the variations the hmF2 under disturbed helio-geomagnetic conditions. We present the results of the analyses of the F2 layer peak height disturbances occurred during intense geomagnetic storms for one solar cycle. The results systematically show a significant peak height increase about 2 hours after the beginning of the main phase of the geomagnetic storm, independently of both the local time position of the station at the onset of the storm and the intensity of the storm. An additional uplift is observed in the post sunset sector. The duration of the uplift and the height increase are dependent of the intensity of the geomagnetic storm, the season and the local time position of the station at the onset of the storm. An empirical model has been developed to predict the electron <span class="hlt">density</span> peak height disturbances in response to solar <span class="hlt">wind</span> conditions and local time which can be used for nowcasting and forecasting the hmF2 disturbances for the middle latitude ionosphere. This being an important output for EURIPOS project operational purposes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JPhCS.555a2035F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JPhCS.555a2035F"><span>Operating <span class="hlt">wind</span> turbines in strong <span class="hlt">wind</span> conditions by using feedforward-feedback control</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Feng, Ju; Sheng, Wen Zhong</p> <p>2014-12-01</p> <p>Due to the increasing penetration of <span class="hlt">wind</span> energy into power systems, it becomes critical to reduce the impact of <span class="hlt">wind</span> energy on the stability and reliability of the overall power system. In precedent works, Shen and his co-workers developed a re-designed operation schema to run <span class="hlt">wind</span> turbines in strong <span class="hlt">wind</span> conditions based on optimization method and standard PI feedback control, which can prevent the typical shutdowns of <span class="hlt">wind</span> turbines when reaching the cut-out <span class="hlt">wind</span> speed. In this paper, a new control strategy combing the standard PI feedback control with feedforward controls using the optimization results is investigated for the operation of <span class="hlt">variable</span>-speed pitch-regulated <span class="hlt">wind</span> turbines in strong <span class="hlt">wind</span> conditions. It is shown that the developed control strategy is capable of smoothening the power output of <span class="hlt">wind</span> turbine and avoiding its sudden showdown at high <span class="hlt">wind</span> speeds without worsening the loads on rotor and blades.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003PhDT.......157W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003PhDT.......157W"><span>Maximum <span class="hlt">wind</span> energy extraction strategies using power electronic converters</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Quincy Qing</p> <p>2003-10-01</p> <p>This thesis focuses on maximum <span class="hlt">wind</span> energy extraction strategies for achieving the highest energy output of <span class="hlt">variable</span> speed <span class="hlt">wind</span> turbine power generation systems. Power electronic converters and controls provide the basic platform to accomplish the research of this thesis in both hardware and software aspects. In order to send <span class="hlt">wind</span> energy to a utility grid, a <span class="hlt">variable</span> speed <span class="hlt">wind</span> turbine requires a power electronic converter to convert a <span class="hlt">variable</span> voltage <span class="hlt">variable</span> frequency source into a fixed voltage fixed frequency supply. Generic single-phase and three-phase converter topologies, converter control methods for <span class="hlt">wind</span> power generation, as well as the developed direct drive generator, are introduced in the thesis for establishing <span class="hlt">variable</span>-speed <span class="hlt">wind</span> energy conversion systems. <span class="hlt">Variable</span> speed <span class="hlt">wind</span> power generation system modeling and simulation are essential methods both for understanding the system behavior and for developing advanced system control strategies. <span class="hlt">Wind</span> generation system components, including <span class="hlt">wind</span> turbine, 1-phase IGBT inverter, 3-phase IGBT inverter, synchronous generator, and rectifier, are modeled in this thesis using MATLAB/SIMULINK. The simulation results have been verified by a commercial simulation software package, PSIM, and confirmed by field test results. Since the dynamic time constants for these individual models are much different, a creative approach has also been developed in this thesis to combine these models for entire <span class="hlt">wind</span> power generation system simulation. An advanced maximum <span class="hlt">wind</span> energy extraction strategy relies not only on proper system hardware design, but also on sophisticated software control algorithms. Based on literature review and computer simulation on <span class="hlt">wind</span> turbine control algorithms, an intelligent maximum <span class="hlt">wind</span> energy extraction control algorithm is proposed in this thesis. This algorithm has a unique on-line adaptation and optimization capability, which is able to achieve maximum <span class="hlt">wind</span> energy conversion efficiency through</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010BoLMe.136..489B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010BoLMe.136..489B"><span>In-Street <span class="hlt">Wind</span> Direction <span class="hlt">Variability</span> in the Vicinity of a Busy Intersection in Central London</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Balogun, Ahmed A.; Tomlin, Alison S.; Wood, Curtis R.; Barlow, Janet F.; Belcher, Stephen E.; Smalley, Robert J.; Lingard, Justin J. N.; Arnold, Sam J.; Dobre, Adrian; Robins, Alan G.; Martin, Damien; Shallcross, Dudley E.</p> <p>2010-09-01</p> <p>We present results from fast-response <span class="hlt">wind</span> measurements within and above a busy intersection between two street canyons (Marylebone Road and Gloucester Place) in Westminster, London taken as part of the DAPPLE (Dispersion of Air Pollution and Penetration into the Local Environment; <ExternalRef> <RefSource>www.dapple.org.uk</RefSource> <RefTarget Address="http://www.dapple.org.uk" TargetType="URL"/> </ExternalRef> ) 2007 field campaign. The data reported here were collected using ultrasonic anemometers on the roof-top of a building adjacent to the intersection and at two heights on a pair of lamp-posts on opposite sides of the intersection. Site characteristics, data analysis and the variation of intersection flow with the above-roof <span class="hlt">wind</span> direction ( θ ref ) are discussed. Evidence of both flow channelling and recirculation was identified within the canyon, only a few metres from the intersection for along-street and across-street roof-top <span class="hlt">winds</span> respectively. Results also indicate that for oblique roof-top flows, the intersection flow is a complex combination of bifurcated channelled flows, recirculation and corner vortices. Asymmetries in local building geometry around the intersection and small changes in the background <span class="hlt">wind</span> direction (changes in 15- min mean θ ref of 5°-10°) were also observed to have profound influences on the behaviour of intersection flow patterns. Consequently, short time-scale <span class="hlt">variability</span> in the background flow direction can lead to highly scattered in-street mean flow angles masking the true multi-modal features of the flow and thus further complicating modelling challenges.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930067658&hterms=lazarus&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D40%26Ntt%3Dlazarus','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930067658&hterms=lazarus&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D40%26Ntt%3Dlazarus"><span>Large-scale <span class="hlt">density</span> structures in the outer heliosphere</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Belcher, J. W.; Lazarus, A. J.; Mcnutt, R. L., Jr.; Gordon, G. S., Jr.</p> <p>1993-01-01</p> <p>The Plasma Science experiment on the Voyager 2 spacecraft has measured the solar <span class="hlt">wind</span> <span class="hlt">density</span> from 1 to 38 AU. Over this distance, the solar <span class="hlt">wind</span> <span class="hlt">density</span> decreases as the inverse square of the heliocentric distance. However, there are large variations in this <span class="hlt">density</span> at a given radius. Such changes in <span class="hlt">density</span> are the dominant cause of changes in the solar <span class="hlt">wind</span> ram pressure in the outer heliosphere and can cause large perturbations in the location of the termination shock of the solar <span class="hlt">wind</span>. Following a simple model suggested by Suess, we study the non-equilibrium, dynamic location of the termination shock as it responds to these pressure changes. The results of this study suggest that the termination shock is rarely if ever at its equilibrium distance and may depart from that distance by as much as 50 AU at times.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28636081','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28636081"><span>Cell size and wall dimensions drive distinct <span class="hlt">variability</span> of earlywood and latewood <span class="hlt">density</span> in Northern Hemisphere conifers.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Björklund, Jesper; Seftigen, Kristina; Schweingruber, Fritz; Fonti, Patrick; von Arx, Georg; Bryukhanova, Marina V; Cuny, Henri E; Carrer, Marco; Castagneri, Daniele; Frank, David C</p> <p>2017-11-01</p> <p>Interannual <span class="hlt">variability</span> of wood <span class="hlt">density</span> - an important plant functional trait and environmental proxy - in conifers is poorly understood. We therefore explored the anatomical basis of <span class="hlt">density</span>. We hypothesized that earlywood <span class="hlt">density</span> is determined by tracheid size and latewood <span class="hlt">density</span> by wall dimensions, reflecting their different functional tasks. To determine general patterns of <span class="hlt">variability</span>, <span class="hlt">density</span> parameters from 27 species and 349 sites across the Northern Hemisphere were correlated to tree-ring width parameters and local climate. We performed the same analyses with <span class="hlt">density</span> and width derived from anatomical data comprising two species and eight sites. The contributions of tracheid size and wall dimensions to <span class="hlt">density</span> were disentangled with sensitivity analyses. Notably, correlations between <span class="hlt">density</span> and width shifted from negative to positive moving from earlywood to latewood. Temperature responses of <span class="hlt">density</span> varied intraseasonally in strength and sign. The sensitivity analyses revealed tracheid size as the main determinant of earlywood <span class="hlt">density</span>, while wall dimensions become more influential for latewood <span class="hlt">density</span>. Our novel approach of integrating detailed anatomical data with large-scale tree-ring data allowed us to contribute to an improved understanding of interannual variations of conifer growth and to illustrate how conifers balance investments in the competing xylem functions of hydraulics and mechanical support. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26303957','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26303957"><span>Adaptive sliding mode back-stepping pitch angle control of a <span class="hlt">variable</span>-displacement pump controlled pitch system for <span class="hlt">wind</span> turbines.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yin, Xiu-xing; Lin, Yong-gang; Li, Wei; Liu, Hong-wei; Gu, Ya-jing</p> <p>2015-09-01</p> <p>A <span class="hlt">variable</span>-displacement pump controlled pitch system is proposed to mitigate generator power and flap-wise load fluctuations for <span class="hlt">wind</span> turbines. The pitch system mainly consists of a <span class="hlt">variable</span>-displacement hydraulic pump, a fixed-displacement hydraulic motor and a gear set. The hydraulic motor can be accurately regulated by controlling the pump displacement and fluid flows to change the pitch angle through the gear set. The detailed mathematical representation and dynamic characteristics of the proposed pitch system are thoroughly analyzed. An adaptive sliding mode pump displacement controller and a back-stepping stroke piston controller are designed for the proposed pitch system such that the resulting pitch angle tracks its desired value regardless of external disturbances and uncertainties. The effectiveness and control efficiency of the proposed pitch system and controllers have been verified by using realistic dataset of a 750 kW research <span class="hlt">wind</span> turbine. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20180002896&hterms=Agreement&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DAgreement','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20180002896&hterms=Agreement&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DAgreement"><span>Magnetized Disk <span class="hlt">Winds</span> in NGC 3783</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Tombesi, Francesco; Contopoulos, Ioannis</p> <p>2018-01-01</p> <p>We analyze a 900 kilosecond stacked Chandra/HETG (High-Energy Transmission Grating) spectrum of NGC 3783 in the context of magnetically driven accretion-disk <span class="hlt">wind</span> models in an effort to provide tight constraints on the global conditions of the underlying absorbers. Motivated by the earlier measurements of its absorption measure distribution (AMD) indicating X-ray-absorbing ionic columns that decrease slowly with decreasing ionization parameter, we employ 2-dimension (2-D) magnetohydrodynamic (MHD) disk <span class="hlt">wind</span> models to describe the global outflow. We compute its photoionization structure along with the <span class="hlt">wind</span> kinematic properties, allowing us to further calculate in a self-consistent fashion the shapes of the major X-ray absorption lines. With the <span class="hlt">wind</span> radial <span class="hlt">density</span> profile determined by the AMD, the profiles of the ensemble of the observed absorption features are determined by the two global parameters of the MHD <span class="hlt">wind</span>; i.e., disk inclination theta (sub obs) and <span class="hlt">wind</span> <span class="hlt">density</span> normalization n (sub o). Considering the most significant absorption features in the approximately 1.8-20 angstrom range, we show that the MHD <span class="hlt">wind</span> is best described by n(r) approximately equal to 6.9 times 10 (sup 11) (r/r (sub o)) (sup - 1.15) cubic centimeters and theta (sub obs). We argue that <span class="hlt">winds</span> launched by X-ray heating or radiation pressure, or even MHD <span class="hlt">winds</span> but with steeper radial <span class="hlt">density</span> profiles, are strongly disfavored by data. Considering the properties of Fe K-band absorption features (i.e., Fe XXV and Fe XXVI), while typically prominent in the active galactic nucleus X-ray spectra, they appear to be weak in NGC 3783. For the specific parameters of our model obtained by fitting the AMD and the rest of the absorption features, these features are found to be weak, in agreement with observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...853...40F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...853...40F"><span>Magnetized Disk <span class="hlt">Winds</span> in NGC 3783</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Tombesi, Francesco; Contopoulos, Ioannis</p> <p>2018-01-01</p> <p>We analyze a 900 ks stacked Chandra/HETG spectrum of NGC 3783 in the context of magnetically driven accretion-disk <span class="hlt">wind</span> models in an effort to provide tight constraints on the global conditions of the underlying absorbers. Motivated by the earlier measurements of its absorption measure distribution (AMD) indicating X-ray-absorbing ionic columns that decrease slowly with decreasing ionization parameter, we employ 2D magnetohydrodynamic (MHD) disk <span class="hlt">wind</span> models to describe the global outflow. We compute its photoionization structure along with the <span class="hlt">wind</span> kinematic properties, allowing us to further calculate in a self-consistent fashion the shapes of the major X-ray absorption lines. With the <span class="hlt">wind</span> radial <span class="hlt">density</span> profile determined by the AMD, the profiles of the ensemble of the observed absorption features are determined by the two global parameters of the MHD <span class="hlt">wind</span>; i.e., disk inclination {θ }{obs} and <span class="hlt">wind</span> <span class="hlt">density</span> normalization n o . Considering the most significant absorption features in the ∼1.8–20 Å range, we show that the MHD <span class="hlt">wind</span> is best described by n{(r)∼ 6.9× {10}11(r/{r}o)}-1.15 cm‑3 and {θ }{obs}=44^\\circ . We argue that <span class="hlt">winds</span> launched by X-ray heating or radiation pressure, or even MHD <span class="hlt">winds</span> but with steeper radial <span class="hlt">density</span> profiles, are strongly disfavored by data. Considering the properties of Fe K-band absorption features (i.e., Fe XXV and Fe XXVI), while typically prominent in the active galactic nucleus X-ray spectra, they appear to be weak in NGC 3783. For the specific parameters of our model obtained by fitting the AMD and the rest of the absorption features, these features are found to be weak, in agreement with observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940015170','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940015170"><span>High temperature co-axial <span class="hlt">winding</span> transformers</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Divan, Deepakraj M.; Novotny, Donald W.</p> <p>1993-01-01</p> <p>The analysis and design of co-axial <span class="hlt">winding</span> transformers is presented. The design equations are derived and the different design approaches are discussed. One of the most important features of co-axial <span class="hlt">winding</span> transformers is the fact that the leakage inductance is well controlled and can be made low. This is not the case in conventional <span class="hlt">winding</span> transformers. In addition, the power <span class="hlt">density</span> of co-axial <span class="hlt">winding</span> transformers is higher than conventional ones. Hence, using co-axial <span class="hlt">winding</span> transformers in a certain converter topology improves the power <span class="hlt">density</span> of the converter. The design methodology used in meeting the proposed specifications of the co-axial <span class="hlt">winding</span> transformer specifications are presented and discussed. The final transformer design was constructed in the lab. Co-axial <span class="hlt">winding</span> transformers proved to be a good choice for high power <span class="hlt">density</span> and high frequency applications. They have a more predictable performance compared with conventional transformers. In addition, the leakage inductance of the transformer can be controlled easily to suit a specific application. For space applications, one major concern is the extraction of heat from power apparatus to prevent excessive heating and hence damaging of these units. Because of the vacuum environment, the only way to extract heat is by using a cold plate. One advantage of co-axial <span class="hlt">winding</span> transformers is that the surface area available to extract heat from is very large compared to conventional transformers. This stems from the unique structure of the co-axial transformer where the whole core surface area is exposed and can be utilized for cooling effectively. This is a crucial issue here since most of the losses are core losses.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO12D..08T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO12D..08T"><span>Thermodynamic neutral <span class="hlt">density</span>: A new physically-based, energy-constrained, materially conserved neutral <span class="hlt">density</span> <span class="hlt">variable</span> for quantifying mixing and tracking water masses in the ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tailleux, R.</p> <p>2016-02-01</p> <p>A new materially-conserved quasi-neutral <span class="hlt">density</span> <span class="hlt">variable</span> has been constructed, called thermodynamic neutral <span class="hlt">density</span>. It is composed of two parts. The first part is the Lorenz reference <span class="hlt">density</span> entering Lorenz theory of available potential energy, which can be interpreted as the potential <span class="hlt">density</span> of a fluid parcel referenced to the pressure it would have in Lorenz reference state of minimum potential energy. The second part is an empirical correction for pressure, which can be suitably chosen to make thermodynamic neutral <span class="hlt">density</span> a very good approximation of Jackett and McDougall (1997) neutral <span class="hlt">density</span> over most of the ocean water masses for which the latter is defined. Thermodynamic neutral <span class="hlt">density</span> possesses many advantages over the empirically constructed Jackett and McDougall (1997) neutral <span class="hlt">density</span>: 1) it is physically-based; 2) it is easily computed using fast and efficient methods for arbitrary states of the ocean, not just the present state, using the recently developed methodology by Saenz et al. (2015); 3) it is exactly neutral in a state of rest, and approximately neutral in the present ocean; 4) it is exactly materially conserved (it is a function of salinity and potential temperature only) and not plagued by unphysical nonmaterial effects, so can be used unambiguously to define and diagnose diapycnal and isopycnal mixing; 5) it is based on available potential energy, and therefore is the most suitable <span class="hlt">variable</span> to discuss the energy cost of adiabatic stirring; 6) it is the <span class="hlt">variable</span> that should be used to define the isopycnal and diapycnal directions in rotated diffusion tensor, as it can be shown that using the directions defined by the local neutral tangent plane as currently done causes spurious destruction of water masses. References: J. A. Saenz, R. Tailleux, E.D. Butler, G.O. Hughes, and K.I.C. Oliver, 2015: Estimating Lorenz's reference state in an ocean with a nonlinear equation of state for seawater. J. Phys. Oceanogr., 45, 1242—1257</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130001760','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130001760"><span><span class="hlt">Wind</span>-Tunnel and Flight Test Results for the Measurements of Flow <span class="hlt">Variables</span> at Supersonic Speeds Using Improved Wedge and Conical Probes</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bobbitt, Percy J.; Maglieri, Domenic J.; Banks, Daniel W.; Frederick, Michael A.; Fuchs, Aaron W.</p> <p>2012-01-01</p> <p>The results of supersonic <span class="hlt">wind</span>-tunnel tests on three probes at nominal Mach numbers of 1.6, 1.8 and 2.0 and flight tests on two of these probes up to a Mach number of 1.9 are described. One probe is an 8 deg. half-angle wedge with two total-pressure measurements and one static. The second, a conical probe, is a cylinder that has a 15 deg., semi-angle cone tip with one total-pressure orifice at the apex and four static-pressure orifices on the surface of the cone, 90 deg. apart, and about two-thirds of the distance from the cone apex to the base of the cone. The third is a 2 deg. semi-angle cone that has two static ports located 180 deg. apart about 1.5 inches behind the apex of the cone. The latter probe was included since it has been the "probe of choice" for <span class="hlt">wind</span>-tunnel flow-field pressure measurements (or one similar to it) for the past half-century. The wedge and 15 deg. conical probes used in these tests were designed for flight diagnostic measurements for flight Mach numbers down to 1.35 and 1.15 respectively, and have improved capabilities over earlier probes of similar shape. The 15. conical probe also has a temperature sensor that is located inside the cylindrical part of the probe that is exposed to free-stream flow through an annulus at the apex of the cone. It enables the determination of free-stream temperature, <span class="hlt">density</span>, speed of sound, and velocity, in addition to free-stream pressure, Mach number, angle of attack and angle of sideslip. With the time-varying velocity, acceleration can be calculated. <span class="hlt">Wind</span>-tunnel tests of the two probes were made in NASA Langley Research Center fs Unitary Plan <span class="hlt">Wind</span> Tunnel (UPWT) at Mach numbers of 1.6, 1.8, and 2.0. Flight tests were carried out at the NASA Dryden Flight Research Center (DFRC) on its F-15B aircraft up to Mach numbers of 1.9. The probes were attached to a fixture, referred to as the Centerline Instrumented Pylon (CLIP), under the fuselage of the aircraft. Problems controlling the velocity of the flow</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AeoRe..10...43Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AeoRe..10...43Z"><span>Soil property effects on <span class="hlt">wind</span> erosion of organic soils</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zobeck, Ted M.; Baddock, Matthew; Scott Van Pelt, R.; Tatarko, John; Acosta-Martinez, Veronica</p> <p>2013-09-01</p> <p>Histosols (also known as organic soils, mucks, or peats) are soils that are dominated by organic matter (OM > 20%) in half or more of the upper 80 cm. Forty two states have a total of 21 million ha of Histosols in the United States. These soils, when intensively cropped, are subject to <span class="hlt">wind</span> erosion resulting in loss of crop productivity and degradation of soil, air, and water quality. Estimating <span class="hlt">wind</span> erosion on Histosols has been determined by USDA-Natural Resources Conservation Service (NRCS) as a critical need for the <span class="hlt">Wind</span> Erosion Prediction System (WEPS) model. WEPS has been developed to simulate <span class="hlt">wind</span> erosion on agricultural land in the US, including soils with organic soil material surfaces. However, additional field measurements are needed to understand how soil properties vary among organic soils and to calibrate and validate estimates of <span class="hlt">wind</span> erosion of organic soils using WEPS. Soil properties and sediment flux were measured in six soils with high organic contents located in Michigan and Florida, USA. Soil properties observed included organic matter content, particle <span class="hlt">density</span>, dry mechanical stability, dry clod stability, <span class="hlt">wind</span> erodible material, and geometric mean diameter of the surface aggregate distribution. A field portable <span class="hlt">wind</span> tunnel was used to generate suspended sediment and dust from agricultural surfaces for soils ranging from 17% to 67% organic matter. The soils were tilled and rolled to provide a consolidated, friable surface. Dust emissions and saltation were measured using an isokinetic vertical slot sampler aspirated by a regulated suction source. Suspended dust was sampled using a Grimm optical particle size analyzer. Particle <span class="hlt">density</span> of the saltation-sized material (>106 μm) was inversely related to OM content and varied from 2.41 g cm-3 for the soil with the lowest OM content to 1.61 g cm-3 for the soil with highest OM content. <span class="hlt">Wind</span> erodible material and the geometric mean diameter of the surface soil were inversely related to dry clod</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960021320&hterms=imprint&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dimprint','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960021320&hterms=imprint&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dimprint"><span>Evidence of active region imprints on the solar <span class="hlt">wind</span> structure</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hick, P.; Jackson, B. V.</p> <p>1995-01-01</p> <p>A common descriptive framework for discussing the solar <span class="hlt">wind</span> structure in the inner heliosphere uses the global magnetic field as a reference: low <span class="hlt">density</span>, high velocity solar <span class="hlt">wind</span> emanates from open magnetic fields, with high <span class="hlt">density</span>, low speed solar <span class="hlt">wind</span> flowing outward near the current sheet. In this picture, active regions, underlying closed magnetic field structures in the streamer belt, leave little or no imprint on the solar <span class="hlt">wind</span>. We present evidence from interplanetary scintillation measurements of the 'disturbance factor' g that active regions play a role in modulating the solar <span class="hlt">wind</span> and possibly contribute to the solar <span class="hlt">wind</span> mass output. Hence we find that the traditional view of the solar <span class="hlt">wind</span>, though useful in understanding many features of solar <span class="hlt">wind</span> structure, is oversimplified and possibly neglects important aspects of solar <span class="hlt">wind</span> dynamics</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25243018','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25243018"><span>A wood <span class="hlt">density</span> and aboveground biomass <span class="hlt">variability</span> assessment using pre-felling inventory data in Costa Rica.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Svob, Sienna; Arroyo-Mora, J Pablo; Kalacska, Margaret</p> <p>2014-12-01</p> <p>The high spatio-temporal <span class="hlt">variability</span> of aboveground biomass (AGB) in tropical forests is a large source of uncertainty in forest carbon stock estimation. Due to their spatial distribution and sampling intensity, pre-felling inventories are a potential source of ground level data that could help reduce this uncertainty at larger spatial scales. Further, exploring the factors known to influence tropical forest biomass, such as wood <span class="hlt">density</span> and large tree <span class="hlt">density</span>, will improve our knowledge of biomass distribution across tropical regions. Here, we evaluate (1) the <span class="hlt">variability</span> of wood <span class="hlt">density</span> and (2) the <span class="hlt">variability</span> of AGB across five ecosystems of Costa Rica. Using forest management (pre-felling) inventories we found that, of the regions studied, Huetar Norte had the highest mean wood <span class="hlt">density</span> of trees with a diameter at breast height (DBH) greater than or equal to 30 cm, 0.623 ± 0.182 g cm -3 (mean ± standard deviation). Although the greatest wood <span class="hlt">density</span> was observed in Huetar Norte, the highest mean estimated AGB (EAGB) of trees with a DBH greater than or equal to 30 cm was observed in Osa peninsula (173.47 ± 60.23 Mg ha -1 ). The <span class="hlt">density</span> of large trees explained approximately 50% of EAGB <span class="hlt">variability</span> across the five ecosystems studied. Comparing our study's EAGB to published estimates reveals that, in the regions of Costa Rica where AGB has been previously sampled, our forest management data produced similar values. This study presents the most spatially rich analysis of ground level AGB data in Costa Rica to date. Using forest management data, we found that EAGB within and among five Costa Rican ecosystems is highly <span class="hlt">variable</span>. Combining commercial logging inventories with ecological plots will provide a more representative ground level dataset for the calibration of the models and remotely sensed data used to EAGB at regional and national scales. Additionally, because the non-protected areas of the tropics offer the greatest opportunity to reduce</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9787E..1CD','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9787E..1CD"><span>Inter-observer <span class="hlt">variability</span> within BI-RADS and RANZCR mammographic <span class="hlt">density</span> assessment schemes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Damases, Christine N.; Mello-Thoms, Claudia; McEntee, Mark F.</p> <p>2016-03-01</p> <p>This study compares <span class="hlt">variability</span> associated with two visual mammographic <span class="hlt">density</span> (MD) assessment methods using two separate samples of radiologists. The image test-set comprised of images obtained from 20 women (age 42-89 years). The images were assessed for their MD by twenty American Board of Radiology (ABR) examiners and twenty-six radiologists registered with the Royal Australian and New Zealand College of Radiologists (RANZCR). Images were assessed using the same technology and conditions, however the ABR radiologists used the BI-RADS and the RANZCR radiologists used the RANZCR breast <span class="hlt">density</span> synoptic. Both scales use a 4-point assessment. The images were then grouped as low- and high-<span class="hlt">density</span>; low including BIRADS 1 and 2 or RANZCR 1 and 2 and high including BI-RADS 3 and 4 or RANZCR 3 and 4. Four-point BI-RADS and RANZCR showed no or negligible correlation (ρ=-0.029 p<0.859). The average inter-observer agreement on the BI-RADS scale had a Kappa of 0.565; [95% CI = 0.519 - 0.610], and ranged between 0.328-0.669 while the inter-observer agreement using the RANZCR scale had a Kappa of 0.360; [95% CI = 0.308 - 0.412] and a range of 0.078-0.499. Our findings show a wider range of inter-observer <span class="hlt">variability</span> among RANZCR registered radiologists than the ABR examiners.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996hst..prop.6690M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996hst..prop.6690M"><span>The <span class="hlt">Winds</span> of Main Sequence B Stars in NGC 6231, Evidence for Shocks in Weak <span class="hlt">Winds</span>.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Massa, Derck</p> <p>1996-07-01</p> <p>Because the main sequence B stars in NGC 6231 have abnormallystrong C iv <span class="hlt">wind</span> lines, they are the only main sequence Bstars with distinct edge velocities. Although the underlyingcause for the strong lines remains unknown, these stars doprovide an opportunity to test two important ideas concerningB star <span class="hlt">winds</span>: 1) that the driving ions in the <span class="hlt">winds</span> of starswith low mass loss rates decouple from the general flow, and;2) that shocks deep in the <span class="hlt">winds</span> of main sequence B stars areresponsible for their observed X-rays. In both of thesemodels, the <span class="hlt">wind</span> accelerates toward a terminal velocity,v_infty, far greater than the observed value, shocking ordecoupling well before it can attain the high v_infty. As aresult, the observable <span class="hlt">wind</span> accelerates very rapidly, leadingto <span class="hlt">wind</span> flushing times less than 30 minutes. If theseconjectures are correct, then the <span class="hlt">winds</span> of main sequence Bstars should be highly <span class="hlt">variable</span> on time scales of minutes.Model fitting of available IUE data are consistant with thegeneral notion of a rapidly accelerating <span class="hlt">wind</span>, shocking wellbefore its actual v_infty. However, these are 5 hourexposures, so the fits are to ill-defined mean <span class="hlt">wind</span> flows.The new GHRS observations will provide adequate spectral andtemporal resolution to observe the expected <span class="hlt">variability</span> and,thereby, verify the existance of two important astrophysicalprocesses.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040082159','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040082159"><span>Large Scale <span class="hlt">Variability</span> of Phytoplankton Blooms in the Arctic and Peripheral Seas: Relationships with Sea Ice, Temperature, Clouds, and <span class="hlt">Wind</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Josefino C.; Cota, Glenn F.</p> <p>2004-01-01</p> <p>Spatially detailed satellite data of mean color, sea ice concentration, surface temperature, clouds, and <span class="hlt">wind</span> have been analyzed to quantify and study the large scale regional and temporal <span class="hlt">variability</span> of phytoplankton blooms in the Arctic and peripheral seas from 1998 to 2002. In the Arctic basin, phytoplankton chlorophyll displays a large symmetry with the Eastern Arctic having about fivefold higher concentrations than those of the Western Arctic. Large monthly and yearly <span class="hlt">variability</span> is also observed in the peripheral seas with the largest blooms occurring in the Bering Sea, Sea of Okhotsk, and the Barents Sea during spring. There is large interannual and seasonal <span class="hlt">variability</span> in biomass with average chlorophyll concentrations in 2002 and 2001 being higher than earlier years in spring and summer. The seasonality in the latitudinal distribution of blooms is also very different such that the North Atlantic is usually most expansive in spring while the North Pacific is more extensive in autumn. Environmental factors that influence phytoplankton growth were examined, and results show relatively high negative correlation with sea ice retreat and strong positive correlation with temperature in early spring. Plankton growth, as indicated by biomass accumulation, in the Arctic and subarctic increases up to a threshold surface temperature of about 276-277 degree K (3-4 degree C) beyond which the concentrations start to decrease suggesting an optimal temperature or nutrient depletion. The correlation with clouds is significant in some areas but negligible in other areas, while the correlations with <span class="hlt">wind</span> speed and its components are generally weak. The effects of clouds and <span class="hlt">winds</span> are less predictable with weekly climatologies because of unknown effects of averaging <span class="hlt">variable</span> and intermittent physical forcing (e.g. over storm event scales with mixing and upwelling of nutrients) and the time scales of acclimation by the phytoplankton.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120002019','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120002019"><span>Changes in the High-Latitude Topside Ionospheric Vertical Electron-<span class="hlt">Density</span> Profiles in Response to Solar-<span class="hlt">Wind</span> Perturbations During Large Magnetic Storms</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir; Truhlik, Vladimir; Wang, Yongli; Arbacher, Becca</p> <p>2011-01-01</p> <p>The latest results from an investigation to establish links between solar-<span class="hlt">wind</span> and topside-ionospheric parameters will be presented including a case where high-latitude topside electron-<span class="hlt">density</span> Ne(h) profiles indicated dramatic rapid changes in the scale height during the main phase of a large magnetic storm (Dst < -200 nT). These scale-height changes suggest a large heat input to the topside ionosphere at this time. The topside profiles were derived from ISIS-1 digital ionograms obtained from the NASA Space Physics Data Facility (SPDF) Coordinated Data Analysis Web (CDA Web). Solar-<span class="hlt">wind</span> data obtained from the NASA OMNIWeb database indicated that the magnetic storm was due to a magnetic cloud. This event is one of several large magnetic storms being investigated during the interval from 1965 to 1984 when both solar-<span class="hlt">wind</span> and digital topside ionograms, from either Alouette-2, ISIS-1, or ISIS-2, are potentially available.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1343609','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1343609"><span>Improved Estimates of Moments and <span class="hlt">Winds</span> from Radar <span class="hlt">Wind</span> Profiler</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Helmus, Jonathan; Ghate, Virendra P.</p> <p>2017-01-02</p> <p>The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) operates nine radar <span class="hlt">wind</span> profilers (RWP) across its sites. These RWPs operate at 915 MHz or 1290 MHz frequency and report the first three moments of the Doppler spectrum. The operational settings of the RWP were modified in summer, 2015 to have single pulse length setting for the <span class="hlt">wind</span> mode and two pulse length settings for the precipitation mode. The moments data collected during the <span class="hlt">wind</span> mode are used to retrieve horizontal <span class="hlt">winds</span>. The vendor-reported <span class="hlt">winds</span> are available at <span class="hlt">variable</span> time resolution (10 mins, 60 mins,more » etc.) and contain a significant amount of contamination due to noise and clutter. In this data product we have recalculated the moments and the <span class="hlt">winds</span> from the raw radar Doppler spectrum and have made efforts to mitigate the contamination due to instrument noise in the <span class="hlt">wind</span> estimates. Additionally, the moments and <span class="hlt">wind</span> data has been reported in a harmonized layout identical for all locations and sites.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT.......111F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT.......111F"><span>Flexible reserve markets for <span class="hlt">wind</span> integration</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fernandez, Alisha R.</p> <p></p> <p> effects of PJM's decision to act as a single balancing authority, which means that it procures ancillary services across its entire footprint simultaneously. This can be contrasted to Midwest Independent System Operator (MISO), which has several balancing authorities operating under its footprint. • Chapter 4 uses probabilistic methods to estimate the uncertainty in the forecast errors and the quantity of energy needed to balance these forecast errors at a certain percentile. Current practice is to use a point forecast that describes the conditional expectation of the dependent <span class="hlt">variable</span> at each time step. The approach here uses quantile regression to describe the relationship between independent <span class="hlt">variable</span> and the conditional quantiles (equivalently the percentiles) of the dependent <span class="hlt">variable</span>. An estimate of the conditional <span class="hlt">density</span> is performed, which contains information about the covariate relationship of the sign of the forecast errors (negative for too much <span class="hlt">wind</span> generation and positive for too little <span class="hlt">wind</span> generation) and the <span class="hlt">wind</span> power forecast. This additional knowledge may be implemented in the decision process to more accurately schedule day-ahead <span class="hlt">wind</span> generation bids and provide an example for using separate markets for balancing an oversupply and undersupply of generation. Such methods are currently used for coordinating large footprints of <span class="hlt">wind</span> generation in Europe.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70003787','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70003787"><span>Relationships between ecosystem metabolism, benthic macroinvertebrate <span class="hlt">densities</span>, and environmental <span class="hlt">variables</span> in a sub-arctic Alaskan river</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Benson, Emily R.; Wipfli, Mark S.; Clapcott, Joanne E.; Hughes, Nicholas F.</p> <p>2013-01-01</p> <p>Relationships between environmental <span class="hlt">variables</span>, ecosystem metabolism, and benthos are not well understood in sub-arctic ecosystems. The goal of this study was to investigate environmental drivers of river ecosystem metabolism and macroinvertebrate <span class="hlt">density</span> in a sub-arctic river. We estimated primary production and respiration rates, sampled benthic macroinvertebrates, and monitored light intensity, discharge rate, and nutrient concentrations in the Chena River, interior Alaska, over two summers. We employed Random Forests models to identify predictor <span class="hlt">variables</span> for metabolism rates and benthic macroinvertebrate <span class="hlt">density</span> and biomass, and calculated Spearman correlations between in-stream nutrient levels and metabolism rates. Models indicated that discharge and length of time between high water events were the most important factors measured for predicting metabolism rates. Discharge was the most important <span class="hlt">variable</span> for predicting benthic macroinvertebrate <span class="hlt">density</span> and biomass. Primary production rate peaked at intermediate discharge, respiration rate was lowest at the greatest time since last high water event, and benthic macroinvertebrate <span class="hlt">density</span> was lowest at high discharge rates. The ratio of dissolved inorganic nitrogen to soluble reactive phosphorus ranged from 27:1 to 172:1. We found that discharge plays a key role in regulating stream ecosystem metabolism, but that low phosphorous levels also likely limit primary production in this sub-arctic stream.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC33A1263C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC33A1263C"><span>The <span class="hlt">Variability</span> and Intermittency of <span class="hlt">Wind</span> and Solar Power Can Be Overcome Without Storage By Using the National Energy With Weather System (NEWS) Simulator To Design A National US Electric (and Energy) Sector</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clack, C.; MacDonald, A. E.; Wilczak, J. M.; Alexander, A.; Dunbar, A. D.; Xie, Y.; Picciano, P.; Paine, J.; Terry, L.; Marquis, M.</p> <p>2015-12-01</p> <p>The importance of weather-driven renewable energies for the United States energy portfolio is growing. The main perceived problems with weather-driven renewable energies are their intermittent nature, low power <span class="hlt">density</span>, and high costs. The Cooperative Institute for the Research in Environmental Sciences at the University of Colorado collaborated with the Earth Systems Research Laboratory of the National Oceanic and Atmospheric Administration to construct a mathematical optimization of a reduced form of the US electric sector. Care was taken to retain salient features of the electric sector, while allowing for detailed weather and power data to be incorporated for <span class="hlt">wind</span> and solar energies. The National Energy with Weather System (NEWS) simulator was created. With the NEWS simulator tests can be performed that are unique and insightful. The simulator can maintain the status quo and build out a system following costs or imposed targets for carbon dioxide emission reductions. It can find the least cost electric sector for each state, or find a national power system that incorporates vast amounts of <span class="hlt">variable</span> generation. In the current presentation, we will focus on one of the most unique aspects of the NEWS simulator; the ability to specify a specific amount of <span class="hlt">wind</span> and/or solar each hour for a three-year historical period for the least total cost. The simulator can find where to place <span class="hlt">wind</span> and solar to reduce <span class="hlt">variability</span> (ramping requirements for back-up generators). The amount of <span class="hlt">variable</span> generation each hour is very different to an RPS type standard because the generators need to work in concert for long periods of time. The results indicate that for very similar costs the amount of back-up generation (natural gas or storage) can be reduced significantly.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912941R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912941R"><span>How predictable are equatorial Atlantic surface <span class="hlt">winds</span>?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Richter, Ingo; Doi, Takeshi; Behera, Swadhin</p> <p>2017-04-01</p> <p>Sensitivity tests with the SINTEX-F general circulation model (GCM) as well as experiments from the Coupled Model Intercomparison Project phase 5 (CMIP5) are used to examine the extent to which sea-surface temperature (SST) anomalies contribute to the <span class="hlt">variability</span> and predictability of monthly mean surface <span class="hlt">winds</span> in the equatorial Atlantic. In the SINTEX-F experiments, a control experiment with prescribed observed SST for the period 1982-2014 is modified by inserting climatological values in certain regions, thereby eliminating SST anomalies. When SSTs are set to climatology in the tropical Atlantic only (30S to 30N), surface <span class="hlt">wind</span> <span class="hlt">variability</span> over the equatorial Atlantic (5S-5N) decreases by about 40% in April-May-June (AMJ). This suggests that about 60% of surface <span class="hlt">wind</span> <span class="hlt">variability</span> is due to either internal atmospheric <span class="hlt">variability</span> or SSTs anomalies outside the tropical Atlantic. A further experiment with climatological SSTs in the equatorial Pacific indicates that another 10% of <span class="hlt">variability</span> in AMJ may be due to remote influences from that basin. Experiments from the CMIP5 archive, in which climatological SSTs are prescribed globally, tend to confirm the results from SINTEX-F but show a wide spread. In some models, the equatorial Atlantic surface <span class="hlt">wind</span> <span class="hlt">variability</span> decreases by more than 90%, while in others it even increases. Overall, the results suggest that about 50-60% of surface <span class="hlt">wind</span> variance in AMJ is predictable, while the rest is due to internal atmospheric <span class="hlt">variability</span>. Other months show significantly lower predictability. The relatively strong internal <span class="hlt">variability</span> as well as the influence of remote SSTs suggest a limited role for coupled ocean-atmosphere feedbacks in equatorial Atlantic <span class="hlt">variability</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AAS...23125044R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AAS...23125044R"><span>Searching for <span class="hlt">Variability</span> of NV Intrinsic Narrow Absorption Line Systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rodruck, Michael; Charlton, Jane; Ganguly, Rajib</p> <p>2018-01-01</p> <p>The majority of quasar absorption line systems with NV detected are found within the associated region (within 5000 km/s of the quasar redshift) and many/most are believed to be related to the quasar accretion disk <span class="hlt">wind</span> or outflows. The most definite evidence that these NV absorbers are "intrinsic" is partial covering of the quasar continuum source and/or broad line region. Over 75 quasars containing NV narrow absorption lines have observations obtained at different times with the Keck/HIRES and the VLT/UVES spectrographs at high resolution. The interval between these observations range from months to a decade in the quasar rest frame. While <span class="hlt">variability</span> is common for intrinsic broad and mini-broad absorption lines, intrinsic narrow absorption lines have been found to be less likely to vary, though systematic studies with large, high quality datasets have been limited. The <span class="hlt">variability</span> timescales are useful for deriving gas <span class="hlt">densities</span> and thus the distances from the central engines. This is important in mapping the quasar surroundings, understanding the accretion disk <span class="hlt">wind</span> mechanism, and assessing the effect the <span class="hlt">wind</span> has on the galaxy surroundings. We report on the results of a systematic study of <span class="hlt">variability</span> of NV NALs, exploiting the overlap of targets for observations in the archives of Keck and VLT, and discuss the consequences for interpretation of the origin of intrinsic narrow absorption lines.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760024182','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760024182"><span>Transition heating rates obtained on a matted and isolated 0.006 scale model (41-OT) space shuttle orbiter and external tank in the NASA/LaRC <span class="hlt">variable</span> <span class="hlt">density</span> hypersonic tunnel (IH17)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cummings, J.</p> <p>1976-01-01</p> <p>Model information and data obtained from <span class="hlt">wind</span> tunnel tests performed on a 0.006 scale model of the Rockwell International space shuttle orbiter and external tank in the 18 inch <span class="hlt">Variable</span> <span class="hlt">Density</span> Hypersonic <span class="hlt">Wind</span> Tunnel (VDHT) at NASA Langley Research Center are presented. Tests were performed at a Mach number of 8.0 over a Reynolds Number range from 0.1 to 10.0 million per foot at 0 deg and -5 deg angle of attack and 0 deg sideslip angle. Transition heating rates were determined using thin skin thermocouples located at various locations on the orbiter and ET. The test was conducted in three stages: orbiter plus external tank (mated configuration); orbiter alone, and external tank alone. The effects of boundary layer trips were also included in the test sequence. The plotted results presented show the effect of configuration interference on the orbiter lower surface and on the ET. Tabulated data are given.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006PhDT........86K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006PhDT........86K"><span>A quantitative correlational investigation of the definition of key decision <span class="hlt">variables</span> used for the determination of <span class="hlt">wind</span> energy systems' feasibility</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kelly, Kathleen M.</p> <p></p> <p>Several factors are critical in determining if a <span class="hlt">wind</span> farm has a high probability of success. These factors include <span class="hlt">wind</span> energy potential or <span class="hlt">wind</span> class, sales price, cost of the <span class="hlt">wind</span> energy generated, market for selling the <span class="hlt">wind</span>, capacity factor or efficiency of the turbines, capital investment cost, debt and financing, and governmental factors such as taxes and incentives. This research studied the critical factors of thirty-three land based <span class="hlt">wind</span> farms in the United States with over 20 mega-watts (MW) of capacity that have become operational since 1999. The goal was to develop a simple yet effective decision model using the critical factors to predict an internal rate of return (IRR) and the impact of having a tax credit to supplement the revenue stream. The study found that there are five critical factors that are significantly correlated with the internal rate of return (IRR) of a <span class="hlt">wind</span> farm project. The critical factors are <span class="hlt">wind</span> potential or <span class="hlt">wind</span> class, cost of the <span class="hlt">wind</span> energy generated, capacity factor or efficiency of the <span class="hlt">wind</span> turbines, cost of capital investment, and the existence of a federal production tax credit (PTC). The decision model was built using actual <span class="hlt">wind</span> farm data and industry standards whereby a score from zero to one hundred was coded for each of values except for the production tax credit. Since all the projects qualified for the production tax credit prior to their start up, it was no longer a <span class="hlt">variable</span>. However, without the presence of this tax credit, the data imply that the projects would not be profitable within the first ten to fifteen years of operation. The scores for each of the categories were totaled and regressed against a calculated internal rate of return. There was ninety-seven percent correlation which was supported by simulation analysis. While this model is not intended to supplant rigorous accounting and financial study, it will help quickly determine if a site has potential and save many hours of analytical work.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/55439','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/55439"><span>Ecosystem responses to <span class="hlt">variable-density</span> thinning for forest restoration in Mill Creek</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Lathrop P. Leonard; John-Pascal Berrill; Christa M. Dagley</p> <p>2017-01-01</p> <p><span class="hlt">Variable-density</span> thinning (VDT) has promise as a forest restoration tool that accelerates development of old-growth redwood (Sequoia sempervirens (D.Don) Endl.) forest characteristics (O’Hara et al. 2010) but can lead to bear damage in north coastal California (Hosack and Fulgham 1998, Perry et al. 2016). Three novel VDT prescriptions (O’...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/92990-advanced-wind-turbine-design','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/92990-advanced-wind-turbine-design"><span>Advanced <span class="hlt">wind</span> turbine design</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jamieson, P.M.; Jaffrey, A.</p> <p>1995-09-01</p> <p>Garrad Hassan have a project in progress funded by the UK Department of Trade and Industry (DTI) to assess the prospects and cost benefits of advanced <span class="hlt">wind</span> turbine design. In the course of this work, a new concept, the coned rotor design, has been developed. This enables a <span class="hlt">wind</span> turbine system to operate in effect with <span class="hlt">variable</span> rotor diameter augmenting energy capture in light <span class="hlt">winds</span> and shedding loads in storm conditions. Comparisons with conventional design suggest that a major benefit in reduced cost of <span class="hlt">wind</span> generated electricity may be possible.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/590142-advanced-wind-turbine-design','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/590142-advanced-wind-turbine-design"><span>Advanced <span class="hlt">wind</span> turbine design</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jamieson, P.M.; Jaffrey, A.</p> <p>1997-11-01</p> <p>Garrad Hassan have a project in progress funded by the U.K. Department of Trade and Industry (DTI) to assess the prospects and cost benefits of advanced <span class="hlt">wind</span> turbine design. In the course of this work, a new concept, the coned rotor design, has been developed. This enables a <span class="hlt">wind</span> turbine system to operate in effect with <span class="hlt">variable</span> rotor diameter augmenting energy capture in light <span class="hlt">winds</span> and shedding loads in storm conditions. Comparisons with conventional design suggest that a major benefit in reduced cost of <span class="hlt">wind</span>-generated electricity may be possible.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890020539','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890020539"><span>Rocket measurements of electron <span class="hlt">density</span> irregularities during MAC/SINE</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ulwick, J. C.</p> <p>1989-01-01</p> <p>Four Super Arcas rockets were launched at the Andoya Rocket Range, Norway, as part of the MAC/SINE campaign to measure electron <span class="hlt">density</span> irregularities with high spatial resolution in the cold summer polar mesosphere. They were launched as part of two salvos: the turbulent/gravity wave salvo (3 rockets) and the EISCAT/SOUSY radar salvo (one rocket). In both salvos meteorological rockets, measuring temperature and <span class="hlt">winds</span>, were also launched and the SOUSY radar, located near the launch site, measured mesospheric turbulence. Electron <span class="hlt">density</span> irregularities and strong gradients were measured by the rocket probes in the region of most intense backscatter observed by the radar. The electron <span class="hlt">density</span> profiles (8 to 4 on ascent and 4 on descent) show very different characteristics in the peak scattering region and show marked spatial and temporal <span class="hlt">variability</span>. These data are intercompared and discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006CSR....26.1113S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006CSR....26.1113S"><span>Atmospheric forcing on the seasonal <span class="hlt">variability</span> of sea level at Cochin, southwest coast of India</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Srinivas, K.; Dinesh Kumar, P. K.</p> <p>2006-07-01</p> <p>The seasonal cycles of some atmospheric parameters at Cochin (southwest coast of India) have been studied with a specific emphasis on the role played by them in forcing the seasonal sea level. Equatorward along-shore <span class="hlt">wind</span> stress as well as equatorward volume transport by coastal currents along the Indian peninsula could play an important role in the sea level low during the premonsoon and southwest monsoon seasons. During postmonsoon season, along-shore <span class="hlt">wind</span> stress plays no major role in the high sea level whereas this could be due to the poleward volume transport by the coastal along-shore currents. Atmospheric pressure and river discharge do not seem to influence much the sea level during the southwest monsoon period, even though the river discharge during that period is considerable. The sea level was minimal during the southwest monsoon season, when the river discharge was at its annual maximum. The difference between the seasonal march of observed and pressure corrected sea level (CSL) was not significant for the study region. Harmonic analysis of the climatological data on the various parameters revealed that air temperature is the only parameter with a dominance of the semi-annual over the annual cycle. Cross-shore <span class="hlt">wind</span> stress indicated strong interannual <span class="hlt">variability</span> whereas relative <span class="hlt">density</span> showed strong seasonal <span class="hlt">variability</span>. The climatological seasonal cycles of CSL at eight other tide gauge stations along the west coast of the Indian subcontinent are also examined, to assess the role of various forcings on the seasonal sea level cycle. The signatures of El Nino-Southern Oscillation (ENSO) phenomenon could be seen in some of the parameters (SST, air temperature, atmospheric pressure, along-shore <span class="hlt">wind</span> stress, relative <span class="hlt">density</span> and sea level). The signature of ENSO was particularly strong in the case of atmospheric pressure followed by relative <span class="hlt">density</span>, the variance accounted by the relationship being 47% and 16%, respectively.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JPhCS.439a2039A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JPhCS.439a2039A"><span>An optimal design of coreless direct-drive axial flux permanent magnet generator for <span class="hlt">wind</span> turbine</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ahmed, D.; Ahmad, A.</p> <p>2013-06-01</p> <p>Different types of generators are currently being used in <span class="hlt">wind</span> power technology. The commonly used are induction generator (IG), doubly-fed induction generator (DFIG), electrically excited synchronous generator (EESG) and permanent magnet synchronous generator (PMSG). However, the use of PMSG is rapidly increasing because of advantages such as higher power <span class="hlt">density</span>, better controllability and higher reliability. This paper presents an innovative design of a low-speed modular, direct-drive axial flux permanent magnet (AFPM) generator with coreless stator and rotor for a <span class="hlt">wind</span> turbine power generation system that is developed using mathematical and analytical methods. This innovative design is implemented in MATLAB / Simulink environment using dynamic modelling techniques. The main focus of this research is to improve efficiency of the <span class="hlt">wind</span> power generation system by investigating electromagnetic and structural features of AFPM generator during its operation in <span class="hlt">wind</span> turbine. The design is validated by comparing its performance with standard models of existing <span class="hlt">wind</span> power generators. The comparison results demonstrate that the proposed model for the <span class="hlt">wind</span> power generator exhibits number of advantages such as improved efficiency with <span class="hlt">variable</span> speed operation, higher energy yield, lighter weight and better <span class="hlt">wind</span> power utilization.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1988JAtS...45.2680H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1988JAtS...45.2680H"><span>Seasonal <span class="hlt">Variability</span> of the 40-50 Day Oscillation in <span class="hlt">Wind</span> and Rainfall in the Tropics.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hartmann, Dennis L.; Gross, Jack R.</p> <p>1988-10-01</p> <p>Time spectral analysis is performed on long records of <span class="hlt">wind</span> and precipitation from stations in the tropical Indian Ocean-Pacific Ocean are. The spectra are done separately for winter and summer half-years. Statistically significant spectral peaks in the 40-50 day period range show strong seasonal <span class="hlt">variability</span>. The 40-50 day peaks in the 200 mb zonal <span class="hlt">wind</span> spectra are stronger and more prevalent during the Northern Hemisphere winter half-year. Spectral peaks in the 850 mb <span class="hlt">wind</span> show a preference for summer in the Northern Hemisphere.Precipitation spectra show significant 40-50 day peaks at selected locations in the Indonesian region and along the South Pacific convergence zone in the central Pacific during Southern Hemisphere summer. These oscillations in precipitation are coherent with nearby zonal <span class="hlt">wind</span> oscillations. No significant oscillations in precipitation were found for stations significantly north of the equator during either half-year. In particular, no significant peaks in precipitation spectra were found for composites of stations on the Indian Peninsula during summer, where it has been proposed that the 40-50 day oscillation modulates monsoon precipitation.It is concluded that the 40-50 day oscillation is sustained by interactions between the large-scale flow and convective-scale processes and that these interactions take place in areas where intensely convective regions aye near the equator. The <span class="hlt">wind</span> oscillation occupies a larger area, particularly at upper tropospheric levels, principally by horizontal wave propagation away from the excitation regions. Since the oscillation does not appear to be forced over India, it is conjectured that the seasonal variation in the intensity of the oscillation is attributable, in part, to the fact that the tropical convection is drawn away from the equator by the Indian summer monsoon. When the convection is drawn off the equator, the efficiency of the interaction with equatorially trapped modes declines, and hence the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDM31002S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDM31002S"><span>Improving urban <span class="hlt">wind</span> flow predictions through data assimilation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sousa, Jorge; Gorle, Catherine</p> <p>2017-11-01</p> <p>Computational fluid dynamic is fundamentally important to several aspects in the design of sustainable and resilient urban environments. The prediction of the flow pattern for example can help to determine pedestrian <span class="hlt">wind</span> comfort, air quality, optimal building ventilation strategies, and <span class="hlt">wind</span> loading on buildings. However, the significant <span class="hlt">variability</span> and uncertainty in the boundary conditions poses a challenge when interpreting results as a basis for design decisions. To improve our understanding of the uncertainties in the models and develop better predictive tools, we started a pilot field measurement campaign on Stanford University's campus combined with a detailed numerical prediction of the <span class="hlt">wind</span> flow. The experimental data is being used to investigate the potential use of data assimilation and inverse techniques to better characterize the uncertainty in the results and improve the confidence in current <span class="hlt">wind</span> flow predictions. We consider the incoming <span class="hlt">wind</span> direction and magnitude as unknown parameters and perform a set of Reynolds-averaged Navier-Stokes simulations to build a polynomial chaos expansion response surface at each sensor location. We subsequently use an inverse ensemble Kalman filter to retrieve an estimate for the probabilistic <span class="hlt">density</span> function of the inflow parameters. Once these distributions are obtained, the forward analysis is repeated to obtain predictions for the flow field in the entire urban canopy and the results are compared with the experimental data. We would like to acknowledge high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) provided by NCAR.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/420358','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/420358"><span>Analytical expressions for maximum <span class="hlt">wind</span> turbine average power in a Rayleigh <span class="hlt">wind</span> regime</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Carlin, P.W.</p> <p></p> <p>Average or expectation values for annual power of a <span class="hlt">wind</span> turbine in a Rayleigh <span class="hlt">wind</span> regime are calculated and plotted as a function of cut-out <span class="hlt">wind</span> speed. This <span class="hlt">wind</span> speed is expressed in multiples of the annual average <span class="hlt">wind</span> speed at the turbine installation site. To provide a common basis for comparison of all real and imagined turbines, the Rayleigh-Betz <span class="hlt">wind</span> machine is postulated. This machine is an ideal <span class="hlt">wind</span> machine operating with the ideal Betz power coefficient of 0.593 in a Rayleigh probability <span class="hlt">wind</span> regime. All other average annual powers are expressed in fractions of that power. Cases consideredmore » include: (1) an ideal machine with finite power and finite cutout speed, (2) real machines operating in <span class="hlt">variable</span> speed mode at their maximum power coefficient, and (3) real machines operating at constant speed.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1984iece.conf.2313V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1984iece.conf.2313V"><span>A <span class="hlt">variable</span>-speed, constant-frequency <span class="hlt">wind</span> power generation scheme using a slip-ring induction generator</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Velayudhan, C.; Bundell, J. H.</p> <p></p> <p>This paper investigates a <span class="hlt">variable</span>-speed, constant-frequency double output induction generator which is capable of absorbing the mechanical energy from a fixed pitch <span class="hlt">wind</span> turbine and converting it into electrical energy at constant grid voltage and frequency. Rotor power at varying voltage and frequency is either fed to electronically controlled resistances and used as heat energy or is rectified, inverted by a controllable line-commutated inverter and returned to the grid. Optimal power tracking is by means of an adaptive controller which controls the developed torque of the generator by monitoring the shaft speed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MNRAS.466.2458C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MNRAS.466.2458C"><span>Hot planetary <span class="hlt">winds</span> near a star: dynamics, <span class="hlt">wind-wind</span> interactions, and observational signatures</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carroll-Nellenback, Jonathan; Frank, Adam; Liu, Baowei; Quillen, Alice C.; Blackman, Eric G.; Dobbs-Dixon, Ian</p> <p>2017-04-01</p> <p>Signatures of 'evaporative' <span class="hlt">winds</span> from exoplanets on short (hot) orbits around their host star have been observed in a number of systems. In this paper, we present global adaptive mesh refinement simulations that track the launching of the <span class="hlt">winds</span>, their expansion through the circumstellar environment, and their interaction with a stellar <span class="hlt">wind</span>. We focus on purely hydrodynamic flows including the anisotropy of the <span class="hlt">wind</span> launching and explore the orbital/fluid dynamics of the resulting flows in detail. In particular, we find that a combination of the tidal and Coriolis forces strongly distorts the planetary 'Parker' <span class="hlt">wind</span> creating 'up-orbit' and 'down-orbit' streams. We characterize the flows in terms of their orbital elements that change depending on their launch position on the planet. We find that the anisotropy in the atmospheric temperature leads to significant backflow on to the planet. The planetary <span class="hlt">wind</span> interacts strongly with the stellar <span class="hlt">wind</span> creating instabilities that may cause eventual deposition of planetary gas on to the star. We present synthetic observations of both transit and absorption line-structure for our simulations. For our initial conditions, we find that the orbiting <span class="hlt">wind</span> material produces absorption signatures at significant distances from the planet and substantial orbit-to-orbit <span class="hlt">variability</span>. Lyα absorption shows red- and blueshifted features out to 70 km s-1. Finally, using semi-analytic models we constrain the effect of radiation pressure, given the approximation of uniform stellar absorption.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950021568','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950021568"><span><span class="hlt">Variable</span> speed generator application on the MOD-5A 7.3 mW <span class="hlt">wind</span> turbine generator</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barton, Robert S.</p> <p>1995-01-01</p> <p>This paper describes the application of a Scherbiustat type <span class="hlt">variable</span> speed subsystem in the MOD-5A <span class="hlt">Wind</span> Turbine Generator. As designed by General Electric Company, Advanced Energy Programs Department, under contract DEN3-153 with NASA Lewis Research Center and DOE, the MOD-5A utilizes the subsystem for both starting assistance in a motoring mode and generation in a controlled airgap torque mode. Reactive power control is also provided. The Scherbiustat type arrangement of a wound rotor machine with a cycloconverter in the rotor circuit was selected after an evaluation of <span class="hlt">variable</span> speed technologies that followed a system evaluation of drivetrain cost and risk. The paper describes the evaluation factors considered, the results of the evaluations and summarizes operating strategy and performance simulations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14643228','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14643228"><span><span class="hlt">Variability</span> in goethite surface site <span class="hlt">density</span>: evidence from proton and carbonate sorption.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Villalobos, Mario; Trotz, Maya A; Leckie, James O</p> <p>2003-12-15</p> <p>Goethite is a representative iron oxide in natural environments due to its abundance and thermodynamic stability and may be responsible for many surface-mediated processes, including ion retention and mobility in aqueous settings. A large <span class="hlt">variability</span> in morphologies and specific surface areas of goethite crystals exists but little work has been done to compare surface reactivity between them. The present work offers experimental evidence for the existence of an inverse relationship between sorption capacity for protons and carbonate ions and specific surface area of goethite for three synthetic goethite preparations spanning surface area differences by a factor of 2. An explanation for this was found by assuming a <span class="hlt">variable</span> reactive site <span class="hlt">density</span> between preparations in direct relationship to their sorption capacity based on congruency of carbonate sorption computed on a per-site basis. Previous evidence of maximum sorption capacities supports this explanation, and site <span class="hlt">density</span> ratios between the goethites studied here were obtained. Triple layer surface complexation modeling was successful in describing adsorption data for all goethite preparations using equal stoichiometries. A new formulation of standard state for activities of surface species based on a 1.0 mole fraction of sites on the solid allowed transformation of the conventional molar concentration-based affinity constants to values based on site occupancy. In this fashion, by applying the appropriate site <span class="hlt">density</span> ratios, a single set of affinity constant values was found that described accurately the adsorption data for all preparations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950048306&hterms=wind+monitor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dwind%2Bmonitor','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950048306&hterms=wind+monitor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dwind%2Bmonitor"><span>Geometry and physical conditions in the stellar <span class="hlt">wind</span> of AG Carinae</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Leitherer, Claus; Allen, Richard; Altner, Bruce; Damineli, Augusto; Drissen, Laurent; Idiart, Thais; Lupie, Olivia; Nota, Antonella; Robert, Carmelle; Schmutz, Werner</p> <p>1994-01-01</p> <p>AG Carinae is one of the prototypes of the class of Luminous Blue <span class="hlt">Variables</span> (LBVs). Since 1990 the star has continuously brightened in its visual continuum. We report on a multi-instrument and -wavelength observing campaign to monitor the current activity phase of AG Car. Ground-based photometry, polarimetry, spectroscopy, and space-ultraviolet spectroscopy and spectropolarimetry have been obtained. From the <span class="hlt">variability</span> of the polarization at ultraviolet and optical wavelengths we detect significant intrinsic polarization. P(sub int) greater than or equal to 0.5% is a large value for a hot, luminous star, suggesting departure from spherical symmetry in the <span class="hlt">wind</span> of AG Car. The intrinsic polarization is <span class="hlt">variable</span> on a timescale of 2 months or less. The measured ultraviolet polarization (intrinsic + interstellar) dropped to 0.5% in 1992 May and returned to 1% in 1992 July. The results are interpreted in terms of a <span class="hlt">variable</span> outflow with a <span class="hlt">density</span> enhancement in the equatorial plane. A similar model was suggested for the related object R127 in the Large Magellanic Cloud (LMC). This geometry is reminiscent of the large-scale morphology of the gas nebula and dust 'jet' surrounding AG Car. It is therefore likely that physical conditions close to the stellar surface are responsible for the geometry of the spatially resolved circumstellar material around AG Car. Despite the drastic change of the photospheric conditions, the mass-loss rate did not increase. We find no evidence for a positive correlation between <span class="hlt">wind</span> <span class="hlt">density</span> and stellar radius. This makes models that explain the radius increase by opacity effects in the outflow unlikely. The mechanism responsible for the temperature and radius variations is still unknown but most likely has its origin in subphotospheric regions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MNRAS.472L..20C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MNRAS.472L..20C"><span>Magnetically advected <span class="hlt">winds</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Contopoulos, I.; Kazanas, D.; Fukumura, K.</p> <p>2017-11-01</p> <p>Observations of X-ray absorption lines in magnetically driven disc <span class="hlt">winds</span> around black hole binaries and active galactic nuclei yield a universal radial <span class="hlt">density</span> profile ρ ∝ r-1.2 in the <span class="hlt">wind</span>. This is in disagreement with the standard Blandford and Payne profile ρBP ∝ r-1.5 expected when the magnetic field is neither advected nor diffusing through the accretion disc. In order to account for this discrepancy, we establish a new paradigm for magnetically driven astrophysical <span class="hlt">winds</span> according to which the large-scale ordered magnetic field that threads the disc is continuously generated by the Cosmic Battery around the inner edge of the disc and continuously diffuses outward. We obtain self-similar solutions of such magnetically advected <span class="hlt">winds</span> (MAW) and discuss their observational ramifications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918988K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918988K"><span>Short-term <span class="hlt">Wind</span> Forecasting at <span class="hlt">Wind</span> Farms using WRF-LES and Actuator Disk Model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kirkil, Gokhan</p> <p>2017-04-01</p> <p>Short-term <span class="hlt">wind</span> forecasts are obtained for a <span class="hlt">wind</span> farm on a mountainous terrain using WRF-LES. Multi-scale simulations are also performed using different PBL parameterizations. Turbines are parameterized using Actuator Disc Model. LES models improved the forecasts. Statistical error analysis is performed and ramp events are analyzed. Complex topography of the study area affects model performance, especially the accuracy of <span class="hlt">wind</span> forecasts were poor for cross valley-mountain flows. By means of LES, we gain new knowledge about the sources of spatial and temporal <span class="hlt">variability</span> of <span class="hlt">wind</span> fluctuations such as the configuration of <span class="hlt">wind</span> turbines.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20120016742&hterms=passive+transport&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dpassive%2Btransport','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20120016742&hterms=passive+transport&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dpassive%2Btransport"><span>The Transport of <span class="hlt">Density</span> Fluctuations Throughout the Heliosphere</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zank, G. P.; Jetha, N.; Hu, Q.; Hunana, P.</p> <p>2012-01-01</p> <p>The solar <span class="hlt">wind</span> is recognized as a turbulent magnetofluid, for which the properties of the turbulent velocity and magnetic field fluctuations are often described by the equations of incompressible magnetohydrodynamics (MHD). However, low-frequency <span class="hlt">density</span> turbulence is also ubiquitous. On the basis of a nearly incompressible formulation of MHD in the expanding inhomogeneous solar <span class="hlt">wind</span>, we derive the transport equation for the variance of the <span class="hlt">density</span> fluctuations (Rho(exp 2)). The transport equation shows that <span class="hlt">density</span> fluctuations behave as a passive scalar in the supersonic solar <span class="hlt">wind</span>. In the absence of sources of <span class="hlt">density</span> turbulence, such as within 1AU, the variance (Rho(exp 2)) approximates r(exp -4). In the outer heliosphere beyond 1 AU, the shear between fast and slow streams, the propagation of shocks, and the creation of interstellar pickup ions all act as sources of <span class="hlt">density</span> turbulence. The model <span class="hlt">density</span> fluctuation variance evolves with heliocentric distance within approximately 300 AU as (Rho(exp 2)) approximates r(exp -3.3) after which it flattens and then slowly increases. This is precisely the radial profile for the <span class="hlt">density</span> fluctuation variance observed by Voyager 2. Using a different analysis technique, we confirm the radial profile for Rho(exp 2) of Bellamy, Cairns, & Smith using Voyager 2 data. We conclude that a passive scalar description for <span class="hlt">density</span> fluctuations in the supersonic solar <span class="hlt">wind</span> can explain the <span class="hlt">density</span> fluctuation variance observed in both the inner and the outer heliosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A21E2200G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A21E2200G"><span>Assessment of <span class="hlt">Wind</span> Resource in the Palk Strait using Different Methods</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gupta, T.; Khan, F.; Baidya Roy, S.; Miller, L.</p> <p>2017-12-01</p> <p>The Government of India has proposed a target of 60 GW in grid power from the <span class="hlt">wind</span> by the year 2022. The Palk Strait is one of the potential offshore <span class="hlt">wind</span> power generation sites in India. It is a 65-135 km wide and 135 km long channel lying between the south eastern tip of India and northern Sri Lanka. The complex terrain bounding the two sides of the strait leads to enhanced <span class="hlt">wind</span> speed and reduced <span class="hlt">variability</span> in the <span class="hlt">wind</span> direction. Here, we compare 3 distinct methodologies for estimating the generation rates for a hypothetical offshore <span class="hlt">wind</span> farm array located in the strait. The methodologies include: 1) traditional <span class="hlt">wind</span> power <span class="hlt">density</span> model that ignores the effect of turbine interactions on generation rates; 2) the PARK wake model; and 3) a high resolution weather model (WRF) with a <span class="hlt">wind</span> turbine parameterization. Using the WRF model as our baseline, we find that the simple model overestimates generation by an order-of-magnitude, while the wake model underestimates generation rates by about 5%. The reason for these differences relates to the influence of <span class="hlt">wind</span> turbines on the atmospheric flow, wherein, the WRF model is able to capture the effect of both the complex terrain and <span class="hlt">wind</span> turbine atmospheric boundary layer interactions. Lastly, a model evaluation is conducted which shows that 10m <span class="hlt">wind</span> speeds and directions from WRF are comparable with the satellite data. Hence, we conclude from the study that each of these methodologies may have merit, but should a <span class="hlt">wind</span> farm is deployed in such a complex terrain, we expect the WRF method to give better estimates of <span class="hlt">wind</span> resource assessment capturing the physical processes emerging due to the interactions between offshore <span class="hlt">wind</span> farm and the surrounding terrain.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790056629&hterms=hess+law&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dhess%2527s%2Blaw','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790056629&hterms=hess+law&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dhess%2527s%2Blaw"><span>Static stability and thermal <span class="hlt">wind</span> in an atmosphere of <span class="hlt">variable</span> composition Applications to Mars</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hess, S. L.</p> <p>1979-01-01</p> <p>Radiometric measurements of the temperature of the south polar cap of Mars in winter have yielded values significantly below the expected 148 K. One proposed explanation for this result is a substantial reduction in the CO2 content of the atmosphere and a lowering of the mean molecule weight near the surface. The meteorological consequences of this explanation are explored by deriving a criterion for vertical static stability and a thermal <span class="hlt">wind</span> law for an atmosphere of <span class="hlt">variable</span> composition. The atmosphere proves to be statically unstable unless the anomaly in the CO2 mixing ratio extends to heights of tens of kilometers. The effect of varying molecular weight exceeds the effect of temperature gradient, producing shears with height of reversed sign. The shears are baroclinically unstable, and this instability would eradicate the latitudinal gradient of molecular weight. This inconsistency can be resolved by invoking a reasonable elevation of the central polar cap and by imposing an adequate zonal <span class="hlt">wind</span>. It is concluded that if the explanation requiring a change in atmospheric composition is correct, it must be accompanied by other special circumstances to make it meteorologically consistent.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070010017&hterms=Accounting+measurement&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DAccounting%2Bmeasurement','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070010017&hterms=Accounting+measurement&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DAccounting%2Bmeasurement"><span>Physics-based Tests to Identify the Accuracy of Solar <span class="hlt">Wind</span> Ion Measurements: A Case Study with the <span class="hlt">Wind</span> Faraday Cups</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kasper, J. C.; Lazarus, A. J.; Steinberg, J. T.; Ogilvie, K. W.; Szabo, A.</p> <p>2006-01-01</p> <p>We present techniques for comparing measurements of velocity, temperature, and <span class="hlt">density</span> with constraints imposed by the plasma physics of magnetized bi-Maxwellian ions. Deviations from these physics-based constraints are interpreted as arising from measurement errors. Two million ion spectra from the Solar <span class="hlt">Wind</span> Experiment Faraday Cup instruments on the <span class="hlt">Wind</span> spacecraft are used as a case study. The accuracy of velocity measurements is determined by the fact that differential flow between hydrogen and helium should be aligned with the ambient magnetic field. Modeling the breakdown of field alignment suggests velocity uncertainties are less than 0.16% in magnitude and 3deg in direction. Temperature uncertainty is found by examining the distribution of observed temperature anisotropies in high-beta solar <span class="hlt">wind</span> intervals where the firehose, mirror, and cyclotron microinstabilities should drive the distribution to isotropy. The presence of a finite anisotropy at high beta suggests overall temperature uncertainties of 8%. Hydrogen and helium number <span class="hlt">densities</span> are compared with the electron <span class="hlt">density</span> inferred from observations of the local electron plasma frequency as a function of solar <span class="hlt">wind</span> speed and year. We find that after accounting for the contribution of minor ions, the results are consistent with a systematic offset between the two instruments of 34%. The temperature and <span class="hlt">density</span> methods are sensitive to non-Maxwellian features such as heat flux and proton beams and as a result are more suited to slow solar <span class="hlt">wind</span> where these features are rare. These procedures are of general use in identifying the accuracy of observations from any solar <span class="hlt">wind</span> ion instrument.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.2667H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.2667H"><span>Onshore and offshore <span class="hlt">wind</span> resource evaluation in the northeastern area of the Iberian Peninsula: quality assurance of the surface <span class="hlt">wind</span> observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hidalgo, A.; González-Rouco, J. F.; Jiménez, P. A.; Navarro, J.; García-Bustamante, E.; Lucio-Eceiza, E. E.; Montávez, J. P.; García, A. Y.; Prieto, L.</p> <p>2012-04-01</p> <p>Offshore <span class="hlt">wind</span> energy is becoming increasingly important as a reliable source of electricity generation. The areas located in the vicinity of the Cantabrian and Mediterranean coasts are areas of interest in this regard. This study targets an assessment of the <span class="hlt">wind</span> resource focused on the two coastal regions and the strip of land between them, thereby including most of the northeastern part of the Iberian Peninsula (IP) and containing the Ebro basin. The analysis of the <span class="hlt">wind</span> resource in inland areas is crucial as the <span class="hlt">wind</span> channeling through the existing mountains has a direct impact on the sea circulations near the coast. The thermal circulations generated by the topography near the coast also influence the offshore <span class="hlt">wind</span> resource. This work summarizes the results of the first steps of a Quality Assurance (QA) procedure applied to the surface <span class="hlt">wind</span> database available over the area of interest. The dataset consists of 752 stations compiled from different sources: 14 buoys distributed over the IP coast provided by Puertos del Estado (1990-2010); and 738 land sites over the area of interest provided by 8 different Spanish institutions (1933-2010) and the National Center of Atmospheric Research (NCAR; 1978-2010). It is worth noting that the variety of institutional observational protocols lead to different temporal resolutions and peculiarities that somewhat complicate the QA. The QA applied to the dataset is structured in three steps that involve the detection and suppression of: 1) manipulation errors (i.e. repetitions); 2) unrealistic values and ranges in <span class="hlt">wind</span> module and direction; 3) abnormally low (e.g. long constant periods) and high variations (e.g. extreme values and inhomogeneities) to ensure the temporal consistency of the time series. A quality controlled observational network of <span class="hlt">wind</span> <span class="hlt">variables</span> with such spatial <span class="hlt">density</span> and temporal length is not frequent and specifically for the IP is not documented in the literature. The final observed dataset will allow for a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.6323F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.6323F"><span>Predicting Martian dune shape and orientation from <span class="hlt">wind</span> directional <span class="hlt">variability</span> and sediment availability</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fernandez-Cascales, Laura; Lucas, Antoine; Rodriguez, Sébastien; Narteau, Clément; Spiga, Aymeric; Allemand, Pascal</p> <p>2016-04-01</p> <p>Dunes provide a unique set of information to constrain local climatic regimes on planetary bodies where there is no direct meteorological data. <span class="hlt">Wind</span> directional <span class="hlt">variability</span> and sediment availability are known to control the dune growth mechanism (i.e. the bed instability or fingering modes) and the subsequent dune shape and orientation (Courrech du Pont at al., 2014; Gao et al., 2015). Here we provide a quantitative analysis of these dependences on Mars using the output of the Martian General Circulation Models (GCM) and satellite imagery such as the Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) images, at a selection of places where there is a high contrast between the dune material and the non-erodible ground. Dunes, mostly composed of unweathered basaltic and andesitic grains, appear dark, whereas the non-erodible ground has a higher albedo. Such a systematic contrast permits to link dune morphology to the local sediment cover. Dune shape, crest orientation and local sediment cover are extracted from CTX images using an automatic linear segment detection method and the local distribution in albedo. In zones of high sediment supply, dune crest alignments are close to the orientation of the bed instability mode predicted from the local <span class="hlt">winds</span> from the Martian Climate Database (MCD) where is stored the outputs of the IPSL-GCM for Mars (Millour et al., 2014). Using the same <span class="hlt">wind</span> data, in zones of low sediment supply, the crest angle is close to the orientation of the fingering mode. In addition, there are continuous transitions in dune shape and orientation as the dunes migrate from zone of high to low sediment availability. These results indicate that the prediction of the IPSL-GCM are in good agreement with the present dune shapes and orientations and shed new light on the dynamics of complex dune fields along sand flow path.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24633049','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24633049"><span>Soil dust aerosols and <span class="hlt">wind</span> as predictors of seasonal meningitis incidence in Niger.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pérez García-Pando, Carlos; Stanton, Michelle C; Diggle, Peter J; Trzaska, Sylwia; Miller, Ron L; Perlwitz, Jan P; Baldasano, José M; Cuevas, Emilio; Ceccato, Pietro; Yaka, Pascal; Thomson, Madeleine C</p> <p>2014-07-01</p> <p>Epidemics of meningococcal meningitis are concentrated in sub-Saharan Africa during the dry season, a period when the region is affected by the Harmattan, a dry and dusty northeasterly trade <span class="hlt">wind</span> blowing from the Sahara into the Gulf of Guinea. We examined the potential of climate-based statistical forecasting models to predict seasonal incidence of meningitis in Niger at both the national and district levels. We used time series of meningitis incidence from 1986 through 2006 for 38 districts in Niger. We tested models based on data that would be readily available in an operational framework, such as climate and dust, population, and the incidence of early cases before the onset of the meningitis season in January-May. Incidence was used as a proxy for immunological state, susceptibility, and carriage in the population. We compared a range of negative binomial generalized linear models fitted to the meningitis data. At the national level, a model using early incidence in December and averaged November-December zonal <span class="hlt">wind</span> provided the best fit (pseudo-R2 = 0.57), with zonal <span class="hlt">wind</span> having the greatest impact. A model with surface dust concentration as a predictive <span class="hlt">variable</span> performed indistinguishably well. At the district level, the best spatiotemporal model included zonal <span class="hlt">wind</span>, dust concentration, early incidence in December, and population <span class="hlt">density</span> (pseudo-R2 = 0.41). We showed that <span class="hlt">wind</span> and dust information and incidence in the early dry season predict part of the year-to-year <span class="hlt">variability</span> of the seasonal incidence of meningitis at both national and district levels in Niger. Models of this form could provide an early-season alert that <span class="hlt">wind</span>, dust, and other conditions are potentially conducive to an epidemic.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPP51B2288M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPP51B2288M"><span>Postglacial Records of Southern Hemisphere Westerly <span class="hlt">Wind</span> <span class="hlt">Variability</span> From the New Zealand Subantarctic Auckland Islands</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moy, C. M.; Vandergoes, M.; Gilmer, G. J.; Nichols, J. E.; Dagg, B. J.; Wilson, G. S.; Browne, I. M.; Curtin, L. G.; Aebig, C.; McGlone, M.</p> <p>2015-12-01</p> <p>The strength and latitudinal position of the Southern Hemisphere westerly <span class="hlt">winds</span> (SHWW) play a fundamental role in influencing mid latitude climate and carbon dioxide exchange between the Southern Ocean and the atmosphere. Despite their importance, our understanding of past changes in the SHWW is limited by few paleoclimate records from the modern <span class="hlt">wind</span> maximum that are often not in agreement. The New Zealand subantarctic Auckland Islands are located within the core of the modern <span class="hlt">wind</span> belt (50°S) where the ocean-atmospheric linkages between the Antarctic and middle latitudes are strong. In contrast to other subantarctic islands on the Campbell Plateau, the Auckland Islands have protected fjord sub-basins, deep lakes, and peatlands that are advantageous for the development of high-resolution paleoclimate records. We will present ongoing work towards the establishment of multi-proxy and multi-site reconstructions of past SHWW <span class="hlt">variability</span> from the Auckland Islands. Modern process and paleoclimate results from two research cruises in 2014 and 2015 suggest that in lacustrine and fjord settings, the degree of water column mixing, the stable isotopic composition of n-alkanes and benthic foraminifera, the influx of terrestrial organic matter are good indicators of <span class="hlt">wind</span>-induced mixing of the water column or precipitation-driven erosion within catchments. In ombrotrophic peatlands, hydrogen isotope ratios of specific organic molecules allow reconstructions of the hydrogen isotope ratios of precipitation, which is related to precipitation source area and the latitudinal position of the SHWW. Using macrofossil counts paired with abundances of leaf wax biomarkers, we are able to estimate the moisture balance at peatland coring sites. Early results indicate an overall strengthening of the SHWW at the Auckland Islands through the Holocene. We will discuss these results within the context of complimentary records developed from New Zealand and southern South America to ultimately</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850054599&hterms=wind+turbine+problems&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dwind%2Bturbine%2Bproblems','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850054599&hterms=wind+turbine+problems&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dwind%2Bturbine%2Bproblems"><span>Method for evaluating <span class="hlt">wind</span> turbine wake effects on <span class="hlt">wind</span> farm performance</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Neustadter, H. E.; Spera, D. A.</p> <p>1985-01-01</p> <p>A method of testing the performance of a cluster of <span class="hlt">wind</span> turbine units an data analysis equations are presented which together form a simple and direct procedure for determining the reduction in energy output caused by the wake of an upwind turbine. This method appears to solve the problems presented by data scatter and <span class="hlt">wind</span> <span class="hlt">variability</span>. Test data from the three-unit Mod-2 <span class="hlt">wind</span> turbine cluster at Goldendale, Washington, are analyzed to illustrate the application of the proposed method. In this sample case the reduction in energy was found to be about 10 percent when the Mod-2 units were separated a distance equal to seven diameters and <span class="hlt">winds</span> were below rated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017xru..conf...45B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017xru..conf...45B"><span>A new candidate for a powerful <span class="hlt">wind</span> detected in a bright IR-galaxy</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Braito, V.; Reeves, J.; Severgnini, P.; Della Ceca, R.; Matzeu, G.; Ballo, L.; Nardini, E.</p> <p>2017-10-01</p> <p>We report the discovery of a new candidate for a powerful disk <span class="hlt">wind</span>, in a nearby and bright starburst-AGN system: MCG-03-58-007. The <span class="hlt">winds</span> strongly resembles the case of PDS456. MCG-03-58-007 is a relatively X-ray bright Seyfert 2 galaxy for which a deep Suzaku observation unveiled a highly curved spectrum due to a high column <span class="hlt">density</span> absorber and an extremely steep intrinsic photon index (Gamma = 3). A detailed analysis showed that the steep spectrum is mainly driven by the presence of a deep absorption trough at 7.5-9 keV. This could be accounted for by the presence of a high ionisation, fast (v up to 0.2c) outflowing <span class="hlt">wind</span> launched from within a few 100Rg from the black hole, whose kinetic output matches the prescription for significant feedback. New deep simultaneous XMM-Newton and NuSTAR observations provided the first direct measurement of the AGN luminosity and more importantly confirms the presence of a powerful X-ray <span class="hlt">wind</span>. The new observations show rapid spectral <span class="hlt">variability</span>, whose main driver appears to be the <span class="hlt">wind</span> itself.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/6583','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/6583"><span>Yellow-Poplar and Oak Seedling <span class="hlt">Density</span> Responses to <span class="hlt">Wind</span>-Generated Gaps</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Erik C. Berg; David H. Van Lear</p> <p>2004-01-01</p> <p>The effects of <span class="hlt">wind</span> on upland hardwood forest structure and composition have been studied mostly in the context of either small "gap-phase" openings or in retrospective studies of ancient disturbances. Larger (> 0.1 ha) <span class="hlt">wind</span>-created openings are common across Southern Appalachian landscapes, and can be impor tant in shaping understory colonization, growth...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.nrel.gov/wind/systems-engineering-publications.html','SCIGOVWS'); return false;" href="https://www.nrel.gov/wind/systems-engineering-publications.html"><span>Systems Engineering Publications | <span class="hlt">Wind</span> | NREL</span></a></p> <p><a target="_blank" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>Different <em>Turbine</em> Heights. AIAA SciTech Forum: 35th <em><span class="hlt">Wind</span></em> Energy Symposium, Grapevine, Texas, doi:10.2514 Tool for <span class="hlt">Variable</span>-Speed <em><span class="hlt">Wind</span></em> <em>Turbine</em> Generators. NREL/TP-5000-66462, doi:10.2514/6.2017-1619. Seturaman <em>Turbine</em> using GeneratorSE. AIAA SciTech Forum: 35th <em><span class="hlt">Wind</span></em> Energy Symposium, Grapevine, Texas, doi:10.2172</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960021450&hterms=exact+solutions&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dexact%2Bsolutions','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960021450&hterms=exact+solutions&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dexact%2Bsolutions"><span>Modeling the heliolatitudinal gradient of the solar <span class="hlt">wind</span> parameters with exact MHD solutions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lima, J. J. G.; Tsinganos, K.</p> <p>1995-01-01</p> <p>The heliolatitudinal dependence of observations of the solar <span class="hlt">wind</span> macroscopic quantities such as the averaged proton speed, <span class="hlt">density</span> and the mass and momentum flux are modeled. The published observations covering the last two and a half solar cycles, are obtained either via the technique of interplanetary scintillations for the last 2 solar cycles (1970-1990), or, from the plasma experiment aboard the ULYSSES spacecraft for the recent period 1990-1994. Exact, two dimensional solutions of the full set of the steady MHD equations are used which are obtained through a nonlinear separation of the <span class="hlt">variables</span> in the MHD equations. The three parameters emerging from the solutions are fixed from these observations, as well as from observations of the solar rotation. It is found that near solar maximum the solar <span class="hlt">wind</span> speed is uniformly low, around the 400 km/s over a wide range of latitudes. On the other hand, during solar minimum and the declining phase of the solar activity cycle, there is a strong heliolatitudinal gradient in proton speed between 400-800 from equator to pole. This modeling also agrees with previous findings that the gradient in <span class="hlt">wind</span> speed with the latitude is offset by a gradient in <span class="hlt">density</span> such that the mass and momentum flux vary relatively little.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1175817','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1175817"><span><span class="hlt">Wind</span> farm electrical system</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Erdman, William L.; Lettenmaier, Terry M.</p> <p>2006-07-04</p> <p>An approach to <span class="hlt">wind</span> farm design using <span class="hlt">variable</span> speed <span class="hlt">wind</span> turbines with low pulse number electrical output. The output of multiple <span class="hlt">wind</span> turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual <span class="hlt">wind</span> turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple <span class="hlt">wind</span> turbines relies upon a pad mounted transformer at each <span class="hlt">wind</span> turbine that performs phase multiplication on the output of each <span class="hlt">wind</span> turbine. Phase multiplication converts a modified square wave from the <span class="hlt">wind</span> turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each <span class="hlt">wind</span> turbine allows the aggregated output of multiple <span class="hlt">wind</span> turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the <span class="hlt">wind</span> farm to take advantage of the <span class="hlt">wind</span> farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..313a2004G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..313a2004G"><span><span class="hlt">Variable</span> cross-section <span class="hlt">windings</span> for efficiency improvement of electric machines</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grachev, P. Yu; Bazarov, A. A.; Tabachinskiy, A. S.</p> <p>2018-02-01</p> <p>Implementation of energy-saving technologies in industry is impossible without efficiency improvement of electric machines. The article considers the ways of efficiency improvement and mass and dimensions reduction of electric machines with electronic control. Features of compact <span class="hlt">winding</span> design for stators and armatures are described. Influence of compact <span class="hlt">winding</span> on thermal and electrical process is given. Finite element method was used in computer simulation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012ECSS..112...11M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012ECSS..112...11M"><span>Short-term <span class="hlt">variability</span> on mesozooplankton community in a shallow mixed estuary (Bahía Blanca, Argentina): Influence of tidal cycles and local <span class="hlt">winds</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Menéndez, María C.; Piccolo, María C.; Hoffmeyer, Mónica S.</p> <p>2012-10-01</p> <p>The short-term dynamics of zooplankton in coastal ecosystems are strongly influenced by physical processes such as tides, riverine runoff and <span class="hlt">winds</span>. In this study, we investigated the short-term changes of the representative taxa within mesozooplankton in relation to the semidiurnal tidal cycles. Also, we evaluated the influence of local <span class="hlt">winds</span> on this short-term <span class="hlt">variability</span>. Sampling was carried out bimonthly from December 2004 to April 2006 in a fixed point located in the inner zone of the Bahía Blanca Estuary, Argentina. Mesozooplankton samples were taken by pumps during 14-h tidal cycles at 3-h intervals, from surface and bottom. Vertical profiles of temperature and salinity as well as water samples to determine suspended particulate matter were acquired at each sampling date. All data concerning <span class="hlt">winds</span> were obtained from a meteorological station and water level was recorded with a tide gauge. Holoplankton dominated numerically on meroplankton and adventitious fraction. Concerning holoplanktonic abundance, the highest values were attained by the calanoid copepods Acartia tonsa and Eurytemora americana. Meroplankton occurred mainly as barnacle larvae while benthic harpacticoids and Corophium sp. dominated the adventitious component. Semidiurnal tide was the main influence on the A. tonsa <span class="hlt">variability</span>. However, noticeable differences in the abundance pattern as function of <span class="hlt">wind</span> intensity were detected. Meroplankton abundance did not show a clear variation along the tidal cycle. Distributional pattern of harpacticoids seemed to be mainly modulated by velocity asymmetries in the tidal currents, in the same way as suspended particulate matter. However, the Corophium sp. distribution indicated probable behavioural responses associated with tides. The obtained results show how <span class="hlt">variable</span> the mesozooplankton community structure can be over short-term time scales in mesotidal temperate estuaries. This <span class="hlt">variability</span> should be taken into account for any zooplankton monitoring</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009SPIE.7479E..0LW','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009SPIE.7479E..0LW"><span>Visible<span class="hlt">Wind</span>: <span class="hlt">wind</span> profile measurements at low altitude</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilkerson, Tom; Bradford, Bill; Marchant, Alan; Apedaile, Tom; Wright, Cordell</p> <p>2009-09-01</p> <p>Visible<span class="hlt">Wind</span>TM is developing an inexpensive rapid response system, for accurately characterizing <span class="hlt">wind</span> shear and small scale <span class="hlt">wind</span> phenomena in the boundary layer and for prospecting suitable locations for <span class="hlt">wind</span> power turbines. The Valid<span class="hlt">Wind</span> system can also collect reliable "ground truth" for other remote <span class="hlt">wind</span> sensors. The system employs small (0.25 m dia.) lightweight balloons and a tracker consisting of an Impulse 200 XL laser rangefinder coupled to a PC for automated data recording. Experiments on balloon trajectories demonstrate that the laser detection of range (+/- 0.5 m), together with measured azimuth and altitude, is an inexpensive, convenient, and capable alternative to other <span class="hlt">wind</span> tracking methods. The maximum detection range has been increased to 2200 meters using micro-corner-cube retroreflector tape on balloons. Low power LEDs enable nighttime tracking. To avoid large balloon gyrations about the mean trajectory, we use balloons having low ascent rates and subcritical Reynolds numbers. Trajectory points are typically recorded every 4 - 7 seconds. Atmospheric features observed under conditions of inversions or "light and <span class="hlt">variable</span> <span class="hlt">winds</span>" include abrupt onsets of shear at altitudes of 100-250 m, velocity changes of order 1-3 m/s within layers of 10-20 m thickness, and veering of the <span class="hlt">wind</span> direction by 180 degrees or more as altitude increases from 300 to 500 m. We have previously reported comparisons of balloon-based <span class="hlt">wind</span> profiles with the output of a co-located sodar. Even with the Impulse rangefinder, our system still requires a "man in the loop" to track the balloon. A future system enhancement will automate balloon tracking, so that laser returns are obtained automatically at 1 Hz. While balloon measurements of large-scale, high altitude <span class="hlt">wind</span> profiles are well known, this novel measurement system provides high-resolution, real-time characterization of the fluctuating local <span class="hlt">wind</span> fields at the bottom of the boundary layer where <span class="hlt">wind</span> power turbines and other</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915734M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915734M"><span>Investigation of the spatial <span class="hlt">variability</span> and possible origins of <span class="hlt">wind</span>-induced air pressure fluctuations responsible for pressure pumping</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mohr, Manuel; Laemmel, Thomas; Maier, Martin; Zeeman, Matthias; Longdoz, Bernard; Schindler, Dirk</p> <p>2017-04-01</p> <p>The exchange of greenhouse gases between the soil and the atmosphere is highly relevant for the climate of the Earth. Recent research suggests that <span class="hlt">wind</span>-induced air pressure fluctuations can alter the soil gas transport and therefore soil gas efflux significantly. Using a newly developed method, we measured soil gas transport in situ in a well aerated forest soil. Results from these measurements showed that the commonly used soil gas diffusion coefficient is enhanced up to 30% during periods of strong <span class="hlt">wind</span>-induced air pressure fluctuations. The air pressure fluctuations above the forest floor are only induced at high above-canopy <span class="hlt">wind</span> speeds (> 5 m s-1) and lie in the frequency range 0.01-0.1 Hz. Moreover, the amplitudes of air pressure fluctuations in this frequency range show a clear quadratic dependence on mean above-canopy <span class="hlt">wind</span> speed. However, the origin of these <span class="hlt">wind</span>-induced pressure fluctuations is still unclear. Airflow measurements and high-precision air pressure measurements were conducted at three different vegetation-covered sites (conifer forest, deciduous forest, grassland) to investigate the spatial <span class="hlt">variability</span> of dominant air pressure fluctuations, their origin and vegetation-dependent characteristics. At the conifer forest site, a vertical profile of air pressure fluctuations was measured and an array consisting of five pressure sensors were installed at the forest floor. At the grassland site, the air pressure measurements were compared with <span class="hlt">wind</span> observations made by ground-based LIDAR and spatial temperature observations from a fibre-optic sensing network (ScaleX Campaign 2016). Preliminary results show that at all sites the amplitudes of relevant air pressure fluctuations increase with increasing <span class="hlt">wind</span> speed. Data from the array measurements reveal that there are no time lags between the air pressure signals of different heights, but a time lag existed between the air pressure signals of the sensors distributed laterally on the forest floor</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22126712-hemispheric-asymmetries-polar-solar-wind-observed-ulysses-near-minima-solar-cycles','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22126712-hemispheric-asymmetries-polar-solar-wind-observed-ulysses-near-minima-solar-cycles"><span>HEMISPHERIC ASYMMETRIES IN THE POLAR SOLAR <span class="hlt">WIND</span> OBSERVED BY ULYSSES NEAR THE MINIMA OF SOLAR CYCLES 22 AND 23</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ebert, R. W.; Dayeh, M. A.; Desai, M. I.</p> <p>2013-05-10</p> <p>We examined solar <span class="hlt">wind</span> plasma and interplanetary magnetic field (IMF) observations from Ulysses' first and third orbits to study hemispheric differences in the properties of the solar <span class="hlt">wind</span> and IMF originating from the Sun's large polar coronal holes (PCHs) during the declining and minimum phase of solar cycles 22 and 23. We identified hemispheric asymmetries in several parameters, most notably {approx}15%-30% south-to-north differences in averages for the solar <span class="hlt">wind</span> <span class="hlt">density</span>, mass flux, dynamic pressure, and energy flux and the radial and total IMF magnitudes. These differences were driven by relatively larger, more <span class="hlt">variable</span> solar <span class="hlt">wind</span> <span class="hlt">density</span> and radial IMF betweenmore » {approx}36 Degree-Sign S-60 Degree-Sign S during the declining phase of solar cycles 22 and 23. These observations indicate either a hemispheric asymmetry in the PCH output during the declining and minimum phase of solar cycles 22 and 23 with the southern hemisphere being more active than its northern counterpart, or a solar cycle effect where the PCH output in both hemispheres is enhanced during periods of higher solar activity. We also report a strong linear correlation between these solar <span class="hlt">wind</span> and IMF parameters, including the periods of enhanced PCH output, that highlight the connection between the solar <span class="hlt">wind</span> mass and energy output and the Sun's magnetic field. That these enhancements were not matched by similar sized variations in solar <span class="hlt">wind</span> speed points to the mass and energy responsible for these increases being added to the solar <span class="hlt">wind</span> while its flow was subsonic.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018A%26A...609A..35P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018A%26A...609A..35P"><span>Multi-wavelength campaign on NGC 7469. II. Column <span class="hlt">densities</span> and <span class="hlt">variability</span> in the X-ray spectrum</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peretz, U.; Behar, E.; Kriss, G. A.; Kaastra, J.; Arav, N.; Bianchi, S.; Branduardi-Raymont, G.; Cappi, M.; Costantini, E.; De Marco, B.; Di Gesu, L.; Ebrero, J.; Kaspi, S.; Mehdipour, M.; Middei, R.; Paltani, S.; Petrucci, P. O.; Ponti, G.; Ursini, F.</p> <p>2018-01-01</p> <p>We have investigated the ionic column <span class="hlt">density</span> <span class="hlt">variability</span> of the ionized outflows associated with NGC 7469, to estimate their location and power. This could allow a better understanding of galactic feedback of AGNs to their host galaxies. Analysis of seven XMM-Newton grating observations from 2015 is reported. We used an individual-ion spectral fitting approach, and compared different epochs to accurately determine <span class="hlt">variability</span> on timescales of years, months, and days. We find no significant column <span class="hlt">density</span> <span class="hlt">variability</span> in a ten-year period implying that the outflow is far from the ionizing source. The implied lower bound on the ionization equilibrium time, ten years, constrains the lower limit on the distance to be at least 12 pc, and up to 31 pc, much less but consistent with the 1 kpc wide starburst ring. The ionization distribution of column <span class="hlt">density</span> is reconstructed from measured column <span class="hlt">densities</span>, nicely matching results of two 2004 observations, with one large high ionization parameter (ξ) component at 2 < log ξ< 3.5, and one at 0.5 < log ξ< 1 in cgs units. The strong dependence of the expression for kinetic power, ∝ 1 /ξ, hampers tight constraints on the feedback mechanism of outflows with a large range in ionization parameter, which is often observed and indicates a non-conical outflow. The kinetic power of the outflow is estimated here to be within 0.4 and 60% of the Eddington luminosity, depending on the ion used to estimate ξ.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/30441','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/30441"><span>Individual tree growth response to <span class="hlt">variable-density</span> thinning in coastal Pacific Northwest forests.</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Scott D.s Roberts; Constance A. Harrington</p> <p>2008-01-01</p> <p>We examined 5-year basal area growth of nearly 2600 trees in stem-mapped plots at five locations differing in site characteristics, species composition, and management history on the Olympic Peninsula in Western Washington, USA. Our objectives were to determine if internal edges, the boundaries within the stand between components of the <span class="hlt">variable-density</span> thinning,...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21301118','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21301118"><span><span class="hlt">Variability</span> of E. coli <span class="hlt">density</span> and sources in an urban watershed.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, J; Rees, P; Dorner, S</p> <p>2011-03-01</p> <p>The objective of this study was to characterize the <span class="hlt">variability</span> of Escherichia coli <span class="hlt">density</span> and sources in an urban watershed, particularly to focus on the influences of weather and land use. E. coli as a microbial indicator was measured at fourteen sites in four wet weather events and four dry weather conditions in the upper Blackstone River watershed. The sources of E. coli were identified by ribotyping. The results showed that wet weather led to sharp increases of E. coli <span class="hlt">densities</span>. Interestingly, an intense storm of short duration led to a higher E. coli <span class="hlt">density</span> than a moderate storm of long duration (p<0.01). The ribotyping patterns revealed microbial sources were mainly attributed to humans and wildlife, but varied in different weather conditions and were associated with the patterns of land use. Human sources accounted for 24.43% in wet weather but only 9.09% in dry weather. In addition, human sources were more frequently observed in residential zones (>30% of the total sources), while wildlife sources were dominant in open land and forest zones (54%). The findings provide useful information for developing optimal management strategies aimed at reducing the level of pathogens in urban watersheds.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830054156&hterms=scandinavia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dscandinavia','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830054156&hterms=scandinavia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dscandinavia"><span><span class="hlt">Wind</span> structure and small-scale <span class="hlt">wind</span> <span class="hlt">variability</span> in the stratosphere and mesosphere during the November 1980 Energy Budget Campaign</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schmidlin, F. J.; Carlson, M.; Rees, D.; Offermann, D.; Philbrick, C. R.; Widdel, H. U.</p> <p>1982-01-01</p> <p>Rocket observations made from two sites in northern Scandinavia between November 6 and December 1, 1980, as part of the Energy Budget Campaign are discussed. It was found that significant vertical and temporal changes in the <span class="hlt">wind</span> structure were present and that they coincided with different geomagnetic conditions, that is, quiet and enhanced. Before November 16, the meridional <span class="hlt">wind</span> component above 60 km was found to be positive (southerly), whereas the magnitude of the zonal <span class="hlt">wind</span> component increased with altitude. After November 16 the meridional component became negative (northerly), and the magnitude of the zonal <span class="hlt">wind</span> component was observed to decrease with altitude. Time sections of the perturbations of the zonal <span class="hlt">wind</span> reveal the presence of vertically propagating waves, suggesting gravity wave activity. The waves are found to increase in wavelength from 3-4 km near 40 km to more than 12 km near 80 km. The observational techniques made use of chaff foil, chemical trails, inflatable spheres, and parachutes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PhDT........40E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PhDT........40E"><span><span class="hlt">Wind</span> farms production: Control and prediction</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>El-Fouly, Tarek Hussein Mostafa</p> <p></p> <p><span class="hlt">Wind</span> energy resources, unlike dispatchable central station generation, produce power dependable on external irregular source and that is the incident <span class="hlt">wind</span> speed which does not always blow when electricity is needed. This results in the <span class="hlt">variability</span>, unpredictability, and uncertainty of <span class="hlt">wind</span> resources. Therefore, the integration of <span class="hlt">wind</span> facilities to utility electrical grid presents a major challenge to power system operator. Such integration has significant impact on the optimum power flow, transmission congestion, power quality issues, system stability, load dispatch, and economic analysis. Due to the irregular nature of <span class="hlt">wind</span> power production, accurate prediction represents the major challenge to power system operators. Therefore, in this thesis two novel models are proposed for <span class="hlt">wind</span> speed and <span class="hlt">wind</span> power prediction. One proposed model is dedicated to short-term prediction (one-hour ahead) and the other involves medium term prediction (one-day ahead). The accuracy of the proposed models is revealed by comparing their results with the corresponding values of a reference prediction model referred to as the persistent model. Utility grid operation is not only impacted by the uncertainty of the future production of <span class="hlt">wind</span> farms, but also by the <span class="hlt">variability</span> of their current production and how the active and reactive power exchange with the grid is controlled. To address this particular task, a control technique for <span class="hlt">wind</span> turbines, driven by doubly-fed induction generators (DFIGs), is developed to regulate the terminal voltage by equally sharing the generated/absorbed reactive power between the rotor-side and the gridside converters. To highlight the impact of the new developed technique in reducing the power loss in the generator set, an economic analysis is carried out. Moreover, a new aggregated model for <span class="hlt">wind</span> farms is proposed that accounts for the irregularity of the incident <span class="hlt">wind</span> distribution throughout the farm layout. Specifically, this model includes the wake effect</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015IJC....88..193P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015IJC....88..193P"><span>? stability of <span class="hlt">wind</span> turbine switching control</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Palejiya, Dushyant; Shaltout, Mohamed; Yan, Zeyu; Chen, Dongmei</p> <p>2015-01-01</p> <p>In order to maximise the <span class="hlt">wind</span> energy capture, <span class="hlt">wind</span> turbines are operated at <span class="hlt">variable</span> speeds. Depending on the <span class="hlt">wind</span> speed, a turbine switches between two operating modes: a low <span class="hlt">wind</span> speed mode and a high <span class="hlt">wind</span> speed mode. During the low <span class="hlt">wind</span> speed mode, the control objective is to maximise <span class="hlt">wind</span> energy capture by controlling both the blade pitch angle and the electrical generator torque. During the high <span class="hlt">wind</span> speed mode, the control goal is to maintain the rated power generation by only adjusting the blade pitch angle. This paper establishes the stability criteria for the switching operation of <span class="hlt">wind</span> turbines using ? gain under the nonlinear control framework. Also, the performance of the <span class="hlt">wind</span> turbine system is analysed by using the step response, a well-known measure for second-order linear systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770032937&hterms=wind+monitor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dwind%2Bmonitor','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770032937&hterms=wind+monitor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dwind%2Bmonitor"><span>Solar <span class="hlt">wind</span> and extreme ultraviolet modulation of the lunar ionosphere/exosphere</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Freeman, J. W.</p> <p>1976-01-01</p> <p>The ALSEP/SIDE detectors routinely monitor the dayside lunar ionosphere. Variations in the ionosphere are found to correlate with both the 2800 MHz radio index which can be related to solar EUV and with the solar <span class="hlt">wind</span> proton flux. For the solar <span class="hlt">wind</span>, the ionospheric variation is proportionately greater than that of the solar <span class="hlt">wind</span>. This suggests an amplification effect on the lunar atmosphere due perhaps to sputtering of the surface or, less probably, an inordinate enhancement of noble gases in the solar <span class="hlt">wind</span>. The surface neutral number <span class="hlt">density</span> is calculated under the assumption of neon gas. During a quiet solar <span class="hlt">wind</span> this number agrees with or is slightly above that expected for neon accreted from the solar <span class="hlt">wind</span>. During an enhanced solar <span class="hlt">wind</span> the neutral number <span class="hlt">density</span> is much higher.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060012183&hterms=eta&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Deta','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060012183&hterms=eta&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Deta"><span>The Character and <span class="hlt">Variability</span> of the Eta Carinae <span class="hlt">Wind</span> Lines</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nielsen, K. E.; Corcoran, M. F.; Gull, T. R.; Ivarsson, S.; Hillier, J. D.</p> <p>2006-01-01</p> <p>The binarity of Eta Carinae has been debated for a long time. We have searched for more evidence for a companion star in a spectroscopic investigation of the Eta Carinae stellar <span class="hlt">wind</span> lines, using moderate spectral and high angular resolution HST/STIS data. Over Eta Carinae's 5.54 year spectroscopic period many of the observable <span class="hlt">wind</span> lines in the NUV/Optical spectral region exhibit peculiar line profiles with unusual velocity shifts relative to the system velocity. Some of the lines are exclusively blue-shifted over the entire cycle. Their ionization/excitation imply formation not in the stellar <span class="hlt">wind</span> but rather in the interface between the two massive stars. We have analyzed velocity and intensity variations over the spectroscopic period and interpreted what the variations tell us about the geometry of the nebular structure close to Eta Carinae.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810044425&hterms=radiation+Solar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dradiation%2BSolar','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810044425&hterms=radiation+Solar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dradiation%2BSolar"><span>Polar solar <span class="hlt">wind</span> and interstellar <span class="hlt">wind</span> properties from interplanetary Lyman-alpha radiation measurements</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Witt, N.; Blum, P. W.; Ajello, J. M.</p> <p>1981-01-01</p> <p>The analysis of Mariner 10 observations of Lyman-alpha resonance radiation shows an increase of interplanetary neutral hydrogen <span class="hlt">densities</span> above the solar poles. This increase is caused by a latitudinal variation of the solar <span class="hlt">wind</span> velocity and/or flux. Using both the Mariner 10 results and other solar <span class="hlt">wind</span> observations, the values of the solar <span class="hlt">wind</span> flux and velocity with latitude are determined for several cases of interest. The latitudinal variation of interplanetary hydrogen gas, arising from the solar <span class="hlt">wind</span> latitudinal variation, is shown to be most pronounced in the inner solar system. From this result it is shown that spacecraft Lyman-alpha observations are more sensitive to the latitudinal anisotropy for a spacecraft location in the inner solar system near the downwind axis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1373680-power-smoothing-variable-speed-wind-turbine-generator-association-rotor-speed-dependent-gain','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1373680-power-smoothing-variable-speed-wind-turbine-generator-association-rotor-speed-dependent-gain"><span>Power Smoothing of a <span class="hlt">Variable</span>-Speed <span class="hlt">Wind</span> Turbine Generator in Association With the Rotor-Speed-Dependent Gain</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kim, Yeonhee; Kang, Moses; Muljadi, Eduard</p> <p></p> <p>This paper proposes a power-smoothing scheme for a <span class="hlt">variable</span>-speed <span class="hlt">wind</span> turbine generator (WTG) that can smooth out the WTG's fluctuating power caused by varying <span class="hlt">wind</span> speeds, and thereby keep the system frequency within a narrow range. The proposed scheme employs an additional loop based on the system frequency deviation that operates in conjunction with the maximum power point tracking (MPPT) control loop. Unlike the conventional, fixed-gain scheme, its control gain is modified with the rotor speed. In the proposed scheme, the control gain is determined by considering the ratio of the output of the additional loop to that of themore » MPPT loop. To improve the contribution of the scheme toward maintaining the frequency while ensuring the stable operation of WTGs, in the low rotor speed region, the ratio is set to be proportional to the rotor speed; in the high rotor speed region, the ratio remains constant. The performance of the proposed scheme is investigated under varying <span class="hlt">wind</span> conditions for the IEEE 14-bus system. The simulation results demonstrate that the scheme successfully operates regardless of the output power fluctuation of a WTG by adjusting the gain with the rotor speed, and thereby improves the frequency-regulating capability of a WTG.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..DFDM39007Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..DFDM39007Y"><span>Golf in the <span class="hlt">Wind</span>: Exploring the Effect of <span class="hlt">Wind</span> on the Accuracy of Golf Shots</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yaghoobian, Neda; Mittal, Rajat</p> <p>2015-11-01</p> <p>Golf play is highly dependent on the weather conditions with <span class="hlt">wind</span> being the most significant factor in the unpredictability of the ball landing position. The direction and strength of the <span class="hlt">wind</span> alters the aerodynamic forces on a ball in flight, and consequently its speed, distance and direction of travel. The fact that local <span class="hlt">wind</span> conditions on any particular hole change over times-scales ranging all the way from a few seconds to minutes, hours and days introduces an element of <span class="hlt">variability</span> in the ball trajectory that is not understood. Any such analysis is complicated by the effect of the local terrestrial and vegetation topology, as well as the inherent complexity of golf-ball aerodynamics. In the current study, we use computational modeling to examine the unpredictability of the shots under different <span class="hlt">wind</span> conditions over Hole-12 at the Augusta National Golf Club, where the Masters Golf Tournament takes place every year. Despite this being the shortest hole on the course, the presence of complex vegetation canopy around this hole introduces a spatial and temporal <span class="hlt">variability</span> in <span class="hlt">wind</span> conditions that evokes uncertainty and even fear among professional golfers. We use our model to examine the effect of <span class="hlt">wind</span> direction and <span class="hlt">wind</span>-speed on the accuracy of the golf shots at this hole and use the simulations to determine the key aerodynamic factors that affect the accuracy of the shot.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.473.3241H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.473.3241H"><span>The space <span class="hlt">density</span> of post-period minimum Cataclysmic <span class="hlt">Variables</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hernández Santisteban, J. V.; Knigge, C.; Pretorius, M. L.; Sullivan, M.; Warner, B.</p> <p>2018-01-01</p> <p>Binary evolution theory predicts that accreting white dwarfs with substellar companions dominate the Galactic population of cataclysmic <span class="hlt">variables</span> (CVs). In order to test these predictions, it is necessary to identify these systems, which may be difficult if the signatures of accretion become too weak to be detected. The only chance to identify such 'dead' CVs is by exploiting their close binary nature. We have therefore searched the Sloan Digital Sky Survey (SDSS) Stripe 82 area for apparently isolated white dwarfs that undergo eclipses by a dark companion. We found no such eclipses in either the SDSS or Palomar Transient Factory data sets among our sample of 2264 photometrically selected white dwarf candidates within Stripe 82. This null result allows us to set a firm upper limit on the space <span class="hlt">density</span>, ρ0, of dead CVs. In order to determine this limit, we have used Monte Carlo simulations to fold our selection criteria through a simple model of the Galactic CV distribution. Assuming a TWD = 7500 K, the resulting 2σ limit on the space <span class="hlt">density</span> of dead CVs is ρ0 ≲ 2 × 10-5 pc-3, where TWD is the typical effective temperature of the white dwarf in such systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013DPS....4531209M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013DPS....4531209M"><span>The Polar <span class="hlt">Winds</span> of Saturn as Determined by Cassini/VIMS: Seasonally <span class="hlt">Variable</span> or Not?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Momary, Thomas W.; Baines, K. H.; Brown, R. H.; Buratti, B. J.; Clark, R. N.; Nicholson, P. D.; Sotin, C.; Cassini/VIMS Science Team</p> <p>2013-10-01</p> <p>The high inclination of Cassini's current orbit allows VIMS to once again obtain spectacular views of Saturn’s poles, not seen since 2008. We present new imagery and investigate the effect of seasonal <span class="hlt">variability</span> on Saturn’s polar <span class="hlt">winds</span>. The north pole now basks in spring daylight and we again observe the long-enduring northern Polar Hexagon, discovered in Voyager imagery by Godfrey (Icarus 76, 335-356, 1988). This feature seemed to stay fixed in a rotational system defined by the Voyager-era radio rotation rate (Desch & Kaiser, Geophys. Res. Lett, 8, 253-256, 1981) in both original Voyager and 2008 VIMS observations. Yet new images indicate a shift, with the hexagon rotating ~10° of longitude from Nov. 2012 to May 2013. Discrete clouds still race around the edges of the 5-μm-bright hexagon at speeds of ~100 m/s, as we observed in 2008 (Baines, Momary, et al., Plan. Space. Sci 57, 1671-1681, 2009). We also recover a massive storm system residing just inside the hexagon edge at ~80° N. lat. Since 2008, this storm has shifted poleward by 1.5° and turned 5 μm dark (cloudy), where it was 5 μm bright when last observed (i.e. cloud free). It now moves zonally faster at ~25 m/s vs. ~14 m/s in 2008. This enduring "shepherd" storm may force and maintain the hexagon shape. We also recover twin 5-μm-dark storms (Snake Eyes) moving slowly at ~15 m/s near 67° N lat. However, while the two features appear to maintain a relatively constant zonal separation on average (14° ), with the trailing feature remaining near 67° N lat., the leading storm appears to oscillate ~1° in latitude and drift in longitude. At the south pole, discrete clouds whirl, now in darkness, around a hurricane-like vortex consisting of a cloudless "eye" extending at least 1 bar deeper than surrounding rings of clouds. These clouds still appear to be moving as a classical vortex with <span class="hlt">winds</span> reaching a maximum of ~200 m/s near 87° S lat. and then falling off to zero at the pole. In contrast</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AtmEn..74...60L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AtmEn..74...60L"><span><span class="hlt">Variability</span> of CO2 concentrations and fluxes in and above an urban street canyon</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lietzke, Björn; Vogt, Roland</p> <p>2013-08-01</p> <p>The <span class="hlt">variability</span> of CO2 concentrations and fluxes in dense urban environments is high due to the inherent heterogeneity of these complex areas and their spatio-temporally <span class="hlt">variable</span> anthropogenic sources. With a focus on micro- to local-scale CO2-exchange processes, measurements were conducted in a street canyon in the city of Basel, Switzerland in 2010. CO2 fluxes were sampled at the top of the canyon (19 m) and at 39 m while vertical CO2 concentration profiles were measured in the center and at a wall of the canyon. CO2 concentration distributions in the street canyon and exchange processes with the layers above show, apart from expected general diurnal patterns due mixing layer heights, a strong dependence on <span class="hlt">wind</span> direction relative to the canyon. As a consequence of the resulting corkscrew-like canyon vortex, accumulation of CO2 inside the canyon is modulated with distinct distribution patterns. The evaluation of diurnal traffic data provides good explanations for the vertical and horizontal differences in CO2-distribution inside the canyon. Diurnal flux characteristics at the top of the canyon can almost solely be explained with traffic <span class="hlt">density</span> expressed by the strong linear dependence. Even the diurnal course of the flux at 39 m shows a remarkable relationship to traffic <span class="hlt">density</span> for east <span class="hlt">wind</span> conditions while, for west <span class="hlt">wind</span> situations, a change toward source areas with lower emissions leads to a reduced flux.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830052897&hterms=ACCOUNTS+CHARGE&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DACCOUNTS%2BBY%2BCHARGE','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830052897&hterms=ACCOUNTS+CHARGE&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DACCOUNTS%2BBY%2BCHARGE"><span>Charge exchange in solar <span class="hlt">wind</span>-cometary interactions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gombosi, T. I.; Horanyi, M.; Kecskemety, K.; Cravens, T. E.; Nagy, A. F.</p> <p>1983-01-01</p> <p>A simple model of a cometary spherically symmetrical atmosphere and ionosphere is considered. An analytic solution of the governing equations describing the radial distribution of the neutral and ion <span class="hlt">densities</span> is found. The new solution is compared to the well-known solution of the equations containing only ionization terms. Neglecting recombination causes a significant overestimate of the ion <span class="hlt">density</span> in the vicinity of the comet. An axisymmetric model of the solar <span class="hlt">wind</span>-cometary interaction is considered, taking into account the loss of solar <span class="hlt">wind</span> ions due to charge exchange. The calculations predict that for active comets, solar <span class="hlt">wind</span> absorption due to charge exchange becomes important at a few thousand kilometers from the nucleus, and a surface separating the shocked solar <span class="hlt">wind</span> from the cometary ionosphere develops in this region. These calculations are in reasonable agreement with the few observations available for the ionopause location at comets.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1222896-near-surface-density-currents-observed-southeast-pacific-stratocumulus-topped-marine-boundary-layer','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1222896-near-surface-density-currents-observed-southeast-pacific-stratocumulus-topped-marine-boundary-layer"><span>Near-surface <span class="hlt">Density</span> Currents Observed in the Southeast Pacific Stratocumulus-topped Marine Boundary Layer</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wilbanks, Matt C.; Yuter, S. E.; de Szoeke, S.</p> <p>2015-09-01</p> <p><span class="hlt">Density</span> currents (i.e. cold pools or outflows) beneath marine stratocumulus clouds are characterized using a 30-d data set of ship-based observations obtained during the 2008 <span class="hlt">Variability</span> of American Monsoon Systems (VAMOS) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) in the southeast Pacific. An objective method identifies 71 <span class="hlt">density</span> current fronts using an air <span class="hlt">density</span> criterion and isolates each <span class="hlt">density</span> current’s core (peak <span class="hlt">density</span>) and tail (dissipating) zone. Compared to front and core zones, most <span class="hlt">density</span> current tails exhibited weaker <span class="hlt">density</span> gradients and <span class="hlt">wind</span> anomalies elongated about the axis of the mean <span class="hlt">wind</span>. The mean cloud-level advection relative to the surface layer windmore » (1.9 m s-1) nearly matches the mean <span class="hlt">density</span> current propagation speed (1.8 m s-1). The similarity in speeds allows drizzle cells to deposit tails in their wakes. Based on high-resolution scanning Doppler lidar data, prefrontal updrafts had a mean intensity of 0.91 m s-1, reached an average altitude of 800 m, and were often surmounted by low-lying shelf clouds not connected to the overlying stratocumulus cloud. Nearly 90% of <span class="hlt">density</span> currents were identified when C-band radar estimated 30-km diameter areal average rain rates exceeded 1 mm d-1. Rather than peaking when rain rates are highest overnight, <span class="hlt">density</span> current occurrence peaks between 0600 and 0800 local solar time when enhanced local drizzle co-occurs with shallow subcloud dry and stable layers. The dry layers may contribute to <span class="hlt">density</span> current formation by enhancing subcloud evaporation of drizzle. <span class="hlt">Density</span> currents preferentially occur in regions of open cells but also occur in regions of closed cells.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16397760','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16397760"><span><span class="hlt">Wind</span>-chill-equivalent temperatures: regarding the impact due to the <span class="hlt">variability</span> of the environmental convective heat transfer coefficient.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shitzer, Avraham</p> <p>2006-03-01</p> <p>The <span class="hlt">wind</span>-chill index (WCI), developed in Antarctica in the 1940s and recently updated by the weather services in the USA and Canada, expresses the enhancement of heat loss in cold climates from exposed body parts, e.g., face, due to <span class="hlt">wind</span>. The index provides a simple and practical means for assessing the thermal effects of <span class="hlt">wind</span> on humans outdoors. It is also used for indicating weather conditions that may pose adverse risks of freezing at subfreezing environmental temperatures. Values of the WCI depend on a number of parameters, i.e, temperatures, physical properties of the air, <span class="hlt">wind</span> speed, etc., and on insolation and evaporation. This paper focuses on the effects of various empirical correlations used in the literature for calculating the convective heat transfer coefficients between humans and their environment. Insolation and evaporation are not included in the presentation. Large differences in calculated values among these correlations are demonstrated and quantified. Steady-state <span class="hlt">wind</span>-chill-equivalent temperatures (WCETs) are estimated by a simple, one-dimensional heat-conducting hollow-cylindrical model using these empirical correlations. Partial comparison of these values with the published "new" WCETs is presented. The <span class="hlt">variability</span> of the estimated WCETs, due to different correlations employed to calculate them, is clearly demonstrated. The results of this study clearly suggest the need for establishing a "gold standard" for estimating convective heat exchange between exposed body elements and the cold and windy environment. This should be done prior to the introduction and adoption of further modifications to WCETs and indices. Correlations to estimate the convective heat transfer coefficients between exposed body parts of humans in windy and cold environments influence the WCETs and need to be standardized.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ESD.....8..529V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ESD.....8..529V"><span>Estimation of the high-spatial-resolution <span class="hlt">variability</span> in extreme <span class="hlt">wind</span> speeds for forestry applications</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Venäläinen, Ari; Laapas, Mikko; Pirinen, Pentti; Horttanainen, Matti; Hyvönen, Reijo; Lehtonen, Ilari; Junila, Päivi; Hou, Meiting; Peltola, Heli M.</p> <p>2017-07-01</p> <p>The bioeconomy has an increasing role to play in climate change mitigation and the sustainable development of national economies. In Finland, a forested country, over 50 % of the current bioeconomy relies on the sustainable management and utilization of forest resources. <span class="hlt">Wind</span> storms are a major risk that forests are exposed to and high-spatial-resolution analysis of the most vulnerable locations can produce risk assessment of forest management planning. In this paper, we examine the feasibility of the <span class="hlt">wind</span> multiplier approach for downscaling of maximum <span class="hlt">wind</span> speed, using 20 m spatial resolution CORINE land-use dataset and high-resolution digital elevation data. A coarse spatial resolution estimate of the 10-year return level of maximum <span class="hlt">wind</span> speed was obtained from the ERA-Interim reanalyzed data. Using a geospatial re-mapping technique the data were downscaled to 26 meteorological station locations to represent very diverse environments. Applying a comparison, we find that the downscaled 10-year return levels represent 66 % of the observed variation among the stations examined. In addition, the spatial variation in <span class="hlt">wind</span>-multiplier-downscaled 10-year return level <span class="hlt">wind</span> was compared with the WAsP model-simulated <span class="hlt">wind</span>. The heterogeneous test area was situated in northern Finland, and it was found that the major features of the spatial variation were similar, but in some locations, there were relatively large differences. The results indicate that the <span class="hlt">wind</span> multiplier method offers a pragmatic and computationally feasible tool for identifying at a high spatial resolution those locations with the highest forest <span class="hlt">wind</span> damage risks. It can also be used to provide the necessary <span class="hlt">wind</span> climate information for <span class="hlt">wind</span> damage risk model calculations, thus making it possible to estimate the probability of predicted threshold <span class="hlt">wind</span> speeds for <span class="hlt">wind</span> damage and consequently the probability (and amount) of <span class="hlt">wind</span> damage for certain forest stand configurations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/5707465-airship-floated-wind-turbine','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5707465-airship-floated-wind-turbine"><span>Airship-floated <span class="hlt">wind</span> turbine</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Watson, W. K.</p> <p>1985-01-01</p> <p>A <span class="hlt">wind</span> turbine, by use of a tethered airship for support, may be designed for the economical recovery of power at heights of 2,000 feet or more above ground, at which height power <span class="hlt">density</span> in the <span class="hlt">wind</span> is typically three times the power <span class="hlt">density</span> available to a conventionally supported <span class="hlt">wind</span> turbine. Means can be added to such an airship-floated <span class="hlt">wind</span> turbine which will permit its generators to be used to meet load demand even during periods of little or no <span class="hlt">wind</span>. Described to this end is a <span class="hlt">wind</span> turbine system which combines, among other novel features: a novel tether linemore » system which provides access for men and materials to the supporting airship while in active service, a novel system for providing additional buoyant lift at the nose of the turbine-supporting airship to offset the vertical component of tension induced in the tether line by the downwind force exerted by the turbine blades, a novel bearing assembly at the nose of the supporting airship which permits the airship to rotate as a unit with the turbine it supports without causing a similar rotation of the tether line, a novel turbine airship structure which handles concentrated loads from the turbine efficiently and also permits the safe use of hydrogen for buoyancy, a novel ''space frame'' structure which supports the turbine blades and greatly reduces blade weight, a novel system for controlling turbine blade angle of incidence and for varying blade incidene in synchrony with blade angular position abut the turbine axis to provide greater control over airship movement, a novel system for locating propellor-driven generators out at the <span class="hlt">wind</span> turbine perimeter and for using lightweight, high-RPM generators to produce electrical energy at a power line frequency, which greatly reduces the weight required to convert turbine blade torque into useful power, and a novel system for incorporating compressed air storage and combustion turbine components into the <span class="hlt">wind</span> turbine's generator drive systems.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6548M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6548M"><span>Stratified flows with <span class="hlt">variable</span> <span class="hlt">density</span>: mathematical modelling and numerical challenges.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murillo, Javier; Navas-Montilla, Adrian</p> <p>2017-04-01</p> <p>Stratified flows appear in a wide variety of fundamental problems in hydrological and geophysical sciences. They may involve from hyperconcentrated floods carrying sediment causing collapse, landslides and debris flows, to suspended material in turbidity currents where turbulence is a key process. Also, in stratified flows <span class="hlt">variable</span> horizontal <span class="hlt">density</span> is present. Depending on the case, <span class="hlt">density</span> varies according to the volumetric concentration of different components or species that can represent transported or suspended materials or soluble substances. Multilayer approaches based on the shallow water equations provide suitable models but are not free from difficulties when moving to the numerical resolution of the governing equations. Considering the variety of temporal and spatial scales, transfer of mass and energy among layers may strongly differ from one case to another. As a consequence, in order to provide accurate solutions, very high order methods of proved quality are demanded. Under these complex scenarios it is necessary to observe that the numerical solution provides the expected order of accuracy but also converges to the physically based solution, which is not an easy task. To this purpose, this work will focus in the use of Energy balanced augmented solvers, in particular, the Augmented Roe Flux ADER scheme. References: J. Murillo , P. García-Navarro, Wave Riemann description of friction terms in unsteady shallow flows: Application to water and mud/debris floods. J. Comput. Phys. 231 (2012) 1963-2001. J. Murillo B. Latorre, P. García-Navarro. A Riemann solver for unsteady computation of 2D shallow flows with <span class="hlt">variable</span> <span class="hlt">density</span>. J. Comput. Phys.231 (2012) 4775-4807. A. Navas-Montilla, J. Murillo, Energy balanced numerical schemes with very high order. The Augmented Roe Flux ADER scheme. Application to the shallow water equations, J. Comput. Phys. 290 (2015) 188-218. A. Navas-Montilla, J. Murillo, Asymptotically and exactly energy balanced augmented flux</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.P13B1922S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.P13B1922S"><span>Gravitational Anomalies Caused by Zonal <span class="hlt">Winds</span> in Jupiter</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schubert, G.; Kong, D.; Zhang, K.</p> <p>2012-12-01</p> <p>We present an accurate three-dimensional non-spherical numerical calculation of the gravitational anomalies caused by zonal <span class="hlt">winds</span> in Jupiter. The calculation is based on a three-dimensional finite element method and accounts for the full effect of significant departure from spherical geometry caused by rapid rotation. Since the speeds of Jupiter's zonal <span class="hlt">winds</span> are much smaller than that of its rigid-body rotation, our numerical calculation is carried out in two stages. First, we compute the non-spherical distributions of <span class="hlt">density</span> and pressure at the equilibrium within Jupiter via a hybrid inverse approach by determining an a priori unknown coefficient in the polytropic equation of state that results in a match to the observed shape of Jupiter. Second, by assuming that Jupiter's zonal <span class="hlt">winds</span> extend throughout the interior along cylinders parallel to the rotation axis, we compute gravitational anomalies produced by the <span class="hlt">wind</span>-related <span class="hlt">density</span> anomalies, providing an upper bound to the gravitational anomalies caused by the Jovian zonal <span class="hlt">winds</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C22B..03S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C22B..03S"><span><span class="hlt">Wind</span> Tunnel Experiments: Influence of Erosion and Deposition on <span class="hlt">Wind</span>-Packing of New Snow</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sommer, C.; Fierz, C. G.; Lehning, M.</p> <p>2017-12-01</p> <p>We observed the formation of <span class="hlt">wind</span> crusts in <span class="hlt">wind</span> tunnel experiments. A SnowMicroPen was used to measure the hardness profile of the snow and a Microsoft Kinect provided distributed snow depth data. Earlier experiments showed that no crust forms without saltation and that the dynamics of erosion and deposition may be a key factor to explain <span class="hlt">wind</span>-packing. The Kinect data could be used to quantify spatial erosion and deposition patterns and the combination with the SnowMicroPen data allowed to study the effect of erosion and deposition on <span class="hlt">wind</span>-hardening. We found that erosion had no hardening effect on fresh snow and that deposition is a necessary but not sufficient condition for <span class="hlt">wind</span> crust formation. Deposited snow was only hardened in <span class="hlt">wind</span>-exposed areas. The Kinect data was used to calculate the <span class="hlt">wind</span>-exposure parameter Sx. We observed no significant hardening for Sx>0.25. The <span class="hlt">variability</span> of resulting <span class="hlt">wind</span> crust hardnesses at Sx<0.25 was still large, however.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22486530-su-characterizing-printing-fabrication-variable-density-phantoms','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22486530-su-characterizing-printing-fabrication-variable-density-phantoms"><span>SU-C-213-02: Characterizing 3D Printing in the Fabrication of <span class="hlt">Variable</span> <span class="hlt">Density</span> Phantoms</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Madamesila, J; McGeachy, P; Villarreal-Barajas, J</p> <p></p> <p>Purpose: In this work, we present characterization, process flow, quality control and application of 3D fabricated low <span class="hlt">density</span> phantoms for radiotherapy quality assurance. Methods: A Rostock delta 3D printer using polystyrene filament of diameter 1.75 mm was used to print geometric volumes of 2×2×1 cm{sup 3} of varying <span class="hlt">densities</span>. The <span class="hlt">variable</span> <span class="hlt">densities</span> of 0.1 to 0.75 g/cm {sup 3} were created by modulating the infill. A computed tomography (CT) scan was performed to establish an infill-<span class="hlt">density</span> calibration curve as well as characterize the quality of the print such as uniformity and the infill pattern. The time required to print thesemore » volumes was also recorded. Using the calibration, two low <span class="hlt">density</span> cones (0.19, 0.52 g/cm{sup 3}) were printed and benchmarked against commercially available phantoms. The dosimetric validation of the low <span class="hlt">density</span> scaling of Anisotropic Analytical Algorithm (AAA) was performed by using a 0.5 g/cm{sup 3} slab of 10×10×2.4 cm{sup 3} with EBT3 GafChromic film. The gamma analysis at 3%/3mm criteria were compared for the measured and computed dose planes. Results: Analysis of the volume of air pockets in the infill resulted in a reasonable uniformity for <span class="hlt">densities</span> 0.4 to 0.75 g/cm{sup 3}. Printed phantoms with <span class="hlt">densities</span> below 0.4 g/cm{sup 3} exhibited a higher ratio of air to polystyrene resulting in large non-uniformity. Compared to the commercial inserts, good agreement was observed only for the printed 0.52 g/cm{sup 3} cone. Dosimetric comparison for a printed low <span class="hlt">density</span> volume placed in-between layers of solid water resulted in >95% gamma agreement between AAA calculated dose planes and measured EBT3 films for a 6MV 5×5 cm{sup 2} clinical beam. The comparison showed disagreement in the penumbra region. Conclusion: In conclusion, 3D printing technology opens the door to desktop fabrication of <span class="hlt">variable</span> <span class="hlt">density</span> phantoms at economical prices in an efficient manner for the quality assurance needs of a small clinic.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/861052','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/861052"><span>Low <span class="hlt">Wind</span> Speed Turbine Project Phase II: The Application of Medium-Voltage Electrical Apparatus to the Class of <span class="hlt">Variable</span> Speed Multi-Megawatt Low <span class="hlt">Wind</span> Speed Turbines; 15 June 2004--30 April 2005</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Erdman, W.; Behnke, M.</p> <p>2005-11-01</p> <p>Kilowatt ratings of modern <span class="hlt">wind</span> turbines have progressed rapidly from 50 kW to 1,800 kW over the past 25 years, with 3.0- to 7.5-MW turbines expected in the next 5 years. The premise of this study is simple: The rapid growth of <span class="hlt">wind</span> turbine power ratings and the corresponding growth in turbine electrical generation systems and associated controls are quickly making low-voltage (LV) electrical design approaches cost-ineffective. This report provides design detail and compares the cost of energy (COE) between commercial LV-class <span class="hlt">wind</span> power machines and emerging medium-voltage (MV)-class multi-megawatt <span class="hlt">wind</span> technology. The key finding is that a 2.5% reductionmore » in the COE can be achieved by moving from LV to MV systems. This is a conservative estimate, with a 3% to 3.5% reduction believed to be attainable once purchase orders to support a 250-turbine/year production level are placed. This evaluation considers capital costs as well as installation, maintenance, and training requirements for <span class="hlt">wind</span> turbine maintenance personnel. Subsystems investigated include the generator, pendant cables, <span class="hlt">variable</span>-speed converter, and padmount transformer with switchgear. Both current-source and voltage-source converter/inverter MV topologies are compared against their low-voltage, voltage-source counterparts at the 3.0-, 5.0-, and 7.5-MW levels.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20434153','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20434153"><span><span class="hlt">Wind</span> turbine power tracking using an improved multimodel quadratic approach.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Khezami, Nadhira; Benhadj Braiek, Naceur; Guillaud, Xavier</p> <p>2010-07-01</p> <p>In this paper, an improved multimodel optimal quadratic control structure for <span class="hlt">variable</span> speed, pitch regulated <span class="hlt">wind</span> turbines (operating at high <span class="hlt">wind</span> speeds) is proposed in order to integrate high levels of <span class="hlt">wind</span> power to actively provide a primary reserve for frequency control. On the basis of the nonlinear model of the studied plant, and taking into account the <span class="hlt">wind</span> speed fluctuations, and the electrical power variation, a multimodel linear description is derived for the <span class="hlt">wind</span> turbine, and is used for the synthesis of an optimal control law involving a state feedback, an integral action and an output reference model. This new control structure allows a rapid transition of the <span class="hlt">wind</span> turbine generated power between different desired set values. This electrical power tracking is ensured with a high-performance behavior for all other state <span class="hlt">variables</span>: turbine and generator rotational speeds and mechanical shaft torque; and smooth and adequate evolution of the control <span class="hlt">variables</span>. 2010 ISA. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApJ...833..165Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApJ...833..165Z"><span>Disk-<span class="hlt">Wind</span> Connection during the Heartbeats of GRS 1915+105</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zoghbi, Abderahmen; Miller, J. M.; King, A. L.; Miller, M. C.; Proga, D.; Kallman, T.; Fabian, A. C.; Harrison, F. A.; Kaastra, J.; Raymond, J.; Reynolds, C. S.; Boggs, S. E.; Christensen, F. E.; Craig, W.; Hailey, C. J.; Stern, D.; Zhang, W. W.</p> <p>2016-12-01</p> <p>Disk and <span class="hlt">wind</span> signatures are seen in the soft state of Galactic black holes, while the jet is seen in the hard state. Here we study the disk-<span class="hlt">wind</span> connection in the ρ class of <span class="hlt">variability</span> in GRS 1915+105 using a joint NuSTAR-Chandra observation. The source shows 50 s limit cycle oscillations. By including new information provided by the reflection spectrum and using phase-resolved spectroscopy, we find that the change in the inner disk inferred from the blackbody emission is not matched by reflection measurements. The latter is almost constant, independent of the continuum model. The two radii are comparable only if the disk temperature color correction factor changes, an effect that could be due to the changing opacity of the disk caused by changes in metal abundances. The disk inclination is similar to that inferred from the jet axis, and oscillates by ˜10°. The simultaneous Chandra data show the presence of two <span class="hlt">wind</span> components with velocities between 500 and 5000 km s-1, and possibly two more with velocities reaching 20,000 km s-1 (˜0.06 c). The column <span class="hlt">densities</span> are ˜5 × 1022 cm-2. An upper limit to the <span class="hlt">wind</span> response time of 2 s is measured, implying a launch radius of <6 × 1010 cm. The changes in <span class="hlt">wind</span> velocity and absorbed flux require the geometry of the <span class="hlt">wind</span> to change during the oscillations, constraining the <span class="hlt">wind</span> to be launched from a distance of 290-1300 r g from the black hole. Both data sets support fundamental model predictions in which a bulge originates in the inner disk and moves outward as the instability progresses.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910063759&hterms=Phytoplankton&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DPhytoplankton','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910063759&hterms=Phytoplankton&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DPhytoplankton"><span>Phytoplankton pigment patterns and <span class="hlt">wind</span> forcing off central California</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Abbott, Mark R.; Barksdale, Brett</p> <p>1991-01-01</p> <p>Mesoscale <span class="hlt">variability</span> in phytoplankton pigment distributions of central California during the spring-summer upwelling season are studied via a 4-yr time series of high-resolution coastal zone color scanner imagery. Empirical orthogonal functions are used to decompose the time series of spatial images into its dominant modes of <span class="hlt">variability</span>. The coupling between <span class="hlt">wind</span> forcing of the upper ocean and phytoplankton distribution on mesoscales is investigated. <span class="hlt">Wind</span> forcing, in particular the curl of the <span class="hlt">wind</span> stress, was found to play an important role in the distribution of phytoplankton pigment in the California Current. The spring transition varies in timing and intensity from year to year but appears to be a recurrent feature associated with the rapid onset of the upwelling-favorable <span class="hlt">winds</span>. Although the underlying dynamics may be dominated by processes other than forcing by <span class="hlt">wind</span> stress curl, it appears that curl may force the <span class="hlt">variability</span> of the filaments and hence the pigment patterns.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMIN11B0033T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMIN11B0033T"><span>Statistical Compression of <span class="hlt">Wind</span> Speed Data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tagle, F.; Castruccio, S.; Crippa, P.; Genton, M.</p> <p>2017-12-01</p> <p>In this work we introduce a lossy compression approach that utilizes a stochastic <span class="hlt">wind</span> generator based on a non-Gaussian distribution to reproduce the internal climate <span class="hlt">variability</span> of daily <span class="hlt">wind</span> speed as represented by the CESM Large Ensemble over Saudi Arabia. Stochastic <span class="hlt">wind</span> generators, and stochastic weather generators more generally, are statistical models that aim to match certain statistical properties of the data on which they are trained. They have been used extensively in applications ranging from agricultural models to climate impact studies. In this novel context, the parameters of the fitted model can be interpreted as encoding the information contained in the original uncompressed data. The statistical model is fit to only 3 of the 30 ensemble members and it adequately captures the <span class="hlt">variability</span> of the ensemble in terms of seasonal internannual <span class="hlt">variability</span> of daily <span class="hlt">wind</span> speed. To deal with such a large spatial domain, it is partitioned into 9 region, and the model is fit independently to each of these. We further discuss a recent refinement of the model, which relaxes this assumption of regional independence, by introducing a large-scale component that interacts with the fine-scale regional effects.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ExFl...58....1B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ExFl...58....1B"><span>Measurement of unsteady loading and power output <span class="hlt">variability</span> in a micro <span class="hlt">wind</span> farm model in a <span class="hlt">wind</span> tunnel</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bossuyt, Juliaan; Howland, Michael F.; Meneveau, Charles; Meyers, Johan</p> <p>2017-01-01</p> <p>Unsteady loading and spatiotemporal characteristics of power output are measured in a <span class="hlt">wind</span> tunnel experiment of a microscale <span class="hlt">wind</span> farm model with 100 porous disk models. The model <span class="hlt">wind</span> farm is placed in a scaled turbulent boundary layer, and six different layouts, varied from aligned to staggered, are considered. The measurements are done by making use of a specially designed small-scale porous disk model, instrumented with strain gages. The frequency response of the measurements goes up to the natural frequency of the model, which corresponds to a reduced frequency of 0.6 when normalized by the diameter and the mean hub height velocity. The equivalent range of timescales, scaled to field-scale values, is 15 s and longer. The accuracy and limitations of the acquisition technique are documented and verified with hot-wire measurements. The spatiotemporal measurement capabilities of the experimental setup are used to study the cross-correlation in the power output of various porous disk models of <span class="hlt">wind</span> turbines. A significant correlation is confirmed between streamwise aligned models, while staggered models show an anti-correlation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JPhCS..75a2082O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JPhCS..75a2082O"><span>Estimation of effective <span class="hlt">wind</span> speed</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Østergaard, K. Z.; Brath, P.; Stoustrup, J.</p> <p>2007-07-01</p> <p>The <span class="hlt">wind</span> speed has a huge impact on the dynamic response of <span class="hlt">wind</span> turbine. Because of this, many control algorithms use a measure of the <span class="hlt">wind</span> speed to increase performance, e.g. by gain scheduling and feed forward. Unfortunately, no accurate measurement of the effective <span class="hlt">wind</span> speed is online available from direct measurements, which means that it must be estimated in order to make such control methods applicable in practice. In this paper a new method is presented for the estimation of the effective <span class="hlt">wind</span> speed. First, the rotor speed and aerodynamic torque are estimated by a combined state and input observer. These two <span class="hlt">variables</span> combined with the measured pitch angle is then used to calculate the effective <span class="hlt">wind</span> speed by an inversion of a static aerodynamic model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/21578209-systematic-search-corotating-interaction-regions-apparently-single-galactic-wolf-rayet-stars-ii-global-view-wind-variability','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21578209-systematic-search-corotating-interaction-regions-apparently-single-galactic-wolf-rayet-stars-ii-global-view-wind-variability"><span>A SYSTEMATIC SEARCH FOR COROTATING INTERACTION REGIONS IN APPARENTLY SINGLE GALACTIC WOLF-RAYET STARS. II. A GLOBAL VIEW OF THE <span class="hlt">WIND</span> <span class="hlt">VARIABILITY</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chene, A.-N.; St-Louis, N., E-mail: achene@astro-udec.cl, E-mail: stlouis@astro.umontreal.ca</p> <p></p> <p>This study is the second part of a survey searching for large-scale spectroscopic <span class="hlt">variability</span> in apparently single Wolf-Rayet (WR) stars. In a previous paper (Paper I), we described and characterized the spectroscopic <span class="hlt">variability</span> level of 25 WR stars observable from the northern hemisphere and found 3 new candidates presenting large-scale <span class="hlt">wind</span> <span class="hlt">variability</span>, potentially originating from large-scale structures named corotating interaction regions (CIRs). In this second paper, we discuss an additional 39 stars observable from the southern hemisphere. For each star in our sample, we obtained 4-5 high-resolution spectra with a signal-to-noise ratio of {approx}100 and determined its <span class="hlt">variability</span> level usingmore » the approach described in Paper I. In total, 10 new stars are found to show large-scale spectral <span class="hlt">variability</span> of which 7 present CIR-type changes (WR 8, WR 44, WR55, WR 58, WR 61, WR 63, WR 100). Of the remaining stars, 20 were found to show small-amplitude changes and 9 were found to show no spectral <span class="hlt">variability</span> as far as can be concluded from the data on hand. Also, we discuss the spectroscopic <span class="hlt">variability</span> level of all single galactic WR stars that are brighter than v {approx} 12.5, and some WR stars with 12.5 < v {<=} 13.5, i.e., all the stars presented in our two papers and four more stars for which spectra have already been published in the literature. We find that 23/68 stars (33.8%) present large-scale <span class="hlt">variability</span>, but only 12/54 stars ({approx}22.1%) are potentially of CIR type. Also, we find that 31/68 stars (45.6%) only show small-scale <span class="hlt">variability</span>, most likely due to clumping in the <span class="hlt">wind</span>. Finally, no spectral <span class="hlt">variability</span> is detected based on the data on hand for 14/68 (20.6%) stars. Interestingly, the <span class="hlt">variability</span> with the highest amplitude also has the widest mean velocity dispersion.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27396104','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27396104"><span>[Dynamics of sap flow <span class="hlt">density</span> in stems of typical desert shrub Calligonum mongolicum and its responses to environmental <span class="hlt">variables</span>].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Shi-qin; Ji, Xi-bin; Jin, Bo-wen</p> <p>2016-02-01</p> <p>Independent measurements of stem sap flow in stems of Calligonum mongolicum and environmental <span class="hlt">variables</span> using commercial sap flow gauges and a micrometeorological monitoring system, respectively, were made to simulate the variation of sap flow <span class="hlt">density</span> in the middle range of Hexi Corridor, Northwest China during June to September, 2014. The results showed that the diurnal process of sap flow <span class="hlt">density</span> in C. mongolicum showed a broad unimodal change, and the maximum sap flow <span class="hlt">density</span> reached about 30 minutes after the maximum of photosynthetically active radiation (PAR) , while about 120 minutes before the maximum of temperature and vapor pressure deficit (VPD). During the studying period, sap flow <span class="hlt">density</span> closely related with atmosphere evapor-transpiration demand, and mainly affected by PAR, temperature and VPD. The model was developed which directly linked the sap flow <span class="hlt">density</span> with climatic <span class="hlt">variables</span>, and good correlation between measured and simulated sap flow <span class="hlt">density</span> was observed in different climate conditions. The accuracy of simulation was significantly improved if the time-lag effect was taken into consideration, while this model underestimated low and nighttime sap flow <span class="hlt">densities</span>, which was probably caused by plant physiological characteristics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870004406','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870004406"><span>Time dependent <span class="hlt">wind</span> fields</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chelton, D. B.</p> <p>1986-01-01</p> <p>Two tasks were performed: (1) determination of the accuracy of Seasat scatterometer, altimeter, and scanning multichannel microwave radiometer measurements of <span class="hlt">wind</span> speed; and (2) application of Seasat altimeter measurements of sea level to study the spatial and temporal <span class="hlt">variability</span> of geostrophic flow in the Antarctic Circumpolar Current. The results of the first task have identified systematic errors in <span class="hlt">wind</span> speeds estimated by all three satellite sensors. However, in all cases the errors are correctable and corrected <span class="hlt">wind</span> speeds agree between the three sensors to better than 1 ms sup -1 in 96-day 2 deg. latitude by 6 deg. longitude averages. The second task has resulted in development of a new technique for using altimeter sea level measurements to study the temporal <span class="hlt">variability</span> of large scale sea level variations. Application of the technique to the Antarctic Circumpolar Current yielded new information about the ocean circulation in this region of the ocean that is poorly sampled by conventional ship-based measurements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70192021','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70192021"><span>Reproductive success of Horned Lark and McCown's Longspur in relation to <span class="hlt">wind</span> energy infrastructure</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mahoney, Anika; Chalfoun, Anna D.</p> <p>2016-01-01</p> <p><span class="hlt">Wind</span> energy is a rapidly expanding industry with potential indirect effects to wildlife populations that are largely unexplored. In 2011 and 2012, we monitored 211 nests of 2 grassland songbirds, Horned Lark (Eremophila alpestris) and McCown's Longspur (Rhynchophanes mccownii), at 3 <span class="hlt">wind</span> farms and 2 undeveloped reference sites in Wyoming, USA. We evaluated several indices of reproductive investment and success: clutch size, size-adjusted nestling mass, daily nest survival rate, and number of fledglings. We compared reproductive success between <span class="hlt">wind</span> farms and undeveloped sites and modeled reproductive success within <span class="hlt">wind</span> farms as a function of <span class="hlt">wind</span> energy infrastructure and habitat. Size-adjusted nestling mass of Horned Lark was weakly negatively related to turbine <span class="hlt">density</span>. In 2011, nest survival of Horned Lark decreased 55% as turbine <span class="hlt">density</span> increased from 10 to 39 within 2 km of the nest. In 2012, however, nest survival of Horned Lark was best predicted by the combination of vegetation height, distance to shrub edge, and turbine <span class="hlt">density</span>, with survival increasing weakly with increasing vegetation height. McCown's Longspur nest survival was weakly positively related to vegetation <span class="hlt">density</span> at the nest site when considered with the amount of grassland habitat in the neighborhood and turbine <span class="hlt">density</span> within 1 km of the nest. Habitat and distance to infrastructure did not explain clutch size or number of fledglings for either species, or size-adjusted nestling mass for McCown's Longspur. Our results suggest that the influence of <span class="hlt">wind</span> energy infrastructure varies temporally and by species, even among species using similar habitats. Turbine <span class="hlt">density</span> was repeatedly the most informative measure of <span class="hlt">wind</span> energy development. Turbine <span class="hlt">density</span> could influence wildlife responses to <span class="hlt">wind</span> energy production and may become increasingly important to consider as development continues in areas with high-quality <span class="hlt">wind</span> resources.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090005034','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090005034"><span>Highly Structured <span class="hlt">Wind</span> in Vela X-1</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kreykenbohm, Ingo; Wilms, Joern; Kretschmar, Peter; Torrejon, Jose Miguel; Pottschmidt, Katja; Hanke, Manfred; Santangelo, Andrea; Ferrigno, Carlo; Staubert, Ruediger</p> <p>2008-01-01</p> <p>We present an in-depth analysis of the spectral and temporal behavior of a long almost uninterrupted INTEGRAL observation of Vela X-1 in Nov/Dec 2003. In addition to an already high activity level, Vela X-1 exhibited several very intense flares with a maximum intensity of more than 5 Crab in the 20 40 keV band. Furthermore Vela X-1 exhibited several off states where the source became undetectable with ISGRI. We interpret flares and off states as being due to the strongly structured <span class="hlt">wind</span> of the optical companion: when Vela X-1 encounters a cavity in the <span class="hlt">wind</span> with strongly reduced <span class="hlt">density</span>, the flux will drop, thus potentially triggering the onset of the propeller effect which inhibits further accretion, thus giving rise to the off states. The required drop in <span class="hlt">density</span> to trigger the propeller effect in Vela X-1 is of the same order as predicted by theoretical papers for the <span class="hlt">densities</span> in the OB star <span class="hlt">winds</span>. The same structured <span class="hlt">wind</span> can give rise to the giant flares when Vela X-1 encounters a dense blob in the <span class="hlt">wind</span>. Further temporal analysis revealed that a short lived QPO with a period of 6800 sec is present. The part of the light curve during which the QPO is present is very close to the off states and just following a high intensity state, thus showing that all these phenomena are related.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1223839','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1223839"><span><span class="hlt">Wind</span> Power Curve Modeling Using Statistical Models: An Investigation of Atmospheric Input <span class="hlt">Variables</span> at a Flat and Complex Terrain <span class="hlt">Wind</span> Farm</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wharton, S.; Bulaevskaya, V.; Irons, Z.</p> <p></p> <p>The goal of our FY15 project was to explore the use of statistical models and high-resolution atmospheric input data to develop more accurate prediction models for turbine power generation. We modeled power for two operational <span class="hlt">wind</span> farms in two regions of the country. The first site is a 235 MW <span class="hlt">wind</span> farm in Northern Oklahoma with 140 GE 1.68 turbines. Our second site is a 38 MW <span class="hlt">wind</span> farm in the Altamont Pass Region of Northern California with 38 Mitsubishi 1 MW turbines. The farms are very different in topography, climatology, and turbine technology; however, both occupy high <span class="hlt">wind</span> resourcemore » areas in the U.S. and are representative of typical <span class="hlt">wind</span> farms found in their respective areas.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006IJBm...50..224S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006IJBm...50..224S"><span><span class="hlt">Wind</span>-chill-equivalent temperatures: regarding the impact due to the <span class="hlt">variability</span> of the environmental convective heat transfer coefficient</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shitzer, Avraham</p> <p>2006-03-01</p> <p>The <span class="hlt">wind</span>-chill index (WCI), developed in Antarctica in the 1940s and recently updated by the weather services in the USA and Canada, expresses the enhancement of heat loss in cold climates from exposed body parts, e.g., face, due to <span class="hlt">wind</span>. The index provides a simple and practical means for assessing the thermal effects of <span class="hlt">wind</span> on humans outdoors. It is also used for indicating weather conditions that may pose adverse risks of freezing at subfreezing environmental temperatures. Values of the WCI depend on a number of parameters, i.e, temperatures, physical properties of the air, <span class="hlt">wind</span> speed, etc., and on insolation and evaporation. This paper focuses on the effects of various empirical correlations used in the literature for calculating the convective heat transfer coefficients between humans and their environment. Insolation and evaporation are not included in the presentation. Large differences in calculated values among these correlations are demonstrated and quantified. Steady-state <span class="hlt">wind</span>-chill-equivalent temperatures (WCETs) are estimated by a simple, one-dimensional heat-conducting hollow-cylindrical model using these empirical correlations. Partial comparison of these values with the published “new” WCETs is presented. The <span class="hlt">variability</span> of the estimated WCETs, due to different correlations employed to calculate them, is clearly demonstrated. The results of this study clearly suggest the need for establishing a “gold standard” for estimating convective heat exchange between exposed body elements and the cold and windy environment. This should be done prior to the introduction and adoption of further modifications to WCETs and indices. Correlations to estimate the convective heat transfer coefficients between exposed body parts of humans in windy and cold environments influence the WCETs and need to be standardized.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1043777','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1043777"><span>IEA <span class="hlt">Wind</span> Task 26: The Past and Future Cost of <span class="hlt">Wind</span> Energy, Work Package 2</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lantz, E.; Wiser, R.; Hand, M.</p> <p>2012-05-01</p> <p>Over the past 30 years, <span class="hlt">wind</span> power has become a mainstream source of electricity generation around the world. However, the future of <span class="hlt">wind</span> power will depend a great deal on the ability of the industry to continue to achieve cost of energy reductions. In this summary report, developed as part of the International Energy Agency <span class="hlt">Wind</span> Implementing Agreement Task 26, titled 'The Cost of <span class="hlt">Wind</span> Energy,' we provide a review of historical costs, evaluate near-term market trends, review the methods used to estimate long-term cost trajectories, and summarize the range of costs projected for onshore <span class="hlt">wind</span> energy across an arraymore » of forward-looking studies and scenarios. We also highlight the influence of high-level market <span class="hlt">variables</span> on both past and future <span class="hlt">wind</span> energy costs.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930091284','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930091284"><span>Preliminary wing model tests in the <span class="hlt">variable</span> <span class="hlt">density</span> <span class="hlt">wind</span> tunnel of the National Advisory Committee for Aeronautics</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Munk, Max M</p> <p>1926-01-01</p> <p>This report contains the results of a series of tests with three wing models. By changing the section of one of the models and painting the surface of another, the number of models tested was increased to five. The tests were made in order to obtain some general information on the air forces on wing sections at a high Reynolds number and in particular to make sure that the Reynolds number is really the important factor, and not other things like the roughness of the surface and the sharpness of the trailing edge. The few tests described in this report seem to indicate that the air forces at a high Reynolds number are not equivalent to respective air forces at a low Reynolds number (as in an ordinary atmospheric <span class="hlt">wind</span> tunnel). The drag appears smaller at a high Reynolds number and the maximum lift is increased in some cases. The roughness of the surface and the sharpness of the trailing edge do not materially change the results, so that we feel confident that tests with systematic series of different wing sections will bring consistent results, important and highly useful to the designer.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMOS51A1097C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMOS51A1097C"><span>Exact Solutions for <span class="hlt">Wind</span>-Driven Coastal Upwelling and Downwelling over Sloping Topography</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Choboter, P.; Duke, D.; Horton, J.; Sinz, P.</p> <p>2009-12-01</p> <p>The dynamics of <span class="hlt">wind</span>-driven coastal upwelling and downwelling are studied using a simplified dynamical model. Exact solutions are examined as a function of time and over a family of sloping topographies. Assumptions in the two-dimensional model include a frictionless ocean interior below the surface Ekman layer, and no alongshore dependence of the <span class="hlt">variables</span>; however, dependence in the cross-shore and vertical directions is retained. Additionally, <span class="hlt">density</span> and alongshore momentum are advected by the cross-shore velocity in order to maintain thermal <span class="hlt">wind</span>. The time-dependent initial-value problem is solved with constant initial stratification and no initial alongshore flow. An alongshore pressure gradient is added to allow the cross-shore flow to be geostrophically balanced far from shore. Previously, this model has been used to study upwelling over flat-bottom and sloping topographies, but the novel feature in this work is the discovery of exact solutions for downwelling. These exact solutions are compared to numerical solutions from a primitive-equation ocean model, based on the Princeton Ocean Model, configured in a similar two-dimensional geometry. Many typical features of the evolution of <span class="hlt">density</span> and velocity during downwelling are displayed by the analytical model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CorRe..37...25D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CorRe..37...25D"><span>Exploring <span class="hlt">variable</span> patterns of <span class="hlt">density</span>-dependent larval settlement among corals with distinct and shared functional traits</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Doropoulos, Christopher; Gómez-Lemos, Luis A.; Babcock, Russell C.</p> <p>2018-03-01</p> <p>Coral settlement is a key process for the recovery and maintenance of coral reefs, yet interspecific variations in <span class="hlt">density</span>-dependent settlement are unknown. Settlement of the submassive Goniastrea retiformis and corymbose Acropora digitifera and A. millepora was quantified at <span class="hlt">densities</span> ranging from 1 to 50 larvae per 20 mL from 110 to 216 h following spawning. Settlement patterns were distinct for each species. Goniastrea settlement was rapid and increased linearly with time, whereas both Acropora spp. hardly settled until crustose coralline algae was provided. Both Goniastrea and A. digitifera showed positive <span class="hlt">density</span>-dependent settlement, but the relationship was exponential for Goniastrea but linear for A. digitifera. Settlement was highest but <span class="hlt">density</span> independent in A. millepora. Our results suggest that larval <span class="hlt">density</span> can have significant effects on settler replenishment, and highlight <span class="hlt">variability</span> in <span class="hlt">density</span>-dependent settlement among corals with distinct functional traits as well as those with similar functional forms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22121780-young-stellar-clusters-schuster-mass-distribution-stationary-winds','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22121780-young-stellar-clusters-schuster-mass-distribution-stationary-winds"><span>YOUNG STELLAR CLUSTERS WITH A SCHUSTER MASS DISTRIBUTION. I. STATIONARY <span class="hlt">WINDS</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Palous, Jan; Wuensch, Richard; Hueyotl-Zahuantitla, Filiberto</p> <p>2013-08-01</p> <p>Hydrodynamic models for spherically symmetric <span class="hlt">winds</span> driven by young stellar clusters with a generalized Schuster stellar <span class="hlt">density</span> profile are explored. For this we use both semi-analytic models and one-dimensional numerical simulations. We determine the properties of quasi-adiabatic and radiative stationary <span class="hlt">winds</span> and define the radius at which the flow turns from subsonic to supersonic for all stellar <span class="hlt">density</span> distributions. Strongly radiative <span class="hlt">winds</span> significantly diminish their terminal speed and thus their mechanical luminosity is strongly reduced. This also reduces their potential negative feedback into their host galaxy interstellar medium. The critical luminosity above which radiative cooling becomes dominant within the clusters,more » leading to thermal instabilities which make the <span class="hlt">winds</span> non-stationary, is determined, and its dependence on the star cluster <span class="hlt">density</span> profile, core radius, and half-mass radius is discussed.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMSA12A..06B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMSA12A..06B"><span>FUSION++: A New Data Assimilative Model for Electron <span class="hlt">Density</span> Forecasting</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bust, G. S.; Comberiate, J.; Paxton, L. J.; Kelly, M.; Datta-Barua, S.</p> <p>2014-12-01</p> <p>There is a continuing need within the operational space weather community, both civilian and military, for accurate, robust data assimilative specifications and forecasts of the global electron <span class="hlt">density</span> field, as well as derived RF application product specifications and forecasts obtained from the electron <span class="hlt">density</span> field. The spatial scales of interest range from a hundred to a few thousand kilometers horizontally (synoptic large scale structuring) and meters to kilometers (small scale structuring that cause scintillations). RF space weather applications affected by electron <span class="hlt">density</span> <span class="hlt">variability</span> on these scales include navigation, communication and geo-location of RF frequencies ranging from 100's of Hz to GHz. For many of these applications, the necessary forecast time periods range from nowcasts to 1-3 hours. For more "mission planning" applications, necessary forecast times can range from hours to days. In this paper we present a new ionosphere-thermosphere (IT) specification and forecast model being developed at JHU/APL based upon the well-known data assimilation algorithms Ionospheric Data Assimilation Four Dimensional (IDA4D) and Estimating Model Parameters from Ionospheric Reverse Engineering (EMPIRE). This new forecast model, "Forward Update Simple IONosphere model Plus IDA4D Plus EMPIRE (FUSION++), ingests data from observations related to electron <span class="hlt">density</span>, <span class="hlt">winds</span>, electric fields and neutral composition and provides improved specification and forecast of electron <span class="hlt">density</span>. In addition, the new model provides improved specification of <span class="hlt">winds</span>, electric fields and composition. We will present a short overview and derivation of the methodology behind FUSION++, some preliminary results using real observational sources, example derived RF application products such as HF bi-static propagation, and initial comparisons with independent data sources for validation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012SPIE.8532E..0NB','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012SPIE.8532E..0NB"><span>Study on <span class="hlt">wind</span> wave <span class="hlt">variability</span> by inhomogeneous currents in the closed seas</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bakhanov, Victor V.; Bogatov, Nikolai A.; Ermoshkin, Aleksei V.; Ivanov, Andrei Yu.; Kemarskaya, Olga N.; Titov, Victor I.</p> <p>2012-09-01</p> <p>Complex experiments were performed in the north-eastern part of the Black Sea and in the south-eastern part of the White Sea to study <span class="hlt">variability</span> of the current fields and other characteristics of the sea, <span class="hlt">wind</span> waves, and parameters of the near-surface atmospheric layer. Measurements were carried out from the onboard of the scientific research vessels by optical, radar and acoustic sensors. The heterogeneity of bottom topography in Black Sea had quasi-one-dimensional character. The case of the two-dimensionally heterogeneous relief of the bottom was investigated in the White Sea. The peculiarity of these experiments was simultaneous measurements from onboard of vessel synchronously with acquisitions of synthetic aperture radar (SAR) images of the Envisat and TerraSAR-X satellites. We have detected for the case of the quasi-one-dimensionally heterogeneous current a difference between the sea surface roughness above the shelf zone and the roughness at the deep bottom. We found that the inhomogeneities of the bottom topography can manifest as a change not only in the amplitude of different characteristics of surface wave and atmospheric near-water layer, but also in their frequency spectrum. In White Sea the special features of the flow of the powerful tidal current (up to 1 m/s) around the secluded underwater elevation and the spatial structure of surface anomalies in the field of these two-dimensional-heterogeneous currents are analyzed. The numerical simulation of the <span class="hlt">wind</span> wave transformation in the field of two-dimensional- heterogeneous flows is carried out. The qualitative agreement of the calculation results with the experimental data is shown.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860017564','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860017564"><span>A lumped parameter mathematical model for simulation of subsonic <span class="hlt">wind</span> tunnels</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Krosel, S. M.; Cole, G. L.; Bruton, W. M.; Szuch, J. R.</p> <p>1986-01-01</p> <p>Equations for a lumped parameter mathematical model of a subsonic <span class="hlt">wind</span> tunnel circuit are presented. The equation state <span class="hlt">variables</span> are internal energy, <span class="hlt">density</span>, and mass flow rate. The circuit model is structured to allow for integration and analysis of tunnel subsystem models which provide functions such as control of altitude pressure and temperature. Thus the model provides a useful tool for investigating the transient behavior of the tunnel and control requirements. The model was applied to the proposed NASA Lewis Altitude <span class="hlt">Wind</span> Tunnel (AWT) circuit and included transfer function representations of the tunnel supply/exhaust air and refrigeration subsystems. Both steady state and frequency response data are presented for the circuit model indicating the type of results and accuracy that can be expected from the model. Transient data for closed loop control of the tunnel and its subsystems are also presented, demonstrating the model's use as a control analysis tool.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM23A2584K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM23A2584K"><span>The radiation-belt electron phase-space-<span class="hlt">density</span> response to stream-interaction regions: A study combining multi-point observations, data-assimilation, and physics-based modeling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kellerman, A. C.; Shprits, Y.; McPherron, R. L.; Kondrashov, D. A.; Weygand, J. M.; Zhu, H.; Drozdov, A.</p> <p>2017-12-01</p> <p>Presented is an analysis of the phase-space <span class="hlt">density</span> (PSD) response to the stream-interaction region (SIR), which utilizes a reanalysis dataset principally comprised of the data-assimilative Versatile Electron Radiation Belt (VERB) code, Van Allen Probe and GOES observations. The dataset spans the period 2012-2017, and includes several SIR (and CIR) storms. The PSD is examined for evidence of injections, transport, acceleration, and loss by considering the instantaneous and time-averaged change at adiabatic invariant values that correspond to ring-current, relativistic, and ultra-relativistic energies. In the solar <span class="hlt">wind</span>, the following <span class="hlt">variables</span> in the slow and fast <span class="hlt">wind</span> on either side of the stream interface (SI) are considered in each case: the coronal hole polarity, IMF, solar <span class="hlt">wind</span> speed, <span class="hlt">density</span>, pressure, and SI tilt angle. In the magnetosphere, the Dst, AE, and past PSD state are considered. Presented is an analysis of the dominant mechanisms, both external and internal to the magnetosphere, that cause radiation-belt electron non-adiabatic changes during the passage of these fascinating solar <span class="hlt">wind</span> structures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5027414','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5027414"><span>Simple stochastic model for El Niño with westerly <span class="hlt">wind</span> bursts</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Thual, Sulian; Majda, Andrew J.; Chen, Nan; Stechmann, Samuel N.</p> <p>2016-01-01</p> <p>Atmospheric <span class="hlt">wind</span> bursts in the tropics play a key role in the dynamics of the El Niño Southern Oscillation (ENSO). A simple modeling framework is proposed that summarizes this relationship and captures major features of the observational record while remaining physically consistent and amenable to detailed analysis. Within this simple framework, <span class="hlt">wind</span> burst activity evolves according to a stochastic two-state Markov switching–diffusion process that depends on the strength of the western Pacific warm pool, and is coupled to simple ocean–atmosphere processes that are otherwise deterministic, stable, and linear. A simple model with this parameterization and no additional nonlinearities reproduces a realistic ENSO cycle with intermittent El Niño and La Niña events of varying intensity and strength as well as realistic buildup and shutdown of <span class="hlt">wind</span> burst activity in the western Pacific. The <span class="hlt">wind</span> burst activity has a direct causal effect on the ENSO <span class="hlt">variability</span>: in particular, it intermittently triggers regular El Niño or La Niña events, super El Niño events, or no events at all, which enables the model to capture observed ENSO statistics such as the probability <span class="hlt">density</span> function and power spectrum of eastern Pacific sea surface temperatures. The present framework provides further theoretical and practical insight on the relationship between <span class="hlt">wind</span> burst activity and the ENSO. PMID:27573821</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJ...850..120R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJ...850..120R"><span><span class="hlt">Variability</span> of the Magnetic Field Power Spectrum in the Solar <span class="hlt">Wind</span> at Electron Scales</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roberts, Owen Wyn; Alexandrova, O.; Kajdič, P.; Turc, L.; Perrone, D.; Escoubet, C. P.; Walsh, A.</p> <p>2017-12-01</p> <p>At electron scales, the power spectrum of solar-<span class="hlt">wind</span> magnetic fluctuations can be highly <span class="hlt">variable</span> and the dissipation mechanisms of the magnetic energy into the various particle species is under debate. In this paper, we investigate data from the Cluster mission’s STAFF Search Coil magnetometer when the level of turbulence is sufficiently high that the morphology of the power spectrum at electron scales can be investigated. The Cluster spacecraft sample a disturbed interval of plasma where two streams of solar <span class="hlt">wind</span> interact. Meanwhile, several discontinuities (coherent structures) are seen in the large-scale magnetic field, while at small scales several intermittent bursts of wave activity (whistler waves) are present. Several different morphologies of the power spectrum can be identified: (1) two power laws separated by a break, (2) an exponential cutoff near the Taylor shifted electron scales, and (3) strong spectral knees at the Taylor shifted electron scales. These different morphologies are investigated by using wavelet coherence, showing that, in this interval, a clear break and strong spectral knees are features that are associated with sporadic quasi parallel propagating whistler waves, even for short times. On the other hand, when no signatures of whistler waves at ∼ 0.1{--}0.2{f}{ce} are present, a clear break is difficult to find and the spectrum is often more characteristic of a power law with an exponential cutoff.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950021549','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950021549"><span>Collected Papers on <span class="hlt">Wind</span> Turbine Technology</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spera, David A. (Editor)</p> <p>1995-01-01</p> <p>R and D projects on electricity generating <span class="hlt">wind</span> turbines were conducted at the NASA Lewis Research Center from 1973 to 1988. Most projects were sponsored by the U.S. Department of Energy (DOE), a major element of its Federal <span class="hlt">Wind</span> Energy Program. Another large <span class="hlt">wind</span> turbine project was by the Bureau of Reclamation of the U.S. Department of Interior (DOI). From 1988 to 1995, NASA <span class="hlt">wind</span> energy activities have been directed toward the transfer of technology to commercial and academic organizations. As part of these technology transfer activities, previously unpublished manuscripts have been assembled and presented here to share the <span class="hlt">wind</span> turbine research results with the <span class="hlt">wind</span> energy community. A variety of <span class="hlt">wind</span> turbine technology topics are discussed: <span class="hlt">Wind</span> and wake models; Airfoil properties; Structural analysis and testing; Control systems; <span class="hlt">Variable</span> speed generators; and acoustic noise. Experimental and theoretical results are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20090006630&hterms=figueroa&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dfigueroa','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20090006630&hterms=figueroa&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dfigueroa"><span>Variations of Strahl Properties with Fast and Slow Solar <span class="hlt">Wind</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Figueroa-Vinas, Adolfo; Goldstein, Melvyn L.; Gurgiolo, Chris</p> <p>2008-01-01</p> <p>The interplanetary solar <span class="hlt">wind</span> electron velocity distribution function generally shows three different populations. Two of the components, the core and halo, have been the most intensively analyzed and modeled populations using different theoretical models. The third component, the strahl, is usually seen at higher energies, is confined in pitch-angle, is highly field-aligned and skew. This population has been more difficult to identify and to model in the solar <span class="hlt">wind</span>. In this work we make use of the high angular, energy and time resolution and three-dimensional data of the Cluster/PEACE electron spectrometer to identify and analyze this component in the ambient solar <span class="hlt">wind</span> during high and slow speed solar <span class="hlt">wind</span>. The moment <span class="hlt">density</span> and fluid velocity have been computed by a semi-numerical integration method. The variations of solar <span class="hlt">wind</span> <span class="hlt">density</span> and drift velocity with the general build solar <span class="hlt">wind</span> speed could provide some insight into the source, origin, and evolution of the strahl.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020090715','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020090715"><span>Statistical Short-Range Guidance for Peak <span class="hlt">Wind</span> Speed Forecasts on Kennedy Space Center/Cape Canaveral Air Force Station: Phase I Results</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lambert, Winifred C.; Merceret, Francis J. (Technical Monitor)</p> <p>2002-01-01</p> <p>This report describes the results of the ANU's (Applied Meteorology Unit) Short-Range Statistical Forecasting task for peak <span class="hlt">winds</span>. The peak <span class="hlt">wind</span> speeds are an important forecast element for the Space Shuttle and Expendable Launch Vehicle programs. The Keith Weather Squadron and the Spaceflight Meteorology Group indicate that peak <span class="hlt">winds</span> are challenging to forecast. The Applied Meteorology Unit was tasked to develop tools that aid in short-range forecasts of peak <span class="hlt">winds</span> at tower sites of operational interest. A 7 year record of <span class="hlt">wind</span> tower data was used in the analysis. Hourly and directional climatologies by tower and month were developed to determine the seasonal behavior of the average and peak <span class="hlt">winds</span>. In all climatologies, the average and peak <span class="hlt">wind</span> speeds were highly <span class="hlt">variable</span> in time. This indicated that the development of a peak <span class="hlt">wind</span> forecasting tool would be difficult. Probability <span class="hlt">density</span> functions (PDF) of peak <span class="hlt">wind</span> speed were calculated to determine the distribution of peak speed with average speed. These provide forecasters with a means of determining the probability of meeting or exceeding a certain peak <span class="hlt">wind</span> given an observed or forecast average speed. The climatologies and PDFs provide tools with which to make peak <span class="hlt">wind</span> forecasts that are critical to safe operations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRA..120.3097P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRA..120.3097P"><span>Seasonal <span class="hlt">variability</span> in global eddy diffusion and the effect on neutral <span class="hlt">density</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pilinski, M. D.; Crowley, G.</p> <p>2015-04-01</p> <p>We describe a method for making single-satellite estimates of the seasonal <span class="hlt">variability</span> in global-average eddy diffusion coefficients. Eddy diffusion values as a function of time were estimated from residuals of neutral <span class="hlt">density</span> measurements made by the Challenging Minisatellite Payload (CHAMP) and simulations made using the thermosphere-ionosphere-mesosphere electrodynamics global circulation model (TIME-GCM). The eddy diffusion coefficient results are quantitatively consistent with previous estimates based on satellite drag observations and are qualitatively consistent with other measurement methods such as sodium lidar observations and eddy diffusivity models. Eddy diffusion coefficient values estimated between January 2004 and January 2008 were then used to generate new TIME-GCM results. Based on these results, the root-mean-square sum for the TIME-GCM model is reduced by an average of 5% when compared to <span class="hlt">density</span> data from a variety of satellites, indicating that the fidelity of global <span class="hlt">density</span> modeling can be improved by using data from a single satellite like CHAMP. This approach also demonstrates that eddy diffusion could be estimated in near real-time from satellite observations and used to drive a global circulation model like TIME-GCM. Although the use of global values improves modeled neutral <span class="hlt">densities</span>, there are limitations to this method, which are discussed, including that the latitude dependence of the seasonal neutral-<span class="hlt">density</span> signal is not completely captured by a global variation of eddy diffusion coefficients. This demonstrates the need for a latitude-dependent specification of eddy diffusion which is also consistent with diffusion observations made by other techniques.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28781614','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28781614"><span>Balancing Europe's <span class="hlt">wind</span> power output through spatial deployment informed by weather regimes.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Grams, Christian M; Beerli, Remo; Pfenninger, Stefan; Staffell, Iain; Wernli, Heini</p> <p>2017-08-01</p> <p>As <span class="hlt">wind</span> and solar power provide a growing share of Europe's electricity1, understanding and accommodating their <span class="hlt">variability</span> on multiple timescales remains a critical problem. On weekly timescales, <span class="hlt">variability</span> is related to long-lasting weather conditions, called weather regimes2-5, which can cause lulls with a loss of <span class="hlt">wind</span> power across neighbouring countries6. Here we show that weather regimes provide a meteorological explanation for multi-day fluctuations in Europe's <span class="hlt">wind</span> power and can help guide new deployment pathways which minimise this <span class="hlt">variability</span>. Mean generation during different regimes currently ranges from 22 GW to 44 GW and is expected to triple by 2030 with current planning strategies. However, balancing future <span class="hlt">wind</span> capacity across regions with contrasting inter-regime behaviour - specifically deploying in the Balkans instead of the North Sea - would almost eliminate these output variations, maintain mean generation, and increase fleet-wide minimum output. Solar photovoltaics could balance low-<span class="hlt">wind</span> regimes locally, but only by expanding current capacity tenfold. New deployment strategies based on an understanding of continent-scale <span class="hlt">wind</span> patterns and pan-European collaboration could enable a high share of <span class="hlt">wind</span> energy whilst minimising the negative impacts of output <span class="hlt">variability</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018P%26SS..155....2J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018P%26SS..155....2J"><span>Longitudinal <span class="hlt">variability</span> in Jupiter's zonal <span class="hlt">winds</span> derived from multi-wavelength HST observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnson, Perianne E.; Morales-Juberías, Raúl; Simon, Amy; Gaulme, Patrick; Wong, Michael H.; Cosentino, Richard G.</p> <p>2018-06-01</p> <p>Multi-wavelength Hubble Space Telescope (HST) images of Jupiter from the Outer Planets Atmospheres Legacy (OPAL) and Wide Field Coverage for Juno (WFCJ) programs in 2015, 2016, and 2017 are used to derive <span class="hlt">wind</span> profiles as a function of latitude and longitude. <span class="hlt">Wind</span> profiles are typically zonally averaged to reduce measurement uncertainties. However, doing this destroys any variations of the zonal-component of <span class="hlt">winds</span> in the longitudinal direction. Here, we present the results derived from using a "sliding-window" correlation method. This method adds longitudinal specificity, and allows for the detection of spatial variations in the zonal <span class="hlt">winds</span>. Spatial variations are identified in two jets: 1 at 17 ° N, the location of a prominent westward jet, and the other at 7 ° S, the location of the chevrons. Temporal and spatial variations at the 24°N jet and the 5-μm hot spots are also examined.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860009349&hterms=wine&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dwine','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860009349&hterms=wine&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dwine"><span>The importance of precision radar tracking data for the determination of <span class="hlt">density</span> and <span class="hlt">winds</span> from the high-altitude inflatable sphere</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schmidlin, F. J.; Michel, W. R.</p> <p>1985-01-01</p> <p>Analysis of inflatable sphere measurements obtained during the Energy Budget and MAP/WINE campaigns led to questions concerning the precision of the MPS-36 radar used for tracking the spheres; the compatibility of the sphere program with the MPS-36 radar tracking data; and the oversmoothing of derived parameters at high altitudes. Simulations, with <span class="hlt">winds</span> having sinusoidal vertical wavelengths, were done with the sphere program (HIROBIN) to determine the resolving capability of various filters. It is concluded that given a precision radar and a perfectly performing sphere, the HIROBIN filters can be adjusted to provide small-scale perturbation information to 70 km (i.e., sinusoidal wavelengths of 2 km). It is recommended that the HIROBIN program be modified to enable it to use a <span class="hlt">variable</span> length filter, that adjusts to fall velocity and accelerations to provide <span class="hlt">wind</span> data with small perturbations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..342a2011R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..342a2011R"><span>V-I characteristics of a coreless ironless electric generator in a closed-circuit mode for low <span class="hlt">wind</span> <span class="hlt">density</span> power generation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Razali, Akhtar; Rahman, Fadhlur; Leong, Yap Wee; Razali Hanipah, Mohd; Azri Hizami, Mohd</p> <p>2018-04-01</p> <p>This research deals with removal of ironcore lamination in electric generator to eliminate cog torque. A confinement technique is proposed to confine and focus magnetic flux by introducing opposing permanent magnets arrangement. The generator was fabricated and experimentally validated to qualify its loaded characteristics. The rotational torque and power output are measured and efficiency is then analyzed. At 100Ω load, the generator power output increased with the increased of rotational speed. Nearly 78% of efficiency was achieved when the generator was rotated at 250rpm. At this speed, the generator produced RMS voltage of 81VAC. Torque required to rotate the generator was found to be 3.2Nm. The slight increment of mechanical torque to spin the generator was due to the counter electromotive force (CEMF) existed in the copper <span class="hlt">windings</span>. However, the torque required is still lower by nearly 30% than conventional AFPM generator. It is there concluded that this generator is suitable to be used for low <span class="hlt">wind</span> <span class="hlt">density</span> power generation application.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..121d2020Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..121d2020Y"><span>Capacity expansion model of <span class="hlt">wind</span> power generation based on ELCC</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yuan, Bo; Zong, Jin; Wu, Shengyu</p> <p>2018-02-01</p> <p>Capacity expansion is an indispensable prerequisite for power system planning and construction. A reasonable, efficient and accurate capacity expansion model (CEM) is crucial to power system planning. In most current CEMs, the capacity of <span class="hlt">wind</span> power generation is considered as boundary conditions instead of decision <span class="hlt">variables</span>, which may lead to curtailment or over construction of flexible resource, especially at a high renewable energy penetration scenario. This paper proposed a <span class="hlt">wind</span> power generation capacity value(CV) calculation method based on effective load-carrying capability, and a CEM that co-optimizes <span class="hlt">wind</span> power generation and conventional power sources. <span class="hlt">Wind</span> power generation is considered as decision <span class="hlt">variable</span> in this model, and the model can accurately reflect the uncertainty nature of <span class="hlt">wind</span> power.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhyA..422..113P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhyA..422..113P"><span>Tsallis non-extensive statistics and solar <span class="hlt">wind</span> plasma complexity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pavlos, G. P.; Iliopoulos, A. C.; Zastenker, G. N.; Zelenyi, L. M.; Karakatsanis, L. P.; Riazantseva, M. O.; Xenakis, M. N.; Pavlos, E. G.</p> <p>2015-03-01</p> <p>This article presents novel results revealing non-equilibrium phase transition processes in the solar <span class="hlt">wind</span> plasma during a strong shock event, which took place on 26th September 2011. Solar <span class="hlt">wind</span> plasma is a typical case of stochastic spatiotemporal distribution of physical state <span class="hlt">variables</span> such as force fields (B → , E →) and matter fields (particle and current <span class="hlt">densities</span> or bulk plasma distributions). This study shows clearly the non-extensive and non-Gaussian character of the solar <span class="hlt">wind</span> plasma and the existence of multi-scale strong correlations from the microscopic to the macroscopic level. It also underlines the inefficiency of classical magneto-hydro-dynamic (MHD) or plasma statistical theories, based on the classical central limit theorem (CLT), to explain the complexity of the solar <span class="hlt">wind</span> dynamics, since these theories include smooth and differentiable spatial-temporal functions (MHD theory) or Gaussian statistics (Boltzmann-Maxwell statistical mechanics). On the contrary, the results of this study indicate the presence of non-Gaussian non-extensive statistics with heavy tails probability distribution functions, which are related to the q-extension of CLT. Finally, the results of this study can be understood in the framework of modern theoretical concepts such as non-extensive statistical mechanics (Tsallis, 2009), fractal topology (Zelenyi and Milovanov, 2004), turbulence theory (Frisch, 1996), strange dynamics (Zaslavsky, 2002), percolation theory (Milovanov, 1997), anomalous diffusion theory and anomalous transport theory (Milovanov, 2001), fractional dynamics (Tarasov, 2013) and non-equilibrium phase transition theory (Chang, 1992).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170005828&hterms=Wind&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DWind','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170005828&hterms=Wind&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DWind"><span>Disk-<span class="hlt">Wind</span> Connection During the Heartbeats of GRS 1915+105</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zoghbi, Abderahmen; Miller, J. M.; King, A. L.; Miller, M. C.; Proga, D.; Kallman, T.; Fabian, A. C.; Harrison, F. A.; Kaastra, J.; Raymond, J.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170005828'); toggleEditAbsImage('author_20170005828_show'); toggleEditAbsImage('author_20170005828_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170005828_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170005828_hide"></p> <p>2016-01-01</p> <p>Disk and <span class="hlt">wind</span> signatures are seen in the soft state of Galactic black holes, while the jet is seen in the hard state. Here we study the disk-<span class="hlt">wind</span> connection in the Rho class of <span class="hlt">variability</span> in GRS 1915+105 using a joint NuSTAR-Chandra observation. The source shows 50 s limit cycle oscillations. By including new information provided by the reflection spectrum and using phase-resolved spectroscopy, we find that the change in the inner disk inferred from the blackbody emission is not matched by reflection measurements. The latter is almost constant, independent of the continuum model. The two radii are comparable only if the disk temperature color correction factor changes, an effect that could be due to the changing opacity of the disk caused by changes in metal abundances. The disk inclination is similar to that inferred from the jet axis, and oscillates by approx.10 deg. The simultaneous Chandra data show the presence of two <span class="hlt">wind</span> components with velocities between 500 and 5000 km s(exp. -1), and possibly two more with velocities reaching 20,000 km s(exp. -1) (approx. 0.06 c). The column <span class="hlt">densities</span> are approx. 5 × 10(exp. 22) cm(exp. -2). An upper limit to the <span class="hlt">wind</span> response time of 2 s is measured, implying a launch radius of less than 6 × 10(exp. 10) cm. The changes in <span class="hlt">wind</span> velocity and absorbed flux require the geometry of the <span class="hlt">wind</span> to change during the oscillations, constraining the <span class="hlt">wind</span> to be launched from a distance of 290-1300 r (sub g) from the black hole. Both data sets support fundamental model predictions in which a bulge originates in the inner disk and moves outward as the instability progresses.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014A%26A...566A.125C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014A%26A...566A.125C"><span>The <span class="hlt">variable</span> stellar <span class="hlt">wind</span> of Rigel probed at high spatial and spectral resolution</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chesneau, O.; Kaufer, A.; Stahl, O.; Colvinter, C.; Spang, A.; Dessart, L.; Prinja, R.; Chini, R.</p> <p>2014-06-01</p> <p>Context. Luminous BA-type supergiants are the brightest stars in the visible that can be observed in distant galaxies and are potentially accurate distance indicators. The impact of the <span class="hlt">variability</span> of the stellar <span class="hlt">winds</span> on the distance determination remains poorly understood. Aims: Our aim is to probe the inhomogeneous structures in the stellar <span class="hlt">wind</span> using spectro-interferometric monitoring. Methods: We present a spatially resolved, high-spectral resolution (R = 12 000) K-band temporal monitoring of the bright supergiant β Orionis (Rigel, B8 Iab) using AMBER at the Very Large Telescope Interferometer (VLTI). Rigel was observed in the Brγ line and its nearby continuum once per month over 3 months in 2006-2007, and 5 months in 2009-2010. These unprecedented observations were complemented by contemporaneous optical high-resolution spectroscopy. We analyse the near-IR spectra and visibilities with the 1D non-LTE radiative-transfer code CMFGEN. The differential and closure phase signals are evidence of asymmetries that are interpreted as perturbations of the <span class="hlt">wind</span>. Results: A systematic visibility decrease is observed across the Brγ line indicating that at a radius of about 1.25 R∗ the photospheric absorption is filled by emission from the <span class="hlt">wind</span>. During the 2006-2007 period the Brγ and likely the continuum forming regions were larger than in the 2009-2010 epoch. Using CMFGEN we infer a mass-loss rate change of about 20% between the two epochs. We also find time variations in the differential visibilities and phases. The 2006-2007 period is characterised by noticeable variations in the differential visibilities in Doppler position and width and by weak variations in differential and closure phase. The 2009-2010 period is much quieter with virtually no detectable variations in the dispersed visibilities but a strong S-shaped signal is observed in differential phase coinciding with a strong ejection event discernible in the optical spectra. The differential phase signal</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PPCF...56f4008E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PPCF...56f4008E"><span>On the signatures of magnetic islands and multiple X-lines in the solar <span class="hlt">wind</span> as observed by ARTEMIS and <span class="hlt">WIND</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eriksson, S.; Newman, D. L.; Lapenta, G.; Angelopoulos, V.</p> <p>2014-06-01</p> <p>We report the first observation consistent with a magnetic reconnection generated magnetic island at a solar <span class="hlt">wind</span> current sheet that was observed on 10 June 2012 by the two ARTEMIS satellites and the upstream <span class="hlt">WIND</span> satellite. The evidence consists of a core magnetic field within the island which is formed by enhanced Hall magnetic fields across a solar <span class="hlt">wind</span> reconnection exhaust. The core field at ARTEMIS displays a local dip coincident with a peak plasma <span class="hlt">density</span> enhancement and a locally slower exhaust speed which differentiates it from a regular solar <span class="hlt">wind</span> exhaust crossing. Further indirect evidence of magnetic island formation is presented in the form of a tripolar Hall magnetic field, which is supported by an observed electron velocity shear, and plasma <span class="hlt">density</span> depletion regions which are in general agreement with multiple reconnection X-line signatures at the same current sheet on the basis of predicted signatures of magnetic islands as generated by a kinetic reconnection simulation for solar <span class="hlt">wind</span>-like conditions. The combined ARTEMIS and <span class="hlt">WIND</span> observations of tripolar Hall magnetic fields across the same exhaust and Grad-Shrafranov reconstructions of the magnetic field suggest that an elongated magnetic island was encountered which displayed a 4RE normal width and a 43RE extent along the exhaust between two neighboring X-lines.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29390622','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29390622"><span>Analysis of chaos in high-dimensional <span class="hlt">wind</span> power system.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Cong; Zhang, Hongli; Fan, Wenhui; Ma, Ping</p> <p>2018-01-01</p> <p>A comprehensive analysis on the chaos of a high-dimensional <span class="hlt">wind</span> power system is performed in this study. A high-dimensional <span class="hlt">wind</span> power system is more complex than most power systems. An 11-dimensional <span class="hlt">wind</span> power system proposed by Huang, which has not been analyzed in previous studies, is investigated. When the systems are affected by external disturbances including single parameter and periodic disturbance, or its parameters changed, chaotic dynamics of the <span class="hlt">wind</span> power system is analyzed and chaotic parameters ranges are obtained. Chaos existence is confirmed by calculation and analysis of all state <span class="hlt">variables</span>' Lyapunov exponents and the state <span class="hlt">variable</span> sequence diagram. Theoretical analysis and numerical simulations show that the <span class="hlt">wind</span> power system chaos will occur when parameter variations and external disturbances change to a certain degree.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.lulu.com/shop/ss-papadopulos-associates-inc/pest-conference-2009-proceedings-potomac-maryland-color/paperback/product-12914428.html','USGSPUBS'); return false;" href="http://www.lulu.com/shop/ss-papadopulos-associates-inc/pest-conference-2009-proceedings-potomac-maryland-color/paperback/product-12914428.html"><span>Creative use of pilot points to address site and regional scale heterogeneity in a <span class="hlt">variable-density</span> model</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dausman, Alyssa M.; Doherty, John; Langevin, Christian D.</p> <p>2010-01-01</p> <p>Pilot points for parameter estimation were creatively used to address heterogeneity at both the well field and regional scales in a <span class="hlt">variable-density</span> groundwater flow and solute transport model designed to test multiple hypotheses for upward migration of fresh effluent injected into a highly transmissive saline carbonate aquifer. Two sets of pilot points were used within in multiple model layers, with one set of inner pilot points (totaling 158) having high spatial <span class="hlt">density</span> to represent hydraulic conductivity at the site, while a second set of outer points (totaling 36) of lower spatial <span class="hlt">density</span> was used to represent hydraulic conductivity further from the site. Use of a lower spatial <span class="hlt">density</span> outside the site allowed (1) the total number of pilot points to be reduced while maintaining flexibility to accommodate heterogeneity at different scales, and (2) development of a model with greater areal extent in order to simulate proper boundary conditions that have a limited effect on the area of interest. The parameters associated with the inner pilot points were log transformed hydraulic conductivity multipliers of the conductivity field obtained by interpolation from outer pilot points. The use of this dual inner-outer scale parameterization (with inner parameters constituting multipliers for outer parameters) allowed smooth transition of hydraulic conductivity from the site scale, where greater spatial <span class="hlt">variability</span> of hydraulic properties exists, to the regional scale where less spatial <span class="hlt">variability</span> was necessary for model calibration. While the model is highly parameterized to accommodate potential aquifer heterogeneity, the total number of pilot points is kept at a minimum to enable reasonable calibration run times.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSA23B2338B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSA23B2338B"><span>Feedbacks of Composition and Neutral <span class="hlt">Density</span> Changes on the Structure of the Cusp <span class="hlt">Density</span> Anomaly</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brinkman, D. G.; Walterscheid, R. L.; Clemmons, J. H.</p> <p>2015-12-01</p> <p>The Earth's magnetospheric cusp provides direct access of energetic particles to the thermosphere. These particles produce ionization and kinetic (particle) heating of the atmosphere. The increased ionization coupled with enhanced electric fields in the cusp produces increased Joule heating and ion drag forcing. These energy inputs cause large <span class="hlt">wind</span> and temperature changes in the cusp region. Measurements by the CHAMP satellite (460-390- km altitude) have shown strongly enhanced <span class="hlt">density</span> in the cusp region. The Streak mission (325-123 km), on the other hand, showed a relative depletion. The atmospheric response in the cusp can be sensitive to composition and neutral <span class="hlt">density</span> changes. In response to heating in the cusp, air of heavier mean molecular weight is brought up from lower altitudes significantly affecting pressure gradients. This opposes the effects of temperature change due to heating and in-turn affects the <span class="hlt">density</span> and <span class="hlt">winds</span> produced in the cusp. Also changes in neutral <span class="hlt">density</span> change the interaction between precipitating particles and the atmosphere and thus change heating rates and ionization in the region affected by cusp precipitation. In this study we assess the sensitivity of the <span class="hlt">wind</span> and neutral <span class="hlt">density</span> structure in the cusp region to changes in the mean molecular weight induced by neutral dynamics, and the changes in particle heating rates and ionization which result from changes in neutral <span class="hlt">density</span>. We use a high resolution two-dimensional time-dependent nonhydrostatic nonlinear dynamical model where inputs can be systematically altered. The resolution of the model allows us to examine the complete range of cusp widths. We compare the current simulations to observations by CHAMP and Streak. Acknowledgements: This research was supported by The Aerospace Corporation's Technical Investment program</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT.......171R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT.......171R"><span>CWEX (Crop/<span class="hlt">Wind</span>-Energy Experiment): Measurements of the interaction between crop agriculture and <span class="hlt">wind</span> power</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rajewski, Daniel Andrew</p> <p></p> <p>The current expansion of <span class="hlt">wind</span> farms in the U.S. Midwest promotes an alternative renewable energy portfolio to conventional energy sources derived from fossil fuels. The construction of <span class="hlt">wind</span> turbines and large <span class="hlt">wind</span> farms within several millions of cropland acres creates a unique interaction between two unlike energy sources: electric generation by <span class="hlt">wind</span> and bio-fuel production derived from crop grain and plant tissues. <span class="hlt">Wind</span> turbines produce power by extracting mean <span class="hlt">wind</span> speed and converting a portion of the flow to turbulence downstream of each rotor. Turbine-scale turbulence modifies fluxes of momentum, heat, moisture, and other gaseous constituents (e.g. carbon dioxide) between the crop canopy and the atmospheric boundary layer. Conversely, crop surfaces and tillage elements produce drag on the hub-height <span class="hlt">wind</span> resource, and the release of sensible and latent heat flux from the canopy or soil influences the <span class="hlt">wind</span> speed profile. The Crop-<span class="hlt">Wind</span> Energy Experiment (CWEX) measured momentum, energy, and CO2 fluxes at several locations within the leading line of turbines in a large operational <span class="hlt">wind</span> farm, and overall turbines promote canopy mixing of <span class="hlt">wind</span> speed, temperature, moisture, and carbon dioxide in both the day and night. Turbine-generated perturbations of these fluxes are dependent on several factors influencing the turbine operation (e.g. <span class="hlt">wind</span> speed, <span class="hlt">wind</span> direction, stability, orientation of surrounding turbines within a <span class="hlt">wind</span> park) and the cropland surface (e.g. crop type and cultivar, planting <span class="hlt">density</span>, chemical application, and soil composition and drainage qualities). Additional strategies are proposed for optimizing the synergy between crop and <span class="hlt">wind</span> power.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013MS%26E...52e2011E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013MS%26E...52e2011E"><span>Statistical analysis of low frequency vibrations in <span class="hlt">variable</span> speed <span class="hlt">wind</span> turbines</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Escaler, X.; Mebarki, T.</p> <p>2013-12-01</p> <p>The spectral content of the low frequency vibrations in the band from 0 to 10 Hz measured in full scale <span class="hlt">wind</span> turbines has been statistically analyzed as a function of the whole range of steady operating conditions. Attention has been given to the amplitudes of the vibration peaks and their dependency on rotating speed and power output. Two different <span class="hlt">wind</span> turbine models of 800 and 2000 kW have been compared. For each model, a sample of units located in the same <span class="hlt">wind</span> farm and operating during a representative period of time have been considered. A condition monitoring system installed in each <span class="hlt">wind</span> turbine has been used to register the axial acceleration on the gearbox casing between the intermediate and the high speed shafts. The average frequency spectrum has permitted to identify the vibration signature and the position of the first tower natural frequency in both models. The evolution of the vibration amplitudes at the rotor rotating frequency and its multiples has shown that the tower response is amplified by resonance conditions in one of the models. So, it is concluded that a continuous measurement and control of low frequency vibrations is required to protect the turbines against harmful vibrations of this nature.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/947422','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/947422"><span>Definition of a 5-MW Reference <span class="hlt">Wind</span> Turbine for Offshore System Development</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jonkman, J.; Butterfield, S.; Musial, W.</p> <p>2009-02-01</p> <p>This report describes a three-bladed, upwind, <span class="hlt">variable</span>-speed, <span class="hlt">variable</span> blade-pitch-to-feather-controlled multimegawatt <span class="hlt">wind</span> turbine model developed by NREL to support concept studies aimed at assessing offshore <span class="hlt">wind</span> technology.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830010987','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830010987"><span>Description of the 3 MW SWT-3 <span class="hlt">wind</span> turbine at San Gorgonio Pass, California</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rybak, S. C.</p> <p>1982-01-01</p> <p>The SWT-3 <span class="hlt">wind</span> turbine, a microprocessor controlled three bladed <span class="hlt">variable</span> speed upwind machine with a 3MW rating that is presently operational and undergoing system testing, is discussed. The tower, a rigid triangular truss configuration, is rotated about its vertical axis to position the <span class="hlt">wind</span> turbine into the prevailing <span class="hlt">wind</span>. The blades rotate at <span class="hlt">variable</span> speed in order to maintain an optimum 6 to 1 tip speed ratio between cut in and fated <span class="hlt">wind</span> velocity, thereby maximizing power extraction from the <span class="hlt">wind</span>. Rotor <span class="hlt">variable</span> speed is implemented by the use of a hydrostatic transmission consisting of fourteen fixed displacement pumps operating in conjunction with eighteen <span class="hlt">variable</span> displacement motors. Full blade pitch with on-off hydraulic actuation is used to maintain 3MW of output power.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.2168S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.2168S"><span><span class="hlt">Wind</span> impact on the Black Sea ecosystem</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stanichny, Sergey; Ratner, Yuriy; Shokurov, Mike; Stanychna, Rimma; Soloviev, Dmytro; Burdyugov, Vyacheslav</p> <p>2010-05-01</p> <p>Combination of the recent satellite and meteorological data for the regional investigation allowed to describe new features of the processes in marine ecosystem and detect some relations with <span class="hlt">wind</span> <span class="hlt">variability</span> for different time scales. Next topics are highlighted in presentation: 1. Inter-annual <span class="hlt">variability</span> of the <span class="hlt">wind</span> stress curl over the Black Sea. Shift in the atmospheric processes after 2003 year and related variations in chlorophyll concentration and intensity of the mesoscale currents. 2. Like-tropical cyclone in September 2005 and its impact o the Black Sea upper layer. 3. Strong storm November 11, 2007 and oil pollutions of the Kerch Strait. 4. Relation of the Danube waters transport with <span class="hlt">wind</span> fields for summer 2007 and 2008. 5. "Valley" <span class="hlt">wind</span> in the Eastern part of the Black Sea and its impact on the Rim current formation. 6. Low <span class="hlt">wind</span> conditions and blue -green algae bloom. NCEP, SKIRON and MHI MM5 <span class="hlt">wind</span> data together with AVHRR, MODIS, MERIS, ETM+, QuikSCAT, ASAR (ESA) satellite data were used for investigation. Work was done with support of the SESAME FP7, "Stable Ecosystem" and Operational Oceanography NASU projects.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140008736','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140008736"><span>Temporal <span class="hlt">Variability</span> of Upper-level <span class="hlt">Winds</span> at the Eastern Range, Western Range and Wallops Flight Facility</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Decker, Ryan K.; Barbre, Robert E., Jr.</p> <p>2014-01-01</p> <p>Space launch vehicle commit-to-launch decisions include an assessment of the upper-level (UL) atmospheric <span class="hlt">wind</span> environment to assess the vehicle's controllability and structural integrity during ascent. These assessments occur at predetermined times during the launch countdown based on measured <span class="hlt">wind</span> data obtained prior to the assessment. However, the pre-launch measured <span class="hlt">winds</span> may not represent the <span class="hlt">wind</span> environment during the vehicle ascent. Uncertainty in the UL <span class="hlt">winds</span> over the time period between the assessment and launch can be mitigated by a statistical analysis of <span class="hlt">wind</span> change over time periods of interest using historical data from the launch range. Without historical data, theoretical <span class="hlt">wind</span> models must be used, which can result in inaccurate <span class="hlt">wind</span> placards that misrepresent launch availability. Using an overconservative model could result in overly restrictive vehicle <span class="hlt">wind</span> placards, thus potentially reducing launch availability. Conversely, using an under-conservative model could result in launching into <span class="hlt">winds</span> that might damage or destroy the vehicle. A large sample of measured <span class="hlt">wind</span> profiles best characterizes the <span class="hlt">wind</span> change environment. These historical databases consist of a certain number of <span class="hlt">wind</span> pairs, where two <span class="hlt">wind</span> profile measurements spaced by the time period of interest define a pair.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22392350-method-measuring-groove-density-variable-line-space-gratings-elimination-eccentricity-effect','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22392350-method-measuring-groove-density-variable-line-space-gratings-elimination-eccentricity-effect"><span>The method for measuring the groove <span class="hlt">density</span> of <span class="hlt">variable</span>-line-space gratings with elimination of the eccentricity effect</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, Qingbo; Liu, Zhengkun, E-mail: zhkliu@ustc.edu.cn; Chen, Huoyao</p> <p>2015-02-15</p> <p>To eliminate the eccentricity effect, a new method for measuring the groove <span class="hlt">density</span> of a <span class="hlt">variable</span>-line-space grating was adapted. Based on grating equation, groove <span class="hlt">density</span> is calculated by measuring the internal angles between zeroth-order and first-order diffracted light for two different wavelengths with the same angle of incidence. The measurement system mainly includes two laser sources, a phase plate, plane mirror, and charge coupled device. The measurement results of a <span class="hlt">variable</span>-line-space grating demonstrate that the experiment data agree well with theoretical values, and the value of measurement error (ΔN/N) is less than 2.72 × 10{sup −4}.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1202D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1202D"><span>Non-Axisymmetric Line Driven Disc <span class="hlt">Winds</span> II - Full Velocity Gradient</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dyda, Sergei; Proga, Daniel</p> <p>2018-05-01</p> <p>We study non-axisymetric features of 3D line driven <span class="hlt">winds</span> in the Sobolev approximation, where the optical depth is calculated using the full velocity gradient. We find that non-axisymmetric <span class="hlt">density</span> features, so called clumps, form primarily at the base of the <span class="hlt">wind</span> on super-Sobolev length scales. The <span class="hlt">density</span> of clumps differs by a factor of ˜3 from the azimuthal average, the magnitude of their velocity dispersion is comparable to the flow velocity and they produce ˜20% variations in the column <span class="hlt">density</span>. Clumps may be observable because differences in <span class="hlt">density</span> produce enhancements in emission and absorption profiles or through their velocity dispersion which enhances line broadening.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998JGR...103..419D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998JGR...103..419D"><span>Trapped particles in the polar <span class="hlt">wind</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Demars, H. G.; Barakat, A. R.; Schunk, R. W.</p> <p>1998-01-01</p> <p>The flow of plasma along open field lines at high latitudes is highly <span class="hlt">variable</span> and depends both on conditions in the underlying ionosphere and thermosphere and on the transport of particles and energy from the magnetosphere. Past attempts to model this time <span class="hlt">variability</span> have, for the most part, examined the response of the plasma on a stationary field line to certain prespecified boundary conditions and heat sources. While such prespecified conditions may bear some resemblance to what occurs naturally, they are artificial and cannot be expected to yield a truly quantitative understanding of the various physical processes that interact to produce the dynamic polar <span class="hlt">wind</span>. The present study is one in a series of studies that attempts to eliminate this artificiality by coupling the mathematical description of the polar <span class="hlt">wind</span> to a three-dimensional time-dependent model of the high-latitude ionosphere. In this study, an individual flux tube of plasma is followed as it moves under the influence of combined corotation and convection electric fields. Boundary conditions at the lower end of the flux tube are obtained from the ionosphere model, which takes into account all significant particle species, chemical reactions, and heat sources that contribute to the state of the ionosphere. A multi-ion macroscopic particle-in-cell code is used to model the plasma in the flux tube. A description of the behavior of H+ and O+ for the altitude range from 2000 km to about 8 Earth radii is obtained as the flux tube moves along the trajectory, which traverses regions of the subauroral ionosphere, dayside and nightside ovals, and polar cap. The goal of the study is to determine the extent to which ion trapping can occur in the polar <span class="hlt">wind</span> and the effects that collisions, wave-particle interactions, centrifugal acceleration, and varying ionospheric conditions have on the trapped ions. The main conclusion of the study is that O+ trapping is important and it acts to increase the O+ <span class="hlt">density</span> at</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70159431','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70159431"><span>Holocene <span class="hlt">variability</span> in the intensity of <span class="hlt">wind</span>-gap upwelling in the tropical eastern Pacific</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Toth, Lauren T.; Aronson, Richard B.; Cheng, Hai; Edwards, R. Lawrence</p> <p>2015-01-01</p> <p><span class="hlt">Wind</span>-driven upwelling in Pacific Panamá is a significant source of oceanographic <span class="hlt">variability</span> in the tropical eastern Pacific. This upwelling system provides a critical teleconnection between the Atlantic and tropical Pacific that may impact climate <span class="hlt">variability</span> on a global scale. Despite its importance to oceanographic circulation, ecology, and climate, little is known about the long-term stability of the Panamanian upwelling system or its interaction with climatic forcing on millennial time scales. Using a combination of radiocarbon and U-series dating of fossil corals collected in cores from five sites across Pacific Panamá, we reconstructed the local radiocarbon reservoir correction, ΔR, from ~6750 cal B.P. to present. Because the ΔR of shallow-water environments is elevated by upwelling, our data set represents a millennial-scale record of spatial and temporal <span class="hlt">variability</span> of the Panamanian upwelling system. The general oceanographic gradient from relatively strong upwelling in the Gulf of Panamá to weak-to-absent upwelling in the Gulf of Chiriquí was present throughout our record; however, the intensity of upwelling in the Gulf of Panamá varied significantly through time. Our reconstructions suggest that upwelling in the Gulf of Panamá is weak at present; however, the middle Holocene was characterized by periods of enhanced upwelling, with the most intense upwelling occurring just after of a regional shutdown in the development of reefs at ~4100 cal B.P. Comparisons with regional climate proxies suggest that, whereas the Intertropical Convergence Zone is the primary control on modern upwelling in Pacific Panamá, the El Niño–Southern Oscillation drove the millennial-scale <span class="hlt">variability</span> of upwelling during the Holocene.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>